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Preface

It is both an honor and a pleasure to hold the 27th Annual Meeting of the
German Association for Pattern Recognition, DAGM 2005, at the Vienna Uni-
versity of Technology, Austria, organized by the Pattern Recognition and Image
Processing (PRIP) Group. We received 122 contributions of which we were able
to accept 29 as oral presentations and 31 as posters. Each paper received three
reviews, upon which decisions were made based on correctness, presentation,
technical depth, scientific significance and originality. The selection as oral or
poster presentation does not signify a quality grading but reflects attractiveness
to the audience which is also reflected in the order of appearance of papers in
these proceedings. The papers are printed in the same order as presented at the
symposium and posters are integrated in the corresponding thematic session.

In putting these proceedings together, many people played significant roles
which we would like to acknowledge. First of all our thanks go to the authors
who contributed their work to the symposium. Second, we are grateful for the
dedicated work of the 38 members of the Program Committee for their effort in
evaluating the submitted papers and in providing the necessary decision support
information and the valuable feedback for the authors. Furthermore, the Pro-
gram Committee awarded prizes for the best papers, and we want to sincerely
thank the donors.

We were honored to have the following three invited speakers at the confer-
ence:

– Jan P. Allebach (School of Electrical and Computer Engineering, Purdue
University): Digital Printing – A Rich Domain for Image Analysis and Pat-
tern Recognition.

– Sven Dickinson (Department of Computer Science, University of Toronto):
Object Categorization and the Need for Many-to-Many Matching.

– Václav Hlaváč (Center for Machine Perception, Czech Technical University):
Simple Solvers for Large Quadratic Programming Tasks.

We are grateful for economic support from the Austrian Computer Society,
Microsoft Europe, IBM, Advanced Computer Vision, and the Vienna Conven-
tion Bureau. Many thanks to our local support team, Karin Hraby, Ernestine
Zolda and Patrizia Schmidt-Simonsky, who made this symposium possible and
took care of all practical tasks involved in planning DAGM 2005. Special thanks
go to Martin Kampel, who wrote and maintained the symposium website and
supported the organization of the review process. We hope that these proceed-
ings, following the tradition of all DAGM symposiums, will not only impact on
the current research of the readers but will also represent important archival
material.

June 2005 Robert Sablatnig, Walter Kropatsch and Allan Hanbury



DAGM1 2005 Organization

General Chairs

Walter G. Kropatsch TU Wien
Robert Sablatnig TU Wien

Organizing Committee

Karin Hraby TU Wien
Ernestine Zolda TU Wien
Martin Kampel TU Wien
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Since 1978 DAGM (German Association for Pattern Recognition) has orga-
nized annual scientific conferences at various venues. The goal of each DAGM
symposium is to inspire conceptual thinking, support the dissemination of ideas
and research results from different areas in the field of pattern recognition, stim-
ulate discussions and the exchange of ideas among experts, and support and
motivate the next generation of young researchers.

DAGM e.V. was founded as a registered research association in September
1999. Until that time, DAGM had been comprised of the following support or-
ganizations that have since become honorary members of DAGM e.V.:

1. DGaO, Deutsche Arbeitsgemeinschaft für angewandte Optik (German Soci-
ety for Applied Optics)

2. GMDS, Deutsche Gesellschaft für Medizinische Informatik, Biometrie und
Epidemiologie (German Society for Medical Informatics, Biometry, and Epi-
demiology)

3. GI, Gesellschaft für Informatik (German Informatics Society)
4. ITG, Informationstechnische Gesellschaft (Information Technology Society)
5. DGN, Deutsche Gesellschaft für Nuklearmedizin (German Society for Nu-

clear Medicine)
6. IEEE, Deutsche Sektion des IEEE (Institute of Electrical and Electronics

Engineers, German Section)
7. DGPF, Deutsche Gesellschaft für Photogrammetrie und Fernerkundung (Ger-

man Society for Photogrammetry, Remote Sensing and Geo-information)
8. VDMA, Fachabteilung industrielle Bildverarbeitung/Machine Vision (VDMA

Robotics + Automation Division)
9. GNNS, German Chapter of the European Neural Network Society

10. DGR, Deutsche Gesellschaft fur Robotik (German Robotics Society)

1 DAGM e.V.: Deutsche Arbeitsgemeinschaft für Mustererkennung (German Associ-
ation for Pattern Recognition).



Prizes 2004

Olympus Prize

The Olympus Prize 2004 was
awarded to:

Daniel Cremers
for his significant contributions
in the research area of Image
Segmentation.

DAGM Prizes

The main prize was awarded to:

Bastian Leibe and Bernt Schiele
Scale-Invariant Object Categorization Using a Scale-Adaptive Mean Shift Search.

Further DAGM prizes for 2004 were awarded to:

Volker Roth and Tilman Lange
Adaptive Feature Selection in Image Segmentation.

Michael Felsberg and Gösta Granlund
POI Detection Using Channel Clustering and the 2D Energy Tensor.

Daniel Keysers, Thomas Deselaers and Hermann Ney
Pixel-to-Pixel Matching for Image Recognition Using Hungarian Graph
Matching.
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On Determining the Color of the Illuminant
Using the Dichromatic Reflection Model

Marc Ebner and Christian Herrmann

Universität Würzburg, Lehrstuhl für Informatik II,
Am Hubland, 97074 Würzburg, Germany
ebner@informatik.uni-wuerzburg.de,

http://www2.informatik.uni-wuerzburg.de/staff/ebner/welcome.html

Abstract. The human visual system is able to accurately determine the
color of objects irrespective of the spectral power distribution used to il-
luminate the scene. This ability to compute color constant descriptors is
called color constancy. Many different algorithms have been proposed to
solve the problem of color constancy. Usually, some assumptions have to
be made in order to solve this problem. Algorithms based on the dichro-
matic reflection model assume that the light reflected from an object
results from a combined matte and specular reflection. This assumption
is used to estimate the color of the illuminant. Once the color of the il-
luminant is known, one can compute a color corrected image as it would
appear under a canonical, i.e. white illuminant. A number of different
methods can be used to estimate the illuminant from the dichromatic re-
flection model. We evaluate several different methods on a standard set
of images. Our results indicate that the median operator is particularly
useful in estimating the color of the illuminant. We also found that it is
not advantageous to assume that the illuminant can be approximated by
the curve of the black-body radiator.

1 Motivation

A white wall illuminated by yellowish light reflects more light in the red and
green part than in the blue part of the spectrum. If we use a camera to take
an image of the wall, the sensor of the camera will measure the light reflected
from the wall. Thus, a photograph of the wall will have a yellow cast. A human
observer, however, is able to somehow discount the illuminant. He will perceive
the wall as being white irrespective of the type of illuminant used. This ability to
compute color constant descriptors is known as color constancy [1]. Developing
algorithms for color constancy is obviously very important for consumer photo-
graphy. Another area where color constancy algorithms may be used is machine
based object recognition. In this paper, we will be looking at several different
methods on how to estimate the color of the illuminant from a color image. Once
the illuminant is known, it can be used to compute a color corrected image under
a canonical, i.e. white illuminant. The different methods will be evaluated on a
standard set of test images.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Ebner and C. Herrmann

2 The Dichromatic Reflection Model

The dichromatic reflection model assumes that object color is a result of a matte
reflection in combination with a specular reflective component [2,3,4]. The overall
color of the object is determined by the matte reflection whereas specular high-
lights are caused by the specular reflection. These highlights occur whenever the
light is reflected such that it directly enters the camera. Since the light from the
light source is reflected directly into the camera it can be used to estimate the
color of the illuminant.

Let S(λ) be the vector with the response functions of the sensor. For an
RGB-sensor, we have S = [Sr(λ), Sg(λ), Sb(λ)] where the functions Si(λ) with
i ∈ {r, g, b} specify the sensor’s response characteristics to light in the red, green,
and blue part of the spectrum. Let E(λ) be the light falling into the sensor, then
the response of the sensor is given by

I =
∫ +∞

−∞
E(λ)S(λ)dλ.

Under the dichromatic reflection model, the response of the sensor is given by

I =
∫ +∞

−∞
(sMRM (λ)E(λ) + sSRS(λ)E(λ)) S(λ)dλ

where RM (λ) is the object reflectance with regard to the matte reflection, RS(λ)
is the object reflectance with regard to the specular reflection, sM and sS are two
scaling factors which depend on the object geometry and E(λ) is the irradiance
falling onto the object [4].

Let us now assume that the response functions are very narrow, i.e. they can
be modeled by delta functions Si(λ) = δ(λ−λi). Such ideal sensors only respond
to a single wavelength λi with i ∈ {r, g, b}. This gives us

Ii = sMRM,iEi + sSRS,iEi.

Assuming that the specular reflection behaves like a perfect mirror, i.e. RS,i = 1,
we obtain

Ii = sMRM,iEi + sSEi.

Let CM = [RM,rEr , RM,gEg, RM,bEb] be the measured matte color of the object
and let CS = [Er, Eg, Eb] be the color of the illuminant. We now see that the
color measured by the sensor is restricted to the linear combination of the matte
color of the object point CM as seen under illuminant E and the color of the
illuminant CS . The two vectors CM and CS define a plane inside the RGB color
space [3].

By computing chromaticities, the three-dimensional data points are projected
onto the plane r + g + b = 1. This gives us a line in chromaticity space. The two
points which define the line are the chromaticities of the measured object color
[rO, gO]T and the chromaticities of the color of the illuminant [rE , gE ]T(

r
g

)
= s

(
rO
gO

)
+ (1− s)

(
rE
gE

)
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for some scaling factor s. The data points which belong to a uniformly colored
surface will all be distributed along this, so called, dichromatic line. We now
assume that the illuminant is uniform over the entire scene. In this case, all
dichromatic lines will have one point in common, the color of the illuminant.

3 Natural Illuminants

If we know the correspondence between data points and surfaces, we can compute
the dichromatic line for each surface. The dichromatic line can be found by
doing a linear regression on the data. Alternatively we can also compute the
covariance matrix and then locate the eigenvector which corresponds to the
largest eigenvalue to determine the orientation of the dichromatic line. According
to Finlayson and Schaefer [4] the algorithms based on the dichromatic reflection
model perform well only under idealized conditions. The estimated illuminant
turns out not to be very accurate. If small amounts of noise are present in
the data then the computed intersection may be very different from the actual
intersection. Finlayson and Schaefer note that the method works well for highly
saturated surfaces under laboratory conditions but does not work well for real
images. In their work, they assumed the images to be pre-segmented.

They suggest to compute the intersection of the dichromatic lines with the
curve of the black-body radiator in order to make the method more robust. Many
natural light sources can be approximated by a black-body radiator. The power
spectrum E(λ, T ) of a black-body radiator depends on the temperature T . It
can be described by the following equation [5,6]

E(λ, T ) =
2hc2

λ5

1

(e
hc

kBT λ − 1)

where T is the temperature of the black-body measured in Kelvin, h = 6.626176·
10−34Js is Planck’s constant, kB = 1.3806 · 10−23 J

K is Boltzmann’s constant,
and c = 2.9979 · 108 m

s is the speed of light. Many natural light sources such as
the flame of a candle, light from a light bulb or sunlight can be approximated
by the power spectrum of the black-body radiator. The chromaticities of day-
light also follows the curve of the black-body radiator closely [7]. Plotting the
chromaticities of the black-body radiator in CIE XYZ color space, one obtains
a curve which can be approximated by a quadratic equation.

Using this approximation, we can compute the intersection between the
dichromatic line and the curve of the black-body radiator. As a result, one either
obtains none, one or two points of intersection. If the dichromatic line does not
intersect the curve of the black-body radiator, then one can locate the closest
point between the line and the curve of the black-body radiator. If two intersec-
tions are found, one can use some heuristics to select one of the two as the correct
intersection. Using the constraint that the illuminant can be approximated by
the curve of the black-body radiator, in theory it is possible, to determine the
color of the illuminant from a single surface. Algorithms based on the gray world
assumption [8,9,10] in contrast, require that the scene be sufficiently diverse.
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4 Estimating the Color of the Illuminant by Segmentation
and Filtering

Risson [11] extended the algorithm of Finlayson and Schaefer by also addressing
the segmentation problem. Risson proposed to determine the illuminant by first
segmenting the image and then filtering out regions which are not in line with the
dichromatic reflection model. As a first step, noise is removed by pre-filtering the
image using a Gaussian or median filter. Then the image is segmented. Regions
which do not agree with the dichromatic reflection model, such as achromatic
regions or regions which belong to the sky, are removed. In order to compute the
direction of the dichromatic line reliably, the region has to have a certain size.
Risson [11] suggested to remove all regions with a saturation less than 12%. For
each remaining region, the dichromatic line is computed.

The dichromatic line can be computed by performing a linear regression on
the x- and y-coordinates in CIE XYZ chromaticity space. We can also compute
the covariance matrix for the pixel colors which belong to a single region. Using
singular value decomposition, the largest eigenvalue tells us the direction of the
dichromatic line. Let ei be the normalized eigenvector which corresponds to the
largest eigenvalue obtained for region j. The dichromatic line Lj of region j is
then given by

Lj = {aj + sej|with s ∈ R}
where aj is the average chromaticity of the region. In theory, the illuminant is
located at the point where all dichromatic lines Lj intersect. In practice, however,
the dichromatic lines do not intersect in a single point because of noise in the
data. It may also be that some of the computed lines are not caused by pure
matte reflections in combination with specular reflections.

It may be possible to develop a classifier to rule out lines which are not in
agreement with the dichromatic reflection model. A simpler method is to use
the large number of dichromatic lines obtained from the image and to gather
statistical evidence for the actual point of intersection. The exact method on how
to determine the location of the point of intersection is not specified by Risson
[11]. In finding the point of intersection, the curve of the black-body radiator
may or may not be used to constrain the set of possible illuminants.

A simple method with no constraints on the color of the illuminant would
be to compute the intersection for all possible combinations between two dichro-
matic lines. This gives us a set of intersections [12]. Let n be the number of
dichromatic lines of the image. This gives us 1

2n(n − 1) points of intersection
pi = [xi, yi] where xi and yi are the chromaticities in CIE XYZ color space.

{pi|with i ∈ [1, ...,
1
2
n(n− 1)}

From this set we can estimate the actual point of intersection by computing the
average of the points of intersection. In this case, the position of the illuminant
p is given by

p =
2

n(n− 1)

∑
i

pi.
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We could also compute the median independently for the x- and y-coordinates.
Use of the median operator has the advantage that outliers are removed.

p = [Median{xi},Median{yi}]

where Median denotes the computation of the median.
Assuming that the illuminant can be approximated by the curve of the black-

body radiator, we can use this curve to constrain the set of possible illuminants.
Thus, for each dichromatic line we would first compute the intersection between
each dichromatic line and the curve of the black-body radiator and then fur-
ther process this data. Since the curve of the black-body radiator is a quadratic
function of the single coordinate x we obtain either none, one or two points
of intersection on the dichromatic line. We could take the average or the me-
dian value of all computed x coordinates and then compute the corresponding
y coordinate. We could also compute a histogram for all intersection points and
then select the bucket with the maximum count. Another possibility would be
to determine the corresponding temperature of the black-body radiator for each
intersection. Again we could then compute either the average or the median
temperature of all intersections. Given the temperature we could compute the
corresponding chromaticities in CIE XYZ color space.

Once the illuminant is known, it can be factored out of the image. As a
result, we obtain a color image as it would appear under a canonical, e.g. white
illuminant. Figure 1 shows the steps of the algorithm for a sample image.

5 Experimental Results

In order to evaluate which method of determining the most likely position of
the illuminant works best, we have used a standard dataset for color constancy
research, the datasets of Barnard et al. [13]1. Five different sets were selected
from the database. Set 1 contains only objects with minimal specularities, i.e.
Lambertian reflectors. Set 2 contains objects with metallic specularities. Set 3
contains objects with non-negligible dielectric specularities. Set 4 contains ob-
jects with at least one fluorescent surface. Each object is imaged under up to 11
different illuminants. The objects remained stationary whenever the illuminant
was changed. Set 5 can be used to evaluate the performance on object recogni-
tion tasks. Objects from set 5 were placed in a random position whenever the
illuminant was changed. Sets 1, 2, 3, 4, and 5 contain 22, 14, 9, 6, and 20 different
scenes, respectively.

The evaluation of the different methods described in the previous section
was done as follows. The color constancy algorithm based on the dichromatic
reflection model was applied to each image from the dataset. Then we randomly
selected two images from the dataset for each object. This gave us two image
sets. The first set of images contains the test images. The second set of images
contains the model images. The histogram based object recognition, originally
1 http://www.cs.sfu.ca/∼colour/data/index.html
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Input Image Segmented Image

Remaining Regions Dichromatic Lines
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CIE Color Space
Black Body Radiator

Dichromatic Lines
Selected Illuminant

Output Image

Fig. 1. Steps of Risson’s [11] algorithm. The input image is segmented into regions of
uniform color. Regions which are not in line with the dichromatic reflection model are
removed. Here, small regions and regions with low saturation are removed (marked in
red). For each remaining region, the dichromatic line is computed. Only a subset of
all lines are shown for clarity. The estimated illuminant is marked by a vertical and
horizontal line. The last image shows the output image.

introduced by Swain and Ballard [14], was used to find a match for each test
image. Since our goal is to evaluate the different estimation methods we have used
only color histograms and did not include any other information, i.e. gradients.
The χ2 divergence measure [15,16] was used to find the best match. Let HT be
the color histogram of the test image and and let HM be the color histogram
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of the model image. Let H(c) be the probability that the color c occurs in the
image then the χ2 divergence measure is computed as

χ2(HT , HM ) =
∑
c

(HT (c)−HM (c))2

HT (c) + HM (c)
.

This process was repeated 100 times for each data set.

Table 1. Results for image sets 1 through 5. Histograms were computed in RGB
chromaticity space. For each image set random performance is also shown.

Histogram-based Object Recognition, chromaticity space
Estimation Method 1 2 3 4 5
Random Recognition Rate 0.045 0.071 0.111 0.167 0.050
Avg. Intersection 0.170 0.282 0.333 0.337 0.154
Median Intersection 0.5350.5350.535 0.5890.5890.589 0.8390.8390.839 0.7250.7250.725 0.3280.3280.328
Black-Body Average X 0.373 0.504 0.576 0.565 0.235
Black-Body Median X 0.359 0.461 0.580 0.580 0.243
Black-Body Histogram 0.339 0.429 0.608 0.533 0.251
Black-Body Avg. Temperature 0.325 0.434 0.584 0.540 0.228
Black-Body Med. Temperature 0.337 0.428 0.567 0.533 0.212

Table 1 shows the results for each data set and method of estimating the
illuminant. The performance based on a random selection of matches is shown at
the top of the table. Selecting the median intersection method clearly produced
the best results. Since the dichromatic reflection model was developed for objects
with specular surfaces it is of no surprise that best results were achieved for set
3. Recognition results for set 5 which presents a more realistic scenario for object
recognition are much lower than the results for sets 1 through 4. Restricting the
illuminant to be on the curve of the black-body radiator did not result in better
performance compared to the median intersection. If we assume the illuminant
to be caused by natural illumination such as sunlight or tungsten light then we
automatically rule out a greenish or purple illuminant. The above results show
that it makes sense not to make any assumptions on the color of the illuminant.

6 Conclusion

Algorithms based on the dichromatic reflection model are especially suited to
achieve color constancy provided that specular objects are in the image. In the-
ory, the color of the illuminant is located at the intersection of the dichromatic
lines. In practice, however, the dichromatic lines do not intersect in a single
point. Thus, one has to decide upon a method to estimate the color of the illu-
minant from the available data. We evaluated several different methods on how
to estimate the color of the illuminant using histogram based object recognition.
We found that selecting the median of the intersection of the dichromatic lines in
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CIE chromaticity space gave best results. Also, it is not advantageous to make
the assumption that the color of the illuminant can be approximated by the
curve of the black-body radiator.
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Abstract. Usually, optical flow computation is based on grayscale images and
the brightness conservation assumption. Recently, some authors have investigated
in transferring gradient-based grayscale optical flow methods to color images.
These color optical flow methods are restricted to brightness and color conser-
vation over time. In this paper, a correlation-based color optical flow method
is presented that allows for brightness and color changes within an image se-
quence. Further on, the correlation results are used for a probabilistic evaluation
that combines the velocity information gained from single color frames to a joint
velocity estimate including all color frames. The resulting color optical flow is
compared to other representative multi-frame color methods and standard single-
frame grayscale methods.

1 Introduction

The optical flow is an approximation for a 2D motion field of the velocity vectors of
each pixel of an image, with every vector being a projection of the real 3D velocity
of a corresponding surface point [4]. In the literature, the term optical flow is usually
related to image motion fields that are computed purely based on luminance informa-
tion. To the contrary, color optical flow fields are image motion fields that are estimated
based on color images which is also often termed multi-channel optical flow, image
flow estimation and photometric invariant optical flow etc.

The usual way for motion estimation is using grayscale images and assuming con-
stant brightness over time. The brightness constraint equation is a quite strong assump-
tion which is only appropriate for high frame-rates with small changes between con-
secutive frames, so that it often does not hold for real world sequences. In fact, the
luminance information is highly dependent on moving shadows, varying shading, mov-
ing specularities and fluctuations in the light source intensity [9]. To account for the
luminance problem, some authors have extended standard optical flow estimation al-
gorithms for the use of color images instead of grayscale ones. To do so, they replace
the brightness assumption with a less restrictive constant chromaticity assumption, also
called color invariance assumption, meaning that the color stays constant over time
[6],[9]. Obviously, color images contain more scene information than grayscale images
and therefore an improvement should be expected for color-based optical flow estima-
tion. Nevertheless, the constant color assumption seems to be nearly as restrictive as the

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 9–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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constant brightness assumption, since the problem of varying information over time is
still present.

A simple experimental examination shown in Fig. 1 indicates that also color infor-
mation varies to a large extent within consecutive images of a real world sequence. A
person holding a yellow book in front of his body is moving towards the camera under
a fluorescent tube illumination. Measuring the RGB/HSV values of two consecutive
images It and It+Δt shows that the color information in the different color channels
within the black circle is 1) not constant across different pixels within the circle, mainly
because of chroma noise, and 2) also not constant for corresponding pixels within a
color frame over time, mainly because of luminance and reflection changes. The vari-
ances for the different color channels within the circle and over the two consecutive
images are listed in the table of Fig. 1.

It It+Δt

It It → It+Δt

RGB

HSV

σr = 13
σg = 14
σb = 21

σr = 12
σg = 7
σb = 3

σh = 5
σs = 22
σv = 6

σh = 8
σs = 13
σv = 4

Fig. 1. Example showing the change of color over time because of independent changes of bright-
ness and contrast within different color channels. The color components of an image pixel can
change over time because of reflection and illumination changes.

Besides varying color information, it is not clear how existing correlations between
the different color channels, mentioned by Madjidi and Negahdaripour in [7], can be
used for optical flow computation and how to handle brightness and color assump-
tions concurrently. In spite of the many open questions regarding color optical flow,
researches in that field are still quite sparse [6],[9],[1],[7],[3].

Looking at standard applications, the optical flow is usually gained by comparing
brightness patterns of two consecutive images It and It+Δt, where It is an image con-
sisting of pixels at locations x at time t. Comparing brightness patterns often leads to
assume brightness invariance of particular patterns under motion. Let Ŵ�Gt,p be a
weighted patch of gray values of image It centered and windowed about p (with�
symbolising the componentwise multiplication of two vectors). Gt denotes the vector
of intensities linked to the particular image and Ŵ defines a window function, which
restricts the pattern size. Assuming brightness conservation the standard correlation-
based optical flow equation can be formulated following [5] as:

Ŵ�Gt,p = Ŵ�Gt+Δt,p+Δp . (1)

In order to obtain color optical flow Golland and Bruckstein [6] used a standard
gradient-based approach with the same assumptions as in Eq. 1 and applied the re-
sulting brightness constraint equation to each channel of the RGB color space. Then
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they solved the resulting overdetermined system of linear equations by a standard least-
squares algorithm. In an alternative approach they propose that in pure color channels
changes in brightness do not appear and the resulting color conservation assumption
would be more appropriate. In this approach, they eliminate the brightness containing
channel, e.g. the Value channel of the HSV color space, and applied the two pure color
channels, e.g. the Hue and Saturation channel, to the mentioned constraint.

Starting from the dichromatic reflection model, van de Weijer and Gevers [9] de-
rive photometric invariants to improve optical flow estimation that in their approach
is independent of shadow-shading and specular reflectance changes. They propose the
combination of a reliability measure that considers instabilities of the photometric in-
variants and optical flow estimation to increase robustness.

Based on Gollands and Brucksteins first proposal, Barron and Klette [2],[3] anal-
ysed different standard differential techniques for computing the optical flow, e.g. the
Lucas and Kanade method or the Horn and Schunck regularization. For more details of
standard methods see [4]. Furthermore, they recast the Horn and Schunck regulariza-
tion adding a directional constraint that depends on one knowing whether the camera is
panning or zooming in the standard minimization formula.

Andrews and Lovell [1] developed some faster algorithms for solving the color op-
tical flow equations proposed by Golland, Bruckstein and Barron, Klette.

In this paper, we investigate the formulation of a local linear generative model that
approximately describes the correlation between colored image patches within two con-
secutive multi-frame color images. This model is used to generate locally as well as
channel independent measurements that are interpreted as discrete conditional proba-
bility density functions (pdfs) holding the probabilities for several motion hypotheses
given two consecutive color patches. The advantage of these pdfs given a set of discrete
velocities is that a number of velocity hypotheses can be tested concurrently. This means
that the velocity information derived from the single color channels can be combined
without loosing information. From these velocity distributions velocity vectors are ex-
tracted to estimate the optical flow of a color image sequence. The main assumptions
are 1) that due to illumination and reflection changes, the color as well as the brightness
and the contrast within an image patch can vary systematically over time, especially
when there are moving objects in a scene and 2) the information in the color channels
can be treated as statistically independent and so can be combined to one joint velocity
distribution for each image location.

In Sec. 2 a short introduction to color spaces and a motivation why we treat the
color channels as statistically independent is given. In Sec. 3 a model that allows for
local value changes over time within the color channels is proposed and a correlation-
based probabilistic interpretation is presented that leads to a contrast and brightness
invariant color optical flow estimation. Finally some quantitative results are given in
Sec. 4 followed by some short conclusion in Sec. 5.

2 Color Spaces

The representation of color in so called color spaces like the RGB, HSV or YCbCr
follows the trichromatic theory of color, whereby every color can be specified by an
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additive composition of appropriate features like, e.g. the quota of red, green and blue
in a particular color. Hence every color can be represented by a linear combination of
those features each presenting a basis vector, since they are linearly independent and
their span describes the whole space.

ci = xiex + yiey + ziez , with 0 ≤ xi, yi, zi ≤ 1 and i ∈ {RGB,HSV,YCbCr} (2)

The vector ci represents a particular color in space i, xi, yi, zi are the corresponding
values of the associated features and ex, ey, ez are the standard basis vectors. Thus, the
whole color picture is described by

Ci = (Xi;Yi;Zi)T , (3)

where Xi, Yi, Zi are the single color channels of the frame.
An example of a typical three channel HSV color frame is given in Fig. 2. Remarkable
are the large differences according to contrastive and homogenous areas between the
channels. Every color space is spanned by a 3D coordinate system which describes the
color gamut of a particular device [8].

Hue Saturation Value

Fig. 2. Example of a three channel HSV color frame with remarkable differences between the
channels

The spectral responsivity of the used sensors for measurement, e.g. of the red, green
and blue component, will overlap in most cases. Thus the measured components will
be correlated. Nevertheless we assume that the measured data of the different channels
are statistical independent, since 1) the spectral overlapping appears only in subareas of
the spectral responses and 2) the measured data is mostly preprocessed with device spe-
cific parameters that differs between the different sensor types meaning the dependence
between the channels is unknown. The assumption of statistical independent spectral
responses seems to be a good approximation, since in most cases knowing the spectral
response of one channel does not allow to draw any conclusions regarding the responses
of the other channels. Even if the value of one pixel in a particular channel is measured,
this does not constrain the set of possible values of another channel.

3 Correlation-Based Color Optical Flow

Our approach for calculating color optical flow bases on a formulation for computing
the optical flow of intensity images [5]. The used notation is illustrated and described in
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Ct,p
i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,p
i

Yt,p
i

Zt,p
i

︷ ︸︸ ︷
ci = xiex + yiey + ziez

p

p

p

W

Fig. 3. This figure shows the used notation. A
color picture Ct,p

i consists of three color chan-
nels Xt,p

i , Yt,p
i , Zt,p

i with each channel contain-
ing a component, e.g. xi, yi or zi (See Eq. 2),
for each pixel p. A particular weighted 3D-patch
of an image at position p at time t is achieved
with the� operation of the window vector W :=
(Ŵ; Ŵ;Ŵ)T on the vector Ct,p

i in the sense
W�Ct,p

i = (W�Xt,p
i ;W�Yt,p

i ;W�Zt,p
i )T ,

denoting elementwise multiplication.

Fig. 3. Here, extending the brightness constancy assumption of Eq. 1, it is assumed that
during motion the contributions of the single color channels are independently jittered
by noise η and that brightness and contrast variations may occur over time, allowing
for systematic brightness, contrast and in addition color changes. The assumed color
changes imply e.g. changes of brightness or changes of the spectrum of the illumination.
These color changes are accounted for by a scaling vector λi and a bias vector κi. For
the sake of simplicity, we now neglect index i for the different color spaces and arrive
in analogy to Eq. 1 at

W�Ct,p = W�
[
λ�Ct+Δt,p+Δp + κ

]
+ η , with (4)

λ := (λx1;λy1;λz1)T , κ := (κx1;κy1;κz1)T and η := (ηx1; ηy1; ηz1)T

In this expression the patch W�Ct,p contains in accordance to Eq. 3 for each pixel a
vector.

Assuming that the image noise of each channel is zero mean Gaussian and statis-
tically independent from the noise in the other channels, with variances σηx, σηy and
σηz , we get a covariance matrix Ση , where only the elements of the leading diago-
nal are different from zero. Thus, the likelihood that Ct,p is a match for Ct+Δt,p+Δp,
given a velocity v = Δp/Δt and the parameter vectors λ,κ, the window function W
and the covariance matrix Ση , can be written down as:

ρ
(
Ct+Δt,p+Δp,Ct,p | v

)
∼ (5)

∼ e
− 1

2

(
W�(λ�Ct,p+κ −Ct+Δt,p+Δp)

)
Σ−1

η

(
W�(λ�Ct,p+κ −Ct+Δt,p+Δp)

)T

We now proceed to make Eq. 5 independent on λ and κ. Thus we maximize Eq. 5 with
respect to λ and κ. This leads to a minimization of the exponent of Eq. 5:

{λ∗,κ∗} := minλ,κ F, with (6)

F :=
(
W�(λ�Ct,p+κ −Ct+Δt,p+Δp)

)
Σ−1

η

(
W�(λ�Ct,p+κ −Ct+Δt,p+Δp)

)T

.

This amounts to solve the homogeneous equation system which we get from setting
the derivatives of Eq. 6 in direction of (λ, κ) to zero:

d

d(λ, κ)
F = 0 ,

d2

d(λ, κ)2
F > 0 . (7)
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In the case that each color channel has an independent λ, this minimization leads
to three independent equation systems each containing two constraints with two un-
knowns, which can be solved separately.

Let λ∗ =
(
λ∗
x, λ

∗
y, λ

∗
z

)T
, κ∗ =

(
κ∗
x, κ

∗
y, κ

∗
z

)T
be the parameters which minimize

Eq. 6. Substituting λ = λ∗ and κ = κ∗ into Eq. 5, the final likelihood reads:

ρ
(
Ct+Δt,p+Δp,Ct,p | v

)
∼ e

− 1
2

∑
A=X,Y,Z

(
σ
At,p
σηA

)2(
1−�2

At,p,At+Δt,p+Δp

)
, (8)

with σAt,p being the variance of the weighted patch of the momentary channel and

At,p,At+Δt,p+Δp being the correlation coefficient between two patches of two consec-
utive channels over time. From here on, for the sake of brevity, we now write ρt(p|v) :=
ρ
(
Ct+Δt,p+Δp,Ct,p | v

)
, which expresses the joint likelihood of the image data at lo-

cation p at time t given discrete motion hypotheses v for all color channels. We see that
ρt(p|v) factorizes, so that the corresponding probability for the whole image can be
written as

ρt(p|v) = ρtx(p|v) · ρty(p|v) · ρtz(p|v) , (9)

meaning that they can be calculated separately, with ρtx(p|v), ρty(p|v), ρtz(p|v) being
the likelihoods of each channel. The final optical flow field can directly be estimated
from the joint likelihood ρt (p|v) and a given prior ρ (v) using Bayes’ rule and the
maximum a posteriori estimator:

ρt (v|p) = ρ (v) ρt (p|v) , and v = max
v

(
ρt (v|p)

)
. (10)

In the following experiments the prior was chosen to be equally distributed.

4 Results

To give a quantitative analysis and a comparison to other existing color optical flow
methods we used two pan and zoom synthetic image sequences generated by John Bar-
ron and Reinhard Klette and added our results to the results presented in [3]. The quan-
titative error measurements can be seen in Table 1 and the corresponding optical flows

Fig. 4. Panning and Zooming color optical flow for the RGB color image
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Table 1. Error measurements reported in [3] including our results for comparison

Panning eM ± σeM
eϕ ± σeϕ Zooming eM ± σeM

eϕ ± σeϕ

Horn-Schunk RGB 24.27% ± 23.62% 4.56◦ ± 6.19◦ Horn-Schunk RGB 13.72% ± 14.92% 6.54◦ ± 7.91◦

Lucas-Kanade RGB 4.90% ± 9.31% 1.00◦ ± 3.44◦ Lucas-Kanade RGB 8.17% ± 12.04% 4.01◦ ± 12.13◦

Barron-Klette RGB 26.21% ± 19.29% 0.0◦ Barron-Klette RGB 15.48% ± 23.89% 0.0◦

Golland-Bruckstein RGB 11.38% ± 17.36% 5.04◦ ± 11.80◦ Golland-Bruckstein RGB 14.74% ± 19.37% 7.56◦ ± 14.87◦

Otha RGB 12.38% ± 18.91% 6.04◦ ± 12.80◦ Otha RGB 18.69% ± 27.87% 9.78◦ ± 15.80◦

Willert-Eggert-Clever RGB 0.0% 0.0◦ Willert-Eggert-Clever RGB 22.17% ± 18.77% 6.34◦ ± 6.33◦

Willert-Eggert-Clever HSV 1.97% ± 13.9% 0.001◦ ± 0.41◦ Willert-Eggert-Clever HSV 26.20% ± 21.39% 7.79◦ ± 8.61◦

Willert-Eggert-Clever YCbCr 0.0% 0.0◦ Willert-Eggert-Clever YCbCr 22.43% ± 18.91% 6.52◦ ± 6.48◦

Horn-Schunk S 43.69% ± 28.94% 10.48◦ ± 11.61◦ Horn-Schunk S 22.83% ± 11.23% 11.23◦ ± 12.81◦

Lucas-Kanade S 6.54% ± 13.19% 1.39◦ ± 4.54◦ Lucas-Kanade S 10.21% ± 14.66% 5.32◦ ± 13.62◦

Barron-Klette S 32.59% ± 20.19% 0.0◦ Barron-Klette S 26.43% ± 39.99% 0.0◦

Golland-Bruckstein S 16.97% ± 22.41% 9.34◦ ± 20.80◦ Golland-Bruckstein S 20.08% ± 24.05% 12.99◦ ± 23.98◦

Willert-Eggert-Clever S 10.77% ± 31.00% 0.002◦ ± 0.70◦ Willert-Eggert-Clever S 37.69% ± 24.68% 16.55◦ ± 21.10◦

Horn-Schunk Y 22.90% ± 24.12% 4.73◦ ± 7.28◦ Horn-Schunk Y 21.47% ± 20.50% 10.35◦ ± 11.73◦

Lucas-Kanade Y 6.14% ± 11.95% 1.63◦ ± 5.23◦ Lucas-Kanade Y 9.46% ± 14.04% 5.05◦ ± 13.61◦

Barron-Klette Y 20.06% ± 20.67% 0.0◦ Barron-Klette Y 23.67% ± 21.18% 0.0◦

Golland-Bruckstein Y 21.08% ± 28.07% 12.59◦ ± 24.99◦ Golland-Bruckstein Y 18.91% ± 23.72% 11.46◦ ± 21.84◦

Willert-Eggert-Clever Y 0.005% ± 0.51% 0.007◦ ± 0.89◦ Willert-Eggert-Clever Y 23.01% ± 18.32% 6.73◦ ± 6.72◦

Fig. 5. Color optical flow for real-world sequences for a YCbCr and a RGB color sequence

are printed in Fig. 4. The same quantitative error measurements reported in [3], that is,
the relative magnitude errors eM = 1/ij

∑
ij ||vc

ij − ve
ij ||2/

∑
ij ||vc

ij ||2 × 100% and
the angle errors eϕ = 1/ij

∑
ij arccos(vc

ij · ve
ij) with their corresponding variances

σeM and σeϕ , are used. Although the test sequences are synthetic sequences with no
illumination and reflection changes at all, which means the extension to a channelwise
contrast and brightness invariant measurement is not necessary, our method compares
quite favourably to the others. Especially for the panning sequence our method outper-
forms the existing ones. Since we use the maximum a posteriori estimator we cannot
reach subpixel accuracy and our results for the zooming sequence are not that convinc-
ing. To give a first impression on how our method works on real world sequences we
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added two further example sequences shown in Fig. 5. The qualitative optical flow re-
sults for an YCbCr (left) color and a RGB (right) color sequence processing only two
consecutive images of the sequence can be seen.

5 Conclusion

We have presented a probabilistic correlation-based color optical flow algorithm that
allows for brighness, contrast and color changes over time. In the case of pixel accuracy
it compares quite favourably to existing gradient-based approaches that assume bright-
ness, contrast and color to be constant over time. Our generative model for color image
formation can be extended straightforwardly to also allow for correlations between the
color channels by adding crossterms to the scaling and bias parameters. To study the
usefulness of such crossterms for optical flow estimation will be the topic of further
research.

Acknowledgements. Special thanks to Prof. John L. Barron from the University of
Western Ontario, Canada, and his college Prof. Dr. Reinhard Klette from the University
of Auckland, New Zealand, who provided us with their test sequences.

References

1. J. Andrews and B.C. Lovell. Color optical flow. Eds. Workshop on Digital Image Computing,
Brisbane, Australia, 1(1):135–139, 2003.

2. J. Barron and R. Klette. Experience with optical flow in colour video image sequences. Image
and Vision Computing’2001, Auckland University, New Zealand, pages 195–200, 2001.

3. J. Barron and R. Klette. Quantitative color optical flow. International Conference on Pattern
Recognition, Vancouver, Canada, pages 251–255, 2002.

4. S.S. Beauchemin and J.L. Barron. The computation of optical flow. ACM Computing Surveys,
27(3):433–467, 1995.

5. J. Eggert, V. Willert, and E. Körner. LNCS 3175, chapter Building a Motion Resolution Pyra-
mid by Combining Velocity Distributions, pages 310–317. Springer, Berlin, Germany, 2004.

6. P. Golland and A.M. Bruckstein. Motion from color. Computer Vision and Image Under-
standing, 68(3):346–362, 1997.

7. H. Madjidi and S. Negahdaripour. On robustness and localization accuracy of optical flow
computation from color imagery. 2nd International Symposium on 3D Data Processing, Visu-
alization, and Transmission, Thessaloniki, Greece, pages 317–324, 2004.

8. S. Süsstrunk, R. Buckley, and S. Swen. Standard rgb color spaces. In Color Imaging Confer-
ence, pages 127–134. IS&T - The Society for Imaging Science and Technology, 1999.

9. J. van de Weijer and Th. Gevers. Robust optical flow from photometric invariants. IEEE
International Conference on Image Processing, Singapore, pages 251–255, 2004.



Illumination Invariant Color Texture Analysis
Based on Sum- and Difference-Histograms

Christian Münzenmayer1, Sylvia Wilharm2,
Joachim Hornegger2, and Thomas Wittenberg1

1 Fraunhofer Institut für Integrierte Schaltungen,
Am Wolfsmantel 33, D-91058 Erlangen

{mzn, wbg}@iis.fraunhofer.de
2 Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg,

Martensstr. 3, D-91058 Erlangen
Joachim.Hornegger@informatik.uni-erlangen.de

Abstract. Color texture algorithms have been under investigation for
quite a few years now. However, the results of these algorithms are still
under considerable influence of the illumination conditions under which
the images were captured. It is strongly desireable to reduce the influ-
ence of illumination as much as possible to obtain stable and satisfying
classification results even under difficult imaging conditions, as they can
occur e.g. in medical applications like endoscopy. In this paper we present
the analysis of a well-known texture analysis algorithm, namely the sum-
and difference-histogram features, with respect to illumination changes.
Based on this analysis, we propose a novel set of features factoring out
the illumination influence from the majority of the original features. We
conclude our paper with a quantitative, experimental evaluation on ar-
tificial and real image samples.

1 Introduction

For many years the automatic analysis and classification of structured surfaces
in color images has been an active field of reserach in the image processing
and pattern recognition community. Currently, there exists a wide range of tex-
ture and color texture methods, and an ongoing development of new methods,
even for pure gray level image material. Texture features may be divided into
the categories spectral, statistical and model-based features [14]. The most com-
mon spectral features are based on spectral transforms whereas many statistical
methods use so-called co-occurrence matrices or sum- and difference-histograms
[16,10]. Color texture analysis has been of increasing interest in the last few years
with important works of Tan and Kittler [15] proposing a parallel approach to
’color texture’, i.e. color and texture features are extracted separately. Alterna-
tively, integrated color and texture extraction techniques have been developed
[7,2,9,12]. Basically, all of these expand concepts of gray level analysis to the
color domain, whereas some of them emphasize on different color spaces as well
[13,3]. Most of these techniques were developed and evaluated on more or less ar-
tificial sample images which were taken under laboratory conditions. Robustness

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 17–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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against changing color temperature of light sources or inhomogeneous illumina-
tion conditions as required by practical applications is still not very common,
with only few new approaches recently known [4,6,21,20,11]. The present work
addresses exactly this problem assuming a global color temperature change of
the light source.

In the next section we will introduce the linear model of illumination change.
Section 3 summmarizes the definition of the intra- and inter-plane sum- and
difference-histograms published by Unser [16] and its color extension in [10].
These well known features will be analysed and a modification will be proposed
in Section 4 with an experimental evaluation following in Section 5. We will
conclude our contribution by a short discussion in Section 6.

2 Linear Model of Illumination Change

For image formation we assume a linear model which is widely known as state of
the art [19,8,18]. It models the linear sensor response ρ(k) for the k’th spectral
band as the result of the integration of spectral radiance of the light source E(λ)
with wavelength λ, the spectral reflectivity of the surface s(λ) and the sensor’s
sensitivities R(k)(λ):

ρ(k) =
∫
λ

R(k)(λ)E (λ)s(λ)dλ. (1)

For simplicity of our analysis we omit any references to the surface, illumination
and viewing geometry, commonly expressed by the emitting light source vector
and the surface normal vector, and to camera parameters like integration time
or gamma correction non-linearities. In his fundamental work [19], Wandell uses
low-dimensional linear models for the representation of spectral reflectance and
illuminant functions. Using DE and Ds basis functions Ei(λ) and sj (λ), respec-
tively, the illumination E (λ) and surface reflectivity s(λ) can be formulated as:

E(λ) =
DE−1∑
i=0

εiEi(λ), s(λ) =
Ds−1∑
j=0

σjsj (λ). (2)

There exist many possibilities to select basis functions, e.g. Fourier expansion, or
a basis derived from a principal components analysis of a representative spectral
reflectance set. Now, if the illuminant is known by its coefficients εi, the linear
image formation model (1) can be reduced to

ρ = ΛEσ (3)

where σ is a column vector of surface basis function coefficients σj and ΛE is
the lighting matrix where the kjth entry is

ΛEkj =
DE−1∑
i=0

εi

∫
λ

R(k)(λ)Ei(λ)sj (λ)dλ. (4)
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Note that ΛE depends only on the light source (εi and Ei(λ)), the surface ba-
sis functions sj (λ) and the sensor characteristics R(k)(λ) but not on the actual
surface reflectance coefficients σj . Thus, in case of an illumination change, there
will be alterations in ΛE which affect each surface point equivalently. Following
the work of Barnard [1], we assume a 3-dimensional surface reflection model
(Ds = 3). Note, that there is no restriction on the dimensionality of the illumi-
nation spectrum (DE). Thus, with K = 3 color sensors, we obtain a 3×3 lighting
matrix ΛE. Now, let ρE1 = ΛE

E1σ be the sensor response under illumination
E1 and ρE2 = ΛE

E2σ the response under E2. Substituting the common term σ,
it can be shown easily that

ρE2 = ΛE
E2(ΛE

E1)−1︸ ︷︷ ︸
M

ρE1, (5)

i.e. the illumination change induces a linear transform of the sensor responses by
a 3×3 matrix M . Assuming narrow-band sensors, a diagonal transformation D
can be used as an approximation which is known in color constancy literature
as the von Kries coefficient rule [1].

3 Sum- and Difference-Histograms in Color Space

In this section we introduce the sum- and difference histogram features as pro-
posed by Unser [16]. They are based on the so-called co-occurrence features in-
troduced by Haralick [5] which are based on an estimate of the joint probability
function of pixels in certain spatial relationships. Sum- and difference-histograms
provide an efficient approximation for the joint probability by counting the fre-
quencies of sums respectively differences of pixel pairs

πrΘ = [(x1, y1), (x2 = x1 + r cosΘ, y2 = y1 + r sinΘ)] (6)

with the radial distance r and the angular displacement Θ. With G being the
maximum intensity level these histograms are defined as:

hS(i) = |{πrΘ|I(x1, y1) + I(x2, y2) = i}| , (7)
hD(j) = |{πrΘ|I(x1, y1)− I(x2, y2) = j}| , (8)

with i = 0, . . . , 2(G − 1) and j = −G + 1, . . . , G − 1. In general, it is sufficient
to use Θ ∈ {0, π/4, π/2, 3π/4} and a small radius r, and calculate features on
each of the histograms separately. The approximative probabilities are derived
by normalization with the total number of pixels N in the considered image
region of interest:

pS(i) =
hS(i)
N

, pD(j) =
hD(j)
N

. (9)

Integrated color texture extraction by intra- and inter-plane sum- and difference-
histograms

hS,D
(pq)(i) =

∣∣∣{πrΘ|I(p)(x1, y1)± I(q)(x2, y2) = i
}∣∣∣ (10)
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was presented in [10] and will be reviewed shortly here. Here, joint probabilities
over different color channels p, q ∈ {R,G,B} are approximated and evaluated by
the same features as in the gray level case. In the following intra-plane features
are computed from pixel pairs within each plane p = q and inter-plane features
from distinct planes p �= q. All features for differenct directions Θ and different
intra- or inter-plane combinations are concatenated to the final feature vector
which is used for classification.

4 Deriving Illumination Invariant Features

The next section is dedicated to the analysis of the sum- and difference-
histograms and derived features in context of a multiplicative or diagonal il-
lumination change. A multiplicative illumination change has influence only on
the brightness of an image pixel and can be modeled by a multiplicative factor
k. In consequence the sum- and difference-histograms change by:

ĥS,D
(pq)

(i) =
∣∣∣{πrΘ|k · I(p)(x1, y1)± k · I(q)(x2, y2) = i

}∣∣∣
=
∣∣∣{πrΘ|I(p)(x1, y1)± I(q)(x2, y2) = i/k

}∣∣∣ = hS,D
(pq)(i/k).

(11)

This is true for intra-plane (p = q) and inter-plane (p �= q) histograms, not
counting quantization errors. For the diagonal model, the illumination change is
equivalent to an independent scaling of each color channel by a separate factor
kp. Intra-plane histograms will therefore change similarly. Thus, in the follow-
ing considerations we will restrict ourselves only to the intra-plane model with
multiplicative and diagonal illumination change.

Unser [16] proposed a set of 15 features based on the normalized sum- and
difference distributions pS(i) and pD(j) (see Table 1) which will be analysed with
regard to the influence of illumination changes. Therefore, we try to express the
value of a feature under illumination change ĉ as a function of the feature c
under unchanged illumination. As an example, we derive the following change
for the feature sum mean c0:

ĉ0 = μ̂s =
∑
i

p̂s(i) · i =
∑
i

ps(i/k) · i =
∑
i′

ps(i
′
) · ki′ = k · c0 (12)

As can be seen, the feature c0 is scaled by the factor of the multiplicative illu-
mination change. Similarly, the feature sum variance c1 can be considered and
reformulated by variable substitution:

ĉ1 =
∑
i

(i− μ̂s)2p̂s(i) =
∑
i

(i− kμs)2ps(i/k) =
∑
i′

(ki
′ − kμs)2ps(i

′
) = k2c1

(13)
In this case the feature c1 is scaled by the square of the illumination change. We
conducted this analysis on all 15 features with the summary of results in Table 1.
In total 6 of 15 features, namely sum energy c2, sum entropy c3, diff energy c6
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Table 1. Scalar texture features derived from sum- and difference-histograms with the
original features by Unser [16] and the same features under illumination change with
multiplicative and intra-plane model and modified features invariant against illumina-
tion changes

Features Original Definition Illumination Change New Definition
I ′(p) = kp · I(p)

sum mean c0 = μs =
∑

i ips(i) ĉ0 = k · c0 -
sum variance c1 =

∑
i(i − μs)2ps(i) ĉ1 = k2 · c1 ĉ

′
1 = ĉ1

μ̂2
s

= c1
μ2

s

sum energy c2 =
∑

i p2
s(i) ĉ2 = c2 ĉ

′
2 = ĉ2 = c2

sum entropy c3 = −∑
i ps(i) log ps(i) ĉ3 = c3 ĉ

′
3 = ĉ3 = c3

diff mean c4 = μd =
∑

j jpd(j) ĉ4 = k · c4 ĉ
′
4 = ĉ4

μ̂s
= c4

μs

diff variance c5 =
∑

j(j − μd)2pd(j) ĉ5 = k2 · c5 ĉ
′
5 = ĉ5

μ̂2
s

= c5
μ2

s

diff energy c6 =
∑

j p2
d(j) ĉ6 = c6 ĉ

′
6 = ĉ6 = c6

diff entropy c7 = −∑
j pd(j) log pd(j) ĉ7 = c7 ĉ

′
7 = ĉ7 = c7

cluster shade c8 =
∑

i(i − μs)3ps(i) ĉ8 = k3 · c8 ĉ
′
8 = ĉ8

μ̂3
s

= c8
μ3

s

cluster prominence c9 =
∑

i(i − μs)4ps(i) ĉ9 = k4 · c9 ĉ
′
9 = ĉ9

μ̂4
s

= c9
μ4

s

contrast c10 =
∑

j j2pd(j) ĉ10 = k2 · c10 ĉ
′
10 = ĉ10

μ̂2
s

= c10
μ2

s

homogenity c11 =
∑

j
1

1+j2
pd(i) ĉ11 =

∑
j
′ 1

1+(kj
′ )2 pd(j

′
) -

correlation c12 = c1 − c10 ĉ12 = k2 · c12 ĉ
′
12 = ĉ12

μ̂2
s

= c12
μ2

s

angular 2nd moment c13 = c2 · c6 ĉ13 = c13 ĉ
′
13 = ĉ13 = c13

entropy c14 = c3 + c7 ĉ14 = c14 ĉ
′
14 = ĉ14 = c14

and diff entropy c7 as well as the total entropy c14 and the angular second
moment c13 are invariant under this model of illumination change. That means,
that more than half of all features are affected by diagonal illumination changes,
thus degrading classification performance. From Table 1 it is also obvious, that
all other features except homogenity c11 contain a power of k as a multiplicative
factor. Therefore, we propose to normalize these features except c0 by a power
of the sum mean c0 = μs, thus canceling out the factor k. Normalizing e.g. the
sum variance c1 yields

ĉ
′
1 =

ĉ1
ĉ20

=
k2c1
k2c20

=
c1
c20

. (14)

All modifications are summarized in Table 1 representing a new set of illumina-
tion invariant features c′.

5 Experiments and Results

To validate our newly defined texture features we used two different color image
sets. The first one is taken from the VisTex (Vision Texture) database [17] pub-
lished by the MIT. We selected 32 images showing different color textures (also
used in [9,10]). We selected 10 disjoint 64× 64 pixel regions of interest (ROI) in
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each image for training of a k nearest neighbor classifier and another set of 10
regions per image for validation of the classification performance. To simulate
illumination changes complying with the diagonal model, we calculated diag-
onal transform matrices based on the RGBCIE-system by linear least squares
regression. As there is no illumination related information available about the
origin of the VisTex images, we assumed transformations from CIE daylight il-
luminant D55 with 5500 K CCT (correlated color temperature) to six different
color temperatures in the range of 4000 to 7000 K. This leads to a color shift
from a reddish (4000 K) to a bluish (7000 K) tint. To avoid clipping artefacts by
coefficients > 1, the gray level dynamic of the original images was compressed
by the factor 0.8.

The second data set we used, originates from a medical application of color
texture analysis for the classification of different types of mucous tissue inside
the esophagus. All images were acquired by a high-resolution magnification en-
doscope3 after application of acid solution to enhance mucous structures. For
each tissue class, irregularly bounded ROI’s were classified by clinical experts
with histologic confirmation by conventional biopsy. The whole data set includes
390 images with a total of 482 ROI’s.

All texture features were individually normalized to μ = 0 and σ = 1 on the
training data set to ensure equal weighting in the calculation of the classifier’s
distance function. Fig. 1(a) shows the classification accuracy of the original and
the illumination invariant features with and without the variant feature c11 for
different diagonal illumination changes. Note that at 5500 K no illumination
change takes place as we have chosen to use this point as the reference illu-
mination. For the endoscopic data set Fig. 1(b) summarizes the classification
accuracy in a leaving-one-out setting. We gathered results for the original image
resolution of 768× 576 pixels and 3 further reduction steps of a Gaussian mul-
tiresolution pyramid which proved advantageous in previous experiments and is
advantageous to reduce computation time. In every case the illumination invari-
ant feature set is superior to the original definition. However, the variant feature
c11 (homogenity) seems to have a strong contribution on the final result so that
it should not be excluded despite its obvious dependency on the illumination.

6 Discussion

In this work we presented the analysis of the sum- and difference histogram color
texture features [10,16] with respect to changes in the spectral characteristics of
the illumination. We modeled illumination changes by a diagonal transformation
matrix based on a linear image formation model and have shown how the sum-
and difference-histograms change with the coefficients of this matrix. Based on
this analysis, we have presented novel definitions for features which are invariant
to the considered illumination change.

Experiments on artificial and real images have shown that improvements in
classification accuracy can be obtained by such a normalization. However, the
3 Olympus GIF Q160Z.
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Fig. 1. Classification accuracy for sum- and difference-histogram features shown for
the original features of Unser, our illumination invariant features including the variant
feature c11 (Ill.Invar.) and without c11 (Ill.Invar. only). (a) Simulated diagonal illu-
mination changes on VisTex images assuming RGBCIE-system with transformations
from 5500 K to a range of 4000 to 7000 K. (b) Classification of real endoscopic images
of the esophagus for different resolutions in a multiresolution Gaussian pyramid.

amount of improvement naturally depends on the degree of change in the illu-
mination, e.g. with 4000 K an improvement of 11% has been reached compared
with only 2% in the reference cased (5500 K). For the endoscopic data set a
maximum improvement of 4% for the original resolution and 2% for the reduced
resolutions is a sign for the stability of the light source with respect to aging. Of
course stronger improvements are expected for applications under natural light,
e.g. in outdoor scenarios.
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Abstract. The efficiency of an image compression technique relies on
the capability of finding sparse M-terms for best approximation with
reduced visually significant quality loss. By ”visually significant” it is
meant the information to which human observer can perceive. The
Human Visual System (HVS) is generally sensitive to the contrast,
color, spatial frequency...etc. This paper is concerned with the compres-
sion of color images where the psycho-visual representation is an impor-
tant strategy to define the best M-term approximation technique. Digital
color images are usually stored using the RGB space, television broad-
cast uses YUV (YIQ) space while the psycho-visual representation relies
on 3 components: one for the luminance and two for the chrominance.
In this paper, an analysis of the wavelet and contourlet representation of
the color image both in RGB and YUV spaces is performed. A approx-
imation technique is performed in order to investigate the performance
of image compression technique using one of those transforms.

1 Introduction

The question of why some abstract shapes are more attractive to human ob-
servers than others, may be answered, in that, we probably find pleasing
those forms, most closely tuned to the properties of our human visual system
(HVS) [11]. An example of differential tuning is the oblique effect1 in orienta-
tion perception. Thus aesthetic pleasure is linked in some general way to neural
activity. In [7] a theory of spatial vision is given, by integrating psychophysics,
neurophysiology and linear systems. They carried out many electro-physiological
experiments, showing the cells of the primary visual cortex be tuned to bands
in spatial frequency and orientation, which was confirmed by other physiological
experiments [6]. However, the orientation properties of color perception is still
an open issue. In applications where lossy compression is needed, one has to
consider subjective assessments, rather than – or besides – strict PSNR values
for an optimal quality of the reconstruction.

As shown in a recent paper [3], considering anisotropy in luminance images
in the compression stage, has led to better compression performance and better
1 horizontal and vertical lines have privileged access.
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preservation of details, thus getting higher image quality. The question is: can
the considerations in [3] be exploited for color images?

This paper analyzes a compression technique on color images. In the follow-
ing subsections, the modeling of color in images as well as the performance of
compression in color space are considered.

1.1 Psycho-Visual Representation of Color Images

The quantization of color perception in the HVS is a challenging process. There
exist different theoretical studies [20,18] of the chromatic psycho-visual compo-
nents that the HVS could perceive. The theories show that the HVS separates
light information, received by the retina, into three distinct, non independent
components. Thus, HVS color perception can be modeled in two steps [20]. In
the first step, the received light is transformed into three bio-electrical signals
(L,M,S) as received by the three types of cones on the retina [4]. In the second
step, the resulting signals are combined into three psycho-visual components:
one achromatic (A) and two color components (C1 and C2).

Using this model, the achromatic component A is calculated by A =
L + M [1]. The first color component C1 corresponds to the chromatic axis
Red-Green C1 = L −M . The second color component C2 corresponds to the
chromatic axis Blue-Yellow C2 = S − 0.5(L + M). Note also that if C1 cor-
responds to the a axis from L*ab space defined by the CIE-Lab [15], then C2
diverges from the b component of this space. An investigation has been made in
[1] on the possible relationships between the three components A, C1 and C2.
It was shown a strong interaction between A and C1, and C1 and C2, while C2
has a limited influence on the perception of A. Thus, efficient quantization pro-
cess should take into account these relationships instead of handling the three
components independently.

1.2 Color Compression Standards

Lossy compression mainly consists of de-correlation and quantization stages
that reduce the image size by permanently eliminating certain information. The
decorrelation stage of the image compression algorithm is usually done by a
transformation from one space to another space to facilitate compaction of in-
formation. One approach is the use of the Discrete Cosine Transform (DCT),
which is used in the JPEG (baseline) industry standard [16].

The recent standard ”JPEG 2000” [17] exploits the sparse approximation of
the Discrete Wavelet Transform (DWT) for image compression purpose, which
is free from the blocking effect artifacts of DCT. DWT allows the decomposition
of an image into a set of contributions at different frequency bands and resolution
levels. The corresponding coefficients of the different decomposition levels are
correlated and show characteristic trends for additional compression potential.

Many coding techniques of the DWT coefficients have been investigated, like
the Embedded Zero-Tree Wavelet (EZW), the Set Partitioning In Hierarchical
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Trees (SPIHT) and the Embedded Block Coding with Optimized Truncation
(EBCOT) [16,17].

1.3 Color Images Modeled in RGB and YUV

There exist many possible color space definitions [14] and this paper addresses
those commonly required by image compression techniques. For digital still im-
ages, the Red-Green-Blue color space, known as RGB, is commonly used. RGB
is an additive color model [15], which appropriately fits the physics of usual cap-
turing and display devices. A RGB representation of an image is generated by
spectral primary filtering an arbitrary color scene. Filters generate three channels
by the spectral subbands red, green and blue, which usually overlap. Therefore
the RGB model representation is a very redundant one.

The combining of these three channels of light produces a wide range of visi-
ble colors. All color spaces are three-dimensional orthogonal coordinate systems,
meaning that there are three axes (in this case the red, green, and blue color
intensities) that are perpendicular one to another. The luminance is given by
Y = 0.299R + 0.587G + 0.114B and is represented by the area of the trian-
gle, spanned from the three RGB vectors. All three components must be tuned
proportionally for changing the luminance, therefore, RGB is not optimal for
compression purpose. Thus, a changeover to a color space with uncorrelated
components is more convenient and provides better compression performance.

Television broadcast makes use of color spaces based on luminance and
chrominance, which correspond to brightness and color respectively. These color
spaces are denoted as YUV and YIQ [14]. The YUV space is used for the PAL
broadcast television system standard in Europe and the YIQ color space is used
for the NTSC broadcast standard in North America.

Chrominance carries only the differences R-Y and B-Y, which is the principle
advantage of using YUV or YIQ for broadcast. Thus the amount of information
is significantly reduced to define such a color television image. From the past,
the compatibility with monochrome receivers should be noticed.

Based on psycho-visual properties of the human eye, luminance is more im-
portant for subjective good image quality than chrominance. Therefore chromi-
nance components can be downsampled to achieve better compression perfor-
mance. So the formats YUV:4:2:2 and YUV:4:1:1 were generated, especially for
video compression applications.

1.4 Multiresolution Representations of Images

For compression purposes, sparse representation2 of images is an important issue,
where the compact approximation is mainly achieved by means of quantization,
2 A general WVT series expansion by Φn for a given image I , such that I =

∑∞
0 CnΦn,

where Cn are the transform coefficients. The best M-term approximation, using this
expansion, is defined as IM =

∑
n∈GM

CnΦn, where GM is the set of indexes of the
M-largest Cn. The quality of the approximated function IM relates to how sparse
the WVT expansion by Φn is, or how well the expansion compacts the energy of I
into few coefficients.
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which also yields to a degradation of the images. Separable WVT [9] offers
an acceptable tradeoff between visual quality and information sparsity. Thus,
WVT has been adopted for gray-level and color image compression standards
(i.e. JPEG2000) [12,16,17].

The quality of the approximation images strongly depends on the quanti-
zation noise. For gray-level images, this noise is uniform as one quantization
procedure is used. However, three quantization procedures are used for the three
image components that may yield a quantization noise localized on certain struc-
tures. The minimization of such noise depends on the capability of exploiting
the interaction between the three components.

For the assessment of the reconstruction quality another important aspect is
the relationship between the contrast sensitivity and the spatial frequency. This
is described by the Contrast Sensivity Function (CSF) [12]. For compression
purposes, CSF is exploited to regulate the quantization step-size to minimize
the visibility of artifacts. This approach can be used for luminance as well as for
color images. For color perception three different CSFs describe the sensitivity
for the respective color bands. Implemented in JPEG2000 compression standard
on the WVT coefficients, CSF schemes provide visually more efficient image
approximation than conventional hard thresholding.

2 The Contourlet Transform

Efficient image representations require that coefficients of functions, which repre-
sent the regions of interest, are sparse. Wavelets can pick up discontinuities of one
dimensional piecewise smooth functions very efficiently and represent them as
point discontinuities. 2D WVT obtained by a tensor product of one-dimensional
wavelets are good to isolate discontinuities at edge points, but cannot recognize
smoothness along contours. Numerous methods were developed to overcome this
limitation by adaptive [13], Radon-based [5], or filter bank-based techniques [8].

2.1 Contourlets for Luminance Images

Inspired by Candes theory [5], Do and Vetterli [8] proposed the Pyramidal
Directional Filter-Bank (PDFB), which overcomes the curvelet in sparsity us-
ing a directional filter bank, applied on the whole scale, also known as CTT.
Besides their parsimony, CTT offers the directionality and anisotropy to image
representation that are not provided by separable WVT.

In [3], the potential of the CTT for image compression has been demon-
strated on gray-level images. The advantage of CTT over WVT, is the sparse
approximation of images with smooth contours. We did experiments with over
100 high resolution images, and it was shown, that the smoothness of the con-
tours within an image is coupled with the spatial resolution of a desired scale.
It is found, that below a spatial resolution around 28 pixels, the application of
the CTT carries no advantage compared with WVT in terms of compaction of
energy. By combining CTT and WVT as unique image transform, an interesting
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gain in image quality has been demonstrated. These results motivate the interest
for extending this approach to color images.

2.2 Contourlets for Color Images

The proposed approach for color images approximation is very close to the one
used in [3] for gray-level images. Consequently, the main idea is to combine CTT-
WVT for the approximation of the three image components Y, and also U and
V. The adopted procedure for image compression is as follows:

1. The used digital images are stored using RGB coordinates. In the first step,
the RGB component of the color image are transformed into YUV space as
defined in [15].

2. In case of image size of ≤ 512 x 512 pixels, four decomposition levels are used,
where the two fine scales are CTT, (with l=8 directions) and the remaining
two are obtained using WVT. However, in case of images with ≤ 2048 x
2048 pixels, five decomposition steps are using with three CTT levels (l=16
directions).

3. This decomposition is used to each component independently Y, U and V.
4. Simple thresholding of the coefficients from Y space is performed as in [3].
5. The same thresholding strategy, as in 4., is performed for the resulting co-

efficients from U image decomposition.
6. In the V decomposition, the coefficients located in the same position as

the truncated Y coefficients as excluded from the thresholding. Other V
coefficients follow the same thresholding strategy.

3 Experimental Results and Analysis

This analysis has been performed on more than 100 digital color images from a
multimedia database. The WVT and combined CTT-WVT approach have been
analyzed for compression purpose. A set of images have been selected for this
paper that are depicted in Figure 1.

Most of those images have been used in [10]. The image A and C are the Lena
and F16 color images respectively, with 512x512 pixels, which are usually used
in standard image compression literate. In B, there is Zaza image with 512x512
pixels that has the property of containing smooth contours without a complex
structure. The image in D is the Art image with 2048x2048 pixels that contains
a diversity of colors.

Compression results using WVT and CTT-WVT on the four selected im-
ages, are reported in this Section. The evaluation between these approaches is
performed using the PSNR criterion. The images have been reconstructed from
the remaining significant coefficients and the reconstruction error (PSNR) has
been derived. The normalized log energy entropy measures (Equation 1) indicate
the potential of energy compaction for the desired transformation. The factor be-
tween the original image size and the non-zeros coefficients size is used to derive



30 A.N. Belbachir and P.M. Goebel

A B

C D

Fig. 1. Example of color images used for the analysis: A. Lena(512x512), B.
Zaza(512x512), C. F16(512x512) and D. Art image(2Mx2M).

the compression ratio. Note that state-of-the-art coders (e.g. EBCOT contextual
coding [17]) also exploit high order statistics. Thus, the used measures (entropy)
are an approximation that can only give a hint on the relative performance. The
entropy measure is given over the whole YUV components as well as over the
luminance component Y.

E(s) =
∑
i

Log(s2
i ). (1)

It can be noticed that the combination CTT-WVT provides higher reduction
than that of WVT. However, the entropy measure of the resulting YUV space co-
efficients seems to be advantageous for WVT such that the remaining coefficients
can be efficiently coded. The most significant improvement in the compression
ratio can be noticed on the Art image. This gain is related to the high edge
density in the image. However, this gain is less significant if the image has less
discontinuities (zaza and F16). On the other hand, the entropy results of the
Y space coefficients show that CTT-WVT provides a sparser representation for
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Table 1. Compression results

Images PSNR Entropy YUV Entropy Y Compression Ratio

Lena (WVT) 30.1 0.054 0.054 21.8
Lena (CTT-WVT) 29.9 0.065 0.053 20.7
F16 (WVT) 26.8 0.035 0.033 31.4
F16 (CTT-WVT) 26.8 0.043 0.032 32
Zaza (WVT) 29.7 0.031 0.029 38.1
Zaza (CTT-WVT) 29.6 0.034 0.028 39.3
Art (WVT) 28.1 0.057 0.048 34.8
Art (CTT-WVT) 28.2 0.061 0.045 36.7

luminance than that with WVT while chromatic components seems to be com-
pactly represented by WVT. Therefore, one possible alternative to investigate
would be the combination of CTT and WVT for luminance and chrominance
components respectively. In such a scheme, CTT can be used to code the Y
channel while WVT can be applied for U and V components

4 Conclusions

This paper investigates the potential of the ConTourlet Transform (CTT) for
compression of color images. In [3], it was demonstrated the potential of CTT, in
providing a more compact representation of the energy, compared to that of the
WaVelet Transform (WVT), used in the compression standard JPEG2000, for
gray-level images. CTT shows less information loss and artifacts in the recon-
structed images after simple thresholding of the transformed coefficients. Indeed,
WVT exhibits a large number of coefficients for representing smooth contours,
which are usually present in high resolution images.

For this reason, this paper investigates the extension of the CTT-WVT ap-
proach to color images. Several color spaces has been discussed including the
space with the psycho-visual perception of colors. The CTT potential has been
investigated in YUV space, the one used in JPEG and JPEG2000 standards.
After the quantization step, CTT provides a reduced size of coefficients, com-
pared to WVT. Unfortunately, the log energy entropy measure indicates that
the resulting WVT coefficients may be compacter coded. This is apart to the
Y channel, which can be coded better by processing by CTT. However, as a
perspective, it is recommended to determine different contrast sensitivity func-
tions [12] for the chrominance channels as well as for the luminance. To tune
the quantization process, one can estimate the receptor noise [19], as threshold,
to detect a just noticeable difference (Weber-Fechner law), based on the Human
Visual System sensitivity.
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Abstract. We present a novel variational method for estimating dense disparity
maps from stereo images. It integrates the epipolar constraint into the currently
most accurate optic flow method (Brox et al. 2004). In this way, a new approach
is obtained that offers several advantages compared to existing variational meth-
ods: (i) It preservers discontinuities very well due to the use of the total variation
as solution-driven regulariser. (ii) It performs favourably under noise since it uses
a robust function to penalise deviations from the data constraints. (iii) Its min-
imisation via a coarse-to-fine strategy can be theoretically justified. Experiments
with both synthetic and real-world data show the excellent performance and the
noise robustness of our approach.

Keywords: computer vision, variational methods, stereo reconstruction, differ-
ential techniques, partial differential equations.

1 Introduction

The reconstruction of 3-D information from two views is one of the key problems
in computer vision. Since the prototypical approach of Marr and Poggio [11] three
decades ago, a variety of algorithms have been proposed for this purpose. Depending
on their strategy for solving the correspondence problem, these algorithms can be di-
vided into four classes: Feature-based algorithms [3,6] that make use of characteristic
image features such as corners or lines, area-based methods [8,15,16] that correlate im-
age patches by aggregating local similarity measures, phase-based approaches [4,5,7]
that estimate displacements via the phase in the Fourier domain, and energy-based tech-
niques [1,9,10,12,14,15] that seek to minimise variational formulations, where devia-
tions from data and smoothness constraints are penalised.

Variational methods offer one decisive advantage when compared to the other three
strategies: They allow for an estimation of correspondences at those locations where
no image information is available. Since they regularise the often non-unique solution
of their data constraints by assuming (piecewise) smoothness of the result, neighbour-
hood information is propagated to locations where such information is missing. As a
consequence, always 100% dense estimates are obtained. This so-called filling-in effect
is one reason why variational techniques have become increasingly popular during the
last few years.
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A second reason is the fact that this regularisation can be adapted such that it re-
spects discontinuities in the data (image-driven) or the solution (solution-driven). Thus,
objects boundaries are preserved and the accuracy of the reconstruction increases. First
approaches with image-driven regularisation go back to Mansouri et al. [10] who pro-
posed an anisotropic method that smoothes along object boundaries but not across them.
More recently, Kim and Sohn [9], presented a similar approach with non-convex regu-
larisation that gives even sharper results. However, both techniques are restricted to the
ortho-parallel case, where images have already been rectified and the correspondence
problem reduces to a search along the x-axis. In Alvarez et al. [1] a more general vari-
ational method with image-driven regularisation is proposed: By using knowledge on
the geometry of the scene this technique does not require an explicit rectification of the
input images but still satisfies the so-called epipolar constraint that relates correspond-
ing points in both views. A similar method, however with solution-driven regularisation
was presented by Robert and Deriche [12]. Apart from using a different regularisation
strategy, their approach was also the first one that considered constancy assumptions
on higher order image derivatives such as the image gradient or the Laplacian. This, in
general, yields a better performance under varying illumination.

While the previous methods already combine some successful concepts, recent
progress in variational optic flow computation shows that there are even more useful
strategies which should be integrated in the estimation. This problem is addressed in
our paper: We propose a novel variational method for estimating dense disparity maps
that is based on the currently most accurate optic flow technique: The optic flow method
of Brox et al. [2]. By integrating knowledge on the geometry of the scene we obtain a
general approach that introduces the following novelties to the field of variational stereo
reconstruction: Firstly, a robust data term is used. Although this concept is quite com-
mon for area-based reconstruction methods (cf. [15]), it has not been considered for
variational techniques so far. Secondly, we make use of the total variation (TV) [13].
During the last years this form of penalisation of both the smoothness and the data term
has become very popular and achieved good results in various research fields such as
deconvolution, image restoration and optic flow estimation. And finally, the proposed
approach allows to extend the theoretical justification of the warping strategy given by
Brox et al. [2] to the field of variational stereo reconstruction methods.

Our paper is organised as follows. In Section 2 we give a short review on the stereo
problem and discuss how knowledge on the geometry of the scene can be integrated
appropriately into the estimation of the correspondences. This motivates us to propose a
novel variational approach in Section 3 that transfers successful concepts of the highly
accurate optic flow method of Brox et al. [2] to the field of stereo reconstruction. In
Section 4 the performance of our approach is evaluated on both synthetic and real-world
data while a summary in Section 5 concludes this paper.

2 The Stereo Problem

Let us consider a stereo image pair g∗l (x) and g∗r (x), where the subscripts l and r stand
for the left and the right camera, respectively, and x = (x, y)� denotes the location
within a rectangular image domain Ω. Then, projective geometry tells us that we can
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recover the depth of a point x in the left image by finding its corresponding point x′

in the right image. In other words: If we are able to compute the displacement field
d(x) = x′ − x between the two images (disparity) we can reconstruct the original
scene.

2.1 Epipolar Geometry

However, the displacement field d(x) cannot be arbitrary. Due to the geometry of the
scene the so called epipolar constraint [3] must hold. It is given by

x̂′�F x̂ = 0 (1)

and relates the projective coordinates x̂ = (x, y, 1)� and x̂′ = (x′, y′, 1)� of corre-
sponding points in both views via a 3×3 matrix of rank two – the so called fundamental
matrix F . For a given point x, this constraint describes a line in the right image on
which x′ must lie: The epipolar line Φ. Defining the following abbreviations

a(x) := f11x + f12y + f13,

b(x) := f21x + f22y + f23,

c(x) := f31x + f32y + f33,

with fij being the entries of the fundamental matrix F , this epipolar line Φ can be
written as

a(x)x′ + b(x)y′ + c(x) = 0. (2)

2.2 Integration of the Epipolar Constraint

In order to allow for an accurate estimation of the displacement field d(x), the epipolar
constraint has to be integrated in the formulation of the correspondence problem. To this
end, we follow the idea of Alvarez et al. [1] and perform an orthogonal decomposition
of d(x) with respect to the direction of the epipolar line Φ. Thus, we obtain

d(p(x)) = p(x)
1√

a2(x)+b2(x)

(
−b(x)

a(x)

)
︸ ︷︷ ︸

epipolar direction e(x)

+q(x)
1√

a2(x)+b2(x)

(
−a(x)
−b(x)

)
︸ ︷︷ ︸

epipolar normal e⊥(x)

, (3)

where p(x) and q(x) stand for the component of the projection of the displacement field
d(x) in direction of and orthogonal to the epipolar line Φ, respectively. For a point x′

on the epipolar line Φ, however, q(x) is known. It is the distance of the point x to the
epipolar line Φ and can be computed via

q(x) =

(
a(x)x + b(x)y + c(x)√

a2(x) + b2(x)

)
. (4)

Plugging this expression in equation (3) satisfies the epipolar constraint and restricts the
correspondence problem to the search of one unknown function, namely p(x).
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3 From Optic Flow to Stereo

Recently, Brox et al. [2] proposed a highly accurate variational method for computing
the displacement field between two images. However, their method was designed to be
used in the context of optic flow estimation, where correspondences can be arbitrary.
Since we have seen that the epipolar constraint can be satisfied if a suitable decompo-
sition of the displacement field d(x) is performed, we can modify this approach such
that it meets all requirements for a stereo reconstruction method. In the following, we
present the new approach in detail.

3.1 The Variational Model

Let gr(x) and gl(x) be presmoothed versions of the original images g∗r (x) and g∗l (x)
that have been obtained by convolution with a Gaussian kernel of standard deviation σ.
Furthermore, let α and β be nonnegative weights. Then we propose to compute p(x) as
minimiser of the energy functional

E(p) = ED(p) + β ES(p), (5)

where the data term is given by

ED(p)=
∫
Ω

ΨD

(
|gr(x + d(p))− gl(x)|2 + α |∇gr(x + d(p))−∇gl(x)|2

)
dx dy, (6)

and the smoothness term reads

ES(s) =
∫
Ω

ΨS

(
|∇p|2

)
dx dy. (7)

While the first part of the data term models the assumption of a constant grey value
in both views, the second one renders the approach more robust against varying illu-
mination. This is achieved by assuming constancy of the spatial image gradient∇g =
(gx, gy)�. In accordance with equation (3) both assumptions are modified such that the
epipolar constraint is satisfied. Moreover, no linearisation of the data term is performed
to allow for a correct estimation of large displacements. Finally, in order to render the
approach more robust with respect to outliers, a robust function ΨS is applied to the
whole data term. As proposed in [2] we consider a regularised version of the total vari-
ation (TV) [13] for this purpose that is given by Ψ(s2) =

√
s2 + ε2 with ε := 10−3.

In the smoothness term we follow a different strategy: Instead of regularising the
total displacement field d(p(x)) we penalise deviations from the unknown function
p(x) directly. Also in this case, the regularised version of the total variation with ε =
10−3 is used as non-quadratic function ΨS . This solution-driven regularisation models
a piecewise smooth result and thus preserves discontinuities in the disparity map.

3.2 The Euler-Lagrange-Equation

Let us now derive the Euler-Lagrange equation that is a necessary condition for the
minimiser of the proposed energy functional. For better readability we use the following
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abbreviations for derivatives and differences:

g := gr (x + d(p)) , gxx := ∂xxgr (x + d(p)) ,
gx := ∂xgr (x + d(p)) , gxy := ∂xygr (x + d(p)) ,
gy := ∂ygr (x + d(p)) , gyy := ∂yygr (x + d(p)) ,
gz := gr (x + d(p))− gl (x) , gxz := ∂xgr (x + d(p))− ∂xgl (x) ,

gyz := ∂ygr (x + d(p)) − ∂ygl (x) .

Moreover, we define the components of the direction e of the epipolar line Φ by e =
(e1, e2)�. Then, the Euler-Lagrange-equation can be written as

Ψ
′
D

(
g2

z + α
(
g2

xz + g2
yz

) )(
gz (gxe1 + gye2)

)
+α Ψ

′
D

(
g2

z + α
(
g2

xz + g2
yz

) )(
gxz (gxxe1 + gxye2) + gyz (gxye1 + gyye2)

)
−β div

(
Ψ

′
S

(
|∇p|2

)
∇p

)
= 0 (8)

with reflecting boundary conditions.
As proposed in [2] this coupled system of PDEs is solved by means of two nested

fixed point iterations. Thereby a coarse-to-fine warping strategy with downsampling
factor η is used. As for the original optic flow method it can be theoretically justified as
an approximation strategy to the continuous energy functional.

Fig. 1. Corridor stereo data set (http://www-dbv.cs.uni-bonn.de/stereo data/).
(a) Top Left: Left frame. (b) Top Center: Right frame. (c) Top Right: Ground truth disparity map.
(d) Bottom Left: Correlation method. (e) Bottom Center: Method of Alvarez et al. [1]. (f) Bottom
Right: Our method (σ = 1.55 , α = 1.1 , β = 5, η = 0.95). Computing time on a standard PC with
3.06 GHz Pentium4 CPU: 21 seconds.
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Table 1. Results for the Corridor scene. AADE = Average absolute disparity error.

(a) Overall performance (b) Impact of noise

Technique AADE Technique Noise level σ2
n AADE

Correlation method [1] 0.4978 Our method 1 0.1952
Alvarez et al. [1] 0.2639 Our method 10 0.2519
Our method 0.1731 Our method 100 0.3297

4 Experiments

The proposed algorithm has been evaluated on two commonly used stereo test pairs:
The synthetic Corridor scene from the University of Bonn, and the areal photos of the
Pentagon building from the CMU image data base. In the case of the Corridor scene
the known ground truth allowed us to determine the estimation quality quantitatively.
This was done by computing the average absolute disparity error via

AADE =
1
N

N∑
i=1

|d truth
i − d estimate

i |. (9)

where N is the number of pixels.
In our first experiment we have tested the proposed approach on the Corridor data

set without noise. The achieved error is shown in Table 1(a), where it is compared
to results from the variational approach of Alvarez et al. [1] and a correlation based
technique with sub-pixel accuracy from the same authors. As one can see, our method
outperforms both techniques significantly.

The reason for the good performance becomes obvious in the corresponding dispar-
ity maps that are presented in Figure 1: Connected areas such as ceiling, floor, walls and
objects are estimated homogeneously while boundaries between them remain relatively
sharp. This is a straight consequence of using the total variation in both the data and the
smoothness term. In this context one should note that in accordance with Alvarez et al.
[1] a boundary layer of 15 pixels was omitted when computing the disparity error. From
the presented maps, however, one can see that this would not have been necessary for
our method.

In our second experiment we have evaluated the performance of our approach with
respect to noise. To this end, we used three variants of the Corridor scene, where
Gaussian noise of zero mean and different variance σ2

n has been added. While Scharstein
and Szeliski [15] claim that these data sets would be too difficult for a reasonable es-
timation, our results in Table 1(b) show that this is not the case. As one can see, they
are still very accurate. In particular, one should note that our result for the version with
σ2
n = 10 is still more precise than the results of the other two approaches for the original

data set without noise.
In our third experiment we have reconstructed the Pentagon scene using the com-

puted dense disparity map as hightfield. This is shown in Figure 2. Evidently, the whole
scene looks very realistic: The discontinuities between the different sectors of the build-
ing are well preserved, the huge bridge in the upper right corner of the image is recon-
structed accurately, and there are no outliers present that require the use of postprocess-
ing steps.
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Fig. 2. Pentagon stereo data set (http://vasc.ri.cmu.edu/idb/html/stereo/). (a)
Top Left: Left frame. (b) Top Right: Right frame. (c) Bottom Left: Computed disparity map height
field with lighting (σ = 1.05 , α = 1.1 , β = 6, η = 0.95). (d) Bottom Right: Computed Disparity
map height field with texture. Computing time on a standard PC with 3.06 GHz Pentium4 CPU:
83 seconds.

5 Summary and Conclusions

In this paper we have demonstrated that variational stereo reconstruction methods can
benefit from recent progress in optic flow computation. By embedding the currently
most accurate optic flow method into epipolar geometry, we achieved dense disparity
maps with high quality. They respect discontinuities and are very robust under noise.

It is our hope that this strategy serves only as a first step towards a generic and
mathemetically well-founded variational framework for solving the entire class of cor-
respondence problems with high accuracy. This is a topic of our ongoing work. Apart
from improving the model, e.g. by the explicit consideration of occlusions, we will also
investiagte highly efficient numerifcal methods for our framework. This in turn may
allow to obtain dense deformation maps for matching problems in real-time.
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Lens Model Selection for Visual Tracking
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Abstract. A standard approach to generate a camera pose from images
of a single moving camera is Structure From Motion (SfM). When aiming
on a practical implementation of SfM often a camera is needed that is
lightweight and small. This work analyses which is the best camera and
lens for SfM, that is small in size and available on the market. Therefore
we compare cameras with fisheye and perspective lenses. It is shown
that pose estimation is improved by a fisheye lens. Also some methods
are discussed, how the large Field of View can be further exploited to
improve the pose estimation.

1 Introduction

Structure from Motion (SfM) is a well known approach for generating a camera
pose from a single moving camera without the help of any markers [6]. A com-
mon application for SfM is the tracking of a persons head, i.e. in Augmented
Reality where additional information has to be superimposed into the users view.
Therefore the camera has to be attached to the users head and is possibly carried
for a long time, hence a small and lightweight camera is inevitable.

This paper gives a detailed analysis on which is the best small and lightweight
camera and lens configuration for SfM. Considered are cameras with fisheye and
perspective lenses, it is shown that a camera with a fisheye lens is superior to
a standard perspective camera. The presented results also apply to catadioptric
cameras (perspective cameras looking into a convex mirror to get a hemispherical
view), if they are designed to produce an image with constant angular resolution.
These cameras are not suited for augmented reality, because the image center,
commonly the users viewing direction, is blocked by the camera itself.

2 Previous Work

Over the last years there was already some research done on which camera is
best suited for SfM [3][7] [2][5][1]. The most extensive theoretical approach is
made by Neumann and Fermüller in [3] and [7]. They state, that from theoret-
ical considerations a fisheye camera is more appropriate for SfM than a single
perspective camera, with a drawback because of the low resolution. There is no
analysis done on how much the resolution deficit impairs the overall SfM Qual-
ity, instead a multi-camera is proposed with many perspective cameras looking
in different directions and thus combining a high resolution with a big FoV.

There are different approaches showing that a wide FoV stabilizes the pose
estimation, i.e. Davison stated in [2] that for perspective cameras with small

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 41–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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FoV, the motion along the optical axis is always ill defined because the camera
moves towards the focus of expansion (FOE) (or focus of contraction (FOC)).
Only the motion perpendicular to the FOE/FOC can be estimated reliably. In
a spherical image with a wide FoV, there will always be many features with
vectors having a large angle to the cameras optical axis, hence the estimation of
the camera motion is always reliable.

3 Robust Tracking from Camera Images

The implementation of the SfM approach [6] is divided into 2D feature tracking
including initialization and robust 3D pose estimation.

Initialization and 2D Feature Tracking. In an initial step, salient 2D intensity
corners are detected in the first image of the sequence. These 2D features are
tracked throughout the image sequence by local feature matching, i.e. with the
KLT operator [8]. Having corner correspondences between the first two images
allows the computation of an Essential matrix between the views. With the
Essential Matrix the relative pose of the cameras can be estimated and a 3D
point can be triangulated for each 2D-2D pair.

3D Feature Tracking and Pose Estimation. After initialization each triangulated
3D feature point is assigned to a 2D feature track. From the third image on, the
known 2D-3D correspondences can be used to determine the camera pose. Over
time, new feature tracks are established and the 3D point positions are refined.

4 Lens Model Selection

In this section we will develop a simulation environment for the essential parts
of SfM. This allows us to evaluate the effects of different lens models on point
triangulation and camera pose errors.

Simulating Structure from Motion. The presented model implements the
SfM approach for three images. As 3D scene a random 3D point cloud of 2000
points is generated, that is static for all experiments throughout this paper.
The cloud is equally distributed in all directions around the camera center in
a distance of 8-30 times the camera displacement length. Each camera can see
parts of this cloud, these points are projected into the camera plane following
the cameras projection model.

The only error source in SfM is the error in the feature position measurement
of the 2D point tracker. If this tracker would return points with infinite accuracy
and no wrong matches, the pose and scene estimation would also be perfect.
According to [8] a good tracker is able to generate feature points with a standard
deviation of σ = 0.25 pixel. To model the tracking error, Gaussian noise with
a standard deviation of σ = 0.25 pixel is added to the points projection into
the camera. With noise proportional to the pixel size, the tracking accuracy
depends mainly on the camera resolution, which was fixed to N = 1024 in x-
and y-direction. It is assumed, that all corner correspondences can be tracked
independently of resolution and lens geometry and that no mismatches occur.
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Fig. 1. Angular resolution of a perspective camera (a) and a fisheye camera (b)

With the knowledge about point correspondences for the first two cameras,
the pose of the second camera relative to the first can be estimated from the
Essential matrix and 3D points are triangulated up to scale. Knowing estimated
3D points and the corresponding 2D projection, the pose of the third camera
relative to the first can also be evaluated.

Error Models for Perspective and Equidistant Projection. The differ-
ence between a perspective camera and a fisheye camera is the projection of a
3D point into the 2D image. The perspective camera performs a perspective pro-
jection, the ideal fisheye an equidistant projection [4]. These projections define
the transformation of the modeled tracker noise into angular noise, which affects
the triangulation quality.

An optimal fisheye lens gives a circular picture. The angle between the cameras
optical axis and a ray through a 3D point (θp in fig. 1 (a)) is linear to the distance
of the cameras focal point to the projection of the 3D point in the camera image.
So for a fisheye the angular resolution is constant (see fig. 1(b)). In a perspective
camera the angular resolution is higher for a greater angle θp, for points closer to
the image border αp is smaller than for points near the center (see fig. 1(a)).

To derive an error model for the perspective camera, it is necessary to calcu-
late its angular resolution. From figure 1 (a) one can derive f

a sin(αp)+sin(αp

2 ) =
cos2 θp. With f >> a the term sin αp

2 is negligible. It follows

αp ≈ asin(
a

f
cos2 θp) = asin(

2 tan(θmax)
N

cos2 θp), (1)

where αp is the angular resolution of the perspective camera, θp is the angle
between the 3D point ray and cameras optical axis, f is the focal length, a is
the size of a single CCD-Pixel, N is the full CCD-resolution and θmax is the
half FoV. With (1) we can compute the angular resolution of each pixel from its
position on the chip.

The angular resolution of a fisheye camera is constant

αf =
2θmax

N
. (2)

From (1) and (2) it is easy to see that the angular resolution of the fisheye camera
is constant, while the angular resolution of the perspective camera is higher near
the image borders. The functions for αp and αf are plotted in figure 2 for fisheye
and perspective cameras with different FoVs. Figure 2(a) shows αp and αf at
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Fig. 2. Angular resolution for different FoVs

angular image positions θp and θf , in figure 2(b) the angular resolution is plotted
against the pixel positions on the CCD. The angular resolution for the center
pixels is very bad for a perspective camera with a wide FoV, while for small
FoVs fisheye and perspective cameras have a similar characteristic.

This leads to the result, that from the same Gaussian error on the pixel
position follow two different models for the angular errors, which directly affect
the quality of the scene reconstruction.

Analysis of Reconstruction and Pose Errors. The camera FoV has the
greatest effect on the reconstruction error. For a camera with a constant number
of CCD-pixels the cameras angular resolution declines with an increasing FoV.
On the other hand the wide FoV increases the number of trackable features and
also the features in view have a better spatial distribution which improves the
pose estimation.

As stated above, points perpendicular to the FOE or FOC can be estimated
most reliably. To simulate the effects of a changing FoV a critical camera move-
ment was chosen. The first camera displacement is directly in z-direction, the
FOE is in the image center. The second camera movement is in y-direction,
perpendicular to the first movement.

From the first two images the camera displacement and rotation is estimated
up to scale and 3D points are triangulated. The errors of the triangulated points
are shown in figure 3 (a) and (b). The curves give the mean of the relative
triangulation error of 100 test runs on the same 3D point cloud with Gaussian
noise applied for each projection. The triangulation results for x and y very
similar and therefore represented by the same graph. They are better for a small
FoV, because of the higher angular resolution of the camera. The z-coordinate
estimation is always critical. The perspective camera z-error ascends fast with
greater FoVs, because for a wide FoV perspective camera the angular resolution
for center pixels gets very bad (see fig. 2(b)). The fisheye error characteristic is
much better suited for triangulation at a wide FoV. The resolution degradation
is compensated by the good estimation of points lying at the image borders,
perpendicular to the FOE for the chosen movement. The z-error is therefore
decreasing with increasing FoV.

The third cameras pose is reconstructed from the estimated points and their
known projection. The pose error is given in figure 3 (c) to (f). The third cameras
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Fig. 3. (a), (b) Error of triangulated points from cameras 1 and 2 (z-displacement);
(c)-(f) Error of predicted pose from camera 3 (y-displacement)

pose prediction quality depends very much on the triangulated points quality
(figure 3 (a) and (b)). Also number and spatial distribution of the points used for
the estimation have an impact on the quality. It is visible that the y coordinate
error is much higher, this is due to the chosen movement. The first camera move
in z-direction produces high covariances in the 3D points z-coordinate. By the
cameras second move in y-direction these are projected onto the camera images
y-axis and cause a higher error in this direction.

The pose estimation quality for the third fisheye camera rises with the FoV,
the additional points perpendicular to the FOE are more than compensating the
lower resolution. The pose estimation for the perspective camera degrades fast,
analog to the triangulated points quality.

We have simulated different motion directions for the first motion as well.
All simulations showed a similar trend, that in all cases the fisheye lens performs
equal or better than the perspective lens. See section 5 for further analysis. For a
small FoV both models are similar, for a FoV > 100◦ the fisheye lens is superior
to the perspective lens.

Lens Selection. From the preceding analysis follows that the precision of SfM
is increased when using a fisheye lens with a large FoV. There are some further
advantages of this lens that can hardly be modeled in this simulation but play
an improtant part in a real system:

– The wide FoV covers a very large scene area and moving objects tend to be
in a small part of the scene only. The hemispherical view will always see lots
of static visual structures, even if the scene in front of the user may change
dramatically.

– If fast rotations occur, a perspective camera will lose all tracked 2D features.
This will not happen easily with a hemispherical view fisheye camera.
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The drawback is, that the system is mainly designed for indoor use. In out-
door scenes the sun light falling directly onto the CCD sensor will cause prob-
lems. Also a cloudy sky would cause problems because a huge part of the scene
is moving slowly enough to be still trackable. These problems can be facilitated
by using CMOS sensors with logarithmic response and high dynamic range and
a configuration where the fisheye camera is mostly looking to the ground.

5 Optimizing SfM for Spherical Images

For a perspective camera there are certain critical moves for pose estimation.
These are moves along the optical axis where the FOE lies close to the focal
point. Points perpendicular to the camera movement are well suited for pose
estimation. For critical moves with a small FoV camera most point vectors have
small angles to the camera movement vector and thus the points have large
triangulation errors. A full spherical camera that is able to see in all directions
has no critical moves, since always all feature points are in sight. For a fair
comparison between perspective and fisheye lens in section 4 we defined the pole
of the fisheye hemisphere to coincide with the perspective optical axis. Standard
SfM was than computed on a tangent plane with the optical axis as normal.

For a true spherical camera, we can select a tangent plane with a normal
perpendicular to the FOE to avoid uncertainties. Since we do not know the
camera movement and have to estimate it, we need a two step process. For
FOE estimation we use the approach from section 4. In a refinement step we
define an undistortion plane with its normal perpendicular to the FOE and use
this for SfM. This is equivalent to a rotation of the fisheye pole to the plane
perpendicular to the FOE. The result of this modification is shown in figure 4
for the triangulated points from the first two cameras (a),(b) as well as for the
error of the third camera pose estimation (c)-(f). The camera movement is equal
to section 4, first z-displacement then y-displacement.

The “virtually rotated fisheye” performs much better for a camera FoV of
less than 130 degree but then rapidly degrades. This is due to the fact that the
rotated small FoV camera mostly sees points perpendicular to the FOE with a
very good covariance. But as the FoV angle grows, more and more points lying
near the FOE or FOC are used for pose estimation. Since those points have a
very bad covariance they spoil the whole pose estimation. In section 4 this effect
is compensated by the good angular resolution of a small FoV camera, there the
points close to the FOC are predominantly in view when the FoV is still small.
Here more and more uncertain points are added while the angular resolution is
decreasing. From figure 4 one can see the great influence of using the correct
point distribution for pose estimation. It would also be useful to weight the
estimates depending on their uncertainty w.r.t. the FOE.

From the results of this section follows that a virtually rotated fisheye with a
FoV of approximately 100◦ outperforms a full fisheye as presented in section 4.
Knowing the FOE we could also perform a cylindrical rectification of the sphere
aligned with the FOE direction. The cylinder would contain all tangent planes
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Fig. 4. (a), (b) Error of triangulated points from cameras 1 and 2 (z-displacement);
(c)-(f) Error of predicted pose from camera 3 (y-displacement)

perpendicular to the FOE. This would further improve estimation quality, but
was not done for this work.

6 Experiments

We have used perspective and fisheye sequences in an existing SfM system and
evaluated the tracking results. To generate test sequences a high resolution
(1600×1200 Pixel) fisheye camera with a FoV of 180◦ was used. Very accu-
rate tracking on the full resolution images was performed, the results were taken
as “ground truth” data. To compare the tracking performance on fisheye and

Table 1. Relative average translation and rotation error over 300 frames

Translation Error Rotation Error
Fisheye lens 3.3% 1.1%
Perspective lens 5% 1.4%

(a) (b) (c)

Fig. 5. (a) Original fisheye image, (b) and (c) video augmentation of a perspective
cutout of the fisheye sequence from different view points



48 B. Streckel and R. Koch

perspective sequences, the centers of the high resolution images were mapped
artifact free to perspective images of 400×400 Pixel with a FoV of 60◦ and an
angular resolution of 6− 8pix

◦ . To simulate a fisheye camera with identical reso-
lution a FoV of 160◦ was subsampled to 400×400 Pixel, the angular resolution
was 2.5pix

◦ . The results of the experiments are shown in table 1. These results
are only partially comparable to the presented analysis, because in the used SfM
implementation there are many additional stabilization methods and tracking
was performed over several hundred images.

We have also verified the fisheye tracking over very long image sequences
and have optained very stable results. Figure 5 shows a video augmentation of
virtual objects superimposed into the video stream in a complex environment.

7 Conclusions
The work shows that for SfM applications a fisheye lens is superior to a per-
spective lens, despite its lower average angular resolution. The lack of angular
resolution is more than compensated by its linear characteristic. Also tracking
is more robust because a greater part of the scene is in the cameras FoV.

There are still open issues to improve SfM with a fisheye camera. At first
weighting of the 3D points w.r.t. the FOE for the camera pose estimation should
be investigated. Points can be weighted according to their vectors angle to the
cameras movement vector. Results from section 5 strongly imply that this is
a promising approach. Furthermore real SfM on fisheye images without any
projection has to be developed. The first step for this is already done in [9]
where Svoboda et. al. evolved the epipolar geometry for fisheye images.
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cation and Research project ARTESAS (www.artesas.de).
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Abstract. This study describes a novel imaging system that can be
used as a front end for a vision system for guidance of unmanned aerial
vehicles. A single camera and a combination of three specially designed
reflecting surfaces are used to provide (a) complete omnidirectional vi-
sion with no frontal blind zone and (b) stereo range within a frontal
field. Important features are (i) the use of a single camera, which, apart
from minimising cost, eliminates the need for alignment and calibration
of multiple cameras; and (ii) a novel approach to stereoscopic range com-
putation that uses a single camera and a circular baseline to overcome
potential aperture problems.

1 Introduction

Over the past few years there has been a growing interest in the design and
development of vision systems for guidance of unmanned aerial vehicles (UAVs)
[1]. In military applications, guidance systems that use passive vision are pre-
ferred over active systems such as radar, sonar or laser-based systems, which emit
radiation that can be readily detected by the adversary. Vision based systems
offer the added advantage of low weight and cost, and are thus ideally suited
for guidance of micro UAVs. Visual information can be used to stabilise flight,
maintain a desired course and altitude, avoid obstacles, detect targets or objects
of interest, estimate distance flown, and guide autonomous landings.

Here we describe a system that uses a single camera and a set of three
reflective surfaces to achieve fully omnidirectional vision, as well as stereo vision
in a frontal field. Information on image motion (optic flow) in the panoramic
image can be used to guide many of the maneuvers described above, while stereo
vision can be used to estimate the distances to obstacles or targets in the frontal
visual field.

Previous studies have described reflective surfaces for panoramic imaging [2].
Such surfaces are designed to produce a constant vertical angular gain [3] or a
constant viewpoint [4]. Other studies have developed dual-surface systems for
achieving panoramic stereo [5,6]. All of these systems suffer from the drawback
of a blind zone that is created by the reflective surface itself, which occludes a
� Supported by the Deutsche Forschungsgemeinschaft (grant no. STU 413/1-1), and
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part of the frontal field of the camera. Here we present a system that not only
eliminates this blind zone, but also provides stereo (depth) information in the
frontal field. We also introduce a novel approach to stereo imaging, which uses
a single camera and a circular baseline to overcome potential aperture prob-
lems.

2 Design of the Vision System

Here we describe the design of the reflecting surfaces and the properties of the
system with reference to Fig. 1.
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Fig. 1. Overview of the single camera vision system. a: Schematic drawing (axial sec-
tion): The system consists of three reflective surfaces (shown as bold curves): The
convex surface (labelled ’cx’) with angular gain of α = 15 yields a large field of view of
about 150◦ (vertically) on either side. It reflects incoming light to the outer part of the
camera image (see Fig. 3 a for an example). The concave surface (labelled ’cv’) with
angular gain of α = −10 and the conic mirror (labelled ’cc’) reflect light rays to the
central part of the camera image. These provide a frontal stereo field. The small circles
mark the location of the approximate “left” and “right” view points, which (in 3D) lie
on a circle (orthogonal to the paper plane). The baseline of the frontal stereo is approx.
95mm. N is the nodal point of the camera, and its mirror image with respect to the
conic surface is n. The (vertical) field of view of the camera is approx 55◦. b: Picture
of the vision system. The setup is about 35 cm high. The colour camera Marlin F046C
offers a 780 × 580 pixel resolution at a frame rate of up to 50 Hz.



Omnidirectional Vision with Frontal Stereo 51

2.1 Mirrors with Constant Gain

The vision system consists of three reflective surfaces with constant (vertical)
angular gain α := −∂θ/∂η = const., where η is the camera angle and θ the angle
between the z-axis and the incoming light ray.

Using the parameters γ (angle at the tip of the mirror) and r0 (distance to
the tip of the mirror along the optic axis) depicted in Fig. 2, the mirror surface
can be described by (see [3] for derivation),

r(η) := r0
coskγ

cos(η/k + γ)k
, k :=

2
1 + α

, (1)

where r is the distance of a point on the surface from the nodal point of the
camera. The relation between the vertical angle θ and the camera angle is

θ = π − α η − 2γ . (2)
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Fig. 2. a: Illustration of the parameters used in Eq. (1), which determine the shape
of the reflective surface. b: Construction of the reflective surfaces using Eq. (1). The
parameters for the convex surface are αcx = 15, rcx

0 = 137 mm, γcx = −77◦. The
manufactured surface covers only the camera angle 10◦ < ηcx < 20.5◦. The concave
surface is defined by αCV = −10, rCV

0 = 166 mm, γCV = 65.5◦, 1.5◦ < ηCV < 11◦.

2.2 Design and Realisation of the Reflective Surfaces

The vision system is designed to meet two important objectives. First, achiev-
ing true omnidirectional vision by avoiding the draw-back of most catadioptric
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systems where the view is partially restricted by the mirror. Secondly, providing
range information within a restricted field of view.

While most catadioptric systems use only convex mirrors, we decided to use
a concave surface for the stereo region since it allows a larger stereo base line and
a more compact design: e.g. rays coming from nearby objects close to the axis
of symmetry are reflected at the outer part of the concave surface, see Fig. 1 a.

In the following we use the labels ’cv’ for the concave surface, ’cx’ for the
convex surface and ’cc’ for the conic mirror, see Figs. 1 and 2b. The distance
of the nodal point to the tip of the conic mirror is rcc

0 = 149mm, the diameter
of the base is 67mm and the apex angle is 110◦. This can also be described by
Eq. (1) using αcc = 1 and γcc = 35◦. The angular gain of the concave mirror is
αcv = −10. |αcv| has been chosen smaller than the gain for the convex mirror
αcx = 15 in order to obtain a higher image resolution for disparity calculation,
see Sect. 4. Values for the other parameters are given in the caption of Fig.
2 b. As shown in Fig. 2 b the concave and convex surfaces span camera angles
1.5◦ < ηCV < 11◦ and 10◦ < ηcx < 20.5◦, respectively. To obtain the final
position of the concave surface, the calculated curve has to be mirrored at the
conic surface, CV→ cv (according to the mirroring N → n of the nodal point).
This is indicated by dotted lines.

Next, we can calculate the theoretical fields of view of the mirrors. For the
concave surface we calculate from Eq. (2) that θcv = 61◦ − 10 η, which leads to
−39◦ < θcv < 46◦ for the camera angle η ∈ (1.5◦, 10◦). Because of the concave
shape of the surface, larger excursions of θ are mapped to smaller camera angles.
Therefore, we do not use the full angular range. The convex mirror spans the
angular range θcx = 334◦ − 15 η, i.e. 184◦ < θcx < 26.5◦ for η ∈ (10◦, 20.5◦).

The mirrors were manufactured from aluminium using a computer controlled
lathe. The reflective surfaces were polished and electro-plated with a nickel-silver
coating. The conic mirror is mounted using a round perspex plate. The mirrors
and perspex are supported by metal rods.

3 Creating an Omnidirectional Image

The outer part of the camera image (see Fig. 3), created by light reflected at
the convex surface, will be called “panoramic image”. The central part of the
camera image (originating from reflections at the conic and concave surfaces)
will be called “frontal image”.

Since the angular ranges of the panoramic and the frontal image overlap, we
can combine them to obtain a complete omnidirectional image, although not for
a single view point. Currently we use the only outer part of the frontal image
which corresponds to the angular range 0◦ ≤ θ < 40◦ in order to ensure that close
objects in front of the vision system are displayed and to make use of the higher
resolution there. This frontal image is combined with the panoramic image after
correcting for the differences in gain of the two images, and comparing colour
pixels in the overlap region to correct for any tinting imposed by the perspex.
An example of a complete omnidirectional image is shown in Fig. 3d-f.
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a

b

c

e f d

Fig. 3. Creation of an omnidirectional image: a: Camera image of an outdoor scene; the
area between the inner black circle and the white circle covers the angular range of 0◦ ≤
θ � 40◦, the area between the outer black circle and the white circle covers 30◦ � θ �
180◦. The corresponding unwarped images are shown in b and c. b: Unwarped frontal
image after applying the colour correction which is calculated from the overlapping
area marked by the black rectangles in b and c. c: Unwarped panoramic image. The
black rectangle marks the image area that is also visible in the frontal image shown
in b. d: Complete omnidirectional image covering 0◦ ≤ θ � 180◦ (and 0◦ ≤ φ <

360◦), obtained by combining the images in b and c. The slightly blurry appearance
is most likely caused by relatively poor camera resolution, which can be improved
using a camera that provides more pixels. e, f: Two views of a sphere onto which the
omnidirectional image has been mapped using OpenGL.

4 Stereo Algorithm

Here we give a short description of the disparity estimation for the frontal image.
Since the vision system is intended to be used on a small autonomous aerial

vehicle, a fast and computationally inexpensive procedure is desirable. In recent
years real-time disparity estimation has been achieved by a class of stereo al-
gorithms which utilise a window-based “shift-and-match” approach with local
minimum search, e.g. [7,8,9]. Global optimisation methods usually yield more
accurate disparity maps but need significantly longer computation time [10,11].
Therefore we utilise a local (window-based) stereo algorithm, although the cur-
rent implementation is not yet optimised for speed.

4.1 Matching Cost Function

To speed up the stereo computation, disparity estimation is performed after
conversion of the frontal colour image to a monochrome image. Referring to the
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first unwarped image
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confidence map

central part of camera imagea b
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d hsecond unwarped image fused image

Fig. 4. Stereo computation for an indoor scene. a: Frontal stereo image: corresponding
points lie on lines through the centre. b: Standard camera image of the scene, with
nodal point positioned at the base of the conic mirror. The camera is looking upwards,
a cardboard is placed a distance of 0.5 m. Distance to edge of the air-conditioning unit
is approx. 1.2 m, distance to the light at the ceiling approx 1.6 m. c, d: The stereo
matching algorithm is applied after unwarping the two annular segments of the frontal
image, each spanning 180◦ azimuth. The dashed rectangles mark corresponding regions
for zero disparity d = 0pixels, the black rectangles mark corresponding regions for
maximum disparity d = 29pixels, see Eq. (4). e: Calculated disparity map, Eq.(7).
f: Map of matching score, i.e. E(d, x, y). g: Confidence map sd(x, y): dark regions
correspond to low confidence. h: Image fused according to Eq. (9). (Parameter values
of the current implementation: window size and penalty value: w0 = h0 = 21, Δ0 = 0;
w1 = h1 = 11, Δ1 = 50; disparity range: 30 disparities, i.e. d(x, y) ∈ {0, 1, . . . , 29};
“noise level”: σ2

n = 1).

unwarped frontal images in Fig. 4 c,d, we denote the window patches centred at
pixel x0, y0 by Uk(x0, y0), i.e.

Uk(x0, y0) := {(x, y)
∣∣ |x− x0| ≤ (wk − 1)/2, |y− y0| ≤ (hk − 1)/2} (3)

We use matching windows of two different sizes wk × hk, k = 1, 2, leading to a
4-dimensional cost function

E1(d, k, x, y) :=
1

wk hk

∑
(x′,y′)∈Uk(x,y)

(
IA(x′, y′ + 1

2d)− IB(x′, y′ − 1
2d)

)2
. (4)

IA(x, y) and IB(x, y) are gray value pixels of the two unwarped frontal image
parts, see Fig. 4. We use a symmetric stereo matching approach that enables us
to compute a disparity map for a single view point located approximately at the
centre of the base of the conic mirror. We also apply a shifting min-filter which
has been shown to improve the stereo matching [10], i.e.



Omnidirectional Vision with Frontal Stereo 55

E2(d, k, x, y) := min
(x0,y0)∈Uk(x,y)

E1(d, k, x0, y0) . (5)

In the next step, for each position and disparity the best match over all window
sizes is determined. Since a larger support window usually yields more reliable
disparity a constant Δk is added that decreases with increasing window size (see
[12] for a similar approach):

E(d, x, y) := min
k

(E2(d, k, x, y) + Δk) . (6)

Finally, the disparity at each position is estimated from the minimum matching
error,

d(x, y) := arg min
d′

E(d′, x, y) . (7)

4.2 Measure of Match Confidence

In addition to the matching score (Eq. (6)) we implemented, based on a Bayesian
model, a second confidence measure for the estimated best match,

s2
d(x, y) := max

d′

(
(d′ − d(x, y))2

2σ2
n

E(d′, x, y)− E(d(x, y), x, y) + 2σ2
n

)
. (8)

Disparities are regarded as more reliable, i.e. s2
d is small, if for all other dis-

parities the difference in the matching error E(d′, x, y)−E(d(x, y), x, y) is large
compared to some “noise level” σ2

n and if these alternative matches are close to
the estimated one, i.e. for small (d′ − d(x, y))2.

4.3 Circular Baseline Stereo

The circular symmetry of the frontal stereo configuration implies that objects or
features that are located on the optic axis of the system are viewed by an infinite
number of stereo baselines with orientations all around the circle. It is therefore
possible to combine disparity measurements and confidence estimates from all
of the baselines to obtain a robust range estimate for such features. However,
features located elsewhere in the frontal visual field may be susceptible to the
aperture problem: Radially oriented edges or bars would yield low-confidence
disparity estimates everywhere, because disparity is measured only in the local
radial direction. On the other hand, a set of horizontal stripes, which would
create severe aperture problems in a traditional twin-camera stereo system that
uses a horizontal baseline, would yield high-confidence disparity estimates ev-
erywhere except along the stripe that runs through the centre of the visual field.

4.4 Reconstructed Frontal Views

Using the disparity map and the unwarped images in the stereo region, see Fig.
4 c-e, a frontal view can be computed as would be seen from a central view point
located approximately at the base of the conic mirror. First, pixels in the two
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ba

d e

c

f

Fig. 5. Reconstructed frontal views. a: Central part of camera image of indoor scene
(same as in Fig. 4). b: Reconstructed image for central view point corresponding
to Fig. 4 h. Errors (visible in the area between cardboard and air-conditioning) are
mainly due to occluded image parts for which no correct match exists, see Fig. 4 c,d.
c, e, f: Frontal maps of matching score, disparity and confidence, corresponding to
Fig. 4 f,e,g. d: Standard camera image of the scene for comparison with b.

images are shifted according to the estimated local disparities and a fused image
is created (see Fig. 4 h) using the mean values of the shifted pixels, i.e.

Ĩc(x, y) :=
1
2
(IA

c (x, y + 1
2d(x, y)) + IB

c (x, y − 1
2d(x, y)) , c ∈ {r, g, b} . (9)

Then the resulting image is transformed into the central frontal view using x
and y as spherical coordinates φ ∈ [0◦, 180◦) and θ ∈ (−25◦, 25◦). The disparity
and confidence maps are transformed similarly. An example is shown in Fig. 5.

5 Conclusions

We have described a front end for a vision system that provides full omnidirec-
tional vision, and stereo within a restricted field of view. In an aircraft the device
can be positioned with its optic axis oriented horizontally and looking forward,
to obtain range information on obstacles and targets in the direction of flight.
Alternatively the device can be configured with its optic axis pointing downward,
to obtain information on height above the ground, for example during landing.
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Abstract. This paper considers the application of capturing urban ter-
rain by an airborne pushbroom camera (e.g. High Resolution Stereo Cam-
era). The resulting images as well as disparity ranges are expected to be
huge. A slightly non-linear flight path and small orientation changes are
anticipated, which results in curved epipolar lines. These images can-
not be geometrically corrected for matching purposes such that epipolar
lines are exactly straight and parallel to each other. The proposed novel
processing solution explicitely calculates epipolar lines for reducing the
disparity search range to a minimum. This is a necessary prerequisite
for using an accurate, but memory intensive semi global stereo match-
ing method that is based on pixelwise matching. It is shown that the
proposed approach performs accurate matching of urban terrain and is
efficient on huge images.

1 Introduction

The High Resolution Stereo Camera (HRSC) has been developed by the Insti-
tute of Planetary Research (DLR)[1] for the exploration of the Marsian surface
from orbit. The airborne version HRSC-AX is currently used for capturing earths
landscape and cities from flight altitudes between 1500m to 5000m. The cam-
era contains nine sensor arrays, which are arranged orthogonally to the flight
direction in different angles. All arrays have a resolution of 12000 pixels. Five
arrays are panchromatic. The other four capture red, green, blue and infrared
light. The position and orientation of the camera is continuously measured by
a sophisticated GPS/IMU system. Current post-processing [1,2,3] includes ra-
diometric corrections as well as refinements of all camera positions, orientations
and time offsets by means of photogrammetric methods based on HRSCs multi-
stereo image information. A geometric correction step projects the pixels of each
array at all camera positions onto an artificial plane, resulting in nine 2D im-
ages, in which effects caused by high and low frequent orientation variations
are eliminated, while disparities caused by terrain and buildings still remain
(Fig. 1).
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Fig. 1. Parts of corrected 2D pushbroom images with a resolution of 15cm/pixel

The current stereo method [1] performs hierarchical, correlation based stereo
matching of these 2D images. Epipolar lines are assumed to be parallel to the
overall flight direction. Violations of this assumption are handled by searching
correspondences in a 2D area around suspected epipolar lines. The matching
result is used for calculating Digital Elevation Models (DEM) and subsequently
for the generation of true ortho images based on the DEM. This paper proposes
the explicit calculation of epipolar lines in general, non-linear pushbroom images
combined with a semi-global stereo matching method. The aim is to increase the
accuracy in scenes of urban areas.

2 Related Literature

There are different possibilities for modeling the movement of pushbroom cam-
eras. The Linear Pushbroom Camera model [4,5,6] assumes a movement with
constant velocity and orientation in a straight line. This movement is not re-
alistic for an airborne camera, which is exposed to wind. General movements
may be approximated by polynomial functions [7] or explicitely represented by
discrete positions and orientations [1,8,9].

Geometric corrections of the images as a pre-requisite for matching and sub-
sequent 3D surface modeling are commonly done by projecting all pixels onto
an artifical plane [1,8,9]. Straight lines and epipolar lines are almost straight in
the corrected images, if the flight path is nearly linear. Thus, these corrected
images can be treated as almost rectified [9]. However, a rectification that re-
sults in exactly straight epipolar lines is not possible, since epipolar lines are
generally hyperbolas, even if the camera movement is exactly linear [4]. The
complex shape of epipolar lines must be considered during stereo matching, ei-
ther by searching in 2D around linearly approximated epipolar lines [1,8] or by
explicitely calculating them [6] for reducing the search space to 1D. 2D search
areas can also be reduced by ortho rectification implying rough terrain instead
of simple geometric correction [2].

Stereo matching must be efficient, due to typically huge images and dis-
parity ranges. Local, correlation based approaches are often applied, either by
hierarchical matching [1] or by region growing [8,6], which starts at high confi-
dence correspondences. However, correlation based methods are known to blur
sharp object boundaries [10], which makes them less suitable for urban areas.
Global cost minimization methods have been shown [11] to perform much better
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Fig. 2. Camera model and the creation of a corrected 2D image

at object boundaries. However, global methods are typically slow and memory
intensive, which makes them unsuitable for huge images.

3 Reconstruction from Pushbroom Images

The following sections introduce the camera model (Section 3.1) as base for
calculating epipolar lines (Section 3.2). Epipolar lines are required for limiting
the correspondence search during stereo matching (Section 3.3). The matching
result is finally used for calculating an orthographic projection of height and
image information (Section 3.4).

3.1 Modeling Non-linear Pushbroom Cameras

Pushbroom cameras use an array of sensor elements that is arranged in a straight
line on the image plane (Fig. 2a). Lens distortion is modeled by treating the
sensor array as being curved. The intrinsic parameters are the focal length f
(i.e. distance between optical center and image plane) and the positions xk,
yk on the image plane for all pixels k. Thus, the 3D location of a pixel k is
Sk =

(
xk yk f

)T in the camera coordinate system.
A 2D image is captured line by line, while the camera moves. A linear move-

ment cannot always be guaranteed (e.g. while flying with an airplane). Therefore,
it is assumed that the path is only roughly a straight line, the speed is not con-
stant and the orientation is changing slightly (Fig. 2b). The lack of constraints
requires to measure the orientations Ri and locations T i at all capturing posi-
tions i with high accuracy. Since original GPS/IMU measurements describe the
orientation of the IMU-axes, a photogrammetric reconstruction of the orienta-
tion of the camera axes is performed by means of photogrammetric methods
[3]. This leads to the relationship P = sRiSk + T i between a world point P
and the kth pixel of the ith capturing position. The reconstruction of the ray of
light that ends in pixel k is, based on the previously described photogrammet-
ric reconstruction, straight forward. However, the inverse (i.e. finding pixel k as
projection of P ) is difficult, because the list of pixel positions S is unsorted. The
calculation is simplified by approximating the sensor array by the best fitting
line, i.e.
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P = sRiSk + T i, Sk = kU + V + εk. (1)

This allows the definition of a new camera coordinate system e1, e2, e3 (Fig.
2a) in which e1 is parallel to the sensor line and f ′e3 intersects the line in the
point P 0.

e1 =
U

|U | f ′e3 = P 0 = −UV

UU
U + V e2 = e3 × e1 (2)

The resulting closed form definition of the relationship becomes,

P = sRiRc

(
k′ 0 1

)T + T i, Rc =
(
e1 e2 e3

)
. (3)

The relationship between the pixel k′ and k can be derived easily as k′ =
k|U |+e1V

f ′ . Corrected 2D images are obtained by projecting all pixel values onto
a common image plane at z = 0 (Fig. 2c) using (1). The projection is generally
irregular. The values at regular grid positions are calculated as linear interpola-
tions of nearby pixels. Orientation changes that destroy the order of projected
pixels (e.g. camera position j in Fig. 2c) are treated by removing disturbing
camera positions and their projected pixels.

For 3D computer vision purposes it is important to have a projection model
of the corrected 2D pushbroom images. The intrinsic parameters are the path
of optical center positions T i and corresponding viewing directions RiRc. The
movement between discrete positions is assumed to be linear. Equation (3) can
then rewritten as,

P = sRiRc

(
k′ 0 1

)T + T i + si
T i+1 − T i−1

2
. (4)

The factor si controls the linear movement of the ith optical center for projecting
P exactly on the sensor array (i.e. y = 0). Solving for si in dependence of P
results in,

si(P ) = 2
r2(P − T i)

r2(T i+1 − T i−1)
, with RiRc =

(
r1 r2 r3

)
. (5)

The position C(P ) of the optical center is calculated from the closest base i, i.e.

C(P ) =T i + si(P )
T i+1 − T i−1

2
, for i such that si(P ) is a minium (6)

The closest base i can be found by a binary search in O(log2 n) steps. Removing
overlapping projections (e.g. j in Fig. 2c) ensures a sorted list. The sign of si

determines the search direction. The determination of the optical center permits
the projection of a world point P onto an image point p by calculating the
intersection of P , C(P ) at z = 0.

p =fproj(P ) =
Cz

Cz − Pz

(
Px − Cx

Py − Cy

)
+
(

Cx

Cy

)
, with C = C(P ). (7)

Similarly, the world point P is reconstructed from a given pixel p at the distance z.

P =frec(p, z) =
Cz − z

Cz

⎛⎝px − Cx

py − Cy

−Cz

⎞⎠+

⎛⎝Cx

Cy

Cz

⎞⎠ , with C = C(
(
px py 0

)T ) (8)
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3.2 Calculation of Epipolar Lines

A pixel p1 and the corresponding optical center C1(p1) define a line, which
contains the world point P that is projected on p1. The projection of this line
into a second image is called epipolar line. The projection of P in the second
image must be on the epipolar line (Fig. 3a). This is formally defined as,

p2 = e12(p1, d) = fproj,2(frec,1(p1,−dΔz)). (9)

C1(p1)=C1(P)

1p p2=e 12(p1, d)

C2(p2)=C2(P)
1 32

P

X

d=2

d=1

d=0

d=−1
Z

(a) Calculation of Corresponding Points (b) Epipolar Lines (1) approx. by same pixel column,
(2) exact, (3) approx. as straight line

Fig. 3. Calculation of epipolar lines.

The disparity d controls the position on the epipolar line. The constant Δz
is set such that a disparity step of 1 causes a mean translation of 1 pixel on the
epipolar line. Figure 3b shows an example of an exactly calculated epipolar line
and approximations by the same pixel column and as straight line. The overall
flight path is vertical. The example shows that the approximated epipolar lines
miss the correct correspondence by several pixel, which enforce a 2D search
for finding correspondences. The exact point by point calculation of epipolar
lines reduces the search range to a minimum. The efficiency of this approach is
optimized by calculating only a few points on the line and assuming piecewise
linearity in between.

3.3 Stereo Matching

Stereo matching is done with the Semi-Global Matching (SGM) method [12],
which aims to determine the disparity image D, such that the cost E(D) is a
minimum.

E(D) =
∑

p

C(p, Dp) +
∑

q∈Np

P1T [|Dp − Dq | = 1] +
∑

q∈Np

P2T [|Dp − Dq | > 1] (10)

The cost function evaluates pixelwise matching costs C(p, Dp) at the pixel p
with the disparity Dp. Piecewise smoothness of the disparity image is supported
by adding a small cost P1 for all small disparity changes and a higher cost P2
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for all higher disparity changes. Adding a constant cost for all higher dispar-
ity changes preserves discontinuities. Finding the minimum of equation (10) is
an NP-complete problem. The SGM algorithm approximates the global mini-
mization by pathwise minimizations from all directions. The complexity is only
O(ND), but the memory consumption is also proportional to ND (i.e. num-
ber of pixels times the disparity range). The pixelwise matching cost C(p, Dp)
is based on hierarchically computing Mutual Information (MI) [12] instead of
intensity differences. This makes it robust against recording differences and il-
lumination changes, which can easily happen since pushbroom cameras capture
corresponding points at different times on the flight path. Finally, the SGM
method provides a multi-baseline extension [12] for reducing mismatches and
increasing accuracy.

Applying the SGM method to HRSC images includes three adaptations.
Firstly, multi-baseline matching uses the five panchromatic images of the HRSC
(Sect. 1), weighted by their recording angle. Optionally, the red and green images
are also matched against the panchromatic nadir image, which is possible with
MI matching. Secondly, the huge images are split into manageable pieces (i.e.
tiles) for matching. The tiles are defined slightly overlapping and pixels near im-
age borders are rejected, because they receive support only from one side by the
global cost function. Thirdly, the disparity range is determined automatically,
by first processing downscaled images (e.g. factor 16) with a very large dispar-
ity range. A reduced range is determined from the result and used for higher
resolutions. The disparity range determination is done during the hierarchical
computation of MI.

3.4 Orthographic Projection

The resulting disparity image corresponds to the nadir image of the HRSC. The
model of this image (Sect. 3.1) is complex due to low constraints on the flight
path and a mixture of perspective and parallel projection models. The disparity
image permits the conversion of the data into a simple orthographic model. Each
pixel p of the disparity image D is reconstructed by P = frec,D(p,−DpΔz). An
orthographic projection is used, which stores each height value Pz at the pixel
position Px, Py. Double mappings are resolved by using the height that is closest
to the camera. This orthographic model also supports fusing results of different
recordings, by taking the mean or median of heights, which decreases outliers.
Finally, gaps are filled by interpolation. The result is a Digital Elevation Model
(DEM) of the scene. The corresponding intensity or color value at Px, Py and
the stored height value Pz is determined by bilinear interpolation in the image
I at the position q = fproj,I(P ). The results is a true ortho-image.

4 Experimental Results

The first row of Fig. 4 shows small parts of three scenes. The DEMs of
Neuschwanstein castle are the combination of 4 flights in cross directions over
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the castle. Similarly, the DEMs of Garmisch-Partenkirchen are the combination
of 3 overlapping parallel flights. The DEMs of Rosenheim are the result of one
flight only.

The second row shows DEMs that are produced by a hierarchical, correlation
based method (HC) [1]. The method avoids the calculation of epipolar lines by
searching correspondences in a 2D area. Matching is done in images that are
sampled with 25cm/pixel. However, only every second pixel is calculated, which
results in 50cm/pixel. It can be seen that the boundaries of houses are severely
blurred and towers are unrecognized.

The third and fourth row of Fig. 4 present DEMs that have been produced
by SGM with calculated epipolar lines with images at different resolutions. The
boundaries of houses are much sharper and all towers are properly detected. The
average processing time is one hour on a 2.8GHz Xeon computer for producing
11MPixel of the DEM by matching 5 images with an average disparity range of
400 pixel. The fifth row of Fig. 4 shows reconstructions, using the ortho image
as well as the S1 and S2 images (e.g. Fig. 1) for top and side textures. The
last row presents reconstructions of a 110km2 area of Berlin in a resolution of
20cm/pixel. The area has been captured by 6 parallel, partly overlapping flights.
Each flight contributed approximately 1 billion height values to the DEM. The
total processing time was 18 days on a 2.8GHz Xeon computer.

5 Conclusion

It has been shown that epipolar lines can be efficiently calculated in general non-
linear pushbroom images. This permits the minimization of the correspondence
search range for using the accurate, but memory intensive Semi-Global Matching
method. Experiments confirmed that the proposed stereo processing solution
performs accurate matching of urban terrain with sharp boundaries of buildings.
The approach permits the efficient and fully automatic 3D reconstruction of
whole cities. Future plans include the implementation of the approach on a
processing cluster.
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Abstract. The paper presents an extended hand-eye calibration approach that, in
contrast to the standard method, does not require a calibration pattern for determin-
ing camera position and orientation. Instead, a structure-from-motion algorithm
is applied for obtaining the eye-data that is necessary for computing the unknown
hand-eye transformation. Different ways of extending the standard algorithm are
presented, which mainly involves the estimation of a scale factor in addition to
rotation and translation. The proposed methods are experimentally compared us-
ing data obtained from an optical tracking system that determines the pose of an
endoscopic camera. The approach is of special interest in our clinical setup, as the
usage of an unsterile calibration pattern is difficult in a sterile environment.

1 Introduction

Hand-eye calibration algorithms [9, 10, 7, 5] solve the following problem that originated
in the robotics community: Given a robot arm and a camera mounted on that arm, com-
pute the rigid transformation from arm to camera (hand-eye transformation). Knowl-
edge of this transformation is necessary, because the pose of the robot arm is usually
provided by the robot itself, while the pose of the camera is unknown but needed for vi-
sual guidance of the arm. However, if the hand-eye transformation is known the camera
pose can be computed directly from the pose data provided by the robot.

Usually, the camera (eye) poses are computed using a calibration pattern and stan-
dard camera calibration techniques. In contrast to that, a method for hand-eye cali-
bration is presented in this paper, where no calibration pattern is needed. Instead, the
camera poses are obtained solely from an image sequence recorded using a hand-held
camera by applying structure-from-motion methods.

Hand-eye calibration is also interesting for applications that are not directly related
to robotics, but where similar problems arise. Instead of a robot we used an optical
tracking system that provides hand data, and a camera, where the camera poses (eye) are
computed using a calibration pattern for standard hand-eye calibration, and structure-
from-motion for the extended hand-eye calibration described in this paper. The camera
may in general be an arbitrary hand-held video camera. For our application—the recon-
struction of high-quality medical light fields [11]—we used an endoscope with a rigidly
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mounted CCD camera. The endoscope is moved by hand, its pose is determined by the
optical tracking system. More details on this system will follow in the experiments sec-
tion. The hand-eye transformation has to be estimated every time when the camera head
is mounted anew on the endoscope optics, which is done before each operation because
the endoscope has to be sterilized. This requires an algorithm that works automatically
and fast with a minimum of human interaction.

The paper is structured as follows: After an introduction to hand-eye calibration in
Sect. 2 the structure-from-motion algorithm will be described (Sect. 3). Section 4 shows
the modifications to the hand-eye calibration equations that are necessary when using
structure-from-motion instead of standard camera calibration. Experimental results are
presented in Sect. 5.

2 Hand-Eye Calibration

The first hand-eye calibration methods were published by Tsai and Lenz [10], and Shiu
and Ahmad [9], where the latter formulated the hand-eye calibration problem as a ma-
trix equation of the form

TEijTHE = THETHij , Tχ =
(

Rχ tχ
03

T 1

)
, χ ∈ {Hij, Eij, HE} . (1)

THij is the robot arm (hand) movement from time step i to j, TEij the camera (eye)
movement, and THE is the unknown hand-eye transformation, i. e. the transformation
from gripper to camera. All transformations Tχ are described by a 3 × 3 rotation ma-
trix Rχ and a 3-D translation vector tχ. Equation (1) can be directly derived from the
following diagram:

Hj
THE−−−−→ Ej

THij

�⏐⏐ �⏐⏐TEij

H i
THE−−−−→ Ei

(2)

H i and Hj denote the gripper poses, Ei and Ej the camera poses at times i, j. The
usual way to solve (1) is to split it into two separate equations, one that contains only
rotation, and a second one that contains rotation and translation:

RHERHij = REijRHE, (I3×3 −REij)tHE = tEij −RHEtHij . (3)

Thus, the rotational part of the hand-eye transformation can be determined first, and,
after inserting it into the second equation, the translational part can be computed. This
is the way hand-eye calibration is done, e. g., in [9, 10, 3]. Different parameterizations
of rotation have been applied. The original works of [9, 10] use the axis/angle represen-
tation, quaternions were used by [3, 7], and dual quaternions were introduced by [5]. In
contrast to the former approaches, it was suggested in [2] that rotation and translation
should be solved for simultaneously and not separately. This approach is also followed
in [7], where a non-linear optimization of rotation and translation is done.

3 Structure-from-Motion

The usual way to obtain the camera poses Ei is to capture images of a calibration
pattern and apply standard camera calibration techniques [12]. In contrast to that our
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approach is capable of using an image sequence without a pattern and an uncalibrated
camera. By applying a structure-from-motion approach, the camera motion (and there-
fore the eye poses Ei) can be computed for each recorded image. Basically, it is possible
to use any algorithm that results in camera poses, as the following computation steps do
not rely on the actual method used. The approach applied in this paper is based on the
work of [6]; it will be outlined in the following.

The algorithm starts with establishing 2-D point correspondences between images.
Each detected feature point has to be tracked over a sequence of images to allow a 3-D
reconstruction. Here, a modified more robust and faster version of the Tomasi-Kanade-
Shi tracker is used that can also deal with illumination changes [13].

After point features are tracked, the actual 3-D reconstruction step starts. First, an
initial reconstruction is computed using the paraperspective factorization algorithm on
a subset of the images, since all features have to be visible in all images. The recon-
structed affine cameras are now converted to perspective ones by assuming a reasonable
value for focal length and by choosing the center of the image as the principal point.
These perspective cameras can be used as an initialization for a non-linear optimization
step, where camera matrices and 3-D points are optimized alternatingly.

The initial sequence is now extended by performing the following steps for each
frame that is to be added: First, 3-D scene points are triangulated from feature points
that are visible in the new image using already reconstructed camera matrices. This way
it is possible to use the triangulated points as calibration points and apply standard cam-
era calibration techniques. In fact, since differences from one camera pose to the next
will usually be small, it is sufficient in practice to skip the linear standard calibration
methods and initialize the new camera pose with the parameters of the neighboring one.
Non-linear optimization of this camera will yield the desired result. These two steps are
repeated until all frames are processed. Optionally, the whole reconstruction can be
optimized non-linearly by a final bundle-adjustment step.

The result is a reconstruction of the 3-D scene points as well as the extrinsic and
intrinsic camera parameters for each recorded image. Note, however, that the recon-
struction is only unique up to a similarity transformation, i. e., the world coordinate
system can be chosen arbitrarily, and the scale of the reconstruction is unknown. While
the choice of the world coordinate system is exactly the problem that is solved with
standard hand-eye calibration, the unknown scale factor has to be estimated addition-
ally. This topic will now be addressed.

4 Extended Hand-Eye Calibration

The drawback of using structure-from-motion instead of camera calibration is that the
scaling factor mentioned above has to be estimated in addition to rotation and transla-
tion during hand-eye calibration; the modified method will be called extended hand-eye
calibration in the following.

In [1] a structure-from-motion based hand-eye calibration approach was presented
already, where the scaling factor has been integrated into the standard equations (3). The
main drawback of that method is that the orthogonality of the rotation matrix RHE is not
guaranteed by the extended equations, but has to be enforced afterwards using the SVD.
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4.1 Extension of Basic Equations

The straight-forward method is to extend (3) by a scaling factor sHE, resulting in:

RHERHij = REijRHE , (4)

(I3×3 −REij)tHE = tEij − sHERHEtHij . (5)

It can be observed that the rotational equation in (3) and eq. (4) are the same, i. e., the
scale factor has no influence on the computation of rotation. Therefore, the rotation can
be obtained by standard methods, e. g., using the quaternion representation of rotations
[3, 7], which guarantees that the resulting matrix actually is a rotation. Equation (5),
however, contains translation and scale, and can be formulated as a linear system of
equations as follows:(

(I3×3 −REij) RHEtHij

)(tHE

sHE

)
= tEij . (6)

This method of extended hand-eye calibration has the advantage that all equation sys-
tems are linear, but the disadvantage that one has to solve for rotation first, and then for
translation and scale.

The equations (4) and (5) can be used to formulate an objective function f(·) for
non-linear optimization, which is based on the objective function for standard hand-eye
calibration proposed by [7]:

f(qHE, tHE, sHE) =
Nrel∑
i=1

‖qEi − qHEqHiq
∗
HE‖

2 +

Nrel∑
i=1

‖Q ((I3×3 −REi) tHE − tEi) + qHEQ(sHEtHi)q∗
HE‖

2 + λ (1− qHEq∗
HE)2 .

(7)

where qHE is the quaternion used for parameterization of the rotation matrix RHE and λ
is a regularization factor (e. g., λ = 2 · 106) that penalizes deviations of the quaternion
qHE from norm one and thus implements the norm one constraint. The function Q(·)
maps a 3-D vector to a purely imaginary quaternion:Q(x) = 0+x1i+x2j+x3k, where

x =
(
x1 x2 x3

)T
. The single terms of (7) can be derived directly from the hand-eye

equations (4) and (5): The first summand equals (4) in quaternion notation. The second
one is derived from (5) by reformulating the multiplication of the rotation matrix RHE

and the translation vector of the relative movement of the left camera using quaternions.

4.2 Extension of the Dual Quaternion Algorithm

This section shows how the estimation of rotation, translation, and scale can be formu-
lated using dual quaternions. As quaternions are a representation for 3-D rotations, dual
quaternions treat rotations and translations in a unified way.

Dual numbers were proposed by Clifford in the 19th century [4]. They are defined
by z̃ = a + εb, where ε2 = 0. When using vectors for a and b instead of real numbers,
the result is a dual vector.

A dual quaternion q̃ is defined as a quaternion, where the real and imaginary parts
are dual numbers instead of real ones, or equivalently as a dual vector where the dual
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and the non-dual part are quaternions: q̃ = qnd + εqd. Just as unit quaternions represent
rotations, unit dual quaternions contain rotation and translation [5]. In the dual quater-
nion representation of R and t, the non-dual part qnd is the well-known quaternion
representation of R, and the dual part is given by

qd =
1
2
tqqnd, tq = (0, t) , (8)

where tq is a purely imaginary quaternion defined by the translation vector t. A dual
quaternion formulation of hand-eye calibration was introduced by [5]. We will now
show how to integrate scale into the dual quaternion formulation by using non-unit dual
quaternions, which results in a unified representation of similarity transformations.

For this purpose a dual quaternion q̃sHE containing all these parameters is intro-
duced, which is defined by:

q̃sHE = qsHEnd + εqsHEd = sHEqHE + ε
1
2
tHEqqHE . (9)

A dual quaternion has eight elements, but for rotation, translation, and scale only seven
degrees of freedom are necessary. The norm of a dual quaternion is in general a dual
number with non-negative real part given by:

|q̃|2 = q̃q̃∗ = qndq
∗
nd + ε(qndq

∗
d + qdq

∗
nd) . (10)

When the dual quaternion as defined in (9) is used, the scale is actually modeled as the
norm of q̃sHE:

|q̃sHE|2 = sHE
2 + ε0 ⇔ |q̃sHE| = sHE . (11)

Since the scale factor will always be a positive real number, the dual part of the norm has
to be zero. Therefore, one degree of freedom is lost, and we get an additional constraint
that is given by:

qsHEndq
∗
sHEd + qsHEdq

∗
sHEnd = 0 . (12)

Using (9), the extended hand-eye calibration problem (cf. [5] for the standard for-
mulation) solving for scale, rotation, and translation can be formulated as:

qEndqsHEnd = qsHEndqHnd , (13)

qEndqsHEd +
1

sHE
qEdqsHEnd = qsHEndqHd + qsHEdqHnd . (14)

The indices ij that indicate a relative movement from frame i to frame j have been omit-
ted for reasons of simplicity. Note that sHE is not an additional independent parameter
as in the previous section, but the norm of the dual quaternion q̃sHE (cf. (11)).

It can be observed that (14) is a non-linear equation; an objective function f ′(·) for
non-linear optimization will look as follows:

f ′(qsHEnd, qsHEd) =
Nrel∑
i=1

∥∥qEndiqsHEnd − qsHEndqHndi

∥∥2 +

Nrel∑
i=1

∥∥∥∥∥qEndiqsHEd +
1√

qsHEndq
∗
sHEnd

qEdiqsHEnd − qsHEndqHdi + qsHEdqHndi

∥∥∥∥∥
2

+

λ (qsHEndq
∗
sHEd + qsHEdq

∗
sHEnd)

2
.

(15)
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Fig. 1. Optical tracking system (left) and one image of the sequences ART1 (middle) and ART2
(right) showing a silicon liver/gall-bladder model that were used for structure-from-motion based
3-D reconstruction

This objective function estimates rotation, translation, and scale, which are all encoded
in the dual and non-dual parts of q̃sHE. The first summand is derived from (13), the
second one from (14). As before, a regularization term enforces the constraint (12) on
the norm of the dual quaternion q̃sHE, which has to be a real number. In this case, eight
parameters with only seven degrees of freedom are optimized.

5 Experiments

In the following we present an experimental evaluation of the extended hand-eye cal-
ibration methods. The data were acquired using an endoscope with a camera mounted
on it (the eye), which was moved by hand. An optical tracking system (cf. Fig. 1, left)
provides pose data of a so-called target (the hand) that is fixed to the endoscope. The
infrared optical tracking system smARTtrack1 by Advanced Realtime GmbH is em-
ployed. It is a typical optical tracking system consisting of two (or more) cameras and
a target that is tracked. The target is built from markers that can easily be identified in
the images captured by the cameras. In our case spheres with a retro-reflective surface
are used. Infrared light simplifies marker identification. The 3-D position of each visi-
ble marker is calculated by the tracking system. The knowledge of the geometry of the
target then allows to calculate its pose.

Instead of using consecutive movements for calibration, we applied the vector quanti-
zation based data selection method proposed in [8], which leads to more accurate results.

Since no ground truth is available when calibrating real data, we cannot give errors
between the real hand-eye transformation and the computed one. It is desirable, how-
ever, that an error measure is available which rates the quality of the resulting transfor-
mation. Therefore, the following error measure is used: After applying the computed
hand-eye transformation on the hand data, we get an estimate of the eye movements E ′.
This estimated movement can now be compared to the original eye movement E , which
has been obtained by structure-from-motion: If the hand-eye transformation is correct,
the relative movements between single camera positions are equal in E and E ′. The
errors are computed by averaging over a set of randomly selected relative movements.

Table 1 shows residual errors in translation and rotation as well as the computation
times for hand-eye calibration on a Linux PC (Athlon XP2600+) including data selec-
tion, but not feature tracking and 3-D reconstruction. The latter steps are the same for all
methods, and take approximately 90 sec for tracking and 200 sec for 3-D reconstruction.
The values shown are relative and absolute residuals for rotation, and relative errors for
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Table 1. Mean errors in rotation and translation of relative eye movements computed with differ-
ent hand-eye calibration methods using structure-from-motion as a basis

Data Set Method Translation Rotation Time
DQ, scale sep. 22.3% 0.191◦ 3.75% 310 msec
Hor., scale sep. 13.0% 0.179◦ 3.72% 2090 msec

ART1 non-lin., eq. (7) 17.8% 0.191◦ 3.75% 2350 msec
non-lin., eq. (15) 44.6% 0.191◦ 3.75% 756 msec
Andreff 13.2% 0.172◦ 3.60% 309 msec
DQ, scale sep. 20.7% 0.290◦ 7.25% 433 msec
Hor., scale sep. 18.7% 0.266◦ 7.00% 1590 msec

ART2 non-lin., eq. (7) 18.4% 0.290◦ 7.25% 1770 msec
non-lin., eq. (15) 20.7% 0.290◦ 7.25% 482 msec
Andreff 19.7% 0.272◦ 7.10% 434 msec

the norm of the translation vector of relative movements. Absolute errors for translation
are not given, as these are highly dependent on the estimated scale factor and therefore
cannot be compared directly, whereas absolute rotational residuals are independent of
scale. We show the results for two data sets, namely ART1 (190 images) and ART2
(200 images). After feature tracking and 3-D reconstruction, different hand-eye calibra-
tion methods have been evaluated; in all cases the reconstructed camera movement has
been used as eye-data. The results shown in Table 1 were computed as follows:
DQ, scale sep.: Here, the scale factor was estimated first by solving (4) and (5). Af-

ter scaling the eye-reconstruction appropriately, rotation and translation were re-
estimated using a standard hand-eye calibration method, namely the linear dual
quaternion algorithm of [5].

Hor., scale sep.: The same as DQ, scale sep., i. e., scale and rotation/translation were
computed separately. Instead of dual quaternions the non-linear method proposed
by [7] was used for hand-eye calibration.

non-lin., eq. (7)/(15): Here, the non-linear objective functions (7), (15) were used,
which were initialized with the result of DQ, scale sep. After non-linear optimiza-
tion of rotation, translation, and scale, rotation and translation were re-estimated
using the linear dual quaternion method, which results in a more accurate hand-eye
transformation compared to non-linear optimization alone.

Andreff: This is the result of the hand-eye calibration method proposed by [1].

The relative residual errors obtained using standard hand-eye calibration and a cal-
ibration pattern are 4.20% (transl.) and 0.725% (rot.) for the configuration similar to
ART2 and 5.39% (transl.) and 1.09% (rot.) for the configuration similar to ART1. The
deviations to the hand-eye transformation computed this way compared to the extended
approach using structure-from-motion (depending on the method) are 15% to 16% in
rotation and about 35% for translation (ART2), and 9% to 11% in rotation and 26% to
32% in translation (ART1).

6 Conclusion

We presented methods for an extended hand-eye calibration, which allow to compute
the hand-eye transformation without the necessity for using a calibration pattern in or-
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der to obtain the camera (eye) poses. Instead, these are computed using feature tracking
and a structure-from-motion approach, which makes the extension of standard hand-
eye calibration necessary since in addition to rotation and translation a scale factor has
to be estimated. Different ways of extending these equations have been presented and
compared. The main result is that the estimation of the hand-eye transformation is fea-
sible without a calibration pattern. Of course, one could not expect to obtain results as
accurate as with standard calibration; depending on the application, however, the advan-
tages of the extended method may outweigh this drawback. This is especially true for
the clinical setup that we have in mind, as hand-eye calibration has to be performed be-
fore each operation. The usage of an unsterile calibration pattern in combination with a
sterile endoscope and a surgeon working under sterile conditions is difficult in practice,
and can be completely circumvented when using the methods proposed here.
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Abstract. This paper describes solvers for specific quadratic program-
ming (QP) tasks. The QP tasks in question appear in numerous prob-
lems, e.g., classifier learning and probability density estimation. The QP
task becomes challenging when large number of variables is to be opti-
mized. This the case common in practice. We propose QP solvers which
are simple to implement and still able to cope with problems having
hundred thousands variables.

1 Introduction

A lot of problems in machine learning and pattern recognition lead to quadratic
programming (QP) tasks. Although optimization of a general QP task have been
studied at length, it is still a challenging problem when the number of variables
is large. The large QP tasks are quite common in practice. In such cases it is
necessary to derive specialized solvers which exploit all particular properties of
the task at hand. In this paper, we propose solvers for special instances of QP
tasks which can be applied to many problems. The proposed solvers are simple
to implement and they allow to cope with QP tasks having hundred thousands
of variables.

The quadratic programming (QP) task which we tackle in this paper is very
related to two geometrical tasks. These task are the minimal norm problem
(MNP) and the nearest point problem (NPP). The MNP aims to find the mini-
mal norm vector from a convex hull defined by a finite set of vectors. The NPP
searches for two nearest vectors from two different convex hulls defined again
by finite sets of vectors. Algorithms to solve the MNP and the NPP first ap-
peared in computational geometry and control engineering but later they were
applied in pattern recognition. A simple algorithm for the MNP was published by
Gilbert [4]. Kozinec [9] proposed a very similar method which he used for separa-
tion of two convex hulls given by finite vector sets. A different algorithm for the
MNP was described by Mitchell, Demyanov and Malozemov [10]. Various mod-
ifications of the Kozinec’s algorithm applied for analysis of linear discriminant
functions were described in the book by Schlesinger and Hlaváč [11]. Keerthi et
al. [7] proposed a new method to solve the NPP which was applied for training

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 75–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of binary Support Vector Machines (SVM) classifiers. Another method for the
NPP was proposed by Kowalczyk [8] who also used it for training of the SVM’s.
A modification of the Kozinec’s algorithm for training of the SVM’s was further
proposed by Franc and Hlaváč [2].

We concentrate on a slightly more general QP tasks the special cases of which
are the MNP and the NPP. We denote this task as the generalized MNP and the
generalized NPP problem. The generalization consists in adding a linear term to
the QP criterion and assuming that the Hessian of the criterion is an arbitrary
symmetric positive definite matrix. The original problems are recovered after
the linear term is removed and the Hessian equals to a product of two matrices.
The exact definitions of the generalized MNP and NPP are given in Section 2.

We claim that the above mentioned methods designed to solve the original
MNP and NPP can be simply modified to solve the general problems. Moreover,
we will introduce a general framework for sequential algorithms suitable to solve
the generalized problems. The special instances of the general framework are the
MNP and NPP methods. The introduced framework allows for their compari-
son and better understanding. We also derived a new method which proved to
outperform the original ones. Due to a lack of space, we describe only the new
method in Section 3. Detailed description and experimental evaluation can be
found in [1].

While the original solvers were used mainly for training of binary SVM’s
their generalization proposed in this paper is applicable in many other problems.
For example, training of multi-class SVM classifiers [3], Reduced Set Density
Estimation [5], Support Vector Data Description [12], several modifications of
SVM’s for classification and regression introduced in [6].

The paper is organized as follows. The generalized MNP and NPP are defined
in Section 2. The general framework and two particular algorithms are described
in Section 3. Conclusions are drawn in Section 4.

2 Generalized Minimal Norm and Nearest Point
Problems

Let a quadratic objective function

Q(α) =
1
2
〈α,Hα〉+ 〈c, α〉 , (1)

be determined by a vector c ∈ Rm and a symmetric positive definite matrix
H ∈ Rm×m. The symbol 〈·, ·〉 stands for the dot product Let A ⊆ Rm be a
convex set of feasible solutions α ∈ A. The goal is to solve the following task

α∗ = argmin
α∈A

1
2
〈α,Hα〉+ 〈c, α〉 . (2)

Let I1 and I2 be non-empty disjoint sets of indices such that I1 ∪ I2 = I =
{1, 2, . . . ,m}. Let vectors e, e1, e2 ∈ Rm be defined as follows

[e]i = 1 , i ∈ I , [e1]i =
{

1 for i ∈ I1
0 for i ∈ I2

, [e2]i =
{

0 for i ∈ I1
1 for i ∈ I2

,
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where [·]i denotes i-the coordinate of a vector. The optimization problems (2)
with two distinct feasible sets A are assumed. In the first case, the generalized
Minimal Norm Problem is the optimization problem (2) with the feasible set A
determined by

A = {α ∈ R
m: 〈α, e〉 = 1, α ≥ 0} . (3)

In the second case, the generalized Nearest Point Problem is the optimization
problem (2) with the feasible set A determined by

A = {α ∈ R
m: 〈α, e1〉 = 1, 〈α, e2〉 = 1 , α ≥ 0} , (4)

where vectors e, e1, e2 ∈ Rm are defined as follows

[e]i = 1 , i ∈ I , [e1]i =
{

1 for i ∈ I1
0 for i ∈ I2

, [e2]i =
{

0 for i ∈ I1
1 for i ∈ I2

.

The generalized MNP and generalized NPP are convex optimization problems
as both the objective functions (1) and the feasible sets (3) and (4), respectively,
are convex.

3 Algorithms

3.1 Framework of Sequential Algorithms

The optimization problem (2) with the feasible set A can be transformed to a
sequence of auxiliary optimization problems with the same objective function (1)
but with much simpler auxiliary feasible sets A(0), A(1), . . . ,A(t). Solving the
problem (2) with respect to the auxiliary feasible sets yields a sequence of
solutions α(0), α(1), . . . , α(t). The sequence of feasible sets A(0), A(1), . . . ,A(t)

is assumed to be constructed such that (i) the sequence Q(α(0)) > Q(α(1)) >
. . . > Q(α(t)) converges to the optimal solution Q(α∗) and (ii) the auxiliary
problems can be solved efficiently. The sequential algorithm solving the QP task
which implements the idea mentioned above is summarized by Algorithm 1.

Algorithm 1: A Sequential Optimization Algorithm

1. Initialization. Select α(0) ∈ A.
2. Repeat until stopping condition is satisfied:

(a) Select a feasible set A(t+1) such that

Q(α(t)) > min
α∈A(t+1)

Q(α) . (5)

(b) Solve the auxiliary task

α(t+1) = argmin
α∈A(t+1)

Q(α) . (6)
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The auxiliary feasible sets A(t+1) is assumed to be a line segment

A(t+1)
L = {α ∈ R

m: α = (1− τ)α(t) + τβ(t), 0 ≤ τ ≤ 1} , (7)

between the current solution α(t) and a vector β(t) ∈ A. The optimization
task (6) has an analytical solution in the case in which the feasible set is a line
segment. Moreover, there exist simple rules to construct the vectors β(t) which
guarantee that condition (5) is satisfied.

3.2 Stopping Conditions

There is a need to stop the algorithm when it gets sufficiently close to the
optimum. We assume the following two reasonable stopping conditions:

1. ε-optimal solution. The algorithm stops if

Q(α)−Q(α∗) ≤ ε . (8)

2. Scale invariant ε-optimal solution. The algorithm stops if

Q(α)−Q(α∗) ≤ ε|Q(α)| . (9)

The prescribed ε > 0 controls the precision of the found solution. The stopping
conditions (8) and (9) can be evaluated despite the unknown optimal value
Q(α∗) because a lower bound QLB(α) can be used instead. Let the inequality
Q(α∗) ≥ QLB(α) hold. Then the satisfaction of the condition Q(α)−QLB(α) ≤
ε implies that condition (8) holds as well. Similarly, if the condition Q(α) −
QLB(α) ≤ ε|Q(α)| holds then (9) is also satisfied.

The computation of the lower bound QLB(α) depends on the feasible set
used. We give the lower bounds without derivation which can be found in [1].
In the case of the generalized MNP with the feasible set A defined by (3), the
following lower bound QLB(α) can be used

QLB(α) = min
i∈I

[Hα + c]i −
1
2
〈α,Hα〉 . (10)

In the case of the generalized NPP with the feasible set A defined by (4), the
lower bound QLB reads

QLB(α) = min
i∈I1

[Hα + c]i + min
i∈I2

[Hα + c]i −
1
2
〈α,Hα〉 . (11)

3.3 Solution for a Line Segment

Let the feasible set A(t+1)
L be a line segment (7) between the current solution

α(t) and a vector β(t) ∈ A. The quadratic objective function (1) defined over
the line segment A(t+1)

L reads

Q
(t+1)
L (τ) = Q

(
α(t)(1− τ) + τβ(t)

)
=

1
2
(1− τ)2〈α(t),Hα(t)〉+ τ(1 − τ)〈β(t),Hα(t)〉

+
1
2
τ2〈β(t),Hβ(t)〉+ (1 − τ)〈c, α(t)〉+ τ〈c, β(t)〉 .

(12)
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The objective function is now parameterized by a single variable 0 ≤ τ ≤ 1. It
is obvious that Q

(t+1)
L (0) = Q(α(t)) and Q

(t+1)
L (1) = Q(β(t)). The improvement

gained from the optimization over the line segment A(t+1)
L is

Δ(t+1) = Q(α(t))−Q(α(t+1)) = Q(α(t))− min
0≤τ≤1

Q
(t+1)
L (τ) . (13)

A new vector α(t+1) is determined as

α(t+1) = α(t)(1 − τ∗) + τ∗β(t) where τ∗ = argmin
0≤τ≤1

Q
(t+1)
L (τ) . (14)

The vector β(t) ∈ A must be selected such that the improvement (13) is positive.
This occurs when the derivative of Q(t+1)

L (τ) evaluated in zero is negative, i.e.,

∂Q
(t+1)
L (τ)
∂τ

∣∣∣∣∣
τ=0

= 〈(β(t) −α(t)), (Hα(t) + c)〉 < 0 . (15)

The solution of (14) can be found analytically by setting the derivative of
Q

(t+1)
L (τ) to zero and solving for τ . This yields

τ∗ = min
(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉+ 〈β(t),Hβ(t)〉

)
, (16)

where the minimum min(1, ·) guarantees that the solution does not leave the
feasible set A(t+1)

L . If τ∗ = 1 then α(t+1) = β(t) which implies that the value of
improvement (13) equals to

Δ(t+1) = Q(α(t))−Q(β(t)) . (17)

If τ∗ < 0 then the value of improvement can be derived by substituting (12)
and (16) to (13). After some manipulation we get

Δ(t+1) =
〈(α(t) − β(t)), (Hα(t) + c)〉2

2(〈α(t),Hα(t)〉 − 2〈α(t),Hβ(t)〉+ 〈β(t),Hβ(t)〉) . (18)

3.4 Algorithm for Generalized Minimal Norm Problem

The algorithm described in this section fulfills the general framework outlined
by Algorithm 1. The particular algorithm is determined by a rule for selection
of the line segment A(t+1)

L . The line segment is constructed between the current
solution α(t) and a vector β(t). In this case, we assume that all entries of the
vector β(t) equal to the current solution α(t) except for two entries u and v, i.e.,

[β(t)]i =

⎧⎨⎩ [α(t)]u + [α(t)]v for i = u ,
0 for i = v ,

[α(t)]i for i �= u ∧ i �= v,
∀i ∈ I . (19)
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If proper u and v are used then the optimization over the line segment between
α(t) and β(t) leads to the improvement Δ(t+1)(u, v) = Q(α(t))−Q(α(t+1)). The
exact value of the improvement can be derived by substituting (19) to (18) which
for τ < 1 gives

Δ(t+1)(u, v) =
([Hα(t) + c]v − [Hα(t) + c]u)2

2([H]u,u − 2[H]u,v + [H]v,v)
, (20)

and substituting (19) to (17) which for τ = 1 gives

Δ(t+1)(u, v) = [α(t)]v([Hα(t)+c]v−[Hα(t)+c]u)−1
2
[α(t)]2v([H]u,u−2[H]u,v+[H]v,v).

(21)
From (15) it follows that u and v must be selected such that [α(t)]v > 0 and the
inequality

κ(u, v) = [Hα(t) + c]v − [Hα(t) + c]u > 0 ,

holds to guarantee a non-zero improvement. The computation of τ for β(t) given
by (19) simplifies to

τ =
[Hα(t) + c]v − [Hα(t) + c]u

[α(t)]v([H]u,u − 2[H]u,v + [H]v,v)
. (22)

It remains to select the indices u and v such that the improvement will
be maximized. The algorithm proposed by Mitchell, Demyanov and Maloze-
mov (MDM) selects the indices u and v so that κ(u, v) is maximized. This is
reasonable since the value of κ(u, v) approximates the value of improvement
Δ(t+1)(u, v). A novel method proposed here is based on searching for the entries
u and v which maximize the exact value of the improvement Δ(t+1)(u, v) instead
of its approximation κ(u, v).

The computation of the improvement for given u and v requires evaluation
of the (22) and, based on the value of τ , (20) or (21) is used. To select the
optimal pair (u, v) one has to try d(d+1)

2 combinations where d is the number of
non-zero entries of the current solution α(t). Notice that zero entries of α(t) can
be disregarded as the corresponding vector β(t) would be the same as α(t). The
search for the optimal (u, v) would require to access d columns of the matrix H
which would be too expensive . To overcome this difficulty, the following strategy
of selecting (u, v) is proposed. The index u is selected such that

u ∈ argmin
i∈I

[Hα(t) + c]i .

The found u is fixed and the index v is computed as

v ∈ argmax
i∈IV

Δ(t+1)(u, i) ,

where the IV = {i ∈ I: [Hα(t) + c]i > [Hα(t) + c]u ∧ [α(t)]i > 0} is a set of
admissible indices for v for which the improvement can be greater than zero.
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A similar strategy would be to fix v and search for the optimal u or to apply
both these searches together. All these three combinations were experimentally
tested and the proposed strategy required on average the minimal access to the
matrix H. Algorithm 2 summarizes the proposed method:

Algorithm 2: Algorithm for generalized MNP

1. Initialization. Set α(0) ∈ A.
2. Repeat until stopping condition is satisfied:

(a) Construct vector β(t) ∈ A such that

[β(t)]i =

⎧⎨⎩
[α(t)]u + [α(t)]v for i = u ,

0 for i = v ,

[α(t)]i for i �= u ∧ i �= v,
∀i ∈ I ,

where

u ∈ argmin
i∈I

[Hα(t) + c]i , and v ∈ argmax
i∈IV

Δ(t+1)(u, i) .

The improvement Δ(t+1)(u, i) is computed using (22), (20) and (21).
(b) Update

α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min
(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉+ 〈β(t),Hβ(t)〉

)
.

The number of iterations depends on used stopping condition. Let us assume
that ε-optimality condition (8) is applied. We can prove that the number of iter-
ations t can be bounded using the following quantities: the prescribed precision
ε, the initial value Q(α(0)), the optimal value Q(α∗) and a diameter D ∈ R+ of
the matrix H defined as

D2 = max
α∈A
β∈A

(〈α,Hβ〉 − 2〈α,Hβ〉+ 〈β,Hβ〉) .

Theorem 1. Algorithm 2 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition Q(α) −Q(α∗) ≤ ε
after at most tmax <∞ iterations, where

tmax =
2D2(m− 1)

ε2
(Q(α(0))−Q(α∗)) .

For proof we refer to [1].
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3.5 Algorithm for Generalized Nearest Point Problem

The algorithm to solve the generalized NPP is of the same nature as that solving
the generalized MNP problem. Let A(t+1)

1 = {α ∈ A: [α]i = [α(t)]i, i ∈ I2}
denote a set of vectors from the feasible set A which have the entries I2 fixed to
corresponding entries of the current solution α(t). Similarly, let A(t+1)

2 = {α ∈
A: [α]i = [α(t)]i, i ∈ I1} denote vectors with the entries I1 fixed. The algorithm
for the generalized NPP constructs the vector β(t) such that it belongs either to
A(t+1)

1 or to A(t+1)
2 which is only the difference compared to Algorithm 2.

Using the same reasoning as discussed in Section 3.4 we first find the indices

u1 ∈ argmin
i∈I1

[Hα(t) + c]i , u2 ∈ argmin
i∈I2

[Hα(t) + c]i . (23)

Second, the optimal v1 and v2 are sought for so that

v1 ∈ argmin
i∈IV 1

Δ(t+1)(u1, i) , v2 ∈ argmin
i∈IV 2

Δ(t+1)(u2, i) , (24)

where IV 1 = {i ∈ I1: [Hα(t) + c]i > [Hα(t) + c]u1 ∧ [α(t)]i > 0} and IV 2 = {i ∈
I2: [Hα(t)+c]i > [Hα(t)+c]u2∧[α(t)]i > 0} are sets of admissible indices. Finally,
the pair of indices (u1, v1) or (u2, v2) which yields the bigger improvement is used
to construct the vector β(t). The formula for the improvement Δ(t+1)(u, v) can
be derived using the same way as in the the generalized MNP case. So that
the improvement is computed by the formula (20) if τ < 1 and (21) if τ = 1.
Algorithm 3 summarizes the proposed method:

Algorithm 3: Algorithm for generalized NPP

1. Initialization. Set α(0) ∈ A.
2. Repeat until stopping condition is satisfied:

(a) Construct vector β(t) ∈ A

[β(t)]i =

⎧⎨⎩
[α(t)]u + [α(t)]v for i = u ,

0 for i = v ,
[α(t)]i for i �= u ∧ i �= v,

where the indices (u, v) are computed as follows. First, the pairs (u1, v1)
and (u2, v2) are computed by (23) and (24). Second, the pair which yields
the bigger improvement Δ(t+1)(u, v) is taken for (u, v).

(b) Update
α(t+1) = α(t)(1 − τ) + τβ(t) ,

where

τ = min
(

1,
〈(α(t) − β(t)), (Hα(t) + c)〉

〈α(t),Hα(t)〉 − 2〈β(t),Hα(t)〉+ 〈β(t),Hβ(t)〉

)
.
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Theorem 2. Algorithm 3 started from an arbitrary vector α(0) ∈ A returns the
vector α satisfying for any ε > 0 the ε-optimality condition Q(α) −Q(α∗) ≤ ε
after at most tmax <∞ iterations, where

tmax =
8D2(m− 2)

ε2
(Q(α(0))−Q(α∗)) .

The upper bound on the maximal number of iterations is defined by the same
quantities as in Theorem 1 except for the diameter D. We refer to [1] for the
definition of D and the proof of Theorem 2.

3.6 Efficient Implementation

The main requirement on the developed QP solvers is the ability to deal with
large problems, i.e., problems where the matrix H in the definition of the QP task
is large and cannot be stored in the memory. The aim is to minimize an access
of the QP solver to the entries of the matrix H. It is seen that the algorithms
described in Sections 3.4 and 3.4 require only two columns of the matrix H in
each iteration. Moreover, in many cases only a small subset of the columns is
requested by the algorithms, i.e., those which corresponds to the non-zero entries
I∅ = {i ∈ I: [α]i > 0} of the vector α(t). This allows to use a cache for the most
often requested columns without the need to store the whole matrix H. For
instance, the First In First Out (FIFO) turned out to be suitable.

The efficient implementation of the algorithms lies in maintaining a cache of
key variables. In the case of the generalized MNP problem, these variables are

δ(t)
α = 〈α(t),Hα(t)〉 , h(t)

α = Hα(t) , δ
(t)
β = 〈β(t),Hα(t)〉 , (25)

where δ
(t)
α ∈ R is a scalar, h

(t)
α ∈ Rm is a vector and δ

(t)
β ∈ R is a scalar. Having

the variables (25), the number of computations scales with O(m) in each iteration
of any QP solver, i.e., it is linear with respect to the number of variables m. It is
easy to show that the variables (25) can be updated in each iteration instead of
computing them from a scratch. The updates of all variables also require O(m)
operations. The exact updating formulas can be simply derived by substituting
rule (19) to (25).

The same idea is also applied for the generalized NPP. In this case, there are
more key variables to be cached. However, the number of computations required
for their updating is also O(m). The overall number of computations required
in each iteration is thus O(m) for both described algorithms. We refer to [1] for
a detailed description.

4 Conclusions

We introduced a general framework for sequential algorithms suitable to solve
the generalized minimal norm problem (MNP) and generalized nearest point
problem (NPP). The framework allows for comparison of existing methods de-
signed to solve original MNP and NPP. The methods can be simply modified to
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solve the generalized formulations. We also derived a new algorithm with perfor-
mance superior to other methods. The new algorithm is described in this paper
while comparison to other methods was skipped due to a lack of space. We refer
to [1] where all the methods are described in details and compared to each other
in numerous synthetical and real-life problems.
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Abstract. 3D volumetric microscopical techniques (e.g. confocal laser
scanning microscopy) have become a standard tool in biomedical ap-
plications to record three-dimensional objects with highly anisotropic
morphology. To analyze these data in high-throughput experiments, re-
liable, easy to use and generally applicable pattern recognition tools are
required. The major problem of nearly all existing applications is their
high specialization to exact one problem, and the their time-consuming
adaption to new problems, that has to be done by pattern recognition
experts. We therefore search for a tool that can be adapted to new prob-
lems just by an interactive training process. Our main idea is therefore to
combine object segmentation and recognition into one step by comput-
ing voxel-wise gray scale invariants (using nonlinear kernel functions and
Haar-integration) on the volumetric multi-channel data set and classify
each voxel using support vector machines.

After the selection of an appropriate set of nonlinear kernel functions
(which allows to integrate previous knowledge, but still needs some ex-
pertise), this approach allows a biologist to adapt the recognition system
for his problem just by interactively selecting several voxels as training
points for each class of objects. Based on these points the classification
result is computed and the biologist may refine it by selecting additional
training points until the result meets his needs. In this paper we present
the theoretical background and a fast approximative algorithm using
FFTs for computing Haar-integrals over the very rich class of nonlinear
3-point-kernel functions. The approximation still fulfils the invariance
conditions. The experimental application for the recognition of different
cell cores of the chorioallantoic membrane is presented in the accompa-
nying paper [1] and in the technical report [2]

1 Introduction

Three-dimensional microscopical techniques, e.g., confocal laser scanning mi-
croscopy, has become a standard tool in biomedical applications within the last
few years. Due to the increasing need of high throughput experiments, e.g. in
the analysis of 3D gene expression patterns, the gap between the automated
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recording of the data and the tedious and subjective manual evaluation becomes
larger and larger.

Due to the rapidly changing requirements for an automatic evaluation, the
traditional way of developing highly specialized model-based solutions for exactly
one problem with dozens of manually selected morphological processing steps and
thresholds does usually not meet the needs of the biologists.

A step towards a generally applicable and easy to use system is presented in
this paper. Many of the problems can be reduced to a rotation and translation
invariant recognition of certain 3D structures, that are trained by a manually
labeled database (e.g., counting or localization of different cell cores). Therefore,
we use gray scale invariants [3,4], that have already been successfully applied
to the recognition of pollen grains in volumetric data sets [5]. The main limita-
tion of this approach was its need for objects that are already segmented from
the background. A good segmentation on the other hand needs already much
information about the object to isolate it from the background.

To overcome this classical dilemma, we integrated the segmentation and
recognition of the objects into one step by calculating voxel-wise gray scale in-
variants: For each voxel several rotation invariant features from its surrounding
are extracted and the resulting feature vector is classified using support vector
machines [6]. The result is a label for each voxel (or several probabilities per
voxel). A simple connected component analysis in the next step then searches
regions with the same label to segment the objects.

The main advantage of this approach is its direct operation on the raw data
and the avoidance of manually selected thresholds. Instead it learns all necessary
informations from a labeled training data set.

2 Theory

2.1 Construction of Gray Scale Invariants

The precondition for the use of gray scale invariants in recognizing n-dimensional
structures in the real world are:

1. One or more reproducible measurement techniques, that are able to measure
certain properties within the structure at definite positions independent from
the orientation of the structure (e.g., to measure the fluorescence activity at a
certain wavelength at the focal point of a confocal laser scanning microscope)
resulting in an n-dimensional multi-channel data set

2. Knowledge of those mathematical transformations, which do not change the
meaning of the structure (e.g. rotation and translation)

If these preconditions are fulfilled, we can find a feature extraction, that is
able to map all representations of the same object (given by the transformation
group) into one point of the feature space by using a nonlinear kernel function
and a Haar-integration over the whole transformation group [5].
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T [f ](X) :=
∫
G

f(gX)dg

G : transformation group
g : one element of the transformation group
f : nonlinear kernel function
X : n-dim, multi-channel data set

gX : the transformed n-dim data set

(1)

For each nonlinear kernel function f this integral returns a scalar value that
describes a certain feature of the n-dimensional data set invariant under the
given transformations, as long as the integral exists and is finite.

Reduction to Kernel-Functions with sparse support. If the kernel func-
tion f only depends on a few points of the image or volume, i.e., if we can rewrite
f(X) as f

(
X(x1),X(x2),X(x3), . . .

)
, where X(xi) is the gray value1 at position

xi we only need to transform the kernel points x1, x2, x3, . . . accordingly, instead
of the whole data set X. This transformation of the kernel points is denoted as
sg(xi) such that

(gX)(xi) := X(sg(xi)) ∀g, xi . (2)

With this we can rewrite (1) as

T [f ](X) :=
∫
G

f
(
X(sg(x1)), X(sg(x2)), X(sg(x3)), . . .

)
dg . (3)

This considerably speeds up the computation and results for a given kernel in
linear complexity O(N) of the algorithm, where N is the number of voxels in
the data set.

Multi Scale Approach. In the general formulation of the gray scale invariants
(1) appropriate kernel functions can be used in order to sense any features of
the structures at any scales. Computable kernel functions (3) depend only on
a few gray values at certain points. To use them for sensing also large-scale
informations, a multi scale approach is applied [5]. In the continuous domain
this is equivalent to applying a certain low-pass filter (e.g. convolution with a
Gaussian) to the data set before evaluating the kernel functions (see Fig. 1)

x1x1

x2

x2

x3

x3

Fig. 1. Computable kernels rely on a small number of sampling points. To sense in-
formations at multiple scales, the sampling points are “enlarged” with Gaussians of
mutliple size

1 We use the term “gray value” even for color or other multi-channel data. In this case
one “gray value” has multiple components.
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Voxel-Wise Gray Scale Invariants. For voxel-wise invariants the transfor-
mation group is just a rotation, where the origin of the coordinate system is
shifted to a certain voxel in advance. The resulting features from the different
kernel functions are collected in a feature vector, which then describes the sur-
rounding of this voxel in a unique and rotation invariant way. This is done for
all voxels in a volume.

2.2 Computation of Gray Scale Invariants

To compute the gray scale invariants from (3) we first have to select a parame-
terization λ of sg so that (3) can be rewritten as

T [f ](X) :=
∫

f
(
X(sλ(x1)), X(sλ(x2)), X(sλ(x3)), . . .

)
dλ . (4)

For a given data set X and given kernel points x1, x2, x3, . . . we can substitute
X(sλ(xi)) with vi(λ), where X(sλ(xi)) are the gray values, that are touched by
the i’th kernel point xi during all transformations described by λ, resulting in

T =
∫

f
(
v1(λ), v2(λ), v3(λ), . . .

)
dλ . (5)

A simple example for the resulting one-dimensional curves v1(ϕ), v2(ϕ) and
v3(ϕ) when using a 3-point kernel on a 2D image and the transformation group
of rotations is given in Fig. 2.
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Fig. 2. When using a 3-point kernel on a continuous 2D image and the transformation
group of rotations, the gray values, that are touched by the kernel points x1, x2 and
x3, are one-dimensional functions v1(ϕ), v2(ϕ) and v3(ϕ)

Two-Point Kernel Functions. The direct evaluation of the integral (3) is
usually too slow for real applications. A fast calculation method (using FFTs) for
a certain class of kernel-functions (so called separable two-point-kernel functions)
of the form

f(X) = fa

(
X(0)

)
· fb

(
X(q)

) fa, fb : any nonlinear functions that
transform the gray values

q : span of the kernel function
(6)
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and for Euclidean transformations was presented in [5]: For this purpose we
define A(x) := fa(X(x)) and B(x) := fb(X(x)) The resulting Haar integral
(3) is

T [f ](X) =
∫

dx A(x) · (B ∗ S)(x), with S(x) := δ
(
|x| − q

)
(7)

which is the convolution (denoted as ’∗’) of B with S (which is a surface of a
sphere in 3D or a circle in 2D) and the point-wise multiplication with A. For
the evaluation of voxel-wise gray scale invariants the final integration over x is
omitted.

Three-Point-Kernel Functions Two-point kernel functions perform very well
in Haar integrals over Euclidean motions. For the voxel-wise invariants, they are
somewhat limited in their discrimination power, because the resulting invariants
are not only invariant to rotation of the surrounding but also to any random
permutation of the gray values at the same radius. In contrast to this, three-
point kernel functions, where the first point is located at the rotation center2

f(X) = fa

(
X(0)

)
· fb

(
X(q2)

)
· fc

(
X(q3)

)
(8)

are sensitive to such permutations but they cannot be computed directly with the
above mentioned fast algorithm, because both factors in the product fb(X(q1)) ·
fc(X(q2)) change when rotating the kernel and therefore cannot be calculated
by a simple convolution.

In the following we present an expansion into a series of simple coonvolutions
with the nice property, that every truncated evaluation of this series still fulfills
the invariance criterion.

For volumetric data the rotations must be parameterized by three angles
λ = (ϕ1, ϕ2, ϕ3)T (see Fig. 3).

t1

t2

t3

ϕ1

ϕ2

ϕ3

Fig. 3. Parameterization of the 3D rotation with λ = (ϕ1, ϕ2, ϕ3)T

The first kernel point is always shifted to the rotation center, which results
in v1(λ) = v1(0). Without changing the result we can rotate the kernel func-
tion, such that the second kernel point is located on the z-axis, which makes
2 For Euclidean transformations, a translation of the kernel function does not change

the integral. We use the same terminology for voxel-wise invariants. If you do not
plan to integrate over translations in a later step, you could leave out the first kernel
point.
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v2(λ) insensitive to ϕ3-rotations, resulting in v2(λ) = v2(ϕ1, ϕ2, 0). With this
parameterization the Haar integral becomes

T = fa

(
v1(0)

) ∫ π

0
dϕ1 sin(ϕ1)

∫ π

−π

dϕ2 fb

(
v2(ϕ1, ϕ2, 0)

) ∫ π

−π

dϕ3 fc

(
v3(ϕ1, ϕ2, ϕ3)

)
.

(9)
The integration in the last term can be rewritten as a convolution with a circle
on the sphere surface,

vcc(ϕ1, ϕ2) :=
∫ π

−π

dϕ3 fc

(
v3(ϕ1, ϕ2, ϕ3)

)
=
∫ π

0

dψ1 sin(ψ1)
∫ π

−π

dψ2

∫ π

−π

dψ3 fc

(
v3(ψ1,ψ2,ψ3)

)
· δ
(
dist

(
(ψ1,ψ2,ψ3), (ϕ1, ϕ2, 0)

)
− r

)
(10)

where “dist” is the distance between two points on a sphere surface and r the
distance of the third kernel-point to the “north pole” of the sphere. This reduces
the evaluation of the Haar integral to a pixel-wise multiplication and subsequent
integration of two gray value data sets on the sphere surfaces. By defining va =
fa

(
v1(0)

)
and vb(ϕ1, ϕ2) = fb

(
v2(ϕ1, ϕ2, 0)

)
, the Haar integral becomes

T = va

∫ π

0

dϕ1 sin(ϕ1)
∫ π

−π

dϕ2 vb(ϕ1, ϕ2) · vcc(ϕ1, ϕ2) (11)

Analogous to Fourier series in 2D, this can be approximated with spherical
harmonics as basis functions. The coefficients are

Wblm =
∫ π

0

dϕ1 sin(ϕ1)
∫ π

−π

dϕ2 vb(ϕ1, ϕ2) Y l
m

∗
(ϕ1, ϕ2) (12)

(Wcclm if defined analogously) which allows to write the Haar integral as

T = va

∫ π

0

dϕ1 sin(ϕ1)
∫ π

−π

dϕ2

⎛⎝ ∞∑
l1=0

l1∑
m1=−l1

Wbl1m1Y
l1
m1

(ϕ1, ϕ2)

⎞⎠
·

⎛⎝ ∞∑
l2=0

l2∑
m2=−l2

Wccl2m2Y
l2
m2

(ϕ1, ϕ2)

⎞⎠ (13)

Using the orthogonality relationships between the basis functions Y l
m and

the precondition, that our data is real-valued, allows to reduce this integral to a
simple summation

T ∼ va

N∑
l=0

l∑
m=0

�
(
WblmW ∗

cclm

)
(14)

where the series may be truncated after the N ’th coefficient without violating
the rotation invariance. The full operations are shown in the scheme in Fig. 4.



Voxel-Wise Gray Scale Invariants 91

·

·

+

·

·

·

Convolution of 
each channel 
with Gaussian
for multi−scale 
approach

Voxel−wise
nonlinear gray 
value
transformation and 
combination of 
different channels

Sensing the gray 
values touched by 
the second and third 
kernel point using 
"spherical 
harmonics series" 
expansion

Combination
of results for 
the three 
kernel points

Volumetric
multi−
channel
data

Invariants
for each 
voxel

Convolution in 
cartesian coordinates

Convolution in 
spherical coordinates

fa(X)

fb(X)

fc(X) ∗

∗

∗

∗

∗

∗

∗

∗

∗

∗�

∗�

∗�

∗�

∗�

Fig. 4. Computation of three-point-kernel invariants f(X) = fa(X(0)) · fb(X(q2)) ·
fc(X(q3)) on multi-channel volumetric data. For each kernel function this scheme si-
multaneously calculates the invariants for all voxels.

Voxel-Wise Classification After the extraction of multiple voxel-wise invari-
ants, the feature vector for each voxel is classified with a SVM, that was trained
on manually labeled data. A simple connected component analysis on these voxel-
wise classification results is used to segment the different objects in the volume.

3 Experiments

Recognition of different cell cores on confocal recordings of the chicken embryo
chorioallantoic membrane are promising and show good discrimination perfor-
mance even for difficult constellations. For details see the accompanying paper
[1] or technical report [2].

4 Conclusion and Outlook

Voxel-wise gray scale invariants allow to recognize objects in volumetric multi-
channel data without prior segmentation. The presented fast computation al-
gorithms allow to use them in real-world applications. Therefore they build an
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important step towards a reliable, generally applicable and easy to use pattern
recognition system that can be adapted to new problems by a biologist just by
an interactive point-and-click procedure.

The next obvious extension will be the use of the voxel-wise classification
results (or probabilities) as additional synthetic data channels for additional fea-
ture extraction steps. This gives the biologist an easy possibility to integrate his
previous knowledge just by decomposing the recognition task into single steps.
E.g., in a first step he trains the system to recognize small low-level structures
(like cell cores or cell walls) and then combines in the next steps these interme-
diate results for the recognition of higher level structures.

Present limitations of this framework are the need for manually selected
kernel functions. Even though there are already some sets of kernel functions
for several applications, our current research focusses on a completely automatic
selection of the best kernel functions for a given training data set.

Another problem that cannot be solved with the current approach is segmen-
tation of two neighboring objects of the same class, when there is no significant
border between them, that can be trained and classified as an extra class or as
background. One solution may be to train seeding points in the center of each
object as an additional class. A seeded watershed on the classification results
might then be used to crop the two objects at the correct position.
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Abstract. In this paper we introduce a novel method for automatic
propagation of foreground objects in image sequences. Our method is
based on a combination of the mean-shift operator with the well known
intelligent scissors technique. It is effective due to the fact that the im-
ages are captured with high overlap, resulting in highly redundant scene
information. The algorithm requires an initial segmentation of one image
of the sequence as an input. In each consecutive image the segmentation
of the previous image is taken as an initialization and the propagation
procedure proceeds along four major steps. Each step refines the seg-
mentation of the foreground object and the algorithm converges until all
images of the sequence are processed. We demonstrate the effectiveness
of our approach on several datasets.

1 Introduction

Efficient and interactive foreground/background separation of images have be-
come a fundamental part of many applications in computer vision and 3D recon-
struction [10]. Obviously manual segmentation is a tedious and time consuming
process, especially when applied on a large number of images, as usual needed
for a dense 3D reconstruction of complex objects. Therefore many segmentation
algorithms have been developed recently [1,7].

This paper addresses the problem of automatic propagation of a foreground
object in a complex environment for 3D reconstruction, whose background can
not be removed in a simple way. The key idea of our approach is to take advan-
tage of the high overlap of the images. Essentially we utilize redundant scene
information to automate the segmentation procedure and propagate an initial
segmentation through the image sequence. The goal of our approach is to achieve
a fast, automatic and robust foreground segmentation. Moreover, our method
minimizes the expenditure of time to achieve an accurate foreground segmen-
tation. Its power can be derived from the fact that labelled image sequences
simplify the correspondence problem dramatically and therefore, dense 3D re-
construction results of complex objects can be clearly improved.
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The main methods to accomplish the propagation procedure are the well
known mean-shift technique and the intelligent scissors approach. Intelligent
scissors, introduced by Mortenson and Barrett [7], also known as Live Wire or
Magnetic Lasso, allows the user to define a precise contour with minimized hu-
man interaction, by roughly tracing the objects contour with the mouse. A user
selects interactively optimal contour segments by immediately displaying the
minimum cost path between the so called current seed point and the previous
one, where the current seed point is represented as the position of the mouse
cursor. The optimal path is computed via dynammic programming by apply-
ing Dijkstra’s graph search algorithm [4] to find the optimal spanning tree. The
second related technique is mean-shift analysis, which was originally invented
by Fukunaga and Hostetler [5] and recently successfully applied to image seg-
mentation and tracking by Comaniciu and Meer [2,3]. The mean-shift analysis
approach is essentially defined as a gradient ascent search for maxima in a den-
sity function defined over a high dimensional feature space. The feature space
include a combination of the spatial coordinates and all its associated attributes
that are considered during the analysis. The main advantage of the mean-shift
approach is based on the fact that it considers geometric coordinates and the
associated attributes together at the same time.

The remainder of the paper is composed as follows. After a brief overview
of our method we discuss the novel parts of the automatic foreground propa-
gation algorithm in section 2. Experimental results and concluding remarks are
presented in section 3 and 4.

2 The Automatic Foreground Propagation Algorithm

Our method is a multistage approach to separate a foreground object, for ex-
ample a statue, from the background in all images of an image sequence. The
algorithm requires as input an initial segmentation of one image, which can be
obtained by utilizing intelligent scissors [7], GrabCut [9] or other interactive seg-
mentation techniques. In this paper we focus on the propagation of this initial
segmentation through all images of the sequence. The propagation task itself is
mainly based on a region based matching algorithm. Therefore we segment the
image into a certain number of regions. All these regions are classified into three
different sets (foreground, background and uncertain regions), illustrated in Fig-
ure 2. The final contour can be extracted from these three sets. For dividing
the image into regions we employ a mean-shift image segmentation proposed by
Comaniciu and Meer [3].

Additionally, to improve the robustness of the propagation procedure, our
algorithm requires the relative orientation of the images to be known. The ori-
entation is determined based on methods described by Horn [6], and Nister [8]
and provides both, an accurate orientation and a set of corresponding points.

The workflow of our proposed approach can be roughly seen as the compo-
sition of the following consecutive subtasks:
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1. Extract an area of interest, which is called initial contour ring, with an inner
boundary and an outer boundary.

2. Utilize information acquired from the contour ring and from the correspond-
ing points to identify foreground and background regions.

3. Perform a region based matching algorithm based on mean-shift information
to separate the remaining regions in the contour ring in foreground regions,
background regions and uncertain regions.

4. Extract true contour segments from adjacent foreground and background
regions and utilize intelligent scissors to close uncertain contour segments.

This procedure is repeated until all images of the sequence are processed.

2.1 Initial Contour Ring

The first step in our approach consists of extracting an initial contour ring,
which represents an area of interest where we expect to find the true contour.
Therefore, the initial contour of the first image is swept along the epipolar lines
of the next image. For each position a support function can be formulated as

Sc =
n∑

i=1

gi(x, y)

where gi(x, y) is the gradient of the contour i and n the number of sweep posi-
tions. The position with the highest support function is confirmed and represent
the initial contour Ci in the next image. This initial contour Ci contains a set of
continuous points and deviates in general slightly from the true contour of the
current foreground object. Hence it is necessary to extract a contour ring where
we expect to obtain the final contour of the object. Our next step includes an
Euclidean distance transform on Ci to compute the contour ring. The scale of
the distance transform, respectively the width of the contour ring can be directly
derived from the relative orientation of the images, which guarantees that the
true contour of the object is within the area of interest.

Such a contour ring, computed in the first step leads to several advantages.
First, the following processing steps can concentrate on a smaller number of re-
gions, which increases the performance of the algorithm dramatically. Moreover,
the inner and outer boundary of the contour ring can be used to separate fore-
ground regions and background regions with high confidence, which is described
in more detail in the next section. Lastly, the reduction of the search area reduce
the error propagation.

2.2 Prior Information

As previously outlined, different prior information is incorporated, to simplify
the consecutive tasks and improve the robustness of our approach. We distinguish
between two important types of information:

1. Information provided by the contour ring.
2. Information provided by the corresponding points.
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Fig. 1. Illustration of utilized information. Each region, which is adjacent to the inner
boundary is labelled foreground (dark grey) and similar is applied for the outer bound-
ary regions (white). Additionally f indicates a foreground correspondence, whereas b

identifies a background correspondence, both acquired from the previous segmentation.

This information is used to label foreground regions and background regions
with high confidence. In the former case the separation can be directly derived
from the inner and outer boundary of the contour ring, which is illustrated in
Figure 1.

Consequently we label all mean-shift regions which are directly connected
to the inner boundary of the ring to foreground and those connected to outer
boundary as background. A similar procedure is performed for the information
which is provided by the corresponding points. Here we take advantage of the
direct relationship of correspondences and simple separate foreground regions
from background regions by comparing their location in the previous image
against the already segmented contour.

2.3 Extended Region Matching

As mentioned before, we use the well known mean-shift algorithm to segment
the image into a set of regions. So far we have already classified some of the
mean-shift regions in our area of interest. For the remaining regions we perform
an region based matching algorithm against the previous segmented image.

Basically our region matching algorithm works as follows: A matching be-
tween two regions ri of the previous image and rj of the current image is as-
signed with a similarity measure Si,j . The similarity measure Si,j is based on
the mean-shift parameters and the known relative orientation. Currently three
different types of similarity measures are formulated. The first similarity mea-
sure SLUV is represented by the LUV values of the mean-shift region, where
L encodes luminance, and U and V encode color information. The other two
similarity measures can be derived from the relative orientation. First, SEpi en-
codes the distance of the epipolar line from region ri to the center of gravity of
region rj . Second, the similarity measure SCorr is composed from the distance of
the nearest corresponding point to region ri respectively to region rj . The final
distance function for two regions is formulated as:

d(ri, rj) = ω1 ∗ SLUV + ω2 ∗ SEpi + ω3 ∗ SCorr
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Fig. 2. Set of regions including foreground regions (F), background regions (B) and
uncertain regions (U) and the highlighted true contour. Furthermore an illustration of
start point (S) and end point (E) to automatically apply intelligent scissors.

where ω1...ω3 are weights to control the influence of the different similarity mea-
sures. We can distinguish between foreground regions, background regions and
uncertain regions, by evaluating the introduced distance function for each re-
maining region against a user defined threshold. Uncertain regions are regions,
which can be classified neither to foreground nor to background. In this case a
further processing is necessary.

2.4 Foreground Extraction

The aim is to extract the final foreground object from previously labelled mean-
shift regions. Obviously, the true contour lies between adjacent foreground re-
gions and background regions or intersects an uncertain region. In the former case
the final contour can be extracted with simple neighbourhood checks, whereas
in the latter case the intelligent scissors algorithm is applied. Figure 2 illustrates
the extraction of needed start and end points to initiate the intelligent scissors
procedure.

Finally all obtained contour segments are combined to a closed continuous
contour of the foreground object.

3 Experimental Results

All presented image sequences were taken with a calibrated high quality digital
consumer camera with a 11.4 megapixels CMOS sensor. In a first evaluation
we used an image sequence consisting of 12 images of a garden gnome which
is approximately 23cm tall with a diameter of 10cm. Figure 3 shows the gar-
den gnome with the overlayed segmentation, whereas Figure 4 demonstrates all
intermediate results of our method.

Figure 5 illustrates a more complex dataset consisting of 12 images showing
a statue of St. Barbara. The statue is 55cm tall with a diameter of 13cm at the
pedestal. As shown in Figure 5, automatic approaches will sometimes lead to
incorrect results. In our method, if the segmentation result is not satisfactory,
a user has the possibility to correct a miss-segmentation, by manual assignment
of the critical mean-shift regions or by an assisted intelligent scissors algorithm.

Finally, Figure 6 demonstrates the usability of our approach on a real-world
dataset, which depicts a statue on the roof of the Austrian National Library.
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Fig. 3. Illustration of five images with overlayed segmentation of the garden gnome
image sequence. The garden gnome is approximately 23cm tall with a diameter of
10cm. The last image illustrates the obtained 3D reconstruction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Intermediate results of the automatic foreground propagation algorithm illus-
trating one image of the garden gnome image sequence. (a) Close-up from (b) showing
labelled foreground (green) and background (blue) regions in the contour ring after in-
corporating prior information. (d) Close-up from (c) illustrating labelled foreground
(green), background (blue) and uncertain regions (red) after applying extended region
matching. (e) Close-up from (f) showing start and end point (red crosses) of intelli-
gent scissors and the obtained true contour (blue) of a uncertain region. (g) Garden
gnome image with the final segmentation overlayed. (h) Illustration of the achieved
3D reconstruction represented as depth map.
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Fig. 5. Four images showing a statue of St. Barbara and achieved segmentation. The
Barbara statue is approximately 55cm tall with a diameter of 13cm. One image of
the sequence illustrates a small miss-segmentation, which can be corrected by human
assisted intelligent scissors. The last images consists of our obtained 3D reconstruction
result.

Fig. 6. Four images of a statue on the roof of the Austrian National Library and
obtained propagation results. The first image illustrates the achieved mean-shift seg-
mentation.

4 Conclusion and Future Work

We have developed an automatic foreground propagation method that performs
well in terms of accuracy, robustness and efficiency. Our approach takes advan-
tage of the redundant scene information, which is typically provided from image
sequences for 3D reconstruction. The primary purpose of our method is the im-
provement of our 3D reconstruction results. Moreover, the tedious process of an
interactive segmentation of all images is dramatically reduced, thus our method
simply requires one initial segmentation.

Though the results are very promising, there are several improvements that
can be made to our approach. In order to achieve more accurate results we are
currently working on extending the similarity measures introduced by extended
region matching. Another consideration is to utilize active contour models to
extract foreground objects with sub-pixel accuracy.
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Abstract. An information theoretic framework for grouping observa-
tions is proposed. The entropy change incurred by new observations is
analyzed using the Kalman filter update equations. It is found, that the
entropy variation is caused by a positive similarity term and a negative
proximity term. Bounding the similarity term in the spirit of the mini-
mum description length principle and the proximity term in the spirit of
maximum entropy inference a robust and efficient grouping procedure is
devised. Some of its properties are demonstrated for the exemplary task
of edgel grouping.

1 Introduction

Grouping observations has been identified as an important issue in many com-
puter vision tasks and has been studied by many researchers (cf. [9], [10], [1],
[11]). In this context the Gestalt laws of psychology have received much attention
and the criterion of Prägnanz is considered extremely useful (cf. [13]). Its close
connection to the information theoretic minimum description length criterion
(cf. [14]) has been pointed out by [10] and [13].

In [12] the grouping is established based on local measures specially tailored
for the task of edgel grouping. A similar approach is made in [3], but there the
probability distributions of the observations are explicitly modeled and used to
guide the grouping. An information theoretic approach is made in [13] by phras-
ing the various Gestalt principles in terms of energy functions and minimizing
the overall free energy. Also the tensor voting approach of [5], [6] or [11] uses a
global consistency measure based on local measures of similarity and proximity.

The problem with the minimum description length criterion of [14] in the con-
text of an agglomerative grouping procedure is, that locally minimizing entropy
contradicts the principle of maximum entropy inference (cf. [7]), since greedily
grouping distant observations leads to the greatest entropy reduction. This ef-
fect is also known from robust statistics as leverage points (cf. [8]). To cope with
this problem, the Kalman filter update equations (cf. [4]) will be reviewed, and
the entropy change incurred by grouping a new observation is analyzed. It is
found, that this entropy variation is caused by a positive observation dependent
term, that measures similarity and a negative design dependent term, that mea-
sures proximity. A grouping algorithm based on bounding both influences on the
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entropy variation is proposed, so that entropy reduction is caused by the obser-
vations in the spirit of minimum description length but the reduction through
decisions by the algorithm is bounded from below in the spirit of maximum en-
tropy inference. The algorithm and some of its properties will be demonstrated
for the exemplary task of edgel grouping.

2 The Kalman Filter

Having two sets of independent observations l1 and l2 of size N1 and N2 with
known covariance matrices C11 and C22 and a model depending on the param-
eter vector p of size U given by the two functions

g1(p) = l1 and g2(p) = l2

with the Jacobians
∂g1
∂p = A1 and ∂g2

∂p = A2

the best linear unbiased estimation of the parameters p̂(−) is found for the first
set of observations using the expected covariance matrix (cf. [8])

C
(−)

p̂p̂ = (AT
1 C−1

11 A1)−1 (1)

to be

p̂(−) = C
(−)

p̂p̂AT
1 C−1

11 l1 (2)

The redundancy of the estimation is given by

R1 = N1 − U (3)

and in case R1 > 0, using the residuals

v̂1 = A1p̂
(−) − l1

and their weighted squared sum

Ω2(−) = v̂T
1 C−1

11 v̂1 (4)

the covariance matrix of the estimated parameters can be obtained as

Ĉp̂p̂(−) = Ω2(−)

R1
C

(−)

p̂p̂

Thereafter it is possible to updated the estimation sequentially including the
second set of observations. This is well known as Kalman filtering (cf. [4]) and
using the prediction error and its covariance matrix

v̂2 = A2p̂
(−) − l2 Cv̂2v̂2

= C22 + A2C
(−)

p̂p̂AT
2

and the Kalman filter gain matrix

F = C
(−)

p̂p̂AT
2 C−1

v̂2v̂2
(5)
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the Kalman filter update equations are obtained as

C
(+)

p̂p̂ = C
(−)

p̂p̂ − FA2C
(−)

p̂p̂ (6)

p̂(+) = p̂(−) + F v̂2 (7)

ΔΩ2 = v̂T
2 C−1

v̂2v̂2
v̂2 (8)

Ω2(+) = Ω2(−) + ΔΩ2 (9)

ΔR = N2 (10)

R2 = R1 + ΔR (11)

Finally the estimated covariance matrix of the parameters may be recom-
puted from the residuals using

Ĉ
(+)

p̂p̂ = Ω2(+)

R2
C

(+)

p̂p̂

3 Estimated Entropy Variation

The Kalman filter was used to sequentially estimate the first two moments p̂ and
Ĉp̂p̂ of the distribution of the parameters. Knowing only those two moments,
the maximum possible entropy of the estimation is (cf. [2])

ĥ(p̂) =
1
2

log
∣∣∣2πeĈp̂p̂

∣∣∣ =
1
2

log
∣∣∣∣2πeΩ2

R
Cp̂p̂

∣∣∣∣
=

U

2
log

(
2πe

Ω2

R

)
+

1
2

log
∣∣∣Cp̂p̂

∣∣∣
Note that only the first term is caused by the randomness of the observations

and the second term depends only on the geometry of the design of the estima-
tion. Applying the results from Kalman filtering, the estimated entropy change
by including the second set of observations is in case, that R1 > 0

Δh = ĥ(p̂(+))− ĥ(p̂(−)) =
1
2

log
∣∣∣2πeĈ(+)

p̂p̂

∣∣∣− 1
2

log
∣∣∣2πeĈ(−)

p̂p̂

∣∣∣
=

U

2
log

1 + ΔΩ2

Ω2(−)

1 + ΔR
R1

+
1
2

log

∣∣∣C(−)

p̂p̂ − FA2C
(−)

p̂p̂

∣∣∣∣∣∣C(−)

p̂p̂

∣∣∣
=

U

2
log

1 + ΔΩ2

Ω2(−)

1 + ΔR
R1︸ ︷︷ ︸

Δho

+
1
2

log |I − FA2|︸ ︷︷ ︸
Δhd

(12)

Again the entropy change is constituted from a positive term Δho, that
refelcts the increase in randomness due to the new observation, and a second
negative term Δhd, that reflects the decrease in randomness due to the decision
of including the new observation into the estimation.

The first term Δho is closely related to the well known, and in case of Normal
distributed observations Fisher distributed, test statistic

T =
ΔΩ2

Ω2(−)
ΔR
R1

∝ F(ΔR,R1)
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that is frequently used to decide, if the second observation fits the model defined
by the first. Given a significance level α, a threshold Tα is derived from the
inverse of the Fisher distribution and the decision is made by comparing it with
the test statistic T . The test is not rejected, if T < Tα or equivalent

Δho < U
2 log

(
Tα

(
1− 1

1+ ΔR
R1

)
+ 1

1+ ΔR
R1

)
=: Lo (13)

If R1 = 0, the variance factor cannot be estimated from the observations
and must therefore assumed to be known. Thus the entropy change incurred by
including the new observation into the observation in case of R1 = 0 is

Δh = ĥ(p̂(+))− h(p̂(−)) =
1
2

log
∣∣∣2πeĈ(+)

p̂p̂

∣∣∣− 1
2

log
∣∣∣2πeC(−)

p̂p̂

∣∣∣
=

U

2
log

(
2πe

ΔΩ2

ΔR

)
︸ ︷︷ ︸

Δho

+
1
2

log |I − FA2|︸ ︷︷ ︸
Δhd

(14)

Again the first term Δho is related to a well known, and in case of Nor-
mal distributed observations χ2-distributed, test statistic for the case, that the
variance factor is known

T ′ = ΔΩ2

ΔR ∝ χ2(ΔR)

so that again a T ′
α is derived from the inverse of the χ2-distribution, and the

hypothesis is not rejected, if

Δho < U
2 log (2πeT ′

α) =: Lo (15)

This must be used to decide, if the new observation fits the model defined by
the previous observation in case that R1 = 0.

The above criterion measures the similarity between the new observation and
the model estimated from the previous observations. The key idea here is, that
also the entropy decrease Δhd resulting from any decision made by the algorithm
should be bounded, yielding a proximity criterion for the observations. To find
this bound, the history of previous design matrices Aj and covariance matri-
ces Cjj is analyzed, because the geometry of the previous observations defines
the border, inside which the new observations may be encountered. Allowing
new observations to be a bit outside the range of the previous observations by
introducing a proximity factor λ > 1, the bound is found to be

Δhd > λminj
1
2 log

∣∣∣I − (C(−)

p̂p̂AT
j (Cjj + AjC

(−)

p̂p̂AT
j )−1Aj

∣∣∣ =: Ld (16)

4 The Grouping Algorithm

In the preceding section a similarity and a proximity criterion based on the in-
formation increase of including a new set of observations into an estimation were
derived. Those two criteria could be used to decide, if a new set of observations
could be grouped with an existing set of observations. Furthermore the Kalman
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filter update equations yield an efficient method to aggregate observations se-
quentially, thus enabling a very efficient agglomerative grouping strategy.

The greedy method proposed here starts from an arbitrary observation and
sequentially aggregates new observations. In order to decide, which new obser-
vation is to be aggregated next, first the threshold on the design dependent
entropy loss Ld is computed from all observations already aggregated. Then for
every possible observation the observation dependent entropy increase Δho and
the design dependent entropy loss −Δhd are computed and compared to the
two thresholds. Among the qualifying observations, the grouping decision, that
destroys fewest information, is chosen in the spirit of maximum entropy infer-
ence, i.e. the candidate observation is aggregated, for which the design dependent
entropy loss −Δhd is minimal. This aggregation process is continued, until no
more observations qualify according to the two criteria. Note that the criteria
are efficiently computable due to the Kalman filter update equations. Finally
the aggregated observations are removed and the whole process is repeated until
all groups are found.

The complete grouping procedure is summarized in algorithm 1..

Algorithm 1. Grouping Algorithm
let the observations be Y = {(li, C ii)}
while Y �= ∅ do

pick initial l1 ∈ Y, compute the Jacobian A1 of g1
start the group G = {l1}
compute initial C

(−)
p̂p̂ , p̂(−), Ω2(−) and R1 according to (1), (2), (4) and (3)

repeat
compute the threshold Ld from G according to (16)
determine the threshold Lo depending on R1 according to (13) or (15)
initialize the candidate set C = ∅
for all li ∈ Y\G do

compute the Jacobian Ai of gi at p̂(−)

compute F (i), ΔΩ2(i) and ΔR(i) for li according to (5), (8) and (10)
compute Δho

(i) depending on R1 according to (12) or (14)
compute Δhd

(i) according to (12)
if Δho

(i) < Lo ∧ Δhd
(i) > Ld then

include the candidate C = C ∪ {li}
end if

end for
pick lc ∈ C with maximum Δhd

(c)

include it into the group G = G ∪ {lc}
update C

(−)
p̂p̂ , p̂(−), Ω2(−) and R1 for lc according to (6), (7), (9) and (11)

until C = ∅
output group G
Y = Y\G

end while
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5 Example: Edgel Grouping

The simple problem of grouping edgels in images to straight lines has been
studied extensively and will be used here to demonstrate some properties of the
presented grouping algorithm.

Using the measured image coordinates (ri, ci) together with the image gra-
dients (nri , nci) the simple linear line model(

ci 1
1 0

)(
m
b

)
=

(
ri
nri

nci

)
can be used. Note that the coordinate system can be rotated for each group, so
that the model can easily deal with vertical lines.

The 1000 × 1000 pixel patch depicted on the left hand side of figure 1 was
cut out of an aerial image. The edge pixels were extracted using the Canny edge
detector and for each edge pixel the gradient was computed using the Sobel
operator. The resulting set of edgels and their gradients are shown on the right
hand side of figure 1.

Fig. 1. 1000 × 1000 pixel patch cut out of an aerial image and the extracted edgels

The edgels were aggregated using the proposed grouping algorithm and two
exemplary groups are shown in figure 2. Note that the two groups were not linked
together, although they are on the same line and would be joined, if only the
observation dependent similarity criterion had been used. Since no intermediate
observation points are present, the proximity criterion imposed by the design of
the estimation prevented further growth of the group.

The proximity factor was chosen as λ = 1.5, i.e. the grouping algorithm was
allowed to decrease the entropy by 3

2 the maximum number of bits, that any
edgel lying between the other edgels would do. The resulting candidate sets of
new observations for two stages of aggregation of the same exemplary group are
shown in figure 3. The black dots are the qualifying observations according to the
proximity criterion, the black crosses are the qualifying observations according to
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Fig. 2. Two exemplary groups of edgels.

Fig. 3. Candidate sets of new observations at two stages of the same exemplary group.
The black dots are the qualifying observations according to the proximity criterion,
the black crosses according to the similarity criterion and the black asterisks are the
intersection of both criteria.

the similarity criterion and the black asterisks at the intersection of both are the
qualifying observations for the grouping. It can also be seen, that the two criteria
are orthogonal. On the left hand side of figure 3 an early stage of aggregation
is shown. The model line is still very uncertain especially far away from the
few defining edgels. On the other hand, the range of qualifying observations on
the line imposed by the proximity criterion is very narrow so that this effect is
compensated and does not affect the grouping.

On the right hand side of figure 3 a latter stage of aggregation is shown.
Observe that the model line has now become very narrow, reflecting the fact, that
now many aggregated observations contribute to the estimation. The range of
qualifying observations along the line has become wider, so that new observations
can be collected.
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6 Summary and Conclusions

An information theoretic framework for the grouping of observations was pro-
posed. By analyzing the entropy change incurred by including a new observation
into an estimation a similarity criterion, that minimizes description length, and
a proximity criterion, that enforces maximum entropy decisions, was derived.
Based on those two criteria a grouping algorithm was proposed, that, using the
efficient Kalman filter update equations, greedily reduces description length and
at the same time ensures robustness through maximum entropy inference.

The applicability of the presented method goes far beyond the presented
edgel grouping example. Whenever similarity is defined by a known parametric
object model, the presented method may be applied. This is the case for many
important geometric grouping problems, like for example aggregating 3D-surface
patches obtained from dense stereo matching or laser scanning to planes or
conics, and will be subject to further investigation.
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Abstract. This paper presents the integration of 3D shape knowledge into a vari-
ational model for level set based image segmentation and tracking. Having a 3D
surface model of an object that is visible in the image of a calibrated camera,
the object contour stemming from the segmentation is applied to estimate the 3D
pose parameters, whereas the object model projected to the image plane helps in
a top-down manner to improve the extraction of the contour and the region statis-
tics. The present approach clearly states all model assumptions in a single energy
functional. This keeps the model manageable and allows further extensions for
the future. While common alternative segmentation approaches that integrate 2D
shape knowledge face the problem that an object can look very different from var-
ious viewpoints, a 3D free form model ensures that for each view the model can
perfectly fit the data in the image. Moreover, one solves the higher level problem
of determining the object pose including its distance to the camera. Experiments
demonstrate the performance of the method.

1 Introduction

Pose estimation and image segmentation are principal problems in computer and robot
vision. The task of 2D-3D pose estimation is to estimate a rigid motion which fits a
3D object model to 2D image data [8]. In this context it is crucial which features are
used for the object model as they must be fit to corresponding features in the image to
determine the pose. One such feature is the object surface with the object silhouette as
its 2D counterpart in the image. The task of pose estimation is to find a rigid motion
that minimizes the error between the projected object surface and the region encircled
by the contour in the image. As the common role of image segmentation is exactly to
extract the contour of objects in the image, this shows the possible connection between
2D-3D pose estimation and image segmentation.

Image segmentation can become very difficult, as the image gray value or color alone
are rarely good indicators for object boundaries due to noise, texture, shading, occlu-
sion, or simply because the color of two objects is nearly the same. Recent segmenta-
tion approaches therefore integrate 2D shape information in order to employ additional
� We gratefully acknowledge funding by the DFG projects We2602/1-1, We2602/1-2,
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constraints that force the contour to more desirable solutions. An early example can
be found in [9] where shape information influences the evolution of an active contour
model. This basic concept has been extended and modified in [16,6,13,5] and provides a
good framework for the sound integration of 2D shape prior in segmentation processes.
However, the real world has three spatial dimensions. This fact is responsible for an
inherent shortcoming of 2D shape models: they cannot exactly describe the image of
an object from arbitrary views. This problem is solved when the 2D shape model is
replaced by a 3D surface model, as is suggested in the present paper.

For the integration of 3D shape information, the object model has to be projected
onto the image plane, and for this its pose in the scene has to be known. We realize
again the connection between image segmentation and pose estimation, yet now the
connection points into the other direction: a pose estimate is needed in order to integrate
the surface model. Note that a pose estimation problem appears in the case of 2D shape
knowledge as well. Also there, it is necessary to estimate the translation, rotation, and
scaling of the shape knowledge, before it can constrain the contour in the image. This is
either achieved by explicit estimation of the pose parameters [16], or by an appropriate
normalization of the shapes [5]. Extensions to perspective transformations of 2D shapes
have recently been proposed in [13]. However, all these approaches only aim on the use
of shape knowledge in order to yield improved segmentations. The 2D pose estimates
do not allow a location of the object in the real 3D world but only in the 2D projection
of this world. In contrast, the 2D-3D pose estimation employed in our model allows the
exact location of the object in the scene.

Fig. 1. Basic idea: Iterating segmen-
tation and pose estimation. The pro-
jected pose result is used as a-priori
knowledge for segmentation.

We now have a classical chicken-and-egg prob-
lem: a contour is needed for pose estimation, and
the pose estimates are necessary to integrate the
shape prior into the segmentation that determines
the contour. Such situations are in general best
handled by solving both problems simultaneously.
We achieve this by formulating an energy min-
imization problem that contains both the image
contour and the pose parameters as unknowns. The
minimization is done by alternating both image
segmentation and pose estimation in an iterative
manner, see Fig. 1. For the experiments we con-
centrate on the segmentation and pose estimation
of a rigid object. It is demonstrated that the model
yields promising results both for the contour and the 3D pose parameters even in com-
plex scenarios.

Paper Organization. The next section contains a brief review of the level set based im-
age segmentation model used in our approach. Section 3, on the other side, explains the
concept of 2D-3D pose estimation. In Section 4 we then introduce our idea to combine
image segmentation and 3D pose estimation in a joint energy functional. Experiments
in Section 5 show the performance of the proposed technique. The paper is concluded
by a brief summary in Section 6.
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2 Image Segmentation

2.1 Level Set Formulation

Our approach is based on image segmentation with level sets [7,11,3,12,4], in particu-
lar on the method described in [1]. A level set function Φ ∈ Ω �→ R splits the image
domain Ω into two regions Ω1 and Ω2, with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if
x ∈ Ω2. The zero-level line thus marks the boundary between both regions.
The segmentation should maximize the total a-posteriori probability given the probabil-
ity densities p1 and p2 of Ω1 and Ω2, i.e., pixels are assigned to the most probable region
according to the Bayes rule. Further on, the boundary between both regions should be
as small as possible. This can be expressed by the following energy functional:

E(Φ) = −
∫

Ω

(
H(Φ) log p1 + (1 − H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx (1)

where ν > 0 is a weighting parameter and H(s) is a regularized Heaviside function with
lims→−∞ H(s) = 0, lims→∞ H(s) = 1, and H(0) = 0.5 (e.g. the error function).
It indicates to which region a pixel belongs. Minimization with respect to the region
boundary can be performed according to the gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν div

( ∇Φ

|∇Φ|
))

(2)

where H ′(s) is the derivative of H(s) with respect to its argument. The contour con-
verges to a minimum for the numerical evolution parameter t →∞.

2.2 Region Statistics

For the curve evolution, still the probability densities p1 and p2 have to be determined.
Our segmentation is driven by the texture feature space proposed in [2] which yields
M = 5 feature channels Ij for gray scale images, and M = 7 channels if color is avail-
able. We assume that the probability densities of the feature channels are independent,
thus pi =

∏M
j=1 pij(Ij).

The probability densities pij are estimated according to the expectation-
maximization principle. Having the level set function initialized with some partition-
ing, the probability densities can be approximated by a Gaussian density estimate:

pij(s, x) ∝ 1√
2πσij(x)

exp
(

(s − μij(x))2

2σij(x)2

)
. (3)

Note that these are local estimates of the probability densities. This can be useful partic-
ularly in complicated scenes where differences between regions are only locally visible.
Consequently, the parameters μij(x) and σij(x) are computed in a local neighborhood
Kρ of x by:

μij(x) =

∫
Ωi

Kρ(ζ − x)Ij(ζ) dζ∫
Ωi

Kρ(ζ − x) dζ
σij(x) =

∫
Ωi

Kρ(ζ − x)(Ij(ζ) − μij(x))2 dζ∫
Ωi

Kρ(ζ − x) dζ
. (4)

The densities are used for the level set evolution according to (2), leading to a further
update of the probability densities, and so on. This iterative process converges to a local
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minimum, showing that the initialization matters. In order to attenuate this dependency
on the initialization, it is recommendable to apply a coarse-to-fine strategy. Starting
with a down-sampled image, there are less local minima, so the segmentation is more
robust. The resulting segmentation can then be used as initialization for a finer scale,
until the original segmentation problem is solved.

3 2D-3D Pose Estimation

Fig. 2. The pose scenario: the aim is to
estimate the pose R, t

2D-3D pose estimation [8] means to estimate
a rigid body motion which maps a 3D surface
model to an image of a calibrated camera. The
scenario is visualized in Fig. 2.

The core algorithm is based on a point-based
constraint equation, which has been derived in
the language of Clifford Algebras. We assume a
set of point correspondences (Xi, xi), with 4D
(homogeneous) model points Xi and 3D (homo-
geneous) image points xi. Each image point is
reconstructed to a Plücker line Li = (ni,mi),
with a (unit) direction ni, and moment mi [10]. The 3D rigid motion is represented as
exponential form

M = exp(θξ̂) = exp
(

ω̂ v
03×1 0

)
(5)

where θξ̂ is the matrix representation of a twist ξ = (ω1, ω2, ω3, v1, v2, v3) ∈ se(3) =
{(v, ω)|v ∈ IR3, ω̂ ∈ so(3)}, with so(3) = {A ∈ IR3×3|A = −AT }. In fact, M
is an element of the one-parametric Lie group SE(3), known as the group of direct
affine isometries. A main result of Lie theory is, that to each Lie group there exists a
Lie algebra which can be found in its tangential space, by derivation and evaluation at
its origin; see [10] for more details. The corresponding Lie algebra to SE(3) is denoted
as se(3). A twist contains six parameters and can be scaled to θξ with a unit vector ω.
The parameter θ ∈ IR corresponds to the motion velocity (i.e., the rotation velocity and
pitch). For varying θ, the motion can be identified as screw motion around an axis in
space. To reconstruct a group action M ∈ SE(3) from a given twist, the exponential
function exp(θξ̂) = M ∈ SE(3) must be computed. It can be calculated efficiently by
using the Rodriguez formula [10],

exp(ξ̂θ) =
(

exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT vθ
01×3 1

)
for ω �= 0 (6)

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1 − cos(θ)). (7)

Note that only sine and cosine functions of real numbers need to be computed.
For pose estimation we combine the reconstructed Plücker lines with the screw rep-

resentation for rigid motions and apply a gradient descent method: Incidence of the
transformed 3D point Xi with the 3D ray Li = (ni,mi) can be expressed as

(exp(θξ̂)Xi)3×1 × ni − mi = 0. (8)
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Indeed, Xi is a homogeneous 4D vector, and after multiplication with the 4× 4 matrix
exp(θξ̂) we neglect the homogeneous component (which is 1) to evaluate the cross
product with ni. Note, that this constraint equations expresses the perpendicular error
vector between the Plücker line and the 3D point. The aim is to minimize this spatial

error. Therefore we linearize the equation by using exp(θξ̂) =
∑∞

k=0
(θξ̂)k

k! ≈ I + θξ̂,
with I as identity matrix. This results in

((I + θξ̂)Xi)3×1 × ni − mi = 0 (9)

which can be reordered into an equation of the form Aξ = b. Collecting a set of such
equations (each is of rank two) leads to an over-determined linear system of equations
in ξ. The Rodriguez formula can be applied to reconstruct the group action M from
the twist ξ. Then, the 3D points can be transformed and the process is iterated until
the gradient descent approach converges. In recent years, this technique has been ex-
tended to higher order curves, free-form contours and free-form surfaces, see [14,15].
The surface based pose estimation procedure is basically an ICP-algorithm, which has
the problem to get trapped in local minima. For this reason we use a sampling method
with different (neighboring) start poses and use the resulting pose with minimum er-
ror. This can be seen as a simple particle filter during pose estimation. Note that the
constraint equations express a spatial distance measure in 3D. In [14] we have shown
that each equation can be rescaled individually to an equivalent 2D distance measure.
For combining segmentation and pose estimation we make use of this property to get a
single energy functional.

4 Coupling Image Segmentation and 2D-3D Pose Estimation

In order to couple pose estimation and image segmentation in a joint optimization prob-
lem, the energy functional for image segmentation in (1) is extended by an additional
term that integrates the object model:

E(Φ, θξ) = −
∫

Ω

(
H(Φ) log p1 + (1 − H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx

+λ

∫
Ω

(Φ − Φ0(θξ))2 dx︸ ︷︷ ︸
Shape

.
(10)

The quadratic error measure in the shape term has been proposed in the context of 2D
shape priors, e.g. in [16]. The prior Φ0 ∈ Ω → R is assumed to be represented by the
signed distance function. This means in our case, Φ0(x) yields the distance of x to the
silhouette of the projected object surface.

In detail, Φ0 is constructed as follows: let XS denote the set of points X on the
object surface. Projection of the transformed points exp(θξ)XS into the image plane
yields the set xS of all (homogeneously scaled) 2D points x on the image plane that
correspond to a 3D point on the surface model

x = P exp(θξ)X , ∀X ∈ XS (11)
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Fig. 3. From left to right: (a) Initialization. (b) Segmentation result with object knowledge.
(c) Pose result. (d) Segmentation result without object knowledge.

where P denotes a projection with known camera parameters. The level set function
Φ0 can then be constructed from xS by setting Φ0(x) = 1 if x ∈ xS , Φ0(x) = −1
otherwise, and applying the distance transform.

Note that the distance (Φ(x) − Φ0(x))2 is exactly the distance used in the pose
estimation method. Given the contour Φ, the pose estimation method thus minimizes
the shape term in (10). Minimizing (10) with respect to the contour Φ, on the other
hand, leads to the gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν div

( ∇Φ

|∇Φ|
))

+ 2λ (Φ − Φ0(θξ)). (12)

In order to minimize the total energy, an iterative approach is suggested: keeping the
contour Φ fixed, the optimum pose parameters θξ are determined as described in Sec-
tion 3 and yield the silhouette of the object model Φ0. Retaining in the opposite way the
pose parameters, (12) determines an update on the contour. Both iteration steps thereby
minimize the distance between Φ and Φ0. While the pose estimation method draws Φ0

towards Φ, thereby respecting the constraint of a rigid motion, (12) in return draws the
curve Φ towards Φ0, thereby respecting the data in the image.

5 Experiments

Fig. 3 - 5 show tracking results with a tea box as object model and cluttered back-
grounds. Fig. 3 demonstrates the advantage of integrating object knowledge into the
segmentation process. Without object knowledge, parts of the tea box are neglected as
they better fit to the background. The object prior can constrain the contour to the vicin-
ity of the projected object model derived from those parts of the contour that can be
extracted reliably.

In Fig. 4, the motion of the object causes severe reflections on the metallic surface
of the tea box. Nevertheless, the results remain stable. Further note some smaller occlu-
sions due to the fingers that do not disturb the pose estimation.

In Fig. 5 the amount of occlusion is far more eminent. This experiment also demon-
strates the straightforward extension of the method to multiple cameras. The non-occlu-
ded parts of both views provide enough information for pose recognition of the object.
However, we also do not want to conceal a decisive drawback of the method, this is
the dependency of the result on the initialization. As the pose estimation of the object
prior is based on the segmentation, the object model cannot help to initially find the
object in the image. It can only improve the tracking of the object, once a good pose
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Fig. 4. Top row: Initialization at the first frame. Frames 49, 50, and 117 of the sequence. Bottom
row: Tracking results at frames 0, 49, 50, and 117. The tea box is moved in 3D, causing partially
severe reflections on the box.

Fig. 5. Tracking result of a stereo sequence. In both views the object is partially occluded but the
pose can be reconstructed from the remaining information (frame 98 from 210 frames).

initialization has been found. How to find such an initialization automatically, i.e. how
to detect objects in cluttered scenes, is a topic on its own.

6 Conclusion

We presented a technique that integrates 3D shape knowledge into a variational model
for level set based image segmentation. While the utilization of 2D shape knowledge
has been investigated intensively in recent time, the presented approach accommodates
the three-dimensional nature of the world. The technique is based on a powerful image-
driven segmentation model on one side, and an elaborated method for 2D-3D pose
estimation on the other side. The integration of both techniques improves the robustness
of contour extraction and, consequently, also the robustness of pose estimation that
relies on the contour. It allows for the tracking of three-dimensional objects in cluttered
scenes with inconvenient illumination effects. The strategy to model the segmentation in
the image plane, whereas the shape model is given in three-dimensional space, has the
advantage that the image-driven part can operate on its natural domain as provided by
the camera, while the 3D object model offers the full bandwidth of perspective views.
Moreover, in contrast to 2D techniques, it gives the extracted object a position in space.
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Abstract. In this paper we present VOCUS: a robust computational
attention system for goal-directed search. A standard bottom-up archi-
tecture is extended by a top-down component, enabling the weighting
of features depending on previously learned weights. The weights are
derived from both target (excitation) and background properties (inhi-
bition). A single system is used for bottom-up saliency computations,
learning of feature weights, and goal-directed search. Detailed perfor-
mance results for artificial and real-world images are presented, showing
that a target is typically among the first 3 focused regions. VOCUS rep-
resents a robust and time-saving front-end for object recognition since
by selecting regions of interest it significantly reduces the amount of data
to be processed by a recognition system.

1 Introduction and State of the Art

Suppose you are looking for your key. You know it to be somewhere on your
desk but it still takes several fixations until your roaming view hits the key. If
you have a salient key fob contrasting with the desk, you will detect the key
with fewer fixations. This is according to the separation of visual processing
into two subtasks as suggested by Neisser [9]: first, a fast parallel pre-selection
of scene regions detects object candidates and second, complex recognition re-
stricted to these regions verifies or falsifies the hypothesis. This dichotomy of
fast localization processes and complex, robust, but slow identification processes
is highly effective: expensive resources are guided towards the most promising
and relevant candidates.

In computer vision, the efficient use of resources is equally important. Al-
though an attention system generates a certain overhead in computation, it
pays off since reliable object recognition is a complex vision task that is usu-
ally computationally expensive. The more general the recognizer – for different
shapes, poses, scales, and illuminations – the more important is a pre-selection
of regions of interest.

Concerning visual attention, most research has so far been done in the field
of bottom-up processing (in psychology [13,15], neuro-biology [2,10] and com-
puter vision [7,6,1,11]). Bottom-up attention is merely data-driven and finds
regions that attract the attention automatically, e.g., a black sheep in a white
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flock. Koch & Ullman [7] described the first explicit computational architecture
for bottom-up visual attention; it is strongly influenced by Treisman’s feature-
integration theory [13]. Many computational systems have been presented mean-
while [6,1,11,14], most restricted to bottom-up computations.

While much less analyzed, there is strong neurobiological and psychophysical
evidence for top-down influences modifying early visual processing in the brain
due to pre-knowledge, motivations, and goals [17,2,16]. However, only a few
computational attention models integrate top-down information. The earliest
approach is the guided search model by Wolfe [15], a result of his psychological
investigations of human visual search. Tsotsos’ system considers feature channels
separately and uses inhibition for regions of a specified location or those that
do not fit the target features [14]. Hamker performs visual search on selected
images but without considering the target background [5]. The closest related
work is presented by Navalpakkam et al. [8]; however, the region to learn is not
determined automatically and exciting and inhibiting cues as well as bottom-
up and top-down cues are not separated. Furthermore, quality and robustness
of the system are not shown. To our knowledge, there exists no complete, well
investigated system of top-down visual attention comparable to our approach.

In this paper, we present the attention system VOCUS that performs goal-
directed search by extending a well-known bottom-up system [6] by a top-down
part. The bottom-up part computes saliencies for the features intensity, orienta-
tion, and color independently, weights maps according to the uniqueness of the
feature, and finally fuses the saliencies into a single map. The top-down part
uses previously learned weights to enable the search for targets. The weighted
features contribute to a top-down saliency map highlighting regions with target-
relevant features. The relative strengths of bottom-up and top-down influences
are adjustable according to the task. Cues from both maps are fused into a global
saliency map and the focus of attention is directed to its most salient region.
The system shows good performance on artificial as well as on real-world data:
typically, one of the first 3 selected regions contains the target, in many cases it
is the first region. In the future, we will integrate the system into a robot control
architecture enabling the detection of salient regions and goal-directed search.

2 The Visual Attention System VOCUS
The computational attention system VOCUS (Visual Object detection with
a CompUtational attention System) consists of a bottom-up part computing
data-driven saliency and a top-down part enabling goal-directed search. Global
saliency is determined from both cues (cf. Fig. 1).

2.1 Bottom-Up Saliency

VOCUS’ bottom-up part detects salient image regions by using image contrasts
and uniqueness of a feature, e.g., a red ball on green grass. It was inspired by Itti
et al. [6] but differs in several aspects resulting in considerably improved per-
formance (see [3]). The feature computations are performed on 3 different scales
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Feature weights
intensity on/off 0.001
intensity off/on 9.616
orientation 0 ◦ 4.839
orientation 45 ◦ 9.226
orientation 90 ◦ 2.986
orientation 135 ◦ 8.374
color green 76.572
color blue 4.709
color red 0.009
color yellow 0.040
conspicuity I 6.038
conspicuity O 5.350
conspicuity C 12.312

Fig. 1. The goal-directed visual attention system with a bottom-up part (left) and
a top-down part (right). In learning mode, target weights are learned (blue arrows).
These are used in search mode (red arrows). Right: weights for target name plate.

using image pyramids. The feature intensity is computed by center-surround
mechanisms extracting intensity differences between image regions and their sur-
roundings, similar to cells in the human visual system [10]. In contrast to [6], we
compute on-off and off-on contrasts separately [3,4]; after summing up the scales,
this yields 2 intensity maps. Similar, 4 orientation maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are
computed by Gabor filters and 4 color maps (green, blue, red, yellow) by first
converting the RGB image into the Lab color space, second determining the
distance of the pixel color to the prototype color (the red map shows high ac-
tivations for red regions and small ones for green regions) and third, applying
center-surround mechanisms. Each feature map X is weighted with the unique-
ness weight W(X) = X/

√
m, where m is the number of local maxima that

exceed a threshold t. This weighting is essential since it emphasizes important
maps with few peaks, enabling the detection of pop-outs (outliers). After weight-
ing, the maps are summed up to the bottom-up saliency map Sbu.

2.2 Top-Down Saliency

To perform visual search, VOCUS first computes target-specific weights (learn-
ing mode) and, second, uses these weights to adjust the saliency computations
according to the target (search mode). We call this target-specific saliency top-
down saliency.

In learning mode, VOCUS is provided with a training image and coordi-
nates of a region of interest (ROI) that includes the target. The region might
be the output of a classifier specifying the target or determined manually by
the user. Then, the system computes the bottom-up saliency map and the most
salient region (MSR) inside the ROI. So, VOCUS is able to decide autonomously
what is important in a ROI, concentrating on parts that are most salient and
disregarding the background or less salient parts. Note that this makes VOCUS
also robust to small changes of the ROI coordinates.
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Feature weights 1 weights 2
orientation 0 ◦ 20.64 29.84
color red 47.60 10.29

Fig. 2. The weights for the target (red horizontal bar, 2nd in 2nd row) differ depending
on the environment: in the left image (black vertical bars) color is more important than
orientation (weights 1), in the other image (red vertical bars) vice versa (weights 2).

Next, weights are determined for the feature and conspicuity maps, indicat-
ing how important a feature is for the target. The weight wi for map Xi is the
ratio of the mean saliency in the target region m(MSR) and in the background
m(image−MSR): wi = m(MSR)/m(image−MSR) where i ∈ {1, ..., 13}. This com-
putation does not only consider which features are the strongest in the target
region, it also regards which features separate the region best from the rest of
the image (cf. Fig. 2).

The learning of weights from one single training image yields good results
if the target object occurs in all test images in a similar way, i.e., on a similar
background and in a similar orientation. These conditions occur if the objects
are fixed elements of the environment, e.g. fire extinguishers. Nevertheless, for
movable objects it is necessary to learn from several training images which fea-
tures are stable and which are not. This is done by determining the average
weights from n training images using the geometric mean of the weights, i.e.,
wi,(1..n) = n

√∏n
j=1 wi,j . Instead of using all images from the training set, we

choose the most suitable ones: first, the weights from one training image are
applied to the training set, next, the image with the worst detection results is
taken and the average weights from both images are computed. This procedure
is repeated iteratively as long as the performance increases (details in [3,4]).

In search mode, we determine a top-down saliency map that is integrated
with the bottom-up map to yield global saliency. The top-down map itself is
composed of an excitation and an inhibition map. The excitation map E is the
weighted sum of all feature and conspicuity maps Xi that are important for
the learned region, i.e., wi > 1. The inhibition map I shows the features more
present in the background than in the target region, i.e., wi < 1:

E =
∑

i(wi ∗ Xi) ∀i : wi > 1
I =

∑
i((1/wi) ∗ Xi) ∀i : wi < 1 (1)

The top-down saliency map Std results from the difference of E and I and a
clipping of negative values: Std = E − I. To make Std comparable to Sbu, it is
normalized to the same range. I, E, and Std are depicted in Fig. 3, showing that
the excitation map as well as the inhibition map have an important influence.

The global saliency map S is the weighted sum of Sbu and Std. The contri-
bution of each map is adjusted by the top-down factor t ∈ [0..1]: S = (1 − t) ∗
Sbu + t ∗ Std. For t = 1, VOCUS considers only target-relevant features (pure
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Fig. 3. Excitation and inhibition are both important: search target: cyan vertical bar
(5th, last row). Left to right: test image, excitation map E, inhibition map I, top-down
map Std. E shows bright values for cyan, but brighter ones for the green bar (7th, 3rd
row). Only the inhibition of the green bar enables the single peak for cyan in Std.

top-down). For a lower t, salient bottom-up cues may divert the focus of atten-
tion, an important mechanism in human attention: a person suddenly entering
a room immediately catches our attention. Also colored cues divert the search
for non-colored objects as shown in [12]. Determining appropriate values for t
depends on the system state, the environment and the current task; this is be-
yond the scope of this article and will be tackled when integrating our attention
system into robotic applications.

After the computation of the global saliency map S, the most salient region
is determined by region growing starting with the maximum of S. Finally, the
focus of attention (FOA) is directed to this region. To compute the next FOA,
this region is inhibited and the selection process is repeated.

3 Results
In this section, we present experimental results on artificial images to establish
the link to human visual attention and on numerous real-world images. The
quality of the search is given by the hit number, i.e., the number of the focus that
hits the target (for several images the average hit number). Since we concentrate
on computing the first n foci on a scene (usually n = 10), we additionally show
the detection rate, i.e., the percentage of images in which the target was detected
within the first n FOAs. Note that VOCUS works with the same parameters in
all experiments; there is no target-specific adaptation.

Visual search in artificial images: first, VOCUS was trained on the image in
Fig. 3 (left) to find different bars. Tab. 1 shows the hit number. The green, cyan,
and yellow bar are not focused in bottom-up mode within the first 10 foci, since
their saliency values are lower than those of the black vertical bars.

For t = 1, all targets are focused immediately with one exception (magenta
vertical). Magenta has a lot of blue portions so the blue regions are also en-
hanced during search for magenta. This leads to focusing the blue before the
magenta bar. Note that also black bars are found, considering the lack of color
by inhibiting colored objects. For t = 0.5, bottom-up and top-down cues are
both regarded. It shows that in most cases the hit number is the same as for
t = 1, except for the red vertical bar. Here, the bottom-up saliency of the red
horizontal bar diverts the focus. It looks as if the bottom-up cues have less influ-
ence than the top-down cues, but note that the saliency values in the bottom-up
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Table 1. Search performance for different target bars for the training image of Fig.
3, left; test image is the horizontally flipped training image. The first 10 FOAs are
computed. t = 0 is pure bottom-up search, t = 1 pure top-down search. The perfor-
mance is given by the hit number on the target. The numbers in parentheses show
the saliency value at the target region.

Hit number for several target bars (and saliency value)
red blue black magenta red black green cyan yellow

top-down factor horiz vert horiz vert vert vert vert vert vert
t = 0.0 1 (24) 2 (23) 3 (21) 4 (18) 5 (17) 6 (15) - (12) - (8) - (7)
t = 0.5 1 1 1 2 2 1 1 1 1
t = 1.0 1 1 1 2 1 1 1 1 1

Intensity of 10 20 30 40 50 60 70 80 90
background in %

Required t 0 0 0 0.3 0.4 0.5 0.6 0.9 -
to override pop-out

Fig. 4. When searching for a black dot (left), the required value of the top-down factor
t increases with rising background intensity (right)

saliency map (values in parentheses) do not differ a lot, so little influence by the
top-down map is enough to change the order of the foci. In a pop-out experiment
[15], the contrasts between target and distractor values are much larger.

To test the influence of the top-down factor t systematically, we use an image
with one white and 5 black dots on a grey background (Fig. 4). We vary the
intensity of the background between 10% (nearly white) and 90% (nearly black)
and determine the top-down factor required to override the white pop-out and
find a black dot. It shows that with increasing intensity, the value of t required
to override the pop-out increases too, up to t = 0.9 for 80% intensity. For 90%,
the pop-out is so strong that it cannot be overriden anymore.
Visual search in real-world images: In Tab. 2 and Fig. 5, we show some search
results obtained from more than 1000 real-world images. We chose targets with
high and with low bottom-up saliency, fixed at the wall as well as movable ones.
The objects occupy about 1% of the image and occur in different contexts, with
different distractors, and on differently colored and structured backgrounds.

We chose two kinds of targets fixed in an office environment: name plates and
fire extinguishers. The largest test set was available for the name plates: we took
906 test and 54 training images of 3 different halls of our institute, showing about
50 different doors and name plates in different contexts due to differently colored
and structured posters and photos at walls and doors. The movable objects are
a key fob and a highlighter. The highlighter was placed on two different desks:
a dark and a bright one. For each kind of target, one was highly salient by itself
(fire extinguishers and highlighters are designed to attract attention), while the
bottom-up saliency for the name plates and the key fob was much smaller.
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Table 2. Search performance on real world data. Left: the targets and the extracted
region for learning. Note that this is not the training data, training images contain
a whole scene instead of an extracted object. The training images are chosen from
training sets of 10 to 40 images with an algorithm described in [3]. For each target, 10
FOAs are computed. The table shows the average hit number for different top-down
factors t and, in parentheses, the detection rate (d.r.) within 10 FOAs.

Target # test Average hit number and detection rate [%]
im. t = 0 (d.r.) t = 0.5 (d.r.) t = 1 (d.r.)

fire extinguisher 46 2.69 (94%) 1.09 (100%) 1.06 (100%)
key fob 28 4.42 (80%) 1.27 (100%) 1.23 (100%)
name plate 906 3.94 (48%) 2.48 (85%) 2.06 (89%)
highlighter 60 2.54 (90%) 1.73 (98%) 1.48 (100%)

Fig. 5. Some of the results from Tab. 2. Search for a a fire extinguisher, a key fob,
a name plate, and a highlighter. The FOAs are depicted by red ellipses. All targets
detected with 1st FOA, only in the 3rd image with the 6th FOA.

Tab. 2 shows that the performance depends on the kind of target and on its
environment. We identified 3 scenarios: 1) The object is very salient and often
detected at once in bottom-up mode, e.g., fire extinguisher and highlighter. Here,
VOCUS is also very successful: the target is in average detected with the 1st or
2nd FOA. 2) The object is not very salient so the bottom-up value is low, but
there are few regions in the scene with similar features. This enables VOCUS
to separate the target well from the environment, resulting in a high detection
rate (e.g. the key fob). 3) The target is not salient and there are a lot of similar
regions in the environment that divert the focus. Even for humans, these are
difficult conditions for visual search. An example is the name plate: in some of
the test images, there are posters on walls or doors with colors similar to the
logo of the name plate making the search difficult (cf. Fig. 5).

The results show convincingly that VOCUS is successful in finding targets.
Salient objects are nearly always detected with the 1st or 2nd FOA, and even
in difficult settings, the amount of regions to be investigated by a classifier is
drastically reduced. The results also reveal that the system is highly robust: the
images were taken under natural conditions, i.e., illumination and viewpoint of
the target vary (details in [3]). Most difficult are images with several regions
having nearly the same saliency values as the target; there, small variations of
the image data may lead to a changed order of the foci. We also compared
VOCUS to Itti’s attention system NVT on the data presented in [8]; in [3] we
showed that VOCUS clearly outperforms the NVT.
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4 Conclusion
We introduced the new attention system VOCUS that uses previously learned
target information to perform goal-directed search. During learning, it considers
not only the properties of the target, but also of the background. In search mode,
bottom-up and top-down influences compete for global saliency. The biologically
plausible system has been thoroughly tested on artificial and real-world data and
its suitability for detecting different targets was extensively demonstrated. In our
examples, the target usually was among the first three selected regions.

In future work, we plan to utilize the system for robot control. Therefore,
first the runtime (currently 1.7 sec on a 1.7 GHz Pentium IV for 300× 300 pixel
images) has to be improved to enable real-time performance. Then, VOCUS will
determine salient regions in the robot’s environment and search for previously
learned objects. Directing the attention to regions of potential interest will be
the basis for efficient object detection and manipulation.
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Abstract. In this contribution we look back on the last years in the
history of telephone-based speech dialog systems. We will start in 1993
when the world wide first natural language understanding dialog system
using a mixed-initiative approach was made accessible for the public, the
well-known EVAR system from the Chair for Pattern Recognition of the
University of Erlangen-Nuremberg. Then we discuss certain requirements
we consider necessary for the successful application of dialog systems.
Finally we present trends and developments in the area of telephone-
based dialog systems.

1 Introduction

Today people calling a company are more and more often confronted with au-
tomatic speech dialog systems. Those systems range from DTMF driven dialogs
to natural language understanding systems with mixed-initiative dialog man-
agement - here we concentrate on the latter. Tasks provided by those systems
also cover a wide range from simple call routing mechanisms(“Press 1 for the
CEO, 2 for sales department and 3 for financial administration.”) to complex
transactions as e.g. bank transfers. Nowadays there is a common understanding
that basic technology components like speech recognition, dialog management
or speech synthesis are ready for use, but there still is a lack of good, i.e. highly
usable applications with a wide user acceptance and visibility in general [3].
Therefore we look back in the research history and name certain milestones and
important projects, like SunDial, ATIS or VERBMOBIL, on the way to todays
systems. Afterwards, we present and discuss some guidelines for the implemen-
tation of dialog systems and finally we present current trends and developments.

2 Research History and Milestones

Looking back into the history of telephone-based dialog systems with natural
language understanding capabilities and mixed-initiative dialog management,
important milestones can be accentuated. One of them is January 1993: the
Chair for Pattern Recognition from the University Erlangen-Nuremberg lead
by Prof. Niemann connected the worldwide first conversational dialog system
to the public telephone. The system was able to give information about the
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German train time table concerning IC and ICE connections. This demonstrator
was developed during the SunDial project [8]. Only slightly later, Philips also
presented a train time table information system to the public. Later, this system
called TABA was deployed by Switzerland’s Federal Railways (SBB).

The SunDial project1 lasting from 1989 to 1993 was an EU-funded project,
where besides the Chair for Pattern Recognition e.g. CSELT in Italy and CNET
in France took part, but also companies like Siemens and Daimler-Benz. At sev-
eral sites, natural language understanding dialog system using a mixed-initiative
dialog management approach have been installed and evaluated [1]. But even be-
fore SunDial research in the area of spoken language dialog system was carried
on at the Chair of Pattern Recognition which is described and documented e.g.
in [5] or [6]. Starting from SunDial and the publically available EVAR system
a lot of further research was done in Erlangen which is summarized in [2]. Be-
sides the research, the work for and with EVAR, the experiences made with the
capabilities of the system and the methodology of mixed-initiative dialog man-
agement in contrast to commercially available menu-driven dialog systems was
one motivation for the founders to start with Sympalog.

Also in 1993 a world-wide well-known and highly respected research project
funded by the BMBF2 started: VERBMOBIL. In that project a system for
the automatic translation of a telephone conversation between two people not
speaking the other’s language should be realized. In VERBMOBIL (see [4]), for
which the project leader Prof. Wahlster was rewarded with the “2001 German
Future Prize”, a lot of new insights in speech and dialog processing were gained.
From 1997 to 2000 there was a second phase for VERBMOBIL, followed by
the SmartKom project which last until 2003 and finally followed by SmartWeb
which is planed to end in 2007.

Apart from Europe, research on dialog systems was pursued also in the USA.
There existed a framework for the proper evaluation of new ideas and develop-
ments in that area, called ATIS organized by DARPA (see e.g. [9]). The project
provided a set of tasks from the domain of air travel information with which insti-
tutes and companies could benchmark their systems. Companies like AT&T and
IBM took part in that evaluation, but also universities and research institutes.

A very important step for bringing speech understanding and dialog man-
agement capabilities into commercial use was made in 1995, when the German
Bundesbahn deployed a natural language understanding system for train time
table information. This system still is available under the cost free telephone
number 0800-1507090 from the conversational telephone network and 01805-
221100 from cell phones. Today there is a number of different telephone-based
dialog systems in use, even in Germany. There are systems only giving infor-
mation, others are used for call handling, routing and transfer, but there are
also systems providing access to transactions, e.g. in the financial sector several
banks have telephone-based dialog systems in use.

1 for further information see http://www.sics.se/˜scott/sundial.html
2 The German Federal Ministry of Education and Research.
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3 Requirements for Modern Speech Dialog Systems

In this section we discuss requirements we consider necessary implement and de-
ploy a dialog system successfully. The experiences reported here have been made
with different commercial spoken dialog systems implemented by Sympalog. We
will focus on the following applications:

The Sixt switchboard application, handling the calls (approx. 1000 per
day) to the Sixt AG’s central phone number. 90% of the calls are transferred au-
tomatically to the correct person, the others are handed on to a human operator.
The system knows the employee names, the departments, and a large variety of
potential reasons why people call. In a number of cases, there is a clarification
dialog to more precisely determine the contact person.

Berti, a football Bundesliga information system operated by a German me-
dia company. The system is an advanced version of the system evaluated in an
independent Fraunhofer usability study, where it outperformed all other systems
in the criteria “navigation/dialog” and “error management” [3].
Filmtips, the movie information system operated by a Cinema company in the
Nuremberg region. Among other cinemas, it includes Germany’s largest multi-
plex and IMAX cinema.

3.1 Conversational Systems will Prevail

One possibility to offer automatic services over the telephone is the menu–driven
approach. Since many people are used to that kind of interaction, this approach
seems obvious. But designing menus to be used on the telephone is a very difficult
task: if there are too many alternatives presented in a system prompt, users tend
to forget the choices offered at the beginning. Also the navigation within a hier-
archical menu of a complex system can frustrate a caller, especially if something
goes wrong and you have to go back to the “main menu” [3]. A more promis-
ing way to serve customers efficiently while creating high user–acceptance is the
conversational approach. The prerequisites are a speech recognition engine that
can handle spontaneous speech and an intelligent dialog management. Another
important point is to tune both modules in terms of shared knowledge (e.g. the
last system prompt). Conversational systems are characterized by human–like
features when handling the input. The most important ones are mixed-initiative
interaction, processing out–of–focus input, and the possibility to “over–answer”
questions. The evaluation of users interacting with those systems shows, that
callers appreciate this more human–like conversation and quickly adapt their
way of communication.

It is essential that the system is prepared for users with different levels of
experience: callers used to a menu–based system need to be led throughout
the dialog, new users who never dealt with automatic systems need help, but
intuitively they make use of the features offered by the conversational system,
and “power–users” know the system very well and want to get the information
very quickly. Another important characteristic is that the status of the back–end
system is used for the dialog management. E.g. the result of a database request
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within the movie information system with “Munich” will be rather large so it
is necessary to gather more information, e.g. the “time”. However in a small
town probably no more than three movies are shown on a certain day and so the
system can produce a prompt containing information about all movies at once.

3.2 Building a Bridge

Telephone-based dialog systems could be seen as a middleware between a hu-
man and a data source with speech as interface. The problem when developing
an application for a new domain is that it usually takes more than one iteration
to build a system that will bridge the gap between the user and the information.
Apart from getting speech data for adapting the recognizer, a thorough evalu-
ation of test cases is necessary to get a feeling for what people actually say. Of
course it is possible to recycle atomic knowledge from other domains, e.g. the
way users refer to a point in time, but in general it is necessary to go through
some iterations before the system can go online. A typical approach, where after
each step the dialog system is optimized in all relevant aspects, is:

– build an initial system
– employees test the system (experienced, biased users)
– friends and family testing (semi–experienced, unbiased users)
– friendly user test(s) (unexperienced, unbiased, cooperative users)
– go online (all kinds of users)
– readjust the system if appropriate

Since this approach to building new conversational, mixed-initiative dialog
systems is user–oriented and not database–oriented, there are new problems:
because the user is not restricted to say certain things at a certain time, there
will be questions or requests from the user that can not be covered, sometimes
simply because the information is not in the database. It is however desirable to
react in a sensible way, e.g. telling the user that some information is not included
in the database as it is done with movie genres in Filmtips or scorers in Berti.

To improve the performance of an application, it is necessary to put work
into the processing of different wordings referring to the same value, which is
especially complex for names. The Sixt switchboard application knows approx.
350 employees. Customers however do not always use the correct names as they
are stored in the database. So the system has to know that a “Robert” is also
referred to as “Bob” or that “Maier” and “Meyer” are pronounced in the same
way. Calls should also be routed to the “head of sales” or to “someone in mar-
keting”. As consequence the system understands about 1000 alternatives of the
names and about 350 alternatives for the 40 Sixt departments.

3.3 Speech Output is What the User “Sees”

The importance of the text–to–speech component in a dialog system is often
underestimated although it plays a crucial role for user–acceptance. For every
application the decision if pre–recorded sound files or a speech synthesizer should
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be used has to be made. It is desirable to do use pre–recorded prompts if possible,
although there are some obvious problems, for example, if the content of the data
source, which is of interest to the user, changes quickly. In that case it makes
sense to use an automatic speech synthesizer for the dynamic parts of the system
prompt. Callers do accept a mixture of different voices as long as the dynamic
content and the basic system prompts are sufficiently separate.

Another important point is the trade–off between the requirement for short
prompts that contain a lot of information. A smart way to get around that
problem is to make long pauses during prompts, to invite the user to barge in.
Users who are still uncertain will wait and get more information. A very simple
way to give the user a better idea of what the system can understand is to
sometimes attach extra information to prompts: “What can I help you with?
[attach:] You can for example ask me What’s the score in Dortmund right now?”

Through proper prompting critical situations in a dialog can be avoided:
Instructing the user explicitly on how to interact with the system can have a
negative effect. E.g. telling the user to “speak loud and clearly” often results
in user complaints about the system (“I AM speaking very clearly!”) or even
a hang–up. A better way is to react more subtle, almost human–like e.g. with:
“Excuse me, I didn’t hear you?”, “What was that again?”. To not annoy a
caller by repeating a prompt over and over again there should be alternatives
for prompts [1], especially general ones, e.g. when the system was not able to
process the speech input in a meaningful way. For some applications it may even
be useful (and fun) to create an atmosphere during the call playing sound files,
like stadium noise or to use “earcons” (audio icons) indicating certain events.

3.4 Discover the Optimal Dialog Strategy

Experiences with Berti and Filmtips show that dialogs in different domains can
look very different. Even if non–critical data is provided, it can be reasonable to
get at least an implicit confirmation. That is the case in the movie information
system, where up to four slots are necessary to retrieve the correct informa-
tion. For transaction systems, which involve critical data like user names and
PINs, explicit confirmation strategies may be inevitable, possibly even legally
binding. Depending on the number of misunderstandings during a dialog the
system should also apply relaxation strategies concerning confirmations. If an
application is very complex and dialogs tend to get rather lengthy, it is helpful
to restrict the flexibility of the dialog gradually. For example in an air travel
reservation system, the dialog manager does not completely adhere to the con-
cept of “say what you want at any time”: after a flight was chosen, the first goal
of the dialog has been reached. In a second part, the user provides his personal
data. Switching between the two parts of the dialog is still possible with so called
meta–utterances (“I want to change the date.”).

During the first iterations of application development dialog strategies often
need to be more robust due to the sub–optimal accuracy of the speech recognizer.
During the later stages, when enough speech data has been collected for adapting
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the recognizer, the task becomes a lot easier in terms of dialog management and
less restrictive dialog strategies can be applied.

3.5 Speed is Crucial

It is essential that a spoken dialog system reacts fast to any kind of user input,
no matter how long the user utterance is. We found that a delay of two seconds
or more is likely to confuse the user. This often misleads the users to repeat or to
reformulate their utterance. This desynchronizes the interaction and may lead
to a complete failure of the dialog. With today’s speech recognition engines and
hardware, faster than real–time performance of the recognizer can be achieved,
even for 30 or more lines in parallel and vocabulary sizes of several thousand
words. There exist commercial recognition engines adjusting the computational
effort dynamically to the current system load, ensuring the availability of the
recognition result fast enough after the turn end was detected. This may result
in a minor decline in recognition accuracy under high system load, which is far
less likely to confuse or annoy the user than a noticeable delay.

For the same reason, fast and reliable turn end detection is of extreme im-
portance. Sympalog uses an algorithm which also incorporates prosodic infor-
mation for this purpose. Only after the turn end has been detected, a semantic
and pragmatic interpretation of the recognition result can be performed. The
dialog management then creates a new system prompt, also taking into account
the content of the back–end database. Finally, the speech signal is generated
and sent to the caller. The whole course of action after the recognizer has pro-
duced its result needs to be finished within a very short time, preferably less
than 0.15 seconds. Fast and reliable turn begin detection is equally important
for the barge in feature, and a tight coupling of the turn begin detection with
the speech output is required to immediately turn off the system voice in case
the user takes the turn.

4 Trends and Developments

Finally, we discuss new developments and trends for telephone-based dialog sys-
tems. We focus on three issues: the ongoing standardization efforts, the detection
of emotion in telephone speech and the challenge of multimodal systems.

4.1 Standards

The currently most obvious trend is the standardization for dialog systems.
Apart from description languages like VoiceXML3 or SALT4, specialized markup
languages for technology components like JSGF for speech recognizer grammars
or SSML for speech synthesis tools have been developed. Also some standardiza-
tion efforts on the protocol and API side are made with MRCP and SAPI. The
3 see e.g. http://www.w3c.org/TR/voicexml20/ or http://www.voicexml.org/
4 see e.g. http://www.saltforum.org/
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idea behind those standards is to allow users of speech technology and speech
systems to develop their applications along with the back–end integration inde-
pendent from the underlying engines. In a way this is analogous to the emergence
of HTML as the main description language for pages exchanged over the World
Wide Web.

Therefore we think it is very important to support standards like VoiceXML,
which currently is the most prominent one. We see its real power as an ex-
change format not as a tool for application development and dialog description.
VoiceXML is great if you want to tell a synthesis tool what to say or a speech
recognizer which words in which grammar it should recognize, but it is a poor
description language if you want to build up a dialog system where the aim is
high usability and user acceptance. Like with internet pages and HTML (almost
no Web Site is written in HTML but designed using any web publishing tool
or content management system), dialog systems should be implemented using
an application development environment like SymMagic and SymDialog. Those
tools are able to handle mixed-initiative dialogs where in each step a VoiceXML
page is dynamically generated.

4.2 Emotion

Motivated by VERBMOBIL and the work presented in [7] the automatic de-
tection of the user state on basis of the incoming speech signal is going to be
implemented and evaluated in commercial pilot projects. Companies using dia-
log systems often face the challenge that e.g. due to recognizer errors the caller
gets angry and as a consequence hangs up. Thus it is desirable that the sys-
tem detects if the user gets angry and then tries to calm him down or transfers
him to a human agent. This classification task can be accomplished using a
set of phonetic and prosodic features derived from the energy and fundamental
frequency contours and features describing e.g. the length of certain phones or
phone classes. The acoustic processing is accompanied by a semantic processing
step where the user utterance is examined for swear words and angry phrases.

4.3 Multimodality

Currently Voice over IP (VoIP) is becoming commonplace in the telecommuni-
cation market and making phone calls over an internet connection will soon be
standard. If we consider that avatar technology has made great progress in the
last years, one can claim that there is a chance to combine the two technology
branches to generate new kinds of internet applications and web sites: you go
to a web site and you have the possibility to send speech signals over the same
connection (VoIP). Speech signals have to be processed by a recognition engine
and the result is processed by a dialog manager, which also controls an avatar
shown on the web site. That way it is possible to build an internet shop where
the user can navigate with speech (e.g. “Please show me the mobile phones you
offer.”) and by clicking links.

The dialog management has to keep track of all interactions made by the user
for every input modality, e.g. voice, mouse or keyboard. Such a system can pick
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the optimal output channel for the requested information: long lists or detailed
descriptions are shown on a graphical display, short additional information or
requests for further details are presented acoustically. Systems of that type have
been or are investigated in the SmartKom and SmartWeb project, but so far no
commercial relevant product has been released.

5 Conclusion

We have shown that the history of telephone-based dialog systems is long and
sometimes spectacular but the promised breakthrough for speech recognition
and dialog systems has not taken place yet. We believe that by following certain
guidelines to build usable and well-performing dialog systems the visibility and
acceptance of dialog systems will increase. Then one day, we will use our own
voice to communicate with computers as easy as we do it with mouses and
keyboards today.
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Abstract. In this paper we will investigate the performance of TRAP-
features on clean and noisy data. Multiple feature sets are evaluated on a
corpus which was recorded in clean and noisy environment. In addition,
the clean version was reverberated artificially. The feature sets are assem-
bled from selected energy bands. In this manner multiple recognizers are
trained using different energy bands. The outputs of all recognizers are
joined with ROVER in order to achieve a single recognition result. This
system is compared to a baseline recognizer that uses Mel frequency cep-
strum coefficients (MFCC). In this paper we will point out that the use of
artificial reverberation leads to more robustness to noise in general. Fur-
thermore most TRAP-based features excel in phone recognition. While
MFCC features prove to be better in a matched training/test situation,
TRAP-features clearly outperform them in a mismatched training/test
situation: When we train on clean data and evaluate on noisy data the
word accuracy (WA) can be raised by 173 % relative (from 12.0 % to
32.8 % WA).

1 Introduction

Noise and reverberation have a strong influence on automatic speech recognition
systems. Even slight noise or reverberation can cause an enormous decrease of
the recognition rate. Human beings are less affected by such disadvantageous ef-
fects. Unfortunately these disadvantageous sound situations are quite important
in many application scenarios like driving a car or being in an “intelligent room”
in which many appliances can be controlled by voice. The use of closetalk mi-
crophones is often not practical since they have to be attached very close to the
speaker’s head and the user acceptance of such a device is very low. This is the
reason why robust automatic recognition systems with far distant microphones
are desirable. To achieve this we look at two different aspects of automatic speech
recognition: The use of features which are restricted to certain frequency bands
but are calculated over a longer time span and the use of multiple recognizers.

Our features are based on the TRAP approach of Hynek Hermansky pre-
sented in [1]. In his investigations he especially pointed out the robustness of his
features.
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The speech corpus used in this paper is available in three different levels of
noise and reverberation. In addition to the recordings with a closetalk micro-
phone the scenery was filmed by a video camera for documentary purposes. In
this manner a second rather noisy version could be recorded. The third version
was obtained by adding an artificial reverberation to the closetalk version.

Since the TRAP-features are computed for each band individually it is easy
to train different independent recognizers. In case of a distortion of a single
frequency band the other recognizers can still recognize the spoken utterance. In
[2] it is shown that such a combination using the ROVER procedure can produce
very promising results. A recognizer with a certain feature set is trained on every
version of the corpus. Each feature set is created using different energy bands.
Furthermore different types of TRAP-features are used as well. For the baseline
system MFCCs are used.

After the training the recognizers are evaluated on a disjoint test set. We
present results on phone and on word level. Furthermore outputs on word level
are joined using ROVER included in the Speech Recognition Scoring Toolkit
(SCTK) which can be downloaded from [3].

All recognizers trained on the closetalk and closetalk reverberated version of
the corpus are evaluated on the test set of the room microphone version as well.

The next section gives a short literature overview. In chapter 3 a short de-
scription of the AIBO database follows. The experimental setup and the results
are described in chapter 4. The paper ends with an outlook to future work and
a summary.

2 Related Work

The feature extraction is primarily based on the work of Hynek Hermansky.
In [1] the so called Temporal Patterns (TRAP) are introduced. Based on the
assumption that the temporal context in each band is essential for the classifi-
cation of phones each band is analyzed individually, first. Using a long context
of up to one second a neural net is trained for each energy band. The outputs
of the nets are scores for 29 phonetic classes. These scores are obtained for each
band and used as input for a neural net merger. The merger’s outputs are again
scores for 29 phonetic classes. As Hermansky states these features can produce
better results than perceptive linear prediction (PLP) features especially when
the distortions occur only in certain bands.

Furthermore Hermansky points out the importance of the modulation spec-
trum in [4]. This spectrum can be obtained by a short-time analysis of each
TRAP band. From this analysis a spectrum results whose both axes have fre-
quency scales. One results from the filter bank analysis and displays the fre-
quency of the signal. The other one displays the modulation frequency. As Her-
mansky states only modulations over 1Hz and below 16Hz are important for
the perception of speech.

In [5] the importance of the modulation spectrum is highlighted even more.
Greenberg proposes to use a so called modulation spectrogram. This kind of
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spectrogram does not display the strength of a certain frequency band anymore.
It displays only the strength of the modulation around 4 Hz. In order to compute
this, the spectrogram is processed for each frequency band and transformed into
modulation frequency. It is processed in such a manner that in the end only a
single coefficient is obtained for the modulation frequency between 2 and 8 Hz.
These coefficients get arranged in a spectrographic layout to form the modulation
spectrogram. Greenberg states that the modulation spectrogram is quite robust
to noise and distortions.

In order to combine the recognizers the ROVER system is employed. [2] de-
scribes the algorithm as follows. The output of the recognizers on word level are
aligned first and merged later on with the ROVER voting module. In order to
do the alignment two hypotheses are processed iteratively by dynamic program-
ming. To match the task the algorithm was extended by Fiscus et al. since the
base hypothesis can hold more than one word at a time. Afterwards the best
word for each alignment can be found. This is done with the voting module.
It supports several modes which can even include the scores returned by the
recognizer into the decision process. A reduction of up to 16 % of the word error
rate was obtained.

In [6] it is shown, that reverberation can be created artificially if the char-
acteristic spectral properties are known. Those properties can be acquired by
recording a known signal from various positions in a room; for each position in
the room attributes can be determined. The characteristics found can be applied
to a clean signal by convoluting the signal with a finite-impulse-response (FIR)
filter. In this manner reverberation can be added to any signal.

3 Corpus

As already mentioned in the introduction the AIBO database is available in
three versions. The experimental setup of this database used a Sony AIBO robot
[7]. The original design was intended to record emotional speech of children.
The children were to accomplish several tasks with AIBO commanding it by
voice. However, the robot was controlled by a wizard in a so called wizard of
Oz experiment. The wizard was disguised as an audio technician. A complete
description of the tasks can be found in [8]. The recordings were done with
a closetalk microphone which was attached to the child’s head. Thus a clean
version of the data was recorded which is called closetalk (ct) later on.

For documentary purposes the whole experiment was filmed with a video
camera as well. The sound track of the film contains a lot of reverberation and
background noises, since the camera’s microphone is designed to record the whole
scenery in a room and since the camera was approximately 3 m away from the
child. The fact that the distance between speaker and microphone was quite far
and that the child was not facing the microphone emphasize the difficulty of this
recognition task. This version is called room microphone (rm) in the following.

The third version of the corpus was created using artificial reverberation. To
achieve this the data of the ct version were convoluted with different impulse
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responses. The impulse responses were recored in a different room using multiple
speaker positions and echo durations T60 as shown in Fig. 1. With each of the
twelve responses 1/12 th of the corpus was reverberated. This corpus is called
closetalk reverberated (ct rv) later on.

58 cm

60 cm

120 cm

240 cm

T   = 250 ms60

T   = 400 ms60

Fig. 1. Positions of the different impulse responses

The advantage of this procedure is that the data had to be transcribed only
once. So all versions have the same size in vocabulary (850 words and 350 word
fragments) and the same language models.

4 Experimental Setup

First, we give an overview of the used features, i.e. MFCCs, TRAPs, and filtered
TRAPs. Then a description of the recognizers and their combination follows.

4.1 Features

The baseline system which is compared to all results uses MFCC features. So
the signal is processed with a fast Hartley transform with a window size of 16ms
computed every 10ms. Then 22 filter banks are computed from the resulting
spectrum. After taking the logarithm the signal is processed with a discrete
Cosine transformation. In the end 11 Mel coefficients plus the signal’s energy
are taken as static features and another 12 delta features are computed using a
regression line over 5 frames, i.e. 56ms. Cepstrum mean abstraction is applied.

The TRAP features used in this paper are based on [1] but differ in several
details. They are computed from the logarithmic Mel spectrum. The Mel filter
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bank consists of 18 banks. Using a context of ±15 frames a TRAP with 31 entries
is created for each band. In this phase n of 18 bands are chosen. The coefficients
of these bands are concatenated and reduced to 24 dimensions using a linear
discriminant analysis (LDA) instead of the neural nets used by Hermansky. The
classes needed by the LDA are obtained by a forced alignment with the baseline
hidden Markov recognizer. In total 47 German phonetic classes were used. In
the following the TRAP-features are labeled with the letter T .

The modulation spectrum is computed in a similar manner. After the TRAP
coefficients are found they are transformed with a fast Fourier transformation.
This results in a complex spectrum which states the modulation of the different
energy bands. So the filtered TRAP features can be computed using a band
pass between 1Hz and 16Hz in modulation frequency. All coefficients of the
spectrum outside these boundaries are set to 0. Then the modulation spectrum
is transformed again into the TRAP domain. Fig. 2 shows the TRAP of the 8th
band of a phone /i/ before and after the filtering on the different versions of
the corpus. As can be seen the filtered curves are closer to each other, i.e. the
filtering reduces the differences in the features caused by the different recording
conditions. Again the desired bands are concatenated and reduced with a LDA
transformation. This type of feature is called F in the following.
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Fig. 2. TRAPs and Filtered TRAPs for the eighth band (from 1.1 kHz to 1.6 kHz) of
a phone /i/ for different versions of the corpus

4.2 Recognizers

The hidden Markov models (HMM) which are employed here are trained with
the ISADORA [9] system of the Chair for Pattern Recognition of the University
of Erlangen–Nuremberg. This system has been developed since 1978 and has
been employed on various tasks in the field of pattern recognition from speech
recognition to genetic decoding and recognition of hand writing. The system
provides all tools needed for the training of HMMs. For decoding the lr beam
recognizer is employed. In our experiments we used semi-continuous HMMs with
full covariance matrices and polyphone models as elementary HMMs. The latest
version of the system is described in [9]. Each recognizer provides a best recog-
nized word chain. These word chains are used as input for ROVER. Using the
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output of multiple recognizers it can compute a single best word chain. To do this
the word chains are aligned iteratively first. Then the best word for each position
is chosen. This can be done using several algorithms. In our experiments we used
voting and included confidence scores from the recognizers (method avgconf ).

4.3 Results

In the following the presented features are evaluated. All of the recognizers
trained here use only 6 of 18 critical bands in order to enable a majority de-
cision with three recognizers. Tab. 1 gives an overview of the results obtained
on phone level. As one can see the recognizers using every third band are far
better than the baseline MFCC recognizer. However, if the bands are chosen
consecutively like in the case of T1−6 the recognizers perform worse than the
baseline. Therefore the results on word level focus only on the recognizers using
every third band.

Table 1. Results of the different features on phone level; class wise averaged recognition
rates in %.

Feature Bands Abbreviation ct ct rv rm
MFCC 42.3 36.7 28.2

T 1,4,7,10,13,16 T3n+1 52.2 45.2 32.2
T 1,2,3,4,5,6 T1−6 41.2 33.4 22.0
F 1,4,7,10,13,16 F3n+1 49.7 42.9 28.2

On word level the recognition rates of the individual recognizers can not
compete with the baseline recognizers in most cases. Only if the training and the
test data do not match like in the case of training on closetalk data and evaluation
on room microphone data, some of the TRAP recognizers can obtain better
results than the baseline system. Note, that the use of artificial reverberation
during training always results in an improvement when evaluating on the room
microphone test set. In order to focus on the performance of the acoustic models,
Tab. 2 shows the recognition rates for a unigram language model.

When the recognizers are joined with ROVER better recognition rates can
be achieved. The TRAP based recognizers can now obtain better results than
the baseline in most cases. Nevertheless MFCC still return better results when
training and test is done on closetalk microphone data. Tab. 3 gives 4-gram
recognition rates, since such a language model is usually applied on a real task.
Its perplexity on the test set is 50. Note that the consequence of the combination
of the recognizers is an enormous improvement if training and test data do not
match. Except for the ct/ct constellation the TRAP based recognizers give better
results than the MFCC recognizers. Combining the TRAP-features with MFCC
provides a small further improvement. When training is done on closetalk data
and evaluation on room microphone data the recognition rate can be improved
by 173% relatively (from 12.0% to 32.8% WA).
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Table 2. WAs of the individual recognizers with a unigram language model

Training ct ct rv rm ct ct rv
Test ct ct rv rm rm rm
MFCC 69.3 63.1 35.2 4.9 7.6
T3n+1 55.0 50.5 27.6 -10.8 1.3
T3n+2 53.2 48.8 27.0 -4.0 9.4
T3n 55.1 49.1 29.1 -4.4 2.3
F3n+1 57.3 51.7 29.1 -2.4 5.5
F3n+2 55.8 50.5 28.5 5.8 12.5
F3n 57.6 51.5 29.5 1.2 6.7

Table 3. Categorical 4-gram recognition rates of the combined recognizers

# of Training ct ct rv rm ct ct rv
recognizers Test ct ct rv rm rm rm

1 MFCC 77.2 63.1 46.9 12.0 18.8
1 Fbest 66.1 61.1 39.0 15.8 23.0
3 T3n 71.1 65.9 47.3 21.6 34.3
4 T3n+MFCC 70.3 66.7 48.7 32.8 31.6
3 F3n 72.1 63.4 48.9 27.2 34.3
4 F3n+MFCC 73.4 64.5 49.4 30.9 35.2

5 Outlook and Summary

It could be shown that the TRAP features have the greatest advantage when
training and test data are mismatched. We conclude that these features gener-
alize better. Furthermore the use of TRAP features and artificial reverberation
can improve the recognition rate on the room microphone test set from 12.0% to
35.2%. As the experiments show the upper limit (training and test on room mi-
crophone data) is 46.9% in the baseline system. Fig. 3 gives an overview over the
best achieved WAs. In our current research we adapt the ct rv recognizer with
a small amount of “in task” data, i.e. rm data. We hope that this will close the
gap between the currently best “mismatched” recognizer and the rm/rm base-
line. Such a procedure will allow to use the vast amount of clean transcribed
training data for the training of far distant microphone recognizers.

In this paper we presented the AIBO database in three versions. These ver-
sions are closetalk microphone, room microphone, and closetalk reverberated.
Furthermore two TRAP based features were introduced. T -features are based
on Hermansky’s TRAP approach and F -features are created by filtering in the
modulation frequency. Then a method to combine multiple recognizers was pre-
sented. In the results section the different recognition rates were given. The best
improvement compared to an MFCC baseline system could be obtained on mis-
matched training and test data where a 173% relative improvement was achieved
(from 12.0% to 32.8% WA).
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Fig. 3. Overview of the WAs on the room microphone test set
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Abstract. Automatic pronunciation scoring makes novel applications
for computer assisted language learning possible. In this paper we con-
centrate on the feature extraction. A relatively large feature vector with
28 sentence- and 33 word-level features has been designed. On the word-
level correctly and mispronounced words are classified, on the sentence-
level utterances are rated with 5 discrete marks. The features are eval-
uated on two databases with non-native adults’ and children’s speech,
respectively. Up to 72 % class-wise-averaged recognition rate is achieved
for 2 classes; the result of the 5-class problem can be interpreted as 80 %
recognition rate.

1 Introduction

Pronunciation scoring is the automatic assessment of the pronunciation quality of
phonemes, words, utterances, or larger units especially for non-native speakers.
A possible application are systems for computer assisted pronunciation training
(CAPT) to support the student of a foreign language to acquire correct pro-
nunciation. In this paper a set of 28 sentence-level features is proposed which
encodes a high amount of information that is important to grade the pronun-
ciation of a sentence. A similar set of 33 features has been developed to reject
mispronounced words. Some simple features that highly correlate with human
marking are e.g. the word or phone recognition rate obtained by an automatic
speech recognition system.

As reference two databases are applied and compared: The Atr/Slt Non-
Native-database, recorded at the Spoken Language Translation Research Lab-
oratories (SLT) of ATR [5], contains speech of non-native adults from differ-
ent countries reading English phrases. Secondly, the Pf-Star Non-Native-
database is applied. In the European project Pf-Star (http://pfstar.itc.it/)
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native and non-native children’s speech has been recorded from English, Italian,
Swedish, and German partners. In this paper the data of German children read-
ing English texts is investigated. For both databases human ratings are available
for word- and sentence-level. Our feature set for automatic grading of the non-
natives’ English has been developed for the Atr/Slt Non-Native data set.
Although the age of the speakers, the recording conditions, the speakers’ English
proficiency, and the instruction of the labelers are different for both databases
good classification results are achieved for the Pf-Star Non-Native data, too.

2 Related Work

Neumeyer et al. [7] automatically score non-natives on the sentence- and speaker-
level. The inter-rater open-correlation is 0.78 (sentence) and 0.87 (speaker). Cor-
relations with different machine scores (likelihood, posterior scores, accuracy,
duration and syllabic timing) are calculated. Different combination techniques
for sentence based marks are investigated in [4]: with neural networks a correla-
tion of 0.64 is achieved. Different aspects of human rating and different machine
scores are compared in [2]. For phone-level scoring the liklihood based Good-
ness of Pronunciation measure is analyzed in [9,10]. In [6] a novel phonological
representation of speech is used to grade the pronunciation.

3 Corpora

The pronunciation features will be evaluated on two different databases:
The part of the Atr/Slt Non-Native-database [5] used in the following

consists of 6.4 hours of speech: the 96 non-native speakers (81m, 15f, age 21 –
52) were reading 48 phonetically rich sentences from the Timit SX set with
a vocabulary of 395 words. The first language of most speakers is Japanese,
Chinese, German, French or Indonesian. Each speaker read each sentence usually
only once. However, he was asked to repeat the recording of a sentence, when he
completely misread or forgot to utter a word or made too long pauses between
words. Further, a repetition was possible, if the speaker was not satisfied with
the recorded utterance. 15 English teachers (native speakers) evaluated the data:
Each utterance has been marked by 3 – 4 teachers, each teacher marked 24
speakers. They assigned a sentence-level rating from 1 (best) to 5 (worst) in
terms of pronunciation and fluency and marked any mispronounced words.

The Pf-Star Non-Native-database contains 3.4 hours of speech from 57
German children (26m, 31f, age 10 – 15) reading English texts, recorded by
the University of Erlangen. Most children had been learning English for half
a year only. They were reading known texts from their text book and some
phrases and single words, which also have been recorded by our partners in
the Pf-Star project. The recordings contain reading errors, repetitions of words,
word fragments and nonverbals. The total size of the vocabulary is 940 words. A
German student of English (graduate level) marked mispronounced words and
rated the data on sentence-level. Further markings of mispronounced words by
12 teachers will be available soon.
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To train speech recognizers, that are needed for the pronunciation feature
extraction, further databases are applied. Read speech from the Wall Street
Journal (Wsj)1-corpus is used to train an adults’ recognizer for the Atr/Slt
data; the Pf-Star Native-database contains read speech from British English
children [3] and is used to train the recognizer for the Pf-Star Non-Native
children. Some phone statistics are estimated from the Timit2-database.

4 Input Data for Pronunciation Feature Extraction

In our scenario the candidate who is practicing English is reading known texts.
Classification of the candidate’s pronunciation quality is performed in feature
space. Our feature extraction requires several outputs of a speech recognizer
and some statistics, which are explained in the following.

Word and phone recognition: The HTK toolkit is used for the estimation
of monophone models and for the decoding. 39 features are extracted every 10
ms: 12 cepstral coefficients and the normalized log-energy with first and second
derivatives. Cepstral mean subtraction is applied. The number of codebook mix-
tures was increased successively during training until 16 mixtures were reached.
44 3-state phoneme HMMs and silence models were retrained for four iterations
after each mixture increment. The acoustic models for the non-native adults are
built with native English data from the Wsj-corpus. The recognizer is evalu-
ated on the Hub2 evaluation test set from Wsj. With a bigram language model
(LM) 80.8% word accuracy (WA) are achieved. The children’s speech recognizer
is trained with the Pf-Star Native data. With a bigram LM 40.8% WA are
achieved on the native testing data-set.
Native phoneme language model: To compute prior probabilities of phone
sequences obtained by unconstrained phoneme recognition, a bigram phoneme
LM will be employed. The LM is estimated from the Timit-corpus.
Native phoneme duration statistic: In order to calculate the expected du-
ration of words and phones or to estimate posterior probabilities of an observed
length of time, the distribution of phoneme durations has to be modeled. They
are estimated on the Timit-database after forced-alignment.
Phone confusion matrices: A Phone confusion occurs, if the reference phone
and the recognized phone differ. Phone confusion matrices are estimated sepa-
rately for both, the correctly pronounced and the mispronounced words. These
matrices contain the probabilities P (q|p), that phoneme p is recognized as q. The
confusion matrices are estimated on the Atr/Slt Non-Native-corpus. The ref-
erence sequence is obtained by forced-alignment and the recognized sequence is
obtained with the phone-recognizer trained on Wsj.

5 Pronunciation Features

Next, a set of 28 sentence based pronunciation features is described, that is an
extension of the features in [7]. After this 33 word-level features are proposed.

1 http://www.ldc.upenn.edu/, catalog number LDC93S6
2 http://www.ldc.upenn.edu/, catalog number LDC93S1
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Table 1. Correlation between each of the 28 sentence-features and the human rating

(Atr/Slt data).

R1 R2 R3 R4 R5 P1 P2 D1 D2 DS1 DS2 L1 L2 L3
−.34 −.37 +.37 +.39 −.32 +.33 +.32 +.30 +.28 −.45 −.46 −.24 −.34 −.28
L4 L5 L6 L7 L8 L9 LR1 LR2 LR3 A1 A2 PS1 PS2 PS3
−.41 −.42 −.37 −.35 −.41 −.43 −.48 −.50 −.52 −.45 −.38 −.22 −.28 −.40

5.1 Sentence-Level Features

First, some notations, that will be referred to in the following: Let ti be the
duration of phone number i in the utterance (pauses are not counted), and
Ts the duration of the sentence. We introduce T =

∑n
i=1 ti ≤ Ts as the sum

of phone-durations per sentence without pauses. Assume further m to be the
number of words and n the number of phones per sentence. Then the rate-of-
speech is defined as

R(phon) = n/Ts or R(word) = m/Ts (1)

To evaluate the features proposed in the following the correlation between
automatic scores and human rating is analyzed for the Atr/Slt Non-Native-
database. The reference is the mean of the marks of the different human raters.
An overview of features and correlation-values can be found in Tab. 1. Partic-
ularly since for the Pf-Star data only one rater is available, correlation coef-
ficients would be clearly lower. Eight feature categories are built from the set
of 33 sentence-level pronunciation features. Within such a feature-set elements
differ mainly in the way of normalization.

Rate-Of-Speech (R): This category comprises 5 components: R(word) and
R(phon) referred to as R1 and R2, both reciprocals (R3, R4 ) and the phonation
time ratio T/Ts. If we compare the features with the human annotation, absolute
correlations between 0.32 and 0.39 are obtained. The best feature is R4.
Pauses (P): The total duration of between-word pauses (P1 ) is correlated
with sentence-level ratings by 0.33. Normalization of the pause duration by the
number of pauses did not lead to an increase of correlation. The number of
between word pauses longer than 0.2 sec. (P2 ) correlates with 0.32.
DurationLUT (D): Elements of this category are computed from the duration
statistics (look-up-table, LUT) introduced in Sect. 4. For all phonemes the ex-
pected duration di from the LUT is used to compute the deviation |ti − di|. D1
is the mean duration deviation, D2 the scatter. The correlation with the human
annotation is 0.30 and 0.28. In other feature groups di is used for normalization.
DurationScore(DS): Phoneme duration statistics have been estimated on na-
tive data (Sect. 4). To calculate DS -features for non-natives, we first normalize
the observed phoneme duration (obtained by forced alignment) with the rate-of-
speech; we achieve t̄i. Using natives’ statistics we now calculate the probability
log P (t̄i|p,x) given the phone p in the reference and the acoustic observation x.
Summing up these probabilities of an utterance DS1 is achieved. After normal-
ization with n (DS2 ) the correlation with the reference rating is -0.46.
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Likelihood (L): This category contains 9 features based on log-likelihood scores
L(x) = log P (x|λq) of the acoustic observation x given the HMM λ of the phone
q the decoder has elected. The sentence likelihood L1 can be approximated by
the sum of all phoneme log-likelihoods if independence of the phones is assumed.
By normalizing with n or m we obtain L2 and L3. The global and local sentence
likelihood as introduced in Neumeyer et al. [7] is additionally normalized by
R(phon):

L4 =
1

R(phon)

∑n
i=1 L(x)

T
L5 =

1
nR(phon)

n∑
i=1

L(x)
ti

(2)

L6 and L7 are based on word-likelihoods. First, we normalize and then we
average per sentence. By further replacing the observed phone duration ti with
di (from the duration statistic LUT) we get L8 and L9 from L5 and L6. Best
correlation with the human reference is achieved with L9 (-0.43) and L5 (-0.42).
LikeliRatio (LR) comprises features that compare the likelihoods received
from the forced alignment and the phone recognizer; in log-space for each frame
both values are subtracted and summed up over the entire utterance. For LR1
we normalize with n, for LR2 with T ·R(phon) and for LR3 with

∑n
i=1 diR

(phon).
Correlation with human annotations is around 0.5.
Accuracy (A): Human ratings and the phoneme or word accuracy (A1 and
A2 ) correlate with -0.45 and -0.38. Since a sentence contains only few words,
the phone recognition rate can be calculated more robustly.
PhoneSeq (PS): With a phoneme bigram LM estimated on native-data
(Sect. 4), the a priori probability log P (q|LM) of the observed phone sequence q
can be computed (PS1 ). After normalization with n or the rate-of-speech PS2
and PS3 are obtained. The latter correlates -0.40 with human marks.

5.2 Word-Level Features

On word-level 33 features, partly similar to the sentence-features, are extracted
from the data. Pauses and LikeliRatio are not considered. Here, Rate-of-Speech-
features are based on the number of phonemes per word duration. The category
DurationLUT contains amongst others the expected word duration, which is the
sum of expected phone durations from the native duration statistic (Sect. 4). As
for the DurationScore, the phone duration probabilities are now summed up for
each word. The Likelihood group comprises features with similar normalizations
as discussed above. Additionally minimum, maximum and scatter of frame-based
log-likelihood values are taken into account. Accuracy only contains the phone
accuracy. Given a phoneme bigram LM, the probability of the phone sequence
corresponding to the current word is calculated in PhoneSeq. Additionally we
compute the following features:

PhoneConfusion(PC). Instead of LikeliRatio-features PC -features are cal-
culated on the word-level. Both groups compare forced alignment and phone-
recognition. Phone-confusion occurs, if the reference phone p and the recognized
phone q differ. From the two precalculated confusion matrices (Sect. 4), we get
the probabilities P (q|p) given either the class wrongly pronounced or the class
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Table 2. Word-/sentence-level classification with 1D-features. CL in %

word (2 classes) sentence (3 cl.) sentence (5 cl.)
Pf-Star Atr/Slt Pf-Star Atr/Slt Pf-Star Atr/Slt

Rate-Of-Speech 59.5 65.9 41.2 54.5 28.6 32.2
Pauses – – 41.4 48.0 29.1 30.7
DurationLUT 58.3 64.5 40.0 54.7 23.7 35.0
DurationScore 62.1 67.3 44.9 55.9 28.5 37.6
Likelihood 62.6 67.0 41.1 56.7 26.4 35.6
LikeliRatio – – 44.0 61.8 27.0 41.9
PhoneConfusion 65.5 65.6 – – – –
Accuracy 64.6 61.5 47.8 52.0 29.1 34.9
PhoneSeq 59.4 65.0 42.4 52.8 28.6 34.9
Confidence 61.5 67.2 – – – –
Context 53.1 51.8 – – – –

correctly pronounced. For each frame, the ratio of both probabilities is computed;
the mean (PC1), maximum (PC2), minimum (PC3), scatter (PC4), and median
(PC5) are used as features.
Confidence(CF). We measure with 3 CF -features the probability of words
in the reference sequence, given a non-native’s utterance. The assumption is:
the better the pronunciation of a particular word, the higher is its posterior
probability. The calculation of the word posteriors is based on n-best lists.
Context(C)-features are obtained by comparing word and sentence based like-
lihood scores or by calculating the fluctuation of either the local rate-of-speech
or the local duration ratio between expected and observed word duration (7 fea-
tures). Let R

(local)
j be the number of phones per word duration of the j-th word,

then the fluctuation C2 is

C2 =
2R(local)

j

R
(local)
j−1 + R

(local)
j+1

(3)

6 Results

To evaluate the pronunciation features we applied the leave-one-speaker-out
cross-validation approach. We use the LDA-classifier and, additionally, for the
experiments in the last paragraph the Gaussian classifier. For all experiments
the class-wise averaged recognition rate (CL)3 and in some cases additionally
the overall recognition rate (RR) is given. Tab. 2 shows classification results for
the individual feature components. For each feature category, the optimal result
is shown as well for the word-level (2 classes: correctly pronounced / mispro-
nounced) as for the sentence-level. On the sentence-level classes of neighboring
marks overlap clearly, thus the classification results are rather low. For the 3-class

3 Average of recalls (not weighted by prior probabilities). For unbalanced data robust
recognition is required for both, classes with many and classes with few elements.
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Table 3. Results for 2 databases and 2 classification levels

word (CL in %) sentence (RR in %)
2 classes 5 classes ±1 tolerance

Pf-Star cross-vali, all features 69.1 72.9
Training: Atr/Slt, test: Pf-Star 67.7 61.9
Atr/Slt cross-vali, feature selection 72.2 79.9

task we map mark 2 → 1 and 4 → 3. The reference rating is for the Atr/Slt
Non-Native data as follows: a word is considered to be mispronounced, if it is
marked by at least 2 raters. On sentence-level, the discrete mean of the different
teachers’ marks is calculated. The Pf-Star data is on both levels marked by
one rater, only. Consequently labels are less robust and the recognition results
lower. Further reasons for the lower recognition rate on Pf-Star is, that the
recognition of children’s speech seems to be more difficult [8], that the utter-
ances contain reading errors and word fragments, and that the overlap between
training and test is smaller (the phone-confusion matrices are estimated from the
Atr/Slt training-set; the Atr/Slt-speakers read Timit sentences as used for
the phoneme LM and duration statistics). Best features on word-level are Accu-
racy and PhoneConfusion for the children’s data and DurationScore, Likelihood,
and Confidence for the adults. On sentence-level we obtained good results for
Pf-Star with Accuracy, DurationScore, and LikeliRatio, for Atr/Slt in par-
ticular with LikeliRatio.

On the Pf-Star-corpus we investigate whether recognition rates increase if
the entire feature-set is employed. Again we use the LDA-classifier. On word-
level with 33 features 69.1% CL (72.0% RR, Tab. 3) are achieved. Features
are highly correlated, nevertheless we gain 3.6% points in comparison to the
best single feature. On sentence-level best results are achieved after reduction of
the 28 features to 14 principal-components, since otherwise not enough training
data would be available. For the 3-class task CL is 50.2% (52.6% RR), for the
5-class task 33.4% (28.7% RR). If we allow confusion of neighboring marks,
e.g. classifying mark 2 as 1, the recognition rate can be interpreted as 72.9%
RR (Tab. 3). Fortunately, the pronunciation features are transferable between
different corpora: we train classifiers with the Atr/Slt-corpus and test them
with Pf-Star children. On word-level 67.7% CL are achieved; tolerating 1 mark
deviation the sentence-level result can be interpreted as 61.9% RR.

Further investigation were conducted with the Gaussian classifier and the
floating search feature-selection algorithm using the Atr/Slt-corpus [1]. One
optimal combination with five word-level features comprises features from the
categories Context(2), Confidence, Likelihood, and DurationScore: 72.2% CL are
achieved (Tab. 3). On sentence-level 40.1% CL for five classes is derived from
Accuracy, Likelihood and LikeliRatio; with the best single feature (LikeliRatio)
36.7% are achieved using Gauss and 41.9% using LDA (cf. Tab. 2). If we allow
the confusion of neighboring marks, the recognition rate can be interpreted as
79.9% RR (Tab. 3). Further, assuming natives to have perfect pronunciation,
they are recognized with 90.2% RR using the 5-class recognizer.
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7 Conclusion

In this paper two non-native speech databases with children’s (Pf-Star) and
adults’ speech (Atr/Slt) are described. Raters marked correct and mispro-
nounced words and graded the sentences with marks 1 – 5. For the adult’s
data ratings from 3 – 4 native teachers are available, for the children’s data
only one rating of a student of English. We described a set of 28 sentence-
based pronunciation features and 35 word-level features. Best correlation with
human ratings is obtained with the LikeliRatio-features, which compare the log-
likelihood of forced-alignment and recognized phone-sequence. For classification
experiments we employ leave-one-speaker-out cross-validation approach. With
single features we get recognition rates up to 67% (2 classes, word-level), 62%
(3 classes, sentence-level) and 42% (5 classes, sentence-level). Due to the less
precise rating, higher variability of children’s speech, and the fact that the chil-
dren’s corpus contains reading errors and word fragments, worse results are
achieved for the Pf-Star data. By combining features the recognition could
be increased. With feature selection a combination of features could be found,
that includes separately not well performing features like Context -features, that
seem to contain additional information. Further could be shown that the fea-
tures are transferable: After training with Atr/Slt data, we evaluated with
Pf-Star data and obtained acceptable results. If we evaluate natives, in deed
90% are recognized as very good speakers. For future work we expect further
improvement from the combination of both classification levels.
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Abstract. Over the last decade voice technologies for telephony and embedded 
solutions became much more mature, resulting in applications providing mobile 
access to digital information from anywhere. Both a growing demand for voice 
driven applications in many languages and the need for improved usability and 
user experience now drives the exploration of multi-lingual speech processing 
techniques for recognition, synthesis and conversational dialog management. In 
this overview article we discuss our recent activities on multi-lingual voice 
technologies and describe the benefits of multi-lingual modeling for the 
creation of multi-modal mobile and telephony applications. 

1   Introduction 

Since the mid 90’s speech recognition technology made tremendous progress. At that 
time focus on research was mainly towards speaker dependent, very large vocabulary 
speech recognition to solve dictation type usage scenarios for a PC [1]. With the 
introduction of dictation products and their wide distribution to a broad audience 
research interest moved rapidly on towards speaker independent speech recognition 
technologies using mainly grammars and small to medium sized vocabularies. In 
addition, the convergence of mobile phones and embedded devices has driven 
progress in both research on noise robustness for telephone channels as well as in 
optimization techniques for very small footprint deployments. 

Today, advances in voice technology development and the growing number of 
information access applications promise an easy and natural access to information in 
any environment. Imagine applications like tourist information, traffic jam 
information, stock quote query systems, and even more voice enabled Internet portals 
which must deal with content from multiple languages spoken by native, accented or 
non-native language speakers not only in stress and pronunciation handling, but at all 
levels of the system. Voice solutions might be deployed on small devices like PDA’s 
and navigation systems with a variety of input and output modalities like voice, 
keyboard, stylus  and display, whereas a telephone deals these days with voice input 
and output only. However, targeting all these rapidly growing solution scenarios 
requires not only research in the fields of the core technologies, but also on 
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technology standardization of voice user interfaces (VUI), programming languages 
covering multi-modal input & output, and research on conversational systems that can 
deal with natural dialogs [2] 

Above considerations demonstrate that making multi-language information 
available anywhere via voice to a large user population requires extensive research in 
a wide range of multi-lingual voice technologies spanning speech recognition, speech 
synthesis and conversational dialog management. For efficiency and best system 
performance it is beneficial to systematically consider and exploit synergies between 
all employed voice technologies. Herein we will provide an overview on our recent 
multi-lingual activities which include the definition and use of common phone 
alphabets for speech recognition and synthesis, acoustic modeling for native and non-
native multi-lingual speech recognition, and the development of systems capable of 
handling directed and conversational dialog in many languages. We also provide 
insight into functioning prototype development and system view introductions 
addressing standardization of voice user interface development for consumer devices 
and telephone systems. 

The remainder of the paper is organised as follows: Section 2 provides a brief 
overview over progress on common phone alphabet definitions and Section 3 
describes multi-lingual acoustic modelling experiments including results on non-
native speaker recognition. Section 4 provides on overview on our initial activities on 
speech synthesis dealing with multi-lingual text and exploiting common phone 
alphabets. Section 5 introduces conversational dialog systems and adaptations for 
dealing with multi-language speech input. Section 6 focuses on voice user interface 
standardization and examples of prototypes for client and telephony systems. Finally 
Section 7 provides a conclusion and some prospect for further work. 

2   Evolution of Common Phone Alphabets 

The definition of a common phone alphabet for multilingual speech recognition has to 
deal with at least two conflicting goals: in speech recognition the phonetic inventory 
of each language should be covered as precise as possible in order to achieve high 
recognition accuracy, while at the same time as many phones as possible should be 
shared across languages. Maximizing the overlap will a) efficiently utilize the training 
data and b) lead to reasonably small acoustic models. A similar tradeoff can be 
observed for common phone alphabets defined for speech synthesis: while on the one 
hand the sounds of each language should be kept separate in order to enable high 
quality synthetic speech for all languages, a less detailed definition may result in a 
broader variety of individual synthesis units. In particular for small sized segment 
databases the latter may help to better match the targets requested by the synthesizers 
linguistic front end, cf. Section 4. 

Starting from available, disjoint phonetic alphabets for seven languages (Arabic, 
British English, French, German, Italian, (Brazilian) Portuguese, and Spanish) which 
are used within our monolingual speech recognition research activities we have 
designed two common phonetic alphabets of different detail [3]. In a first step, 
language specific phone sets were simplified following available SAMPA 
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transcription guidelines (see [4]) which affected each language’s phone set to a 
different degree: While, for example the native French phone set remained 
unchanged, we gave up syllabic consonants for German, and at the same time 
introduced new diphthongs for British English. Then, language specific phones 
mapped to the same SAMPA symbol were merged into a common unit. This resulted 
in a common phonetic alphabet consisting of 121 phones (65 vowels, 56 consonants) 
for the seven languages. As can be seen in Table 1, this gave an overall reduction of 
60 percent compared to the simplified language specific phonologies. 

Table 1. Number for vowel and consonant phones for seven languages in the detailed common 
phone set. Languages are British English (En), French (Fr), German (Gr), Italian (It), Spanish 
(Es), Brazilian Portuguese (Pt), and Arabic (Ar). 

 total En Fr Gr It Es Pt Ar 
vowels 65 20 17 23 14 10 20 14 

consonants 56 24 19 26 32 30 22 29 
Total 121 44 36 49 46 40 42 43 

To increase the overlap we have defined a less detailed common phonetic alphabet, 
cf. Table 2. We achieved this in three steps: 1) we dropped the distinction between 
stressed and unstressed vowels for Spanish, Italian, and Portuguese 2) we represented 
all long vowels as a sequence of two (identical) short vowels and 3) we split 
diphthongs into their two vowel constituents. In doing so, the average number of 
languages that contribute to the training data for each of the 76 phones (the sharing 
factor) increased from 2.28 to 2.53. If we disregard Arabic, the sharing factor 
increased from 2.74 to 3.56. But this radical inventory reduction caused an increase of 
the average word error rate by about 7 percent measured on an in-house database if 
compared to the more detailed common phone alphabet. 

Table 2. Number of vowels and consonants for seven languages in the reduced common phone set 

 Total En Fr Gr It Es Pt Ar 
Vowels 31 13 15 17 7 5 12 11 

Consona
nts 

45 24 19 23 28 24 22 28 

Total 76 37 34 40 35 29 34 39 

A further benefit of the reduced phone inventory stems from the fact that additional 
languages can be covered with less new phones as with the detailed inventory. The 
integration of eight additional languages (Table 3) required only 2 additional vowels 
and 12 consonants which is a result that makes us believe that the slight degradation 
in accuracy is tolerable and likely to be adjustable by improved acoustic modelling 
techniques. 
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Table 3. Number of vowels and consonants for additional languages integrated into the reduced 
common phonetic alphabet: Czech (Cz), Japanese (Jp), Finnish (Fi), Greek (El), Dutch (Nl), 
Danish (Da), Norwegian (No), and Swedish (Sv). 

 Cz Jp Fi El Nl Da No Sv 
vowels 5 5 8 5 14 14 17 17 

consonants 27 23 19 25 22 20 23 24 
total 32 28 27 30 36 34 40 41 

3   Multilingual Acoustic Modeling 

Multilingual acoustic modeling facilitates the development of speech recognizers for 
languages with only little available training data, and also allows reduced complexity 
of application development by the creation of acoustic models that can simultaneously 
recognize speech from several languages [5]. The use and combination of 
multilingual acoustic models has also proven advantageous for the recognition of 
accented speech produced by a wide variety of non-native speakers with different 
commands of the system's operating language [6]. 

Acoustic modeling for multilingual speech recognition to a large extend makes use 
of well established methods for (semi-)continuous Hidden-Markov-Model training. 
Methods that have been found of particular use in a multilingual setting include, but 
are not limited to, the use of multilingual seed HMMs, the use of language questions 
in phonetic decision tree growing, polyphone decision tree specialization for a better 
coverage of contexts from an unseen target language, and the determination of an 
appropriate model complexity by means of a Bayesian Information Criterion; see, for 
example, [5, 7] for an overview and further references. 

Having now reached a certain maturity, the benefits of multilingual acoustic 
models are most evident in applications that require both robustness against foreign 
speakers and the recognition of foreign words. We have simultaneously explored both 
of these when creating a Finnish name dialer whose application directory consists of a 
mix of 6,000 Finnish and foreign names, and which is used by native and non-native 
speakers.  

For that purpose, we created acoustic models with different proportions of speech 
data from Finnish (SpeechDat-II), US-English, UK-English, German, Italian and 
Spanish. The amount of training material used for the creation of various acoustic 
models ranges from a mono-lingual Finnish acoustic model created from 70,000 
utterances to a multilingual model that was trained from up to 280,000 utterances 
(approx. 190 hours of speech). As expected, we found a decreasing word error rate 
when the amount of data increased. Word error rates on the 6,000 foreign names task 
were between 2.63 percent in case of the monolingual Finnish recognizers and 2.07 
percent when the entire data was used for training. More interestingly, we obtained 
reduced word error rates also when performing digit recognition experiments in 
Spanish with the so created multilingual acoustic models. These results clearly 
demonstrate that the acoustic models learn from other languages data and thus 
provide robustness for native Spanish speakers. 
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4   Multilingual Speech Synthesis 

Whereas multilingual modeling is an almost well established principle in speech 
recognition, it is an only emerging concept in the area of speech synthesis, although 
the need for a better utilization of synergies between both fields has been recently 
recognized [9].  Despite of some work towards system architectures and algorithms 
that can be used for the construction of synthesizers for a variety of languages 
[10,11], today's systems usually achieve speech output in multiple languages by use 
of two or more language dependent synthesizers (see, for example, [12]), which is 
frequently accompanied by switching to a different voice.   

The IBM trainable text-to-speech system [13] serves as a test bed for our recent 
work on bilingual, unit selection based speech synthesis, which is briefly sketched in 
the following. While above mentioned deficiencies are addressed by the construction 
of a multilingual back end database, in contrast to [14] we do not provide any mixed-
lingual text analysis, but employ a set of language specific linguistic front ends in 
conjunction with a recently developed transformation-based learning approach to 
language identification [15]. During synthesis, input text is annotated with a language 
identifier and passed to the corresponding front end that performs text normalization, 
text-to-phone conversion, and phrase boundary generation. Preprocessed phrases are 
passed to the back-end that employs a Viterbi beam-search to generate the synthetic 
speech. The cost function has been revised recently, and now tends to favor long 
contiguous segments which produces fewer splices and allows preservation of the 
natural prosody. 

The construction of bilingual voices (German/English and Spanish/English) relies 
on a script of about 10.000 sentences (15 hours of speech, including silence) that 
include approximately 2000 phonetically balanced sentences as well as a variety of 
newspaper articles, emails about different topics, proper names, digits and natural 
numbers, and a number of prompts that are related to popular voice driven 
applications (e.g. air travel information). While the German or Spanish recording 
scripts already include some English words, for the construction of bilingual voices 
each script was augmented by 2000 phonetically balanced English sentences that were 
read by the same voice talents under the same recording conditions. 

For the creation of bilingual Spanish/English and German/English voices, we have 
utilized common phonetic units to a different degree. For Spanish/English we 
followed a more conservative design and kept the vowels separate, while all of the 
consonant phonemes were merged. In contrast, a more aggressive strategy was 
followed for the construction of a bilingual German/English synthesizer, where we 
decided to share not only all consonants between the two languages, but also all 
vowels, nasal vowels and diphthongs.  Multilingual Hidden Markov Models trained 
with approx. 50.000 utterances from five different languages (English, French, 
German, Spanish, and Italian) are used to construct the synthesizer’s acoustic unit 
inventory. In order to obtain most accurate alignments, speaker-independent, time 
synchronous models are transformed into speaker-dependent, pitch synchronous 
models by running several iterations of the forward-backward algorithm during this 
process. Phonetic context clustering of the final, pitch-synchronous alignment is used 
to create a bilingual acoustic decision tree; each leaf of these trees holds a set of 
subphoneme-sized speech segments from which the output speech is generated. 
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During the construction of the system, we experienced several advantages from 
using multilingual models, ranging from the seamless alignment of both the native 
and the non-native part of the recorded corpus to a better agreement between the 
speaker's actual pronunciation of foreign words and the dictionary which helps to 
avoid segmental errors during synthesis. Additional benefits were seen when using 
bilingual decision trees for the creation of speaker dependent prosody targets. For that 
purpose, sets of features extracted from each language's front-end are mapped to pitch 
and duration targets for each syllable or phone, respectively. Training of a common 
decision tree from both the native and non-native part of the speech database turned 
out to be an efficient method to overcome data sparseness resulting from the fact that 
we have recorded only a small amount of non-native data so far. While informal 
listening tests unveiled no degradation for synthesis in any of the primary languages 
(German or Spanish) and showed improved synthesis quality for embedded English 
phrases, the construction of a fully bilingual synthesizer still requires the recording of 
a larger English corpus. 

5   Multilingual Conversational Dialog Systems 

The scale of multilinguality for a conversational system can reach from a set of 
monolingual systems for all languages, where the user chooses in the first utterance 
the language of choice to be used during the whole dialog, towards completely 
multilingual systems, where all system components are able to process multilingual 
input and output. 

If built up from several separate monolingual systems, at the beginning of each 
dialog the system has to decide which language the user prefers. This can be done in 
different ways:  

1. the user can be asked in different languages to choose the preferred language by 
using touch tones,  

2. a language identification module utilizes the first user utterance to determine the 
language to be used for the remaining dialog,  

3. throughout the whole interaction the utterances can be processed in parallel in 
each language and the output with the best score determines the language. 

The advantage of the latter approach is that a multilingual system can be built with 
minimal effort, in case systems for different languages exist.  

An alternative approach is to combine a multilingual speech recognition system 
with several monolingual systems for the NLU and dialog that run in parallel. In this 
case the language of the dialog must be identified from the spoken utterance, either by 
employing a spoken language identification module, or – in case of grammar based 
speech recognition – by identifying the language from the grammar that scores best. 
Drawbacks of this approach are a potentially less accurate speech recognition 
component, and the possibility of incorrect language identification. 

However, the most challenging approach is to create a conversational system in 
which all components can cope with multilingual input and output. Besides the 
multilingual speech recognition, multilingual NLU, dialog, answer generation and 
synthesis components are needed. The advantage is that a user can switch languages 
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between utterances and even within an utterance. The system has to decide for each 
utterance, in which language the answer will be generated. 

There are different aspects to keep in mind, when deciding for one approach or the 
other.  As already discussed, accuracy and application maintenance issues can be an 
argument to decide for deploying several monolingual language components rather 
than full multilingual technologies. The parallel language component approach 
facilitates also the addition of further languages into the system. Another aspect is the 
practical usage of such a system. In the case of a telephony system, which provides 
communication in the users' mother tongue, it's rather unlikely that a user will switch 
between languages within an utterance or even between utterances. When deploying a 
kiosk system (e.g. at a train station or airport), the demands are quite different. It may 
be difficult for the system to determine the end of a dialog with one user, and the 
beginning of the next one. Thus, a system that allows switching of languages between 
utterances is a good compromise between flexibility and robust system performance.  

An additional issue to consider is the nature of the backend database: If the 
backend content is available in only one language it needs translation, which is 
probably not a big deal for dates, prices and numbers, but can be a real challenge for 
content such as event information (for example the names of performers, venues, 
streets) which might be language specific and needs special handling during 
synthesis. In [8] results for two of the above approaches are presented: a system with 
parallel, monolingual components and a system where all components are bilingual. 
The developed application covers sport events of the Olympic Games in Athens in 
2004. In many respects, the results showed the superiority of the multilingual 
architecture with parallel language-specific components. Furthermore, the 
maintenance of this approach turned out to be relatively easy: the system can be 
constructed from monolingual systems, and adding new languages requires only slight 
modifications in the overall system. However, the parallel approach is more expensive 
when it comes to processing power for all parallel components. Results from user 
tests with the parallel approach were promising and showed that multilingual systems 
can be built with rather small performance degradation. However, these were only 
first results, which will be further verified and extended e.g. by adding further 
languages and with other applications. 

6   Multi-modal Voice User Interfaces 

To enable the rapidly growing community of voice application designers to easily 
develop good voice applications it is required to implement programming models 
which allow hiding some of the complexity, especially when multiple modalities for 
input and output are available. When we started our activities there were no standards 
for Web-based multi-modal application development established. We thus explored 
several approaches to support both visual and oral input in a coordinated manner. The 
multi-modal techniques introduced in this section highlight one of the possible 
approaches. We picked this particular solution because it allowed natural extension of 
the VoiceXML model which provides already built-in dialog management 
capabilities. 
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In the design of a multi-modal system, one of the important architectural questions 
is how (and to what extend) user actions and respective application state changes are 
propagated from one modality to another (i.e. the synchronization model). The 
synchronization model implemented in our browser is a powerful approach to drive 
applications such as SMS dictation, yet quite compact, and straightforward to be 
implemented on commercially available PDA such as Compaq iPAQ, Loox and 
others. The synchronization framework is now introduced in some more detail. 

The multi-modal capabilities of this newly developed browser are extensions to the 
standard VoiceXML input (DTMF and speech recognition) and output (pre-recorded 
audio or TTS) that support the rendering of HTML pages, and the use of HTML links 
and forms for user input. We support VoiceXML code to control loading of pages into 
the HTML component (page-level synchronization) and the HTML component to 
send specific user-related updates to the VoiceXML component (sub-page-level 
synchronization): 

• Displaying HTML pages is implemented through extensions to the semantics of 
the VoiceXML <prompt> tag. HTML documents referenced from VoiceXML 
code are passed to the HTML viewer and treated as a page to be displayed. The 
page stays displayed until it is rewritten with a new content. Instead of 
referencing an URL, the designer has an option to construct HTML pages at 
runtime via ECMA script procedures included as part of the VoiceXML 
document. Runtime generation of HTML pages is beneficial for multi-modal 
applications with highly dynamic visual content, which is for example the case in 
SMS applications. 

• The HTML pages displayed can also contain links and forms that can be used to 
provide explicit synchronization between HTML and VoiceXML components. 
For example, links with values are used as synchronization anchors that convey 
the information on user's clicking to the VoiceXML component. Similarly, the 
values of HTML form variables are propagated to the VoiceXML component 
upon form completion (on submit). Such sub-page-level synchronization is 
necessary to implement multi-modal applications that support dynamic filling of 
HTML forms via a GUI and / or voice. 

We refined above mentioned techniques during the development of several multi-
modal case study applications. While practical experience from these studies shows 
that the current set of multi-modal extensions is sufficient for efficient authoring of 
PDA-scale, multi-modal applications our recent voice user interface activities shifted 
towards multi-modal design leveraging XHTML and VoiceXML which are widely 
spread and starting to become a de facto standard. 

Very often users have available more than one client (for example, a mobile phone, 
a PDA, and a notebook) which provide different modalities. Therefore, extending 
multi-modal concepts to cover multi-client aspects is a growing focus of interest. The 
techniques described constitute one of several possible approaches, and were selected 
because they allow easy extension of the application for a new client setup. 
Originally, we defined several requirements for the application behavior: 
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• The application has to cover different clients. 
• The incorporation of a new client into the running application has to be 

maximally simplified. 
• The executive code has to be separated from the data as well as dialog control 

description. 

To achieve these requirements we decided to use XML, XSL and XSLT. The 
dialog flow is described within XSL files. For the different clients the different XSL 
files are defined wherever required. The dynamic data - like e.g. client side 
application data, grammars, etc. – is stored in XML files. Beside these two types of 
files there is also static data like audio files, graphical images, static grammars or 
other static data which can be used for improving the design for a certain client. 

The server side application is waiting for clients' requests. Based on an incoming 
HTTP request and the type of the client, the executive code selects the appropriate 
XSL file (which holds the client dependent static data), an XML file (with client 
independent dynamic data), and additional static data files to generate the requested 
page (pages). The internal structure of the server side layout (as PHP environment) is 
depicted in Figure 1. 
 

Fig. 1. Architecture of Server Side Layout 
 

We refined the above mentioned techniques during the development of several 
simple multi-client case study applications. Initial experience during this development 
procedure indicates that this multi-client approach is powerful enough to cover 
efficiently several different clients. 
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Above overview on multi-modal design tasks as well as the ability to facilitate 
voice application development within multi-client scenarios will build the base for our 
ongoing activities to design multi-lingual applications which leverage recognition, 
synthesis and conversational understanding technologies. 

7   Conclusion and Outlook 

Within this article we provided an overview on our recent activities towards multi-
lingual speech processing systems. Following a motivation for our overall scope of 
work we covered the definition and ongoing expansion of a common phone alphabet 
which builds the base for all our multi-lingual voice technology component activities. 
Exploiting the various versions of common phone sets we highlighted the progress for 
multi-lingual speech recognition and synthesis as well as the design and creation of 
differently architected conversational language understanding applications. To 
emphasize the importance of overall system and voice user interface needs we 
introduced the development of multi-modal and multi-client architectures and its 
design principles. This evolving infrastructure builds the base of integration of the 
multi-lingual voice technologies and will ultimately allow mobile access to digital 
information anywhere. As some of the digital information is very user sensitive or not 
even available in the user’s language, future activities on architecture and 
technologies may cover the integration of speech biometrics and spoken language 
translation. 
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Abstract. A histogram-based method for the interpretation of three-dimensional
(3D) point clouds is introduced, where point clouds represent the surface of
a scene of multiple objects and background. The proposed approach relies on
a pose-invariant object representation that describes the distribution of surface
point-pair relations as a model histogram. The models of the used objects are
previously trained and stored in a database. The paper introduces an algorithm
that divides a large number of randomly drawn surface points, into sets of po-
tential candidates for each object model. Then clusters are established in every
model-specific point set. Each cluster contains a local subset of points, which is
evaluated in six refinement steps. In the refinement steps point-pairs are built and
the distribution of their relationships is used to select and merge reliable clusters
or to delete them in the case of uncertainty. In the end, the algorithm provides
local subsets of surface points, labeled as an object. In the experimental section
the approach shows the capability for scene interpretation in terms of high clas-
sification rates and fast processing times for both synthetic and real data.

1 Introduction

Scene interpretation is an important basic step for several different applications. There-
fore, it is most desirable to have a generic approach that fits to every kind of three-
dimensional (3D) object and that minimizes application-specific adaption as much as
possible.

Statistics of geometric feature distributions of shape are a generic description of
free-form objects. Examples of representations for one and two-dimensional feature
distributions are discussed in [1,2]. These approaches are capable of rapidly classify-
ing objects with respect to large databases. However, the objects need to be isolated
from background and suffer from moderate recognition accuracy, so that they are more
suitable for only a coarse preliminary search.

An alternative line of research addresses local shape distributions that allow scenes
of multiple objects and backgrounds. The spin images of Johnson and Hebert [3] as well
as the surface signatures of Yamany and Farag [4] contributed a lot to local distribution
analysis in cluttered scenes. To create their histograms, surface points are picked and a
plane is rotated about their local surface normals. The surrounding points are accumu-
lated in that plane. Thus, both approaches require dense surface meshes and relatively
large memory consumption for object representation.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 160–167, 2005.
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This paper relies on a generic histogram-based description of shape as introduced
in [5]. The object representation shows good performance with respect to recognition
rate, processing time, memory consumption, and descriptive capacity. The contribution
of this work is an expansion of the formerly isolated free-form objects to scenes that
include several objects and background. A new cluster-based method is introduced,
which iteratively separates object points from the point cloud with respect to the local
distribution of point-pair relations.

2 Object Representation and Training Phase

This section summarizes the object representation (see [5] for details) and expands the
former description with two additional parameters.

Free-form shapes that are composed of oriented surface points can be described
by the statistical distribution of point-pair relations. An oriented point consists of its
position u and its local surface normal v and is referred to as a surflet in the following.

The relationship of a surflet p1 = (u1,v1) to another surflet p2 = (u2,v2) is
uniquely encoded by four parameters α, β, γ, and δ. The attributes α and β respectively
represent v2 as an azimuthal angle and the cosine of a polar angle, with respect to
p1. The parameters γ and δ represent the direction and length of the translation from
u1 to u2, respectively. Furthermore, we refer to the relationships of a surflet-pair s =
(p1,p2) as a feature fs = (α,β, γ, δ).

Taking all possible features into account leads to a characteristic distribution of an
object surface. The feature distribution is quantized in a histogram HM of normalized
frequencies. For each dimension we use five quantization steps. This produces a number
of d = 54 = 625 bins per histogram. The function hM : fs �→ b ∈ {1,2, . . . ,d} maps
a feature to the corresponding bin HM (b).

A model M = (HM , δM,max, r̃M , rM,max) consists of a normalized histogram of
feature probabilities and three characteristic parameters. The first parameter is the max-
imum distance δM,max between two object surflets. The last parameters are the mean
distance r̃M and the maximum distance rM,max of surface points to the centroid.

In the training phase, models are learned by uniformly drawing a large number of
random surflet-pairs. The data source used for training can be either synthetical (e.g.
from CAD models) or can be measurements from 3D-sensing. In the second case the
measurements should contain no background surflets.

Experiments concerning the descriptive capacity of the object representation, i.e.
recognition rates in the presence of noise, with partial visibility and variation of the
surface point density, are discussed in [5].

3 Scene Interpretation

In this paper, we deal with 3D-scenes that consist of oriented surface points that build
large point clouds.

Because we are representing an object as a distribution of its surflet-pair relations,
the strategy of scene interpretation is to divide the point cloud into subsets and label
them as an object or as background.
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The structure of sensed data is often a point cloud with varying local densities,
while objects are trained with randomly and uniformly drawn samples of the surface.
The different conditions of surface density affects the probable location of a surflet
and, therefore, lead to distorted feature histograms. To overcome this problem an initial
reduction of data is necessary. A subdivision space (e.g. an octree or balanced binary
tree, see [6] for details) is applied, which divides space into homogeneously-sized cells.
Each cell contains the mean surflet value in its space. This preliminary step reduces
the noise and size of data at once. Moreover, it guarantees an upper bound of surface
density.

Since scenes consist of several objects and background, surflet-pairs are not nec-
essary of one object only. Thus, the major problem the approach has to deal with, is
to decide which surflet pairs can be trusted and which are crosstalk. Here, crosstalk is
the relation of surflets that does not belong to the same source, e.g. a pair with one
point being part of an object and one point being part of the background. The ratio of
crosstalk to real object point-pairs contaminates the feature histograms and has to be
kept as small as possible.

To reduce crosstalk resulting from background, two strategies are proposed. The
first possibility is to suppress the background, in that case the position must be known
and it must be the same for all measurements. A more flexible solution is to identify and
eliminate the background. In this paper, we favor the second approach. To achieve this,
the appearance of background features is trained like those of the objects.

In the following, an algorithm is proposed which cuts off local sets of points and
classifies them with the label of an object. The processing is based on the previously
reduced point cloud.

Step 1: Initialization of Cluster Seeds

As in the training phase, the algorithm starts with drawing a set S = {s1, . . . , sn} of
n surflet-pairs si. With regard to the k models of the database Ω = {M1, . . . ,Mk},
the maximal diameter δMj ,max of the largest model Mj limits the distance allowed in a
surflet-pair.

Subsequently, the features fs are calculated. At this stage it is not known whether
both surflets are part of the same object or rather describe a false relation, that is
crosstalk. Consequently, a second reduction step has to be applied which determines
the sample set for each model Mi individually. The threshold significant surflets ps of
the model Mi.

S∗Mi
= {ps | ∃ s ∈ S : ps ∈ s ∧

HMi(hMi(fs)) ≥ H̃Mi ∧ (1)

[HMi(hMi(fs)) ≥ HMj (hMj (fs))∀j �= i]}, (2)

H̃M =
λH

m

∑
∀fs

HM (hM (fs)),where m = card{fs|HM (hM (fs)) �= 0}, (3)

It can be adjusted by a positive scalar1 λH . The notation card is used for the cardinality
of the set. Condition 2 limits the set to features, which respond most for the preferred

1 We used λH = 1.3 in the tests.
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model. Surflets collected by the background model need no further processing and af-
fect classification no longer.

It is assumed that surflets in S∗Mi
build spatial clusters for objects represented by

the model Mi. Accordingly, m random surflets are drawn therefrom. These surflets
initialize the positions of a model-dependent set CMi ⊆ S∗Mi

of cluster seeds c. The
term “cluster seed” is used to emphasize the preliminary state as compared to a cluster.

Step 2: Cluster Seed Refinement

Each cluster seed c ∈ CMi has a sphere of the radius rMi,max and initially contains the
local subset

S′c,Mi
= {ps ∈ S∗Mi

| rMi,max ≥ ‖ps − c‖} ⊆ S∗Mi
. (4)

Not all of these surflets are reliable, so two alternating steps are iteratively applied for
refinement.

Regrouping: Assuming that all surflets belong to the same object, a recombination of
the surflets should produce acceptable features. On the other hand, false surflets that
previously built also a valid feature by chance are now likely to cause crosstalk. The
features of the recombined surflets are calculated and compared to the histogram
HMi of the model. Impossible features that point to a zero value (HMi(hMi(fs)) =
0) are labeled as crosstalk.

Crosstalk Elimination: A cluster seed is valid if it contains no crosstalk. All surflets
that cause crosstalk are erased.

Both steps are applied until no crosstalk occurs or no surflets remain. Cluster seeds
without surflets are deleted. The surflet sets of the remaining cluster seeds are referred
to as S′′c,Mi

⊂ S′c,Mi
.

Step 3: Cluster Seed Merging

Due to the large number of initial cluster seeds in relation to the number of expected
objects, many cluster seeds belong to the same object. Cluster seeds of the same object
share a large number of surflets. It is obvious that such cluster seeds should be merged
into one large cluster.

To achieve good merging results it is advisable to start with the best cluster seeds.
Therefore, a criterion is needed to rate the distribution quality of each cluster seed and
its surflet set S′′c,Mi

. In [7] and [5] it is shown that the logarithmic likelihood outper-
forms other criteria like Kullback-Leibler divergence and χ2-test in processing time and
reliability. Accordingly, the criterion is applied.

L(Mi|S′′c,Mi
) =

1
cardS′c,Mi

∑
ps∈S′

c,Mi

lnHMi(h(fs)) (5)

Since higher votes L(Mi|S′′c,Mi
) refer to better model fits and a larger number of

valid surflets, we can use L(Mi|S′′c,Mi
) to sort the cluster seeds by their quality.
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Subsequently, the best ranked cluster seed is compared to all lower-ranked seeds.
Each time the number of coincident surflets exceeds a certain threshold2 λo, the com-
mon surflets are stored in a cluster ĉ. Restriction to surflets contained in both merging
cluster seeds, reduces undetected crosstalk. Such crosstalk occurs when a cluster seed
is placed in between two objects of the same model. Then, half of the set may point to
one object and the other half to the second object.

Merged cluster seeds are deleted from the sorted list. If a cluster seed remains, the
algorithm starts again at the top of the list. Otherwise, the merging process is finished.

Step 4: Distribution Checkup

After merging, the set of surflets has to be checked again. As previously done with the
cluster seeds, the surflets of a cluster are regrouped and the features as well as their
distribution histogram are calculated. Clusters of this state should contain nearly no
crosstalk, thus we additionally demand the highest distribution response when applying
(5) on the expected model. Otherwise the cluster is deleted.

Step 5: Cluster Similarity

Only few clusters ĉ ∈ ĈM = {ĉ1, . . . , ĉm} reach this level. Misclassifications are rare
but still possible, since similar parts of different objects may show similar distributions,
e.g. the bottom of a cup and the bottom of a bottle. Nevertheless, the size of a cluster
contains hints to the correctness of classification that could be described by two con-
ditions. The first condition is that the cluster size has to exceed a minimum. Second
condition is that all clusters of a model type should be of similar size. The size is mea-
sured in terms of the number pĉ of contained surflets, where pmax is the surflet number
of the largest cluster. The normalized surflet number pĉ of each accepted cluster ĉ must
be in the interval [λĉ, 1], where λĉ is a threshold for the minimum number of surflets.
Division by pmax is used for normalization.

Step 6: Cluster Competition

A last evaluation step prevents multiple classifications of an object. Therefore the cen-
troid uĉ1 of a cluster ĉ1 is calculated and compared to the centroids of all other clusters,
e.g. the centroid uĉ2 of cluster ĉ2. A collision occurs, if

|| uĉ1 − uĉ2 || ≤ max(r̃Mi,ĉ1 , r̃Mj ,ĉ2), (6)

holds, where r̃Mi,ĉ1 is the mean distance of the surflets to the centroid uMj ĉ1 (see
Section 2). Two cases have to be distinguished. In the first case, both clusters are of the
same model type (Mi = Mj) and then can be unified. In the second type, the clusters
are of different model type (Mi �= Mj). Thus, the cluster ĉ1 of model Mi remains, if it
fulfills at least two of the three following conditions:

pĉ1 > pĉ2 , (7)

pĉ1/nĉ1 > pĉ2/nĉ2 , (8)

and nĉ1/nmax,ĉ1 > nĉ2/nmax,ĉ2 . (9)

2 30% of co-occurrence shows good performance.
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Condition 7 favors the cluster with the larger number of surflets with respect to its
model-specific ranking, which was already calculated in Step 4. Condition 8 considers
the number of surflets pĉ in relation to the number nĉ of merged cluster seeds per
cluster. Finally, Condition 9 addresses the number of merged cluster seeds nĉ in relation
to the maximum number nmax,ĉ of merged cluster seeds per model.

4 Experiments

The experiment section is split into two parts. The first part discusses results achieved
with synthetic data, while the second part takes a closer look at results from real data.

4.1 Synthetic Data

In the case of synthetic data, we use a database of eight entries, which is a sufficiently
large number for most applications in robotics. The database contains models for the
surface of the table, the bunny, the bottle, the carafe, the cup, the dragon, the horse, and
the wine glass. All objects were randomly placed on the plain in an upright position.
The minimal distance from one object to every other is always rM,max of the smaller
one. Fig. 2(a) shows one of a 1000 examples used in this experiment. The mean number
of scene points was about 770,000 surface points, which the octree structure reduced to
77,000 points, leading to the generation of 232,000 features.

The algorithm performed at a rate of 97.2% correctly classified objects. The horse
showed the weakest results. This effect derives from the disadvantageous point distribu-
tion. The thin but long legs widen the object size and therefore increment the possibility
of non-object points without adding enough points themselves.

The accuracy in terms of included cluster points being part of the object achieved
96.1%, where clusters contained a mean number of 330 points. Processing times on an
Intel Xeon 2.8GHz processor with 2GB RAM averaged 6.8 seconds.

4.2 Real Data

The DLR multi-sensory 3D-Modeler (see [8] for details) was used for real data acqui-
sition. We used the laser-range scanner seven times and the laser-profiler two times in
sampling the 3D-scenes. In contrast to the tests on synthetic data, the real scenes exhibit
noise and incomplete surfaces (see Fig. 2(b)). The reasons for this clutter are surface
parts that are unreachable for the sensor or regions that produce no valid information
due to local reflectance behavior of the surface.

Here, a database of four objects is used: a toy phone, a wooden train, a bust of Zeus,
and a bottle. The algorithm managed to correctly classify all objects in all nine scenes.
Due to a better ratio of object points to background points the number of drawn samples
can be reduced. Thus, the processing times on an Intel Xeon 2.8GHz processor with
2GB RAM for real data was only about 1.57 seconds. The separated clusters consisted
of about 495 surflets. The algorithm showed no different performance between laser-
range scans and laser-profile scans.

In addition to the fast classification results, the algorithm showed minor sensitivity
to the threshold values. There was no need to re-parameterize them in the case of real
data, so the settings of the synthetic data could be used.
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(a) (b) (c) (d)

Fig. 1. The real objects database: (a) a toy phone, (b) a wooden train, (c) a bust of Zeus, and (d)
a bottle

(a) (b) (c)

Fig. 2. (a) An example of all trained objects arbitrarily placed on a table. The scene shows the
point cloud after the initial data reduction. (b) The surface mesh calculated from a 3D laser-
scan of a scene. Holes on the surface result from unreachable regions or disadvantageous surface
conditions (color, transparency, etc.). (c) The remaining surface points of the correctly classified
bottle.

5 Conclusion

In this paper, we introduced a method for interpretation of 3D point cloud scenes using
a previously trained database. A generic free-form description is used, which models
the shape of an object by the statistical distribution histogram of parameterized four-
dimensional relations of surface point-pairs.

Note that we are using a pose-invariant description. Only the point clouds can be
extracted as input for an iterative-closest-point algorithm (ICP), for example, to acquire
object pose if necessary.

The proposed algorithm localizes objects in the scene by initially drawing a large
number of random surface points and grouping them into pairs. Afterwards, the point-
pair relations are calculated and the most likely origin for them are investigated. This
is done in six evaluation steps by first establishing preliminary clusters that are later
merged into final clusters if they are deemed trustworthy or that are deleted elsewhere.
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Each cluster consists of a set of local points. Every evaluation step is a refinement of the
sets, such that the result of the algorithm provides sets of surface points that are labeled
with one of the trained objects.

In the experimental section we showed that our approach is capable of fast classifi-
cation of objects in the presence of background. The experiments addressed classifica-
tion results and processing times for both synthetic and real data. The generic free-form
description, which allows training by CAD models or 3D-scans, combined with the high
classification rates (above 97%) in less than 6.8 seconds for synthetic data and less than
2.1 seconds for real data, makes our algorithm an efficient tool for many applications in
robotics.
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Abstract. This paper addresses a common problem in dealing with
range images. We propose a novel method to fit surfaces of known types
via a parameter decomposition approach. This approach is faithful and
it strongly reduces the possibilities of dropping into local minima in the
process of iterative optimization. Therefore, it increases the tolerance in
selecting the initializations. Moreover, it reduces the computation time
and increases the fitting accuracy compared to former approaches. We
present methods for fitting cylinders, cones, and tori to 3D data points.
They share the fundamental idea of decomposing the set of parameters
into two parts: one part has to be solved by some traditional optimization
method and another part can be solved either analytically or directly.
We experimentally compare our method with a fitting algorithm recently
reported in the literature. The results demonstrate that our method has
superior performance in accuracy and speed.

Keywords: parameter decomposition, cylinder fitting, cone fitting, torus
fitting.

1 Introduction

Geometric fitting is a fundamental task in computer vision. Usually, a segmen-
tation is carried out to group image points into sets, each corresponding to a
different image feature [1]. Then, geometric fitting follows to compute the op-
timal mathematical representation of an appropriate type for each set of image
points. This way we are able to generate a compact representation of image
features.

In this work we investigate the fitting of cylinders, cones, and tori in 3D
space. Since an analytic solution exists for spheres [2], we do not consider this
type of quadric surfaces in this paper. Most of the related publications [3–5] are
based on a straightforward parameterization with a high number of parameters
to be optimized and a direct optimization of all parameters. It is our intention
to carefully analyze the specific fitting problems at hand and to develop an
optimization procedure with a substantially reduced number of parameters.

One recent work is presented by Marshall et al. [3]. They have proposed
parameter representations for cylinders, cones, and tori. The advantage they
have mentioned is of being robust in the sense that as the principal curvatures
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of the surfaces being fitted decrease, the results naturally become closer and
closer to the surfaces of fitted objects. They claim that using curvature instead
of radius can avoid the divergence problem in the optimization. Their method
is implemented and compared with our results in Section 6.

Typically, iterative techniques such as the Levenberg-Marquardt algorithm
are used to compute the optimum of highly complex optimization functions.
Here we are faced with two difficulties. First, any such iterative algorithm re-
quires good initial estimate of the optimum which is then refined. It is not always
easy to find reasonable initial estimates. Secondly, a large number of parame-
ters results in a high-dimensional optimization space which may have a very
complex topography and therefore brings a high risk of getting in local min-
ima. In this case we often have troubles to analyze the optimization space, for
instance by means of visualization. Consequently, it may even be impossible to
specify maximal estimation errors of the initial parameter values such that the
iterative process is guaranteed to reach the global minimum. This uncertainty is
characteristic to high-dimensional non-linear optimization tasks.

In this work we apply a decomposition technique [6] to reduce the optimiza-
tion space dimensions. A smaller number of parameters tends to ease the initial
estimation of parameters. In addition, the reduction of parameters decreases the
possibilities of dropping into local minima. In this case the optimization space
may become simple enough to be analyzed to get an insight into its topography.

The paper is structured as follows. We first formulate the decomposition
technique briefly in Section 2. Then the cylinder, cone, and torus fitting problem
with the parameter decomposition construction are presented in Sections 3-5.
Afterwards, the experimental results and comparisons are given in Section 6.
Finally, some discussions conclude this paper.

2 Parameter Decomposition Technique

A novel method was proposed [6] for alleviating some difficulties in non-convex
optimization problems. The traditional optimization treats the whole parameters
simultaneously. Here the parameters are decomposed into two parts, one part of
them can be solved by either an analytic or a direct method, and another part
of parameters has to be solved by an iterative optimization process. Let pi, i =
1, · · · , n, denote n data points to be fitted by a representation function f(v) = 0,
where v ∈ �k is the parameter vector. We assume that the distance function of
a point pi to the fitted function f(v) is d(pi, f(v)). Thus, the geometric fitting
problem can be formulated as:

vopt = arg min
v∈�k

n∑
i=1

d(pi, f(v))

We decompose v into v = [v1v2], where v1 ∈ �k1 , v2 ∈ �k2 , and k ≡ k1 + k2.
After some rearrangement of parameters v, the optimization task is reorganized
as:

vopt = arg min
v1∈�k1

[ min
v2∈�k2

n∑
i=1

d(pi, f(v1,v2))] = arg min
v1∈�k1

A(v1)
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where A(v1) means the global minimum sum of the distance measures for a
fixed v1 and all possibilities of v2. Assume that the optimal v2 for reaching
A(v1) can be solved analytically, the original optimization problem with a total
of k1 + k2 parameters is transformed into an equivalent optimization problem
with k1 parameters only.

Intuitively, the parameter reduction decreases the number of local minima
and thus reduces the possibilities of dropping into local minima, and increases
the possibilities of reaching global minimum. Moreover, this scheme tends to
reduce the computation time. Notably, it increases the probability of reaching
global minima without the trade-off in increasing the computation time like
genetic algorithms.

3 Cylinder Fitting

We now consider the 3D cylinder fitting problem. Let a = a(α,β) be the unit
direction vector of the symmetry axis, where α is the angle between the projec-
tion of a onto the xy-plane and the x-axis, β is the angle between a and the
z-axis. Thereafter, we can parameterize a by:

a = (cosα sin β, sin α sin β, cosβ). (1)

Once the angle set (α,β) is determined, the cylinder surface data can be or-
thogonally projected onto a plane Q1 passing through the origin whose normal
vector is a. If (α,β) is well selected, the mapped data on the plane should form a
2D circle with the same radius as the cylinder. Therefore, the 3D cylinder fitting
problem is simplified to be a 2D circle fitting problem with v = (α,β, ρ, γ, r):

vopt = arg min
α,β

[min
ρ,γ,r

n∑
i=1

d(pi, f(α,β, ρ, γ, r))] = arg min
α,β

A1(α,β) (2)

where (ρ, γ, r) are the rest cylinder model parameters defined later, and (ρ, γ)
are unnecessary to be computed during the iteration process. A1(α,β) is the
sum of distances between projected points p̂i of pi and a fitted circle. Notably,
the initial distance computation in 3D is reduced to one in 2D on the plane Q1.
The optimization task is then interpreted as finding the best circle for the data
points p̂i after the projection based on a given (α,β).

Many solutions exist for the simple 2D circle approximation problem. The
methods proposed in [7,8] are applied. In [8], finding the best circle (x− x0)2 +
(y − y0)2 = r2 of n points (xi, yi), i = 1, 2, . . . , n, is to minimize the term:

n∑
i=1

[(xi − x0)2 + (yi − y0)2 − r2]2,

for which an analytical solution exists. In [7], one minimizes the term:
n∑

i=1

[
(xi − x0)2 + (yi − y0)2 − r2

r
]2
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by eigen computation. We may use either of the circle fitting methods to compute
the circle center and radius (x0, y0, r). The results shown in Section 6 use Pratt’s
method [7]. However, the method [8] demonstrates similar results which are not
reported in this paper.

Now we turn our attention to technical details. Let ρ be the orthogonal
distance between the origin to the axis of the cylinder. We define n as the unit
normal vector from the origin to the cylinder axis. Now we show that n can be
represented by a single additional parameter γ. Differentiating a with respect to
α and β, one obtains two orthogonal vectors which are orthogonal to a:

aα = (− sin α sin β, cosα sin β, 0) (3)
aβ = (cos α cosβ, sin α cosβ, − sinβ) (4)

We let aα = aα/sin β to be a unit vector, then n can be spanned by aα and aβ

as follows:
n = aβ cos γ + aα sin γ, (5)

where γ is the angle between n and aβ . Assuming r is the radius of the cylinder,
then the cylinder is parameterized by: (α,β, ρ, γ, r).

For computing (x0, y0, r) for some fixed (α,β), the data points pi are pro-
jected onto the plane Q1 spanned by aα and aβ . The projected points p̂i are
obtained by:

p̂i = (pi · aα, pi · aβ).

The circle approximation is applied to p̂i. After the analytical solution of the
circle approximation, (x0, y0, r) are obtained.

For performance comparison purpose (see Section 6), we need to compute ρ
and n after the fitting is done. A point on the cylinder axis can be calculated:

pc = Mt
[
x0 y0 0

]t
, (6)

where M =
[
aα aβ a

]
. Then, the distance from the cylinder axis to the origin

is ρ = |a × pc|. Furthermore, the point on the axis with the shortest distance
to the origin is p̂c = pc − (pc · a)a. Thus, the unit normal vector to the axis is
n = p̂c/|p̂c|.

4 Cone Fitting

Similar parameter decomposition technique can be utilized for cone fitting as
well. Generally, a cone can be modeled by six parameters. In our approach, we
denote the unit direction vector of the cone axis as a(α,β), which is defined in
Eq.(1). ρ and γ are the same as in Section 3. Therefore, the cone axis can be
determined by four parameters and denoted by a∗ = a∗(α,β, ρ, γ). Assuming
p̂c is the point on a∗ with the shortest distance to the origin, then we define
l to be the distance between the cone tip to p̂c. The last parameter ω, 0 <
ω < π/2, specifies the angle between the cone axis and cone surface. Thereafter,
(α,β, ρ, γ, l, ω) is the parameter set in our cone model.
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Similarly, we decompose these parameters into two parts: v1 = (α,β, ρ, γ)
and v2 = (l, ω). Then, the optimization problem can be formulated as:

vopt = arg min
v1

[min
v2

n∑
i=1

d(pi, f(v1,v2))] = arg min
α,β,ρ,γ

A2(α,β, ρ, γ). (7)

Once v1 is given, the cone axis is fixed. The orthogonal distance of every data
point to the axis and their corresponding projecting coordinates on the axis of
the cone can be determined. These two measurements (p̂i) can be plotted on a
two dimensional plane. If the axis is correctly chosen, then these measurements
should form a straight line on the 2D plane. Therefore, A2(α,β, ρ, γ) is simply
a 2D line fitting problem, for which analytic solutions exist for different fitting
error functions. The iterative algorithm is then only necessary for v1.

Considering technical details, n is defined in Eq. (5). Given (α,β, ρ, γ), the
parametric form of the cone axis can be represented by: ρn + ta, where a is
defined in Eq. (1). According to the geometry, we obtain the parameter ti which
results in the shortest distance from the data point pi to the cone axis:

ti = a · (pi − ρn),

where ti is the projection coordinate of point pi on the cone axis. In addition,
the distance between pi and the axis is:

di = |a× (ρn− pi)|.

Therefore, for every pi we obtain p̂i=(ti, di), i = 1, 2, 3, ..., n. These points will
be fitted by a 2D straight line and the least square error to the line is treated
as the optimization error in fitting a cone. Normally, the 2D straight line fitting
has two different forms of minimization: sum of vertical offsets or Euclidean
distances. Here we show only the result of vertical offsets and the Euclidean
distance has similar results. Note that in the latter case we actually perform a
cone fitting based on the Euclidean distance in 3D. Let the fitting line be defined
by:

d = b + mt.

The vertical offset error function is calculated in each iteration:

f(b,m) =
n∑

i=1

[di − (b + mti)]2.

Once (b,m) is obtained, the shape of cone is fixed and the rest parameters are
determined by ω = arctan(m) and l = −b/m.

5 Torus Fitting

We now define our torus model and address the utilization of parameter de-
composition technique in the torus fitting. Four parameters α,β, ρ, and γ as
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Fig. 1. The torus parameterization. a∗ represents the torus axis. The half plane lies
either on left or right side of a∗.

defined before characterize the symmetry axis. r and R are the radii as shown
in Fig. 1. l is the distance between point p̂c and the torus center. Thus, a torus
can be parameterized by (α,β, ρ, γ, r, R, l). We decompose these parameters into
v1 = (α,β, ρ, γ) and v2 = (r,R, l). Similarly, the optimization task can be for-
mulated as:

vopt = arg min
v1

[min
v2

n∑
i=1

d(pi, f(v1,v2))] = arg min
α,β,ρ,γ

A3(α,β, ρ, γ). (8)

If v1 is given, the torus axis is determined. Then, the surface data can be trans-
formed into a new 2D geometric space as follows. We consider an arbitrary half
plane Q2 on which a∗ lies. Then, each point is rotated using a∗ as a rotation
axis until it falls onto the plane Q2. If v1 is well selected, then all points on Q2

build a 2D circle. Therefore, A3(α,β, ρ, γ) is simply a circle fitting problem.
Some technical details are given as follows. For a given v1, we rotate the

coordinate system such that aα/aβ/a becomes the new x/y/z axis, respectively.
Via this way pi are mapped to p′

i:

p′
i = Mt(pi − ρn).

where M is firstly appeared in Eq. (6). Since we are only interested in if the
torus surface fits to a circle discarding the consideration of its ring position, the
points p′

i are further rotated onto the aαa-plane around the a-axis, i.e.:

p̂i =
[
cos θ sin θ 0

0 0 1

]
p′
i,

where θ is the angle between the projection of p′
i onto aαaβ-plane and aα. 2D

circle fitting is now utilized on the projection p̂i and its cost function takes the
place of the cost function in fitting torus. Again, we use Pratt’s method and
show results in Section 6. The method in [8] produces similar results which are
not reported in this paper.
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Table 1. Performance measurements for cylinder fitting

Error Δθ(deg) Δd Δr time(sec)

Our model mean 0.0204 0.0032 0.0024 0.0273
std 0.0146 0.0026 0.0020 0.0085

Marshall’s model(a) mean 0.3792 0.0547 3.9835 4.5997
std 5.6646 1.2485 96.5737 4.5143

Marshall’s model(b) mean 0.0204 0.0032 0.0024 4.6117
std 0.0146 0.0026 0.0020 4.5193

6 Results

We have performed simulations to evaluate our algorithms and to compare them
with the one recently reported in [3]. One thousand cylinder, cone and torus
data sets are randomly simulated, respectively. Only the visible part is selected
to form data sets, and each set has less than 500 points. Several Gaussian noise
levels are tested. We report here only noise level 0.3 and the other results are
similar. Each data set has its own initial point for iteration. For the intention
of comparison, we have the same initializations in all cases. For example, in the
case of cylinder fitting we have randomly selected from [−10, 10] degrees plus
the ground truth of α and β, respectively.

In cylinder fitting, the radius range is between [50,100]. Table 1 shows the
performance of two methods: our model and Marshall’s model. Three averaged
absolute errors are Δθ, Δd and Δr. They denote the angle (in degree) difference
of the estimated and ground truth cylinder axes, the distance of these two axes,
and the cylinder radius difference. In Marshall’s model(a), we found there are
four results dropping into local minima, which results in extreme large errors. If
these four results are removed, then their accuracy is similar to ours as shown
in (b). In cone and torus fitting, we didn’t find extreme large errors in both
methods.

The performance for cone fitting is shown in Table 2. The definitions of Δθ
and Δd have been mentioned before. Δω and Δl are the absolute differences of
angle ω and distance l defined in Section 4 between the fitting result and the
ground truth, respectively.

Table 2. Performance measurements for cone fitting

Error Δθ(deg) Δd Δω Δl time(sec)

Our model mean 0.0133 0.0443 0.0076 0.0484 1.5322
std 0.0098 0.0240 0.0078 0.0294 6.3357

Marshall’s model mean 0.1892 0.0649 0.2242 0.5862 72.6993
std 0.5597 0.1575 0.6700 1.7312 281.4524

Table 3. Performance measurements for torus fitting

Error Δθ(deg) Δd Δr ΔR Δl time(sec)

Our model mean 0.0027 0.0445 0.0023 0.0021 0.0440 0.2737
std 0.0016 0.0247 0.0017 0.0017 0.0230 0.8969

Marshall’s model mean 0.0232 0.0690 0.0173 0.0217 0.0692 24.8774
std 0.2243 0.1952 0.2037 0.1395 0.3261 100.8681
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In torus fitting, the radii ranges are 10 ≤ r ≤ 40 and 70 ≤ R ≤ 90. With the
same initializations, the comparison result is illustrated in Table 3.

The programs are written on Matlab (R14) platform. The matrices computa-
tions are used to shorten the computation time if possible. All of the three fitting
results demonstrate that our model has superior performance than Marshall’s
model both in accuracy and in speed.

7 Conclusion

In this paper, we have proposed a novel method for cylinder, cone, and torus fit-
ting based on the parameter decomposition approach. Through the experimental
results, we observe our model showing superior performance to the Marshall’s
model both in accuracy and in speed. This approach can be easily extended to
other fitting problems such as elliptic cylinder/torus, in which the 3D fitting
task is reduced to a 2D elliptic fitting problem which can be directly solved [9].
Our contributions are not only proposing a better model for the three fitting
tasks, but also pointing to a new aspect in solving an optimization problem.
In addition to its practical relevance, the new insight given in this paper is a
valuable contribution to understanding the fitting problem under consideration
as well.
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Abstract. In this paper we present a novel image-based 3D surface re-
construction technique that incorporates reflectance, polarisation, and
defocus information into a variational framework. Our technique is espe-
cially suited for the difficult task of 3D reconstruction of rough metallic
surfaces. An error functional composed of several error terms related
to the measured reflectance and polarisation properties is minimised by
means of an iterative scheme in order to obtain a 3D reconstruction of
the surface. This iterative algorithm is initialised with the result of depth
from defocus analysis. By evaluating the algorithm on synthetic ground
truth data, we show that the combined approach strongly improves the
accuracy of the surface reconstruction result compared to techniques
based on either reflectance or polarisation alone. Furthermore, we report
3D reconstruction results for a raw forged iron surface. A comparison
of our method to independently measured ground truth data yields an
accuracy of about one third of the pixel resolution.

1 Introduction

A well-known image-based surface reconstruction method is shape from shading.
This approach aims at deriving the orientation of the surface at each pixel by
using a model of the reflectance properties of the surface and knowledge about
the illumination conditions – for a detailed survey, cf. [2]. The integration of
shadow information into the shape from shading formalism and applications of
such methods in the context of industrial quality inspection have been demon-
strated in [10].

A further approach to reveal the 3D shape of a surface is to utilise polar-
isation data. Most current literature concentrates on dielectric surfaces, as for
smooth dielectric surfaces, the angle and degree of polarisation as a function
of surface orientation are governed by elementary physical laws as detailed in
[6]. There, information about the polarisation state of light reflected from the
surface is utilised to reconstruct the 3D shape of transparent objects, involving
multiple light sources equally distributed over a hemisphere and a large number
of images acquired through a linear polarisation filter at many different orienta-
tions. This method is not straightforward to use in practice because it requires
a somewhat elaborate setting of light sources. For smooth dielectric surfaces, in

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 176–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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[7] a 3D surface reconstruction framework is proposed relying on the analysis
of the polarisation state of reflected light, the surface texture, and the locations
of specular reflections. In [11] reflectance and polarisation properties of metallic
surfaces are examined, but no physically motivated polarisation model is derived.
In [9] polarisation information is used to determine surface orientation.

The depth of a scene point can also be estimated by analysis of defocus
information (depth from defocus, cf. [1] for a detailed survey). This approach
makes use of the fact that the point spread function (PSF), i. e. the “blur”
at a certain image location, depends on the distance of the corresponding scene
point from the camera. It requires a calibration procedure which yields a relation
between PSF width and distance.

The three described image-based 3D surface reconstruction methods have in
common that corresponding applications to real-world scenarios are rarely de-
scribed in the literature. A possible reason is the fact that each method alone
will not reveal the surface shape in an accurate and unique manner. Shape
from shading tends to produce ambiguous results for strongly specular non-
Lambertian surfaces even when several images are used. The shape from po-
larisation approach suffers from the same ambiguity problem and additionally
from the lack of a valid polarisation model for non-dielectric, especially metallic,
surfaces. Depth from defocus produces a dense solution for the surface shape,
which, however, tends to be very noisy.

Hence, we will present in this paper an image-based method for 3D sur-
face reconstruction based on the simultaneous evaluation of reflectance, polar-
isation, and defocus data. All extracted information will be integrated into a
unified variational framework. This method is systematically evaluated based on
a synthetically generated surface to examine its accuracy and is applied to the
sophisticated real-world example of a raw forged iron surface.

2 Combination of Photopolarimetric and Defocus
Information for 3D Surface Reconstruction

In our scenario, we will assume that the surface z(x, y) to be reconstructed is
illuminated by a point light source and viewed by a camera, both situated at
infinite distance in the directions s and v, respectively. Parallel incident light and
an orthographic projection model can thus be assumed. For each pixel location
(u, v) of the image we intend to derive a depth value z(u, v). The surface normal
is given in gradient space by the vector n = (−p,−q, 1)T with p = ∂z/∂x and
q = ∂z/∂y. In an analogous manner, we set for the illumination direction s =
(−ps,−qs, 1)T and for the viewing direction v = (−pv,−qv, 1)T . The incidence
angle θi is defined as the angle between n and s, the emission angle θe as the
angle between n and v, and the phase angle α as the (constant) angle between
the vectors s and v.

Estimation of depth from defocus relies on the fact that the image of a scene
point situated at a distance z from the camera becomes more and more blurred
with increasing depth offset |z − z0| between the scene point at distance z and
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the plane at distance z0 on which the camera is focussed. The blur is described
by the point spread function (PSF) of the camera lens, which is assumed to be
Gaussian with a width parameter σ.

The calibration procedure for estimating depth from defocus involves the
determination of the lens-specific characteristic curve σ (|z − z0|) [1]. For this
purpose we acquire two pixel-synchronous images of a rough, uniformly textured
plane surface consisting of forged iron, inclined by 45◦ with respect to the optical
axis. The image part in which the intensity displays maximum standard deviation
(i. e. most pronounced high spatial frequencies) is sharp and thus situated at
distance z0. A given difference in pixel coordinates with respect to that image
location directly yields the corresponding depth offset |z − z0|. The first image
is taken with small aperture, e. g. f/16, resulting in virtually absent image blur,
while the second image is taken with the aperture that will be used later on for
3D reconstruction, e. g. f/4, resulting in a perceivable image blur that depends
on the depth offset |z − z0|. In practice, it is desirable but often unfeasible to
use the sharp image acquired with small aperture for 3D reconstruction – the
image brightness then tends to become too low for obtaining reasonably accurate
polarisation data. Hence, the surface reconstruction algorithm must take into
account the position-dependent PSF.

The images are partitioned into windows of nw × nw pixels size, for each
of which the depth offset |z − z0| is known. After Tukey windowing, the PSF
width parameter σ in frequency space is computed by fitting a Gaussian to the
quotient of the amplitude spectra of the corresponding windows of the first and
the second image, respectively. Only the range of intermediate spatial frequencies
is regarded in order to reduce the influence of noise on the resulting value for σ.
This technique and alternative methods are described in [1].

Once the characteristic curve σ (|z − z0|) is known, it is possible to extract
a dense depth map from a pixel-synchronous pair of images of a surface of
unknown shape, provided that the images are acquired at the same focus position
and with the same apertures as the calibration images. The resulting depth
map zdfd(u, v), however, tends to be very noisy. We therefore extract large-scale
information about the surface orientation from it by fitting a plane of the form
z̃dfd(u, v) = pdfdu+ qdfdv + c to the data. The sign of either pdfd or qdfd must be
provided a-priori.

The 3D surface reconstruction formalism we utilise throughout this paper is
related to the shape from shading scheme described in detail in [2,3,4]. It relies
on the global minimisation of an error function that consists of a weighted sum
of several individual error terms. The observed image I is a convolution G ∗ I0

of the “true” image I0 with the PSF G. The intensity error term

ei =
∑
u,v

[I(u, v)−G ∗R (ρ(u, v), p(u, v), q(u, v))]2 (1)

describes the mean square deviation between the observed pixel intensity I(u, v)
and the modelled reflectance R convolved with the PSF G [5] extracted from the
image as described above. It depends on the surface albedo ρ(u, v) and the surface
gradients p(u, v) and q(u, v), which in turn depend on the pixel coordinates (u, v).
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The polarisation state of light reflected from the surface is determined based
on several images of the surface acquired through a linear polarisation filter.
The transmitted radiance of the reflected light oscillates sinusoidally with the
orientation of the polarisation filter between a maximum Imax and a minimum
Imin. The polarisation angle Φ ∈ [0◦, 180◦] describes the orientation under which
maximum transmitted radiance Imax is observed. The polarisation degree D is
given by D = (Imax−Imin)/(Imax+Imin) ∈ [0, 1]. To integrate polarisation infor-
mation into the 3D surface reconstruction framework we define the polarisation
angle error term

eΦ =
∑
u,v

[Φ(u, v)−G ∗RΦ(p(u, v), q(u, v),α)]2 (2)

and the polarisation degree error term

eD =
∑
u,v

[D(u, v)−G ∗RD(p(u, v), q(u, v),α)]2 , (3)

describing the mean square deviation between the observations Φ and D and the
corresponding modelled values RΦ and RD, respectively. Again the estimated
PSF G is taken into account. As in this paper we will primarily examine rough
metallic surfaces of industrial parts (cf. Sect. 4) in the context of industrial
quality inspection, for which accurate physically motivated models are neither
available for the surface reflectance nor for its polarisation properties, we will
empirically determine R, RΦ, and RD as described in Sect. 3.

As the intensity and polarisation information alone is not necessarily suffi-
cient to provide an unambiguous solution for the surface gradients p(u, v) and
q(u, v), a regularisation constraint es is introduced as a further error term, re-
quiring smoothness of the surface, for example small absolute values of the di-
rectional derivatives of the surface gradients. We will therefore make use of the
error term (cf. also [2,4])

es =
∑
u,v

[
p2

x + p2
y + q2

x + q2
y

]
. (4)

The smoothness constraint is acceptable for the surfaces regarded in this paper.
For strongly wrinkled surfaces, too smooth results are yielded by (4); it might then
be replaced by the departure from integrability error term discussed in detail in [3].

The surface gradients p(u, v) and q(u, v) are obtained by minimising the
overall error functional e = es+λei +μeΦ+νeD, where the Lagrange parameters
λ, μ, and ν denote the relative weights of the error terms. As described in detail
in [4], setting the derivatives of e with respect to p and q to zero yields an
iterative update rule for p,

pn+1 = p̄n + λ(I −G ∗R)G ∗ ∂R

∂p
+ μ(Φ−G ∗RΦ)G ∗ ∂RΦ

∂p
+

ν(D −G ∗RD)G ∗ ∂RD

∂p
, (5)



180 P. d’Angelo and C. Wöhler

with p̄ as a local average. An analogous expression is obtained for q. Numerical
integration of the gradient field, employing e. g. the algorithm described in [4],
yields the surface profile z(u, v).

Despite regularisation constraint (4) there is usually no unique solution for
the surface gradients p(u, v) and q(u, v), especially for highly specular reflectance
functions, such that the obtained solution tends to depend strongly on the initial
values p0(u, v) and q0(u, v). As no a-priori information about the surface is avail-
able, we make use of the large-scale surface gradients obtained by depth from de-
focus analysis and set the initial values of the surface gradients to p0(u, v) = pdfd

and q0(u, v) = qdfd.

3 Determination of Empirical Photopolarimetric Models

For the purpose of determination of empirical reflectance and polarisation models
for the surface material the surface normal n of a flat sample is adjusted by means
of a goniometer, while the illumination direction s and the viewing direction v
are constant over the image. Intensity I, polarisation angle Φ, and polarisation
degree D are determined over a wide range of surface normals n.

According to [8], the reflectance of a typical rough metallic surface consists of
three components: a diffuse (Lambertian) component, the specular lobe, and the
specular spike. We model these components by the phenomenological approach

R(θi, θe,α) = ρ

[
cos θi +

N∑
n=1

σn · (2 cos θi cos θe − cosα)mn

]
(6)

with 2 cos θi cos θe − cosα ≡ cos θr describing the angle between the specular
direction r and the viewing direction v. For θr > 90◦ only the diffuse component
proportional to cos θi is considered. The albedo ρ is assumed to be constant over
the image. The shapes of the two specular components are expressed by N = 2
terms proportional to powers of cos θr, where the coefficients {σn} denote the
strength of the specular components relative to the diffuse component and the
parameters {mn} their widths.

The polarisation angle Φ is phenomenologically modelled by an incomplete
third-degree polynomial in p and q according to

RΦ(p, q) = aΦpq + bΦq + cΦp2q + dΦq3. (7)

Without loss of generality we assume illumination from the right hand side
(ps < 0, qs = 0) and view along the z axis (pv = qv = 0). Equation (7) is
antisymmetric in q, and RΦ(p, q) = 0 for q = 0, i. e. coplanar vectors n, s, and
v. These properties are required for geometrical symmetry reasons as long as an
isotropic interaction between the incident light and the surface material can be
assumed. The polarisation degree D is modelled by an incomplete second-degree
polynomial in p and q according to

RD(p, q) = aD + bDp + cDp2 + dDq2. (8)
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Fig. 1. 3D reconstruction of synthetic scene. (a) Ground truth. (b) Intensity I , polar-
isation angle Φ, and polarisation degree D images. The 3D reconstruction result was
obtained based on photopolarimetric analysis (c) without and (d) with depth from
defocus information. For details refer to Sect. 4.

For rough metallic surfaces, RD is maximum near the direction of specular reflec-
tion. Symmetry in q is imposed to account for isotropic light-surface interaction.

4 Experimental Results

To examine the accuracy of 3D reconstruction we applied the algorithm described
in Sect. 2 to the synthetically generated surface shown in Fig. 1a. For the PSF
width parameter we assumed σ ∝ |z − z0|−1 [1]. To generate a visible surface
texture in the photopolarimetric images, we introduced random fluctuations of
z(u, v) of the order 0.1 pixels. We assumed a perpendicular view on the surface
along the z axis with v = (0, 0, 1)T . The scene was illuminated from the right
hand side at a phase angle of α = 75◦. The surface albedo ρ was computed from
(6) based on the specular reflections, which appear as regions of maximum in-
tensity and for which we have θr = 0◦ and θi = α/2. We have set p0(u, v) = pdfd

and q0(u, v) = qdfd in (5) when depth from defocus information was used, while
otherwise, the PSF G was set to unity and the surface gradients were initialised
with zero values due to the lack of prior information. We found that for the sort
of surface regarded here, the influence of G on z(u, v) is negligible and that the
main benefit of depth from defocus analysis comes from the improved initiali-
sation. The best results are obtained by utilising a combination of polarisation
angle and degree, of reflectance and polarisation angle, or a combination of all
three features. Detailed evaluation results are reported in Table 1.
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Table 1. Evaluation results on synthetic ground truth data

RMS error RMS error
Utilised information (without dfd) (with dfd)

z p q z p q

Reflectance 11.6 0.620 0.514 9.62 0.551 0.514
Pol. angle 17.0 0.956 0.141 6.62 0.342 0.069
Pol. degree 4.72 0.138 0.514 4.73 0.135 0.514
Pol. angle and degree 1.83 0.121 0.057 1.71 0.119 0.056
Reflectance and pol. angle 12.0 0.528 0.099 2.52 0.280 0.055
Reflectance and pol. degree 10.9 0.575 0.514 8.46 0.418 0.517
Reflectance and polarisation 10.2 0.277 0.072 0.91 0.091 0.050
(angle and degree)
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Fig. 2. 3D reconstruction of a forged iron surface. (a) Intensity and polarisation angle
image. (b) 3D reconstruction result. The somewhat malformed, asymmetric surface
shape is due to a fault caused during the forging process (arrow). The cross-section
used in (c) is indicated by a dashed line. (c) Comparison to ground truth.

We furthermore applied our 3D surface reconstruction method to a raw forged
iron part. According to Sect. 2 we empirically determined σ ∝ |z − z0|−0.66 as
the relation between PSF width parameter and depth offset. We found that the
polarisation degree for specular reflection tends to vary over the surface by up
to 20 percent, depending on the locally variable microscopic roughness. In con-
trast, the behaviour of the polarisation angle turned out to be very stable over
the surface. We thus performed 3D reconstruction based on a combination of
reflectance, polarisation angle, and depth from defocus (Fig. 2a and b). Image
resolution was 0.30 mm per pixel. A cross-section of the same surface was mea-
sured with a laser focus profilometer at an accuracy of better than 1 μm (Fig. 2c),
thus serving as ground truth. The RMS deviation between ground truth and the
corresponding cross-section extracted from the 3D profile reconstructed with our
approach amounts to 0.11 mm or about one third of the pixel resolution.



3D Surface Reconstruction by Combination of Photopolarimetry 183

5 Summary and Conclusion

In this paper we have presented an image-based 3D surface reconstruction tech-
nique that incorporates reflectance, polarisation, and defocus information into
a variational framework. Our method relies on an error functional composed of
several error terms related to the measured reflectance and polarisation proper-
ties, which is minimised by means of an iterative scheme in order to obtain a
3D reconstruction of the surface. The iteration is initialised with the result of
depth from defocus analysis. By evaluating the algorithm on synthetic ground
truth data we show that the combined approach strongly increases the accuracy
of the surface reconstruction result, compared to 3D reconstruction based on ei-
ther reflectance or polarisation alone. Furthermore, we report 3D reconstruction
results for a raw forged iron surface, demonstrating a reconstruction accuracy of
our approach of about one third of the pixel resolution.
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Abstract. The ability to accurately localize objects in an observed scene
is regarded as an important precondition for many practical applications
including automatic manufacturing, quality assurance, or human-robot
interaction. A popular method to recognize three-dimensional objects
in two-dimensional images is to apply so-called view-based approaches.
In this paper, we present an approach that uses a probabilistic view-
based object recognition technique for 3D localization of rigid objects.
Our system generates a set of views for each object to learn an object
model which is applied to identify the 6D pose of the object in the scene.
In practical experiments carried out with real image data as well as
rendered images, we demonstrate that our approach is robust against
changing lighting conditions and high amounts of clutter.

1 Introduction

In this paper, we consider the problem of estimating the three-dimensional posi-
tion and the orientation of rigid objects contained in images. This problem has
been studied intensively in the computer vision community and its solution is
regarded as a major precondition for many practical applications, like automatic
manufacturing, quality assurance, or human-robot interaction. In this work, we
are especially interested in view-based approaches, where objects are represented
by 2-dimensional views. Such approaches allow to incorporate visual features di-
rectly and do not assume prior knowledge about the spatial structure of the
objects. The limited localization accuracy caused by the view-based representa-
tion can be compensated for by a scene-based object tracking process, as will be
demonstrated in Section 5.2.

Recently, Pope and Lowe [1] proposed the probabilistic alignment algorithm
to identify two-dimensional views of objects in images. The goal of the work
presented here is to investigate how this purely image-based approach can be
utilized to achieve a robust estimate of the position and orientation of the ob-
ject in the scene. The input to our system are either real images of an object or
alternatively a volumetric model that is used to render the necessary views. We
describe how the four parameters obtained from the 2D object recognition can
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be combined with the two parameters of the corresponding view to determine
the pose of the object in the scene. We evaluate our approach on real images
and perform simulation experiments to provide quantitative results for the lo-
calization accuracy. Experimental results carried out with free-form objects and
objects with specular surfaces demonstrate the robustness of our approach.

2 Related Work

The problem of recognizing objects using two-dimensional views has been ap-
proached from many directions. Popular methods are based on eigenvector de-
composition to represent and recognize 3D objects [2,3]. Alternative approaches
learn networks of Gaussian basis functions [4] or build their models on wavelet-
based features [5]. Several authors [6,7] apply support vector machines to object
recognition. An additional approach is to train a neural network spanning the
whole view sphere to classify single object views into orientation categories [8].
These methods, however, assume a segmented test image where the object in-
stance is roughly isolated by a bounding box. The approach presented in this
paper focuses on the case in which the object instance covers just a small part
of the test image. To avoid the feature correspondence problem, Schiele and
Pentland build position independent feature histograms [9]. To localize objects
they apply a voting scheme similar to the Hough-transform. Several authors also
combine view-based and model-based approaches to recognize and localize tex-
tured objects [10,11]. Finally, Lanser et al. [12] present a view-based localization
system called MORAL. In their approach, the 3D object structure has to be
known and is assumed to be polyhedral. The constructed object views are not
clustered and generalized to achieve a more compact model.

3 View-Based Probabilistic Alignment

Pope and Lowe [1] introduced a visual object recognition approach based on
probabilistic models of appearance. The appearance of an object is modeled by
a relatively small set of 2-dimensional model views, each of which is assembled
from discrete visual features, like edges, corners, joints, and complex combina-
tions thereof. The features are associated with their uncertainty in presence and
position as well as their distribution of attribute values. Hence, a single model
view represents the appearance of an object from a whole range of view points.
The scope of each model view is determined by an unsupervised learning process.

The recognition method, called probabilistic alignment, resembles Hutten-
locher and Ullman’s alignment approach [13] by gradually building feature pair-
ings between model view and test image to align the view to the test image.
The recognition process is guided by a probabilistic quality measure for possible
alignment hypotheses.

g(E, T ) ≈ log P(H | E, T ) (1)

In this equation, H denotes the hypothesis that the model view is contained in
the image, E stands for the set of feature pairings contained in the hypothesized
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match, and T is the similarity transformation that aligns the model view with
the test image. The typically large set of possible feature pairings is ordered
using this measure to process likely hypotheses first.

The learning process for an unknown object starts with an empty set of
model views and gradually incorporates all training views. If a new training
view cannot be matched with a sufficient accuracy to an existing model view,
a new model view is created. Otherwise, the training view and the matching
model view are generalized to a combined model view. Therefore, the resulting
view-based model is a set of generalized clusters of training views. The minimum
description length principle is used to obtain the smallest model that sufficiently
describes the visual appearance of the object.

4 3D Object Localization

In real world applications, it is generally not sufficient to identify an object
within an image. Rather, one is often interested in its exact pose. The goal of this
section is to embed the 2D recognition approach described above into a 3D object
localization system, which covers object learning, view-based recognition and the
calculation of the 3D pose.

4.1 Object Learning

A popular technique for the acquisition of training views for an object is to
record images of the real object from different view points. This procedure re-
quires an elaborate hardware setup to accurately measure the viewing angles and
is quite time consuming. An alternative approach is to construct a 3D object
model (e.g., by using photometric 3D scanning methods) and generate artificial
training views. Using state of the art rendering techniques, like ray-tracing, a
large training set of photo-realistic views covering different image resolutions and
lighting conditions can be constructed. It may be favorable for specific applica-
tions to extract just the object silhouette, which can easily be achieved using
rendering techniques. We generate photo-realistic views to keep the repertoire of
visual features as wide as possible. Other systems that construct artificial views
by just projecting 3D model features like lines and corners into the image plane
limit themselves in that respect. As the experiments in Section 5 demonstrate,
our recognition system achieves good results with real training images as well as
generated ones.

The learning algorithm discussed in Section 3 clusters the training views to
reflect the variance in visual appearance across the view sphere. It is therefore
desirable to uniformly sample the view sphere. We achieve this by iteratively
dividing a spherical triangular mesh. The individual training views are gener-
ated using ray-tracing. The optimal number of training views that have to be
generated for a specific object can be determined as follows. As discussed in Sec-
tion 3, the learning step builds a set of 2-dimensional model views by iteratively
integrating training images. Assuming that the appearance of the object changes
smoothly with small variations of the viewing angles and furthermore assuming
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Fig. 1. One of the generated training images (left) and the recognition result (right) for
a free-form object. It was sufficient for this object to learn and represent the silhouette.

that the views are uniformly distributed and presented in a coarse to fine or-
der, the complete appearance of the object is covered after a certain number of
training views. This number depends on the object and the learning parameters
and is independent from the specific training views. In our current system, we
define as the stopping criterion for generating new training views the point when
the number of model views stops to increase. For example, 130 training views
are sufficient to learn the 18 model views of the highly symmetric barbell object
depicted in Figure 3.

4.2 Localization

For every 2-dimensional model view m, the alignment algorithm yields a 4D pose
vector r (2D position (x, y), orientation α, and scale s) and a match quality mea-
sure. Assuming a calibrated camera, we can calculate the 6D pose vector of the
object in the scene (3D position, 3D orientation) by utilizing information from
the training step. In this section, we describe how a transformation T can be de-
rived that maps object coordinates to scene coordinates. The localization result
can be obtained directly from the transformation matrix. Let us decompose T−1

into four individual transformations T−1 = T4 T3 T2 T1. In this equation, T1

translates the center of the object to the origin of the scene coordinate system.
It is therefore defined by the position vector p of the object. The distance of the
object from the origin (the length of p) can be derived from the scale factor s
and the known object size from the training process. The direction of p is defined
by the position (x, y) of the recognized view in the image plane and the camera
calibration parameters. T1 can be written as

T1 =

⎛⎜⎜⎝
1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

⎞⎟⎟⎠ , p =

⎛⎝px

py

pz

⎞⎠ . (2)

The transformation T2 rotates the vector p onto the z-axis. Vividly speaking,
T2 transforms the object into the same pose that its training counterpart was in
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Fig. 2. Typical synthetic test data for quantitative performance analysis (left two im-
ages) and the localization results depending on the number of clutter objects (right)

when the training images for model view m were acquired. In the following, the
vectors x̂, ŷ, and ẑ denote the three unit vectors respectively. If we define Ta,b

as the transformation that rotates the vector a onto a vector b around the axis
perpendicular to a and b we have T2 = Tp,ẑ .

Furthermore, T3 rotates the object within the image plane to account for
the angle α that was part of the 2D recognition result. If we define Ta,α as the
transformation that rotates around the axis a with angle α we obtain T3 = Tẑ,α .
Finally, T4 rotates the object according to the viewing angles ϑ (azimuth angle)
and ϕ (polar angle) associated with the recognized view during training, thus
we obtain

T4 = T4,2 T4,1 T4,1 = Tx̂,(180◦−ϕ) T4,2 = Tź,(ϑ−90◦) ź = T4,1 ẑ.

The 3D position vector of the object can be read directly from the last column
of the transformation matrix of T . We refer to Shoemake [14] for details about
the derivation of the 3D orientation vector in Euler’s angular notation from the
transformation matrix.

5 Experimental Results

5.1 Quantitative Evaluation

We conducted simulation experiments to evaluate the localization accuracy using
the known ground truth. Figure 2 depicts typical examples of a series containing
100 test images. The task was to localize the barbell object among a vary-
ing number of random clutter objects using features like edges, corners, joints
and complex groupings thereof. The used rectangular clutter structures made
recognition harder than seemingly more realistic curved structures, because of
their similarity to the barbell object. The test images were rendered to a size
of 384× 288 pixels using the freely available ray-tracer Povray. To compare the
true object pose T with the localization result L we use the measure

g(L,T) := max
{
0, 1− (fz δ2

z + fxy δ2
xy + fα δ2

α)
}

. (3)
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Fig. 3. View-based recognition result (left), the derived 3D pose (middle), and the
3D pose after refinement by a scene-based tracking process (right)

Fig. 4. Real training image (left) and recognition result (middle) for a highly specular
object. Detected barbell (right) under extensive occlusion by fog.

In Equation 3, δz denotes the distance between the two poses along the z-axis
(the viewing direction of the camera), δxy is the distance perpendicular to the z-
axis, and δα is the difference in orientation. The weighting factors for the different
dimensions have been set to fz = 1

250000 , fxy = 1
50000 , and fα = 1

10000 to reflect
the importance of the different dimensions given their scales. The quantities δz

and δxy are measured in mm, δα in degrees. A typical value of g = 0.80 is reached
for example with distances of δxy = 2.3 cm, δz = 23 cm, and δα = 15◦. This
displacement is small enough to initialize a scene-based tracking algorithm like
the one described in the next section. The recognition rate for an increasing
number of clutter objects as well as the achieved localization accuracy is plotted
in Figure 2. The mean localization accuracy for recognized objects was g = 0.82
with a median of g = 0.84.

5.2 Recognizing Specular and Free-Form Objects and Refining the
Estimated Object Pose

Specular and free-form objects are particularly hard to recognize visually. The
appearance of a specular object varies greatly with changing lighting conditions
or object movement. Therefore, feature-based recognition has to get by with
only few robust feature pairings among many spurious ones. The rating of fea-
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Fig. 5. Typical image containing the learned top view of a compound pipe object (left)
and recognized object instance in a noticeably different pose (right)

ture pairings using statistics acquired during the training phase is especially
important in such cases to reduce the amount of tested alignment hypotheses.
Figure 4 shows a training image and recognition result for the highly specular
coffee machine object. For this experiment, we used real training images rather
than rendered ones to demonstrate that this is a viable option.

Objects of predominantly curved structure are harder to represent and recog-
nize than purely polyhedral ones. To accurately represent views of non-polyhedral
objects using curve-based features, higher order curves have to be fitted to the im-
ages. This not only increases the complexity in the feature extraction step, it also
makes the feature-based representation less predictable. This points out the im-
portance of the rating function for feature pairings to process useful pairings first.

Figure 1 shows a typical result of our experiments with a toy dinosaur. We
used the optic 3D-Scanner DigiScan 2000 to obtain the 3D structure from the real
object to generate the training set by simulation. A further experiment has been
carried out with an object consisting of compound pipes (see Figure 5). Here,
our system learned the view-based object model using only top-view images.
Note that the test images contained object instances largely displaced from the
image center which lead to perspectively distorted views that were not included
in the training data. As shown on the right image of Figure 5, the object can
still be localized.

We also applied our system to initialize a scene-based object tracking pro-
cess [15]. In our experiments we found that the achieved localization accuracy
was sufficient to robustly obtain a refined object pose after a few tracker itera-
tions. Figure 3 shows the relationship between the 2D recognition result (the left
image), the derived 3D pose (middle), and the refined pose after a few tracker it-
erations (on the right). Localization and pose refinement was also possible under
extensive partial occlusion by fog as shown in the right image of Figure 4.

6 Conclusions

In this paper, we presented an approach to 3D object localization in single im-
ages using a probabilistic view-based alignment technique. Our system learns a
view-based object model from a set of training views. During application, our
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system combines for the recognized view the four parameters of the 2D similar-
ity transform with the orientation of the object in the corresponding training
image to extract the 3D position and orientation of the object in the scene. The
system has been implemented and validated on real images and images rendered
from 3D-models. Experiments with free-form objects and objects with specular
surfaces in cluttered scenes demonstrate the robustness of our approach. We fur-
thermore presented an application of our approach for the initialization of a 3D
scene-based tracking system.
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Abstract. A new method for describing the equivalence of catadiop-
tric and stereographic projections is presented. This method produces a
simple projection usable in all central catadioptric systems. A projective
model for the sphere is constructed in such a way that it allows the effec-
tive use of Clifford algebra in the description of the geometrical entities
on the spherical surface.

1 Introduction

Catadioptric cameras allow for a very large field of vision. This, in comparison to
pinhole cameras, enables the system to perceive more visual information with one
single image. The non-Euclidean geometry of the image enables more efficient
self-calibration of the camera and reduces the complexity of algorithms needed
to complete this task [5].

The mathematics used to model catadioptric cameras is slightly more compli-
cated than for pinhole cameras. The main problem in the application of Clifford
algebra to this modeling task is the local nature of the vector space structure on a
curved manifold. This problem is solved in the following sections for central (single
viewpoint) catadioptric systems, i.e. cameras with mirrors whose cross-sections
are conic sections [1]. A projective model for parabolic, hyperbolic and elliptic
mirrors is constructed taking the sphere as the unifying geometry. This model al-
lows us to develop mathematical tools using Clifford algebra that are applicable
to all these mirror geometries and works as a basis for our future research.

Clifford algebra has proven to be a powerfull tool in 2D-3D pose estimation
(for example in [11],[12]). Using the model presented in this paper we hope these
benefits gained in the Euclidean case of pinhole cameras will also be available in
the omnidirectional vision using catadioptric cameras.

2 Unified Mirror Geometries

In [5] Geyer and Daniilidis present a unified model for single viewpoint catadiop-
tric systems. In this model the world is first projected to the surface of a sphere
� This work has been supported by DFG grant So-320/2-3.
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with projective lines emerging from the center of the sphere. Stereographic pro-
jection from this spherical surface corresponds to the orthogonal projection from
a parabolic mirror. Moving the projection point from the north pole of the sphere
one may present perspective projections from the surfaces of elliptical and hy-
berbolical mirrors. Following the elegant description for the equivalence of the
stereographic projection and orthogonal projection from a parabola by Penrose
and Rindler [9], the unified model for single viewpoint catadioptric systems is
reconstructed using a different mathematical method. This leads to simple pro-
jections for the different mirror geometries with a clear correspondence to the
points on the sphere.

2.1 Modified Stereographic Projection

The stereographic projection is a one-to-one mapping between a sphere and a
plane. Usually the sphere is defined along with the concept of ball:

Definition 1. A n-ball of radius r centered at the origin is the set B(0; r) =
{x ∈ Rn+1 | x2 ≤ r2}.

The surface S2 = {x ∈ IRn+1 | x2 = 1} of the unit 2-ball, is called the sphere.
Instead of using this more common concept of sphere as a subset of IR3 the

sphere is now formed in the 4-dimensional Minkowski space IR3,1, i.e. vector
space with the signature (-,+,+,+). This is done in order to stay consistent with
the reference [9] and it offers the possibility to induce movement of points on
the sphere by using Lorentz transformations which are known to be locally angle
preserving.

The vectors x ∈ IR3,1 with x2 = 0 form a cone called the null cone. Let
the vectors in IR3,1 have the coordinates (t,x,y,z). The intersection of the null
cone and the plane t = 1 forms a sphere. In stereographic projection a point
P (1, x, y, z) on this surface is projected to a plane T with z = 0 and t = 1 (see
figure 1). The projective line is the line passing thru the north pole N and the
point P . The intersection of this line and the plane T gives the coordinates of
the projected point. To avoid inconsistencies in the projection of the point N
the plane T has to be complex. This also enables the description of the projected
point with just two parameters. Point A in figure 1 corresponds to the complex
number x + iy. The x and y coordinates tell the position of the point P ′ in the
complex plane and this is described by the complex number ζ = x′ + iy′. As the
phase angle of the complex number ζ = x′ + iy′ is the azimuthal angle of the
point (P ′ has the same direction from point C as point A) P (1, x, y, z) on the
sphere one has

A = hP ′ i.e x + iy = hζ, (1)

where h is a real coefficient. The value of h is by geometric deduction
(see figure 1)

h =
CA

CP ′ =
NP

NP ′ =
NB

NC
= 1− z. (2)
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Using spherical coordinates (0 ≤ φ ≤ 2π, 0 < θ, π) to parameterise the sphere
one gets

ζ =
x + iy

1− z
= eiφ cot

θ

2
. (3)

As in the model by Geyer and Daniilidis the connection of different mirror
geometries and the sphere is achieved by the movement of the projection point
N . We start by moving the projection point N along the z direction which
changes equation (2) to

h =
CA

CP ′ =
NP

NP ′ =
NB

NC
=

β − z

β
= 1− β−1z, (4)

and equation (3) to

ζ =
x + iy

1− αz
= eiφ sin θ

1− α cos θ
, where α = β−1. (5)

Fig. 1. Stereographic projection from sphere S to plane T . Only half of the Sphere S
is drawn.

2.2 Connection to Conic Sections

This movement of the projection point is related to different conic sections in
the following way. Let a null cone in IR3,1 be intersected by the plane t− z = 1.
This intersection forms a parabola. Let Q be a point of intersection of that plane
and a line from the vertex of the cone to the point P given by q = up, where
0 ≤ u ≤ 1, q is the vector pointing at the point Q and p is the vector pointing
at P (this is illustrated in the right part of figure 2). Solving the intersection of
the line defined by p and the plane t− z = 1 gives u = 1

1−z . Thus point Q has
the coordinates
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Q =
(

1
1− z

,
x

1− z
,

y

1− z
,

z

1− z

)
, (6)

from which the coordinates in the x − y-plane given by orthogonal projection
are

P ′(X ′, Y ′) =
(

x

1− z
,

y

1− z

)
. (7)

Labeling the points in the (x − y)-plane with complex numbers the point Q is
projected to a point ζ = x+iy

1−z as in (3). This equivalency of the stereographic
projection from a sphere and the orthogonal projection from a parabola can be
shown by intersecting planes. Let plane t = 1 intersect the null cone with vertex
O. This intersection is the spherical surface S2. Let the north pole N of the
sphere be at (1, 0, 0, 1) and point Q be the intersection of the null line from O to
P and the plane t − z = 1. The points O,Q,P,P ′ and N are coplanar and the
points P,P ′ and N are collinear [9]. Thus the point P ′ is also the stereographic
projection from the sphere S to the (x− y)-plane (see figure 2 representing the
situation in one dimensional case).

Fig. 2. Orthogonal projection from parabola and stereographic projection from circle.
The parabola is formed by the intersection of the cone and the (non-transparent)
t − z = 1 plane.

Tilting the t− z = 1 plane to the plane t− αz = 1 changes the coordinates
of Q to

Q =
(

1
1− αz

,
x

1− αz
,

y

1− αz
,

z

1− αz

)
, (8)

and the coordinates of the projected point to

P ′(X ′, Y ′) =
(

x

1− αz
,

y

1− αz

)
, (9)

where α is the eccentricity of the conic section. Exactly as in (1) the projected
point has the coordinates

ζ =
x + iy

1− αz
. (10)
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Fig. 3. Moving the point N keeps the points O, P, P ′, Q and N coplanar for different
conic sections (center of the conic O not seen in image). The image on left shows the
hyberbolic case and the image on right the elliptic case.

Moving the projection point N in the x direction in the stereographic pro-
jection corresponds to keeping the points O,P,P ′,Q and N coplanar. This is
illustrated in figure 3.

In order to use the equation (10) in elliptic and hyperbolic cases the orthog-
onal projection has to be changed to a perspective projection [2]. Let c be the
distance between the foci and d the distance of the image plane from the second
focal point. Then the point ζ will be projected to the point

ζ′ = −d

c
ζ (11)

in the hyperbolic case and

ζ′ =
d

c
ζ (12)

in the elliptic case.
With this construction the projections from different conic sections have sim-

ple equations which are easy to implement in applications.

3 Spherical Space and Clifford Algebra

In this section a projective model for the sphere is constructed in such a way that
it allows the description of geometrical entities on the sphere with simple alge-
braic expressions. In contrast to the previous section the sphere is now embedded
to IR3 as usual. This means that we consider only the subspace (1, x, y, z) of IM4

and this subspace has the same structure as IR3. In this subspace the sphere can
be described with the set of vectors r(θ, φ) = sin(θ) cos(φ)e1 + sin(θ) sin(φ)e2 +
cos(θ)e3.

3.1 Clifford Algebra in Parameter Space

Let (V, g) be a vector space V equipped with a symmetric bilinear form (i.e. inner
product) g. Algebra A over a ring R is compatible with the inner product space
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(V, g) if V is a subspace of A and for each x ∈ V , x2 = g(x, x). Clifford algebra
Gp,q,r is the compatible algebra for IRp,q,r [8], where p, q, r are the numbers of
unit vectors with positive, negative and null signature.

Let {e1, e2, . . . , en} be an orthonormal basis for IRn. Then the Clifford al-
gebra Gn has dimension 2n and basis {eε11 eε22 . . . eεn

n |εi = 0, 1}. For example the
Clifford algebra G3 of IR3 has the basis {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}

In practice it is useful to separate the geometric product of Clifford algebra
in it’s symmetric and antisymmetric parts: xy = 1

2 (xy + yx) + 1
2 (xy − yx) =

x·y+x∧y, where (·) is the inner product and (∧) is the outer product ([6] contains
a good introduction to the geometric product from a practical viewpoint).

Clifford algebra has proven to be a helpful tool in many applications with
strong relation to geometry. Geometric transformations can be presented with
simple geometric products and the inner and outer product null spaces are a
simple way to present geometric entities of any dimension [10].

With the usual definition 1 of the sphere these benefits are lost as the inner
and outer product null spaces describe the geometrical entities of the embedding
space instead of the sphere itself. For example a line in IRn has at most two points
common with the sphere. A conformal model for spherical geometry applying
this kind of embedding can be found in [7]. Another possibility would be to use
the Clifford algebra in the tangent spaces of S2, which is rather useless because
it can only describe infinitesimal entities on the manifold.

A sphere can be parameterized in a number of ways. Parameterization with
the least amount of ambiguities is the stereographic projection to the complex
plane described in the previous section. In this projection the geodesic curves are
mapped to curves in the complex plane, a fact which complicates their descrip-
tion with Clifford algebra. Instead, using the parameterization with azimuthal
and polar angles (φ, θ), 0 ≤ φ < 2π, 0 < θ < π the geodesic lines have a simple
description. Rectangular objects in projection on to the sphere can be described
with lines in the (φ, θ) space and thus retain the ’rectangularity’. Figure 4 shows
how the image captured with a parabolic mirror is transformed to the V (θ, φ)
space using (3).

Fig. 4. Image captured with a parabolical mirror and its mapping to V (φ, θ)

To remove the periodicity in φ and θ on the image the following scaling is
used:

φ′ =
φ

2π − φ
and θ′ =

θ

π − θ
. (13)
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The vector space V (θ′, φ′) equipped with the Euclidean inner product is clearly
isomorphic to IR2. Using the Euclidean inner product in V (θ′, φ′) areas calcu-
lated in parameter space differ from areas on the sphere. When needed a scaling
between these areas can be calculated. Frequently used angular size Δα of an
object is, for example, given by Δα =

√
(φ2 − φ1)2 + (θ2 − θ1)2. Instead of using

just the parameter space V (φ′, θ′) a projective model is defined.

3.2 Clifford Algebra in the Projective Model

Definition 2. The projective model of the sphere is the space SP = V (φ′, θ′)×
{IR\0} equipped with the Euclidean inner product. The basis of SP is {eφ′ , eθ′ , ep}.

The corresponding Clifford algebra G(SP ) ∼= G(IR3) has the basis

{1, eφ′ , eθ′, ep, eφ′eθ′, eφ′ep, eθ′ep, eφ′eθ′ep}. (14)

A vector in x ∈ V (φ′, θ′) is embedded in SP with the mapping

P : x ∈ V (φ′, θ′) �→ x + ep ∈ SP . (15)

The inverse of P is

P−1 : A ∈ SP �→ 1
A · ep

[(A · eφ′) eφ′ + (A · eθ′) eθ′ ] (16)

In this projective model Euclidean inner and outer product null spaces, NIE and
N�E , give a simple description for points, lines and planes on the parameter
space V (φ′, θ′). As an example let A, B, C ∈ SP . Now

NO(A ∧B) = {C ∈ SP | A ∧B ∧ C = 0} . (17)

As only the perpendicular component of C contributes to (17) one gets

NO(A ∧B) = {C ∈ SP | A ∧B ∧ C⊥ = 0} , (18)

i.e. C lies in the plane spanned by A and B. The corresponding euclidian outer
product null space is given by the projection of the plane A ∧B to V (φ′, θ′):

NOE (A ∧B) = P−1 (NO(A ∧B)) =
P−1 (αA + βB) = P−1 (αA − αB + αB + βB) =

P−1 [α(A−B) + (α + β)B] = b +
α

α + β
(a − b)

= b + t(a− b), t ∈ IR, (19)

which is a line in through points a and b in V (φ′, θ′). In a similar manner
NOE(A) = a.

In order to consider also the radial position of objects in the enviroment
of the camera one has to add also the radial dimension er to the model. This
addition does not have any other effect on the model than the addition of one
extra dimension.
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4 Conclusion

In this paper a simple method for unifying central catadioptric systems was
presented. Using Clifford algebra on the parameter space of the sphere allows
an efficient method for describing rectangular objects that are also mapped to
rectangular objects in the parameter space. This has not been possible in the
previous models using Clifford algebra [3],[4].

Using the parameter space of the sphere the distance Δφ between points on
the geodesics of the sphere have the simple form Δφ = 2πφ′

2
φ′

2+1 −
2πφ′

1
φ′

1+1 = φ2 − φ1.
One can also calculcate the distances between points on a line in the parameter
space using basic algebra instead of using line integrals on the surface of the
sphere (which lead in many cases to incomplete elliptic integrals).

In the parameter space the rotation of the sphere is achieved with the trans-
lation operator T (x) = x + t. In order to linearise the translation operator the
parameter space has to be embedded to a confromal space. This conformal model
is included in our ongoing research as is the movement of the sensor in the en-
viroment. Using Clifford algebra on suitably embedded parameter space allows
the description of the geometric entities and the camera movement.
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Abstract. A new methodology for the determination and correction of lens distor-
tion in fringe projection systems for 3D object measurement is introduced. The 
calibration of the distortion is performed in the device ready for measurement 
based on the simultaneous determination of both projector and (remaining) cam-
era distortion. The application of the algorithm allows a reduction of distortion er-
rors up to 0.02 pixels in the projector chip and also in the camera chip. 

1   Introduction 

High precision measuring systems based on image data require high precision opti-
cal components. That means for the camera lenses that they should have a minimum 
of distortion effects. However, there are no really distortion free lenses, especially 
in the range of wide angle lenses. 

Touchless 3D-measuring systems based on fringe projection use lenses in the 
range from weak to strong wide angles. That means that even if high quality lenses 
are used, a minimum of lens distortion can not be excluded. Depending on the re-
quirements to the measuring uncertainty of the system the distortion effects must be 
corrected. 

Depending on the measuring principle only the projection lens or both the pro-
jection and also camera lens(es) must be corrected. Recently the lens correction in 
such systems was usually ignored or dealt with some standard methods. Available 
systems are based on photogrammetric bundle adjustment. Tools for lens distortion 
correction are usually included [1]. However, these methods may be restricted con-
cerning the used distortion models or the termination of the process of lens distor-
tion determination is not achieved because of too strong correlation between the 
distortion parameters and the intrinsic camera parameters. 

Conventionally, lens distortion is described by a distortion function including ra-
dial, decentering, and affine parameters [2,3,4]. Using wide angle lenses the main 
part of the distortion usually has the radial distortion. Therefore, in the majority of 
works no other distortion than the radial one is considered. This may be sufficient, 
if the required measuring accuracy is not very high or if the actual distortion is 
sufficiently described by the radial distortion. Some authors take into account de-
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centering distortion [3,4]. This may improve the correction. However, some other 
kind of distortion may still be present. 

Kruck [5] suggests an approach including some 30 parameters describing the 
lens distortion. However, the use of so many parameters brings some disadvantages. 
First, a powerful calculation system for processing the data is necessary. Second, 
some of the parameters are not independent from each other. Third, the noise may 
influence the measurement and the reproducibility may be not sufficient. 

Differing from standard methods Brakhage [6] introduces a method for fringe 
projection systems with telecentric projection lenses using Zernike-polynomials 
including the consideration of distance dependence. In the calibration strategy sup-
posed by Chen [7] the distortion is described by polynomials calculated from re-
siduals. 

Here, the occurring distortion is described by a radial function added by a field 
of distortion vectors distributed over the whole detectable image plane [8]. Good 
experiences could be achieved using this kind of description. In the following the 
fringe projection devices are introduced, the distortion model and the new approach 
is described, the algorithms are given, and some results are presented.  

2   Situation 

The 3D measuring system “kolibri-flex” has been developed at the Fraunhofer IOF in 
Jena (see Fig.1). This system allows grasping the 3D surface geometry of arbitrarily 
formed objects of a size up to 400 x 400 x 200 mm. It is based on fringe projection. 
The measuring principle to obtain 3D object values is called phasogrammetry [9]. 

 

Fig. 1. 3D measuring system “kolibri-flex” using fringe projection 
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Phasogrammetry means the combination of photogrammetry and active fringe pro-
jection in closed mathematical form [9,10]. The basic principle of phasogrammetry 
includes the projection of at least two different positions, each one including two series 
of pattern sequences (e.g. Gray-Code-sequences in combination with phase-delayed grid 
lines) onto the object being measured whereas the second series is rotated 90° to the first 
one. The recording camera remains in same position according to the object. Therefore 
every point on the object is characterised by at least four phase values. The phase value 
ξ(i) and η(i) on the object point and its associated projection centres define spatial bundle 
of rays similar to those of the cameras in photogrammetry which can be used to calcu-
late the coordinates. 

Such a system can be extended to a flexibly measuring system by adding so called 
measuring cameras [9], which contribute to the measuring values. The “kolibri-flex” is 
such an extended system. In order to avoid distortion effects in the “kolibri” system the 
so called ADPA operator can be used which is implemented in the BINGO software [1] 
which is used in the system to perform the bundle adjustment. 

Experiences with the “kolibri” system showed that satisfying results with the ADPA 
operator could be achieved using a high quality projector without measuring cameras. 
However, using a cheaper low quality projector or using the measuring cameras consid-
erable deviations due to lens distortion occurred in the measurements of reference ob-
jects, and no correction with ADPA was possible. 

Therefore our goal was to construct a robust method for determination and correction 
of all effects generated by lens distortion with maximum precision and minimum addi-
tional calibration effort. An additional demand was the use of the device in the state 
“ready for measurement” in order to avoid errors by the adjustment process. 

3   Distortion Model 

Lens distortion describes the deviation of the actual vision ray between the observed 
object point and the point in the image plane from the ideal one concerning the camera 
model used. Usually radial and eventually decentering distortion is modelled and deter-
mined, e.g. (see [3]) by  
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An influence of up to distortion 30 parameters may be analysed by the BINGO soft-
ware [1]. However, our experiences with BINGO showed that even with 30 different 
distortion functions the actual distortion could not sufficiently modelled, and led to the 
decision to model the distortion as a matrix of distortion vectors in the image plane. This 
makes the description of any arbitrary distortion possible. The distortion function is 
represented by a reduced number of distortion vectors Δv = (Δx, Δy) forming a matrix. 
Here, Δv includes all distortion shares. The amount of distortion between the distortion 
grid points is determined by bicubic spline interpolation. 

If the radial share of the distortion is very high the distortion function can be sepa-
rated into two parts: Δv = Δvrad + Δvrest, where Δvrad describes the radial share and Δvrest 
the remaining distortion. The radial share Δvrad = (Δxrad, Δyrad) can be expressed by a 
function as 
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where r and r’ are the undistorted and the distorted distance to the symmetry point 
P=(x0, y0) of the distortion and p=(x,y) the undistorted point coordinates. The remaining 
distortion Δvrest = (Δxrest, Δyrest) can be described by a matrix of distortion vectors as 
shown in fig.2. 

 

Fig. 2. Distortion matrix (restricted area) of a wide angle lens (f=12mm) with strong distortion 
(left), remaining part after removal of radial distortion (right). Distortion vectors are scaled by a 
factor of 40 stronger than image coordinate scaling. 

4   Approach and Algorithms 

The main problem to solve is generated by the fact, that the distortion of the projection 
lens can not be determined by analysis of an image of a well known calibration object. 
Because the projector produces and projects an image, the opposite way has to be gone. 
However, recording the projected image by another camera, distortion effects of this 
camera disturb the determination of the projector distortion.  

The main idea of our method for projector distortion determination is to use a suffi-
ciently corrected camera, or, alternatively, the simultaneous determination of the projec-
tor distortion and the camera distortion of the fringe projection system. This second 
approach has the big advantage to use the measuring device itself as the calibration tool. 
Subsequently, with the corrected projector lens a grid pattern can be produced which 
can be used to determine the lens distortion of the remaining cameras of the system. 

Recently, in the “kolibri” systems lens distortion was estimated by a projection of 
stripes on a plane surface and a subjective comparison with calibrated grid patterns. This 
technique is only applicable having very strong distortion effects. It was not precise 
enough for the improved new “kolibri” system. Here, the amount of distortion is be-
tween 0.2 and 4μm in the projector chip, i.e. about 1/80 to ¼ of a projected pixel. 

The idea to determine lens distortion of projector and cameras within the device was 
to use a plane surface as a calibration tool, project a pattern of phase values [9] onto this 
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surface, and record this pattern by the camera. Between the distorted phase values and 
the undistorted camera coordinates a projective 2D-2D-mapping exists because of the 
planarity of the projected image points. 

Considering such a “one projector – one camera” system the scheme of fig.3 illus-
trates the data flow and the influence of lens distortion. This leads to the algorithm A1 
for the determination of projector distortion assuming that the camera distortion is 
known or determined before. The criterion to evaluate the quality of the distortion de-
termination is the averaged residual error (ARE, see also [2]) between the calculated 
(x,y)i and ideal (x,y)id

i coordinates before and after correction assuming that the estima-
tion of the 2D-2D projective transform is true: 

( ) ( )
=
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n
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The ideal coordinates (x,y)id
i are estimated by the best fit of the undistorted grid to 

the observed one. 

 

 

Fig. 3. Scheme of the data flow in the process of production of measuring values for lens dis-
tortion determination 

Algorithm A1 (determination of projector lens distortion) 

1. Produce corresponding point lists of phase values and corrected camera pixels 
2. Estimate a 2D-2D projective transformation T 
3. Apply T-1 to the corrected camera pixels 
4. Calculate the difference between the transformed points and the original phase 

values 
5. Eventually repeat nr. 2 to 4 with corrected phase values 

The previous determination of the camera lens distortion can be either done using a 
calibration target or using an in relation to the projector distortion free camera. If the 

undistorted phase values generated by the projector 
( , ) = observations 1

distorted phase values ( + , + )

distorted coordinates of the projectively trans-
formed distorted phase values (x+ x, y+ y) = observa-

coordinates of the projectively transformed dis-
torted phase values (x, y)

projector lens distor-

projective 2D-2D-transform T 

camera lens distortion
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projector distortion is known or neglectable, algorithm A2 can be used to determine 
camera distortion. 

Algorithm A2 (determination of camera lens distortion) 

1. Produce corresponding point lists of corrected phase values and camera pixels 
2. Estimate a 2D-2D projective transformation T 
3. Apply T to the phase values 
4. Calculate the difference between the transformed phase values and the origi-

nal camera point coordinates (pixels) 
5. Eventually repeat nr. 2 to 4 with corrected camera pixels 

A problem can occur when no distortion free camera is available, or the accuracy is 
not sufficient. In this case the solution may be an iterative distortion calculation de-
termining alternately camera and projector distortion, which leads to algorithm A3. 
This algorithm requires a separation of the distortion effects of projector and camera. 
This can be achieved by repeating the image recording with changing positions be-
tween projector and camera (expressed by the rotation angle β) as it is performed in 
the normal measuring mode of the “kolibri-flex” device. The finishing criterion 
should be the minimal averaged error after correction. 

Algorithm A3 (simultaneous camera and projector distortion determination) 

1. Produce corresponding point lists of phase values and camera pixel coordi-
nates in different arrangements between camera and projector (rotation of the 
projector, about six different rotation angles β) 
For each β 

2. Estimate a 2D-2D projective transformation T 
3. Apply T to the phase values 
4. Calculate the difference between the transformed phase values and the cam-

era pixel coordinates 
5. Merge the difference matrices  reduction of distortion effects from projec-

tor 
6. Estimate a 2D-2D projective transformation T-1 
7. Apply T-1 to the camera pixel coordinates 
8. Calculate the difference between the transformed camera pixel coordinates 

and the phase values  
9. Merge the difference matrices  reduction of distortion effects from camera 

10. Determine and analyse the quality measure 

5   Experiments and Results 

In order to evaluate the suggested methodology, a number of experiments has been 
performed. First, the determination of the distortion has been done using algorithm 
A3. Then, the determined distortion matrices were used to correct the distortion 
within the measuring process of the “kolibri-flex” system. 

All in all three projectors and six camera lenses were included into the experi-
ments. We used the projectors Davis CinemaTen (CT), InFokus LP120 (LP), and a 
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self developed projector (KF). The six lenses Cinegon 1.4/8, Cinegon 1.4/12, Xeno-
plan 17 (all by Schneider-Kreuznach), S5LPJ 2.8/12 (Sill), Lamegon 14, and Lametar 
25 (both by Jenoptic) were used and analysed. 

As the results the values for the ARE before and after correction are given, for the 
camera lenses also the percentage radial share psr (see formula 4) of the distortion 
and the determined distortion coefficient d2 (see formula 2, d4=0). The results for the 
projectors are given by table 1, the results for the camera lenses in table 2. The figures 
4 and 5 show distortion matrices of the projectors CT and LP. The distortion vectors 
in the figs. 4 and 5 are scaled by a factor of 200 stronger than the image coordinates. 
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Table 1. Results distortion determination and correction of projector lenses 

Projector ARE before correction (pixel) ARE after correction (pixel) 
CT 0.030 0.012 
LP 0.172 0.013 
KF 0.100 0.026 

  

         Fig. 4. Distortion matrix CT                    Fig. 5. Distortion matrix LP 

Table 2. Results of distortion determination and correction of camera lenses 

Lens Focal 
length 
(mm) 

ARE before 
correction  
(pixel) 

Radial share 
of dist. (%) 
(%) 

Radial coeffi-
cient d2 * 10-8  
(pixel-2) 

ARE after 
correction  
(pixel) 

Cinegon8 8 0.28 99 -3.35 0.02 
Cinegon12 12 0.18 99 -1.80 0.07 
Sill 12.4 0.27 > 90 -1.64 0.04 
Lamegon 14 < 0.10 n.s. - 0.02 
Xenoplan 17 0.37 85 -3.33 0.10 
Lametar 25 < 0.06 n.s. - 0.02 
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The influence of the application of distortion correction in a 3D measurement using 
LP was analysed. A stone slab with a size of 400 x 400 mm with a plane surface was 
measured before and after correction. The difference between the highest ant the low-
est point (PV) of the measured plane decreased from 355 down to 32 μm.  

The results show a reduction of the error by a factor between four and ten. It can be 
seen that the quality of the correction differs due to the lens quality. Furthermore, the 
restriction of the field of view may reduce the distortion effects and improve the re-
sult. Hence, an absolute statement about the lens quality can not be given. 

6   Summary, Discussion, and Outlook 

A new methodology to determine and correct lens distortion occurring in measuring 
systems using fringe projection was presented which considerably improves meas-
urements of 3D object surfaces. 

A remaining problem is the fact that no absolute separation of camera and projector 
distortion is possible using the algorithm for simultaneous determination of camera 
and projector distortion, when the image of the symmetry centre of distortion of the 
projector is close to the symmetry centre of the camera lens. This can be avoided by a 
weak change of the camera position. However, this means no restriction to the quality 
of the method, because a separation can always be achieved performing a usual lens 
distortion calibration procedure with more effort. Future work should be done in the 
analysis of lens distortion dependence on the object distance. 

References 

1. Kruck, E.: BINGO-F Benutzerhandbuch. Ges. f. Industriephotogramm. mbH, Aalen, 1995 
2. Brown, D.C.: Close-range camera calibration. Photogram.Eng. 37(8) (1971) 855-66 
3. Luhmann, Th.: Nahbereichsphotogrammetrie, Wichmann Verlag, 2003 
4. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy 

evaluation. PAMI(14), No 11 (1992) 965-80 
5. Kruck, E.: Lösung großer Gleichungssysteme für photogrammetrische Blockausgleichun-

gen mit erweitertem funktionalem Modell. Dissertation, Wiss. Arbeiten der Fachrichtung 
Vermessungswesen der Universität Hannover, Nr. 128, 1983 

6. Brakhage, P., Notni, G., Kowarschik, R.: Image aberrations in optical three-dimensional 
measurement systems with fringe projection. Applied Optics, vol.43, nr.16 (2004) 3217-23 

7. Chen, M. and Frankowski, G.: Kalibrierstrategie für optische 3D-Koordinatenmessgeräte, 
basierend auf streifenprojektionstechnischen und fotogrammetrischen Algorithmen. Tech-
nisches Messen 69, Oldenbourg (2002) 240-50 

8. Bräuer-Burchardt, C.: A simple new method for precise lens distortion correction of low 
cost camera systems. In Pattern Recognition (Proc 26th DAGM), Springer LNCS (2004) 
570-77 

9. Notni, G., Kühmstedt, P., Heinze, M., Himmelreich, M.: Phasogrammetrische 3D-
Messsysteme und deren Anwendung zur Rundumvermessung.. In Luhmann, Th. (ed.): In: Op-
tische 3D-Messtechnik, Wichmann-Verlag (2003) 21-32 

10. Schreiber, W., and Notni, G.: Theory and arrangements of self-calibrating whole-body 
three-dimensional measurement systems using fringe projection techniques. In: Opt. Eng. 
39 (2000) 159-169 



A Method for Fast Search of Variable Regions on
Dynamic 3D Point Clouds

Eric Wahl1 and Gerd Hirzinger1

Institute of Robotics and Mechatronics,
German Aerospace Center (DLR)

eric.wahl@dlr.de

Abstract. The paper addresses the region search problem in three-dimensional
(3D) space. The data used is a dynamically growing point cloud as it is typi-
cally gathered with a 3D-sensing device like a laser range-scanner. An encoding
of space in combination with a new region search algorithm is introduced. The
algorithm allows for fast access to spherical subsets of variable size. An octree
based and a balanced binary tree based implementation are discussed. Finally,
experiments concerning processing time are shown.

1 Introduction

Many algorithms in 3D-vision use local information of a much larger scene [1,2]. Sepa-
rating a subset is a necessary but nontrivial preliminary step, especially when using un-
organized point clouds. It strongly depends on the 3D-data representations and therein
the realization of spatial neighborhood relations.

A common procedure to organize the data, is applying a spatial subdivision tree.
Tree representations differ in their strategies when partitioning space, but they agree on
relying on a hierarchical structure. Each data point is mapped to a unique index (key) that
determines the location in the tree. The indexed location is referred to as a (tree-) node.
Accordingly, an index could be interpreted as the location on a one-dimensional space-
filling curve in 3D. The dilemma is that such a curve does not preserve spatial proximity
in all directions [3,4]. On the other hand, tree representations allow for organizing a
sequential stream of orderless data dynamically, since an update with incoming data is
possible, while access is still limited to complexity O(log(N)), where N is the number
of nodes.

This work is related to the approach of Sagawa et. al. [5]. They introduced the tech-
nique of the Bounds-Overlap-Threshold for iterative closest point (ICP) search. The
computational costs for registration tasks were reduced by limiting the search to a re-
gion within a selected threshold. Their approach accepts imprecision in return for faster
computation. Furthermore, the algorithm only provides single points instead of a region.
Since it is based on a k-d tree, an online balancing seems impractical.

Bodenmüller and Hirzinger use a tree representation capable for online surface-
mesh generation [6]. The representation contains linked leaf-nodes, that facilitates ac-
cess to the direct neighborhood. Adaption to searching a region of variable size would
increase memory and processing costs for building the links and is thus infeasible.
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Advancing a closest point search, we introduce a novel search algorithm for regions
of variable size. It is capable to separate local subsets of much larger point clouds.
The approach can be implemented either on an octree or a balanced binary tree and is
already embedded in a scene interpretation application [7], that uses the DLR multi-
sensory device [8,9] for data acquisition.

The paper is organized as follows: Section 2 describes the index generation. Next,
Section 3 introduces the region search algorithm. Section 4 includes experiments with
respect to processing costs. Last, Section 5 closes the paper with a conclusion and
prospects to future work.

2 Indexing

In this work, a hierarchical division of the space is applied, where space is a cube of
edge size e0. The first level of depth d = 0 consists of eight cubic cells of equal size.
Every cell is divided in subcells, themselves. This is continued until a maximum depth
dmax is reached. Cells of this level are referred to as atomic cells.

The z-order, also known as morton code, is used to address a cell. The function

m : p �→ i (1)

maps a point p to the index i, while

c : i �→ C (2)

maps the index i to the cell C. The length l of an index is one octal digit per depth,
where a digit defines one of the eight subcells. Accordingly, the prefix îd(i) determines
the d leading digits of the index i. It refers to the index of a higher located parent-cell
Cp = c(̂id(i)), that includes the cell C = c(i).

The implementation of the space is realized as a tree. Thereby, a cell in space cor-
responds to a node in the tree. A node contains the mean point p̃ of all points in the
corresponding cell. This simultaneously allows for smoothing a point cloud and for
restricting the point density to an upper bound.

In the following, two different types of (pointered) tree structures are applied.

2.1 The Octree

The octree uses the same structure as the hierarchical space division introduced above.
Higher level cells are symbolized by nodes, while atomic cells refer to leaf-nodes. Only
leaf-nodes contain information in terms of a 3D-point. Other nodes are exclusively used
for traversing the tree. Therefore, an index can be interpreted as a path from the top to
the bottom of the octree.

2.2 The Balanced Binary Tree

Adel’son-Vel’skiĭ and Landis [10] first introduced a balanced binary tree known as
AVL-tree1. In this kind of tree, only atomic cells need to be realized as tree-nodes.

1 The AVL-tree is used due to perfect balance and comparability to other trees, e.g. a red-black-
tree.
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The index of a cell still encodes the position of the node, but this position depends on
the input order of data and does not exactly coincide with the spatial order. Memory
costs for a balanced binary tree are lower than for an octree since binary trees need no
additional nodes for higher level cells.

3 The Region Search Algorithm

The aim of every region search algorithm is to collect the points p that are within a
radius r with respect to a region of interest (ROI)

F(r,q) = {p|‖p− q‖ ≤ r} (3)

around the center q.

Step 1: Finding the Center of Search

The algorithm first needs to determine the starting point. For both tree variants the index
iq = m(q) is calculated. A cell has to be found, that is large enough to include the hole
ROI, i.e. a cell of depth dF is chosen if the edge size edF = e0/2dF fulfills the condition

2r ≤ edF . (4)

By chance, the cell includes the complete ROI. Otherwise, if the center q is closer
to the cell border than the size of the radius r, parts of the ROI penetrate neighboring
cells. The sections of the ROI that are located in neighboring cells are further referred
to as outliers. In 3D, each cell has a maximum number of 26 neighbors

p[1...6] = q +
u[1...6] − q
‖u[1...6] − q‖r, (5)

p[7...18] = q +
v[1...12] − q
‖v[1...12] − q‖r, (6)

p[19...26] = q +
w[1...8] − q
‖w[1...8] − q‖r, (7)

where u[1...6] are the projections of p onto the six cell sides, v[1...12] are the projections
of p onto the 12 cell edges, and w[1...8] are the eight cell corners. Condition 4 reduces
the number of outliers to 7 neighbors. That leads to 8 starting points at most2. The
following steps are individually applied for each starting point.

Step 2: Prefix Descent

All points ps and pt included in the space of a sub-cell C = c(i) have the common
prefix

îdF (m(ps)) ∀{ps,pt|c(m(ps)) = c(m(pt))}. (8)

Therein, the algorithm descends the tree until a node with consistent prefix is found. If
such a node n exists, the search continues therefrom, otherwise it terminates.

2 That is the case, if the ROI is located in a corner of the cell.
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Fig. 1. (a) The example shows a space divided in hierarchical cells. A set of 12 input points pi

is used (i ∈ [1, 12]). The set Ω = {230, 132, 121, 303, 021, 103, 300, 013, 102, 003, 123,
120} contains the corresponding indices. The notation 1:230 refers to the point p1 with the index
i = 230. The circle symbolizes the region of interest. All points inside of this region must be the
result of the search. The size and position of the region leads to the prefix îdF=2(i) = 12. The
cell is able but not presumed to include the focus. Therefore, the neighborhood has to be also
examined. Two of the eight possible neighborhood positions point to cells with different prefixes
and thus need exploration. (b) The two-dimensional version of an octree is the quadtree used
here. The algorithm descends to the starting point in penultimate level, where the index and the
prefix match. There, the points p3, p11 and p12 are received. Next, the prefixes îdF=2 = 10 for
the outliers are calculated and the points p6 and p9 are added to the result. (c) In the balanced
binary tree the first match of the index with this prefix is searched. That leads to the point p3. The
exploration of the subtree of point p3 adds the points p11 and p12. Then the outlier search starts
for the prefix îdF=2 = 10. It is successful in the root-node, where the point p6 is located. Calling
the explore-operator on the left branch prunes the left side of the child and provides the point p9
on the right branch. Applying it on the right child prunes the right branch and leads to an already
examined subtree, thereupon the search ends.
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Step 3: Collecting Points

The collection of points depends on the tree organization. Hence, both trees have to be
discussed separately.

Collecting Points in the Octree: Since the octree possesses a spatial organization, the
search is straight-forward. All leaf-nodes in the subtree of node n are checked. If the
distance of the mean point p̃n to the center q of the ROI is smaller than the radius, it is
accepted. The complexity in the worst case is

O(8 log8(dF ) + 81+dmax−dF log8(dmax − dF )). (9)

That occurs, when the subtrees of all starting points contain the maximum number of
entries and are of the same size.

Collecting Points in the Balanced Binary Tree: The position of a node in a balanced
binary tree is less correlated with the spatial position than in the octree. Accordingly,
additional operations are required in order to navigate. Comparing the prefix îdF of
node n to the prefix î′dF of a child n′ of n by the operator

explore(̂idF , î′dF )

⎧⎨⎩
explore the right branch of n′, if î′dF < îdF
explore both branches of n′, if î′dF = îdF
explore the left branch of n′, if î′dF > îdF

(10)

allows for deciding, which branch needs further examination.
To avoid re-exploration of a subtree , the prefix îdF of n is stored in an explored-list

after examination of its complete subtree. The first element of the list is the prefix of the
cell that contains the center of the ROI, followed by a maximum of 6 outlier prefixes.
The index of each examined node is compared to all list elements. In case of a match,
the search on the subtree terminates. Otherwise, the distance of the mean point of a
node to the center q of the ROI is checked. If it passes, the point is collected.

In the worst case, all starting points are located in the top four levels of the tree,
while the searched points are based in the leaf cells. Due to two instead of eight childs
per node, the maximum tree depth is

3dmax = log2 8dmax. (11)

The limiting complexity is approximated by

O(32 + 23dmax−1 log2(3dmax − 4)). (12)

Fig. 1(a) illustrates the algorithm on a two-dimensional example. Fig. 1(b) shows
the results on a quadtree (which is the 2D version of an octree), while Fig. 1(c) focuses
on the balanced binary tree.

4 Experimental Evaluation

In this section, the processing speed for both the octree and the balanced binary tree is
compared to the results of a naive approach. A comparison to ICP approaches is not
appropriate since ICP approaches are limited to a search of single closest points.
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Fig. 2. The plots in the left column show absolute processing times, while the right column
addresses the normalized processing times. Normalized times are divided by the measurement of
the fastest algorithm regarding a pair of radius and saturation. The plots (a) and (b) are the result
of the naive approach, (c) and (d) the result of the octree, while (e) and (f) are the result of the
balanced binary tree.

The naive approach is implemented as a sequential pointered list. The use of an
index is not necessary. Since no spatial organization exists, each list node is com-
pared to the center of the ROI. Therefore, the complexity is N , as N is the number
of nodes.

The input of every representation is an identical point cloud, i.e. a uniformly dis-
tributed set of points within a cube of unitary edge size. Note this is only a theoreti-
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cal worst case example. Taking realistic data, such as a sampled surface consisting of
several objects and background leads to much better but data-dependant results. Never-
theless, the mean processing times achieved with this method embedded in a 3D-scene
interpretation approach are depicted in [7].

The term saturation
s = N/8dmax (13)

describes the occupancy of the cube, where the divisor 8dmax is the maximum num-
ber of possible indices (that equals the maximum number of atomic cells). Accord-
ingly, a saturation of s = 1 symbolizes the maximum number of 3D-points which
can be encoded with an index of dmax digits. For the tests we used a subdivision
space of depth dmax = 8. It allows for a maximum number of about 16.8 · 106

entries.
For the experimental evaluation of the processing costs, the radius r ∈ [0.01, 0.5]

of the ROI F(r,q) was modified in 20 steps and the saturation s ∈ [0.001, 0.1] of the
representations in 10 steps. Each combination of r and s was repeated 500 times. That
leads to a total of 20 × 10 × 500 = 105 tests. The processing performance at an Intel
Xeon 1.7GHz with 1GB RAM are depicted in Fig. 2.

Due to better visualization of the comparison results, we define a normalized no-
tation of processing times. There, each pair (r, s) depicts the processing time of an
approach with respect to the processing time of the fastest representation. The result is
performed in percent and shifted to the origin, i.e. a value of 0 characterizes an approach
as being faster than the others.

As mentioned above, the absolute processing times for the naive approach are a
function of the saturation (see Fig. 2(a)), since it defines the length of the list. Further-
more, the processed operation is an expansive floating-point calculation of a distance in
contrast to a simple integer comparison of an index.

For both tree representations the absolute processing costs arise either for the pa-
rameter r and s. This is caused by an increasing number of nodes which have to be
examined in both cases. In the worst case, that is a ROI of similar size to the represented
space all nodes have to be processed. Consecutively, additional costs for navigation and
calculation of the index occur.

These contemplations are of minor importance, since the algorithm is designed
for scene interpretation. There, focused objects are much smaller than the complete
scene. A direct comparison of the normalized plots (Fig. 2(b), (d) and (f)) empha-
sizes the advantages of the search algorithm. It shows the dependency of the method
to the radius r only. As desired small radii less than 30% of the edge size of the rep-
resented space, meet the expectations. The tree representations achieve significantly
faster processing for this parameterization, while the naive approach exceeds the range
of the plot.

Due to lower tree-depth and less operations during navigation, the octree outper-
forms the balanced binary tree with around 10% to 20% faster access. On the other
hand, the octree needs

∑dmax−1
i=0 8i additional nodes for the top of the tree. It has to be

considered, therefore, whether processing time or memory costs matter the most.
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5 Conclusion

In this paper a novel combination of an encoding of 3D-points and a region search
algorithm was introduced. The used input is a data stream as it is typical for sampling a
scene with a 3D-sensing device.

It has been shown that the region search algorithm is feasible for an octree repre-
sentation and a binary balanced tree representation. Both structures were selected to
provide the necessary update ability. The search algorithm can be adapted to each tree
representation and allows the access to arbitrary sized spherical subsets. The method
shows the best performance for small and medium regions of interest. This is of spe-
cial importance since the algorithm is embedded in a scene interpretation approach that
needs to focus differently sized objects with respect to a large environment.

Comparing the octree to the balanced tree representation leads to the conclusion,
that the octree is the best choice if memory costs are irrelevant. Keeping in mind that
3D sensing tends to produce very large data sets, the balanced binary tree is a very
significant structure even though processing costs are higher.
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Abstract. Obstacle avoidance is one of the most important challenges
for mobile robots as well as future vision based driver assistance systems.
This task requires a precise extraction of depth and the robust and fast
detection of moving objects. In order to reach these goals, this paper
considers vision as a process in space and time. It presents a powerful
fusion of depth and motion information for image sequences taken from
a moving observer. 3D-position and 3D-motion for a large number of
image points are estimated simultaneously by means of Kalman-Filters.
There is no need of prior error-prone segmentation. Thus, one gets a rich
6D representation that allows the detection of moving obstacles even in
the presence of partial occlusion of foreground or background.

1 Introduction

Moving objects are the most dangerous objects in many applications. The fast
and reliable estimation of their motion is a major challenge for the environment
perception of mobile systems and of driver assistance systems in particular. The
three-dimensional information delivered by stereo vision is commonly accumu-
lated in an evidence-grid-like structure [9]. Since stereo does not reveal any
motion information, usually the depth map is segmented and detected objects
are tracked over time in order to obtain their motion. The major disadvantage of
this standard approach is that the performance of the detection highly depends
on the correctness of the segmentation. Especially moving objects in front of
stationary ones – eg. the bicycle in front of the parking vehicles shown in fig-
ure 1 – are often merged and therefore not detected. This can cause dangerous
misinterpretations and requires more powerful solutions.

Our first attempt to overcome this problem was the so called flow-depth con-
straint [6]. Heinrich compared the measured optical flow with the expectation
stemming from the known ego-motion and the 3D stereo information. Indepen-
dently moving objects do not fulfil the constraint and can easily be detected.
Unfortunately, this approach turned out to be very sensitive to small errors in
the ego-motion estimation, since only two consecutive frames are considered.

Humans do not have the above mentioned problems since we simultaneously
evaluate depth and motion in the retinal images and integrate the observations
over time [10]. The approach presented in this paper follows this principle. The
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Fig. 1. Typical scene causing segmentation problems to standard stereo systems.

basic idea is to track points with depth known from stereo vision over two and
more consecutive frames and to fuse the spatial and temporal information using
Kalman Filters. The result is an improved accuracy of the 3D-position and an
estimation of the 3D-motion of the considered point at the same time. Since
we get a rich 6D-state vector for each point we like to refer to this method as
6D-Vision. Taking into account the motion information, the above mentioned
segmentation problem can be solved much more easily and robust.

The fusion implies the knowledge of the ego-motion. Fortunately, practical
tests reveal that for the detection of moving obstacles in front of a moving car
the standard inertial sensors are sufficient. If neccessary, the ego-motion can be
computed from image points found to be stationary (e.g. see [8] or [1]).

The mentioned accuracy improvement is already exploited by a satellite
docking system described in [7]. After an application-specific initialization, pre-
defined markers are tracked in the images of a pair of stereo cameras yielding a
very precise estimation of the relative position. In [3] Dang combines stereo and
motion to decide whether a group of points underlies the rigid motion.

In our real-time application we track about 2000 image points. So far, the
best results are obtained using a version of the well-known Kanade-Lucas-Tomasi
(KLT) tracker [11] that was optimized with respect to speed. The depth esti-
mation is based on a hierarchical correlation based scheme [4]. However, any
comparable optical flow estimation and any other stereo system can be used.

The paper is organized as follows: section 2 describes the system model and
the measurement equation for the proposed Kalman Filter. Section 3 studies the
rate of convergence of the considered system and presents a multi-filter system
for improved convergence. Section 4 gives practical results including crossing
objects and oncoming traffic.

2 System Description

In the following we use a right handed coordinate system with the origin on
the road. The lateral x-axis points to the left, the height axis y points upwards
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and the z-axis represents the distance of a point straight ahead. This coordinate
system is fixed to the car, so that all estimated positions are given in the coordi-
nate system of the moving observer. The camera is at (x, y, z)T = (0, height, 0)T

looking in positive z-direction.

2.1 System Model

The movement of a vehicle with constant velocity υc and yaw rate ψ̇ over the
time interval Δt can be described in this car coordinate system as

Δxc =
∫ Δt

0

υc (τ) dτ =
υc

ψ̇

⎛⎝1− cos ψ̇Δt
0

sin ψ̇Δt

⎞⎠ .

The position of a world point x = (X, Y, Z)T after the time Δt can be described
in the car coordinate system at time step k as

xk = Ry (ψ)
(
xk−1 + υk−1Δt−Δxc

)
with its associated velocity vector υ and the rotational matrix around the y-axis
Ry (ψ). Combining position and velocity in the 6D-state vector x̃ = (X, Y, Z, Ẋ, Ẏ , Ż)T

leads to the discrete system model equation

x̃k = Akx̃k−1 + Bkυc + wk−1

with the state transition matrix

Ak =

⎛⎝Ry (ψ) | ΔtRy (ψ)

0 | Ry (ψ)

⎞⎠
and the control matrix

Bk =
1
ψ̇

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− cos
(
ψ̇Δt

)
0

− sin
(
ψ̇Δt

)
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The noise term w is assumed to be Gaussian white noise with covariance ma-
trix Q.

2.2 Measurement Model

The measurement consists of two pieces of information: the image coordinates u
and v of a tracked feature and the disparity d delivered by stereo vision working
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Fig. 2. Estimation results of the presented Kalman Filter. The considered world point
is at the initial position (10.0 m, 1.0m, 60.0 m)T . The observer moves at a constant
speed of vz = 10 m

s in positive z-direction (20 fps).

on rectified images. Assuming a pin-hole camera the non-linear measurement
equation for a point given in the camera coordinate system is

z =

⎛⎝u
v
d

⎞⎠ =
1
Z

⎛⎝Xfu

Y fv

bfu

⎞⎠+ ν

with the focal lengths fu and fv and the baseline b of the stereo camera sys-
tem. The noise term ν is assumed to be Gaussian white noise with covariance
matrix R.

2.3 Simulation Results

The benefit of filtering the three-dimensional measurement is illustrated by figure
2(a). It shows the estimated relative distance of a simulated static world point
measured from an observer moving at a speed of 10 m

s . The initial position of the
point is (10.0m, 1.0m, 60.0m)T . White gaussian noise was added to the image
position and the disparity with a variance of 1.0px2. The dashed curve shows
the unfiltered 3D position calculation which suffers from the additive noise. The
continuous curve gives the excellent result of the filter.

In the above example the speed of the point was correctly initialized to zero.
How does the filter perform if the point is in motion? Let us assume the point
moves at a speed of vz = 7.0 m

s in positive z-direction. Figure 2(b)shows the
estimation results of three differently initialized filters. Although very large initial
values of the P-Matrix are used, the speed of convergence is only fair. Better
results can be obtained by a multi-filter approach described in the following.
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3 Multiple Filters for Improved Rate of Convergence

As shown above in figure2(b), the closer the first guess is to the correct value, the
less time it takes until the estimate is below a given error threshold. This strong
dependency on the initial value can be overcome by running multiple Kalman
Filters initialized at different speeds in parallel, estimating the world position
and velocity using the same input data.

How can we decide which state is the best? One way is to calculate the
distance between the real measurements and the predicted measurements using
the Mahalanobis distance, also known as the normalized innovation squared
(NIS) [2]:

DM (z, x) = (z − x)Σ−1 (z − x)�

with the measurement z, the predicted measurement x and the innovation co-
variance matrix Σ.

Alternatively, the probability density function, also called likelihood, can be
used as an indicator to decide whether a given measurement z matches a certain
Kalman Filter model. This is used for example in the interacting multiple model
estimator (IMM) [2]. However, the likelihood calculation tends to suffer from too
small floating point data types.

In order to avoid these numerical problems, we base our decisions on the
NIS criterion. Figure 3(a) shows the low pass filtered NIS values for the three
differently initialized filters of figure 3(a). It is obvious that the initialization
quality corresponds to the discrepancy in measurement space between the mea-
sured and predicted position.

Selecting one of the three (in general n) filter states as the correct one would
ignore valuable information contained in the other filters. Assuming a limited
initial state space, i.e. the tracked point has a limited absolute velocity, we
initialize the filters on different velocities including the boundaries. Consequently,
the real state must lie in between these boundaries and can be expressed as a
weighted sum

x̃ =
1∑
βi

n∑
i=0

βixi with βi =
1

NISi

where the weights βi represent the matching quality of each Kalman Filter. It
is beneficial not to base the decision or weighting on the current measurement
quality only, since this would lead to undesired effects due to measurement noise.
Therefore, we apply a low pass filtering to the weights thus accumulating the
errors over a certain time.

Figure 3(b)shows the result obtained by the above approach, if the three
filters are initialized at speeds −10.0, 0.0 and 10.0 m

s . For comparison, the same
filter initialized at -10.0 m

s shown in figure 2(b) is considered. It can be seen
that the multi-filter approach converges two times faster than the simple one.
A comparison with figure (2b) reveals that the combined system shows a better
performance than each of the three single filters.
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Fig. 3. Multi Kalman Filter estimation result (20 fps)

Fig. 4. Velocity estimation results for cyclist moving in front of parking cars. The
arrows show the predicted position of the world point in 0.5 s. The right image was
taken 0.5 s later allowing a comparison of the estimation from the left image. Blue
encodes stationary points.

4 Real World Results

The five most probable practical situations are: stationary objects, vehicles driv-
ing in the same direction as our own vehicle with small relative speed, oncoming
traffic, traffic from left, and traffic from right. The sketched multi-filter approach
offers the chance to run independent filters tuned to any of these five situations
in order to reach the desired fast convergence.

Let us first concentrate on the crossing situation already shown in figure 1.
The result of the velocity estimation is given in figure 4. The cyclist drives in front
of parking vehicles while the observer moves towards him at a nearly constant
speed of 4 m

s . The arrows show the predicted position of the corresponding world
point in 0.5 s projected into the image. The colors encode the estimated lateral
speed; the warmer the colour the higher the velocity. In order to prove the results,
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Fig. 5. Velocity estimation results for oncoming car. The observer moves at a constant
speed of 50 km

h .

the right image in figure 4 shows the same situation 0.5 s later. As can be seen,
the prediction shown in the left image was very accurate.

Figure 5 shows the estimation results for a typical oncoming traffic situation
in which the observer moves at a constant speed of 50 km

h . Here the color encodes
the Euclidean velocity of the tracked points. The prediction matches the real
position shown in the right image.

Practical tests at intersections and on highways reveal that the algorithm is
highly robust with respect to measurement noise, induced by pitch and yaw of
the vehicle. Simply spoken, it doesn’t matter how a point in the world precisely
moves from A to B, because those details are filtered out by the Kalman Filter.
On the other hand, it turns out that measurement outliers sometimes cause
serious misinterpretations. This problem is overcome by using a standard 3σ-
test to detect and reject those outliers.

5 Summary

The proposed fusion of stereo and optical flow simultaneously improves the depth
accuracy and allows estimating position and motion of each considered point.
Segmentation based on this 6D-information is much more reliable and a fast
recognition of moving objects becomes possible. In particular, objects with cer-
tain direction and speed of motion can directly be detected on the image level
without further non-linear processing or classification steps that may fail if un-
predicted objects occur.

Since the fusion is based on Kalman Filters, the information contained in
a number of frames is integrated. This leads to much more robust estimations
than differential approaches like pure evaluation of the optical flow. The proposed
multi-filter approach adopted from our depth-from-motion work [5] speeds up
the rate of convergence of the estimation, which is important for fast reactions.
For example, practical tests confirm that a crossing cyclist at an intersection is
detected within 4-5 frames. The implementation on a 3.2GHz Pentium4 proves
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that the described approach runs in real-time. Currently, we select and track
about 2000 image points at 12-16Hz, depending on the used optical flow algo-
rithm (the images have VGA resolution).

The ego-motion is assumed to be known throughout the paper. For many
in-door robotic applications on flat surfaces the usage of inertial sensors will be
sufficient. At the moment, the ego-motion of our demonstrator vehicle (UTA, a
Mercedes Benz E-Class vehicle) is determined based on the inertial sensors only.
Thanks to the Kalman Filter, the results are sufficient for obstacle avoidance.
The most dominant pitching motion results in an apparent vertical motion that is
ignored for this application. Nevertheless, in order to reach maximum accuracy,
the next step will be to estimate the six degree of freedom ego-motion precisely
using those image points that have been classified as static.
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Abstract. In this work we present a method for calibrating and remov-
ing nonlinear geometric distortion of an imaging device. The topic is
of importance since most reasoning in projective geometry requires the
projection to be strictly line preserving. The model of radial-symmetric
pincushion or barrel distortions, is generally not sufficient to compensate
for all non-linearities of the projection, this is true especially for wide-
angle cameras. Therefore we applied a more complex parametric model
to compensate for the non-central distortion effects. The only a-priori
knowledge that is used is the straightness of some edges in the recorded
image. In our experiments we could show that the method is applicable
especially for off-the-self cameras with medium quality optics.

1 Introduction

In the field of camera calibration, distortion is widely considered as a correction
of inaccurate camera features and is part of the generic camera model [8]. This
approach is not feasible for auto-calibration without a predefined calibration tar-
get, since linear projection is preconditioned. Hence, an accurate method and ro-
bust solution for the distortion problem is needed without using predefined cal-
ibration targets. In [4] no a-priori knowledge is needed for distortion estimation
at all which is allowed by the simplicity of the distortion model. In return only
radial-symmetric distortion can modeled. For omni-directional cameras the pin-
hole projection cannot be used at all. Camera and distortion models for this type
of optics are studied in [6]. Especially the distortion model can be also used for
wide-angle lenses. Numerous other parametric models were also presented in [3]
and more recently in [5]. A non-parametric distortion model was studied in [7].

Actual photographic devices never comply with a strictly affine or projective
camera model, which is basic for further geometric reasoning. Physically this is
due to numerous non-zero tolerances of dimensions of lenses and imperfections
of the camera components. In optical engineering some so-called aberrations
featuring special deviations to ideal optical instruments are distinguished. As we
assume the camera system to be achromatic 1, this work is restricted to pure
geometric aberrations.
1 The refraction angle of ray passing throw the optics is independent of it correspond-

ing wavelength
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As the magnitude of these aberrations also depends on the field of view of
the imaging device, we investigated our method using wide-angle cameras with
a field of view more than 120◦, since using other optics makes some of these
deviations too small to measure and at least very sensitive to noise.

This paper is structured in three parts. Starting with the formal description
of distortion model and explanation of the parameters we will then introduce our
approach for the parameter estimation. The next section comprises a summary
of our experiments and results. Finally we will present our conclusions and give
a short outlook of our future plans.

2 Geometric Camera Distortion Model

The most significant distortion effect is present in the radial component. Es-
pecially for narrow angle optics this might be the only considerable non-linear
projection feature that has to be considered. Hence the notion of ignoring other
distortion components is widely accepted in practice, since the terms describ-
ing these models are easily invertible. In contrast, using off-the-shelf wide-angle
optics, that are in general not very central, a simple radial distortion model is
not sufficient as it turned out in our experiments. Several solutions like using a
non-parametric distortion model or some non-polynomial models have been pro-
posed in recent years. In our work, we go back to a strictly polynomial model,
that was first introduced in [9]. In this distortion model, we can distinguish three
types of distortion:

– radial-symmetric distortion: this is the well-known distortion which is sym-
metric around a defined distortion center, which is also the minimum of the
function. Geometrically this a projection from a spherical to a flat surface.

– radial-tangential distortion: if distortion is not perfectly symmetrical around
a single point, the distortion is itself non-central and consists of two strictly
distinguished components.

– prism-distortion: is caused by errors in orthogonality of the optical axis of
the lens and the image sensor and can occur for central and non-central
cameras.

Let the recorded image points of the camera be P = [u′, v′]. Then the full
distortion model is now given by:

Pundist =
[
u′ − cx

v′ − cy

]
=
[
u
v

]
+ δ(u, v),

δ(u, v) = δprism(u, v) + δtang(u, v) + δradial(u, v),
(1)

where

δprism(u, v) =
[

s1(u2 + v2)
s2(u2 + v2)

]
, δtang(u, v) =

[
p1(3u2 + v2) + 2p2uv
p2(u2 + 3v2) + 2p1uv

]
,

δradial(u, v) =
[
k1u(u2 + v2)
k1v(u2 + v2)

] (2)
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Fig. 1. Visualization of the euclidean distance |δ| between distorted (original) and
corrected image coords across the original image area. Notice: the minimum is not at
the center of the radial distortion component [cx, cy].

The distortion functions are all derived from Taylor series. Only the 2nd degree
terms are used, since it is well-known that higher order terms do not produce
any substantially better results in practice and secondly they would also increase
complexity and noise sensitivity . Accordingly the model has 7 free parameters. It
is important to note that [cx, cy] does neither designate the position of principal
point nor the exact coordinates of the point of minimal distortion as is illustrated
in Figure 1. Hence there is no distortion center at all, since we introduced the
radial-tangential factor, which generally implies non-central distortion. Alterna-
tively the model can be simplified by keeping cx and cy constant. Obviously these
values should be around the coordinates of the image center, but principally we
can choose any position — even at the image border. That of course will heavily
disrupt the shape of the corrected image area by enlarging the prism distortion
effect quite strongly.

3 Parameter Estimation

In previous work several methods for robust distortion estimation were intro-
duced. In [6] point correspondences together with a special modification of the
non-polynomial division model are used in order to solve for quadratic eigenvalue
problem. Using a very simple radial distortion model, even blind estimation of
its parameters is possible, which has been demonstrated by Farid and Popescu in
[4]. In our case we use defined flat pattern of concentric compound regions with
piecewise linear circumference, e.g. some squares, hexagons, octagons. As we
now know all edgels within a picture of the pattern sit on straight lines. Hence
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straightness constraints can be applied to the estimation problem in order to
produce a line-preserving image. The argumentation for using only line-features
is the same as already formulated in [5]. The resulting projection is strictly
linear and can be further calibrated according to a pinhole model. We do not
enforce any kind of angle-constraint, since, even if we do not get the right angles,
this can be corrected, because shear operations in the image space are always
line-preserving.

For edge extraction we use a Canny edge detector and rearrange the resulting
edgels together with the covariances (uncertainties) as a sorted list represent-
ing the polygon and its uncertainty. In order to identify the corners we use a
curvature analysis algorithm introduced in [1].

The resulting sample polygons are subject to a linear least square fit which
uses the following error function χ2:

Let P = {P1, ...Pn} where Pi = (ui, vi) is an ordered set of extracted edgels.

χ2 =
1
n2
· (a sin2 φ− 2 |b| |sin φ| cosφ + c cos2 φ), (3)

where

a =
n∑

j=1

u2
j −

1
n

⎛⎝ n∑
j=1

uj

⎞⎠2

b =
n∑

j=1

ujvj − 1
n

n∑
j=1

uj

n∑
j=1

vj (4)

c =
n∑

j=1

vj
2 − 1

n

⎛⎝ n∑
j=1

vj

⎞⎠2

(5)

α = a− c β = α
2
√

α2+4b
(6)

|sin φ| =
√

1
2
− β, cosφ =

√
1
2 + β (7)

The angle φ in Equation 4 corresponds directly to the angle of the fitted
line with u-axis. The error function is very similar to the one introduced in
[2]. We introduced the additional term 1

n2 in Equation 4, since it improved
the convergence behavior in our experiments by a factor of ten yielding results
differing from the ones computed with the original model in [2] at the 7th to 9th
decimal place for the parameters.

The initial setup for the distortion model is a zero vector. After the first run
with resulting residual Outlier-points are eliminated and the corner detection is
applied a second time. If the relative difference between the previous residual 2

and the current one is less than a threshold the estimation is finished. In the
other case we iterate the procedure until the stop condition is fulfilled. The
result of the operation is a full distortion model and a list of Outlier points.
These outliers can be also used to determine asymmetric lens defects.

2 Now computed without the Outlier-points.
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4 Experiments

We used the intensity images of a 1/3 inch standard CCD-camera. Mounted
with 3.8mm wide-angle lens the images cover the scene with an effective angle
of view of about 135◦. The size of the images was 768x576 pixel. A flat print-out
of concentric rectangles of unknown proportions and size serves as a calibration
pattern. We used one light source directed roughly perpendicular to this surfaces,
producing roughly uniform illumination for recording. We were able to detect
the edges with a standard deviation of less than 0.3 [px] using a Canny edge
detector (see Figure 2). Out of about 10,000 edgels we selected the corners with
the algorithm suggested in [1]. By the decrease of the amount of sample points
the corner detector gets more sensitive resulting in some additional redundant
corners. Since this effect is due to the distortion, which is expected to be smaller
in central areas, we may exclude the innermost edgels from the estimation, where
the polygon is most likely broken into smaller unwanted parts.

In order to evaluate the accuracy of our results we used an error metric
which directly relates to the straightness of the resulting projection. We fitted
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Fig. 2. (a) The original image of the calibration pattern with detected edges and
corners. (b) Correction according to estimation after 3 iterations (c) Image of several
pots recorded with same camera (d) Corrected image of the pots.
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a line in between the remaining test points for each section of all polygons in a
least-square sense and measured their perpendicular distance to this reference.
The standard deviation of this distances was in the range of 0.5-0.7 pixels. If we
only take into account the outermost section we can roughly bound the accuracy
to 0.7 pixels. Indeed in this case it might not be quite correct to speak of an
accuracy measurement rather than a quantitative indication of how close to
perfectly line-preserving the resulting projection is.

5 Conclusion and Outlook

We were able to demonstrate the applicability of a complex polynomial distortion
model using wide-angle off-the-self lenses. The resulting parametric models can
be used to stratify images and their features. We introduced a distortion model
with some minor changes to the one proposed in [9]. Due to the optimization
strategy which is similar to the widely applied RANSAC algorithm, the method
is robust against local deviations and can also be apply for detecting them.
A major objection for using polynomial models is that they are not directly
invertible. In the future work we will investigate that problem closely. Finally
we plan to integrate the distortion estimator in a framework for auto-calibration
where is used to correct all image features in order to produce a virtually line-
preserving projection.

References

1. Dmitry Chetverikov and Zs. Szab. A Simple and Efficient Algorithm for Detection
of High Curvature Points in Planar Curves. Technical report, 1999.

2. R. Deriche, R. Vailant and O. Faugeras. From Noisy Edge Points to 3d Reconstruc-
tion of a scene: A Robust Approach and its Uncertainty Analysis. In Proc. of the
7th Scandinavian Conf. on Image Analysis, pages 225–232, Alborg, Denmark, Aug
1991.

3. Frederic Devernay and Olivier D. Faugeras. Straight lines have to be straight.
Machine Vision and Applications, 13(1):14–24, 2001.

4. H. Farid and A.C. Popescu. Blind Removal of Lens Distortions. Journal of the
Optical Society of America, 18(9):2072–2078, 2001.

5. A. Habib and M. Morgan. Automatic Calibration of Low Cost digital cameras.
SPIE Journal of Optical Engeneering, 42(4):948–955, 2003.

6. B. Micusik and T. Pajdla. Using RANSAC for Omnidirectional Camera Model
Fitting. In Ondrej Drbohlav, editor, Computer Vision - CVWW, Vatice, Czech
Republic, Feb 2003. Czech Pattern Recognition Society.

7. J. Pers and S. Kovacic. Nonparametric, Model-Based Radial Lens Distortion Cor-
recting Using Tilted Camera Assumption. In H. Kropatsch, W. Wildenauer, editor,
Computer Vision - CVWW, pages 286–295, Bad Ausee, Austria, February 2002.

8. R. Y. Tsai. A Versatile Camera Calibration Technique for High Accuracy 3D Ma-
chine Vision Metrology using Off-the-Shelf TV Cameras and Lenses. Technical
Report RC 51342, IBM, oct 1985.

9. Juyang Weng, Paul Cohen, and Marc Herniou. Camera Calibration with Distor-
tion Models and Accuracy Evaluation. IEEE Trans. Pattern Anal. Mach. Intell.,
14(10):965–980, 1992.



A System for Marker-Less Human Motion Estimation

B. Rosenhahn1,4, U. G. Kersting2, A. W. Smith2, J. K. Gurney2, T. Brox 3,
and R. Klette1

1Computer Science Department, 2Department of Sport and Exercise Science,
The University of Auckland, New Zealand
bros028@cs.auckland.ac.nz

3Math. Image Analysis Group, Saarland University, Germany
4 From November 2005: Max Planck Center Saarbrücken,

rosenhahn@mpi-sb.mpg.de

Abstract. In this contribution we present a silhouette based human motion es-
timation system. The system components contain silhouette extraction based on
level sets, a correspondence module, which relates image data to model data and
a pose estimation module. Experiments are done in a four camera setup and we
estimate the model components with 21 degrees of freedom in two frames per
second. Finally, we perform a comparison of the motion estimation system with a
marker based tracking system to perform a quantitative error analysis. The results
show the applicability of the system for marker-less sports movement analysis.

1 Introduction

Human motion estimation from image sequences means to determine the rigid body
motion [11] and joint angles of a 3D human model from 2D image data. Due to redun-
dancies multi-view approaches are necessary. Often simplified models are used, e.g. by
using stick, ellipsoidal, cylindrical or skeleton models [1,9,7]. We recently introduced
an approach for silhouette based human motion estimation [14] which uses free-form-
surface patches to estimate the pose and joint angles of the upper torso. In [15] we
further applied local and global morphing techniques to get realistic motions of the up-
per torso model. These basic modules are now extended to a complete human motion
estimation system. The system consists of an advanced image segmentation method,
dynamic occlusion handling and kinematic chains of higher complexity (21 degrees of
freedom). Finally we perform a comparison of the system with a commercial marker
based tracking system [10] used to analyze sports movements1. We perform and ana-
lyze exercises, such as push ups or sit ups. The algorithm proves as stable, robust and
fairly accurate.

The contribution is organized as follows: We will start with the basic setup of the
motion capture system. Then we will continue with the system modules. Here we will
briefly describe image segmentation based on level sets, pose estimation and the dy-
namic occlusion handling to deal with partial occlusion in certain frames. The next

1 Motion Analysis Corporation is one of the leading provider of optical motion capture sys-
tems in entertainment, video-games, film, broadcasting, virtual reality, medicine, sports, and
research.
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section presents the experimental results and the quantitative error analysis followed by
a brief discussion.

2 The Human Motion Tracking System

A 3D object model builds the a priori knowledge of the system, which is in this case
given as two free-form surface patches with two kinematic chains. Each kinematic chain

Pose result Correspondences

Extracted SilhouettesInput Image

Fig. 1. The capture system consists of iterating the following steps: Segmentation, correspon-
dence estimation, pose estimation

consists of seven joints (three for the shoulder, two for the elbow and two for the wrist).
Furthermore we added one back segment joint to the torso surface patch. The estimation
procedure is dealing with 21 unknowns, six for the pose parameters (three for rotation
and three for translation), 7 for each arm and one backbone joint. During correspon-
dence estimation (along four frames) we collect around 5000 point correspondences
(slightly varying dependent on the visible information) and still track in two frames per
second for the four camera sequence. Using the 3D model and four images from a (trig-
gered) calibrated camera sequence, the motion tracking system consists of three main
components, namely silhouette extraction, matching and pose estimation. All compo-
nents are iterated to stabilize segmentation on the one hand and pose estimation on the
other hand.
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Fig. 2. Silhouette extraction based on level set functions. Left: Initial segmentation. Right: Seg-
mentation result

2.1 Image Segmentation

Image segmentation usually means to estimate boundaries of objects in an image. This
task can become very difficult, since noise, shading, occlusion or texture information
between the object and the background may distort the segmentation or even make it
impossible. Our approach is based on image segmentation based on level sets [12,4,5,2].
A level set function Φ ∈ Ω �→ IR splits the image domain Ω into two regions Ω1 and
Ω2 with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if x ∈ Ω2. The zero-level line thus
marks the boundary between both regions. The segmentation should maximize the total
a-posteriori probability given the probability densities p1 and p2 of Ω1 and Ω2, i.e.,
pixels are assigned to the most probable region according to the Bayes rule. Ideally, the
boundary between both regions should be as small as possible. This can be expressed
by the following energy functional that is sought to be minimized:

E(Φ, p1, p2) = −
∫

Ω

(
H(Φ) log p1 + (1 − H(Φ)) log p2 + ν|∇H(Φ)|) dx (1)

where ν > 0 is a weighting parameter and H(s) is a regularized version of the Heavi-
side function, e.g. the error function. Minimization with respect to the region boundary
represented by Φ can be performed according to the gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν div

(
∇Φ

|∇Φ|

))
(2)

where H ′(s) is the derivative of H(s) with respect to its argument. The probability
densities pi are estimated according to the expectation-maximization principle. Having
the level set function initialized with some contour, the probability densities within
the two regions are estimated by the gray value histograms smoothed with a Gaussian
kernel Kσ and its standard deviation σ.

This rather simple and fast approach is sufficient for our laboratory set-up, though it
is also conceivable to apply more elaborated region models including texture features.
Figure 2 shows an example image and the contour evolution over time. As can be seen,
the body silhouette is well extracted, but there are some deviations in the head region,
due to the dark hair. Such inaccuracies can be compensated from the pose estimation
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procedure. For our algorithm we can make a tracking assumption. Therefore, we ini-
tialize the silhouette with the pose of the last frame which greatly reduces the number
of iterations needed. The implementation is fast; the algorithm needs 50 ms per frame
and 200 ms image processing time for a four-camera setup.

2.2 Pose Estimation

For pose estimation we assume a set of point correspondences (Xi, xi), with 4D (homo-
geneous) model points Xi and 3D (homogeneous) image points xi. Each image point
is reconstructed to a Plücker line Li = (ni,mi), with a (unit) direction ni and moment
mi [11].

Every 3D rigid motion can be represented in an exponential form

M = exp(θξ̂) = exp
(

ω̂ v
03×1 0

)
where θξ̂ is the matrix representation of a twist ξ = (ω1, ω2, ω3, v1, v2, v3) ∈ se(3) =
{(v, ω)|v ∈ IR3, ω ∈ so(3)}, with so(3) = {A ∈ IR3×3|A = −AT }.

In fact, M is an element of the one-parametric Lie group SE(3), known as the
group of direct affine isometries. A main result of Lie theory is, that to each Lie group
there exists a Lie algebra which can be found in its tangential space, by derivation and
evaluation at its origin; see [11] for more details. The corresponding Lie algebra to
SE(3) is denoted as se(3). A twist contains six parameters and can be scaled to θξ
with a unit vector ω. The parameter θ ∈ IR corresponds to the motion velocity (i.e., the
rotation velocity and pitch). For varying θ, the motion can be identified as screw motion
around an axis in space. To reconstruct a group action M ∈ SE(3) from a given twist,
the exponential function exp(θξ̂) = M ∈ SE(3) must be computed. This can be done
efficiently by using the Rodriguez formula [11],

exp(ξ̂θ) =
(

exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT vθ
01×3 1

)
, for ω �= 0

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1 − cos(θ)).

Note that only sine and cosine functions of real numbers need to be computed.
For pose estimation we combine the reconstructed Plücker lines with the screw

representation for rigid motions and apply a gradient descent method: Incidence of the
transformed 3D point Xi with the 3D ray Li can be expressed as

(exp(θξ̂)Xi)3×1 × ni − mi = 0.

Indeed, Xi is a homogeneous 4D vector, and after multiplication with the 4× 4 matrix
exp(θξ̂) we neglect the homogeneous component (which is 1) to evaluate the cross

product with ni. We now linearize the equation by using exp(θξ̂) =
∑∞

k=0
(θξ̂)k

k! ≈
I + θξ̂, with I as identity matrix. This results in

((I + θξ̂)Xi)3×1 × ni − mi = 0
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and can be reordered into an equation of the form Aξ = b. Collecting a set of such
equations (each is of rank two) leads to an overdetermined system of equations, which
can be solved using, for example, the Householder algorithm. The Rodriguez formula
can be applied to reconstruct the group action M from the estimated twist ξ. Then
the 3D points can be transformed and the process is iterated until the gradient descent
approach converges.

Joints are expressed as special screws with no pitch of the form θj ξ̂j with known
ξ̂j (the location of the rotation axes as part of the model representation) and unknown
joint angle θj . The constraint equation of a jth joint has the form

(exp(θj ξ̂j) . . . exp(θ1ξ̂1) exp(θξ̂)Xi)3×1 × ni − mi = 0

which is linearized in the same way as the rigid body motion itself. It leads to three
linear equations with the six unknown pose parameters and j unknown joint angles.
Collecting a sufficient number of equations leads to an overdetermined system of equa-
tions.

Note, that since we work with reconstructed 3D lines, we can gain equations from
different cameras (calibrated with respect to the same world coordinate system) and put
them together in one system of equations and solve them simultaneously. This is the
key idea to deal with partial occlusions: A joint which is not visible in one camera must
be visible in another one to get a solvable system of equations. A set of four cameras
around the subject covers a large range and allows to analyze quite complex motion
patterns.

2.3 Correspondence Estimation

After image segmentation correspondences between the object model and the extracted
silhouettes are established. Therefore, we follow a modified version of an ICP algorithm
[14] and use a voting method to decide, whether a point belongs to the torso or one of
the arms. These correspondences are applied on the pose estimation module resulting
in a slightly transformed object. This is used to establish new correspondences until the
overall pose converges.

3 Experiments

A lack of many studies is that only a visual feedback about the pose result is given,
by overlaying the pose result with the image data, e.g. [14]. To enable a quantitative
error analysis, we use a commercial marker based tracking system for a comparison.
Here, we use the Motion Analysis software [10], with an 8-Falcon-camera system. For
data capture we use the Eva 3.2.1 software and the Motion Analysis Solver Interface
2.0 for inverse kinematics computing [10]. In this system a human has to wear a body
suit and retroflective markers are attached to it. Around each camera is a strobe light led
ring and a red-filter is in front of each lens. This gives very strong image signals of the
markers in each camera. These are treated as point markers which are reconstructed in
the eight-camera system. The system is calibrated by using a wand-calibration method.
Due to the filter in front of the images we had to use a second camera set-up which
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Fig. 3. The coordinate systems in the lab setup
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Fig. 4. Tracked arms: The angle diagrams show the elbow values of the Motion analysis system
(dotted) and the silhouette system (solid)

provides real image data. This camera system is calibrated by using a calibration cube.
After calibration, both camera systems are calibrated with respect to each other. Then
we generate a stick-model from the point markers including joint centers and orienta-
tions. This results in a complete calibrated set-up we use for a system comparison. It is
visualized in figure 3.

The images in the upper left of figure 1 show the body-suit with the attached mark-
ers. These lead to minor errors during silhouette extraction, which are omitted here.
Figure 4 shows the first test sequence, where the subject is just moving the arms for-
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wards and backwards. The diagram on the right side shows the estimated angles of the
right elbow. The marker results are given as dotted lines and the silhouette results in
solid lines. The overall error between both angles diagrams is 2.3 degrees, including
the tracking failure between frames 200 till 250.
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Fig. 5. Tracked Push-ups: The angle diagrams show the elbow values of the Motion analysis
system (dotted) and the silhouette system (solid)

Figure 5 shows the second test sequence, where the subject is performing a series
of push-ups. Here the elbow angles are much more characteristic and also well com-
parable. The overall error is 1.7 degrees. Both sequences contain partial occlusions in
certain frames. But this can be handled from the algorithm.

4 Discussion

The contribution presents a human motion estimation system. The system extracts sil-
houettes by using level-set functions and uses a model with 21 degrees of freedom in
a four-camera set-up. Finally we perform a comparison of the marker-free approach
with a commercial marker based tracking system. In [13] eight bio-mechanical mea-
surement systems are compared (including the Motion Analysis system). There is also
performed a rotation experiment which shows, that the RMS2 errors are typically within
three degrees. Our error measures fit in this range quite well.

Marker-less human motion tracking is highly challenging for sports, exercise and
clinical analysis and the system evaluation shows, that our approach is leading in the
right direction for a marker-less stable and accurate human motion estimation system.
Future works will continue with silhouette extraction in more complex environments,
so that we can also analyze sports movements in non-lab environments.

2 root mean square.
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6. Cremers D., Kohlberger T., and Schnörr Ch. Shape statistics in kernel space for variational
image segmentation. Pattern Recognition, No. 36, Vol. 9, pp. 1929-1943, 2003.

7. Fua P., Plänkers R., and Thalmann D. Tracking and modeling people in video sequences.
Computer Vision and Image Understanding, Vol. 81, No. 3, pp.285-302, March 2001.

8. Gavrilla D.M. The visual analysis of human movement: A survey Computer Vision and
Image Understanding, Vol. 73 No. 1, pp. 82-92, 1999.

9. Mikic I., Trivedi M, Hunter E, and Cosman P. Human body model acquisition and tracking
using voxel data International Journal of Computer Vision (IJCV), Vol. 53, Nr. 3, pp. 199–
223, 2003.

10. Motion Analysis Corporation www.motionanalysis.com last accessed February 2005.
11. Murray R.M., Li Z. and Sastry S.S. A Mathematical Introduction to Robotic Manipulation.

CRC Press, 1994.
12. Osher S. and Sethian J. Fronts propagating with curvature-dependent speed: Algorithms

based on Hamilton–Jacobi formulations. Journal of Computational Physics, Vol.79, pp. 12-
49, 1988.

13. Richards J. The measurement of human motion: A comparison of commercially available
systems Human Movement Science, Vol. 18, pp. 589-602, 1999.

14. Rosenhahn B., Klette R. and Sommer G. Silhouette based human motion estimation. Pat-
tern Recognition 2004, 26th DAGM-symposium, Tübingen, Germany, C.E. Rasmussen, H.H.
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Abstract. Filtering a signal with a finite impulse response (FIR) filter
introduces dependencies between the errors in the filtered image due to
overlapping filter masks. If the filtering only serves as a first step in
a more complex estimation problem (e.g. orientation estimation), then
these correlations can turn out to impair estimation quality.

The aim of this paper is twofold. First, we show that orientation esti-
mation (with estimation of optical flow being an important special case
for space-time volumes) is a Total Least Squares (TLS) problem: Tp ≈ 0
with sought parameter vector p and given TLS data matrix T whose
statistical properties can be described with a covariance tensor. In the
second part, we will show how to improve TLS estimates given this sta-
tistical information.

1 Introduction

1.1 Gradient-Based Orientation Estimation

The detection of edges (grey value discontinuities) is an important problem in
image processing, especially if we consider N +1 dimensional space-time volumes
that are spanned by N space dimensions and one dimension representing time.
Orientations in these volumes can be interpreted as motion equation.

Edges are determined by grey value discontinuity in all orthogonal direc-
tions. Therefore, one can find orientations in N -dimensional data by computing
gradients in a certain image window. Ideally, there is no discontinuity along the
edge and all gradients are orthogonal to the sought direction. If the gradients are
written as row vectors of a matrix T, then the orientation estimation problem
can be written as TLS problem Tp ≈ 0.

For computing the derivative along some coordinate axis, one needs a 1D-
derivative filter, e.g. D3 =

[
1 0 -1

]
. The subscript 3 denotes a 3-element filter

(following the notation of Jähne, e.g. in [1]). A well known problem for differential
filters is that the transfer function is high for large frequencies [2,1]. In other
words: they are extremely sensitive to noise. But there is an easy solution: we
only have to differentiate in one direction; there are N −1 dimensions left which
can be used for averaging, thus reducing the influence of noise on the estimate.
This general concept is known as regularized edge detection [2].

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 238–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For computational efficiency, we should take care to construct separable fil-
ters only. Consequently, we only need one 1D averaging filter that is applied
to all remaining dimensions in sequence, e.g. Abox3 =

[
1 1 1

]
(3-element box

filter) or Abin3 =
[

1 2 1
]

(3-element binomial filter).1 For instance, the Sobel
operator combines binomial averaging and first derivative.

1.2 TLS Error Modelling

Let S denote some image window which will be analyzed to estimate the orienta-
tion at its center pixel. By vectorizing (i.e. stacking columns on top of each other),
we can construct a vector s ∈ RNs representing the input signal. Analogously,
we represent the filter output as image Z or, in vectorized form, as z ∈ RNz . We
assume Nz < Ns to avoid border effects (i.e. cut off border in filtered image).
The purpose of vectorization is reformulating filtering of an image (or general
N -D signal) with filter operator F (i.e. Z = FS) as matrix multiplication

z = Fs (1)

with matrix F ∈ RNz×Ns . Now let zk = Fks be the output vector produced
with some filter matrix Fk; in general, we have k = 1, . . . , N (with N = 2 for
orientation estimation in image). The constraint that gradients are orthogonal
to the sought orientation then leads to⎛⎝ | |

z1 · · · zN

| |

⎞⎠
︸ ︷︷ ︸

T

p = Tp = 0 . (2)

Problems of this type are known as TLS problems and commonly solved by
taking the singular vector corresponding to the smallest singular vector of T
(which is identical to the eigenvector of TTT [“structure tensor”] corresponding
to its smallest eigenvalue). We will denote this approach as plain TLS or PTLS.

The sought orientation p (a unit vector) is orthogonal to all gradients – at
least if there are no errors in the gradients. But errors in the input data will
inevitably lead to errors in the filtered images and hence in the TLS data matrix
T as well. PTLS is statistically optimal if and only if all errors in the random
matrix T are independent and identically distributed (iid) [3] – which is clearly
not the case here as overlapping filters will produce highly correlated errors.

In order to improve orientation estimation, we should therefore describe the
errors in the TLS data matrix in terms of their statistical moments. We start
by decomposing T into its true but unknown part T̄ (for which T̄p = 0 holds

1 The mean grey value does not change if and only if the sum of the coefficients in an
averaging filter is normalized to one. Therefore, the 3-element filters defined above
are commonly defined with an additional factor 1

3 resp. 1
4 . But for orientation esti-

mation, this scaling is irrelevant (we estimate a homogeneous vector), and therefore,
we omit normalization factors and use integers here.
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exactly) and the error part T̆ which can be assumed as zero-mean random matrix
without loss of generality (otherwise, subtract mean from measurement first):

T = T̄ + T̆ . (3)

In the same way as a covariance matrix characterizes a random vector, the second
order statistical moments of a random matrix are characterized by a tensor of
tensor rank 4 which is known as covariance tensor.

For two-dimensional orientation estimation, Ng et al gave a solution in [4]
which assumes simple iid errors in the images but handles the resulting (much
more complicated!) noise model for the gradients better than PTLS. However, a
complicated and time-consuming iterative scheme was necessary. We will show
that the model (3) allows to replace PTLS with a better closed-form solution.

1.3 Equilibration and Unbiased Orientation Estimation

PTLS (and the eigensystem analysis it is built on) implicitly approximates T
with a rank-deficient matrix T̂ (an estimate for the true data matrix) such that
the Frobenius norm ‖T− T̂‖F is minimized. Alternatively, we can perform rank
reduction in an reweighted space

‖WL(T− T̂)WR‖F → min (4)

with suitably chosen non-singular weight matrices WL and WR; this technique is
known as equilibration [5]. A subset of possible right equilibrations (i.e. choices
for WR) are the data normalization transformation [6] which are known to im-
prove estimation quality in apparently similar TLS problems like fundamental
matrix estimation or ellipse fitting.

But for orientation estimation, the TLS data matrix does not contain prod-
ucts of homogenized measurements (in contrast to the two problems mentioned
above); it is linear in the input data. Therefore, all errors are already within the
same order of magnitude and a data normalization does not help. The key to an
improved orientation estimate is left equilibration and this is related to the fact
that we have to de-correlate the individual gradients, i.e. rows of the TLS data
matrix T. At the same time, this also explains why other general parameter es-
timation schemes (HEIV, Renormalization, FNS, IETLS [7]) are not applicable
for orientation estimation: they all assume uncorrelated measurements.

2 Derivation of the Covariance Tensor

2.1 Setup for the General N-Dimensional Problem

We will derive the covariance tensor of the TLS data matrix T for regularized
orientation estimation in N -dimensional signals; this means that we apply N
separable filters F1 to FN where Fk stands for differentiating along the k-th
coordinate axis and averaging in all other dimensions. Differential and averaging
filter coefficients are modelled as [d−b . . . db] and [a−b . . . ab], respectively.
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The filter width is therefore assumed to be 2b+ 1. Also notice that the coef-
ficient subscripts are counted form −b to b, i.e. we cannot simple write them in
vector form (where counting always starts with 1). So let us define the following
convention: vectors with an underline (e.g. a) indicate such odd-sized filter coef-
ficient vectors where index 0 always refers to the central value. Additionally, we
define that a vector written with square brackets (e.g. a = [1, 2, 1]) represents
such a special filter vector (here: (a)−1 = 1, (a)0 = 2 and (a)1 = 1).

Let n × · · · × n be the size of the filter output signals; the vectorized filter
output signals then are Nz = nN dimensional. In order to avoid border effects,
we then need input signals of size Ns = mN with m = n + 2b (i.e. b overlap
on each side). For regularized orientation estimation, a differential filter d (e.g.
[1, 0,−1]) and an averaging filter a (e.g. [1, 3, 1]) are given and the complete k-th
filter mask is defined by differentiation with respect to the k-th direction and
averaging in the other N − 1 directions.

Vectorization of input and output images together with separable filters al-
lows to express the filter matrices F1 to FN as Kronecker matrix products (see
[8] for a definition of this special tensor product)

Fk = F(N)
k ⊗ · · · ⊗ F(1)

k with F(j)
k = spdiag

[
f (j)
k , n,m

]
(5)

where f (j)
k is the 1D filter of filter mask k used to filter the j-th dimension. For

regularized orientation estimation, this 1D filter is either the differential filter
(f (j)

k = d for j = k) or the averaging filter (f (j)
k = a for j �= k). The function

spdiag [·, ·, ·] is given by:

Definition 1. With F = spdiag [v, n,m] we mean a multi-diagonal n×m-matrix
(with |m− n| being an even number) which is defined by

(F)ij = (v)(j−i)+(n−m)/2 (6)

Example: spdiag [[1, 2, 3], 3, 5] is the 3× 5-matrix

⎛⎝1 2 3 0 0
0 1 2 3 0
0 0 1 2 3

⎞⎠ .

It follows that only two different factors appear in the Kronecker product (5)
in case of regularized orientation estimation: either FA := spdiag [a, n,m] or
FD := spdiag [d, n,m].

2.2 Covariance Tensor of TLS Error Matrix

For the general N -dimensional problem, we define the matrices Cpq (cross-
covariance between p-th and q-th filter output; auto-covariance for p = q),
which can be viewed as slices of the covariance tensor of the TLS data matrix:
(Cpq)ij = Cov [(T)ip, (T)jq ]. Using (1), we obtain

Cpq = Cov [zp, zq] = Fp Cov [s] FT
q . (7)
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Assuming white noise in the original signal (extension is straightforward), we get
Cpq = FpFT

q for the cross-covariance matrices. Recalling that the filter matrices
Fp and Fq are Kronecker matrix products (see (5)), we can use the identity

(A⊗B)(C⊗D)T = (ACT )⊗ (BDT ) (8)

and the formula

spdiag [a, p, q] (spdiag [b, p, q])T = spdiag [xcorr [a,b] , p, p] (9)

(for q − p + 1 ≥ length(a)) to find

Cpq = C(N)
pq ⊗ · · · ⊗C(1)

pq (10)

with
C(j)

pq = spdiag
[
xcorr

[
f (j)
p , f (j)

q

]
, n, n

]
(11)

where xcorr [a,b] defines the (auto-)cross-correlation of the vectors a and b:

Definition 2 (Cross-correlation). Let a and b denote two filter vectors. Then
xcorr [a,b] defines the cross-correlation between a and b. Formally, it is defined
by

(xcorr [a,b])i =
∞∑

ν=−∞
(a)ν(b)i+ν . (12)

With (10), we have now derived a general method for computing the covariance
tensors for filter problems and we will now apply these results to regularized
differential filters. Looking at equation (11), we see that only three possible cross-
covariance matrices for individual directions can appear. We therefore define

A = spdiag [xcorr [a,a] , n, n] (13)
D = spdiag [xcorr [d,d] , n, n] (14)
C = spdiag [xcorr [a,d] , n, n] (15)

and obtain

C(j)
pq =

⎧⎨⎩
D for p = q = j
A for p �= j and q �= j
C else (i.e. either p = j or q = j, but not both)

. (16)

With (10), we see that for identical indices (i.e. p = q) we get D at position
p and A for all other factors in the Kronecker product. For different indices,
we get C at positions p and q and A for the remaining factors. By deriving all
tensor slices Cpq, we succeeded in our task to determine the covariance tensor
for general N -dimensional FIR filters.

Example 1 (3D orientation estimation). We obtain

C11 = D⊗A⊗A C12 = C21 = C⊗C⊗A

C22 = A⊗D⊗A C13 = C31 = C⊗A⊗C

C33 = A⊗A⊗D C23 = C32 = A⊗C⊗C
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(left column for the tensor slices with identical second and fourth index and right
column for the other slices).

In the introduction, we asked: given a set of linear finite impulse response
filters, how can one compute the covariance tensor for the TLS model Tp ≈
0? The general answer was given in equations (10) and (11). For regularized
orientation estimation, the answer can be simplified further because only three
different matrices can appear in the Kronecker products.

2.3 The NETLS Algorithm

In section 1.3, we showed that the equilibration technique uses weight matrices
WL and WR to improve the statistical properties of the TLS data matrix T. The
choice of these weight matrices clearly depends on the covariance tensor of T;
however, the full derivation is a tedious task and we will only summarize the final
formulas as Matlab code. Listing L-1 shows how to computes an equilibrated
TLS estimate from a given rank-4 covariance tensor of T.

The mathematical core of this algorithm is the computation of two matrices
ZL and ZR as sums over all tensor slices with identical row resp. column indices
(however, we realized this summation using a special tensor decomposition for
increased computational efficiency). The sought equilibration matrices WL and
WR are then found as inverted Cholesky factors of these sums. These equili-
bration matrices effectively de-correlate the entries of the TLS data matrix and
thus lead to improved estimates.

Due to space limitations, we have to omit the whole theoretical background
here. We will sketch the basic idea, hoping that the NETLS procedure appears
at least plausible to the reader then: for computing covariance information, one
has to consider matrix-valued weights twice (from left and right) and therefore
chosing the weights as inverted matrix roots of the row vector resp. column vec-
tor covariance matrices is the appropriate method to decorrelate the individual
errors in the matrix elements (because the covariance matrices become the iden-
tity matrix after reweighting). Mathematical details and the derivation of the
NETLS algorithm can be found in [9].

3 Experiments

Orientation estimation is an estimation problem where extremely high noise
levels appear frequently; additionally, we can have the aperture problem if the
local signal is rank-deficient. For instance, a moving 2D edge defines a planar
subspace in the space-time volume, not a linear subspace (which is only defined
by image points). These two problems make all iterative estimation schemes
relying on previous estimates risky for bad signal-to-noise ratios.

In [9], we tested various non-iterative and iterative approaches for orientation
estimation and used the mean squared axial error (MSAE)

MSAE =
4
m

(
1−

m∑
i=1

(aT
i ā)2

(aT
i ai) (āT ā)

)
. (17)
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� �
1 function p = EstimateNETLSCorr(T,C)
2 % compute NETLS solution for correlated data
3 % INPUT: T MxN TLS data matrix
4 % INPUT: C MxNxMxN covariance tensor: C(i,p,j,k) = Cov[(T) {ip},(T) {jq}]
5

6 [M,N,d3,d4] = size(C);
7

8 % make single−symmetric, re−arrange weight tensor and decompose it
9 C = (C + permute(C,[1 4 3 2])) / 2;

10 CRight = permute(C,[1 3 2 4]);
11 MMat = reshape(CRight,[M∗M,N∗N]);
12 [U,S,V] = svd(MMat,0);
13 alpha = diag(S);
14 num = N∗(N+1)/2;
15

16 % compute equilibration weights
17 ZL = zeros(M,M);
18 ZR = zeros(N,N);
19 for k = 1:num
20 XTemp = reshape(U(:,k),[M,M]);
21 YTemp = reshape(V(:,k),[N,N]);
22 ZL = ZL + alpha(k) ∗ XTemp ∗ trace(YTemp);
23 end
24 WL = inv(chol(ZL))’;
25 for k = 1:num
26 XTemp = WL∗reshape(U(:,k),[M,M])∗WL’;
27 YTemp = reshape(V(:,k),[N,N]);
28 ZR = ZR + alpha(k) ∗ YTemp ∗ trace(XTemp);
29 end
30 WR = inv(chol(ZR))’;
31

32 % estimate
33 TTrans = WL∗A∗WR’;
34 [U,S,V] = svd(TTrans);
35 p = WR’∗V(:,N);
36 p = p/norm(p);	 


Listing L-1. NETLS algorithm for correlated data.
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Fig. 1. Orientation estimation with NETLS for different noise levels; left image: low
noise level; right image: higher noise levels. The full bar indicates PTLS mean squared
axial error (MSAE) while the dark part is the MSAE for NETLS.
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between a set of estimates ai and the true solution ā as quality criterion. As a
result, we propose to use the NETLS algorithm presented in subsection 2.3.

Fig. 1 shows experimental results for regularized edge detection in two dimen-
sions with averaging filter [.2, .6, .2]. The MSAE for 10,000 simulations is plotted
for different noise levels (left graphics for lower noise levels, right graphics for
higher noise levels). The MSAE is bounded (for pure noise, no estimation scheme
can estimate anything useful); the maximum value is reached if the distribution
of estimates has no mean axis anymore (both eigenvalues of the expected scatter
matrix become equal, e.g. for the uniform distribution). For low and medium
noise levels, NETLS is roughly 15 % better than PTLS; the difference is reduced
for higher noise. This is a considerable improvement, especially if we consider
that NETLS computes a non-iterative closed-form solution.

The example presented here is a rather simple one: 3-element filters in two
dimensions. But we stress that we provided the whole theory for statistically
optimized orientation estimation from arbitrary sets of filters and in general N -
dimensional space (even the orientation estimation problem is not limited to
first order derivatives, see e.g. [10]). Standard eigensystem analysis suffers from
the fact that overlapping filters produce correlated data. With the methods
presented in this paper, we finally have some tool to overcome this deficiency.
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5. Mühlich, M., Mester, R.: Subspace methods and equilibration in computer vision.
Technical Report XP-TR-C-21, J.W.G.University Frankfurt (1999)

6. Hartley, R.I.: In defence of the eight-point algorithm. IEEE Transaction on Pattern
Analysis and Machine Intelligence 6 (1997) 580–593
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Abstract. 3-D tracking of free-moving objects has to deal with bright-
ness variations pronounced by the shape of the tracked surface. Pixel-
based tracking techniques, though versatile, are particularly affected by
such variations. Here, we evaluate two illumination-adaptive methods for
a novel efficient pixel-based 3-D tracking approach. Brightness adaption
by means of an illumination basis is compared to with a template update
strategy with respect to both robustness and accuracy on tracking in 6
degrees-of-freedom.

1 Introduction

Numerous applications in the fields of robotics, augmented reality, and human-
machine interfaces demand solutions for object related pose tracking. Vision-
based tracking systems are particularly interesting owing to their low cost and
high accuracy. The most popular systems are based on infrared reflecting mark-
ers, which can be tracked very robustly. However, these systems require some
kind of augmentation of the target object and require dedicated infrared cam-
eras.

On the other side, passive visual tracking methods offer a natural way of
tracking objects. Feature-based tracking techniques based on 3-D edges and cor-
ners are prevalently stable under changes of illumination but cannot be applied
to free-form surfaces. These techniques are outperformed by pixel-based track-
ing based on template matching, and therefore are not limited to certain shapes.
However, latter techniques are affected by illumination changes between the tem-
plates.

This paper compares two adaptive methods for direct (pixel-based) tracking
of free-moving objects in 6 Degrees-of-Freedom (DoF) with illumination changes.
Here, an exact registration and not simply a rough match between target and
object template is desired. Thus, accurate models of illumination are required.
The first method considered extends tracking to more parameters including the
coefficients of an illumination base. The second method updates the tracked 3-D
texture template over time. These methods are evaluated with regard to object
velocity and accuracy of the tracked pose.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 246–253, 2005.
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1.1 Previous Work

Sum-of-squared differences (SSD) alignment reaches back to the work of Lucas
and Kanade [9] upon which many 2-D tracking algorithms are based. The work
did also consider contrast and brightness adjustment within the SSD description
of the problem. Extending this tracking method to 3-D requires an efficient
formulation of the problem which proves to be increasingly demanding toward
full 6-DoF motion.

Diehl et al. [7] developed a fast method for tracking 4-DoF motion of planar
objects where illumination effects are neglected. If a reference texture is regis-
tered to the model, then planar tracking can be extended to more DoF. Baker
et al. [1] solve the 8-D homography while Buenaposada et al. [4] compute the
6-DoF motion explicitly without taking changes in illumination into account.

La Cascia et al. [5] use numerical difference decomposition to minimize the
residual error of the projected surface texture from the current view to the
reference view. Variations in illumination are compensated by using illumination
templates along the lines of Hager and Belhumeur [8].

Some efforts have been undertaken to upgrade tracking of primitive planar
surfaces to more general surfaces. Cernuschi-Frias et al. [6] presented an esti-
mation model for simple parameterized surfaces by matching two views on the
surface. The approach is based on an orthographic imaging model and has been
evaluated for up to 4-DoF geometric surfaces and without handling of illumina-
tion changes. The approach of Sepp et al. [12] iteratively estimates the pose of
3-D free-form surface patches in stereo images. A small stereo baseline ensures
that illumination changes on the surface, including shadows, need not be mod-
eled explicitly. The computational expense of the method however does not fit
the requirements for tracking at frame rate. Recently, Ramey et al. [11] were able
to track the coefficients of a b-spline 2 1/2-D surface in stereo images. They used
the zero-mean SSD as comparison measure to gain robustness against brightness
variations. Promising results have been achieved by Belhumeur et al. [2] whose
approach establishes the basis vectors for an optical-flow (pose) subspace and
an illumination subspace. The coefficients of these vectors are mapped to 6-DoF
object motion under the orthographic projection model. The method, however,
has the drawback of a long training session.

Recently Sepp et al. [13] presented an approach capable of tracking arbitrary
3-D surfaces in 6-DoF under full perspective projection in real-time. Yet, this
approach has not been evaluated under illumination changes. In this paper we
empirically evaluate two illumination-adaptive methods for a similar approach.

2 Direct Method for Tracking in 3-D

The 3-D surface patch to be tracked is modeled as an arbitrary set of points
X = {x0,x1, ..,xN} ⊂ IR3. No assumption is made about the topology of the
points such as for instance a 2-D grid. Therefore, no constraints other than
visibility are imposed on the surface. The rigid body transformation of a point
x ∈ X is described by
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m(x, μ) = R(μ)x + t(μ) (1)

for a pose μ ∈ IR6 and the associated 3-D rotation R(μ) and translation t(μ).
A point in camera frame is mapped to the image under the full perspective
projection

p(x) =
(

kT
1 · x

kT
3 · x

,
kT

2 · x
kT

3 · x

)T

, K =

⎛⎝kT
1
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2
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3
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where K ∈ IR3×3 is the matrix of intrinsic camera parameters. Let I(u) be
a brightness value of the current image of a live stream at position u ∈ IR2

and let T (u) be the brightness value for the reference image. In the following
pI(x) ≡ I(p(x)) and p0T (x) ≡ T

(
p
(
m
(
x, μ0

)))
.

With these definitions, tracking is formulated as minimization problem δ̂μ
�

=
argminδμ O(δμ) of a least-squares, compositional objective function

O(δμ) =
∑
x∈X

[pI(m(m(x, δμ), μ̂))− p0T (x)]2 . (3)

This error function measures the dissimilarity between the surface texture in the
current view under the chained poses δμ,μ̂ and the texture in the reference view
under the initially registered pose μ0. The pose variation δ̂μ

�
that minimizes (3)

gives the pose estimation for the current image I, that is

μ̂� = μ̂ ◦ δ̂μ�
according to m(x, μ̂�) = m

(
m
(
x, δ̂μ

�
)
, μ̂
)

. (4)

The above objective function is minimized with a Gauss-Newton approximation
to the Hessian by repeatedly solving the linear equation system∑

x∈X

[∂δμ
pI]T [∂δμ

pI]
∣∣∣
δμ=0,μ̂

δ̂μ = (5)

−
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x∈X
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[
pI|δμ=0,μ̂ − p0T

]
for the pose variation δ̂μ. In practice (5) is not efficient since the image Jacobian
has to be recomputed for every frame in the live-stream. Here, the computa-
tional expense can be lowered by taking advantage of an approximative image
constancy assumption1 in 3-D at the optimal pose μ̂ ◦ δ̂μ

�
, that is

pI
(
m
(
m
(
x, δ̂μ

�
)
, μ̂
))

= p0T (x) . (6)

The spatial gradient remains constant under this approximation, that is

∂1
pI
∣∣∣
δ̂μ

�
,μ̂
· ∂1m

∣∣∣
δ̂μ

�
,μ̂
· ∂1m

∣∣∣
δ̂μ

�
= ∂1

p0T , (7)

1 The extended image constancy assumption holds if the surface normal is parallel to
the camera ray under the current and the initial rigid body transformation.
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where operator ∂i denotes the derivative of the following function with respect
to their i-th argument. Thus, the image Jacobian of (5) simplifies to

∂δμ
pI
∣∣∣
δ̂μ

�
,μ̂

= ∂1
pI
∣∣∣
δ̂μ

�
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· ∂1m
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�
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∣∣∣
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�
(8)

= ∂1
p0T · ∂1m

−1
∣∣∣
δ̂μ

�
· ∂2m

∣∣∣
δ̂μ

�
.

Since the Jacobian is evaluated at δμ = 0, it can be further simplified to

∂δμ
pI(m(m(x, δμ), μ̂)) = ∂1

p0T (x) · ∂2m(x, 0) (9)

under the assumption that m(x, 0) equals the identity transformation. Hence,
the image Jacobian and Hessian are constant in the compositional framework
for every live-stream image.

While the image constancy assumption holds in 2-D leading to the inverse
compositional method of Baker and Matthews [1] this equality is only approxi-
matively satisfied for general surfaces in 3-D.

3 Illumination Adaptive Methods

The objective function (3) does not consider illumination changes of the surface
texture due to a moving object or moving light source. In the following, two
methods are considered to cope with these effects.

3.1 Illumination Subspace

Belhumeur and Kriegman [3] proved that illumination variation form a convex
polyhedral cone in IRN . That is, an image and its illumination changes can be re-
constructed by a linear combination of orthogonal image vectors B1,B2, . . . ,BM .
So, illumination compensation is added to the objective function (3) in the form

O(δμ) =
∑
x∈X

[pI(m(m(x, δμ), μ̂)) + xBλ− p0T (x)]2 , (10)

where xB = (xB1, xB2, . . . , xBM ) is a row vector of brightness values of the
illumination base for model point x and λ is the parameter column vector of
coefficients to this illumination base. The overall parameters are determined in
accordance with [8] by the solution of the linear equation system∑

x∈X

[
∂δμ

pI , xB
]T [

∂δμ
pI , xB

]∣∣∣
δμ=0,μ̂

(
δ̂μ

λ̂

)
= (11)

−
∑
x∈X

[
∂δμ

pI , xB
]T∣∣∣

δμ=0,μ̂

[
pI|δμ=0,μ̂ −

p0T
]

,

for pose variation δ̂μ and illumination coefficients λ̂. Note, that omitting illumi-
nation compensation in the image constancy assumption allows for the efficient
minimization techniques of Sect. 2.
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3.2 Template Update Method

Matthews et al. [10] developed a strategy for updating a tracked template with-
out drifts between the updated template and the original one. At the i-th image
of the live-stream, minimization starts at the previous pose estimation μ̂�

i−1 with
an updated template p0Ti which reads for compositional tracking

δ̂μi = argmin
δμ

∑
x∈X

[
pIi
(
m
(
m(x, δμ), μ̂�

i−1

))
− p0Ti(x)

]2
. (12)

Subsequently, minimization is continued with the reference template p0T0

δ̂μ
�

i = argmin
δμ

∑
x∈X

[
pIi

(
m
(
m(x, δμ), μ̂�

i−1 ◦ δ̂μi

))
− p0T0(x)

]2
. (13)

The final pose estimation reads μ̂�
i = μ̂�

i−1◦ δ̂μi◦ δ̂μ
�

i and the template is updated
following the rule

p0Ti+1(x) =
{

pIi(m(x, μ̂�
i )) : ‖δ̂μ�

i ‖ < ε
p0Ti(x) : else

(14)

Thus, the template is updated only when subsequent minimization with the
reference template leads to the same minimum. Here, this strategy is used to
update the brightness appearance of the tracked surface in order to account for
changing illumination conditions.

4 Evaluation

In the following, experiments are performed on a standard Pentium Xeon
1.7GHz. Video images are gathered with a interlaced camera at PAL resolu-
tion and 56◦× 48◦ horizontal and vertical apertures. The internal parameters of
the camera together with the distortion coefficients for a 3rd degree polynomial
distortion model are determined offline.

The test set consists of two objects. The first surface patch is part of the
label of an ordinary 1.5l soda bottle. The patch is modeled as a 83.17◦ segment
of a cylindrical body of radius 4.6cm. Sampling at intervals of 1mm produces

Fig. 1. Texture-registered 3-D point cloud of the objects bottle and sculpture
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Fig. 2. Screenshots of the tracked sequences bottle and sculpture. The region of the
tracked 3-D model points is manually outlined for better visualization.

4624 surface points. The second surface is the face of a sculpture. By using a
3-D digitizing system, 3668 3-D points of this object are acquired.

The reference textures of the objects are acquired prior tracking. For the
first object, the reference image is manually registered to the corresponding 3-D
model (see Fig. 1). The point cloud of the sculpture is automatically registered
with the image using the same 3-D digitizing system as mentioned above. A
video stream of the objects is recorded at 25Hz starting from the vicinity of
the reference pose (see Fig. 2). Four different object velocities are simulated by
sub-sampling the sequence with different step sizes. In order to cope with real-
world (computing) constraints the number of total minimization steps is limited
to 22. In the case of the update strategy, the first 14 steps are performed with
the updated template. The dimensionality of the illumination subspace is set to
2 for sequence bottle and to 3 for the sequence sculpture.

4.1 Robustness

The first experiment evaluates the gain in robustness of the two methods for
brightness adaption. Increasing the target velocity implicitly accelerates the
brightness variation on the surface. Thus, improved robustness would result in a
persistent sequence of the tracked target. Table 1 reports the number of frames
successfully tracked until the object was lost. The use of the illumination sub-

Table 1. Robustness under different velocities of sequences bottle and sculpture. The
tables shows the number of successfully tracked frames.

bottle vel 1 vel 2 vel 3 vel 4
compositional 719 319 137 1
+ill. subspace 528 258 137 1
+template update 719 350 137 102
# of frames 719 359 239 228

sculpture vel 1 vel 2 vel 3 vel 4
compositional 903 451 287 205
+ill. subspace 903 431 284 100
+template update 903 451 286 215
# of frames 903 451 301 225
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Fig. 3. Cartesian 6-DoF trajectories of sequence bottle at velocity 2 for tracking with
the illumination subspace method or the template update strategy. The trajectories
match the ground truth until the target was lost.

Table 2. Accuracy over the first 250 frames in sequence bottle with velocity 2

bottle σrx[◦] σry[◦] σrz[◦] σtx[mm] σty[mm] σtz[mm]
compositional 0.29 0.58 0.12 0.17 0.32 0.38
+ill. subspace 0.35 0.75 0.16 0.19 0.32 0.48
+template update 0.22 0.25 0.10 0.15 0.32 0.28

space degrades the compositional approach for sequences with fair illlumination
changes while the template update strategy clearly improves overall robustness.

4.2 Accuracy

The second experiment compares both methods for brightness adaption regard-
ing their accuracy. Retro-reflecting markers are attached to the bottle object and
tracked with a commercially available system. The missing coordinate transfor-
mation of marker frame to object frame and world frame to camera frame are
estimated offline by means of least-squares fitting over a tracked sequence.

Figure 3 shows the trajectories of the tracked sequence at velocity 2 while
Table 2 reports the standard deviations to the ground-truth trajectories. The
standard deviations and the displayed trajectories show the superiority of the
template update strategy for illumination adaption.

5 Summary and Conclusions

Tracking in the 2-D image plane has been recently extended to 3-D with 6
degrees-of-freedom. Here, we proposed a novel method for efficient 3-D tracking
and evaluated two adaptation methods for brightness variations.

The experiments qualitatively and quantitatively showed that extending trac-
king to more parameters, e.g. for an illumination subspace, degrades the tracked
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6-DoF poses. On the other hand, the template update strategy of Matthews et
al. [10] increases both, robustness in tracking and accuracy in the trajectories
and is therefore the method of choice for tracking objects in 6-DoF with the
proposed compositional approach.
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Abstract. Histogram based real-time object tracking methods, like the Mean-
Shift tracker of Comaniciu/Meer or the Trust-Region tracker of Liu/Chen, have
been presented recently. The main advantage is that a suited histogram allows
for very fast and accurate tracking of a moving object even in the case of partial
occlusions and for a moving camera. The problem is which histogram shall be
used in which situation. In this paper we extend the framework of histogram based
tracking. As a consequence we are able to formulate a tracker that uses a weighted
combination of histograms of different features. We compare our approach with
two already proposed histogram based trackers for different historgrams on large
test sequences availabe to the public. The algorithms run in real-time on standard
PC hardware.

1 Introduction

Data driven, real-time object tracking is still an important and in general unsolved prob-
lem with respect to robustness in natural scenes. Obviously, for many different, high-
level tasks in computer vision, there is the need for tracking a moving object in real-
time without having specific knowledge about its 2D or 3D structure. In general, it is
necessary in surveillance tasks, action recognition, navigation of autonomous robots,
etc. Usually, tracking is initialized based on change detection in the scene. From this
moment on, the position of the moving target is identified in each consecutive frame.

Several approaches for 2D data driven tracking have been presented in the past, for
example feature based [1], template based [2,3], and, most recently, histogram based
methods [4,5]. In all cases, tracking, i.e. correspondence between successive frames, is
solved by defining and solving an optimization problem. The main difference between
the approaches consists in the representation of the object and the way the optimization
problem is solved.

� This work was partially funded by the European Commission 5th IST Programme - Project
VAMPIRE. Only the authors are responsible for the content.
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In this paper, we focus on histogram based methods, where the object to be tracked
is identified by a histogram of a priori defined features. One prominent example for a
feature is color resulting in a color histogram used to identify the object. We present an
extension of histogram based tracking where instead of a single histogram a weighted
combination of several different histograms can be used. We refer to this tracker in
the following as combined histogram tracker (CHT). For tracking, we formulate the
optimization problem in a general way, such that the Mean-Shift [6] as well as the
Trust-Region [7] optimization can be applied. This allows for a maximum of flexibility
for the parameters that are estimated during tracking, for example, translation, rotation,
and scaling. We compare the CHT with already presented histogram trackers using only
one specific histogram. The results show a significantly better performance of the CHT
with respect to accuracy during tracking, and at the same time without loosing its real-
time capability.

The paper is structured as follows. In section 2 we introduce histogram based track-
ing methods together with two already presented local optimization methods, the Mean-
Shift and the Trust-Region algorithm. In section 3 we present a rigorous mathematical
description for the CHT. We show how the optimization problem can be solved again
using the Mean-Shift and the Trust-Region algorithm. Section 4 deals with the exper-
iments. We show results on a large set of labeled image sequences available to the
public, which allows quantitative evaluation and comparison. The paper concludes with
a discussion and an outlook to future work.

2 Region Based Object Tracking Using Histograms

2.1 Representation and Tracking

In general, the target is identified by an image region R(x(t)), where x(t) contains the
time variant parameters of the region, also referred to as the state of the region. One
simple example for a region R(x(t)) is a rectangle of fixed dimensions. The state of
the region x(t) = (mx(t),my(t))T is the center of gravity of that rectangle in pixel
coordinates mx(t) and my(t) for each time step t. With this simple model translation
of a target region can be easily described by estimating x(t), i.e. center of gravity of the
rectangle, over time. If the size of the region is also included in the state, estimation of
scale is possible.

The information contained within the region is used to model the moving object.
The information may consists of the color, the gray value, or certain other features,
like the gradient. At each time step t and for each state x(t) the representation of
the moving object consists of a probability density function p(x(t)) of the chosen
features within the region R(x(t)). In practice, this density function has to be esti-
mated from image data. For performance reasons, a weighted histogram q(x(t)) =
(q1(x(t)), q2(x(t)), . . . , qN (x(t)))T of N bins qi(x(t)) is used as a non-parametric
estimation of the true density, although it is well known that this is not the best choice
from a theoretical point of view [8]. Each individual bin qi(x(t)) is computed by

qi(x(t)) = Cx(t)

∑
u∈R(x(t))

Lx(t)(u)δ(bt(u)− i), i = 1, . . . , N (1)
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with Lx(t)(u) being a suited weighting function introduced below, bt(u) the func-
tion that maps the pixel u to the number j of the bin which the feature at position
u falls into (j ∈ {1, . . . , N}), and δ being the Kronecker-Delta function. The value
Cx(t) = 1/

∑
u∈R(x(t)) Lx(t)(u) is a normalizing constant. In other words, (1) counts

all occurrences of pixels that fall into bin i, where the increment within the sum is given
by the weighting function Lx(t)(u).

Object tracking can now be defined as an optimization problem. Starting with an
initial target region — for example, manually or automatically defined in the first image
at t = 0 — an initial histogram q(x(0)) can be computed. For t > 0 the corresponding
region is defined by

x(t) = argmin
x

D(q(x(0)), q(x)) (2)

with D(·, ·) being a suited distance function defined on histograms. In our work we use
two local optimization techniques, the Mean-Shift algorithm [4] and the Trust-Region
algorithm [5]. In the context of histogram based tracking, also a global optimization
using a particle filter can be applied [9].

2.2 Kernel and Distance Functions

There are two open aspects left: the choice of the weighting function Lx(t)(u) in equa-
tion (1) and the distance function D(·, ·). The weighting function is typically chosen as
a kernel, whose support is exactly the region R(x(t)). Different kernel profiles can be
used, like the Epanechnikov, the biweight, or the truncated Gauss profile [10].

For the optimization problem in (2) several distance functions on histograms have
been proposed, like the Bhattacharya distance, the Kulback-Leibler distance, the Eu-
clidean distance or the scalar product distance. It is worth noting that for the following
optimization no metric is necessary. The main restriction on the given distance functions
in our work is the following special form

D(q(x(0)), q(x(t))) = D̂

(
N∑

n=0

d(qn(x(0)), qn(x(t)))

)
(3)

with a monotone, bijective function D̂, and a function d(a, b), which is twice differen-
tiable for b. Now, substituting (3) into (2) we get

x(t) = argmax
x

(
−sgn(D̂)

N∑
n=0

d(q(x(0)), q(x))

)
(4)

where sgn(D̂) = 1 or sgn(D̂) = −1 if D̂ is monotonly increasing or decreasing,
respectively. More details can be found in [10].

2.3 Optimization

This section deals with the optimization of (4) using the Mean Shift algorithm. Hints
are given in the end how the optimization can be solved by Trust Region optimization.
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The main idea is to do a Taylor series expansion of the right hand side of (4). After
a couple of computations and simplifications (for details, see [10]) we get

x(t) ≈ argmax
x

⎛⎜⎜⎜⎜⎝C0

∑
u∈R(x)

Lx(u)
N∑

n=1

δ(bt(u)− n)w̃t(n)︸ ︷︷ ︸
w̃t(bt(u))

⎞⎟⎟⎟⎟⎠ (5)

with the weights

w̃t(bt(u)) = −sgn(D̂)
∂d(a, b)

∂b

∣∣∣∣
(a,b)=(qbt(u)(x(0)),qbt(u)(x))

(6)

This special reformulation allows us to interpret the weights w̃t(bt(u)) as weights on
the pixel coordinates u. For a certain distance function D(·, ·) we need to calculate the
corresponding pixel weights. Finally, we can apply the Mean-Shift algorithm for the
optimization of (5), since (5) is a weighted kernel density estimation. Due to lack of
space, for details, on how the Mean-Shift algorithm is applied, the reader is referred
to [11,10]. Alternatively, the Trust-Region optimization algorithm can be applied. In
this case, we need the gradient and Hessian matrix of the right hand side of (4). Both
quantities can be derived in closed form [10]. The advantage of the Trust Region method
is, that — besides estimation of translation of the target region — also rotation and scale
can be integrated in the optimization problem [10].

2.4 Example

Now we give an example for the equations and quantities presented above. Using the
Bhattacharyya distance between histograms (as in [4]), defined as

D(q(x(0)), q(x(t))) =
√

1−B(q(x(0)), q(x(t))) (7)

with

B(q(x(0)), q(x(t))) =
N∑

n=1

√
qn(x(0)) · qn(x(t)) (8)

we have D̂(a) =
√

1− a, d(a, b) =
√
a · b and

w̃t(n) =
1
2

√
qn(x(0))
qn(x(t)

(9)

3 Combination of Histograms

Up to now, the formulation of histogram based tracking relies on a certain histogram of
n-dimensional features, defined a priori for the tracking task at hand. Some examples
are gray value histograms (n = 1), edge histograms (n = 1) or RGB color histograms
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(n = 3). Certainly, using several different features for representing the object to be
tracked will result in better tracking performance, especially, if the different features
are weighted dynamically according to the situation in the scene. For example, color
might be a problem, if illumination changes. In this case, information on the edges
might be more useful. On the other side, a unique color of the moving object in a highly
textured environment will favour for color and against edges. One idea would now
be, to combine several features into one histogram of larger dimension. The problem
with that idea is the curse of dimensionality: higher dimensional features result in very
sparse histograms so that the estimation of the true, underlying density becomes very
inaccurate. This problem prevents us from just combining different features to a bigger
feature vector with larger dimension.

We propose now a different solution for combining histograms of different feature
for object tracking. The key idea is to use a weighted combination of several histograms
with low dimensions instead of one weighted histogram with high dimension. LetH =
{1, . . . , H} be the set of features used for representing the object. For each feature

h ∈ H we define a separate function b
(h)
t (u). The number of bins in histogram h is Nh

and might differ between the histograms. Also, for each histogram a different weighting
function L

(h)
x(t)(u) can be applied, i.e. different kernels for each individual histogram are

possible if necessary. This results in H different weighted histograms q(h)(x(t)) with
the bins

q
(h)
i (x(t)) = C

(h)
x(t)

∑
u∈R(x(t))

L
(h)
x(t)(u)δ(b(h)

t (u)− i), h ∈ H, i = 1, . . . , Nh (10)

We now define a combined representation of the object by φ(x(t)) =
(
q(h)(x(t))

)
h∈H

and a new distance function (compare (2)), based on the weighted sum of the distances
for the individual histograms

D∗ =
∑
h∈H

βhDh(q(h)(x(0)), q(h)(x(t))) (11)

where βh ≥ 0 being the contribution of the individual histogram h to the object resp-
resentation. The quantities βh can be adjusted to best model the object in the current
context of tracking. Currently, we set these parameters empirically. In future work we
plan to find the optimal values automatically and to dynamically adjust them during
tracking.

As before, for the Mean-Shift as well as for the Trust-Region method we can for-
mulate a corresponding optimization problem. If we use the same weighting function
Lx(t)(u) for all histograms and as state x = (mx,my)T the position of the moving
object in the image plane, we get

x(t) ≈ argmax
x

C0

∑
u∈R(x)

Lx(u)
∑
h∈H

w̃h,t(b
(h)
t (u))︸ ︷︷ ︸

wh,t(u)

(12)



Efficient Combination of Histograms for Real-Time Tracking 259

which is again a weighted kernel density estimation. The constant C0 can be shown to
be independent of x. The corresponding pixel weights are

wh,t(u) =
∑
h∈H

w̃h,t(b
(h)
t (u)) (13)

=
∑
h∈H
−βhsgn(Dh)

∂dh(a, b)
∂b

∣∣∣∣∣
(a,b)=(q(h)(x(0)),q(h)(x))

(14)

where dh(a, b) is defined as in (3) for each individual feature h. For the Trust-Region
optimization again gradient and Hessian matrix have to be derived. Details can be found
in [10].

4 Experiments

We will now show that a weighted combination of different histograms is suited to im-
prove tracking performance. In the experiments we use the test videos of the CAVIAR
project [12], originally recorded for action and behaviour recognition experiments. Al-
though, we do not have this kind of application in mind, the videos are prefectly suited,
since they are recorded in natural environment, with change in illumination and scale of
the moving persons as well as partial occlusions. Most important, the moving persons
are hand-labelled, i.e. for each frame a reference rectangle is stored.

To evaluate the results of the original Mean-Shift and Trust-Region tracker as well
as our proposed CHT we used an area based criterion. We measure the difference e of
the returned region A and the ground-truth region B by

e(A,B) = 1− |A ∩B|
1
2 (|A|+ |B|)

(15)

This error metric is zero, if the two regions are identical, and one if they do not over-
lap. If the two regions have the same size, the error increases with increasing distance
between the center of both regions. Also, equal center but different size if taken care of.

In the experiments we combined three different histograms. The first is the standard
color histogram consisting of the RGB channels, abbreviated in the figures as rgb. The
second histogram is computed from a sobel edge strength image (gradn), with the edge
strength normalized to fit the gray value range from 0 to 255. The third histogram is
computed from a corner interest map (minev). This interest map is based on the interest
operator returning the smallest eigenvalue of the structure matrix from a 5× 5 window
around the respective pixel [13]. Thus, high values in the interest map correspond to
corners in the image. For simplicity reasons, we call this histogram a corner histogram.

In Figure 1 for the Mean-Shift the accuracy of tracking is documented using the er-
ror percentile. For a certain percentile pz (x–axis) we measure the largest error e(A,B)
(y–axis, compare (15) taking into account the pz% best images only. In the left figure,
we only evaluated images until object lost, in the right figure all images are consid-
ered. The reader can verify, that a combination of RGB with a gradient histogram leads
to a significant improvement of tracking stability compared to a pure RGB histogram
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Fig. 1. Error percentile using CHT of RGB and gradient (rgb-gradn) and RGB and corner his-
togram (rgb-minev) as well as pure RGB histogram tracker (rgb). Results are give for the Mean-
Shift-Tracker with scale estimation, Biweight-Kernel, Kullback-Leibler distance for all individual
histograms.

Fig. 2. Tracking result for one of the images sequences from the CAVIAR test bed (first and last
image of the sucessfully tracked person). Ground truth and computed region of the moving person
(ellipses) are almost the same, even in the case of change in scale.

tracker as well as a tracker with a combination of RGB and corner histogram. We got
similar results for the corresponding Trust-Region tracker and our extension to com-
bined histograms. The weights βh for combining RGB with corner and edge histogram
(compare (11)) has been empirically set to 0.8 and 0.2, respectively. To automatically
find these weights for a certain object and to adjust them dynamically during tracking
is one of the focus of our future work.

The computation time for one images is on average less than 2 msec on a PIV, 3.2
GHz compared to approximately 1 msec for a tracker using one histogram only. One
example of a successful tracking including correct scale estimation is shown in Figure 2.

5 Conclusion

In our paper we have presented a mathematically consistent extension of histogram
based tracking, which we call combined histogram tracker. We could show that the
corresponding optimization problems can still be solved using the Mean-Shift as well
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as the Trust-Region algorithm without loosing real-time capability. The formulation
allows the combination of an arbitrary number of histograms with varying dimensions
as wells as individual distance functions between two histograms. This allows for a
maximum of flexibility in the application of the method. In the experiments we have
shown for three different feature histograms that a combination of two of them can
improve tracking accuracy and stability. The improvement of course depends on the
chosen histogram and on the object to be tracked itself. One important result is, that
tracking can still be performed in real-time on standard PC hardware. In the end we
like to stress again, that similar results are achieved using the Trust-Region algorithm,
although the presentation in this paper was focused on the Mean-Shift algorithm. For
more details, the reader is referred to [10].

In our future work we will investigate the adaptive combination of histograms dur-
ing tracking such that the weights of the histograms are dynamically adjusted depending
on the context of tracking, the objects, and background. Also, we are going to compare
systematically the CHT with state of the art 2-d tracker, like the tracker of Perez [9].
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Abstract. This paper introduces a new operator to characterize a point in an 
image in a distinctive and invariant way. The robust recognition of points is a 
key technique in computer vision: algorithms for stereo correspondence, motion 
tracking and object recognition rely heavily on this type of operator. The goal in 
this paper is to describe the salient point to be characterized by a constellation 
of surrounding anchor points. Salient points are the most reliably localized 
points extracted by an interest point operator. The anchor points are multiple in-
terest points in a visually homogenous segment surrounding the salient point. 
Because of its appearance, this constellation is called a spider. With a prototype 
of the spider operator, results in this paper demonstrate how a point can be rec-
ognized in spite of significant image noise, inhomogeneous change in illumina-
tion and altered perspective. For an example that requires a high performance 
close to object / background boundaries, the prototype yields better results than 
David Lowe’s SIFT operator.  

1   Introduction 

Numerous algorithms in computer vision require the recognition of the same point in 
images that differ in perspective, illumination, position of objects, image noise, etc. 
Homologous points are needed for depth reconstruction of two stereo images, for mo-
tion tracking and in most object recognition methods (e.g. [1]). Regardless of the ap-
plication, the problem always remains the same: How can the position of a point be 
described in a distinctive and invariant way? Distinctive in the sense that the descrip-
tion is strongly differing from that of other points. Invariant in a way that a change in 
the surrounding area of a point caused by rotation, scaling, variation of illumination, 
etc. does not alter its description beyond recognition. 

In this paper the problem is solved with spiders. A spider characterizes a salient 
point with a constellation of anchor points, whose positions are stored relative to the 
salient point. The following three steps summarize the approach: 

1. Interest Point Localization: An interest point operator is utilized to localize points 
and associates each one with a reliability to be repeatedly found in an altered image. 
Some points with high reliability are chosen as the salient point of spiders. 

2. Extraction of Image Segment: For each salient point, a segment of the image is 
determined that is visually homogenous. All points extracted by the interest 
point operator, which are also part of this segment, are the anchor points be-
longing to this salient point. A salient point with multiple surrounding anchor 
points forms a spider. 
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3. Comparison of Spiders: To determine the similarity of two salient points, the 
constellation of their anchor points has to be compared. However, when ob-
served from a different perspective, the geometric constellation of the anchor 
points is distorted. Therefore, an affine transformation to compensate for this 
distortion is estimated before comparing two spiders.  

Figure 1 gives an example of a typical spider in an image, determined by the proto-
type of the spider operator: 
 

             

Fig. 1. An example of the determination of a spider. From left to right: 1) The original image (a 
part of the Lena image). 2) Interest points extracted with Lowe’s scale space extrema operator 
are highlighted. A reliable point is marked, which is used as a salient point for the spider in the 
following. 3) A segment of pixels with a locally averaged brightness similar to the salient point 
is highlighted. Interest points in this area are used as the anchor points of the spider. 4) The fi-
nal spider with 14 anchor points. 

2   Related Research 

The concept that is most often used to describe a point is the simplest one, too: the 
area surrounding a point is compared pixel by pixel. Usually this area is square or cir-
cular in shape, with the salient point at its center. Two points are compared by aggre-
gating the differences of every corresponding pair of pixels. There are several ways to 
do this. For example, the difference between two pixels can be described by the dif-
ference of their intensities (absolute intensity differences) or their squared intensity 
(squared intensity differences). The aggregation may be based on simple addition 
(e.g. sum-of-squared-differences) or on additional normalization (e.g. normalized-
grayscale-correlation). This class of methods is successfully used in, for example 
small baseline stereo matching (e.g. Scharstein [6]) and object recognition (e.g. Leibe 
[2]). The algorithms are fast, simple, robust with respect to image noise and partly in-
variant in relation to homogenous changes of illumination or contrast. However, other 
changes of the image, such as changes in perspective or rotation, change the descrip-
tion of a point so much that it can no longer be identified by these methods.  

Another concept for the description of a point is based on calculations on a group 
of pixels. The calculation aims at generating features that identify a point more dis-
tinctively and with increased invariance than possible by direct comparison of pixels. 
Two examples of current methods that calculate features from scaled round or affine 
transformed squared regions are proposed by Mikolaiczyk and Schmid [4] and Lowe 
[3]. The method in the first paper begins with determining interest points with an af-
fine-invariant Harris operator. In a second step their scale is calculated by searching 
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for local scale space extremas. Finally, the affine shape of the surrounding area of a 
point is estimated by a second moment matrix.  

Lowe’s method can also be divided into multiple steps. First, the scale of a point is 
determined by detecting local scale space extremas. In a second step, a quadratic 
function is fitted to the results, so that the position and scale of the points can be cal-
culated more precisely. In a third step the orientation of points is determined by local 
image gradients. Finally, the surrounding area is normalized relative to scale and ori-
entation in order to describe the point with the SIFT descriptor – a feature based on 
several local gradients in the surrounding area.  

Lowe’s method provides a higher density of distinctive points than the approach of 
Mikolaiczyk and Schmid. However, the interest points calculated by Lowe in the first 
step are only scale-invariant, which diminishes the tolerance of his method compared 
to a full affine transformation. Both approaches cannot maintain their generally good 
performance when it comes to object / background boundaries. This is impossible for 
a point on the silhouette of an object as there are too many pixels in the surrounding 
area that belong to the background, which falsifies the calculation. For example, 
points in images containing trees, animals or people cannot be detected in a reliable 
way, if the parts of the objects (here branches and limbs) are only a few pixels wide.  

Two approaches that solve this problem are proposed by Mikolajczyk, Zisserman 
und Schmid [5] and by Tuytelaars und Van Gool [8]. The first paper uses a descrip-
tion related to Lowe’s SIFT Descriptor. However, the initial points are determined on 
edges and their scale is calculated relative to the opposite edge. Every point is now 
described by two independent descriptors: each describing the pixel on one side of the 
edge on which the point is situated. In case a point is indeed close to the silhouette of 
an object, one descriptor will refer only to the object and the other one only to the 
background. In the second paper from Tuytelaars and Van Gool, edges are also util-
ized to determine the area on which the description of a point is based. A parallelo-
gram is fit to every two edges that form a corner. The description of a point is now 
calculated based on the pixels inside this parallelogram. As the edges the parallelo-
gram was fit to usually do not extend beyond object boundaries, it rarely crosses an 
object border. Both approaches work with Canny edge detection, which utilizes two 
thresholds. Slight changes in an image can therefore cause an interruption of edges; 
they may not be detected at all or connected differently. This lack of stability has a 
negative effect on the performance of both methods. 

3   Interest Point Localization 

The first step of the proposed spider operator is to detect stable points. The most im-
portant property of these points is that they can be localized in spite of changed light 
conditions, viewpoint on a scene, etc. Multiple candidates with this characteristic 
were examined, such as points detected with the Harris operator or the ends of edges. 
The prototype examined in this paper utilizes scale space extremas, as described by 
Lowe in [3]. The interest points detected by Lowe’s operator are the centers of round 
areas of different size that are lighter or darker than their environment. Basically, they 
are light or dark blobs in the image. Utilizing multiple interest point operators is an-
other possibility, as long as all of them yield stable points. 
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The implemented version of the scale space extrema operator yields more stable 
points than the Harris operator and a newly developed approach looking for the ends of 
edges in an image. However, it does not achieve quite the same good results as given by 
Lowe for unknown reasons. While trying to obtain a higher performance, a new way to 
determine the reliability of the points was identified that enhances their stability. Instead 
of using the absolute value of a scale space extrema as a criterion for its stability, its 
relative value is used in the prototype: The reliability of a maximum depends on its 
value minus the highest value of the 98 pixels, which have a chessboard distance of 2 to 
this maximum of the 3d scale space. The reliability of a minimum found in scale space 
depends on the lowest of these values minus the value of this minimum. 

4   Extraction of Image Segment 

After a salient point is located, the segment which belongs to this point must be de-
termined. A segment is a connected area of the image, in which each pixel has a high 
reliability of being on the same plain as the salient point. A segment is approximated 
by extracting an area, which is visually similar to the salient point. Multiple tech-
niques known from image segmentation based on color gradients, textures or bound-
ary smoothness could be applied here.  

The prototype of the spider operator simply aggregates adjacent pixels starting 
from the salient point, as long as the difference of the brightness between the pixel 
and the salient point is below a threshold. This aggregation is performed on a Gaus-
sian blurred image to reduce the influence of single pixels.  

All points that are extracted by the interest point operator and are also part of the 
segment of a salient point form its anchor points. Usually, a salient point can be rec-
ognized even if its segment is extracted differently in an altered image, as long as the 
majority of its anchor points is detected in both images.  

5   Comparison of Spiders 

If two images show the same point from an altered perspective, the spiders calculated 
on the two views of the point will be different also. An example of this can be seen in 
the two leftmost images of figure 2, of which one is a rotated and scaled version of 
the other. To identify the two points as the same, the perspective distortion of one spi-
der has to be eliminated by a transformation, thereby changing the shape of the spider, 
so that its appearance becomes similar to the other. The method for matching two spi-
ders is illustrated in figure 2 and described in the remainder of this section. 

To calculate this transformation in practice the following three assumptions are 
made: 1) The salient point and all anchor points are assumed to be coplanar. This should 
be the case in the segment of a salient point and reduces the necessary calculations as 
well as the number of anchor points required. 2) The perspective distortion is estimated 
with an affine transformation, which also reduces the computational effort. 3) As it  
is assumed that the salient point of both spiders is identical and that the  
coordinates of the anchor points are given relative to the salient point, translations need 
not to be considered. This leaves us with a matrix containing only four unknowns, 
which transforms an anchor point (x1, y1) of a spider S1 into a point (x2, y2) of a spider S2: 
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The determination of anchor points is error-prone. Thus, to match two spiders with 
this transformation, the error of the position of its anchor points has to be estimated. 
As they should be well localized, the probability of detecting an anchor point de-
creases with an increased distance to its correct position. Therefore, a least-squares 
optimal solution is chosen. However, this is a very poor estimate for some cases, e.g. 
if the search for an anchor point reveals that multiple positions in a large area are 
likely to be its correct position. Hence, an additional reliability is determined for each 
anchor point, which can be interpreted as the probability that its detected position is 
close to its correct location. The lower the reliability of a point, the weaker the influ-
ence of its detected location on the matching of spiders should be. As an anchor point 
is matched with a corresponding one, both of their reliabilities determine their influ-
ence on the whole matching. This is achieved by scaling a pair of corresponding an-
chor points P1 and P2 with their combined reliabilities r1 and r2: 

 

Fig. 2. Simplified example for the comparison of two spiders. Upper left: the original 
image with a spider and the reliabilities of all four anchor points. Lower left: a version 
of the original image scaled by factor 1.3 horizontally and 2.0 vertically, than rotated 
clockwise by 68.4°. The spider in this image is distorted, because of the transforma-
tion of the image. Middle column: the spiders from the two left images, whose anchor 
points are scaled with equation 2 according to their reliability. The two most unreli-
able anchor points (with 38% and 24% in the upper and 11% and 70% in the lower 
image) are shortened strongly, so that one of them is barely visible. Right image: By 
transformation with the given matrix, which was determined with equation 5, the up-
per spider becomes nearly equivalent with the lower spider. This makes it possible to 
determine reliably that both salient points are actually the same. 
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It is possible to determine an optimal solution for the stated problem (see e.g. Strang [7]). 
First, equations 1 and 2 are converted into a linear equation. Each anchor point contributes to 
two more rows in the matrix and the last vector (at least two points are required): 
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This inhomogeneous linear equation can be written as: 

 bAx =  (4) 

By rewriting this formula and calculating the pseudo inverse with a singular value 
decomposition the parameters x of an affine transformation that converts spider S1 
into spider S2 are determined (Moore-Penrose inverse): 

 [ ] bAAAx TT +=  (5) 

6   Comparison of Results 

In the following, the spider prototype is compared with the SIFT operator using an 
example where object / background segmentation is of the essence. Figure 3 shows  
  

   

Fig. 3. Comparison of the SIFT and the spider operator. From left to right: 1) The SIFT opera-
tor matches 6 points on the object, of which 3 are correct. 2) The spider operator matches 8 
points, of which 7 are correct. 3) An example of two of the spiders that are matched correctly. 
The upper has 28 anchor points; the lower is formed by 22 points. 
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two images with a fork moved in front of a fixed background. The first column dis-
plays lines connecting each pair of points matched by the SIFT operator. The original 
version of the SIFT operator as provided by David Lowe on his website is used (Ver-
sion 3, August 2004). Matching points on the background were discarded for  
simplicity. 3 of the 6 point pairs are correct. The false correspondences are due to the 
low information content in the area between the spikes of the fork.  

The second column displays the results of the spider operator. 7 of the 8 pairs are 
correct matches. As the spider operator uses information from a visually similar 
segment to describe a point, it can utilize the structure of the fork instead of being 
limited to local information. This is exemplified in the last column, which displays 
one of the correctly matched spiders. 

7   Conclusions 

In this paper, a new operator for recognizing a point under varying perspective and 
lighting conditions was introduced. It provides a basis for various applications, like 
wide-baseline stereo, motion tracking or object recognition. The operator character-
izes a salient point with a constellation of surrounding anchor points, which are inter-
est points detected in a visually homogenous neighborhood of the salient point. An 
algorithm for matching spiders determined from altered perspectives on a scene was 
developed. In an example, the prototype of the spider operator yields a better result 
than the SIFT operator when applied to a jagged object. As this is only a single exam-
ple, additional experiments have to be performed to make a statement about the gen-
eral quality of the spider operator. 
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Abstract. In this paper, we compare and evaluate five contemporary, data-driven,
real-time 2D object tracking methods: the region tracker by Hager et al., the Hy-
perplane tracker, the CONDENSATION tracker, and the Mean Shift and Trust
Region trackers. The first two are classical template based methods, while the
latter three are from the more recently proposed class of histogram based track-
ers. All trackers are evaluated for the task of pure translation tracking, as well as
tracking translation plus scaling. For the evaluation, we use a publically available,
labeled data set consisiting of surveillance videos of humans in public spaces.
This data set demonstrates occlusions, changes in object appearance, and scaling.

1 Introduction

Data driven real-time 2D object tracking is a preliminary for many different computer
vision tasks, like face and gesture recognition, surveillance tasks, or action recogni-
tion. Recently, two promissing classes of 2D data driven tracking methods have been
proposed: template, or region based, tracking methods and histogram based methods.
The idea of template based tracking is to track a moving object by defining a region of
pixels belonging to that object and, using local optimization methods, to estimate the
transformation parameters of that region between two consecutive images. In histogram
based methods, the idea is to represent an object by a distinctive histogram, for exam-
ple a color histogram. Tracking is then performed by searching for a similar region in
the image whose histogram best matches the object histogram from the first image. In
this paper, we present a comparative evaluation of five different object trackers, two
region based [1,2] and three histogram based approaches [3,4,5]. We test the perfor-
mance of each tracker both for pure translation and for translation with scaling. Due to
the rotational invariance of the histogram based methods, further motion models, such
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Fig. 1. Example of template matching: The left image is the reference image from which the ref-
erence template was extracted. The region points are marked by crosses. In the other two images,
the reference region has been transformed (center: translation, right: translation and scaling) to
match with the reference template. The reference region is marked by the dashed rectangle.

as rotation or general affine motion, are not considered. In the evaluation, we focus es-
pecially on natural scenes with changing illuminations and partial occlusions based on
a publicly available data set [6].

The paper is structured as follows: in Section 2, we give a short introduction to the
mathematics of both tracking principles. Section 3 deals with the test set and evaluation
criteria that we use for our comparative study. The main contribution consists of the
evaluation of the different tracking algorithms in Section 4. The paper ends with a short
conclusion and discussion of the results.

2 Data Driven 2D Object Tracking

In the following two sections, we summarize two different classes of data driven ob-
ject tracking in the image plane: template matching methods and histogram matching
methods.

2.1 Template Matching

One type of algorithm for data driven object tracking is based on template-matching.
During an initialization step, the intensity values are extracted from image points be-
longing to the object. These points form the reference region r = (x1, x2, . . . , xN )T ,
where xi = (xi, yi)T is a 2D point. The gray-level intensity of a point x at time t is
given by f(x, t). Consequently, the vector f(r, t) contains the intensities of the entire
region r at time t and is called a template. The template at the starting time t0 is denoted
as the reference template. Template matching can now be described as computing the
motion parameters μ(t) that minimize the least-square intensity difference between the
reference template and the current template:

μ(t) = argmin
μ

‖f (r, t0)− f (g (r, μ) , t)‖2 . (1)

The function g (r, μ) performs a geometrical transformation of the the region, param-
eterized by vector μ. Several such transformations can be considered, e.g., [2] use a
parameterization which not only deals with translation, rotation, and scaling, but also
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with affine and projective transformations. In this paper, we restrict ourselves to trans-
lation and scale estimation, as illustrated in Fig. 1.

The minimization in Eq. 1 is computationally expensive if done by a brute-force
search. It is more efficient to approximate μ through a linear system

μ̂(t + 1) = μ̂(t) + A(t + 1) (f (r, t0)− f (g (r, μ(t)) , t + 1)) . (2)

We compare two approaches for computing matrix A(t) from Eq. 2. Jurie and Dhome
[2] perform a short training step, where random transformations are simulated in the
reference image. Typically, on the order of 1000 transformations are executed and their
motion parameters μ̃i and difference vectors f (r, t0) − f (g (r, μ̃i) , t0) collected.
Afterwards, matrix A is derived through a least squares approach. Note that A can be
made independent from t in this approach. For details, we refer to the original paper.
A more analytical way is proposed by Hager et al. [1], who use a first order Taylor
approximation. During initialization, the gradients of the region points are used to build
a Jacobian matrix. Although A cannot be made independent from t, the transformation
can be performed very efficiently and the approach has real-time capability.

2.2 Histogram Matching

In histogram based tracking methods, the target is again identified by an image region
r(μ(t)), where μ(t) contains the time variant parameter of the region, also referred to
as the state of the region. One simple example for a region r(μ(t)) is a rectangle of
fixed dimensions. The state of the region μ(t) = (mx(t),my(t))T is the center of that
rectangle in pixel coordinates, mx(t) and my(t), for each time step t. With this simple
model, translation of a target region can be easily described by estimating μ(t), i.e.
center of gravity of the rectangle, over time. If the size of the region is also included in
the state, estimation of the scale is possible.

The information contained within the region is used to model the moving object,
but instead of focusing on individual pixels and their values, the distribution of features
defined at each pixel is used. The information may consist of the color, the intensity, or
certain other features like the gradient. At each time step t and for each state μ(t), the
representation of the moving object consists of a probability density function p(μ(t)) of
the chosen features within the region r(μ(t)). In practice, this density function has to be
estimated from image data. For performance reasons, a weighted histogram q(μ(t)) =
(q1(μ(t)), q2(μ(t)), . . . , qN (μ(t)))T of N bins is used as a non-parametric estimation
of the true density. Each individial bin qi(μ(t)) of the histogram is computed by

qi(μ(t)) = Cμ(t)

∑
u∈r(μ(t))

Lμ(t)(u)δ(bt(u)− i), i = 1, . . . , N (3)

with Lμ(t)(u) being a suitable weighting function, bt(u) the function that maps the
pixel u to the number j of the bin which the feature at position u falls into (j ∈
{1, . . . , N}), and δ being the Kronecker-Delta function. The value

Cμ(t) =
1∑

u∈r(μ(t)) Lμ(t)(u)
(4)
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Fig. 2. Stills from three of the videos used. The solid box marks the hand-labled ground truth.
The dashed box is the tracker’s current estimate. In the right-most image, the tracker has been
distracted by a temporary occlusion from another person, and subsequently lost the real target.

is a normalizing constant. In other words, (3) counts all occurances of pixels that fall
into bin i, where the increment within the sum is weighted by Lμ(t)(u).

Object tracking can now be defined as an optimization problem. Starting with an ini-
tial target region—for example, manually or automatically defined in the first image at
t = t0—an initial histogram q(μ(t0)) can be computed. For t > t0, the corresponding
region is defined by

μ(t) = argmin
μ

D(q(μ(t0)), q(μ(t))) (5)

with D(·, ·) being a suitable distance function defined on histograms. In our work we
compare two local optimization techniques, the Mean Shift algorithm [7,8] and the
Trust Region algorithm [4,9], as well as a global optimization technique using particle
filters [5,10].

3 Test Set and Evaluation Criteria

The experiments were performed on publically available videos from the CAVIAR [6]
project. These are surveillance-type videos from a fixed camera, showing human be-
ings performing a variety of actions. The videos come with hand-labeled ground truth
information, which allows an independent evaluation of our trackers. The ground truth
information describes rectangles surrounding the individual humans in each scene.

Figure 2 shows sample images from three of the videos used. The change in the
tracked person’s appearance, as well as the heterogeneous background, makes this a
relatively difficult problem.

In each experiment, a specific person was to be tracked. The tracking system was
given the frame number of the first unoccluded appearence of the person, the ground
truth rectangle around the person, and the frame of the person’s dissappearance. Each
tracker was initialized with this enclosing rectangle. Aside from this initialization, the
trackers had no access to the ground truth information.

For each frame, two measurements between the tracked region and the ground truth
region were recorded. The first is defined as the fraction of non-overlapping area by the
total area of both regions:

er(A, B) :=
|A \B|+ |B \A|
|A|+ |B| (6)
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Table 1. Timing results from the first sequence, in milliseconds. For each tracker, the time taken
for initialization, and the average time per frame, are shown for scaling and non-scaling versions.

Without scaling With scaling
initial per frame initial per frame

Hager & Belhumeur 5 2.33 5 2.87
Hyperplane 528 2.16 536 2.19
Mean Shift 2 1.03 2 2.74

Trust Region 9 4.01 18 8.63
CONDENSATION 11 79.71 11 109.95

where A and B are image regions, represented as sets of image points, and | · | is the
cardinal number of a set. Identical regions have a region error of er(A, A) = 0, while
non-overlapping rectangles have a region error of 1. The second measurement, denoted
ec, is the Euclidean distance between both rectangles’ centers, measured in pixels.

Twelve experiments were performed on seven videos (some videos were reused,
tracking a different person each time).

4 Experimental Results

The following five trackers were compared: The region tracking algorithm of Hager et
al.[1], working on a three-level Gaussian image pyramid hierarchy to enlarge the basin
of convergence. The Hyperplane tracker, using a 150 point region and initialized with
1000 training perturbation steps. The Mean Shift and Trust Region algorithms, using an
Epanechnikov weighting kernel, the Bhattacharyya distance measure and the HSV color
histogram feature from [5] for maximum comparability. Finally, the CONDENSATION
based color histogram approach from Pérez et al.[5], with 400 particles diffused by a
zero-mean Gaussian distribution with a variance of 5 pixels in each dimension. All
trackers were tested with pure translation, and with translation and scaling.

All tests were timed on a 2.8 GHz Intel Xeon processor. The methods differ greatly
in the times taken for initialization (once per sequence) and tracking (once per frame).
Table 1 shows the timing results from the first sequence. Notable points are the long
initialization phase of the Hyperplane tracker due to training, and the long per-frame
time of the CONDENSATION tracker due to the large number of particles.

The trackers’ output was compared to the ground truth with the two evaluation cri-
teria introduced in section 3 (distance between centers ec, and fraction of region overlap
er). For each tracker, the errors from all sequences were concatenated and sorted.

Figure 3 shows the measured distance error ec and the region error er for all trackers,
both with and without scaling.

Performance varies widely between all tested trackers, showing strengths and weak-
nesses for each individual method. There appears to be no method which is universally
“better” than others.

The structure-based region trackers, Hager and Hyperplane, are potentially very
accurate, as can be seen at the left-hand side of each graph, where they display a larger
number of frames with low errors. However, both are prone to losing the target quicker,
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Fig. 3. The result graphs. The top row shows the distance error ec, the bottom row shows the
region error er. The left-hand column contains the results for trackers without scaling, the right-
hand column those with scaling. The horizontal axis does not correspont to time, but to sorted
aggregation. The vertical axis for ec has been truncated to 100 pixels to emphasize the relevant
details.

causing their errors to climb faster than the other three methods. Particularly when
scaling is also estimated, the additional degree of freedom typically provides additional
accuracy, but causes the estimation to diverge sooner. This is a consequence of the
strong changes of appearance of the tracked regions in these image sequences.

The CONDENSATION method, for the most part, is not as accurate as the two
local optimization methods, Mean Shift and Trust Region. We believe this is partly
due to the fact that basic CONDENSATION does not provide intra-frame refinement,
and that time constraints necessitate the use of a quickly computable particle evaluation
function. However, the strength of the CONDENSATION approach lies in its robustness
against local optima: it is capable of reacquiring a lost (or nearly lost) target, which
shows in the flatness of the error curves towards the high end.

Figure 4 shows a direct comparison between a locally optimizing structural tracker
(Hager) and the globally optimizing histogram based CONDENSATION tracker. It is
clearly visible that the Hager tracker provides more accurate results, but cannot reac-
quire a lost target. The CONDENSATION tracker, on the other hand, can continue to
track the person after it reappears.

The Mean Shift and Trust Region trackers perform equally well and provide the
overall best tracking when scaling is not estimated. When scaling is introduced, how-
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Fig. 4. Comparison of the Hager and CONDENSATION trackers using the er error measure
(cf. Sec. 3). The black rectangle shows the ground truth. The white rectangle is from the Hager
tracker, the dashed rectangle from the CONDENSATION tracker. The top, middle and bottom
images are from frames t1, t2, and t3 respectively. The tracked person (almost) leaves the cam-
era’s field of view in the middle image, and returns near the left image. The Hager tracker is
more accurate, but loses the person irretrievably, while the CONDENSATION tracker is able to
reacquire the person.

ever, the Mean Shift algorithm performs noticably better than the Trust Region ap-
proach. This is especially visible when comparing the region error er (figure 3, bottom
right), where the error in the scaling component plays an important role.

Another very interesting thing to note is that tracking translation and scaling, as
opposed to tracking translation only, generally did not improve the results on these
sequences. In fact, the performance of all trackers deteriorated, even when measuring
the fraction of region non-overlap (where any changes in target scale will automatically
penalize trackers which do not estimate scaling).

For the structure-based trackers, Hager and Hyperplane, the changing appearance
of the tracked persons is a strong handicap. The extra degree of freedom opens up more
chances to diverge towards local optima, which causes the target to be lost sooner.

The trackers using histogram features, on the other hand, suffer from the fact that
the features themselves are typically rather invariant under scaling. Once the scale, and
therefore the size of the region, is wrong, small translations of the target can go com-
pletely unnoticed.

5 Conclusion

In this paper, we presented a comparative evaluation of five state of the art algorithms
for data-driven object tracking, namely Hager’s region tracking technique [1], Jurie’s
Hyperplane approach [2], the probabilistic color histogram tracker by Perez [5], Co-
maniciu’s Mean Shift tracking approach [3], and the Trust Region method introduced
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by Chen [11]. All of those trackers have the ability to estimate the position and scale of
an object in the image in real-time. For the comparison, the CAVIAR video database,
which includes ground-truth data, has been employed. The results of our experiments
shows that, in cases of strong appearance change, the region based methods of [2,1] tend
to lose the object more often than the histogram based methods. On the other side, if
the appearance change is weak, the region based methods surpass the other approaches
in tracking accuracy. Comparing the histogram based methods among each other, the
Mean Shift approach [3] leads to the best results. The experiments also show that the
probabilistic color histogram tracker [5] is not quite as accurate as the other techniques,
but is more robust in case of occlusions and appearance changes.
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Abstract. This contribution presents a statistical method for segmentation and
tracking of moving regions from the compressed videos. This technique is par-
ticularly efficient to analyse and track motion segments from the compression-
oriented motion fields by using the Bayesian estimation framework. For each
motion field, the algorithm initialises a partition that is subject to comparisons
and associations with its tracking counterpart. Due to potential hypothesis incom-
patibility, the algorithm applies a conflict resolution technique to ensure that the
partition inherits relevant characteristics from both hypotheses as far as possible.
Each tracked region is further classified as a background or a foreground object
based on an approximation of the logical mass, momentum, and impulse. The
experiment has demonstrated promising results based on standard test sequences.

1 Introduction

Video analysis for meaningful moving clusters or regions is an important process in
numerous scenarios addressing visual motion content. The significance of such cues
was indicated by recent investigations [1,2] that humans tend to perceive visual mo-
tion in terms of syntactic and semantic objects. Based on this motivation, this paper
proposes a statistical method to analyse and track motion segments that correspond to
the background or the foreground objects. The target application is in a heterogeneous
communication scenario, e.g. video messaging [3], where the future provider requires
intelligent video adaptation to scale with an increasing number of terminal classes, con-
figurations, and usage contexts given a limited resource. The success of this process,
however, depends on the comprehensibility of the adapted presentations. This require-
ment can be fulfilled by pre-processing the adaptation with a video content analysis.

In this context, the paper addresses the problem in segmentation and tracking of
moving regions. The novelties of this contribution lie in a statistical modelling and an
algorithm for motion segmentation and tracking from the pre-encoded motion fields
of the compressed videos. The prime challenge lies in difficulty to analyse meaningful
motion semantics and the corresponding spatiotemporal video structure from the coded
visual information only. This technique applies the Gibbs-Markov random field the-
ory [4] and the Bayesian estimation framework [5] by extending the stochastic motion
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coherency model [6]. The paper focusses on the case that there exist two initial parti-
tion hypotheses, i.e., an initial local partition versus a projection-based tracking predic-
tor. As such, the final result shall inherit relevant characteristics from both hypotheses
through the guide of the proposed model. For each observed motion field, the algorithm
estimates a reliability measure array using an initial assessment of the local motion co-
herency [7]. The two competing partition hypotheses are approximated through the use
of the individual field optimisation [6] and the prediction using results from the pre-
ceding fields [7]. The algorithm detects potential conflicts from the two configuration
sets and resolves them by applying a model-based reconciliation technique. In this pro-
cess, the algorithm evaluates the Bayesian analysis model to ensure that the partition is
characterised by the designed likelihood, the local/region coherency [6], and the con-
tour smoothness [8]. Upon this result, the method classifies the detected spatiotemporal
regions in terms of the background or the foreground objects.

Related techniques were present in the literature. A compressed-video segmentation
typically requires a pre-processing step to analyse the confidence indicators [9], where
a number of techniques applies a statistical analysis, e.g. Bayes estimation [8,10], to ad-
dress uncertainty of the acquired video data. On the tracking part, most techniques apply
contour [11] or edge [12] features to correspond visual information between frames. A
hybrid approach applying the human computer interaction method has been demon-
strated as a promising technique to leverage high-level semantic information [13].

The paper is organised as follows. Sect. 2 discusses the Bayesian analysis model
that is characterised by the likelihood, the regularisation density, and the a priori region
border density. Sect. 3 presents the algorithm for moving-region segmentation, tracking,
and classification. Sect. 4 reports the experimental results. Sect. 5 concludes the paper.

2 Bayesian Analysis Model

The segmentation and tracking are considered in this paper as an estimation problem.
It employs the maximum a posteriori probability (MAP) estimation technique and the
Gibbs-Markov random field theory [4]. For an observed (known) motion field V , the
analysis model characterises the solicited partition Q in terms of a probability density
Pr(Q,Q′,V), provided an initial partitionQ and its predictorQ′ that is derived from a
partition projection scheme [7]. Using the Bayes rule Pr(Q,Q′,V) can be written as:

Pr(Q,Q′,V) ∝ Pr(Q′|V ,Q) · Pr(V|Q) · Pr(Q), (1)

which specifies the constituents of this model. The first multiplicand denotes the likeli-
hood of the predicted partitionQ′ given the motion field V and the initial configuration
of partition Q (cf. Sect. 2.1). The second multiplicand regularises the likelihood using
the stochastic motion coherency analysis (cf. Sect. 2.2). The last term evaluates the a
priori probability density of the partition (cf. Sect. 2.3).

2.1 The Congruity-Based Momentum Likelihood

Given a motion field V , the likelihood Pr(Q′|V ,Q) is characterised by the momentum
magnitude of the congruity analysis from a local partitionQ [6] against an initial track-
ing result or a predictor Q′. Let partition Q consist of μ regions Θr, r = 1, . . . , μ that
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is defined in the universe U of the 2-D motion vector coordinates, x = [x y]T ∈ U .
Since not every coded motion block can be analysed, the universe U contains only co-
ordinates of valid motion vectors (excluding intracoded blocks). Likewise, the predictor
Q′ is represented by Θ′

s, s = 1, . . . , μ′. The congruity analysis requires a correspon-
dence set between the two partitions. A region on the partition Q is associated with at
most only one region on the partitionQ′, and vice versa. The r-th region on the partition
Q is corresponded to a region counterpart Γ (r) on the predictorQ′ using

Γ (r) = argmax
s

⎡⎣ ∑
x∈Ω(r,s)

|w(x) · v(x)|

⎤⎦ , (2)

with Ω(r, s) being an intersection test set Ω(r, s) = Θr ∩ Θ′
s, w(x) a reliability

measure denoting a logical mass, and v(x) an encoded motion vector representing a
logical velocity. The function w(x) is estimated by the local motion coherency [7],
w(x) = exp [−Gμ ·Δα(x, μ)] /Zα. For the local statistical justification, an observed
local incoherence function Δα(x, μ) (cf. [6]) is scaled by Gμ, the reciprocal of the
normalised standard deviation [7]. The parameter Zα is a constant ensuring that each
estimate lies between 0 and 1. Upon this definition, an associated membership set Πr

between the r-th region onQ and the Γ (r)-th region onQ′ can be derived by using (2);
as a consequence, we also obtain the incongruity set Υ :

Πr = Θr ∩Θ′
Γ (r); Υ = U −

μ⋃
r=1

Πr. (3)

For each region r on the partitionQ, set Πr is defined by an intersection of Θr and Θ′
s,

with s = Γ (r). The set Υ is computed based on the constellation of Πr. As such, the
congruity-based momentum likelihood can be evaluated in the detected set Υ by:

Pr(Q′|V ,Q) =
1

ZΥ
exp

[
−E ·

∑
x∈Υ

|w(x) · v(x)|
]

, (4)

with E being a configurable parameter and ZΥ a normalisation constant. In order to
justify the magnitude of the logical momentum (see more in Sect. 3), E is chosen at the
reciprocal of the entire momentum in the universe U , i.e., (

∑
x∈U |w(x) · v(x)|)−1.

Fig. 1 demonstrates this analysis using frame 15 of the sequence Foreman. A unique
color was painted at each region. The algorithm generated a predictor hypothesis (Q′,
Fig. 1(b)) based on the segmentation result from frame 12 (Fig. 1(a)). Applying the
reliability array (w(x), Fig. 1(c)), the second hypothesis (Q, Fig. 1(d)) can be op-
timised from the current motion field in frame 15. Upon the hypothesis association
by (2) and (3), the incongruity set Υ was detected around the face borders as marked
in Fig. 1(e) (this subfigure was enlarged) with the red color. This is the basis for the
likelihood of this model. Further experimental results can be found in Sect. 4.

2.2 The Likelihood Regularisation: Stochastic Motion Coherency

The likelihood is regularised by the a posteriori probability Pr(V|Q) of the partition
Q. The method chooses the stochastic motion coherency analysis [6] to model this
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Fig. 1. Illustrating an experimental result from sequence Foreman at frame 15

observation. Let us assume that partitionQ consists of λ regions Ψt, t = 1, . . . , λ. The
probability Pr(V|Q) is proportional to the multiplication of the local/region coherency:

Pr(V|Q) ∝ exp

[
−

λ∑
t=1

{
Gt ·

∑
x∈Ψt

Δα(x, t)

}]
︸ ︷︷ ︸

Local Motion Coherency

· exp

[
−

λ∑
t=1

{
Ht ·

∑
x∈Ψt

Δβ(x, t)

}]
︸ ︷︷ ︸

Region Motion Coherency

(5)

This function evaluates the two-level Gibbs distribution-based motion coherency at
each vector coordinate x in the assigned t-th region. At the neighbourhood level, the
local motion smoothness is examined through the observation of the local incoherence
Δα(x, t) at the eight nearest neighbours. At the region level, the region model fit is
investigated by the region incoherence Δβ(x, t) using the t-th region motion model es-
timate. This latter criterion ensures that each motion vector in the assigned region is
well described by the region model. This is an important measure to allow clustering
of distant motion vectors, especially when the object motion is undergone by zoom and
rotation significantly. Further details can be found in Ref. 6,7.

2.3 The A-Priori Density of Region Boundary

The last term in (1) is the a priori density of the region shapes on the partition Q. The
model chooses the density that favours smooth boundaries akin to the property of most
physical regions [4,8]. The a priori density is modelled by:

Pr(Q) =
1

Zχ
exp [−H(Q)] =

1
Zχ

exp [−NBB −NCC] , (6)

with H(Q) being the energy of the partition state. This energy function linearly scales
with two counts of the motion vector pairs at region borders (i.e., of different region
labels). The model specifies independent weights B and C to the counts NB and NC

for the horizontal or vertical border pairs and for the diagonal ones, respectively.
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3 Algorithm for Segmentation, Tracking, and Classification

The method assesses the reliability extent of each motion vector (cf. Sect. 2.1) and en-
sures that only reliable members are utilised in the process. For each observed motion
field, the algorithm initialises two competing partition hypotheses referred to as an ini-
tial partition Q and its predictor Q′ in Sect. 2.1. The segment optimisation of the first
frame is based on the individual field only [6]. For the subsequent frames, the algorithm
additionally initialises the second hypothesis using the partition projection and relax-
ation [7]. This technique predicts the partitionQ′ based on the partition results from the
preceding frames. These two hypotheses are associated using (2) and (3).

As incongruities or conflicts may arise from the hypothesis association, the opti-
misation process requires a conflict detection and resolution technique. To minimise
affects of the non-representative members in the region model estimation, the algo-
rithm assigns a new region to every non-empty incongruity fraction Υr,s. It identifies
Υr,s by intersecting the non-associated set Θr − Πr, r = 1, . . . , μ with the non-used
predicted set Θ′

s, s = 1, . . . , μ′, s �= Γ (r), i.e. Υr,s = (Θr − Πr) ∩ Θ′
s. Using this

technique, the partition shall consist of λ non-overlapped regions Ψt, t = 1, . . . , λ. This
set is an aggregation of the associated membership set Πr, r = 1, . . . , μ and the λ− μ
newly-defined fractions Υr,s, corresponding to the result of the initial reconciliation.

Now, the algorithm must ensure that the associated partition has the most optimal
configuration specified by the Bayesian analysis model. For this reason, the probability
Pr(Q,Q′,V) is evaluated and improved by adjusting the configuration ofQ. The eval-
uation is quantified by taking the negative logarithm to (1). Through the use of (4), (5),
and (6), this operation leads to the MAP cost estimate:

f(Q,Q′,V) = E ·
∑
x∈Υ

|w(x) · v(x)|︸ ︷︷ ︸
Hypothesis Incongruity

+
λ∑

t=1

[
Gt ·

∑
x∈Ψt

Δα(x, t)︸ ︷︷ ︸
Local Heterogeneity

+ Ht ·
∑
x∈Ψt

Δβ(x, t)︸ ︷︷ ︸
Region Heterogeneity

]
+ NBB +NCC︸ ︷︷ ︸

Contour Roughness

+ L. (7)

The desired partitionQ that maximises Pr(Q,Q′,V) shall minimise this cost function.
L corresponds to the logarithm of the normalisation constants specified in the model.
The algorithm attempts to relax region borders using a label substitution technique. For
every block at the region borders (i.e., at least one neighbour has a different label) it
finds a set of potential substitutions that reduce the MAP cost based on labels of the
eight nearest neighbours. Only the configuration that leads to the highest cost reduction
shall take place. This scheme proceeds in multiple raster-scan iterations until no cost
improvement is found. In the second step, the algorithm attempts to merge regions in
a pairwise manner through the guide of the MAP cost change. In each iteration, only
the merge configuration that reduces MAP cost function the most shall take place. This
process repeats until the best merge configuration no longer decreases the MAP cost.
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Table 1. Results of the tracked region classification from sequences Foreman and Table Tennis in
the first 15 frames (Lifespan is in frame, Mass in frame·MB, and Impulse Magnitude in pel·MB)

Sequence Region Lifespan Logical Mass Logical Impulse Magnitude Classification
Foreman 0 15 2519.40 1457.94 Background

1 15 392.39 1277.77 Significant Object
Table Tennis 0 15 3365.45 109.14 Background

1 15 396.27 590.27 Significant Object

A series of tracked partitions forms a set of spatiotemporal regions. The algorithm
classifies them into background or foregrounds. Given that the reliability measure repre-
sents the logical mass at the corresponding grid of the field lattice, a total spatiotemporal
massMt of the t-th tracked region is calculated by accumulating the reliability mea-
sures in the set Ψ(t) of the t-th region throughout its lifespan [τ0(t), τ∞(t)]:

Mt =
∫ τ∞(t)

τ0(t)

∑
x∈Ψ(t)

w(x) dτ. (8)

The tracked region having the largest massMt shall be classified as the background.
This rule indicates that the background is the largest reliable region of the entire se-
quence. At each t-th tracked region, we derive the momentum magnitude by summing
up the mass-motion amount, i.e., Pt =

∑
x∈Ψ(t) |w(x) · v(x)|, and the force magnitude

by averaging the momentum magnitude in the time gap towards the reference frame,
i.e., Ft = Pt/Δτ . An integration of this force magnitude throughout a region lifespan
results in the logical impulse magnitude exerted by the movement of this region:

It =
∫ τ∞(t)

τ0(t)

Ft dτ =
∫ τ∞(t)

τ0(t)

∑
x∈Ψ(t) |w(x) · v(x)|

Δτ
dτ. (9)

The significance from each foreground region is sorted based on the impulse magnitude
estimation. The tracked region that produces the highest impulse magnitude shall be
classified as the significant foreground object. In the simulation, the algorithm chooses
the Simpson’s numerical integration [14], as this estimation bounds the integration error
up to the fourth derivative, while requiring a relatively low computational effort.

4 Results

Sequences Foreman and Table Tennis in CIF format were experimented. The motion
fields were estimated using the 16-pixel search range and the 512-kbps rate control
(TM5 algorithm) based on an MPEG-4 encoder [15]. Fig. 2 and 3 depict the results from
both sequences at frames 6, 9, 12, and 15 (cf. Fig. 2,3(a), left to right). The algorithm
segmented and tracked motion-semantic regions as depicted in Fig. 2,3(b). The foreman
face in Fig. 2(c) as well as the arm and the hand in Fig. 3(b) were well extracted. The
emphasis is on the color preservation on these tracked regions at a sequence level.
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Fig. 2. Results from sequence Foreman

Fig. 3. Results from sequence Table Tennis

In the next step, these tracked regions were classified to either background or fore-
grounds based on the logical mass and impulse magnitude estimates. Table 1 and Fig. 2,
3(b) show that in each sequence region with the largest mass (region 0 in both cases)
was attributed to the background. Based on an order of the impulse magnitude esti-
mates, the significant object was chosen at region 1 in the sequence Foreman. This
region represents most parts of the foreman face (cf. Fig. 2(b)). Since region 0 has
already been classified as the background, it was not considered in the foreground clas-
sification. For the second example in Fig. 3(b), the arm and the hand were altogether
identified as a representative foreground object as anticipated. On a 500-MHz machine
this non-optimised simulation required 10.47 and 9.02 second-per-frame to analyse the
sequences Foreman and Table Tennis, respectively.
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5 Conclusion and Future Work

This paper presents a Bayesian model and an algorithm for segmentation and track-
ing of motion fields in the compressed video sequences. It was demonstrated that the
motion-semantic regions can be efficiently partitioned and tracked from the motion
field sequences by using the proposed technique. The method novelties lie in the hy-
pothesis association and the conflict resolution based on the tracking predictor and the
local analysis hypotheses. These tracking results are classified as the background or
the foreground objects by bearing analogy of the reliability measure and the velocity
magnitude to the logical mass and momentum concepts, respectively. Upon standard
test sequences, the experiment has demonstrated promising results. Future work shall
improve shapes, structures, and precision of the detected region contours. Additional
features such as inter- and intra-coded transform coefficients should be considered.
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Abstract. This paper focuses on real-time markerless motion capture.
The body pose of a person is estimated from depth images using an Iter-
ative Closest Point algorithm. We present a very efficient approach, that
estimates up to 28 degrees of freedom from 1000 data points with 4Hz.
This is achieved by nonlinear optimization techniques using an analyti-
cally derived Jacobian and highly optimized correspondence search.

1 Introduction

Motion capture and body pose estimation are very important tasks in many
applications. Motion capture products used in the film industry or for computer
games are usually marker based to achieve high quality and fast processing.

A lot of research is devoted to make markerless motion capture applicable.
There are very different approaches using very different kind of information,
e.g. tracking features, contour information, color tracking, or depth data. An
overview of markerless motion capture systems and algorithms is given in [7].

In some applications highly accurate motion data is not needed every frame.
In Human-Computer-Interaction applications the focus is usually more on real-
time evaluation and robustness with respect to lighting, background etc. There-
fore this paper focuses on markerless motion capture that estimates body pose
in at least near to real-time.

We estimate human motion from depth data calculated from stereo images.
The proposed approach uses an estimation method similar to Rosenhahn [9] and
Malik & Bregler [2]. Our approach however uses standard non-linear optimiza-
tion methods that involves an analytically derived Jacobian of the optimization
function. Therefore it can be applied to methods like gradient descent, Quasi-
Newton, Levenberg-Marquardt (LM) etc. Authors of recent work, which is very
similar to our, seem not to be aware of this possibility. Their work might benefit
from the derivations and results presented here.

Recent work most similar to this one are, as far as we know, that of D.
Demirdjian [4] and M. Bray [1]. Both estimate the body pose from depth data
and have an Iterative Closest Point (ICP) approach to find necessary correspon-
dences. Other similar work on body pose estimation using depth data can also
be found in [8,6], which is however not fast enough for real-time purposes.

The approach of Demirdjian is fast enough to fulfill real-time requirements as
poses are estimated with 10Hz. An ICP estimation is done for each body segment

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 285–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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separately. Later, the underlying movement constraints (segments are connected
by joints) are applied by projecting the evaluated transformations onto the set of
possible articulated transformations. As the authors state themselves in [4] ’con-
straint projection methods may give an sub-optimal solution, but are easier to im-
plement than direct approaches’. The direct approachwas implemented in our work
and showed to be fast enough for real-time requirements in spite of its complexity.

In [1] the pose of a human hand is estimated from depth data obtained by
a structured light sensor. Movement of points is described as a concatenation
of rigid body motions. However the derivative is calculated by numerical meth-
ods, which takes a significant amount of time. Different nonlinear optimization
methods are applied to the pose estimation problem and a extended gradient
descent method, the stochastic meta descent, is proposed to give the best results.
Estimation takes 4 seconds per frame from 45 data points.

Our approach uses an analytically derived Jacobian for the optimization,
which decreases the computation time significantly. Further optimizations for
efficient correspondence calculations enable us to estimate body pose from 1000
data points in 250ms on a Pentium4 3Ghz.

2 Body Model

Fig. 1. The body model (left) and
the joints of the arm (right)

Depending on the kind of work different body
models are used for the estimation process.
The models range from simple stick figures
[2] over models consisting of scalable spheres
(meta-balls) [8] to linear blend skinned mod-
els [1]. We use models consisting of rigid,
fixed meshes in each body segment, that try
to make a balance between fast computation,
which requires low resolution models with
few points, and accurate modeling of the per-
son. The movement capabilities are the same
as defined in the MPEG4 standard. An ex-
ample for the movement capabilities of the
arm are shown in figure (1).

The body model is fitted to the current
observed person offline by scaling each seg-
ment separately in size. To fit the template
model a contour based monocular algorithm
is used. The person is captured in specific predefined poses in front of a known
static background and the scale values for each body segment are evaluated by
hierarchical nonlinear optimization.

3 Body Pose Estimation

We will show in this section how nonlinear optimization methods can be applied
to the problem of body pose estimation. This approach is used within a variety
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of applications, e.g. [1,8], but usually relies on numerical derivatives, which are
inaccurate and time consuming to compute.

3.1 Rigid Body Motion as Rotation Around Arbitrary Axis

A rigid body motion (RBM) in IR3 may be expressed as a rotation around an
arbitrary axis plus a translation along that axis. There are different formulations
for rigid body motions, e.g. twists [2], which use a exponential term eψ or rotors
[9], which may be seen as an extension of quaternions. Important here is not
a complete RBM, but a rotation around an arbirtrary axis, which is given in
standard vector notation of the Euclidean space as follows.

Consider the normal vector ω, which describes the direction of the axis, and
the point q on the axis, which has the shortest distance to the origin, i.e. q lies
on the axis and q Tω = 0, refer to figure (2). The rotation of a point x around
that axis may then be written as

y = x + sin θ(ω × (x− q)) + (1− cos θ)(q − xp)
= x + sin θ(ω × (x− q)) + (q − xp)− cos θ(q − xp)
≡ Rω,q(θ) ◦ x

(1)

where xp = x−(x Tω)ω is the projection of x onto the plane through the origin
with normal ω. Note that q is also on that plane. This expression is very useful
as the derivative R′

ω,q(θ) = ∂Rω,q(θ)
∂θ is easy to calculate:

R′
ω,q(θ) = cos θ(ω × (x− q)) + sin θ(q − xp) (2)

x

z

y

x

q
xp

θ
ω

y

Fig. 2. Rotation around an arbi-
trary axis in space

3.2 Concatenation of Rotations

The MPEG4 body model is a mixture of ar-
ticulated objects. The movement of a point,
e.g. on the hand, may therefore be expressed
as a concatenation of rotations. As the rota-
tion axis are known, e.g. the flexion of the el-
bow, the rotation has only one DOF, the angle
around that axis. In addition to the joint an-
gles there are 6 DOF for the position and ori-
entation of the object within the global world
coordinate frame. For an articulated object
with p − 6 joints the transformation may be
written as:

f(θ,x) = (θ1, θ2, θ3)T+Rx(θ4)◦Ry(θ5)◦Rz(θ6)◦Rω,q(θ7)◦··◦Rω,q(θp)◦x (3)

where (θ1, θ2, θ3)T is the global translation, Rx is the rotation around the global
x-axis etc. and Rω,q(θi), i ∈ 7..p denotes the rotation around the known axis
(ωi, qi) with angle θi.
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Note that ’◦’ does here not denote multiplication but concatenation of ro-
tations around arbitrary axis’ in space, which must evaluated by recursive in-
sertion, as we use the description of equations (1) and (2). Equation (3) gives
the position of a point x on a specific segment of the body (e.g. the foot), with
respect to joint angles θ and an initial body pose.

The first derivatives of f(θ,x) with respect to θ give the Jacobian matrix,
which is Jki = ∂fk

∂θi
. Of special interest is here the derivative at some specific

position θt, which reads J t
ki = ∂fk

∂θi

∣∣∣
θt

.
The Jacobi matrix for the movement of the point x in a kinematic chain is

J t =

⎡⎣1 0 0
0 1 0 ∂f

∂θ4

∂f
∂θ5

∂f
∂θ6

∂f
∂θ7
· · · ∂f

∂θp

0 0 1

⎤⎦ (4)

with
∂f

∂θ6
=Rx(θt4) ◦Ry(θt5) ◦R′

z(θ
t
6) ◦ (Rω,q(θt7) ◦ · · ◦Rω,q(θtp)x)

∂f

∂θi
=Rx(θt4) ◦ · · ◦(Rω,q(θti−1) ◦R′

ωi,q(θti) ◦Rω,q(θti+1) ◦ · · ◦Rω,q(θtp)x
(5)

where x corresponds to the initial pose with θ = 0 and ∂f
∂θ4,5

are similar to ∂f
∂θ6

.

The partial derivative ∂fk

∂θi
gives the direction in which the point x will move,

if θi is changed, which is the tangent vector on the circle, on which x moves
around (ωi, qi).

3.3 Simplifying the Jacobian

There is a special case to be considered, if θt is zero. The partial derivative ∂f
∂θi

then simplifies to:
∂f

∂θi

∣∣∣∣
0

=
∂Rω,q(θi)

∂θi

∣∣∣∣
0

= ωi × (x− qi), (6)

With this simplification the partial derivatives ∂f
∂θ4,5,6

for the global rotation are
exactly the same as a linearized rotation matrix. When used within Newton
Iteration the above equation leads also to a similar, if not equal, linear equation
system as for 3D-3D correspondences in Rosenhahn [9].

4 Nonlinear Optimization by Newton Iteration

Assume the intially known model points X0 = (x0
1,x

0
2, ...,x

0
n) are observed

at Y = (y′
1,y

′
2, ...,y

′
n). The task of pose estimation is to find the parameters

θ that map X to Y , where each point is transformed by fθ ≡ f(θ,x). If the
observed points Y are disturbed by noise, a best fit has to be found.

As this minimization problem for pose estimation involves concatenations of
sin and cos, it is analytically hard to calculate. However an assumption can
be made that simplifies the problem and makes it possible to evaluate θ by an
iterative method. The assumption made for Newton Iteration is that the function
fθ is locally linear at some point θt.
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The minimization problem now reads minθ |Y −F (θ)|2 with F : IRp → IR3n

and F (θ) =
(
fθ(x0

1), fθ(x0
2), .., fθ(x0

n)
)T .

The locally linear assumption leads to:

F (θt + Δθ) ≈ F (θt) +
∂F

∂θ

∣∣∣∣
θt

·Δθ (7)

The derivative ∂F
∂θ

∣∣
θt of F at position θt is the Jacobi matrix from above, now

for all points from the set X .
Let εt = Y − F (θt) be the error at iteration step t. In each iteration Δθ is

estimated by solving a linear minimization problem:

minΔθ |εt − JΔθ|2 (8)

The solution is given by Δθ = J+εt, where J+ = (JT J)−1JT is the Pseudo-
inverse of J . This may also be solved efficiently by Gauss-Elimination using the
linear equation system (JT J)Δθ = JT εt, which may be faster than building
the inverse of (JT J).

As stated above the derivatives becomes much simpler if θt is zero. This can
be achieved by estimating only the relative transforms in each iteration step
of the Newton Iteration, which requires recalculation of the known parameters
of F (θ). These are the known axes ω1, ..,ωp and their corresponding points
q1, .., qp in world coordinates. Additionally the new point set Xt+1 must be
evaluated from Xt with respect to the estimated values Δθ.

5 ICP Approach

The optimization above assumes that correspondences between the observed
points and the model points are known. As the observed points are calculated
from depth maps, these correspondences are not known. Equal to [9,1,2,4] we
take an Iterative Closest Point (ICP) approach. For each observed point the
nearest point on the model is assumed to be the corresponding one. With these
correspondences the body pose of the model is calculated. Those two steps are
then repeated i times or until the change in the pose parameters is below a
certain threshold. Similar to other works, we assume that the model of the
observed person is given and that the initial position and initial pose in the first
frame are approximately known. Also we assume that there is an upper bound on
the displacement of each point on the known model from frame to frame. To fit
the body model to the observed point set, a segmentation of the person from the
background is necessary. In [1] this is done by using skin color. We assume here
only that there are no scene objects (or only negligible parts) within a certain
distance to the person by using reweighted least-squares for equation (8).

The calculation of correspondences involves several steps, which are opti-
mized in the following ways.
1. The depth image is randomly subsampled and the 3D-points are calculated

from the known focal length and principal point of the camera. To do this
efficiently the camera coordinate system is assumed to be equal with the
world coordinate system and the body model is positioned initially, such
that it is close to the observed point set.
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2. The visible points of the model are calculated by rendering each triangle of
the body model in a different unique color. The RGB-color of each triangle
is then used as an index to get the 3D-points of the triangle by a simple
array subscript similar to [3]. The segment to which the model point belongs
is also found by an array subscript. For efficient nearest neighbor search, the
visible points are ordered into an associative array that uses a binary search
tree, where the main order value is that coordinate of the model that has
the largest extent, usually the height of the person.

3. Nearest neighbor search. For each observed point the associative array is
searched for the point with the next height-value. As the height distance is
a lower bound for the Euclidean distance, the search can be stopped, if the
height distance is larger than the Euclidean distance to the next point.

6 Depth Estimation

Our motion estimation is based on dense depth information which could be es-
timated directly from correspondences between images. Traditionally, pair-wise
rectified stereo images were analyzed exploiting geometrical constraints along the
epipolar lines. More recently, generalized approaches were introduced that can
handle multiple images and higher order constraints. See [10] for an overview.
Achieving realtime performance on standard hardware has become reality with
the availability of free programmable graphics hardware (GPU) and the ad-
ditional benefit of keeping the CPU free for other tasks like our pose estima-
tion [11]. The results presented here are calculated from depth images generated
by a dynamic programming based disparity estimator with a pyramidal scheme
for dense correspondence matching along the epipolar lines [5].

7 Results

We tested our implementation with depth images from a real sequence, where
a person moved his arms at first in a waving manner, and later crossing his
arms in front of his chest. The arms close to the body is a very difficult pose.
All contour based approaches will fail here. In figure (3) three images from the
sequence are shown. The top row shows the depth images with lighter values
indicating closer points. The middle row shows the original images overlayed
with the estimated model pose in grey. The bottom row shows the same model
pose as seen from another position. The model’s position is estimated below
the real person throughout the sequence, because the model was fitted offline
beforehand to the person showing a bare upper body. This shows the robustness
of the estimation with respect to inaccurate model geometry. For this sequence
14 DOF were estimated: The global transform, the three shoulder angles and
the elbow flexion. Important for the accuracy and speed are the number of
iterations and the number of data points (the subsampling rate). The fastest
result were achieved by taking approx. 800 data points and ca. 10 iterations
per frame. Taking less iterations or data points can lead to invalid tracking for
large motions between frames. The processing of one frame took 200ms on a
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Fig. 3. Top Row:Depth images, middle row: original image overlayed with esimtated
model pose, bottom row: model view from the side

Table 1. Comparison with related work

Demirdjan Bray Our
DOF ca. 18 30 28
correspondences unknown 45 1000
model complexity 6 simple complex hand model 18 seperately

cylinders linear blend skinned fitted body parts
speed 6-10fps 0.22 fps 4 fps

Pentium4 2Ghz fps Sunfire 1.2Ghz Pentium4 3 Ghz

3Ghz Pentium 4 on the average. For a bowing sequence with synthetic data,
that involved movement of the arms, legs and head, 26 DOF were estimated.
The estimation time increased only slightly to 250ms per frame with about 10
iterations and 1000 data points.

Table (1) shows the effectiveness of our approach. We are able to use far
more correspondences for the estimation than Bray. This is probably due to
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the analytically derived Jacobian. Processing more data points stabilizes the
estimation significantly if noisy depth data has to be used. The approach of
Demirdjan is faster than our, however the estimation method is inferior [4] to
our direct approach and uses a simpler model and probably less correspondences.

8 Conclusions and Outlook

We showed how body pose estimation by nonlinear optimization methods can
be improved using the correct derivatives and described an optimized ICP ap-
proach that calculates body pose from depth images in near to real-time. We are
optimistic to accelerate our algorithm to more than 10fps by the use of a simpler
model and a smarter way of subsampling the depth image, such that less cor-
respondences are sufficient. The stereo algorithm [11] can provide depth images
with up to 20fps and is therefore well suited for real-time body pose estimation
within HCI applications. Further constraints like self collision and limiting the
joint movement to realistic angles will further increase the performance. To in-
tegrate constrained motion into Newton Iteration barrier functions can be used.
First experiments with barrier functions for the elbow flexion showed promis-
ing results. Additional cameras from other views can be easily integrated in the
estimation, as they simply provide additional correspondences.
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Abstract. We present a novel framework for unsupervised training of
an object detection system. The basic idea is to (1) exploit a huge amount
of unlabeled video data by being very conservative in selecting training
examples; and (2) to start with a very simple object detection system and
using generative and discriminative classifiers in an iterative co-training
fashion to arrive at increasingly better object detectors. We demonstrate
the framework on a surveillance task where we learn a person detector.
We start with a simple moving object classifier and proceed with robust
PCA (on shape and appearance) as a generative classifier which in turn
generates a training set for a discriminative AdaBoost classifier. The
results obtained by AdaBoost are again filtered by PCA which produces
an even better training set. We demonstrate that by using this approach
we avoid hand labeling training data and still achieve a state of the art
detection rate.

1 Introduction

Starting with face detection [14,19] there has been a considerable interest in
visual object detection in recent years, e.g., pedestrians [20], cars [1], bikes [12],
etc. This is sometimes also referred to as visual categorization as opposed to
object recognition [4,12]. At the core of most object detection algorithms is
usually a classifier, e.g., AdaBoost [5], Winnow [9], neural network [14] or support
vector machine [18]. The proposed approaches have achieved considerable success
in the above mentioned applications.
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However, a requirement of all these methods is a training set which in some
cases needs to be quite large. The problem of obtaining enough training data
increases even further because the methods are view based, i.e., if the view-point
of the camera changes the classifier needs to encompass this variability (e.g., car
from the side and car from the back). Training data is usually obtained by hand
labeling a large number of images which is a time consuming and tedious task.
Clearly this is not practicable for applications requiring a large number of differ-
ent view-points (e.g., video surveillance by large camera networks). Therefore,
it is essential that a representative set of labeled object data is obtained. Neg-
ative examples (i.e., examples of images not containing the object) are usually
obtained by a bootstrap approach [17]. One starts with a few negative examples
and trains the classifier. The obtained classifier is applied to images not contain-
ing the object. Those sub-images where a (wrong) detection occurs are added to
the set of negative examples and the classifier is retrained. This process can be
repeated several times. Obtaining reliable positive examples is, however, a more
difficult problem, since discriminant classifiers are very sensitive to false training
data.

The main contribution of this paper is to propose a novel framework (depicted
in Fig. 1) avoiding hand labeling of training data for object detection tasks. The
basic idea is to use the huge amount of unlabeled data that is readily available
for most detection task (i.e., just mount a video camera and observe the scene).

Motion detection

Reconstructive model

Appearance Shape

Discriminative model

AdaBoost

Classifier

Fig. 1. The proposed conservative learning framework

We use two types of models, a reconstructive one which assures robustness
and serves for verification, and discriminative one, which actually performs the
detection. To get the whole process started we use a simple motion detector
to detect potential objects of interest. In fact, we miss a considerable amount
of objects (which can be compensated by just using longer sequences) and we
will get also a lot of miss-detections (which will be reduced in the subsequent
steps). The output from the motion detector can be used to robustly build a first
initial reconstructive representation (to further increase the robustness we are
using one representation on shape and the other on appearance). In particular,
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we use robust PCA [15] at this stage so that most of the miss-detections (back-
ground, false detections, over-segmentations, etc.) are not incorporated in the
reconstructive model. This is very crucial as the discriminative classifier needs
to be trained with “clean” images to produce good classification results. The
discriminative model is then used to detect new objects in new images. The out-
put of the discriminative classifier is then verified by the reconstructive model,
and detected false positives can be fed back into the discriminative classifier
as negative examples (and true positives as positive examples) to further im-
prove the discriminative model. In fact, it has been shown in the active learning
community [13], that it is more effective to sample the current estimate of the
decision boundary than the unknown true boundary. This is exactly achieved by
our combination of reconstructive and discriminative classifiers. Exploiting the
huge amount of video data, this process can be iterated to produce a stable and
robust classifier.

The outlined approach is similar to the recent work of Nair and Clark [11]
and Levin et al. [8]. Nair and Clark propose to use motion detection for obtaining
the initial training set and then Winnow as a final classifier. Their approach does
not include generative classifiers, nor does it iterate the process to obtain more
accurate results. In that sense our framework is more general. Levin et al. use the
so called co-training framework to start with a small training set and to increase
it by using a co-training of two classifiers operating on different features. We
show that using a combination of generative and discriminative classifiers helps
to increase the performance of the discriminative one.

The rest of the paper is organized as follows. In Section 2 we detail our
approach. In order to make the discussion concrete we will use person detection
from videos. The experimental results in Section 3 demonstrate the approach on
some challenging video sequences with groups of people and occlusions. Finally,
we present some conclusions and work in progress.

2 Our Approach

In this section we will explain the modules used in our implementation of the
framework depicted in Fig. 1. We used a motion detection procedure based on
a simple approximated median background model, a robust PCA as a recon-
structive model, and AdaBoost as a discriminative classifier. But note that the
particular methods are not crucial and other types of classifiers might be used
as well.

2.1 Motion Detection

Having a stationary camera a common approach to detect moving objects is
to threshold the difference image between the current frame and a background
model. A widely used and simple method for generating a background model is
a pixel-wise temporal median filter. To reduce computational costs and memory
requirement McFarlane and Schofield [10] developed the approximated median
a computationally more efficient method.
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The obtained motion blobs can be labeled as persons if the aspect ratio of
their bounding box is within the prespecified limits. We are very conservative
in this step, i.e., we will miss many potential persons, but we nevertheless will
obtain a few false negatives.

2.2 Reconstructive Model

We use a PCA-based subspace representation as a reconstructive model. This
low-dimensional representation captures the essential reconstructive character-
istics by exploiting the redundancy in the visual data. As such, it enables “hal-
lucinations” and comparison of the visual input with the stored model. In this
way the inconsistent data can be rejected and the discriminative model can be
trained from clear data only.

To be more specific, once the subspace representation has been built from
the training images, we can verify if an input image can be modeled with this
model simply by checking its reconstruction error. We can thus project the image
into the eigenspace (using the standard projection or a robust procedure [6]),
reconstruct the obtained coefficients and determine the reconstruction error,
which is a good verification measure. Having a consistent model of training
images, we can successfully evaluate new images by considering this measure.

It turns out that a similar approach can be used also in the learning stage,
thus during the estimation of the principal subspace. By considering the recon-
struction error, the robust learning procedure can discard inconsistencies in the
input data and train the model from consistent data only [3,15,16]. We use a
similar but simplified approach and by checking the consistency of the input
images (patches) we accept or reject potential patches as positive or negative
training examples for the discriminative learner.

To further increase the robustness of the reconstructive model, we build two
subspace representations in parallel: appearance-based and shape-based rep-
resentation. The former is created from the cropped and resized appearance
patches, which are detected by the motion detector. Since the output of this
detector is also a binary segmentation mask, this mask is used to calculate the
shape images based on the Euclidean distance transform [2]. The mean and the
first five eigenvectors of the appearance-based and shape-based model are shown
in Figs. 2(a,b).

Having these models, each image can be checked whether is consistent with
them or not. Figs. 2(c,d) depict an image and its appearance and shape recon-
structions in the case of a correct and a false detection. In the latter case, the

(a) (b) (c) (d)
Fig. 2. Mean and first five principal vectors: (a) appearance, (b) shape. Appearance im-
age, its reconstruction, shape image, its reconstruction: (c) in case of correct detection,
(d) in case of false detection.
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reconstruction error is significantly larger (i.e., the original image and its recon-
struction differ significantly), thus the patch, which encompasses parts of two
pedestrians instead of a single one, gets discarded. Since the main idea of conserv-
ative learning is to consider only the images (patches), which are sufficiently con-
sistent with the current model (and would not change it significantly), we accept
only the images, which are close enough to both, the appearance and the shape
model. We thus assure that the discriminative learner gets only the clean data.

2.3 Discriminative Model

In principle our proposed concept can be used with any discriminative classifier,
but due to its popularity we have used the classical AdaBoost classifier from
Viola and Jones [19]. It allows a very fast processing while achieving a high
detection rate. The main assumption from Viola and Jones is that a small set
of important features can separate the object classes from the background. This
feature selection is done by boosting.

To improve the performance we use in addition to the Haar Wavelets local
edge oriented histograms, similar to Levi and Weiss [7]. To detect an object the
classifier is evaluated at many possible positions and scales on the image. Since
both feature types can be calculated with integral images, this can be done very
efficiently for each sub-window.

3 Experimental Results

We have created challenging indoor surveillance video sequences showing a cor-
ridor in a public building. We have recorded images over several days. A simple
motion detector triggers the camera and then each second one image is recorded.
In total we have recorded over 35000 images.

For training the classifiers a sequence containing approximately 4500 frames
has been used. In order to have a challenging test situation we created an inde-
pendent test set containing groups of persons, persons partially occluding each
other and persons walking in different directions. The test set consists of 300
frames (235 persons) and was manually annotated.

3.1 Description of Experiments

We applied the conservative learning framework as outlined above. To demon-
strate the success of the individual steps, we trained an AdaBoost classifier after
each step, and applied it to the test set. The AdaBoost classifiers have all the
same VC-dimension (i.e., we used 60 weak classifiers). For evaluation we used
non-local maximum suppression of the detections.

AdaBoost1: On the training sequence the motion detection produced 412 de-
tections that where considered as persons (approximately 10% false posi-
tives), in addition 1000 negative examples are created by randomly sampling
image regions where no motion was detected.
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AdaBoost2: A robust reconstructive representation obtained by PCA is com-
puted from the output of the motion detector. This representation is used to
verify the output of motion detection to create the set of positive examples.
From the 412 detections only 140 positive examples are extracted. The set
of negative examples is the same as for AdaBoost1.

AdaBoost3: The detections of AdaBoost2 are verified by the reconstructive
model (subdivided into 3 groups: true positives, false positives, any others).
Detected false positives are fed back into the AdaBoost as negative examples
and true positives as positive examples (76 patches were added to positive
examples, 209 to negative examples). Note that these are extremely valuable
examples because they sample the current decision boundary.

3.2 Results

As an evaluation criterion we used similar to [1], precision, recall and the F-
measure that can be considered as tradeoff between recall and precision. The
results of the experiments on the test set are summarized in Table 1:

Table 1. Experimental results on the test set.

method true-pos. false-pos. recall precision F-measure
AdaBoost1 229 605 97.4 % 27.5 % 42.9 %
AdaBoost2 216 160 91.9 % 57.4 % 70.7 %
AdaBoost3 220 12 93.6 % 94.8 % 94.2 %

(a) (b) (c) (d)

Fig. 3. Detected persons: (a) Motion, (b) AdaBoost1, (c) AdaBoost2, (d) AdaBoost3.

From the experimental results one can clearly see that the number of false
positives is considerably reduced by the different stages of the classifier (this is
exactly what is to be expected from conservative learning). The F-measure im-
proves from initially 42% to more than 90%. To show the benefit of our approach
an AdaBoost classifier was trained with hand labeled positive examples. Using
this classifier we detected 224 persons and got 126 false positives (F-measure:
77%). Thus, the result is comparable to AdaBoost2.
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Fig. 3 shows some example detections obtained by the different classifiers.
Since the persons are not moving there is no motion detected (a). The AdaBoost
classifier trained with the noisy data (b) yields a lot of false positives. The
classifiers trained with the clean data (c) and with the verified false positives (d)
provide much better results.

(a) (b) (c) (d)

Fig. 4. Examples of detected persons applying the final classifier.

Fig. 4 shows examples of correctly detected persons applying the final clas-
sifier. The bright clothed women (a) is as well detected (while the cleaning cart
is not detected), so is the dark man (b), the man with the knapsack (c) and the
persons close together (d).

4 Conclusion

We have presented a novel framework for unsupervised training of an object
detection system. The basic idea is to start with a very simple object detection
system and then using reconstructive and discriminative classifiers in an iterative
fashion (by being very conservative in accepting when a training sample should
be added to the training set) to generate better object detectors. We have demon-
strated the framework on a surveillance task where we have learned a pedestrian
detector. We have started with a simple moving object classifier and then used
PCA (on shape and appearance) as a reconstructive classifier which in turn was
used to generate a training set for an discriminative AdaBoost classifier. The
results obtained by AdaBoost are again filtered by PCA which produces an even
better training set. In fact, using this strategy we produce a training set for the
AdaBoost classifier which is optimal in the sense that we always sample at the
current estimate of the decision surface [13] and not at the unknown theoretic
decision boundary.

The framework we have presented is quite general and can be extended in
several directions. Our next step is to use online classifiers. In fact, for PCA we
have already on-line algorithms, using also on-line AdaBoost will avoid collecting
training data in batches and training the system off-line in different phases. In
addition, we plan to increase the diversity of different classifiers and to include
also voting in the process.
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Abstract. We present an approach for the supervised online learning of
object representations based on a biologically motivated architecture of
visual processing. We use the output of a recently developed topograph-
ical feature hierarchy to provide a view-based representation of three-
dimensional objects using a dynamical vector quantization approach.
For a simple short-term object memory model we demonstrate real-time
online learning of 50 complex-shaped objects within three hours. Addi-
tionally we propose some modifications of learning vector quantization
algorithms that are especially adapted to the task of online learning and
capable of effectively reducing the representational effort in a transfer
from short-term to long-term memory.

1 Introduction

Most research on trainable object recognition algorithms has so far focused on
learning based on collecting large data sets and then performing offline train-
ing of the corresponding classifiers. Since in these approaches learning speed is
not a primary optimization goal, typical offline training times last many hours.
Another problem is that most classifier architectures like e.g. multi layer per-
ceptrons or support vector machines do not allow online training with the same
performance as for offline batch training. Due to these drawbacks, research in
man-machine interaction for robotics dealing with online learning of objects has
used histogram-based feature representations [8] or hashing techniques [1] that
offer fast processing, but only limited representational and discriminatory capac-
ity. An interesting approach to supervised online learning for object recognition
was proposed by Bekel et al. [2]. Their VPL classifier consists of feature extrac-
tion based on vector quantization and PCA and supervised classification using
a local linear map architecture.

We suggest to use a biologically motivated strategy similar to the hierarchical
processing in the ventral pathway of the human visual system to speed up ob-
ject learning considerably. The main idea is to use a sufficiently general feature
representation that remains unchanged, while object-specific learning is accom-
plished only in the highest levels of the hierarchy. We perform supervised online
learning of objects using a short-term memory with a similarity-based adaptive
collection of view templates using the intermediate level feature representation of
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the proposed visual hierarchy from [9]. Additionally we propose an incremental
learning vector quantization model to achieve a reduction of the representational
effort that is related to the transfer from short-term to long-term memory.

After a short introduction to the hierarchical feature processing model we
introduce our short-term and refined long-term memory model, based on an
incremental learning vector quantization approach in Sect. 2. We demonstrate
its effectiveness for an implementation of real-time online object learning of 50
objects in Sect. 3, and give our conclusions in Sect.4.

2 Hierarchical Online Learning Model

Our online learning model consists of three major processing stages: First the
input image is processed using a topographically organized feature hierarchy.
Object views are then stored using the feature map representation in a template-
based short-term memory, that allows immediate online learning and recognition.
Finally the short-term memory representatives are accumulated into a condensed
long-term memory. We now describe these three stages in more detail:

Initial Processing Architecture. Our hierarchy is based on a feed-forward
architecture with weight-sharing [4] and a succession of feature-sensitive and
pooling stages (see Fig.1 and [9] for details). The output of the feature represen-
tation of the complex feature layer (C2) can be used for robust object recognition
that is competitive with other state-of-the-art models [9]. We augment the shape
representation from [9] with downsampled color maps in the three RGB channels
of the input image with the same resolution as the C2 shape features. We denote
the output of the hierarchy for a given input image Ii as xi(Ii).

Online Vector Quantization as Short-Term Memory. Object views are
stored in a set of M representatives rl, l = 1, . . . , M , that are incrementally
collected, and labelled with class Ql. We define Rq as the set of representatives
rl that belong to object q. The acquisition of templates is based on a similarity
threshold ST . New object views are only collected into the short-term mem-
ory (STM) if their similarity to the previously stored views is less than ST .
The parameter ST is critical, characterizing the compromise between represen-
tation resolution and computation time. We denote the similarity of view xi

and representative rl by Ail and compute it based on C2 feature space distance
by Ail = exp(−||xi − rl||2/σ). Here, σ is chosen for convenience such that the
average similarity in a generic recognition setup is approximately equal to 0.5.

For one learning step the similarity Ail between the current training vector
xi, labelled as object q and all representatives rl ∈ Rq of the same object q is
calculated and the maximum value is computed as Amax

i = maxl∈Rq Ail. The
training vector xi with its class label is added to the object representation, if
Amax

i < ST . If M representatives were present before, then choose rM+1 = xi

and QM+1 = q. Otherwise we assume that the vector xi is already sufficiently
well represented by one rl, and do not add it to the representation. We call
this template-based representation online vector quantization (oVQ). The non-
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Fig. 1. The visual hierarchical network structure. Based on a color image input Ii

(64× 64), shape and color processing is separated in the feature hierarchy and fused in
the view-based object representation. In the shape pathway the S1 feature-matching
layer computes an initial linear sign-insensitive receptive field summation, a Winner-
Take-Most mechanism between features at the same position and a final threshold
function. We use Gabor filter receptive fields, to perform a local orientation estimation
in this layer. The C1 layer subsamples the S1 features by pooling down to 16 × 16
resolution using a Gaussian receptive field and a sigmoidal nonlinearity. The 50 features
in the intermediate layer S2 are trained by sparse coding and are sensitive to local
combinations of the features in the planes of the C1 layer. The layer C2 again performs
spatial integration and reduces the resolution to 8×8. When the color pathway is used,
three downsampled 8 × 8 maps of the individual RGB channels are added to the C2
feature maps. The short-term memory consists of template vectors rl that are computed
as the output xi(Ii) of the hierarchy and added based on sufficient Euclidean distance
in the C2 feature space to previously stored representatives of the same object. The
refined long-term memory representatives wk are learned from the labelled short-term
memory nodes rl using an incremental vector quantization approach.

destructive incremental learning process allows online learning and recognition
at the same time, without a separation into training and testing phases. To model
a limited STM capacity we set in some simulations an upper limit of 10 objects
that can be represented and if the 11th object is presented, representatives of
the oldest learned object are removed from the STM.

Recognition of a unclassified test view Ij can be done with a nearest neigh-
bour search of the hierarchy output xj(Ij) to the set of STM representatives.
The winning node lmax satisfies lmax = arg maxl(Ajl) and then the class label
Qlmax of the winning representative rlmax is assigned to the current test view xj .

Incremental LVQ as Long-Term Memory. The labelled STM representa-
tives rl in the C2 feature space provide the input ensemble for our proposed
long-term memory (LTM) representation, which is optimized and built up in-
crementally based on the set of STM nodes rl, where we assume a limited STM
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capacity with only the most recently shown objects being represented. In con-
trast to the typical usage of learning vector quantization networks [7], where
every class is trained with a fixed number of LVQ nodes, we use an incremental
approach, related to other models like e.g. the growing neural gas [3]. Another
related work not dealing with incremental learning, but with clustering of non-
stationary or changing datasets was proposed by [5].

For training our incremental LVQ (iLVQ) model, a stream of randomly se-
lected input STM training vectors rl is presented, and classified using labelled
iLVQ representatives in a Euclidean metrics. The training classification errors
are collected, and each time a given sufficient number of classification errors has
occurred a set of new iLVQ nodes is inserted. The addition rule is designed to
promote insertion of nodes at the class boundaries. During training, iLVQ nodes
are adapted with standard LVQ weight learning that moves nodes into the di-
rection of the correct class and away from wrong classes. An important change
to the standard LVQ is an adaptive modification of the individual node learn-
ing rates to deal with the stability-plasticity dilemma of online learning. The
learning rate of winning nodes is more and more reduced to avoid too strong
interference of newly learned representatives with older parts of the object LTM.

We denote the set of iLVQ representative vectors at time step t by wk(t), k =
1, . . . , K, where K is the current number of nodes. Ck denotes the corresponding
class label of the iLVQ center wk. The training of the iLVQ nodes is based on
the current set of STM nodes rl with class Ql that serve as input vectors for
the LTM. Each iLVQ node wk obtains an individual learning rate Θk(t) =
Θ(0) exp(−ak(t)/d) at step t, where Θ(0) is an initial value, d is a scaling factor,
and ak(t) is an iteration-dependent age factor. The age factor ak is incremented
when the corresponding wk becomes the winning node.

New iLVQ nodes are always inserted, if a given number Gmax of training
vectors was misclassified during iterative presentation of the rl. The value of
Gmax = 30 is a compromise between convergence speed and representation res-
olution. Within this error history, misclassifications are memorized with corre-
sponding input rl and winning iLVQ node wkmax(rl). We denote Sp as the set
of previously misclassified rl within this error history that were of original class
p = Ql. For each nonempty Sp a new node wm is added to the representation.
It is initialized to the element of rl ∈ Sp that has the minimal distance to its
corresponding winning iLVQ node wkmax(rl) and the class of the iLVQ node is
given as Cm = Ql. This insertion rule adds new nodes primarily near to class
borders. The formal definition of the iLVQ learning algorithm is then:
1. Choose randomly rl from the set of STM nodes. Find winning iLVQ node

kmax = argmaxk(−||rl − wk||) and update wkmax(t + 1) = wkmax(t) +
κΘkmax(t)(rl − wkmax(t)), where κ = 1 if Ckmax = Ql and κ = −1 other-
wise. The learning rate is given as Θkmax(t) = Θ(0) exp(−akmax(t)/d).

2. Increment akmax(t + 1) = akmax(t) + 1.
3. If Ckmax �= Ql increase G(t + 1) = G(t) + 1. Add rl to the current set of

misclassified views SQl of object Ql.
4. If G = Gmax, then do for each Sp �= ∅: Find the object index Cm of the iLVQ

representative wm with minimal distance to the wrongly classified elements
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in Sp according to ||rl −wm|| = minl|rl∈Sp
||rl −w(rl)||, where w(rl) is the

winning iLVQ node for view rl. Insert a new iLVQ node with w = rl. Reset
G = 0 and Sp = ∅ for all p. Goto step 1 until sufficient convergence.

Classification of a test view xj(Ij) is done by determining the winning iLVQ
node wkmax with smallest distance to xj and assigning the class label Ckmax .

The C2 feature vectors are sparsely activated with only about one third of
nonzero entries. During our investigation of the iLVQ approach we noted that
convergence can be improved by applying the weight update of w(rl) nodes only
on the nonzero entries of the input vectors rl. The weight update is then defined
componentwise as wkmax

i (t+1) = wkmax
i (t)+H(rli)κΘkmax(t)(rli−wkmax

i (t)), where
H is the Heaviside function. We call this modification sparse iLVQ.

3 Experimental Results

Setup. For our experiments we use a setup, where we show objects, held in
hand with a black glove before a black background. Color images are taken
with a camera, segmented using local entropy-thresholding [6], and normalized
in size (64x64 pixels). We show each object by rotating it freely by hand for

a) b)

c)

d)

Fig. 2. Test object images. (a) 50 freely rotated objects, taken in front of a dark
background and using a black glove for holding. (b) Some rotation examples. (c) A few
examples for incomplete segmentation. (d) Examples for minor occlusion effects. The
main difficulties of this training ensemble are the high appearance variation of objects
during rotation around three axes, and shape similarity among cans, cups and boxes,
combined with segmentation errors (c), and slight occlusions (d).
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Fig. 3. Classification rate of two selected objects dependent on the training time for
learning the 10th, 25th, and 50th object, and same learning curves averaged over 20
object selections. While training proceeds, at each point classification rate is measured
on all 750 available test views of the current object. Good recognition performance can
be achieved within two minutes, also for the 50th object.

some minutes, such that 750 input images Ii for each object are collected (see
Fig.2). Another set of 750 images for each object is recorded for testing.

Online Learning using Short-Term Memory. In the first experiment we
investigate the time necessary for training the template-based oVQ short-term
memory with up to 50 objects. The training speed is limited by the frame rate of
the used camera (12.5 Hz), the computation time needed for the entropy segmen-
tation, the extraction of the corresponding sparse C2 feature vector xi with 3200
shape dimensions and 192 color dimensions and the calculation of similarities
Ail (see Sect.2). The similarity threshold was set to ST = 0.85 for this experi-
ment, and there was no limit imposed on the number of STM representatives.
Altogether we achieve an average frame rate of 7 Hz on a 3GHz Xeon processor.
For the shown curves of a cup and a can from our database we trained 9, 24
or 49 objects and incrementally added the cup or can as an additional object.
Figure 3 shows how long it takes until the newly added object can be robustly
separated from all other objects. At the given points the correct classification
rate of the current object is computed using the 750 views from the disjoint test
ensemble. Additionally we show the learning curves, averaged over 20 randomly
chosen object selections. On average, training of one object can be done in less
than 2 minutes, with rapid convergence. For all other experiments we used all
available views (750 views per object) for training and testing our models.

To evaluate the quality of the feature representation obtained from the visual
hierarchy, we compared the use of 8x8x50 C2 shape feature maps, 8x8x(50+3)
C2 features with coarse RGB color maps, and plain 64x64x3 pixel RGB images
as input xi for the STM. The last setting captures the baseline similarity of the
plain images in the ensemble, and serves as a reference point, since there are
currently no other established standard methods for online learning available.
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Table 1. Classification rates and num-
ber of representatives #R of the online
learning oVQ model for different similar-
ity thresholds ST and different inputs

ST input data #R error rate
0.55 140 86.9%
0.65 plain 474 76.8%
0.75 color 1956 55.4%
0.85 8832 27.7%
0.90 17906 15.2%
0.55 701 57.8%
0.65 2335 35.1%
0.75 shape 7138 17.2%
0.85 19283 9.4%
0.90 28921 8.3%
0.55 2740 24.5%
0.65 shape 6451 12.5%
0.75 +coarse 14223 6.9%
0.85 color 27104 5.8%
0.90 33831 5.7%

Table 2. Comparison of classification
rates of oVQ, incremental LVQ, sparse
LVQ, incremental LVQ∗ with limited short
term memory and sparse LVQ∗ with mem-
ory. For all tests we used a similarity
threshold of ST = 0.85. The number of
selected representatives #R is shown.

method input data #R error rate
oVQ color+shape 27104 5.8%
iLVQ color+shape 7304 11.4%

sp. iLVQ color+shape 3665 9.0%
iLVQ∗ color+shape 4574 12.2%

sp. iLVQ∗ color+shape 3167 9.9%
oVQ shape 19283 9.4%

iLVQ∗ shape 8320 20.9%
sp. iLVQ∗ shape 3780 14.6%

Additionally we varied the similarity threshold ST to investigate the tradeoff
between representation accuracy and classification errors. The results are shown
in Tab.1. For a fair comparison, error rates for roughly equal numbers of chosen
representatives should be compared. The hierarchical shape features reducing
the error rates considerably, compared to the plain color images, especially for
a small number of representatives #R. The addition of the three RGB feature
maps reduces error rates by about one third. For training of all 50 objects that
can be done within about three hours, the remaining classification error is about
6% using color and shape and 8% using only shape.

Long-Term Memory and iLVQ. In Tab.2 we show the performance of the
iLVQ long-term memory model. We compare the effect of using only a limited
memory history for the STM (denoted iLVQ∗), in relation to using all data, and
the results for the sparse learning rule adaptation described in Sect.2 (denoted
sp.iLVQ). The necessary number of representatives #R can be strongly reduced
by a factor of 6 and more with the iLVQ network, however, at the price of a
slightly reduced classification performance. The differences between the incre-
mental LVQ and the sparse LVQ are that the sparse LVQ reaches slightly better
results with fewer number of representatives #R. More important, the sparse
iLVQ converges about ten times faster than iLVQ with the standard learning
rule, resulting in a training time of only about 3-4 hours. For the experiments
using only a limited STM of 10 objects, it can be seen that iLVQ can handle this
with almost no performance loss and uses even less resources for representation.
We also performed a test using stochastic gradient-based training of linear dis-
criminators (based on the rl) for each object, where, however the same limited
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memory history of views from the past 10 objects was applied. Although perfor-
mance on the current training window of 10 objects normally is below 5% error,
the network quickly fails to distinguish objects from the earlier training phases
and achieves only a complete final error rate of 73% on all 50 objects.

4 Conclusion

We have shown that the hierarchical feature representation is well suited for
online learning using an incremental vector quantization model approach. Of
particular relevance is the technical realization of the appearance-based online
learning of complex shapes for the context of man-machine interaction and hu-
manoid robotics. This capability introduces many new possibilities for interac-
tion and learning scenarios for incrementally increasing the visual knowledge of
a robot. Also for the realistic setting of a limited short-term memory length of 10
objects, we can achieve real-time learning of 50 objects with less than 10% clas-
sification error. Although we assume segmentation of the objects in this study,
it has been shown previously that the visual hierarchy can also be applied with
good results both to learning and recognition of unsegmented objects in clutter
[9]. The application to the unsegmented case will therefore be the next step in
extending the online object learning approach presented here.

Acknowledgments: We thank C. Goerick, M. Dunn, J. Eggert and A. Ceravola
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Abstract. Graph-based clustering methods are successfully applied to
computer vision and machine learning problems. In this paper we demon-
strate how to introduce a-priori knowledge on class membership in a
systematic and principled way: starting from a convex relaxation of the
graph-based clustering problem we integrate information about class
membership by adding linear constraints to the resulting semidefinite
program. With our method, there is no need to modify the original op-
timization criterion, ensuring that the algorithm will always converge to
a high quality clustering or image segmentation.

1 Introduction

When working on clustering problems we often have some a-priori knowledge
available: certain samples are known to belong to the same class of objects,
or we can make assumptions on the size of the clusters. Occasionally, multiple
different clusterings are meaningful and we want to target an algorithm toward
one particularly interesting solution. In the extreme case we have a small set of
labeled objects and want to generalize their labels to a larger set of new, unseen
objects. Instead of training a classifier on the labeled objects only we can employ
semi-supervised clustering for this task. This application is usually referred to
as transductive inference.

Fig. 1 visualizes the idea: given a dataset with a number of “sensible looking”
clusterings, find the best (here: binary) clustering consistent with some a-priori
information on common class membership. This information is provided in the
form of equivalence constraints on the class labels of some points. For instance, in
Fig. 1(b) a point from the left-most cluster is linked to a point in the middle clus-
ter by a constraint which forces these points to have equal class labels. Interest-
ingly, our results show that such a constraint does not influence these two points
only, but the information is propagated through their corresponding clusters.

Our work relates to graph-based clustering methods used in machine learning
and computer vision [1,2]. Since the corresponding combinatorial optimization
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(a) no constraints (b) one constraint (c) two constraints (d) three constraints

Fig. 1. Effects of a-priori information: adding constraints (dashed lines) between few
points leads to completely different clusterings

problems are NP-hard, a common approach is to compute approximative solu-
tions using eigenvectors or min-flow calculations [1,3]. In this paper, we use an
alternative technique that is based on a semidefinite programming (SDP) relax-
ation. Besides its conceptual advantages over spectral relaxation, this method
has recently been applied successfully in the context of machine learning [4] and
image partitioning [5].

Concerning a-priori information, most spectral and min-flow methods cur-
rently require to modify the cost function of the original clustering problem
[1,6]. In contrast, the semidefinite relaxation method puts additional constraints
on the set of admissible solutions and finds a high quality solution according to
the original clustering criterion within this restricted set. For the special prob-
lem of semi-supervised image segmentation, besides graph-based optimization
techniques [7,6] various other approaches were also presented recently [8,9].

We introduce the graph-based clustering framework used in Section 2 and
explain how to integrate a-priori knowledge on cluster size and membership.
Section 3 presents our semidefinite relaxation approach along with a geomet-
ric interpretation. Some experiments in Section 4 show that adding very few
constraints already yields appealing results. Section 5 concludes the paper.

2 Graph-Based Clustering

In order to cluster n objects we need to compute a suitable similarity matrix
W ∈ Rn×n with Wij being large when the objects i and j are similar. Interpreting
the objects as vertices of a fully connected graph G(V, E) with edge weights Wij ,
a classical binary partitioning approach from spectral graph theory (see, e.g.,
[10,11]) is based on the following problem formulation:

max
x∈{−1,+1}n

x�Wx ⇐⇒ min
x∈{−1,+1}n

x�Lx (1)

where L = diag(We) − W denotes the Laplacian matrix of the graph (with
e = (1, . . . , 1)� ∈ Rn). Problem (1) has a clear interpretation: find a binary
partitioning with maximum similarity of the objects within each cluster, or,
equivalently, determine a cut through G with minimal weight.
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Unfortunately, problem (1) can result in very imbalanced partitions, espe-
cially when the similarity matrix W contains positive entries only: putting every
object into one cluster produces the optimal cut of weight 0. As a remedy, differ-
ent approaches have been proposed in the literature. Several authors (e.g. [3,12])
suggest to scale the objective function in (1) appropriately in order to favor bal-
anced cuts. Another approach uses an additional balancing constraint,

c�x = a, (2)

where a ≥ 0 specifies the difference between the weighted number of objects in
each cluster. For example, setting c = e, a = 0 requires that G is partitioned into
clusters of identical size (equipartition problem [10]).

As the resulting problems are NP-hard they are often solved approximately
using spectral techniques: dropping the integer constraint, extremal eigenvec-
tors of W or L (or of normalized versions of these matrices) are computed and
thresholded according to some suitable criterion. In Section 3, we propose a dif-
ferent method to relax and solve constrained problems of type (1), which not
only takes the integer constraint on x into account more accurately than spectral
techniques [5], but also permits to include linear and quadratic constraints on x
without changing the original objective function.

Incorporating a-priori knowledge: Aside from similarities of the objects
given by W , we may often know that some objects belong to the same class. For
two objects i and j, this is modeled in our framework by the constraint

xixj = 1. (3)

Conversely, if i and j belong to different classes, we can use the constraint

xixj = −1. (4)

In contrast to other approaches [13], adding such non-equivalent constraints with
our method is not more difficult than adding is-equivalent constraints (3): both
lead to quadratic equalities.

Another example of a-priori information was given above: if the size of a clus-
ter is known in advance we can use the linear constraint (2) with an appropriate
value for a to demand a corresponding partitioning of G.

Note that in contrast to established methods [1], integrating a-priori knowl-
edge into our framework leads to very clear and concise models: entries of the
similarity matrix and the corresponding graph remain unchanged. We do not
alter the original problem more than absolutely necessary to account for the
additional information.

3 Semidefinite Programming (SDP) Relaxation

In [5], an approach to approximately solve the combinatorial problem (1) with an
additional balancing constraint (2) is presented. This method basically consists
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of three steps: first, the decision variables are lifted into a higher-dimensional
space where the corresponding problem is relaxed to a convex optimization prob-
lem [14]. Then, the global optimum of this relaxation is found using interior point
techniques. Finally, the decision variables are recovered from the solution using
a small number of random hyperplanes [15]. Next, we extend this idea to take
a-priori knowledge into account by adding constraints of the form (3) and (4).

The basic lifting step of the SDP relaxation is based on the observation
that the objective function in (1) can be rewritten in the form of a standard
matrix inner product as x�Wx = tr(Wxx�) =: W • xx�. Interpreting this as
an optimization problem in a higher dimensional matrix space, the relaxation
consists of replacing the positive semidefinite rank one matrix xx� ∈ Rn×n by
a positive semidefinite matrix X " 0 of arbitrary rank. Since the combinatorial
constraints on the entries of x in (1) can be lifted easily into this matrix space
by requiring Xii = 1, we obtain the following basic relaxation of (1):

max
X�0

W •X

subject to Xii = 1 ∀i = 1, . . . , n
(5)

While solving this relaxation is trivial in case of a positive matrix W (cf. Section
2), it is also applicable if W contains negative entries. Moreover, note that the
integer constraint on x is still accounted for in (5), which contrasts spectral
relaxation techniques which usually drop it completely [3].

Problem (5) belongs to the class of semidefinite programs, for which the global
optimum can be computed to arbitrary precision in polynomial time (see, e.g.,
[16]). For this problem class, the additional constraints on x which describe the
a-priori knowledge can easily be incorporated by lifting them into the matrix
space: the balancing constraint (2) is squared to become c�xx�c = a2, which
results in the linear constraint cc� •X = a2 after relaxation. Each equivalence
constraint of the form (3) can be transformed directly to Xij = Xji = 1. To
represent this as a linear constraint based on a symmetric matrix, we use the
alternative formulation Xij + Xji = 2. Due to the constraints Xii = 1 and
the fact that X is positive semidefinite, this imposes no additional relaxation
as no entry of X can become larger than 1. Equivalently, the non-equivalence
constraints (4) are represented by Xij + Xji = −2.

Let P1 (P2) denote the set containing the pairs (i, j) of objects that are known
to belong to the same class (different classes). Representing all constraints in
linear form, we finally obtain the following semidefinite program:

max
X�0

W •X

subject to eie
�
i •X = 1 ∀i = 1, . . . , n (6a)

(eie
�
j + eje

�
i ) •X = 2 ∀(i, j) ∈ P1 (6b)

(eie
�
j + eje

�
i ) •X = −2 ∀(i, j) ∈ P2 (6c)

cc� •X = a2 (6d)
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Fig. 2. SDP clustering as matrix approximation. Depicted is the set M�0 of all posi-
tive semidefinite symmetric matrices of dimension 3 × 3 with diagonal fixed to unity
(blue object). For a matrix W with negative eigenvalues (red point) the solution X of
problem (5) (green point) is given by the projection of W onto M�0 (left). Incorpo-
rating a-priori information about relative cluster sizes (2) leads to an additional linear
constraint (right, green plane). The SDP relaxation finds a solution X (white point)
satisfying this linear constraint and approximating W (red point) optimally.

where ei ∈ Rn denotes the ith standard unit vector. Note that the (non-)equi-
valence constraints (3),(4) can also be combined into a single constraint: adding
the matrices from (6b),(6c) as EPk

=
∑

(i,j)∈Pk
(eie

�
j +eje

�
i ) gives the equivalent

constraints EP1 • X = 2|P1| and EP2 • X = −2|P2|, respectively. As already
mentioned above, this results in no further relaxation.

After a solution X of (6) is found we apply the randomized hyperplane tech-
nique [15] to recover a binary solution x. In this step, no adaption is necessary to
enforce the additional (non-)equivalence constraints (3),(4) as the corresponding
constraints (6b),(6c) already do this efficiently. Depending on the application we
also may not enforce the balancing constraint (2): since the a-priori knowledge
on the size of the clusters usually is given only approximately, it merely serves
as a bias to guide the search for convenient clusters than as a strict requirement.
For more details on the SDP relaxation approach, we refer to [5].

Fig. 2 visualizes the geometry of our method: solving (6) corresponds to
projecting the problem matrix W (which is not necessarily positive semidefinite)
onto the set M�0 of all positive semidefinite matrices with diagonal fixed to unity,
which is equivalent to finding the closest approximation of W within M�0.

The resulting solution matrix X ∈M�0 is, by construction, positive semidefi-
nite and therefore can be interpreted as a matrix whose entries are inner products
of points located on the unit sphere in some Euclidean space. The randomized
hyperplane algorithm then places a cut through this sphere and retrieves a bi-
nary clustering which maximizes the original objective function in (1). Geomet-
rically, this is a projection of X onto the closest vertex of the set M�0 (Fig. 2,
left).

The linear constraints (6b)–(6d) further limit the set of admissible solu-
tions: whereas constraint (6d) represents a plane cutting through M�0 (Fig. 2,
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right), the constraints (6b),(6c) correspond to tangential planes. Together, they
move the solution X toward vertices obeying the a-priori knowledge and repre-
senting a good clustering measured in terms of the original objective function
x�Wx.

4 Experiments

As a proof-of-concept we created a very simple dataset consisting of four clearly
separated clusters of 50 points each distributed according to a Gaussian distri-
bution (Fig. 1(a)). Using a centered Gaussian kernel as similarity measure we
compute multiple clusterings by subsequently adding constraints on the class
labels. Fig. 1 shows that the constraints were met in each case and led to com-
pletely different clusterings. Although we did not provide a-priori information
about the size of the clusters the centered kernel favored balanced solutions and
flipped the unconstrained clusters accordingly.

Following [17] we tested our ap-
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Fig. 3. The soybean experiment

proach on the soybean dataset which
comprises 35 attributes for 47 objects
from four classes. To apply our method
to this multiclass problem we assigned
each class a two bit binary code and
clustered on the corresponding binary
digits using a centered exponential ker-
nel as similarity measure. As in [17]
consistency w.r.t. the known correct
clustering was determined using the
Rand index [18] and 10-fold crossval-
idation. With the class labels as ground

truth we generated random constraints on the training sets, clustered, and mea-
sured accuracies on the corresponding test sets. The mean performance over 10
repeated experiments is visualized in Fig. 3: without any constraints 78% of
the instances are correctly clustered. This is worse than the 87% reported for
kmeans [17]. However, with only 5 constraints this improves to 90% correctly
clustered points (≈ 88% for kmeans), and we need only 15 constraints to achieve
an accuracy of 99% (kmeans needs 100 constraints). Thus, for this dataset adding
a-priori constraints is highly effective, leading to dramatic improvements in
accuracy.

In Fig. 4 we show segmentations obtained for images from the Berkeley seg-
mentation dataset [19] using a similarity measure based on color and spatial
proximity (cf. [21]). In order to reduce the problem size appropriately, the images
were over-segmented in a preprocessing step by applying the mean shift algo-
rithm [20], which results in less than 1000 image patches [21]. These are clustered
by our SDP relaxation with and without additional equivalence constraints. It is
clearly visible that adding very few constraints can lead to dramatically different
and visually more appealing segmentations.
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input image unconstrained result constrained result

Fig. 4. Effects of prior information on image segmentation. An unsupervised segmen-
tation based on color and spatial proximity may not partition the image in a visually
meaningful way (2nd column). Adding only 1–3 equivalence constraints (blue lines in
1st column) can dramatically improve the segmentation (3rd column).

5 Conclusion

We presented a method for clustering and segmentation based on a semidefinite
relaxation of the well-known minimal cut problem on graphs. The advantage
over alternative approaches is that it allows incorporating a-priori knowledge in
the clustering process without changing the target function. Instead, available
equivalence information is modeled by additional constraints on the optimization
problem. This simplifies interpretation of the results and ensures that different
constraints can be combined arbitrarily.
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We gave two examples for a-priori information which lead to linear constraints
on the set of admissible solutions of the semidefinite relaxation and explained
their geometric meaning. In an experimental section we showed that the method
works in practice and can lead to improved image segmentation results.

In the future, we will investigate how to integrate further types of a-priori
information and evaluate the method for constrained multiclass-clustering. Be-
sides using binary codes, binary clustering can be applied hierarchically [21] or
the SDP relaxation can be extended to multiclass settings.
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Abstract. Linear discriminant analysis is a popular technique in computer vi-
sion, machine learning and data mining. It has been successfully applied to var-
ious problems, and there are numerous variations of the original approach. This
paper introduces the idea of separable LDA. Towards the problem of binary clas-
sification for visual object recognition, we derive an algorithm for training sepa-
rable discriminant classifiers. Our approach provides rapid training and runtime
behavior and also tackles the small sample size problem. Experimental results
show that the method performs robust and allows for online learning.

1 Introduction

Linear discriminant analysis (LDA) is a powerful tool for dimensionality reduction and
classification [1,2]. Its applications and extensions are far too numerous to allow for
an exhaustive review here. Instead, in this paper, we will restrict our discussion to the
linear discriminant analysis of two classes. We shall call the two classes ωp and ωn

where the subscripts p and n stand for positive and negative, respectively. Given a set
of feature vectors {x1, x2, . . . , xL} containing positive and negative examples, binary
LDA seeks a projection wT xi of the samples that maximizes the inter-class distance of
the resulting scalars.

The most widely applied technique for finding the direction w of the optimal pro-
jection dates back to seminal work by Fisher [3]. He proposed to determine w by max-
imizing the Rayleigh quotient wT Sbw/wT Sww where Sb and Sw are matrices that
denote the between-class and within-class scatter of the data. Following this proposal,
w results from solving the generalized eigenvalue problem Sbw = αSww. Once w
has been found, binary classification simply requires selecting a suitable threshold.

A well known but underexploited fact that Fisher himself pointed out [3] is that
binary LDA is equivalent to the least mean squares (LMS) fitting of a hyperplane that
separates ωp and ωn. The projection direction corresponds to the normal vector of the
plane. This paper makes use of this equivalence. Aiming at image data and visual object
detection, we introduce an iterative LMS approach to separable LDA. The resulting bi-
nary classifiers are especially suited for appearance based object recognition, because
classifying image content is reducible to a convolution operation. Our practical experi-
ence has revealed several favorable characteristics of this approach. First, it is as fast as
the popular cascaded weak classifiers [4]. Second, on standard databases of images of
objects in complex natural scenes, it performs as reliably as recent, more sophisticated
non-linear approaches [5,6,7]. Third, in contrast to the cited methods, the training time
of our approach is sufficiently short to enable online learning.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 318–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Next, we derive our algorithm and discuss its characteristics. Section 3 presents ex-
periments on using separable LDA to detect and track objects in natural environments.
A summary and an outlook will end this contribution.

2 Separable LDA for Classifying Image Data

Faced with the problem of fast and adaptive classification of image data, the idea of
separable LDA arose from the following two observations.

Most approaches to appearance based object recognition transform image patches
X of size m× n into vectors x ∈ Rmn. The first step towards fast linear discriminant
analysis for visual processing is to keep the matrix representation and to consider the
Frobenius inner product of matrices W ·X =

∑
i,j WijXij instead of the inner product

of high dimensional vectors.1

As a consequence, LDA classification of image content becomes a problem of linear
filtering. If W denotes a m×n filter matrix, its convolution with a digital image I will
result in a filter response map Y , where an entry Yij corresponds to the LDA projection
of the image patch Xij centered at image coordinate (i, j), i.e. Yij = W ·Xij .

The second step towards fast linear discriminant classification considers well known
facts about linear filtering. Convolving an image with an m×n matrix requires O(mn)
operations per pixel. Even on modern computers, this may be prohibitive if m and n are
rather large. Assume, however, W was given as a basis function expansion

W =
k∑

i=1

uiv
T
i (1)

where ui ∈ R
m and vi ∈ R

n such that the basis functions are separable matrices of
rank 1. Then, the two-dimensional convolution can be computed as a sequence of one-
dimensional convolutions

∑
i

(
I ∗ ui

)
∗ vT

i . If the matrix W was rank deficient, i.e.
k < min{m, n}, this would reduce the effort to O(k(m + n)) and therefore would
provide a fast linear approach to object detection. The following subsection discusses
how to derive such separable filter or projection matrices from training data.

2.1 Learning Separable k-Term Projection Matrices

For convenience, we shall first consider the derivation of a k = 1 term separable LDA
projection, i.e. we will examine the case W = uvT .

Assume a sample {Xα, yα}α=1,...,N of image patches Xα with corresponding
class labels yα. Due to the general equivalence

uvT ·X =
∑
k,l

(uvT )klXkl =
∑
k,l

ukvlXkl = uT Xv (2)

a one term separable LDA projection can be found from minimizing the LMS error
E(u, v) = 1

2

∑
α

(
yα − uT Xαv

)2
using the following iterative procedure:

1 Of course, the difference between both views is a mere conceptual one; with the common
substitution k = i · n + j we have the equivalence

∑
k wkxk =

∑
i,j WijXij .
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1. Randomly initialize u ∈ Rm.
2. Given u, solve E(u, v) = min for v. A solution can be found by requiring
∇vE(u, v) = 0. If the n × n correlation matrix Cu =

∑
α XT

αuuT Xα is non
singular, the optimal v∗ amounts to

v∗ = C−1
u Duu (3)

where Du =
∑

α yαXα.
3. Given v∗, solve E(u, v∗) = min for u in a similar way.

As the procedure starts with an arbitrary u, steps 2. and 3. have to be iterated until
a convergence criterion is met. Inserting (3) into the LMS error function reveals that
the length of u ’cancels out’. The vector u can therefore be constrained to be of unit
length ‖u‖ = 1. Although this requires normalizing u after each iteration, it guarantees
that the procedure will converge because E(u, v∗) becomes a convex function over the
unit ball in Rm. Moreover, the unit length constraint provides a convenient convergence
criterion. Our implementation uses ‖ut − ut−1‖ ≤ ε which converges quickly.

As the resulting projection matrix uvT has only m + n independent parameters
whereas a non-separable one would provide m · n parameters, the one-term separable
projection will be less flexible than the usual solution. This suggests we consider k-
term basis expansions where k > 1. Note that uvT is of rank 1. If one demands W =∑k

i=1 uiv
T
i to provide more independent parameters than uvT , it has to be of higher

rank. A simple way to guarantee a higher rank of W , say k, that simultaneously ensures
separability of the individual terms in the basis function expansion is to require the ui

and vi to be pairwise orthogonal, i.e uT
i uj = 0 and vT

i vj = 0 for i �= j.
Forward additive stage-wise modeling [2] provides a straightforward approach to

determining such sets of orthogonal parameter vectors. If W =
∑k

i=1 uiv
T
i is a k term

solution for the LDA projection matrix, a k + 1 term representation can be found by
minimizing E(uk+1, vk+1). To assure orthogonality, our iterative minimization pro-
cedure has to be extended such that, after each iteration, the vectors vk+1 and uk+1

are orthogonalized with respect to the {vi}i=1,...,k and {ui}i=1,...,k determined so far.
Orthogonalization can be done applying the Gram-Schmidt procedure.

Before presenting our results obtained with this approach, we first emphasize some
of its favorable properties.

2.2 Properties and Benefits of Separable LDA

Separable LDA should not be confused with orthogonal LDA. Our approach does not
seek a set of orthogonal discriminant directions as in the case of O-LDA [1]. Rather,
we determine a discriminant direction under the constraint that the projection matrix is
given as a sum of k pairwise orthogonal matrices of rank 1.

Separable LDA differs from the singular value decomposition of an unconstrained
projection matrix. LMS optimization can learn an unconstrained m × n matrix W .
Using SVD, it can be decomposed into a sum of r separable rank 1 matrices, where
r is the rank of W . Since W is usually of full rank, r = min{m, n}. If, w.l.o.g., we
assume r = m, a separated convolution will require m(m + n) > mn operations per
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pixel and will thus be even more expensive than the usual variant. A rank deficient
SVD expansion of k < r terms is less expensive, but practical experience shows that
it not useful. In contrast to the SVD-based method, our approach derives the projection
matrix directly from data rather than from an unconstrained W . Hence, even for k # r,
it yields reasonable results and also runs quickly.

Separable LDA differs from 2D LDA, as introduced by Ye et al. [8], who present
an iterative SVD algorithm that projects m × n matrices onto l1 × l2 matrices where
l1 < m and l2 < n. For projections onto a one-dimensional subspace (l1, l2 = 1), their
approach is equivalent to our solution for 1-term separable LDA. However, as it does
not allow for k > 1 term representations, their algorithm provides fever independent
parameters than our approach to binary LDA.

Separable LDA differs from image coding using the tensor rank principle proposed
by Shashua and Levin [9]. Although it resembles our approach, their algorithm has a
fundamentally different purpose and considers a different optimization criterion. While
separable LDA seeks a k-term projection matrix of low rank, Shashua and Levin esti-
mate a minimal set of second order tensors of rank 1 having a linear span that includes
the given set of training images.

Separable LDA projection matrices are learned quickly. LDA based on uncon-
strained LMS optimization or on solving the generalized eigenvalue problem Sbw =
αSww requires the computation and inversion of covariance matrices of sizes mn ×
mn. For larger values of m and n and many training examples, training becomes te-
dious, even on modern computers. However, the covariance matrices Cu and Cv that
appear in the learning stage of separable LDA are of considerably reduced sizes n× n
and m ×m, respectively. Therefore, in addition to its fast runtime, our technique sig-
nificantly shortens training time.

Separable LDA tackles the small sample size problem. This property is closely re-
lated to the previous one. The term small sample size problem refers to the effect that the
within-class scatter matrix Sw is often singular because the number of training samples
is much smaller than the dimension of the embedding space [1]. Again, as the covari-
ance matrices Cu and Cv are of considerably small dimensionality, small sample sizes
will not hamper separable LDA.

Separable LDA can be expected to perform well in visual object detection and
recognition. Fast training and operation times allow the use of fairly large values for
m and n so that the resulting linear classifiers will process data from very high di-
mensional feature spaces. However, according to Cover’s theorem [10], the probability
of finding a suitable hyperplane that separates two arbitrary classes increases with the
dimension of the embedding space.

3 Experiments

This section presents two application examples for the algorithm derived above. First,
we regard the problem of robust offline object detection in real world environments.
Afterwards, we consider online learning for tracking of articulated objects.

Note that in all experiments the input was normalized to zero mean X̃ = X − μ,
where μ denotes the mean of all training examples. In the classification stage, this
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Fig. 1. Exemplary detection results (k = 9, θ = 3.6) obtained on the UIUC database of cars [5]

accounts only for a single operation per pixel, since (X −μ) ·W = X ·W −μ ·W ,
where the constant μ ·W can be computed beforehand.

With respect to the classification threshold θ applied in our experiments, we must
point out that determining the theoretically optimal threshold for LDA-based classifi-
cation requires knowledge of the class covariance matrices. However, in the previous
section, we saw that separable LDA avoids the estimation of class covariance matrices,
and we stressed the advantages this entails. In order not to lose these advantages, we
adopted a heuristic to automatically determine a suitable θ. We computed the mean μp

and variance σp from the projections of the positive training samples onto the discrimi-
nant direction, and θ was set to μp − σp. Figure 2(b) indicates that this is good practice
in many cases.

3.1 Object Detection in Real World Environments

Experiments in offline object detection were carried out using the UIUC database of
cars [5,11]. It contains side views of cars of arbitrary shape and color in natural envi-
ronments; typical examples are shown in Figure 1. In our experiments, the set ωp of
positive training examples (label +1) consisted of 124 images of cars of size 80 × 30.
The set ωn of negative examples (label -1) consisted of 1776 patches randomly cut from
the background of half of the images in the database; testing was done on the other half.

In order to reduce effects of varying illumination and color, the classifiers consid-
ered in our experiments were trained and applied to gradient magnitude images. These
were obtained using recursive Gaussian filtering according to Deriche [12]. After train-
ing, the test images were convolved with the resulting matrices. A car was said to be
detected where the classifier response exceeded the threshold θ. The response maps
were subjected to a non-maximum suppression to reduce the number of false positives.

As the UIUC database includes manually annotated ground truth, detection results
can be colored correspondingly (see Figure 1). Figure 2(a) plots the precision recall
curve we obtained for classifiers of different rank k. The k = 9 classifier yielded the
best ratio of recall and precision. Figure 2(b) shows how it discriminates the training
images. For the classifiers k = 9, k = 6 (lowest recall) and k = 17 (highest recall) we
varied the classification thresholds in the intervals [θ(k)− 1, θ(k) + 1] to examine how
it would influence the performance. The resulting precision recall curves are shown in
Figure 2(c). It turned out that improvements were possible. In terms of equal error rate
(EER), i.e. the point of equal recall and precision, the classifier with k = 9 and θ = 3.6
performed best; it yielded an EER of 86%.
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Fig. 2. Quantitative results obtained on the UIUC database of cars. 2(a) 1−precision vs. recall
for different k; the classification threshold θ was set to μp(k) − σp(k). 2(b) histogram resulting
from projecting the training data using k = 9. 2(c) 1−precision vs. recall curves obtained from
varying θ for k ∈ {6, 9, 17}; the classifier with k = 9 and θopt = 3.6 provides an EER of 86%.

Table 1. Comparison of results reported in contributions dealing with the UIUC database of cars

method Agarwal et al.[5] separable LDA Fergus et al. [6] Garg et al. [7] Leibe et al. [13]
EER 77% 86% 88% 88% 97%

Fig. 3. Exemplary results (k = 7, λ = 10, θ = μp − σp) obtained on frames 41, 89, 304 and 310 of
the rotating can sequence recorded by Black and Jepson [14].

It is interesting to note that our linear and holistic approach performs comparably
to sophisticated methods found in recent literature. Table 1 lists equal error rates other
researchers reported for the UIUC database. Except for our method, all figures result
from part-based approaches that learn lexica of salient object parts and statistical models
of part relations. Runtimes or training times of these approaches have not been reported
but, due to the need for building lexica, at least the training times can be expected to
exceed real time. Given a naı̈ve C implementation, our method performed as follows: on
a 3GHz Xeon PC, training with 1900 examples took 13 seconds. File I/O and processing
of 99 test images of an average size of 120× 116 pixels was done at a rate of 3.2Hz.

3.2 Online Learning for Tracking of Articulated Objects

Encouraged by the runtime behavior of our approach, we explored its potential in online
learning from image sequences and experimented with material provided by Black and
Jepson [14]. Next, we discuss a typical example.
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The rotating can sequence shows a tin can that is being moved and rotated in front
of a static camera (see Figure 3). For our experiments, we applied 141 × 81 image
patches to train classifiers of various ranks k. After manually specifying the center of
the can in the first frame of the sequence, 30 image patches are randomly selected from
its neighborhood to serve as positive training examples (class ωp, label +1); 240 patches
randomly selected from outside the neighborhood were used as counter examples (class
ωn, label -1). Training and classification both considered simple pixel intensity infor-
mation.

The classifier matrix resulting from training on the first frame was convolved with
the subsequent frames of the sequence. This was done in a brute force manner: the entire
image was processed, without considering regions of interest. The can was assumed
to be recognized where the classifier response exceeded the threshold θ. Again, non-
maximum suppression was applied to reduce the number of false positives. Due to its
rotation, the can’s appearance changes throughout the sequence. Thus, after λ frames,
each classifier was retrained. We experimented with λ ∈ {3, 6, 9, . . . , 30}.

 0
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Fig. 4. Quantitative results obtained on the rotat-
ing can sequence. The graphs show recall and
1−precision for classifiers of different k plotted as
functions of the operation frequencies of various up-
date rates λ. The k = 7 classifier updated every 9
frames operates at 4.3 Hz and produces a recall of
94% and 1−precision of 3%.

The graphs in Figure 4 show 1-
precision and recall curves for classi-
fiers of rank k ∈ {4, 7, 10}. They are
plotted as functions of the operation
frequency, which, in turn, is a func-
tion of λ. As one would expect, the 4
term classifiers perform fastest. Ow-
ing to the needs of video processing,
we improved the memory manage-
ment of our implementation. Conse-
quently, on a 3GHz Xeon PC, the
400 frames of size 320 × 240 were
processed at an operation frequency
of up to 9Hz, including file I/O and
retraining. A practically suitable ra-
tio of speed and reliability was ob-
tained for a k = 7 classifier retrained
every 9 frames. At a frequency of
4.3Hz, it produces a recall of 94%
and a 1-precision value of 3%.

4 Summary and Outlook

This paper presented an approach to
separable linear discriminant classi-
fication for image analysis. Based on the idea of understanding LDA projection as a
convolution operation, we express the projection matrix as a basis function expansion of
separable rank 1 matrices, in order to ensure rapid runtime behavior. We introduced an
iterative two step least mean squares procedure to learn corresponding basis functions
from training data. Due to the separability of the projection operator, both application
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and training are very fast. Furthermore, small sample sizes do not corrupt the train-
ing process. Experimental results obtained on a standard testbed for object detection
revealed that separable LDA performs as fast and as reliably as more elaborate state-of-
the-art techniques. In addition, however, it also provides an avenue to online learning in
image sequence processing.

Currently, we are working on a thorough experimental and theoretical analysis of
separable LDA. Our focus is on questions to which this paper only alludes: Is there a
significant difference in performance between usual binary LDA and k-term separable
LDA? How can a suitable number k of terms be determined automatically How can our
approach be extended to multiple classes? Is there a framework that could unify our
approach to computing k-term separable matrices with the approaches proposed in [8]
and [9] that consider 1-term higher order tensors of rank 1?
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Abstract. In this paper we extend a method that uses image patch
histograms and discriminative training to recognize objects in cluttered
scenes. The method generalizes and performs well for different tasks,
e.g. for radiograph recognition and recognition of objects in cluttered
scenes. Here, we further investigate this approach and propose several
extensions. Most importantly, the method is substantially improved by
adding multi-scale features so that it better accounts for objects of dif-
ferent sizes. Other extensions tested include the use of Sobel features,
the generalization of histograms, a method to account for varying image
brightness in the PCA domain, and SVMs for classification. The results
are improved significantly, i.e. on average we have a 59% relative reduc-
tion of the error rate and we are able to obtain a new best error rate of
1.1% on the Caltech motorbikes task.

1 Introduction

The learning of representations that allow for recognition and classification of
objects in cluttered scenes is a significant open problem in computer vision. A
very promising approach to this problem assumes that the objects to be learned
and recognized consist of a collection of parts, and that different objects can
share some of the parts. Additionally, changes in the geometrical relation between
image parts can be modeled to be flexible to tolerate some deformations. This
approach can handle occlusions well, because if some parts of an object are
occluded, the other parts can still be detected and recognized perfectly.

Related work includes Mohan and colleagues [13] who use pre-
determined parts of human bodies to detect humans in cluttered scenes. Dorko
and Schmid [4] use image patches to classify cars, but the extracted patches from
the training set are labelled by whether they are part of a car or not. Leibe and
Schiele [10] use scale-invariant interest points and manually segmented training
data for classification. In contrast to these approaches, we need only weak su-
pervision in training, i.e. only information about the presence of an object in
the image. Fergus and colleagues [5] and Weber and colleagues [14] statistically
model position, occurrence, and appearance of object parts.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 326–333, 2005.
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In [3] we present and compare several approaches to use histograms of image
patches for the recognition of objects in cluttered scenes. It was shown that an
approach using histograms of vector quantized image patches and discrimina-
tive training performed best among the tested approaches (global patch search
& direct voting, nearest neighbor, naive Bayes, generative Gaussians, and dis-
criminative training). In this work, we further investigate this approach and
propose several extensions: 1. As proposed in [9], we use image patches in vari-
ous scales, enabling us to account for objects at different scales. 2. We use Sobel
filtered images in addition to the gray values to account for edge structures in
the images. 3. As the histograms created are very sparse (e.g. there are approx.
1000 data points in a 4096 bin histogram), we generalize the histograms to use
non-binary bin assignments. 4. To account for different lighting conditions, we
incorporate a method for brightness normalization.

2 Baseline Approach

The method for discriminative training of image patch histograms, which has
been proposed in [3], consists of two steps: 1. feature extraction and 2. training
and classification. These steps are briefly summarized in the following sections.

2.1 Feature Extraction

Given an image, we use up to 500 square image patches as features. These
patches are extracted around interest points obtained using the method pro-
posed by Loupias and colleagues [11]. Additionally, we use 300 patches from a
uniform grid of 15×20 cells that is projected into the image. In contrast to the
interest points from the detector, these points can also fall onto very homoge-
neous areas of the image. This property is important for capturing homogeneity
in objects in addition to points that are detected by interest point detectors,
which are usually of high variance. Figure 1 shows the points of interest de-
tected in a typical image. The patches are allowed to extend beyond the image
border, in which case the part of the patch falling outside the image is padded
with zeroes. After the patches are extracted, a PCA dimensionality reduction is
applied to reduce the large dimensionality of the data, keeping 40 coefficients.
These data are then clustered with a Linde-Buzo-Gray algorithm using the Eu-
clidean distance. Then we discard all information for each patch except its closest
corresponding cluster center identifier. For the test data, this identifier is deter-
mined by evaluating the Euclidean distance to all cluster centers for each patch.
Thus, the clustering assigns a cluster c(x) ∈ {1, . . .C} to each image patch x
and allows us to create histograms of cluster frequencies by counting how many
of the extracted patches belong to each of the clusters. The histogram represen-
tation h(X) with C bins is then determined by counting and normalization such
that hc(X) = 1

LX

∑LX

l=1 δ(c, c(xl)), where δ denotes the Kronecker delta function,
c(xl) is the closest cluster center to xl, and xl is the l-th image patch extracted
from image X .
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Fig. 1. Patch extraction: salient points and uniform grid

2.2 Decision Rule

Having obtained this representation by histograms of image patches, we define a
decision rule for the classification of images. In [3] we observed that the method
using discriminative training of log-linear models outperforms other methods.

The approach based on maximum likelihood of the class-conditional distri-
butions does not take into account the information of competing classes during
training. We can use this information by maximizing the class posterior prob-
ability

∏K
k=1

∏Nk

n=1 p(k|Xkn) instead. Assuming a Gaussian density with pooled
covariances for the class-conditional distribution, this maximization is equivalent
to maximizing the parameters of a log-linear or maximum entropy model

p(k|h) =
1

Z(h)
exp

(
αk +

C∑
c=1

λkchc

)
,

where Z(h) =
∑K

k=1 exp
(
αk +

∑C
c=1 λkchc

)
is the renormalization factor. (Note

that also the generative Gaussian model can be rewritten in this form. Further-
more, we can always find a generative model that results in the same posterior
distribution [7].) The maximizing distribution is unique and the resulting model
is also the model of highest entropy with fixed marginal distributions of the fea-
tures [7]. Efficient algorithms to determine the parameters {αk, λkc} exist. We
use a modified version of generalized iterative scaling [1]. Bayes’ decision rule is
used for classification.

3 Extensions to the Method

In [3], we thoroughly investigated several decision rules and classification meth-
ods. In this work, we further investigate the feature extraction method and test
several extensions.

Multi-scale features. In the original approach, all patches extracted were of
the same size and we have experimentally evaluated which image patch size
performed best on the given tasks. This can lead to problems if the objects to be
recognized are of different scales. Here we propose to extract patches of different
sizes. That is, at each feature extraction point, we extract square patches of 7, 11,
21, and 31 pixels width. To be able to use these patches in the proposed training
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and classification framework, all extracted patches are scaled to a common size
of 15× 15 pixels using the Bresenham scaling algorithm.

Derivatives. In many applications of pattern recognition, derivatives can im-
prove classification performance significantly, e.g. in automatic speech recogni-
tion, derivatives are normally used. Also in the recognition of handwritten char-
acters, derivatives can strongly improve the results [8], as the local derivatives
allow mapping of edges to edges. To take advantage of these effects, we enrich
the patches by their horizontally and vertically Sobel filtered versions. That is,
the data is tripled by adding horizontally and vertically Sobel-filtered patches.
Then, the PCA transformation is applied to all three versions (gray values, hor-
izontal Sobel, vertical Sobel) at once and the dimensionality is reduced from
3 ·152 = 675 to 40 in total to allow for efficient processing in the remaining steps
(clustering and histogramization).

Histogram smoothing. A weakness of the original approach might be that
the histograms are high dimensional and very sparse, e.g. the histograms have
4096 bins but only 800 patches (2400 for multi-scale features) are extracted per
image. Thus, most of the bins are empty and cannot contribute to the result. To
have smoother histograms, we generalize the histograms to use non-binary bin
assignments, i.e. patches do not only contribute to their closest cluster center but
to all cluster centers that are sufficiently similar. That is, given an image patch
and the Euclidean distance di := d(x, ci) to cluster center ci, the corresponding
histogram count hi is updated as

hi ← hi +
exp(− di

α )∑
i′ exp(− di′

α )
.

By changing α, the strength of smoothing can be changed.

Brightness normalization. Another issue which is a well-known problem in
computer vision is that different images are often taken under different lighting
conditions, and thus the brightness of otherwise very similar images can vary
significantly. Evidently, the brightness of an image should usually not change
class membership, but e.g. the Euclidean distance between two images that are
identical except for their brightness can be very high. A practical approach for
brightness normalization in this context is given in the PCA transformation:
The first PCA vector for a collection of image patches usually captures the
change in brightness and thus contributes most to the overall brightness of the
image patches. Thus we propose to discard the first component of the PCA
transformed vectors in order to discard information about global brightness of
image patches [12]. Figure 2 illustrates this effect: For each of the three tasks
(airplanes, faces, motorbikes), it shows the first component of the PCA matrix
(clearly capturing global patch brightness) and an example of a bright and a
dark patch reconstructed from the PCA transformed and dimensionality reduced
representations, one with and one without the first PCA component. It can be
observed that the differences in brightness are reduced for the patches which
have been reconstructed without the first PCA component.
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1st PCA comp. w/ 1st PCA component w/o 1st PCA component
bright dark bright dark

airplanes

faces

motorbikes

Fig. 2. For each of the three tasks: First PCA component, a bright image patch and a
dark image patch reconstructed from the PCA vectors using all 40 PCA components,
and the same patches reconstructed from the PCA vectors discarding the first PCA
component.

Support-Vector-Classifier. As support-vector-machines (SVM) are a known
to be a good classification method, the maximum likelihood approach was ex-
changed in favor of a support-vector classified from libsvm1. We tried radial basis
functions and linear functions as kernels and optimized the parameters using the
training data.

4 Databases

Fergus and colleagues [5] use different datasets for unsupervised object training
and recognition of objects. The task is to determine whether an object is present
in an image or not. For this purpose, several sets of images containing certain
objects (airplanes, faces, and motorbikes) and a set of background images not
containing any of these objects are available2, which we use in the experiments.
The images are of various sizes, and for the experiments they were converted
to gray images. The airplanes and the motorbikes task consists of 800 training
and 800 test images each. The faces task consists of 436 training and 434 test
images. For each of these tasks, half of the images contain the object of interest
and the other half does not. An example image of each set is shown in Figure 3.
For our experiments we scaled all images to a common height of 225 pixels as
our approach implicitly learns the importance of the image size for classification
otherwise [3].

5 Experimental Results

In Table 1 we give the results for the baseline method from [3] and the results ob-
tained with the proposed extensions in comparison to results from the literature.
All experiments were carried out using 4096 dimensional histograms.
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2 http://www.robots.ox.ac.uk/∼vgg/data
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Fig. 3. Examples from the Caltech database (airplanes, faces, motorbikes, background)

Table 1. Summary of results and comparison to results from other publications

Method airplanes faces motorbikes
Discriminative Model [3] 2.6 5.8 1.5

+ multi-scale features 1.1 5.0 1.9
+ multi-scale & Sobel features 4.5 13.6 2.6
+ multi-scale feat. & fuzzy hist. 2.6 8.1 1.4
+ multi-scale & brightness norm. 1.4 3.7 1.1

lin. SVM + multi-scale & brightness norm. 2.4 7.8 2.1
rbf. SVM + multi-scale & brightness norm. 2.1 9.4 2.1
Statistical Model [5] 9.8 3.6 7.5
Texture features [2] 0.8 1.6 7.4
Segmentation [6] 2.2 0.1 10.4

Comparing the results using multi-scale features to the results from the base-
line method where only patches of one size were extracted, a clear improvement
can be seen in two of the three tasks. The result for the motorbikes task was
not improved. These results can be explained by the fact that the scale of the
motorbikes is very homogeneous and thus, multi-scale features cannot improve
the results. Due to the positive results, all experiments in the following were
performed using multi scale features.

The results where Sobel features were used are worse than those from the
baseline method. This unexpected result may be due to the combined PCA trans-
formation of brightness and contrast information. We will further investigate the
reasons for these effects.
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Fig. 4. Error rates for the Caltech tasks depending on the smoothing factor α in fuzzy
histograms

In a next step, we evaluated the possible advantages of fuzzy histograms.
Figure 4 shows the effect of choosing different parameters α to smooth the im-
age patch histograms. In these experiments we used 4096 clusters and multi
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Fig. 5. Error rates for the Caltech tasks depending on the number of clusters using
fuzzy histograms and discrete histograms

scale features. The figures show that the fuzzy histograms do not improve the
results in this setting. In Figure 5 we compare fuzzy histograms with discrete
histograms using different numbers of histogram bins. It can be seen that fuzzy
histograms outperform discrete histograms in the case of only few clusters. As
the clustering process is computationally very expensive, but the creation of
fuzzy histograms is not more expensive than the creation of discrete histograms
given a cluster model, fuzzy histograms can be used to obtain reasonable results
when computing power for the training is limited. It can also be clearly seen that
the number of clusters has less impact on the classification performance when
fuzzy histograms are used. The results in Table 1 show that the use of fuzzy
histograms does not yield a significant improvement over the baseline method.

The results from evaluating the proposed method for brightness normaliza-
tion can be seen in Table 1. It can be seen that strong improvements are possible
here. A significant improvement is observed in the faces task because some of
the images were taken indoors and some images where taken outdoors.

Finally, SVMs were tested and the results cannot be improved. Thus, apart
from losing the possibility to visually see which patches are discriminative for
which class we loose classification performance using SVMs.

The result presented in [6] is much better for the faces task, because a spe-
cialized method for face detection was applied to the data.

6 Conclusion and Outlook

In this paper we extended a method for object classification in cluttered scenes
into different directions. We proposed to use multi-scale feature, Sobel features,
generalized histograms, and brightness normalization. We could show experi-
mentally that multi-scale features and brightness normalization strongly improve
the results, and that generalized histograms can be used to reduce computation
time in training with only slight degradation in classification performance. Using
Sobel features did not improve the results. It might be an interesting option to
apply PCA transformation to the gray values and Sobel features separately. Fur-
thermore, we plan to explicitly model local variability in images. Another point
where improvements are probably possible is to consider spatial information
along with the extracted patches. All spatial information is currently discarded.
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The results of the recent evaluation within the PASCAL Visual Object
Classes Challenge3 underline the quality of the approach.
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Abstract. We consider the problem of multiclass decomposition schemes
for Support Vector Machines with Linear, Polynomial and RBF kernels.
Our aim is to compare and discuss popular multiclass decomposing ap-
proaches such as the One versus the Rest, One versus One, Decision Di-
rected Acyclic Graphs, Tree Structured, Error Correcting Output Codes.
We conducted our experiments on benchmark datastes consisting of cam-
era images of 3D objects. In our experiments we found that all the mul-
ticlass decomposing schemes for SVMs performed comparably very well
with no significant statistical differences in cases of nonlinear kernels.
In case of linear kernels the multiclass schemes OvR, OvO and DDAG
outperform Tree Structured and ECOC.

1 Introduction

The task of learning from examples for pattern recognition applications is to
find an approximating classifier mapping f for an unknown function F given
a finite set of training examplars (xi, F (xi)). Provided, F is a binary function,
many algorithms are available, e.g. Classification Trees (CT), Linear Discrim-
inate Analysis (LDA), K-Nearest-Neigbors (KNN), Learning Vector Quantiza-
tion (LVQ), and Artificial Neural Networks (ANN) such as perceptrons, Multi-
Layer-Perceptrons (MLP) or Radial Basis Function (RBF) Networks [4,9]. These
learning schemes are well defined to learn binary-valued classifier mappings, but
in real-world applications the classifier has to take values from a discrete set
of K > 2 classes, for instance in medical diagnosis, optical character recogni-
tion, phoneme classification, and 3D visual object recognition [4]. Some of these
learning schemes can be easily extended to the multiclass problem, e.g. KNN,
LVQ and DT, but many ANNs are more difficult to generalize to the multiclass
setting. The typical ANN approach to the multiclass problem is to train K in-
dividual binary classifiers f1, . . . , fK one for each class, and then to apply an
unseen input x to each classifier fi and assign the class j to x for the classifier
fj with the highest output value fj(x).

Support Vector Machines (SVMs) are an important alternative to MLPs
or RBF networks [20,2]. The advantage of SVMs is that the learning task is a

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 334–341, 2005.
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convex optimization problem instead of a general nonlinear optimization problem
in case of multilayered neural nets, such as MLPs or RBFs. The simplest model
of SVMs constructs a maximal margin hyperplane separating a set of positive
samples from a set of negative samples. Linearly non separable problems can
be tackled by utilizing the kernel function method [18] (section 2). In section 3
multiclass decomposition schemes for SVMs are described. Here in this study
we conducted our experimental evaluation on real world benchmark datasets
for object recognition problems consisting up to 100 classes. A description of
the experiments, datasets and results is given in section 4. In [1,17] multiclass
decomposing for SVMs is discussed and evaluated by using benchmark datasets
from the UCI repository with number of classes ranging up to only 26. Further
more we have included additionally the Tree Structured SVMs [19] in our study.
Finally in section 5 we discuss results.

2 Support Vector Machines (SVMs)

Given & training samples (xi, yi) where each sample is a d-dimension vector
(xi ∈ Rd) and is labeled as yi ∈ {1,−1}. A separating hyperplane H(w, b) in Rd

can then be written as:

H(w, b) = {x ∈ Rd | w · x + b = 0} (1)

where b ∈ R, and w ∈ Rd is a vector orthogonal to the hyperplane; and the
decision function would be f(x) = sign(wx + b). Since the hyperplane H(w, b)
given by Eq. (1) can be equally expressed by all pairs (λw, λb) for all λ ∈ R+, it
is appropriate to consider a hyperplane in canonical form with respect to xi [20],
where the scaling λ is implicitly set, such that, min {xi : | w ·xi + b |} = 1. This
is also equivalent to saying that the sample point closest to the hyperplane has a
distance of 1/‖w‖ leading to an over all margin distance of 2/‖w‖. To maximize
the margin the task would therefore be the minimization of T (w) := 1

2‖w‖
2,

subject to yi(w · xi + b) ≥ 1, i = 1, · · · , &. Further more, the learning task is
reduced to the maximization of the primal Lagrangian:

max
w,b

L(w, b,α) :=
1
2
‖w‖2 −

 ∑
i=1

αi(yi(w · xi + b)− 1) (2)

where αi ≥ 0 are Lagrangian multipliers. By taking the derivative of the primal
with respect to w and b and making appropriate re-substitution, the dual form
of the primal is formulated as it is more convenient to deal with.

max
w

W (α) :=
1
2
‖w‖2 −

 ∑
i=1

 ∑
j=1

αiαjyiyj(xi · xj), (3)

subject to αi ≥ 0, i = 1, · · · , & and
∑ 

i=1 αiyi = 0. Sample points correspond-
ing to the multipliers αi > 0 are termed as the Support Vectors (SVs) [18,2].
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To deal with linearly non-separable problems, more general decision surfaces
need to be considered. This can be accomplished by using a nonlinear mapping
Φ(x) that transforms the input data into a high dimension feature space, where it
would be possible to construct an optimal separating hyperplane. This procedure
is justified by Cover’s Theorem [18]. The formulation of the new optimization
problem is simply done by replacing all occurrences of x with Φ(x) in Eq. (3).

max
w

W (α) :=
1
2
‖w‖2 −

 ∑
i=1

 ∑
j=1

αiαjyiyj(Φ(xi) · Φ(xj)) (4)

subject to αi ≥ 0, i = 1, · · · , & and
∑ 

i=1 αiyi = 0. Note that, there is no need
to explicitly map the data into the high-dimensional feature space and compute
the dot products Φ(xi) · Φ(xj), as it is possible to find a kernel function [18]
K(xi, xj) = Φ(xi) · Φ(xj). After computing the optimal values α∗

i , the decision
function would be f(x) = sign(

∑ 
i=1 α∗

i yiK(x, xi) + b).

3 Multiclass Decomposition Schemes

In our experiments we have studied different decomposition schemes for mul-
ticlass classification problem using SVMs. In the following sub-sections each of
the multiclass approaches listed below are discussed.

• One versus the Rest (O-vs-R)
• One versus One (O-vs-O)
• Decision Directed Acyclic Graphs (DAG)
• Tree Structured (TS)
• Error Correcting Output Codes (ECOC)

3.1 One Versus the Rest (OvR)

This scheme is the most intuitive method of decomposition, where the task of
solving a K-class problem is done by constructing a set of binary classifiers
f1 · · · fK . Each of the fk classifiers is trained to separate the kth class from
the rest of the classes, and hence the name One-versus-the-Rest (OvR). The
classification of an unknown sample x is performed according to maximal output
value of functions fk(x) without applying the signum function, i.e. winner-takes-
all.

argmax
k

fk(x) =
∑

yiα
k
i K(x, xi) + bk (5)

The values of fk(x) can also be used as a measure of reject decision. This is done
by taking the difference between the two largest fk(x) as a measure of confidence
in the classification of unknown sample x. If this difference falls below a certain
threshold value, then the sample may be rejected.
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3.2 One Versus One (OvO)

This method has a simple conceptual approach in which a binary classifier is
trained for each pair of classes resulting in

(
K
2

)
classifiers. Compared to OvR,

it has large number of classifiers which might suggest large training time. But,
since the size of individual problems is significantly smaller than the whole, it
is actually possible to save time during training, and is faster during evaluation
as the number of SVs for each binary problem is usually much smaller [10,8,7].
The separating boundaries are constructed by defining a decision function fpq

for each pair of classes (p, q), p �= q, as follows,

x
fpq�→

{
+1, x in class p
−1, x in class q

(6)

The class prediction of an unknown sample x is made by taking the maximum
value of the sums of the output of signum function (maxp fp :=

∑
q fpq, forp �= q).

The winner class gets exactly (K − 1) positive votes for cases where there are
no tie situations. In tie situation, where more than one classes get equal positive
vote, one has to take into consideration the confidence by measuring the real
values of the decision function instead of the output of a signum function.

Fig. 1. DDAG for a 4-class prob-
lem.

Fig. 2. Tree Structure for an 8-class
problem.

3.3 Decision Directed Acyclic Graphs (DDAG)

The OvO scheme has some inefficiency with respect to evaluation time, especially
when the number of classes is very large it grows super linearly with the num-
ber of classes. One remedy to this problem is to use Decision Directed Acyclic
Graphs (DDAG) introduced in [16]. In a K -class problem, the DDAG tree in-
cludes

(
K
2

)
nodes which embed binary classifiers between the pth and qth pair of

classes; see Fig. (1). The K leaves of the tree represent predicted class labels of
unknown sample. The total depth of the DDAG is K − 1. During training the
DAG scheme is necessarily the same as the OvO scheme producing

(
K
2

)
binary

classifiers. However, during evaluation, only K − 1 decision nodes are traversed.
This systematic approach of evaluation in DDAG outperforms the evaluation in
OvO scheme by a factor of K/2 times in speed.
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3.4 Tree Structured (TS)

The strategy here is to decompose a K-class problem into two disjoint subsets
recursively until every subset contains one class only [19]; see Fig. (2). The
nodes of the tree embed binary classifies while the leaves yield the label of a
class prediction. For a K -class problem (K−1) SVMs must be trained, however,
approximately log2(K) decision functions are evaluated. In the design of a Tree
Structure, there is no definite way to construct two disjoint subsets of classes
at each node. For all practical purposes it is recommended to do the splitting
according to some similarity measures such as using a clustering algorithm or
other measures of similarities [19].

3.5 Error-Correcting Output Codes (ECOC)

Introduced by Dietterich and Bakiri [3,1], the strategy here is to decompose
a K -class problem into binary problems based on a distributed output codes
in which each class is assigned a unique N -bit codeword. The K codewords are
combined together to form a code matrix M . During training N binary classifiers
are trained, where each classifier belongs to one bit position in the codewords.
Class prediction is done using Hamming decoding that compares the Hamming
distance between the computed code of unknown sample and the codewords of
the classes. Hamming decoding ignores the ‘confidence’ | fj(x) | of predictions.
Another approach of decoding that takes into consideration the confidence is the
Loss based decoding. To classify an unknown sample x, first the output of each
decision function is computed, i.e. f1(x), f2(x), · · · , fN(x). Then for each class
i the total loss

∑N
j=1 L(M(i, j)fj(x)) is computed, where each M(i, j) are the

entries of the code matrix and L(z) is the loss function. Finaly the class label
of the unknown is chosen to be the ith class that minimizes the total loss. The
encoding and decoding technique of the ECOC constitutes some error-correcting
capabilities measured by the minimum Hamming distance d between any pair of
codewords. In general a good error-correcting output code-matrix should have
well separated rows and columns [3].

4 Experiments and Results

All our experiments were carried on the following datasets containing camera
images of 3-D objects.

• Obst dataset - 7 types of fruits, 840 images with 120 instance from each [5].
• Faces dataset - 40 subjects, 400 images with 10 instance from each[11].
• Coil-20 dataset - 20 objects, 1440 images with 72 instances from each[13].
• Coil-100 dataset - 100 objects, 7200 images with 72 instances from each [13].

Each image in the datasets was pre-processed using Orientation Histograms [6]
to extract feature vectors. Orientation Histogram were computed for each gray
image by sub-dividing it into 3×3 rectangular regions with an overlap of about
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20% between adjacent regions. For each of the nine sub-regions in the image, the
Orientation Histograms were computed in 8-bins and then concatenated together
to give a 72-dimensional feature vector for each entry[5]. All the experiments were
conducted on OvR, OvO, DDAG, TS and ECOC decomposing schemes for SVMs
using Linear, Polynomials (degrees 2 and 3), and RBF (exp{− ‖xi−xj‖

2σ2 }, σ = 1
and σ = 2 ) kernel functions. Training of the SVMs was done using the Sequential
Minimal Optimization (SMO) algorithm [15]. The value of the meta-parameter
C for the SVM was set to 10 which offered good solutions.

Table 1. Obst dataset:

Linear Poly
d = 2

Poly
d = 3

RBF
σ = 1

RBF
σ = 2

OvR 86.9 92.9 93.9 95.8 96.0
OvO 89.1 94.2 94.8 92.7 96.6
DAG 89.5 94.1 94.9 92.7 96.6
Tree 86.1 93.2 95.0 86.9 95.9
ECOC 84.4 94.7 94.4 95.8 96.2

Table 2. Coil-20 dataset

Linear Poly
d = 2

Poly
d = 3

RBF
σ = 1

RBF
σ = 2

OvR 99.6 99.8 68.3 100.0 100.0
OvO 100.0 100.0 43.2 99.8 100.0
DAG 100.0 100.0 34.8 99.8 100.0
Tree 100.0 100.0 100.0 99.9 100.0
ECOC 89.0 99.9 91.9 100.0 100.0

Table 3. Faces dataset

Linear Poly
d = 2

Poly
d = 3

RBF
σ = 1

RBF
σ = 2

OvR 99.7 100.0 100.0 98.5 100.0
OvO 99.5 99.5 99.2 88.2 99.5
DAG 99.7 99.5 99.2 88.2 99.5
Tree 94.1 98.5 97.8 78.8 98.2
ECOC 69.1 99.2 99.8 93.5 99.5

Table 4. Coil100 dataset

Linear Poly
d = 2

Poly
d = 3

RBF
σ = 1

RBF
σ = 2

OvR 91.2 99.4 96.2 99.8 99.7
OvO 99.4 99.7 96.8 99.7 99.7
DAG 99.3 99.6 96.9 99.7 99.7
Tree 86.5 98.7 94.1 99.6 99.1

To estimate the percentage of accuracy we performed 10-times-10-Fold cross-
validation for all the datasets with the exception of the Coil-100 dataset, in which
case only a single run of 10-Fold cross-validation was made. Our results are
summarized in Tables 1-4. All numeric data in the results represent the median
value of the percentage of accuracy from all the averages of the 10-times-10-
fold cross-validation. The standard deviation during evaluation was less than
0.6% in almost all cases with some exception for the COIL-20 dataset in using
polynomial kernel of degree 3 where the deviation is 0.04% for the Tree-SVM,
2.1% for the ECOC and 4.9% for the OvsR.

5 Conclusion

We have observed that SVMs perform very well as learning systems with good
ability to generalize even across objects of similar appearance as this is evident
from the results obtained for the Obst dataset, which contains seven similar
fruits. The use of Polynomial (d = 2) and the RBF(σ = 2) kernels showed
relatively better performance in almost all cases as can be seen in Tables (1-4).
This implies that careful choice of kernel functions improves the performance of
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multiclass classification. Another important observation is that all the multiclass
decomposing schemes show comparably similar performance. A slight exception
being the use of linear kernel in some datasets. This lower performance in linear
kernel is mostly noticeable in the ECOC scheme, which could be due to the
resulting binary problems being more complex and harder as to be solved linearly.

The Tree-Structure SVMs may still achieve better results if one could improve
the way the samples are split at each node. One possible way of improvement
would be to consider nodes with overlapped decision regions, which may require
slightly more SVMs to be trained. This is to say some classes may be allowed
to appear on both positive and negative sides at a node if their samples are in
good proportion on both subsets during the clustering or splitting. Furthermore,
tree-sturctured SVMs offer the opportunity to utilize different types of features
in the decision nodes. Integeration of multiple features (shape, color, etc...) in
the recognition of 3D objects is particularly important in the multiclass object
recognition applications where it is difficult to discriminate objects based on a
single feature; see [5,12,14]. The OvR approach besides being the most intituitive,
it scored at least as comparable results as others. The advantage of the OvO and
DAGs over the other schemes is that they have minimal training time due to the
reduced number of samples considered in each sub-problem. A rather unexpected
result in Table (2) is observed on the results of COIL-20 in using polynomial
kernel of degree 3. Here, the schemes DDAG, O-vs-O and O-vs-R have shown
lower performance (<70%), on the other hand the tree-structured SVMs have
scored exceptionally highest accuracy (100%) followed by ECOC (91%). Since,
the problem is not appearing in other cases and datasets, it could be due to
some special ’properties’ specific to the COIL-20 dataset.

It is important mentioning here the Orientation Histograms (see section 4)
that were applied to extract feature vectors have yielded good results proving
that they are very good techniques among others to extract features for object
recognition from camera images.
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Abstract. We present an integrated two-level approach to computa-
tionally analyzing image sequences of static scenes by variational seg-
mentation. At the top level, estimated models of object appearance and
background are probabilistically fused to obtain an a-posteriori prob-
ability for the occupancy of each pixel. The data-association strategy
handles object occlusions explicitly.

At the lower level, object models are inferred by variational segmenta-
tion based on image data and statistical shape priors. The use of shape
priors allows to distinguish between recognition of known objects and
segmentation of unknown objects. The object models are sufficiently
flexible to enable the integration of general cues like advanced shape
distances. At the same time, they are highly constrained from the op-
timization viewpoint: the globally optimal parameters can be computed
at each time instant by dynamic programming.

The novelty of our approach is the integration of state-of-the-art vari-
ational segmentation into a probabilistic framework for static scene anal-
ysis that combines both on-line learning and prior knowledge of various
aspects of object appearance.

1 Introduction

Since the seminal work of Mumford and Shah on variational image segmentation
[13], research has focused on generalizations of the Mumford-Shah functional
along several directions.

A first direction concerns algorithmic schemes and contour representation by
level sets for efficiently computing a good local minimum [3,18,19]. A second line
of research investigates probabilistic models of image classes for variational seg-
mentation that are richer than the piecewise-smooth image model underlying the
original Mumford-Shah functional [22,14,12,11]. Thirdly, statistical shape priors
have been considered recently to complement data-driven variational approaches
with a model-driven component [8,7,16,5,4,15,21].

This work contributes to the latter two directions in a twofold novel way.
Firstly, probabilistic representations for spatially structured intensity distribu-
tions – as opposed to homogeneous textures - like the appearance of clothes,

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 342–350, 2005.
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are learnt on-line. Secondly, statistical shape priors based on a psychophysically
relevant shape distance and prototypical views are learnt off-line from examples
through structure-preserving Euclidean embedding and clustering. Both shape
distance and embedding, as well as the incorporation of this knowledge into
the overall variational approach as a statistical prior, distinguish our work from
related hierarchical shape representations introduced by Gavrila for pedestrian
detection in traffic scenes through template matching ([9,10]).

Organization. In section 2, we describe the overall probabilistic model for image
intensity, conditioned on estimated models of object appearance. The compo-
nents of this model and the parameters that constitute object appearance in
terms of intensity and shape, are explained in section 3. Section 4 describes the
computation of optimal contours and data association through variational seg-
mentation. We conclude with a discussion of experimental results and pointing
out further work.

2 Probabilistic Image Model

At every time instant t, image intensity I(x, t) depends at each location x ∈ Ω
on the presence of N objects O = {O0;O1, . . . ,ON}, where O0 denotes the
background. Each object Ok, k = 1, . . . , N , is specified by parameters, Ok =
{Θk, ck(s)} ∈ O which have the following meaning:

– Θk parametrizes a distribution pΘk
which models object appearance in terms

of intensity. These distributions form the components of the overall image
intensity distribution in eqn. (1). They are described in section 3.2.

– ck(s) denotes the boundary contour of image region Ωk occupied by object
Ok, ck(s) := ∂Ωk

(
Ωk image region of object Ok

)
With each object region Ωk, we associate its characteristic function: χk(x) = 1
if x ∈ Ωk and 0 otherwise.

Given the parameters of all objects O, the probabilistic image model reads:

p
(
I(x) | O

)
=

N∑
k=0

πk(x) pΘk

(
I(x) | ck

)
, πk(x) =

χk(x)∑N
j=0 χj(x)

, ∀x ∈ Ω (1)

Parameters πk are deterministically obtained from the object regions, the factors
pΘk

(
I(x) | ck

)
are detailed in section 3.2. This “mixture of objects” model is less

restrictive than partitioning models that divide an image into mutually exclusive
regions, since in our case several objects are allowed to occupy the same image
location (occlusions).

Basically, eqn. (1) models object appearance in terms of both intensity and
shape. For each object Ok (including background), a parameterized intensity
model is learnt and updated from frame to frame. This intensity information is
combined with statistical prior information about possible object shapes, which
has been learnt off-line. Through optimizing the contours ck (see section 4),
object regions Ωk compete with each other in order to provide the “best expla-
nation” of given image data.
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3 Object Appearance

3.1 Statistical Shape Priors

We assume that, for each object class, a

Fig. 1. Matching by minimizing (3)
leads to an accurate correspondence
of parts of non-rigid objects

database is given containing shapes of differ-
ent object views. These data are represented
by a small subset of representative, prototyp-
ical views, obtained by pairwise dissimilarity
clustering.

In order to cope with non-rigid objects
like human shapes, we adopted from [1] the
shape distance:

dE(c1, c2) = min
g

E(g; c1, c2) , (2)

which is computed by minimizing the match-
ing functional:

E(g; c1, c2) =
∮ 1

0

{
[κ2(s)− κ1(g(s))g′(s)]2

|κ2(s)|+ |κ1(g(s))g′(s)| + λ
|g′(s)− 1|2

|g′(s)|+ 1

}
ds (3)

over all smooth reparametrizations g : [0, 1] −→ [0, 1]. Here, κ1, κ2 denote
the curvature functions of the contours c1, c2. Functional (3) involves bend-
ing (change of curvature) and stretching g′(s) of contours, which allows to group
contours that are perceptually close to each other, despite transformed parts
(cf. [1]). The minimization in (2) is carried out by dynamic programming over
all piecewise-linear and strictly monotonously increasing functions g. Figure 1
illustrates the result for two human shapes.

To determine representative shapes by clustering, we compute an Euclidean
embedding {pk}k=1,2,... of the given shape examples such that ‖pi − pj‖ ≈

Fig. 2. Left, clustering of the views of human shapes, projected to the first two prin-
cipal components. The clusters are indicated by prototypical shapes (cluster centers)
dominating a range of corresponding views. Right, the templates corresponding to the
cluster centers used in our experiments.
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dE(ci, cj) , ∀i, j [6], followed by k-means clustering [2]. As a result of this pro-
cedure, we obtain for each object class a small set of representative shapes,
henceforth called templates T = {ct

1, . . . , c
t
T }, see figure 2. We assume equal

prior probabilities for the templates.

3.2 Object Intensity

We model the background O0 by Gaussian mixture distributions for each pixel
with - in our implementation - three components [17]. This simple approach
proved to be effective and runs in real-time on current PCs.

For each foreground object O1, . . . ,ON ,

Fig. 3. A human shape and images
in normalized coordinates. Note the
plausible distortions of intensity.
Also note that some matchings for
perceptually dissimilar templates
are wrong, but these integrate out
over time.

we combine this approach with the statistical
shape information described in the previous
section as follows.

Each template ct
j in T is represented in

normalized coordinates x′. For the current
contour ck of object Ok in the image, we
compute in parallel the optimal matchings to
all templates ct

j in T through (2), and cor-
responding registrations of the enclosed re-
gions by thin-plate splines [20] using the cor-
respondences on the boundary. This estab-
lishes a one-to-one correspondence between
image and template coordinates x,x′, see
figure 3.

The distribution pΘk

(
I(x) | ck

)
in (1)

modeling the intensity of object Ok is then
given by marginalizing out the shape tem-
plates:

pΘk

(
I(x) | ck

)
=

T∑
j=1

p
(
I(x) | ct

j

)
p(ct

j | ck) ,

where p
(
I(x) | ct

j

)
records – analogously to the background – for each template

ct
j a pixel-wise Gaussian mixture model in normalized coordinates x′:

p(I(x) | ct
j) =

3∑
i=1

πj
i (x

′)N
(
I(x); μj

i (x
′), Σj

i (x′)
)

, (4)

and where the probability that template ct
j is representative for the current

object contour ck in the image, is given by:

p(ct
j | ck) :=

exp
(
− dE(ct

j , ck)
)∑T

l=1 exp
(
− dE(ct

l , ck)
)
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Hence, given the current image contour ck, parameters Θk comprise the mix-
ture parameters for all templates, Θk =

{
πj

i (x
′), μj

i (x
′), Σj

i (x′)
}

i=1,2,3; j=1,...,T
.

4 Variational Inference

Having estimated parameters Θk given the

Fig. 4. Optimal updates of image
contours are given by a deforma-
tion along the normal direction. We
minimize the segmentation func-
tional (5) through dynamic pro-
gramming over a set of discrete pu-
tative contour locations (top). In-
tensity information is approximated
locally by samples along inner nor-
mal directions of the current bound-
ary (bottom).

image contour ck for object Ok, we wish to
update ck. This is accomplished by comput-
ing in parallel for all templates ct

j the contour
c minimizing the functional:

J(c; ct
j ,O) = Jd(c; ct

j ,O) + α Jp(c; ct
j) (5)

As usual in variational segmentation (cf. sec-
tion 1), this functional comprises a data term
and a prior. The prior is simply the matching
functional (2):

Jp(c; ct
j) = dE(c, ct

j) , (6)

whereas the data term has the form:

Jd(c; ct
j ,O) = −

∮ {
log p

(
I(c) | ct

j

)
+

log p(I(c) | O \Ok) + log p(∇I(c))
} (7)

The first term of the integrand maximizes
the probability that the intensity observed at
c(s) matches the model associated with tem-
plate ct

j – see (4). The second term in (7), on
the other hand, maximizes the probability
that I(c(s)) matches the model of another
object, or the background – see (1). As a re-
sult, both terms together invoke segmenta-
tion through “region competition”. Finally,
the third term in (7) attracts c to edges, as
is common in geodesic snake approaches and
accounts for our prior belief that boundary
contours are more probable at image edges.
It has the form − log p(∇I(c)) = 1

1+|∇I(c)| .
In our implementation, functional (5) is glob-
ally optimized over a region centered around
ck, as indicated in Figure 4.
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5 Experiments and Discussion

In order to evaluate our novel combination of on-line object appearance models
and statistical shape priors within the framework of variational segmentation,
we processed an image sequence of 1400 frames containing four different per-
sons entering and leaving the scene. This was deliberately done without any
additional knowledge about object dynamics or elaborate scheme for tracking,
with the exception of simple first-order Kalman predicting the bounding boxes
of current object contours. Candidate regions were generated for regions which
yielded local minima in the posterior probability of (1). New objects are au-
tomatically instantiated for these regions or existing objects re-instantiated if
they have been absent. In subsequent frames we refine the contours of the
objects using variational segmentation as described in section 4 followed by
updates of the object and background intensity model as described in sec-
tion 3.2 and [17].

We point out that not any tuning parameters are involved in our approach.
Data-association is entirely accomplished by (1), and decisions are based on
MAP-estimates. The algorithm automatically tracked the four humans in the
sequence and due to the learned appearance information, recovers easily after
occlusions or if an object leaves and reenters the scene. Several images of the
sequence are shown in figure 5.

Fig. 5. Segmentation results. Shown are clipped frames 349, 519, 823, 842, 874, 1076,
and 1091.

After processing the entire sequence we show in figure 6 images sampled from
the learned intensity model for the four objects. The samples are generated by
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Fig. 6. Samples from the appearance model for four persons. Each triplet is: image
from the sequence, sampled template 2 and 7.

choosing a template and sampling from the Gaussian mixture model at each
pixel location. Overall we can see that the intensity information was correctly
learned for the objects. A closer look also reveals that the multivariate nature
of the intensity information due to clothes and viewpoint is captured by the
mixture model: e.g. the white stripes on the shoulders of the person in the lower
right appear in the sampled template images. Moreover probable locations for
the hands can also be identified as the flesh-colored areas inside the regions, see
e.g. template 2 of the person in the upper left.

6 Conclusion

We have presented a novel framework for scene analysis by the combination
of offline and online object learning together with variational image segmen-
tation. As we match shape and intensity information along the boundary we
can efficiently solve for the global minimum of the correspondence problem us-
ing dynamic programming. This is a big advantage of 1D matchings that can
not be transferred to the 2D case. We have found that for the case of human
objects, the 2D problem is sufficiently well approximated by the 1D matching
on the boundary and subsequent transformation to 2D using the correspon-
dences.

In the future we want to augment our shape database to more objects. We
will also investigate how shape information may be learned online.
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11. Matthias Heiler and Christoph Schnörr. Natural image statistics for natural image
segmentation. Intl. J. of Computer Vision, 63(1):5–19, 2005.

12. S. Jehan-Besson, M. Barlaud, and G. Aubert. Dream2s: Deformable regions driven
by an eularian accurate minimization method for image and video segmentation.
Int. J. Computer Vision, 53(1):45–70, 2003.

13. D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions
and associated variational problems. Comm. Pure Appl. Math., 42:577–685, 1989.

14. N. Paragios and R. Deriche. Geodesic active regions and level set methods for
supervised texture segmentation. Intl. J. of Computer Vision, 46(3):223–247, 2002.

15. T. Riklin-Raviv, N. Kiryati, and N. Sochen. Unlevel sets: Geometry and prior-based
segmentation. In T. Pajdla and V. Hlavac, editors, European Conf. on Computer
Vision, volume 3024 of LNCS, pages 50–61, Prague, 2004. Springer.

16. M. Rousson and N. Paragios. Shape priors for level set representations. In A. Hey-
den et al., editors, Proc. of the Europ. Conf. on Comp. Vis., volume 2351 of LNCS,
pages 78–92, Copenhagen, May 2002. Springer, Berlin.

17. C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for real-
time tracking. In Proceedings of the IEEE Computer Science Conference on Com-
puter Vision and Pattern Recognition (CVPR-99), pages 246–252, Los Alamitos,
June 1999. IEEE.



350 M. Bergtholdt and C. Schnörr
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Abstract. In this paper, we present a novel algorithm for reducing the runtime
computational complexity of a Support Vector Machine classifier. This is achieved
by approximating the Support Vector Machine decision function by an over-
complete Haar wavelet transformation. This provides a set of classifiers of in-
creasing complexity that can be used in a cascaded fashion yielding excellent
runtime performance. This over-complete transformation finds the optimal ap-
proximation of the Support Vectors by a set of rectangles with constant gray-
level values (enabling an Integral Image based evaluation). A major feature of
our training algorithm is that it is fast, simple and does not require complicated
tuning by an expert in contrast to the Viola & Jones classifier. The paradigm of
our method is that, instead of trying to estimate a classifier that is jointly ac-
curate and fast (such as the Viola & Jones detector), we first build a classifier
that is proven to have optimal generalization capabilities; the focus then becomes
runtime efficiency while maintaining the classifier’s optimal accuracy. We apply
our algorithm to the problem of face detection in images but it can also be used
for other image based classifications. We show that our algorithm provides, for a
comparable accuracy, a 15 fold speed-up over the Reduced Support Vector Ma-
chine and a 530 fold speed-up over the Support Vector Machine, enabling face
detection at 25 fps on a standard PC.

1 Introduction

Image based classification tasks are time consuming. For instance, detecting a specific
object in an image, such as a face, is computationally expensive, as all the pixels of the
image are potential object centres. Hence all the pixels must be classified.

Therefore, recently, more efficient methods have emerged based on a cascaded eval-
uation of hierarchical filters: image patches easy to discriminate are classified by a
simple and fast filter, while patches that resemble the object of interest are classified by
more involved and slower filters. In the area of face detection [11], cascaded based clas-
sification algorithms were introduced by Keren et al.[7], by Romdhani et al. [10] and
by Viola and Jones [16]. The detector from Keren et al. [7] assumes that the negative
examples (i.e. the non-faces) are modeled by a Boltzmann distribution and that they are
smooth. This assumption could increase the number of false positive in presence of a
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cluttered background. Romdhani et al. [10] use a Cascaded Reduced Set Vectors (RSV)
expansion of a Support Vector Machine (SVM) [15]. The speed bottleneck of [10] is
that at least one convolution of a 20 × 20 filter has to be carried out on the full image,
resulting in a computationally expensive evaluation of the kernel with an image patch.
Kienzle et al. [8] present an improvement of this method, where the first (and only the
first) RSV is approximated by a separable filter. Viola & Jones [16] use Haar-like ori-
ented edge filters having a block like structure enabling a very fast evaluation by use of
an Integral Image. These filters are weak, in the sense that their discrimination power
is low. They are selected, among a finite set, by the Ada-boost algorithm that yields the
ones with the best discrimination. A drawback of their approach is that it is not clear
that the cascade achieves optimal generalization performances. Practically, the training
proceeds by trial and error, and often, the number of filters per stage must be manu-
ally selected so that the false positive rate decreases smoothly. Another drawback of the
method is that the set of available filters is limited and manually selected. Additionally,
the training of the classifier is very slow, as every filter (and there are about 105 of them)
is evaluated on the whole set of training examples and this is done every time a filter is
added to a stage of the cascade.

In this paper, we present a novel efficient classification algorithm based on following
features:

1. Use of an SVM classifier that is known to have optimal generalization capabilities.
2. To achieve high run-time efficiency we use a reduced set of Support Vector (RVM

in [10]).
3. The high run-time efficiency is also obtained by a coarse-to-fine approximation of

the classifier enabling a cascaded evaluation. For non-symmetric data (i.e. only few
positives to many negatives) we achieve an early rejection of easy to discriminate
vectors. The granularity of the accuracy of the approximation is set by the following
parameters, which are automatically selected at detection time based on the image
patch to be classified: (i) the number of Reduced Set Vector (RSV) used and (ii) the
accuracy of the wavelet representation of these RSV’s. This constitutes the major
novelty of this paper. The trade-off between accuracy and speed is very continuous.

4. As the RSV’s are approximated by a Haar wavelet transform, the Integral Image
method is used for their evaluation, similarly to [16].

5. We use the over-complete wavelet theory to obtain the global optimum approxi-
mation of RSV’s. As shown in Section 2.1.3.3, the over-complete wavelet theory
provides an upper bound on the distance between the decision function of the RVM
and of the proposed W-RSV. The proposed learning stage is fast, straightforward,
automatic and does not require the manual selection of ad-hoc parameters, as op-
posed to the Viola and Jones method [16]. For example, the training time, on the
data set mentioned in Section 3, was two hours which is a vast improvement over
the Viola detector.

The novelty to [9] is 3. (ii) and 5.: The Simulated Annealing optimization using
morphological filters is replaced by the over-complete wavelet transformation. The
problems with the Simulated Annealing method is that it did not provide the global
optimum of the RVM approximation in all cases and it was difficult to adjust the ap-
proximation accuracy. It should be noted that, in this work, we apply an over-complete
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wavelet transformation of the Reduced Support Vector Machine itself, and not of the
input space as a pre-processing like [6,1].

Section 2 details our novel training algorithm that constructs a Wavelet Approxi-
mated Reduced Set Vectors expansion having a block-like structure. It is shown in Sec-
tion 3 that the new expansion yields a comparable accuracy to the SVM while providing
a significant speed-up.

2 Over-Complete Wavelet Approximated Support Vector Machine

Support Vector Machines (SVM), used as classifiers, are now well-known for their good
generalisation capabilities. Their decision function has the following form: y(x) =∑

k αi · k(x,xk) + b, where k(·) is the kernel used. In order to improve the runtime
performance [13] proposed to approximate the SVM by a Reduced Support Vector Ma-
chine (RVM), used with a cascaded evaluation in [10]. The RVM aims to approximate
the Support Vectors, xk by a smaller set of Reduces Set Vectors (RSV’s), zk. During
evaluation, most of the time is spent in kernel evaluations. In the case of the Gaussian

kernel, k(x, zk) = exp
(

−‖x−zk‖2

2 σ2

)
, chosen here, the computational load is spent in

evaluating the norm of the difference between a patch and a RSV. This norm can be
expanded as follows: ‖x− zk‖2 = x′x − 2x′zk + z′kzk. As zk is independent of the
input image, it can be pre-computed. The sum of squares of the pixels of a patch of the
input image, x′x is efficiently computed using the Integral Image ([4,16]) of the squared
pixel values of the input image. As a result, the computational load of this expression is
determined by the term 2x′zk .

The novelty of this paper is the approximation the RSV’s, zk, by a set of Wavelet
Approximated Reduced Set Vectors (W-RSV), uk that have a block-like structure, as
seen in Figure 1. Then the term 2x′uk can be evaluated very efficiently by use of the
Integral Image. If uk is an image patch with rectangles of constant (and optionally
different) grey levels then the dot product is evaluated in constant time by the addition of
four pixels of the Integral Image of the input image per rectangle and one multiplication
per grey level value.

2.1 Learning Haar-Like Reduced Set Vectors Using OCWT

In contrast to other approaches ([6,1]), we do not use a wavelet transformation of the
input images as a pre-processing at runtime. The novelty is that we apply the over-
complete wavelet transformation at the learning stage. Our approach proposes a wavelet
transformation of the Reduced Support Vector Machine itself as a means to speedup the
runtime performance.

2.1.1 Wavelet-Shrinkage for Haar-Like Structured Reduced Set Vectors

In order to make full usage of the concept of Integral Images, it would be desirable to
approximate the computed RSV’s, z, by block-wise structured images that are not too
far off while keeping the number of rectangular regions with constant grey value much
smaller than in z. Mathematically speaking, we are searching for an approximation of a
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given image z by a piecewise block structured image u which is as sparse as possible.
This optimization problem can be casted in the following variational form

min
û

{
‖z− û‖2L2

+ 2α|û|B1
1(L1)

}
, (1)

where B1
1(L1) denotes a particluar Besov semi–norm; for an overview we refer the

reader to [14,12] and for a detailed discussion of the problem to [2]. The Besov (semi)
norm of a given function can be expressed by means of its wavelet coefficients and,
moreover, in two dimensions the Besov penalty is nothing else than a �1 constraint on
the wavelet coefficients (promoting sparsity as required).

The minimization of (1) is easily obtained: Let {ψλ}λ∈Λ be the wavelet basis, where
Λ is the double index over all grid points and all scalings. Then we may express z
and û as follows: z =

∑
λ∈Λ zλψλ , û =

∑
λ∈Λ ûλψλ, where zλ = 〈z,ψλ〉 and

ûλ = 〈û,ψλ〉 (here 〈·, ·〉 stands for the inner product in the underlying Hilbert space).
We may completely represent (1) by means of the associated wavelet coefficients,

u = arg min
û

∑
λ∈Λ

{
(zλ − ûλ)2 + 2α|ûλ|

}
. (2)

Since the wavelet basis is linearly independent, we can minimize summand–wise and
obtain the following explicit expression for the optimum uλ, see, e.g. [5],

uλ = Sα(zλ) = sgn(zλ)max{|zλ| − α, 0} , (3)

where Sα is the soft–shrinkage operation with threshold α. Consequently, the opti-
mum u is simply obtained by soft–shrinking the wavelet coefficients of z, i.e. u =∑

λ∈Λ Sα(zλ)ψλ.

2.1.2 Over-Complete Wavelet Transformation
Typically, a wavelet representation of an image is computed by fast discrete wavelet
schemes. However, non–redundant representations and filtering very often creates ar-
tifacts in terms of undesirable oscillations or non–optimally represented details, which
manifest themselves as ringing and edge blurring. For our purpose, it is essential to pick
a representation that optimally meets the local image structure and is not restricted to a
fixed grid (see Figure 1). The most promising method for adequately solving this kind
of problem has its origin in translation invariance (the method of cycle spinning, see,
e.g. [3]), i.e. representing the image by all possible shifted versions of the underlying
(Haar) wavelet basis. But contrary to the idea of introducing redundancy by averaging
over all possible representations of z, we aim to pick only that one which is optimally
suited for our given image.

In order to give a rough sketch of this technique, assume that we are given an RSV
z with 2M × 2M pixel. Following the cycle–spinning approach, see again [3], we have
to compute 22(M+1−j0) different representations of z with respect to the 22(M+1−j0)

translates, s of the underlying wavelet basis. The scale j0 denotes the coarsest resolution
level of z. The family {zs}s generated this way serves now as our reservoir of possible
wavelet representations of one single z. The best shift s∗ is that one for which we have a
minimal discrepancy to the SVM hyper-plane per operations for the kernel-evaluation.
We evaluate all possible local shifts (in our case s = 64), hence the global optimum
shift is guaranteed (see Section 2.1.4.4).
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Fig. 1. Examples for Haar-like approximations of an RSV (left) using morphological filter (H-
RSV [9], middle) and using an over-complete wavelet transformation (W-RSV, right). The OCWT
representation meets optimally the local image structure. The ratio of the decreasing of the hyper-
plane distance to the used operations (see Section 2.1.1.4) is more efficient for the W-RSV (0.73)
than for the H-RSV (0.51).

2.1.3 Hyper-Plane Approximation by Wavelet Shrinkage
Once we approximate the Support Vectors of the SVM by the W-RSV’s, the ques-
tion arises whether the hyper-plane approximation Ψ ′′

Nz
=
∑Nz

i=1 βiΦ(ui) is close to

ΨNx =
∑Nx

i=1 αiΦ(xi), where Φ : X → F, x �→ Φ(x) is the map into the best
discriminating hyper-space F . (The dot product in F is computed using a kernel func-
tion: k(x,x′) = 〈Φ(x),Φ(x′)〉 [15].) Indeed, we can demonstrate that the discrepancy
between the W-RVM and the RVM is upper-bounded by the L2 distance (which is min-
imised by (3) with a �1 constraint on the coefficients ûλ) of the sparse approximation ui

of zi (The derivation is omitted here for space reasons)(Note that the fact that the RVM
(Ψ ′

Nz
=
∑Nz

i=1 βiΦ(zi)) minimises ‖Ψ ′
Nz
− ΨNx‖ is shown in [13].):

‖Ψ ′′
Nz
− Ψ ′

Nz
‖ ≤ σ−1

Nz∑
i=1

|βi| ‖zi − ui‖. (4)

2.1.4 Algorithm for Generation of the W-RSV’s
First, the RSV’s, zi are computed by minimising ‖Ψ ′

Nz
−ΨNx‖2 (see [10]). Then, the W-

RSV’s, ul
i, of the RSV’s, zi (i = 1, . . . , Nz) are computed using local best shift approx-

imations at the level l = 1. The approximation at one level automatically selects the best
shift and the number of wavelet basis used for this shift for all the ul

i, i = 1, . . . , Nz .
Once one level is computed, the residual of the previous level is approximated using
the same procedure. The usage of the different approximation levels enables a smooth
trade-off between accuracy and speed (see Section 2.2).

The approximation ul
i of the RSV, zi, at the level l, is obtained by minimising the

distance δl
i to the SVM hyper-plane with respect to βl

i and ul
i:

δl
i = ‖Ψ l

i−1 − βl
iΦ(ul

i)‖2, where Ψ l
i−1 = Ψ l−1

Nz
−

i−1∑
k=1

βl
kΦ(ul

k), (5)

where Ψ l
i−1 is the residual vector (in the feature space F ) between the SVM and the

classifier obtained using Nz RSV’s for the levels 1 to l − 1, and using i− 1 RSV’s for
the level l. For the first level, this residual is the SVM itself: Ψ0

Nz
=
∑Nx

i=1 αiΦ(xi). The
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Fig. 2. Example of the approximation of a RSV (left), zi, by its W-RSV ul
i at different approx-

imation levels (top row, left to right: l = 1, 2, 10, 19). The bottom row, (left to right) shows the
sum of the W-RSV’s over the approximation levels:

∑n
l=1 ul

i with n = 1, 2, 10, 19.

formal algorithm that provides the set of βl
i and ul

i for i = 1, . . . , Nz and l = 1, . . . , Nl

follows:

1. Set Ψ0
Nz

=
∑Nx

i=1 αiΦ(xi) and ∀i=1,...,Nz : r1
i = zi, where zi are the Reduced Set

Vectors.
2. Start at the first approximation level l = 1.
3. Start with the first Reduced Set Vector i = 1.
4. Evaluate ∀s : ũs = (W s)−1Sα

(
W srl

i

)
where W s is the wavelet decomposition

and (W s)−1 the reconstruction with a shifted wavelet basis by the two dimensional
shift s ∈

{
1, 2, . . . , 2J

}
×
{
1, 2, . . . , 2J

}
. For a 20 × 20 patch size a shift J =

3 is sufficient. Sα is the Shrinkage function with the sparsity parameter α (see
Section 2.1.1.1 and 2.2).

5. Evaluate ∀s : Δs
δ = δl

i−1−δl
i where δl

0 = δl−1
Nz

and the number of operations Δs
ω =

4∗# [ũs]+v(ũs) where # [ũs] is the number of piecewise constant rectangles and
v(ũs) the number of grey values of ũs.

6. Select the best shift s∗, for which the ratio Δs
δ

Δs
ω

is maximum.

7. Set ul
i = ũs∗ and save the rectangle structure for each approximation level of ul

i

separately. Then, the residual is updated: rl+1
i = rl

i − ul
i.

8. If i ≤ Nz , increment i and proceed to step 4. If i > Nz and l ≤ Nl, increment l
and proceed to step 3; else, stop.

Using this algorithm, we obtain for each RSV, zi, Nl levels of W-RSV’s, ul
i (see

Figure 2 top row). The approximation level l + 1 of the W-RSV is not computed by
a finer approximation of the original RSV, zi (e.g. by increasing sparsity parameter
α). Instead the algorithm achieves the approximation ul+1

i from the residual rl+1
i =

zi −
∑l

h=1 uh
i . Thus

∑Nl

l=1 ul
i converge to zi if Nl → ∞ (see Figure 2 right column).

We call it a local best shift method because the shift s∗ is generally different for each
approximation level. It is also noticed, that the rectangle structure of ul

i is evaluated and
stored during the training and applied at the classification process for each l separately

because #
[∑l

h=1 uh
i

]
>
∑l

h=1 #
[
uh
i

]
. As seen in Figure 2 (bottom row) we obtain

more rectangles, because the rectangles overlay by adding the approximations levels.
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2.2 Detection Process

The classification function of the input patch x of the W-RVM, denoted by yl
i(x), using

l levels and i RSV’s at the level l is as follows:

yl
i(x) = sgn

⎛⎝ l−1∑
h=1

Nh
z∑

j=1

βl,i
h,jk(x,uh

j ) +
i∑

j=1

βl,i
l,jk(x,ul

j) + bl
i

⎞⎠ , (6)

where, Nh
z , for h = 1, . . . , l− 1, denotes the number of RSV’s used for the approxima-

tion of level h (see hereafter how to set Nh
z ), bl

i are the thresholds obtained automatically
from an R.O.C. for a given accuracy. These thresholds are set to yield a given False Re-
jection Rate (FRR) so that the accuracy of the W-RVM is the same as the one of the full
SVM (see [10] for details). The trade-off between FRR and FAR is the only parameter
of our algorithm to be set by the user.

To achieve high run-time efficiency, we use a cascade of coarse-to-fine approxima-
tions of the SVM classifier. The aim is too reject as early as possible image parts that
do not present the object of interest. This is performed by the following algorithm:

1. Start at the first approximation level l = 1.
2. Start with the first W-RSV, ul

1 at the level l.
3. Evaluate yl

i(x) for the input patch x using (6).
4. If yl

i < 0 then the patch is classified as not being the object of interest. The evalua-
tion stops.

5. If i < N l
z , i is incremented and the algorithm proceeds to step 3; else if l < Nl, l is

incremented and the algorithm proceeds to step 2; otherwise the full SVM is used
to classify the patch.

When computing a RSV approximation of an SVM, it is not clear how many RSV’s
Nz should be computed (see [10]). This number of vectors may vary depending on the
level of the approximation. This is why in Equation (6) the number of vectors used for
the level h is denoted by Nh

z . The rationale of this dependency is that, at some point in
the evaluation algorithm, it might be more efficient to increment l (and reset i), rather
than to increment i. The best value of N l

z is computed in an offline process using a

validation dataset: N l
z is set to the smallest i for which

Δω(yl
i+1)

r(yl
i+1)

>
Δω(yl+1

1 )

r(yl+1
1 )

, where

r(yl
i) is the number of rejections of the negative examples obtained with i RSV’s for

the level l, and Δω(yl
i+1) is the number of operations required to evaluate yl

i+1 (see
Section 2.1.4).

By a similar evaluation the last used approximation level, Nl can be achieved. For
this Nl = l it is more efficient to classify the last few remaining patches by the SVM,
instead of incrementing l. How many levels this are depends also on the sparsity pa-
rameter α of the OCWT. The smaller is α, the closer ul

i is from zi and the less ap-
proximation levels are required. However, the number of levels does not play a decisive
role as the higher Nl, the sooner the evaluation process selects the next level, i.e. the
less N l

z . Therefore our proposed approach is not very sensitive to the parameter for set-
ting the approximation accuracy (e.g. α), opposite to former methods using only one
approximation level.
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3 Experimental Results

We applied our novel over-complete wavelet approximated SVM to the task of face
detection. The training set includes 3500, 20 × 20, face patches and 20000 non-face
patches and, the validation set, 1000 face patches, and 100,000 non-face patches. The
SVM computed on the training set yielded about 8000 Support Vectors that we approx-
imated by Nz = 90 W-RSV’s at Nl = 5 approximation levels by the method detailed
in the previous section.

The first graph on Figure 3 plots the residual distance of the RVM (dashed line)
and of the W-RVM (plain line) to the SVM (in terms of the distance ΨNx − Ψ ′′

Nz
) as

a function of the number of vectors used, Nz . It can be seen that for a given accuracy
more Wavelet Approximated Set Vectors are needed to approximate the SVM than for
the RVM. However, as shown on the second plot, for a given computational load, the W-
RVM rejects much more non-face patches than the RVM. This explains the improved
run-time performances of the W-RVM. Additionally, it can be seen that the curve is
more smooth for the W-RVM, hence a better trade-off between accuracy and speed can
be obtained by the W-RVM.

Figure 4 shows the R.O.C.’s, computed on the validation set, of the SVM, the RVM
and the W-RVM. It can be seen that the accuracies of the three classifiers are similar
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Table 1. Comparison of accuracy and speed improvement of the W-RVM to the RVM and SVM

method FRR FAR time per patch
SVM 1.4% 0.002% 787.34μs
RVM 1.5% 0.001% 22.51μs

W-RVM 1.4% 0.002% 1.48μs

without (left plot) and almost equal with the final SVM classification for the remain-
ing patches (right plot), see step 5. of the evaluation algorithm. Table 1 compares the
accuracy and the average time required to evaluate the patches of the validation set.
The speed-up over the former approach [9] is about a factor 2.5 (3.85μs). The novel
W-RVM algorithms provides a significant speed-up (530-fold over the SVM and more
than 15-fold over the RVM), for no substantial loss of accuracy.

We also proved the performance and detection accuracy under real life conditions
in the ”Institut für Techno- und Wirtschaftsmathematik” (ITWM) in Kaiserslautern. To
demonstrate the fast and accurate detection algorithm, we implemented an application
using a small webcam. Accurate face detection one obtained at 25 fps (on a Intel Pen-
tium M Centrino 1600 CPU, at a resolution of 320x240, stepsize 1 pixel, 5 scales).

4 Conclusion

In this paper, we presented a novel efficient method for SVM classifications on image
based vectors. We used an over-complete wavelet transformation of the Reduced Set
Vectors. It was demonstrated on the task of face detection.

As opposed to the RVM, the sparseness of operations required for classification is
not only controlled by the number of Reduced Set Vectors but also by the number of
wavelets basis functions used to approximate a Reduced Set Vector. Hence, negative
examples can be rejected with much fewer number of operations, making the run-time
algorithm very efficient. Moreover, as the Haar wavelets are used, the SVM kernel may
be evaluated extremely efficiently using Integral Images. The main advantage of this
algorithm compared to other algorithm based on boosting, such as the Viola & Jones
detector [16], is the fact that the training is much faster and does not require manual
intervention.
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space vs. feature space in kernel-based methods. IEEE TNN, 10(5):1000 – 1017, 1999.

14. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. Verlag der Wis-
senschaften, Berlin, 1978.

15. V. Vapnik. Statistical Learning Theory. Wiley, N.Y., 1998.
16. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In

Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, 2001.



Regularization on Discrete Spaces

Dengyong Zhou and Bernhard Schölkopf

Max Planck Institute for Biological Cybernetics,
Spemannstr. 38, 72076 Tuebingen, Germany

{dengyong.zhou, bernhard.schoelkopf}@tuebingen.mpg.de

Abstract. We consider the classification problem on a finite set of ob-
jects. Some of them are labeled, and the task is to predict the labels of
the remaining unlabeled ones. Such an estimation problem is generally
referred to as transductive inference. It is well-known that many mean-
ingful inductive or supervised methods can be derived from a regular-
ization framework, which minimizes a loss function plus a regularization
term. In the same spirit, we propose a general discrete regularization
framework defined on finite object sets, which can be thought of as dis-
crete analogue of classical regularization theory. A family of transductive
inference schemes is then systemically derived from the framework, in-
cluding our earlier algorithm for transductive inference, with which we
obtained encouraging results on many practical classification problems.
The discrete regularization framework is built on discrete analysis and
geometry developed by ourselves, in which a number of discrete differ-
ential operators of various orders are constructed, which can be thought
of as discrete analogues of their counterparts in the continuous case.

1 Introduction

Many real-world machine learning problems can be described as follows: given
a set of objects X = {x1, x2, . . . , xl, xl+1, . . . , xn} from a domain of X (e.g., Rd)
of which the first l objects are labeled as y1, . . . , yl ∈ Y = {1,−1}, the goal is
to predict the labels of remaining unlabeled objects indexed from l + 1 to n.
If the objects to classify are totally unrelated to each other, we cannot make
any prediction statistically better than random guessing. Hence we generally
assume that there are pairwise relationships among data. A dataset endowed
with pairwise relationships can be naturally thought of as a graph. In particular,
if the pairwise relationships are symmetric, then the graph is undirected. Thus
we consider learning on graphs.

Any supervised learning algorithm can be applied to this problem, by training
a classifier f : X → Y on the set of pairs {(x1, y1), . . . , (xl, yl)}, and then using
the trained classifier f to predict the labels of the unlabeled objects. Following
this approach, one will have estimated a classification function defined on the
whole domain X before predicting the labels of the unlabeled objects. According
to [8], estimating a classification function defined on the whole domain X is more
complex than the original problem which only requires predicting the labels of
the given unlabeled objects, and it is simpler to directly predict the labels of the
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given unlabeled objects. Therefore we consider estimating a discrete classifica-
tion function which is defined on the given objects X only. Such an estimation
problem is called transductive inference [8].

Many meaningful inductive methods can be derived from a regularization
framework, which minimizes an empirical loss plus a regularization term. In-
spired by this work, we develop a general discrete regularization framework de-
fined on graphs, and then derive a family of transductive algorithms from the
discrete regularization framework. This framework can be considered as discrete
analogues of variational problems [2,3,5] and classical regularization [7,9]. The
transductive inference algorithm which we proposed earlier [11] can be natu-
rally derived from this framework, as can various new methods. Furthermore,
to a certain extend, much existing work can be thought of in the framework
of discrete regularization on graphs. The discrete regularization framework is
built on discrete analysis and differential geometry on graphs developed by our-
selves, in which a number of discrete differential operators of various orders are
constructed. We follow the notation used in classical differential topology and
geometry, which can be found in any standard textbook, e.g., see [6].

2 Discrete Analysis and Differential Geometry

2.1 Preliminaries

A graph G = (V, E) consists of a finite set V, together with a subset E ⊆ V ×V.
The elements of V are the vertices of the graph, and the elements of E are the
edges of the graph. We say that an edge e is incident on vertex v if e starts
from v. A self-loop is an edge which starts and ends at the same vertex. A
path is a sequence of vertices (v1, v2, . . . , vm) such that [vi−1, vi] is an edge for
all 1 < i ≤ m. A graph is connected when there is a path between any two
vertices. A graph is undirected when the set of edges is symmetric, i.e., for each
edge [u, v] ∈ E we also have [v,u] ∈ E. In the following, the graphs are always
assumed to be connected, undirected, and have no self-loops or multiple edges.

A graph is weighted when it is associated with a function w : E → R+

which is symmetric, i.e. w([u, v]) = w([v,u]), for all [u, v] ∈ E. The degree
function d : V → R+ is defined to be d(v) :=

∑
u∼v w([u, v]),where u ∼ v

denote the set of the vertices adjacent with v, i.e. [u, v] ∈ E. Let H(V ) denote
the Hilbert space of real-valued functions endowed with the usual inner product
〈f, g〉H(V ) :=

∑
v∈V f(v)g(v), for all f, g ∈ H(V ). Similarly define H(E). Note

that function h ∈ H(E) have not to be symmetric. In other words, we do not
require h([u, v]) = h([v,u]).

2.2 Gradient and Divergence Operators

In this section, we define the discrete gradient and divergence operators, which
can be thought of as discrete analogues of their counterparts in the continuous
case.
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Definition 1. The graph gradient is an operator ∇ : H(V ) → H(E) defined by

(∇ϕ)([u, v]) :=

√
w([u, v])

g(v)
ϕ(v)−

√
w([u, v])

g(u)
ϕ(u), for all [u, v] ∈ E. (1)

The gradient measures the variation of a function on each edge. Clearly,

(∇ϕ)([u, v]) = −(∇ϕ)([v,u]), (2)

i.e., ∇ϕ is skew-symmetric.
We may also define the graph gradient at each vertex. Given a function

ϕ ∈ H(V ) and a vertex v, the gradient of ϕ at v is defined by ∇ϕ(v) :=
{(∇ϕ)([v,u])|[v,u] ∈ E}. We also often denote ∇ϕ(v) by ∇vϕ. Then the norm
of the graph gradient ∇ϕ at vertex v is defined by

‖∇vϕ‖ :=
(∑

u∼v

(∇ϕ)2([u, v])
) 1

2

,

and the p-Dirichlet form of the function ϕ by

Sp(ϕ) :=
1
2

∑
v∈V

‖∇vϕ‖p.

Intuitively, the norm of the graph gradient measures the roughness of a function
around a vertex, and the p-Dirichlet form the roughness of a function over the
graph. In addition, we define ‖∇ϕ([v,u])‖ := ‖∇vϕ‖. Note that ‖∇ϕ‖ is defined
in the space H(E) as ‖∇ϕ‖ = 〈∇ϕ,∇ϕ〉1/2

H(E).

Definition 2. The graph divergence is an operator div : H(E) → H(V ) which
satisfies

〈∇ϕ,ψ〉H(E) = 〈ϕ,− divψ〉H(V ), for all ϕ ∈ H(V ),ψ ∈ H(E). (3)

In other words, − div is defined to be the adjoint of the graph gradient. Eq.(3)
can be thought of as discrete analogue of the Stokes’ theorem 1. Note that the
inner products in the left and right sides of (3) are respectively in the spaces
H(E) and H(V ). We can show that the graph divergence can be computed by

(div ψ)(v) =
∑
u∼v

√
w([u, v])

g(v)

(
ψ([v,u])− ψ([u, v])

)
. (4)

Intuitively, the divergence measures the net outflow of function ψ at each vertex.
Note that if ψ is symmetric, then (divψ)(v) = 0 for all v ∈ V.

1 Given a compact Riemannian manifold (M, g) with a function f ∈ C∞(M) and
a vector field X ∈ X (M), it follows from the stokes’ theorem that

∫
M
〈∇f, X〉 =

− ∫
M

(div X)f.
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2.3 Laplace Operator

In this section, we introduce the graph Laplacian, which can be thought of as
discrete analogue of the Laplace-Beltrami operator on Riemannian manifolds.

Definition 3. The graph Laplacian is an operator Δ : H(V ) → H(V ) defined
by 2

Δϕ := −1
2

div(∇ϕ). (5)

Substituting (1) and (4) into (5), we have

(Δϕ)(v) = ϕ(v) −
∑
u∼v

w([u, v])√
g(u)g(v)

ϕ(u). (6)

The graph Laplacian is a linear operator because both the gradient and
divergence operators are linear. Furthermore, the graph Laplacian is self-adjoint:

〈Δϕ, φ〉 =
1
2
〈− div(∇ϕ), φ 〉 = 1

2
〈∇ϕ,∇φ 〉 =

1
2
〈ϕ,− div(∇φ)〉 = 〈ϕ, Δφ〉.

and positive semi-definite:

〈Δϕ, ϕ〉 =
1
2
〈− div(∇ϕ), ϕ 〉 = 1

2
〈∇ϕ,∇ϕ〉 = S2(ϕ) ≥ 0. (7)

It immediate follows from (7) that

Theorem 1. 2Δϕ = DϕS2.

Remark 1. Eq. (6) shows that our graph Laplacian defined by (5) is identical
to the Laplace matrix in [1] defined to be D−1/2(D −W )D−1/2, where D is a
diagonal matrix with D(v, v) = g(v), and W is a matrix satisfying W (u, v) =
w([u, v]) if [u, v] is an edge and W (u, v) = 0 otherwise.

2.4 Curvature Operator

In this section, we introduce the graph curvature as discrete analogue of the
curvature of a surface which is measured by the change in the unit normal.

Definition 4. The graph curvature is an operator κ : H(V ) → H(V ) defined by

κϕ := −1
2

div
(
∇ϕ

‖∇ϕ‖

)
. (8)

Substituting (1) and (4) into (8), we obtain

(κϕ)(v) =
1
2

∑
u∼v

w([u, v])√
g(v)

(
1

‖∇uϕ‖ +
1

‖∇vϕ‖

)(
ϕ(v)√
g(v)

− ϕ(u)√
g(u)

)
. (9)

Unlike the graph Laplacian (5), the graph curvature is a non-linear operator.
As Theorem 1, we can show that

Theorem 2. κϕ = DϕS1.

2 The Laplace-Beltrami operator Δ : C∞(M) → C∞(M) is defined to be Δf =
−div(∇f). The additional factor 1/2 in (5) is due to each edge being counted twice.



Regularization on Discrete Spaces 365

2.5 p-Laplacian Operator

In this section, we generalize the graph Laplacian and curvature to an operator,
which can be thought of as discrete analogue of the p-Laplacian in the continuous
case [3].

Definition 5. The graph p-Laplacian is an operator Δp : H(V ) → H(V ) de-
fined by

Δpϕ := −1
2

div(‖∇ϕ‖p−2∇ϕ). (10)

Clearly, Δ1 = κ, and Δ2 = Δ. Substituting (1) and (4) into (10), we obtain

(Δpϕ)(v) =
1
2

∑
u∼v

w([u, v])√
g(v)

(‖∇uϕ‖p−2 + ‖∇vϕ‖p−2)
(

ϕ(v)√
g(v)

− ϕ(u)√
g(u)

)
, (11)

which generalizes (6) and (9).
As before, it can be shown that

Theorem 3. pΔpϕ = DϕSp.

Remark 2. There is much literature on the p-Laplacian in the continuous case.
We refer to [4] for a comprehensive study. There is also some work on discrete
analogue of the p-Laplacian, e.g., see [10], where it is defined as

Δpϕ(v) =
1

gp(v)

∑
u∼v

wp−1([u, v])|ϕ(u)− ϕ(v)|p−1 sign(ϕ(u)− ϕ(v)),

where gp(v) =
∑

u∼v wp−1([u, v]) and p ∈ [2,∞[. Note that p = 1 is not allowed.

3 Discrete Regularization Framework

Given a graph G = (V, E) and a label set Y = {1,−1}, the vertices v in a subset
S ⊂ V are labeled as y(v) ∈ Y. The problem is to label the remaining unlabeled
vertices, i.e., the vertices in the complement of S. Assume a classification function
f ∈ H(V ), which assigns a label sign f(v) to each vertex v ∈ V. Obviously, a
good classification function should vary as slowly as possible between closely
related vertices while changing the initial label assignment as little as possible.
Define a function y ∈ H(V ) with y(v) = 1 or −1 if vertex v is labeled as positive
or negative respectively, and 0 if it is unlabeled. Thus we may consider the
optimization problem

f∗ = argmin
f∈H(V )

{Sp(f) + μ‖f − y‖2}, (12)

where μ ∈]0,∞[ is a parameter specifying the trade-off between the two com-
peting terms. It is not hard to see the objective function is strictly convex, and
hence by standard arguments in convex analysis the optimization problem has
a unique solution.
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3.1 Regularization with p = 2

When p = 2, it follows from Theorem 1 that

Theorem 4. The solution of (12) satisfies that Δf∗ + μ(f∗ − y) = 0.

The equation in the theorem can be thought of as discrete analogue of the Euler-
Lagrange equation. It is easy to see that we can obtain a closed form solution
f∗ = μ(Δ + μI)−1y, where I denotes the identity operator. Define the function
c : E → R+ by

c([u, v]) =
1

1 + μ

w([u, v])√
g(u)g(v)

, if u �= v; and c([v, v]) =
μ

1 + μ
. (13)

We can show that the iteration

f (t+1)(v) =
∑
u∼v

c([u, v])f (t)(v) + c([v, v])y(v), for all v ∈ V, (14)

where t indicates the iteration step, converges to the closed from solution [11].
Note that the iterative result is independent of the setting of the initial value. The
iteration can be thought of as discrete analogue of heat diffusion on Riemannian
manifolds [2]. At every step, each node receives the values from its neighbors,
which are weighed by the normalized pairwise relationships. At the same time,
they also retain some fraction of their values. The relative amount by which
these updates occur is specified by the coefficients defined in (13).

3.2 Regularization with p = 1

When p = 1, it follows from Theorem 2 that

Theorem 5. The solution of (12) satisfies that κf∗ + 2μ(f∗ − y) = 0.

As we have mentioned before, the curvature κ is a non-linear operator, and we
are not aware of any closed form solution for this equation. However, we can
construct an iterative algorithm to obtain the solution. Substituting (9) into the
equation in the theorem, we have∑
u∼v

w([u, v])√
g(v)

(
1

‖∇uf∗‖ +
1

‖∇vf∗‖

)(
f∗(v)√

g(v)
− f∗(u)√

g(u)

)
+ 2μ(f∗(v)− y(v)) = 0.

(15)
Define the function m : E → R+ by

m([u, v]) = w([u, v])
(

1
‖∇uf∗‖ +

1
‖∇vf∗‖

)
. (16)

Then ∑
u∼v

m([u, v])√
g(v)

(
f∗(v)√

g(v)
− f∗(u)√

g(u)

)
+ 2μ(f∗(v)− y(v)) = 0,
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which can be transformed into(∑
u∼v

m([u, v])
g(v)

+ 2μ

)
f∗(v) =

∑
u∼v

m([u, v])√
g(u)g(v)

f∗(u) + 2μy(v).

Define the function c : E → R+ by

c([u, v]) =

m([u, v])√
g(u)g(v)∑

u∼v

m([u, v])
g(v)

+ 2μ

, if u �= v; and c([v, v]) =
2μ∑

u∼v

m([u, v])
g(v)

+ 2μ

.

(17)
Then

f∗(v) =
∑
u∼v

c([u, v])f∗(v) + c([v, v])y(v). (18)

Thus we can use the iteration

f (t+1)(v) =
∑
u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V (19)

to obtain the solution, in which the coefficients c(t) are updated according to (17)
and (16). This iterative result is independent of the setting of the initial value.
Compared with the iterative algorithm (14) in the case of p = 2, the coefficients
in the present method are adaptively updated at each iteration, in addition to
the function being updated.

3.3 Regularization with Arbitrary p

For arbitrary p, it follows from Theorem 3 that

Theorem 6. The solution of (12) satisfies that pΔpf
∗ + 2μ(f∗ − y) = 0.

We can construct a similar iterative algorithm to obtain the solution. Specifically,

f (t+1)(v) =
∑
u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V, (20)

where

c(t)([u, v]) =

m(t)([u, v])√
g(u)g(v)∑

u∼v

m(t)([u, v])
g(v)

+
2μ

p

, if u �= v; and c(t)([v, v]) =

2μ

p∑
u∼v

m(t)([u, v])
g(v)

+
2μ

p

,

(21)
and

m(t)([u, v]) =
w([u, v])

p
(‖∇uf

(t)‖p−2
+ ‖∇vf

(t)‖p−2
). (22)

It is easy to see that the iterative algorithms in Sections 3.1 and 3.2 are the
special cases of this algorithm with p = 2 and p = 1 respectively. Moreover, it is
worth noticing that p = 2 is a critical point.
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4 Conclusions and Future Work

We have developed discrete analysis and geometry on graphs, and have con-
structed a general discrete regularization framework. A family of transductive
inference algorithms was derived from the framework, including the algorithm
we proposed earlier [11], which can substantially benefit from large amounts of
available unlabeled data in many practical problems. There are many possible
extensions to this work. One may consider defining discrete high-order differen-
tial operators, and then building a regularization framework that can penalize
high-order derivatives. One may also develop a parallel framework on directed
graphs [12], which model many real-world data structures, such as the World
Wide Web. Finally, it is of interest to explore the properties of the graph p-
Laplacian as the nonlinear extension of the usual graph Laplacian, since the
latter has been intensively studied, and has many nice properties [1].
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Abstract. This paper proposes an approach for the unsupervised learn-
ing of object models from local image feature correspondences. The ob-
ject models are learned from an unlabeled sequence of training images
showing one object after the other. The obtained object models enable
the recognition of these objects in cluttered scenes, under occlusion, in-
plane rotation and scale change. Maximally stable extremal regions are
used as local image features and two different types of descriptors charac-
terising the appearance and shape of the regions allow a robust matching.
Experiments with real objects show the recognition performance of the
presented approach under various conditions.

1 Introduction

A widely used approach in object recognition is to extract local viewpoint in-
variant features independently from test images and object models. An object is
recognized, if a sufficient number of matches of the local features characterized
by invariant descriptors can be found [9,5,6]. Robustness against clutter and oc-
clusion comes from the use of local features, while affine invariant detectors and
descriptors allow large viewpoint changes.

The recognition of 3D objects requires object models that contain multiple
views of the object. The challenge is to obtain object models which comprise
sufficient information for recognition of the object from any viewpoint covered
by the training data. In this paper we consider a sequence of training images
containing different views of several objects where we assume that consecutive
training images show most of the time the same object (e.g. a full turn of object
1 is followed by a full turn of object 2). This type of training sequences can
easily be gathered by still images from full turns of the objects to learn or by
taking every n-th frame from a video sequence showing the important views of
the objects of interest. The task addressed in this paper is to learn object models
from such a training sequence and enable a recognition of the learned objects in
cluttered environments, under occlusion, in-plane rotation and scale changes.

Most 3D object recognition approaches match the features of test images
to all views present in the object model accepting that matches are dispersed
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over similar views of the same object. If the view-dependent variation is inte-
grated into a single feature model, additional robustness can be achieved because
matches vote only for their object model and similar views can be disambiguated
during a later step. Only a few recent works exploit correspondences between
model views for this purpose [10,3,6].

Our approach to integrate the view-dependent variation into the object model
is to track the features of each object through the training sequence and charac-
terize them using two types of descriptors one for appearance and one for shape.
During learning we construct an appearance and a shape model for the descrip-
tors of each feature track. Using these feature models during the recognition
stage has the advantage that each feature needs to be matched only once per
object model regardless of how many model views the feature is visible in.

The remainder of the paper is structured as follows: section 2 briefly summa-
rizes related work; the descriptors used and learning from correspondences are
described in sections 3 and 4. Object recognition is discussed in section 5, while
experimental results and the conclusion are given in section 6 and 7.

2 Related Work

Object recognition is an instance of the correspondence problem and there are
many different approaches that use correspondences to learn object models and
match the learned models to test images. For the sake of space only a few recent
approaches are discussed.

The key to local object recognition are discriminative local features. Matas’
maximally stable extremal regions (MSER) are based on the observation that
for many images local segmentation is stable over a range of thresholds [11].
MSERs are regions that are stable for a range of binarization thresholds and
possess a number of useful properties: they are inherently multi-scale as large
and small regions are detected at the same time without the need to explicitly
construct a scale-space and are closed under perspective image geometry and
affine intensity transformations. Alternative local feature detectors are based on
the multi-scale Harris detector [12], the extrema of difference of Gaussians [9] or
multi-scale saliency [7].

These local features can be characterized by descriptors with different lev-
els of invariance and discriminative power. The most popular descriptors focus
on the local appearance: the SIFT features proposed by Lowe are based on
gradient orientation histograms [9]. They have been sucessfully applied to image
matching and object recognition. Another local descriptor are the differential in-
variants proposed by Schmid and Mohr [15] which are combinations of rotation-
ally symmetric Gaussian derivatives. Baumberg used the second moment matrix
to estimate a stretch and skew normalized frame for a reliable wide-baseline
matching [1].

Some local feature detectors [11,7] provide not only the location but also a
contour which can be used for a shape descriptor: assuming an interest region
described by a set of contour points, the shape context is a two-dimensional
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Fig. 1. MSER regions detected in two sample images of the training sequence differing
by 10◦ viewing angle

histogram for each point with the log-distances and angles to all other points of
the contour. Belongie showed that shape contexts can be successfully used for
shape matching [2].

Local features characterized by descriptors are only half the way to object
recognition, the other half are efficient methods to find correspondences and
learn object models which then can be used to recognize objects in test images:
Weber proposed an unsupervised approach for the recognition of objects from
single views using a flexible set of rigid parts [16]. The joint probabilities of the
part locations were estimated from part correspondences in the training data.
An object is recognized by determining the most probable hypothesis given the
estimated part locations. While that approach learned only the shape variation
and fixed the part appearance, a priori, Fergus’ approach learns appearance
and shape variation simultaneously [4]. The object models are learned using ex-
pectation maximisation and allow a scale-invariant object class recognition of
rigid and flexible objects. Ramanan and Forsyth proposed a method to learn,
track and recognize objects (animals) from a video sequence exploiting temporal
coherence using a color histogram based clustering and a kinematic model of
rectangular regions [14]. Ferrari and van Gool proposed a method to obtain sta-
ble correspondences by grouping matches of planar or smoothly curved surfaces
[5,6]. These groups are found by clustering matches that agree on the estimation
of an local affine transformation between the two images. The result is an ob-
ject recognition approach based on an elaborated scheme to eliminate conflicts
between these groups.

3 Appearance and Shape Descriptors

We use MSER [11] to find locally distinctive regions. The maximally stable
regions are extracted from the set of minimal and maximal regions by following
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conditions: (i) The regions must be larger than 15 pixels and smaller than 10%
of the image area. (ii) The regions must survive at least 10% of the intensity
range and their area has to be stable for at least 5% of the intensity range. Fig.
1 shows two sample images with the detected MSERs.

When matching with a single descriptor, false matches are inevitable and a
validation of the matches (e.g. estimating the fundamental matrix) is required.
To avoid any assumptions about the geometric transformation between the im-
ages, two descriptors are determined separately and false matches are rejected
by accepting only consistent matches between both descriptors (see section 4).
Consequently, the regions are characterised by two descriptors: (i) SIFT keys for
appearance and (ii) shape context for shape.

3.1 Appearance Descriptor

Lowe’s SIFT descriptor [9] uses orientation histograms to estimate the local
orientation. The descriptor is formed from histograms of the local intensity gra-
dients relative to the estimated local orientation. However, preliminary exper-
iments showed that orientation histograms do not provide stable orientation
estimates when used in conjunction with MSERs, hence we have used the prin-
cipal axis of the MSER region as a rotation estimate. As the principal axis gives
us only a direction, both orientations θ and θ + π are used during learning and
recognition. Using SIFT keys and this orientation estimation provides stable
matches as the descriptor matching in the results section shows (see section 6).

3.2 Shape Descriptor

The region’s shape is modeled by a piecewise cubic spline of its contour. The
spline allows a sampling to a fixed number of equally spaced boundary points.
A good trade-off between descriptor complexity and discriminative power has
been found empirically with 50 boundary points. The final shape descriptor is
computed from the shape context [2] of these contour points using 5 distance
and 12 orientation bins. These parameters are used throughout the paper.

4 Learning from Correspondences

The object models are learned from correspondences established between con-
secutive images of the training sequence. MSER [11] are used to find locally
distinctive regions. The detected regions are characterized using SIFT keys for
appearance and shape context for shape. Initial matches are found by matching
the SIFT keys using the Euclidean distance and the shape contexts using the
χ2-distance [2].

Stable matches are determined by following scheme: An n × m matrix CA

indicates the mismatch between the appearance descriptors for a pair of consec-
utive training images (n regions in the first and m regions in the second image).
Another matrix CS is computed for the shape descriptor mismatch.
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Fig. 2. Matching performance for in-plane rotation (a) and scale changes (b) for two
images differing by 10◦ viewing angle. The number of matches between consecutive
images for the training sequence showing five objects (c).

The matrix CA is used as a cost matrix to find the optimal appearance assign-
ment A1 between the regions of both images using the Munkres algorithm also
called Hungarian method [8,13]. Analogously, using matrix CS the optimal shape
assignment S1 is determined. As it is inevitable that both assignments are con-
taminated by false matches, they do not agree on all matches. Accepting only
matches present in both assignments efficiently suppresses false matches giving
the consistent matches byM1 = A1 ∩ S1.

The number of correct matches can be increased by the following idea: The
probability that the correct match for a certain region is in the best three assign-
ments is higher than that it is found by the best one. Consequently, we compute
three optimal descriptor assignments by prohibiting the already taken matches
(optimal assignment of the previous run) for the next run of the Munkres algo-
rithm. Assuming that Atot denotes all possible matches between the regions of
two images and the first run of the Munkres algorithm determines the assignment
A1 which causes the lowest costs regarding to CA. By prohibiting the matchesA1

for the next run of the Munkres algorithm, i.e. restricting the allowed matches
to Atot\A1, the second optimal assignment A2 is determined. Accordingly the
k-th optimal assignment Ak is calculated by allowing only Atot\(

⋃k−1
i=1 Ai). By

applying the same procedure to the shape descriptor matches, the final set of
matches is found by Mn = (

⋃n
i=1Ai) ∩ (

⋃n
i=1 Si). Empirical tests showed, that

for most matching experimentsM3 contains almost twice the number of correct
matches and very few additional false matches compared to M1.

This matching procedure based on M3 is applied to the entire training se-
quence and provides stable correspondences between consecutive training im-
ages. Fig. 2 (c) shows the number of matches found between consecutive images
of the training sequence of the five objects. It can be seen that where consecu-
tive images show different objects the number of matches falls significantly. This
effect is used to detect the locations in the training sequence where the objects
change. Now, by using the correspondences of the regions of each object, these
regions can be tracked through the object’s training images and used to model
the view dependent variation of the descriptors of each region.

The object models are learned by obtaining an appearance and a shape model
for each region track: to characterize the region’s appearance we use SIFT de-
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scriptors with a 4x4 array of orientation histograms with 16 bins. The set of
SIFT descriptors of a region track are subjected to a PCA to obtain a SIFT-
eigenspace which models the view-dependent variation. We found that the first
three principal components of each region track’s SIFT descriptor are sufficient
for a reliable recognition (see section 6). The set of shape contexts of each region
track is stored entirely in the object model because an eigenspace representation
gave poor results.

5 Object Recognition

Objects are recognised by matching the image regions to the model regions. The
shape contexts are matched, as in training, using the χ2-distance. The SIFT
descriptors are projected onto the model’s SIFT descriptor eigenspace and the
mean absolute reconstruction error is then used to rank the matches. Again the
best three assignments are determined separately for the appearance and shape
descriptors using the Munkres algorithm. Inconsistent matches are rejected by
determining the stable correspondences in M3 and, if a sufficient number of
regions of an object model are matched successfully in an image, then it is
assumed that the image shows this object.

Table 1. False positives and false negatives in percent for the different object recog-
nition experiments focusing on cluttered scenes (cs), random in-plane rotation (rir),
scale change from 0.5 to 2.0 (s0.5, s0.8, s1.5, s2.0), occlusion from 20% to 50% (oc20,
oc30, oc40, oc50) and scenes showing several of the learned objects (mos)

Experiment cs rir s0.5 s0.8 s1.5 s2.0 oc20 oc30 oc40 oc50 mos
False positives 4.6 7.8 0.0 8.3 9.7 1.4 3.2 2.6 2.3 2.9 8.9
False negatives 2.8 5.1 26.0 12.0 2.7 1.2 4.2 8.5 11.0 32.0 3.1
Recognition rate 92.6 87.1 74.0 79.7 87.6 84.8 92.6 88.9 86.7 65.1 88.0

6 Results
6.1 Descriptor Matching

The performance of the proposed matching is evaluated by the number of correct
matches identified for a number of matching experiments. Two sample images
of an object differing by 10◦ viewing angle are used for the evaluation, while
one image is subjected to in-plane rotations in 30◦ steps and to scale changes
between 0.5 and 2.0. Fig. 2 (a) shows the number of correct matches for in-plane
rotation and Fig. 2 (b) for scale change. One can see that the ratio of correct
matches remains stable for in-plane rotations and a scale change from 0.5 to 2.

6.2 Object Recognition

For the recognition experiments a dataset with images of five real objects (36
images per object at 10◦ increments) has been acquired. The dataset contains a
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training sequence with 180 images and a different test sequence with 180 clut-
tered images. To our knowledge no publicly available dataset provides sufficient
images for each object with black background (training) and cluttered scenes
with one and several objects (testing). Our method is evaluated using the test
sequence subjected to in-plane rotations, several levels of occlusion and scale
changes. Tab. 1 shows the false positives, false negatives and the recognition
rate for the different experiments focusing on cluttered scenes, random in-plane
rotation, scale changes from 0.5 to 2, occlusion from 20% to 50% and scenes
showing several of the learned objects. The recognition performance in cluttered
environments is above 90% with false positives less than 3%. For scale changes
from 0.5 to 2.0 the recognition rate remains above 74% and above 85% for oc-
clusions up to 50%. Fig. 3 shows the recognition results in cluttered scenes with
one and two objects and partial occlusion.

(a) (b) (c) (d) (e)

Fig. 3. Object recognition results for all five objects in cluttered scenes (a-c), the same
object from two different view points (b), scenes with two objects (d) and partially
occluded (e). The matched regions and the recognized objects are superimposed.

7 Conclusion

We have proposed an approach for 3D object recognition in cluttered scenes
that is based on learning from an sequence of training images of several objects.
The object models are learned without supervision from correspondences found
in the training images. The proposed matching remains stable for in-plane rota-
tions and scale changes from 0.5 to 2.0. The recognition performance in cluttered
environments is above 90% with false positives less than 3%.

As a next step the spatial configuration of the detected regions will be mod-
eled and included into the object model to verify or reject object hypotheses.
This should increase the recognition performance and stability.
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Abstract. We introduce and discuss a new method for segmentation
and classification of cells from 3D tissue probes. The anisotropic 3D
volumetric data of fluorescent marked cell nuclei is recorded by a confo-
cal laser scanning microscope (LSM). Voxel-wise gray scale features (see
accompaning paper [1][2]), invariant towards 3D rotation of its neigh-
borhood, are extracted from the original data by integrating over the 3D
rotation group with non-linear kernels.

In an interactive process, support-vector machine models are trained
for each cell type using user relevance feedback. With this reference
database at hand, segmentation and classification can be achieved in
one step, simply by classifying each voxel and performing a connected
component labelling, automatically without further human interaction.
This general approach easily allows adoption of other cell types or tissue
structures just by adding new training samples and re-training the model.
Experiments with datasets from chicken chorioallantoic membrane show
encouraging results.

1 Introduction

In biological and medical research as well as in histopathologic diagnosis, the
localization and classification of cells is an everyday business. A vast number of
research techniques and treatment methods require detailed information on the
amount, type, localization and state of cells in a given probe of tissue or dilution.
Locating, classifying and analyzing cells is not a simple task, very time consum-
ing, and in most cases a human expert is needed. The demand for automation is
continuously growing with the large number of applications in biotechnology and
medical research. But so far this problem is not satisfyingly solved in general.
Although there are various methods around, which perform quite well for simple
tasks like counting or the segmentation of cells in dilution, most problems are
still subject to basic research.
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Concerning the algorithms introduced in the literature so far, most of them
suffer from the fact that they have been developed for one special purpose only
and cannot be easily generalized to other cell types or tissues. Besides that, seg-
mentation is often an unsolved problem as well, and many algorithms require
manual interaction. We introduce a new general purpose algorithm using voxel-
wise gray scale invariants([1][2]) for both, segmentation and classification of cells
in 2D and 3D probes, and provide some first, promising experimental results.
Motivated by the work of [3] and [4], gray scale invariants were very successfully
applied to individual pollen recognition in [5] [6]. A major problem of cell classi-
fication in tissue probes is segmentation. In order to achieve good classification
results, supervised-learning classifiers rely on proper segmented training samples
and classification probes. Proper segmentation is hard to realize without higher
semantic knowledge about the object to segment. But the use of a-priori knowl-
edge or manual segmentation is not suited for a fully automatic general purpose
approach.

For this reason we developed a self learning segmentation algorithm by use of
gray scale invariants, which is capable of performing segmentation and classifica-
tion in one step. Gray scale invariant features are extracted from the surrounding
neighborhood of each pixel/voxel. In an interactive procedure, a support-vector
machine model is trained. Once this model has been obtained for the requested
types of cells, segmentation and classification can be performed automatically
without any further human interaction.

This paper is structured as follows. Section 2 gives a brief introduction to
voxel-wise gray scale invariants. In section 3 we introduce the actual segmenta-
tion using an interactive training method and support-vector machines. Finally,
in section 4 we present some experimental results.

2 Voxel-Wise Gray Scale Invariants

Gray scale features, invariant towards Euclidean motion, using Haar-integration
over the whole transformation group of an n-dimensional data set X, are calcu-
lated as follows: [3] [5]

T [f ](X) :=
∫
G

f(gX)dg (1)

where G denotes the transformation group, g one element of G, f a nonlinear
kernel function and gX the transformed n-dimensional data set. If the kernel
function f only depends on a few points of the image or volume, i.e., if we can
rewrite f(X) as f

(
X(x1),X(x2),X(x3), . . .

)
, where X(xi) is the gray value1 at

position xi we only need to transform the kernel points x1, x2, x3, . . . accordingly,
instead of the whole data set X. This transformation of the kernel points is
denoted as sg(xi), rewriting (1) as

1 We use the term “gray value” even for color or other multi-channel data. In this case
one “gray value” has multiple components.
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T [f ](X) :=
∫
G

f
(
X(sg(x1)), X(sg(x2)), X(sg(x3)), . . .

)
dg . (2)

The direct evaluation of the integral (2) is usually too slow for real applications.
[5] presented a fast calculation method (using FFTs) for a certain class of kernel-
functions (so called separable two-point-kernel functions) of the form

f(X) = fa

(
X(0)

)
· fb

(
X(q)

) fa, fb : any nonlinear functions that
transform the gray values

q : span of the kernel function
(3)

Calculation of Voxel-Wise Gray Scale Invariants: The voxel-wise extrac-
tion of invariant features follows the same theory as above, restricting the trans-
formation group to rotation. A major drawback of voxel-wise calculation with
two-point-kernel functions is that the resulting features are not only invariant
towards rotation, but also towards arbitrary permutation of neighboring gray val-
ues. To overcome this problem, we introduced a fast approximation using FFT
and 3D separable three-point-kernel functions [2] of the type (see accompaning
paper [1])

f(X) = fa

(
X(0)

)
· fb

(
X(q1)

)
· fc

(
X(q2)

)
(4)

Multichannel Features: As illustrated in Fig. 1, biological probes are often
stained with different fluorescent markers, which are recorded as multi channel
datasets. Kernels of the form (4) can be evaluated over several channels, using
the voxel-wise gray-scale representation of the recorded volumetric datasets Xv,
where Xvi

gives the gray-value for the i-th channel.

Kernel Functions: To increase separability, several features with different
spans and non-linear mappings are combined to feature vectors for each voxel.

In the case of a compact transformation group, like rotation, any kernel
function returning a scalar value may be used, because after parameterization,
an integral with fixed borders (e.g., integration from 0 to 360 degrees) can be

Fig. 1. By staining with different fluorescent markers and variation of the ecitation
wave length, several data channels can be recorded from a single sample at once
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Fig. 2. From left to right: original data, classification of features without exponential
kernels, classification with the same training samples but with some features calculated
on the ”inverse data”

found. For the later described segmentation we use simple non-linear functions
like f(v) = v2

i , v3
i , v4

i , . . . or
√
vi with spans from 2,4,8 up to 32. While small

spans extract local object features (high frequencies), it is useful to have some
larger spans covering the entire object (low frequencies). In addition, we perform
Gaussian filtering previous to the non-linear mappings for increased local support
[1][2]. For datasets with high valued object gray-values and low background
values an additional problem arises: due to the nature of Haar-integration, the
foreground values dominate the result of the voxel-wise features which leads to
a reduced separability of the background close to objects. A solution is provided
by calculating some features which are sensitive to the background. This can be
achieved by use of an appropriate kernel function like:

f(X) =
√

X(0) · e−X(q1)2 two-point exponential kernel function (5)

3 Segmentation

After the voxel-wise extraction of feature-vectors using two- and three-point ker-
nels, a support-vector machine (SVM) [7][8] model is trained in an interactive

Fig. 3. Framework for interactive model training: xy-slices (bottom left) and yz-slices
(bottom right) are moved through the volumetric dataset (top) and training samples
are selected manually via ”mouse clicks”.
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procedure over several iterations: First a small number of training samples (vox-
els) is manually selected for each class (Fig. 3). Second, a SVM model is trained
based on the training feature-vectors. In the last step of one iteration, all vox-
els are classified against the previously trained model. After each iteration new
training samples can be added in order to improve segmentation and classifica-
tion results until the model reaches a ”stable” state, e.g. the support-vectors do
not change after adding new samples. In order to avoid overfitting and to find the

xy-slice

yz-slice

Fig. 4. The interactive training process - 1st row: 3D reconstruction of the original
data, 311 training samples set for the first iteration of training. 2nd line - from left to
right: section of xy-slice of original data as indicated in the 3D reconstruction, result
after the first iteration (56 support vectors in model), result after 2nd iteration,result
after the 3rd iteration (642 training samples, 129 support vectors in model). 3rd line:
section of yz-slice of original data, results after 1st to 3rd iterations in yz-slice.

optimal SVM model, we perform a grid-search over SVM-kernel parameters and
cost-function with cross-validation model selection in each training round. One
of the major advantages of our approach is, that the obtained model can easily
be extended with samples from other datasets and and even new classes, sim-
ply by executing additional training rounds. With the model at hand, objects in
datasets which have been recorded under similar conditions (staining, excitation,
etc.) can be segmented and classified fully automatically: voxel-wise features are
extracted and classified. In a final step the labeled voxels are combined to closed
objects by connected component labeling.
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4 Experiments

In this section we present some experimental results and compare the perfor-
mance of the previously described algorithms with a standard Watershed region
growing approach.

Table 1. Overview of all used three- and two-pint gray-scale invariants of type f(X) =
fa(X(0)) · fb(X(q1)) · fc(X(q2)) . qα denotes the size of the scope, vi the i-th channel.

f1 f2 f3 f4 f5 f6 f7 f8

fa Xv1(0) (Xv1(0))5 (Xv1(0))5
√

Xv1(0) (Xv1(0))2
√

Xv1(0) Xv1(0) (Xv1(0))2

fb Xv1(0) (Xv1(q2))2 (Xv1(q2))5 e(−Xv1 (q4))2 (Xv1(q4))5
√

Xv1(q4) Xv1(q4) (Xv1(q8))5

fc - (Xv1(q2))2 - - (Xv1(q4))5
√

Xv1(q4) Xv1(q4) (Xv1(q8))5

f10 f11 f12 f13 f14 f15 f16

fa (Xv1(0))5
√

Xv1)(0) (Xv1(0))5 Xv1(0) e(−Xv1 (0))2 (Xv1(0))5 (Xv1(0))5

fb e−Xv1 (q16)
√

Xv1(q16) (Xv1(q16))2 Xv2(q2) e(−Xv2 (q2))2 (Xv2(q2))2 (Xv2(q2))5

fc -
√

Xv1(q16) (Xv1(q16))2 Xv2(q2) e(−Xv2 (q2))2 - (Xv2(q2))5

f18 f19 f20 f21 f22 f23 f24

fa (Xv1(0))2 e(−Xv1 (0))2 (Xv1(0))5 (Xv1(0))2
√

Xv1(0) (Xv1(0))5 (Xv1(0))5

fb (Xv2(q4))5 e(−Xv2 (q4))2 (Xv2(q4))2 (Xv2(q8))5 (Xv2(q8))5 e−Xv2 (q16) (Xv2(q16))2

fc - - (Xv2(q4))2 - (Xv2(q8))5 - (Xv2(q16))2

f26 f27 f28 f29 f30 f31 f32

fa Xv2(0) e(−Xv2 (0))2 (Xv2(0))5 (Xv2(0))5
√

Xv2(0) (Xv2(0))2 e(−Xv2 (0))2

fb Xv1(q2) e(−Xv1 (q2))2 (Xv1(q2))2 (Xv1(q2))5 e(−Xv1 (q4))2 (Xv1(q4))5 e(−Xv1 (q4))2

fc Xv1(q2) e(−Xv1 (q2))2 (Xv1(q2))5 - e(−Xv1 (q4))2 - -

Data: The experiments were performed on 3D volumetric data samples of
chicken embryo chorioallantoic membrane (CAM) probes recorded by a con-
focal laser scanning microscope (LSM). The CAM is a widely used model for
angiogenesis research. For angiogenesis research at cellular level, an automatic
localization and identification of the different cell types is crucial. Understanding
angiogenesis has been found key to treatment of many frequent diseases, includ-
ing cancer and heart ischemia. The samples were prepared as described in [9][10]
and treated with YoPro-1 and SMACy3 fluorescent markers.

Methods: A model was built performing the interactive training procedure on
several training data sets. Other samples were classified against this model. As
reference to our approach we performed seeded watershed segmentation with
about one hundred manually set seeds for each cell. A median filter was applied
prior to the watershed procedure. For this part we omitted the classification,
since the classes were set manually.
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Fig. 5. Sample data, cross section of a capillary. Cell types with 3D reconstruction: 1.
erythrocyte (Ery), 2. endothelial cell (EC), 3. pericyte (PC), 4. fibroblast (FB), 5.
macrophage (MΦ).

Fig. 6. Results of voxel-wise gray-scale invarinat segmentation in xy-slices. First line:
raw data. Second line: watershed reference. Third line: results of our approach.

Fig. 7. Results of voxel-wise gray-scale invarinat segmentation in zy-slices. First line:
two channels of raw data. Second line: watershed reference and results of our approach.
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Results: For the experiment sown in (Fig. 6), the features in (Table 1) were
used. Three-point kernels were restricted to have the points on one straight line
and were approximated only by the first coefficient of the series [1].

Conclusion and Outlook. Our algorithm is able to automatically detect previ-
ously learned objects. Low fluorescent activity and strong intra cellular structures
do not cause false or partial segmentation results. But still the low z-resolution
is responsible for miss-classifications at object borders and some noise (Fig. 6).
The rather simple approach of connected component labeling is the major draw-
back at this state - it is neither capable of suppressing small fractions of noise,
nor splitting touching objects of the same class.
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Abstract. We propose a method for segmentation of a line of charac-
ters in a noisy low resolution image of a car license plate. The Hidden
Markov Chains are used to model a stochastic relation between an input
image and a corresponding character segmentation. The segmentation
problem is expressed as the maximum a posteriori estimation from a set
of admissible segmentations. The proposed method exploits a specific
prior knowledge available for the application at hand. Namely, the num-
ber of characters is known and its is also known that the characters can
be segmented to sectors with equal but unknown width. The efficient
algorithm for estimation based on dynamic programming is derived. The
proposed method was successfully tested on data from a real life license
plate recognition system.

1 Introduction

The segmentation of a line of characters is an important problem emerging in
the license plate recognition (LPR) systems. The objective is to partition image
into segments with isolated characters which serve as an input of the Optical
Character Recognition (OCR) system. The problem is challenging due to noise in
the image, low resolution, space marks, illumination changes, shadows and other
artifacts present in real images (see Figure 1). Despite a large effort dedicated
to the LPR systems a robust method for character segmentation remains to be
an open problem.

Segmentation techniques of machine printed characters have been studied
for a long time [2]. Common approaches to character segmentation specially
designed for the LPR systems are based on the projection method [3], the Hough
transform [7] and intensity thresholding with connected component analysis [5].

We approach the segmentation problem differently by using machine learning
methods. In particular, we apply the Hidden Markov Chain (HMC) statistical
model and the maximum a posteriori (MAP) estimation. The statistical model
is learned from a training set of examples endowed with a ground truth seg-
mentation provided by a user. The aim is to derive a method which mimics
the user’s segmentation and which exploits all the prior knowledge specific for
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the application at hand. Namely, we know the number of characters in the li-
cense plate in the Czech Republic and also that the characters can be segmented
into sectors with the same but unknown width. We started from a segmentation
method proposed in [4] which can be applied to find the maximum a posteriori
set of beginnings of a specified number of characters. We extended this method
in such sense that it exploits the knowledge about the equal width of the char-
acters. We will demonstrate the positive effect of the exploited prior knowledge
in the experiment performed on real life data. The proposed method is able to
segment characters correctly even in images of a very poor quality. The error
rate 3.3% was achieved on the testing set with 1000 examples captured by a real
LPR system.

Fig. 1. Example of a car license plate and its ground truth segmentation provided by
an user

The paper is organized as follows. The problem is defined in Section 2. Sec-
tion 3 outlines two related approaches. The proposed segmentation method is
described in Section 4. Section 5 gives experimental evaluation on real life data
and Section 6 concludes the paper.

2 Task Definition

An input image is a sequence x = (x1, . . . , xn) ∈ X ⊂ Rd×n of n column vectors
each of which has d entries. The entries of each column vector are intensity values
coded by real numbers from the interval 〈0, 255〉. The input image contains a
line of m ∈ N characters (alphabets and numerals) which are assumed to be
segmentable into sectors of equal width w ∈ N . The number of characters m
is known while their position in the image and their width w is unknown. A
character position is an index i of an image column xi corresponding to the
beginning of the character. A segmentation of the input image x is a pair (I, w)
where the set of indices I = {i1, . . . , im} ⊂ {1, . . . , n} contains beginnings of m
characters and w is their width. It is further assumed that 0 < i1, iq +w < iq+1,
∀q ∈ {1, . . . ,m− 1} and im + w < n, i.e., characters cannot overlap each other.
The user provides a training set T = {(x1, I1, w1), . . . , (xl, Il, wl)} of examples
which contains triplets composed of an image xj and a segmentation (Ij ,wj).
The aim is to find a strategy which for a given image x returns the segmentation
(I, w) as would be produced by the user.

2.1 Statistical Model

We decided to use the Hidden Markov Chain (HMC) model to describe a rela-
tion between the image x and its corresponding segmentation (I, w). To this end,
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we express the segmentation (I, w) as a sequence of labels y = (y0, . . . , yn) ∈
Y = Ln+1. We assume that the label yi can attain value from a set L =
{0, 1, . . . , wmax} where wmax is the maximal possible character width. The sym-
bol y(I, w) denotes a sequence of labels (y0, y1, . . . , yn) assigned to the segmen-
tation (I, w) such that:

yi =

⎧⎨⎩1 if i ∈ I ,
yi−1 + 1 if yi−1 > 0 and yi−1 + 1 ≤ w ,
0 otherwise.

(1)

The first label y0 which has no corresponding image column is always set to 0. It
plays no role in the segmentation but its presence eases the formal analysis. The
label yi = 0 means that the column xi does not belong to any character. The
label yi > 0 means that xi is the yi-th column of a character. The upper part of
Figure 2 shows an example of an input image x with two characters m = 2 of
the width w = 4 and the corresponding labelling y.

The formula (1) allows to represent the training set T by a new training set
of sequences TXY = {(x1,y1), . . . , (xl,yl)} without loss of any information. A
pair of sequences (x,y) is assumed to be a realization of a random process which
is described by a joint probability distribution function

p(x,y) = p(y0)
n∏

i=1

p(xi|yi)p(yi|yi−1) . (2)

The formula (2) defines a distribution of the HMC model. It is assumed that the
HMC model is determined by a discrete distribution p(y0), a discrete conditional
distribution p(yi|yi−1) and a set of |L| multivariate distributions p(xi|yi), yi ∈
L. All the distributions do not depend on the position i in the sequence. The
bottom part of Figure 2 shows the HMC model and its states aligned with the
corresponding image columns.

The parameters of the distributions were estimated from the training set
TXY . The discrete distributions p(y0) and p(yi|yi−1) were estimated using the
maximum-likelihood principle (e.g. [4]). The Parzen window density estimator [1]
with isotropic Gaussian kernel was used to model the distributions p(xi|yi),
yi ∈ L. The kernel centers were found by the k-means algorithm. The kernel
width and the number of kernels were determined using the cross-validation.

2.2 Maximum a Posteriori Estimation of Segmentation

The main aim is to find a most probable segmentation (I∗, w∗) given an in-
put image x. Each segmentation (I, w) can be equivalently expressed as a la-
belling y(I, w) its construction is described by (1). On the other hand, not
every labeling y ∈ Y corresponds to a valid segmentation (I, w). The symbol
YF = {y(I, w): ∀I, ∀w} ⊂ Y denotes a set of all admissible labelings for which
corresponding segmentations exist. The HMC model (2) can be used to evaluate
a probability p(x,y) for given image x and its labeling y. Thus the estimation of
the most probable segmentation (I∗, w∗) can be seen as the search for the most
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Fig. 2. Illustrative example of a license plate image aligned with the Hidden Markov
Chain model

probable labelling y(I∗, w∗) which belongs to the set of admissible labelings YF .
We define the MAP estimation problem as the following optimization task

(I∗, w∗) = argmax
y∈YF

p(y|x) = argmax
I

max
w

p(y(I, w)|x) . (3)

It is seen that the task (3) cannot be solved directly by the Viterbi algorithm [6]
which computes the MAP estimation of a sequence of labels but it searches
through all possible sequences Y. We started off by a segmentation method pro-
posed in [4] which allows to find the most probable set of indices I, however, the
character width w is not regarded. The method is outlined in Section 3. We used
the idea of the method to derive an algorithm which regards the character width
w and solves precisely the task (3). The proposed algorithm will be described in
Section 4.

3 Related Methods for Maximum a Posteriori Estimation

In this section we mention two related methods applicable for estimation of
the sequence of labels and the segmentation. These methods are the Viterbi
algorithm and the method for MAP estimation of segmentation described in [4].
We used both the methods in experimental comparison against the proposed
approach (c.f. Section 5).

The first related methods is the Viterbi algorithm [6] which computes the
maximum a posteriori (MAP) estimation of the sequence of labels

y∗ = argmax
y∈Y

p(x,y) , (4)

The symbol x ∈ X is the observed sequence and y ∈ Y is the unknown sequence
of labels. Notice that the MAP sequence of labels y∗ is selected from the set
of all possible sequences Y. Therefore, it can happen that the optimal sequence
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y∗ does not belong to the set of admissible sequences YF . The task (4) can be
solved efficiently by the dynamic programming. The computational complexity
of the Viterbi algorithm scales with O(n · |L|2).

The second related method is the segmentation algorithm described in [4]
which solves the following task. Let a set of indices I = {i1, i2, . . . , im} ⊂
{0, . . . , n} define a segmentation. The segmentation I defines a set of admissible
sequences of labels Y(I). An admissible sequence y = (y0, y1, . . . , yn) ∈ Y(I)
satisfies yi = σ, i ∈ I and yi �= σ, i /∈ I. In our application σ = 1, i.e., the set I
contains beginnings of characters (indices of first columns). The probability that
the true segmentation is I equals to the probability that the sequence y belongs
to the set Y(I). The MAP estimation of the segmentation I is defined as

I∗ = argmax
I

∑
y∈Y(I)

p(y|x) = argmax
I

∑
y∈Y(I)

p(x,y) . (5)

It is shown in [4] how to transform the task (5) into another one which is effi-
ciently solvable by dynamic programming. The overall complexity of the method
scales with O(n2 ·|L|2). The proposed extension of this algorithm which considers
also the character width is a subject of the Section 4.

4 Proposed Method for Segmentation

Let a pair (I, w) define a segmentation where I = {i1, i2, . . . , im} ⊂ {0, . . . , n}
is the set of indices and w ∈ N is character width. The indices I denote the
beginnings of characters thus it must hold that 0 < i1, iq + w < iq+1, ∀q ∈
{1, . . . ,m−1} and im +w < n, i.e., all the characters are completely visible and
they must not overlap. A segmentation (I, w) can be expressed using (1) as a
sequence of labels

y(I, w) = (0, ai1−1
1 , bi1+w−1

i1
, ai2−1

i1+w, bi2+w−1
i2

, . . . , bim+w−1
im

, an
im+w) . (6)

The subsequences aj
i = (0, 0, . . . , 0) have all the labels equal to 0 and their

width j− i+1 varies from 0 (empty sequence) to n−mw, i.e., these subsequence
corresponds to the gaps between the characters. The subsequences bi+w−1

i have
the identical form equal to (1, 2, . . . , w), i.e., these subsequences correspond to
the characters. We define the MAP estimation of the segmentation (I, w) as

(I∗, w∗) = argmax
I

max
w

p(y(I, w)|x) = argmax
I

max
w

p(x,y(I, w)) . (7)

We will show that the optimization task (7) can be efficiently solved by dynamic
programming.

Assuming the HMC model (2) allows to write

p(x,y(I, w)) = Φ(i1)

(
m−1∏
q=1

Φ(iq, iq+1)

)
Φ(im) ,
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where

Φ(i1) = p(y0) p(xi1−1
1 , yi1−1

1 |y0) p(xi1+w−1
i1

, yi1+w−1
i1

|yi1−1)

= p(y0)
i1−1∏
q=1

p(xq|yq) p(yq|yq−1)
i1+w−1∏

r=1

p(xr |yr) p(yr|yr−1)

Φ(i, j) = p(xj−1
i+w , yj−1

i+w|yi+w−1) p(x
j+w−1
j , yj+w−1

j |yj−1)

=
j−1∏

q=i+1

p(xq|yq) p(yq|yq−1)
j+w−1∏
r=j

p(xr |yr) p(yr|yr−1)

Φ(im) = p(xn
im+w, yn

im+w) =
n∏

q=im

p(xq|yq) p(yq|yq−1)

The numbers Φ can be evaluated for a given image x and a sequence of labels
y(I, w) given by (6). If w ∈ {1, . . . , wmax} is fixed then the most probable set
of indices I∗(w) can be expressed as

I∗(w) = argmax
i1

argmax
i2

· · ·max
im

(
Φ(i1)

(
m−1∏
q=1

Φ(iq, iq+1)

)
Φ(im)

)

= argmax
i1

argmax
i2

· · ·max
im

(
log Φ(i1) +

m−1∑
q=1

log Φ(iq, iq+1) + log Φ(im)

)
.

(8)
The indices must satisfy 0 < i1, iq + w < iq+1, ∀q ∈ {1, . . . ,m − 1} and

im +w < n. It is easy to see that the task (8) can be already solved by dynamic
programming. Finally, the desired MAP segmentation (I∗, w∗) defined by (7) is
computed as

(I∗, w∗) = argmax
w∈{1,...,wmax}

I∗(w) .

The computation of the numbers Φ requires at most O(n2) operations. Dynamic
programming which requires O(n ·m) operations has to be performed wmax =
|L| − 1 times. Therefore the overall computation complexity is O(n2 · |L|).

5 Experiments

We tested the proposed method on data captured from a real recognition system
for license plates used in the Czech Republic. We compared the following three
methods for segmentation:

MAP-SEQ. The segmentation is computed from the MAP estimation of the
sequence of labels obtained by the standard Viterbi algorithm (c.f. Section 3).
Having the sequence y∗ estimated the beginnings I and widths {w1, . . . , wm}
are extracted.

MAP-I. The MAP estimation of set of m indices I∗ is computed disregarding
the character width (c.f. Section 3). To allow for comparison with other
methods the character width was estimated as
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w∗ = argmax
w∈{1,...,wmax}

p(y(I∗, w),x) ,

where I∗ was fixed to the previously compute MAP estimate.
MAP-Iw. The most probable segmentation (I∗, w∗) computed by the pro-

posed method (c.f. Section 4).

We used l = 1570 examples of images for the estimation of the HMC model.
The number of 1000 examples was used for testing. The images were normalized
to height d = 14 using the nearest neighbor rescaling. No other preprocessing
was used. The number of image columns varied around n = 190. The license
plates contained m = 7 characters.

Every tested segmentation method returned for each input image x a pair
(I, w). Having the segmentation (I, w) the character centers {s1, . . . , sm} can
be computed as sq = iq + w−1

2 , ∀q ∈ {1, . . . ,m}. The ground truth centers
{s∗1, . . . , s∗m} can be determined likewise. The image was recognized to be cor-
rectly segmented if the estimated centers differed from the grounds truth centers
by 20% of the ground truth character width w∗ at most, i.e.,∣∣∣∣(iq +

w − 1
2

)
−
(
i∗q +

w∗ − 1
2

)∣∣∣∣ < 0.2w∗ , ∀q ∈ {1, . . . ,m} ,

must hold, where (I∗, w∗) is the ground truth segmentation.
We also measured the number of individual overlooked characters (false neg-

ative) and the number of individual false detected (false positives) characters.
The total number of characters is m = 7 times higher then the number of images.
The correctly segmented character is again such one its estimated center differs
from the ground truth center by 20% of the ground truth character width w∗

at most. Notice, that the false positives rate equals to the false negatives rate
for the MAP-I and MAP-Iw methods because they are guaranteed to return the
correct number of segmented characters unlike the MAP-SEQ method.

Table 1. Comparison of the segmentation algorithms

Overlooked False detected Incorrect
Method characters characters segmentations
MAP-SEQ 7.8% 3.7% 37.0%
MAP-I 0.9% 0.9% 6.1%
MAP-Iw 0.5% 0.5% 3.3%

Table 1 summarizes the results obtained. It is clear that the segmentation
error decreases as the methods use more and more prior knowledge of the prob-
lem at hand. The MAP-SEQ gives the worst results. The MAP-I improves the
segmentation considerably as it employs knowledge of the number of characters
in the image. The proposed method reduces the error further as it fits best to
the problem at hand, i.e., it employs knowledge of the number of characters as
well as the fact that the characters are of the same width.
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6 Conclusions

We proposed the method for segmentation of a line of characters in an image
of a car license plate. The method uses the Hidden Markov Chains (HMC) for
modeling the stochastic relation between an input image and its correspond-
ing character segmentation. The segmentation is expressed as the maximum a
posteriori estimation problem. The problem leads to the maximum a posteriori
(MAP) estimation of a sequence of labels from a set of admissible sequences.
An efficient algorithm to solve the problem based on dynamic programming was
proposed. The method exploits a specific prior knowledge available for the appli-
cation which helps to reduce the segmentation error considerably. The proposed
method is able to segment characters correctly even in images of very poor qual-
ity. The method achieved an error rate 3.3% estimated on data captured by a
real LPR system.
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Abstract. We propose a fast and robust registration technique for accurately 
imaging lung perfusion and efficiently detecting pulmonary embolism in chest 
CT angiography. For the registration of a pair of CT scans, a proper geometrical 
transformation is found through the following steps: First, the initial registration 
using an optimal cube is performed for correcting the gross translational 
mismatch. Second, the initial alignment is refined by iterative surface 
registration. For fast and robust convergence of the distance measure to the 
optimal value, a 3D distance map is generated by the narrow-band distance 
propagation. Third, enhanced vessels are visualized by subtracting registered 
pre-contrast images from post-contrast images. To facilitate visualization of  
parenchymal enhancement, color-coded mapping and image fusion is used. Our 
method has been successfully applied to ten patients of pre- and post-contrast 
images in chest CT angiography. Experimental results show that the 
performance of our method is very promising compared with conventional 
method with the aspects of its visual inspection, accuracy and processing time.  

1   Introduction 

With the introduction of multi-detector row CT scanners providing high spatial and 
excellent contrast resolution for the pulmonary structures, the importance of 
computed tomography (CT) is increasing in the diagnosis of pulmonary embolism  
[1-3]. The basis of pulmonary embolism assessment on CT images is the direct 
visualization of contrast material within the pulmonary arteries. However, it provides 
only limited information on pulmonary perfusion since lung parenchymal attenuation 
changes as a result of the injection of contrast material are too faint to be identified on 
visual inspection of CT angiography images. If lung perfusion can be well visualized, 
CT may provide more accurate information on pulmonary embolism. 

Several methods have been suggested for visualizing lung perfusion in CT 
angiography [4]. Herzog et al. [5-6] proposed an image post-processing algorithm for 
visualization of parenchymal attenuation in chest CT angiography, which divided into 
five steps: lung contour segmentation, vessel cutting, adaptive filtering, color-coding 
and overlay with the original images. However, the method has a limitation in the 
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direct visualization of emboli by CT angiography alone. Chung et al. [7] evaluated the 
value of CT perfusion image obtained by 2D mutual information-based registration 
and subtraction for the detection of pulmonary embolism. However, they evaluated 
their method using a porcine model under the limited conditions. The 2D registration 
has a limitation to accurately align three-dimensional anatomy. In addition, the 
processing time is about 40 seconds for single slice registration. Thus, it is difficult to 
be useful and acceptable technique for clinical applications in diagnosis of pulmonary 
embolism. 

Current approaches still need more progress in computational efficiency and 
accuracy for detecting attenuation changes of pulmonary vessels in chest CT 
angiography. In this paper, we propose a fast and robust registration technique for 
accurately visualizing lung perfusion and efficiently detecting pulmonary embolism in 
chest CT angiography. Our method is composed of three steps. First, the gross 
translational mismatch is corrected by the optimal cube registration. This initial 
registration is refined by the iterative surface registration. To evaluate the distance 
measure between lung boundaries, a 3D distance map is generated by the narrow-
band distance propagation, which drives fast and robust convergence to the optimal 
value. Finally, image subtraction is performed for visualizing enhanced vessels by 
contrast material. To facilitate visualization of parenchymal enhancement, color-
coded mapping and image fusion is used. Experimental results show that our 
registration method aligns lung boundaries more accurate and much faster than the 
conventional one using a 3D distance map. Accurate and fast result of our method 
would be more useful for detecting pulmonary embolism. 

The organization of the paper is as follows. In Section 2, we discuss how to correct 
the gross translational mismatch. Then we propose a narrow-band distance 
propagation to generate a 3D distance map and a distance measure to find an exact 
geometrical relationship in pre- and post-contrast images of CT angiography. In 
Section 3, experimental results show how our registration method accurately and 
rapidly aligns lung boundaries. This paper is concluded with brief discussion of the 
results in Section 4. 

2   3D CT Lung Perfusion 

Fig. 1 shows the pipeline of our method for 3D CT lung perfusion in pre- and post-
contrast images of chest CT angiography. To find exact geometrical relationship 
between pre- and post-contrast images, one dataset is fixed as mask volume where 
other dataset is defined as contrast volume which is taken after injecting a contrast 
material to the mask volume. In order to extract the precise lung region borders, we 
apply the automatic segmentation method of Yim et al. [8] to our experimental 
datasets. Since our method is applied to the diagnosis of pulmonary embolism, we 
assume that each CT scan is almost acquired at the maximal inspiration and the 
dataset includes the thorax from the trachea to below the diaphragm. Based on this 
assumption and experience, we found that affine transformation would be sufficient 
for the registration of mask and contrast volumes. 
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Fig. 1. The pipeline of proposed method for the 3D CT lung perfusion 

2.1   Initial Registration Using an Optimal Cube 

Although pre- and post-contrast images of chest CT angiography are acquired at the 
maximal inspiration, the position of lung boundaries between pre- and post-contrast 
images can be quite different according to the patient’s unexpected respiration and 
small movement. For the efficient registration of such images, an initial gross 
correction method is usually applied. Several landmark-based registration techniques 
have been used for the initial gross correction. To achieve the initial alignment of lung 
boundaries, these landmark-based registrations require the detection of landmarks and 
point-to-point registration of corresponding landmarks. These processes much 
degrade the performance of the whole process. 

To minimize the computation time and maximize the effectiveness of initial 
registration, we propose a simple method of global alignment using the circumscribed 
boundary of lungs. As shown in Fig. 2(a), a bounding volume, which includes left and 
right lung boundaries, is enlarged by a predefined distance d to be an optimal cube. 
The initial registration of two volumes is accomplished by aligning the centers of 
optimal cubes as shown in Fig. 2(b).   

 

  
(a) (b) 

Fig. 2. The effect of optimal cube registration as an initial alignment (a) the generation of an 
optimal cube (b) after optimal cube registration 
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The processing time of initial registration using an optimal cube is dramatically 
reduced since it does not require any anatomical landmark detection. In addition, our 
method leads to robust convergence to the optimal value since the search space is 
limited near an optimal value. 

2.2   Iterative Refinement Using Surface Registration 

In a surface registration algorithm, the calculation of the distance from a surface 
boundary to a certain point can be done using a preprocessed distance map based on 
chamfer matching. Chamfer matching reduces the generation time of a distance map 
by an approximated distance transformation compared to a Euclidean distance 
transformation. However, the computation time of distance is still expensive by the 
two-step distance transformation of forward and backward masks. In particular, when 
the initial alignment almost corrects the gross translational mismatch, the generation 
of a 3D distance map of whole volume is unnecessary. From this observation, we 
propose the narrow-band distance propagation for the efficient generation of a 3D 
distance map. 

To generate a 3D distance map, we approximate the global distance computation 
with repeated propagation of local distances within a small neighborhood. To 
approximate Euclidean distances, we consider 26-neighbor relations for 1-distance 
propagation as shown in Eq. (1). The distance value tells how far it is apart from a 
surface boundary point. The narrow-band distance propagation shown in Fig. 3 is 
applied to surface boundary points only in the contrast volume. We can generate a 3D 
distance map very fast since pixels are propagated only in the direction of increasing 
distances to the maximum neighborhood. 

))(),1)((min(min)( )(26 iDPjDPiDP ineighborsj += −∈  . (1) 

 
(a)                              (b)                             (c)                                (d) 

Fig. 3. The generation of the 3D distance map using our narrow-band distance propagation. (a) 
lung boundary in contrast volume (b) distance 1 propagation (c) distance 2 propagation (d) 
distance dmax propagation. 

The distance measure in Eq. (2) is used to determine the degree of resemblance of 
lung boundaries of mask and contrast volume. The average of absolute distance 
difference, AADD, reaches the minimum when lung boundary points of mask and 
contrast volumes are aligned correctly. Since the search space of our distance measure 
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is limited to the surrounding lung boundaries, the Powell’s method is sufficient for 
evaluating AADD instead of using a more powerful optimization algorithm. 

−

=

−=
1

0
maskcontrast )()(

1 maskN

imask

iDiD
N

AADD  . (2) 

where )(mask iD  and )(contrast iD  is the distance value of mask volume and the distance 

value of the 3D distance map of contrast volume, respectively. We assume that 
)(mask iD  are all set to 0. 

CN  is the total number of surface boundary points in mask 

volume.  

2.3   Enhanced Vessel Visualization 

A traditional approach for visualizing enhanced vessels after registration is to subtract 
registered mask volume from contrast volume. However, it is difficult to easily 
recognize the lung perfusion using just a traditional subtraction technique when lung 
parenchymal changes as a result of the injection of contrast material are too small. 
After subtraction, we apply color-coded mapping to only lung parenchyma and image 
fusion with original image.  

To facilitate visualization of parenchymal enhancement, the subtraction image is 
mapped onto a spectral color scale, which is interactively controlled by modifying 
center and width of a spectral color. Then the resulting color-coded parenchymal 
images are overlaid onto the corresponding slice of contrast volume. For overlaying, 
all non-parenchymal pixels are replaced by the original pixels of the respective slice 
position and displayed in the usual CT gray-scale presentation. 

3   Experimental Results 

All our implementation and test were performed on an Intel Pentium IV PC 
containing 3.4 GHz and 2.0 GB of main memory. Our method has been applied to ten 
clinical datasets with pulmonary embolism, as described in Table 1, obtained from 
Siemens Sensation 16-channel multidetector row CT scanner. The image size of all 
experimental datasets is 512 x 512. The pre- and post-contrast images of chest CT 
angiography are acquired under the same image conditions excepting the injection of 
contrast material. 

 
Table 1. Image conditions of experimental datasets 

                                                                                                                                                         (mm) 

Subject Pixel size Number 
of slices 

Slice 
interval Subject Pixel size Number 

of slices 
Slice 

interval 
1 0.60 x 0.60 258 1.5 6 0.69 x 0.69 221 1.5 
2 0.61 x 0.61 175 1.5 7 0.60 x 0.60 207 1.5 
3 0.68 x 0.68 174 1.5 8 0.64 x 0.64 420 0.75 
4 0.77 x 0.77 209 1.5 9 0.59 x 0.59 214 1.5 
5 0.58 x 0.58 183 1.5 10 0.63 x 0.63 181 1.5 

 
The performance of our method is evaluated with the aspects of visual inspection, 

accuracy and total processing time. We show the results of visual inspection in Fig. 4 



398 H. Hong and J. Lee 

and 5. Fig. 4 shows two-dimensional comparison of a regular subtraction and our 
method in subject 10 with pulmonary embolism. Regular subtraction has artifacts and 
unwanted residuals within lung parenchyma as shown in Fig. 4(c). The result 
underlines the necessity of registration. The result of our method Fig. 4(d) is obtained 
by subtracting the post-contrast images to registered pre-contrast images. Contrary to 
the regular subtraction, the positional differences are aligned and enhanced vessels by 
contrast material are more distinguishable.  

 

    
(a) (b) (c) (d) 

Fig. 4. The results of proposed method in chest CT angiography of subject 10 (a) pre-contrast 
image (b) post-contrast image (c) regular subtraction (d) proposed method 

Fig. 5 shows the results of color-coded mapping and image fusion on post-contrast 
image. Segmental and subsegmental emboli are detected predominantly in the upper 
lobes of right lung as shown in Fig. 5(a) and (b). In Fig. 5(c) and (d), subsegmental 
emboli are detected in the lower lobes of left lung. We can easily recognize the 
occlusion of the corresponding segmental and subsegmental arteries as color-coded 
mapping and fusion. 

 

     
(a) (b) (c) (d) 

Fig. 5. The results of color-coded mapping and image fusion in subject 6 

Fig. 6 shows how the error, the average of absolute distance difference (AADD), is 
reduced by the initial registration and subsequent iterative surface registration. Since 
the positional difference is almost aligned by the initial registration, iterative surface 
registration rapidly converge to the optimal position. In almost clinical datasets, the 
AADD errors are less than 0.6 voxels on optimal position.  

Fig. 7 shows the results of our method of ten patients in comparison with chamfer 
matching-based registration. The average value of AADD error of our method 
(Method 1) and chamfer matching-based registration (Method 2) are same as 0.6 
voxel. The total processing time is summarized in Table 2 where the execution time is  
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Fig. 6. The accuracy evaluation of corresponding lung boundaries using AADD error per 
iteration 

 

Fig. 7. The accuracy evaluation of corresponding lung boundaries using AADD error per subject 

Table 2. The comparison of processing time for registration 
(sec) 

Registration 
Subject # 

3D distance map generation Distance measure & optimization 
Total processing time 

Method 1 5.7 140.3 146.0 
1 

Method 2 28.4 155.9 184.3 
Method 1 3.1 70.9 74.0 

2 
Method 2 18.9 80.8 99.7 
Method 1 4.2 108.2 112.4 

3 
Method 2 19.0 121.1 140.1 
Method 1 3.5 85.5 89.0 

4 
Method 2 22.7 97.2 119.9 
Method 1 4.0 90.7 94.7 

5 
Method 2 19.9 102.9 122.8 
Method 1 4.8 127.0 131.8 

6 
Method 2 24.0 143.6 167.6 
Method 1 3.9 91.1 95.0 

7 
Method 2 22.4 104.1 126.5 
Method 1 7.1 198.1 205.2 

8 
Method 2 45.5 223.7 269.2 
Method 1 3.9 89.8 93.7 

9 
Method 2 23.7 102.6 126.3 
Method 1 3.8 77.5 81.3 

10 
Method 2 19.6 91.4 111 
Method 1 4.4 107.9 112.3 Avera

ge Method 2 24.4 122.3 146.7 
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measured for registration. The processing time for initial registration of our method is 
so small that it is included in 3D distance map generation step. The total processing 
time of our method is reduced compared with chamfer matching-based registration by 
the initial registration. Moreover, our 3D distance map generation time is much faster 
than that of Method 2. Finally, our method gives similar accuracy to the chamfer 
matching-based registration but much faster than the conventional one. 

4   Conclusion 

We have developed a fast and robust registration method for accurately imaging lung 
perfusion and efficiently detecting pulmonary embolism in pre- and post-contrast 
images of CT angiography. Using the optimal cube registration, the initial gross 
correction of lung boundaries can be done much fast and effective without detecting 
any anatomical landmarks. In the subsequent iterative surface registration, our 
distance measure using a 3D distance map generated by the narrow-band distance 
propagation allows rapid and robust convergence to the optimal value. Our enhanced 
vessel visualization makes the recognition of attenuation variations within lung 
parenchyma easily. Ten pairs of pre- and post-contrast images of CT angiography 
have been used for the performance evaluation with the aspects of visual inspection, 
accuracy and processing time. In visual inspection, we can easily recognize the 
occlusion of the corresponding segmental and subsegmental arteries. The registration 
error of our method is less than 0.6 voxel. In addition, our registration method is 
much faster than the chamfer matching-based registration.  Accurate and fast result of 
our method can be successfully used to visualize pulmonary perfusion for the 
diagnosis of pulmonary embolism. 
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Abstract. In this paper, we employ a zero-order local deformation
model to model the visual variability of video streams of American
sign language (ASL) words. We discuss two possible ways of combin-
ing the model with the tangent distance used to compensate for affine
global transformations. The integration of the deformation model into
our recognition system improves the error rate on a database of ASL
words from 22.2% to 17.2%.

1 Introduction

In sign language recognition, as in other disciplines of pattern recognition, a
considerable number of errors are due to the variability of the input signal.
Each signer may utter a word differently, depending on his individual signing
style or the predecessor and successor of the uttered word. Therefore, a large
visual variability of utterances for each word exists. To model the variability
of utterances, the tangent distance (TD) [1,2] and the image distortion model
(IDM) [3,4] can be used to account for global and local variations, respectively.

The BOSTON50 database is a publicly available database in which the words
are signed with high visual variability. In this paper we present experiments on
this database using Hidden Markov Models (HMM) in a nearest neighbor man-
ner. In [5] we have shown that the error rate using TD instead of the Euclidean
distance in this setup is 22.2%.

Although tangent distance compensates for global affine transformations, it
is sensitive to local image deformations. Therefore, we apply two different ways
to combine the image distortion model with the tangent distance to compensate
for local deformations. This combination enables the classifier to compensate for
both local and global transformations. Using this combination, the error rate
is considerably reduced from 22.2% to 17.2%, which is an improvement of 23
percent relative.

Our system is designed to recognize sign language words using appearance-
based features extracted directly from standard cameras. This means that the
system works without any explicit segmentation or tracking of the hands. Thus,
the recognition can be expected to be more robust in cases where tracking and
segmentation are difficult.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 401–408, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The three signers as viewed from the two camera perspectives

Fig. 2. The topology of the employed HMM

2 Database and Extracted Features

The BOSTON50 database was created from the database of ASL sentences
published by the National Center for Sign Language and Gesture Resources at
Boston University1. It consists of 483 utterances of 50 American sign language
words. The movies were recorded at 30 frames per second and the size of the
frames is 195×165 pixels. The sentences were signed by three different signers,
one man and two women. The signers were dressed differently. The frames of
two cameras were used. One of the cameras shows a front view of the signer, the
other one shows a side view. Sample images of the different views and the sign-
ers are shown in Figure 1. These two views are merged into one feature vector.
According to the experiments reported in [6], the features of the front and side
cameras are weighted with 0.38 and 0.62, respectively.

The feature vectors we have used consist of combinations of down-sampled
original images which are multiplied by binary skin-intensity images and verti-
cal and horizontal derivatives of these images. The images are down-scaled to
13×11 pixels and multiplied by a binary skin-intensity image. Afterwards, the
derivatives are computed by applying Sobel filters. Thus, the feature vector xt

is between 143 and 3×143=429 dimensional. Note that the multiplication with
the binary skin-intensity image is not an explicit segmentation step because it
is a simple pixel-based transformation similar to e.g. Sobel filters.

3 Decision Process

The decision making of our system employs HMMs to recognize the sign lan-
guage words. This approach is inspired by the success of the application of
HMMs in speech recognition [7] and also most sign language recognition sys-
tems [8,9,10,11]. The recognition of sign language words is similar to spoken
word recognition in the modelling of sequential samples. The topology of the
HMM used is shown in Figure 2. There is a transition loop at each state and
the maximum allowed transition distance is two, which means that one state, at
most, can be skipped.

1 http://www.bu.edu/asllrp/ncslgr.html
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In [6] we presented a nearest neighbor approach using HMMs for recognition
of sign language. The decision rule used to classify an observation sequence
xT

1 = x1,. . . , xt,. . .xT in this approach is

r(xT
1 ) = argmax

w

{
max

n=1,...,Nw

{
P r

(
uwn|xT

1

)}}
= argmax

w

{
max

n=1,...,Nw

{
P r (uwn) · P r

(
xT

1 |uwn

)}}
,

where uwn is the n-th utterance of word w and P r(uwn) is the a-priori probability
of an utterance, uniformly distributed, and can thus be neglected. P r

(
xT

1 |uwn

)
is approximated using maximum approximation to be

P r
(
xT

1 |uwn

)
=
∑
sT
1

{
T∏

t=1

P r(st|st−1,uwn) · P r(xt|st,uwn)

}

∼= max
sT
1

{
T∏

t=1

P r(st|st−1,uwn) · P r(xt|st,uwn)

}
.

Here, the transition probability P r(st|st−1,uwn) is uniformly distributed, and
the emission probability P r(xt|st,uwn) is a Gaussian with μst = uwnt, and a
diagonal covariance matrix with σ2

d = σ2 = 0.1:

P r(xt|st,uwn) =
1

√
2πσ2

D
exp

(
−1

2

D∑
d=1

(xtd − μstd)2

σ2

)
.

The feature vector xt is a down-sampled image at time t. Therefore, the sum∑D
d=1(xtd − μstd)2/σ2 is the distance between the observation image at time t

and the prototype image μst of the state st that is scaled by the variances σ2.
This scaled distance can be replaced by other distance functions like the TD or
IDM distance, which we introduce in the following section.

As the number of utterances in the database for each word is not large enough
to have a separate training and test set, the experiments have been performed
using leaving-one-out. That is, one observation is classified using all the other
ones as training observations and this is repeated for all utterances from the
database.

4 Invariant Distances

Because of the visual variability of utterances of each word, invariance of distance
functions is an important aspect in sign language recognition. An invariant dis-
tance measure ideally takes into account transformations of the patterns, yield-
ing small distances for patterns which differ by a transformation that does not
change the class-membership. We briefly describe the tangent distance and the
image distortion model which compensate for global and local transformations
respectively.
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Fig. 3. Example of first-order approximations of affine transformations. (Left to right:
original image, ± horizontal translation, ± vertical translation, ±axis deformation, ±
diagonal deformation, ± scale, ± rotation).

4.1 Overview of Tangent Distance

Let μ ∈ IRD be a class specific prototype pattern, and μ(α) denote a transforma-
tion of μ that depends on a parameter L-tuple α ∈ IRL. Here we assume that the
transformation does not change class membership for small α. Now, the set of
all transformed patterns is a manifoldMμ =

{
μ(α) | α ∈ IRL

}
⊂ IRD in pattern

space. The distance between two patterns can then be defined as the minimum
distance between the pattern xt and the manifold Mμ of a class specific pro-
totype pattern μ. However, the calculation of this distance is a hard non-linear
optimization problem in general. The manifold can be approximated by a tan-
gent subspace M̂μ. The tangent vectors μl that span the subspace are the partial
derivatives of μ(α) with respect to αl. Thus, a first-order approximation ofMμ

is obtained as

M̂μ =
{
μ +

L∑
l=1

αlμl : α ∈ IRL
}
⊂ IRD.

The approximation is valid for small values of α, which is sufficient in many
applications. All patterns depicted in Figure 3 lie in the same subspace and
can therefore be represented by one prototype and the corresponding tangent
vectors. Therefore, the tangent distance between the original image and any of
these transformed images is zero, while the Euclidean distance is significantly
greater than zero. Using the squared Euclidean norm, the TD is defined as

dTD(xt, μ) = min
α∈IRL

{
||xt − (μ +

L∑
l=1

αlμl)||2
}
.

A double-sided TD can also be defined, where both of the manifolds of the
reference and observation are approximated.

4.2 Image Distortion Model

We briefly review an image distortion model that is able to compensate for local
displacements. The efficiency of the model in handwritten character recognition
is shown in [3]. In this model, to calculate the distance between the image frame
xt and the class-specific prototype image μ, instead of computing the squared



Combination of Tangent Distance and Image Distortion Model 405

Fig. 4. Example of the image distortion model. (first row: original image and image
pairs including the transformed image that results from the IDM distance (left) and
artificially distorted image by displacement of the left hand of the signer (right); second
row: difference images to the original image).

error between the pixels xij and μij , we compute the minimum distance between
xij and μi′j′ , where (i′, j′) ∈ Rij , and Rij is a certain neighborhood of (i, j).
According to this definition, the invariant distance can be calculated by

dIDM (xt, μ) =
∑
ij

min
(i′,j′)∈Rij

{d(xij , μi′j′ )}.

The accuracy of the IDM depends on choosing a suitable Rij which leaves the
class-membership unchanged. If Rij is too small, too few deformations can be
compensated. If it is too large, deformations that change class membership are
tolerated. In both cases, the error rate of the classifier will increase. To increase
accuracy in finding the optimal displacement, local image context is used [3]. This
leads to a mapping of edges to edges in the alignment. In informal experiments
we found 7×7 sub images to be optimal. Therefore, the local distance d(xij , μi′j′)
between pixel xij and μi′j′ is chosen to be

d(xij , μi′j′ ) :=
3∑

m=−3

3∑
n=−3

||xi+m,j+n − μi′+m,j′+n||2.

Figure 4 shows the effect of the IDM. The figure consists of an image frame
and three image pairs. Each image pair includes the transformed image that
results from the IDM distance calculation (left) and an artificially distorted
image (right). The difference from the original image is shown in the second row.
The distorted image frames are created artificially by one pixel displacements of
the left hand of the signer. The near-zero difference images for the left images of
the pairs show that the IDM effectively compensates for the artificial distortion.

5 Combination of TD and IDM

To compensate for global and local variations simultaneously, we propose to
combine TD and IDM. Here we apply two different methods for combination.
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Fig. 5. Example of the first combination method. (first row: original image and image
pairs including the transformed image that results from the combination method and
distorted image by axis deformation, diagonal deformation and scaling of the left hand
of the signer, second row: the difference image between the transformed or distorted
image and the original image).

Method A: TD to compare sub images in IDM. In the IDM, only the
displacement of the sub images is allowed. If we calculate the TD instead of
the Euclidean distance d(xij , μi′,j′) between sub images, small affine transfor-
mations in the sub-images are considered. The image frames where only the left
hand of the signer is distorted by axis deformation and where there is diagonal
deformation and scaling of the left hand of the signer are shown in Figure 5.
These distortions are tolerated by the proposed combination method, and the
transformed images that result from the combination method are also shown.
From the difference images, it can be seen that the method accounts for these
transformations. Note that the distorted images are different from Figure 4.

Method B: IDM to compare TD-transformed images. Another possible
way to combine the two invariant distances is the use of the TD before employing
the image distortion model to find the closest image frames in the linear sub-
spaces as proposed in [12]. We employ the one-sided tangent distance using the
tangent vectors of the prototype image μ. The closest image frame in the sub-
space M̂μ to the observation image frame xt is calculated by μ̂ = μ+

∑L
l=1 β̂lμl

where

β̂ = argmin
β

{
||xt − (μ +

L∑
l=1

βlμl)||2
}
, β ∈ IRL.

Thus, μ̂ compensates for small global affine transformations. This μ̂ is then
used in the IDM instead of μ. In this combination, we first account for global
transformations and then for local deformations, yielding a distance function
that is invariant with respect to global transformations and local deformations.

6 Experimental Results

In the experiments, we have used HMMs in a nearest neighbor manner, i.e. each
training observation forms its own HMM, where variance is fixed globally. The
achieved results for using the different distances are given in Table 1. It can be
seen that both combination methods of TD and IDM improve the accuracy of the
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Table 1. Error rates [%] of the classifier with different distances

Distance Original Horizontal Vertical Horizontal & vertical
image gradient gradient gradients

TD [5] 22.2 22.8 23.4 21.3
IDM 21.9 21.5 24.6 23.4
IDM+TD (Method A) 17.2 18.8 18.2 18.4
IDM+TD (Method B) 20.3 21.1 21.5 20.9
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Fig. 6. Error rate of the system with respect to the gradient weight

classifier compared to using one of the invariant distances alone. Consistently,
the best error rate is obtained with method A, which enables the classifier to
model global transformations in the sub images of the image frames.

More experiments have been performed to investigate how to weigh the im-
portance of the local sub images of the original image with respect to the gradient
images. Figure 6 shows the error rate of the classifier using IDM and the two
combination methods of TD and IDM depending on the relative weight of orig-
inal images and derivatives. A relative weight of zero means that only gradient
images are used. The graphs show that the best results are achieved when only
the local sub images of the original images are used. The best error rate of 17.2%
is obtained using combination method A, which is an improvement of 23% rela-
tive. About 65% of the remaining misclassified utterances of the data are due to
very strong visual differences from the other utterances in the database, which
means they are always different from all training utterances when classified.

Unfortunately, a direct comparison with results of other research groups is
not possible here, because there are no results published on publicly available
data so far and research groups working on sign language or gesture recognition
usually use databases that were created within the group.

7 Conclusion

In this paper we have presented two different ways of combining IDM and TD in
sign language recognition to account for visual variabilities. These methods allow
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for recognizing sequences with variations in position, orientation, or size of the
hands or the head of the signer. The TD, accounting for global affine transfor-
mations, and the IDM, accounting for local deformation, complement each other
and allow for compensating a combination of global and local transformations.
The recognition results are consistently improved using the combined method.

In the future, we plan to use these methods on larger databases and in the
recognition of continuous sign language.
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Abstract. We present the first fully three dimensional analysis of the
sinter process of copper using particles of a realistic size. This has been
made possible through the use of μCT. A 3D image processing chain,
applied to each time step of this 4D dataset, followed by image registra-
tion and particle matching steps was used. This allows for the tracking
of individual particle motions during the sintering process, which gives
a large amount of information towards understanding this process.

1 Introduction

Sintering is a process of creating objects starting from a metal or ceramic particle
powder. The particles are filled in crucibles, usually some pressure is applied.
Then the particles are connected by heating the powder at temperatures below
the melting point of the material.

The growth of inter particle contacts during sintering and their rearrange-
ment are well understood and can be observed in particle rows, 2D samples and
the surface of 3D samples. However, in 3D specimens a difference between mea-
sured and predicted shrinkage is observed. The discrepancy can be attributed
to cooperative material transport mechanisms like particle rotations and trans-
lations relative to neighboring particles, which can only be observed in 3D data
obtained from μCT.

Spherical copper powder (diameter 100–120μm) was filled into alumina cru-
cibles and fixed in position by an initial sintering step. For each sintering stage,
a volume image of the specimen was taken using μCT (at room temperature).
Subsequently, the next sintering stage was prepared by heating the specimen
with a rate of 5K/min in a hydrogen atmosphere to the sintering temperature,
which was equal during all sintering steps. Holding time at sintering temperature
was doubled in each sintering step. This results in a series of 8 volume images,
each 903x903x721 voxels large with a voxel spacing of 5.4μm.

In earlier stages of this project, the sintering process was studied using mor-
phological transformations together with measuring geometric characteristics of
the copper component [1] and a combination of the Euclidean distance transform
with Voronoi tessellations [2]. For the results see [3]. However, particles studied
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Fig. 1. Volume renderings of the dataset at beginning of the process and after 635
minutes. Note that the sinter balls are not contained in a sphere, but rather a cylinder
with a half-spherical cap at the bottom. This view is from the bottom.

there were 1mm big, and therefore the numbers of observed particles were about
100. To finer powders (300μm), spectral methods were applied [4]. In the present
series of images, sinter particles are much smaller (100μm) and the number of
observed particles has increased to 10.000, the images require more than 500 Mb
of memory in each of the seven time step. Therefore, segmentation is much more
difficult and an efficient matching algorithm is crucial.

In this paper, we show how to combine several image processing steps to
first segment the copper component and then the individual sinter particles in
each stage. Particles are then registered and matched across time to study their
behavior during the sinter process.

2 Segmentation

The segmentation process for this dataset consisted of a processing chain which
was applied to each 3D dataset in the entire time chain. An example of the
processing chain is shown in Fig. 2.1 for a part of one slice. Each step is a
fully three dimensional algorithm. In order to track the individual balls’ motion
during the sinter process, we need to extract the centers of each ball. In a first
step, we binarize the image. In a second step, the objects need to be separated
in order to identify individual balls. We will write an image as f(x) ∈ N. In
the following we will give details on each of the steps involved in this processing
chain for segmentation.

2.1 Binarization

Since we wish to use the Euclidean distance transform on the results of this step
later, special attention needs to be given to avoid holes within the foreground
regions. Such holes would lead to false local maxima in the distance map, see
Sec. 2.2.
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Fig. 2. Example for the segmentation processing chain, from left to right: Original im-
age slice, binarization, Euclidean distance transformation (EDT) of the inverse binary
image, watershed transformation of the inverse EDT image and labeled sinter balls.

Linear Filtering. To reduce the noise level and eliminate reconstruction arte-
facts in the data, we convolved with a Gaussian kernel. The standard deviation
of the Gaussian was σ = 2 and the total support of the discretized mask was 133

voxels. We used a separable implementation to reduce computational complex-
ity. Linear filters smooth across object edges. Degradation of edge information
was not a problem in this work because of the two-step process proposed here,
which views binarization and separation of sinter balls as separate tasks.

Adaptive Thresholding. The datasets have varying intensity levels through
the image region, i.e. some areas of the dataset appear brighter than others. For
that reason, the simplest possible binarization by global thresholding did not
give useful results. We chose to use an adaptive thresholding described in [5]
which thresholds each voxel relative to the mean value within a window. The
local threshold at voxel x is given by

T(x; c,W ) = MeanW [f(x)] + c ·
√

VarW [f(x)].

MeanW and VarW compute the empirical mean and variance, respectively,
in a local window of user-defined size (2W +1)3 around the current voxel x. The
parameter c scales the threshold’s distance from the mean. We binarized each
time step using c = −0.1 and W = 12. The algorithm was implemented using a
sliding window.

Opening. Morphological opening with an approximate ball as structuring ele-
ment was performed in order to reconstruct some of the spherical structure that
was lost in the previous steps.

2.2 Separation of Sinter Balls

Separation of the particles is necessary in order to compute the centers of the
balls which we used for tracking the balls’ movement, see Sec. 3. The method
described here follows an example in P. Soille’s book [6], where he argued that the
Distance Transform was an appropriate segmentation function for overlapping
blobs.
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Euclidean Distance Transformation. In order to compute the separating
planes between the sinter balls using the watershed algorithm, in a later stage,
we first need to transform the binary image to a height map. Ideally, the ridges
of that map should be the dividing planes between the cells occupied by the
sinter balls. We define the Euclidean distance transform of a binary image as
the distance of all background voxels to the closest foreground voxel. Due to this
definition, we compute

fEDT(x) = minx′∈F

{
‖x− x′‖2

}
, (1)

where F = {x|f̄(x) = 1} denotes the set of all foreground voxels in the
inverted image f̄ .

To compute the exact Euclidean distance transformation in three dimensions,
we follow the hybrid approach described in [7]. In that approach, an approximate
raster-scanning distance transform and an error correction is computed yielding
an exact EDT in two dimensional slices of the 3D dataset. A method due to Saito,
which searches minimal distances along lines is used in the direction orthogonal
to these slices. In [7], it is shown that this hybrid method’s runtimes are below
those of other exact 3D EDT methods for large data and compare favorably even
with approximate 3D EDT algorithms.

Suppression of Local Maxima. The result from the previous step contains
local maxima marking the centers of the sinter balls. These centers will be used
as the starting point for a watershed transformation in the next section. One
problem of the watershed method is that of oversegmentation. A possible strat-
egy to avoid this is to eliminate the number of possible starting points. Thus,
we suppressed local maxima in fEDT by applying the h-maxima method from
[6]. The h-maxima filter cuts all local maxima which stand out farther than h,
here h = 47. See [6] for implementation details.

Watershed Segmentation. As a last step in the segmentation procedure, we
apply the watershed transformation on the complement of the result from all
previous steps, where local minima correspond to the centers of the sinter balls.

Watershed transformations, in two dimensions, have an appealing analogy
of water rising in a topographic map. As water levels rise, water from differ-
ent sources will meet at ”watersheds”, which will represent the separating lines
between regions. The analogy of a topographic map does not hold anymore, in
three dimensions, but the implementation of the method does not change. As
described in [6], we sort the image voxels according to their grey value and pro-
cess voxels in a first-in-first-out (FIFO) queue. By masking the result with the
previous binarization, we get an image of labeled sinter particles.

3 Matching

To track the motion of every single ball over time, we have to find matching
pairs. We first register the datasets and then match particles according to their
distance.
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3.1 Point Cloud Registration

Standard algorithms for geometric alignment of two point sets are the Iterative
Closest Point Algorithm (ICP) and its variants [8]. Aside from runtime consid-
erations for our large dataset (almost 10000 points), ICP is not applicable to our
problem because we cannot provide pre-registered data, which is necessary for
ICP. In our experiments, the specimen was removed from the tomograph several
times, resulting in large rotations between images.

We propose an efficient registration method which can be seen as a gener-
alized Hough transform [9], using the ball centers ci which are computed as
centroids of the segmented objects Oi. We assume that the movements of the
balls have been sufficiently small so that there is still enough structure present
to perform the registration.

The problem is then to register two 3D point sets A and B from two consecu-
tive datasets at each of the seven time steps. Because of the experimental setting
only one rotation angle θ (about the z-axis) and three translation parameters
(t = (tx, ty, tz)T ) have to be determined, i.e. we search for a rigid transformation.
We define a translation invariant similarity measure Sim(A, B) derived from the
displacement histogram H between A and B.

H(q) = #{(x,y)|bin(x− y) = q,x ∈ A,y ∈ B} (2)

bin() maps the difference vectors to discrete indices of histogram bins. The
similarity Sim(A, B) for two point sets A and B is defined as the displacement
histogram maximum over all possible pairs (x,y),

Sim(A, B) = max
x∈A,y∈B

(H(bin(x− y))). (3)

This allows for the separation of the rotational and translational degrees of
freedom so that essentially only a one dimensional search (over the angles) must
be performed, which greatly facilitates the task. The correct registration angle
θreg is computed as the angle corresponding to the rotation of B, Rθ(B), with
the highest similarity to A, θreg = argmax{Sim(A, Rθ(B))}. Fig. 3 shows clear
global maxima in the angle and displacement histograms for one of the 7 steps.

After the registration angle has been determined, the translation vector can
be directly estimated from the displacement histogram. To obtain translation
estimates with increased accuracy we average over all translations corresponding
to the histogram bin with maximum value, denoted by Tmax.

treg =
∑

t
t∈Tmax

/#(Tmax) (4)

3.2 Pair Matching

The weighted matching problem in a graph G = (V, E) consists of finding a
maximum subset of non-adjacent edges M ⊆ E which minimizes

∑
e∈M w(e),

where w(e) is the weight of an edge. Translated to our problem, we can model
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Fig. 3. Left : Similarity measure Sim over rotation angle. Center : The according dis-
placement histogram, bin size 8 × 8 voxels in x and y direction. Right : Percentage of
false matches of our matching heuristic for simulated increasing particle movements.

the (registered, ”r”) point sets as vertices in a bipartite graph, V = Ar ∪ Br,
with edges E only between center points at two consecutive time steps. The
weight function w assigns Euclidean distances to the edges. Note that we loose
directional information by this choice of w. We assume correct registration and
small particle movements.

Solution of this problem is possible in O(n3) steps using Edmond’s algorithm.
We did not apply that method for two reasons: (1) computation would take long
and (2) minimizing the sum over all weights in the matching does not fit to our
problem: We know that each particle will be found in its vicinity in the next
registered time step. This constraint is not contained in the matching problem
formulation. The heuristics recommended for use in [10] do not fit to our problem
for the same reason plus the fact that the ”Spiral Rack” heuristic, described
there, relies on an arbitrary matching subroutine, which does not guarantee us
to match corresponding pairs.

We use a deterministic greedy algorithm: In the first step all pairs are sorted
according to their distance. Next, use all pairs in ascending oder to create the
maximum number of possible unique assignments ignoring those pairs for which
a better assignment has already been found.

This greedy algorithm is known to produce suboptimal results [10]. To esti-
mate the error in our application, consider Fig. 3. For the right plot, we created
a simulated set of 3000 packed points with a minimal distance of 100μm using a
force-bias algorithm [11]. We created uniformly distributed random shifts of this
set, with maximal shift length indicated on the x-axis of this plot. Note that this
shifted set does no longer represent particle centers. Our method’s error is below
5% as long as the maximum movement is below 70% of the particles’ radii. This
is in line with our assumptions.

4 Interpretation

Here we show only few examples of possible measurements, while a full analysis
of the data is currently under way. The result of the matching and registration
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yields the particle movements, see Fig. 4. After large initial movements, the
movement amount drops and remains low. The rise in the plot can be attributed
to the doubling of the sinter periods.

To investigate relative rotation, neighboring particles were detected by scan-
ning the neighborhood in the labeld images. We searched for groups of three
neighboring balls which were matched in two time consecutive steps and mea-
sured the angle between the outer particle centers. The difference angle Δα =
α(t+1)−α(t) before and after a sintering stage is calculated and the maximum
Δα of each sinter ball is taken. This gives a measure for the amount of relative
movement that the balls perform with respect to each other. Correlation of this
rotation measure with the movements described above is much weaker than re-
ported in [3]. This indicates that the causal linkage between particle motion and
rotation may not hold, anymore, for these smaller particles.
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Fig. 4. Measurements after 5, 10, 20, 40, 80, 160 and 320 minutes. Left to right: Median
movements of all matched balls in μm, median relative rotation angles (with boxplots)
and mean coordination number (number of neighbors, with standard deviations).

The above described analysis also yields information on the number of neigh-
bors connected by a sinter neck to a ball. The coordination number (number of
neighbors) is also plotted in Fig. 4. There, we plot the mean instead of the me-
dian because the coordination number is discrete and small trends in the data
cannot be observed as well in a discrete domain as in a continuous one. This
result is consistent with our earlier work [3], where we observed fairly constant
coordination numbers in all sintering stages.

The authors of [11] report a mean coordination number of 6.05 for random
packings of equal spheres obtained by the force biased algorithm and with volume
density 64%. Given the lower volume densities in our samples (57 − 60%), the
higher mean coordination number indicates clustering of the sinter particles.
This means that there are large ”gaps” persisting throughout the sintering. This
finding has to be further examined.
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5 Conclusions

Investigation of the sintering process using μCT combined with volume image
analysis is possible, also for particle sizes close to those used in real sintering
processes. The image processing methods described in this paper allow a wide
variety of measurements and statistical analyses. Further steps of research are
interpretation of the time series of volume images as a 4D image as well as
analysis and modeling of the point process of the particle centers.
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Abstract. A fully automatic method to extract field boundaries from imagery is 
described in this paper. The fields are represented together with additional prior 
knowledge in the form of GIS-data in a semantic model. The approach consists 
of two main steps: Firstly, a segmentation is carried out in a coarse scale 
resulting in preliminary field boundaries. In a second step network snakes are 
used to improve the geometrical correctness of the preliminary boundaries 
taking into account topological constraints while exploiting the local image 
information. Focussing on the network snakes and their specialties the results 
demonstrate the potential of the proposed solution. 

1   Introduction 

Field boundaries have come to be objects of increasing interest during the last few 
years. One application area are geo-scientific questions, for example the derivation of 
potential wind erosion risk fields, which can be generated with field boundaries and 
additional input information about the prevailing wind direction, wind shelters and 
soil parameters [1]. Another area is the agricultural sector, where information about 
field geometry is important for tasks concerning precision farming [2] or the 
monitoring and control of subsidies, which are paid by the European Union to the 
farmers. 

In the past, several investigations have been carried out regarding the automatic 
extraction of man-made objects such as buildings or roads [3, 4]. Similarly, the 
classification of vegetation areas in coarse scales [5] and investigations concerning 
the extraction of trees [6] have been accomplished. In contrary, the extraction of field 
boundaries from high resolution imagery is not in an advanced phase: a first approach 
to update and refine topologically correct field boundaries by fusing raster-images and 
vector-map data is presented in [7]. Focussing on the reconstruction of the geometry 
and features of the land-use units, the acquisition of new boundaries is not discussed. 
In [8] a so called region competition approach is described, which extracts field 
boundaries from aerial images with a combination of region growing techniques and 
snakes. To initialize the process, seed regions have to be defined manually, which is a 
time and cost-intensive procedure. A technique for predicting missing field 
boundaries from satellite images is presented in [9], using a comparison of modal land 
cover and local variance. The approach involves manual post processing, because 
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only fields with a high likelihood of missing boundaries are identified, not field 
boundaries directly. 

The goal of this paper is to highlight a fully automatic method to extract field 
boundaries from aerial imagery or high resolution satellite imagery. Consequently, the 
proposed strategy differs from the mentioned approaches: Initially, the integration of 
imagery and topographic GIS-data1 in one semantic model is described to obtain an 
overview of the numerous relations between the objects to be extracted and the prior 
knowledge. Afterwards, the two main parts of the algorithm are explained in detail: 
At the beginning, a segmentation is carried out in a coarse scale resulting in 
preliminary field boundaries, which are topological correct but geometrical 
inaccurate. The following refinement is accomplished with network snakes, an 
enhanced approach of snakes (active contour models) [10] taking into account 
topological constraints of the initialization while exploiting the local image 
information. Only little work can be found in the literature concerning network snakes 
[11]. A main focus of this paper lies on network snakes with a special attention on the 
control of the nodal and end points of the snakes. The results demonstrate the 
potential of the proposed solution within the complex environment of vegetation. 
Finally, further work required is discussed in the conclusions. 

2   Model and Strategy 

In general, the recognition of objects with the help of image analysis methods starts 
with an integrated modelling of the objects of interest and the surrounding scene [12]. 
Furthermore, exploiting the context relations between different objects leads to an 
overall and holistic description, see for example [13]. The use of prior knowledge 
supporting object extraction can lead to better results as shown in [3]. These aspects 
are incorporated into the model for the extraction of field boundaries and are reflected 
in the resulting strategy of the proposed approach. 

2.1   Semantic Model  

Describing the integration of imagery and GIS-data in one semantic model is our 
starting point for object extraction, as highlighted in detail in [14]. The semantic 
model is differentiated into an object layer, a geometric and material part, as well as 
an image layer (cf. Fig. 1). The model is based on the assumption, that the used 
images imply an infrared (IR) channel and are generated in summer, when the 
vegetation is in an advanced period of growth. 

The use of prior knowledge plays an important role, which is represented in the 
semantic model with an additional GIS-layer. Vector data of the ATKIS DLMBasis 
(German Authoritative Topographic-Cartographic Information System) is used, which 
is an object based digital landscape model of Germany: (1) Field boundaries are 
exclusively located in the open landscape, thus, further investigations are focussed to 
this area. The open landscape is not directly modelled in the ATKIS DLMBasis, this 
is why this information has to be derived by selecting all areas, which are not 
settlements, forests or water bodies. (2) Roads, railways, rivers, tree rows and hedges 

                                                           
1 Topographic GIS-data include settlements, forests, roads, rivers etc., but not field boundaries. 
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can be used within the open landscape as prior knowledge: The locations of these 
GIS-objects are introduced as field boundaries in the semantic model with a direct 
relation from the GIS-layer to the real world (cf. Fig. 1). For example, the ATKIS-
objects 3101 (road) and 3102 (path) are linked to the road of the real world and, thus, 
can be used as field boundaries (i.e. a road is a field boundary). Of course, the 
underlying assumption is based on correct GIS-objects. The modelling of all GIS-
objects in the geometry and material layer together with the image layer is not of 
interest, because they do not have to be extracted from the imagery (depicted with 
dashed lines in Fig. 1). Nevertheless, additionally extracted objects which are not yet 
included in the GIS-database can be introduced at anytime. 

The object to be extracted, the field, is divided in the semantic model in field 
boundary and field area in order to allow for different modelling in the layers: The 
field boundary is a 2D elongated vegetation boundary, which is formed as a straight 
line or edge in the image. The field area is a 2D vegetation region, which is a 
homogeneous region with a high NDVI (Normalized Difference Vegetation Index) 
value in the colour infrared (CIR) image. 

 

 

Fig. 1. Semantic Model 

2.2   Strategy to Extract Field Boundaries 

The general strategy for the extraction of field boundaries is derived from the 
modelled characteristics of the fields and their surrounding boundaries taking into 
account the realization of an automatic processing flow. Imagery and GIS-data are the 
input-data to initialize the process: First, the open landscape is derived from the GIS-
data (cf. section 2.1). In addition, within the open landscape, regions of interest are  
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selected using the roads, railways, rivers, tree rows and hedges as borderlines (cf. the 
thick black lines in Fig. 2 and 4). Consequently, the borderlines of the regions of 
interest are field boundaries, which are already fixed. The following image analysis 
methods are focused to field boundaries within the regions of interest. 

The main approach extracting field boundaries within the regions of interest is 
divided into two parts: Firstly, a segmentation is carried out in a coarse scale ignoring 
small disturbing structures and thus exploiting the relative homogeneity of the 
vegetation within each field. The aim is to obtain a topological correct result, even if 
the geometrical correctness is not very high. Secondly, network snakes are used to 
improve the preliminary results. These two steps are described in detail in the next 
two sections. 

3   Segmentation 

In each region of interest a segmentation is carried out to exploit the modelled similar 
characteristics of each field. The border area is masked out due to disturbing 
heterogeneities, which are typical for fields and derogate the subsequent steps. As 
data source the RGB- and IR-channels of the images with a resolution of few meters 
are used to perform a multi-channel regiongrowing. The four channels give rise to a 
4-dimensional feature vector: Neighbouring pixels are aggregated into the same field 
region, if the difference of their feature vectors does not exceed a predefined 
threshold. Also, in concert with the modelled constraints, the resulting field regions 
must have a minimum size. 

 

 

Fig. 2. Exemplarily result of the segmentation: black lines are the borders of the regions of 
interest generated from the GIS-data, white lines are the preliminary field boundaries 
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The case of identical vegetation of neighbouring fields leads to missing boundaries, 
which is not yet taken into account: Accordingly, the standard deviation of the grey 
values in the image within a quadrate mask is computed. High values typically belong 
to field boundaries. Extracted lines [15] from the standard deviation image within 
only sufficiently large field regions are evaluated concerning length and straightness. 
Positive evaluated lines are used to split the initially generated field regions. 

One result is shown in Fig. 2: borders of the regions of interest are depicted in 
black, preliminary field boundaries are depicted in white, the underlying and used 
imagery are IKONOS-data. The completeness and topological correctness is good, as 
a comparison with reference data has shown: only few boundaries are missing. 
Problems occur, when there are large heterogeneities within a field, in particular in 
grassland. 

4   Network Snakes to Improve the Preliminary Field Boundaries 

Snakes were originally introduced in [10] as a mid-level image analysis algorithm, 
which combines geometric and/or topologic constraints with the extraction of low-
level features from images. A traditional snake is defined parametrically as [10, 11] 

( ) ( ) ( )( )tsytsxtsv ,,,, =  , (1) 

where s is the arc length, t the time, and x and y are the image coordinates of the 2D-
curve.  
The external energy (image energy) is defined as 

( ) ∇−=
v

I dstsvI
v

vE
0

)),((
1

 , (2) 

where I represents the image, |∇I(v(s,t))| is the gradient of the image at the 
coordinates x(s) and y(s) and |v| is the total length of v. In practice, the external energy 
EI(v) is computed by integrating the gradient values |∇I(v(s,t))| in precomputed 
gradient images along the line segments that connect the polygon vertices. 
The internal energy is defined as 

( ) ( ) ( ) ( )( )22

2
1

),( ,'',' tsvstsvsE tsv ⋅+⋅= βα  , (3) 

where the arbitrary function α(s) controls the first-order term of the internal energy: 
the elasticity. Large values of α(s) let the contour becomes very straight between two 
points. The function β(s) controls the second-order term: the rigidity. Large values of 
β(s) let the contour becomes smooth, small values allow the generation of corners. 

The total energy of the snake, to be minimized, is defined as Esnake = Ev(s,t) + EI(v). 
A minimum of the total energy can be derived by embedding the curve in a virtual 
viscous medium solving the equation  
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where  is the viscosity of the medium and  is the weight between internal and 
external energy. After insertion of 

( )
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∂

  and  
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, −−= tsvtsv
dt
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 (5) 

in equation 4 a final solution for the contour at point t depending on point t-1can be 
computed: 

( ) ( )
( )1,1,

1
, −∂

∂−+= −
−

tsv

vE
VIAV I

tsts κγγ  , (I: identity matrix) (6) 

Vs,t stands for either X or Y, the vectors of the x and y coordinates of the contour. A is a 
pentadiagonal matrix, which depends only on the functions α(s) and β(s).  

A main problem of snakes is the necessity to have an initialization close to the true 
boundary. Methods to increase the capture range of the image forces (e.g. pressure 
forces [16]) are not useful in our case, because there are lots of disturbing structures 
within the fields, which can cause an unwanted external energy and therefore a wrong 
result. Thus, only the local image information is of interest. As described in section 2, 
the result of the segmentation is used to initialize the processing (cf. Fig. 2 and 4a). 

 
Most important is in addition to the 

good initialization the derivation of the 
topology of the initial contours (cf. 
Fig. 3 for an example). The global 
framework of the accomplished 
segmentation (cf. section 3) gives rise to 
a network of the preliminary field 
boundaries: Enhancing traditional 
snakes, network snakes are accessorily 
linked to each other in the nodal points 

(point 4 in Fig. 3) and thus interact during the processing. Similarly, the connection of 
the end points of the contours to the borders of the region of interest must be taken 
into account (point 1, 7 and 10 in Fig 3): In contrast to the nodal points, a movement 
of the end points is only allowed along the borders of the regions of interest. These 
topological constraints are considered, when filling the matrix A in equation 6 with 
the functions (s) and (s), which are in our case taken to be constant.  

5   Results 

First results concerning the use of network snakes to extract field boundaries from 
IKONOS-images are shown in Fig. 4: Zooming to the lower right part of Fig. 2, one 
region of interest is selected to demonstrate the different steps during the processing. 
Fig. 4a shows the preliminary field boundaries after the segmentation, which are used 
to initialize the network snakes. The result of the network snake processing is depicted 
in Fig. 4b together with the initialization to demonstrate the movement of the snake. 
Fig. 4c shows the image superimposed with the result of the extracted field boundaries. 
The example demonstrates, that network snakes are a useful possibility to improve the 
geometrical correctness of topologically correct but geometrically inaccurate results. 

 

Fig. 3. Topology of a network snake 
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a)                                                 b)                                                 c) 

Fig. 4. First result of the use of network snakes within one region of interest:  
a) initialization of the network snake superimposed to the absolute values of the gradients; 
b) initialization (white) and result after the movement of the snake (black); c) extracted field 
boundaries superimposed to the image. 

6   Conclusions 

A method to extract field boundaries fully automatically from imagery is presented in 
this paper. The objects of interest are represented with their surrounding scene and 
prior knowledge in the form of GIS-data in a semantic model. Derived from the 
modelled knowledge the initial step of our approach is the generation of regions of 
interest, thus, further investigations are only focussed to the field boundaries within 
these regions. The process is divided into two parts: First, a segmentation in a coarse 
scale gives a topological correct framework of the field boundaries. The inaccurate 
geometrical correctness is improved in a second step with network snakes, which use 
the local image information for a precise delineation taking into account the 
topological constraints. The presented results demonstrate the potential of the 
proposed solution in the complex environment of vegetation. Further work is 
required: The segmentation could be enhanced by a multi-resolution approach to 
stabilize the basic step of the strategy. In addition, a texture channel could be used to 
prevent wrong field boundaries, which occur, when there are large heterogeneities 
within a field and the predefined thresholds fail. The control of the network snakes 
could be improved by selecting variable values when filling the matrix A to increase 
the geometrical correctness furthermore. 
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Abstract. The geometric structure of an image exhibits fundamental
information. Various structure-based feature extraction methods have
been developed and successfully applied to image processing problems.
In this paper we introduce a geometric structure-based feature generation
method, called line-structure recognition (LSR) and apply it to content-
based image retrieval. The algorithm is adapted from line segment co-
herences, which incorporate inter-relational structure knowledge encoded
by hierarchical agglomerative clustering, resulting in illumination, scale
and rotation robust features. We have conducted comprehensive tests
and analyzed the results in detail. The results have been obtained from
a subset of 6000 images taken from the Corel image database. Moreover,
we compared the performance of LSR with Gabor wavelet features.

1 Introduction

During the last years Content-Based Image Retrieval (CBIR) gained in impor-
tance and helped pushing research forward in different computer science disci-
plines. Despite of all undertaken endeavors there are still many unsolved prob-
lems left within CBIR. This paper describes line-structure recognition (LSR),
a geometric structure-based feature extraction method and apply it to CBIR.
Structure and/or shape-based features have been proven to be useful image fea-
tures in CBIR. There are various approaches in the literature, dealing with shape
and structure-based feature computation. In [1] the authors focused on color
and shape information, where the shape attributes have been extracted from
signif icant edges. The histogram of the edge directions was used to represent
the shape attribute. The comparison of histograms was accomplished with the
histogram intersection methods. [2] used various types of statistical feature vec-
tors from the edges in non-segmented images. Decimated magnitude spectra of
edge images, local edge-histogram-based features, including the co-occurrence
matrix of edge directions have been used. The distribution of edge points orien-
tations, combined with the normalized second moments, was taken as a feature
vector by [3].

The method we propose exhibits relative context knowledge encoded from
straight line segments. In a further step an adaptive hierarchical clustering al-

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 425–433, 2005.
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gorithm is applied, where after line segments of certain properties are grouped
together, describing various spatial and geometrical arrangements.

2 Methodology

2.1 Line Segment Extraction

Before we can compute line segments it is necessary to generate edge maps from
each image. We apply the well known Canny edge filter [4] to obtain edge images
from all images of the database which we before converted to gray scale. Thus, we
do not consider or use color information for our feature extraction. In a further
step we link edge points together, resulting in straight line segments [5][6]. The
set of line segments serves as ground truth features of our algorithm.

2.2 Distance Matrix

Euclidean distance geometry is the computation of point configurations by incor-
poration of inter-point distance relations. An Euclidean distance matrix (EDM)
is a real n× n matrix D, of distance-square dij , between pairs of points from a
table of M points; {yk, k = 1...M} in �n;

Dij = ||yi − yj ||22 , where ‖ · ‖2 is the 2-norm on �n. (1)

An EDM D inherits all identities from the defining norm. Furthermore, D is an
EDM if and only if the diagonal entries of D are all zero. The dimension of D
is M2, but only M(M − 1)/2 elements of the matrix are unique. A complete
description of all EDM properties and proofs may be found in [7]. Since the con-
ventional approach of using points as input for the EDM does not fully describe
the geometric structure of an image, we decided for an integrated approach.
A more complete view of the geometrical image structure can be obtained by
spatial and relative information primitives, like straight line segments. Thus, we
construct 3 EDMs of the same size, with the following input data:

1. The image plane mid-point coordinates of each line segment.
2. The angles of each line segment with respect to the ordinate to obtain a

rotation robust EDM.
3. The normalized line lengths of each line segment to gain scale robustness

and avoid scaling problems.

Table 1. Range of EDM data

Feature Range Explanation

Angles (Φ) [−π,π] Angles between line segments
Lengths [0, 1] Differences of line segment lengths
Distances [0, 1] Scaled distances between mid-points of line segments
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In a further step we combine all 3 EDMs into one by element-wise multiplication,
i.e. having coded the structure interrelationships of an image in one matrix. Table
1 shortly summarizes the content of the EDM data settings. The final EDM
serves as an input to an agglomerative hierarchical clustering analysis method,
which is described in the next paragraph.

2.3 Clustering Line Segments

To group straight line segments into various clusters we apply hierarchical cluster
analysis (HCA). Agglomerative hierarchical cluster analysis techniques charac-
terize input data into partitions based on measured properties. The algorithm
starts with each case (each line segment) in a separate cluster and then com-
bines the clusters sequentially, reducing the number of clusters at each step until
only one cluster remains (N cases involve N-1 clustering steps). The number of
clusters is determined by the algorithm from the created dendrogram, which con-
tains the inter-cluster distances. Note, the number of cluster need not be known
before the computations start. This was an important reason for us to chose
HCA, since the number of detected straight line segments varies from image to
image.

Linkage is the criterion by which the clustering algorithm determines the ac-
tual distance between two clusters by defining single points that are associated
with the clusters in question. There exist several linkage methods, frequently
used are single, complete, average, centroid and ward linkage. During the pre-
processing steps we reduced the number of line-segments. Thus, there are not
many items left to be clustered, i.e. we expect clusters with few members. Since
none of the methods performed significantly better we decided for single linkage,
defined as follows:
Dkl = min (dist(xki, ylj)); k ∈ (1, ..., ni), l ∈ (1, ..., nj), where ni and nj are the
number of objects in cluster k and l, respectively. xki denotes the ith object in
cluster k. Since we provide a special EDM to our HCA algorithm we are able
to group line segments with respect to certain quantities into K clusters. The
output of the HCA algorithm can be seen as a grouping of line segments under
geometric constraints. For a better representation of the clustering output we
create for each image a histogram of dimension 128, which depicts the geometri-
cal structure of the input image. The dimension was obtained from experimental
and feature space considerations, i.e. the histogram size reflects a tradeoff be-
tween a sufficient representation of the image characteristics and performance
aspects.

3 Results

In this section we first describe the used image database and focus further on
the comparison of LSR with Gabor wavelets. In the end we present results and
analyze them in detail.
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3.1 Data Description

We have conducted our experiments for reasons of comparison with the widely
used Corel Image database [8] [9]. We have chosen 6000 random images consisting
of 60 different classes. Each class contains 100 semantically similar images. We
decided for this size to gain an optimal tradeoff between a representative image
database size and keeping the manual validation of the results possible. It should
be noted, that the class assignments of the images were performed by Corel.
Although some images within a class possess a weak semantic similarity and
thus, may distort the results, we did not modify the binning. Since we use 60
different image classes there are similar images within various classes, e.g. the
classes Boston and New York contain mainly images of buildings.

Table 2. A comparison of the LSR and Gabor wavelet performance. The results for
6 random classes plus 2 image classes of our sample queries from Figures 2, 3, 4 and
5, are shown. The numbers indicate how many images within the first 10, 20 and 25
resulting images do not belong to the query image class, thus representing a mismatch.
Note, that the numbers depict averaged values, i.e. each image of a class was used as
a query. The mismatches were recorded and in the end averaged over all queries.

Features LSR feat. Gabor feat.
within first 10 20 25 10 20 25

Monaco 0 2 4 7 16 20
Cloth 0 3 4 6 15 20
Waves 1 3 5 6 15 20
Shells 0 3 4 6 15 20
Building 0 0 0 6 16 20
Speed 1 4 6 6 15 20
Vineyard 0 3 5 7 16 20
WildlifeCats 1 3 4 5 13 27

Gabor Features We decided to compare our features with the well known
Gabor functions, which are a set of oriented filters and have been very success-
fully applied to various CBIR problems [10] [11] [12]. In detail, Gabor wavelets
capture energy at specific frequencies and directions. For a comprehensive study
of Gabor wavelets we refer the interested reader to [13] [14]. We applied Gabor
filters on various scales and under different orientations, obtaining a magnitude
vector.

E(a, b) =
∑
x

∑
y

|Gab(x, y)|2 , (2)

where x, and y are the image dimensions and with a = 1, 2, ...A and b = 1, 2, ...B,
being the number of wavelet scales and number of orientations, respectively. In
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a consequent step we achieve rotation invariance by averaging the amplitude
energy over the orientations for each scale. We extracted the Gabor features for
the whole image database and stored them as histograms.

Similarity Measure For searching after similar images within a database, a
measure, capturing the similarity between the query image feature vector and
all feature vectors of a given database is necessary. The choice of the correct
similarity measure stays an open discussion [15]. However, since our feature
vectors are ∈ �n the usage of �n distance functions is reasonable. We found
out that the histogram intersection measure, which is identical to the L1 −
norm in case of normalized histograms, performed the best for our features.
All following image retrieval results have been generated with the histogram
intersection similarity measure. Note, that the measure returns values between
[0,1] with 1 as being identical with the query image feature vector.
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Fig. 1. Recall versus number of retrieved images plots, averaged over 100 queries of 2
random image classes. Left graph: Result for the class Y emen, where the dashed line
was obtained by LSR and the solid line with the Gabor features. Right graph: Results
for the class Grafitti where the lines have the same meanings as in the left graph.

3.2 Evaluation and Discussion

For the evaluation of our algorithm we selected all image classes, resulting in 100
queries per class. From the resulting hitlist we consider each retrieved image out
of the query image class as a match. For an objective performance evaluation we
took every image out of the database as a query and computed the precision and
recall. Finally, we averaged the results of all 100 queries for each class. Thus, we
obtained a quantitative evaluation of the performance. Due to space limitations
we show in Fig. 1 the averaged recall versus number of retrieved images plot for
just two random classes, namely Y emen and Graf itti. The left plot shows results
for the image class Y emen and the right one of the class Graf itti, where the
dashed lines were created with our proposed method and the solid lines depict the
results of the Gabor wavelets. It has to be stressed that a large number of relevant
images was obtained by LSR already within the first 1% of all retrieved images.
This gives it an clear advantage over the Gabor wavelets for the Corel image
database.
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1 0.930061 0.911459 0.900821Query

0.858554

0.811858

0.809159

0.804631 0.804424

Fig. 2. An exemplary random image search retrieved by our structure features, with
the upper left image as the query image. One can see the 9 most similar images, where
the similarity decreases from left to right, indicated by the numbers displayed above
each image. Note, that all displayed images belong to the query image class.

1 0.990278 0.987251

0.985237

Query

0.984497 0.982885

0.982596 0.981781

0.981739

Fig. 3. This figure shows the Gabor wavelet results generated with the query image
out of Fig.2.

Since Fig. 1 shows the averaged overall performance for 2 random classes,
but not an exemplary retrieval result, we visualize in Fig. 2 and Fig. 3 results
from a randomly chosen query image. The results of Fig. 2 are obtained with
our method, where the output in Fig. 3 was generated with Gabor wavelets for
the same query image as in Fig. 2. It can be seen that both methods find the
query image as most similar, first. Figure 2 shows that the structure informa-
tion from our features capture enough discrimination ability to find leopards in
very different surroundings and under different light conditions. Our features
are quite robust against illumination changes and do not suffer too much from
various background. This result illustrates the advantage of context knowledge
we have built in our features, in contrary to the wavelet results. The wavelet
results from Fig. 3 show images with similar textures as the query image but
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1 0.989729 0.989671 0.987436Query

0.979996 0.979863 0.979249 0.978261

0.975338

Fig. 4. Results produced with LSR features. The images are ranked in decreasing
similarity order from left to the right. The numbers indicate the obtained similarity,
where 1 means identical.

1 0.995868 0.995536

0.995499

Query

0.994816 0.994593 0.993787 0.993743 0.993587

Fig. 5. Results obtained with Gabor features for the identical query image from Fig.4,
with the same arrangement as in Fig.4.

only one image out of the first 9 retrieved images is from the W ildlife− Cats
class. For a more detailed validation we present another retrieval result with a
random query image. Figure 4 and Fig. 5 possess the same query image but have
been retrieved with LSR features and with wavelet features, respectively. Note,
that all images displayed in Fig. 4 belong to query image class V ineyard. More-
over, we can see that the retrieved images are very similar in their appearance.
A manual verification of this query revealed that the image class V ineyard does
not only contain outdoor images of vineyards but also indoor images of bar-
rels, wine-glasses, people and bottles, thus, semantic similar images. However,
our algorithm retrieved first all images from the class V ineyard with similar
structure. The results shown in Fig. 5 have been produced with the wavelet fea-
tures describe earlier. It can be seen, that for the first 9 retrieved images the
LSR feature clearly perform superiorly for this query image. Table 2 gives a
more quantitative analysis of the query image classes depicted in Fig 2, 3, 4 and
Fig. 5. We can see how many mismatched images, i.e. from a different class, are
retrieved within the first 10, 20 and 25 results, respectively.
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4 Conclusion

In this paper we have presented LSR, a generic structure-based feature compu-
tation method which we applied to CBIR. We have conducted a comprehensive
evaluation and analysis of the results. The results have been obtained from a
set of 6000 images taken out of the commonly used Corel image database. We
have compared LSR with the well known and widely used Gabor wavelet energy
feature approach. The results and their validation showed that generic structure
information captured by LSR perform in the case of CBIR using Corels image
database, significantly better than Gabor wavelets. The results show that our
proposed method is robust against illumination changes and exhibit scale and
rotation robustness too. The analysis revealed that our method is able to find
similar geometrical structure of objects and scenes and thus, it is suitable for
CBIR applications.
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Abstract. Dental Panoramic X-ray images are images having complex
content, because several layers of tissue, bone, fat, etc. are superimposed.
Non-uniform illumination, stemming from the X-ray source, gives extra
modulation to the image, which causes spatially varying X-ray photon
density. The interaction of the X-ray photons with the density of matter
causes spatially coherent varying noise contribution. Many algorithms
exist to compensate background effects, by pixel based or global meth-
ods. However, if the image is contaminated by a non-negligible amount
of noise, that is usually non-Gaussian, the methods cannot approximate
the background efficiently. In this paper, a dedicated approach for back-
ground subtraction is presented, which operates blind, that means the
separation of a set of independent signals from a set of mixed signals, with
at least, only little a priori information about the nature of the signals,
using the A-Trous multiresolution transform to alleviate this problem.
The new method estimates the background bias from a reference scan,
which is taken without a patient. The background values are rescaled by
a polynomial compensation factor, given by mean square error criteria,
thus subtracting the background will not produce additional artifacts in
the image. The energy of the background estimate is subtracted from the
energy of the mixture. The method is capable to remove spatially vary-
ing noise also, allocating an appropriate spatially noise estimate. This
approach has been tested on 50 images from a database of panoramic
X-ray images, where the results are cross validated by medical experts.

1 Introduction

Non-uniform illumination of any kind generates non-uniform background in an
image. The term background comes from the usual classification of the image
data into regions of interest and unwanted regions, referred foreground and back-
ground, respectively [13]. A number of different algorithms exist for removal of
these effects, but if the image is contaminated by a non-negligible amount of
noise, most of them are unable to give good results, especially, when the noise
is non-Gaussian.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 434–441, 2005.
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1.1 Background Removal Methods

There exist Non-parametric [10], Pixel Based (like Kalman filtration [11] or
Adaptive Thresholding [12]) and Global Methods, which generate the rules for
the adaption of the background estimate from some measurable image attributes.
Most approaches are preempt to images sequence analysis and detection of mov-
ing objects for surveillance use (see [6] and the references herein). A stationary,
challenging task, is the reconstruction at forensic document examination [9].

A polynomial fit to a number of points associated with the background is
appropriate when the non-uniformity is additive, and the resulting polynomial
surface is subtracted from the whole image. For multiplicative non-uniformity,
a correction image is generated, corresponding to the polynomial surface. The
correction image has factors that represent the ratio of brightness between the
non-uniform image and the uniform one and is applied to scale the original image
values appropriately.

In [17] the background is defined to be the bright surrounding area of the
X-ray film viewing box, where the X-ray film size is smaller than that viewing
box. Thus the surrounding, bright white area has physiological influence on the
detectability of contrast details in the darker X-ray film area [2]. The algorithm
builds up a probabilistic model and cuts out the radiography by the biggest
gradient at its border. The proposed, new approach is different in that it removes
also unwanted modulation from the image of interest.

1.2 Basics of Panoramic Radiography

Dental Panoramic Radiography (DPR) is a technique where the entire dentition
is projected onto a sensing device. The physics of such a radiographic process
can be subdivided into X-ray source, interaction of the beam with matters and
imaging of the surviving photons. Source and detector are in opposition, ro-
tated around the patients head. The focal area of the X-ray beam describes a
planar curve, which is standardized for the human teeth and jaws. The pho-
ton attenuation of each type of matter depends on its elementary and chemical
composition as well as the beam. This effect is quantified by the linear mass at-
tenuation coefficient μ, which gives the fraction of photons that are absorbed by
unit thickness of matter [8], which varies by photoelectric absorption, coherent
scatter, Compton scatter and the energy spectrum of the beam [1,4].

1.3 Image Degradation

The scattering of the photons due to their crossing of matter causes two effects:
firstly an attenuation of the photon beam by different type or thickness of matter
that excite the generation of the radiographic image; secondly scattered photons
darken the film while carrying no useful information, because their path is ran-
domly altered. Only photons absorbed by matter generate good image contrast.
During a DPR scan of the entire dentition, the photon rate has to be increased,
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when the X-ray beam crosses bones from the spine region. Thus a multiplica-
tive non-uniform illumination of the radio graph is caused, leading to additional,
spurious modulation of the image.

In this work, a new approach to background subtraction, which is a process
to correct an image for non-uniform background or non-uniform illumination is
considered. The new approach takes a image without a patient as an estimate
for the background. A model is given, which separates diagnostic information
from background information and takes noise into consideration.

2 The Method Explained

As the geometry of the DPR system is fixed, a scan, taken without a patient
can provide a good estimate for the background. Unfortunately, subtracting a
background estimate directly from the diagnostic image usually increases the
noise contribution in the difference image, because noise cannot be subtracted
from noise in the spatial domain. Therefore, it is more convenient to perform
this subtraction in another domain.

The A-Trous multiresolution transform [7] is used to form an undecimated,
over complete representation, by decomposing the image into different contribu-
tions in several frequency bands and at different scales. The algorithm a-trous
involves upsampling the filters (adding holes) at each scale instead of downsam-
pling the signal. Upsampling the filters is accomplished by inserting 2J−k zeros
between each filter coefficient, where J is the highest level of decomposition, and
k is the current level of decomposition. It requires more computations than the
fast biorthogonal wavelet transform, but has the advantage of being translation
invariant. Thus it is an overcomplete representation, which have been proven to
be better for denoising purposes.

2.1 Image Model

The X-ray generator in Fig. 1 produces photons having Poisson count statis-
tics; the arrival-time difference between successive Poisson counts is Gamma
distributed; the photons, with intensity I0, travel through collimator and filter
to the patient. Thus, the intensity I1 can be measured as it is proportional to
the photon input energy to the patient. This photon energy interacts with the
different layers of matter of the patient, therefore one can measure I2 at the
sensor. Formulating the physical situation of Fig. 1 in mathematical terms of
linear attenuation coefficients leads to

I2 = I0 · exp(−μ01 d01)︸ ︷︷ ︸
background scatter︸ ︷︷ ︸

I1

· exp(−
K∑
i=1

(μi di)︸ ︷︷ ︸
diagnostic scatter

(1)

In (1) the intensity I2 at the sensor is decomposed into the background part I1,
which is further attenuated by the diagnostic part. Photoelectric absorption and
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Compton scattering, as the main contributors for scattering the beam, induce the
contrast function of matter, which forms the image. Unfortunately they produce
also an amount of non-negligible noise. The statistic is quite non-Gaussian.

In [4] the authors of this paper introduced a noise estimation model for
DPR. It models the probabilities for scattering events and generates a scatter
prior table, which is used together with a background and a diagnostic image
to estimate the amount of scatter-glare. The spatially varying contribution of
noise is modeled by locally Gaussian random variables N(0, 1), modulated by
hidden factors ξ, representing the variance of every pixel in the image. Since the
exposure time is long (about 14 seconds for an entire panoramic scan), photon
counts get quite high, thus stressing the central limit theorem, one can argue
that for each exponential term in (1) the contribution of noise is given by an
additive term of locally Gaussian noise, scaled by a spatially dependent, hidden
factor ξ. Therefore, modeling the images and contributions of noise leads to

Ẑx,y(I2) = Zx,y︸︷︷︸
image

+ ξ(1)
x,yNx,y(0, σ)︸ ︷︷ ︸

noise︸ ︷︷ ︸
diagnostic mixture

+ Bx,y︸︷︷︸
illumination

+ ξ(2)
x,yNx,y(0, σ)︸ ︷︷ ︸

noise︸ ︷︷ ︸
background mixture

(2)

In(2), Ẑx,y is the output image, generated by I2 following (1), decomposed
into the diagnostic mixture and the background mixture. Both mixtures are
subdivided into a deterministic part and an additive random part. As explained
above, the random parts have locally Gaussian statistic with a scale factor ξ(n).

The estimate of the background mixture is taken with the same operating
parameters as the patient scan, but without patient. Accordingly to (1) the effect
of the non-uniform background illumination to the image I2 is multiplicative. To
alleviate this, one possible solution leads to a formulation of the image model
in terms of transmittance, which considers the fraction of I2

I1
as the image of

interest [5]. The present paper goes a different way in that I1 is scaled accordingly
to I2, by a scale factor concerning mean square error fitting of two polynomials
p1, p2 to I1, I2, respectively. Correction factors Fk = p2

p1
are then applied to gain

Sensor 

exp (- µ01d01) exp (- Σµidi) 

Collimation Filtration Patient

I2 I1 I0 

X-ray 

Beam 

X-ray

Generator 

Fig. 1. Outline of the X-ray Physics
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image I ′1 = I1Fk. Thus I ′1 can be subtracted, not introducing new artifacts, by
the proposed method. The illumination correction by an evenness criteria can
be applied after the background subtraction process.

As mentioned above, the subtraction of the background estimate is done in
the multiresolution domain by a new shrinking method using the fractional ratio
between the energies of the output image mixture and the background estimate.

2.2 Shrinking Method for the Wavelet Coefficients by Preservation
of Energy

The idea is, that the energies of the contributions from the background illumi-
nation and the diagnostic information sum up to the mixture energy. Stressing
Plancherel’s Theorem [14] for non-orthogonal discrete wavelets and M < ∞
finite scales, using the L2(�) norm, yields to (3)

‖s‖2 = CE

M−1∑
i=0

1
2i
‖wi‖2︸ ︷︷ ︸

coefficients energy

+
1

2M
‖rM‖2︸ ︷︷ ︸

resid. energy

(3)

where
∫
‖s‖2 is the signal energy in the spatial domain, wi are the wavelet

coefficients of the ith scale and rM is the residual scale. The constant CE in (3)
is chosen for conservation of energy and is determined for M=1 and an input
impulse function s = δ, getting ‖s‖ = 1 (see [14] for more details).

Calculating the energies, using (3), for the background estimate (EB), the
output mixture image (EẐ) and making up the balance by the norm of the
energies, leads to the energy of the diagnostic mixture (ED) with background
subtracted: ∥∥EDx,y

∥∥ =
∥∥∥EẐx,y

∥∥∥− ∥∥EBx,y

∥∥ (4)

From the reconstructed energy ED, shrinkage weighting factors for
∥∥∥EẐx,y

∥∥∥ > 0
are introduced, to be able to convey the result to the coefficients:

fDx,y =

∥∥EDx,y

∥∥∥∥∥EẐx,y

∥∥∥ (5)

The corrected coefficients are calculated now, by application of the shrinkage
weights:

w̌ix,y = wix,y · fDx,y (6)

Then, the usually reconstruction of the A-Trous multiresolution transform yields
to the reconstructed image IR:

IR =
M−1∑
i=0

w̌i + rM (7)
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Fig. 2. The simulation: left originals, middle reconstructions, right errors

To take a simulation, consider an image with gently inclining gray levels, and
another image, having a gray level checkerboard. From the checkerboard two
images are produced, corrupted by two independent instances of Poisson noise.
The original images, at the left in Fig.2 are added to form the mixture. As
a cross validation, the proposed method reconstructs both, the gray ramp im-
age and the checkerboard image, shown in the middle, from the one mixture.
From this experiment it is obvious, the method properly distinguishes the two
images, including the noise contribution of the gray checkerboard image. The
reconstruction errors are shown at the right.

3 Analysis and Results

In this section results are shown in Fig.3 for a 12mm acrylic glass and a 5-layer
test phantom in Fig.4 [Quart (Ltd.), Germany, 2004].

Fig.3-Top shows the background image, where one can see the non-uniformity
of the X-ray illumination. Fig.3-Middle shows the acrylic glass phantom image
as the diagnostic mixture. The non-uniformity goes into the diagnostic image.
First the background estimate is registered with the diagnostic image [16] and
the polynomial compensation applied, then both images are transformed into
the multiresolution domain. The algorithm, explained in section 2 is applied,
by using M = 4 scales and the standard triangle wavelet. Fig.3-Bottom shows
the reconstruction after application of the method. At the bottom, one can see
the non-uniformity of the illumination removed (Note: gray level’s expanded for
better view). For comparison, Fig.4 shows the result of a spatial background
subtraction at a) and the result of the application of a standard stationary
wavelet (SWT) denoising by a Daubechies wavelet db3, soft thresholding [3] at
3 scales in c). The original image is shown at quadrant b) and the result of the
new method is found at d). It is obvious, that the spatial method in quadrant a)
increases the noise contribution. The standard deviation of that image increases
by a factor of around

√
2. The SWT method is given to compare the new method
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with a standard denoising method in c), thus the SWT method denoises all parts
of the image and causes a slight blurring of the edges. Comparing the modulation
transfer functions for frequencies of 2.5 lines

mm give 53%, 21% and 44% for b), c)
and d), respectively. Thus the proposed method has better preservation of high
frequency information. The new method removes the noise in areas of lower
Poisson counts (i.e. higher gray levels) and leave the noise at darker regions,
where the diagnostic noise part is dominant (2).

Fig. 3. Acrylic Test Phantom - Top:
Background Image; Middle: Diagnostic
Image; Bottom: Reconstruction Image
(enhanced for a better detail view).

Fig. 4. The Comparison: a) spatially sub-
tracted background estimate; b) the origi-
nal image; c) db3 SWT denoised; d) result
of the new method.

4 Conclusions

In this paper, a new method for the subtraction of background in dental
panoramic X-ray, by shrinking the wavelet coefficients under the constraint of
preservation of energy, is given. The energy of an image, representing a back-
ground estimate, taken without a patient, is subtracted from the diagnostic
image in the multiresolution domain. The new method is compared to a spatial
background subtraction method and a standard denoising method, in fact the re-
sults show improved quality in either case. Main purpose of the new background
subtraction method is not in denoising, but it is shown, that the background
noise part is properly removed, without any need to choose parameters for de-
noising, thus the method is non-parametric. As the method leave the part of
noise unaffected, which is not found in the background, it can be the first stage
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of an improved denoising method, which considers the diagnostic noise part bet-
ter. As proposed herein at first remove the background, then estimate a noise
map of the remaining diagnostic noise and correct the factors (5) to remove the
rest of the noise from the image.
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Abstract. A vision based head tracking approach is presented, combin-
ing foreground information with an elliptical head model based on the
integration of gradient and skin-color information. The system has been
developed to detect and robustly track a human head in cluttered work-
shop environments with changing illumination conditions. A foreground
map based on Gaussian Mixture Models (GMM) is used to segment a per-
son from the background and to eliminate unwanted background cues.
To overcome known problems of adaptive background models, a high-
level feedback module prevents regions of interest to become background
over time. To obtain robust and reliable detection and tracking results,
several extensions of the GMM update mechanism have been developed.

1 Introduction

The most characteristic and persistent feature of a human is the head. Compared
to other body parts like arms or hands, head motion without moving the entire
body is limited. Assuming a person standing or sitting in upright position, the
head’s location relative to the body can be predicted quite reliably.

Vision based head tracking systems have been established in many applica-
tions like in video conferencing, distance learning, video surveillance or in face
detection systems used for biometric access control. Moreover, there are appli-
cations as interactive user interface in virtual environments or video games.

This contribution is part of a safety application developed at the German
Berufsgenossenschaften (BG)-Institute for Occupational Safety and Health -
BGIA. The task is to detect and track a person and his extremities operating a
table saw in a wood workshop environment.

In [1], Birchfield introduced an elliptical 2D head model, combining gradient
information and color histograms, to reliably track a human head. A drawback
of his histogram based color module is a manual initialization step to train the
systems skin color histogram without adaptation functionality. In cluttered en-
vironments, the gradient module can be distracted by strong background edges,
since there is no discrimination between foreground and background. Further-
more, the presented work does only consider the tracking but not the initial
localization of the head region. Therefore, without any extensive modifications
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(a) (b) (c) (d)

Fig. 1. Information used for tracking: (a) Input image (b) Foreground map (c) Gradient
information (here vertical edges) (d) Skin-color map

this approach cannot solve the given tasks in our application. For that a pre-
processing step and some extensions have been added to exclude background
regions from further processing.

Segmenting a person from the background is a non trivial task. Potential
image regions of persons are computed by evaluating an adaptive background
model. A resulting foreground map (see Fig. 1b) provides clues where a head
could be found. To detect a person’s head, both edge and skin-color information
is evaluated, as well as the characteristic elliptical outline. These information
is merged into a single score indicating the probability of a possible head at a
certain position. Meeting a certain threshold, the system starts tracking the head
until the score falls short. If a head is found, the location of the person’s body
can be reliably estimated. The head and body region is then used to support as
high-level feedback (HLF) for the background adaptation process, preserving a
non-moving person from being faded into the background over time.

The foreground segmentation in this contribution is based on Gaussian Mix-
ture Models (GMM) and was motivated by the work of Stauffer and Grimson
[2]. Power and Schoonees [3] provide a deeper theoretical background on GMM
and a more detailed description of a practical implementation. Porikli and Tuzel
[4] introduced a mechanism to control the update frequency and intensity of the
GMM based on global scene changes. Harville [5] emphasized the importance of
HLF for background adaptation of per-pixel GMMs to overcome existing limits.

In the next section the extensions of the GMM-based foreground segmen-
tation approach will be introduced. Subsequently the update mechanism and
the integration of HLF into the detection and tracking process is presented.
The computation of the different feature scores as needed for the head tracking
is topic of chapter 4. At the end of this contribution the obtained results are
discussed and conclusions are drawn.

2 GMM-Based Foreground Segmentation

Assuming a static camera setup, one common approach for object detection is
to segment an image first into foreground and background regions based on a
trained background model. Large changes from the background model are clas-
sified as foreground. One drawback of this approach is that both changes due to
moving objects and those due to other changes in the scene, such as illumination
changes or shadows, might be classified as foreground. To reduce the influence
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of illumination and to improve the robustness of the foreground segmentation,
adaptive background update algorithms like [2] have been developed.

The main idea of the GMM-based background modeling approach is to repre-
sent a background pixel as a mixture of K Gaussian background models, weight-
ing these models based on persistence and variance and classifying a pixel’s status
depending on the best match. If the persistence is high and the variance of a
model low, it is more likely to correspond to background.

The decision whether a pixel is classified as background or foreground is
based on a statistical interpretation. In this it is checked whether the pixel value
is assigned to a certain confidence interval of a model or not. The result is a
binary decision denoted as foreground map in the following. If a pixel does not
match any of the K Gaussian models, the model with the least weight is replaced
by a new model with the current pixel intensity as its mean value. Thus, in
general it is possible that objects can be added dynamically to the background.
Throughout our experiments K = 3 is used and was determined empirically.

3 Update Mechanism and High-Level Feedback

The background models are adapted by blending the current image values into
the background. A learning coefficient α(p) controls the update intensity at pixel
position p. It consists of a global learning rate αglb as introduced in [4] and a
new local learning rate component αloc:

α(p) = min

(
αmax, (αglb + αloc(p)) e−

(I(p)−μ)2

σ2

)
(1)

where I(p) is the intensity and μ and σ2 indicate the mean and variance of the
Gaussian model to be updated at p. α(p) is limited to αmax with 0 < αmax ≤ 1
(αmax = 0.8 was used in our experiments). Additionally weighting the sum of
αglb and αloc with respect to the quality of the match reduces the effect of
overlapping models converging over time.

The underlying idea of the global component αglb is to force an update, if
there is a global scene change (e.g. illumination change). Without high-level
knowledge of the scene and a semantic interpretation of foreground regions, the
system can not distinguish efficiently and reliably between relevant and non-
relevant information. The application of HLF causes the integration of the local
component αloc.

For that a binary feedback map is introduced to exclude parts of the scene
from getting updated, i.e. a person which stopped moving can not be faded into
the background. It is generated using both, the foreground map and the head
tracking results. The idea is to cut out a region in the foreground map, which is
likely to include the tracked person based on the head’s position and underlying
body proportions, as well as model knowledge of standard human body measures
(DIN 32 402, Part 2 [6]). However, in general foreground objects occlude parts
of the background. If illumination changes significantly, only the background
models apart of the occluded areas are updated. If a region is occluded for a
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longer time periode, the probability that its background models are not up-to-
date anymore increases. Hence, once there is evidence that the foreground object
has moved to another location, the former occluded region has to be updated
much faster than other regions to compensate for the time of occlusion and to
overcome the well known ghost effect. A foreground history stored with each
pixel is used to compute the local learning rate αloc:

αloc(p, t) =
2αmax

1 + e−sH(p,t)
− αmax (2)

where H(p, t) is the number of consecutive frames in which a pixel has been
foreground at time t, and s a parameter controlling the smoothness of this sig-
moidal function.

4 Head Tracking

The head tracking is motivated by the work of Birchfield [1]. Our approach makes
use of the underlying ellipse fitting concept, but extends the gradient module
by knowledge of the foreground segmentation process and integrates a different
color score for evaluation as explained in the following.

4.1 Gradient Score

The main idea of the gradient module is to detect the outline of a person’s head
and to find the best fitting ellipse with respect to the image intensity gradient.
One option to adjust an ellipse by gradient information is to maximize the sum
of gradient magnitude around the ellipse’s perimeter. Here, a more sophisticated
gradient score φg as shown in [1] is used, which considers not only the gradient
magnitude, but also the gradient direction as

φg(s) =
1

Nσ

Nσ∑
i=1

|nσ(i) · gs(i)| (3)

with s = (x, y, σ) indicating an ellipse’s state and Nσ representing the number
of outline pixels of that ellipse. nσ(i) is the unit normal vector to the ellipse
with center position (x, y) and scale σ at pixel i, and gs(i) = (gx(i), gy(i))T the
gradient intensity at this pixel. ‘·’ denotes dot product.

Test sequences have shown that in cluttered environments, without elimina-
tion of background edges, the ellipse fitting will prefer the strongest edge within
its local neighborhood, regardless of whether it really originates from a head or
not. To reduce the influence of distracting background edges, the binary fore-
ground map is masking the gradient image, preserving only foreground edges
before calculating φg.

4.2 Skin-Color Score

While the gradient score concentrates on the outline of the head, the skin-color
score focuses on the inside. The color histogram approach used in [1] is replaced
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by a binary skin-color map (see Fig. 1 (d)) as introduced by Chai and Ngan [7].
This skin-color map can be calculated efficiently for each frame and overcomes
the problems of the original approach.

In YCrCb color space, skin-color values are lying in a narrow and consistent
range with respect to the chrominance component, independent of the luminance
component. Further processing of the skin-color map can reduce the number of
false positive and false negative skin-pixels. Since these steps did not noticeable
perform better in our application, but increased the computation time signifi-
cantly, they have been replaced by a simple morphological closing operation to
fill small holes within skin blobs. An ellipse state is evaluated with respect to
skin-color using the following score φc(s):

φc(s) =
Nskin(s)

Nnon−skin(s) + 1
Nskin(s)
Nmax

(4)

with Nskin and Nnon−skin the number of skin or non-skin pixels within an ellipse
represented by state s. Nmax is the number of pixels of the maximum possible
ellipse1. While the first factor in Eq. 4 represents the ratio of skin to non-skin
pixels, the second factor supports large ellipses. A drawback of the skin-color
map is that it does not take into account individual characteristics of a person’s
face. Thus, this approach is not able to distinguish between two persons. The
integration of facial feature detection as in [8] would overcome these problems.

4.3 Initialization and Evaluation

An initial guess of the head’s location is needed to start tracking. In our ap-
proach, the foreground module is evaluated to localize possible head positions.
Assuming a person in upright position, the head can most likely be found at the
upper third of the person’s corresponding foreground blob. At each candidate
position an ellipse fitting is performed and the position with maximum score is
selected as starting point for later tracking.

Once the head tracker is initialized, the best fitting ellipse in the next frame
within a certain search window around the previous position is chosen. Several
ellipse locations and sizes relative to the previous ellipse state are tested. A total
score Φ to be maximized is calculated as weighted sum of the scores φg and φc:

Φ = wgφg(si) + wcφc(si), (5)

with i = arg maxj(wgφg(sj) + wcφc(sj)). This means, the ellipse with state
si reaches maximum score together in gradient and color. wk, k ∈ {g, c}, are
weighting coefficients, which are calculated as:

wk =
Δφk

Δφg + Δφc
(6)

1 To reduce computational costs, a minimum and maximum ellipse size is pre-defined.
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SEQA: 50 100 200 400

SEQB: 50 150 520 770

SEQC : 327 328 329 330

Fig. 2. Tracking results of sample sequences. Selected frames have been overlaid with
both the tracking result (solid ellipse) and the ground truth head location (dashed
ellipse). Image contrast has been reduced to emphasize the ellipses. SEQA is showing a
sample sequence in which no person is visible in the first few frames. SEQB represents a
sample sequence with drastic global illumination changes at frame 490 and 660. SEQC

is showing fast movements of a person at low capture rates (3fps). The head region is
lost (and recovered) several times due to the low capture rate.

where Δφg and Δφc are the difference of maximum and minimum score in gra-
dient and color respectively. If the difference is large, the ellipse’s state (i.e.
position and scale) is more significant than if the distance is small. Thus, if one
score yields almost equal values for every state or if one score fails at all (e.g.
if contour or skin-color information is poor), the other automatically gets more
influence. To reduce computational costs, ellipses of a fixed aspect ratio and
assumed vertical orientation are considered, accepting lower tracking scores for
rotated heads. An ellipse is considered as acceptable match, if the total score
Φ meets a certain threshold. For more robustness, a hysteresis function is inte-
grated into this thresholding process.

5 Experimental Results

The system has been successfully tested in different indoor environments which
were focused on scenarios related to real workshop conditions showing quite
complex and cluttered backgrounds. To yield realistic results, nothing has been
changed manually in the background while processing. The wall at the back
contains several strong edges and a window on the left side (daylight influence).
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(c) (d)
Fig. 3. Differences of the tracking results to ground truth data (total score, center
score and size score), where the total score is ϕ = 0.6ϕc + 0.4ϕs. (a) SEQA (of Fig. 2)
without any person in the visual field before frame 70. (b) SEQA time-shifted so that
the operator is in the scene from the beginning. (c) SEQB showing drastic illumination
changes at frame 490 and 660 and a slightly tilted head. (d) SEQC includes fast
movements at a low capture rate (here 3 fps). The head region has been lost and
recovered several times.

Under certain illumination conditions several parts in the scene look similar to
skin color like wood or the color of the floor (see Fig. 1a,d).

The tracking results have been evaluated with respect to center position
(center score ϕc) and size (size score ϕs) of the ellipse using manually acquired
ground truth data as

ϕc =
∣∣∣∣(x, y)T

gt − (x, y)T
ht

∣∣∣∣ , ϕs =
∣∣∣∣(w, h)T

gt − (w, h)T
ht

∣∣∣∣ (7)

where (x, y)T
gt indicates the ellipse center of the ground truth and (x, y)T

ht of the
headtracker (analog for ϕs with width w and height h).

Figure 2 and 3 show the results of some test sequences. SEQA is used to
demonstrate the influence of well-initialized background models (see Fig. 3a,b).
If a person is already in the scene at the beginning of the computation, the
background models can not be set up correctly. However, if the person is moving
only slightly, there is enough information to predict the head’s location and
track it robustly. The background models in combination with HLF are able to
adapt misclassification due to missing initialization over time, forced by the local
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update learning rate. As a result of this observation, it was observed that the
system is also able to continue tracking or at least to reinitialize on-the-fly even
if the camera, assumed to be static, is accidentally moved. In SEQB there are
changes in global illumination at frame 490 and 660. Fig. 3c shows that there is
no significant change in the tracking results. Compared to SEQA, the difference
between the head tracker and the ground truth is a bit higher. This is due to
both, the ear protection the person is wearing altering the characteristic outline
of the head, and the rotation of the head which is not considered so far. If the
head movements are fast relative to the capturing rate the assumption that the
difference of the head’s location is limited in place and scale between two frames,
does not hold (see SEQC in Fig. 2, third row). Thus, leading to poor tracking
results as can be seen in Fig. 3d. These problems do not occur at higher frame
rates (> 25 fps) and by applying appropriate model knowledge.

6 Conclusions

A vision based head tracking approach has been developed to serve as a model
safety sensor in hazardous working areas. Motion, gradient and skin-color in-
formation have been combined and evaluated to realize a reliable and robust
head region detection and tracking mechanism. Experiments have shown that
the system is able to detect and track a human head in cluttered, real world
workshop environments with changing illumination conditions. Although a sta-
tic background is assumed, the system can adapt to new background situations.
A time-consuming initialization or calibration step of the entire system is not
necessary, however, better results can be achieved if background models can be
trained without a person in the scene.

Acknowledgments. The work has been supported by the German Hauptver-
band der Berufsgenossenschaften (HVBG), Research Project FP 239, which is
gratefully acknowledged.
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Abstract. This paper discusses the extension of nonlinear diffusion fil-
ters to higher derivative orders. While such processes can be useful
in practice, their theoretical properties are only partly understood so
far. We establish important results concerning L2-stability and forward-
backward diffusion properties which are related to well-posedness ques-
tions. Stability in the L2-norm is proven for nonlinear diffusion filtering
of arbitrary order. In the case of fourth order filtering, a qualitative de-
scription of the filtering behaviour in terms of forward and backward
diffusion is given and compared to second order nonlinear diffusion. This
description shows that curvature enhancement is possible with of fourth
order nonlinear diffusion in contrast to second order filters where only
edges can be enhanced.

1 Introduction

Nonlinear diffusion filtering is an established method for signal and image de-
noising and simplification. Starting with the pioneering work of Perona and
Malik [1] in 1990, investigations have covered both the theoretical properties
and the usefulness in practice of nonlinear diffusion filters and related varia-
tional methods [2,3,4,5,6,7]. With a whole spectrum of different diffusivities, the
method produces smoothing effects as well as edge enhancement. The edge en-
hancement locally increases the first derivative and may also cause one of the
major drawbacks of the method, the so-called staircasing effect: Regions with
smooth grey value changes in the original signal or image can be turned into
many segmentation-like regions. Fig. 1 (b.) shows a denoising example where
this effect occurs. To circumvent these artifacts, higher derivative orders have
been introduced in the diffusion process [8,9,10,11,12,13]. This allows a higher
adaptivity to the local image structure and can yield piecewise linear regions.
Several methods have been proposed which confirm the impression that higher
order nonlinear diffusion is a very useful extension of the well-established sec-
ond order methods in practice, see also Fig. 1 (c.). Unfortunately, not many
theoretical properties have been established for higher-order smoothing so far.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 451–458, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. (a.) Left: Initial noisy image. (b.) Middle: Second order Perona-Malik filtering.
(c.) Right: Linear combination of second and fourth order Perona-Malik filtering.

In this paper we first consider stability properties of the higher order filtering
methods. We mainly restrict ourselves to the one-dimensional case although some
of the results can be carried over to higher dimensions. The main result presented
here related to stability is that higher order nonlinear diffusion filtering is stable
with respect to the L2-norm. Furthermore we will see that there is an analogue
to edge enhancement for fourth order nonlinear diffusion which will be called
curvature enhancement. A closer look at various commonly used diffusivities
shows that the behaviour for second and fourth order filtering is different but
exhibits strong structural similarities.
This paper is organised as follows. Section 2 gives a short summary of useful
properties of second order nonlinear diffusion related to this paper. In Section 3
we generalise the associated partial differential equation and its boundary con-
ditions to higher orders and establish L2-stability. The enhancement of local
features is then discussed in Section 4 from a theoretical point of view. Section
5 displays some experiments confirming that fourth order forward and back-
ward diffusion are practically observable effects. A summary of the main results
concludes the paper with Section 6.

2 Second Order Nonlinear Diffusion

Let f(x) denote a signal defined on an interval [a, b]. Second order nonlinear
diffusion creates a filtered signal u(x, t) as solution of the diffusion equation

∂tu = ∂x

(
g
(
(∂xu)2

)
∂xu

)
(1)

with initial condition u(x, 0) = f(x) for all x ∈ [a, b]. The velocity of diffusion
is steered by the diffusivity function g ≥ 0 depending on the square of the first
derivative of the evolving signal u. Typical diffusivities g tend to 1 for small
absolute values of their argument and are getting smaller for higher argument
modulus. This speeds up the diffusion in almost flat regions of the signal and
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reduces the diffusion speed near edges. With an appropriate choice for the dif-
fusivity g, piecewise constant filtering results are possible. We will have a closer
look at some typical diffusivities in Section 4.3. To complete the PDE (1) usually
homogeneous Neumann boundary conditions ∂xu(a) = ∂xu(b) = 0 are assumed.
There are two reasons for the appearance of this type of boundary conditions:
Firstly they can be physically motivated by the idea that the flux is zero at the
image boundaries. That means no matter is entering or leaving the image during
the filtering process. Secondly Neumann boundary conditions emerge in a nat-
ural way if one relates nonlinear diffusion filtering to regularisation and energy
functional minimisation [14]. This approach starts with an energy functional of
the form

E1(u) =
∫ b

a

(
(u− f)2 + αϕ

(
(∂xu)2

))
dx

with a penaliser ϕ and weight α > 0 and searches for a minimiser u. The first
term (u − f)2 is minimal if u is close to the initial image f in the sense of the
L2-norm. The second term ϕ((∂xu)2) with ϕ(0) = 0 and ϕ′ ≥ 0 rewards signals
whose first derivative is small, i. e. it rewards smoothness of the filtered signal. A
necessary condition for a minimiser of E1 is given by the elliptic Euler-Lagrange
equation

u− f

α
= ∂x

(
ϕ′
(
(∂xu)2

)
∂xu

)
. (2)

When no assumptions about the boundary behaviour are imposed, the deriva-
tion of the Euler-Lagrange equations leads to homogeneous Neumann boundary
conditions. Interpreting the right-hand side of (2) as discretisation of a time
derivative ∂tu and setting g := ϕ′, one ends up with the parabolic equation
(1) with stopping time α. Later on we will see that this derivation helps us
to find appropriate boundary conditions for the higher order diffusion filters,
too. Stability in the L2-norm and even a maximum-minimum principle belong
to the properties which establish the good reputation of second order nonlinear
diffusion methods [6].

3 Higher Order Nonlinear Diffusion

Higher order nonlinear diffusion filtering as considered in this paper is related
to the equation

∂tu = (−1)m+1 ∂m
x

(
g
(
(∂m

x u)2
)
∂m

x u
)

(3)

with initial condition u(x, 0) = f(x) for all x ∈ [a, b]. Since the highest deriva-
tive order appearing in (3) is 2m, we will call the related process 2m-th order
nonlinear diffusion filtering. To determine appropriate boundary conditions we
consider the derivation of (3) from the energy functional

Em(u) =
∫ b

a

(
(u− f)2 + αϕ

(
(∂m

x u)2
))

dx
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following the train of thought of Section 2. A necessary condition for a minimiser
u of this functional is given by the Euler-Lagrange equation

u− f

α
= (−1)m+1 ∂m

x

(
g
(
(∂m

x u)2
)
∂m

x u
)

where we again set g := ϕ′. The corresponding natural boundary conditions are
in this case

∂k
x

(
g
(
(∂m

x u)2
)
∂m

x u
)

= 0 for k ∈ {0, . . . ,m− 1} (4)

for x ∈ {a, b}. We obtain m constraints at each boundary pixel as generalisation
of the Neumann conditions for m = 1.
The subject of existence, uniqueness, and regularity of solutions will not be
addressed in this paper. Usually a mollifier smoothing the argument of the diffu-
sivity is required to obtain well-posedness [2,13]. Since the reasoning presented in
this paper is independent of the presence of such a mollifier we omit it during the
paper for simplicity. In the sequel we assume the existence, uniqueness and suf-
ficient regularity of solutions. With these assumptions, the following proposition
assures L2-stability of the solutions:

Proposition 3.1. (L2-Stability) If a classical solution u of equation (3) exists
which is continuously differentiable in the time variable t and 2m times contin-
uously differentiable in the space variable x ∈ [a, b], the L2-norm of u(·, t) is
monotonically decreasing with t ≥ 0.

Proof. Using the assumption that u satisfies (3) with the boundary conditions
(4), integration by parts yields

∂t

(
1
2

∫ b

a

u2 dx

)
=
∫ b

a

u · (∂tu) dx

= (−1)m+1

∫ b

a

u · ∂m
x

(
g
(
(∂m

x u)2
)
∂m

x u
)

dx

= (−1)2m+1

∫ b

a

(∂m
x u) · g

(
(∂m

x u)2
)
· (∂m

x u) dx

+
m−1∑
k=0

(−1)m−1−k
[(

∂k
xu
)
· ∂m−1−k

x

(
g
(
(∂m

x u)2
)
∂m

x u
)]b

a

= −
∫ b

a

g
(
(∂m

x u)2
)
· (∂m

x u)2 dx ≤ 0 .

This ensures that the L2-norm of the solution may not increase with t. %&

This result guarantees that higher order nonlinear diffusion leads indeed to a
simplification of the initial data.
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4 Local Feature Enhancement

Though classical nonlinear diffusion simplifies signals or images, it may also
enhance important local features such as edges. This section discusses higher
order diffusion from this point of view.

4.1 Second Order Filtering and Edge Enhancement

To determine the possibility of edge enhancement for special diffusivities g one
usually uses the the flux function Φ(s2) := g(s2)s to rewrite (1) yielding

∂tu = Φ′
(
(∂xu)2

)
∂2

xu =
(
2g′

(
(∂xu)2

)
(∂xu)2 + g

(
(∂xu)2

))
∂2

xu .

In regions where Φ′((∂xu)2) > 0 this equation behaves like a forward diffusion
equation while in regions with Φ′((∂xu)2) < 0 there is backward diffusion pos-
sible. In this regions with backward diffusion, an edge enhancing behaviour is
plausible and can also be observed in practice [1].

4.2 Fourth Order Filtering

Now we take a closer look at the fourth order diffusion equation, i. e. we set
m = 2 in (3) yielding

∂tu = −∂2
x

(
g
((

∂2
xu
)2)

∂2
xu
)

.

We expand the right-hand side of this equation and rewrite it as

∂tu = −
(
2
(
∂3

xu
)2

Φ1

((
∂2

xu
)2))

∂2
xu− Φ2

((
∂2

xu
)2)

∂4
xu (5)

using Φ1(s2) := 2g′′(s2)s2 + 3g′(s2) and Φ2(s2) := 2g′(s2)s2 + g(s2). Analogue
to the second order case our argumentation is that (5) locally behaves similar
to the linear equation ∂tu = −a∂2

xu − b∂4
xu if the signs of the factors a and b

are equal to the signs of Φ1 and Φ2. For Φ1((∂2
xu)2) < 0 we expect some second

order forward diffusion influence on the solution, whereas Φ1((∂2
xu)2) > 0 leads

to second order backward diffusion. Vice versa, Φ2((∂2
xu)2) > 0 ensures fourth

order forward diffusion, and Φ2((∂2
xu)2) < 0 fourth order backward diffusion.

It should be mentioned that Φ2 always coincides with the function Φ in the
second order case presented in Section 4.1. Also for orders higher than four, the
sign of this function determines the diffusion property (forward or backward)
of the highest order term which implies a certain similarity in the behaviour of
several filtering orders. The main difference is the argument: Φ depends on the
squared m-th derivative for 2m-th order filtering.
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4.3 Application to Commonly Used Diffusivities

After showing the general approach for fourth order diffusion in the last section
we now apply it to several diffusivities commonly used in practice to describe
their characteristic behaviour. In the following the diffusivities are ordered ac-
cording to their forward-backward diffusion properties:

– Forward Diffusion: The diffusivity related to the regularisation approach

by Charbonnier et al. [3] is given by g(s2) =
(
1 + s2

λ2

)− 1
2

and is known to
perform forward diffusion in the second order case. By computing

Φ1(s2) = − 3
2λ2

(
1 + s2

λ2

)− 5
2

< 0 and Φ2(s2) =
(
1 + s2

λ2

)− 3
2

> 0

we see that also the fourth order Charbonnier diffusion always performs

forward diffusion. With the observation
(
ε2 + s2

)− 1
2 = ε

(
1 + s2

ε2

)− 1
2

it is
clear that regularised TV flow [15] behaves in the same way.

– Boundary Case: TV flow [5] comes from the diffusivity g(s2) = 1
|s| . At all

points where the argument s is nonzero we have Φ1(s2) = Φ2(s2) = 0 which
legitimates to consider TV flow as the boundary case between forward and
backward diffusion.

– Forward and Backward Diffusion: The diffusivity g(s2) =
(
1 + s2

λ2

)−1

proposed by Perona and Malik [1] leads to the conditions

Φ1(s2) = 1
λ4

(
1 + s2

λ2

)−3 (
s2 − 3λ2

)
< 0 ⇐⇒ |s| <

√
3λ

Φ2(s2) =
(
1 + s2

λ2

)−2 (
1− s2

λ2

)
> 0 ⇐⇒ |s| < λ .

This really displays the adaptive nature of this diffusivity: Depending on the
parameter λ, the curvature

∣∣∂2
xu
∣∣ leads to forward or backward diffusion. New

to the fourth order case is the presence of two conditions and the possibility
that only one of them holds, namely in regions where λ <

∣∣∂2
xu
∣∣ <
√

3λ.

Similar conditions hold for the diffusivity g(s2) = exp
(
− s2

2λ2

)
also proposed

by Perona and Malik [1].
– Backward Diffusion: The balanced forward-backward diffusivity [4] de-

fined by g(s2) = 1
s2 leads to Φ1(s2) = s−4 > 0 and Φ2(s2) = −s−2 < 0 which

implies that it always performs backward diffusion. As for total variation
diffusivity we also suppose that the argument is nonzero here.

We conclude that even in the fourth order case there are diffusivities covering
the whole spectrum from pure forward to pure backward diffusion.

5 Numerical Examples

After the theoretical description of fourth order diffusion, in this section we
show results of Perona-Malik filtering in one dimension with different orders.
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For 2m-th order filtering with g(s2) =
(
1 + s2

λ2

)−1

the parameter λ is chosen

such that there are regions with |∂m
x u| >

√
3λ where backward diffusion appears.

Fig. 2 shows the initial signal and some filtering results. While second order
filtering yields enhancement of edges, the fourth order filtering result tends to
be piecewise linear with enhanced curvature at corner points. This observation
for fourth order filtering is further affirmed by the almost piecewise constant
derivative approximation of the filtering result also shown in Fig. 2.
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Fig. 2. Top left: Gaussian signal. Top right: Second order Perona-Malik filtering. Bot-
tom left: Fourth order Perona-Malik filtering. Bottom right: First derivative of fourth
order filtering result.

6 Conclusions

In this paper we have investigated theoretical properties of higher order nonlinear
diffusion filters. For the first time we have presented stability considerations for a
class of nonlinear diffusion filters related to variational methods. Furthermore, an
argumentation in terms of forward and backward diffusion has been given which
can be helpful to understand the behaviour of fourth order nonlinear diffusion
filters. Numerical examples with one-dimensional data show that higher order
filters can be used to enhance important data features. We have seen that in
correspondence to the edge enhancement of second order diffusion, fourth order
filters may act curvature enhancing, which is in accordance with the theoretical
considerations presented in this paper.
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A theoretical generalisation to orders higher than four and new practically usable
diffusivities which are especially designed for higher orders are two questions of
our ongoing research.
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Abstract. In this text we show how points, point pairs, lines, planes,
circles, spheres, and rotation, translation and dilation operators and their
uncertainty can be evaluated from uncertain data in a unified manner
using the Geometric Algebra of conformal space. This extends previous
work by Förstner et al. [3] from points, lines and planes to non-linear enti-
ties and operators, while keeping the linearity of the estimation method.
We give a theoretical description of our approach and show the results
of some synthetic experiments.

1 Introduction

In Computer Vision applications uncertain data occurs almost invariably. Ap-
propriate methods to deal with this uncertainty do therefore play an important
role. In this text we discuss the estimation of geometric entities and operators
from uncertain data in a unified mathematical framework, namely Geometric
Algebra. In particular, we will show that evaluating points, lines, planes, cir-
cle, spheres and their covariance matrices from a set of uncertain points can
be done in much the same way as the evaluation of rotation, translation and
dilation operators with corresponding covariance matrices. Using error propaga-
tion, further calculations can be performed with these uncertain entities, while
keeping track of the uncertainty. This text builds on previous works by Förstner
et al. [3] and Heuel [5] where uncertain points, lines and planes were treated in
a unified manner. Perwass & Sommer previously discussed the linear estimation
of rotation operators in Geometric Algebra [11], albeit without taking account
of uncertainty. In [8] the description of uncertain circles and 2D-conics in Geo-
metric Algebra was first discussed. The stratification of Euclidean, projective
and affine spaces in Geometric Algebra, has been previously discussed in [12].
In this text, it is shown how the Geometric Algebra of the conformal space of
3D-Euclidean space can be used to deal with uncertain projective geometry and
uncertain kinematics in a unified way. In particular, we will concentrate on the
estimation of geometric entities and operators from uncertain data.

The structure of this text is as follows. First we give short introductions to
Geometric Algebra, error propagation and the Gauss-Helmert model. Then we
� This work has been supported by DFG grant SO-320/2-3.
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Table 1. Entities and their algebra basis. Note that the operators are multivectors of
mixed grade

Entity Grade No. Basis Elements

Point X 1 5 e1, e2, e3, e∞, eo

Point Pair X ∧ Y 2 10 e23, e31, e12, e1o, e2o, e3o, e1∞, e2∞, e3∞, eo∞
Line X ∧ Y ∧ e∞ 3 6 e23∞, e31∞, e12∞, e1o∞, e2o∞, e3o∞
Circle X ∧ Y ∧ Z 3 10 e23∞, e31∞, e12∞, e23∞, e31∞, e12∞, e1o∞, e2o∞, e3o∞, e123

Plane X ∧ Y ∧ Z ∧ e∞ 4 4 e123∞, e23o∞, e31o∞, e12o∞
Sphere X ∧ Y ∧ Z ∧ U 4 5 e123∞, e123o, e23o∞, e31o∞, e12o∞
Rotor R 0,2 4 1, e23, e31, e12

Translator T 0,2 4 1, e1∞, e2∞, e3∞
Dilator D 0,2 2 1, eo∞
Motor RT 0,2,4 8 1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞
Gen. Rotor TRT̃ 0,2 7 1, e23, e31, e12, e1∞, e2∞, e3∞

combine these methods to show how the various objects can be estimated. We
conclude the text with some synthetic experiments and conclusions.

2 Geometric Algebra

For a detailed introduction to Geometric Algebra see e.g. [10,4]. Here we can
only give a short overview. Geometric Algebra is an associative, graded alge-
bra, whereby the algebra product is called geometric product. The Geometric
Algebra over a n-dimensional Euclidean vector space Rn has dimension 2n and
is denoted by G(Rn) or simply Gn. Elements of different grade of the algebra
can be constructed through the outer product of linearly independent vectors.
For example, if {ai} ∈ Rn are a set of k linearly independent vectors, then
A〈k〉 := a1 ∧ . . . ∧ ak is an element of Gn of grade k, which is called a blade,
where ∧ denotes the outer product. A general element of the algebra, called mul-
tivector, can always be expressed as a linear combination of blades of possibly
different grades. Blades can be used to represent geometric entities. To combine
projective geometry and kinematics we need to consider the Geometric Algebra
of the (projective) conformal space of 3D-Euclidean space (cf. [10]). The em-
bedding function K is defined as K : x ∈ R

3 �→ x + 1
2 x2 e∞ + eo ∈ R

4,1. The
basis of R4,1 can be written as {e1, e2, e3, e∞, eo}. The various geometric entities
that can be represented by blades in G4,1 are shown in table 1. In this table
X, Y, Z, U,V ∈ R4,1 are embeddings of points x, y, z,u, v ∈ R3, respectively, and
the eij ≡ ei ∧ ej etc. denote the algebra basis elements of an entity.

Apart from representing geometric entities by blades, it is also possible to
define operators in Geometric Algebra. The class of operators we are particularly
interested in are versors. A versor V ∈ Gn is a multivector that satisfies the
following two conditions: V Ṽ = 1 and for any blade A〈k〉 ∈ Gn, V A〈k〉 Ṽ is also
of grade k, i.e. a versor is grade preserving. The expression Ṽ denotes the reverse
of V . The reverse operation changes the sign of the constituent blade elements
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depending on their grade, which has an effect similar to complex conjugation in
quaternions. The most interesting versors for our purposes in conformal space
are rotation operators (rotors), translation operators (translators) and scaling
operators (dilators).

If {Ei} denotes the 2n-dimensional algebra basis of Gn, then a multivector
A ∈ Gn can be written as A = ai Ei, where ai denotes the ith component
of a vector a ∈ R2n

and a sum over the repeated index i is implied. We will
use this Einstein summation convention also in the following. If B = bi Ei and
C = ci Ei, then the components of C in the algebra equation C = A ◦B can be
evaluated via ck = ai bj gk

ij . Here ◦ is a placeholder for an algebra product and
gk

ij ∈ R2n×2n×2n

is a tensor encoding this product.
If we define the matrices U, V ∈ R2n×2n

as U(a) := αi gk
ij and V(b) :=

βj gk
ij , then c = U(a) b = V(b) a. Therefore, we can define an isomorphism

Φ, such that for A, B ∈ Gn, Φ(A) ∈ R2n

and Φ(A ◦ B) = U(Φ(A))Φ(B) =
V(Φ(B))Φ(A), where ◦ is a placeholder for an algebra product. This isomor-
phism allows us to apply standard numerical algorithms to Geometric Algebra
equations. We can also reduce the complexity of the equations considerably by
only mapping those components of multivectors that are actually needed. In the
following we therefore assume that Φ maps to the minimum number of compo-
nents necessary.

3 Stochastic

In this section we give short descriptions of error propagation and the Gauss-
Helmert model, which will be needed for the evaluation of multivectors from
uncertain data. The error propagation we consider here is based on the assump-
tion that the uncertainty of a (vector valued) measurement can be modeled by a
Gaussian distribution. Hence, the probability density function of a random vec-
tor variable is fully described by a mean vector and a covariance matrix. Error
propagation is a method to evaluate the mean and covariance of a function of
random vector variables. In particular, this allows us to evaluate the mean and
covariance of algebra products between multivector valued random variables.
For a detailed introduction see [6,7].

For example, we have to apply error propagation to the embedding of Euclid-
ean vectors in conformal space. Let a ∈ R3 be a Euclidean random vector variable
with covariance matrix Σa,a, and A ∈ R4,1 be defined by A := K(a). It may then
be shown that Ā = E [K(a)] = ā + 1

2 ā2 e∞ + eo + 1
2 tr(Σa,a) e∞. Typically the

trace of Σa,a is negligible, which leaves us with Ā = K(ā). If we denote the
Jacobi matrix of K evaluated at ā by JK(ā), then the error propagation equation
for the covariance matrix can be written as ΣA,A = JK(ā) Σa,a JT

K(ā).
The Gauss-Helmert model was introduced by Helmert in 1872 as the general

case of least squares adjustment. It is also called the mixed model [6]. The Gauss-
Helmert model is a linear, stochastic model. The idea is to find the smallest
adjustment to the data points, such that a valid parameter vector exists.
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Mathematically this is expressed as follows. Given is a set of M data vec-
tors {bi} with corresponding covariance matrices Σbi,bi . The goal is to find a
parameter vector p, such that a given, vector valued constraint function g sat-
isfies g(bi, p) = 0 for all i. Furthermore, the set of valid parameter vectors is
constraint by a function h, which has to satisfy h(p) = 0. Since the Gauss-
Helmert model is linear, the functions g and h have to be linearized. For this
purpose it is assumed that the true data point bi is given by the current esti-
mate b̂i plus an adjustment Δbi, and similarly for the parameter vector. That
is, bi = b̂i + Δb and p = p̂ + Δp, which implies that an initial estimate of
the parameter vector has to be known, before the Gauss-Helmert method can
be applied. Substituting these expressions for bi and p in the constraint equa-
tion g(bi, p) = 0 and considering only its Taylor expansion up to first order
results in Ui Δp+Vi Δbi = cgi , where Ui := (∂p g)(b̂i, p̂), Vi := (∂bi g)(b̂i, p̂) and
cgi := −g(b̂i, p̂). The constraint function h is linearized in a similar way leading
to the constraint equation HT Δp = ch, where HT := (∂p h)(p̂) and ch := −h(p̂).

We now try to solve for Δbi and Δp such that ΔbT
i Σbi,bi Δbi is minimized

and the linearized constraint equations are satisfied for all i. This may be done
using the method of Lagrange multipliers. This leads to the following equation
system. (

N H

HT 0

) (
Δp

m

)
=

(
cn

ch

)
, (1)

where m is a Lagrange multiplier vector, N :=
∑M

i=1 UT
i (ViΣbi,biV

T
i )+ Ui and

cn :=
∑M

i=1 UT
i (ViΣbi,biV

T
i )+ cgi . The vector Δp can be evaluated directly equa-

tion (1), while Δbi has to be evaluated by substituting Δp into the equation

Δbi = Σbi,biV
T
i (ViΣbi,biV

T
i )+ (cgi − Ui Δp). (2)

The new estimates for bi and p are then given by p̂′ = p̂+Δp and b̂′i = b̂i+Δbi. If
the constraint functions g and h are linear, then these new estimates are the best
linear unbiased estimators for bi and p, as is for example shown in [6,7]. If the
constraint functions are not linear, then this is a step in an iterative estimation
procedure.

4 Estimation of Multivectors

In this section we show how Geometric Algebra offers a unified framework to
derive the constraint equations for geometrical problems, so that the Gauss-
Helmert method can be applied. Since the standard algebra operations between
multivectors can be mapped to bilinear functions, the estimation of all algebra
elements is basically the same. This means in particular that operators as well
as geometric entities are represented by vectors and their estimation is therefore
very similar. In order to apply the Gauss-Helmert estimation, we need to define
a constraint function that relates the parameter vector and the data vectors, as
well as a constraint function for the parameter vector alone. Furthermore, we
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need to obtain an initial estimate of the parameter vector. Part of the constraints
is that we only use those multivector components that can be non-zero in the
particular elements we consider. For example, table 1 shows that for a line we
only need to consider a subset of those components necessary for a circle, even
though both are blades of grade 3.

Let P ∈ G4,1 represent the geometric entity that is to be estimated and
Bn ∈ G4,1 the nth data point, then g(Bn,P ) = Bn ∧ P , because Bn ∧ P = 0 if
and only if Bn lies on P . Note that this constraint is only valid if Bn and/or P
represents a point. For example, we could evaluate the best line (P ) through a
set of points (Bn), but also the best point (P ) that lies on a set of lines (Bn).
Mapping the g-constraint with Φ gives Φ(Bn ∧ P ) = bi

n pj Ok
ij , where Ok

ij

encodes the appropriate outer product.
The magnitude of Bn ∧ P is only proportional to the Euclidean distance

between a point Bn and the element represented by P , if P represents a point,
line or plane. If P represents a point pair, circle or sphere, this is not the case, in
general. However, the closer points lie to these entities, the better proportionality
is satisfied. In 2D-Euclidean space the fitting of a circle P to a set of points
{Bn} with the constraint Bn ∧ P = 0, is equivalent to the well known algebraic
fitting of circles [2]. However, Bn ∧P = 0 is valid independent of the embedding
dimension, which allows us to readily extract the algebraic constraint equations
for circles in 3D-Euclidean space.

The constraints on P alone depend on the grade of P . If P is of grade 1 or
4, i.e. it represents a point, a plane or a sphere, then the only constraint is that
the scale of P is fixed. This is needed, since we are working in a projective space
and thus all scaled, non-zero versions of P represent the same geometric entity.
If p = Φ(P ), then this constraint can be written as h1(p) = pT p− 1, such that
h1(p) = 0 if ‖p‖ = 1.

If P represents a point pair (grade 2), a line (grade 3) or a circle (grade
3), then there is an additional constraint that ensures that P is in fact a blade.
Recall that a blade of grade k is the outer product of k vectors. However, if k = 2
or k = 3, not all linear combinations of the respective algebra basis elements
form a blade. The constraints that ensure that P is a blade, are the Plücker
constraints. In Geometric Algebra these constraints can be expressed by the
equation P ∧P = 0 if P is of grade 2 and P ∗∧P ∗ = 0 if P is of grade 3, where P ∗

denotes the dual of P . The dual operation in Geometric Algebra is the geometric
product with a constant element of the algebra (cf. [10]). Mapped with Φ we thus
obtain the constraint equation h2(p) = Φ(P ∗ ∧ P ∗) = pp pq Di

p Dj
q Ok

ij , if P is
of grade 3. Here Di

p encodes the dual operation.
For versors V ∈ G4,1 the constraint functions are different. Suppose An, Bn ∈

G4,1 represent pairs of geometric entities of the same type. The problem now is
to find the V that best satisfies Bn = V AnṼ . Since V Ṽ = 1, this can also be
written as V An − BnV = 0. Hence, g(Bn,V ) = V An − BnV . The constraint
function on V alone is h(V ) = V Ṽ −1, which is zero, if V is a versor. Mapping the
latter constraint with Φ gives g(bn, v) = Φ(V An−BnV ) = vi (aj

n Gk
ij−bj

n Gk
ji),

where Gk
ij encodes the appropriate geometric product. The h-constraint be-
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Table 2. Jacobi matrices used in Gauss-Helmert estimation for different entities. A
repeated index in a product implies summation over its range. The first index of a
tensor denotes the row in matrix representation.

Entity Un V HT
1 HT

2

Point Pair 2 pj Ok
ij

Line, Circle bi
n Ok

ij pj Ok
ij 2 pj 2 pq Di

p Dj
q Ok

ij

Point, Plane, Sphere n/a

Versor aj
n Gk

ij − bj
n Gk

ji −vi Gk
ji 2 vq Rj

q Gk
ij n/a

comes h(v) = Φ(V Ṽ − 1) = vi vq Rj
q Gk

ij − wk, where Rj
p encodes the reverse

operation and wk is zero everywhere apart from the entry representing the scalar
component, which is unity.

Table 2 summarizes the Jacobi matrices of the constraint equations for the
various entities, as needed in equation 1 in the Gauss-Helmert estimation. Ma-
trices HT

1 and HT
2 have to be combined column-wise to result in HT. These Jacobi

matrices have to be evaluated for current estimates of the parameter and data
vectors as described in section 3. The contractions of the algebra product ten-
sors Ok

ij and Gk
ij with vectors can, for example, be evaluated with the software

CLUCalc [9]. An initial estimate of the parameter vector, i.e. p or v, is given by
the right null space that the respective set of Un matrices have in common. This
can be evaluated by finding the right null space of U :=

∑
n UT

nUn using, for
example, a singular value decomposition (SVD). Note that the matrices Un and
V for points, lines and planes as given in table 2 are equivalent to the matrices
S, Π and Γ as defined by Förstner et al. in [3].

5 Experiments and Conclusions

To show the quality of the proposed estimation method of geometric entities and
operators, we present two synthetic experiments. In the first experiment we fit
3D-circles to uncertain data points and in the second experiment we estimate
general rotations between two 3D-point clouds.

To generate the uncertain data to which a circle is to be fitted, we first
create a ”true” circle C of radius one, oriented arbitrarily in 3D-space. We then
randomly select N points {an ∈ R3} on the true circle within a given angle
range. For each of these points a covariance matrix Σan,an is generated randomly,
within a certain range. For each of the an, Σan,an is used to generate a Gaussian
distributed random error vector rn. The data points {bn} with corresponding
covariance matrices Σbn,bn are then given by bn = an + rn and Σbn,bn = Σan,an .
The standard deviation of the set {‖rn‖} will be denoted by σr. For each angle
range, 30 sets of true points {an} and for each of these sets, 40 sets of data
points {bn} were generated.

A circle is then fitted to each of the data point sets. We will denote a
circle estimate by Ĉ and the shortest vector between a true point an and
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Table 3. Results of circle estimation for SVD method (SVD) and Gauss-Helmert
method (GH)s

Angle Δ̄Σ ( σ̄Σ) Δ̄E (σ̄E)

σr Range SVD GH SVD GH

10◦ 2.13 (0.90) 1.26 (0.52) 0.047 (0.015) 0.030 (0.009)

0.07 60◦ 1.20 (0.44) 0.92 (0.31) 0.033 (0.010) 0.028 (0.009)

180◦ 1.38 (0.56) 0.97 (0.36) 0.030 (0.009) 0.025 (0.008)

10◦ 2.17 (0.90) 1.15 (0.51) 0.100 (0.032) 0.057 (0.019)

0.15 60◦ 1.91 (0.99) 1.35 (0.68) 0.083 (0.033) 0.069 (0.028)

180◦ 1.21 (0.44) 0.90 (0.30) 0.070 (0.022) 0.058 (0.018)

Table 4. Result of general rotation estimation for standard method (Std), SVD method
(SVD) and Gauss-Helmert method (GH).

Δ̄Σ ( σ̄Σ) Δ̄E (σ̄E)

σr Std SVD GH Std SVD GH

0.09 1.44 (0.59) 1.47 (0.63) 0.68 (0.22) 0.037 (0.011) 0.037 (0.012) 0.024 (0.009)

0.18 1.47 (0.62) 1.53 (0.67) 0.72 (0.25) 0.078 (0.024) 0.079 (0.026) 0.052 (0.019)

Ĉ by dn. For each Ĉ we then evaluate two quality measures: the Euclidean
RMS distance δE :=

√∑
n dT

n dn/N and the Mahalanobis RMS distance δΣ :=√∑
n dT

n Σ−1
an,an dn /N . The latter measure uses the covariance matrices as local

metrics for the distance measure. δΣ is a unit-less value that is > 1, = 1 or < 1 if
dn lies outside, on or inside the standard deviation error ellipsoid represented by
Σan,an . For each true point set, the mean and standard deviation of the δE and
δΣ over all data point sets is denoted by ΔE , σE and ΔΣ , σΣ , respectively. Fi-
nally, we take the mean of the ΔE , σE and ΔΣ , σΣ over all true point sets, which
are then denoted by Δ̄E , σ̄E and Δ̄Σ , σ̄Σ . These quality measures are evaluated
for the circle estimates by the SVD and the Gauss-Helmert (GH) method. In
table 3 the results for different values of σr and different angle ranges is given.
In all cases 10 data points are used.

It can be seen that for different levels of noise (σr) the Gauss-Helmert method
always performs better in the mean quality and the mean standard deviation
than the SVD method. It is also interesting to note that the Euclidean measure
Δ̄E is approximately doubled when σr is doubled, while the ”stochastic” measure
Δ̄Σ , only increases slightly. This is to be expected, since an increase in σr implies
larger values in the Σan,an . Note that Δ̄Σ < 1 implies that the estimated circle
lies mostly inside the standard deviation ellipsoids of the true points.

For the evaluation of a general rotor, the ”true” points {an} are a cloud
of Gaussian distributed points about the origin with standard deviation 0.8.
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These points are then transformed by a ”true” general rotation R. Given the
set {a′

n} of rotated true points, noise is added to generate the data points {bn}
in just the same way as for the circle. For each of 40 sets of true points, 40
data point sets are generated and a general rotor R̂ is estimated. Using R̂ the
true points are rotated to give {â′

n}. The distance vectors {dn} are then defined
as dn := a′

n − â′
n. From the {dn} the same quality measures as for the circle

are evaluated. In table 4 we compare the results of the Gauss-Helmert (GH)
method with the initial SVD estimate and a standard approach (Std) described
in [1]. Since the quality measures did not give significantly different results for
rotation angles between 3 and 160 degrees, the mean of the respective values
over all rotation angles are shown in the table. The rotation axis always points
along the z-axis and is moved one unit away from the origin along the x-axis.
In all experiments 10 points are used. It can be seen that for different levels
of noise (σr) the Gauss-Helmert method always performs significantly better in
the mean quality and the mean standard deviation than the other two. Just as
for the circle the Euclidean measure Δ̄E is approximately doubled when σr is
doubled, while the ”stochastic” measure Δ̄Σ , only increases slightly. Note that
Δ̄Σ < 1 implies that the points {â′

n} lie mostly inside the standard deviation
ellipsoids of the {a′

n}.
In conclusion it was shown by the synthetic experiments that accounting for

the uncertainty in the data when estimating geometric and kinematic entities,
does improve the results. Geometric Algebra offers a unifying framework where
the constraints on geometric and kinematic entities can be expressed succinctly
and dimension independently in such a way that linear estimation procedures
may be applied. We believe that these properties can be of great value for many
applications in Computer Vision.
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Abstract. In this paper, we combine the well-established technique of
Wiener filtering with an efficient method for robust smoothing: channel
smoothing. The main parameters to choose in channel smoothing are
the number of channels and the averaging filter. Whereas the number of
channels has a natural lower bound given by the noise level and should
for the sake of speed be as small as possible, the averaging filter is a
less obvious choice. Based on the linear behavior of channel smoothing
for inlier noise, we derive a Wiener filter applicable for averaging the
channels of an image. We show in some experiments that our method
compares favorable with established methods.

1 Introduction

Denoising of signals and images has always been an active area of research.
For linear filtering, Wiener theory provides us with an optimal solution, cf. [1].
The restriction to linear filtering is however unsuitable for instationary signals
and images, for instance at edges. Nonlinear denoising schemes which take care
of instationarities are typically iterative methods or methods which embed the
signal into higher dimensional spaces. To the former class belong all diffusion
based methods, e.g., [2,3] and other variational methods as total variation and
Mumford-Shah-based methods, see [4] for a comparison. To the class of n+1
dimensional embedding methods belong bilateral filtering [5] and the method of
channel smoothing [6], which will be described and used further below. Further-
more, there exist also combinations of both, e.g. Beltrami flow [7] and mean-shift
filtering [8]. Lately, we added a further method for directly solving an underlying
robust problems [9], which however only works for 1D features.

The drawback of the non-linear schemes is the difficulty to decide when to
stop the iterative process, how to choose the balance between proximity and
smoothness, respectively the sizes of the kernels. Wiener theory does not apply
in general, since the methods are highly non-linear. One new method which
addresses this problem to some extent are the Kringing filters [10].
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In this paper we will exploit the locally linear behavior of channel smoothing
to select appropriate smoothing kernels by Wiener filters. In order to make chan-
nel smoothing linear over the range of the noise, the channel width is selected
based on an initial noise estimate according to [11].

As a result, all parameters of channel smoothing are automatically deter-
mined. Results and comparisons of this fully automatic method for denoising
and inpainting are presented in a final section.

2 The Channel Representation

The channel representation is a particular information representation which ap-
plies local, smooth windows to the feature domain [12]. The representation is
obtained from a finite set of channel projection operators Fn. These are applied
to the signal values in a point-wise way to calculate the channel values cn(x):

cn(x) = Fn(f(x)) n = 1, . . . , N , (1)

where f is the signal and x is the spatial vector. Each signal value f(x) is mapped
to a vector c(x) = (c1(x), . . . , cN(x)), the channel vector at x. The components
of c are called the channels. The set of all channel vectors, i.e., the vector valued
function c : x �→ c(x), forms the channel representation of f . The channels of a
signal can by themselves be considered as signals, i.e., the channel representation
of a signal can be considered as a set of signals.

The projection operators can be of various form but we concentrate on
quadratic splines, i.e.,

Fn(f) = B2(f − n) , (2)

where

B2(f) =

⎧⎪⎨⎪⎩
3
4 − f2 |f | ∈ [0, 1

2 )
1
2 (3

2 − |f |)2 |f | ∈ [12 , 3
2 )

0 otherwise.
(3)

It has been shown that summing channel vectors of samples from a stochas-
tic variable ξ results in a sampled kernel density estimate of the underlying
distribution p(ξ) [6]:

E{c} = E{[Fn(ξ)]} = (B2 ∗ p)(n) . (4)

The global maximum of p is the most probable value for ξ and for locally sym-
metric distributions, it is equivalent to the maximum of B2 ∗ p. The latter can
be approximately extracted from the channel vector c using an implicit B-spline
interpolation [6] resulting in an efficient semi-analytic method. The extraction of
the maximum can therefore be considered as a functional inverse of the projec-
tion onto the channels. In what follows, we name the projection operation also
channel encoding and the maximum extraction channel decoding.

Based on the previous considerations, the method of channel smoothing con-
sists of three steps [6]:
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Fig. 1. Influence function of channel smoothing [6]

1. Encode the signal into channels,
2. Locally average each channel (-signal),
3. Decode the channel representation.

If the signal is perturbed by small scale noise relative to the distance between
two neighbored channels, local averaging will reduce this noise. Large scale dis-
continuities remain unchanged. Outliers, i.e., point-wise, large scale deviations
are removed. The signal is smoothed in a robust way.

The method has two parameters: the relative scale between the signal values
and the channel positions n, i.e., the channel resolution, and the averaging kernel.
These two parameters were up to now matter of manual selection, but in the
subsequent section we will introduce an automated method based on Wiener
theory.

It is of central importance for this derivation that the obtained effective
influence function of channel smoothing [6] is piecewise linear in the interval
[− 1

2 ; 1
2 ], cf. Fig. 1. The influence function describes the change of the robust

mean value if a new sample is added to the input set of the estimator. Linearity
in [− 1

2 ; 1
2 ] means that any value which is closer than one half to the mean value

will be treated as in linear averaging. The decay of the influence function for
large arguments leads to a suppression of outliers, since samples with a large
distance to the robust mean have zero influence.

3 Wiener Channel Filters

The idea of Wiener channel filters is quite simple: If we assume that the noise
stays within the linear interval of the influence function, we can simply apply the
same filter as in the linear case, but the result will not suffer from the blurring
of edges as in the linear case.
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A necessary assumption for the derivations in the following steps is a signal
model according to

f(x) = s(x) + n(x) , (5)

where s is the noise free signal and n is Gaussian white noise with variance σ2
n. In

order to assure that the noise stays within the linear interval, we have to select
the channel resolution according to the noise level in the signal. More concretely,
we choose the distance between the channels such that it covers the 2σ-interval
of the noise distribution.

In practice we follow the noise-variance normalization procedure from [11]
which estimates constant Gaussian noise variance σ2

n with a simple iterative
approach based on a null-hypothesis test for a homogeneity function (here: gra-
dient magnitude squared). In a second step, the signal is normalized such that
the noise standard deviation becomes 1

4 according to the requirement above. The
normalized signal is then channel encoded with integer channel positions, i.e.,
the number of channels now depends on the relative noise level of the signal.
Due to the rescaling before the encoding, the noise signal n falls nearly entirely
into the support of one channel.

According to Wiener theory, the optimal linear filter for denoising f from
independent noise is obtained through the autocorrelations of s and n [13]. Let
Agg(x) denote the autocorrelation function of the signal g and its vectorization
(by concatenation) by rgg[k]. The autocovariance matrix of g is then obtained
as Rgg[k, l] = rgg[k− l]. Using these notations, the optimal linear filter is defined
as

h = (Rss + Rnn)−1rss , (6)

where h denotes the impulse response of the filter in vector form.
We do not want to go into details about varieties of Wiener filtering, but

there are some particularities we have to mention:

– The autocorrelation of the noise-free signal is not know. Typically the filter
is optimized for a whole class of images where (nearly) noise-free versions
are available.

– If we only know slightly noisy signals, we can in good approximation estimate
the optimal filter by replacing rss with the autocorrelation of the slightly
noisy signals. This is only valid if the amount of noise in the image set is
small compared to the noise in the present instance subject to denoising.

– In practice, we estimate rss and Rss only once for a class of images. By
the assumption of independent white noise, we obtain the optimal filter by
setting the noise autocorrelation to an impulse with weight σ2

n (rnn = σ2
nδ).

Determining the optimal kernel allows us now to average the channels with
a kernel that is optimal concerning denoising the stationary signal parts. After
averaging the channels, we have different options to proceed, depending on the
application. If we are interested in the denoised image itself, we apply the channel
decoding. If we want to analyze the image, e.g. detect edges, it is not necessary
to decode the image.
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In what follows, we exploit that the averaged channel vector is an approxi-
mation of the local probability density function (4), which allows to estimate the
local differential entropy of the image. We estimate the entropy by

H̃(x) = −
N∑

n=1,cn(x) �=0

cn(x) log cn(x) . (7)

From (4) we get

E{H̃} = −
∑

(B2∗p)(n) ln(B2∗p)(n) ≈ −
∫

(B2∗p)(ξ) ln(B2∗p)(ξ) dξ = HB2∗p.

The approximation of the integral by the sum becomes exact, if the term
(B2∗p)(ξ) ln(B2∗p)(ξ) has zero Fourier coefficients for integer, non-zero multiples
of 2π (i.e., no aliasing occurs). Due to the smoothing of the pdf with B2, HB2∗p

itself is only an approximation to the true entropy Hp. In practice, the entropy is
often estimated by a Parzen-window based approximation. However, this results
in a poorer approximation, as we will show in the experiments.

4 Experiments

In the experiments we will focus on three aspects:

– Denoising of images
– Inpainting of images
– Edge detection by entropy

In the denoising experiment we compare our method with ordinary Wiener
filtering. We added Gaussian white noise with different standard deviations and
in some instances salt & pepper noise (1% density) to two test images, cf. Fig. 2.
Both, linear Wiener filtering and Wiener channel filtering remove large parts
of the Gaussian noise, but Wiener channel filtering preserves the edges and
removes most of the salt & pepper noise. This becomes particularly visible in
the difference images in Fig. 2. The different settings in the experiments and the
obtained root mean square errors are listed in Tab. 1.

Table 1. Root mean square error comparison of linear Wiener filtering and Wiener
channel smoothing.

test image RMSE of test image linear filtering channel smoothing
house, σ2 = 10−3 0.032 0.024 0.019
house, σ2 = 5 · 10−3 0.070 0.037 0.030
house, σ2 = 10−2 0.099 0.045 0.037
house, σ2 = 10−3, S&P 1% 0.063 0.036 0.023
cameraman, σ2 = 10−3 0.031 0.035 0.023
c.man, σ2 = 10−3, S&P 1% 0.063 0.044 0.023
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Fig. 2. Denoising experiment. Row-wise from top left to bottom right: House image:
original, noisy (σ = 10−3, 1% Salt & Pepper noise), Wiener filtered, Wiener channel
smoothed, difference between linear wiener filtering and Wiener channel smoothing
(amplified by factor two); cameraman image: original, noisy (σ = 10−3, 1% Salt &
Pepper noise), Wiener filtered, Wiener channel smoothed, difference between linear
wiener filtering and Wiener channel smoothing (amplified by factor two); randomly
sampled house image image (25% samples, σ = 10−3), inpainting result from normal-
ized averaging.
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Fig. 3. Top from left to right: inpainting result from channel smoothing, difference
between normalized averaging and channel smoothing; local entropy calculated from
Matlab standard implementation. Bottom from left to right: entropy calculated from
channel representation with same kernel as Matlab standard version (9x9 box filter),
raw Canny response (Gaussian derivatives), and channel entropy with the same lowpass
kernel as in the Canny filter (σ = 3).

In a second experiment, we compared the inpainting of channel smoothing
and normalized averaging1 [14], both with a Wiener kernel scaled according to
the ratio of present pixels. We created a test image with 25% of the samples
and σ = 10−3, cf. Fig. 2. The results are illustrated in Fig. 2 and Fig. 3. Appar-
ently, the two methods give similar results except for the edges which are better
preserved by channel smoothing.

Finally, the edge detection by entropy is compared to the Canny detector [15]
and histogram-based entropy computation (Matlab implementation). Whereas
the Canny response (Gaussian derivatives) does not respond to lines, the entropy
responds to any type of symmetry. Histogram-based entropy (Parzen window
instead of B-spline) is more sensitive to noise. Furthermore, binary kernels as
used in the Matlab entropy filtering lead to more blurring and a lower SNR.

Concerning the computational costs, channel based methods are 3-4 times
slower than linear ones. The averaging itself takes about three times longer than
the convolution in the linear case (channel encoding and averaging implemented
in a combined look-up table). The channel decoding adds another linear term to

1 We excluded linear filtering, which is basically incapable of performing inpainting.
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the complexity. However, channel smoothing is at least one order of magnitude
faster than diffusion filtering and other non-linear techniques, cf. [6].

5 Conclusion

Due to its local linearity, channel smoothing allows to combine non-linear
smoothing with Wiener theory. The result is an efficient method with automat-
ically adapted parameters for applications in the area of denoising, inpainting,
and edge detection. Some variational methods as those described in [4] give prob-
ably better results, but they are by two orders slower that channel smoothing.
Hence, for many time-critical applications, channel smoothing with automated
parameter selection is a suitable approach.
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Abstract. Differential motion estimation in image sequences is based
on measuring the orientation of local structures in spatio-temporal sig-
nal volumes. For this purpose, discrete filters which yield estimates of
the local gradient are applied to the image sequence. Whereas previous
approaches to filter optimization concentrate on the reduction of the sys-
tematical error of filters and motion models, the method presented in this
paper is based on the statistical characteristics of the data. We present
a method for adapting linear shift invariant filters to image sequences or
whole classes of image sequences. We show how to simultaneously opti-
mize derivative filters according to the systematical errors as well as to
the statistical ones.

1 Introduction

Many methods have been developed to estimate the motion in image sequences.
A class of methods delivering reliable estimates [1] are the differential motion
estimators which contain a wide range of different algorithms [1,2,3]. All of them
are based on approximation of derivatives on a discrete grid and it turns out that
this approximation is an essential key point in order to achieve precise estimates
[1,4]. Many different methods have been developed in the last decade trying
to reduce the systematical approximation error of discrete derivative operators
[5,6,7,8,9,10]. However, the fact that all real world images are with different
extents corrupted by noise has been neglected by these methods. In extension to
these approaches mentioned above we present derivative filters adapted to the
statistical characteristics of the signal and the noise contained in it.

1.1 Differential Approaches to Motion Analysis

The general principle behind all differential approaches to motion estimation is
that the conservation of some local image characteristic throughout its temporal
evolution is reflected in terms of differential-geometric entities on the space-time
signal s(x), x = (x, y, t)T . In its simplest form, the assumed conservation of

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 476–484, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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brightness along the motion trajectory through space-time leads to the well-
known brightness constancy constraint equation (BCCE), where ∂s(x)/∂r de-
notes the directional derivative in direction r, |r| = 1 and g(x) is the gradient
of the gray value signal s(x):

∂s(x)
∂r

= 0 ⇔ gT (x) · r = 0. (1)

Since gT (x) · r is identical to the directional derivative of s in direction r, the
BCCE states that this derivative vanishes in the direction of motion. Since it is
fundamentally impossible to solve for r by a single linear equation, additional
constraints have to be considered. One way to cope with this so called aperture
problem is to perform a weighted average of the residual term of multiple BCCE’s
in a local neighborhood V . Using a spatiotemporal weighting function w(x) and
the Euclidean metric this leads to the optimization problem [11]∫

V

w(x)
∣∣gT (x) · r

∣∣2 dx −→ min

⇒ rTCgr −→ min with Cg :=
∫

V

w(x)g(x)gT (x) dx.

The solution vector r̂ is the eigenvector corresponding to the minimum eigen-
value of the structure tensor Cg (cf. [12,13]) 1. In order to calculate the struc-
ture tensor, the partial derivatives of the signal have to be computed at discrete
grid points. The implementation of the discrete derivative operators itself is a
formidable problem, even though some early authors [2] apparently disregarded
the crucial importance of this point.

1.2 Discrete Derivative Operators

Since derivatives are only defined for continuous signals, an interpolation of
the discrete signal s(xn), n ∈ {1, 2, ..., N}, xn ∈ IR3 to the assumed underlying
continuous signal s(x) has to be performed [5] where c(x) denotes the continuous
interpolation kernel

∂s(x)
∂r

∣∣∣∣
xn

=
∂

∂r

⎛⎝∑
j

s(xj)c(x− xj)

⎞⎠∣∣∣∣∣∣
xn

=
∑
j

s(xj)
(

∂

∂r
c(x− xj)

)∣∣∣∣
xn︸ ︷︷ ︸

dr(xn)

.(2)

The right hand side of eq. (2) is the convolution of the discrete signal s(xn) with
the sampled derivative of the interpolation kernel dr(xn), the impulse response
of the derivative filter ∂s(xn)

∂r = s(xn)∗dr(xn). Since an ideal discrete derivative
filter dr(xn) has an infinite number of coefficients ([14], p.128), an approximation

1 This is the correct solution only in case that the noise contained in the gradient
vectors g(x) is i.i.d. in all its components, and also between adjacent gradients.
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d̃r(xn) has to be found. In an attempt to simultaneously perform the interpola-
tion and some additional noise reduction by smoothing, often Gaussian functions
are used as interpolation kernels c(x) [13]. In the next section we show how to
put such ad hoc approaches on solid theoretical grounds. Instead of choosing a
Gaussian function in order to reduce assumed noise in high frequency regions,
we derive a signal-and-noise adapted filter whose shape is determined by the
actual statistical signal and noise characteristic.

2 The Signal and Noise Adapted Filter Approach

The signal and noise adapted (SNA)-filter approach is motivated by the fact
that we can exchange the directional derivative filter dr(xn) in the BCCE by
any other steerable filter hr(xn) which only nullifies the signal when applied
in the direction of motion [15]. The shape of the frequency spectrum of any
rank 2 2 signal is a plane Kr going through the origin of the Fourier space and
its normal vector n points to the direction of motion r ([13],p.316). Thus, the
transfer function 3 Hr(f ) has to be zero in that plane, but the shape of Hr(f)
outside of plane Kr can be chosen freely as long as it is not zero at all. If
the impulse response hr(xn) shall be real-valued, the corresponding transfer
function Hr(f) has to be real and symmetric or imaginary and antisymmetric
or a linear combination thereof. The additional degrees of freedom to design the
shape outside Kr make it possible to consider the spectral characteristics of the
signal and the noise which are encoded in the second order statistical moments
in the filter design. In the following section the derivation of an optimal filter is
shown which is a special case of the more general framework presented in [16]
and for the special case of motion estimation in [17].

2.1 General Model of the Observed Signal

The general idea of the SNA-filter proposed first in [18] is to combine Wiener’s
theory of optimal filtering with a desired ideal impulse response. The term ideal,
in this case, means that the filter is designed for noise free signal s(x). But signals
are always corrupted by noise. Our goal is now to adapt the ideal filter hr(x)
to more realistic situations where signal is corrupted by noise. We model the
observed image signal z at position i, j, k in a spatio-temporal block of dimension
N × N × N by the sum of the ideal (noise free) signal s and a noise term v:
z(i, j, k) = s(i, j, k) + v(i, j, k). For the subsequent steps, it is convenient to
arrange the s, v, and z of the block in vectors s ∈ IRM ,v ∈ IRM and z ∈ IRM .
The extraction of a single filter response value ĝ thus be written as scalar product
ĝ = xTz using a filter coefficient vector x ∈ IRM . The block diagram in fig. 1
provides a graphical representation of our model, and the corresponding equation
for the actual filter output ĝ reads:

ĝ = xTz = xT ( s + v) = xT s + xTv . (3)
2 The rank of a signal is defined by the rank of the corresponding structure tensor
3 The Fourier transforms of functions are denoted here by capital letters.
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Our task is to choose x T in such a way that the filtered output ĝ approximates,
on an average, the desired output g = hTs for the error-free case as closely
as possible. The next step is to define the statistical properties of the signal
and the noise processes, respectively. Let the noise vector v ∈ IRN be a zero-
mean random vector with covariance matrix E

[
vvT

]
= Cv (which is in this case

equal to its correlation matrix Rv). Furthermore, we assume that the process
which has generated the signal s ∈ IRN can be described by the expectation
E [s] = ms of the signal vector, and an autocorrelation matrix E

[
ssT

]
= Rs.

Our last assumption is that noise and signal are uncorrelated E
[
svT

]
= 0.

Fig. 1. Block diagram of the filter design scenario (unobservable entities in the dashed
frame)

2.2 Designing the Optimized Filter

Knowing these first and second order statistical moments for both the noise as
well as the signal allows the derivation of the optimum filter x. For this purpose,
we define the approximation error e := ĝ− g between the ideal output g and the
actual output ĝ. The expected squared error Q as a function of the vector x can
be computed from the second order statistical moments:

Q(x) = E
[
e2
]

= E
[
ĝ2
]
− 2E [gĝ] + E

[
g2
]

= hTRsh− 2xTRsh + x T (Rs
T + Rv)x

We see that a minimum mean squared error (MMSE) estimator can now be
designed. We set the derivative ∂Q(x)/∂x to 0 and after solving for x we obtain

x = (Rs
T + Rv)−1Rs︸ ︷︷ ︸

M

h = Mh . (4)

Thus, the desired SNA-filter is obtained by a matrix vector multiplication. The
ideal filter designed for the ideal noise free case is multiplied with a matrix M
composed out of the correlation matrices of signal and noise. In principle, this
result is a direct consequence of the Gauss-Markov theorem.
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3 Designed Filter Sets

With the framework presented in section 2 we are able to find for each linear
shift invariant filter h a corresponding noise resistent filter operator x which
takes into account the 2nd order statistics. In order to obtain optimal results
also for low signal to noise ratios, h should be already optimized for the noise free
case. We use filters optimized by the methods of Scharr [7] and Simoncelli
[5]. The methods of Elad et al.[9] and Robinson and Milanfar [10] use
prior information about the true velocity range which is not guaranteed to be
available in all applications. If this information is available it should be used to
adapt the filter to it. However, our approach is already adapted to the motion
range reflected in the autocorrelation function of the image sequence which can
easily be estimated. For reasons of comparison, we also optimize the 5 × 5 × 5
Sobel operator, which is clearly a non-suitable operator for high-precision motion
estimation.

In general, we cannot assume any direction of motion to be more important
than others. In practice we are faced with the problem of estimating the correla-
tion function of the statistical process from a limited number of signal samples.
Estimation the necessary acf (needed for Rs) of a given image sequence is prob-
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Fig. 2. Translating tree: Left: One frame of the image sequence. Middle: True motion
field. Right: Slice through the corresponding autocorrelation function showing a clear
structure in direction of motion r.
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Fig. 3. Left: Original Scharr derivative filter; Middle: Scharr derivative SNA-filter
according to the covariance structure of the translating tree sequence; Right: Scharr

derivative SNA-filter according to the symmetrized covariance structure of the translat-
ing tree sequence. The filter masks are shown for t=constant (upper row), y=constant
(middle row) and t=constant (lower row).
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Fig. 4. Contour Plots of a slice through the 3D ACF; left: Yosemite sequence; middle:
translating tree; right: diverging tree
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Fig. 5. Contour plots of a slide through the 3D symmetrized ACF; left: Yosemite
sequence; middle: translating tree; right: diverging tree

lematic in that temporal position of the acf will in general be very strongly
determined by the current flow field, thus yielding an over-adaption to just the
sequence at hand. In order to illustrate this issue, let us regard the influence
of measured autocorrelation function (acf) on SNA-filters. In fig. 3 the origi-
nal Scharr filter (left, for details about this filter we refer to [7]) and the SNA
Scharr filter (middle) optimized for the translating tree sequence (fig. 2, left) for
S/N=0 dB, are depicted. The structure of the autocorrelation function (shown
in fig. 2, right) with the maximum being aligned with the direction of motion,
is reflected in the filter masks leading to a rotation in the impulse responses of
the partial derivatives. The partial derivative operator does not point along the
corresponding principal axes any more but is adjusted towards the direction of
motion r. This is caused by the optimization procedure described by equation 4.
The matrix M rotates the filter such that the filter output is on average as close
as possible to the output of the ideal filter applied to the ideal signal as long as
we regard only this sequence, or if the acf of the given sequence(s) is typical for
all potential input sequences.

The key to avoid over-adaptation to the preference motion direction of given
sequences is to virtually rotate the sequence in the x-y plane. This can equiv-
alently also be done by rotating the measured acf. We average the estimated
autocorrelation matrix over all possible directions of motion r whereas the ab-
solute value of the velocity is kept constant. Thus, we eliminate any direction
preference and the optimized filter mask does not induce any bias. The abso-
lute value of the velocity is still encoded in the averaged autocorrelation matrix.
Fig. 4 shows some examples of such symmetrized autocorrelation functions. The
corresponding optimized filters are shown in fig. 3 (right).
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4 Experimental Results

In this section, we present examples which show the performance of our op-
timization method. For the test we use three image sequences, together with
the true optical flow: ’Yosemite’ (without clouds) ’diverging tree’ and ’translat-
ing tree’ sequences4. The optical flow has been estimated with the tensor based
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Fig. 6. Bar plots of the average angular error (AAE) vs. the signal to noise (S/N)
ratio. For every S/N ratio the AAE for three different densities is depicted: From left
to right: 86%, 64% and 43%. The gray bar denotes the AAE with the original, the
black ones the AAE with the optimized filters. Note that the experiment is performed
at rather bad S/N ratio in range 10 dB to 0 dB.

method described in section 1.1. For all experiments, an averaging volume of size
11× 11× 11 and filters of size 5× 5× 5 are applied. For the weighting function
w(x), we chose a sampled Gaussian function with width σ = 8 (in pixels) in all
directions. For performance evaluation, the average angular error (AAE) [1] is
computed. The AAE is computed by taking the average over 1000 trials with
individual noise realization. In order to achieve a fair comparison between the
different filters but also between different signal-to-noise ratios S/N , we compute
all AAEs for three different but fixed densities 5 determined by applying the to-
tal coherence measure and the spatial coherence measure [13]. We optimized the
Scharr, Simoncelli and the Sobel filter for every individual signal to noise
ratio S/N in a range from 10 dB to 0 dB (for i. i. d. noise). We then applied

4 The diverging and translating tree sequence has been taken from Barron’s web-site
and the Yosemite sequence from http://www.cs.brown.edu/people/black/images.html

5 The density of an optical flow field is defined as the percentage of estimated flow
vectors which have been used for computing the AAE with respect to all estimated
flow vectors.
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both the original Simoncelli, Scharr and the 5 × 5 × 5 Sobel filter and its
corresponding SNA-filters.

As expected and shown in fig. 6, the SNA-filters yield a better performance
than the original non-adapted filters in case the image sequence being corrupted
by noise for all types of ideal filters (the Simoncelli filter performs equivalently
to the Scharr filter, thus only the performance of the latter is shown in the
figures). The highest performance increase could be gained by optimizing the
Sobel filter. But also the performance of the Scharr filter is increased by op-
timizing it to the corresponding images sequence. In the case of the translating
tree and diverging tree sequences, the difference between the optimized Sobel
and optimized Scharr filter decreases for lower signal to noise ratio. We can
conclude that for these cases the optimum shape of the filter is mainly deter-
mined by the signal and noise characteristics, whereas for higher signal to noise
ratios the systematical optimization plays a greater role.

5 Summary and Conclusion

We have presented a method for designing derivative filters for motion estimation
which are optimized according to the characteristics of signal and noise. Our
filter adapts to the characteristics in spatial and temporal direction which is
implicitly reflected in correlation structure of the image sequence. The SNA-filter
design is completely automatic without the need of any assumption on the flow
field characteristics as opposed to previous approaches [9,10]. All information
necessary for the filter design can be obtained from measurable data. In order to
design filters which are universally applicable, we averaged the autocorrelation
matrix over all possible directions while keeping the absolute value of the velocity
constant. Thus this method still encodes the absolute value of the velocity in the
covariance structure and optimizes the filter according to it. The combination
of these filters with the structure tensor approach showed a significant gain in
motion estimation when applied to noisy image sequences.

This work has been funded by DFG SPP1114.
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Abstract. We consider the problem of deblurring images which have been
blurred by different reasons during image acquisition. We propose a variational
approach admitting spatially variant and irregularly shaped point-spread func-
tions. By involving robust data terms, it achieves a high robustness particularly
with respect to imprecisions in the estimation of the point-spread function. A
good restoration of image features is ensured by using non-convex regularisers
and a strategy of reducing the regularisation weight. Experiments with irregular
spatially invariant as well as with spatially variant point-spread functions
demonstrate the good quality of the method as well as its stability under noise.

Keywords: deblurring, variational method, robust data terms.

1 Introduction

Blurring of images in the process of acquisition appears in many application contexts.
Reasons include defocussing as well as camera and object motion during exposition.
Besides that, optical imperfection of the lens system also causes blurring. Ubiquity
of these image degradation makes deblurring a problem of outstanding importance in
image processing.

Often the blurring can be captured by convolution of a sharp image with some ker-
nel, or point-spread function (PSF), which does not depend on the location within the
image. Typical cases where such spatially invariant blur occurs are translatory motion
of the camera, and defocussing if all objects are at equal depth. However, in many im-
portant cases the PSF changes between different locations in the image, i.e. one has a
spatially variant blur. Even rotations of the camera for static scenes lead to spatially
variant blur.

Assume first we have spatially invariant blur with known PSF. One relatively simple
approach to deblurring is then to multiply the Fourier transform of the blurred image

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 485–492, 2005.
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by the reciprocal ĥ−1 of the Fourier transform of the kernel h. Refinement of this idea
by suitable treatment of such frequencies for which ĥ is close to zero leads to clas-
sical linear deblurring filters like pseudoinverse filtering and Wiener filtering [21,10].
Limitations of this approach are its restriction to spatially invariant blur as well as char-
acteristic oscillatory artifacts which cannot be avoided by linear methods [3].

The variational deblurring approach is able to reduce these artifacts. A rich literature
exists on variational deblurring in the case of spatially invariant PSF. The choice of
suitable regularisation terms ensures that important structures in the image like edges
are restored in good quality. In this paper, we will extend the variational approach to a
slightly more general form which also covers spatially variant blurs.

It is worth noting that many papers on deblurring show only synthetic tests where
the degraded image is obtained by blurring a sharp image with a known PSF. In applica-
tion contexts, however, the PSF will mostly not be known exactly. In some cases, such
as optical errors, it can be measured fairly precise in calibration procedures. In other
cases a-priori knowledge restricts the variety of possible kernels, e.g. in defocussing
where typically cylindrical kernels occur. Sometimes no restricting assumptions of this
kind hold.

As a remedy for this deficient knowledge on the PSF, one can consider blind decon-
volution which estimates a convolution kernel and sharp image at the same time. Vari-
ational blind deconvolution methods can be found e.g. in [22,9]. For the ill-posedness
of the deblurring problem, however, it is desirable to introduce as much a-priori infor-
mation as one can have into the deblurring process. The approach we present here is
a non-blind deconvolution method which is tolerant to imprecision in the kernel to a
higher degree than previous ones. In fact, it allows a reasonable deblurring of images
which are degraded by natural sources of blur and for which we do principally not
know a precise PSF or a sharp ground-truth image. The PSFs in our experiments are
just approximated to a modest precision from manually selected image features.

The key to this enhanced robustness is to employ in the variational ansatz robust
data terms which made their first appearance in a deblurring context in the paper by
Bar et al. [2]. Robust data terms are motivated by robust statistics [13,11] and have been
introduced in computer vision particularly in motion detection [5,6,12,16,8]. Important
theoretical results were contributed by Nikolova [19].

Our paper is organised as follows. In Sec. 2 we derive the gradient descent PDE
with robust data terms and spatially invariant PSF. Subsection 2.2 is devoted to spe-
cific problems of the selection of the regularisation weight and treatment of boundaries.
Experiments are presented in Sec. 3. We end with conclusions in Sec. 4.

Related Work. The deblurring problem has played a role in computer vision research
over a considerable time. A great variety of approaches have been undertaken. Blind and
non-blind variational deconvolution with total variation regularisation has been consid-
ered in [15] as well as in [9] and [1], the latter in combination with a segmentation ap-
proach. A blind deconvolution approach with more general regulariser is found in [22].
Bar et al. [2] introduced robust data terms into this field. Bertero et al. [4] contributed
results on existence, uniqueness and stability of solutions for variational problems of
this type.
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Deconvolution with spatially variant PSF has been studied mainly within discrete
frameworks such as [17,18,14].

2 Variational Deblurring with Spatially Variant PSF

2.1 Basic Model with Robust Data Terms

A general PSF has the form H(y, x) where y, x denote locations in the sharp and
degraded images, respectively. The sharp image g and degraded image f are then con-
nected via

f(x) =
∫
Ω

g(y)H(y, x)dy + n(x)

where Ω ⊂ IR2 is the image domain, and n denotes noise. Given some approximation
u for g, we have the residual error

Rf,H [u](x) := f(x)−
∫
Ω

u(y)H(y, x)dx .

Variational deblurring of the image f is achieved by minimising the functional

E(u) =
∫
Ω

(
Φ((Rf,H [u])2) + αΨ(|∇u|2)

)
dx (1)

where Φ and Ψ are monotonically increasing functions from IR+
0 to IR. The first sum-

mand in the integrand is the data term which favours images u with small residual
error. The second summand, called regulariser, enforces smoothness of the image. The
strength of its influence is determined by the regularisation weight α > 0. If the func-
tion Φ increases for s → ∞ slower than Φ(s2) = s2, one speaks of a robust data
term since in this case large residual errors are given less influence on the value of
E(u) than with the quadratic error term. One typical choice is the regularised L1-norm
Φ(s2) =

√
s2 + β2 with β > 0.

Robust data terms have been introduced in a deblurring context only recently by
Bar et al. [2]. In the regularisation term, (regularised) total variation Ψ(s2) =

√
s2 + ε2

(with small positive ε) has already been preferred over the quadratic Tikhonov regu-
lariser Ψ(s2) = s2 for a long time because of their better ability to preserve sharp edges
in the image. The non-convex Perona–Malik regulariser Ψ(s2) = (1 + s2/λ2)−1 has
been considered in [20]. Here, λ > 0 is a contrast parameter which determines above
which steepness edges are enhanced in the gradient descent process.

A gradient descent equation for (1) reads

∂tu = α div(Ψ ′(|∇u|2)∇u)−
∫
Ω

Φ′((Rf,H [u])2)(y) ·Rf,H [u](y)H(y, x)dy (2)

which can be evaluated numerically in the simplest case by an explicit scheme. A speed-
up could be achieved by using more efficient semi-implicit schemes.
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2.2 Boundary Treatment and Parameter Choice

Notice that when writing spatially invariant blur as convolution, problems occur at the
boundaries where the blur transfers information from inside the image to outside and
vice versa. Our formalism with a general PSF H(y, x) with two location arguments
removes these difficulties since only locations within the image occur. Transfer of im-
age information from inside to outside is neglected while the reverse transfer can be
considered as part of the noise.

To be able to choose appropriately the parameter α, we must be aware of the double
function of the regularisation in deblurring. On one side, deblurring is a highly ill-
posed problem such that regularisation is needed to suppress noise. This entails that in
the presence of strong noise α should be chosen larger. On the other side, even in a
noise-free setting the regularisation term has the function to suppress certain oscillatory
perturbations in the filtered image which are not detected by the data term.

The latter aspect generally leads to a much larger α than the pure noise suppression.
However, such strong regularisation introduces an unwanted smearing of structures into
the filtered image. In [20] a continuation strategy has been proposed which consists
in starting with large α and repeating the gradient descent several times with succes-
sively decreasing α. In each decrement step, the previously reached steady state serves
as initialisation. This method combines a good suppression of oscillation with sharp
restoration of image structures. A similar continuation strategy had been proposed in a
different context in [7]. We will use this continuation strategy also here. Here, the initial
level of α is primarily adapted to the suppression of oscillations while the final level of
α depends on the noise intensity.

3 Experiments

In our tests, we used the gradient descent PDE (2) with the robust data term Φ(s2) =√
s2 + β2 (except for the non-robust case in Fig. 1 (c)). Tieing up with [20] we chose

a Perona–Malik regulariser in all cases. With our present implementation based on an
explicit scheme, computation times range from 15 to 90 minutes on standard PCs for
the images shown in this paper.

Our first experiment, Fig. 1, shows a photograph of Paris at dusk blurred by camera
movement during the exposition, with three enlarged detail views. The resulting PSF
is fairly irregular. For the deblurring process, it was assumed to be spatially invariant.
The PSF then was approximated by clipping the image of an isolated light source from
the lower part of the river region. Clearly, the estimation of the convolution kernel from
such an approximate impulse response induces an imprecision. Further, a closer look at
the blurred image reveals that the assumption of spatially invariant blur does not per-
fectly capture the situation since impulse responses in opposite corners of the image are
of slightly different shape. In the case of non-robust variational deblurring it was there-
fore necessary to choose a large diffusion weight which caused most finer structures
in the image to be smoothed away. Nevertheless, street lights are still restored inaccu-
rately, as they are accompanied by shadows and echo images. Street lights far from the
river region are badly restored because of the PSF inaccuracy.



Variational Deblurring of Images with Uncertain and Spatially Variant Blurs 489

(a)

(b)

(c)

(d)

Fig. 1. (a) Spatially invariant, irregularly shaped approximate PSF for deconvolution (enlarged). –
(b) Paris at dusk from Eiffel tower, blurred by camera movement during exposition. Complete im-
age (480× 480) and three detail views. Grey-values in lower right detail view have been linearly
rescaled. – (c) Restoration by variational deblurring with non-robust data term and Perona–Malik
regulariser, λ = 15, α = 0.1. – (d) Same with robust data term, λ = 15, α = 0.02.
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(a) (b) (c)

Fig. 2. (a) Spatially invariant approximate PSF (enlarged). – (b) Blurred photograph (clipping).
– (c) Variational deblurring with robust data terms, Perona–Malik regularisation (λ = 40) and
continuation strategy (4 levels with α = 0.06, 0.03, 0.015, 0.0075).

(a) (b) (c) (d) (e)

Fig. 3. (a) Spatially variant defocussing PSF (correct size). – (b) Defocussed photograph of
printed text. – (c) Restored by variational deblurring with robust data term and Perona–Malik
regulariser (λ = 5), using continuation strategy (2 levels with α = 0.03 and α = 0.003). – (d)
Defocussed photograph with 30 % uniform noise. – (e) Restored by variational deblurring with
robust data term and Perona–Malik regulariser (λ = 5), using continuation strategy (2 levels with
α = 0.03 and α = 0.015).

Robust deblurring, in contrast, can cope with the PSF imprecision much better. A
smaller diffusion weight has been chosen such that more structures like streets and
buildings are recovered. Shadows and double images near the street lights do hardly
occur. Even in the lower left part of the image where the PSF’s shape deviates much
from that in the river region favourable sharpness is achieved.

Secondly, we show a detail from a photograph where defocussing together with
possible optical errors have introduced a ring-like blur, Fig. 2. The PSF has again been
distilled from an approximate impulse response in the image. Obviously it is only a
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rough estimate. Moreover the image contains many half-tones. The filtered image dis-
plays a trend towards steepened contrasts but besides that reveals a sharpening of small
structures and highlights.

In our last experiment, Fig. 3, a piece of printed text was photographed from small
distance without appropriate focussing. The distance between lens and object varied
widely, leading to a stronger defocussing in the lower than in the upper part of the
image. Theoretical considerations show that defocussing PSFs are well approximated
by cylindrical functions. For defocussing we used therefore a cylindrical PSF whose
diameter varies linearly from 5 at the top edge to 10.5 at the bottom edge.

To demonstrate also the robustness of the proposed deblurring method with respect
to noise, we replaced 30 % of all pixels by uniform noise. Noise of such intensity is
not typically encountered in application data that the method is intended for, so we had
to resort to artificial image degradation at this single point. Restoration using our vari-
ational method still works well. One difference is that the continuation strategy must
stop reducing the diffusion weight α at a larger value now, in order to remove the over-
smoothing at the initial large α while preserving the noise suppression by regularisation.

We stress that although we used in Fig. 3 a special PSF shape where effectively only
one parameter – the diameter – controls the spatial variation, our deblurring PDE itself
is not restricted to such a setting. Indeed it can cope with arbitrarily given H(y, x).

4 Conclusions and Ongoing Work

We have proposed a general energy-minimising approach to image deblurring which
allows to treat spatially variant blurs and includes the robust data terms which have
first been used in this context by Bar et al. [2]. We used a non-convex regulariser of
Perona–Malik type. By employing also the continuation strategy for the regularisation
weight that was previously developed in [20], we have obtained a performant method.
Experiments demonstrate that image blurs of fairly general shape and different types
which emerged during image acquisition could be reverted by this method.

Ongoing work aims at the development of methods to automatise the detection of
point-spread functions as well as improved representation of more general types of
spatially variant PSFs.
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Energy Tensors: Quadratic, Phase Invariant
Image Operators�
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Abstract. In this paper we briefly review a not so well known quadratic,
phase invariant image processing operator, the energy operator, and de-
scribe its tensor-valued generalization, the energy tensor. We present re-
lations to the real-valued and the complex valued energy operators and
discuss properties of the three operators. We then focus on the discrete
implementation for estimating the tensor based on Teager’s algorithm
and frame theory. The kernels of the real-valued and the tensor-valued
operators are formally derived. In a simple experiment we compare the
energy tensor to other operators for orientation estimation. The paper is
concluded with a short outlook to future work.

1 Introduction

Quadratic image processing operators are an important extension of linear sys-
tems theory for various purposes, as e.g. corner detection [1,2,3]. Phase-based
approaches are an important field when it comes to intensity invariant process-
ing and feature detection, see e.g. quadrature filters [4], phase-based disparity
and motion estimation [5], and phase congruency for edge detection [6].

Although the phase-based techniques are based on the Hilbert transform and
are therefore supposed to be linear, the extraction of the phase and the com-
putation of phase invariant features requires non-linear operations as modulus
or arcustangent. This essential non-linearity gives rise to the field of non-linear
phase invariant operators: If we use non-linear operations anyway, there is little
reason to restrict our basis filters to linear operators.

One of the most popular operators in context of quadratic, phase invariant
signal processing is the energy operator [7,8], which bears its name because it
responds with the energy of a single oscillation. For images, this operator can
be extended in various ways: as a real-valued operator [9], as a complex-valued
operator [10], or as a tensor-valued operator [11], the energy tensor. The latter
can be further generalized to higher order derivatives in terms of the gradient
energy tensor [12].
� This work has been supported by EC Grant IST-2002-002013 MATRIS and by EC
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The purpose of this paper is to investigate the background of the energy-
operator-like approaches more in detail. In particular we will derive some rela-
tions between the operators and their kernels, i.e., those functions which map to
zero. In most theoretic considerations we will stick to the continuous case, but
we will also propose an algorithm for discrete signals.

2 Energy-Operator-Like Operators

2.1 Definitions

According to [9], the energy operator is defined for continuous 1D signals s(t) as

Ψ1[s(t)] = [ṡ(t)]2 − s(t)s̈(t) . (1)

The real-valued energy operator for continuous 2D signals s(x), x = [x y]T , is
defined as [9]

Ψr[s(x)] = [sx(x)]2 − s(x)sxx(x) + [sy(x)]2 − s(x)syy(x) . (2)

The complex-valued energy operator for continuous 2D signals is defined as [10]

Ψc[s(x)] = [D{s}(x)]2 − s(x)D2{s}(x) , (3)

where D{·} = ∂
∂x + i ∂

∂y . The tensor-valued energy operator, the energy tensor,
is defined as [11]

Ψt[s(x)] = [∇s(x)][∇s(x)]T − s(x)Hs(x) , (4)

where ∇s = [sx sy]T and H = ∇∇T .

2.2 Basic Relations

Obviously, the operators (2)-(4) are direct generalizations of (1) since all are
of the same structure. However, the three different generalizations also show
some mutual dependencies. The real-valued 2D operator consists simply of the
1D operator applied to both coordinates and summed up. Furthermore, it is
obtained as the trace of (4):

Ψr[s(x)] = trace{Ψt[s(x)]} , (5)

i.e., it is equal to the sum of the eigenvalues of Ψt. Following the proof in [13],
the complex-valued operator corresponds to the double-angle representation of
Ψt. More concrete: if n = [n1 n2]T denotes the eigenvector corresponding to the
larger eigenvalue λ1 of Ψt and if we decompose the tensor-valued operator as

Ψt[s(x)] = λ1nnT + λ2n⊥n⊥T
=
[
Ψ11 Ψ12

Ψ12 Ψ22

]
, (6)

we obtain the complex-valued operator as

Ψc = (λ1 − λ2)(n1 + in2)2 = Ψ11 − Ψ22 + i2Ψ12 . (7)

To draw a parallel to better known operators, the three energy operators have
the same mutual dependencies as gradient magnitude squared, complex gradient
squared ([D{s}]2), and outer product of gradients.
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2.3 Basic Properties

As stated in [9] for the 1D case and the real-valued 2D case, all energy operators
share the property

Ψ [s1s2] = s2
1Ψ [s2] + s2

2Ψ [s1] . (8)

Due to the fact that the real-valued and the complex-valued operators can be
derived from the tensor-valued one, it is sufficient to show (8) for Ψt.

Proof.

Ψt[s1s2] = [∇(s1s2)][∇(s1s2)]T − (s1s2)H(s1s2)
= [s2∇s1 + s1∇s2][s2∇s1 + s1∇s2]T − (s1s2)∇[s2∇s1 + s1∇s2]T

= s2
1[∇s2][∇s2]T + s2

2[∇s1][∇s1]T + (s1s2)([∇s1][∇s2]T + [∇s2][∇s1]T )
−(s1s2)([∇s2][∇s1]T + [∇s1][∇s2]T )− (s1s2)(s2Hs1 + s1Hs2)

= s2
1Ψt[s2] + s2

2Ψt[s1] .

As also stated in [9] for the 1D case and the real-valued 2D case, all energy
operators respond identically zero to exponential signals:

Ψ [A exp(ax + by)] = 0 , (9)

where A, a, b ∈ C. With the same argument as above it is sufficient to show (9)
for Ψt.

Proof. Let s(x) = A exp(ax + by).

Ψt[s] =
[
a
b

]
s
[
a b
]
s− s

[
aa ab
ab bb

]
s = 0 .

As mentioned above, the energy operator bears its name because of the fact
that it tracks the energy of a single oscialltion. For general signals however,
positivity of the ’energy’ operators is not always given. In [14] the authors give
a proof for a necessary and sufficient condition for positivity: The logarithm of
the signal magnitude must be concave between every two consecutive zeros of
the signal. The relation to the signal logarithm will be considered in more detail
further below.

3 Discrete Implementation of the Energy Tensor

3.1 Teager’s Algorithm

Teager’s algorithm [7] is a very efficient way to compute the energy operator in
1D. The discrete 1D energy operator is computed as

Ψ1[sk] = s2
k − sk+1sk−1 . (10)

Teager’s algorithm can also be used for the real-valued 2D operator by adding
the results of the algorithm in x- and y-direction [9]. For the 2D complex-valued
and tensor-valued operator, the implementation based on central differences or
modified Sobel operators [15] is straightforward. This changes if one tries to use
differences of neighbored samples in order to end up with a 3× 3 operator.
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3.2 A 2D Teager’s Algorithm

It is straightforward that we can apply the 1D algorithm in four different direc-
tions:

t1[sk,l] = s2
k,l − sk+1,lsk−1,l (11)

t2[sk,l] = s2
k,l − sk+1,l+1sk−1,l−1 (12)

t3[sk,l] = s2
k,l − sk,l+1sk,l−1 (13)

t4[sk,l] = s2
k,l − sk−1,l+1sk+1,l−1 . (14)

These four responses can be combined to a tensor in a similar way as described
for the quadrature filter in [4].

As a first step, we consider the series expansion of the four responses for a
pure oscillation with frequency vector [u v]T :

T1 ∝ sin2 u = cu2 +O(u4) (15)
T2 ∝ sin2(u + v) = c(u + v)2 +O((u + v)4) (16)
T3 ∝ sin2 v = cv2 +O(v4) (17)
T4 ∝ sin2(u − v) = c(u− v)2 +O((u − v)4), (18)

i.e., the four responses correspond to the frame tensors

B1 =
[
1 0
0 0

]
B2 =

[
1 1
1 1

]
(19)

B3 =
[
0 0
0 1

]
B4 =

[
1 −1
−1 1

]
. (20)

The dual frame with minimum norm is obtained as [16]

B̃1 =
[
0.6 0
0 −0.4

]
B̃2 =

[
0.2 0.25
0.25 0.2

]
(21)

B̃3 =
[
−0.4 0

0 0.6

]
B̃4 =

[
0.2 −0.25
−0.25 0.2

]
. (22)

We can therefore compute the discrete energy tensor as

Ψt[sk,l] =
4∑

n=1

tn[sk,l]B̃n . (23)

Note that the quadratic term is the same in (11–14), so that we can speed-up
the calculation by setting

t′n[sk,l] = tn[sk,l]− s2
k,l (24)

and

Ψt[sk,l] = s2
k,l

[
0.6 0
0 0.6

]
+

4∑
n=1

t′n[sk,l]B̃n . (25)
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3.3 Regularization

As pointed out in [11], images typically contain local DC components which cause
problems for energy operators [7]. Since we are interested in a simple operator,
more advanced methods for suppressing DC components are out of scope and
we stick to a simple 3×3 bandpass which subtracts the DC component from the
signal.

4 Kernels of Energy Operators

In this section we derive the kernels of the energy operators. Since the operators
are quadratic expression of second order derivatives, the equation

Ψ [s] = 0 (26)

is not at all simple to solve. We start with the 1D case.

4.1 Kernel of the 1D Operator

We start with the observation that

Ψ1[s(t)] = −s(t)2
d

dt

ṡ(t)
s(t)

. (27)

Assuming that s(t) �= 0, we therefore get instead of (26)

ṡ(t) = a s(t) (28)

for a suitable constant a ∈ C. As it is well known, the solution to this equation
is s(t) = A exp(at), and assuming s being continuous, (9) is not only sufficient
but also necessary to obtain Ψ1 = 0.

Remembering the undergraduate math lessons one might come up with the
quick-and-dirty solution of (28), namely to ’multiply’ with dt and to integrate. As
a result, one obtains the logarithm of s(t), which directly leads to the positivity
statement in [14]:

Ψ1[s(t)] = −s(t)2
d2

dt2
log(|s(t)|) . (29)

4.2 Kernel of the Tensor-Valued Operator

We will now show that the 2D separable exponential (9) is the kernel of the
tensor-valued operator Ψt[s(x)]. At the end of Sect. 2.3 we have already shown
that (9) is in the kernel of Ψt.

What is left to show is that all functions in the kernel of Ψt are of the form (9).
The two diagonal elements of the tensor require s(x, ·) = A exp(ax) respectively
s(·, y) = A exp(by). Hence, all functions in the kernel of Ψt are of the form (9).
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4.3 Kernel of the 2D Real-Valued Operator

The class of real-valued functions where Ψr becomes zero can be extended beyond
(9). In particular, the real-valued operator Ψr becomes zero for and only for

|s(x)| = exp(u(x + iy)) , (30)

where u(x + iy) is a harmonic function.

Proof. Likewise as in the 1D case, we assume s �= 0 and

0 =
Ψt

s2
= ∇T ∇s

s
= Δ log(|s(x)|) , (31)

where Δ = ∇T∇ denotes the Laplacian. The constraint (31) means that
log(|s(x)|) is harmonic. Hence, |s| must be the exponential of a harmonic func-
tion.

Note that u might be generated as the real part of an analytic function [17].
Furthermore, negative s are obtained by adding iπ to u.

5 Experiments

In this section we show some experiments which relate the performance of the
energy tensor to other operators for orientation estimation. In this context it
is important to notice that the energy tensor does not only estimate the local
orientation but also the local coherence, i.e., it provides a full structure tensor
from a 3×3 region.

We therefore compared the pure energy tensor with the standard gradient
operator from Matlab and an improved 3×3 Sobel operator [15]. Since it is also
common to use regularized operators, we compared the regularized energy tensor
(Gaussian post-filtering with σ2 = 1, size 7×7) with a comparable Gabor filter
set and the structure tensor (same Gaussian post-filter).

The signal which is used in the experiment is a 2D Chirp-like signal with
Gaussian noise (29dB SNR), cf. Fig. 5. The orientation error was calculated
according to [16] as

Δθ = cos−1

(√∑
cos2(θm(x)− θt(x))

)
, (32)

where θm and θt indicate the estimated orientation and the ground truth, re-
spectively. The results are plotted in Fig. 5 as functions of the radius, which is
reciprocal to the frequency.

Obviously, the energy tensor outperforms the other approaches for the 3×3
filter size. For 9×9 filters, it is still much better than the Gabor filter, but slightly
worse than the structure tensor. The slightly poorer performance is caused by
the approximation error for the calculation of the dual frame, resulting in a small
bias for orientations which are no multiple of π/4.
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Fig. 1. Left: Test image with 29 dB SNR. Right: Orientation error (in radians) de-
pending on the radius aka frequency. Top: 3×3 operators: ET (energy tensor), grad
(Matlab gradient), Sobel. Bottom: 9×9 operators: ETR (regularized ET), Gabor, STR
(structure tensor).

6 Outlook

The energy operator can easily be extended to higher dimensions. Both, the
continuous operator and the nD Teager’s algorithm are straightforward to gen-
eralize. What might turn out to be more complicated are the kernels of the
discrete operators and the higher dimensional continuous operators as well as
the kernel of the complex operator.

For practical applications real-time implementations of the 2D and 3D Tea-
ger’s algorithm are planned. Experimental comparisons for several applications
as corner detection and optical flow estimation will be done.
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Abstract. Object recognition systems have their roots in the AI com-
munity, and originally addressed the problem of object categorization.
These early systems, however, were limited by their inability to bridge
the representational gap between low-level image features and high-level
object models, hindered by the assumption of one-to-one correspondence
between image and model features. Over the next thirty years, the main-
stream recognition community moved steadily in the direction of exem-
plar recognition while narrowing the representational gap. The commu-
nity is now returning to the categorization problem, and faces the same
representational gap as its predecessors did. We review the evolution
of object recognition systems and argue that bridging this representa-
tional gap requires an ability to match image and model features many-
to-many. We review three formulations of the many-to-many matching
problem as applied to model acquisition and object recognition.

1 Introduction

The evolution of object recognition over the past thirty years has witnessed
a shift from shape-based category recognition to appearance-based exemplar
recognition. As seen in Figure 1, early object recognition systems modeled ob-
ject categories as collections of high-level, volumetric parts, such as generalized
cylinders. These models represented intuitive, parts-based abstractions of ob-
jects that offered invariance to minor shape deformations, part articulation, and
occlusion (due to the locality of the representation). Unfortunately, the vision
community lacked the tools to recover such shape abstractions from real im-
ages of real objects, leaving a representational gap that remains a challenge to
this day. Instead, category-level object recognition systems were presented with
images of simple, textureless objects in which image features, such as edges,
mapped directly to the surface discontinuities and occluding boundaries of the
abstract parts comprising categorical models. In effect, the representational gap
was artificially eliminated by bringing the images closer to the models. However,
the simplistic nature of the resulting scenes left many unsatisfied.

The 1980’s witnessed a movement toward geometric CAD models that cap-
tured the exact geometry of an object. Rather than defining object categories,
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Image

High−level shape 
models, e.g., 
generalized
cylinders
(Binford, Brooks, 
Agin, Nevatia, 
Marr, etc.)

Idealized images, 
textureless
objects, simple, 
blocks world−like
scenes. Salient
contour groups
correspond to 
high−level
volumetric parts.

Mid−level shape 
models, e.g., 
polyhedral
models, CAD 
models, low−level 
invariant models 
(Lowe,
Huttenlocher,
Ullman, Mundy, 
Forsyth, Grimson,
etc.)

Low−level
image−based
appearance
models (Turk, 
Pentland, Nayar,
Leonardis,
Bischoff, Crowley, 
Schmid, Mohr, 
etc.)

More complex 
objects,
well−defined
geometric
structure. Salient
contours
correspond to 
polyhedral edges, 
image corners to 
vertices. Models
are rigid 3−D (or 
2−D view−based)
feature templates.

Most complex 
objects, full texture, 
complicated shape. 
Pixels in image 
correspond to 
pixels in model.
Models are 2−D
image templates.

In each case, the representational gap between 
images and generic models is eliminated.

Fig. 1. Evolution of object recognition. In each period, the representational gap was
avoided by either bringing the images closer to the models, bringing the models closer
to the images, or both. Figure taken from [3], copyright IEEE, 2005.

such models were effectively 3-D shape templates of object exemplars. Once
again, simple image features, such as edges, mapped directly to surface dis-
continuities and occluding boundaries of the model. This time, however, the
representational gap was artificially eliminated by bringing the models closer
to the image. Although the models were not categorical, they could be used to
recognize object exemplars in real images, provided that a detailed geometric
model could be acquired and that the imaged objects were textureless. These
two restrictions meant that not only did a user have to construct or acquire
a faithful 3-D geometric model of the object, the object had to be smoothly
shaded, resulting yet again in an unrealistic recognition setting.

The 1990’s saw a significant shift in object recognition philosophy from
object-centered modeling and recognition to viewer-centered modeling and recog-
nition. Whereas object-centered systems recognize 3-D models from 2-D images,
viewer-centered systems modeled an object as a set of 2-D views, thereby reduc-
ing “3-D from 2-D” recognition to simple 2-D recognition, at the cost of having to
store/match potentially many views. Within the viewer-centered framework, the
same representational gap exists between low-level image features and categori-
cal, view-based models. Instead of bridging this gap, the community eliminated
the gap by bringing the models even closer to the image, storing the actual im-
ages of an object exemplar as its (appearance-based) model views. This paradigm
gained tremendous popularity, as 3-D object modeling was no longer required
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and an object could have arbitrarily complex structure and surface texture. An
object database could be constructed by simply placing an object on a turntable
and spinning it in front of a camera to acquire a dense set of views.

For the first time, real images of real objects could be recognized. However,
it is important to note that through this evolution, the recognition community
redefined the recognition problem from category recognition (the predominant
goal of recognition systems in the 70’s/80’s) to exemplar recognition. In each of
the three periods above, the difficult problem of image abstraction, i.e., bridging
the representational gap by mapping low-level image features to high-level shape
primitives, was avoided by either moving the images up or moving the models
down. Underlying this movement is a fundamental assumption that for every
salient image feature (e.g., region, line, pixel, pixel neighborhood, etc.) there
exists a corresponding salient model feature. However, due to noise, segmentation
errors, articulation, scale difference, within-class variation, etc., a feature in one
image may correspond to a collection of features in another image.

The community is now beginning to return to its categorization roots, armed
with new machine learning techniques and invariant image features. But the
one-to-one feature correspondence assumption remains, and today’s models still
tend to encode the appearance (i.e., discriminating texture) of specific exem-
plars rather than the prototypical shapes of object categories. Hence, two ex-
emplars with different texture/appearance that belong to the same shape cate-
gory will have little in common with respect to their low-level image structure
(e.g., neighborhood-encoded interest points or image patches). The success of
object categorization depends on solving two problems. First, we must strive
to recover the coarse, high-level shape features that define the prototypical
shape of an object, with such features representing abstractions/groupings of
low-level image features. Second, we must relax the restrictive, one-to-one cor-
respondence assumption and develop mechanisms for matching image features
many-to-many.

In this paper, we review three formulations of the many-to-many matching
problem and its application to both shape category acquisition and recognition.
We assume that an image can be processed to yield a structured collection of
image features, conveniently represented as a graph whose nodes encode at-
tributed features and whose edges encode feature relations. In each formulation,
one-to-one feature (i.e., one-to-one node) correspondence between exemplars in
a given category may not exist at the level of extracted features, but may exist at
the level of groups of features. This sets up an intractable many-to-many graph
matching problem, for which approximation methods must be sought. Each for-
mulation takes a different approach to the problem, and we review preliminary
progress on each front.

2 Model Abstraction from Examples

Our first formulation of many-to-many matching addresses the problem of try-
ing to recover a structural model from a set of exemplars belonging to a known
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Input image 
containing
exemplar object

Initial region 
adjacency graph
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the space of all 
possible region 
adjacency graphs 
resulting from 
merging a pair of 
adjacent regions

The top of the lattice
is the silhouette (all 
regions merged into 
one)

Lowest
Common
Abstraction
(LCA)

Fig. 2. The Lowest Common Abstraction (LCA) of a set of input exemplars (blocks).
In this case, the LCA of the three input exemplars would be the canonical view of the
block, in which three surfaces are visible. Figure taken from [3], copyright IEEE, 2005.

class. Consider the simple example shown in Figure 2, in which three differ-
ent exemplar images are presented to the system, each region segmented to
yield a region adjacency graph. Although the structure of the input graphs may
be different – in fact, not a single one-to-one node (feature) correspondence
may exist between the input exemplar graphs – the exemplars are similar at
a higher level of abstraction. If we consider the space of all possible graphs
formed by merging two adjacent regions, then each input exemplar gives rise
to a lattice of region adjacency graphs, representing all possible region group-
ings. Finding a model abstraction that best accounts for the input exemplars
consists of finding the most complex (maximum cardinality equals most in-
formative) graph that lies in the intersection of the lattices. Since more com-
plex abstraction graphs are lower in the lattice, we call this graph the lowest
common abstraction (LCA), representing a category-level, view-based descrip-
tion of one view class; additional view classes are acquired by rotating each
of the exemplars and repeating the process. Note that the LCA may not be
unique.

The above formulation is intractable, for neither the lattices nor their inter-
section can be realistically generated. Instead, we first narrow the scope of the
problem by finding the lowest common abstraction of two lattices, and exploit
the fact that we know one member of the intersection lattice, namely the sil-
houette. As shown in Figure 3, we work top-down from the silhouette, searching
for a pair of cuts, one per graph, in the two exemplars’ region adjacency graphs,
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no further 
decomposition

no further 
decomposition

no further 
decomposition

Fig. 3. Finding the lowest common abstraction between two exemplars through a coor-
dinated, recursive decomposition of their silhouettes. Figure taken from [3], copyright
IEEE, 2005.

such that corresponding shapes (each cut yields two shapes) and their relations
are similar. When a successful cut is found, the corresponding shapes represent
a many-to-many matching of component regions.

The process continues recursively down the intersection lattice until no fur-
ther decomposition is possible. The union of primitive shapes forms the LCA of
the two graphs. This procedure is applied to all pairs of input exemplar graphs,
leading to a weak approximation of the intersection lattice for all inputs. Finally,
we search this approximation for the global lowest common abstraction. Figure 4
shows the LCA computed for three different coffee cup exemplars and the re-
sulting intersection lattice; the computed global LCA is highlighted in orange
and represents a good abstraction of the cup, including a handle, body, top, and
hole (which it can’t distinguish from a surface). Details of the algorithm can be
found in [3].

3 Matching Structural Abstractions

The previous formulation of categorical model acquisition from examples
searched for abstractions (groupings) of regions (features) that were similar in
shape and common to many input lattices. The intractable complexity of the
resulting many-to-many graph matching problem led to an effective approxi-
mation method that yielded matching abstractions among pairs. However, the
abstractions were still graphs, and isomorphism had to be effectively computed.
One way of reducing the complexity of graph matching in the presence of noise
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Fig. 4. Computed LCA (orange border) of 3 examples. From a set of three region
adjacency graphs representing the appearance of three different cup exemplars, the
algorithm extracts the salient surfaces of the cup, including the body, inside surface
(ellipse at top), handle, and hole (indistinguishable from a real surface). Figure taken
from [3], copyright IEEE, 2005.

(spurious nodes and edges), occlusion (both extraneous and missing structure),
and minor deformation (leading to graphs of different size) is not to match the
graphs themselves but rather low-dimensional vector abstractions of the graphs,
each of which encodes the “shape” of a subgraph. Drawing on the domain of
spectral graph theory, we have developed a low-dimensional abstraction of di-
rected acyclic graph structure that is robust to noise and perturbation yet rich
enough to distinguish structural differences between graphs. It assigns a “struc-
tural signature” vector to each node, encoding the “shape” of the underlying
subgraph rooted at that node. In a hierarchical structure, where nodes reflect
a coarse-to-fine feature decomposition, these vectors provide us with a powerful
tool for coarse-to-fine object recognition.

Our vector abstraction of graph structure is a function of the magnitudes of
the eigenvalues of a directed graph’s underlying adjacency matrix. The eigen-
values encode the degree distribution of the graph and are provably robust
to minor perturbation of the graph. Moreover, the dimensionality of the re-
sulting vectors is bounded by the maximum branching factor of the graph
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Fig. 5. Part correspondences in two Shock Graphs. Each colored branch in the shape’s
skeleton represents a node in the shape’s hierarchical shock graph. Node correspon-
dences are shown, with correspondences at coarser levels of the hierarchy implicitly
defining many-to-many correspondences among substructures at finer levels.

and not by the number of nodes in the graph. Not only do these structural
signature vectors offer an effective mechanism for rapid indexing from large
databases of graphs [7], but they offer a mechanism for matching graph ab-
stractions [8,6,5]. If the vectors computed for two nodes of two directed acyclic
graphs are similar, then their underlying subgraphs have similar structure, i.e.,
the collection of nodes forming the subgraph rooted at a node in one graph
matches a collection of nodes forming the subgraph rooted at a node in a sec-
ond graph, effectively yielding a many-to-many node (and structure) correspon-
dence. Figure 5 indicates the part correspondence computed for two silhouettes,
each represented using a shock graph [8], a qualitative decomposition of a sil-
houette’s medial axis structure in terms of a vocabulary of qualitatively de-
fined parts.

4 Structural Matching as Weighted Point Matching

Our first problem formulation could be seen as computing a set of many-to-many
node correspondences across a set of input graphs. However, the graphs were
known to belong to the same class, i.e., isomorphic at some level of abstraction.
Our second problem formulation was more general in that it computed corre-
spondences between nodes whose underlying (rooted) subgraphs have similar
structure. The vector abstraction of graph structure implicitly defined a many-
to-many matching of the underlying nodes without explicitly computing node
correspondences. In this section, we look at the most general formulation of
the many-to-many matching problem. Specifically, how do we match two graphs
whose structure may be different (as in our first problem) but which may not
belong to the same class (as in our second problem)?

Many-to-many graph matching is intractable, for any subset of nodes in one
graph may correspond to any subset of nodes in the other graph. Our approach,
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Fig. 6. Many-to-Many Graph Matching as Weighted Geometric Point Matching. Two
graphs to be matched are embedded with low distortion into a low-dimensional Eu-
clidean space, the two weighted sets of points are matched many-to-many using the
Earth Mover’s Distance (EMD) algorithm, and the solution defines a many-to-many
node correspondence in the original graphs.

Fig. 7. Many-to-Many Graph Matching Applied to Skeleton Graphs. Corresponding
groups of nodes (whose cardinalities may be different) are colored the same, with white
nodes unmatched. Figure taken from [4], copyright IEEE, 2003.

depicted in Figure 6, transforms the many-to-many graph matching problem
into a domain in which many-to-many matching is easier. Specifically, in work-
ing with edge-weighted, attributed graphs, each node maps to a point in a low-
dimensional geometric space, with the node’s attributes mapping to a mass vec-
tor assigned to the point. The structure of the graph is effectively mapped (em-
bedded) into the geometric space by ensuring that the shortest path distances
(along graph edges, summing edge weights) between pairs of nodes in the orig-
inal graph are preserved (with low distortion) as Euclidean distances between
their corresponding points in the transformed space; the edges of the graph are
effectively discarded.

The above graph embedding framework allows us to translate our origi-
nal many-to-many graph matching problem to a many-to-many point matching
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Fig. 8. Many-to-Many Graph Matching Applied to Blob Graphs. Many-to-many fea-
ture correspondences have been colored the same. Corresponding groups of nodes
(whose cardinalities may be different) are colored the same. Figure taken from [2]
(pg. 332), copyright, Springer, 2004, used with kind permission of Springer Science
and Business Media.

problem. If we let one graph’s points (embedded nodes) be represented as piles
of dirt, each of whose volume is proportional to the node’s mass, and the other
graph’s points be represented as holes, each of whose volume is proportional to
the node’s mass, the many-to-many weighted point matching problem can be
formulated as finding the assignment of dirt to holes that minimizes the work
required to move the dirt. The Earth Mover’s Distance (EMD) algorithm [1]
provides an efficient solution, allowing a pile of dirt to be spread across multi-
ple holes and allowing a hole to receive dirt from multiple piles. Moreover, the
computed flows between piles and holes can be translated back to the original
problem, yielding a many-to-many node correspondence between the original
graphs. Details can be found in [4,2].

Figures 7 and 8 illustrate two example domains in which we have successfully
applied the approach. In Figure 7, we compute many-to-many node correspon-
dences between two silhouettes represented as skeleton graphs, in which nodes
represent medial axis points, edge weights represent Euclidean distances between
connected points, and node masses represent the radii of the maximally inscribed
circles. The algorithm computes the many-to-many correspondence shown below
the silhouettes, with corresponding points colored similarly. In Figure 8, we com-
pute many-to-many node correspondences between two hand images represented
as hierarchical blob and ridge decompositions [6]; note that the number of blobs
used to model the fingers or palm differs between the two decompositions. The
algorithm computes the many-to-many correspondences indicated by the similar
coloring.
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5 Conclusions

The within-class shape and appearance variation of many object categories pre-
cludes recognition strategies that assume a one-to-one correspondence between
low-level image features, for it is only at higher levels of abstraction that similar-
ity or correspondence may exist. Image abstraction is an open problem, and it’s
not clear what form image abstractions should take or how to compute them.
In one part of this paper, we review a particular graph (structural description)
abstraction and apply it to matching structural descriptions. In a second part
of this paper, we use the fact that two objects belong to the same category to
help search for a common abstraction. In the final part of the paper, we map
structural descriptions to be matched into a geometric space in which rules (i.e.,
edge weights) for abstracting/grouping features in graph space can be exploited
by computationally tractable strategies (e.g., EMD) in geometric space to find
corresponding abstractions. Each of these formulations effectively addresses the
underlying problem of many-to-many object matching, an important challenge
to categorization systems.
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