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Abstract. This paper presents a stochastic comparison based method
to check state formulas defined over Discrete Time Markov Reward Mod-
els. High-level specifications like stochastic Petri nets, Stochastic Au-
tomata Networks, Stochastic Process Algebras have been developed to
construct large Markov models. However computation of transient and
steady-state distributions are limited to relatively small parameter sizes
because of the state space explosion problem. Stochastic comparison
technique by which both transient and steady-state bounding distribu-
tions can be computed, lets to overcome this problem. On the other
hand, bounding techniques are useful in Model Checking, since we check
generally formulas to see if they meet some bounds or not. We propose
to apply stochastic bounding algorithms to construct bounding distribu-
tions and to check formulas through these distributions.

1 Introduction

Model checking has been introduced as an automated technique to verify func-
tional properties of systems expressed in a formal logic like Computational
Tree Logic (CTL) [6]. This formalism has been extended with some probabilis-
tic operators to Probabilistic CTL and Continuous Stochastic Logic (CSL)[3].
Stochastic Model Checking is typically based on discrete time or continuous
time Markov chains or Markov decision processes. For performance and/or de-
pendability applications, stochastic model checking has been extended to mod-
els with some rewards on states and/or transitions in which logic formalisms
PRCTL(Probabilistic Reward Computational Tree Logic)[2] and CSRL
(Stochastic Reward Logic)[13] are used.

We propose to check the reward based formulas of stochastic models by ap-
plying stochastic comparison approach. Indeed, to check these formulas transient
or steady-state distribution of the underlying Markov chain must be computed.
However the numerical computation of these distributions may be very complex
or intractable because of the state space explosion. The stochastic comparison
has been shown to be an efficient method to overcome this problem [10]. This
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method consists in computing bounding distributions rather than the exact dis-
tributions by analysing “simpler” bounding chains. Simple bounding models
can be constructed by reducing state space size or by imposing some specific
structures on bounding chains which let to apply some specific methods like
matrix-geometric, product form solution, etc.

The stochastic comparison has been largely used in different areas of applied
probability as well as in reliability, performance evaluation, dependability ap-
plications [16,18]. There are different stochastic ordering relations and the most
known is the strong stochastic ordering ( ≤st) which yields the comparison of
the underlying distributions. Comparison in the sense of this ordering can be
established by coupling constructions, by sample-path comparisons or by some
analytical methods. However these are generally model oriented techniques. We
apply here algorithmic stochastic bounding techniques to construct bounding
models in a fully automated manner. Therefore the proposed methodology can
be easily integrated to model checkers.

Let us explain the proposed methodology: We are interested in formulas de-
fined as rewards on distributions of a time-homogeneous Discrete Time Markov
Chain (DTMC). Thus we need to compute a transient or steady-state distribu-
tion. We construct bounding chains by aggregating the states of the original one
by means of the algorithm given in [11] which based on the stochastic monotonic-
ity and the comparison of stochastic matrices and the lumpability of Markov
chains. The rewards are evaluated through bounding distributions. The state
space size may be drastically reduced by aggregation, that will reduce the nu-
merical complexity to compute distributions of the bounding chains. Therefore it
is possible to apply numerical methods to compute efficiently the bounding dis-
tributions. Obviously, there are some constraints to construct aggregated state
space and to order macro-states because of the stochastic ordering constraints
and the underlying formula. These issues are discussed in section 4.

The bounding techniques can be applied to efficiently check stochastic mod-
els since exact values are not always necessary, and it suffices to show that the
underlying formulas meet some bounds. In [7], the bounds on state reachabil-
ity probabilities of Markov decision processes are computed by abstraction of
the underlying model defined on smaller state spaces. If the verification of the
considered property cannot be concluded, the abstract model is refined until a
verdict to the property can be deduced from the computations. For reward based
model checking, generally used rewards such as average population, loss rates,
blocking probabilities are defined as non decreasing functions of the transient
or steady-state distributions. Thus the stochastic comparison in the sense of the
≤st ordering which is associated to the non decreasing functions can be applied
to bound such rewards.

The remaining of the paper is organised as follows: in section 2, we provide
a brief introduction of stochastic comparison. In section 3, we present reward
based stochastic model checking formalism given in [2]. Section 4 is devoted
to the proposed methodology to improve the stochastic reward based model
checking. Finally, in section 5, we give some numerical examples to illustrate the
proposed methodology.
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2 Stochastic Comparison

In this section, we present some preliminaries on the stochastic comparison
method and we refer to the books [16,18] for the theoretical issues and different
applications of this method.

Definition 1. Let X and Y be random variables taking values on a totally or-
dered space S. Then X is said to be less than Y in the strong stochastic sense,
(X ≤st Y ) if and only if E[f(X)] ≤ E[f(Y )] for all non decreasing functions
f : S → R, whenever the expectations exist.

Indeed ≤st ordering gives the comparison of the underlying probability dis-
tribution functions: X ≤st Y ↔ Prob(X > a) ≤ Prob(Y > a) ∀a ∈ S. Thus
it is more probable for Y to take larger values than for X. Since the ≤st ordering
yields the comparison of sample-paths, it is also known as sample-path ordering.

We give in the next proposition the ≤st comparison in the case of finite state
space S = {1, 2, · · · , n}.

Property 1. Let X, Y be random variables taking values on S = {1, 2, · · · , n}
and p, q be probability vectors which are respectively denoting distributions of
X and Y .

X ≤st Y ↔
∑n

i p[i] ≤
∑n

i q[i] ∀i = {n, n − 1, · · · , 1}

The stochastic comparison of random variables has been extended to the com-
parison of Markov chains.

Definition 2. Let {X(t), t > 0} and {Y (t), t ≥ 0} be two DTMC taking values
in S. {X(t), t ≥ 0} is said to be less than {Y (t), t ≥ 0} in the strong stochastic
sense, that is, {X(t), t ≥ 0} ≤st {Y (t), t ≥ 0} iff X(t) ≤st Y (t) ∀t.

The comparison of Markov chains yields the comparison of transient dis-
tributions at each time, and if the limit distributions exist, we have also the
comparison of the steady-state distributions. It is shown that monotonicity and
comparability of time-homogeneous DTMC yield sufficient conditions for their
stochastic comparison [16].

Theorem 1. Let {X(t), t ≥ 0} and {Y (t), t ≥ 0} be two time-homogeneous
DTMC and P and Q be their respective probability transition matrices. P [i, ∗]
indicates row i of matrix P . Then {X(t), t > 0} ≤st {Y (t), t > 0}, if

• X(0) ≤st Y (0),
• st-monotonicity of at least one of the matrices holds, that is,

either P [i, ∗] ≤st P [i + 1, ∗] or Q[i, ∗] ≤st Q[i + 1, ∗]

• st-comparability of the matrices holds, that is, P [i, ∗] ≤st Q[i, ∗] ∀i.
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In [1] an algorithm based on this theorem is given to construct an optimal
st-monotone upper bounding Markov chain. This algorithms takes an irreducible
stochastic matrix P as input and returns as output a st-monotone upper bound-
ing matrix, Q, such that, P ≤st Q. Indeed, the monotonicity and comparability
constraints can be given as in equation 1. Note that inequalities are replaced by
equalities to construct optimal bounds.

{∑n
k=j Q[1, k] =

∑n
k=j P [1, k]

∑n
k=j Q[i + 1, k] = max(

∑n
k=j Q[i, k],

∑n
k=j P [i + 1, k]) (1)

In this algorithm that will be called Vincent’s algorithm, the construction is
done from the last column to the first column and within a column from the
first row to the last row. This idea has been extended to devise algorithms
to construct st-monotone, bounding stochastic matrices having some specific
structures to simplify their numerical analysis [10]. In [5,11] it is shown that
ordinary lumpability constraints given in the following Property 2 are consistent
with the st-monotonicity. Thus for a given P , it is possible to construct a st-
monotone, lumpable, bounding matrix. Let us give the lumpability constraints
for discrete time Markov chains.

Property 2. Let Q be the probability transition matrix of an irreducible finite
time-homogeneous DTMC, A = {A1, A2, · · · , An} be a partition of states. The
chain is ordinary lumpable according to partition A, if and only if for all states
e and f in the same arbitrary macro state Ai, we have:

∑

j∈Ak

Q[e, j] =
∑

j∈Ak

Q[f, j] ∀ macro − state Ak ∈ A

The algorithm given in [11] (LIMSUB Algorithm) constructs for a given
irreducible, time-homogeneous stochastic matrix P , and partition of states, A =
{A1, · · · , Am}, a total order relation on A : A1 ≤ A2 ≤ · · · ≤ Am, a st-
monotone, lumpable according to A, irreducible upper bounding matrix Q. There
are two steps in this algorithm. The first step is based on Vincent’s algorithm to
satisfy the stochastic monotonicity and comparison constraints (see equations 1)
while the second step is to satisfy the lumpability constraints. We explain this
algorithm through the following example. Let P be the input matrix and state
space be divided into two partitions A1 = {1, 2} and A2 = {3, 4}. Q is the matrix
computed from Vincent’s algorithm in the first step. Thus Q is ≤st monotone
and upper bounding matrix of P . The modified entries are given bolded and sup-
scripts indicate if the probabilities are increased or decreased. In the second step,
the sum of probabilities in each macro-state is adjusted to make Q lumpable.
Hence Qsup computed from Q is lumpable.

P =

⎡

⎢
⎢
⎣

0.2 0.2 0.2 0.4
0.2 0.1 0.4 0.3
0.1 0.4 0.2 0.3
0.1 0.1 0.4 0.4

⎤

⎥
⎥
⎦ Q =

⎡

⎢
⎢
⎣

0.2 0.2 0.2 0.4
0.2 0.1 0.3− 0.4+

0.1 0.2− 0.3+ 0.4+

0.1 0.1 0.4 0.4

⎤

⎥
⎥
⎦
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Qsup =

⎡

⎢
⎢
⎣

0.2 0.1− 0.3+ 0.4
0.2 0.1 0.3 0.4
0.1 0.1− 0.4+ 0.4
0.1 0.1 0.4 0.4

⎤

⎥
⎥
⎦ Qsup =

[
0.3 0.7
0.2 0.8

]

It is also possible to derive lower bounds from the following algorithm by
reversing the order of states and then running algorithm LIMSUB on the per-
muted P . By permuting again the computed upper bounding matrix, we obtain
the st-monotone, lower bounding matrix, Qinf . In the sequel, the upper bound-
ing matrix will be denoted by Qsup.

The stochastic comparison approach consists in analysing the bounding ma-
trices Qinf and Qsup to provide bounds on transient distributions and the steady-
state distribution of P . Obviously the numerical analysis of the lumpable bound-
ing matrices is much easier than that of P due to the state space reduction.

3 Model Checking with Discrete Time Reward Markov
Chains

The underlying system is modelled by a labelled, finite, ergodic (irreducible,
aperiodic, positive recurrent) discrete time Markov chain D = (S, P, L) where S
is a finite set of states, P : S×S → [0, 1] is the transition matrix and L : S → 2AP

is the labelling function which assigns to each state s, the set L(s) of atomic
propositions valid in s. AP denotes the finite set of atomic propositions.

For Markov chains, there are two types of state probabilities: transient proba-
bilities where the system is considered at time n. Let π(s, s′, n) be the probability
that the system is in state s′ within n steps given the system starts in state s.
The steady-state probabilities are the long-run probabilities where the system
reaches an equilibrium: π(s, s′) = limn→∞π(s, s′, n) is the steady-state proba-
bility of state s′. For ergodic DTMC, π(s, s′) exists and is independent of the
initial state s and that will be noted by π(s′).

We are interested in the Probabilistic Reward CTL (PRCTL) logic given in
[2]. It is indeed the extension of the Probabilistic CTL (PCTL) logic [12] to
specify performability measure over Discrete Time Markov Reward Models. In
these models a reward (cost) is associated to each state s. Let ρ : S → R≥0 be
the reward assignment function. Every time the system enters (leaves) state s,
it incurs reward ρ(s) which can be a constant or a random variable [14]. We give
briefly the syntax of the PCTL logic.

Let n ∈ N ∪ {∞} and I be an interval of real numbers, namely I ⊆ R≥0,
p ∈ [0, 1], and � a binary comparison operator. The syntax of PRCTL:

φ ::= true | a | φ ∨ φ | ¬φ | P�p(φ UJ
I φ) | L�p(φ)

In
I (φ) | Cn

I (φ) | En
I (φ) | EI(φ)

The first four operators are classical logic operators, while the fifth and the sixth
ones are from the PCTL logic. The path formula P�p(φ UJ

I φ) asserts that the
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probability for paths starting in s and satisfying φ UJ
I φ meets the bound �p. The

state formula L�p(φ) asserts that the steady-state probability to be in φ states
meets the bound �p.

The last four formulas are inspired from performance measures of DTMC
with rewards [14] and included in the PRCTL logic [2]. These are all state
formulas and defined from transient or steady-state distribution of the underlying
Markov chain.

The formula In
I (φ) is satisfied, if the instantaneous expected reward in φ-

states (states which satisfy formula φ) at the n-th step, starting in state s,
meets the bounds of I:

In
I (φ) is satisfied iff

∑

s′|=φ

π(s, s′, n)ρ(s′) ∈ I (2)

The formula Cn
I (φ) is satisfied, if the expected accumulated reward in φ-

states up to the n-th transition meets the bound of I:

Cn
I (φ) is satisfied iff

n−1∑

i=0

∑

s′|=φ

π(s, s′, i)ρ(s′) ∈ I (3)

The formula En
I (φ) is satisfied if the expected reward per unit time in φ-states

up to the n-th transition meets the bound of I:

En
I (φ) is satisfied iff

1
n

n−1∑

i=0

∑

s′|=φ

π(s, s′, i)ρ(s′) ∈ I (4)

The formula EI(φ) is the long-run expected reward per unit-time (reward
rate) for φ-states which is the limiting case of En

I (φ). (EI(φ)=limn→∞ En
I (φ)).

If the steady-state exists, EI(φ) is satisfied if:

EI(φ) is satisfied iff
∑

s′|=φ

π(s′)ρ(s′) ∈ I (5)

The other state operator of the PCTL logic, L�p(φ) can be also defined by
means of the steady-state distribution and it is satisfied if:

L�p(φ) is satisfied iff
∑

s′|=φ

π(s′) � p (6)

4 Model Checking by Stochastic Comparison

In this section we explain the proposed methodology to check reward based
stochastic models by applying stochastic comparison method. This methodology
is composed of three main steps and the treatment in each step depends on the
considered formula φ that will be checked:
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1. Partition of the state space and ordering of macro-states.
2. Construction of the bounding chains through algorithm LIMSUB (see section

2) and computing transient or steady-state distribution as a function of the
the considered formula (see section 3).

3. Checking the underlying formula.

4.1 State Space Partition

We divide state space S into two subset Sno and Syes such that Syes contains
φ-states ie. Syes = {s ∈ S | s |= φ} and Sno contains states which do not verify
φ ie. Sno = {s ∈ S | s �|= φ}.

We order state space to have Sno followed by Syes. We are especially inter-
ested in Syes since the rewards are computed over these states. In performance
and dependability applications the size of Syes is small compared to the size of
Sno. In general the states of Sno are aggregated into macro-states to reduce the
state space size. However there is no constraint on the ordering of these macro-
states and on the rewards assigned to them. But if states of Syes are aggregated,
because of the ≤st stochastic ordering, some constraints on the macro-state or-
dering and on the rewards must be satisfied (figure 1).

Suppose that Syes is divided into k macro-states: Syes = {A1, A2, . . . , Ak}.
The rewards for macro-states are defined as follows:

– to compute upper bounds, ρsup(Ai) = max{ρ(s), s ∈ Ai}.
– to compute lower bounds, ρmin(Ai) = min{ρ(s), s ∈ Ai}.

Since ≤st stochastic ordering is associated to increasing reward functions (see
definition 1), macro-states are ordered according to the increasing rewards. Let
us remark that the macro-state ordering may be different for the upper and
the lower bounding computations. For the sake of simplicity, we suppose in
the sequel that macro-states are ordered as follows: ρ(A1) ≤ ρ(A2) ≤ · · · ≤
ρ(Ak) ρ ∈ {ρsup, ρinf}.

The atomic propositions of macro-states must be also updated: for each
macro-state Ai, L(Ai) = ∩s∈Ai

L(s). Let us emphasise that the accuracy of the
bounds depends on the aggregation procedure: if the number of macro-states is
small, bounds will be less accurate. By increasing the number of macro-states
the accuracy can be improved with detriment of the numerical complexity. Thus
a trade-off between the accuracy of results and the computation efficiency must
be found.

4.2 Construction and Computing of Bounding Chains

Once the state space is partitioned, the bounding chains are constructed through
algorithm LIMSUB given in section 2. Recall that the input parameters are
the stochastic matrix of the underlying model, P and the partition A={A1, A2
· · ·Am}. The upper bounding matrix Qsup is returned as the output of algorithm
LIMSUB. The lower bounding matrix Qinf can be constructed by reversing the
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Fig. 1. Partition and ordering of state space

order of macro-states. In this case the inputs of algorithm LIMSUB are P , and
the partition A = {Am, Am−1 · · · A1}. By permutating the output matrix, we
obtain the lower bounding matrix, Qinf .

Transient and steady-state distributions of the bounding chains Qinf and
Qsup can be efficiently computed by applying conventional numerical methods.
We refer to Stewart’s book [19] for numerical methods to compute distributions
of Markov chains.

We can derive the inequalities on state probabilities. By construction, Qsup

and Qinf are st-monotone and Qinf ≤st P ≤st Qsup. Thus it follows from
theorem 1 that transient distributions (and the steady-state distribution if it
exists) of the underlying Markov chains are ≤st comparable. Let πbound(s,Aj , n)
be the probability that the bounding Markov chain is in macro-state Aj at step
n beginning in state s at time 0 and πbound(Aj) be the probability that the
bounding Markov chain is in macro-state Aj at the steady-state. The following
inequalities follow from property 1 of the ≤st ordering.

Property 3. – Transient state probability bounds:
m∑

j=i

πinf (s, Aj , n) ≤
m∑

j=i

∑

s′∈Aj

π(s, s′, n) ≤
m∑

j=i

πsup(s, Aj , n) ∀i ∈ {m, m−1, · · · 1}

(7)
– Steady-state state probability bounds:

m∑

j=i

πinf (Aj) ≤
m∑

j=i

∑

s′∈Aj

π(s′) ≤
m∑

j=i

πsup(Aj) ∀i ∈ {m,m − 1, · · · 1} (8)

4.3 Checking of State Formulas

In this section, we show how state formulas of the PRCTL logic can be checked
through the bounding distributions. Remember that for a given state formula φ,
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the state space is partitioned and ordered such that the states satisfying φ, Syes

are greater (after) than that of Sno. Let suppose that A = {A1, · · · , Ak−1, Ak,
Ak+1 · · · Am} and Syes = {Ak, Ak+1, · · · Am}. Thus by taking i = k in equations
7 and 8, we have the following probability bounds for φ states:

∑

Ai∈Syes

πinf (s,Ai, n) ≤
∑

s′|=φ

π(s, s′, n) ≤
∑

Ai∈Syes

πsup(s,Ai, n) (9)

∑

Ai∈Syes

πinf (Ai) ≤
∑

s′|=φ

π(s′) ≤
∑

Ai∈Syes

πsup(Ai) (10)

In the following proposition, we provide transient and steady-state reward
bounds. Recall that rewards of macro-states are defined as follows: ρsup(Ai) =
max{ρ(s), s ∈ Ai} and ρinf (Ai) = min{ρ(s), s ∈ Ai}. And macro-states of Syes

are ordered according to increasing rewards: ρ(Ak) ≤ ρ(Ak+1) · · · ≤ ρ(Am), ρ ∈
{ρinf , ρsup}. As it has been stated before, the macro-state ordering may be
different for the upper and the lower bounding computations. Without loss of
generality we take the same ordering in both cases. In fact φ is satisfied in all
macro-states of Syes, so rewards are computed for all macro-states of Syes.

Proposition 1. We have the following inequalities on rewards:

– Transient reward bounds:
∑

Ai∈Syes

πinf (s, Ai, n)ρinf (Ai)≤
∑

s′|=φ

π(s, s′, n)ρ(s′) ≤
∑

Ai∈Syes

πsup(s, Ai, n)ρsup(Ai)

(11)
– Steady-state reward bounds:

∑

Ai∈Syes

πinf (Ai)ρinf (Ai) ≤
∑

s′|=φ

π(s′)ρ(s′) ≤
∑

Ai∈Syes

πsup(Ai)ρsup(Ai)

(12)

Proof. By construction, the distributions are ≤st comparable (equations 7, 8).
Therefore we have the inequalities between the increasing functionals of these
distributions (see definition 1). In fact inequalities 11, 12 are the increasing
functionals on these distributions. Reward function of Sno states is zero and
in the upper bound some rewards are replaced by greater values while they are
replaced by smaller values in the lower bound. ��

For a given reward formula R(φ), let Rsup(φ) (resp. Rinf (φ)) be the reward on
the macro-states of Syes computed through the upper (resp. lower) bounding
distribution. The following proposition gives how we can check formula R(φ) to
see if it meets the bound of I ∈ [rmin, rmax].

Proposition 2. 1. if Rinf (φ) ≥ rmin and Rsup(φ) ≤ rmax then we can con-
clude that R(φ) is true

2. if Rinf (φ) ≥ rmax or Rsup(φ) ≤ rmin then we can conclude that R(φ) is
false
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3. otherwise, we cannot conclude if R(φ) is true or not, through these bound-
ing distributions. We can either modify the aggregation scheme (partition of
states) or try to compute exact rewards.

Proof. We give here the proof by specifying R(φ) for the sake of simplicity. Let
us consider EI(φ) which is satisfied, if

∑
s′|=φ π(s′)ρ(s′) ∈ I. It follows from

equation 12 that
Rinf (φ) ≤ EI(φ) ≤ Rsup(φ)

Thus, case 1 allows us to conclude that EI(φ) is satisfied:

rmin ≤ Rinf (φ) ≤ EI(φ) ≤ Rsup(φ) ≤ rmax

Similarly, case 2 lets us to conclude that EI(φ) is not satisfied. Otherwise the
rewards computed on bounding distributions do not let us to check EI(φ).

Let us remark that the case of transient reward formulas follows from equa-
tion 11. In the same manner formula L�p(φ) can be checked by means of equation
10. ��

5 Numerical Examples

In this section, we present numerical results computed from the proposed
methodology. We consider four finite buffers in tandem where each buffer is
a D/D/1/B queue (figure 2). The external arrivals and the services in all stages
are independently, identically distributed batch processes with maximum size
G. Let pik be the probability that k packets are served during a slot in stage
i, 1 ≤ i ≤ 4 and 0 ≤ k ≤ G. Indeed the service in stage i constitutes the arrivals
to stage i + 1. External arrivals are denoted by p0k. At the end of a slot, it is
assumed that first the end of services takes place and then the arrived packets
are accepted. The packet acceptance mechanism is the rejection: a packet which
arrives to a full buffer is lost.

B B B B SS SS 0 1 2 3

Fig. 2. A tandem queue with four buffers

Let Ni(t), 1 ≤ i ≤ 4 be the number of packets at time t in buffer i.
Thus {(N4(t), N3(t), N2(t), N1(t)), t ≥ 0} is a Discrete Time Markov chain of
size (B + 1)4. In the sequel, we denote by s = (n4, n3, n2, n1) a state of this
Markov chain. We are interested in packet loss characteristics in buffer 4. Since
all earlier stages must be taken into account to compute packet losses in this
buffer, we must consider whole Markov chain of (B+1)4 size. Thus the numerical
complexity to solve the underlying model increases rapidly with B.
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We define the following atomic propositions related to buffer 4:

– frth-full is valid if the fourth buffer is full. Syes = {s | n4 = B}
– frth-loss is valid if a packet loss may occur. Syes = {s | n4 > B − G}

Based on these atomic propositions, we check the following state formulas:

Steady-state formulas:
• E[0,10−7](frth-loss) to check whether the long-run loss rate in buffer 4 is

lower than 10−7 or not.
• L≤10−9(frth-full) to check whether the probability that buffer 4 is full

in steady-state is less than 10−9 or not.
Transient formulas: For all these formulas we suppose that at the beginning
all buffers are empty.

• In
[0,10−9](frth-loss) to check whether the expected packet loss at time n,

n ∈ {40, 50}, meets the bound of I or not.
• Cn

[0,10−9](frth-loss) to check whether the expected cumulated packet loss
up to time n, n ∈ {40, 50}, meets the bound or not.

• En
[0,10−9](frth-loss) to check whether the expected packet loss per unit

time up to time n, n ∈ {40, 50}, meets the bound or not.

We now give the rewards assigned to states to compute these formulas related
to packet losses in buffer 4. For a given state s = (n4, n3, n2, n1),

ρ(s) =
G∑

j=0

G∑

k=0

p3j · p4k · (max(0, n4 + min(n3, j) − k − B)) (13)

To check these state formulas, we must compute transient or steady-state
distribution of the underlying Markov chain. We check these formulas by solving
upper bounding aggregated Markov chains to overcome state-space explosion.
First we construct the exact Markov chain by means of evolution equations of
the system [9]. In fact we begin by a state and generate all transitions (states)
by taking into account the events which can occur in the system and their
probabilities.

The second step is to aggregate states to define macro-states. We define
macro states regarding to the number of customers in buffer 3 and 4 without
considering the number of packets in the first two stages. Thus a macro-state
(n4, n3) contains all states (n4, n3, i, j) ∀i, j ∈ [0, B]. Due to this aggregation
procedure, the state space size will be reduced to (B + 1)2. We reorder states
using the lexicographic ordering to put together states of macro-states before
running LIMSUB algorithm. Moreover states of Syes must be after states of Sno

and they must be ordered according to increasing rewards because of the ≤st

ordering. In the considered example the reward function is largely compatible
with the lexicographic ordering, we must reorder only a little number of states
(equation 13).

The last step is to solve the upper bounding aggregated Markov chain (Qsup)
to compute the bounding distributions. Since it is defined on a reduced state
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Table 1. Arrival process

Probabilities External First stage Second stage Third stage Fourth stage
arrivals service service service service

p0 0.7 0.3 0.4 0.6 0.2
PROC1 p1 0.2 0.5 0.3 0.2 0.4

p2 0.1 0.2 0.3 0.2 0.4
p0 0.7 0.3 0.4 0.5 0.3

PROC2 p1 0.2 0.5 0.3 0.3 0.3
p2 0.1 0.2 0.3 0.4 0.4

Table 2. Results obtained with the arrival process PROC1

Formulas B Exact Bound Valid?

E[0,10−9](frth-loss) 25 5.9610−16 3.4910−11 yes
30 - 1.1310−10 yes

I40
[0,10−9](frth-loss) 25 2.910−20 1.7610−11 yes

30 - 5.68 10−11 yes

I50
[0,10−9](frth-loss) 25 10−18 2.81 10−11 yes

30 - 1.09 10−10 yes

C40
[0,10−9](frth-loss) 25 6.8910−20 1.310−10 yes

30 - 3.67 10−10 yes

C50
[0,10−9](frth-loss) 25 3.7710−18 3.710−10 yes

30 - 1.26 10−9 unknown

E40
[0,10−9](frth-loss) 25 1.7210−21 3.2710−12 yes

30 - 9.17 10−12 yes

E50
[0,10−9](frth-loss) 25 7.55 10−18 7.4110−12 yes

30 - 2.52 10−11 yes
L≤10−9(frth-full) 25 2.3510−15 1.2310−10 yes

30 - 1.2110−12 yes

space, this can be done efficiently. We have applied an indirect method (Gauss-
Seidel) [19] to compute bounding distributions.

We fix the maximum size of batches, G = 2 and consider two different arrival
processes, PROC1 and PROC2. The probabilities of having i batches, pi 0 ≤
i ≤ 2 for external arrivals and for services in each stage are given in the following
table.

In table 2, we give the results computed for arrival process PROC1. For each
formula we give results for B = 25 and B = 30. However, we could not solve the
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Table 3. Results obtained with the arrival process PROC2

Formulas B Exact Bound Valid?

E[0,10−7](frth-loss) 25 7.09 10−14 1.04 10−7 unknown
30 - 1.79 10−8 yes

I40
[0,10−7](frth-loss) 25 3.4 10−17 1.8 10−8 yes

30 - 3.37 10−11 yes

I50
[0,10−7](frth-loss) 25 7.910−16 4.410−8 yes

30 - 1.5510−10 yes

C40
[0,10−7](frth-loss) 25 8.54 10−17 1.08 10−7 unknown

30 - 1.4210−10 yes

C50
[0,10−7](frth-loss) 25 3.3 10−15 4.31 10−7 unknown

30 - 1.0610−9 yes

E40
[0,10−7](frth-loss) 25 2.1310−18 2.710−9 yes

30 - 3.56 10−12 yes

E50
[0,10−7](frth-loss) 25 6.610−17 8.6 10−9 yes

30 - 2.13 10−11 yes
L≤10−7(frth-full) 25 2.22 10−13 2.95 10−7 unknown

30 - 5.0410−8 yes

chain with B = 30 because of its size (see table 4). In the last column we give
if the formula can be checked through these bounding distributions or not. For
this arrival process, most of the formulas can be checked through these bounding
distributions. In the last column, unknown indicates that we cannot conclude
whether the formula is satisfied or not through these bounding distributions.

In table 3, we give the results under arrival process PROC2. For this arrival
process, some formulas cannot be checked through these bounding distributions.
We can change the aggregation procedure to have more detailed representation
of the underlying system.

The numerical results are computed in an Intel Pentium 4 with CPU 2.8
GHz and 1.5GBytes memory. Let us give computation times for different steps
for exact and bounding Markov chains (see table 4). We give in columns Size

Table 4. Comparison of original and bounding model sizes

Exact Markov chain Bounding Markov chain
B Size Entries Generation Resolution Size Entries Generation Resolution
25 456 976 77 970 677 9 min 16 min 676 13 397 6 min 0.001s
30 923 521 163 169 007 10 min - 961 19 242 12 min 0.13 s
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the state space size, and in columns Entries the number of non null entries of
the chain. For the exact chain, Generation time corresponds to the time for
generating the underlying Markov chain, while it corresponds to the reordering
of states and the execution of LIMSUB algorithm for the bounding chain.

We can see that the resolution times are drastically reduced for bounding
chains due to the state space size reduction. Therefore it will be possible to
check large models through bounding distributions. Actually, the underlying
matrix is stored in the memory during the computation of the bounding model.
However the bounding chain is constructed column by column so it is possible
to avoid the storage of whole matrix using Kronecker or MTBDD structures.
These issues are under work to be able to check very large models.

6 Conclusions

In this paper we show how algorithmic stochastic bounding techniques can be
applied to check state formulas in the PRCTL logic. Indeed we must compute a
transient or the steady-state distribution of the underlying DTMC to check state
formulas. However the computation of these distributions has high numerical
complexity or is intractable because of the well-known state space explosion
problem. On the other hand we do not need in general exact values to check
these formulas. Therefore bounding techniques are useful in stochastic model
checking. We proposed to apply stochastic bounding algorithms to overcome the
state space explosion problem. Since bounding models can be constructed in a
fully automated manner by means of the bounding algorithms, the proposed
methodology can be easily integrated to model checkers.

In this work we are interested only on state formulas, but this approach can
be also extended to path formulas. In fact we apply the ≤st stochastic ordering,
which is also called as sample-path ordering. Intuitively this means that if two
chains are comparable in this stochastic ordering sense, their sample-paths are
comparable. We are working on the application of ≤st stochastic ordering to
check path formulas.

Acknowledgements. The authors thank Jean-Michel Fourneau for fruitful dis-
cussions.
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