

Lecture Notes in Computer Science 3670
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mario Bravetti Leïla Kloul
Gianluigi Zavattaro (Eds.)

Formal Techniques
for Computer Systems
and Business Processes

European Performance Engineering Workshop, EPEW 2005
and International Workshop on Web Services
and Formal Methods, WS-FM 2005
Versailles, France, September 1-3, 2005
Proceedings

13

Volume Editors

Mario Bravetti
Università di Bologna
Corso di laurea in Scienze dell’Informazione
Via Sacchi 3, 47023 Cesena (FC), Italy
E-mail: bravetti@cs.unibo.it

Leïla Kloul
Université de Versailles
Laboratoire PRiSM
45 Avenue des Etats-Unis, 78000 Versailles, France
E-mail: kle@prism.uvsq.fr

Gianluigi Zavattaro
Universitá di Bologna
Dipartimento di Scienze dell’Informazione
Mura A. Zamboni, 7, 40127 Bologna, Italy
E-mail: zavattar@cs.unibo.it

Library of Congress Control Number: 2005931522

CR Subject Classification (1998): D.2.4, C.2.4, F.3, D.4, C.4, K.4.4, C.2

ISSN 0302-9743
ISBN-10 3-540-28701-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28701-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11549970 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of two international workshops EPEW
and WS-FM held at the Université de Versailles Saint-Quentin-en-Yvelines, Ver-
sailles, France, 1–3 September 2005.

EPEW (European Performance Engineering Workshop) and WS-FM (Inter-
national Workshop on Web Services and Formal Methods) were colocated to
gather the researchers working across the spectrum of techniques for modelling,
specification, analysis and verification of the behavior of computer systems and
business processes.

This proceedings contains a selection of 20 research contributions, out of
59 submissions, which went through a rigorous review process by international
reviewers. We therefore owe special thanks to all members of both program
committees of EPEW and WS-FM and their sub-referees for the excellent work
they did in the short time they had.

Additionally, this proceedings includes four invited papers, by Gianfranco
Ciardo (University of California at Riverside), Peter G. Harrison (Imperial Col-
lege London), Cosimo Laneve (University of Bologna) and Wil van der Aalst
(Eindhoven University of Technology). These contributions brought an addi-
tional dimension to the technical and the scientific merit of these workshops.

Finally, our thanks go to theUniversity ofVersailles Saint-Quentin-en-Yvelines,
its Laboratoire PRiSM and the CNRS for hosting the workshops and providing
technical and financial support.

September 2005 Mario Bravetti
Lëıla Kloul

Gianluigi Zavattaro

EPEW

The European Performance Engineering Workshop aims to bring together re-
searchers working on all aspects of performance modelling and analysis of com-
puter and telecommunication systems. Of the 32 regular papers submitted to
EPEW 2005, after a rigorous review process, only 10 were accepted for pre-
sentation. We are very pleased with the quality of these papers and hope that
you will find them interesting. The topics of this workshop are various and
include queueing theory, bounding techniques, stochastic model checking, com-
munication schemes analysis for high-speed LAN, QoS analysis in wireless ad
hoc networks and optical networks analysis.

Workshop Chair

Lëıla Kloul Université de Versailles, France

Program Committee

Jeremy Bradley Imperial College London (UK)
Mario Bravetti University of Bologna (Italy)
Tadeusz Czachórski IITiS PAN, Gliwice (Poland)
Jean-Michel Fourneau Université de Versailles (France)
Stephen Gilmore University of Edinburgh (UK)
Holger Hermanns University of the Saarland (Germany)
Alain Jean-Marie Université de Montpellier and INRIA (France)
Helen Karatza Aristotle University of Thessaloniki (Greece)
Lëıla Kloul Université de Versailles (France)
Kim G. Larsen University of Aalborg (Denmark)
Fernando López Pelayo Universidad Castilla-La Mancha (Spain)
Raymond Marie Université de Rennes and IRISA (France)
Andrew Miner Iowa State University (USA)
Manuel Núñez Universidad Complutense de Madrid (Spain)
Brigitte Plateau ID-IMAG, Grenoble (France)
Ramon Puigjaner Universidad Illes Balears (Spain)
Marina Ribaudo University of Genoa (Italy)
Mark Squillante IBM T.J. Watson Research Center, NY (USA)
Nigel Thomas University of Newcastle (UK)
Fabrice Valois CITI, INSA Lyon (France)
Katinka Wolter Humboldt-Universität zu Berlin (Germany)
Wlodek M. Zuberek Memorial University (Canada)

VIII Organization

Additional Referees

D. Barth
D. Cazorla
G. Chiola
F. Cuartero
J.L. Ferrer-Gomila
S. Galmés
C. Guerrero Tomé
U. Harder

P. Harrison
S. Johr
J.P. Katoen
A. Langville
D. Lime
N. López
G. Massone
M.G. Merayo

N. Mezzetti
N. Pekergin
R. Pulungan
I. Rodŕıguez
P.P. Sancho
I. Sbeity
W.J. Stewart

Local Arrangements Committee

A. Baffert
C. Ducoin

L. Kloul
C. Lequere

A. Mokhtari

Sponsoring Institutions

CNRS
Laboratoire PRiSM
Université de Versailles Saint-Quentin-en-Yvelines

WS-FM

The International Workshop on Web Services and Formal Methods aims to bring
together researchers working on Web Services and formal methods in order to
activate a fruitful collaboration in this direction of research. This, potentially,
could also have a great impact on the current standardization phase of Web Ser-
vices technologies. This second edition of the workshop (WS-FM 2005) featured
10 papers selected among 27 submissions after a rigorous review process. The
main topics of the conference include: protocols and standards for WS (SOAP,
WSDL, UDDI, etc.); languages and descripion methodologies for choreogra-
phy/orchestration/workflow (BPML, XLANG and BizTalk, WSFL, WS-BPEL,
etc.); coordination techniques for WS (transactions, agreement, coordination ser-
vices, etc.); semantics-based dynamic WS discovery services (based on Seman-
tic Web/Ontology techniques or other semantic theories); security, performance
evaluation and quality of service of WS; semi-structured data and XML related
technologies; and comparisons with different related technologies/approaches.

Workshop Co-chairs

Mario Bravetti University of Bologna (Italy)
Gianluigi Zavattaro University of Bologna (Italy)

Program Committee

Marco Aiello University of Trento (Italy)
Jean-Pierre Banatre University of Rennes 1 and INRIA (France)
Boualem Benatallah University of New South Wales (Australia)
Karthik Bhargavan Microsoft Research, Cambridge (UK)
Manfred Broy Technische Universität Munchen (Germany)
Roberto Bruni University of Pisa (Italy)
Michael Butler University of Southampton (UK)
Fabio Casati HP Labs (USA)
Rocco De Nicola University of Florence (Italy)
Schahram Dustdar Wien University of Technology (Austria)
Gianluigi Ferrari University of Pisa (Italy)
Jose Luiz Fiadeiro University of Leicester (UK)
Peter Furniss Choreology Ltd. (UK)
Stephanie Gnesi CNR Pisa (Italy)
Reiko Heckel University of Leicester (UK)
Nickolas Kavantzas Oracle Co. (USA)

X Organization

Lëıla Kloul Université de Versailles (France)
Mark Little Arjuna Technologies Ltd. (UK)
Natalia López University Complutense of Madrid (Spain)
Roberto Lucchi University of Bologna (Italy)
Jeff Magee Imperial College London (UK)
Fabio Martinelli CNR Pisa (Italy)
Shin Nakajima National Institute of Informatics and JST

(Japan)
Manuel Nunez University Complutense of Madrid (Spain)
Fernando Pelayo University of Castilla-La Mancha, Albacete

(Spain)
Marco Pistore University of Trento (Italy)
Wolfgang Reisig Humboldt University, Berlin (Germany)
Vladimiro Sassone University of Sussex (UK)
Frank Van Breugel York University, Toronto (Canada)
Friedrich Vogt Technical University of Hamburg-Harburg

(Germany)

Additional Referees

M. ter Beek
N. Diernhofer
G. Frankova
C. Guidi
W. Knottenbelt
J.C. Laclaustra

A. Lazovik
P. Massuthe
M. Mazzara
H. Melgratti
M.G. Merayo
T. Priol

S. Ripon
B.A. Schmit
E. Tuosto
G. Wimmel

Organizing Committee

M. Bravetti
L. Kloul

R. Lucchi
G. Zavattaro

Sponsoring Institutions

CNRS
Laboratoire PRiSM
Université de Versailles Saint-Quentin-en-Yvelines

Table of Contents

Invited Speakers

Performance Engineering and Stochastic Modelling
Peter Harrison . 1

Implicit Representations and Algorithms for the Logic and Stochastic
Analysis of Discrete-State Systems

Gianfranco Ciardo . 15

PiDuce: A Process Calculus with Native XML Datatypes
Allen L. Brown Jr., Cosimo Laneve, L. Gregory Meredith 1

Life After BPEL?
W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell,
H.M.W. Verbeek, P. Wohed . 35

EPEW

On Moments of Discrete Phase-Type Distributions
Tuǧrul Dayar . 51

Zero-Automatic Queues
Thu-Ha Dao-Thi, Jean Mairesse . 64

A Unified Approach to the Moments Based Distribution Estimation –
Unbounded Support

Árpád Tari, Miklós Telek, Peter Buchholz . 79

Bounds for Point and Steady-State Availability: An Algorithmic
Approach Based on Lumpability and Stochastic Ordering

Ana Bušić, Jean-Michel Fourneau . 94

Stochastic Model Checking with Stochastic Comparison
Nihal Pekergin, Sana Younès . 109

Delay Analysis of the Go-Back-N ARQ Protocol over a Time-Varying
Channel

Koen De Turck, Sabine Wittevrongel . 124

8

XII Table of Contents

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks:
Modelling and Experiments

Corine Marchand, Jean-Marc Vincent . 139

Hypergraph Partitioning for Faster Parallel PageRank Computation
Jeremy T. Bradley, Douglas V. de Jager, William J. Knottenbelt,
Aleksandar Trifunović . 155

Prediction of Communication Latency over Complex Network Behaviors
on SMP Clusters

Maxime Martinasso, Jean-François Méhaut . 172

A Diffusion Approximation Model of an Electronic-Optical Node
Tadeusz Czachórski, Ferhan Pekergin . 187

WS-FM

Choreographing Security and Performance Analysis for Web Services
Stephen Gilmore, Valentin Haenel, Lëıla Kloul, Monika Maidl 200

Application of Formal Methods to the Analysis of Web Services Security
Llanos Tobarra, Diego Cazorla, Fernando Cuartero, Gregorio Dı́az . . . 215

Automatic Translation of WS-CDL Choreographies to Timed Automata
Gregorio Dı́az, Juan-José Pardo, Maŕıa-Emilia Cambronero,
Valent́ın Valero, Fernando Cuartero . 230

Executable Semantics for Compensating CSP
Michael Butler, Shamim Ripon . 243

Verifying the Conformance of Web Services to Global Interaction
Protocols: A First Step

M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schifanella 257

From Theory to Practice in Transactional Composition of Web Services
Roberto Bruni, Gianluigi Ferrari, Hernán Melgratti, Ugo Montanari,
Daniele Strollo, Emilio Tuosto . 272

Timing Issues in Web Services Composition
Manuel Mazzara . 287

A Compositional Operational Semantics for OWL-S
Barry Norton, Simon Foster, Andrew Hughes . 303

Table of Contents XIII

A Parametric Communication Model for the Verification of BPEL4WS
Compositions

Raman Kazhamiakin, Marco Pistore . 318

Reasoning About Interaction Patterns in Choreography
Roberto Gorrieri, Claudio Guidi, Roberto Lucchi 333

Author Index . 349

Performance Engineering and Stochastic

Modelling

Peter Harrison

Imperial College London, South Kensington Campus, London SW7 2AZ, UK
pgh@doc.ic.ac.uk

Abstract. Performance engineering has become a central plank in the
design of complex, time-critical systems. It is supported by stochastic
modelling, a brief history of which is given, going back to Erlang as
long ago as 1909. This in turn developed according to successive new
generations of communication and computer architectures and other op-
erational systems. Its evolution through queues and networks is reviewed,
culminating in the unification of many specification and solution tech-
niques in a common formalism, stochastic process algebra. Recent re-
sults are given on the automatic computation of separable solutions for
the equilibrium state probabilities in systems specified in such a for-
malism. A performance engineering support environment is proposed to
integrate these methods with others such as response time analysis and
fluid models, which are better suited to large scale aggregation of similar
components in a continuous space.

1 Introduction

Performance engineering is about the development of efficient computer and
communication systems by providing crucial performance analysis during the
design phase. For several decades, computer and communication system design
was left to ‘experienced engineers’ who used their knowledge and experience to
successfully construct and ‘optimise’ both hardware and software architectures.
These systems grew from simple stand-alone computers, through mainframes
with virtual storage management and multi-access, to client-server systems or-
ganised as networks of clusters. More recently still we have distributed internet
applications and the Grid. Increasingly from the late nineteen eighties/early
nineties, the traditional ad hoc approach has been found inadequate in view of
the complexity and sheer size of modern systems. This is hardly surprising in
view of other engineering disciplines where the construction of an artefact is in-
variably preceded by the construction of a model, usually a mathematical model,
upon which design decisions and parameterisations are based. In fact, the moves
to ‘structured programming’, beginning in the 1970s, specialised programming
languages and ‘formal methods’ defined the basis of software engineering which
mirrors the conventional engineering paradigm.

The tools of performance engineering are quantitative models that predict
metrics which reflect a view of performance. This view depends on who’s inter-
ested. For the user it is some form of quality of service (QoS), often response

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 P. Harrison

time, reliability or availability. For the owner of a business that sells Grid re-
sources, it is revenue, based more on the number of customers processed per day.
Whatever the metric, the whole system needs to be modelled at an appropriate
level of detail. There are several modelling techniques, each playing a vital role
in different circumstances. An evolving, dynamic system can be considered as
passing through a sequence of states that change upon the occurrence of events.
Thus, discrete event simulation is the most natural and general modelling for-
malism since it is possible to mimic in an abstract model the dynamic behaviour
of almost any system. The main issues in simulation are reliable interpretation
of the simulation outputs, which are essentially sample paths of an underlying
stochastic process, and run-time, which may be prohibitively long in detailed
simulations and increase rapidly as tighter confidence bands are imposed.

Hence, where possible, analytical models are preferred, based on a mathe-
matical analysis of the stochastic process that precisely describes the dynamics
of the system being modelled. The trouble now is that further approximating as-
sumptions must be made to achieve mathematical and numerical tractability. As
a rule, the more tractable the model needs to be, the more approximations are
necessary. Hence, when using approximate analytical models, validation must
be done, often initially mutual validation between the analytical and simulation
models. It is typical for an analytical model to be validated against simulation in
simple scenarios, resulting in confidence in both models. Then either model can
be used to make predictions in more complex cases. As complexity increases,
one of the models will ultimately cease to be numerically tractable, but after
validation, confidence is high in the surviving model. Indeed, it may be that it
is best to validate a simulation in simple cases against an exact analytical model
and then use that simulation to validate an approximate analytical model, which
is the one intended for practical use.

Although analytical models produce precise predictions with respect to their
assumptions and approximations, it is not always easy to interpret their output
due to subtle properties like interdependence between, and even existence of,
model components. Beware of such subtleties! For example, consider the follow-
ing gamble. Two boxes are placed in front of you with a piece of gold in each.
You can keep the gold from either box (your choice) and you have been told
there is exactly double the amount of gold in one box than in the other, but you
don’t know which is which. You are allowed to open one box, look in and then
decide which box’s contents you want to keep. What should you do? If you find
an amount x of gold in the box you open, you know there is either 2x or x/2
in the other, with equal probability by the symmetry of your random choice of
box. So the average amount in the other box is

2x+ x
2

2
= 1.25x

Clearly, then, the best strategy is to choose a box at random, open it, and take
the gold from the other box! What’s wrong with that?

This paper is organised as follows. In section 2, a brief history is given of
stochastic modelling, with a somewhat personal view. This begins with the early

Performance Engineering and Stochastic Modelling 3

work of A.K. Erlang and progresses through queues and queueing networks of
various kinds up to the present day, not forgetting the underpinnings of A.A.
Markov. In section 3, relatively recent advances in the field of stochastic process
algebra (SPA) are reviewed and it is shown how these combine many previous,
apparently diverse, Markov models into a unified framework. The use of SPA is
then argued as a basis for future performance engineering support environments,
ideally to be integrated into software engineering support environments. The
paper closes in section 6.

2 A Brief History

The origins of stochastic modelling, as applied to communication systems and
operations research, is widely credited to A.K. Erlang, who was the first per-
son to consider the problem of telephone networks quantitatively. By studying
a village telephone exchange, he worked out a formula, now known as Erlang’s
formula, to calculate the fraction of callers attempting to call someone outside
the village that must wait because all of the lines are in use. Although Erlang’s
model is a simple one, the mathematics underlying today’s complex communica-
tion networks is still based on it in many ways. Erlang continued to investigate
these problems and published perhaps his best known work “Solution of some
Problems in the Theory of Probabilities of Significance in Automatic Telephone
Exchanges” in 1917. Meanwhile, the theory underlying many of today’s mod-
els, including those considered here, was being developed by A.A. Markov, the
well known Russian mathematician, who began publishing in the area shortly
after the turn of the 20th century; an interesting review of Markov’s life and
contributions is [1].

More recently, the focus of attention became Markovian networks of queues,
with the famous product-form solutions of Jackson (open and closed networks)
in 1963 and Gordon & Newell (closed networks) in 1967 [23,15]. These were
generalised to multiple classes of customers, with class-dependent service and
routing, and queueing disciplines other than first come first served by Baskett
et. al. in 1974 and by Kelly at about the same time. Kelly used a different
approach based on so-called quasi-reversibility, which is defined in terms of the
reversed process of a stationary continuous time Markov chain (CTMC) and
actually leads to further generalisations, for example to symmetric queues [24].
Interestingly, the reversed process is key to the unified methodology discussed
later in this paper.

Various minor extensions were produced in the 1980s, more sophisticated in-
dividual queues were analysed and the focus shifted somewhat to approximate
methods that required much less restrictive assumptions and so applied to more
realistic scenarios. However, at the end of the 1980s, Gelenbe introduced the
concept of the negative customer, which removes a customer (said to ‘kill’ one)
from a queue rather than adds to it. This model was motivated by inhibitor sig-
nals in biological neural networks – these appear discrete in nature rather than
continuously varying potentials. Surprisingly, the resulting Markovian network

4 P. Harrison

had a product-form solution, with non-linear traffic equations; the traffic equa-
tions hitherto had always been linear in product-form solutions. G-networks
were considered something of a major departure from previous product-form
analyses since the property of ‘local balance’ [2] no longer held—apart from the
traffic equations being non-linear (or perhaps implying this). Prior to the ad-
vent of G-networks, many believed that local balance was a necessary condition
for a product-form. Subsequently in [14], Gelenbe showed that his traffic equa-
tions had unique solutions – the non-linearity made this a problematic claim,
in contrast to the previous linear equations. Subsequently, many variations of
G-networks were introduced which preserved the product-form. These included
triggers, which allow customers to be transferred from one queue to another and
resets which allow jumps from a queue’s empty state to an ‘equilibrium state’ in
some sense [11,13].

3 Stochastic Process Algebra

Stochastic process algebra (SPA) is an extension of classical process algebra
with time delays and probabilities, aimed at providing performance descriptions
of concurrent systems. The inherent compositional structure separates the model
of a system into successively more fundamental components and, through the
interactions among the components, performance characteristics of complex sys-
tems can be assessed. In the last decade or so, a number of SPA modelling
formalisms have been developed, such as Timed Processes and Performance
Evaluation (TIPP) [20], the first process algebra used for performance mod-
elling, and Performance Evaluation Process Algebra (PEPA) [21], which are
both Markovian. A generalised, more expressive language, Extended Markovian
Process Algebra (EMPA) [4] incorporated immediate actions, chosen probabilis-
tically through weights. PEPA is the simplest language, having the fewest com-
binators, and deals with agents, which are syntactic entities denoting processes,
and states in an underlying continuous time Markov chain (CTMC) that consti-
tutes the semantic model. We will refer to both agents together with the actions
between them and processes, referring respectively to PEPA syntax and CTMC
semantics, describing the transitions between states.

The Reversed Compound Agent Theorem (RCAT) is a compositional result
that uses Markovian process algebra (MPA) to derive the reversed process of
certain cooperations between two continuous time Markov chains at equilib-
rium [16]. From a reversed process, together with the given, forward process,
the joint state probabilities follow as a product of ratios of rates in these two
processes, yielding a product-form when one exists. RCAT thereby provides an
alternative methodology, with syntactically checkable conditions, which unifies
many product-forms, far beyond those for queueing networks. As we have al-
ready noted, at the time, the original study of G-networks was revolutionary,
with no local balance and non-linear traffic equations. In contrast, the RCAT-
based approach goes through unchanged—the only difference is that there are
now cooperations between two types of departure transitions at different queues,

Performance Engineering and Stochastic Modelling 5

as well as between departure transitions and arrival transitions, as in conven-
tional queueing networks [18].

3.1 Multi-agent Cooperations

In an extension of PEPA, consider now a multiple agent, pairwise cooperation
n
��

k=1
L

Pk (n ≥ 2), where L =
n⋃

k=1

Lk and Lk is the set of synchronising action types

that occur in agent Pk. Every action in each of the n agents cooperates with
(at most) one other, such that one instance of the action type is active and the
other is passive. The semantics of multi-agent cooperation is given in terms of
PEPA’s dyadic cooperation combinator:

n
��

k=1
L

Pk = (. . . ((P1 ��
M2
P2) ��

M3
P3) ��

M4
. . . ��

Mn−1
Pn−1) ��

Mn
Pn

where Mk = Lk ∩
(

k−1⋃
j=1

Lj

)
.

Notation

Pk : the set of passive action types in Pk;
Ak : the set of active action types in Pk;
P i→

k : the set of action types in Lk that are passive in Pk and correspond to
transitions out of state i in the Markov process of Pk;

P i←
k : the set of action types in Lk that are passive in Pk and correspond to

transitions into state i in the Markov process of Pk;
Ai→

k : the set of action types in Lk that are active in Pk and correspond to
transitions out of state i in the Markov process of Pk;

Ai←
k : the set of action types in Lk that are active in Pk and correspond to

transitions into state i in the Markov process of Pk;

P i→ : the set of action types in L =
n⋃

k=1

Lk that are passive and correspond to

transitions out of state i = (i1, i2, . . . , in) in the Markov process of
n
��

k=1
L

Pk;

P i← : the set of action types in L that are passive and correspond to transitions
into state i in the Markov process of

n
��

k=1
L

Pk;

Ai→ : the set of action types in L that are active and correspond to transitions
out of state i in the Markov process of

n
��

k=1
L

Pk;

Ai← : the set of action types in L that are active and correspond to transitions
into state i in the Markov process of

n
��

k=1
L

Pk;

α
i
a : the instantaneous transition rate out of state i in the Markov process of

n
��

k=1
L

Pk corresponding to active action type a ∈ L;

6 P. Harrison

�a : the unspecified rate associated with the action type a in the action (a,�a);
x : the vector (xa1 , . . . , xam) of positive real variables xai when L = {a1, . . . ,
am};

β
i
a(x) : the instantaneous transition rate out of state i in the reversed Markov

process of
n
��

k=1
L

Pk{�a ← xa | a ∈ L} corresponding to passive action type

a ∈ L; note that a is incoming to state i in the forwards process. We also
write βik

k;a(x) ≡ β
i
a(x) where Pk is the component in which a is passive

(incoming to state ik).

The Multiple Agent Reversed Compound Agent Theorem (MARCAT) de-
fines the reversed agent of an n-way cooperation under appropriate conditions,
together with a product-form solution for its steady state probabilities, when
equilibrium exists.

Theorem 1. (MARCAT)
Suppose that the cooperation

n
��

k=1
L

Pk of agents Pk, denoting stationary Markov

processes, has a derivation graph1 with an irreducible subgraph G. Given that

(a) every instance of a reversed action, type a, of an active action type a ∈ Ak

has the same rate pa in Pk (1 ≤ k ≤ n),

(b) ∑
a∈Pi→

xa −
∑

a∈Ai←
xa =

∑
a∈Pi←\Ai←

β
i
a(x)−

∑
a∈Ai→\Pi→

αi
a (1)

the reversed agent
n
��

k=1
L

Pk, with derivation graph containing the reversed subgraph

G, is
n
��

k=1
L

Rk{(a,�) | a ∈ Ak}

where
Rk = Pk{�a ← xa | a ∈ Pk} k = 1, . . . , n

{xa} are the unique solutions (for {�a}) of the rate equations

{�a = pa | a ∈ Ak, 1 ≤ k ≤ n} (2)

and pa is the symbolic rate of action type a in Pk.
Furthermore, assuming the cooperation set L is finite, the cooperation has

product-form solution π(i) ∝
n∏

k=1

πk(ik) for the equilibrium probability of state

i = (i1, . . . , in), where πk(ik) is proportional to the equilibrium probability of
state ik in Rk.

The proof verifies Kolmogorov’s criteria for reversed processes (as for the original
RCAT and its extension [16,19]) and is given in full in [17].
1 As defined in PEPA’s semantics [21].

Performance Engineering and Stochastic Modelling 7

3.2 Conditions of the Theorem

In its most general form, equation 1 of theorem 1 is a complex condition to
check—prohibitively so in large (and especially infinite) state spaces. This is
because it must hold in every joint state of the cooperation. However, in impor-
tant special cases checking is straightforward or trivial—for example when the
passive actions are ‘invisible’, leading from a state to itself, whereupon the term
β

i
a(x) = xa [19]. More generally, it is typical for equation 1 to hold for all values

of the rates x; we will require this property when we consider the existence of
solutions to the rate equations in section 3.3.

Most importantly, in applications of the original RCAT of [16], extended to
multiple cooperations, all passive actions are outgoing from every joint state of
the cooperation and all active actions are incoming to every joint state. The
condition is then satisfied trivially since the terms on the left hand side cancel
and those on the right are both empty sums. This is only to be expected since we
could have generalised RCAT directly without introducing new constraints. In
particular, MARCAT applies to all of the standard queueing networks, including
G-networks and their extensions.

A sufficient set of n conditions to replace equation 1 is, for each k, 1 ≤ k ≤ n :∑
a∈Lk∩Pi→

xa −
∑

a∈Lk∩Ai←
xa (3)

=
∑

a∈Lk∩(Pi←\Ai←)

β
i
a(x)−

∑
a∈Lk∩(Ai→\Pi→)

αi
a

for all valid joint states (i1, . . . , in) in the irreducible chain G of theorem 1. Sum-
ming equation 4 over k yields precisely double equation 1 since synchronisations
are pairwise: every action type appears in exactly two of the sets Lk (1 ≤ k ≤ n).
In simpler form, this equation can be written:∑

a∈Pik→
k

xa +
∑

a∈Pik→
ka

xa −
∑

a∈Aik←
k

xa −
∑

a∈Aik←
ka

xa =

∑
a∈Pik←

k \Aik←
ka

βik

k;a(x) +
∑

a∈Pik←
ka \Aik←

k

βik

k;a(x)

−
∑

a∈Aik→
k \Pik→

ka

αi
a −

∑
a∈Aik→

ka \Pik→
k

αi
a (4)

where Pka is the component agent that synchronises with the action a in Pk.
Thus, even the worst case requires only checking actions component-wise—the
number of checks is of the order of the product of the numbers of local states
in each component process, not combinatorial in these numbers. Moreover, the
states of a component process will usually be parameterised in the process al-
gebraic specification, e.g. a queue of positive length corresponds to the PEPA
agent Pn+1 and the empty queue to P0, giving just two parameterised states. The
actual number of checks required is the product of the numbers of parameterised
states.

8 P. Harrison

3.3 Existence and Uniqueness of a Solution

Under quite mild conditions, MARCAT’s rate equations have a solution, which
is unique (when it can be normalised) by the uniqueness of the equilibrium prob-
abilities of Markov chains. In particular, it is easy to verify that most queueing
networks, certainly all variants of G-networks and BCMP networks, have solu-
tions since they possess a certain strongness property, referred to below.

Theorem 2. In the cooperation
n
��

k=1
L

Pk of stationary Markov processes Pk, de-

fined in theorem 1, the equations for xa, a ∈ Ak(Lk), 1 ≤ k ≤ n,

xa = pa{�b ← xb | b ∈ L}

where pa is the reversed rate of a, have a unique solution if for each k, 1 ≤ k ≤ n :∑
a∈Lk∩Pi→

xa −
∑

a∈Lk∩Ai←
xa

=
∑

a∈Lk∩(Pi←\Ai←)

β
i
a(y)−

∑
a∈Lk∩(Ai→\Pi→)

αi
a

for all positive vectors y and provided that at least one active action o ∈ Ai← is
strongly split for all states i.

Notice that the first condition automatically satisfies the condition of theorem 1
(at y = x) and that the second condition is checkable by the hypothesis that
the reversed agents of the components Pk are known. The term ‘strongly split’
is a technical device, essentially meaning that a split action does not become
vanishingly small for large y; see [17].

3.4 Automation and Implementation

The implementation takes as input the description of a top-level cooperation
of MARCAT-compliant processes and executes several rounds to produce the
stationary probabilities, π. Notice that the current implementation is recursive,
using nested pairs of cooperating agents rather than applying MARCAT directly.
Although somewhat slower for large, non-hierarchical networks, the approach is
more general, handling models organised as nested clusters, typical of contem-
porary architecture design. Extension to reflect MARCAT directly is relatively
straightforward and is viewed as an optimisation.

The phases in the algorithm are as follows:

Parsing. We convert the textual description of the processes into an associative
array of process descriptors, their outbound transitions and their destination
process-names.
The input format is an augmented version of the plain PEPA format where
we have also allowed a process descriptor to have subscripts i, j, k, which

Performance Engineering and Stochastic Modelling 9

may be referred to as subscripts in the successor process (derivative). i, j, k
are assumed to range from zero upwards and in the successor may only be
incremented or decremented by a constant integer. This enables us to specify
many useful processes with infinite, regular state spaces, while keeping the
definition relatively simple.

We store the processes as a keyed, associative array. This ensures that in the
later stages we only ever need to walk a structure the size of the description,
never the size of the state-space. This is especially important since we are
not necessarily working with a finite state-space.

Testing Conditions. The tool performs basic checking that the processes
used are well-formed (that successor states are defined) and that they
satisfy the conditions for MARCAT – exactly as specified in theorem 1
(with n = 2 components) and section 3.2. In the current version, we require
that actions of a given type used in pairwise cooperations are all-passive in
one half of their cooperation and all-active in the other; this is analogous to
the original RCAT of [16].

Forming the Reverse Process. Taking the two-component cooperation,
P1 ��

L
P2, for example, we form the reversed process as R1 ��

L
R2, where

Ri = Pi{�a ← xa | a ∈ Pi}

for i = 1, 2, as per theorem 1. We insert these xa as unknowns in the
definition of the reversed process and construct the rate equations. These
equations are known to have a solution by theorem 2 (under its given con-
ditions) but it is not always known symbolically. In the case of standard
queueing networks, the rate equations are linear (traffic equations) and an
explicit solution can be found in simple cases. However, since a unique so-
lution is known to exist, it makes more sense to leave the xa as symbolic
variables, which can be substituted by particular values by a numerical rate
equation solver in particular numerical applications.

By holding the definition of the forward process as a list of tuples, forming
the reversed process is cheap — proportional to the number of individual
component definitions, not the number of component states, or any combi-
nation of the components.

Deriving Stationary Occupation Probabilities. Finally, the generators of
the individual, reparameterized component-processes, Rk, are computed,
leading to their own (local) equilibrium state probabilities, as detailed in
theorem 1. These yield the factors in the product-form solution for the (un-
normalised) stationary probabilities of the joint process.

10 P. Harrison

4 Illustrative Example

Consider an M -node G-network [12], with respective positive/negative external
arrival rates λ1, . . ., λM/Λ1, . . ., ΛM , service rates μ1, . . . , μM , and posi-
tive/negative routing probabilities pij / nij from node i to node j (1 ≤ i �=
j ≤ M), where pii = nii = 0,

∑M
j=1 pij +

∑M
j=1 nij ≤ 1. Tasks leave the

network from node i with probability pi0 = 1 − ∑M
j=1(pij + nij). We do

not consider departures from a node back to itself as this is considered part of
the definition of the component process for that node. Such departures can be
included easily with more complex components.

This network can be described by the PEPA expression
M
��

k=1
L

Pk,0 (starting

with an empty network), where, for 1 ≤ k ≤ M :

Pk,n = (ek, λk).Pk,n+1 n ≥ 0
Pk,n = (fk, Λk).Pk,n−1 n > 0

Pk,n = (ajk, �jk).Pk,n+1 n ≥ 0, 1 ≤ j �= k ≤ M

Pk,n = (bjk, �jk).Pk,n−1 n > 0, 1 ≤ j �= k ≤ M

Pk,n = (dk, pk0μk).Pk,n−1 n > 0

Pk,n = (akj, pkjμk).Pk,n−1 n > 0, 1 ≤ j �= k ≤ M

Pk,n = (bkj , nkjμk).Pk,n−1 n > 0, 1 ≤ j �= k ≤ M

with Lk = {ajk, bjk | j �= k}. The action types ek, fk represent external
arrivals (positive and negative, respectively), and ajk, bjk represent customers
passing from node j to node k after a service completion at node j (positive and
negative, respectively). In the sequel, we use the abbreviations �ij for �aij , �′

ij

for �bij , xij for xaij and x′
ij for xbij , 1 ≤ i �= j ≤ M . It would have been

just as easy in principle to define a much more complex G-network with resets,
triggers and batches, as considered in two-node networks in [18] for example,
but the PEPA definition would have been much longer and, perhaps, obscure.
The correct traffic equations would emerge via the rate equations in exactly the
same way, however.

In this example, we add ‘invisible transitions’ to ensure negative arrivals
have no effect on an empty queue. These are given by Pk,0 = (bjk, �jk).Pk,0

for 1 ≤ j �= k ≤ M and have no effect on the semantics of the queue.

Thus Pi→ = Ai← =
M⋃

k=1

Lk satisfying condition (b) of theorem 1 trivially

(this is, of course, an application of the multi-agent version of the original,
two-component RCAT [16]). Every instance of the reversed action of an ac-
tive action with type aij ∈ Ai (1 ≤ i �= j ≤ M) has (symbolic) rate which
is a constant fraction pijμi/(μi + Λi +

∑
k �′

ki) of the net arrival rate at
the M/M/1 queue represented by component i since every active action repre-
sents a departure from some queue. Hence, considering the symbols �ki, �′

ki

as variables denoting real rates in preparation for an application of MARCAT,

Performance Engineering and Stochastic Modelling 11

paij =
pijμi (λi +

∑
k �ki)

μi + Λi +
∑

k �′
ki

at all instances of aij since λi is state-independent. Similarly,

pbij =
nijμi (λi +

∑
k �ki)

μi + Λi +
∑

k �′
ki

We can therefore apply MARCAT and obtain the following equations in the
variables xij, x′

ij :

xij =
pijμi (λi +

∑
k xki)

μi + Λi +
∑

k x′
ki

x′
ij =

nijμi (λi +
∑

k xki)

μi + Λi +
∑

k x′
ki

These equations have a solution by theorem 2. Now let vi = λi +
∑M

k=1 xki

and v′
i = Λi +

∑M
k=1 x′

ki for 1 ≤ i ≤ M . (Recall there are no actions aii or
bii.) Then these equations reduce to

xij =
pijμivi

μi + v′
i

x′
ij =

nijμivi

μi + v′
i

i.e. after summing over i

vj − λj =
∑

i

pijμivi

μi + v′
i

v′
j − Λj =

∑
i

nijμivi

μi + v′
i

These are precisely the non-linear traffic equations obtained for G-networks
by Gelenbe in [10]. Skipping the calculation of the reversed process itself for
brevity, the agents Rk of theorem 1 are immediately seen to be M/M/1 queues,
with arrivals corresponding to any actions that increment the state and service
completions corresponding to any actions that decrement it. Thus the total ar-
rival rate is λk+

∑M
j=1 xjk = vk and total service rate is μk+Λk+

∑M
j=1 x′

jk =
μk + v′

k. Hence an unnormalised equilibrium probability for state ik in the pro-
cess denoted by Rk is (

vk

μk + v′
k

)ik

Gelenbe’s theorem then follows directly, for either an open or a closed network,
i.e. the equilibrium probability for state i in the network is proportional to

M∏
k=1

(
vk

μk + v′
k

)ik

12 P. Harrison

Notice how, in complex networks with non-linear rate equations, it is easy to
check that a solution exists using theorem 2, rather than by using a customised
analysis.

5 Environments for Performance Engineering

The preceding section attempted to motivate the use of Stochastic Process Al-
gebra (SPA) as a formalism for specifying performance models, because it has
great expressive power yet loses little in terms of being unable to recognise
known model structures, missing efficient, established solutions. Hitherto, this
had been a major criticism of the idea. Nevertheless, the MPA subset considered
is clearly not enough for a general performance specification language. More-
over, the world does not need more specification languages. What is needed is
a unified formalism that can describe both qualitative (functional) properties
and quantitative (performance) properties. The level of abstraction should be as
high as possible, compatible with high level programming languages or, better,
higher level program specification languages. One prime candidate is UML which
is now widely used in industry. Many attempts have been made to decorate UML
with a quantitative description facility, for example by Woodside, Pooley and
others [3,25,26]. Our suggestion is to follow this trend and to use an SPA, with
the PEPA-based Markovian subset used here, as an intermediate formalism, an
‘abstract machine’ in compiler terminology.

The correctness of a system could be established by analysing the functional
behaviour of the formal specification, either by transforming out its stochas-
tic components and using classical verification techniques, or by direct analysis.
Both analytical and simulation models could be generated by suitable compi-
lation of the SPA intermediate specification; this might involve the extraction
and subsequent analysis of a Generalised Semi-Markov Process for the latter.
The proposed approach obviates the need for separate frameworks for quanti-
tative and qualitative analysis and, by construction, ensures that all analysis is
consistent with respect to the single high-level specification.

There are many other mathematical methods used in stochastic modelling
not touched on here. Some of these can be incorporated under the SPA umbrella,
for example the computation of moments and quantiles of time delay probability
distributions; response times are perhaps the most important QoS metric and
quantiles are frequently specified, for example in hospital A&E units as well as
in the TPC OLTP-benchmarks. Considerable research has also been done on
continuous state models, for example fluid flow, Brownian motion and diffusion
approximations. To accommodate this, it is proposed to develop a fluid-MPA. In
this, the evolution of a component’s (real number) state is given by its derivative
with respect to time, defined by a sum of rate terms, analogous to conventional
action-rates in PEPA. Fluid models operate in a Markov environment, defining
fluctuating rate-functions, and interact through internal rates that depend on the
current state of other components. Known techniques for solving the correspond-
ing systems of differential equations could be applied, involving basic dynamical

Performance Engineering and Stochastic Modelling 13

systems theory. This will lead, in the simplest case, to linear systems, which can
be solved by standard spectral techniques when homogeneous. One objective
here is to find a compositional solution akin to MARCAT. Otherwise, the main
issues are to determine stability, perhaps by identifying Liapunov functions us-
ing the fluid-MPA, and to develop (parallel) numerical solution algorithms. It is
also important to investigate second-order models, cf. Brownian motion, so that
the random fluctuations characterising diffusion can be accounted for.

6 Conclusion

The case has been made for performance engineering environments supported by
stochastic modelling, akin to and to be integrated into software engineering en-
vironments supported by formal methods in theoretical computer science. It was
also suggested that SPA was a natural unifying formalism for many stochastic
modelling methodologies, a claim supported by the use of a PEPA-based MPA
to find many classes of product-form solutions through the Multiple Agents
Reversed Compound Agent Theorem (MARCAT). This methodology has been
automated, to a large extent, to facilitate the uniform derivation of many diverse
separable solutions—not all pure product-form. These applications range from
multi-class queueing networks, through the numerous variants of G-networks, to
networks with mutual exclusion and blocking in critical sections [5]. The auto-
mated solution is currently restricted to actions that can cooperate in only two
agents at a time, e.g. representing departures from one queue passing to another.
The method of [18] will be applied to handle multiple, instantaneous transitions
in chains of components, but in addition, ongoing research is investigating the
possibility that one active action can cooperate with several passive actions si-
multaneously. This would not only induce an alternate approach to triggers but
could also account for other types of simultaneous movement of customers in
queueing networks, as in [7] for example.

References

1. G.P. Basharin, A.N. Langville and V.A. Naumov. The life and work of A.A.
Markov. J. Linear Algebra and its Applications, 386:3-26, July 2004.

2. F. Baskett, K. M. Chandy, R. R. Muntz and F. Palacios, Open, Closed and Mixed
Networks of Queues with Different classes of Customers, J. ACM, 22(2):248-260,
1975.

3. A.J. Bennett, A.J. Field and C. M. Woodside. Experimental Evaluation of the
UML Profile for Schedulability, Performance and Time. In proc UML 2004, Lisbon,
Springer-Verlag Lecture Notes in Computer Science (LNCS 3273):143-157, 2004.

4. M. Bernardo, L. Donatiello and R. Gorrieri. Integrating performance and func-
tional analysis of concurrent systems with EMPA, Proc. of the 1st Workshop on
Distributed Systems: Algorithms, Architectures and Languages, pp. 5-6, Levico
(Italy), June 1996.

5. R.J. Boucherie. A Characterisation of Independence for Competing Markov Chains
with Applications to Stochastic Petri Nets. IEEE Transactions on Software Engi-
neering, 20(7):536–544, July 1994.

14 P. Harrison

6. E. Brockmeyer, H.L. Halstrom and Arns Jensen. The life and works of A.K. Erlang.
The Copenhagen Telephone Company, 1948.

7. X. Chao, M. Miyazawa and M. Pinedo. Queueing networks: customers, signals and
product form solutions. Wiley, 1999

8. A.K. Erlang. The Theory of Probabilities and Telephone Conversations. Nyt
Tidsskrift for Matematik B, 20, 1909.

9. A.K. Erlang. Solution of some Problems in the Theory of Probabilities of Signifi-
cance in Automatic Telephone Exchanges. Elektrotkeknikeren, 13, 1917.

10. E. Gelenbe. Random neural networks with positive and negative signals and prod-
uct form solution. Neural Computation, 1(4):502–510, 1989.

11. E. Gelenbe. G-networks with triggered customer movement. Journal of Applied
Probability, 30:742–748, 1993.

12. E. Gelenbe, The first decade of G-networks, European Journal of Operational Re-
search, 126(2): 231-232, October 2000.

13. E. Gelenbe and J.-M. Fourneau. G-networks with resets. In Proceedings of PER-
FORMANCE ’02, Rome, 2002, Performance Evaluation, 49:179–191, 2002.

14. E. Gelenbe and R. Schassberger. Stability of product form G-networks. Probability
in the Engineering and Informational Sciences, 6:271–276, 1992.

15. William J. Gordon and Gordon F. Newell, Closed Queueing Systems with Expo-
nential Servers, Operations Research, 15(2): 254-265, Mar-Apr 1967.

16. P.G. Harrison. Turning Back Time in Markovian Process Algebra. Theoretical
Computer Science, 290(3):1947-1986, January 2003.

17. P.G. Harrison. Separable equilibrium state probabilities via time reversal in Marko-
vian process algebra. Theoretical Computer Science, 2005, under review.

18. P.G. Harrison. Compositional reversed Markov processes, with applications to
G-networks. Performance Evaluation, 57(3):379-408, July 2004.

19. P.G. Harrison. Reversed processes, product forms and a non-product form. J. Lin-
ear Algebra and its Applications, 386:359-382, July 2004.

20. H. Hermanns, M. Rettelbach, and T. Wei. Formal Characterisation of Immedi-
ate Actions in SPA with Nondeterministic Branching. The Computer Journal,
38(7):530-541, 1995.

21. Jane Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
University of Edinburgh, 1994.

22. J. Hillston and N. Thomas. Product form solution for a class of PEPA models.
Performance Evaluation, 35:171–192, 1999.

23. J. R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131-142,
1963.

24. F.P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons Ltd, 1979.
25. P.J. B. King and R. Pooley. Derivation of Petri Net Performance Models from UML

Specifications of Communications Software. Tools and Techniques for Computer
Performance Evaluation (TOOLS 2000), Chicago, pp262-276, 2000.

26. Dorin B. Petriu and Murray Woodside. A Metamodel for Generating Performance
Models from UML Designs. In proc UML 2004, Lisbon, Springer-Verlag Lecture
Notes in Computer Science (LNCS 3273):143-157, 2004.

Implicit Representations and Algorithms

for the Logic and Stochastic Analysis of
Discrete–State Systems�

Gianfranco Ciardo

Department of Computer Science and Engineering,
University of California, Riverside,

CA 92521, USA
ciardo@cs.ucr.edu

As discrete–state systems are pervasive in our society, it is essential that we
model and analyze them effectively, both prior to putting them in operation and
during their useful life. The size of their state space, however, is a huge obstacle
in practice. Often, the “easy” way to tackle this problem is to use some type of
simulation, but this technique has obvious limitations. For performance analysis,
simulation can at best offer only a statistical approximation, i.e., confidence
intervals, while, for logic analysis, the situation is even worse, as it can only
find errors, not prove correctness. Ultimately, these limitations stem from the
same source: simulation only visits a fraction of the reachable states. Indeed,
the fraction of the states that can actually be explored in a reasonable amount
of time becomes exponentially smaller as the complexity of the system being
modeled (measured in number of components, parts, etc.) increases.

One way to attack this problem is to employ implicit representations whose
memory and time requirements are often much less than linear in the number
of states of the system under study. In this context, two techniques emerged in
the mid ’80s are particularly relevant.

– Since the introduction of binary–decision diagrams (BDDs) [1], symbolic
algorithms have proven themselves very effective for the verification of
discrete–state systems, especially digital hardware and protocols. Systems
with 1020 or more states have become amenable to exact logic analysis, lead-
ing to the wide adoption of model checking by major hardware and software
vendors.

– In an apparently distant area of research, the structure of a Markovian dis-
crete system has been exploited to develop a Kronecker algebra representa-
tion of the infinitesimal generator matrix of the system [11]. By avoiding the
need to store this matrix, which is the largest data structure required for a
steady–state or transient analysis of a Markov model, systems with a factor
of 10 or more states can be studied than with ordinary sparse–storage meth-
ods. While this improvement is not as impressive as that of symbolic model

� Work supported in part by the National Science Foundation under grants CNS-
0501747 and CNS-0501748.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 15–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

16 G. Ciardo

checking, the idea has spurred much research and further advancements in
the two decades following its introduction.

BDDs, Kronecker representations, and several other variants that have been
introduced in the literature can all be seen as implicit representations of vector
or matrices, as opposed to explicit representations; the fundamental difference
between the two being that, when using the latter, the memory, hence time,
requirements are always at least proportional to the number of (nonzero) entries
in the vector or matrix being stored, while the former is enormously more efficient
in many cases.

In this talk, we first survey and organize several types of decision diagrams
which can be employed for logic or Markov analysis, and briefly illustrate im-
portant algorithms that manipulate them, from fixed–point algorithms used in
state–space generation [3,7] and CTL model checking [6] to vector–matrix mul-
tiplications [2] needed for the numerical solution of a Markov model: multiway
decision diagrams (MDDs) [12], multi–terminal decision diagrams (MTBDDs,
MTMDDs) [8], additive or multiplicative edge–valued decision diagrams (EVB-
DDs, EV+MDDs and EV∗MDDs) [9,5], matrix diagrams (MxDs) [4,10], and a
new variant particularly efficient when storing matrices, identity–reduced deci-
sion diagrams.

Then, we focus on the need for approximate solutions of Markov models that
have been encoded implicitly. This is an important challenge to be tackled, be-
cause, while we can analyze the logic behavior and even encode the infinitesimal
generator of systems with huge state spaces, the exact numerical solution of the
underlying Markov model still requires the storage of an explicit probability vec-
tor in practice. We present some known results, and discuss potential research
directions.

References

1. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comp., 35(8):677–691, Aug. 1986.

2. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. Comp., 12(3):203–222, 2000.

3. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In H. Gar-
avel and J. Hatcliff, editors, Proc. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), LNCS 2619, pages 379–393, Warsaw, Poland, Apr.
2003. Springer-Verlag.

4. G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker solution
of GSPNs. In P. Buchholz, editor, Proc. 8th Int. Workshop on Petri Nets and
Performance Models (PNPM’99), pages 22–31, Zaragoza, Spain, Sept. 1999. IEEE
Comp. Soc. Press.

5. G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. In M. D. Aagaard and J. W. O’Leary, editors, Proc.
Fourth International Conference on Formal Methods in Computer-Aided Design
(FMCAD), LNCS 2517, pages 256–273, Portland, OR, USA, Nov. 2002. Springer-
Verlag.

Implicit Representations and Algorithms 17

6. G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of asyn-
chronous systems. In W. Hunt, Jr. and F. Somenzi, editors, Computer Aided
Verification (CAV’03), LNCS 2725, pages 40–53, Boulder, CO, USA, July 2003.
Springer-Verlag.

7. G. Ciardo and J. Yu. Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In Proc. CHARME, Saarbrücken, Germany,
Oct. 2005. Springer-Verlag. To appear.

8. M. Fujita, P. C. McGeer, , and J. C.-Y. Yang. Multi-terminal binary decision
diagrams: an efficient data structure for matrix representation. Formal Methods in
System Design, 10:149–169, 1997.

9. Y.-T. Lai, M. Pedram, and B. K. Vrudhula. Formal verification using edge-valued
binary decision diagrams. IEEE Trans. Comp., 45:247–255, 1996.

10. A. S. Miner. Efficient solution of GSPNs using canonical matrix diagrams. In
R. German and B. Haverkort, editors, Proc. 9th Int. Workshop on Petri Nets and
Performance Models (PNPM’01), pages 101–110, Aachen, Germany, Sept. 2001.
IEEE Comp. Soc. Press.

11. B. Plateau. On the stochastic structure of parallelism and synchronisation models
for distributed algorithms. In Proc. ACM SIGMETRICS, pages 147–153, Austin,
TX, USA, May 1985.

12. A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for discrete
function manipulation. In Int. Conference on CAD, pages 92–95. IEEE Comp.
Soc. Press, 1990.

PiDuce: A Process Calculus with Native

XML Datatypes�

Allen L. Brown Jr.1, Cosimo Laneve2, and L. Gregory Meredith3

1 Microsoft Corporation, Redmond, Washington, USA
2 Department of Computer Science, University of Bologna, Italy

3 Harvard Medical School, Boston, USA and Djinnisys Corporation, Seattle, USA

Abstract. We develop the static and dynamic semantics of PiDuce, a
process calculus with XML values, schemas, and pattern matching. PiDuce
values include channel names, therefore the structure of values may not
reveal anything about their schemas. This is problematic in the pattern
matching algorithm because it requires to verify whether a schema of a
channel is a subschema of a pattern. Such a verification has exponential
cost, in general. In order to reduce the computational complexity of
the pattern matching, channel schemas are constrained to occur in tail
positions of sequences and to be labelled-determined.

1 Introduction

The π-calculus has been introduced as a basic formalism for modelling con-
current systems [19]. Its data language is quite simple: only tuples of channel
names are admitted. Extensions of the basic model with datatypes, such as in-
tegers, booleans, and lists, as well as with polymorphism, have been already
explored [18,21]. In this paper we continue this research by investigating an
extension of π-calculus with values and datatypes that closely approximates
standard values and datatypes of the web: XML documents and XML schemas,
respectively.

Our extension of π-calculus, called PiDuce, has values that may contain chan-
nels – a role often played by Uniform Resource Identifiers (URIs) in the web –, as
in π-calculus and in XML instances. Correspondingly, datatypes, called schemas,
may contain types describing collections of channels that carry messages of sim-
ilar structure. For instance, the following PiDuce fragment

x[u] | x(v : 〈Int〉). v[5]
consists of two processes in parallel: the process on the left outputs the channel
u on x, the process on the right receives a channel carrying integers – this is
indicated by the schema 〈Int〉 – and outputs 5 on it. If the input and output on
x communicate, the value 5 will be emitted on u.

� Aspects of this investigation conducted at the University of Bologna were supported
in part by a Microsoft initiative in concurrent computing and web services.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 18–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PiDuce: A Process Calculus with Native XML Datatypes 19

PiDuce also retains mechanisms for constructing and deconstructing values.
Construction is performed by tagging existing values and putting them in se-
quence. Deconstruction is achieved by patterns and pattern matching. For in-
stance, the fragment

x[a[5],b[4]] | x(a[u : Int],b[v : Int]). z[c[v],d[u]]

exchanges the document a[5],b[4] during the communication on x, grasps the
values 5 and 4 by means of the pattern a[u : Int],b[v : Int], and constructs a
new value c[4],d[5], which is emitted on the channel z.

By combining input choices and patterns it is possible to write sophisticated
processes in PiDuce. For instance, the fragment:

u(v : S).P + u(v : T). Q

selects the continuation P or Q according to the received value has schema S or
T , respectively. (The choice is nondeterministic if the received value matches with
both.) The selection is performed by the pattern matching algorithm that parses
the value according to the structure of the pattern. This algorithm has a cost
that is proportional to the product of the sizes of the pattern and of the received
value, when such a value does not contain channels. When the received value
contains a channel, as when it is x, the pattern matching reduces to computing
the subschema relation between the schema of x and those of v : S and v : T .
In turn, this relation calculates a language inclusion and it is decidable because
PiDuce schemas define regular tree languages.

However the subschema relation has exponential cost in the size of the
schemas [17] and this cost may significantly degrade the run-time efficiency of
possible implementations since pattern matching is liberally used in PiDuce. To
circumvent this problem, channel schemas are restricted to occur in tail position
of sequences and to be labelled-determined, that is they have a deterministic
model as regards labelled transitions (the model is nondeterministic as regards
channel transitions). PiDuce labelled-determined schemas admit a subschema
relation with a polynomial computational complexity [8].

The subschema relation, which is original to this contribution, uses a “simula-
tion relation” in the style of [3,20]. In particular, we associate handles to schemas
and, in order to derive that S is a subschema of T , we verify that the handles
of S are (recursively) contained into the handles of T . The containment goes
straight to the structure of the handles when schemas are labelled-determined.
Otherwise the structure is not powerful enough. To illustrate the problem, let
S = (a + b)[Int + String],c[Int] and T = a[Int],c[Int] + a[String],c[Int] +
b[Int + String],c[Int]. It turns out that S <:T however, to demonstrate this,
one has to pick one addend of T , let it be T ′ = a[Int],c[Int], compute the differ-
ence of S and T ′, and show that this difference is in T . In this case the difference
is a[String],c[Int] + b[Int+ String],c[Int] and it is clearly contained in T .

PiDuce possesses a static semantics ensuring that invalid terms can never
be produced. This is achieved by a careful control over the interplay between
the schemas of the messages and the schemas declared for the channels carrying

20 A.L. Brown Jr., C. Laneve, and L.G. Meredith

them. It is worth noticing that, due to the subschema relation, the static seman-
tics also entails subtyping polymorphism. The static semantics is demonstrated
to be sound; this yields a subject reduction property (a well-typed process tran-
sits to well typed processes) and a progress property (a well-typed process does
not get stuck).

Related Works. PiDuce has been strongly influenced by XDuce, a functional
language for XML processing [12]. In XDuce, values do not carry channels, and
the subschema relation is never needed at run-time. Our paper may also be read
as an investigation of the extension of XDuce values and schemas with channels.

Several integrations of processes and semistructured data have been studied
in recent years. Two similar contributions, that are contemporary and indepen-
dent to this one, are [10,2]. The schema language in [10] is the one of [5] plus
the channel constructors for input, output, and input-output capability. No ap-
parent restriction to reduce the computational complexity of pattern matching
is proposed. The schema language of [2] is simpler than the that of PiDuce. In
particular recursion is omitted and labeled schemas have singleton labels.

Other contributions integrating semistructured data and processes are dis-
cussed in order. TulaFale [6], a process language with XML data, is especially
designed to address web services security issues such as vulnerability to XML
rewriting attacks. The language has no static semantics. The integration of
PiDuce with the security features of TulaFale seems a promising direction of
research. Xdπ [11] is a language that supports dynamic web page programming.
This language is π-calculus with locations plus the explicit primitives for process
migration, for updating data, and for running a script. The emphasis of Xdπ is
towards behavioral equivalences and analysis techniques for behavioral proper-
ties. A similar contribution to [11] is Active XML [1] that uses an underlying
model consisting of a set of peer locations with data and services.

Structure of the Paper. We proceed as follows. We introduce PiDuce in Section 2,
together with a few examples to elucidate the syntactic constructs, and motivate
our design choices. We examine the static semantics of PiDuce in Section 3, and
we discuss the motivations supporting its design. We introduce the dynamic
semantics in Section 4 and we demonstrate a soundness theorem in Appendix A.
We conclude with Section 5 where we also discuss few current directions of
research.

2 PiDuce

The syntax of PiDuce includes the categories labels, values, schemas, patterns,
and processes that are defined by the rules in Table 1. Several countably infinite
sets are used in the syntax: the set of tags, ranged over by a, b, · · ·; the set
of variables, ranged over by u, x, · · ·; the set of schema names, ranged over by
U, V, · · ·.

PiDuce: A Process Calculus with Native XML Datatypes 21

Table 1. Syntax of PiDuce

L ::= label
a (tag)

~ (wildcard label)
L + L (union)
L \ L (difference)

V ::= value
() (void)
u (variable)
a[V] (labelled value)
a[V],V (sequence)

F ::= pattern
S (schema)
u : F (variable pattern)
L[F] (labelled pattern)
L[F],F (sequence pattern)

S ::= schema
() (void schema)
〈S〉 (channel schema)
L[S] (labelled schema)
L[S],S (labelled sequence sch.)
S + S (union schema)
U (schema name)

P ::= process
0 (nil)
u[V] (output)

i∈I ui(Fi).Pi (input choice)
P | P (parallel)
(u :〈S〉)P (new)
!P (replication)

Labels. Labels specify collections of tags. The semantics of labels is defined by
the following function ·̂ :

â = {a} ~̂ = L L̂ + L′ = L̂ ∪ L̂′ L̂ \ L′ = L̂ \ L̂′

We write a ∈ L for a ∈ L̂.

Values. PiDuce values are the set of terms V containing (), variables and se-
quences of elements that are labelled values with the tailing element that may be
a labelled value or a variable. For example a[v],u or a[u],b[()] are values, whilst
a[u],() or u,a[()] are not values. Variables are either channels or represent
placeholders to be instantiated with other values. Channels play an operational
role similar to that played by URIs when the latter are used as endpoints for
communicating with web services. For example

message[title[()], chan [u]]

is a value containing an empty title and a channel u. This channel could be used
by the receiver, for instance, to send back an acknowledgment. In the following
a[()] is always shortened to a[].

Schema. Schemas describe sets of values that are structurally similar. The
schema () describes the value (); 〈S〉 describes channels that carry messages of
schema S; L[S] describes the values a[V] such that a ∈ L and V is of schema S;
L[S],S′ describes values a[V],V ′ where a[V] and V ′ are of schema L[S] and S′,
respectively (when S′ describes (), the schema L[S],S′ also includes the values
described by L[S]); S + S′ describes values that are in S or in S′. The schema
U describes the least set of values such that U = E(U), where E maps schema

22 A.L. Brown Jr., C. Laneve, and L.G. Meredith

names to schemas and fulfils the following finiteness property. Let names(S) be
the least set containing the schema names in S and such that if U ∈ names(S)
then names(E(U)) ⊆ names(S). A map E is finite if, for every U ∈ dom(E), the
set names(U) is finite. We notice that this property implies that PiDuce schemas
define tree regular languages [17].

For example, the schema that collects booleans is true[()] + false[()]; the
schema that collects an emptyset of values is Empty defined by Empty = Empty;
the schema that collects any channel, no matter what it can carries, is 〈Empty〉;
the schema that collects all the values is Any defined by Any = ()+ ~[Any],Any+
〈Empty〉. We observe that 〈Empty〉 and 〈Any〉 are very different. 〈Empty〉 refers
to any channels, 〈Any〉 refers only to channels that can carry arbitrary data. For
instance 〈a[()]〉 is an 〈Empty〉 but not an 〈Any〉. As for values, the schema () in
L[()] will be always omitted.

PiDuce channel schemas 〈S〉 are such that S is labelled-determined, according
to the next definition. Let μ range over internal schema representations (), 〈〉(S),
L(S ; T) and let S ↓ μ, read S has a handle μ, be the least relation such that:

() ↓ ()
〈S〉 ↓ 〈〉(S)
L[S] ↓ L(S ; ()) if L̂ �= ∅ and there is μ such that S ↓ μ
L[S],T ↓ L(S ; T) if there are μ,μ′ such that L[S] ↓ μ and T ↓ μ′
S + T ↓ μ if S ↓ μ or T ↓ μ
U ↓ μ if E(U) ↓ μ

We observe that Empty has no handle. The schema a[],Empty has no handle as
well; the reason is that a sequence has an handle provided that every element of
the sequence has an handle. We also remark that a channel 〈S〉 always retains
an handle. A schema S is not-empty if and only if S has a handle; it is empty
otherwise.

Definition 1. The set ldet of labelled-determined schemas is the least set con-
taining empty schemas and such that:

1. () ∈ ldet;
2. if S ∈ ldet then 〈S〉 ∈ ldet and L[S] ∈ ldet;
3. if S ∈ ldet and T ∈ ldet then L[S],T ∈ ldet;
4. if S ∈ ldet and T ∈ ldet and, for every S ↓ L(S′ ; S′′) and T ↓ L′(T ′ ; T ′′),

L ∩ L′ = ∅ then S + T ∈ ldet;
5. if E(U) ∈ ldet then U ∈ ldet.

For example, a[S] + (~ \ a)[T] and ~[S] + 〈S〉 + 〈T 〉 are labelled-determined
schemas. The schemas a[]+(a+b)[] and 〈a[]+~[]〉 are not labelled-determined.

We observe that the labelled-determinedness restriction will be applied to
channel schemas only. For instance, a[] + ~[] is a legal PiDuce schema. We also
recall that labelled-determinedness and the syntactic constraint that channel
schemas always occur in tail positions of sequences entail a polynomial algo-
rithm for language inclusion of channel schemas [8]. As discussed in the intro-
duction, this is fundamental for an efficient pattern matching algorithm (see also
Section 3).

PiDuce: A Process Calculus with Native XML Datatypes 23

Patterns. Patterns allow the deconstruction of values using matching. The pat-
tern S is matched by values of schema S. A variable u : F can be bound in the
course of matching to a value described by the schema represented by F (see
below). For example, u : a[] + b[] may bind values such as a[] or b[]; u : 〈a[]〉
may bind any channel value of schema 〈a[]〉, but it does not bind a channel
value of schema 〈a[] + b[]〉; the pattern u : a[v : b[]] binds two variables at
the same time: u to values of schema a[b[]] and v to values of schema b[]. The
pattern L[F] is a shorthand for L[F],(); L[F],F ′ is matched by values of the
form a[V],V ′, with a ∈ L and V and V ′ match with F and F ′, respectively. The
pattern L[F],F ′ is also matched by values a[V] if a[V] matches with L[F] and
() matches with F ′.

The schema represented by a pattern F , in notation schof(F) is defined
inductively by

schof(S) = S
schof(u : F) = schof(F)
schof(L[F]) = L[schof(F)]

schof(L[F],F ′) = L[schof(F)],schof(F ′)

PiDuce patterns retain the following well-formedness properties:

1. linearity with respect to variables : variables occurring in a pattern do not
clash;

2. not-emptiness : patterns F are such that schof(F) is always not-empty. (Pat-
terns such as u : Empty are excluded because they are practically useless and
theoretically troublesome (see Proposition 2 and Theorem 1).)

Processes. Processes define the set of computing entities in PiDuce. 0 is the idle
process; u[V] outputs the value V on the channel u;

∑
i∈I ui(Fi).Pi inputs on the

channel ui a value that matches with Fi yielding a substitution σ and behaves
as Pσ. The family I in the input choice is assumed to be finite. The process
(u :〈S〉)P defines a new channel u and binds it within the continuation P ; !P is
the process that always spawns copies of P . The channels u in u[V] and ui in∑

i∈I ui(Fi).Pi are called subjects of output and input, respectively.
As it is usual in concurrent calculi, the choice in the process

∑
i∈I ui(Fi).Pi

is unordered. For example, the process

print(u : File). printbw [u]
+ print(u : Picture). printc[u]
+ print(u : Any). error -handler [u]

takes a value on the channel print, and forwards it either to the black and white
printer if it matches with File, or to the color printer if it matches with Picture,
or to an error-handler, otherwise (File and Picture are two schema names).
However it may be the case that the branch print(u : Any). error -handler [u]
is picked, even if a file or a picture is received because such values also match
with Any. Said otherwise, input choices badly express a standard pattern match-
ing mechanism of programming languages, the first-matching semantics. When

24 A.L. Brown Jr., C. Laneve, and L.G. Meredith

PiDuce is turned into a real concurrent programming language it should be ex-
tended with a native first-matching mechanism (indeed, this is the case in [9]).

PiDuce processes retain the output capability property: every channel received
in input may be used in the continuation either as subject of outputs, or within
values.

Free and Bound Variables. The set fv(·) is defined for values, patterns, and
processes as follows:

fv(V): is the set of variables occurring in V ;
fv(F): is the set of variables occurring in F ;
fv(P): is the set of variables occurring in P and, recursively, in the bodies of

the constant invocations, that are not bound. An occurrence of x in P is
bound in the input u(F).P if x ∈ fv(F); an occurrence of u in P is bound in
(u :S)P . Bound variables are noted bv(·).
The definitions of α-conversion and substitution for bound variables are stan-

dard.

Design Remarks. The design of the PiDuce schema and pattern languages, as
well as most of the algorithms regarding these features, has been strongly influ-
enced by the XDuce [12] and CDuce [5] prototypes. The differences are discussed
in order.

PiDuce schemas omit primitive schemas, such as integer and string, but
these may be added without any difficulty. For simplicity sake, schemas such as
(S + T),R are also excluded, while they are admitted by the formalism in [13]:
such schemas would have entangled the definition of labelled-determinedness. A
major departure with respect to the schema in the above languages (and in XML
DTDs or in XML Schema) is entailed by the channel schemas, which are new.
These schemas are used in PiDuce to verify the correct use of channels.

In PiDuce processes, channels that are received in input can be used in the
continuations only with output capability. Such output capability means that a
process receiving a channel cannot redefine that channel by accepting additional
inputs meant for that channel (a reasonable constraint in web services). Output
capability plays an important role in the static semantics because it entails
subtyping polymorphism in schemas that include channel schemas.

3 The Static Semantics

We begin with the basic notion of subschema; the static semantics of values and
of processes are defined afterwards.

Subschema. The semantic definition of subschema in [12] does not adapt well
to PiDuce. In particular, since values contain channels, in order to verify that a
channel u belongs to a schema S, one is reduced to verifying that the schema of

PiDuce: A Process Calculus with Native XML Datatypes 25

u is a subschema of S. To circumvent this circularity we use an “operational”
definition – a simulation relation – in the style of [3,20].

The subschema relation uses handles defined in Section 2 to manifest all the
branches of the syntax tree of a schema and to get rid of useless () elements.
In the following definition we use the intersection operator on labels: L ∩ L′ def=
~ \ ((~ \ L) + (~ \ L′)).

Definition 2. The subschema relation <: is the largest relation on schemas
such that S <:T implies:

1. if S ↓ () then T ↓ ();
2. if S ↓ 〈〉(S′) then T ↓ 〈〉(T ′) and T ′ <:S′;
3. if S ↓ L(S′ ; S′′) then T ↓ L′(T ′ ; T ′′) with L̂ ∩ L̂′ �= ∅ and:

(a) either L̂ ⊆ L̂′, S′ <:T ′, and S′′ <:T ′′;
(b) or (L \L′)[S′],S′′ +(L∩L′)[R′],S′′ +(L∩L′)[S′],R′′ <:T , for some R′

and R′′ such that S′ <:T ′ + R′ and S′′ <:T ′′ + R′′.

We notice that, in the definition of S <:T , when S ↓ L(S′ ; S′′) and T is
labelled-determined, case 3.(b) reduces to (L \ L′)[S′],S′′ <:T . For example it
is easy to verify that a[] <: a[] + b[] and 〈a[] + b[]〉 <: 〈a[]〉. The definition of
subschema allows us to derive that c[a[]+b[]],(d[]+e[]) is a subschema of T =
c[a[]],d[]+c[b[]],(d[]+e[])+c[a[]],e[]. In particular, since T ↓ c(a[]] ; d[]), one
may reduce the problem to verifying that c[R′],(d[]+e[])+ c[a[]+ b[]],R′′ <:T
with R′ = b[] and R′′ = e[]. The relationship c[b[]],(d[]+e[]) <:T is immediate
because it is the second addend of T . As regards c[a[]+ b[]],e[] <:T we observe
that T ↓ c(b[]] ; d[] + e[]). This reduces to the verification of c[a[]],e[] <:T ,
which is true because c[a[]],e[] is the third addend of T .

A few properties of <: are in order.

Proposition 1. 1. <: is reflexive and transitive;
2. (Contravariance of 〈·〉) S <:T if and only if 〈T 〉 <: 〈S〉;
3. For every S, Empty <:S <: Any and 〈Any〉 <: 〈S〉 <: 〈Empty〉.

The computational complexity of the subschema relation. Let ‖S‖ be the size
of the schema S, namely the size of the syntax tree of S, plus the sizes of
the syntax trees of E(U) such that U ∈ names(S). The computational complex-
ity of S <:T is exponential in ‖S‖ and ‖T ‖ ([17], chapter 1). When S and
T are labelled-determined schemas that do not contain channel constructors,
there is an algorithm (using tree automata) for computing S <:T whose com-
putational complexity is O(‖S‖ × ‖T ‖) ([17], chapter 1). But PiDuce schemas
are not labelled-determined with respect to channel constructors. Nevertheless,
the syntactic constraints on PiDuce channel schemas (channels may only occur
in tail positions of sequences) yields a computational complexity for S <:T of
O((‖S‖+‖T ‖)3). The algorithm uses two boolean tables of size (‖S‖+‖T ‖)2: the
table testing stores schemas that are being tested, and the table test false
stores schemas that have been tested and the algorithm has failed. At each step,
which costs O(max(‖S‖, ‖T ‖)), the algorithm stores true either in testing or in

26 A.L. Brown Jr., C. Laneve, and L.G. Meredith

test false, and the two tables never store true in the same position. Therefore
there are at most (‖S‖+ ‖T ‖)2 iterations. A detailed discussion of the required
algorithm can be found in [8].

Typing rules for values. An environment Γ is a finite partial map from variables
to schemas. We write dom(Γ) for the set of variables in Γ ; we write ∅ for the empty
environment, and u : S for the singleton map. We let Γ+Γ ′ be (Γ \dom(Γ ′))∪Γ ′,
where Γ \X removes from Γ all the bindings of names in X . The environments
we consider in the following are always well-formed: Γ is well-formed if, for every
u, Γ (u) is not-empty.

The judgment Γ � V : S – read V has type S in the environment Γ – is the
least relation satisfying the following rules:

(empty)

Γ � () : ()

(var)

Γ (u) = S

Γ � u : S

(lab)
Γ � V : S

Γ � a[V] : a[S]

(seq)

Γ � V : S Γ � V ′ : S′

Γ � a[V],V ′ : a[S],S′

These rules and the well-formedness of environments entail the following
properties.

Proposition 2. 1. Let Γ � V : S and S <: 〈T 〉, for some T . Then V is a
variable and S is a channel schema.

2. Let Γ be such that, for every u ∈ dom(Γ), Γ (u) is labelled-determined. If
Γ � V : S then S is labelled-determined.

We observe that Proposition 2.1 would be false if Γ were not well-formed. For
instance take Γ = u : Empty and V = a[u]; then the hypotheses hold, but
the conclusion is false. Proposition 2.2 is relevant because, at run-time, envi-
ronments map variables to channel schemas. Henceforth communicated values
always retain labelled-determined schemas.

Typing Rules for Processes. Let Env(F) be the following function taking a pat-
tern and giving an environment:

Env(S) = ∅
Env(u : F) = u : schof(F) + Env(F)
Env(L[F]) = Env(F)

Env(L[F],F ′) = Env(F) + Env(F ′)

It is worth noticing that, in u : schof(F) + Env(F) and Env(F) + Env(F ′), the
summands have disjoint domains, due to the linearity constraint on patterns.

PiDuce: A Process Calculus with Native XML Datatypes 27

The judgment Γ � P – read P is well typed in the environment Γ – is the
least relation satisfying the following rules:

(nil)

Γ � 0

(out)

Γ � u :〈S〉 Γ � V :T T <:S

Γ � u[V]
(inp)(
Γ � ui :〈Si〉 Γ + Env(Fi) � Pi

Si <:
∑

j∈I, uj=ui
schof(Fj)

)i∈I

Γ � ∑
i∈I ui(Fi).Pi

(par)

Γ � P Γ � P ′

Γ � P | P ′

(new)

Γ + u :〈S〉 � P

Γ � (u :〈S〉)P

(rep)
Γ � P

Γ � !P

Rules (nil), (par), (new), and (rep) are standard. Rule (out) types outputs.
The premise T <:S entails that the subject of the input is a channel. It is
worth noticing that, if S = Empty, then there is no T such that Γ � V : T and
T <: Empty. Therefore outputs on channels of schema Empty are forbidden. On
the contrary, if S = Any, then u[V] is always well typed. Rule (inp) types input
guarded choices. The second hypothesis is easy to explain: it enforces the typing
of the continuation of every summand in the environment Γ plus that defined by
the pattern. The third hypothesis may be understood as follows. Assume there
are exactly n summands inputting on the same channel u, and let F1, · · · ,Fn be
the corresponding patterns. Let 〈S〉 be the schema of u. Then the hypothesis
establishes that S <: schof(F1) + · · · + schof(Fn). It is worth recalling that
schof(F1) + · · · + schof(Fn) is in general not labelled-determined. This allows
programmers to write processes such as x(v : a[Int]).P + x(v : a[String]).Q.
We also remark that Γ + Env(Fi) is well-formed because of the not-emptiness
restriction of patterns.

4 The Operational Semantics

This section defines the semantics of patterns and processes. In order to cope
with values that may carry (channel) variables, both the pattern matching and
the transition relations take an associated environment into account.

Patterns. Patterns decompose the structure of values and select parts of them.
The algorithm, called pattern-matching, yields a substitution in case the decom-
position succeeds. Let σ and σ′ be two substitutions with disjoint domains. We
write σ + σ′ to denote the function that is the union of σ and σ′. Every union
in the following rules is always well defined because of the linearity constraint
placed on patterns.

28 A.L. Brown Jr., C. Laneve, and L.G. Meredith

The pattern match of a value V with respect to a pattern F in an environment
Γ , written Γ � V ∈ F � σ, is the least relation satisfying the following rules:

(emp)
S ↓ ()

Γ � () ∈ S � ∅

(var)

u ∈ dom(Γ) Γ (u) <:S

Γ � u ∈ S � ∅
(label-void)

S ↓ L(S′ ; S′′) a ∈ L
Γ � V ∈ S′ � ∅ Γ � () ∈ S′′ � ∅

Γ � a[V] ∈ S � ∅

(seq-void)

S ↓ L(S′ ; S′′) a ∈ L
Γ � V ∈ S′ � ∅ Γ � V ′′ ∈ S′′ � ∅

Γ � a[V],V ′′ ∈ S � ∅

(pat-var)
Γ � V ∈ F � σ

Γ � V ∈ u : F � [u �→ V] + σ

(label)

fv(L[F],F ′) �= ∅ a ∈ L
Γ � V ∈ F � σ Γ � () ∈ F ′ � σ′

Γ � a[V] ∈ L[F],F ′ � σ + σ′

(seq)

fv(L[F],F ′) �= ∅ a ∈ L
Γ � V ∈ F � σ Γ � V ′ ∈ F ′ � σ′

Γ � a[V],V ′ ∈ L[F],F ′ � σ + σ′

We discuss (var), (pat-var), and (seq). Rule (var) verifies if a variable value
matches with a schema S: it reduces to verifying the subschema relation between
the schema of the variable and S. Rule (pat-var) defines a substitution of a
variable in a pattern. Rule (seq) matches a value with a sequence pattern. Since
sequence patterns are linear with respect to variables, the substitution σ + σ′ is
always well defined. We notice that no rule is defined for the pattern L[F]: this
pattern is always rewritten into L[F],().

When the matched value does not contain variables, the pattern matching
algorithm has a cost that is proportional to the product of the size of the value
and the size of the pattern. This is because the schema of the pattern is not
labelled-determined; if such a schema was labelled-determined then the cost
should have been linear with respect to the size of the value. The presence of
variables in values reduces the pattern matching to the subschema relation, see
the right premise of (var), which has an exponential cost, in general. However,
if every variable in the environment Γ has a channel schema – that is always the
case at run-time, see the following transition relation – then the subschema rela-
tion reduces to computing the subschema between labelled-determined schemas,
which has a polynomial cost. More precisely, in the premise Γ (u) <:S of (var),
Γ (u) = 〈T 〉, for some T . In order to match the pattern, one has to verify that
T is greater than one schema in {S′ | 〈S〉 ↓ 〈〉S′}. Then (1) every such check is
polynomial because the schemas are labelled-determined, and (2) there are at
most ‖S‖ checks because the cardinality of {S′ | S ↓ 〈〉S′} is smaller.

Proposition 3. Let Γ � V : S and Γ � V ∈ F � σ. Then S <: schof(F).

PiDuce: A Process Calculus with Native XML Datatypes 29

Processes. Let μ, ν, · · · range over τ , input u(F), and bound output (Γ)u[V]
such that dom(Γ) ⊆ fv(V). The bound output (Γ)u[V] is shortened to u[V]
when Γ = ∅. We use the following auxiliary functions:

fv: fv(τ) = ∅, fv(u(F)) = {u}, and fv((Γ)u[V]) = ({u} ∪ fv(V)) \ dom(Γ).
bv: bv((Γ)u[V]) = dom(Γ), bv(u(F)) = fv(F), and bv(τ) = ∅.

The transition relation of PiDuce,
μ→, is the least relation satisfying the rules:

Γ � u[V]
u[V]→ 0 Γ �∑

i∈I ui(Fi).Pi
ui(Fi)→ Pi

Γ + u :〈S〉 � P
μ→ Q u �∈ fv(μ) ∪ bv(μ)

Γ � (u :〈S〉)P μ→ (u :〈S〉)Q

Γ + v :〈S〉 � P
(Γ ′)u[V]→ Q

v �= u v ∈ fv(V) \ dom(Γ ′)

Γ � (v :〈S〉)P (Γ ′+v:〈S〉)u[V]→ Q

Γ � P
μ→ P ′ bv(μ) ∩ fv(Q) = ∅
Γ � P | Q μ→ P ′ | Q

Γ � P
(Γ ′)u[V]→ P ′ Γ � Q u(F)→ Q′

dom(Γ ′) ∩ fv(Q) = ∅ Γ + Γ ′ � V ∈ F � σ

Γ � P | Q τ→ (Γ ′)(P ′ | Q′σ)

Γ � P
μ→ Q bv(μ) ∩ fv(P)=∅
Γ �!P

μ→ Q | !P

plus the symmetric rules for parallel.
This transition relation is similar to that of the π-calculus [19], except for

the environment Γ . This environment is partially supplied by enclosing news
and partially by the global environment. In particular, bound outputs gather an
environment. This means that a communication between a sender and a receiver
also carries information about the schema of the variables in the message. In
practice this is the case: a web service URI is always shipped with its WSDL
document containing, for instance, the protocol that must be used to invoke the
service. In case of PiDuce, this WSDL document also contains the schema of the
service. However our semantics does not require that the schema information is
sent together with the message. For example, a service receiving a message on a
generic channel and forwarding it to another service does not need to know the
schema of the received message. Hence a lazy implementation of schema requests
is plausible. Such an implementation downloads schemas only if they are needed
by the pattern matching algorithm in the communication and the invocation
rules.

In practice, PiDuce processes have free variables that are channels. Such
processes may be typed in environments mapping variables to channel schemas,
let us call them channel environments. A relevant property of the transition
relation is that if Γ � P

τ→ Q and Γ is a channel environment, then the pat-
tern matching in the communication rule – the last but one rule – still uses a

30 A.L. Brown Jr., C. Laneve, and L.G. Meredith

channel environment. This is critical for computing the transition relation with
a polynomial cost.

We conclude this section by asserting the soundness of the static semantics.
Proofs are reported in the Appendix A. The first property states that well-typed
processes always transit to well-typed processes.

Theorem 1. (Subject Reduction) Let Γ � P . Then

1. if Γ � P
(Γ ′)u[V]→ Q then (a) Γ + Γ ′ � Q, and (b) Γ � u : 〈S〉 and Γ + Γ ′ �

V : T with T <:S;

2. if Γ � P
u(F)→ Q then Γ + Env(F) � Q and Γ � u : 〈S〉;

3. if Γ � P
τ→ Q then Γ � Q.

The second soundness property concerns progress, that is, an output on a
channel will be consumed if an input on the same channel is available. In order
to guarantee progress, it is necessary to restrict (well-formed) environments. To
illustrate the problem, consider the following judgment:

u : 〈Int + String〉, v : Int+ String � u[v] | (u(x : Int).0 + u(x : String).0)

The reader may verify that it is derived by our type system, however no inter-
action may occur because the schema of the value v is neither a subschema of
schof(x : Int) or of schof(x : String). In fact this circumstance never occurs
in practice: if a value is sent, the unique variables it may contain are channels.
Under this constraint, progress is always guaranteed. A similar remark may be
made for pattern matching. For generic environments Γ it may be the case that
Γ � V : S and S <: schof(F) but there is no σ such that Γ � V ∈ F � σ.
Consider for instance Γ = u : a[b[]], V = u, and F = a[v : b[]].

Let P
μ→ be an abbreviation for “there exists Q such that P

μ→ Q.

Theorem 2. (Progress) Let Γ be such that, for every u ∈ fv(V), Γ (u) is a
channel schema.

1. If Γ � V : S and S <:T + R then either S <:T or S <:R.
2. If Γ � V :S and S <: schof(F) then there is σ such that Γ � V ∈ F � σ.

3. If Γ � P , P
(Γ ′)u[V]→ and P

u(F)→ then there are F ′ and σ such that P
u(F ′)→

and Γ + Γ ′ � V ∈ F ′ � σ.

5 Conclusions and Ongoing Research

PiDuce is a process language with native XML datatypes and operators for con-
structing and deconstructing XML documents. It has been designed for modeling
applications that are intrinsically concurrent, such as web services orchestrations
and choreographies.

In this paper we have focussed on the theory of PiDuce. In order to re-
duce the computational complexity of the pattern matching algorithm, channel

PiDuce: A Process Calculus with Native XML Datatypes 31

schemas have been constrained to be labelled-determined and to occur in the
tail positions of sequences. These constraints guarantee a polynomial computa-
tional complexity of the subschema relation, a mechanism used in the pattern
matching.

The PiDuce schema language has been designed with a bias towards simplic-
ity. A number of design choices may be changed without affecting the computa-
tional complexity of the subschema relation. A thorough analysis of variants of
PiDuce schemas and their expressive power is left to future investigations.

Most of our current efforts are in prototyping a distributed implementation of
PiDuce. As a matter of facts, PiDuce appears to be a basic computational model
of current orchestration and choreography languages of services in the web, such
as BizTalk [22], WSFL [16], WS-CDL [14], and Bpel4ws [4]. The prototype [9],
is intended to serve as a distributed virtual machine for a these languages A
significant next step will be the extension of PiDuce with a transactional opera-
tor, possibly along the lines of [7,15]. Such an extension will be used to compile
technologies such as BizTalk or Bpel4ws.

Acknowledgments. The authors thank Samuele Carpineti, David Richter, and
Lucian Wischik for the interesting discussions and for having spotted several
errors in previous drafts of this paper.

References

1. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
Peer-to-peer data and Web services integration. In VLDP 2002: Proceedings of the
Twenty-Eighth International Conference on Very Large Data Bases, Hong Kong
SAR, China, pages 1087–1090. Morgan Kaufmann Publishers, 2002.

2. L. Acciai and M. Boreale. XPi: a typed process calculus for XML messaging. In
7th Formal Methods for Object-Based Distributed Systems (FMOODS’05), volume
3535 of Lecture Notes in Computer Science, pages 47 – 66. Springer-Verlag, 2005.

3. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575–631, 1993.

4. T. Andrews and et.al. Business Process Execution Language for Web Services.
Version 1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP AG,
Siebel Systems, 2003.

5. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose
language. In Proceedings of the 8th ACM SIGPLAN International Conference on
Functional Programming (ICFP-03), pages 51–63. ACM Press, 2003.

6. K. Bhargavan, C. Fournet, A. Gordon, and R. Pucella. Tulafale: A security tool
for web services. In Formal Methods for Components and Objects (FMCO 2003),
volume 3188 of LNCS, pages 197–222. Springer, 2004.

7. R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join calculus.
In 13th International Conference on Concurrency Theory (CONCUR’02), volume
2421 of LNCS, pages 321–337. Springer, 2002.

8. S. Carpineti and C. Laneve. A rude contract language for web services. Extended
Abstract at www.cs.unibo.it/BoPi, 2005.

32 A.L. Brown Jr., C. Laneve, and L.G. Meredith

9. S. Carpineti, C. Laneve, and P. Milazzo. BoPi: a distributed machine for experi-
menting web services technologies. In 5th International Conference on Application
of Concurrency to System Design (ACSD’05), pages 202–212. IEEE Press, 2005.

10. G. Castagna, R. D. Nicola, and D. Varacca. Semantic subtyping for the π-calculus.
In 20th IEEE Symposium on Logic in Computer Science (LICS’05). IEEE Com-
puter Society, 2005.

11. P. Gardner and S. Maffeis. Modelling dynamic web data. In 9th International
Workshop on Database Programming Languages (DBPL’03), volume 2921 of Lec-
ture Notes in Computer Science, pages 130 – 146. Springer-Verlag, 2003.

12. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

13. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. In
Proceedings of the International Conference on Functional Programming (ICFP),
pages 11–22. ACM Press, 2000.

14. N. Kavantzas, G. Olsson, J. Mischkinsky, and M. Chapman. Web Services Chore-
ography Description Languages. Oracle Corporation, 2003.

15. C. Laneve and G. Zavattaro. Foundations of web transactions. In Foundations
of Software Science and Computation Structures (FOSSACS’05), volume 3441 of
LNCS, pages 282–298. Springer, 2005.

16. F. Leymann. Web Services Flow Language (wsfl 1.0). Technical report, IBM
Software Group, 2001.

17. D. Lugiez, F. Jacquemard, H. Comon, M. Tommasi, M. Dauchet, R. Gilleron, and
S. Tison. Tree automata techniques and applications. 2002.

18. R. Milner. Functions as processes. Journal of Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

19. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, Sept. 1992.

20. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, 6(5), 1996.

21. D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1996. ECS-LFCS-96-345.

22. S. Woodgate, S. Mohr, and B. Loesgen. Microsoft BizTalk Server 2004 Unleashed.
Sams, 2004.

A Soundness of the Static Semantics

The following basic statements are standard preliminary results for the subject
reduction theorem.

Lemma 1. (Weakening) If Γ � P and u �∈ fv(P) then Γ +u : S � P . Similarly
for Γ � V : S.

Lemma 2. (Substitution)

1. Let Γ+u :S � V :T and Γ � V ′ : S′ such that S′ <:S. Then Γ � V {V ′
/u} :T ′

with T ′ <:T .
2. Let Γ + u : S � P and the free occurrences of u in P are not subjects of

inputs. If Γ � V : T , and T <:S then Γ � P{V /u}.

PiDuce: A Process Calculus with Native XML Datatypes 33

Proof. The demonstration is by induction on the structures of the proofs of
Γ + u : S � V : T and Γ + u : S � P . We only discuss the case when the last
rule is (out). Then P = w[V ′] and the premises of the rule are the judgments
Γ + u : S � w : 〈R〉 and Γ + u : S � V ′ : S′, and the predicate

S′ <:R (1)

We must prove Γ � w[V ′]{V /u}. By Γ + u : S � V ′ : S′, the hypothesis
Γ � V : T , T <:S, and the substitution lemma for values, we obtain

Γ � V ′{V /u} : T ′ (2)
T ′ <:S′ (3)

As regards the subject of the output, there are two subcases: (a) u �= w and
(b) u = w. Case (a) follows by (1), (3) and transitivity of <: . Case (b) implies
S = 〈R〉 and, by Proposition 2, V is a variable and T is a channel schema. Let
V be u′. By the substitution lemma for values

Γ � u′ :〈T ′′〉 (4)

and 〈T ′′〉 <: 〈R〉. Then Γ � w[V ′]{V /u} follows by (2), (4), the relations 〈T ′′〉 <:
〈R〉, (1), (3), the controvariance of 〈·〉 and the transitivity of <: . ��

The soundness of pattern matching is established by the next lemma.

Lemma 3. (Pattern Matching)

1. If Γ � V ∈ F � σ and u /∈ fv(V) then Γ + u : T � V ∈ F � σ.
2. If Γ � V : S and Γ � V ∈ F � σ then, for every u ∈ fv(F), Γ � σ(u) : T

and T <: Env(F)(u).

The preliminaries are in place for the subject reduction theorem.

Theorem 1. (Subject Reduction) Let Γ � P . Then

1. if Γ � P
(Γ ′)u[V]→ Q then Γ + Γ ′ � Q, Γ � u : 〈S〉 and Γ + Γ ′ � V : T with

T <:S;

2. if Γ � P
u(F)→ Q then Γ + Env(F) � Q and Γ � u : 〈S〉;

3. if Γ � P
τ→ Q then Γ � Q.

Proof. The demonstration proceeds by induction on the structure of the proof
of Γ � P

μ→ Q and by cases on the last rule that has been applied. We only
detail the case of the communication rule

Γ � P
(Γ ′)u[V]→ P ′ Γ � Q u(F)→ Q′ dom(Γ ′) ∩ fv(Q)=∅ Γ + Γ ′ � V ∈ F � σ

Γ � P | Q τ→ (Γ ′)(P ′ | Q′σ)

34 A.L. Brown Jr., C. Laneve, and L.G. Meredith

Since Γ � P | Q, the premises of (par) give Γ � P and Γ � Q. By dom(Γ ′) ∩
fv(Q) = ∅ and Lemma 1, Γ+Γ ′ � Q′. By inductive hypotheses on Γ � P

(Γ ′)u[V]→
P ′ and Γ � Q u(F)→ Q′ we obtain:

Γ + Γ ′ � P ′ (5)
Γ + Γ ′ � V : T (6)
Γ � u : S (7)

Γ + Γ ′ + Env(F) � Q′ (8)

By Lemma 3(2) applied to Γ+Γ ′ � V ∈ F � σ and (6) we obtain that, for every
v ∈ fv(F), Γ + Γ ′ � σ(v) : T ′ and T ′ <: Env(F)(v). By the substitution lemma
applied to this last judgment and (8), we derive Γ +Γ ′ � Q′σ. We conclude with
(new): Γ � (Γ ′)(P ′ | Q′σ).

The theorem about progress is discussed below.

Theorem 2. (Progress) Let Γ be such that, for every u ∈ fv(V), Γ (u) is a
channel schema.

1. If Γ � V : S and S <:T + R then either S <:T or S <:R.
2. If Γ � V :S and S <: schof(F) then there is σ such that Γ � V ∈ F � σ.

3. If Γ � P , P
(Γ ′)u[V]→ and P

u(F)→ then there are F ′ and σ such that P
u(F ′)→

and Γ + Γ ′ � V ∈ F ′ � σ.

Proof. The proof of items 1 and 2 are simple and therefore omitted. As regards

item 3, we consider the proof of P
u(F)→ . By Theorem 1(2) applied to Γ � P and

P
u(F)→ we obtain Γ � u : 〈S〉. Then, we consider the proof tree of P

u(F)→ . It
must have an axiom (the leaf of the proof tree) whose shape is∑

i∈I

ui(Fi).Pi
u(F)→

Correspondingly, in the proof tree of Γ � P there is a judgment Γ + Γ ′′ �∑
i∈I ui(Fi).Pi, for some Γ ′′. This judgment must have been proved with an

instance of (inp) that yields S <:
∑

j∈I,uj=u schof(Fi). By a similar argument

applied to P
(Γ ′)u[V]→ , using (out), there are Γ ′′′ and T such that Γ +Γ ′′′ +Γ ′ �

V :T and T <:S. Therefore, by transitivity of <: , T <:
∑

j∈I,uj=u schof(Fi). By
item 1(a), there exists Fk such that T <: schof(Fk). Additionally, by Lemmas 1
and 2, Γ + Γ ′′′ + Γ ′ � V :T may be simplified into Γ + Γ ′ � V :T . We conclude
by item 1(b). ��

Life After BPEL?

W.M.P. van der Aalst1,2, M. Dumas2, A.H.M. ter Hofstede2, N. Russell2,
H.M.W. Verbeek1, and P. Wohed3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

2 Queensland University of Technology, Brisbane, Australia
{m.dumas, a.terhofstede, n.russell}@qut.edu.au

3 Université Henri Poincaré, Nancy, France
petia.wohed@cran.uhp-nancy.fr

Abstract. The Business Process Execution Language for Web Services
(BPEL) has emerged as a standard for specifying and executing pro-
cesses. It is supported by vendors such as IBM and Microsoft and posi-
tioned as the “process language of the Internet”. This paper provides a
critical analysis of BPEL based on the so-called workflow patterns. It also
discusses the need for languages like BPEL. Finally, the paper addresses
several challenges not directly addressed by BPEL but highly relevant
to the support of web services.

1 Introduction

Web services, an emerging paradigm for architecting and implementing business
collaborations within and across organizational boundaries, are currently of in-
terest to both software vendors and scientists. In this paradigm, the functionality
provided by business applications is encapsulated within web services: software
components described at a semantic level, which can be invoked by application
programs or by other services through a stack of Internet standards including
HTTP, XML, SOAP, WSDL and UDDI [3,12]. Once deployed, web services pro-
vided by various organizations can be inter-connected in order to implement
business collaborations, leading to composite web services.

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL for short) has emerged as the de-facto standard for implementing pro-
cesses based on web services [9]. Systems such as Oracle BPEL Process Man-
ager, IBM WebSphere Application Server Enterprise, IBM WebSphere Studio
Application Developer Integration Edition, and Microsoft BizTalk Server 2004
support BPEL, thus illustrating the practical relevance of this language. Al-
though intended as a language for connecting web services, its application is not
limited to cross-organizational processes. It is expected that in the near future
a wide variety of process-aware information systems [13] will be realized using
BPEL. Whilst being a powerful language, BPEL is difficult to use. Its XML
representation is very verbose and only readable to the trained eye. It offers
many constructs and typically things can be implemented in many ways, e.g.,

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 35–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 W.M.P. van der Aalst et al.

using links and the flow construct or using sequences and switches. As a result
only experienced users are able to select the right construct. Several vendors
offer a graphical interface that generates BPEL code. However, the graphical
representations are a direct reflection of the BPEL code and are not intuitive to
end-users. Therefore, BPEL is closer to classical programming languages than
e.g. the more user-friendly workflow management systems available today.

It is interesting to put BPEL in a historical perspective. In the seventies,
people like Skip Ellis [15], Anatol Holt [27], and Michael Zisman [48] were al-
ready working on so-called office information systems, which were driven by
explicit process models. It is interesting to see that the three pioneers in this
area independently used Petri-net variants to model office procedures. In the
seventies, organizations were not connected and only few people inside one or-
ganization were linked through some kind of network. During the seventies and
eighties there was great optimism about the applicability of office information
systems. Unfortunately, few applications succeeded. As a result of these expe-
riences, both the application of this technology and research almost stopped
for a decade. Consequently, hardly any advances were made in the eighties. In
the nineties, once again there was huge interest in these systems. The num-
ber of workflow products developed in the past decade and the many papers
on workflow technology illustrate the revival of office information systems. To-
day workflow management systems are readily available [4,33,37] and workflow
technology is hidden in many applications, e.g., ERP, CRM, and PDM systems.
However, their application is still limited to specific industries such as banking
and insurance. Since 2000 there has been a growing interest in web services.
This resulted in a stack of Internet standards (HTTP, XML, SOAP, WSDL,
and UDDI) which needed to be complemented by a process layer. Several ven-
dors proposed competing languages, e.g., IBM proposed WSFL (Web Services
Flow Language) [32] building on FlowMark/MQSeries and Microsoft proposed
XLANG (Web Services for Business Process Design) [45] building on Biztalk.
BPEL [9] emerged as a compromise between both languages.

The goal of this paper is to critically analyze BPEL. We analyze the language
itself using a patterns-based approach [5]. In addition, we discuss the focus of
BPEL. In our view organizations do not need to agree on a common execution
language. We will argue that there are more important issues to be addressed,
e.g., having a higher-level language to describe both processes and interactions
and being able to monitor running composite web-services/choreographies.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the BPEL language and its focus. In Section 3 we discuss existing work on
workflow patterns and relate this to BPEL. In Section 4 we question the need for
a language like BPEL. Section 5 proposes the real challenges we should focus on
in the context of BPEL: (1) generating and analyzing BPEL code (Section 5.1),
(2) “real” choreography (Section 5.2), and (3) process mining, conformance test-
ing and mediation (Section 5.3). Section 6 concludes the paper by providing some
pointers to the “Petri and Pi” initiative which aims at combining efforts on the-
ory, languages, tools, and applications in the web services domain.

Life After BPEL? 37

2 BPEL

BPEL [9] supports the modeling of two types of processes: executable and ab-
stract processes. An abstract, (not executable) process is a business protocol,
specifying the message exchange behavior between different parties without re-
vealing the internal behavior for any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner, however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number of
activities constituting the process, the partners involved in the process, the mes-
sages exchanged between these partners, and the fault and exception handling
required in cases of errors and exceptions.

A BPEL process itself is a kind of flow-chart, where each element in the pro-
cess is called an activity. An activity is either a primitive or a structured activity.
The set of primitive activities contains: invoke, invoking an operation on a web
service; receive, waiting for a message from an external source; reply, replying
to an external source; wait, pausing for a specified time; assign, copying data
from one place to another; throw, indicating errors in the execution; terminate,
terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for
conditional routing; while, for looping; pick, for race conditions based on timing
or external triggers; flow, for parallel routing; and scope, for grouping activities
to be treated by the same fault-handler. Structured activities can be nested and
combined in arbitrary ways. Within activities executed in parallel the execution
order can further be controlled by the usage of links (sometimes also called
control links, or guarded links), which allows the definition of directed graphs.
The graphs too can be nested but must be acyclic.

As indicated in the introduction, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [32] and Microsoft’s XLANG (Web Services for Business Process
Design) [45] and combines the features of a block structured language inherited
from XLANG with those for directed graphs originating from WSFL. As a result
simple things can be implemented in two ways. For example a sequence can be
realized using the sequence or flow elements (in the latter case links are used
to enforce a particular order on the parallel elements), a choice based on certain
data values can be realized using the switch or flow elements, etc. However, for
certain constructs one is forced to use the block structured part of the language,
e.g., a deferred choice (see next section and [5]) can only be modeled using the
pick construct. For other constructs one is forced to use the links, i.e., the more
graph-oriented part of the language, e.g., two parallel processes with a one-way
synchronization require a link inside a flow. In addition, there are very subtle
restrictions on the use of links: “A link MUST NOT cross the boundary of a
while activity, a serializable scope, an event handler or a compensation handler...
In addition, a link that crosses a fault-handler boundary MUST be outbound,
that is, it MUST have its source activity within the fault handler and its target

38 W.M.P. van der Aalst et al.

activity within a scope that encloses the scope associated with the fault handler.
Finally, a link MUST NOT create a control cycle, that is, the source activity
must not have the target activity as a logically preceding activity, where an
activity A logically precedes an activity B if the initiation of B semantically
requires the completion of A. Therefore, directed graphs created by links are
always acyclic.” (see page 64 in [9]). All of this makes the language complex
for end-users. A detailed or complete description of BPEL is beyond the scope
of this paper. For more details, the reader is referred to [9] and various web
sites such as the web site of the OASIS technical committee on WS-BPEL:
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

3 Patterns-Based Analysis of BPEL

Based on earlier experiences in the workflow domain, we have evaluated BPEL
using the so-called workflow patterns [5]. The initial set of 20 workflow patterns
focused exclusively on control-flow aspects. We will briefly discuss our experi-
ences with BPEL based on these patterns. However, before doing so, we would
like to emphasize that the patterns initiative (www.workflowpatterns.com) is
not limited to control-flow. We have developed a comprehensive set of data pat-
terns [43]. These patterns describe the different ways of dealing with data in
the context of some process-aware information systems [13] (e.g., a workflow
management system like Staffware, an ERP system like SAP R/3, or integra-
tion middleware like WebSphere). In the context of workflow management, we
distinguish four classes of data patterns: data visibility (relating to the extent
and manner in which data elements can be viewed by various components of a
workflow process), data interaction (focusing on the manner in which data is
communicated between active elements within a workflow), data transfer (con-
sidering the means by which the actual transfer of data elements occurs between
workflow components and describe the various mechanisms by which data ele-
ments can be passed across the interface of a workflow component) and data-
based routing (characterizing the manner in which data elements can influence
the operation of other aspects of the workflow, particularly the control flow per-
spective). We have also developed a comprehensive set of resource patterns [42]
that capture the various ways in which resources are represented and utilized
in workflows. These patterns are also grouped into a number of categories: cre-
ation patterns, push patterns, pull patterns, detour patterns, auto-start patterns,
visibility patterns, and multiple resource patterns. Since they are less relevant in
the context of BPEL, we do not elaborate on them in any detail. Other related
work includes Colored Petri Net (CPN) patterns [38], Enterprise Application
Integration (EAI) patterns [26], and Service Interaction (SI) patterns [10].

For a detailed description and discussion of the patterns and more pointers
we refer the reader to www.workflowpatterns.com and [5,43]. As an illustration,
we describe control-flow pattern WCFP16 (Deferred Choice).

WCFP16 Deferred Choice. A point in a process where one among several
alternative branches is chosen based on information which is not necessarily avail-

Life After BPEL? 39

able when this point is reached. This differs from the normal exclusive choice, in
that the choice is not made immediately when the point is reached, but instead
several alternatives are offered, and the choice between them is delayed until the
occurrence of some event.
Example: When a contract is finalized, it has to be reviewed and signed either
by the director or by the operations manager, whoever is available first. Both
the director and the operations manager would be notified that the contract is
to be reviewed: the first one who is available will proceed with the review.

Note that WCFP16 is different from the WCFP 4 (i.e., Exclusive Choice):
The choice is not based on a decision or data but on a choice resolved by the
environment. BPEL clearly supports this pattern. The pick (for race conditions
based on timing or external triggers) directly offers the desired functionality.

Table 1. An analysis of BPEL based on the workflow control-flow patterns [47]

pattern pattern name BPEL

WCFP1 sequence +
WCFP2 parallel split +
WCFP3 synchronization +
WCFP4 exclusive choice +
WCFP5 simple merge +
WCFP6 multi choice +
WCFP7 synchronizing merge +
WCFP8 multi merge –
WCFP9 discriminator –
WCFP10 arbitrary cycles –
WCFP11 implicit termination +
WCFP12 multiple instances no synchronization +
WCFP13 multiple instances design time knowledge +
WCFP14 multiple instances runtime knowledge –
WCFP15 multiple instances without a priori knowledge –
WCFP16 deferred choice +
WCFP17 interleave parallel routing +/–
WCFP18 milestone –
WCFP19 cancel activity +
WCFP20 cancel case +

Tables 1 and 2 summarize the results of our pattern-based evaluation of
BPEL. For each control-flow and data pattern, we checked whether it is possible
to realize the pattern with BPEL. If BPEL directly supports the pattern through
one of its constructs, it is rated +. If the pattern is not directly supported, it
is rated +/-. Any solution that results in “spaghetti-like constructs” or is not
possible at all, is considered as giving no direct support and is rated –. These
ratings should be interpreted with care as indicated in [5,43].

We cannot give a detailed explanation of each pattern or of the evaluation of
BPEL based on this material (for this we refer to [5,43,47]). However, a general
observation that we would like to make is that BPEL is more powerful than

40 W.M.P. van der Aalst et al.

Table 2. An analysis of BPEL based on the workflow data patterns [43]

pattern pattern name BPEL

WDP1 task data +/–
WDP2 block data –
WDP3 scope data +
WDP4 folder data –
WDP5 multiple instance data –
WDP6 case data +
WDP7 workflow data –
WDP8 environment data +
WDP9 data interaction between tasks +
WDP10 data interaction – block task to decomposition –
WDP11 data interaction – decomposition to block task –
WDP12 data interaction – to multiple instance task –
WDP13 data interaction – from multiple instance task –
WDP14 data interaction – case to case +/–
WDP15 data interaction – task to environment – push-oriented +
WDP16 data interaction – environment to task – pull-oriented +
WDP17 data interaction – environment to task – push-oriented +/–
WDP18 data interaction – task to environment – pull-oriented +/–
WDP19 data interaction – case to environment – push-oriented –
WDP20 data interaction – environment to case – pull-oriented –
WDP21 data interaction – environment to case – push-oriented –
WDP22 data interaction – case to environment – pull-oriented –
WDP23 data interaction – workflow to environment – push-oriented –
WDP24 data interaction – environment to workflow – pull-oriented –
WDP25 data interaction – environment to workflow – push-oriented –
WDP26 data interaction – workflow to environment – pull-oriented –
WDP27 data passing by value – incoming +
WDP28 data passing by value – outgoing +
WDP29 data passing – copy in/copy out –
WDP30 data passing by reference – unlocked +
WDP31 data passing by reference – locked +/–
WDP32 data transformation – input –
WDP33 data transformation – output –
WDP34 task precondition – data existence +/–
WDP35 task precondition – data value +
WDP36 task postcondition – data existence –
WDP37 task postcondition – data value –
WDP38 event-based task trigger +
WDP39 data-based task trigger +/–
WDP40 data-based routing +

most traditional process languages. The control-flow part of BPEL inherits al-
most all constructs of the block structured language XLANG and the directed
graphs of WSFL. Therefore, it is no surprise that BPEL indeed supports the
union of patterns supported by XLANG and WSFL. BPEL offers direct support
for the Multi Choice (WCFP6) and Synchronizing Merge (WCFP7), but not for

Life After BPEL? 41

Arbitrary Cycles (WCFP10). This is a consequence of the “dead-path elimina-
tion” principle inherited from WSFL. BPEL, through the concept of serializable
scopes, is one of the few languages to support the Interleaved Parallel Routing
pattern (WCFP17), although with some restrictions. BPEL is also one of the
few languages that fully supports the notion of scope data elements (WDP3). It
provides support for a scope construct which allows related activities, variables
and exception handlers to be logically grouped together. The default binding for
data elements in BPEL is at case level and they are visible to all of the compo-
nents in a process. However, variables can be bound to scopes within a process
definition which may encompass a number of tasks and there is also the ability
for messages to be passed between tasks when control passes from one task to
another.

So the overall observation is that BPEL is an expressive language with some
limitations. However, BPEL is also a very complicated language with many
concepts. This complexity is reflected in the large number of issues that have
been raised within the OASIS WS-BPEL standardization committee (217 as of
June 2005), and which have delayed the release of the WS-BPEL 2.0 standard
specification.

4 Do We Need BPEL?

In the previous section, we concluded that BPEL may be too complex but,
compared to other languages, it is also very powerful. In this section, we do not
focus on the specific qualities of BPEL. Instead we focus on the question: “Do
we need a language like BPEL?”.

Although BPEL can be used as a classical workflow language, its devel-
opment was triggered by the web service paradigm. Therefore, BPEL was in-
tended initially for pure cross-organizational processes in a web services context:
“BPEL4WS provides a language for the formal specification of business processes
and business interaction protocols. By doing so, it extends the Web Services in-
teraction model and enables it to support business transactions.” (see page 1
in [9]). However, it can also be used to support intra-organizational processes.
The authors of BPEL [9] envision two possible uses of the language: “Business
processes can be described in two ways. Executable business processes model
actual behavior of a participant in a business interaction. Business protocols, in
contrast, use process descriptions that specify the mutually visible message ex-
change behavior of each of the parties involved in the protocol, without revealing
their internal behavior. The process descriptions for business protocols are called
abstract processes. BPEL is meant to be used to model the behavior of both ex-
ecutable and abstract processes.” In our view, executable and abstract processes
should not be supported by a single language. Most attention has been devoted
to BPEL as an execution language. In our opinion BPEL failed as a language
for modeling abstract processes. Moreover, a BPEL specification is always given
from the viewpoint of one of the interacting partners. Web Services provided by
partners can be used to perform work in a BPEL business process. Invoking an

42 W.M.P. van der Aalst et al.

BPEL
executable code

partners

(a) Executable business process model

BPEL
non-executable

code

partners

(b) Abstract business process model

Fig. 1. The two ways in which BPEL can be used

operation on such a service is a basic activity that can be specified using BPEL.
Figure 1 shows the two possible uses of BPEL. The figure clearly illustrates that
in both cases the work is seen from the perspective of one of the partners !

Figure 1 raises the question why every partner should standardize on BPEL
as a process language. A partner providing a service may implement its underly-
ing processes in any language without the other partner knowing, i.e., interacting
partners do not need to agree on a language like BPEL. Therefore, the answer
to “Do we need a language like BPEL?” is No! Nevertheless, BPEL has become
the de-facto standard and may in the future facilitate organizations migrating
from one system to another. In addition, BPEL incorporates a number of spe-
cialized features for web services development including direct support for XML
data definition and manipulation, a dynamic binding mechanism based on ex-
plicit manipulation of endpoint references, a declarative mechanism for correlat-
ing incoming messages to process instances (which is essential for asynchronous
communication), etc. As such, BPEL may be seen as an attractive alternative
to conventional (object-oriented) programming languages when it comes to de-
veloping web services.

5 Let Us Focus on the Real Challenges!

Although a language like BPEL is not essential for parties to cooperate, its dom-
inance raises the question of how to facilitate the use of BPEL and to identify the
missing functionality. In other words: we want to address the “real” challenges
in the context of BPEL. This is the reason the title of this paper is “Life af-
ter BPEL?”. In this section we briefly discuss three challenges: “generating and
analyzing BPEL code”, “real choreography”, and “process mining, conformance
testing, and mediation”.

Life After BPEL? 43

5.1 Generating and Analyzing BPEL Code

Since BPEL is increasingly supported by various engines it becomes interesting
to link it to other types of models. This is useful for two reasons: (1) BPEL
more closely resembles a programming language than a modeling language and
(2) BPEL itself does not allow for any form of analysis other than being exe-
cutable (e.g., no verification, performance analysis, etc.). Therefore, there are
two interesting translations: (1) a translation from a “higher-level” notation to
BPEL and (2) a translation from BPEL to a model that allows for analysis.

Until now, attention has focused on the second translation. Several attempts
have been made to capture the behavior of BPEL in a formal way. Some advocate
the use of finite state machines [19,20,21], others process algebras [18,31], and yet
others use abstract state machines [16,17] or Petri nets [39,35,44]. A comparative
summary of mappings from BPEL to formal languages is given in Table 3. The
columns of the table correspond to the following criteria:

– Tech indicates the formalization technique used: FSM for finite state ma-
chines, PA for Process Algebra, ASM for Abstract State Machines and PN
for Petri Nets.

– SA indicates whether the mapping covers structured activities fully (+),
partially (+/–) or not at all (–). It can be seen that this feature is covered
by all proposed mappings.

– CL indicates whether the formalization covers control links. Here a +/- rat-
ing is given for partial mappings of control links (e.g. not covering join con-
ditions which is a feature associated to control links).

– EH indicates whether the formalization covers event and exception handling.
Some references cover fault handling, but do not cover compensation and/or
event handling, in which case, a +/– rating is assigned.

– Comm indicates whether the mapping can be applied to systems of intercon-
nected BPEL processes (+) or if they are restricted to individual processes
(–). In the former case, it is possible to use the mapping to detect potential
mismatches between two or more BPEL processes which are expected to
communicate with each other.

– TAV indicates whether a tool for automatic verification is provided. Some
authors [19,31] have developed and/or used tools for BPEL verification but
only to perform simple syntactic checks such as detecting cyclic dependencies
generated by control links, or unnecessary checks such as deadlock-freeness of
individual BPEL processes.1 In these cases a +/– rating is given. This latter
rating is also given to proposals where formal analysis is possible but requires
significant manual steps. Finally, some authors refer to the possibility of
performing formal verification [18,17], but do not develop any automated
means of doing so. In this case, a – rating is given.

In industry, various tools and mappings are being developed to generate
BPEL code from a graphical representation. Tools such as the IBM WebSphere

1 Individual BPEL processes are deadlock-free by construction [35].

44 W.M.P. van der Aalst et al.

Table 3. A comparative summary of some of the related work on BPEL formalization
and analysis

Tech SA CL EH Comm TAV

[21] FSM + – – + +
[20] FSM + – – + +/–
[19] FSM + – +/– – +/–
[18] PA + – + – –
[31] PA + + – – +/–
[17] ASM + +/– – – –
[35,44] PN + +/– + + +/–
[39] PN + + + – +

Choreographer and the Oracle BPEL Process Manager offer a graphical notation
for BPEL. However, this notation directly reflects the code and there is no
intelligent mapping. This implies that users have to think in terms of BPEL
constructs (e.g., blocks, syntactical restrictions on links, etc.). More interesting
is the work of Stephen White that discusses the mapping of BPMN to BPEL
[46] and the work by Jana Koehler and Rainer Hauser on removing loops in the
context of BPEL [30]. However, none of these publications provides a mapping of
some (graphical) process modeling language onto BPEL: [46] merely presents the
problem and discusses some issues using examples and [30] focuses on only one
piece of the puzzle. This motivated us to develop a mapping from Colored Petri
Nets (CPNs) to BPEL [6]. Clearly, both types of mappings are highly relevant.
However, the quality of these mappings needs to be improved and there should
be more agreement on the precise semantics of BPEL.

5.2 Real Choreography

As indicated in Section 4 interacting partners do not need to agree on a language
like BPEL. However, they need to agree on an overall global process. Currently
terms like choreography and orchestration are used to refer to the problem of
agreeing on a common process. Some people distinguish between choreography
and orchestration, e.g., “In orchestration, there’s someone – the conductor –
who tells everybody in the orchestra what to do and makes sure they all play in
sync. In choreography, every dancer follows a pre-defined plan - everyone inde-
pendently of the others.” We will not make this distinction and simply assume
that choreographies define collaborations between interacting parties, i.e., the co-
ordination process of interconnected web services all partners need to agree on.
Figure 2 illustrates the notion of a choreography.

Within the Web Services Choreography Working Group of the W3C, a work-
ing draft defining version 1.0 of the Web Services Choreography Description Lan-
guage (WS-CDL) has been developed [29]. The scope of WS-CDL is defined as
follows: “Using the Web Services Choreography specification, a contract con-
taining a global definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes, from a global

Life After BPEL? 45

BPEL choreography

Fig. 2. A choreography defines collaborations between interacting parties

viewpoint, the common and complementary observable behavior of all the par-
ties involved. Each party can then use the global definition to build and test
solutions that conform to it. The global specification is in turn realized by a
combination of the resulting local systems, on the basis of appropriate infras-
tructure support. The advantage of a contract based on a global viewpoint as
opposed to any one endpoint is that it separates the overall global process be-
ing followed by an individual business or system within a domain of control (an
endpoint) from the definition of the sequences in which each business or system
exchanges information with others. This means that, as long as the observable
sequences do not change, the rules and logic followed within a domain of control
(endpoint) can change at will and interoperability is therefore guaranteed.” [29].
This definition is consistent with the critique in Section 4 and Figure 2. Unfor-
tunately, like most standards in the web services stack, the language is verbose
and complex. Somehow the essence as shown in Figure 2 is lost. Moreover, the
language again defines concepts such as “sequence”, “choice”, and “parallel” in
some ad-hoc notation with unclear semantics. This suggests that some parts of
the language are an alternative to BPEL while they are not. The main problem
is that WS-CDL is not declarative. A choreography should allow for the spec-
ification of the “what” without having to state the “how”. This is similar to
the difference between a program and its specification. One can specify what an
ordered sequence is without specifying an algorithm to do so!

In [1] we describe a more theoretical approach to the problem. The paper
describes the P2P (Public-To-Private) approach which addresses one of the most
notorious problems in this domain: How to design an inter-organizational work-
flow such that there is local autonomy without compromising the consistency of
the overall process. The approach uses a notion of inheritance and consists of
three steps: (1) create a common understanding of the inter-organizational work-
flow by specifying the shared public workflow, (2) partition the public workflow
over the organizational entities involved, and (3) for each organizational entity:
create a private workflow which is a subclass of the relevant part of the pub-

46 W.M.P. van der Aalst et al.

lic workflow. In [1] it is shown that this approach avoids typical anomalies in
business-to-business collaboration (e.g., deadlocks and livelocks) and yields an
inter-organizational workflow which is guaranteed to realize the behavior speci-
fied in the public workflow. The P2P approach relies heavily on the use of Petri
nets and a formal notion of inheritance. Nevertheless, it would be interesting
to adopt these ideas in the context of languages such as WS-CDL and BPEL.
Another, more declarative, approach could be based on temporal logic [34,40].
Languages such as Linear Temporal Logic (LTL) allow for the definition and
verification of desirable behavior [23,24,25].

5.3 Process Mining, Conformance Testing, and Mediation

Assuming that there is a running process (possibly implemented using BPEL)
and a choreography specification (possibly specified in WS-CDL), it is interesting
to check whether each partner/web-service is well behaved. Note that partners
have no control over each other’s services. Moreover, partners will not expose
the internal structure and state of their services. The closed and uncontrollable
nature of web-services may generate a variety of problems. Fortunately, process
mining [7] and conformance testing [2] techniques may be of assistance. For both
we need to assume the existence of an event log [7]. For example, one may log
the messages exchanged between all parties involved in a choreography (either
distributed or through some coordinator). Using this event log, we may use
process mining techniques to reconstruct part of the process that actually took
place. This way one can “discover” the actual choreography. However, in an ideal
situation this choreography is given in terms of a predefined process model. The
coexistence of event logs and process models raises the question of conformance.
This question may be viewed from two angles. First of all, the model may be
assumed to be “correct” because it represents the way partners should work,
and the question is whether the events in the log are consistent with the process
model. For example, the log may contain “incorrect” event sequences not possible
according to the model. This may indicate violations of choreography all parties
previously agreed upon. Second, the event log may be assumed to be “correct”
because it is what really happened. In the latter case the question is whether
the choreography that has been agreed upon is no longer valid and should be
modified. To actually measure conformance, we have developed a tool called
Conformance Checker. This tool has been developed in the context of the ProM
framework2. The ProM framework offers a wide range of tools related to process
mining, i.e., extracting information from event logs [7]. At this point in time we
are investigating the addition of plug-ins specific for the mining of web services.
Some preliminary investigations have been reported in [14,22].

Another prominent issue, complementary to conformance, is that of media-
tion. When it is found (either a priori through model comparison or a posteriori
through mining), that the conversation protocol that a given service provides
does not match the conversation protocol that it is expected to provide, there

2 Both documentation and software can be downloaded from www.processmining.org.

Life After BPEL? 47

are basically two options: (1) modify the service to suit the new expected conver-
sation protocol; or (2) mediate between the conversation protocol of the service
as it is, and the conversation protocol as it should be. The former option is usu-
ally not suitable because the same service may interact with other services that
rely on the conversation protocol that the service currently provides. In other
words, the same service may participate in different collaborations such that in
each of these collaborations a different conversation protocol is expected from it.
Thus, mediation between the provided conversation protocol of a service, and the
various conversation protocols that are expected from it (i.e., the required con-
versation protocols), is generally unavoidable. This issue has been widely studied
in the area of software components where it is known as adaptation. However,
most of the work on component adaptation focuses on structural mediation (i.e.,
mediating different structural interfaces and specifically, between different data
types). Since services are expected to participate in collaborations driven by pro-
cess models, behavioral mediation is a prominent requirement. Some work has
been done in this area both in the components and services community [28,11,8],
but there is still no overarching framework and supporting tools for behavioral
service mediation are missing.

6 Petri and Pi

In discussions, Petri nets [41] and Pi calculus [36] are often mentioned as two
possible formal languages that could serve as a basis for languages such as BPEL
and WS-CDL. Some vendors claim that their systems are based on Petri nets or
Pi calculus and other vendors suggest that they do not need a formal language
to base their system on. In essence there are three “camps” in these discussions:
the “Petri net camp”, the “Pi calculus” (or process algebra) camp, and the
“Practitioners camp” (also known as the “No formalism camp”). This was the
reason for starting the “Petri nets and Pi calculus for business processes” working
group (http://www.smartgroups.com/groups/petri and pi) in June 2004. Its
goal is to have discussions and meetings on the formal foundations of BPM in
general and languages like BPEL in particular. The working group was initiated
by Robin Milner, Wil van der Aalst, Rob van Glabbeek, Roger Whitehead, and
Keith Harrison-Broninski. The first meeting of this working group took place in
June 2005 at Eindhoven University of Technology. Interesting elements of the
first meeting were the identification of meaningful patterns and the sharing of
solutions of common examples using languages such as BPEL, WS-CDL, colored
Petri nets, Pi calculus, YAWL, statecharts, CCS, SOS, RAD, etc.

Most of the topics discussed in this paper are relevant to the Petri and Pi
working group. In fact, this paper was inspired by the Eindhoven workshop of
this group. Interested readers are invited to join this working group by sending
an e-mail to petri and pi-owner@smartgroups.com or one of its members with
the request to become a member.

48 W.M.P. van der Aalst et al.

References

1. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to agree
to disagree without loosing control? Information Technology and Management
Journal, 4(4):345–389, 2003.

2. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis and Conformance Testing. Requirements Engineering Journal, 2005
(to appear).

3. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Composi-
tion Languages: Old Wine in New Bottles? In Proceeding of the 29th EUROMICRO
Conference: New Waves in System Architecture, pages 298–305. IEEE Computer
Society, Los Alamitos, CA, 2003.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

6. W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS.
BETA Working Paper Series, Eindhoven University of Technology, Eindhoven,
2005.

7. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

8. M. Altenhofen, E. Boerger, and J. Lemcke. An execution semantics for mediation
patterns. In Proceedings of the BPM2005 Workshops: Workshop on Choreography
and Orchestration for Business Process Managament, Nancy, France, September
2005.

9. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corporation,
2003.

10. A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns: To-
wards a Reference Framework for Service-based Business Process Interconnection.
QUT Technical report, FIT-TR-2005-012, Queensland University of Technology,
Brisbane, 2005. (To appear in BPM 2005.)

11. B. Benatallah, F. Casati, D. Grigori, H. Motahari-Nezhad, and F. Toumani. Devel-
oping Adapters for Web Services Integration. In Proceedings of the International
Conference on Advanced Information Systems Engineering (CAiSE), Porto, Por-
tugal, June 2005. Springer Verlag.

12. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

13. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

14. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Technical
Report TUV-1841-2004-16, Information Systems Institute, Vienna University of
Technology, Wien, Austria, 2004.

15. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

Life After BPEL? 49

16. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In Proc. 12th International Workshop on Abstract State Machines, pages
131–151, Paris, France, 2005.

17. R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and validation of the
business process execution language for web services. In Abstract State Machines
2004, volume 3052 of Lecture Notes in Computer Science, pages 79–94, Lutherstadt
Wittenberg, Germany, May 2004. Springer-Verlag, Berlin.

18. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd
international conference on Service oriented computing, pages 242–251, New York,
NY, USA, 2004. ACM Press.

19. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-Web ’04), volume 3182 of Lecture
Notes in Computer Science, pages 79–94, Zaragoza, Spain, August 2004. Springer-
Verlag, Berlin.

20. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Composition. In Proceedings of 18th IEEE International Conference on Au-
tomated Software Engineering (ASE), pages 152–161, Montreal, Canada, October
2003.

21. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In
International World Wide Web Conference: Proceedings of the 13th international
conference on World Wide Web, pages 621–630, New York, NY, USA, 2004. ACM
Press.

22. W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional Be-
havior from Event-Based Log. In On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 3–18, 2004.

23. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), pages 412–416. IEEE
Computer Society Press, Providence, 2001.

24. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering
(ASE’01), pages 135–143. IEEE Computer Society Press, Providence, 2001.

25. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes
in Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

26. G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading, MA, 2003.

27. A. W. Holt. Coordination Technology and Petri Nets. In Advances in Petri Nets
1985, volume 222 of Lecture Notes in Computer Science, pages 278–296. Springer-
Verlag, Berlin, 1985.

28. H.W. Schmidt and R.H. Reussner. Generating adapters for concurrent component
protocol synchronisation. In Proceedings of the Fifth IFIP International Confer-
ence on Formal Methods for Open Object-Based Distributed Systems (FMOODS),
Enschede, The Netherlands, March 2002. Kluwer Academic Publishers.

29. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04,
2004.

50 W.M.P. van der Aalst et al.

30. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows A Solu-
tion Based on Continuations. In On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 121–138, 2004.

31. M. Koshkina and F. van Breugel. Verification of Business Processes for Web Ser-
vices. Technical report CS-2003-11, York University, October 2003. Available from:
http://www.cs.yorku.ca/techreports/2003/.

32. F. Leymann. Web Services Flow Language, Version 1.0, 2001.
33. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.

Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.
34. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, New York, 1991.
35. A. Martens. Analyzing Web Service Based Business Processes. In Proceedings of the

8th International Conference on Fundamental Approaches to Software Engineering
(FASE 2005), volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer-Verlag, Berlin, 2005.

36. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

37. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

38. N.A.Mulyar and W.M.P. vander Aalst. Patterns in Colored PetriNets. BETA Work-
ing Paper Series, WP 139, Eindhoven University of Technology, Eindhoven, 2005.

39. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
BPM Center Report BPM-05-13, BPMcenter.org, 2005.

40. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46–57. IEEE
Computer Society Press, Providence, 1977.

41. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

42. N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In Pro-
ceedings of the 17th Conference on Advanced Information Systems Engineering
(CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages 216–232.
Springer-Verlag, Berlin, 2005.

43. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work-
flow Data Patterns: Identification, Representation and Tool Support. Accepted
for publication in Proceedings of the 24th International Conference on Conceptual
Modeling (ER’2005), Springer-Verlag, Berlin, 2005.

44. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

45. S. Thatte. XLANG Web Services for Business Process Design, 2001.
46. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, March

2005.
47. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis

of Web Services Composition Languages: The Case of BPEL4WS. In 22nd Inter-
national Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture
Notes in Computer Science, pages 200–215. Springer-Verlag, Berlin, 2003.

48. M.D. Zisman. Representation, Specification and Automation of Office Procedures.
PhD thesis, University of Pennsylvania, Warton School of Business, 1977.

On Moments of Discrete Phase-Type

Distributions

Tuǧrul Dayar

Department of Computer Engineering, Bilkent University,
TR-06800 Bilkent, Ankara, Turkey

tugrul@cs.bilkent.edu.tr

Abstract. Recently, an efficient and stable method to compute mo-
ments of first passage times from a subset of states classified as safe to
the other states in ergodic discrete-time Markov chains (DTMCs) has
been proposed. This paper shows that the same method can be used
to compute moments of discrete phase-type (DPH) distributions, ana-
lyzes its complexity on various acyclic DPH (ADPH) distributions, and
presents results on a set of DPH distributions arising in a test suite of
DTMCs.

1 Introduction

Discrete and continuous phase-type (PH) distributions have been introduced by
Neuts [12,13] more than two decades ago. Although continuous PH distributions
have been extensively used over the years in stochastic modeling, discrete PH
(DPH) distributions have not been as widely studied, and there seems to be
room for research to understand their merits and properties (see, for instance,
[1,2,16]). This paper aims at rectifying the situation from a moment computation
point of view.

Recently, an efficient and stable method to compute moments of first pas-
sage times from a subset of states classified as safe to the other states in ergodic
discrete-time Markov chains (DTMCs) has been proposed in [4]. Although a
recurrence for the moment vector of first passage times involving a common co-
efficient matrix and the previous moment vector on the right-hand side for the
continuous-time case had been known for some time (see, for instance, [9]), a
similar recurrence had not been given for the discrete-time case. The difficulty
in the discrete-time case lied in the fact that equations involved factorial mo-
ments rather than moments and there was no obvious way to go from factorial
moments to moments. The method proposed in [4] reduced the computation of
the first k moment vectors of first passage times from a subset of states to the
solution of k linear systems with a common coefficient matrix and right-hand
sides governed by a novel recurrence involving the binomial coefficients and the
first (k−1) moment vectors. The efficiency and stability of the proposed method
rest respectively on the smaller linear systems solved with a common coefficient
matrix and the particular implementation of the Grassmann-Taksar-Heyman
(GTH) method [8] used in factorizing the coefficient matrix.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 51–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

52 T. Dayar

Since the first passage time from a given set of states to the other states in
an ergodic DTMC is also the absorption time in the other states, it is possible
to use the method proposed in [4] to compute moments of DPH distributions.
It is our belief that moment matching techniques will benefit from the ability
to compute higher moments of DPH distributions without having to resort to
generating functions, transform techniques, or factorial moments. Therefore, in
this paper we investigate the effects of using the proposed method of computing
moments on various DPH distributions by concentrating on complexity issues.

The organization of the paper is as follows. In section 2, we provide a back-
ground on DPH distributions and introduce the moment computation method.
In section 3, we give two examples of nonacyclic DPH distributions that have
been used in stochastic modeling. In section 4, we investigate the computation
of moments of acyclic DPH distributions and give an example. In section 5, we
present results on moments of DPH distributions obtained from a test suite of
DTMCs, and in section 6 we conclude.

2 Discrete Phase-Type Distributions

Let H be the random variable associated with the time to absorption in a finite
DTMC, P , of order (nS + 1) with nS transient states and one absorbing state
conditioned on an initial probability (row) vector, τ . Then fH(h) = Pr{H =
h} is said to be the probability mass function of a discrete phase-type (DPH)
distribution of order nS .

Let us assume that the transient states are those in S = {0, 1, . . . , nS − 1}
and the absorbing state is nS ; otherwise, the states can always be renumbered.
In matrix form, we have

P =
(
PS,S pS
0T 1

)
, (1)

where pS = (I−PS,S)e and e is the column vector of ones of appropriate length.
Now, let τS = (τ0, τ1, . . . , τnS−1), and note that PS,S and τS uniquely determine
pS and τnS , respectively. The pair (τS , PS,S) is called the representation of the
DPH random variable H . When PS,S (can be symmetrically permuted to or) is
in upper-triangular form, the DPH distribution is said to be acyclic [1].

In this paper, for brevity, we consider only those DPH distributions for which
τnS = 0 (implying that an absorption time of zero in (1) is not possible), and
therefore we have

fH(h) = Pr{H = h} = τSP h−1
S,S pS for h ≥ 1. (2)

When a DPH distribution (τS , PS,S) is used to model a stochastic process
which upon absorption starts anew according to the initial probability distribu-
tion τS , we say we have a DPH renewal process with interrenewal times that are
DPH distributed.

On Moments of Discrete Phase-Type Distributions 53

Noticing that H with the probability mass function in (2) is also the random
variable associated with time of first passage from the transient states in S to
the absorbing state nS as in [4], its (i+ 1)st moment is given by

E[Hi+1] =
∞∑

h=0

hi+1fH(h) = τSm(i+1) for i ≥ 0. (3)

Here, m(i+1) is the (i + 1)st moment vector of time to absorption and satisfies
the recurrence

(I − PS,S)m(i+1) =
i∑

j=0

(−1)i−j

(
i+ 1
j

)
m(j) for i ≥ 0 with m(0) = e (4)

in which (
i+ 1
j

)
=

(i+ 1)!
j!(i+ 1− j)!

denotes the binomial coefficient in Pascal’s triangle that is read “(i+ 1) choose
j” [7]. The proof of this result appears in the appendix of [4] and follows from
various identities involving binomial coefficients and Stirling numbers [7]. In
passing, we remark that the coefficient matrix, (I − PS,S), of the linear system
in (4) is nonsingular when P is ergodic (due to the irreducibility assumption in
its definition).

Using the identity (
i+ 1
j

)
=

(
i

j − 1

)
+

(
i
j

)
of binomial coefficients [7], the following algorithm to compute the moment vec-
tors, m(i+1), i ≥ 0, has been given in [4]. Here, we have added one more line to
compute the moments, E[Hi+1], i ≥ 0, as well. When a DPH distribution is used
to model a stochastic process which upon absorption starts anew according to
the given initial probability distribution, Algorithm 1 computes moment vectors
and moments associated with DPH distributed interrenewal times.

Algorithm 1
Computing the kth moment vector and moment of a DPH distribution.

LU factorize (I − PS,S) using GTH;
a0 = 1; a1 = −1; m(0) = e;
Solve for m(1) in LUm(1) = m(0);
For i = 1 up to k − 1 {

ai+1 = −1;
For j = i down to 1
aj = aj−1 − aj ;

a0 = −a0;
Solve for m(i+1) in LUm(i+1) =

∑i
j=0 ajm

(j);
E[Hi+1] = τSm(i+1);

}

54 T. Dayar

The order, nS , of the DPH distribution is mostly small, in the order of tens,
thereby suggesting the use of a direct method for the solution of (4). The GTH
implementation proposed in [4] for the factorization (I−PS,S) = LU at the out-
set of Algorithm 1 executes on a nonhomogeneous, but consistent linear system
with a singular coefficient matrix of order (nS + 1) in the form of a modified
Gaussian elimination. Other than ensuring stability, this implementation turns
out to be very efficient since it can be coded completely in row-wise sparse format
with delayed row updates [15].

Now, let nzLU denote the sum of the nonzeros in the strictly lower-triangular
part of L (since ones along its diagonal are not stored) and U . Also let k denote
the order of the highest moment vector to be computed. Then, in addition to the
time to sparse factorize (I−PS,S) at the outset, which is cubic in nS in the worst
case when the matrix is full, Algorithm 1 takes (k− 1)[2nzLU +ns(k+ 3)+ k/2]
floating-point arithmetic operations for a total of (k − 1) passes. In terms of
space complexity, it requires (nzLU + (k + 2)nS + (k + 1)) floating-point and
(nzLU + nS + 1) integer storage space. See [4] for details. Here, we have also
accounted for the time and space required by the computation of each moment
as in the last line of the outer for-loop of Algorithm 1.

In the next section, we give two examples of nonacyclic DPH distributions
used as renewal processes.

3 Examples

We provide two DPH distributions that have been used in traffic modeling.

Example 1. The interrupted Bernoulli process (IBP). When the arrival of pack-

τ1 = 1

10 2

 Absorbing state

Idle Busy

0,1
p

p
1,0

p

p

p

1,1

1,2

0,0

Fig. 1. The IBP interrenewal distribution

ets to a node in a communication network is of bursty nature, one may use the
interrupted Bernoulli process (IBP) to model the arrival of packets. This form
of arrivals is inspired by the fact that, most of the time packets arrive to a node
from several external sources and they happen to be grouped in bursts.

The IBP is a DPH renewal process which is governed by busy and idle periods.
Time is thought of as being slotted and state changes may only occur at points

On Moments of Discrete Phase-Type Distributions 55

that are multiples of a slot duration. The IBP interrenewal distribution in Figure
1 is represented by the DTMC

PIBP =

⎛⎝p0,0 p0,1 0
p1,0 p1,1 p1,2

0 0 1

⎞⎠ , (5)

whose (2×2) principal submatrix is nonacyclic, and the initial probability vector
τS = (0, 1). After an absorption, the DPH renewal process starts anew so as to
remain in the busy period where renewals (that is, arrivals) can take place.

It is also possible to view the transition probabilities in (5) as given by

p0,1 = β, p1,0 = α, and p1,2 = (1− α)λ,

where λ is the probability of a renewal in the particular slot within a busy
period [11]. Note that when λ = 1, the self-loop in state 1 does not exist. This is
understandable since then at each slot in the busy period a renewal takes place.

Using the (2× 2) principal submatrix of PIBP , we obtain

I − PS,S =
(

1− p0,0 −p0,1

−p1,0 1− p1,1

)
which has the L and U factors

L =
(

1 0
−p1,0/(1− p0,0) 1

)
, U =

(
1− p0,0 −p0,1

0 1− p1,1 + p0,1p1,0/(1− p0,0)

)
.

Then the remaining steps of Algorithm 1 can be executed to compute moments
of the IBP interrenewal distribution.

Example 2. Markov modulated Bernoulli process (MMBP). Consider a slightly
different version of the Markov modulated Bernoulli process (MMBP) that has
been proposed to emulate self-similarity in [14] with initial probability vector
τS = (0, 0, . . . , 0, 1) and absorbing DTMC

PMMBP =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑
nS−1 0 · · · 0 (q/a)nS−1 0
0

∑
nS−2 · · · 0 (q/a)nS−2 0

...
...

. . .
...

...
...

0 0 · · · ∑
1 (q/a) 0

1/anS−1 1/anS−2 · · · 1/a (1− λ)∑
0 λ

∑
0

0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where 0 < q ≤ a, 1 < a, 0 < λ ≤ 1,
∑

0 = 1−∑nS−1
j=0 1/aj (hence, 0 <

∑
0 <

1), and
∑

i = 1 − (q/a)i for 1 ≤ i ≤ nS − 1. Observe that IBP is a special case
of MMBP in which nS = 2, α = 1/a, and β = q/a.

56 T. Dayar

Using the nonacyclic (nS × nS) principal submatrix of PMMBP in (6), we
obtain

I − PS,S =

⎛⎜⎜⎜⎜⎜⎝
1−∑

nS−1 0 · · · 0 −(q/a)nS−1

0 1−∑
nS−2 · · · 0 −(q/a)nS−2

...
...

. . .
...

...
0 0 · · · 1−∑

1 −(q/a)
−1/anS−1 −1/anS−2 · · · −1/a 1− (1 − λ)∑

0

⎞⎟⎟⎟⎟⎟⎠
which has the L and U factors

L =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−1

anS−1(1−∑
nS−1)

−1
anS−2(1−∑

nS−2)
· · · −1

a(1−∑
1) 1

⎞⎟⎟⎟⎟⎟⎠ ,

U =

⎛⎜⎜⎜⎜⎜⎝
1−∑

nS−1 0 · · · 0 u0,nS−1

0 1−∑
nS−2 · · · 0 u1,nS−1

...
...

. . .
...

...
0 0 · · · 1−∑

1 unS−2,nS−1

0 0 · · · 0 unS−1,nS−1

⎞⎟⎟⎟⎟⎟⎠ ,

where

ui,nS−1 = −(q/a)i −
i−1∑
j=0

uj,nS−1/(anS−j(1−
∑

nS−j

)) for 0 ≤ i ≤ nS − 2,

unS−1,nS−1 = 1− (1− λ)
∑
0

−
nS−2∑
j=0

uj,nS−1/(anS−j(1−
∑

nS−j

)).

Then the remaining steps of Algorithm 1 can be executed to compute the mo-
ments of the MMBP interrenewal distribution.

See, for instance, section 2.5 of [10] for other examples, and observe that
there is a lot of sparsity in PS,S as in Example 2. In fact, no fill-in (i.e., nonzeros
in the L and U factors replacing zeros in the coefficient matrix) is introduced
during the LU factorization of (I − PS,S) since it is a matrix with arrowhead
nonzero structure.

Although we were able to give explicitly the LU factorization of (I−PS,S) for
the examples considered in this section, in general this cannot be done, and the
factorization needs to be performed numerically using the GTH implementation
discussed in [4]. However, for the class of DPH distributions discussed in the
next section, the factorization is available explicitly.

On Moments of Discrete Phase-Type Distributions 57

4 Acyclic Discrete Phase-Type Distributions

We consider three types of acyclic discrete phase-type (ADPH) distributions. It
is our assumption that the matrix PS,S in the ADPH representation is already
in upper-triangular form. This implies that there is no need to LU factorize
(I−PS,S) at the outset of Algorithm 1. In other words, L = I and U = (I−PS,S).

Now, let us define

b(i+1) =
i∑

j=0

ajm
(j) for i ≥ 0 with m(0) = e.

In the general acyclic case, when (I − PS,S) is upper-triangular, the last to
next step in the outer for-loop of Algorithm 1 can be rewritten as

m
(i+1)
k = (b(i+1)

k +
nS−1∑

k′=k+1

pk,k′m
(i+1)
k′)/(1− pk,k) for k = nS − 1 down to 0.

When (I − PS,S) is upper-bidiagonal, the same step can be rewritten as

m(i+1)
nS = b

(i+1)
nS−1/(1− pnS−1,nS−1),

m
(i+1)
k = (b(i+1)

k + pk,k+1m
(i+1)
k+1)/(1− pk,k) for k = nS − 2 down to 0.

Note that this is the case when the ADPH distribution is discrete Erlang (DE)
with nS phases. When S is a diagonal matrix, the last step reduces to

m
(i+1)
k = b

(i+1)
k /(1− pk,k) for 0 ≤ k ≤ nS − 1.

Then, for a total of (k−1) passes Algorithm 1 takes (k−1)[2nzU +ns(k+3)+k/2]
floating-point arithmetic operations, and requires (nzU + (k + 2)(nS + 1) − 1)
floating-point and (nzU +nS+1) integer storage space for ADPH distributions of
order nS . Observe that when (I−PS,S) is upper-triangular, nzU can be anywhere
between nS and nS(nS + 1)/2.

Next is an example of an acyclic DPH renewal process.

Example 3. The discrete Erlang process (DEP). Discrete Erlang process (DEP)
is a DPH renewal process with l(= nS) phases and the interrenewal distribution
in Figure 2. It is represented by the initial probability vector τS = (1, 0, . . . , 0)
and the order (l + 1) DTMC

PDEP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− a a
1− a a

1− a . . .
. . . a

1− a a
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

58 T. Dayar

10

τ0 = 1

Phase 0 Phase 1

a a a

Phase

l

a1- a1- a1-

l - 1

1l -. . .

 Absorbing state
a

Fig. 2. The DEP interrenewal distribution

whose (l × l) principal submatrix is acyclic; DEP reduces to the geometric dis-
tribution with parameter a when l = 1. In the general case, it can be conceived
as the convolution of l independent geometric distributions with parameter a.

Using the acyclic (nS × nS) principal submatrix of PDEP in (7), we obtain
the upper-bidiagonal matrix

I − PS,S =

⎛⎜⎜⎜⎜⎜⎝
a −a

a −a
a

. . .

. . . −a
a

⎞⎟⎟⎟⎟⎟⎠ .

Then the moments of the DEP interrenewal distribution can be computed by
following Algorithm 1 after its first step.

5 Numerical Results

In this section, we present results that illustrate the computation of moments
of DPH distributions. We have implemented the proposed method in C using
double-precision IEEE floating-point arithmetic [3], performed and timed all
experiments under Cygwin 1.5.15-1 on a Pentium IV 3.4 GHz processor and
a 1 GB main memory running Windows XP. In each problem, the degree of
coupling, ‖pS‖∞, and the average degree of coupling, ‖pS‖1/nS (see (1)), are
reported so as to indicate the inherent difficulty associated with computing the
moments accurately [4].

We have experimented with two groups of problems. The first group con-
sists of order 10, 20, 30, and 40 versions of MMBP (Example 2) and order 101,
102, 103, 104 versions of DEP (Example 3), and the particular initial distribu-
tions. The second group consists of order 101, 102, 103, 104 principal submatrices
of the test suite of twelve DTMCs [6] that have been used in [5] and uniform
initial distributions. In all problems, we have computed the first ten moments
(whenever possible) in double precision floating-point arithmetic, but report re-
sults regarding only the first, second, fifth, and tenth moments in order to save
space. The computation of binomial coefficients does not pose problems since

On Moments of Discrete Phase-Type Distributions 59

the largest entry in the tenth row of Pascal’s triangle, 10 choose 5, is equal to,
252. Note that 10308 is about the size of the largest positive number in double
precision floating-point arithmetic, and any attempt to compute moment vectors
with larger values than this will be futile. When we detect overflow in any of
the moment vectors, we indicate it with n/a in the tables and do not compute
further moment vectors.

All times are reported in seconds of CPU time. In the tables, Ts denotes
the time to generate in core the absorbing DTMC in row-wise sparse format, to
transform the rows corresponding to S of the sparse DTMC so that elements
of those rows are ordered according to column indices when the matrix is input
from a file, and to determine the number of nonzeros in PS,S ; TLU denotes the
time to perform symbolic LU analysis on (I − PS,S) and its sparse factorization
(step 1 of Algorithm 1) as discussed in section 2; and Tm denotes the time
to compute the first ten moments using Algorithm 1. Hence, the sum of TLU

and Tm is the time it takes Algorithm 1 to execute. In order to improve the
confidence in the timing results, we have timed each experiment three times and
have reported the average. In the tables, nzS denotes the number of nonzeros
in (I − PS,S), which can be different than that in PS,S due to zero diagonal
elements. We have reported nzS and nzLU so that the amount of fill-in resulting
from the LU factorization can be observed.

In PMMBP and PDEP , pS has a single nonzero element such that ‖pS‖∞ =
λ

∑
0 and ‖pS‖∞ = a (see (6) and (7)), respectively. Hence, ‖pS‖1 = ‖pS‖∞ and

for these two examples we only report ‖pS‖∞. Furthermore, since (I − PS,S)
has symmetric nonzero structure in both examples and does not yield any fill-
in during the factorization, it also turns out to be the case that nzS = nzLU .
The CPU timings (Ts,TLU ,Tm) in order 10, 20, 30, 40 versions of MMBP are
all zero. The CPU timings in order 101, 102, 103 versions of DEP are all zero
and the CPU timings in order 104 version of DEP are (Ts,TLU ,Tm) = (0, 3, 0).
Therefore, these timings do not appear in Tables 1 and 2.

Observe that it is more the average degree of coupling than the degree of
coupling which determines the value of the first moment in MMBP with q = 1.0
and DEP, and hence their other moments. There is a high degree of variability
in the MMBP interrenewal distribution even for small orders and that moments
exceeding 10100 appear for order 30 or larger. On the other hand, the DEP
interrenewal distribution approaches the deterministic distribution as the order
increases. For a = 1.0, PS,S has only an upper-diagonal resulting in immediate
determinism. Recall that it takes only 3 seconds to find the first ten moments
of the DEP interrenewal distribution of order 104 and that this time is spent in
the first step of Algorithm 1.

Regarding the twelve test matrices used in the set of experiments reported
in Table 5, we remark that they arise in six applications, namely 2D, pushout,
mutex, ncd, qn, telecom, and that (easy, hard, medium), (mutex, mutex alt1,
mutex alt2), and (ncd, ncd alt1, ncd alt2) are respectively three different ver-
sions of the pushout, mutex, and ncd problems. Furthermore, all test matrices
except those of pushout are uniformized continuous-time MCs. With this second

60 T. Dayar

Table 1. Moments of the MMBP interrenewal distribution

a q λ (n, nz) nS (nzS, nzLU) ‖pS‖∞ E[H1] E[H2] E[H5] E[H10]

2.0 1.0 0.1 (11,30) 10 (28,28) 2.0e-4 5.1e4 5.3e9 4.3e25 4.6e53
0.5 9.8e-4 1.0e4 2.1e8 1.4e22 5.0e46
1.0 (11,29) 2.0e-3 5.1e3 5.3e7 4.6e20 5.4e43

2.0 0.1 (11,21) 2.0e-4 1.0e4 2.1e8 1.3e22 4.6e46
0.5 9.8e-4 2.0e3 8.4e6 4.3e18 4.7e39
1.0 (11,20) 2.0e-3 1.0e3 2.1e6 1.3e17 4.6e36

1.0 0.1 (21,60) 20 (58,58) 1.9e-7 1.0e8 2.2e16 1.5e42 5.9e86
0.5 9.5e-7 2.1e7 8.8e14 4.9e38 6.1e79
1.0 (21,59) 1.9e-6 1.0e7 2.2e14 1.6e37 6.1e76

2.0 0.1 (21,41) 1.9e-7 1.0e7 2.2e14 1.5e37 5.8e76
0.5 9.5e-7 2.1e6 8.8e12 4.9e33 6.0e69
1.0 (21,40) 1.9e-6 1.0e6 2.2e12 1.5e32 5.8e66

1.0 0.1 (31,90) 30 (88,88) 1.9e-10 1.6e11 5.2e22 1.3e58 4.3e118
0.5 9.3e-10 3.2e10 2.1e21 4.2e54 4.4e111
1.0 (31,89) 1.9e-9 1.6e10 5.2e20 1.3e53 4.4e108

2.0 0.1 (31,61) 1.9e-10 1.1e10 2.3e20 1.7e52 7.4e106
0.5 9.3e-10 2.1e9 9.2e18 5.5e48 7.6e99
1.0 (31,60) 1.9e-9 1.1e9 2.3e18 1.7e47 7.4e96

1.0 0.1 (41,120) 40 (118,118) 1.8e-13 2.2e14 9.7e28 6.2e73 9.6e149
0.5 9.1e-13 4.4e13 3.9e27 2.0e70 9.9e142
1.0 (41,119) 1.8e-12 2.2e13 9.7e26 6.2e68 9.7e139

2.0 0.1 (41,81) 1.8e-13 1.1e13 2.4e26 1.9e67 9.4e136
0.5 9.1e-13 2.2e12 9.7e24 6.2e63 9.6e129
1.0 (41,80) 1.8e-12 1.1e12 2.4e24 1.9e62 9.4e126

Table 2. Moments of the DEP interrenewal distribution

a (n, nz) nS (nzS, nzLU) ‖pS‖∞ E[H1] E[H2] E[H5] E[H10]

0.1 (11,21) 101 (19,19) 1.0e-1 1.0e2 1.1e4 2.2e10 2.6e21
0.5 5.0e-1 2.0e1 4.2e2 5.2e6 8.7e13
1.0 (11,11) 1.0e0 1.0e1 1.0e2 1.0e5 1.0e10

0.1 (101,201) 102 (199,199) 1.0e-1 1.0e3 1.0e6 1.1e15 1.5e30
0.5 5.0e-1 2.0e2 4.0e4 3.4e11 1.3e23
1.0 (101,101) 1.0e0 1.0e2 1.0e4 1.0e10 1.0e20

0.1 (1001,2001) 103 (1999,1999) 1.0e-1 1.0e4 1.0e8 1.0e20 1.0e40
0.5 5.0e-1 2.0e3 4.0e6 3.2e16 1.0e33
1.0 (1001,1001) 1.0e0 1.0e3 1.0e6 1.0e15 1.0e30

0.1 (10001,20001) 104 (19999,19999) 1.0e-1 1.0e5 1.0e10 1.0e25 1.0e50
0.5 5.0e-1 2.0e4 4.0e8 3.2e21 1.0e43
1.0 (10001,10001) 1.0e0 1.0e4 1.0e8 1.0e20 1.0e40

group of problems, we aim at having an understanding of the kind of moment
values that arise in DPH distributions and assessing the performance of Algo-
rithm 1 in computing these moments.

On Moments of Discrete Phase-Type Distributions 61

Table 3. Moments of DPH interrenewal distributions arising in twelve test matrices

Problem nS (nzS, nzLU) ‖pS‖∞
‖pS‖1

nS (Ts, TLU , Tm) E[H1] E[H2] E[H5] E[H10]

(n, nz)

2D 101 (25,42) 8.9e-1 2.7e-1 (0,0,0) 3.1e0 1.4e1 2.8e3 7.2e7
(16641, 102 (352,1746) 9.0e-1 8.9e-2 8.0e0 9.3e1 3.4e5 8.5e11
66049) 103 (3843,60340) 9.2e-1 2.8e-2 2.4e1 8.8e2 9.5e7 6.1e16

104 (39588,1662849) 9.4e-1 5.8e-3 (0,5,1) 3.7e2 2.6e5 2.2e14 5.0e29

easy 101 (43,50) 9.8e-1 3.9e-1 (0,0,0) 1.9e0 4.5e0 1.0e2 4.5e4
(20301, 102 (596,1723) 9.8e-1 1.3e-1 5.5e0 4.2e1 4.3e4 1.0e10
140504) 103 (6648,57706) 9.9e-1 4.4e-2 1.6e1 3.6e2 9.9e6 6.5e14

104 (68880,1866042) 9.8e-1 1.4e-2 (1,6,1) 4.9e1 3.5e3 3.1e9 6.3e19

hard 101 (43,50) 9.0e-2 3.6e-2 (0,0,0) 5.0e1 5.5e3 5.6e10 9.1e23
(20301, 102 (596,1723) 9.4e-2 1.2e-2 6.0e2 9.5e5 3.1e16 3.6e35
140504) 103 (6648,57706) 9.8e-2 4.0e-3 5.9e3 1.0e8 4.2e21 7.1e45

104 (68880,1866042) 9.1e-2 1.3e-3 (1,6,1) 5.6e4 9.5e9 4.0e26 6.7e55

medium 101 (43,50) 5.0e-2 2.0e-2 (0,0,0) 1.9e3 7.9e6 4.0e18 4.2e39
(20301, 102 (596,1723) 6.9e-2 6.9e-3 6.9e12 9.6e25 2.0e66 9.9e134
140504) 103 (6648,57706) 9.0e-2 2.3e-3 3.0e41 1.8e83 3.1e209 n/a

104 (68880,1866042) 5.4e-2 7.0e-4 (1,6,2) 1.1e134 2.4e268 n/a n/a

mutex 101 (28,100) 2.2e-2 1.9e-2 (1,0,0) 1.0e2 2.2e4 1.9e12 9.7e26
(39203, 102 (464,9398) 2.1e-2 1.6e-2 7.2e2 1.1e6 3.6e16 3.6e35
563491) 103 (7296,833658) 2.1e-2 1.2e-2 (1,7,0) 2.8e4 1.7e9 2.7e24 1.9e51

104 (109492,66540178) 1.5e-2 7.2e-3 (2,4415,10) 3.3e7 2.3e15 5.3e39 7.1e81

mutex alt1 101 (28,100) 2.2e-5 1.9e-5 (1,0,0) 2.1e5 8.9e10 5.0e28 6.4e59
(39203, 102 (464,9398) 2.1e-5 1.6e-5 2.7e9 1.5e19 1.7e49 7.7e100
563491) 103 (7296,833658) 2.1e-5 1.2e-5 (1,7,0) 1.9e16 7.5e32 3.3e83 2.7e169

104 (109492,66540178) 1.5e-5 7.2e-6 (2,4385,10) 2.6e25 1.4e51 1.5e129 5.9e260

mutex alt2 101 (28,100) 2.2e-8 1.9e-8 (1,0,0) 2.1e8 8.9e16 5.1e43 6.5e89
(39203, 102 (464,9398) 2.1e-8 1.6e-8 2.7e15 1.5e31 1.8e79 8.1e160
563491) 103 (7296,833658) 2.1e-8 1.2e-8 (1,7,0) 1.9e28 7.5e56 3.3e143 2.7e289

104 (109492,66540178) 1.5e-8 7.2e-9 (2,4526,47) 2.6e43 1.4e87 1.5e219 n/a

ncd 101 (34,56) 1.7e-2 2.0e-3 (0,0,0) 4.7e3 6.5e7 1.7e21 1.4e45
(23426, 102 (508,2662) 9.1e-2 8.8e-3 7.9e3 2.1e8 2.6e22 2.2e47
156026) 103 (6040,122706) 3.5e-1 1.7e-2 1.6e4 7.4e8 3.1e23 8.1e48

104 (65444,5615910) 9.9e-1 2.7e-2 (1,33,1) 4.7e4 6.0e9 3.5e25 3.4e52

ncd alt1 101 (34,56) 1.7e-2 2.0e-3 (0,0,0) 3.7e3 4.1e7 5.1e20 9.1e43
(23426, 102 (508,2662) 9.1e-2 8.8e-3 7.1e3 1.6e8 7.9e21 7.3e45
156026) 103 (6040,122706) 3.5e-1 1.7e-2 1.5e4 6.8e8 2.1e23 2.2e48

104 (65444,5615910) 9.9e-1 2.7e-2 (1,33,1) 4.6e4 5.9e9 3.2e25 2.4e52

ncd alt2 101 (34,56) 1.7e-2 1.9e-3 (0,0,0) 3.6e8 5.8e17 1.8e46 1.7e95
(23426, 102 (508,2662) 9.0e-2 8.8e-3 2.1e17 1.5e35 4.7e89 9.9e181
156026) 103 (6040,122706) 3.5e-1 1.7e-2 1.0e31 3.6e62 1.2e158 n/a

104 (65444,5615910) 9.9e-1 2.7e-2 (1,33,4) 3.4e53 4.4e107 6.8e270 n/a

qn 101 (26,50) 4.4e-1 2.1e-1 (1,0,0) 9.1e0 2.1e2 2.2e7 1.8e17
(104625, 102 (388,3837) 6.2e-1 1.6e-1 3.9e1 5.2e3 1.1e11 6.1e24
593115) 103 (4688,285709) 6.2e-1 1.1e-1 (1,1,0) 4.2e2 7.0e5 2.6e16 3.4e35

104 (53224,17064913) 6.2e-1 5.6e-2 (1,325,3) 4.3e4 6.0e9 1.2e26 6.0e54

telecom 101 (34,48) 4.2e-3 1.1e-3 (0,0,0) 8.3e3 1.6e8 8.8e21 2.3e46
(20491, 102 (442,1420) 7.4e-3 5.3e-4 3.1e7 2.0e15 4.0e39 4.3e81
101041) 103 (4814,43098) 1.7e-2 3.2e-4 1.6e21 5.4e42 1.5e108 5.5e218

104 (49234,610098) 8.4e-2 2.3e-4 (1,3,1) 4.3e192 n/a n/a n/a

62 T. Dayar

Six of the DTMCs (ncd, ncd alt1, ncd alt2, mutex, mutex alt1, mutex alt2)
have symmetric nonzero structure; however, all DPH distributions arising from
the twelve test matrices yield some fill-in. For the mutex, mutex alt1, mutex alt2,
and qn test matrices, nzLU for the order 104 DPH distribution is larger than 107,
thereby making it the most difficult to solve. Otherwise, the first ten moments
of all DPH distributions of order 103 and smaller can be computed in 8 seconds.
If the mutex, mutex alt1, mutex alt2, and qn problems are excluded, the first
ten moments of DPH distributions of order 104 can be computed in 38 seconds.
The time spent by Algorithm 1 after its first step in all of these problems is
within 4 seconds. Hence, it is again the LU factorization which dominates the
computation, and it becomes excessive in the mutex, mutex alt1, and mutex alt2
problems with order 104 (note that the discrepancy in the TLU timings in this
case is less than 5% and is immaterial). But then again, 104 is a relatively
large order to consider in practice. Furthermore, when overflow is encountered
in computing a particular moment, we notice that the computation time for that
particular moment in Tm increases considerably. See, for instance, mutex alt2
with order 104. This situation can be attributed to the exceptions generated
during the forward and backward solutions with the L and U factors in the
body of the outer for-loop of Algorithm 1 when there is overflow.

As in the first set of experiments, we again observe that the smaller the aver-
age degree of coupling, the larger the moments become and the more difficult it
is to obtain accurate results. However, through the particular DPH distributions
arising in the twelve test matrices, we also understand that it is not only the
average degree of coupling but also the values of the nonzeros in the L and U
factors (and therefore the values in (I−PS,S)) that determine how the moments
grow. See, for instance, the value of the first moment in telecom with order 104,
which has an average degree of coupling 2.3× 10−4.

6 Conclusion

In this paper, we have presented a recently introduced method to compute higher
moments of DPH distributions in row-wise sparse format and have conducted
numerical experiments on a test suite of DTMCs with it. The method is based
on factorizing a nonsingular matrix as large as the order of the DPH distribu-
tion using a form of GTH with delayed row updates and solving as many linear
systems with different right-hand sides as the number of moments desired. It
has been shown that the factorization is available explicitly up to a symmetric
permutation when the DPH distribution is acyclic, and therefore need not be
computed. Timing results have been given to indicate the efficiency of the pro-
posed method. First moments much larger than the reciprocal of the average
degree of coupling have been reported, especially when the order of the DPH
distribution becomes large. When the order is 104 or larger, there are cases which
show that it will be useful to consider a fill reducing ordering of the coefficient
matrix since the amount of fill-in during factorization may become excessive.

On Moments of Discrete Phase-Type Distributions 63

References

1. A. Bobbio, A. Horváth, M. Scarpa, and M. Telek. Acyclic discrete phase type dis-
tributions: properties and a parameter estimation algorithm. Performance Evalu-
ation, 54(1):1–32, Sep 2003.

2. A. Bobbio, A. Horváth, and M. Telek. The scale factor: a new degree of freedom in
phase-type approximation. Performance Evaluation, 56(1–4):121–144, Mar 2004.

3. T. Dayar. Software for computing moments of phase type distributions, 2005. Avail-
able from http://www.cs.bilkent.edu.tr/~tugrul/software.html.

4. T. Dayar and N. Akar. Computing moments of firt passage times to a subset
of states in Markov chains. SIAM Journal on Matrix Analysis and Applica-
tions, to appear. Also as Technical Report BU-CE-0414, Department of Com-
puter Engineering, Bilkent University, Ankara, Turkey, Dec 2004. Available from
http://www.cs.bilkent.edu.tr/tech-reports/2004/BU-CE-0414.pdf.

5. T. Dayar and W. J. Stewart. Comparison of partitioning techniques for
two-level iterative methods on large, sparse Markov chains. Technical Re-
port BU-CEIS-9805, Department of Computer Engineering and Information
Science, Bilkent University, Ankara, Turkey, Apr 1998. Available from
http://www.cs.bilkent.edu.tr/tech-reports/1998/BU-CEIS-9805.ps.gz.

6. T. Dayar and W. J. Stewart. A test suite of Markov chains, 2005. Available from
http://www.cs.bilkent.edu.tr/~tugrul/matrices.html.

7. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-
tion for Computer Science. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, U.S.A., 1989.

8. W. K. Grassmann, M. I. Taksar, and D. P. Heyman. Regenerative analysis and
steady state distributions for Markov chains. Operations Research, 33(5):1107–
1116, Sep–Oct 1985.

9. B. R. Haverkort. Performance of Computer Communication Systems: A Model-
based Approach. John Wiley & Sons, Chichester, England, 1998.

10. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in
Stochastic Modeling. SIAM Press, Philadelphia, Pennslyvania, U.S.A., 1999.

11. S. Nakazawa, K. Kawahara, S. Yamaguchi, and Y. Oie. Performance comparison
with layer 3 switches in case of flow- and topology-driven connection setup. In
IEEE Global Telecommunications Conference, Rio de Janeiro, Brazil, volume 1a
of GLOBECOM’99, pages 79–86. IEEE Press, New York, U.S.A., Dec 1999.

12. M. F. Neuts. Probability distributions of phase type. In Liber amicorum Prof.
Emeritus H. Florin, pages 173–206. Department of Mathematics, University of
Louvain, Belgium, 1975.

13. M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Johns Hopkins University Press, Baltimore, Maryland, U.S.A., 1981.

14. S. Robert and J.-Y. Le Boudec. New models for pseudo self-similar traffic. Per-
formance Evaluation, 30(1–2):57–68, Jul 1997.

15. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton, New Jersey, U.S.A., 1994.

16. M. Telek and A. Heindl. Matching moments for acyclic discrete and continuous
phase-type distributions of second order. International Journal of Simulation:
Systems, Science & Technology, 3(3–4):47–57, Dec 2002.

Zero-Automatic Queues

Thu-Ha Dao-Thi and Jean Mairesse

LIAFA, CNRS-Université Paris 7, France
{daothi, mairesse}@liafa.jussieu.fr

Abstract. We introduce and study a new model: 0-automatic queues.
Roughly, 0-automatic queues are characterized by a special buffering
mechanism evolving like a random walk on some infinite group or monoid.
The salient result is that all 0-automatic queues are quasi-reversible.
When considering the two simplest and extremal cases of 0-automatic
queues, we recover the simple M/M/1 queue, and Gelenbe’s G-queue
with positive and negative customers.

Keywords: M/M/1 queue, G-queue, quasi-reversibility, product form.

1 Introduction

Here is an informal description of a special type of 0-automatic queue (cor-
responding to a free product of three finite monoids). Consider a queue with
a single server and an infinite capacity buffer. Customers are colored either
in Red, Blue, or Green, with a finite set of possible shades within each color:
ΣR, ΣB, ΣG. In the buffer, two consecutive customers of the same color either
cancel each other or merge to give a new customer of the same color. Customers
of different colors do not interact. This is illustrated in Figure 1.

OR

Fig. 1. A 0-automatic queue

The shades get modified in the merging procedure, according to an internal
law: Σi×Σi → Σi∪{1}, with 1 coding for the cancellation. The only but crucial
restriction is that each internal law should be associative.

We now give a more detailed account of the model and results. Zero-automatic
queues may be viewed as the synthesis of a simple queue and a random walk on a
0-automatic pair. We first recall these last two models.

The M/M/1/∞ FIFO queue, or simply M/M/1 queue, is the Markovian
queue with arrivals and services occurring at constant rate, say λ and μ, a single

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 64–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Zero-Automatic Queues 65

server, an infinite capacity buffer, and a First-In-First-Out discipline. This is
arguably the simplest and also the most studied model in queueing theory, with
at least one book devoted to it [1]. The queue-length process is a continuous
time jump Markov process and its infinitesimal generator Q is given by: ∀n ∈
, Q(n, n+ 1) = λ, Q(n + 1, n) = μ. Under the stability condition λ < μ, the

queue-length process is ergodic, and its stationary distribution π is given by:

π(n) =
(
1− λ

μ

)(λ
μ

)n

. (1)

Besides, and this constitutes the celebrated Burke Theorem, the departure pro-
cess in equilibrium has the same law as the arrival process.

Let us introduce the a priori completely unrelated model of random walk on
a 0-automatic pair studied in [12,11].

Let X be an infinite group or monoid with a finite set of generators Σ. Let
ν be a probability measure on Σ and let (xi)i∈ be a sequence of Σ-valued
i.i.d. r.v.’s of law ν. Let (Xn)n be the sequence of X-valued r.v.’s defined by:
X0 = 1X , Xn+1 = Xn ∗ xn = x0 ∗ x1 ∗ · · · ∗ xn, where 1X is the unit element of
X and ∗ is the group or monoid law. By definition, (Xn)n is a realization of the
random walk (X, ν).

We now assume that the pair (X, Σ) is 0-automatic. The definition will be
given in Section 2. For the moment, it suffices to say that the elements of X
can be set in bijection with a regular language L(X, Σ) ⊂ Σ∗. The random walk
(Xn)n is viewed as evolving on L(X, Σ). If Xn = ua, a ∈ Σ, and xn = b ∈ Σ,
then

Xn+1 = u if a∗b = 1X , Xn+1 = uc if a∗b = c ∈ Σ, Xn+1 = uab otherwise.
(2)

In words, the 0-automatic assumption implies that the multiplication by a gener-
ator has a simple and local effect. Now assume that the random walk is transient.
Let ν∞(uΣ) be the probability that the random walk goes to infinity in the
“direction” u (i.e. ν∞(uΣ) = P{∃N, ∀n ≥ N,Xn ∈ uΣ∗}). The following is
the main result in [11]:

∀u = u1 · · ·un ∈ L(X, Σ), ν∞(uΣ) = q̂(u1) · · · q̂(un−1)r̂(un) , (3)

where ∀a ∈ Σ, q̂(a) ∈ (0, 1), r̂(a) ∈ (0, 1).
The expressions in (1) and (3) share a common “multiplicative” structure.

Guided by this analogy, we want to merge the two models together. To that
purpose, we make the following elementary observation: if we block the server
in an M/M/1 queue, the number of waiting customers after n arrivals is An =
n. And (An)n can be viewed as the (not so random) random walk on the 0-
automatic pair ((,+), {1}) associated with the probability ν : ν(1) = 1.

Now, replace the trivial random walk (An)n by a more complex random walk
(Xn)n on a 0-automatic pair (X, Σ). Hence, the random walk (Xn)n constitutes
the buffering mechanism in a queue with a blocked server. A 0-automatic queue
is the model obtained when unblocking the server. The set Σ is the set of possible

66 T.-H. Dao-Thi and J. Mairesse

classes for customers. Upon arrival, a new customer (class b) interacts with the
customer presently at the back-end of the buffer (class a) according to (2). At
the front-end of the buffer, customers are served at constant rate.

Let γ̂ be the drift or rate of escape to infinity of the random walk (Xn)n.
The stability condition for the 0-automatic queue associated with (Xn)n is given
in Section 4: λγ̂ < μ. Under this condition, in Section 5, we prove that the
stationary distribution p for the queue-content process has a “multiplicative”
structure:

∀u = u1 · · ·un ∈ L(X, Σ), p(u) = (1 − ρ)ρnq(u1) · · · q(un−1)r(un) , (4)

for some numbers ρ ∈ (0, 1), ∀a ∈ Σ, q(a) ∈ (0, 1), r(a) ∈ (0, 1). (These numbers
are in general different from their counterparts in (1) and (3).) Furthermore,
the departure process from the queue is a Poisson process of rate ρμ. Thus we
have an extension of Burke Theorem to all 0-automatic queues. Using standard
terminology, 0-automatic queues are quasi-reversible.

To be more precise, given (Xn)n, several variants of 0-automatic queues can
be defined depending on the way customers are incorporated in an empty queue
(boundary condition). There is precisely one choice for which the result in (4)
holds. The numbers ρ, q(·), r(·), as well as the right boundary condition, are
determined implicitly via the unique solution of a set of algebraic equations, see
Theorems 5.1 and 5.2 for a precise statement.

Aside from the free monoid, the next simplest example of a 0-automatic pair
is the free group over one generator: ((,+), {1,−1}). The corresponding 0-
automatic queues are variations of Gelenbe’s G-queues, or queues with positive
and negative customers, which were quite extensively studied in the 90’s, see
[6,5] and the bibliography in [7]. General 0-automatic queues can be viewed as
a wide generalization of this setting. This is illustrated in Section 6.

TheM/M/1 queue is the basic primitive for building Jackson networks, which
have the remarkable property of having a “product-form” stationary distribu-
tion. More generally, networks made of quasi-reversible nodes tend to have a
product form distribution, see for instance [14]. In an ongoing work [2], we prove
that it is indeed the case for Jackson-type networks of 0-automatic queues.

Due to lack of space, the proofs are not included. They can be found in the
corresponding research report [3], where the relationship between 0-automatic
queues and Quasi-Birth-and-Death processes is also detailed.

2 Preliminaries: Random Walks on 0-Automatic pairs

The symbol � is used for the disjoint union of sets. Given a set T , a vector
x ∈ T , and S ⊂ T , set x(S) =

∑
u∈S x(u).

We recall the needed material on random walks on 0-automatic pairs. The
presentation closely follows [11,12].

Monoids and groups. Given a set Σ, the free monoid generated by Σ is
denoted by Σ∗. The unit element is denoted by 1Σ∗ . As usual, the elements of

Zero-Automatic Queues 67

Σ and Σ∗ are called letters and words, respectively. The subsets of Σ∗ are called
languages. The length (number of letters) of a word u is denoted by |u|Σ.

Let (X, ∗) be a group or monoid with set of generators Σ. The unit element
of X is denoted by 1X . When X is a group, the inverse of x ∈ X is denoted by
x−1. We always assume that: 1X �∈ Σ, and in the group case that: x ∈ Σ =⇒
x−1 ∈ Σ. Denote by π : Σ∗ → X the monoid homomorphism which associates
to a word a1 · · ·ak of Σ∗ the element a1 ∗ · · · ∗ ak of X . A language L of Σ∗ is
a cross-section of X if the restriction of π to L is a bijection. The inverse map
Φ : X → L is then called the normal form map. The length with respect to Σ of
an element x of X is : |x|Σ = min{k | x = a1 ∗ · · · ∗ ak, ai ∈ Σ}.

The Cayley graph X(X, Σ) of X with respect to Σ is the directed graph with
nodes X and arcs u → v if ∃a ∈ Σ, u ∗ a = v.

Consider a relation R ⊂ Σ∗ × Σ∗, and let ∼R be the least congruence on
Σ∗ such that u ∼R v if (u, v) ∈ R. Let X be isomorphic to the quotient monoid
(Σ∗/ ∼R). We say that 〈 Σ | u = v, (u, v) ∈ R 〉 is a monoid presentation of X
and we write X = 〈Σ | u = v, (u, v) ∈ R 〉.

Given a set S, denote by (S) the free group generated by S. Let S−1 be the
set of inverses of the generators. A monoid presentation of (S) is

(S) = 〈 S � S−1 | aa−1 = 1, a−1a = 1, ∀a ∈ S 〉 . (5)

Given two groups or monoids X1 and X2, we denote by X1 � X2 the free
product of X1 and X2. Roughly, the elements of X1 � X2 are the finite alter-
nate sequences of elements of X1\{1X1} and X2\{1X2}, and the law is the con-
catenation with simplification. More rigorously, the definition is as follows. Set
S = X1 �X2. The free product X1 �X2 is defined by the monoid presentation:

〈 S | (∀u, v ∈ S∗), u1Xiv = uv, (∀a, b, c ∈ Xi, s.t. c = a ∗ b), uabv = ucv 〉 .
If X1 and X2 are groups, then X1 �X2 is also a group. The free product of more
than two groups or monoids is defined analogously.

Zero-automatic pairs. Define the language L(X, Σ) ⊂ Σ∗ of locally reduced
words by:

L(X, Σ) =
{
u1 · · ·uk | ∀i ∈ {1, . . . , k − 1},ui ∗ ui+1 /∈ Σ ∪ {1X}

}
. (6)

Define the sets: ∀a ∈ Σ,

Left(a) = {b ∈ Σ | b ∗ a /∈ Σ ∪ {1X}}, Right(a) = {b ∈ Σ | a ∗ b /∈ Σ ∪ {1X}} .
Definition 2.1. Let (G, ∗) be a group with finite set of generators Σ. We say
that the pair (G,Σ) is 0-automatic if L(G,Σ) is a cross-section of G.

The name 0-automatic comes from [11]. Under other names, the notion had
been studied for instance in [15,9]. In these last two references, it is proved that
if (G,Σ) is a 0-automatic pair, then G is isomorphic to a plain group, i.e. a
free product of finitely many finite groups and a finitely generated free group.

68 T.-H. Dao-Thi and J. Mairesse

However the set Σ may be larger than a “natural” set of generators of the plain
group. In [11], a procedure is proposed which computes all the Σ’s such that
(G,Σ) is 0-automatic, for a given plain group G. Four different characterizations
of 0-automatic pairs, completing the one in Definition 2.1, are collected in [11,
Theorem 3.6].

Definition 2.2. Let (M, ∗) be a monoid with finite set of generators Σ. Assume
that L(M,Σ) is a cross-section. Let Φ : M → L(M,Σ) be the corresponding
normal form map. Assume that: ∀u ∈M s.t Φ(u) = u1 · · ·uk, ∀a ∈ Σ,

Φ(a ∗ u) =

⎧⎨⎩
u2 · · ·uk if a ∗ u1 = 1M

vu2 · · ·uk if a ∗ u1 = v ∈ Σ
au1 · · ·uk otherwise

, (7)

and assume that the analog holds for Φ(u ∗ a).
Assume furthermore that : ∀a, b ∈ Σ such that a ∗ b ∈ Σ,

Right(a ∗ b) = Right(a), Left(a ∗ b) = Left(b) . (8)

Then we say that the pair (M,Σ) is 0-automatic.

In the group case, the conditions (7) and (8) are implied by the fact that the
language of locally reduced words is a cross-section.

When (X, Σ) is 0-automatic with X infinite, the Cayley graph X(X, Σ) has
a tree-like structure. The removal of any node disconnects the graph. Besides,
the number of elementary circuits going through a given node is finite.

Here are some examples of 0-automatic pairs:

– Let X be a finite group or monoid. Then (X,X\{1X}) is 0-automatic.
– Let Σ be a finite set. The pairs (Σ∗, Σ) and ((Σ), Σ�Σ−1) are 0-automatic.
– Let (X1, Σ1) and (X2, Σ2) be 0-automatic. Then (X1 � X2, Σ1 � Σ2) is 0-

automatic.

The graph of successors Next(X, Σ) of a 0-automatic pair (X, Σ) is the di-
rected graph with nodes Σ and arcs u → v if v ∈ Right(u).

When X = G is an infinite group not isomorphic to , then Next(G,Σ) is
strongly connected [11, Lemma 3.13]. Also, when X is the free product of two
or more monoids, then Next(X, Σ) is clearly strongly connected.

Random walks on monoids and groups. Let (X, ∗) be a group or monoid
with finite set of generators Σ. Let ν be a probability distribution over Σ. Con-
sider the Markov chain on the state space X with one-step transition probabilities
given by: ∀x ∈ X, ∀a ∈ Σ, Px,x∗a = ν(a). This Markov chain is called the (right)
random walk (associated with) (X, ν).

Let (xn)n be a sequence of i.i.d. r.v’s distributed according to ν. Set

X0 = 1X , Xn+1 = Xn ∗ xn = x0 ∗ · · · ∗ xn . (9)

Zero-Automatic Queues 69

Then (Xn)n is a realization of the random walk (X, ν). For all x, y ∈ X , we have
|x∗y|Σ ≤ |x|Σ + |y|Σ. Applying Kingman’s Subadditive Ergodic Theorem yields
the following (first noticed by Guivarc’h [8]): there exists γ ∈ + such that

lim
n→∞

|Xn|Σ
n

= γ a.s and in Lp, ∀1 ≤ p <∞ . (10)

We call γ the drift of the random walk. When γ > 0, the random walk is transient.

Random walks on 0-automatic pairs. It is convenient to introduce the
notion of a 0-automatic triple.

Definition 2.3. A triple (X, Σ, ν) is said to be 0-automatic if: (i) (X, Σ) is a
0-automatic pair with X infinite; (ii) ν is a probability measure whose support
is included in Σ and generates X.

The Traffic Equations play an essential role in the study of the random walk.

Definition 2.4 (Traffic Equations). The Traffic Equations (TE) associated
with a 0-automatic triple (X, Σ, ν) are the equations of the variables (x(a))a∈Σ ∈

Σ defined by: ∀a ∈ Σ,

x(a) = ν(a)x(Right(a)) +
∑

u∗v=a

ν(u)x(v) +
∑

v∈Left(a)
u∗v=1X

ν(u)
x(v)

x(Right(v))
x(a) . (11)

An admissible solution is a solution belonging to {x ∈ Σ | xi > 0,
∑

i xi = 1}.
Quite often in the paper, we assume the following additional Conditions on

the 0-automatic triple (X, Σ, ν):
C1. the graph Next(X, Σ) is strongly connected;
C2. the random walk (X, ν) is transient.

As mentioned above, Condition C1 is always satisfied when X is a group
other than , or a free product. Condition C2 is not very restrictive either.
There are only two cases in which (X, ν) is not transient: (i) the triple (, {−1, 1},
{1/2, 1/2}); (ii) the triples (/2 � /2 , {a, b}, ν), for any ν, where a and b are
the respective generators of the two cyclic groups. See [11] for details.

Define:

B = {x ∈ Σ | ∀i, xi > 0,
∑

i

xi = 1}, B̄ = {x ∈ Σ | ∀i, xi ≥ 0,
∑

i

xi = 1} .
(12)

By multiplying both sides of (11) by
∏

b x(Right(b)), we obtain a new set of
Equations without denominators. With some abuse, a solution r in B̄ of this last
set of Equations is still called a solution of the TE.

Next result can be easily deduced from the proof of [11, Theorem 4.5].

Proposition 2.1. Let (X, Σ, ν) be a 0-automatic triple. The Traffic Equations
TE have at least one solution in B̄. Assume now that the Conditions C1-C2
also hold. The TE have a unique solution in B̄, and this solution belongs to B.

70 T.-H. Dao-Thi and J. Mairesse

The interest of Proposition 2.1 is that the harmonic measure and the drift
can be expressed in function of the solution to the TE.

Define the set L∞ ⊂ Σ by

L∞ = {u0u1 · · ·uk · · · ∈ Σ | ∀i ∈ ,ui+1 ∈ Right(ui)} . (13)

A word belongs to L∞ iff all its finite prefixes belong to L(X, Σ). The set L∞

should be viewed as the “boundary” of X .
Let (Xn)n be a realization of the random walk which is assumed to be tran-

sient. The harmonic measure of the random walk is the probability measure ν∞

on L∞ with finite-dimensional marginals defined by:

∀u1 · · ·uk ∈ L(X, Σ), ν∞(u1 · · ·ukΣ)=P{∃N, ∀n ≥ N, Φ(Xn)∈ u1 · · ·ukΣ
∗} .

This defines indeed a measure on L∞ because the random walk is transient, and
because Φ(Xn) and Φ(Xn+1) differ by at most one symbol by 0-automaticity.
Intuitively, the harmonic measure ν∞ gives the direction in which (Xn)n goes
to infinity.

For a proof of next result, see [11, Theorem 4.5] and [12, Theorem 3.3]. In
the case of the free group, the result appears in [4,13], see also the survey [10].

Theorem 2.1. Let (X, Σ, ν) be a 0-automatic triple satisfying C1-C2. Let r̂ =
(r̂(a))a∈Σ be the unique admissible solution to the Traffic Equations. Set q̂(a) =
r̂(a)/r̂(Right(a)), for all a ∈ Σ. The harmonic measure ν∞ and the drift γ̂ of
the random walk (X, ν) are given by:

∀u1 · · ·uk, ν∞(u1 · · ·ukΣ) = q̂(u1) · · · q̂(uk−1)r̂(uk),

γ̂ =
∑
a∈Σ

ν(a)
[
r̂(Right(a))−

∑
b|a∗b=1X

r̂(b)
]
.

3 The Zero-Automatic Queue

The 0-automatic queue is defined informally in Section 1. Now we give a formal
definition via the infinitesimal generator of the queue-content process.

Definition 3.1 (Zero-automatic queue). Let (X, Σ, ν) be a 0-automatic
triple. Let L(X, Σ) be the set of locally reduced words, defined in (6). Consider
r ∈ B̄, see (12), and λ,μ ∈ ∗

+. The 0-automatic queue of type (X, Σ, ν, r, λ,μ)
is defined as follows. The queue-content (M(t))t∈ + is a continuous time jump
Markov process on the state space L(X, Σ) with infinitesimal generator Q defined
by: ∀u = un · · ·u1 ∈ L(X, Σ) \ ∪a∈Σ{a}∗,⎧⎪⎪⎨⎪⎪⎩

Q(u, bu) = λν(b) , ∀b ∈ Left(un)
Q(u, bun−1 · · ·u1) = λ

∑
c|c∗un=b ν(c) , ∀b ∈ Σ \ {un}, ∃c ∈ Σ, c ∗ un = b

Q(u,un−1 · · ·u1) = λ
∑

c|c∗un=1X
ν(c)

Q(u,un · · ·u2) = μ
(14)

Zero-Automatic Queues 71

and, for all a ∈ Σ such that a ∈ Right(a), and for all n ≥ 1,⎧⎨⎩
Q(an, ban) = λν(b) , ∀b ∈ Left(a)
Q(an, ban−1) = λ

∑
c|c∗a=b ν(c) , ∀b ∈ Σ \ {a}, ∃c ∈ Σ, c ∗ a = b

Q(an, an−1) = μ + λ
∑

c|c∗a=1X
ν(c)

(15)

and, finally, the boundary condition is,

Q(1Σ∗ , a) = λν(a)r(Right(a)) , ∀a ∈ Σ . (16)

We denote by M/M/(X, Σ) any 0-automatic queue of type (X, Σ, ν, r, λ,μ).

In words, the queue M/M/(X, Σ) is formed by a single server with FIFO
discipline and an infinite capacity buffer in which the buffering occurs according
to the random walk (X, ν). It is a multiclass queue (classes Σ) but the class does
not influence the way customers get served, only the way they get buffered.

The intuition behind the form of the boundary condition is as follows: the
buffer-content is viewed as the visible part of an iceberg consisting of an infinite
word of L∞, see (13). When the buffer is empty, new customers are incorporated
depending on the invisible part of the iceberg, whose first marginal is assumed
to be r. This last point will find an a-posteriori justification in Theorem 5.1.

The two simplest examples of 0-automatic queues are the ones associated
with (i) the free monoid (,+) and (ii) the free group (,+). They correspond
to well-known objects.

The simple queue. Consider the free monoid X = {a}∗ = {ak, k ∈ } over the
single generator set Σ = {a}. Hence, for any λ,μ ∈ ∗

+, there is only one possible
associated queue: (X, Σ, ν, r, λ,μ), where ν(a) = r(a) = 1. By specializing the
infinitesimal generator Q given in Definition 3.1, we get: ∀n ∈ ,

Q(an, an+1) = λ, Q(an+1, an) = μ .

This is the simple M/M/1/∞ queue with arrival rate λ and service rate μ.

The G-queue. Consider the free group X = (a) = {ak, k ∈ } and the set
of generators Σ = {a, a−1}. Let ν be a probability measure on Σ such that
ν(a) > 0, ν(a−1) > 0. Consider r ∈ B and λ,μ ∈ ∗

+. The 0-automatic queue
((a), Σ, ν, r, λ,μ) has an infinitesimal generator Q given by: ∀n ∈ ,⎧⎨⎩

Q(an, an+1) = λν(a), Q(an+1, an) = μ + λν(a−1)
Q(a−n, a−(n+1)) = λν(a−1), Q(a−(n+1), a−n) = μ + λν(a)
Q(1Σ∗ , a) = λν(a)r(a), Q(1Σ∗ , a−1) = λν(a−1)r(a−1) .

This is close to the mechanism of the G-queue, a queue with positive and negative
customers introduced in [6,7]. We go back to this model in Section 6.

The definition of 0-automatic queues has the flexibility to allow for many
variations and extensions, see Section 6 for a couple of examples.

72 T.-H. Dao-Thi and J. Mairesse

4 Stability Condition for a Zero-Automatic Queue

Throughout Sections 4 and 5, the model is as follows. Let (X, Σ, ν) be a 0-
automatic triple satisfying the Conditions C1-C2. Fix λ and μ in ∗

+ and r in
B. Consider the 0-automatic queue (X, Σ, ν, r, λ,μ).

Let M = (Mt)t be the queue-content process. Proposition 4.1 characterizes
the stability region of the 0-automatic queue.

Proposition 4.1. The process M is irreducible. Let γ̂ be the drift of the random
walk (X, ν). We have: [

λγ̂ < μ
] ⇐⇒M ergodic[

λγ̂ = μ
] ⇐⇒M null recurrent[

λγ̂ > μ
] ⇐⇒M transient .

5 Stationary Distribution of a Stable Queue

5.1 The Twisted Traffic Equations

The Traffic Equations, see Def. 2.4, play a central role in studying the random
walk. We now introduce equations which play a similar role for the queue.

Definition 5.1 (Twisted Traffic Equations). The Twisted Traffic Equations
TTE associated with (X, Σ, ν, λ,μ) are the equations of the variables (η, x), η ∈
∗
+, x = (x(a))a∈Σ ∈ Σ

+ , defined by:

η(λ + μ)x(a) = η2μx(a) + λν(a)x(Right(a)) + ηλ
∑

u∗v=a

ν(u)x(v) (17)

+η2λ
∑

v∈Left(a)
u∗v=1X

ν(u)
x(v)

x(Right(v))
x(a) .

According to Proposition 2.1, there is a unique admissible solution to the
Traffic Equations, that we denote by r̂ = (r̂(a))a∈Σ . We denote by γ̂ the drift of
the random walk (X, ν).

Let us investigate some properties of the solutions to the TTE. First, if (ρ, r)
is a solution to the TTE with r ∈ B̄, then r belongs to B. This follows directly
from the shape of the TTE and from Condition C1.

Second, if we set η = 1 in the Twisted Traffic Equations (17), and perform
the obvious simplifications, we obtain the Traffic Equations (11). It implies that
(1, r̂) is a solution to the TTE for all λ and μ.

Lemma 5.1. Let (ρ, r), ρ ∈ ∗
+, r ∈ B, be a solution to the TTE. We have

either (ρ, r) = (1, r̂), or

ρ =
λ

∑
a∈Σ ν(a)r(Right(a))

μ + λ
∑

u∗v=1X
ν(u)r(v)

. (18)

Zero-Automatic Queues 73

The relevant solutions to the TTE will turn out to be the ones satisfying
(18). This leads us to the next Definition.

Definition 5.2. A solution (ρ, r) to the TTE is called an admissible solution if
ρ ∈ ∗

+, r ∈ B, and if (18) is satisfied.

Lemma 5.2. If λγ̂ = μ, then (1, r̂) is an admissible solution to the TTE. If
(1, r) is an admissible solution to the TTE, then r = r̂ and λγ̂ = μ.

Lemma 5.3. There always exists an admissible solution to the TTE.

5.2 The Main Results

Next Lemma begins to establish the link between the Twisted Traffic Equations
and the queue M/M/(X, Σ). Theorems 5.1-5.2-5.3 are the main results.

Lemma 5.4. Let (ρ, r) be an admissible solution to the TTE. Consider the 0-
automatic queue of type (X, Σ, ν, r, λ,μ). Let Qr be the infinitesimal generator
of the queue-content process. Consider the measure pρ,r on L(X, Σ) defined by:

∀a1 · · · an ∈ L(X, Σ), pρ,r(a1 · · · an) = ρn r(a1)
r(Right(a1))

· · · r(an−1)
r(Right(an−1))

r(an).

(19)

We have pρ,rQr = 0. Conversely, assume there exist ρ ∈ ∗
+ and r ∈ B such that

the measure pρ,r defined by (19) satisfies pρ,rQr = 0. Then (ρ, r) is an admissible
solution to the TTE.

Theorem 5.1. Let (X, Σ, ν) be a 0-automatic triple. The Conditions C1-C2
of page 69 are assumed to hold. Fix λ and μ in ∗

+.
Let (ρ, r) be an admissible solution to the TTE. Consider the 0-automatic

queue (X, Σ, ν, r, λ,μ). Denote by Mr = (Mr(t))t the queue-content process. We
have:

[ρ < 1]⇐⇒ [λγ̂ < μ]⇐⇒ [
Mr ergodic

]
[ρ = 1]⇐⇒ [λγ̂ = μ]⇐⇒ [

Mr null recurrent
]

[ρ > 1]⇐⇒ [λγ̂ > μ]⇐⇒ [
Mr transient

]
.

Assume that λγ̂ < μ. The stationary distribution πρ,r of the process Mr is given
by: ∀a1 · · ·an ∈ L(X, Σ),

πρ,r(a1 · · ·an) = (1 − ρ)pρ,r(a1 · · ·an) = (1− ρ)ρnq(a1) · · · q(an−1)r(an) , (20)

where q(a) = r(a)/r(Right(a)) for all a ∈ Σ.

Assume that λγ̂ = μ. It follows immediately from Lemma 5.2 and Theorem
5.1 that (1, r̂) is the unique admissible solution to the TTE. We now have a more
interesting result in the same vein.

74 T.-H. Dao-Thi and J. Mairesse

Theorem 5.2. Consider the same model as in Theorem 5.1. Assume further-
more that (X, Σ) satisfies at least one of the following two conditions: (i) X
is a group; (ii) X = X1 � · · · � Xk, with Xi being finite monoids, and Σ =
�i

(
Xi\{1Xi}

)
. Assume that λγ̂ < μ. Then the TTE have a unique admissi-

ble solution. In particular, there is only one variant of the 0-automatic queue
M/M/(X, Σ) with a product form distribution.

In a 0-automatic queue, ‘departures’ occur both at the front-end and at the
back-end of the buffer. Here we consider only the front-end departures, i.e. the
ones corresponding to service completions and not to buffer cancellations.

Let M = (M(t))t be the queue-content process of some 0-automatic queue
M/M/(X, Σ). A departure is an instant of jump of M corresponding to a jump
of the type: un · · ·u1 → un · · ·u2 for u = un · · ·u1 ∈ L(X, Σ) \ {1Σ∗}. When
u = an, a ∈ Σ,n ≥ 1 (the case (15) in Definition 3.1), some special care must be
taken. The jumps of type an → an−1 which are departures occur at rate μ. The
departure process is the point process of departures.

Theorem 5.3. The model is the same as in Theorem 5.1. Assume that λγ̂ < μ.
Let (ρ, r) be an admissible solution of the TTE. Consider the 0-automatic queue
(X, Σ, ν, r, λ,μ). The stationary departure process is a Poisson process of rate
ρμ. Furthermore, for all t, the queue-content at time t is independent of the
departure process up to time t.

When specializing to (X, Σ) = ({a}∗, {a}), we recover Burke Theorem.

6 Examples

In this Section, we illustrate the above results. Another purpose is to show the
modelling flexibility provided by 0-automatic queues.

Consider the following three “types” of tasks.

- Classical type. Tasks are processed one by one with no simplification oc-
curing in the buffer: aa = aa. The corresponding pair is (, {1}) ∼ ({a}∗, {a}).

- Positive/negative type. Tasks are either positive (a) or negative (a−1) and
two consecutive tasks of opposite signs cancel each other: aa−1 = a−1a = 1. The
corresponding pair is (, {1,−1}) ∼ ((a), {a, a−1}). The relevance of this type
for applications is discussed in [7].

- “One equals many” type. It takes the same time to process one or several
consecutive instances of the same task: aa = a. Think for instance of a ticket
reservation where the number of requests is only reflected by an integer value in
a menu-bar choice. The corresponding pair is (, {a}) where is the Boolean
monoid = 〈 a | a2 = a 〉.

To model a server where several of the above types (and possibly several
copies of the same type) can be processed, one just has to perform the free
product of the corresponding monoids or groups. A couple of examples follow.

When the model is simple enough, the TTE can be solved explicitly to get
closed form formulas as for � below. In all cases and like any set of algebraic
equations, the TTE can be solved with any prescribed precision.

Zero-Automatic Queues 75

The free product � . Consider the 0-automatic triple ({a}∗ � 〈 b | b2 =
b 〉, Σ = {a, b}, ν), where ν(a) = p, ν(b) = 1 − p, p ∈ (0, 1). In Figure 2, we
illustrate the corresponding buffering mechanism.

Fig. 2. The queue M/M/(� , Σ) with a in white and b in dark gray

The Conditions C1-C2 of page 69 are satisfied. The unique solution r̂ of the
TE is: r̂(c) = p, r̂(b) = 1− p. The drift of the random walk is γ̂ = (2− p)p.

According to Theorem 5.2, the associated TTE have a unique admissible
solution that we denote by (ρ, r). Solving the TTE, we obtain that ρ is a solution
of f(Y) = 0, where:

f(Y) = μ2Y 3 + (μ2 + μλ+ λμp)Y 2 + (λ2p+ λμp)Y − λ2p2 + λ2p .

The relation between r(b) and ρ is given by: ρ = [r(b)(1 − p) + p]λ/μ.

10

8

6

4

2

0
10.80.60.40.20

Unstable zone

Zone of stablility
p

λ/μ

0
0.2

0.4

0
p0

0.5

0.2

0.6

0.4

1

0.6

0.8

t

1.5

1

0.8

2 2.5 3
1

ρ

Fig. 3. � : The stability region (left) and the load ρ (right)

In Figure 3 (left), we show the stability region of the queue. The abcissa is
p and the ordinate is λ/μ. In Figure 3 (right), we plot the load ρ as a function
of p and t = λ/μ, for p ∈ (0, 1) and λ/μ ∈ (0,min(1/γ̂, 2)). Hence, ρ is always
smaller or equal to 1, see Theorem 5.1.

The free product � � . Consider the queue associated with the triple
({a}∗ � (b) � 〈 c | c2 = c 〉, Σ = {a, b, b−1, c}, ν) where ν(a) = p, ν(b) = ν(b−1) =
q/2, and ν(c) = 1− p− q with p, q, p+ q ∈ (0, 1).

76 T.-H. Dao-Thi and J. Mairesse

10

8

6

4

2

0
10.80.60.40.20

Unstable zone

Zone of stablility
p

λ/μ

0
0.2

0.4

0
p0

0.5

0.2

0.6

0.4

1

0.6

0.8

t

1.5

1

0.8

2 2.5 3
1

ρ

Fig. 4. Stability region of the M/M/1/(� � , Σ) queue. The axis are p, q, and λ/μ.

The unique solution r̂ of the associated TE is

r̂(b) = r̂(b−1) =
1
2
−

√
1− q2

2(1 + q)
, r̂(a) =

p(1− r̂(b))
1− r̂(b)− qr̂(b) , r̂(c) = 1− r̂(a)− 2r̂(b).

Applying Theorem 2.1, the drift of the random walk is given by: γ̂ = p + (1 −
p − q)(1 − r̂(c)) + q(1 − 2r̂(b)). ¿From there, we obtain Figure 4: the stability
region is the region below the surface.

The free group and the free product � . Consider the 0-automatic
queue ((a), Σ = {a, a−1}, ν, r, λ,μ), where ν is a non-degenerate probability
measure on Σ. The Condition C1 is not satisfied, and the Condition C2 is
not satisfied when ν(a) = ν(a−1) = 1/2. (In this last case, the random walk
(X, ν) is null recurrent.) Consequently, only part of the results from Section 5
hold, and some new phenomena appear. Below, we give the results without full
justification. The details can be found in [3].

The drift of the random walk is easily computed: γ̂ = |ν(a) − ν(a−1)| .
Assume first that ν(a) = ν(a−1). Solving the TTE, we get that (λ/(2μ+λ), r)

is a solution for all r ∈ B̄. It means that the queue is stable and has a product
form distribution under any boundary condition. This interesting behavior can
be traced back to the fact that the random walk (X, ν) is not transient.

Assume now that ν(a) �= ν(a−1). There are 2 possible solutions for the TTE:

(ρ1, r1) =
(

λν(a)
μ + λν(a−1)

; (1, 0)
)
, (ρ2, r2) =

(
λν(a−1)

μ + λν(a)
; (0, 1)

)
. (21)

The two solutions correspond to extremal values for r, it means that in the
buffer, there is only one type of customer with probability 1. Here we recover a
model very close to the classical G-queue.

Set ρ = min{ρ1, ρ2} and ρ̄ = max{ρ1, ρ2} and define r and r̄ accordingly. We
have:

ρ < 1,
[
ρ̄ < 1

]⇐⇒ [
λγ̂ < μ

]
.

Zero-Automatic Queues 77

The stationary distribution of the 0-automatic queue ((a), Σ, ν, r, λ,μ) is:

πr(1Σ∗) = 1− ρ , πr(xn) = (1− ρ)ρn , ∀n ≥ 1, (22)

where x = a if ν(a) < ν(a−1), and x = a−1 if ν(a) > ν(a−1). When λγ̂ < μ,
the 0-automatic queue ((a), Σ, ν, r̄, λ,μ) also has a product form stationary
distribution of the form (22) with ρ̄ instead of ρ.

1086420

1.4

1.2

1

0.8

0.6

0.4

0.2

0

ρ

λ/μ

ρ

ρ

Fig. 5. (a) and (a) � {c}∗: the load as a function of λ/μ

To summarize, when λγ̂ < μ, there are two variants of the 0-automatic queue
with a product form. We would like to argue that one of the two makes more
“physical” sense.

To that purpose, consider the 0-automatic triple ((a) � {c}∗, {a, a−1, c}, ν)
with 0 < ν(c) � 1. Here, the Conditions C1-C2 are satisfied. According to
Theorem 5.2, there exists a single variant of the queue with a product form. The
question is to determine which one of the two solutions in (21) is recovered when
letting ν(c) go to 0.

Since the TTE are difficult to solve explicitly, we content ourselves with
numerical evidence. In Figure 5, we plot ρ, ρ̄, and ρ as functions of λ/μ. The
plots are for ν(a) = 3/5 and ν(c) = 0.01 in the case of ρ. We see that ρ tends to
the larger solution ρ̄. The two vertical lines have an abcissa equal to the inverse
of the drift γ̂−1 for the random walk on (a) and (a) � {c}∗ respectively.

References

1. J.W. Cohen. The single server queue. North-Holland, Amsterdam, 1982. 2nd
edition.

2. T.-H. Dao-Thi and J. Mairesse. Zero-automatic networks. In preparation.
3. T.-H. Dao-Thi and J. Mairesse. Zero-automatic queues. LIAFA reseach report

2005-03, Univ. Paris 7, 2005.
4. E. Dynkin and M. Malyutov. Random walk on groups with a finite number of

generators. Sov. Math. Dokl., 2:399–402, 1961.

78 T.-H. Dao-Thi and J. Mairesse

5. J.-M. Fourneau, E. Gelenbe, and R. Suros. G-networks with multiple classes of
negative and positive customers. Theoret. Comput. Sci., 155(1):141–156, 1996.

6. E. Gelenbe. Product-form queueing networks with negative and positive customers.
J. Appl. Probab., 28(3), 1991.

7. E. Gelenbe and G. Pujolle. Introduction to queueing networks. 2nd ed. John Wiley
& Sons, Chichester, 1998.

8. Y. Guivarc’h. Sur la loi des grands nombres et le rayon spectral d’une marche
aléatoire. Astérisque, 74:47–98, 1980.

9. R. Haring-Smith. Groups and simple languages. Trans. Amer. Math. Soc.,
279(1):337–356, 1983.

10. F. Ledrappier. Some asymptotic properties of random walks on free groups. In
J. Taylor, editor, Topics in probability and Lie groups: boundary theory, number 28
in CRM Proc. Lect. Notes, pages 117–152. American Mathematical Society, 2001.

11. J. Mairesse. Random walks on groups and monoids with a Markovian harmonic
measure. LIAFA research report 2004-05, Université Paris 7, 2004.

12. J. Mairesse and F. Mathéus. Random walks on free products of cyclic groups and
on Artin groups with two generators. LIAFA research report 2004-06, Université
Paris 7, 2004.

13. S. Sawyer and T. Steger. The rate of escape for anisotropic random walks in a
tree. Probab. Theory Related Fields, 76(2):207–230, 1987.

14. R. Serfozo Introduction to Stochastic Networks. Springer-Verlag, Berlin, 1999.
15. J. Stallings. A remark about the description of free products of groups. Proc.

Cambridge Philos. Soc., 62:129–134, 1966.

A Unified Approach to the Moments Based

Distribution Estimation – Unbounded Support

Árpád Tari1, Miklós Telek2, and Peter Buchholz1

1 Universität Dortmund, Germany
2 Budapest University of Technology and Economics, Hungary

arpad@sch.bme.hu, telek@hit.bme.hu, peter.buchholz@cs.uni-dortmund.de

Abstract. The problem of moments has been studied for more than a
century. This paper discusses a practical issue related to the problem
of moments namely the bounding of a distribution based on a given
number of moments. The presented approach is unified in the sense that
all measures of interests are provided as a quadratic expression of the
same Hankel-matrix.

Application examples indicate the importance of the presented ap-
proach.

Keywords: reduced moment problem, moments based distribution
bounding, Hankel matrix.

1 Introduction

The aim of making stochastic models of real systems is usually to evaluate some
performance parameters of the system. Since the parameters of interest are ran-
dom variables in stochastic models the goal of the analysis is often to char-
acterize these random variables by their distribution. Real-life problems often
require the solution of huge models and/or the evaluation of time demanding
numerical procedures. One way of avoiding these problems is to introduce cer-
tain simplifications that result in the reduction of the complexity, another way is
to approximate the measure. The approach proposed in this paper is along the
second line. Instead of calculating the distribution of the measure of interest we
calculate some of its first moments and approximate the distribution based on
them as it is depicted in Figure 1. The thickness of the arrows indicates the usual
complexity of the algorithms available in the literature for the different type cal-
culations. Having a complex stochastic model it is usually faster to calculate the
moments of the measure of interest than its distribution and the calculation of
an approximation or bounds of the distribution from the moments can be done
very efficiently.

The drawback of this approach is that the computation yields only an ap-
proximation of the distribution, not its exact values. Fortunately, one can have
an idea on the error of this approach because it is also possible to bound the
distribution based on known moments. As a consequence, it becomes possible

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 79–93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 Á. Tari, M. Telek, and P. Buchholz

measures

Distribution of performance
measures

Moments of performance

Stochastic model

Fig. 1. Using moments to estimate performance measures

to bound performance measures of real systems where moments are also com-
putable, but a direct analysis of the distribution is infeasible.

The task of moments-based distribution estimation can be formulated as
follows. We have an unknown distribution function σ(x) with support on [a, b]
and we know the following quantities:

μi =
∫ b

a

xi dσ(x), i = 0, 1, 2, . . . , 2n, (1)

where μi is called the ith moment of the distribution σ(x). We look for a proce-
dure to estimate σ(x) at some point x = C.

Many algorithms exist that are able to fit certain types of distributions to
some given moments. For example, it is usually obvious to fit distributions with
one parameter to μ1 and with two parameters to μ1 and μ2. Fitting of μ1 − μ3

with acyclic phase type distribution is presented in [4]. Appie van de Liefvoort
provided a method to fit arbitrary number of moments with matrix exponen-
tial distribution in [6]. Any of these methods provides a particular σ̃(C) value
assuming the considered class of distributions. Unfortunately, the error of this
estimate it is not known if the performance measure does not belong to the
considered class of distributions.

To overcome this difficulty we look for minimal and maximal estimates of
σ(C) over the class of all valid distribution functions. In this way we define a
lower and an upper limit, which bound all distribution functions in point C
having moments μi, (i = 0, 1, 2, . . . , 2n). No distribution function has smaller
and no has larger value at C, than the limits we present. The bounds are strict
in the sense that there exist always a distribution that reaches these values.

The problem to determine the distribution based on its moments is called
“the reduced moment problem” (where the word reduced means that only a finite
number of moments is known). The term was introduced by Stieltjes who did the
first extensive study on the subject in [14], though Chebyshev solved a particular
case of the problem as early as 1873. Markov, Hamburger, Hausdorff, Nevanlinna,
M. Riesz, Carleman and Stone wrote the most important articles about the
moment problem. One can find a good historical overview in [12]. The case
when the limits of the integral in (1) are (−∞,∞) is referred to as Hamburger

A Unified Approach to the Moments Based Distribution Estimation 81

moment problem. It means that the considered set of distributions has a support
in the whole (−∞,∞) interval (unbounded support), which is the most general
case.

The mathematical tools involved in the solution of this problem were contin-
ued fractions, approximate quadratures of integrals, singular integral equations,
orthogonal polynomials and operators in Hilbert space [12]. Our approach is
based mainly on matrix operations, though we also rely on the theory of orthog-
onal polynomials.

The method presented here is basically the same as the one in [9], but with
major improvements: we eliminated the moments transformation step of that
method and deduced simpler formulas which resulted in notable simplification
of the algorithm. In contrast with [9] here we present a unified approach where all
related quantities are expressed with quadratic matrix expressions of the same
matrix (M−1).

We intend to present this paper in a way that is simple and easy to understand
and does not require any special mathematical knowledge from the reader and we
also provide references to the related mathematical background. Furthermore we
present details about our implementation of the procedure, which is not always
obvious due to potential numerical problems.

The paper is organized as follows: Section 2 defines the conditions that have to
be fulfilled in order to use our estimation algorithm. Sections 3 and 4 summarize
the theoretical background and the bounding procedure of the moment based
estimation. In Section 5 a step-by-step instruction to evaluate the algorithm can
be found. Section 6 provides an overview of the applicability of the proposed
approach and gives insights into the numerical issues. An example is analyzed in
Section 7 focused on the strengths and applicabilities of our approach. Section
8 concludes the paper.

2 Necessary Conditions

Before calculating an estimate of σ(·) based on μi, (i = 0, 1, 2, . . . , 2n) we
need to check if a non-decreasing function exists whose moments are μi, (i =
0, 1, 2, . . . , 2n). This can be checked using the theorem of Hausdorff [1, p. 30]:

Theorem 1. [1] Let μ0,μ1,μ2, . . . ,μ2n be a sequence of real numbers. These
numbers can be a moments of a distribution function with support (−∞,∞) if
and only if

|Mk| ≥ 0, k = 0, 1, . . . , n, (2)

where

Mk =

⎛⎜⎜⎜⎝
μ0 μ1 . . . μk

μ1 μ2 . . . μk+1

...
...

. . .
...

μk μk+1 . . . μ2k

⎞⎟⎟⎟⎠ , k = 0, 1, . . . , n (3)

is the so-called Hankel-matrix of dimension (k + 1)× (k + 1).

82 Á. Tari, M. Telek, and P. Buchholz

Definition 2. [18] The n× n real matrix A is called positive definite, if

ξT Aξ > 0 (4)

for any nonzero real vector ξ ∈ Rn. This is equivalent to the requirement that
the determinants associated with all upper-left submatrices of A are positive.

According to this definition the matrix M is positive definite. The following
lemma states the same about its inverse.

Lemma 3. [18] If A is a n×n positive definite matrix, then A−1 is also positive
definite.

It follows from Theorem 1 that we have constraints only on an odd number
of moments (including μ0). Indeed, if μi, (i = 0, 1, 2, . . . , 2n) is a valid moment
sequence then μ2n+1 can take any value in (−∞,∞) and μi, (i = 0, 1, 2, . . . , 2n+
1) remains to be a valid moments sequence. As a consequence μ2n+1 does not
carry any information about the possible limits of σ(·), hence we simply discard
it if μ2n+2 is not known.

Theorem 4. [16] σ(·) consists of exactly n distinct points of increase if and
only if

|M0| > 0, |M1| > 0, . . . , |Mn−1| > 0, |Mn| = 0. (5)

In this case |Mn+1| = |Mn+2| = . . . = 0 and the moment problem is said to be
determined.

In the special case when the moment problem is determined there is exactly
one discrete distribution (with n points) with the given moments and upper and
lower bounds are identical.

From now on we assume non-determined moment problem and denote by M
the largest possible Hankel-matrix, that can be formed from the known moments:
M = Mn.

3 Discrete Reference Distribution

We construct a discrete distribution from the given moments. This distribution
has an interesting extremal property: among the distribution functions having
the μi, i = 0, 1, . . . , 2n moments it has the largest concentrated mass at point
C.

The construction of this discrete distribution can be considered as the solu-
tion of a system of equations. We have the μi, i = 0, 1, . . . , 2nmoments and point
C and we search for a discrete distribution with moments μi, i = 0, 1, . . . , 2n
and a maximum mass at C. The following lemma gives some more information
about this distribution.

A Unified Approach to the Moments Based Distribution Estimation 83

Lemma 5. [12, p. 42] A distribution function with exactly n + 1 points of in-
crease is uniquely determined by a single point of them. To each real value C
there corresponds one and only one distribution function with n+ 1 or n points
of increase, which contains C among its points. The distribution function has
n+ 1 points of increase, if C is not a root of the following polynomial:

P (x) =

∣∣∣∣∣∣∣∣∣
μ0 μ1 . . . μn

...
...

. . .
...

μn−1 μn . . . μ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣ (6)

and has n points otherwise.

If there is a discrete distribution supported exactly on n+1 points (including
C), then this discrete distribution can be constructed from the definition of
moments:

μi = pCi +
n∑

j=1

pj x
i
j . (7)

This task can also be formulated as finding the appropriate values of
x1, x2, . . . , xn, p1, p2, . . . , pn, p so that

M −RST = 0, (8)

where

R =

⎛⎜⎜⎜⎜⎜⎝
p p1 . . . pn

pC p1x1 . . . pnxn

pC2 p1x
2
1 . . . pnx

2
n

...
...

. . .
...

pCn p1x
n
1 . . . pnx

n
n

⎞⎟⎟⎟⎟⎟⎠ = (p c, p1 x1, . . . , pn xn) (9)

S =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
C x1 . . . xn

C2 x2
1 . . . x

2
n

...
...

. . .
...

Cn xn
1 . . . x

n
n

⎞⎟⎟⎟⎟⎟⎠ = (c,x1, . . . ,xn) (10)

and xi and c are vectors of order n formed by the powers of xi and C, respec-
tively:

xi
T =

(
1, xi, x

2
i , . . . , x

n
i

)T
, cT =

(
1, C, C2, . . . , Cn

)T
, (11)

0 is an (n+ 1)× (n+ 1) zero matrix.

Lemma 6. If A is a n×n nonsingular matrix, U and V are n×n nonsingular
matrices such that

A−UV T = 0, (12)

84 Á. Tari, M. Telek, and P. Buchholz

where 0 is a zero matrix of order n, then

V T A−1U = I, (13)

where I is identity matrix of order n.

Proof. Since U and V are of order n and their inverses exist we have

A = UV T ,

U−1A
(
V T

)−1

= I,

V T A−1U = I−1 = I,

where we took the inverse of both sides in the last step. �
According to Lemma 6 we can write:

I = ST M−1R

I =

⎛⎜⎜⎜⎝
cT

x1
T

...
xn

T

⎞⎟⎟⎟⎠ M−1 (p c, p1 x1, . . . , pn xn)

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
p cT M−1c p1 cT M−1x1 . . . pn cT M−1xn

px1
T M−1c p1 x1

T M−1x1 . . . pn x1
T M−1xn

...
...

. . .
...

pxn
T M−1c p1 xn

T M−1x1 . . . pn xn
T M−1xn

⎞⎟⎟⎟⎠ (14)

Note that x1, . . . , xn and C must be all different, otherwise S and R are
singular.

The element [1, 1] of this matrix equation gives:

p =
1

cT M−1 c
. (15)

This p has an important extremal property.

Theorem 7. p is the maximum possible mass at point C that a distribution may
have whose first 2n moments are {μ0, . . . ,μ2n}.

The difference of any 2 distributions (σ1(x) and σ2(x)) with first 2n moments
equal to {μ0, . . . ,μ2n} cannot be greater than p:∣∣∣∣∣

∫ C+0

−∞
dσ1(x)−

∫ C−0

−∞
dσ2(x)

∣∣∣∣∣ ≤ p . (16)

For a proof see Appendix A.
Let us consider the first columns of the matrices in (14) below [1, 1]:

p xi
T M−1c = 0, i = 1, 2, . . . , n . (17)

A Unified Approach to the Moments Based Distribution Estimation 85

According to Lemma 3 M−1 is a positive definite matrix and it follows that
p > 0. So the left hand side of (17) equals to 0 if xi (i = 1, 2, . . . , n) is the root
of the polynomial

w(x) = xT M−1c, (18)

where x is a vector consisting of the powers of the unknown x. This polynomial is
of order n, and the roots x1, . . . , xn must be real and different [15], which involves
that all the roots of w(x) appear in (14). So the points of the discrete distribution
are actually the roots of w(x) and they are real and distinct according to the
theory of orthogonal polynomials [15].

The diagonal elements of the matrix equation results the weights of the dis-
crete distribution:

pi =
1

xi
T M−1 xi

i = 1, 2, . . . , n , (19)

since M−1 is a positive definite matrix, it follows that xi
T M−1xi > 0.

If C coincides with one of the xi roots, then the discrete distribution would
have only n points which means that we should have M := Mn−1 as starting
point in creating a discrete distribution instead of Mn, otherwise all other steps
of the process are the same.

σ(x) denotes the discrete distribution supported on the x1, x2, . . . , xn, C
points with weights p1, p2, . . . , pn, p .

4 Lower and Upper Limits

The following theorem is the base for finding the minimum and maximum values
of all the functions having the same {μ0, . . . ,μ2n} moments.

Let σ∗(x) be a distribution satisfying (2) whose moments are μ0, . . . ,μ2n,
but different from σ(x).

Theorem 8. The following relations hold for σ(x) and σ∗(x):∫ C−0

−∞
dσ∗(x) ≥

∫ C−0

−∞
dσ(x), (20)∫ C+0

−∞
dσ∗(x) ≤

∫ C−0

−∞
dσ(x) + p . (21)

The proof of Theorem 8 is provided in Appendix B.
According to this theorem no function has either smaller and greater value

at C than σ(x)|x=C−0 and σ(x)|x=C+0 have. σ(x)|x=C−0 and σ(x)|x=C+0 can
be calculated as∫ C−0

−∞
dσ(x) =

∑
i:xi<C

pi = L,

∫ C+0

−∞
dσ(x) =

∑
i:xi<C

pi + p = U . (22)

86 Á. Tari, M. Telek, and P. Buchholz

The lower limit of the distribution is obtained as the sum of the weights of
the points smaller than C, i.e. L, and the upper limit is the sum of the lower
limit and the maximum mass at C, i.e. U .

The xi roots of (18) depend on C, but their location can be characterized by
a series independent of C according to the following theorem. Let us denote by
u1, . . . ,un the roots of P (x) defined in (6). These roots are also real and different
[15].

Theorem 9. If C is such that uj−1 < C < uj and the x1, x2, . . . , xn and
u1,u2, . . . ,un roots are increasingly ordered then the x1, x2, . . . , xn, C and the
u1,u2, . . . ,un numbers are mutually separated as

x1 < u1 < x2 < u2 < . . . < uj−1 < C < uj < xj < uj+1 < . . . < un < xn. (23)

The proof is provided in Appendix C.
According to Theorem 9 the number of xi roots smaller (greater) than C

equals to the number of ui roots smaller (greater) than C. In this way the ui

roots define the number of points in the summation in (22). Based on Theorem
9 it is sufficient to calculate only the xi roots smaller than C, (or alternatively
the xi roots greater than C).

Another consequence of Theorem 9 is that once the roots of P (x) are calcu-
lated (this has to be done only once independent of C), we only need to calculate
the roots of w(x) in either the (u1, C) or the (C,un) interval – depending on
which contains less ui roots. In this way we can reduce the number of roots to
compute (it is no more than

⌊
n
2

⌋
) and we know the intervals where the roots are

located, which allows the use of sophisticated numerical algorithms.

5 Steps of the Algorithm

Given: μ0,μ1, . . . ,μm and a set of C values where we need to bound the distri-
bution.

1. Test if the moments satisfy the

|Mk| ≥ 0 k = 0, 1, . . . n (24)

inequalities. We denote the number of applicable moments (for which the
(24) inequalities hold) by 2n+ 1 (μ0, . . . ,μ2n).

2. Find the roots of the polynomial P (x):

P (x) =

∣∣∣∣∣∣∣∣∣
μ0 μ1 . . . μn

...
...

. . .
...

μk−1 μk . . . μ2n−1

1 x . . . xk

∣∣∣∣∣∣∣∣∣
. (25)

The roots are called u1 < u2 < . . . < un .

A Unified Approach to the Moments Based Distribution Estimation 87

3. Do for each C point of interest
(a) If C = ui for some i then M := Mn−1 else M := Mn .
(b) Calculate the largest possible p:

p =
1

cT M−1 c
. (26)

(c) Calculate the points of the reference discrete distribution: if (u1, C) con-
tains less ui than (C,un), then find all the roots of the following poly-
nomial that are smaller than C :

c M−1 xT = 0, (27)

where
xT =

(
1, x, x2, . . . , xn

)T
. (28)

Else find all the roots of the same polynomial that are greater than C .
The results are the xi, i = 1, . . . , r points, where r denotes the number
of roots that had to be calculated: r ≤ ⌊

n
2

⌋
.

(d) Calculate the weights of the reference discrete distribution:

pi =
1

xi
T M−1 xi

, i = 1, 2, . . . , r . (29)

(e) L and U are given by the following formula, if the interval (u1, C) con-
tains less ui than (C,un):

L =
∑

i:xi<C

pi, U = L+ p, (30)

else

L = U − p, U = 1−
∑

i:xi>C

pi . (31)

6 Implementation Notes

The presented algorithm involves tasks which are numerically hard and unstable
in general (calculating determinants and matrix inverse, finding the roots of
a polynomial), but the matrices and the polynomials we consider have special
properties that commonly eliminate these numerical difficulties.

First of all we calculate determinants of symmetric matrices. We use the
LU-decomposition [8, p. 43 – 50] for the calculation. We experienced numerical
problems with matrices larger than 11 × 11, and this limits the applicability to
less than 23 moments using standard floating point numbers.

To invert a positive definite symmetric matrix we use Cholesky decomposi-
tion with backsubstitution (see [8, p. 96–98]). The Cholesky decomposition is

88 Á. Tari, M. Telek, and P. Buchholz

extremely stable numerically and approximately two times faster than the alter-
native methods for solving linear equations. The algorithm fails only when the
matrix is not positive definite.

For finding all the roots of P (x) we use the Laguerre′s method [8, p. 371 –
374]. In general it is not so easy to find the roots of a polynomial when we know
nothing about the location of the roots. But this algorithm works well, if all
the roots of a polynomial are real, because then it is theoretically guaranteed
that the method converges to a root from any starting point, and fortunately
this is the case for P (x). Technically it requires complex arithmetic even while
converging to real roots.

Finding the roots of the polynomial w(x) is an easier task (remember that
not all of them is needed). According to Theorem 9 a single real root of w(x)
lies in (ui−1,ui) (or in (ui,ui+1) if ui > C). Finding a root in a bounded interval
is much easier, than in the case when we know nothing about the position. For
this task we use the bisection algorithm [8, p. 350 – 354].

The overall algorithm is neither CPU, nor memory intensive. In order to
estimate a distribution in N points we perform

–
⌊

n+1
2

⌋
times – calculation of determinants;

– 1 time – finding n roots of P (x);
– 1 time – inversion of an (n+1)× (n+1) matrix ;
– N times – findings of max.

⌊
n
2

⌋
roots of w(x);

– 2N times – vector-matrix multiplications of size (n+1)× (n+1);
– 2N times – scalar product of vectors of size (n+1).

7 Example of Application

This section presents an example where the two-step performance analysis pro-
cess (model → moments → measure) presented in Figure 1 has advantage com-
pared to the direct computation of the value of a distribution function (model
→ measure).

A telecommunication system example was introduced in [3]. The authors
considered a bandwidth-sharing strategy on a single link for the following 3
traffic classes:

– rigid: always requires peak bandwidth allocation;
– adaptive: it has a peak and minimum bandwidth requirement, and the actual

transfer rate depends on the link utilization (for example live video trans-
fer or voice conversation, where quality degradation is allowed to a certain
degree, but high delay variance is not preferred);

– elastic: similar to the adaptive class, but these flows are in the system until
a given amount of data is transferred (e.g. ftp-connections, where delay is
allowed but data loss is not).

The number of ongoing rigid, adaptive and elastic traffic flows
(nrigid, nadaptive, nelastic) represents the system state in a given instant due to

A Unified Approach to the Moments Based Distribution Estimation 89

the applied memoryless assumptions. Figure 2(a) shows the part of the state
space, where nrigid = 1. The states, where flows cannot get their maximum
bandwidth are filled with grey. The numbers below the state identifier show the
actual bandwidth of the adaptive and elastic flows expressed in fraction of the
maximum required bandwidth.

1,0,0
(-;-)

1,1,2
(0.85;0.85)

1,2,2
(0.6;0.6)

1,2,3
(0.6;0.4)

1,1,3
(0.66;0.66)

1,2,1
(0.75;0.75)

1,2,0
(1;-)

1,1,1
(1;1)

1,1,0
(1;-)

1,0,3
(-;1)

1,0,2
(-;1)

1,0,1
(-;1)

λ1 λ1

λ1

λ1

λ1

λ1

λ1 λ1

λ3

λ3λ3λ3

λ3λ3λ3

λ3λ3

μ1 μ1μ1μ1

2μ1
2μ12μ12μ1

μ3 2μ3 3μ3

μ3

0.75μ3 1.2μ3
1.2μ3

1.7μ3 2μ3

(a) State space of the sample model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6
pr

ob
ab

ili
ty

accumulated reward (C)

Silva / Grassi / Sericola
15 moments
13 moments
11 moments
9 moments
7 moments
5 moments

(b) Bounds using moments

Fig. 2. Analyzing the sample model

Using this model one can evaluate the call blocking probabilities and average
throughput of adaptive and elastic flows, but it is also possible to check the
throughput threshold constraint, which is a constraint on the probability that
the user-perceived throughput during the transfer of a file falls below a certain
prescribed level. The calculation of the last measure requires evaluation of the
MRM.

We used the MRMSolve 2.0 tool [5] to compare the complexity of the direct
and the moments based analysis. The methods of Nabli and Sericola [7], De Souza
and Gail [13], Donatiello and Grassi [2] result directly in the distribution and
the method of Rácz and Telek [10,17] provides the moments of the performance
measure of interest.

[5] compares the different MRM solution methods. Here we only demonstrate
their limits of applicability. We used a dual AMD Opteron 248 (2.2 GHz) system
with 6 GB of memory running Linux operating system for the calculations. The
computation time was determined by the standard Unix time command.

Figure 2(b) shows that we get correct bounds applying our estimation
method. The more moments we use the tighter the bounds are. The methods of
De Souza–Gail, Donatiello–Grassi and Nabli–Sericola result the same values.

Figure 3 is a logarithmic plot of the computation time against the size of
the state space. The algorithms of De Souza–Gail and Donatiello–Grassi were
terminated after 5 hours with 5,600 states, the method of Nabli and Sericola
became unstable (resulting negative values of probabilities) at 7,800 states.

The method of moments (Rácz and Telek) is much faster than the others,
which was predictable because it yields less information about the distribution,
but its main advantage is its robustness compared to the other methods: it was

90 Á. Tari, M. Telek, and P. Buchholz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000

ex
ec

ut
io

n
tim

e
(s

)

size of state space

validity ends

validity endsvalidity ends

De Souza-Gail
Donatiello-Grassi

Nabli-Sericola
Bounds from 21 moments

(a) Comparison of methods

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 50000 100000 150000 200000 250000

ex
ec

ut
io

n
tim

e
(s

)

size of state space

Bounds from 21 moments

(b) Applicability of the method of moments

Fig. 3. CPU requirements of different MRM-solver algorithms

able to deal with a model of 260,000 states as shown in Fig. 3(b). Note that the
time of the computation is dominated by the moment calculation algorithm; the
estimation of the distribution based on the moments in 10,000 points required
1.44 s.

8 Conclusions

This paper presents an algorithm to bound a distribution based on a finite num-
ber of its moments. There are elaborated theoretical results about this problem,
but the solution proposed here is different from the ones found in the literature,
even though it relies on them. We also focused on the implementation and the
numerical issues of the problem.

The presented example demonstrates a case when the moments based analy-
sis is the only computationally feasible one among the solutions available in the
literature.

Further research is needed to investigate the numerical behaviour of the algo-
rithm with increased arithmetic precision. We also intend to improve the bounds
based on additional information about the distribution (e.g., distributions with
finite support). This kind of consideration requires refinements in the estimation
procedure.

References

1. N. I. Akhiezer. The classical moment problem and some related questions in
analysis. Hafner publishing company, New York, 1965. (translation of N. I.
Ahiezer: Klassiqeska� Problema Momentov i Nekotorye Voprosy Anal-
iza, published by Gosudarstvennoe Izdatel�stvo Fiziko-Matematiqesko�i
Literatury, Moscow, 1961).

2. L. Donatiello and V. Grassi. On evaluating the cumulative performance distribu-
tion of fault-tolerant computer systems. IEEE Transactions on Computers, 1991.

A Unified Approach to the Moments Based Distribution Estimation 91

3. G. Fodor, S. Rácz, and M. Telek. On providing blocking probability- and through-
put guarantees in a multi-service environment. International Journal of Commu-
nication Systems, 15:4:257–285, May 2002.

4. A. Horváth M. Telek and G. Horváth. Analysis of inhomogeneous Markov reward
models. Linear algebra and its application, 386:383–405, 2004.

5. G. Horváth, S. Rácz, Á. Tari, and M. Telek. Evaluation of reward analysis methods
with MRMSolve 2.0. In 1st International Conference on Quantitative Evaluation
of Systems (QEST) 2004, pages 165–174, Twente, The Netherlands, Sept 2004.
IEEE CS Press.

6. A. van de Liefvoort. The moment problem for continuous distributions. Technical
report, University of Missouri, WP-CM-1990-02, Kansas City, 1990.

7. H. Nabli and B. Sericola. Performability analysis: a new algorithm. IEEE Trans-
actions on Computers, 45:491–494, 1996.

8. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1993.
http://lib-www.lanl.gov/numerical/bookcpdf.html.

9. S. Rácz. Numerical analysis of communication systems through Markov reward
models. PhD thesis, Technical University of Budapest, 2000.

10. S. Rácz and M. Telek. Performability analysis of Markov reward models with rate
and impulse reward. In M. Silva B. Plateau, W. Stewart, editor, Int. Conf. on
Numerical solution of Markov chains, pages 169–187, Zaragoza, Spain, 1999.

11. P. Rózsa. Lineáris algebra és alkalmazásai. Tankönyvkiadó, 1991. in Hungarian.
12. J. A. Shohat and D. J. Tamarkin. The problem of moments. Americal Mathematical

Society, Providence, Rhode Island, 1946. Mathematical surveys.
13. E. de Souza e Silva and H.R. Gail. Calculating cumulative operational time dis-

tributions of repairable computer systems. IEEE Transactions on Computers, C-
35:322–332, 1986.

14. T. Stieltjes. Reserches sur les fractions continues. Ann. Fac. Sci. Univ. Toulouse,
2:1–122, 1894. in French.

15. G. Szegö. Orthogonal polynomials. American Mathematical Society, Providence,
Rhode Island, 1939.

16. Aldo Tagliani. Existence and stability of a discrete probability distribution by
maximum entropy approach. Applied Mathematics and Computation, 110:105–114,
2000.

17. M. Telek and S. Rácz. Numerical analysis of large Markovian reward models.
Performance Evaluation, 36&37:95–114, Aug 1999.

18. Eric W. Weisstein. Positive definite matrix.http://mathworld.wolfram.com/
PositiveDefiniteMatrix.html.

A Proof of Theorem 7

To prove the theorem we need the following lemma:

Lemma 10. [11] If A is a nonsingular n×n matrix, u and v are n dimensional
vectors and d is an arbitrary real number, then∣∣∣∣d vT

u A

∣∣∣∣ = |A| (d− vT A−1u) . (32)

92 Á. Tari, M. Telek, and P. Buchholz

The maximal mass according to [12, p. 72], can be written as:

pmax = −

∣∣∣∣∣∣∣∣∣
μ0 μ1 . . . μn

μ1 μ2 . . . μn+1

...
...

. . .
...

μn μn+1 . . . μ2n

∣∣∣∣∣∣∣∣∣ /
∣∣∣∣∣∣∣∣∣∣∣

0 1 C . . . Cn

1 μ0 μ1 . . . μn

C μ1 μ2 . . . μn+1

...
...

...
. . .

...
Cn μn μn+1 . . . μ2n

∣∣∣∣∣∣∣∣∣∣∣
(33)

By Lemma 10 we can write the denominator of the right hand side of (33) as
−|M | cT M−1c. In addition the numerator is the determinant of M , hence

pmax = − |M |
−|M | cT M−1c

=
1

cT M−1c
, (34)

which had to be proven. The second statement of the theorem is proved in [1,
p. 66].

B Proof of Theorem 8

Using σ1(x) := σ(x) and σ2(x) := σ∗(x) substitutions by Theorem 7 we have:∣∣∣∣∣
∫ C+0

−∞
dσ(x) −

∫ C−0

−∞
dσ∗(x)

∣∣∣∣∣ ≤ p . (35)

Resolving the absolute value sign this equals:∫ C+0

−∞
dσ(x) − p ≤

∫ C−0

−∞
dσ∗(x) ≤

∫ C+0

−∞
dσ(x) + p. (36)

By the construction of σ(x) it follows that∫ C+0

−∞
dσ(x) =

∫ C−0

−∞
dσ(x) + p . (37)

Substituting it to the leftmost inequality we get:∫ C−0

−∞
dσ(x) ≤

∫ C−0

−∞
dσ∗(x), (38)

which is (20). Now using σ1(x) := σ∗(x) and σ2(x) := σ(x) substitutions Theo-
rem 7 gives ∣∣∣∣∣

∫ C+0

−∞
dσ∗(x)−

∫ C−0

−∞
dσ(x)

∣∣∣∣∣ ≤ p. (39)

Resolving the absolute value sign we have:∫ C−0

−∞
dσ(x) − p ≤

∫ C+0

−∞
dσ∗(x) ≤

∫ C−0

−∞
dσ(x) + p, (40)

whose rightmost inequality gives (21).

A Unified Approach to the Moments Based Distribution Estimation 93

C Proof of Theorem 9

To prove the theorem we need the following lemma.

Lemma 11. [1, p. 64]) Assume that the {μ0, . . . ,μ2n−1} sequence satisfies (2)
and σ̃(x) is a distribution whose first 2n moments are μ0,μ1, . . . ,μ2n−1. In this
case, for i = 1, 2, . . . , n− 1 we have∫ ui+0

−∞
dσ̃(u) ≤ ρn−1(u1) + ρn−1(u2) + . . .+ ρn−1(ui) ≤

∫ ui+1−0

−∞
dσ̃(u), (41)

where u1, . . . ,un are the roots of P (x),

ρn(x) =
1∑n

j=0 |Pj(x)|2 , (42)

P0(x) = 1 and Pn(x) =
1√|Mn−1| |Mn|

∣∣∣∣∣∣∣∣∣
μ0 μ1 . . . μn

μ1 μ2 . . . μn−1

...
...

. . .
...

1 x . . . xn

∣∣∣∣∣∣∣∣∣ . (43)

If in addition it is known that σ̃(x) has more than n points of increase, then
the ≤ signs in (41) can be replaced by < signs and the following inequalities hold:

0 <
∫ u1−0

−∞
dσ̃(u),

∫ un+0

−∞
dσ̃(u) < μ0 . (44)

There are n+1 points of increase in σ(·) (x1, . . . , xn and C). Applying Lemma
11 for σ̃(·) = σ(·) implies that the ≤ signs are replaced by < signs in (41), i.e.∫ ui+0

−∞
dσ(u) <

∫ ui+1−0

−∞
dσ(u) . (45)

This means that in any (ui,ui+1) (i = 1, . . . , n−1) interval there must be at
least one point of increase of σ(x). Furthermore (44) implies that there is at
least one point of increase in the (−∞,u1) and at least one point of increase in
the (un,∞) intervals.

Considering that σ(·) has n+1 points of increase results the theorem.

Bounds for Point and Steady-State Availability:

An Algorithmic Approach Based on Lumpability
and Stochastic Ordering�

A. Bušić and J.M. Fourneau

PRiSM, Université de Versailles Saint-Quentin-en-Yvelines,
45, Av. des Etats-Unis 78000 Versailles, France

{abusic, jmf}@prism.uvsq.fr

Abstract. Markov chains and rewards have been widely used to eval-
uate performance, dependability and performability characteristics of
computer systems and networks. Despite considerable works, the nu-
merical analysis of Markov chains to obtain transient or steady-state
distribution is still a difficult problem when the chain is large or the
eigenvalues badly distributed. Thus bounding techniques have been pro-
posed for long to analyze steady-state distribution.

Here, we show how to bound some dependability characteristics such
as steady-state and point availability using an algorithmic approach. The
bound is based on stochastic comparison of Markov chains but it does
not use sample-path arguments. The algorithm builds a lumped Markov
chain whose steady-state or transient distributions are upper bounds in
the strong stochastic sense of the exact distributions. In this paper, the
implementation of algorithm is detailed and we show some numerical
results. We also show how we can avoid the generation of the state space
and the transition matrix to model chains with more than 1010 states.

1 Introduction

The use of Markov chains to model complex system reliability and availability
is becoming increasingly common. The definition and generation of large-scale
Markov models from high level specifications is relatively easy and efficient in
both time and memory requirements. The remaining difficulty is that of actu-
ally solving the Markov chain and deriving useful performance characteristics
from it.

Consider an irreducible finite continuous-time Markov chain X whose stochas-
tic transition rate matrix is given by Q. Then there exists the steady-state dis-
tribution π of the Markov chain X which is the unique solution to the system
of equations πQ = 0. An availability measure is defined by separating the states
into two classes, up states and down states. A state is said to be up if the sys-
tem is operational for that state; otherwise it is down. Let U denote the set of

� This work is supported by ACI Sécurité, project Sure-Paths.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 94–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bounds for Point and Steady-State Availability 95

up states. The reliability at time t is defined as the probability that the system
has always been in the up states between 0 and t:

R(t) = Pr(Xs ∈ U, ∀ s ∈ [0, t[).

The point availability is the probability that the system is operational at time t:

PAV (t) = Pr(Xt ∈ U)

and the steady-state availability is the limit, if it exists, of this probability. It can
also be defined as the expectation of a reward on the steady state distribution
of X : A =

∑
i|i is UP π(i). The usual way to compute these quantities is based

on the uniformization method. Let δ be an arbitrary positive value and λ =
maxi{−Q(i, i)}+δ. Let us build the uniformized version of Q by: P = (Id−Q/λ).
P is a discrete time Markov chain. Let us denote by PU the block of P associated
to transitions between up states and let π0 be the initial distribution of X . Using
uniformization, we can compute R(t) by:

R(t) =
∞∑

n=0

e−λt (λt)
n

n!
π0P

n
U 1

and, because of the properties of the exponential function, the summation can
be truncated. We first compute N(t, ε) which is the minimal value of n such that∑n

n=0 e−λt (λt)n

n! is larger than 1− ε, and we finally obtain an approximation of
R(t) which is a lower bound of the exact value:

R(t) ≈
N(t,ε)∑
n=0

e−λt (λt)
n

n!
π0P

n
U 1.

Let 1U be the indicator function of set U . We get PAV (t) after a similar con-
struction based on uniformization:

PAV (t) ≈
N(t,ε)∑
n=0

e−λt (λt)
n

n!
π0P

n1U .

As P and Q have the same steady-state distribution, we can use P to compute
or bound the availability. Thus, we must compute transient and steady state
probability distribution for matrix P . But for many problems these matrices
are so huge that this is not even possible to build them or to solve the steady-
state or the transient distribution. Thus we must use methods which provide a
guarantee on these reliability measures and which are not limited by the size of
the state space. Note that we are interested in bounding continuous time CTMC,
however, due to the uniformization process, we consider discrete time Markov
chain (DTMC).

Bounding methods have always received considerable attention in perfor-
mance or reliability evaluation. Indeed, the problems we have to solve are often

96 A. Bušić and J.M. Fourneau

too complex to be analyzed exactly. For instance, the numerical computation
of the steady-state distribution of Markov chains is difficult when the chain is
large or the eigenvalues badly distributed. The main approach for bounding
steady-state availability has been proposed by Muntz and his co-authors [11,9].
The method has been improved by Carrasco [1], Rubino and Mahevas [10]. The
theoretical background is based on Courtois’s polyhedral results on steady-state
equation [3]. However this method only works for bounding steady-state rewards.

Here we present a new method which allows to obtain bounds for transient
and steady-state rewards. Our approach is based on stochastic comparison of
Markov chains and lumpability. The stochastic comparison provides the guar-
antee for both transient and steady-state measures while lumpability allows
to consider smaller chains which are easier to solve. The theory is based on
an algorithmic derivation for sample-path comparison of Markov Chains based
on necessary conditions on the transition matrix. This approach restricted on
steady-state distribution and rewards has recently been surveyed [6], LIMSUB an
algorithm based on lumpability has been proved [8] and a tool has been demon-
strated [7]. Here we show how we can extend this theory for transient rewards as
point availability and reliability. As the theoretical background is not based on
Courtois’s results on steady state, the requirements of our method are distinct
from the assumptions needed by Muntz’s algorithm and its generalizations.

The comparison of Markov chains requires an order on the state space because
the order on random variables is defined by means of the set of non-decreasing
functions. Thus, we order the states such that the up states have indices that
are smaller than the indices of the down states, then we can define A as: A =∑

i π(i)r(i) where the reward r(i) is a non-increasing function which is equal to
1 for the first states of the chain (the up states) and 0 for all the other states. We
wish to compute a lower bound for A. We shall let this lower bound be denoted
by B. Notice that we may restate the problem by computing an upper bound
for 1 − A. This upper bound will be given by 1 − B. In this case, the reward
function is now a non-decreasing function on the state indices already defined.
This property is an important requirement of the strong stochastic ordering as
we will see in section 2.

Here we consider the modeling of highly available multicomponent systems
such as the example studied by Muntz [11] and Carrasco [1]. A typical system
consists of several disks, CPUs and controllers. We have two types of failures: soft
and hard. The failures may occur in batches and all the failed items compete to be
repaired. The system is operational if there is enough CPU, disks and controllers.
Clearly, if the number of components is large, the state space is huge and the up
states are relatively rare. Furthermore, if the system is highly available, the up
states concentrate most of the probability distribution. For instance, the system
depicted in Fig. 1 has more than 9.0 1010 states and 1012 transitions. This is even
not possible to generate and store the state space and the transition matrix. Thus
we show how we can operate in two phases: the first step consists in designing
an ad-hoc algorithm (called LL, Lumpable and Larger) which builds from the
specification a lumpable matrix which is larger in the stochastic sense. Of course,

Bounds for Point and Steady-State Availability 97

we store the lumped matrix instead of the original one. Then, during the second
phase, we can apply the new bounding algorithm LMSUB to obtain the final
matrix which can be numerically analyzed. As the chain is huge we must derive
very efficient algorithms. So we report in section 4 some details about an efficient
implementation of our new algorithm LMSUB (Lumpable Monotone Stochastic
Upper Bound). As LMSUB is strongly related to LIMSUB these details can also
be used to program a more efficient version of LIMSUB than the description in
[8]. LMSUB algorithm is devoted to the study of problems with reducible chains
while LIMSUB has several instructions to build an irreducible chain. This is the
main difference between these algorithms. LMSUB has been specially developed
to study reliability issues which imply chains with absorbing states.

PA PB

C1 C2

D1 D2 D3 D4 D5 D6

Fig. 1. System studied by Muntz and Carrasco

The paper is organized as follows. In section 2 we present the basic results
we need about stochastic bounds, lumpability and algorithmic comparison of
Markov chains. Section 3 is devoted to the theoretical aspects of bounding tran-
sient rewards. In section 4 we show how we can improve the algorithms to deal
with extremely huge state space. Finally, we present some numerical results in
section 5 for some typical problems introduced by Muntz and his colleagues [11].

2 Stochastic Bounds and Lumpability

We restrict ourselves to discrete time Markov chains (DTMC) with finite state
space E = {1, 2, . . . , n}. The strong stochastic ordering (“st-ordering” for short)
has been defined by Stoyan[14] by means of the set of non-decreasing functions.
For discrete random variables, we use the following algebraic equivalent formu-
lation which is much more convenient:

Definition 1. If X and Y are random variables taking values on a finite state
space {1, 2, . . . , n} and respectively having p and q as probability distribution
vectors, then X is said to be less than Y in the strong stochastic sense, that is,
X !st Y iff

∑n
j=k pj ≤

∑n
j=k qj for k = 1, 2, . . . , n.

Bounds on the distribution imply bounds on performance measures that are
non-decreasing functions of the state indices. Observe that performance measures
such as average population size, tail probabilities and so on are non-decreasing

98 A. Bušić and J.M. Fourneau

functions. In our context, the reward that we wish to bound (i.e., 1 − A) is a
non-decreasing function once the state space has been correctly ordered. Let us
now illustrate definition 1 by an example:

Example 1. Let α = (0.1, 0.3, 0.4, 0.2) and β = (0.1, 0.1, 0.5, 0.3). It follows then
that α !st β since: ⎡⎣0.2 ≤ 0.3

0.2 + 0.4 ≤ 0.3 + 0.5
0.2 + 0.4 + 0.3 ≤ 0.3 + 0.5 + 0.1

It has been known for some time that monotonicity [6] and comparability of
transition probability matrices yield sufficient conditions for the stochastic com-
parison of Markov chains and their transient and steady-state distributions. Fur-
thermore, st-monotonicity and st-comparability of matrices may be completely
characterized by linear algebraic constraints [6].

Definition 2 (St-comparison of transition matrices). Let P and R be two
transition matrices. P is st-smaller than R if and only if

∑n
k=j Pi,k ≤

∑n
k=j Ri,k

for all k and i between 1 and n.

Definition 3 (St-monotonicity of transition matrix). Let P be a transition
matrix. P is st-monotone if and only if

∑n
k=j Pi−1,k ≤

∑n
k=j Pi,k, for all k

between 1 and n and for all i between 2 and n.

We present now the relevant theorem for the stochastic comparison of Markov
chains [14]. The statement below assumes that P , the original matrix we want
to bound, is not monotone and that we want to obtain an upper bound.

Theorem 1. Let X(t) and Y (t) be two DTMC and P and R be their respective
stochastic matrices. If

• X(0) !st Y (0),
• R is st-monotone,
• P !st R,

then X(t) !st Y (t), for all t > 0. If X and Y have steady-state distributions
πX and πY , then πX !st πY .

Using this theorem and assuming that we want to compute an upper bound
for P , which is the transition matrix of the problem we have to solve, we must
find R such that: {∑n

k=j Pi,k ≤
∑n

k=j Ri,k, ∀ i, j,∑n
k=j Ri,k ≤

∑n
k=j Ri+1,k, ∀ i < n, j. (1)

The first set of inequalities states that P is stochastically smaller than R while
the second set shows that R is st-monotone. But these two sets of constraints
do not help for the numerical resolution for transient or steady-state expected
rewards. Thus we also impose additional restrictions on the structure of R in
order to facilitate the computation of the bounds. Specifically, we shall insist
here that the matrix R be ordinary lumpable.

Bounds for Point and Steady-State Availability 99

Definition 4. (Ordinary lumpability). Let P be the transition probability
matrix of an irreducible finite DTMC and let Ck, k = 1, 2, . . . ,M be a partition
defined on the states of this Markov chain. Thus, each state of the Markov chain
belongs to one and only one of the so-called macro-states Ck. The chain is said
to be ordinary lumpable with respect to the partition Ck if and only if, for all
states e and f belonging to the same arbitrary macro state Ck, we have∑

j∈Ci

pe,j =
∑
j∈Ci

pf,j , for all macro states Ci, i = 1, 2, . . . ,M. (2)

Fourneau et al.[8] have shown that ordinary lumpability constraints are con-
sistent with the relations specified by equation (1). Furthermore, they have de-
signed and implemented an algorithm, called LIMSUB, which constructs a ma-
trix R that possesses all these properties. The lumped matrix is much much
smaller than the original matrix. This lumped matrix is readily solved and the
bounds obtained from it may be applied to the original Markov chain.

We will now show how Theorem 1 and a slightly modified version of this
algorithm establish a common methodology for computing both transient and
steady-state bounds.

3 Bounds for Reliability: Extending the Theory

Our new LMSUB algorithm is based on LIMSUB [8] algorithm. Unfolding rela-
tions (1), and satisfing relations (2) for the bounding matrix and a given par-
tition, we obtain a lumpable, st-monotone upper bound. The proof of this new
algorithm is almost identical to the proof of LIMSUB algorithm so we refer the
reader to [8]. LMSUB algorithm, hovever, does not care about irreducibility and
can be, therefore, used to compute bounds of reducible matrices.

We will illustrate this algorithm on the following example. Assume that the
chain has 5 states and the state-space is partitioned into two macro-states: (1, 2)
and (3, 4, 5). Clearly, relations (1) allow that we compute the lumped matrix
column by column. And we must perform some additional computations at the
boundaries of the blocks to insure that the matrix is lumpable. In relations (1) we
replace inequalities by equalities during the first step. The relations are unrolled
and the equalities are arranged in increasing order for i and in decreasing order
for j. During the second step, we must modify the first column of the block to
insure that each block has a constant row sum in order to satisfy relations (2).
The matrices below show the initial matrix (on the left), then the matrix after
the computation of three columns using step 1, the modification of these elements
due to the second step, and finally the lumped matrix (on the right). The values
modified during the second step are boxed.⎡⎢⎢⎢⎢⎣

0.2 0.2 0.1 0.3 0.2
0.1 0.2 0.1 0.5 0.1
0.0 0.3 0.5 0.1 0.1
0.1 0.2 0.4 0.3 0.0
0.0 0.1 0.0 0.9 0.0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.1 0.3 0.2
0.1 0.4 0.2

0.1 0.4 0.2
0.1 0.4 0.2
0.0 0.7 0.2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0.2 0.3 0.2
0.1 0.4 0.2

0.3 0.4 0.2

0.3 0.4 0.2
0.0 0.7 0.2

⎤⎥⎥⎥⎥⎥⎦
[

0.3 0.7
0.1 0.9

]

100 A. Bušić and J.M. Fourneau

In Fourneau et al.[8], only the comparison of steady-state distributions was
considered. However, theorem 1 states that the sample-paths are ordered. Thus
the comparison of distributions is also true for transient distributions and re-
wards. And it is even not necessary that the chains are irreducible. It is possible
to use this theorem to compare probability of reaching an absorbing state. This
is particularly useful when we want to bound the reliability R(t) because we only
consider the restriction of the initial matrix to the up states and one absorbing
down state.

We know that “st”-bounds are associated with non-decreasing rewards. Then,
if X(t) !st Y (t) at time t and r(i) is a non-decreasing reward function, it follows
that ∑

i

r(i)Prob(X(t) = i) ≤
∑

i

r(i)Prob(Y (t) = i).

Now suppose that we use any algorithm which builds a lumpable upper
bound. Let Cp be an arbitrary macro-state of the partition we have used to
build the bound. Let us now design a new reward function s(p) as the maximum
of r(i) for states i in Cp. Clearly, we have two important properties:

Property 1. s(p) is non-decreasing because the states are initially ordered ac-
cording to the macro-state and r(i) is non-decreasing.

Property 2. At each time step t, the probability of being in macro state Cp

multiplied by the reward s(p) is greater than the sum of the individual rewards
multiplied by the probabilities of all the states in macro state Cp:

s(p)Prob(Y (t) ∈ Cp) ≥
∑
i∈Cp

r(i)Prob(Y (t) = i).

As the stochastic matrix associated with Y is lumpable, the left hand-side
of the former inequality can be computed using the lumped chain Z. Combining
both inequalities we get, for all t,∑

i

r(i)Prob(X(t) = i) ≤
∑

p

s(p)Prob(Z(t) = p).

Putting everything together we obtain the following more general result con-
cerning our algorithms.

Theorem 2. Let X be a finite aperiodic DTMC and let r() be non-decreasing
rewards defined on the states of X. Consider an arbitrary partition of the state
space such that states which belong to the same macro-state are contiguous.

Let Y be the finite DTMC obtained by LMSUB. Y is lumpable and let Z be
the lumped version of Y . Assume that X0 !st Y0. We define the rewards s() at
the macro-state level as the maximal reward for the individual states. Then:

– For any instant t, the expected reward at time t EX(r)(t) is upper bounded
by the expected reward EZ(s)(t).

– The steady-state reward EX(r) is upper bounded by EZ(s).

Bounds for Point and Steady-State Availability 101

And both computations EZ(r)(t) and EZ(r) require working on matrix Z which
is much smaller.

Let us now turn back to the reliability and point availability problem. Clearly,
we have two values for the reward: 0 and 1. So we suggest the following for the
partition and the corollary it clearly implies:

Rule 1. Do not group in the same macro-state up and down states.

Corollary 1. Using this rule, it is not even necessary to compute the maxi-
mum and we bound directly the point availability, the reliability and steady-state
availability of X by the same values computed on lumped matrix Z.

3.1 Avoiding the Generation of the Whole State Space

The fundamental requirement is the existence of the transition matrix on the
Markov chain on disk. But for some problem of reliability of multicomponent
systems, this is even not possible to generate and store the state space and the
transition matrix. For instance, the system studied by Muntz [11] and Carrasco
[1] has more than 9.0 1010 states and 1012 transitions. Thus the matrix stored in
sparse format represents more than one terabyte. Clearly, alternative description
based on tensor product [12] or MTMDD [2] may be useful for the transition
matrix. But in our problem even the state space is too large.

So, instead of generating the initial matrix using the visit of reachable states
from an initial one with a BFS (Breadth First Search) algorithm, we design a
new algorithm (called LL for Lumpable, and Larger) to build a matrix which is
larger in the stochastic sense and which is lumpable. Of course, we only build
and store the lumped matrix. We obtain a transition probability matrix as we
also perform the uniformization process during the generation. It is worthy to
remark that this matrix is not monotone in general. This matrix will be the
input of LMSUB algorithm in the next step. So we perform two aggregations of
the chain before the analysis.

A careful inspection of this state space shows that most of the states are
down states. So we use the following rules to design the first step macro-states:

Rule 2. Do not aggregate the up states during the first step.

Rule 3. During the first step aggregate the down states which have the same
total number of faults.

Now we have to find the transition probabilities within this new chain. Here,
we assume that the description of the model is based on events: an event has a
rate and when we apply an event to a state, we obtain the resulting state. The
rate does not depend on the states. These assumptions are used to explain how
we group transitions. They are not necessary and the same work can be done
with other formalisms as well. For the sake of concision, it is not possible to give
a proved version of the algorithm here. Algorithm LL is based on the following
ideas to obtain a lumpable larger bound:

102 A. Bušić and J.M. Fourneau

– Do not change the transition probabilities between simple states.
– The transition from a simple state x to an aggregated state Cp is the sum

of the transition probabilities from x to y, for all y in Cp.
– For transitions leaving an aggregated state Cp to an aggregated state Cq (if
Cq is a single state, just modify step 4).
1. label all transitions with the events,
2. group the transitions and the events according to the number of failures

(for instance, a “+1” transition models a new fault),
3. if an event is associated to two (or more) numbers of failures, then modify

the transitions as follows: all the transitions labeled with this event must
now join the largest state reached by this event from a state in macro-
state Cp.
For instance, if event u is associated to one or two new faults, then
modify the transitions such that now event u is always two new faults.

4. Then do the summation for all the states in Cq.

Finally we perform the uniformization. Clearly, this algorithm is problem depen-
dent. However, from this specification, we can clearly state that the matrix is
larger in the stochastic sense (we move transitions to upper states) and lumpable.

Finally, the total comparison process does not depend of the algorithm used
to obtain a lumpable stochastically larger matrix. And clearly the bound ob-
tained by LMSUB or LIMSUB of the matrix we obtain is also a bound of the
original matrix we are not able to store.

4 Improving the Algorithms

Even if LIMSUB algorithm described in [8] and our new algorithm are closely
related, there are several points concerning the implementation which differ con-
siderably. In this section we present the main modifications that speed up the
algorithm, especially in case of a transition matrix with relatively few non-zero
elements per state, compared to the size of the state space. It also allows the
computation of a bound of a reducible transition matrix which is necessary in
our approach to bound the reliability of repairable systems.

4.1 LMSUB, LIMSUB and the Irreducibility Issue

In [8] only the irreducible transition matrices with some additional properties
(see [8], Theorem 3) have been considered. To ensure that the irreducibility
property is maintained by LIMSUB algorithm the authors in [8] avoid deleting
transitions and, if necessary, add small sub-diagonal transitions.

When computing the bounds for transient distributions, we might want to
compute the bounds even for the reducible matrices. In order to obtain the
reliability bounds using our approach, for instance, we need to compute an st-
monotone upper bound of a matrix having one absorbing state (corresponding
to the down states of the model). In our implementation of this algorithm we
leave the choice to the user if the bound to be computed needs to be irreducible
or not.

Bounds for Point and Steady-State Availability 103

4.2 Avoiding Computations

The algorithm computes the bounding matrix column per column beginning
with the last column. It is clear that it is necessary to store only one column of
the matrix P at a time. Only after the first step (Algorithm 1) we know how to
modify the first column of the block to obtain a constant row sum. Furthermore
due to st-monotonicity, we know that the maximal row sum is obtained with the
last row of the block.

for bloc=M to 1 do
step1: for column=last(block) to first(block) do

computeCol(column);
end

step2: endBlock();
end

Algorithm 1: LIMSUB algorithm [8]

We keep the first step as described in [8]. For the second step, however,
there is no need to recompute the first column of a block as all the informa-
tion needed to compute the next column is only the vector of partial sums
ps

(j)
Q = (

∑n
k=j qi,k)n

i=1 of the lumpable bound Q for the current column j. As
the lumpability imposes that this sum is constant for all the rows of a block
and, due to the st-monotonicity constraints, we know that the maximal value is
obtained for the last row of a block, we need only to store one single value per
block. This value is already known at the end of step 1 of the algorithm, so the
second step can be completely avoided.

4.3 Sparse Matrix Implementation

The repairable system models have often a huge state space but relatively few
transitions per state, which makes interesting to use the sparse representation
of transition matrices. Our implementation of LMSUB algorithm exploits this
representation and uses the adapted data structures to reduce further the com-
putations. For instance, for the vector ps(j)Q of partial sums for the current col-
umn j of the lumpable bound Q, we store only the index and the value for
the rows this sum strictly increases (the elements of ps(j)Q are increasing be-

cause of the st-monotonicity constraints), i.e we store (i, ps(j)Q) if and only if∑n
k=j qi,k −

∑n
k=j qi−1,k > 0 (with

∑n
k=j q−1,k = 0). Notice that it is necessary

to use only one such structure (a list for example) during the whole computation
process as the elements of ps(j)Q are computed in increasing order, so the old ele-
ments, corresponding to the column j − 1 with indices smaller than the current
position, are no longer needed. This allows us to compute only the elements of
ps

(j)
Q whose value is different from ps

(j+1)
Q .

Furthermore, we know that those changes are due to the non-zero elements
in the column j of the original matrix P (st-comparison between P and Q).

104 A. Bušić and J.M. Fourneau

Between the two non-zero elements of P at the positions denoted by i1 et i2, it
is only necessary to update the list containing the information on ps(j)Q vector,
i.e. to erase some elements if they are smaller or equal to the last computed
element (at position i1).

We illustrate this on the example below. On the left is the initial matrix
and on the right the bound obtained by LMSUB algorithm. In the table in the
middle the first column represents the current column, the second the number
of computations performed for that column and the last one the sparse-vector
ps

(j)
Q throughout the computation process. One can notice that the number of

computations performed is sometimes even smaller (column 2) than the number
of non-zero elements in the corresponding column of the initial matrix. This is
the consequence of the fact that, once the partial sum of value 1 is encountered,
the computation of the current column is finished. Note that the “lump” steps
do not require computation following the previous remarks.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.6 0 0 0.1 0 0
0.4 0 0.5 0 0 0.1 0

0.1 0 0.3 0.4 0 0 0.2
0 0.7 0 0 0.3 0 0

0.1 0 0.5 0 0 0.4 0

0 0 0 0.8 0 0.2 0
0 0.5 0 0 0.1 0.3 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

col. comp. sparse vector ps
(j)
Q

7 2 {(3, 0.2)}
6 4 {(2, 0.1), (3, 0.2), (5, 0.4)}

lump: 0 {(1, 0.1), (3, 0.4)}
5 3 {(1, 0.1), (3, 0.4), (7, 0.5)}
4 2 {(1, 0.1), (3, 0.6), (6, 1)}
3 3 {(1, 0.1), (2, 0.6), (3, 0.9), (6, 1)}

lump: 0 {(1, 0.6), (3, 0.9), (6, 1)}
2 2 {(1, 0.7), (3, 0.9), (4, 1)}
1 0 {(1, 1)}

lump: 0 {(1, 1)}

⎡⎣ 0.4 0.5 0.1
0.1 0.5 0.4
0 0.6 0.4

⎤⎦

5 Numerical Results

In this section we give some numerical results for two examples of repairable
systems [1,11]. The first example is rather small and it is presented here in order
to illustrate the quality of our bounds as it is possible to solve the transient and
steady-state distributions of the original system. We use LMSUB and LIMSUB
but LL is useless. The second example has more than 9 × 1010 states with the
number of transitions of order of 1012. So we are not even able to generate the
whole transition rate matrix. Yet it is still possible to provide the bounds both
for transient and steady-state rewards using our approach.

In the first example we have a system composed of: a front-end (FE), a
database (DB), and two processing subsystems having each a switch (S), a mem-
ory (M) and two processors (P). The system is operational if it is possible to
access the database i.e. if front-end, database and at least one processing subsys-
tem are operational. A processing subsystem is operational if the corresponding
switch, memory and at least one processor are operational. The failures and
reparations of components are modeled by exponential distributions. The fail-
ure rates are 1/120h−1 for processors and 1/2400h−1 for other components and
repair rates are 1h−1 for all the components. A processor failure contaminates

Bounds for Point and Steady-State Availability 105

P1a

P1b

M1S1

P2a

P2b

M2 S2

FE

DB

Fig. 2. First example

the database with probability 0.01. Once the system is down the components do
not fail. The components are repaired by a single repairman with the priority
given to front-end and database, followed by switches and memories, and then
the processors. Within the same priority group the components are chosen at
random. We consider the preemptive policy.

The original model has 142 states from which 32 are operational. The max-
imal number of failed components is 7. Notice that for our approach the order
of states is important as all the up states must precede the down states. Fur-
thermore, we take into account the fact that the LMSUB algorithm yields better
bounds for the initial matrix which is almost st-monotone. The choice of par-
tition is also very important as the lumpability step of the algorithm performs
much better if the states within the same block have similar properties.

Within the same class of states (up or down) we ordered the states according
to the number of failed components. We chose the following partition : all the
states of the same class with the same number of failed components form a block,
except the states with only one failure which are left as single-state blocks. This
gives 17 blocks, 9 of them composed of up states.

Solving the original model we obtained steady-state availability A=0.998835.
The lower bound obtained by our method is 0.998667. In figure 3 we present the

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

0 20 40 60 80 100

po
in

t a
va

ila
bi

lit
y

time (hours)

Point availability

exact
lower bound

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

re
lia

bi
lit

y

time (hours)

Reliability

exact
lower bound

Fig. 3. The exact point availability (left) and reliability (right), and their lower bounds
for the first example

106 A. Bušić and J.M. Fourneau

transient bounds for point availability and reliability for this example. We can
notice that both results are really close to the exact values.

The second example is presented in figure 1. The system is operational if at
least one of processor PA or PB is operational, at least one controller of each
type and at least three out of four disks of each of the six clusters are operational.
Only one processor of each type is active and only the active processors can fail.
A failure of active processor PA is propagated to the active processor PB with
probability 0.1. The failures and reparations of components are exponentially
distributed. The failure rates are given in table 1. There are two failure modes
(soft and hard) which occur with equal probability. When the system is opera-
tional the repair rates are 0.1h−1 in the soft mode and 0.05h−1 in the hard mode.
When the system is down, the rates are 10 times larger as the consequence of
the additional precautions to be taken when the system is operational. There is
only one repairman who chooses the component to be repaired at random from
the set of failed components.

Table 1. Failure rates (h−1) for the second example

Component PA, PB and C1 C2 D1 D2 D3 D4 D5 D6

Failure Rate 1/2000 1/40001/60001/80001/100001/120001/140001/16000

The model has only 36 components of 10 different types yet the state-space is
of order of 9.0 1010. We used the technique described in section 3.1 to reduce the
state space. All the up states are generated and the down states are aggregated
according to the number of failed components.This gives anewmodelwith 1312235
states (1312200 up and 35 down macro-states) and 25754089 transitions.

First let us consider the ordering of the states and the edge between up states
and down states. We have chosen the up state with the maximal number (15)
of simultaneous failures for the system to still be operational, in which all the
failures are hard failures and the only operational processor is PB, to be the last
up (lastUP) state. Let Dk denote the down macro-state with k failures. Then
for all Dk, k ≥ 3 there is a transition (Dk, Dk−1) and the only transition from
down macro states to up states is the transition (D2, lastUP). Also, there are
transitions (Dk, Dk+1), ∀k < 36 and (Dk, Dk+2), ∀k < 35, so the new transition
matrix is irreducible. It is also aperiodic due to the uniformization constant
λ > maxi{−Qi,i}, so we can use the optimized version of LIMSUB algorithm.

In the second step the up states are reordered increasingly in number of failed
components followed by number of hard failures. The up states are followed
by the down states ordered increasingly in number of failed components. The
partition contains 172 subsets: all the up states, except lastUP state, with the
same number of failed components and the same number of hard failures are
aggregated forming 136 blocks followed by lastUP state then by 35 one-state
blocks corresponding to the down states, already aggregated in the first step.

The lower bound for steady-state availability of the second system obtained
by this method is 0.999132158 (upper bound for unavailability is 0.000867842).
The lower bounds for point availability are given in figure 4 (left).

Bounds for Point and Steady-State Availability 107

In table 2 we give computational times for all three steps. For the third step
we also report the time needed by LIMSUB [8] algorithm (on the same machine).
We can notice that on this example our algorithm is approximately twice faster.
This is a consequence of the improvement made during the normalization part
of the algorithm as well as the better utilization of the matrix sparse structure.

When we bound the reliability, we are only interested in up states. We are
computing the lower bound for reliability with the st-monotone upper bound of
the chain. We obtain this bound by aggregating all the down states into one
absorbing state. We ordered up states and regrouped them into blocks according
to the number of failed components followed by the number of hard failures. This
gives us a partition into 137 blocks: 136 corresponding to up states and 1 to the
absorbing down state. The lower bounds for reliability for the second system
are reported in figure 4 (right).

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

0 200 400 600 800 1000

po
in

t a
va

ila
bi

lit
y

time (hours)

Point availability

lower bound

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 200 400 600 800 1000

re
lia

bi
lit

y

time (hours)

Reliability

lower bound

Fig. 4. Lower bounds for point availability and reliability for the second example

Table 2. CPU times in seconds on a PC (CPU 3.20GHz, 896MB of RAM) to compute
the point availability for the second example

generation reordering LMSUB (ird) LIMSUB [8]

182.0 95.52 56.54 107.3

6 Conclusion

In this paper we have extended the theory of algorithmic bounds to reliability
and availability problems. The theory now includes transient and steady-state
analysis and the Markov chains may be irreducible or have an absorbing state.
We have also improved the algorithms to be more efficient as the chains are very
large. We have also suggested that high level formalisms may be used to build
lumpable matrices which are larger in the stochastic sense. Of course, only the
lumped matrix is generated and stored. A version of this algorithm based on
Stochastic Automata Network is currently under development.

108 A. Bušić and J.M. Fourneau

References

1. J.A. Carrasco, “Bounding steady-state availability models with group repair and
phase type repair distributions”, Performance Evaluation, V35 (1999), 193–204.

2. G. Ciardo and A.S. Miner. “Storage alternatives for larger structured state spaces.”
In R. Marie, B. Plateau, M.Calzarossa, and G. Rubino, editors, Proc. 9th Int. Conf.
on Modelling Techniques and Tools for Computer Performance Evaluation, LNCS
1245, pages 44-57, St. Malo, France, June 1997. Springer-Verlag.

3. P.J. Courtois, P. Semal, “Bounds for the positive eigenvectors of nonnegative ma-
trices and their approximations”, J. ACM, V31 (4) (1984), 804–825.

4. T. Dayar, J.M. Fourneau, N. Pekergin, “Transforming stochastic matrices for
stochastic comparison with the st-order”, RAIRO-RO, V37 (2003), 85–97.

5. T. Dayar, N. Pekergin: “Stochastic comparison, reorderings, and nearly completely
decomposable Markov chains.” In: Proceedings of the International Conference on
the Numerical Solution of Markov Chains (NSMC’99), (Ed. Plateau, B. Stewart,
W.), Prensas universitarias de Zaragoza. (1999) 228-246.

6. J.M. Fourneau, N. Pekergin. “An algorithmic approach to stochastic bounds”,
LNCS 2459, Performance evaluation of complex systems: Techniques and Tools,
pp 64–88, 2002.

7. J.M. Fourneau, M. Lecoz, N. Pekergin and F. Quessette, “An open tool to compute
stochastic bounds on steady-state distributiuon and rewards”, IEEE Mascots 2003,
Orlando, USA.

8. J.M. Fourneau, M. Lecoz, F. Quessette, “Algorithms for an irreducible and
lumpable strong stochastic bound”, Numerical Solution of Markov Chains, 2003,
USA.

9. J.C.S. Lui, R. Muntz, “Computing bounds on steady state availability of repairable
computer systems”, J. ACM, V41 (4) (1994), 676–707.

10. S. Mahevas, G. Rubino, “Bounding asymptotic dependability and performance
measures”, Second IEEE International Performance and Dependability Sympo-
sium, USA, 1996, 176–186.

11. R. Muntz, E. de Souza e Silva, A. Goyal, “Bounding availability of repairable
computer systems”, IEEE Trans. on Computers, V38 (12) (1989), 1714–1723.

12. B. Plateau, “On the stochastic structure of parallelism and synchronization models
for distributed algorithms”, Proc. of the SIGMETRICS Conference, Texas, 1985,
147–154.

13. W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”, Prince-
ton University Press, 1994.

14. D. Stoyan, “Comparison Methods for Queues and Other Stochastic Models”, Wiley,
1983.

Stochastic Model Checking with Stochastic
Comparison�

Nihal Pekergin1,2 and Sana Younès1

1 PRiSM, Université de Versailles Saint-Quentin en Yvelines,
45 Av. des Etats Unis, 78000 Versailles, France

2 Centre Marin Mersenne, Université Paris 1, 75013 Paris, France
{nih, sayo}@prism.uvsq.fr

Abstract. This paper presents a stochastic comparison based method
to check state formulas defined over Discrete Time Markov Reward Mod-
els. High-level specifications like stochastic Petri nets, Stochastic Au-
tomata Networks, Stochastic Process Algebras have been developed to
construct large Markov models. However computation of transient and
steady-state distributions are limited to relatively small parameter sizes
because of the state space explosion problem. Stochastic comparison
technique by which both transient and steady-state bounding distribu-
tions can be computed, lets to overcome this problem. On the other
hand, bounding techniques are useful in Model Checking, since we check
generally formulas to see if they meet some bounds or not. We propose
to apply stochastic bounding algorithms to construct bounding distribu-
tions and to check formulas through these distributions.

1 Introduction

Model checking has been introduced as an automated technique to verify func-
tional properties of systems expressed in a formal logic like Computational
Tree Logic (CTL) [6]. This formalism has been extended with some probabilis-
tic operators to Probabilistic CTL and Continuous Stochastic Logic (CSL)[3].
Stochastic Model Checking is typically based on discrete time or continuous
time Markov chains or Markov decision processes. For performance and/or de-
pendability applications, stochastic model checking has been extended to mod-
els with some rewards on states and/or transitions in which logic formalisms
PRCTL(Probabilistic Reward Computational Tree Logic)[2] and CSRL
(Stochastic Reward Logic)[13] are used.

We propose to check the reward based formulas of stochastic models by ap-
plying stochastic comparison approach. Indeed, to check these formulas transient
or steady-state distribution of the underlying Markov chain must be computed.
However the numerical computation of these distributions may be very complex
or intractable because of the state space explosion. The stochastic comparison
has been shown to be an efficient method to overcome this problem [10]. This

� This work is partially supported by ACI Sécurité SurePath

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 109–123, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 N. Pekergin and S. Younès

method consists in computing bounding distributions rather than the exact dis-
tributions by analysing “simpler” bounding chains. Simple bounding models
can be constructed by reducing state space size or by imposing some specific
structures on bounding chains which let to apply some specific methods like
matrix-geometric, product form solution, etc.

The stochastic comparison has been largely used in different areas of applied
probability as well as in reliability, performance evaluation, dependability ap-
plications [16,18]. There are different stochastic ordering relations and the most
known is the strong stochastic ordering (≤st) which yields the comparison of
the underlying distributions. Comparison in the sense of this ordering can be
established by coupling constructions, by sample-path comparisons or by some
analytical methods. However these are generally model oriented techniques. We
apply here algorithmic stochastic bounding techniques to construct bounding
models in a fully automated manner. Therefore the proposed methodology can
be easily integrated to model checkers.

Let us explain the proposed methodology: We are interested in formulas de-
fined as rewards on distributions of a time-homogeneous Discrete Time Markov
Chain (DTMC). Thus we need to compute a transient or steady-state distribu-
tion. We construct bounding chains by aggregating the states of the original one
by means of the algorithm given in [11] which based on the stochastic monotonic-
ity and the comparison of stochastic matrices and the lumpability of Markov
chains. The rewards are evaluated through bounding distributions. The state
space size may be drastically reduced by aggregation, that will reduce the nu-
merical complexity to compute distributions of the bounding chains. Therefore it
is possible to apply numerical methods to compute efficiently the bounding dis-
tributions. Obviously, there are some constraints to construct aggregated state
space and to order macro-states because of the stochastic ordering constraints
and the underlying formula. These issues are discussed in section 4.

The bounding techniques can be applied to efficiently check stochastic mod-
els since exact values are not always necessary, and it suffices to show that the
underlying formulas meet some bounds. In [7], the bounds on state reachabil-
ity probabilities of Markov decision processes are computed by abstraction of
the underlying model defined on smaller state spaces. If the verification of the
considered property cannot be concluded, the abstract model is refined until a
verdict to the property can be deduced from the computations. For reward based
model checking, generally used rewards such as average population, loss rates,
blocking probabilities are defined as non decreasing functions of the transient
or steady-state distributions. Thus the stochastic comparison in the sense of the
≤st ordering which is associated to the non decreasing functions can be applied
to bound such rewards.

The remaining of the paper is organised as follows: in section 2, we provide
a brief introduction of stochastic comparison. In section 3, we present reward
based stochastic model checking formalism given in [2]. Section 4 is devoted
to the proposed methodology to improve the stochastic reward based model
checking. Finally, in section 5, we give some numerical examples to illustrate the
proposed methodology.

Stochastic Model Checking with Stochastic Comparison 111

2 Stochastic Comparison

In this section, we present some preliminaries on the stochastic comparison
method and we refer to the books [16,18] for the theoretical issues and different
applications of this method.

Definition 1. Let X and Y be random variables taking values on a totally or-
dered space S. Then X is said to be less than Y in the strong stochastic sense,
(X ≤st Y) if and only if E[f(X)] ≤ E[f(Y)] for all non decreasing functions
f : S → R, whenever the expectations exist.

Indeed ≤st ordering gives the comparison of the underlying probability dis-
tribution functions: X ≤st Y ↔ Prob(X > a) ≤ Prob(Y > a) ∀a ∈ S. Thus
it is more probable for Y to take larger values than for X. Since the ≤st ordering
yields the comparison of sample-paths, it is also known as sample-path ordering.

We give in the next proposition the ≤st comparison in the case of finite state
space S = {1, 2, · · · , n}.

Property 1. Let X, Y be random variables taking values on S = {1, 2, · · · , n}
and p, q be probability vectors which are respectively denoting distributions of
X and Y .
X ≤st Y ↔∑n

i p[i] ≤ ∑n
i q[i] ∀i = {n, n− 1, · · · , 1}

The stochastic comparison of random variables has been extended to the com-
parison of Markov chains.

Definition 2. Let {X(t), t > 0} and {Y (t), t ≥ 0} be two DTMC taking values
in S. {X(t), t ≥ 0} is said to be less than {Y (t), t ≥ 0} in the strong stochastic
sense, that is, {X(t), t ≥ 0} ≤st {Y (t), t ≥ 0} iff X(t) ≤st Y (t) ∀t.

The comparison of Markov chains yields the comparison of transient dis-
tributions at each time, and if the limit distributions exist, we have also the
comparison of the steady-state distributions. It is shown that monotonicity and
comparability of time-homogeneous DTMC yield sufficient conditions for their
stochastic comparison [16].

Theorem 1. Let {X(t), t ≥ 0} and {Y (t), t ≥ 0} be two time-homogeneous
DTMC and P and Q be their respective probability transition matrices. P [i, ∗]
indicates row i of matrix P . Then {X(t), t > 0} ≤st {Y (t), t > 0}, if

• X(0) ≤st Y (0),
• st-monotonicity of at least one of the matrices holds, that is,

either P [i, ∗] ≤st P [i + 1, ∗] or Q[i, ∗] ≤st Q[i + 1, ∗]

• st-comparability of the matrices holds, that is, P [i, ∗] ≤st Q[i, ∗] ∀i.

112 N. Pekergin and S. Younès

In [1] an algorithm based on this theorem is given to construct an optimal
st-monotone upper bounding Markov chain. This algorithms takes an irreducible
stochastic matrix P as input and returns as output a st-monotone upper bound-
ing matrix, Q, such that, P ≤st Q. Indeed, the monotonicity and comparability
constraints can be given as in equation 1. Note that inequalities are replaced by
equalities to construct optimal bounds.{∑n

k=j Q[1, k] =
∑n

k=j P [1, k]∑n
k=j Q[i + 1, k] = max(

∑n
k=j Q[i, k],

∑n
k=j P [i + 1, k]) (1)

In this algorithm that will be called Vincent’s algorithm, the construction is
done from the last column to the first column and within a column from the
first row to the last row. This idea has been extended to devise algorithms
to construct st-monotone, bounding stochastic matrices having some specific
structures to simplify their numerical analysis [10]. In [5,11] it is shown that
ordinary lumpability constraints given in the following Property 2 are consistent
with the st-monotonicity. Thus for a given P , it is possible to construct a st-
monotone, lumpable, bounding matrix. Let us give the lumpability constraints
for discrete time Markov chains.

Property 2. Let Q be the probability transition matrix of an irreducible finite
time-homogeneous DTMC, A = {A1, A2, · · · , An} be a partition of states. The
chain is ordinary lumpable according to partition A, if and only if for all states
e and f in the same arbitrary macro state Ai, we have:∑

j∈Ak

Q[e, j] =
∑

j∈Ak

Q[f, j] ∀ macro− state Ak ∈ A

The algorithm given in [11] (LIMSUB Algorithm) constructs for a given
irreducible, time-homogeneous stochastic matrix P , and partition of states, A =
{A1, · · · , Am}, a total order relation on A : A1 ≤ A2 ≤ · · · ≤ Am, a st-
monotone, lumpable according toA, irreducible upper bounding matrixQ. There
are two steps in this algorithm. The first step is based on Vincent’s algorithm to
satisfy the stochastic monotonicity and comparison constraints (see equations 1)
while the second step is to satisfy the lumpability constraints. We explain this
algorithm through the following example. Let P be the input matrix and state
space be divided into two partitions A1 = {1, 2} and A2 = {3, 4}. Q is the matrix
computed from Vincent’s algorithm in the first step. Thus Q is ≤st monotone
and upper bounding matrix of P . The modified entries are given bolded and sup-
scripts indicate if the probabilities are increased or decreased. In the second step,
the sum of probabilities in each macro-state is adjusted to make Q lumpable.
Hence Qsup computed from Q is lumpable.

P =

⎡⎢⎢⎣
0.2 0.2 0.2 0.4
0.2 0.1 0.4 0.3
0.1 0.4 0.2 0.3
0.1 0.1 0.4 0.4

⎤⎥⎥⎦ Q =

⎡⎢⎢⎣
0.2 0.2 0.2 0.4
0.2 0.1 0.3− 0.4+

0.1 0.2− 0.3+ 0.4+

0.1 0.1 0.4 0.4

⎤⎥⎥⎦

Stochastic Model Checking with Stochastic Comparison 113

Qsup =

⎡⎢⎢⎣
0.2 0.1− 0.3+ 0.4
0.2 0.1 0.3 0.4
0.1 0.1− 0.4+ 0.4
0.1 0.1 0.4 0.4

⎤⎥⎥⎦ Qsup =
[

0.3 0.7
0.2 0.8

]

It is also possible to derive lower bounds from the following algorithm by
reversing the order of states and then running algorithm LIMSUB on the per-
muted P . By permuting again the computed upper bounding matrix, we obtain
the st-monotone, lower bounding matrix, Qinf . In the sequel, the upper bound-
ing matrix will be denoted by Qsup.

The stochastic comparison approach consists in analysing the bounding ma-
tricesQinf andQsup to provide bounds on transient distributions and the steady-
state distribution of P . Obviously the numerical analysis of the lumpable bound-
ing matrices is much easier than that of P due to the state space reduction.

3 Model Checking with Discrete Time Reward Markov
Chains

The underlying system is modelled by a labelled, finite, ergodic (irreducible,
aperiodic, positive recurrent) discrete time Markov chain D = (S, P, L) where S
is a finite set of states, P : S×S → [0, 1] is the transition matrix and L : S → 2AP

is the labelling function which assigns to each state s, the set L(s) of atomic
propositions valid in s. AP denotes the finite set of atomic propositions.

For Markov chains, there are two types of state probabilities: transient proba-
bilities where the system is considered at time n. Let π(s, s′, n) be the probability
that the system is in state s′ within n steps given the system starts in state s.
The steady-state probabilities are the long-run probabilities where the system
reaches an equilibrium: π(s, s′) = limn→∞π(s, s′, n) is the steady-state proba-
bility of state s′. For ergodic DTMC, π(s, s′) exists and is independent of the
initial state s and that will be noted by π(s′).

We are interested in the Probabilistic Reward CTL (PRCTL) logic given in
[2]. It is indeed the extension of the Probabilistic CTL (PCTL) logic [12] to
specify performability measure over Discrete Time Markov Reward Models. In
these models a reward (cost) is associated to each state s. Let ρ : S → R≥0 be
the reward assignment function. Every time the system enters (leaves) state s,
it incurs reward ρ(s) which can be a constant or a random variable [14]. We give
briefly the syntax of the PCTL logic.

Let n ∈ N ∪ {∞} and I be an interval of real numbers, namely I ⊆ R≥0,
p ∈ [0, 1], and � a binary comparison operator. The syntax of PRCTL:

φ ::= true | a | φ ∨ φ | ¬φ | P�p(φ UJ
I φ) | L�p(φ)

In
I (φ) | Cn

I (φ) | En
I (φ) | EI(φ)

The first four operators are classical logic operators, while the fifth and the sixth
ones are from the PCTL logic. The path formula P�p(φ UJ

I φ) asserts that the

114 N. Pekergin and S. Younès

probability for paths starting in s and satisfying φ UJ
I φ meets the bound �p. The

state formula L�p(φ) asserts that the steady-state probability to be in φ states
meets the bound �p.

The last four formulas are inspired from performance measures of DTMC
with rewards [14] and included in the PRCTL logic [2]. These are all state
formulas and defined from transient or steady-state distribution of the underlying
Markov chain.

The formula In
I (φ) is satisfied, if the instantaneous expected reward in φ-

states (states which satisfy formula φ) at the n-th step, starting in state s,
meets the bounds of I:

In
I (φ) is satisfied iff

∑
s′|=φ

π(s, s′, n)ρ(s′) ∈ I (2)

The formula Cn
I (φ) is satisfied, if the expected accumulated reward in φ-

states up to the n-th transition meets the bound of I:

Cn
I (φ) is satisfied iff

n−1∑
i=0

∑
s′|=φ

π(s, s′, i)ρ(s′) ∈ I (3)

The formula En
I (φ) is satisfied if the expected reward per unit time in φ-states

up to the n-th transition meets the bound of I:

En
I (φ) is satisfied iff

1
n

n−1∑
i=0

∑
s′|=φ

π(s, s′, i)ρ(s′) ∈ I (4)

The formula EI(φ) is the long-run expected reward per unit-time (reward
rate) for φ-states which is the limiting case of En

I (φ). (EI(φ)=limn→∞ En
I (φ)).

If the steady-state exists, EI(φ) is satisfied if:

EI(φ) is satisfied iff
∑
s′|=φ

π(s′)ρ(s′) ∈ I (5)

The other state operator of the PCTL logic, L�p(φ) can be also defined by
means of the steady-state distribution and it is satisfied if:

L�p(φ) is satisfied iff
∑
s′|=φ

π(s′) � p (6)

4 Model Checking by Stochastic Comparison

In this section we explain the proposed methodology to check reward based
stochastic models by applying stochastic comparison method. This methodology
is composed of three main steps and the treatment in each step depends on the
considered formula φ that will be checked:

Stochastic Model Checking with Stochastic Comparison 115

1. Partition of the state space and ordering of macro-states.
2. Construction of the bounding chains through algorithm LIMSUB (see section

2) and computing transient or steady-state distribution as a function of the
the considered formula (see section 3).

3. Checking the underlying formula.

4.1 State Space Partition

We divide state space S into two subset Sno and Syes such that Syes contains
φ-states ie. Syes = {s ∈ S | s |= φ} and Sno contains states which do not verify
φ ie. Sno = {s ∈ S | s �|= φ}.

We order state space to have Sno followed by Syes. We are especially inter-
ested in Syes since the rewards are computed over these states. In performance
and dependability applications the size of Syes is small compared to the size of
Sno. In general the states of Sno are aggregated into macro-states to reduce the
state space size. However there is no constraint on the ordering of these macro-
states and on the rewards assigned to them. But if states of Syes are aggregated,
because of the ≤st stochastic ordering, some constraints on the macro-state or-
dering and on the rewards must be satisfied (figure 1).

Suppose that Syes is divided into k macro-states: Syes = {A1, A2, . . . , Ak}.
The rewards for macro-states are defined as follows:

– to compute upper bounds, ρsup(Ai) = max{ρ(s), s ∈ Ai}.
– to compute lower bounds, ρmin(Ai) = min{ρ(s), s ∈ Ai}.

Since ≤st stochastic ordering is associated to increasing reward functions (see
definition 1), macro-states are ordered according to the increasing rewards. Let
us remark that the macro-state ordering may be different for the upper and
the lower bounding computations. For the sake of simplicity, we suppose in
the sequel that macro-states are ordered as follows: ρ(A1) ≤ ρ(A2) ≤ · · · ≤
ρ(Ak) ρ ∈ {ρsup, ρinf}.

The atomic propositions of macro-states must be also updated: for each
macro-state Ai, L(Ai) = ∩s∈Ai

L(s). Let us emphasise that the accuracy of the
bounds depends on the aggregation procedure: if the number of macro-states is
small, bounds will be less accurate. By increasing the number of macro-states
the accuracy can be improved with detriment of the numerical complexity. Thus
a trade-off between the accuracy of results and the computation efficiency must
be found.

4.2 Construction and Computing of Bounding Chains

Once the state space is partitioned, the bounding chains are constructed through
algorithm LIMSUB given in section 2. Recall that the input parameters are
the stochastic matrix of the underlying model, P and the partition A={A1, A2

· · ·Am}. The upper bounding matrix Qsup is returned as the output of algorithm
LIMSUB. The lower bounding matrix Qinf can be constructed by reversing the

116 N. Pekergin and S. Younès

Fig. 1. Partition and ordering of state space

order of macro-states. In this case the inputs of algorithm LIMSUB are P , and
the partition A = {Am, Am−1 · · ·A1}. By permutating the output matrix, we
obtain the lower bounding matrix, Qinf .

Transient and steady-state distributions of the bounding chains Qinf and
Qsup can be efficiently computed by applying conventional numerical methods.
We refer to Stewart’s book [19] for numerical methods to compute distributions
of Markov chains.

We can derive the inequalities on state probabilities. By construction, Qsup

and Qinf are st-monotone and Qinf ≤st P ≤st Qsup. Thus it follows from
theorem 1 that transient distributions (and the steady-state distribution if it
exists) of the underlying Markov chains are ≤st comparable. Let πbound(s,Aj , n)
be the probability that the bounding Markov chain is in macro-state Aj at step
n beginning in state s at time 0 and πbound(Aj) be the probability that the
bounding Markov chain is in macro-state Aj at the steady-state. The following
inequalities follow from property 1 of the ≤st ordering.

Property 3. – Transient state probability bounds:
m∑

j=i

πinf (s, Aj , n) ≤
m∑

j=i

∑
s′∈Aj

π(s, s′, n) ≤
m∑

j=i

πsup(s, Aj , n) ∀i ∈ {m, m−1, · · · 1}

(7)

– Steady-state state probability bounds:
m∑

j=i

πinf (Aj) ≤
m∑

j=i

∑
s′∈Aj

π(s′) ≤
m∑

j=i

πsup(Aj) ∀i ∈ {m,m− 1, · · · 1} (8)

4.3 Checking of State Formulas

In this section, we show how state formulas of the PRCTL logic can be checked
through the bounding distributions. Remember that for a given state formula φ,

Stochastic Model Checking with Stochastic Comparison 117

the state space is partitioned and ordered such that the states satisfying φ, Syes

are greater (after) than that of Sno. Let suppose that A = {A1, · · · , Ak−1, Ak,
Ak+1 · · ·Am} and Syes = {Ak, Ak+1, · · ·Am}. Thus by taking i = k in equations
7 and 8, we have the following probability bounds for φ states:∑

Ai∈Syes

πinf (s,Ai, n) ≤
∑
s′|=φ

π(s, s′, n) ≤
∑

Ai∈Syes

πsup(s,Ai, n) (9)

∑
Ai∈Syes

πinf (Ai) ≤
∑
s′|=φ

π(s′) ≤
∑

Ai∈Syes

πsup(Ai) (10)

In the following proposition, we provide transient and steady-state reward
bounds. Recall that rewards of macro-states are defined as follows: ρsup(Ai) =
max{ρ(s), s ∈ Ai} and ρinf (Ai) = min{ρ(s), s ∈ Ai}. And macro-states of Syes

are ordered according to increasing rewards: ρ(Ak) ≤ ρ(Ak+1) · · · ≤ ρ(Am), ρ ∈
{ρinf , ρsup}. As it has been stated before, the macro-state ordering may be
different for the upper and the lower bounding computations. Without loss of
generality we take the same ordering in both cases. In fact φ is satisfied in all
macro-states of Syes, so rewards are computed for all macro-states of Syes.

Proposition 1. We have the following inequalities on rewards:

– Transient reward bounds:∑
Ai∈Syes

πinf (s, Ai, n)ρinf (Ai)≤
∑
s′|=φ

π(s, s′, n)ρ(s′) ≤
∑

Ai∈Syes

πsup(s, Ai, n)ρsup(Ai)

(11)

– Steady-state reward bounds:∑
Ai∈Syes

πinf (Ai)ρinf (Ai) ≤
∑
s′|=φ

π(s′)ρ(s′) ≤
∑

Ai∈Syes

πsup(Ai)ρsup(Ai)

(12)

Proof. By construction, the distributions are ≤st comparable (equations 7, 8).
Therefore we have the inequalities between the increasing functionals of these
distributions (see definition 1). In fact inequalities 11, 12 are the increasing
functionals on these distributions. Reward function of Sno states is zero and
in the upper bound some rewards are replaced by greater values while they are
replaced by smaller values in the lower bound. ��
For a given reward formula R(φ), let Rsup(φ) (resp. Rinf (φ)) be the reward on
the macro-states of Syes computed through the upper (resp. lower) bounding
distribution. The following proposition gives how we can check formula R(φ) to
see if it meets the bound of I ∈ [rmin, rmax].

Proposition 2. 1. if Rinf (φ) ≥ rmin and Rsup(φ) ≤ rmax then we can con-
clude that R(φ) is true

2. if Rinf (φ) ≥ rmax or Rsup(φ) ≤ rmin then we can conclude that R(φ) is
false

118 N. Pekergin and S. Younès

3. otherwise, we cannot conclude if R(φ) is true or not, through these bound-
ing distributions. We can either modify the aggregation scheme (partition of
states) or try to compute exact rewards.

Proof. We give here the proof by specifying R(φ) for the sake of simplicity. Let
us consider EI(φ) which is satisfied, if

∑
s′|=φ π(s′)ρ(s′) ∈ I. It follows from

equation 12 that
Rinf (φ) ≤ EI(φ) ≤ Rsup(φ)

Thus, case 1 allows us to conclude that EI(φ) is satisfied:

rmin ≤ Rinf (φ) ≤ EI(φ) ≤ Rsup(φ) ≤ rmax

Similarly, case 2 lets us to conclude that EI(φ) is not satisfied. Otherwise the
rewards computed on bounding distributions do not let us to check EI(φ).

Let us remark that the case of transient reward formulas follows from equa-
tion 11. In the same manner formula L�p(φ) can be checked by means of equation
10. ��

5 Numerical Examples

In this section, we present numerical results computed from the proposed
methodology. We consider four finite buffers in tandem where each buffer is
a D/D/1/B queue (figure 2). The external arrivals and the services in all stages
are independently, identically distributed batch processes with maximum size
G. Let pik be the probability that k packets are served during a slot in stage
i, 1 ≤ i ≤ 4 and 0 ≤ k ≤ G. Indeed the service in stage i constitutes the arrivals
to stage i + 1. External arrivals are denoted by p0k. At the end of a slot, it is
assumed that first the end of services takes place and then the arrived packets
are accepted. The packet acceptance mechanism is the rejection: a packet which
arrives to a full buffer is lost.

B B B B SS SS 0 1 2 3

Fig. 2. A tandem queue with four buffers

Let Ni(t), 1 ≤ i ≤ 4 be the number of packets at time t in buffer i.
Thus {(N4(t), N3(t), N2(t), N1(t)), t ≥ 0} is a Discrete Time Markov chain of
size (B + 1)4. In the sequel, we denote by s = (n4, n3, n2, n1) a state of this
Markov chain. We are interested in packet loss characteristics in buffer 4. Since
all earlier stages must be taken into account to compute packet losses in this
buffer, we must consider whole Markov chain of (B+1)4 size. Thus the numerical
complexity to solve the underlying model increases rapidly with B.

Stochastic Model Checking with Stochastic Comparison 119

We define the following atomic propositions related to buffer 4:

– frth-full is valid if the fourth buffer is full. Syes = {s | n4 = B}
– frth-loss is valid if a packet loss may occur. Syes = {s | n4 > B −G}

Based on these atomic propositions, we check the following state formulas:

Steady-state formulas:
• E[0,10−7](frth-loss) to check whether the long-run loss rate in buffer 4 is

lower than 10−7 or not.
• L≤10−9(frth-full) to check whether the probability that buffer 4 is full

in steady-state is less than 10−9 or not.
Transient formulas: For all these formulas we suppose that at the beginning
all buffers are empty.
• In

[0,10−9](frth-loss) to check whether the expected packet loss at time n,
n ∈ {40, 50}, meets the bound of I or not.

• Cn
[0,10−9](frth-loss) to check whether the expected cumulated packet loss

up to time n, n ∈ {40, 50}, meets the bound or not.
• En

[0,10−9](frth-loss) to check whether the expected packet loss per unit
time up to time n, n ∈ {40, 50}, meets the bound or not.

We now give the rewards assigned to states to compute these formulas related
to packet losses in buffer 4. For a given state s = (n4, n3, n2, n1),

ρ(s) =
G∑

j=0

G∑
k=0

p3j · p4k · (max(0, n4 + min(n3, j)− k −B)) (13)

To check these state formulas, we must compute transient or steady-state
distribution of the underlying Markov chain. We check these formulas by solving
upper bounding aggregated Markov chains to overcome state-space explosion.
First we construct the exact Markov chain by means of evolution equations of
the system [9]. In fact we begin by a state and generate all transitions (states)
by taking into account the events which can occur in the system and their
probabilities.

The second step is to aggregate states to define macro-states. We define
macro states regarding to the number of customers in buffer 3 and 4 without
considering the number of packets in the first two stages. Thus a macro-state
(n4, n3) contains all states (n4, n3, i, j) ∀i, j ∈ [0, B]. Due to this aggregation
procedure, the state space size will be reduced to (B + 1)2. We reorder states
using the lexicographic ordering to put together states of macro-states before
running LIMSUB algorithm. Moreover states of Syes must be after states of Sno

and they must be ordered according to increasing rewards because of the ≤st

ordering. In the considered example the reward function is largely compatible
with the lexicographic ordering, we must reorder only a little number of states
(equation 13).

The last step is to solve the upper bounding aggregated Markov chain (Qsup)
to compute the bounding distributions. Since it is defined on a reduced state

120 N. Pekergin and S. Younès

Table 1. Arrival process

Probabilities External First stage Second stage Third stage Fourth stage
arrivals service service service service

p0 0.7 0.3 0.4 0.6 0.2
PROC1 p1 0.2 0.5 0.3 0.2 0.4

p2 0.1 0.2 0.3 0.2 0.4

p0 0.7 0.3 0.4 0.5 0.3
PROC2 p1 0.2 0.5 0.3 0.3 0.3

p2 0.1 0.2 0.3 0.4 0.4

Table 2. Results obtained with the arrival process PROC1

Formulas B Exact Bound Valid?

E[0,10−9](frth-loss) 25 5.9610−16 3.4910−11 yes
30 - 1.1310−10 yes

I40
[0,10−9](frth-loss) 25 2.910−20 1.7610−11 yes

30 - 5.68 10−11 yes

I50
[0,10−9](frth-loss) 25 10−18 2.81 10−11 yes

30 - 1.09 10−10 yes

C40
[0,10−9](frth-loss) 25 6.8910−20 1.310−10 yes

30 - 3.67 10−10 yes

C50
[0,10−9](frth-loss) 25 3.7710−18 3.710−10 yes

30 - 1.26 10−9 unknown

E40
[0,10−9](frth-loss) 25 1.7210−21 3.2710−12 yes

30 - 9.17 10−12 yes

E50
[0,10−9](frth-loss) 25 7.55 10−18 7.4110−12 yes

30 - 2.52 10−11 yes

L≤10−9(frth-full) 25 2.3510−15 1.2310−10 yes
30 - 1.2110−12 yes

space, this can be done efficiently. We have applied an indirect method (Gauss-
Seidel) [19] to compute bounding distributions.

We fix the maximum size of batches, G = 2 and consider two different arrival
processes, PROC1 and PROC2. The probabilities of having i batches, pi 0 ≤
i ≤ 2 for external arrivals and for services in each stage are given in the following
table.

In table 2, we give the results computed for arrival process PROC1. For each
formula we give results for B = 25 and B = 30. However, we could not solve the

Stochastic Model Checking with Stochastic Comparison 121

Table 3. Results obtained with the arrival process PROC2

Formulas B Exact Bound Valid?

E[0,10−7](frth-loss) 25 7.09 10−14 1.04 10−7 unknown
30 - 1.79 10−8 yes

I40
[0,10−7](frth-loss) 25 3.4 10−17 1.8 10−8 yes

30 - 3.37 10−11 yes

I50
[0,10−7](frth-loss) 25 7.910−16 4.410−8 yes

30 - 1.5510−10 yes

C40
[0,10−7](frth-loss) 25 8.54 10−17 1.08 10−7 unknown

30 - 1.4210−10 yes

C50
[0,10−7](frth-loss) 25 3.3 10−15 4.31 10−7 unknown

30 - 1.0610−9 yes

E40
[0,10−7](frth-loss) 25 2.1310−18 2.710−9 yes

30 - 3.56 10−12 yes

E50
[0,10−7](frth-loss) 25 6.610−17 8.6 10−9 yes

30 - 2.13 10−11 yes

L≤10−7(frth-full) 25 2.22 10−13 2.95 10−7 unknown
30 - 5.0410−8 yes

chain with B = 30 because of its size (see table 4). In the last column we give
if the formula can be checked through these bounding distributions or not. For
this arrival process, most of the formulas can be checked through these bounding
distributions. In the last column, unknown indicates that we cannot conclude
whether the formula is satisfied or not through these bounding distributions.

In table 3, we give the results under arrival process PROC2. For this arrival
process, some formulas cannot be checked through these bounding distributions.
We can change the aggregation procedure to have more detailed representation
of the underlying system.

The numerical results are computed in an Intel Pentium 4 with CPU 2.8
GHz and 1.5GBytes memory. Let us give computation times for different steps
for exact and bounding Markov chains (see table 4). We give in columns Size

Table 4. Comparison of original and bounding model sizes

Exact Markov chain Bounding Markov chain

B Size Entries Generation Resolution Size Entries Generation Resolution

25 456 976 77 970 677 9 min 16 min 676 13 397 6 min 0.001s
30 923 521 163 169 007 10 min - 961 19 242 12 min 0.13 s

122 N. Pekergin and S. Younès

the state space size, and in columns Entries the number of non null entries of
the chain. For the exact chain, Generation time corresponds to the time for
generating the underlying Markov chain, while it corresponds to the reordering
of states and the execution of LIMSUB algorithm for the bounding chain.

We can see that the resolution times are drastically reduced for bounding
chains due to the state space size reduction. Therefore it will be possible to
check large models through bounding distributions. Actually, the underlying
matrix is stored in the memory during the computation of the bounding model.
However the bounding chain is constructed column by column so it is possible
to avoid the storage of whole matrix using Kronecker or MTBDD structures.
These issues are under work to be able to check very large models.

6 Conclusions

In this paper we show how algorithmic stochastic bounding techniques can be
applied to check state formulas in the PRCTL logic. Indeed we must compute a
transient or the steady-state distribution of the underlying DTMC to check state
formulas. However the computation of these distributions has high numerical
complexity or is intractable because of the well-known state space explosion
problem. On the other hand we do not need in general exact values to check
these formulas. Therefore bounding techniques are useful in stochastic model
checking. We proposed to apply stochastic bounding algorithms to overcome the
state space explosion problem. Since bounding models can be constructed in a
fully automated manner by means of the bounding algorithms, the proposed
methodology can be easily integrated to model checkers.

In this work we are interested only on state formulas, but this approach can
be also extended to path formulas. In fact we apply the ≤st stochastic ordering,
which is also called as sample-path ordering. Intuitively this means that if two
chains are comparable in this stochastic ordering sense, their sample-paths are
comparable. We are working on the application of ≤st stochastic ordering to
check path formulas.

Acknowledgements. The authors thank Jean-Michel Fourneau for fruitful dis-
cussions.

References

1. Abu-Amsha, O., Vincent, J.M.: An algorithm to bound functionals of Markov
chains with large state space. In: 4th INFORMS Conference on Telecommunica-
tions, Boca Raton, Florida, (1998)

2. Andova, S., Hermanns, H., Katoen, J.P.: Disrete-time rewards model-checked. In
Formal Modelling and Analysis of Timed Systems (FORMATS 2003), Marseille
France.

3. Aziz, A., Sanwal, K., Singhal,V. and Brayton R.: Model checking continuous time
Markov chains. ACM Trans. on Comp. Logic, 1(1), p. 162-170, 2000.

Stochastic Model Checking with Stochastic Comparison 123

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Automated performance
and dependability evaluation using Model Checking. LNCS 2459, Performance
evaluation of complex systems: Techniques and Tools, pp 64-88, 2002.

5. Benmammoun, M., Fourneau, J.M., Pekergin, N., Troubnikoff, A.: An algorithmic
and numerical approach to bound the performance of high speed networks. In IEEE
MASCOTS 2002, Fort Worth, USA, pp. 375-382.

6. Clarke, E.M., Emerson,A., Sistla, A. P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. on Programming
Languages and Systems 8(2):244–263, 1986.

7. D’Argenio, P.R. Jeannet, B., Jensen, H.E. and Larsen, K.G. Reduction and Re-
finement Strategies for Probabilistic Analysis. In Proc Process Algebra and Proba-
bilistic Methods Performance Modeling and Verification, Springer-Verlag, 2001.

8. Fourneau, J.M., Pekergin, N., Younès, S.:Improving Stochastic Model Checking
with Stochastic Bounds. In SAINT Modelling and Performance Evaluation in Next
Generation Internet Workshop, 2005.

9. Fourneau, J.M., Lecoz, M., Pekergin, N., Quessette, F.: An open tool to compute
stochastic bounds on steady-state distributions and rewards. In IEEE MASCOTS
2003, pp. 219-225.

10. Fourneau,J.M., Pekergin, N.: An algorithmic approach to stochastic bounds. LNCS
2459, Performance evaluation of complex systems: Techniques and Tools, pp 64-88,
2002.

11. Fourneau, J.M., Lecoz, M. and Quessette, F.: Algorithms for irreducible and
lumpable strong stochastic bound. Linear Algebra and its Applications 386(2004)
167-185, 2004.

12. Hansson,H. and Jonsson B.: A logic for reasoning about time and reliability. In
Form. Asp. of Comp. 6: 512-535, 1994.

13. Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.P. and E C. Baier: Model Check-
ing Performability Properties In Proc. Dependability Systems and NETWORKS
(DSN) 2002, IEEE CS Press, 2002.

14. Kulkarni, V.G.: M odeling and Analysis of Stochastic Systems.Chapman& Hall,
1995.

15. Kwiatkowska, M., Norman, G., Parker D.: PRISM: Probabilistic Symbolic Model
Checker. In Proc.TOOLS 2002, volume 2324 of LNCS, p. 200-204, Springer-Verlag
April 2002.

16. Muller, A. and Stoyan, D.: Comparison Methods for Stochastic Models and Risks,
Wiley , New York,2002.

17. Pekergin N.:Stochastic performance bounds by state space reduction. Performance
Evaluation, 36-37, pages 1-17, 1999.

18. Shaked, M. and Shantikumar, J.G.: Stochastic Orders and Their Applications, Aca-
demic Press, San Diago, 1994.

19. Stewart W. J: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, (1994)

Delay Analysis of the Go-Back-N ARQ Protocol

over a Time-Varying Channel

Koen De Turck and Sabine Wittevrongel

SMACS�Research Group,
Department of Telecommunications and Information Processing,

Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{kdeturck, sw}@telin.UGent.be

Abstract. In this paper we present an analytical technique, based on
the use of probability generating functions, to analyze the throughput
performance and the transmitter buffer behavior of a Go-Back-N ARQ
system, with the notable complication that the errors in the channel
are correlated in time. We model the transmitter buffer as a discrete-
time queue with infinite storage capacity and independent and identically
distributed packet arrivals. Arriving packets are stored in the queue until
they are successfully transmitted over the channel. The probability of an
erroneous transmission is modulated by a general Markov chain with M
states, rather than assuming stationary channel errors.

We find explicit expressions for the probability generating functions of
the buffer content and packet delay. From these functions moments and
tail probabilities can be derived. Numerical results illustrate the impact
of the error process on the system performance.

1 Introduction

When packets need to be transmitted from point A (the transmitter) to point B
(the receiver) over an error-prone channel, such as contemporary wireless chan-
nels, special measures have to be taken to provide a more reliable transmission.
A popular method to ensure this is to use an Automatic Repeat reQuest (ARQ)
protocol ([1]).

There are many different types of ARQ protocols, but they have all two things
in common. First, there must be some way for the receiver to check whether a
packet has been received correctly or not. So usually, the transmitter adds an
error checking code to each packet so the receiver can detect the most commonly
occurring errors. Secondly, the channel must be bi-directional. When a packet
is received, the receiver must send a message to the transmitter to notify the
transmitter of the condition of that packet, i.e., an acknowledgement (ACK) if
it is intact or a negative acknowledgement (NAK) if an error occurred. Since not
all arriving packets can be sent immediately, one needs to implement a queue at
the transmitter side.
� SMACS: Stochastic Modeling and Analysis of Communication Systems

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 124–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Delay Analysis of the Go-Back-N ARQ Protocol 125

In the present paper, we study the Go-Back-N ARQ (GBN-ARQ) protocol.
In GBN-ARQ, the transmitter keeps sending packets available in its queue, until
a NAK is received. In that case, the incorrectly received packet is sent again, as
well as every following packet (for which no feedback message has been received
yet). This is illustrated in Fig. 1 for a feedback delay s = 2.

�
�
�
�
��

�
�
�
�
��

transmitter

receiver

channel

...

...

...

...

error error�� ��
ignored ignored

� �s

�
�
��

�
�
�
�
���

�
�
�
�
���

�
�
�
�
���

�
�
�
�
���

�
�
�
�
���

1 2 3 4 2 3 4 5 6 4

1 2 3 4 2 3 4 5 6 4 5

ACK NAK ACK ACK NAK

Fig. 1. Go-Back-N protocol (s = 2)

There has been research on the queueing analysis of the GBN-ARQ proto-
col. However, the majority of research has been under the assumption of random
independent transmission errors, see e.g. [2]-[4]. The model we propose in this
paper is different from previous studies in that we allow the errors occurring in
the channel to be correlated in time. This assumption is necessary when dynam-
ical, time-varying channels are studied. Specifically, the channel state process
is modeled by means of a Markov chain with M states and with a fixed error
probability in every state.

Some previous work on the buffer analysis of ARQ protocols over a time-
varying channel exists. For example, in [5] the GBN-ARQ protocol has been
considered, but only the throughput and the buffer content have been analyzed,
whereas in this paper, we also provide a full analysis of the packet delay. In
[6], the queueing performance of stop-and-wait ARQ over a dynamic channel
has been studied in case the number of states M = 2. The selective-repeat
protocol with correlated errors has been investigated in [7], but the model is
basically a so-called ideal ARQ system. This means that there is no feedback
delay: acknowledgements are received instantly, which simplifies the analysis. In
this paper we present a full queueing analysis in terms of both buffer content
and delay of the GBN-ARQ protocol for nonindependent channel errors.

The outline of the paper is as follows. The mathematical model of the GBN-
ARQ transmitter queue is introduced in Sect. 2, along with some specific assump-
tions. In Sect. 3, we identify a sufficient description of the state of the system at
an arbitrary slot and provide the main equations that govern its behavior. We
obtain a closed-form expression for the probability generating function (pgf) of
the buffer content. Section 4 provides a simple derivation of the throughput effi-
ciency. In Sect. 5 we provide a full analysis of the packet delay. We calculate the

126 K. De Turck and S. Wittevrongel

pgf of the packet delay and also derive moments and the tail distribution. Then,
in Sect. 6 we consider the special case of a two-state Markov model, also known
as a Gilbert-Elliott model ([8]). Section 7 provides some illustrative numerical
examples. Finally, conclusions are drawn in Sect. 8.

2 Model Description

In this paper we investigate the throughput efficiency and the transmitter buffer
behavior of a system working under a GBN-ARQ protocol.

The general modeling assumptions are as follows. The data to be transmitted
are divided into blocks of fixed length. The time needed to transmit one block
is called a slot. Synchronous transmission is used, i.e., the time axis is divided
into slots and transmission always starts at the beginning of a slot. After a con-
stant period of s slots, an acknowledgement signal from the receiver containing
information on whether the block was correctly received or not arrives at the
transmitter. This interval of s slots is called the feedback delay of the channel.
It is assumed that no errors occur in the acknowledgement messages.

During each slot j, a random number of packets aj arrive at the transmitter.
The ajs are assumed to be independent and identically distributed (iid) random
variables with mean α and pgfA(z). The packets are stored in an infinite discrete-
time queue until they are successfully transmitted over the channel. Note that
due to the synchronous transmission mode, a packet arriving in an empty queue
is not transmitted until the next slot.

We model the error process in the channel by a general Markov chain with
M states. The transition probabilities are given by

qij = Prob[state in next slot is j| state in current slot is i],

which can also be written as a transition probability matrix q. State i has an
error probability of ei. When there is an error, the packet sent during that slot
will be incorrectly received, and the sender will receive a NAK message s slots
later. We define the matrix e as the diagonal matrix with elements e1, . . . , eM .
We also introduce the notation x̄ � 1− x. Likewise, ē is a diagonal matrix with
elements ē1, . . . , ēM .

3 Analysis of the Buffer Content

We simplify the analysis by considering a modified system (first introduced in
[2]) in which the sender can ‘look into the future’. This means that directly after
a packet is sent, the sender knows if, s slots later, it will receive an ACK or a
NAK message. On a future ACK, the packet can leave the buffer immediately,
since the sender knows it will not be needed again. On the other hand, when a
NAK is expected, the sender halts for s slots, for the receiver would discard any
newly transmitted packet anyway. We say that the system during these s slots

Delay Analysis of the Go-Back-N ARQ Protocol 127

is in ‘recovery mode’, which can be divided into s stages, numbered 1, . . . , s. In
every other slot the system is in ‘send mode’.

This modified system is closely related to the real system. In fact, from a
performance point of view, the only difference is that every packet stays exactly
s slots longer in the real system than it would in the modified system. For an
iid arrival process we can derive the following relation between the pgf Ureal(z)
of the buffer occupancy in the real system and the corresponding pgf Umodified(z)
in the modified system:

Ureal(z) = A(z)sUmodified(z). (1)

Indeed, since every packet stays s slots longer in the system, we must add the
arrivals during s slots to get the real system content.

In what follows, we will first derive an expression for the partial pgf of the
buffer occupancy when the system is in send mode. Next, the partial pgf of the
buffer occupancy in recovery mode is calculated. The pgf of the buffer occupancy
is then found by adding the partial pgfs for each mode.

Let slot k be the ith slot the system is in send mode. Let σ be a mapping
function such that σ(i) = k. Let us define vk be the buffer content at the begin-
ning of this slot in send mode and let sk be the channel state during slot k; the
random variable ak denotes the number of packets arriving during slot k. Then
we can write the following system equations:

(a) when vk = 0:

(vσ(i+1), sσ(i+1)) = (ak, s̃k);

(b) when vk > 0:

(vσ(i+1), sσ(i+1)) =

⎧⎨⎩ (vk − 1 + ak, s̃k), with probability ēsk
,

(vk +
s∑

i=0

ak+i, ŝk), with probability esk
,

where s̃k is the state of the Markov chain during slot k + 1, and ŝk is the state
during slot k+s+1. Let us define Vj,k(z) as the partial pgf of the buffer content
at the beginning of slot k when the channel is in state j, i.e.,

Vj,k(z) =
∞∑

n=0

Prob[vk = n, sk = j]zn

= Prob[sk = j]E[zvk |sk = j]. (2)

In equilibrium (for k → ∞) Vj,k(z) will become independent of k and converge
to a limiting partial pgf Vj(z). By means of the above system equations, we can
establish a relation between the partial pgfs Vj(z), 1 ≤ j ≤ m, as follows:

128 K. De Turck and S. Wittevrongel

Vj(z) = lim
k→∞

{ M∑
l=1

Prob[vk = 0, sk = l]

×
∞∑

n=0

Prob[ak = n, s̃k = j|vk = 0, sk = l]zn

+
∞∑

m=1

M∑
l=1

Prob[vk = m, sk = l]

×
∞∑

n=0

(
ēlProb[vk − 1 + ak = n, s̃k = j|vk = m, sk = l]zn

+ elProb[vk +
s∑

i=0

ak+i = n, ŝk = j|vk = m, sk = l]zn
)}

=
M∑
l=1

Vl(0)A(z)qlj

+
M∑
l=1

[Vl(z)− Vl(0)]
(
A(z)

z
ēlqlj +A(z)s+1el(qs+1)lj

)
. (3)

In this equation, the matrix qs+1 denotes the (s+ 1)-step transition probability
matrix of the channel process. Let us introduce the following vector notation:
V(z) = (V1(z), . . . ,VM (z)). Then the above relation can be rewritten as

V(z) = A(z)V(0)q + (V(z)−V(0))[
A(z)

z
ēq +A(z)s+1eqs+1].

Solving this equation for V(z), we get

V(z) = V(0) [zA(z)q− d(z)] [zI− d(z)]−1, (4)

where
d(z) = A(z) ēq + zA(z)s+1 eqs+1 (5)

and I denotes the M ×M identity matrix.
In a similar way, we now derive an expression for the partial pgf of the buffer

content during recovery mode. It follows that the vector of partial pgfs of the
buffer length in stage 1 of the recovery mode W1(z) is related to V(z) by the
following equation:

W1(z) = (V(z)−V(0))eq A(z). (6)

This equation expresses that to get into recovery mode, the buffer must be non-
empty and there must be an error during this slot.

The vector of partial pgfs of the buffer content in other states of the recovery
mode can be found using the following recursive relation:

Wi(z) = A(z)Wi−1(z)q.

Delay Analysis of the Go-Back-N ARQ Protocol 129

Successive application of this relation leads to

Wi(z) = W1(z)qi−1A(z)i−1. (7)

Combination of (6) and (7) finally allows us to write every Wi(z) in terms of
V(z) as

Wi(z) = (V(z)−V(0))eqiA(z)i, 1 ≤ i ≤ s.
The distribution of the buffer content with the system being in any recovery

stage is given by Wtot(z):

Wtot(z) =
s∑

i=1

Wi(z)

= (V(z)−V(0))eqA(z)(I − qsA(z)s)(I− qA(z))−1. (8)

So we have found formulas for the buffer content in every mode of the system.
We can also obtain the pgf of the buffer content in equilibrium. In particular,
we have (with 1 an M × 1 vector with all elements 1)

Umodified(z) = (V(z) + Wtot(z))1. (9)

The only remaining unknown in all these formulas is the vector V(0). This
vector can be found by expressing that V(z) cannot have any singularities inside
the unit circle. The factor (zI− d(z))−1 can be written as

(zI− d(z))−1 =
1

det(zI− d(z))
Adj(zI− d(z)).

Now it can be proven that only the determinant will introduce singularities
inside the unit circle (and not the Adj(.) expression). Since V(z) is a pgf, the
singularities must be removable. With techniques shown in [9], it can be proven
that det(zI− d(z)) has a zero in 1, and M − 1 zeros inside the unit circle. Let
ζi, i = 1, . . . ,M − 1 be these zeros inside the unit circle. Expressing that the ζis
are removable singularities leads to the following set of equations:

0 = V(0)[ζiA(ζi)q− d(ζi)]Adj[ζiI− d(ζi)]1, for all i.

By applying the normalization condition Umodified(1) = 1, a last equation is found.
Thus the vector V(0) can be calculated.

4 Throughput Efficiency

The throughput η is defined as the expected number of packets that can be
transmitted per slot when there are always packets available (heavy traffic as-
sumption). Hence, η is a measure for the maximum output rate at which the
system can transmit incoming packets.

To find an expression for the throughput, we observe the system at send
instants. Or equivalently, to use the terminology of Sect. 3, we observe the system

130 K. De Turck and S. Wittevrongel

in send mode. As there are always packets available, the next send instant is
either one slot away when the current packet is correctly transmitted or s + 1
slots when it is not. So the channel state during send instants is modulated
by the modified Markov chain q′ � ēq + eqs+1. Note that it follows from (5)
that q′ = d(1). Moreover q′ is a stochastic matrix. So according to the Perron-
Frobenius Theorem ([10]), one of its eigenvalues is 1. The corresponding left
eigenvector (let us call it π) is the steady-state probability vector π of the
modified Markov process. Using the steady-state probabilities πi, the throughput
η can be written as

η =
∑M

i=1 πiēi∑M
i=1 πi(1 + eis)

. (10)

5 Analysis of the Packet Delay

In this section we derive an expression for the pgf of the packet delay in the case
that the error process is modulated by anM -state Markov chain. We first derive
an expression for the probability generating matrix (pgm) of the service time
S(z), and then we can find the pgf of the packet delay in terms of S(z). Finally,
we point out how to find moments and the tail distribution of the delay.

5.1 Distribution of the Service Time

We define the service time of a packet as the time interval (expressed in slots)
that starts with the slot (in send mode) where the packet is transmitted for
the first time and ends with the slot where the packet leaves the system. We
consider again the modified system, so packets leave the buffer at the end of the
slot where they are correctly transmitted.

Service times in the studied model are not iid, unlike the situation with
uncorrelated errors, because the exact distribution of the service time depends
on the channel state in the slot during which the service of the packet starts.

Using a similar approach as in [6], we introduce a pgm S(z) (with dimension
M ×M) of a service time. Specifically, the element [S(z)]ii′ is the (partial) pgf
of the service time that starts in channel state i and is followed by a slot with
channel state i′. This approach has the advantage that we can express the pgm
of the length of n subsequent service times simply as S(z)n. We can derive the
pgm S(z) rather elegantly by stating the following recursive relation:

S(z) = ēqz + eqs+1zs+1S(z).

Indeed, a service lasts exactly one slot when the packet is immediately correctly
transmitted. When it is not, the service lasts s+1 slots plus a remaining service
time, which also has pgm S(z). We must not forget to multiply by the right tran-
sition probabilities of the channel state (q and qs+1). From the above relation,
we can derive S(z) as

S(z) = (I− eqs+1zs+1)−1ēqz. (11)

Delay Analysis of the Go-Back-N ARQ Protocol 131

Note that this distribution holds for the modified system, where service times
do not overlap. Service times in the real system are s slots longer, but may
overlap. Let us now denote by σ the steady-state probability vector of S(1).
Stated otherwise, σ is the steady-state probability vector of the channel state in
the first slot of a service time. Another expression for the throughput can then
be found as

η−1 = σS′(1)1. (12)

It has been shown that expressions (10) and (12) are the same.

5.2 Pgf of the Packet Delay for an M-State Channel Model

Now that we have obtained an expression for S(z), we can proceed with the
calculation of the pgf of the packet delay. Again, we first consider the modified
system, and then convert the thus found pgf to the real system, where packets
have to stay in the buffer until an ACK has arrived at the transmitter.

We consider an arbitrary packet P that arrives during some slot I. Let k
be the channel state during slot I, and u the buffer content at the beginning of
slot I (also for the modified system of course). The delay of packet P starts at
the beginning of slot I + 1 and stops at the end of the slot where packet P is
correctly transmitted and leaves the buffer.

Let � be the number of packets arriving in the buffer in slot I that will be
served no later than (but including) P . We also introduce the notation �k =
Prob[� = k]. In [11] it was proven that the pgf L(z) of � is given by

L(z) =
z(1−A(z))
α(1− z)

, (13)

with α the mean number of arrivals per slot; α = A′(1).
In order to derive the pgfDmodified(z) of the delay of P in the modified system,

we will first condition on the state of the system in slot I. We first consider the
case where the system is in send mode during slot I and the buffer is empty. In
that case, exactly � packets must be transmitted before packet P can leave the
system and the transmission of the first can immediately start in the next slot.
So the packet delay consists of � subsequent service times. Let De,k(z) be the
partial pgf of the packet delay when the system is in send mode, the buffer is
empty and the channel state is k. Then we can write

De,k(z) = Vk(0)
∞∑

j=1

�jεkqS(z)j1

� Vk(0)εkqL(S(z))1, (14)

where εk is the kth unit vector, and Vk(0) is, according to the notation introduced
in Sect. 3, the probability of having an empty buffer in send mode when the
channel state is k. In the above equation, we have introduced the convenient
shorthand notation L(S(z)) to denote a matrix that is a power series in the

132 K. De Turck and S. Wittevrongel

pgm S(z) with the same coefficients as the power series expansion in z of L(z).
Similar notations will be used frequently in the remainder of this Section.

Secondly, we will consider the case where the system is in send mode during
slot I and the buffer is non-empty. In this case, the system is busy serving
another packet when P arrives. The delay of packet P will end when u + �
packets have been served. However, we must be careful: the system is already
serving one of these u + � packets in slot I, and we only begin to count the
delay at the beginning of the next slot. The pgm of the remaining service time
of the packet in service during slot I is therefore not S(z), but rather S(z)

z . These
observations lead to the following expression for the partial pgf Ds,k(z) of the
packet delay when the system is in send mode, the buffer is non-empty and the
channel state is k:

Ds,k(z) =
1
z
εk(Vk(S(z))− Vk(0))L(S(z))1. (15)

The last case we must consider is when the packet P arrives during a slot where
the system is in recovery mode, say for example in stage j. Again, we have to
determine how long it takes to serve u+� packets. Since the system is in recovery
mode, the sender must wait s− j slots before it can retransmit the packet that
was already in service before the recovery period. Note that after the recovery
period, the remaining service time of the packet the system was serving is given
by S(z) and the pgf of u is in this case given by Wj,k(z). Hence, the partial pgf
Dr,j,k(z) of the delay when the system is in stage j of recovery mode and the
channel state is k, is obtained as

Dr,j,k(z) = εkqs−j+1zs−jWj,k(S(z))L(S(z))1. (16)

The pgf Dmodified(z) of the packet delay in the modified system is the sum of all
partial pgfs:

Dmodified(z) =
M∑

k=1

De,k(z) +
M∑

k=1

Ds,k(z) +
M∑

k=1

s∑
j=1

Dr,j,k(z). (17)

Finally, since in reality a packet has to stay in the buffer until the transmitter
knows it has been transmitted correctly through the arrival of an ACK s slots
after the packet’s transmission, packets stay exactly s slots longer in the real
system than in the modified system and the pgf Dreal(z) of the packet delay in
the real system is therefore given by

Dreal(z) = zsDmodified(z). (18)

In order to write Dmodified(z) in an explicit form, a spectral decomposition
of S(z) is needed. To derive the spectral decomposition of an M ×M matrix
parametrized in some variable z, the characteristic equation must be solved,
which is a polynomial equation of the Mth order. As was proven by Abel, a
general solution only exists for M ≤ 4.

Delay Analysis of the Go-Back-N ARQ Protocol 133

5.3 Moments of the Packet Delay

It is possible to extract the moments of the packet delay from Dreal(z) by using
the moment-generating property of pgfs. In particular, the mean packet delay
can be found by evaluation of the first-order derivative of Dreal(z) with respect
to z at z = 1, i.e., E[dreal] = Dreal

′(1). The variance of the packet delay can be
expressed as

var[dreal] = Dreal
′′(1) +Dreal

′(1)− [Dreal
′(1)]2,

where Dreal
′′(1) is the second-order derivative of Dreal(z) in z = 1.

5.4 Tail Distribution

In this Section we derive the tail distribution of the packet delay, i.e., the proba-
bility that the delay equals a given value n, for a sufficiently large value of n. In
principle, we can determine the tail distribution of a discrete random variable by
applying the inversion formula for z-transforms and Cauchy’s residue theorem
from complex analysis ([12]) on its probability generating function and keeping
only the contribution of the pole of the pgf with the smallest modulus outside
the unit disk, as explained e.g. in [13]. From the expression (18) for Dreal(z), we
find that the pole of Dreal(z) with the smallest modulus is given by

zd = A(zu),

where zu is the dominant pole of the pgf Ureal(z) of the buffer content, i.e., the
zero of det(zI−S(A(z))) outside the unit disk with the smallest modulus. Indeed,
it is possible to show that A(zu) is the zero with minimal modulus outside the
unit disk of the factor det(zuI − S(z)) in the denominator of Dreal(z). Taking
into account the contribution of the dominant pole zd and keeping in mind that
Prob[dreal = n] is the coefficient of zn in the series expansion of Dreal(z), we
obtain the following expression for Prob[dreal = n] for sufficiently large n:

Prob[dreal = n] ≈ −Cd

zd
z−n

d ,

where Cd is the residue of Dreal(z) in the point z = zd.

6 Special Case: Gilbert-Elliott Model

In this Section we will study the specific case of a Gilbert-Elliott model ([8]),
which is a Markov chain with only 2 states, which are labelled 0 and 1, or ‘GOOD’
and ‘BAD’ (see Fig. 2). The parameters e0 and e1 are the error probabilities of
the channel in resp. state 0 and 1. Of course, the designations GOOD and BAD
make only sense when e0 < e1, but this is not a requirement for the analysis.

The Gilbert-Elliott model is completely defined by 2 parameters q0 and q1,
where

qi = Prob[state in next slot is i| state in current slot is i].

134 K. De Turck and S. Wittevrongel

1−q0

q1

1−q1

q0 GOOD
0

BAD
1

error
probability

e0

error
probability

e1

Fig. 2. Gilbert-Elliott model

Rather than using q0 and q1, we define the parameters

σ =
1− q0

2− q0 − q1 and K =
1

2− q0 − q1 (19)

to be understood as follows: σ is the fraction of the time that the system is in
state 1, while the parameterK can be seen as a measure for the mean lengths of 0-
and 1-periods. Specifically, the mean length of a 1-period is K/σ, of a 0-period it
is K/σ̄. Therefore, the factorK can be seen as a measure for the absolute lengths
of the 0-periods and 1-periods, while σ characterizes their relative lengths.

6.1 Throughput

Using the general method outlined in Sect. 4, we find an explicit formula of the
throughput

η =
ψ0(K)σē0 + ψ1(K)σ̄ē1

ψ0(K)σ(1 + se0) + ψ1(K)σ̄(1 + se1)
(20)

with ψ0(K) � 1−φē1−φs+1e1 and ψ1(K) � 1−φē0−φs+1e0 (where φ = 1− 1
K).

In previous papers e.g. [6] it was shown that for stop-and-wait protocols
operating over a Gilbert-Elliott channel, the throughput is independent of K.
This is not the case for Go-Back-N ARQ protocols. An interesting fact is that
the throughput of the protocol actually gets better for larger K, but we shall
see that correlation does have a negative effect on the mean packet delay. When
K →∞ the throughput reaches a maximum

ηmax = σ
ē0

1 + se0
+ σ̄

ē1

1 + se1
.

In case of an uncorrelated error channel (K = 1) we find with e = σe0 + σ̄e1:

ηstatic =
ē

1 + se
.

Delay Analysis of the Go-Back-N ARQ Protocol 135

6.2 Pgf of the Packet Delay

The pgf of the delay Dreal(z) consists of a number of terms of the following form:

D∗(z) = zn∗rF (S(z))1

= zn∗r
∞∑

k=0

fkS(z)k1, (21)

where r is a certain row vector, F (z) is a pgf and S(z) is the pgm of the service
time. In order to get an explicit formula for D∗(z), we need to write S(z)k

in a form which we can actually evaluate. To do this we derive the spectral
decomposition ([10]) of S(z). This pgm has dimension 2× 2, so its characteristic
equation (det(λ(z)I−S(z)) = 0) is quadratic. Let λ1(z), λ2(z) be the roots of this
equation. Now we introduce two matrices B1(z) and B2(z), called constituents
which can be found by using following formulas:

B1(z) =
S(z)− λ2(z)I
λ1(z)− λ2(z)

and

B2(z) =
S(z)− λ1(z)I
λ2(z)− λ1(z)

.

Now it can be shown that S(z)k can be written as

S(z)k =
∑

i

λi(z)kBi(z). (22)

Finally, by combining (21) and (22) we get:

D∗(z) = zn∗r
∞∑

k=0

fk

∑
i

λi(z)kBi(z)1

= zn∗r
∑

i

F (λi(z))Bi(z)1

= zn∗
∑

i

bi(z)F (λi(z)),

where bi(z) = rBi(z)1. We can do this for each term of Dreal(z), and in this
manner obtain its explicit expression.

7 Numerical Examples

In this Section we provide some numerical examples. In all our examples we use
a Gilbert-Elliott model for the channel. We assume geometrically distributed
arrivals with mean α = 0.3.

In Fig. 3 we illustrate the influence of the error correlation on the throughput
performance. Specifically, in this figure we have plotted the throughput η as a

136 K. De Turck and S. Wittevrongel

e1 = 0.2

e1 = 0.3
e1 = 0.4

e1 = 0.7

5 10 15 20 25 30

0.1

0.15

0.2

0.25

correlation factor K

th
ro

ug
hp

ut
η

Fig. 3. Throughput η versus the correlation factor K, for s = 15, σ = 0.5, e0 = 0.1,
and e1 = 0.2, 0.3, 0.4, 0.7

function of the correlation factorK, for a feedback delay s = 15, σ = 0.5, e0 = 0.1
and various values of e1. We only consider positively correlated channels (thus
K > 1), as only these are of practical interest. We observe that the throughput
increases when K gets larger, growing towards an asymptotical maximum, as
was already noted in Sect. 6. We also see that the throughput gets worse as e1

increases, i.e., when the condition of the BAD state deteriorates.
Figure 4 shows the mean packet delay E[dreal] as a function of the correlation

factor K, for s = 2,σ = 0.5, e0 = 0.1 and various values of e1. It is clear from
this figure that the mean delay also increases as K gets larger. We also note that

e1 = 0.2
e1 = 0.3

e1 = 0.4

e1 = 0.5

10 20 30 40

5

10

15

20

correlation factor K

E[dreal]

Fig. 4. The mean packet delay E[dreal] versus the correlation factor K, for s = 2,
σ = 0.5, e0 = 0.1, and e1 = 0.2, 0.3, 0.4, 0.5

Delay Analysis of the Go-Back-N ARQ Protocol 137

K = 10

K = 20

K = 30

1e−1

1e−2

1e−3

0 20 40 60
n

P
ro

b[
d

re
a
l
=
n
]

Fig. 5. Logarithmic plot of Prob[dreal = n] versus n, for s = 2, σ = 0.5, e0 = 0.1, e1 =
0.4, and K = 10, 20, 30

for lower values of the error probability in the BAD state e1, the mean delay
reaches an asymptotical limit, but when e1 gets higher than a certain value, the
mean delay keeps on increasing linearly.

Finally, in Fig. 5 we have plotted the probability Prob[dreal = n] of having a
packet delay of n slots versus the value of n, for s = 2,σ = 0.5, e0 = 0.1, e1 = 0.4
and various values of K. These curves have been obtained by inversion of the pgf
Dreal(z) by means of a method explained in [14]. We see that the packet delay over
a more correlated channel has a heavier tail, which again shows that correlation of
the channel has an important influence on the performance of the system.

8 Conclusions

We have studied a Go-Back-N ARQ protocol over a time-varying channel. We
analyzed the steady-state distributions of the buffer content and of the packet
delay. By using the spectral decomposition of the pgm of the service time, we
were able to find the pgf of the packet delay in explicit form when the channel
has two states. Additionally, we were able to express a simple relation between
the tail distributions of the packet delay and buffer content. Finally, by means
of some examples we have discussed the influence of the model parameters on
the queue performance.

Acknowledgement

This work has been supported by the Interuniversity Attraction Poles Pro-
gramme - Belgian Science Policy.

138 K. De Turck and S. Wittevrongel

References

1. Bhunia, C.T.: ARQ - Review and modifications. IETE Technical Review 18 (2001)
381–401

2. Towsley, D., Wolf, J.K.: On the statistical analysis of queue lengths and waiting
times for statistical multiplexers with ARQ retransmission schemes. IEEE Trans-
actions on Communications 25 (1979) 693–703

3. Konheim, A.G.: A queueing analysis of two ARQ protocols. IEEE Transactions on
Communications 28 (1980) 1004–1014

4. De Munnynck, M., Wittevrongel, S., Lootens, A., Bruneel, H.: Queueing analysis of
some continuous ARQ strategies with repeated transmissions. Electronics Letters
38 (2002) 1295 – 1297

5. Towsley, D.: A statistical analysis of ARQ protocols operating in a non-independent
error environment. IEEE Transactions on Communications 27 (1981) 971–981

6. De Vuyst, S., Wittevrongel, S., Bruneel, H.: Delay analysis of the Stop-and-Wait
ARQ scheme under correlated errors. Proceedings of HET-NETs 2004, Perfor-
mance Modelling and Evaluation of Heterogenous Networks (26-28 July 2004, Ilk-
ley, West Yorkshire, UK), p. 21/1–21/11

7. Kim, J.G., Krunz, M.: Delay analysis of selective repeat ARQ for transporting
Markovian sources over a wireless channel. IEEE Transactions on Vehicular Tech-
nology 49 (2000) 1968–1981

8. Gilbert, E.N.: Capacity of a burst noise channel. The Bell System Technical Journal
39 (1960) 1253–1265

9. Gail, H. R., Hantler, S. L., Taylor, B. A.: Spectral analysis of M/G/1 and G/M/1
type Markov chains. Adv. Appl. Prob. 28 (1996) 114–165

10. Gantmacher, F. R.: The Theory of Matrices, Volume 1. AMS Chelsea Publishing,
Providence, Rhode Island (1959)

11. Bruneel, H.: Buffers with stochastic output interruptions. Electronics Letters 19
(1983) 735–737

12. Kleinrock, L.: Queueing Systems, Volume I: Theory. Wiley, New York (1975)
13. Bruneel, H., Kim, B.G.: Discrete-time models for communication systems including

ATM. Kluwer Academic Publishers, Boston (1993) (ISBN: 0-7923-9292-2)
14. Abate, J., Whitt, W.: Numerical inversion of probability generating functions. Op-

erations Research Letters 12 (1992) 245–251

Performance Tuning of Failure Detectors in Wireless
Ad-hoc Networks: Modelling and Experiments

Corine Marchand and Jean-Marc Vincent�

Laboratoire ID - IMAG, MESCAL project (CNRS - INRIA - INPG - UJF),
ZIRST 51, Avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, France

{Corine.Marchand, Jean-Marc.Vincent}@imag.fr

Abstract. We consider wireless ad-hoc networks and implement failure detec-
tions mechanisms. These failure detectors provide elementary information for
high level distributed algorithms such as consensus, election or agreement. The
aim is to guarantee a quality of service for these mechanisms. Stochastic models
for tuning failure detectors are proposed based on frequency analysis and con-
tention modelling. Tuning methods are suggested for setting time-out delays. The
theoretical results were validated experimentally on a wireless platform, based on
a statistical analysis of the measurements.

1 Introduction

Technological advances in wireless devices such as laptop computers, personal digital
assistants (PDAs), or mobile phones, bring significance to new wireless technologies.
Progress in wireless communication protocols, e.g. Bluetooth, WIFI, allow the use of
new ad-hoc networking schemes. It follows that new challenges arise from the commu-
nication variability in wireless networks and the unpredictable disconnections of those
heterogeneous devices, creating very dynamic topologies called ad-hoc wireless net-
works.

In this context, the distributed environment we consider is composed of heteroge-
neous devices which form a dynamic group. This environment is completely distributed
(no predefined memory or stable server in our case). In addition, this environment is also
unstable: due to unpredictable disconnections of devices and the variability of commu-
nication latencies, failures can occur.

In this unreliable environment, the main goal is that each device should offer its local
resources and services to one another, and could benefit from services provided by other
devices. So, to manage services and resource sharing and to maintain the consistency
of the group regarding newcomers and devices that voluntarily disconnect themselves,
we have developed middleware modules in order to be able to make some decisions.
Accordingly, our previous works [11,5] focus on distributed agreement problems in
unreliable environments, and more specifically on consensus protocols.

To solve the agreement problem, several algorithms have been proposed. In partic-
ular Chandra & Toueg [2] establish that the consensus problem could be solved in an
asynchronous context with unreliable failure detectors. These detectors provide local

� This work was partially supported by FT R&D CRE MIRRA and DECORE-IMAG project.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 139–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 C. Marchand and J.-M. Vincent

estimation of the state of entities on the network. Thus a detector either suspects an
other site, or not. The estimation of the detector is clearly unreliable, but if the informa-
tion is asymptotically correct, the agreement is eventually obtained.

From an implementation point of view, failure detectors on each site communicate
with each others. The estimates of the failure detector about the status of all other de-
vices are delivered to an upper layer in form of a list containing the suspected devices.
These failure detectors implement a function that, according to some information, make
the decision to suspect or not. A typical function is a time-out delay : if the failure de-
tector has not heard from a site since some time-out period, then it suspects the remote
site.

The objective of this paper is to analyze the quality of service of such failure de-
tector and apply the modelling approach to a wireless ad-hoc architecture. The infras-
tructure have been implemented and tested in an industrial context (CRE MIRRA with
France-Télécom R&D) and in the RNRT SIDRAH project. Configurations with hetero-
geneous devices (PC, Laptop, PDA) have been used. Experiments shows that parameter
tuning should be set according to the type of device and the global load of the network.
Stochastic analysis of the system is then confirmed.

The paper is organized as follows. Section 2 introduces the failure detectors. Then,
Section 3, stochastic models are derived and quality of service factors computed. The
last part is devoted to experimental results and analysis.

2 Failure Detectors

2.1 Theoretical Concept

The working principle of failure detectors is to provide, at a given time and for a given
process, a list of suspected devices. As failure detectors are considered unreliable, this
list can contain wrong information about remote devices (suspicion of a device correctly
present or no suspicion of a failed device).

Each device ei included in the system has its own failure detector module. So, with
this module, each device can obtain information, periodically or on demand, concerning
the global state of the system.

However, information provided by a local failure detector does not necessarily in-
dicate the real state of the system. The failure detector only suspects that some devices
have crashed or are disconnected. Note that failure detectors are inherently unreliable
because the information they provide may be incorrect.

Chandra & Toueg [2] characterize failure detectors with two properties: the accu-
racy property, which restricts false suspicions that failure detectors can make, and the
completeness property, which requires that failure detectors eventually suspect every
failed devices. In this paper, we focus on the ♦S class of failure detectors, called Even-
tually Strong [2].

2.2 Failure Detector Implementation

From among the several strategies that have been proposed to implement failure detec-
tors, e.g., heartbeat or query (pinging), we choose to use the classical heartbeat detection
model.

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 141

The heartbeat technique is based on the periodic emission of messages from each
failure detector to everyone. In our implementation we divide the failure detector into
two modules. We distinguish between the spreading information, which is included in
the failure detector export module, and the gathering information, which is treated by
the failure detector import module.

As a consequence, every export module periodically broadcasts a message (see fig-
ure 1) to inform other devices of its reachable state.

Di DiDi

Dinit
Dt

Dt
Dt

p suspect q

processus q
DDExport

processus p
DDImport

Fig. 1. Heartbeat principle

When an failure detector import module of an entity e1 receives a message from
another device e2, it invokes its suspicion estimation function. This function in the
simplest case works by arming a timeout. This mechanism is repeated until every one
received a message from e2. Otherwise, if the import module of e1 does not receive a
new message from e2 after the expiration of the timeout, it adds e2 to its list of suspected
devices. The device e2 will be remove from this list when e1 receives a new message
from e2.

This implementation technique introduces two parameters: the heartbeat period and
the timeout delay. The heartbeat period is the time between two successive emissions
in the failure detector export module of each device. The timeout delay is used in the
import module. This parameter is the waiting period after which the failure detector of
a device e1 starts to suspect a device e2 of having failed.

2.3 Quality of Service of Failure Detectors

Intuitively, the failure detectors’ quality of service can be defined by: (1) the failure
detector reactivity, which should be the fastest possible and (2) the failure detector
should avoid false suspicions. Thus, the quality of a failure detector depends on its
reactivity against external events and on its capacity to provide correct information.
This quality of service notion was introduced and developed in [3] [9].

At run-time the failure detector is influenced by the two parameters [13] : Di, the
time period between two emissions of device i, and θj(i), the timeout delay for device i
in the failure detector import module of device j. Therefore, the failure detector quality
of service closely depends on the tuning of these parameters.

To define the quality of service of failure detectors, we have to address several trade-
offs. First, there is a tradeoff between the failure detector’s reactivity and the number of
sent messages over the network. Indeed, a decrease in heartbeat emission time period
Di allows for a better reactivity, thus limiting the duration of time devices are under
false suspicion. However, this is at the cost of increased network utilization, which in
turn may degrade overall system performance.

142 C. Marchand and J.-M. Vincent

The desired properties of a failure detector are to 1) avoid suspecting devices that
are available and 2) suspect devices that are not available as fast as possible. As the
reactivity is related to the value of the time period, the failure detector’s reliability
depends on the timeout tuning. Thus, one has to balance the existing tradeoff between
failure detector reliability and reactivity.

3 Stochastic Models

In this section we present stochastic modelling of failure detector mechanisms based on
heartbeat. The goal is to provide a model that allows for tuning of the failure suspicion
function. In fact, according to a set of parameter values, the model establishes the qual-
ity of service offered by the failure detector. This quality of service can be tuned by the
user to fit the needs of the application.

The two quality of service criteria studied in this section are the reactivity of the
failure detector and the quality of information given by the detector. The difficulty is to
establish the tradeoffs between these two properties. The reactivity is the delay needed
by a failure detector to detect the crash of the process. It is directly related to time-out
and heartbeat period. The quality of information given by the detector is estimated by a
false suspicion rate and the probability that the failure detector is in a state of suspicion.
The reactivity is a decreasing function of the time-out value, as is the suspicion rate,
that is also decreasing.

3.1 False Detection Probability

The difficulty for modelling such systems is the complexity of latency estimations. Fig-
ure 2 shows that the reception delay between two heartbeats send by the same failure
detector depends on (1) the time taken by the beat in the communication stack of the
sender, (2) the latency on the network taking losses into account, (3) the time spent in
the communication stack of the receiver (4) and finally the time needed by the receiver
failure detector process to access the information.

Sender
Device

Receiver
Device

Network

Network

FD Export
Process

FD Import
Process

FD sending delay

Network sending delay

Network receipt delay

FD receipt delay

Fig. 2. Running principle between two failure detectors

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 143

Time
θ θ θ θ θ θ

Beat arrivals

Suspicion time

Timeout

Process
FD Import

Fig. 3. Receptions and Suspicions

In the failure detector , suspicion occurs when the reception module has not received
a beat during some fixed time-out period. In this paper, the time-out θ is supposed to be
constant in all experiments.

The false suspicion rate φI(θ) is defined by the asymptotic ratio of the suspecting
period (grey blocks on figure 3) to the observation period.

Denote by λ0 the emission beat rate and λ the reception rate. The mean inter-arrival
time of beats is 1

λ and λ = λ0.(1 − p) with p the loss rate of messages on the network.
Let {Xn}n∈N be the sequence of inter-arrivals of beats on the receiver. So

lim
n→+∞

1
n

n∑
i=1

Xi =
1
λ
.

With this notation, it is possible to give an asymptotic expression for φI(θ).

φI(θ) = lim
n→+∞

∑n
i=1(Xi − θ)+∑n

i=1 Xi
= λ lim

n→+∞
1
n

n∑
i=1

(Xi − θ)+, (1)

with x+ the positive part of x.

To analyze the behavior of the failure detector and estimate φI(θ), the system will
be considered to be time homogeneous. Then parameters are constant on a sufficiently
large period to ensure stationarity of the random process.

In a first model, we suppose that the heartbeat receiving process may be considered
as a renewal process and the impact of variability of the inter-arrivals of beats on sus-
picion rate is established. A second model focuses on the impact of the latency in the
receiver stack on the suspicion rate.

3.2 Variable Sending Delay

An current implementation of the heartbeat sender is a simple loop of waiting periods.

loop forever
wait(period)
send(heartbeat)

end loop

144 C. Marchand and J.-M. Vincent

When this algorithm is perturbated by the operating system or access to the network,
variability occurs and heartbeats are not periodic.

In a first approximation, we consider the inter-arrival process as a renewal process.
It corresponds to strategies when the receiver estimates the distribution of inter-arrivals
and tries to fix the time-out according to some histogram.

Then, because the inter-arrivals of beats are independent with the same probability
law, the failure suspicion rate is just

φI(θ) = λE [X − θ]+ . (2)

This kind of formula is of high interest because it rapidly gives the order of ΦI when
the shape of the distribution of inter-arrivals distribution of beats is known.

Exponential Model. In the case when the inter-arrivals are exponentially distributed
with rate λ. The arrival process is a Poisson process and

φI(θ) = λ

∫ +∞

0

(x− θ)+λe−λxdx = e−λθ (3)

In figure 4, the first curve shows exponential decreasing of φI(θ) depending on time-
out. As an example, to achieve a false suspicion rate of 10−3 the adequate time-out
should be seven times the mean inter-arrival period.

In fact, when the inter-arrival X exhibits an new better than used in expectation
property (NBUE), the quantity ΦI(θ) is bounded from above by the exponential model
and so

φI(θ) ≤ e−λθ.

Moreover, if we need to decrease the false suspicion rate by an adaptative scheme, an
additive increment strategy will be sufficient.

Low Variance Model. In many cases the exponential model overestimates the false
suspicion rate, typically when the variance of inter-arrivals is small. To obtain finer
results, Erlang distributions with parameters (k, kλ) and density

fX(x) =
(kλ)kxk−1e−kλx

(k − 1)!
,

with mean 1
λ and variance 1

kλ2 . Then

φI(θ) = λ
∫ +∞

0

(kλ)kxk−1e−kλx

(k − 1)!
(x− θ)+dx (4)

It may be shown that
ΦI(θ) = e−kλθPk(λθ),

where Pk is a polynomial of degree k − 1. For small values of k, figure 4 shows the
suspicion probability for a mean inter-arrivals of beats equal to 1 and a variance of 1

k .

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 145

False suspicion rate

Time out

k=1 (exponential model)

k=2

k=3

k=4k=5
1e−05

1e−04

0.001

 0.01

 0.1

 0 1 2 3 4 5 6 θ

 1

Fig. 4. Suspicion probability related to reactivity for the low variance model

σ=
σ=

σ=
σ=

0.25

0.50

0.75

1.0

1e−05

1e−04

0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 θ

Fig. 5. Suspicion probability related to reactivity for the normal model

For example, with a variance 1
5λ2 , a time-out of three times the inter-arrivals of beats

is sufficient to ensure a false suspicion rate of 10−3.
In the case when the inter-arrival could be modelled by a normal distribution with

mean 1
λ and standard deviation σ, we can bound the false suspicion rate by

φI(θ) ≤ σ√
2π

e−
(θ− 1

λ
)2

2σ2 (5)

In this case, figure 5 indicates the false suspicion rate. Naturally, these curves decrease
more rapidly than the Erlang model. For a standard deviation of 0.5, taking a time-out
of 3 times the period is sufficient to guarantee a false suspicion rate of 10−3.

High Variance Model. Unfortunately, the observed distribution could exhibit large
values and when tail of the distribution is not of a negative exponential form. Then
Pareto distribution functions (α > 2) could be used

146 C. Marchand and J.-M. Vincent

σ=

σ=σ= 2

3

1.1
 0

0.05

 0.1

0.15

 0.2

0.25

 0.3

0.35

 0.4

0.45

 0.5

 2 4 6 8 10 12 14 16 18 θ

Fig. 6. Suspicion probability related to reactivity for the Pareto model

fX(x) =
α− 1
α− 2

1
(1 + x

α−2)α
. (6)

For these parameters, the mean has been fixed to 1 and the variance, for α > 3, is α−1
α−3 .

The false suspicion rate could easily be computed by

ΦI(θ) =
1

(1 + θ
a−2)a−2

.

In this situation, it is clear that the high variability of inter-arrivals of beats produces
a very poor quality of service of the failure detector . Even with a standard deviation of
1.1 the time out period should be more then ten times the heartbeat period to achieve a
suspicion rate of 10−3.

Synthesis. In this table the inter-arrivals of beats is 1 and the time-out function gives
the quality of service for false suspicions.

Distribution shape Properties Time-out function

Exponential
Most mixed distribution, bound for New Better
than Used in Expectation distribution

e−θ

Erlang(k, k) Exponential tail, low coefficient of variation Pk(θ)e−kθ

Gauss(1, σ2) White noise model around a deterministic value ≤ σ√
2π

e
− (θ−1)2

2σ2

Pareto(α) Heavy tail distribution 1

(1+ θ
a−2)a−2 if α > 3

3.3 Queueing of Heartbeat Messages

General Model. During experimentations, we observe that the delay between heart-
beats mainly depends on the nature of the receiver: laptop or PDA. This suggests that

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 147

the capability of the receiver introduces variability of inter-beats periods. Moreover,
inter-arrivals appear to be correlated and the correlation could be important. Observing
the phenomena at the network level by a non-intrusive "sniffer” we establish that heart-
beats are emitted as specified (e.g., periodically). The problem is due to the time spent
by the receiver module to get the heartbeat from its own network buffer. Consequently,
we have to take into account the contention of heartbeats on the receiver and variability
appear when the heartbeat is delivered from the network layer to the heartbeat module
at the middleware layer. A queueing model (figure 7) is used to describe the system.

Buffer
Network

Service

Delivery to
upper layer

Heart−beats Failure detector

Fig. 7. Model for beats delivery

In such a queueing model denote the arrival process of beats by {An}n∈N and the
sequence of service delays for delivering the beats by {Sn}n∈N .

The interesting process for dimensioning is the inter-output process denoted by
{Zn}n∈N. The aim of this section is to compute the stationary distribution of this pro-
cess. Following the evolution equation approach [1] the process {Zn} satisfies

Zn+1 = Sn+1 + [An+1 −Rn]+ , (7)

where Rn is the residual service time of clients in the queue just after the nth arrival.
This expression is obtained by the study of two cases :
- the server is busy at the arrival of client n + 1, it begins its service at the end of the
preceding client and the inter-output corresponds to the service time of client n+ 1;
- the queue is empty,An+1−Rn is positive and represent the elapsed time between the
last client output and the arrival of client n+ 1.

Provided that arrival and service processes are stationary ergodic, the queueing sys-
tem is stable if ES < EA. Thus, the embedded process {Rn} is also stationary and
consequently, the process {Zn} converges to a stationary distribution denoted by Z .

The GI/M/1 Case. We suppose now that the inter-arrivals are independent with the
distribution density fA(.). The services are considered exponentially distributed with
rate μ and independent. The system is modelled by a GI/M/1 queue, this queue is
stable iff 1

μEA < 1. The embedded process (number of clients in the queue) at arrival
times is a homogeneous Markov chain and the stationary distribution is geometrically
distributed with parameter β defined as the unique fixed point of the equation

β = LA(μ(1 − β)),

where LA(.) is the Laplace transform of the inter-arrivals density fA [10].

148 C. Marchand and J.-M. Vincent

Moreover, because of the memoryless property of service time, the residual service
time R is exponentially distributed with rate μ(1 − β). The residual service time is a
geometric sum of i.i.d. exponentially distributed random variables.

Given an inter-arrival distribution, it is possible to numerically compute the distri-
bution of

Z = S + [A−R]+ ;

and to deduce the false suspicion probability given a reactivity θ as

P(Z > θ) = P
(
S + [A−R]+ > θ

)
. (8)

The D/M/1 Case. In the case when failure detectors have periodic heartbeats (period
A = 1

λ), the formulation above could be simplified. First, we compute the rate of the
exponential distribution of R. Because LA(t) = e−At, β is the unique solution of

β = e−Aμ(1−β).

Then we compute the distribution of [A−R]+ :

P{(A−R)+ ≤ x} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if x < 0;
e−μ(1−β)A if x = 0;
e−μ(1−β)(A−x) if 0 ≤ x ≤ A;
1 if x ≥ A.

(9)

Then we form the convolution of the service time distribution and the distribution of
(A−R)+:

P{Z ≤ x} = P{(A− T)+ + S ≤ x}
=

∫ x

0

P{(A− T)+ ≤ x− s}μe−μsds

=
∫ x

0

P{(A− T)+ ≤ t}μe−μ(x−t)dt

P{Z ≤ x} =

⎧⎪⎪⎨⎪⎪⎩
1

2−β (e−μ(1−β)(A−x) − e−μ((1−β)A+x)) if x ≤ A;
1− e−μx

2−β (e−μ(1−β)A + (1 − β)eμA) if x ≥ A. (10)

The density is obtained by differentiation

fZ(x) =

⎧⎪⎨⎪⎩
μ

2−β e−μ(1−β)A((1 − β)eμ(1−β)x + e−μx) if x < A;
μ

2−β e−μx(e−μ(1−β)A + (1− β)eμA) if x ≥ A. (11)

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 149

For a given θ, the false suspicion rate is

φI(θ) =
1
A

E [Z − θ]+ =
∫ ∞

0

(x− θ)+fZ(x) dx.

After some computation, for θ > A, we obtain

E [X − θ]+ =
1

(2− β)μ
e−μθ(e−μ(1−β)A + (1− β)eμA) θ ≥ A, (12)

and we deduce

φI(θ) =
1

A(2− β)μ
e−μθ(e−μ(1−β)A + (1− β)eμA) θ ≥ A. (13)

μ=2
μ=10

A=1 A=1
1e−07

1e−06

1e−05

1e−04

0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7

False probability suspicion

 θ 1e−35

 1e−30

 1e−25

 1e−20

 1e−15

 1e−10

 1e−05

 1

 100000

 0 1 2 3 4 5 6 7 θ

False probability suspicion

Fig. 8. False suspicion probability, D/M/1 model A = 1

When the system is loaded, the impact on false suspicion probability is important.
For example, if the time to retrieve the heartbeat on the network is about half of the
heartbeat period (μ = 2λ), we should fix a time-out of four times the inter-arrival
period to get a quality of service less than 10−3.

From a practical point of view, this model permits us to adapt the suspicion policy
of the failure detector to the architecture of the device. Moreover we may deduce the
impact of the size of the network on the queueing system by considering μ as a function
of the number of devices in the network.

However, these results are obtained for a deterministic arrival process on the re-
ceiver. This hypothesis could be weakened by modifying the arrival law. Using a Pois-
son process arrival, the queue is aM/M/1 and the output process is a Poisson process.
In this case, we apply results from the previous section. Moreover, stochastic ordering
techniques provides results on arrival processes that could compare with deterministic
and Poisson process. This gives stochastic bounds for the dimensioning.

4 Experimentation

In this section we will use a real system to illustrate the relationship between the timeout
value and the quality of information provided by the failure detectors.

150 C. Marchand and J.-M. Vincent

4.1 First Approach

Experimental Design: This first study utilized 2 laptop devices (Linux 800 Mhz)
and 2 personal digital assistants (Linux 200 Mhz). The interconnections were based on
a 802.11b wireless ad-hoc network. The failure detector modules developed were in-
stalled in each device (import module and export module). Thus, each device has an
unreliable view of the global system based on the information in its own failure detec-
tor’s import module. The parameter settings used for the import modules were 100 ms
for the heartbeat time period, the timeout value was not fixed (infinite value). During
the experiment which lasted approximately 15 minutes, about 10,000 measures were
obtained. The system appeared to be stressed. In the experiment, the system’s reactivity
was of the order of 1 second. Since the experiment was conducted in a dedicated envi-
ronment, i.e., no other applications were running, it is to be expected that in a system
under standard application load the delay will likely increase.

Results: These graphic representations illustrate the various behaviors existing be-
tween a PDA and a laptop. Note that, in all these experiments, the environment was
"stressed", the heartbeat losses could be significant (loss rate was around 50% when the
receiver was a PDA).

As we can see in the graphics, if the timeout value had been fixed at 200 ms (θ = 2∗
the heartbeat emission time period), it would have been a too small value for some
of the devices and would have generated a lot of false suspicions. Indeed, when the
sending and receiver device are laptops (see figure 12), the distribution of heartbeat
receipt delays is centered around the emission duration mean value (100 ms). Most of
these durations are included between 50 ms and 150 ms. Therefore, a timeout value
fixed at 200 ms seems to be appropriate in spite of false suspicions engendered, since
the system reactivity is preserved.

On the other hand, when the receiver is a PDA (figures 9 and 11), the distribution
curves show that a timeout value equal to 200 ms is not adapted because it generates
too many false suspicions.

Thus, this experiment points out the importance of good parameter setting. Accord-
ing to the kind of devices, a same parameter configuration does not imply a same quality
of information:

0

0.002

0.004

0.006

0.008

0.01

0 200 400 600 800 1000

sender: PDA1 - receiver: PDA2

Times between 2 heartbeat receipts

P
ro

ba
bi

lit
y

Fig. 9. Distribution of the update times
on a PDA, of information concerning a
remote PDA

250 300 350 400 450 500

sender: PDA1 - receiver: laptop2

P
ro

ba
bi

lit
y

0.02

0.015

0.01

0.005

00 50 100 150 200
Times between 2 heartbeat receipts

Fig. 10. Distribution of the update times
on a laptop concerning information of a
remote PDA

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 151

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 200 400 600 800 1000
Times between 2 heartbeat receipts

sender: laptop1 - receiver: PDA2

P
ro

ba
bi

lit
y

Fig. 11. Distribution of the update times,
on a PDA of information concerning a
remote laptop

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200

P
ro

ba
bi

lit
y

Times between 2 heartbeat receipts

sender: laptop1 - receiver: laptop2

Fig. 12. Distribution of the update times,
on a laptop concerning information of a
remote laptop

– A laptop will not wrongly suspect another laptop (figure 12)
– A PDA often stands a good chance of suspecting a laptop which is present in the

system (figure 11)

4.2 An "Ideal Setting" Experimentation

Experimental Design: The high loss rate observed in the previous experiment denotes
that the heartbeat emission frequency is not adequate and it disrupts the system network.
Then, the goal of this next experimentation is to obtain a sample of measures which
will be used as a reference for the models. The parameters may be adjusted so that the
network works correctly, which means there is no voluntary stress or overload.

In this experiment, the system was composed with 6 devices: 3 PDAs (ipaq linux
200 Mhz), 2 laptops (linux 800 Mhz) and 1 laptop device which is used as a network
sensor (linux 800 Mhz). The sensor role is to capture network traffic and record all
heartbeat packets. This sensor will allow us to get an exterior view of the system behav-
ior during the experimentation. Parameters setting:

– Heartbeat emission period time: 500 ms
– Timeout : none
– Experimental duration: around 15 minutes

Losses: With this parameter setting, the heartbeat mechanism do not overload the sys-
tem studied. Essentially due to external disturbances in wireless environment, heartbeat
message losses are then limited (approximately 2 out of 1000 messages).

Heartbeat Reception Analysis: Figure 13 represents the distribution of elapsed time
between two receipts of messages from the same device. Note that the distributions are
slightly different according to the type of emitter/receiver devices.

If the timeout value is fixed at 2 ∗ (heartbeat period time), then the wrong sus-
picion rate is of the order of 10−3 when the receiver devices are laptops, and of 10−2

when receivers are PDAs.

152 C. Marchand and J.-M. Vincent

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 400 450 500 550 600

P
ro

ba
bi

lit
y

Elapsed times between 2 receipts

sender: laptop1 − receiver: laptop2
sender: laptop1 − receiver: pda2

sender: pda1 − receiver: pda2

 0.14
sender: pda1 − receiver: laptop2

Fig. 13. Distributions of the update times

4.3 Experimentation in a Disrupted Environment

Experimental Design: For this experiment, the platform configuration is like the pre-
vious one. However, contrary to the previous experiment, here we introduced a vol-
untary disruption. To do this, a laptop is used to generate a data transfer (ping with 4
KB/20ms packets) to an external device during the experiment.

Losses: To compare with the previous experiment, the loss rate is more important
in this case (around 15% of the messages are lost). Whereas the loss rate is between
approximatively 6% and 9% for all other devices, it is approximatively 44% for the
device which generate the network overload.

Heartbeat Reception Analysis: As in the previous section, figure 14 illustrates the
elapsed time between two heartbeat messages from a same remote device received by
each device.

In this context, it is possible to get durations between two successive receipts which
could be more than six times the average of heartbeat emission delays. As we can see

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 450 500 550 600 650 700
Elapsed Times between 2 heartbeat receipts

sender: Laptop1 − receiver: Laptop2
sender: Laptop1 − receiver: PDA2
sender: PDA1 − receiver: Laptop2

P
ro

ba
bi

lit
y

sender: PDA1 − receiver: PDA2

Fig. 14. Distributions of the update times

Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks 153

in figure 14, there are many long receipt durations when the receiver is a PDA. More-
over, some delays between heartbeat receipts are very small. This phenomenon may be
explained by the fact that after a long waiting time (before receiving the next heartbeat
message), because of the heartbeat messages are regularly sent, several messages could
arrive closely together.

Thus, it seems that a correlation exists between successive waiting times of two
heartbeat receipts and should be used in further modelling.

5 Conclusion

Tuning failure detectors is of great importance for the efficient control of distributed
systems. However, the tradeoff between the quality of information and the reactivity
of failure detectors should be established clearly. In this paper we demonstrated that
stochastic models, taking into account the architecture, can be useful for setting specific
time-out delays.

This study should now be extended to a finer analysis of correlation. Auto-regressive
approaches could follow the evolution of the network, especially since network delays
depend on the load on the network. Another approach could be a finer description of the
spatial organization of the network. Distances between devices could affect the reliabil-
ity of communications. In this case, stochastic geometry techniques could be efficiently
used to model the knowledge an entity could built of the whole system.

References

1. F. Baccelli and P. Brémaud. Elements of Queuing Theory. Springer-Verlag, 1994.
2. Chandra, T. and Toueg, S. Unreliable Failure Detectors for Reliable Distributed Systems.

Journal of the ACM, 43(2):225–267, March 1996.
3. Chen, W. and Toueg, S. and Aguilera, M. On the Quality of Service of Failure Detectors.

In International Conference on Dependable Systems and Networks (DSN 2000), New York,
2000. IEEE Computer Society Press.

4. Coccoli, A. and Urbán, P. and Bondavalli, A. and Schiper, A. Performance Analysis of a
Consensus Algorithm Combining Stochastic Activity Networks and Measurements. In Proc.
Int’l Conf. on Dependable Systems and Networks (DSN), pages 551–560, Washington, DC,
USA, June 2002.

5. Durand, Y. and Perret, S. and Vincent, J-M. and Marchand, C. and Ottogalli, F-G. and Olive,
V. and Martin, S. and Dumant, B. and Chambon, S. SIDRAH: A software infrastructure for a
resilient community of wireless devices. In smart Objects conference, pages 134–137, 2003.

6. Fischer, M. and Lynch, N. and Paterson, M. Impossibility of Distributed Consensus with
One Faulty. Journal of the ACM, 32(2):374–382, 1985.

7. Fortier, P. and Michel, H. Computer Systems Performance Evaluation and Prediction. Digital
Press, 2003.

8. Haverkort, B. Performance of Computer Communication Systems. John Wiley & Sons, 1998.
9. Hurfin, M. and Raynal, M. A Simple and Fast Asynchronous Consensus Protocol Based on

a Weak Failure Detector. Distributed Computing, 12(4):209–223, 1999.
10. L. Kleinrock. Queuing systems : theory, volume 1. J. Wiley & Sons, 1975.
11. C. Marchand. Mise au point d’algorithmes répartis dans un environnement fortement vari-

able, et expérimentation dans le contexte des pico-réseaux. PhD thesis, Institut National
Polytechnique de Grenoble, 2004.

154 C. Marchand and J.-M. Vincent

12. Nelson, R. Probability, Stochastic Processes, and Queueing Theory: The Mathematics of
Computer Performance Modeling. Springer-Verlag, 1995.

13. Sergent, N. and Défago, X. and Schiper, A. Impact of a Failure Detection Mechanism on
the Performance of Consensus. In Proc. IEEE Pacific Rim Symp. on Dependable Computing
(PRDC), Seoul, Korea, December 2001.

14. Wolff, R. Stochastic Modeling and the Theory of Queues. Prentice-Hall International Edi-
tions, 1989.

Hypergraph Partitioning for Faster Parallel

PageRank Computation

Jeremy T. Bradley, Douglas V. de Jager,
William J. Knottenbelt, and Aleksandar Trifunović

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

{jb, dvd03, wjk, at701}@doc.ic.ac.uk

Abstract. The PageRank algorithm is used by search engines such as
Google to order web pages. It uses an iterative numerical method to
compute the maximal eigenvector of a transition matrix derived from
the web’s hyperlink structure and a user-centred model of web-surfing
behaviour. As the web has expanded and as demand for user-tailored
web page ordering metrics has grown, scalable parallel computation of
PageRank has become a focus of considerable research effort.

In this paper, we seek a scalable problem decomposition for parallel
PageRank computation, through the use of state-of-the-art hypergraph-
based partitioning schemes. These have not been previously applied in
this context. We consider both one and two-dimensional hypergraph de-
composition models. Exploiting the recent availability of the Parkway 2.1
parallel hypergraph partitioner, we present empirical results on a gigabit
PC cluster for three publicly available web graphs. Our results show that
hypergraph-based partitioning substantially reduces communication vol-
ume over conventional partitioning schemes (by up to three orders of
magnitude), while still maintaining computational load balance. They
also show a halving of the per-iteration runtime cost when compared to
the most effective alternative approach used to date.

1 Introduction

The PageRank metric is a widely-used hyperlink-based estimate of the relative
importance of web pages [1]. The standard algorithm for determining PageRank
uses power method iterations that converge to the maximal eigenvector of a tran-
sition matrix. This matrix is derived from a web graph that reflects the hyperlink
structure of the web and a user-centred model of web-surfing behaviour.

The sheer size and high growth rate of the web necessitates a scalable par-
allel/distributed approach to PageRank computation. In turn, the scalability of
such an approach demands detailed scrutiny of computation and communica-
tion overheads induced by problem decomposition over available processors. A
poor decomposition results in excessive communication overhead and/or a poor
computational load balance with correspondingly poor run times.

In addition to size considerations, web search engines are recognising the
need to tailor search results to different classes of users (or individual users),

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 155–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 J.T. Bradley et al.

and other contextual information [2]. This is achieved in practice by performing
distinct PageRank computations (using distinct personalisation vectors) for each
class of user or search context. Since these repeated calculations have the same
structure (in terms of matrix sparsity pattern), it is often worthwhile investing
considerable effort in finding a high-quality decomposition that can be reused
for every PageRank calculation.

A promising state-of-the-art approach for producing high-quality decompo-
sitions (that has been used in many contexts, ranging from VLSI circuit layout
to distributed database design), is hypergraph partitioning [3,4,5]. Hypergraphs
are extensions of graph data structures, in which (hyper)edges connect arbitrary
sets of vertices. Like graphs, hypergraphs can represent the structure of many
sparse, irregular problems, and may be partitioned such that a cut metric is min-
imised subject to a load balancing constraint. However, hypergraph cut metrics
provide a more expressive and accurate model than their graph counterparts. For
example, in the decomposition of a sparse matrix for parallel matrix–vector mul-
tiplication, hypergraph models quantify communication volume exactly, whereas
graph models can only provide an approximation [4].

This paper considers, for the first time, the application of hypergraph-based
decomposition techniques to the parallel PageRank computation problem. We
show how this problem can be mapped onto a hypergraph partitioning problem,
for both one- and two-dimensional decompositions. The partitioning of hyper-
graphs of large scale has only recently become a practical proposition with the
development of parallel hypergraph partitioning tools such as Parkway [6] and
the forthcoming Zoltan implementation [7]. Exploiting the Parkway tool as part
of a parallel PageRank computation pipeline, we present experimental results
using a gigabit PC cluster on three public-domain web graphs, ranging in size
from a university-domain to a national-level crawl. The results show a substantial
reduction in per-iteration communication volume, yielding a runtime reduction
of up to 70% over the most effective current alternative.

The remainder of this paper is organised as follows. Section 2 presents tech-
nical details of the PageRank algorithm. Section 3 describes the application of
hypergraph partitioning to parallel PageRank computation. Section 4 discusses
our results. Finally, Section 5 concludes and presents ideas for future work.

2 PageRank Algorithm

The PageRank computation for ranking hypertext-linked web pages was origi-
nally outlined by Page and Brin [1]. Later Kamvar et al. [8] presented a more
rigorous formulation of PageRank and its computation. In fact, the latter de-
scription differs from the original; however, apart from the respective treatment
of so-called cul de sac pages (web pages with no out-links, sometimes called
dead-end pages), the difference is largely superficial [9]. A good discussion of the
issues involved along with analysis of other variations in the PageRank algorithm
can be found in Langville et al. [10]. We shall concern ourselves here with the
Kamvar et al. formulation.

Hypergraph Partitioning for Faster Parallel PageRank Computation 157

Two intuitive explanations are offered for PageRank [8]. The first presents
PageRank as an analogue of citation theory: that is, an out-link from a web
page w to a web page w′ is an indication that w′ may be “important” to the
author of w. Many such links into w′, especially from pages that are themselves
“important”, should raise the importance of w′ relative to other web pages.
More specifically, the importance that is propagated from w to w′ should be
proportional to the importance of w and inversely proportional to the number
of out-links from w. This account of PageRank is still incomplete as it does not
take into account any form of user personalisation, or how to deal with cul de
sac pages.

The second conceptual model of PageRank is called the random surfer model.
Consider a surfer who starts at a web page and picks one of the links on that
page at random. On loading the next page, this process is repeated. If a cul de
sac page is encountered, then the surfer chooses to visit a random page. During
normal browsing, the user may also decide, with a fixed probability, not to choose
a link from the current page, but instead to jump at random to another page. In
the latter case, to support both unbiased and personalised surfing behaviour, the
model allows for the specification of a probability distribution of target pages.

The PageRank of a page is considered to be the (steady-state) probability
that the surfer is visiting a particular page after a large number of click-throughs.
Calculating the steady-state probability vector corresponds to finding a maxi-
mal eigenvalue of the modified web-graph transition matrix. As shown in Sec-
tion 2 below, this can be done via an iterative numerical method based on sparse
matrix–vector multiply operations.

Random Surfer Model. In the random surfer model, the web is represented by
a graphG = (V, E), with web pages as the vertices, V , and the links between web
pages as the edges, E. If a link exists from page u to page v then (u → v) ∈ E.

To represent the following of hyperlinks, we construct a transition matrix P
from the web graph, setting:

pij =
{ 1

deg(ui)
: if (ui → uj) ∈ E

0 : otherwise

where deg(u) is the out-degree of vertex u, i.e. the number of outbound links
from page u. From this definition, we see that if a page has no out-links, then
this corresponds to a zero row in the matrix P.

To represent the surfer’s jumping from cul de sac pages, we construct a second
matrix D = dpT , where d and p are both column vectors and:

di =
{

1 : if deg(ui) = 0
0 : otherwise

and p is the personalisation vector representing the probability distribution of
destination pages when a random jump is made. Typically, this distribution is
taken to be uniform, i.e. pi = 1/n for an n-page graph (1 ≤ i ≤ n). However, it
need not be as many distinct personalisation vectors may be used to represent

158 J.T. Bradley et al.

different classes of user with different web browsing patterns. This flexibility
comes at a cost, though, as each distinct personalisation vector requires an ad-
ditional PageRank calculation.

Putting together the surfer’s following of hyperlinks and his/her random
jumping from cul de sac pages yields the stochastic matrix P′ = P + D, where
P′ is a transition matrix of a discrete-time Markov chain (DTMC).

To represent the surfer’s decision not to follow any of the current page links,
but to instead jump to a random web page, we construct a teleportation ma-
trix E, where eij = pj for all i, i.e. this random jump is also dictated by the
personalisation vector.

Incorporating this matrix into the model gives:

A = cP′ + (1− c)E (1)

where 0 < c < 1, and c represents the probability that the user chooses to follow
one of the links on the current page, i.e. there is a probability of (1− c) that the
surfer randomly jumps to another page instead of following links on the current
page.

This definition of A avoids two potential problems. The first is that P′,
although a valid DTMC transition matrix, is not necessarily irreducible (i.e. it
might have more than one strongly connected subset of states) and aperiodic.
Taken together, these are a sufficient condition for the existence of a unique
steady-state distribution. Now, provided pi > 0 for all 1 ≤ i ≤ n, irreducibility
and aperiodicity are trivially guaranteed.

The second problem relates to the rate of convergence of power method
iterations used to compute the steady-state distribution. This rate depends on
the reciprocal of the modulus of the subdominant eigenvalue (λ2). For a general
P′, |λ2| may be very close to 1, resulting in a very poor rate of convergence.
However, it has been shown in [11] that in the case of matrix A, |λ2| ≤ c, thus
guaranteeing a good rate of convergence for the widely taken value of c = 0.85.

Given the matrix A, we can now define the unique PageRank vector, π, to
be the steady-state vector or the maximal eigenvector that satisfies:

πA = π (2)

Power Method Solution. Having constructed A we might näıvely attempt to
find the PageRank vector of Eq. (2) by using a direct power method approach:

x(k+1) = x(k)A (3)

where x(k) is the kth iterate towards the PageRank vector, π. However looking
at the current size of the web and its rate of growth since 1997 (currently 8
billion indexed pages [12]), it is clear that this is not a practical approach for
realistic web graphs. The reason for this is that A is a (completely) dense matrix.
Accordingly, the PageRank algorithm, as cited in for instance Kamvar et al. [13],
reduces Eq. (3) to a series of sparse vector–matrix operations on the original P
matrix.

Hypergraph Partitioning for Faster Parallel PageRank Computation 159

1. x(0) := pT

2. y := cx(k)P
3. ω := ‖x(k)‖1 − ‖y‖1

4. x(k+1) := y + ωpT

5. Repeat from 2. until ‖x(k+1) − x(k)‖1 < ε

Fig. 1. Pseudocode description of the PageRank algorithm

In particular, transforming Eq. (3) gives:

x(k+1) = x(k)A
= cx(k)P′ + (1− c)x(k)E

= cx(k)P + cx(k)D + (1− c)x(k)(1pT) (4)

Now x(k)D = (‖x(k)‖1 − ‖x(k)P‖1)pT , where ‖a‖1 =
∑

i |ai| is the 1-norm of
a and further ‖a‖1 = 1Ta if ai ≥ 0 for all i. It can be shown inductively that
‖x(k)‖1 = 1 for all k, so:

x(k+1) = cx(k)P + c(1− ‖x(k)P‖1)pT + (1− c)(x(k)1)pT

= cx(k)P + (1− c‖x(k)P‖1)pT (5)

This leads to the algorithm shown in Fig. 1. When distributing this algorithm,
it is important to distribute the sparse matrix–vector calculation of x(k)P in
such a way so as to balance computational load as evenly as possible across
the processors and minimise communication overhead between processors. This
latter optimisation is where we introduce hypergraph partitioning for P.

Later, in Section 4, we refine the coarse notion of communication overhead to
distinguish between number of messages sent, total communication volume (in
terms of number of floating point elements sent), as well as maximum number
of messages sent by a processor.

3 Parallel PageRank Computation

We consider the parallel formulation of the PageRank algorithm from Section 2
for which the kernel operation is parallel sparse matrix–vector multiplication.
Note that, although our discussion is presented in the context of power method
solution, there is nothing to prevent the application of our technique to other
iterative linear system solvers with a sparse matrix–vector multiplication ker-
nel, such as the Krylov subspace methods proposed in [14]. Furthermore, our
approach does not preclude the application of power method acceleration tech-
niques, for example those proposed in [8].

Efficient Parallel Sparse Matrix–Vector Multiplication. Let Ax = b be
the sparse matrix–vector product to be computed in parallel on p distributed

160 J.T. Bradley et al.

processors that are connected by a network. The general form of a parallel algo-
rithm for sparse matrix–vector multiplication with an arbitrary non-overlapping
distribution of the matrix and the vectors across the processors is given in [5]:

1. Each processor sends its components xj to those processors that possess a
non-zero aij in column j.

2. Each processor computes the products aijxj for its non-zeros aij and adds
the results for the same row index i. This yields a set of contributions bis,
where s is the processor identifier 0 ≤ s < p.

3. Each processor sends its non-zero contributions bis to the processor that is
assigned vector element bi.

4. Each processor adds the contributions received for its components bi, giving
bi =

∑p−1
s=0 bis.

Efficient parallel sparse matrix–vector multiplication requires intelligent a
priori partitioning of the sparse matrix non-zeros across the processors. This
ensures that interprocessor communication during stages 1 and 3 is minimised
and computational load balance is achieved across the processors. We note that
the computational requirement of step 2 dominates that of step 4. Henceforth,
we assume that the computational load of the entire algorithm is represented by
step 2.

Recently, a number of hypergraph-based models for parallel sparse matrix–
vector multiplication that correctly model total communication volume and
per-processor computational load have been proposed [4,15,16,5]. These have
addressed the shortcomings implicit in traditional graph models [17]. In [4], a
hypergraph-based model for 1-dimensional decomposition of the sparse matrix
is proposed. A 1-dimensional decomposition implies that processors either store
entire rows or entire columns of the matrix. Note that, in the case of row-wise
decomposition, this has the effect of making the communication step 3 in the
parallel sparse matrix–vector multiplication pipeline redundant; in the case of
column-wise decomposition, step 1 is redundant. The hypergraph-based models
in [15,16,5] are 2-dimensional, which means to say that they model a general
distribution of matrix non-zeros to processors (not necessarily assigning entire
rows or columns of the matrix to processors). Although here both steps 1 and 3
may incur communication overhead, the overall communication volume should
be at least as low as that of the 1-dimensional decomposition (at least for op-
timal partitions, since the 1-dimensional decomposition is a special case of the
2-dimensional decomposition).

In previous work on efficient parallel PageRank implementation, only näıve
1-dimensional matrix decompositions have been considered. In [14], the authors
reject traditional graph partitioning models as a plausible approach, on account
of the apparent power-law distribution of the number of non-zeros in the rows of
web graph transition matrices. Instead, they use a relatively simple load balanc-
ing scheme that assigns consecutive rows of the matrix to each processor. Our
work here demonstrates that this power-law distribution does not appear to be
a significant obstacle in the context of a hypergraph-based approach.

Hypergraph Partitioning for Faster Parallel PageRank Computation 161

In this paper, we consider both 1-dimensional decomposition, based on the
hypergraph model presented in [4], and 2-dimensional decomposition, based on
the models presented in [15,5]. Since the output vector b of the parallel sparse
matrix–vector product is reused as the input vector x in the subsequent iteration,
we note that the processor that is assigned the vector component bi should also
be assigned the vector component xi (resulting in a symmetric decomposition of
the vector elements).

Description of the Hypergraph Models. A hypergraph is a set system (V, E)
on a set V , here denoted H(V, E), such that E ⊂ P(V), where P(V) is the power
set of V . The elements of the set V are called the vertices of the hypergraph and
E the set of hyperedges, where each hyperedge e ∈ E is a subset of the set V .
When E ⊂ V (2), each hyperedge has cardinality two and the resulting set system
is known as a graph. A hypergraph H(V, E) is said to be hyperedge-weighted if
each hyperedge e ∈ E has an associated integer weight. Correspondingly, in a
vertex-weighted hypergraph H(V, E), each vertex v ∈ V has an integer weight.

Given a hypergraph H(V, E), with V = {v1, . . . , vn} and E = {e1, . . . , en},
the corresponding incidence matrix A = (aij) is the n× n matrix with entries

aij =
{

1 if vi ∈ ej

0 otherwise (6)

A k-way partition Π (k > 1) of the set V is a finite collection Π = {P1, . . . , Pk},
of subsets of V (or parts), such that Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ k and⋃k

i=1 Pi = V . A hyperedge is said to be cut by a partition if it spans (i.e. has a
vertex in) at least two parts of a partition. The goal of the hypergraph partition-
ing problem is to find a k-way partition Π = {P1, . . . , Pk}, with corresponding
part weights Wi, 1 ≤ i ≤ k, such that an objective function fo : (Π, E) → Z is
optimised, while a balance constraint over the part weights is maintained. That
is, for some ε (0 < ε� 1):

Wi < (1 + ε)Wavg (7)

for all 1 ≤ i ≤ k. The part weightsWi are computed as the sum of the constituent
vertex weights. Here we consider the objective function known as the k−1 metric,
shown in Eq. (8), where λi represents the number of parts spanned by hyperedge
ei and w(ei) is the weight of hyperedge ei.

fo(Π, E) =
n∑

i=1

(λi − 1)w(ei) (8)

As the hypergraph partitioning problem is NP-hard [18], in practice a good
sub-optimal partition is sought in low-order polynomial time using heuristic
multilevel algorithms.

1-Dimensional Sparse Matrix Decomposition. Without loss of generality,
we describe the hypergraph model for 1-dimensional row-wise sparse matrix

162 J.T. Bradley et al.

decomposition, i.e. where all non-zeros in a row of the matrix are allocated to
the same processor. A similar column-wise model follows from considering the
allocation of all non-zeros in a column of the matrix to the same processor. These
1-dimensional hypergraph-based models were first proposed in [4].

The hypergraph model H(V, E) for the decomposition of a sparse matrix A
is constructed as follows. The rows of the matrix A form the set of vertices V in
the hypergraph H(V, E) and the columns form the set of hyperedges E . That is,
if aij �= 0, then hyperedge ej ∈ E , defined by column j of the matrix A, contains
vertex vi ∈ V . The weight of vertex vi ∈ V is given by the number of non-zero
elements in row i of the matrix A, representing the computational load induced
by assigning row i to a processor. The weights of each hyperedge are set to unity.

The allocation of the rows of the matrix A to p processors for parallel sparse
matrix–vector multiplication corresponds to a p-way partition Π of the above
hypergraph H(V, E). Ignoring the negligible impact of stage 4, as mentioned
earlier, the computational load on each processor i is given by the number of
scalar multiplications performed on that processor during stage 2 of the general
parallel sparse matrix–vector multiplication pipeline. This quantity is given by
the number of non-zeros of the matrix A allocated to that processor, which is
in turn given by the weight of part Pi.

The vector elements xi and bi are allocated to the processor that is allocated
row i of the matrix A. There remains one further condition that the hypergraph
model must satisfy to ensure that the k-1 metric on partition Π exactly repre-
sents the total communication volume incurred during a single parallel sparse
matrix–vector multiplication (in this case stage 1 only). We require that for all
1 ≤ i ≤ n, vi ∈ ei holds. If this is not the case for some 1 ≤ i′ ≤ n, then we add
vi′ to hyperedge ei′ . The weight of vi′ is not modified.

Thus, finding a partition that minimises the k-1 metric over the hypergraph
while maintaining the balance constraint in Eq. (7) directly corresponds to min-
imising communication volume during parallel sparse matrix–vector multiplica-
tion while maintaining a computational load balance.

2-Dimensional Sparse Matrix Decomposition. The 2-dimensional sparse
matrix decomposition takes a more general approach, no longer imposing the
restriction of allocating entire rows (or columns) of the matrix A to the same
processor, as in 1-dimensional decomposition. Instead, a general distribution
of matrix non-zeros to processors is considered. This may introduce additional
communication operations during stage 3 in the general parallel sparse matrix–
vector multiplication pipeline, but the aim is to reduce the overall communication
volume. Here we describe the hypergraph model H(V, E) introduced in [15,5].
Each non-zero aij �= 0 is modelled by a vertex v ∈ V so that a p-way partition Π
of the hypergraph H(V, E) will correspond to an assignment of matrix non-zeros
across p processors.

In order to define the hyperedges of the hypergraph model, consider the cause
of communication between processors in stages 1 and 3 of the parallel sparse
matrix–vector multiplication pipeline. In stage 1, the processor with non-zero
aij requires vector element xj for computation during stage 2. This results in a

Hypergraph Partitioning for Faster Parallel PageRank Computation 163

communication of xj to the processor assigned aij if xj is assigned to a different
processor to aij . The dependence between non-zeros in column j of matrix A and
vector element xj can be modelled by a hyperedge, whose constituent vertices are
the non-zeros of column j of the matrix A. So that the communication volume
associated with communicating vector element xj is given by λj − 1, where λj

denotes the number of parts spanned by the column j hyperedge, we require
that the column j hyperedge contains the vertex corresponding to non-zero ajj .
If ajj is zero in the matrix A, we can add a “dummy” vertex with zero weight
corresponding to ajj . The fact that this vertex has weight zero means that its
allocation to a processor will have no bearing on the processor’s computational
load, while the exact communication volume during stage 1 is modelled correctly.

In stage 3, the processor assigned vector element bi requires the value of the
inner product of row i of the matrix A with the vector x. Thus, a communication
between processors is induced if matrix non-zero aij is assigned to a different
processor from vector entry bi. The dependence between non-zeros in row i
of matrix A and vector element bi can be modelled by a hyperedge, whose
constituent vertices are the non-zeros of row i of the matrix A. This is analogous
to modelling the communication of stage 1 with column hyperedges and likewise,
“dummy” vertices corresponding to aii are added to row hyperedge i if the value
of aii in matrix A is zero.

The hypergraph model H(V, E) is then partitioned into p parts such that
the k-1 metric is minimised, subject to the balance constraint of Eq. (7) (thus
maintaining computational load balance during stage 2). In our implementation,
this is done using a parallel multilevel partitioning algorithm [19,6].

Note that, except for restricting vector elements xi and bi to the same pro-
cessor, we have not explicitly allocated vector entries to processors. The overall
communication volume during the parallel sparse matrix–vector multiplication
will be correctly modelled by the 2-dimensional hypergraph model, provided that
we allocate the vector elements to processors in the following fashion. For the
vector element with index i:

1. If both the row i hyperedge and the column i hyperedge are not cut, then
assign vector elements xi and bi to the processor assigned vertices from row
i and column i hyperedges.

2. If the row i hyperedge is cut and the column i hyperedge is not cut, then
assign vector elements xi and bi to the processor assigned vertices from
column i hyperedge.

3. If the row i hyperedge is not cut and the column i hyperedge is cut, then
assign vector elements xi and bi to the processor assigned vertices from row
i hyperedge.

4. If both the row i hyperedge and the column i hyperedge are cut, then let Ri

denote the set of processors that contain row i hyperedge elements and let Ci

denote the set of processors that contain column i hyperedge elements. Since
either aii �= 0 or there exists a “dummy” vertex in the row i and column
i hyperedges corresponding to aii, the set Ti = Ri ∩ Ci is non-empty and
vector elements xi and bi may be assigned to any of the processors in Ti.

164 J.T. Bradley et al.

With the additional freedom in the assignment of vector elements to proces-
sors given by case 4 above, it may be possible to further decrease the maximum
number of messages sent or received by an individual processor while keeping the
overall communication volume constant. In our implementation of stage 4 above,
the vector elements xi and bi are allocated to the first part in Ti encountered
during traversal of matrix A.

4 Experimental Results

In this section, we apply four decomposition strategies to calculate PageRanks
for three publicly available web graphs. Each web graph was generated from a
crawl of a particular domain or combination of domains; we represent them
by a sparse matrix A with non-zero aij whenever there exists a link from
page i to page j. The Stanford and Stanford Berkeley web graphs were ob-
tained from the University of Florida Sparse Matrix Collection [20] and repre-
sent lexically ordered crawls of the Stanford and combined Stanford/Berkeley
domains respectively. The India-2004 web graph represents a breadth-first crawl
of the .in domain conducted in 2004, obtained from the UbiCrawler public data
set [21]. The main characteristics of the corresponding matrices are given in
Table 1.

The two hypergraph decomposition methods of Section 3 were tested against
two näıve load balancing methods. In the cyclic row-striping matrix decompo-
sition, the non-zeros of the matrix A in row with index i are assigned to the
processor i mod p. Vector elements xi and bi are also allocated to processor
i mod p. This ensures that each processor is allocated the same number (±1) of
rows of matrix A and vector elements of x and b. However, this scheme does
not take into account the distribution of the non-zeros within the rows.

The load balancing scheme presented in [14], hereafter referred to as the
GleZhu scheme, attempts to balance the number of non-zeros across the pro-
cessors, while assigning consecutive rows of the matrix A to each processor. A
threshold value τp = (wnn + wηη)/p is computed, where n is the number of
rows and η the number of non–zeros in the matrix. The parameters wn and
wη were both set to unity in [14]. Starting with row index zero and i = 0, the
load–balancing algorithm then assigns consecutive rows of matrix A and con-
secutive elements of vectors x and b to each processor i, maintaining the value
of τi = wnni + wηηi, where ni is the number of rows and ηi the number of
non–zeros assigned thus far to processor i. When τi exceeds τp, the algorithm
begins to assign subsequent rows to processor i+ 1.

Table 1. Characteristics of the test hypergraphs

WebGraph #rows #columns #non-zeros

Stanford 281 903 281 903 2 594 228
Stanford Berkeley 683 446 683 446 8 262 087

India-2004 1 382 908 1 382 908 16 917 053

Hypergraph Partitioning for Faster Parallel PageRank Computation 165

WebGraph

x1

x2
.

.

.

xn

Pagerank

Vector
x =

Sparse

Matrix

Decomposition

PageRank

Parallel

Computation

Naive Partitioning Models

Hypergraph Partitioning Models

1D

2D

Cyclic

Gleich−Zhukov

Parallel Partitioning with Parkway2.1

Fig. 2. Parallel PageRank Calculation Pipeline

Experimental Setup. Our parallel PageRank computation pipeline is shown
in Fig. 2. Taking the web graph matrix A as input, a decomposition of this matrix
across p processors is performed using either one of the hypergraph partitioning-
based models (i.e. 1D or 2D) or one of the load balancing row-wise decomposition
methods (i.e. cyclic or GleZhu).

The hypergraph partitioning-based schemes compute a p-way partition of
the hypergraph representation of the sparse web matrix using the parallel hy-
pergraph partitioning tool Parkway2.1 [6]. In our experiments, we have used
a 5% balance constraint for hypergraph partitioning, meaning that the weight
of each part in the partition of the hypergraph must not exceed the average
part weight by more than 5% (ε = 0.05 in Eq. (7)). The computed hyper-
graph partition is then used to allocate the rows (in the case of 1D partition-
ing) or the non-zeros (in the case of 2D partitioning) of the web matrix to the
processors.

Finally, the algorithm described in Section 2 is used to compute the PageRank
vector for the matrix, with all matrix–vector and vector operations performed
in parallel. The criterion of convergence for the PageRank calculation was taken
to be 10−8 and convergence was computed using the L1 norm.

The architecture used in all the experiments consisted of a Beowulf Linux
Cluster with 8 dual processor nodes. Each node has two Intel Pentium 4 3.0GHz
processors and 2GB of RAM. The nodes are connected by a gigabit Ethernet
network. The algorithms were implemented in C++ using the Message Passing
Interface (MPI) standard.

Results. For each matrix decomposition method, we observed the following
measures of communication cost during each parallel PageRank iteration: to-
tal communication volume (the total volume of all messages sent); number of

166 J.T. Bradley et al.

Table 2. Stanford Web graph Results

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 15.2 1 181
#iterations 83 83 85 88

per iteration time(s) 0.2153 0.1681 0.0699 0.0762
Ax = b time(s) 0.2028 0.1621 0.0583 0.0657

Ax = b comp. time(s) 0.0607 0.0390 0.0551 0.0599
Ax = b comm. time(s) 0.1427 0.1237 0.0035 0.0058

#messages 12 12 12 19
max non-zeros per proc. 614 346 583 653 607 030 601 362

max vector elems per proc. 70 476 73 611 90 601 87 253

max per proc. comm. vol. 304 442 267 683 12 344 1 318
total comm. vol. 601 964 530 420 13 849 1 399

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 13.2 1 061
#iterations 79 79 83 86

per iteration time(s) 0.1854 0.1473 0.0443 0.0465
Ax = b time(s) 0.1716 0.1415 0.0318 0.0365

Ax = b comp. time(s) 0.0425 0.0169 0.0269 0.0309
Ax = b comm. time(s) 0.1299 0.1253 0.0055 0.0056

#messages 56 56 44 64
max non-zeros per proc. 326 891 297 854 303 515 299 503

max vector elems per proc. 35 238 38 962 49 443 55 398

max per proc. comm. vol. 255 053 231 233 31 564 1 660
total comm. vol. 989 071 894 098 34 221 2 285

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.3 543.1
#iterations 75 76 79 81

per iteration time(s) 0.1810 0.1446 0.0515 0.0513
Ax = b time(s) 0.1614 0.1377 0.0347 0.0353

Ax = b comp. time(s) 0.0532 0.0182 0.0242 0.0277
Ax = b comm. time(s) 0.1094 0.1203 0.0116 0.0076

#messages 240 240 147 207
max non-zeros per proc. 192 857 155 898 151 757 151 236

max vector elems per proc. 17 619 21 208 31 215 28 221

max per proc. comm. vol. 186 331 173 525 39 820 2 214
total comm. vol. 1 364 285 1 325 808 74 137 4 307

messages sent; the maximum total communication volume of messages sent and
received by a single processor during stage 1, in the case of row-wise decom-
position, and the maximum total communication volume of messages sent and
received by a single processor during stages 1 and 3, in the case of 2D decompo-
sition.

The purely load balancing matrix decomposition approaches do not attempt
to minimise the metrics above. The 1D and 2D hypergraph-based methods aim
to minimise the overall communication volume. In row-wise decomposition meth-
ods, the number of messages sent during parallel sparse matrix–vector multipli-
cation is at most p(p− 1). In the 2D method, the number of messages is at most
2p(p− 1).

Tables 2, 3 and 4 present results of our experiments on the Stanford, Stan-
ford Berkeley and india-2004 web graphs, respectively. The following statistics
are also recorded, for the combination of different web graph models being run
on 4, 8 and 16 processor clusters using the 4 distinct partitioning algorithms:
decomposition time (time taken to prepare the partition for each of the different
partitioning algorithms); number of iterations (number of iterations to conver-
gence of the distributed PageRank algorithm); per iteration times (average time
for a single PageRank iteration); Ax = b time (average time to perform a single
Ax = b iteration); Ax = b comp. time (time taken to complete the local com-
putation of an Ax = b iteration); Ax = b comm. time (time taken to complete
the interprocessor communication of an Ax = b iteration); Max non-zeros per
proc. (maximum number of non-zeros allocated per processor); Max vector elems

Hypergraph Partitioning for Faster Parallel PageRank Computation 167

Table 3. Stanford Berkeley Web graph results

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 22.9 5 169
#iterations 84 87 89 89

per iteration time(s) 0.4596 0.0618 0.0353 0.0377
Ax = b time(s) 0.4341 0.0527 0.0253 0.0264

Ax = b comp. time(s) 0.0632 0.0237 0.0239 0.0244
Ax = b comm. time(s) 0.3714 0.0293 0.0018 0.0019

#messages 12 12 12 20
max non-zeros per proc. 1 977 527 1 906 240 1 990 554 1 989 151

max vector elems per proc. 170 862 188 568 204 129 243 758

max per proc. comm. vol. 810 530 112 101 6 432 2 023
total comm. vol. 1 605 286 165 765 6 648 2 081

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.4 3 304
#iterations 80 85 85 84

per iteration time(s) 0.4616 0.0458 0.0285 0.0246
Ax = b time(s) 0.4376 0.0395 0.0202 0.0167

Ax = b comp. time(s) 0.0774 0.0123 0.0136 0.0130
Ax = b comm. time(s) 0.3578 0.0276 0.0071 0.0038

#messages 56 56 42 62
max non-zeros per proc. 1 063 001 961 340 994 257 994 592

max vector elems per proc. 85 431 115 805 131 713 142 253

max per proc. comm. vol. 727 768 129 977 35 117 2 620
total comm. vol. 2 744 682 269 095 45 132 3 479

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.8 1 842
#iterations 76 85 85 83

per iteration time(s) 0.5955 0.0518 0.0351 0.0238
Ax = b time(s) 0.5549 0.0443 0.0271 0.0150

Ax = b comp. time(s) 0.1435 0.0110 0.0101 0.0102
Ax = b comm. time(s) 0.4132 0.0340 0.0169 0.0048

#messages 240 178 129 165
max non-zeros per proc. 627 253 510 616 497 659 497 055

max vector elems per proc. 42 716 73 665 78 873 69 754

max per proc. comm. vol. 548 922 120 589 80 112 3 242
total comm. vol. 4 002 962 478 162 147 590 7 302

per proc. (maximum number of vector elements allocated per processor); Max
per proc. comm vol. (maximum communication volume sent and received by a
processor); Total comm. vol. (total communication volume of number of floating
point elements sent in a single PageRank iteration).

Note that, due to numerical errors (truncation and roundoff), the num-
ber of iterations is not constant across the different methods. We observe that
the application of hypergraph partitioning attracts a significantly lower over-
all communication overhead. 2D partitioning is the most effective at reducing
overall communication volume, although this does not always translate into a
lower PageRank per-iteration time, on account of the higher number of mes-
sages sent, and the relatively high message start-up cost on our gigabit PC
cluster.

Fig. 3 displays the total per-iteration communication volume for each par-
titioning algorithm. It shows that the GleZhu technique has a lower commu-
nication overhead than the näıve cyclic partitioning, as might be expected.
We also see that, when compared to the GleZhu method, hypergraph parti-
tioning reduces communication volume by an order of magnitude for 1D hy-
pergraph partitioning and by 2 orders of magnitude for 2D hypergraph
partitioning.

Fig. 4 shows the overall PageRank iteration time for GleZhu, 1D and 2D
hypergraph partitions of the Stanford Berkeley web matrix on the 16-processor
cluster. The computation label refers to the time taken to compute a single
Ax = b iteration. The communication label represents the time taken in com-

168 J.T. Bradley et al.

Table 4. India Web graph Results

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 557.5 13 480
#iterations 81 84 84 85

per iteration time(s) 0.7577 0.1142 0.0762 0.0781
Ax = b time(s) 0.7094 0.0972 0.0537 0.0528

Ax = b comp. time(s) 0.1243 0.0501 0.0526 0.0506
Ax = b comm. time(s) 0.5856 0.0475 0.0015 0.0022

#messages 12 12 11 24
max non-zeros per proc. 4 346 286 4 319 031 4 431 469 4 264 282

max vector elems per proc. 345 727 381 623 501 669 557 602

max per proc. comm. vol. 1 326 626 147 078 2 110 1 901
total comm. vol. 2 646 280 223 467 2 428 3 018

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 280.9 11 360
#iterations 77 81 83 81

per iteration time(s) 0.8489 0.0756 0.0458 0.0444
Ax = b time(s) 0.7985 0.0641 0.0290 0.0292

Ax = b comp. time(s) 0.1455 0.0251 0.0276 0.0263
Ax = b comm. time(s) 0.6537 0.0395 0.0024 0.0028

#messages 56 56 46 105
max non-zeros per proc. 2 196 083 2 165 349 2 218 547 2 185 533

max vector elems per proc. 172 864 204 069 335 547 309 293

max per proc. comm. vol. 1 214 716 105 491 3 248 2 996
total comm. vol. 4 800 997 266 447 4 758 5 867

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 157.3 7 857
#iterations 74 81 79 80

per iteration time(s) 0.9548 0.0577 0.0396 0.0405
Ax = b time(s) 0.8755 0.0455 0.0229 0.0255

Ax = b comp. time(s) 0.2797 0.0207 0.0194 0.0198
Ax = b comm. time(s) 0.5987 0.0257 0.0045 0.0055

#messages 240 240 154 306
max non-zeros per proc. 1 124 363 1 126 092 1 110 174 1 091 597

max vector elems per proc. 86 432 122 143 182 236 198 703

max per proc. comm. vol. 928 783 88 210 4 486 3 896
total comm. vol. 7 237 257 313 198 14 433 11 684

munication when performing a single Ax = b iteration. The results for the cyclic
technique are not shown as they are orders of magnitude larger and our main
interest here is in comparing the GleZhu method (as the best currently used
alternative) with the hypergraph versions. We see that the overall PageRank
iteration time is dictated by the communication overhead incurred in perform-
ing the distributed Ax = b calculation. As might be expected, the computation
element and the residual of the PageRank computation (those calculations not
involving the distributed matrix–vector multiplication) of the algorithm con-
tribute an (approximately) fixed cost to the overall iteration time. We observe
that 1D and 2D hypergraph partitioning successfully reduce the communication
overhead by factors of 2 and 6 respectively. This reduction results in a decrease
in the overall PageRank iteration time by 50% in the 2D case.

We note that, contrary to intuition, in some cases computation times do vary
significantly depending on decomposition method used. We conjecture that this
occurred because we did not make any attempt to optimise the caching behaviour
of our parallel PageRank solver. As a consequence the GleZhu method (which
assigned consecutive vector elements to processors) has a good cache hit rate;
conversely the cyclic method (which assigned vector elements on a striped basis)
suffers a poor cache hit rate.

Hypergraph Partitioning for Faster Parallel PageRank Computation 169

 1000

 10000

 100000

 1e+06

 1e+07

C
yc

lic

G
le

Z
hu

1D
 H

-g
ra

ph

2D
 H

-g
ra

ph

C
om

m
un

ic
at

io
n

vo
l.

(#
 o

f f
lo

at
in

g
po

in
t e

le
m

en
ts

)

Partition algorithm

Total inter-processor communication for different webgraph partitions

Number of FP elements sent

Fig. 3. Total per-iteration communi-
cation volume for 16-processor Stan-
ford Berkeley PageRank computation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

G
le

Z
hu

1D
 H

-g
ra

ph

2D
 H

-g
ra

ph

T
im

e,
 s

Partition algorithms

Breakdown of PageRank time per iteration into constituent components

Communication

Communication

Communication

Computation

Computation

Computation

Residual

Residual

Residual

Fig. 4. Per-iteration execution time for
16-processor Stanford Berkeley PageR-
ank computation

5 Conclusion and Future Work

In this paper, we have sought to speed up the execution of parallel Page-
Rank computation through the use of hypergraph partitioning-based decom-
position techniques. We have investigated the application of both one- and
two-dimensional hypergraph models, and compared them to conventional load
balancing decomposition methods. Our experiments on a gigabit PC cluster
have shown that hypergraph-based models consistently and substantially de-
crease distributed per-iteration communication overhead, resulting in the halv-
ing of per-iteration run-time when compared to the best available currently-used
alternative.

Because of the initial partitioning overhead, the proposed technique is partic-
ularly applicable when performing PageRank calculations with multiple person-
alisation vectors, since the same partition can be reused at no additional cost.
We observed that the partitioning overhead was relatively low for the 1D hy-
pergraph decomposition when compared to the 2D hypergraph decomposition.
We have some observations to make about this. Firstly, the 2D hypergraph de-
composition is a harder problem to solve, since the more sophisticated layout
requires the solution of a much larger hypergraph partitioning problem instance
with unique characteristics. Secondly, the parallel partitioning tool used (i.e.
Parkway 2.1) is constantly evolving and has not yet been optimised for 2D de-
composition. Furthermore, other emerging hypergraph partitioning tools (e.g.
Zoltan [7]) promise potentially much faster parallel execution times, for both 1D
and 2D decomposition.

In terms of future work, the current decomposition models aim to minimise
total communication volume only. However, depending on the characteristics of
the interconnection network used, performance may also be significantly affected
by factors such as the number of messages sent or the maximum communication
volume passing through a processor. To this end, we aim to develop hypergraph

170 J.T. Bradley et al.

models which incorporate message and communication volume balancing con-
straints. Secondly, the 2D hypergraph-based decomposition gives rise to a hyper-
graph where each vertex is incident on exactly two hyperedges. Faster parallel
partitioning algorithms may be developed, exploiting this favourable structure.

References

1. L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
Bringing order to the web,” Tech. Rep. 1999–66, Stanford Univ., November 1999.

2. T. H. Haveliwala, “Topic sensitive PageRank: A context-sensitive ranking algo-
rithm for web search,” Tech. Rep., Stanford University, March 2003.

3. C. Alpert, J.-H. Huang, and A. Kahng, “Recent Directions in Netlist Partitioning,”
Integration, the VLSI Journal, vol. 19, no. 1–2, pp. 1–81, 1995.

4. U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based decomposition
for parallel sparse matrix–vector multiplication,” IEEE Transactions on Parallel
and Distributed Systems, vol. 10, no. 7, pp. 673–693, 1999.

5. B. Vastenhouw and R. H. Bisseling, “A Two-Dimensional Data Distribution
Method for Parallel Sparse Matrix-Vector Multiplication,” SIAM Review, vol. 47,
no. 1, pp. 67–95, 2005.

6. A. Trifunovic and W. J. Knottenbelt, “Parkway2.0: A Parallel Multilevel Hyper-
graph Partitioning Tool,” in Proc. 19th International Symposium on Computer and
Information Sciences (C. Aykanat, T. Dayar, and I. Korpeoglu, eds.), vol. 3280 of
Lecture Notes in Computer Science, pp. 789–800, Springer, 2004.

7. E. Boman, K. Devine, R. Heaphy, U. Catalyurek, and R. Bisseling, “Parallel hyper-
graph partitioning for scientific computing,” Tech. Rep. SAND05–2796C, Sandia
National Laboratories, Albuquerque, NM, April 2005.

8. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, “Extrapolation
methods for accelerating PageRank computations,” in Twelfth International World
Wide Web Conference, (Budapest, Hungary), pp. 261–270, ACM, May 2003.

9. D. de Jager, “PageRank: Three distributed algorithms,” M.Sc. thesis, Department
of Computing, Imperial College London, London SW7 2BZ, UK, September 2004.

10. A. N. Langville and C. D. Meyer, “Deeper inside PageRank,” Internet Mathemat-
ics, vol. 1, no. 3, pp. 335–400, 2004.

11. T. H. Haveliwala and S. D. Kamvar, “The second eigenvalue of the google matrix,”
Tech. Rep., Computational Mathematics, Stanford University, March 2003.

12. “Google.” http://www.google.com/. 20th June 2005.

13. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, “Exploiting
the block structure of the web for computing PageRank,” Stanford database group
tech. rep., Computational Mathematics, Stanford University, March 2003.

14. D. Gleich, L. Zhukov, and P. Berkhin, “Fast parallel PageRank: A linear system
approach,” Tech. Rep., Institute for Computation and Mathematical Engineering,
Stanford University, 2004.

15. U. V. Catalyurek and C. Aykanat, “A Fine-Grain Hypergraph Model for 2D De-
composition of Sparse Matrices,” in Proc. 8th International Workshop on Solving
Irregularly Structured Problems in Parallel, (San Francisco, USA), April 2001.

16. B. Ucar and C. Aykanat, “Encapsulating Multiple Communication-Cost Metrics in
Partitioning Sparse Rectangular Matrices for Parallel Matrix-Vector Multiples,”
SIAM Journal of Scientific Computing, vol. 25, no. 6, pp. 1837–1859, 2004.

Hypergraph Partitioning for Faster Parallel PageRank Computation 171

17. B. A. Hendrickson, “Graph partitioning and parallel solvers: Has the Emperor no
clothes,” in Proc. Irregular’98, vol. 1457 of LNCS, pp. 218–225, Springer, 1998.

18. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

19. A. Trifunovic and W. Knottenbelt, “A Parallel Algorithm for Multilevel k-way
Hypergraph Partitioning,” in Proc. 3rd International Symposium on Parallel and
Distributed Computing, (University College Cork, Ireland), pp. 114–121, July 2004.

20. T. Davis, “University of Florida Sparse Matrix Collection,” March 2005.
http://www.cise.ufl.edu/research/sparse/matrices.

21. “UbiCrawler project.” http://webgraph-data.dsi.unimi.it/.

Prediction of Communication Latency over

Complex Network Behaviors on SMP Clusters�

Maxime Martinasso1,2,�� and Jean-François Méhaut1

1 Laboratoire ID-IMAG, ZIRST 51 avenue Jean Kuntzmann,
38330 MontBonnot Saint-Martin, France

2 BULL SA, 1 rue de Provence,
BP 208 38432 ECHIROLLES Cedex, France

{maxime.martinasso, jean-francois.mehaut}@imag.fr

Abstract. Using MPI as communication interface, one or several appli-
cations may introduce complex communication behaviors over the net-
work of a cluster. This effect is increased when nodes of the cluster are
multi-processors, and where communications can income or outgo from
the same node with a common interval time. Our interest is to under-
stand the effects of complex communication schemes over a network of
SMP nodes, and then to identify different network conflicts. Network
conflicts stand for a network component (links, NIC, or MPI stack, etc.)
shared between communications. This paper describes a set of experi-
ments generating network conflicts and their analysis, in order to accu-
rately predict communication latencies. This analysis is based on cluster
of bi-processor with a Myrinet network, using as communication inter-
face a LAM MPI-2 implementation over GM protocol.

Keywords: Performance evaluation, communication model, Myrinet,
wormhole network, cluster of SMP, communication latency.

1 Introduction

Many parallel applications, communicating through a network, used MPI [12]
to spread relevant data for their computations. Within MPI, an application is
divided in MPI tasks, which contain call of the communication primitives. MPI
tasks may be distributed over a cluster.

Clusters are becoming more efficient and sophisticated. A cluster of SMP
nodes, linked by a high performance network, is an example of efficient cluster.
Our experiments were performed over a bi-processor cluster connected by a
Myrinet network.

The communication complexity created by several applications executed in
the same time, over efficient clusters, likely generates complicated network be-
haviors. In opposition of common LAN network (as ethernet), high performance
networks reduce communication control and so handle communications in an
� This work was supported by BULL SA and INRIA.

�� To whom correspondence should be addressed.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 172–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Prediction of Communication Latency over Complex Network Behaviors 173

easiest way to understand communication behaviors. Nevertheless, these com-
munication behaviors bring up difficulty to accurately estimate communication
delay of applications over a cluster. Complex communication behaviors generate
contention or conflict on network resources. Contention is an overexploitation
of the network resource, creating communication delay as commented in [10].
Conflict occurs when several communications share the same network resources.

This paper introduces an analysis of network conflicts induced by complex
communication behaviors. After a description of Myrinet network characteris-
tics and an exposition of several existing communication models, section 4 will
describe our analysis of network conflicts, which leads to our communication
model in section 5. Our model accuracy is discussed in section 6, and finally, the
paper ends with a conclusion.

2 Overview of Myrinet and GM Protocol

Myrinet is a high-speed local-area network or system-area network for computer
systems. A Myrinet network is composed of point-to-point links that connects
hosts and switches. The network link can deliver 2 Gbits/sec bandwith in each
direction. Myrinet is based on packet-switching technology where the packets are
wormhole-routed through a network consisting of switching elements and net-
work interface cards (NIC). Each NIC, attached to the host’s I/O bus, contains
a programmable processor (Lanai) and onboard memory that is used to store
the control program and communication buffers. This programmability provides
flexibility in designing communication software. Several low-level communica-
tion protocols have been designed for Myrinet networks, from research teams
(Fast Message [13], BIP [4]) or from Myricom (GM and MX). These protocols
tried to exploit the specificities of parallel computing on clusters in order to
propose more efficient and dedicated systems. In this paper, we have used the
GM protocol from Myricom.

To increase the data transfer rate, the NIC adaptor is equipped with three
DMA engines. Two DMA engines are associated with the packet interface: one
for receiving packets and one for sending packets. The third DMA engine is used
for data transfer between the NIC memory and the host memory through the
host interface. This third DMA engine is a potential bottleneck for simultaneous
sending and receiving operations.

Like most systems that support DMA, the onboard memory can be mapped
into user space and is this accessible directly to user processes. The memory
mapping technique is commonly known as ”memory pinning”. In order to sup-
port zero-copy API, the DMA operations can be performed with arbitrary byte
counts and byte alignments.

GM is a user-level communication protocols that runs over the Myrinet and
provides a reliable ordered delivery of packets with low latency and high band-
width. The basic send/receive operations of GM works as follows:

To send a message, a user application generates a send descriptor, referred to
as a send event in GM, to the NIC. The NIC translates the event to a send token

174 M. Martinasso and J.-F. Méhaut

and appends it to the send queue for the desired destination. With outstanding
send tokens to multiple destinations, the NIC processes the tokens to different
destinations in a round-robin manner. To send a message for a token, the NIC
has also to wait for the availability of a send packet, i.e.. the send buffer to
accommodate the data. The data is read from the host memory with a DMA
into a send packet and injected into the network. The NIC keeps a send record of
the sequence number and the time for each packet it has sent. If the acknowledges
is not received within the timeout period, the sender will retransmit the packet.
When all the send records are acknowledged, the NIC will pass the send token
to the LAM MPI library.

To receive a message, the host provides some registered memory as the re-
ceive buffer by preposting a receiving descriptor. A posted receive descriptor is
translated into a receive token by the NIC. When the NIC receives a packet, it
checks the sequence number. An unexpected packet is dropped immediately. For
an expected packet, the NIC locates a receive token, writes the packet data in
the host memory with DMA, and then acknowledges the sender. When all the
packets for the message have arrived, the NIC will also generate a receive event
to the host process for it to detect the arrived message. In our case, this event
will be caught by the LAM-MPI library.

3 Network Communication Models

Network communication can use MPI primitives to send and receive messages.
MPI performance was investigated in [9] for high performance networks such as
Myrinet. The authors shown the impact of buffer reuse, intra-node communi-
cation latency, and memory usage against the communication performance of
several MPI primitives. If we focus on cluster of SMP nodes, more MPI perfor-
mance studies were presented in [7], for different kind of platform.

A popular communication model developed is the LogP model [5] and is
version LogGP model [3] for long messages. Both models use a linear model
characterized by 4 parameters: L (as delay), o (as overhead), g (as bandwidth)
and P (as number of processors). LogGP model introduce a new parameter G (as
gap per byte). Impacts of each parameters was analyzed in [11], with methods to
measure model parameters. Like these two models, and if we focus on wormhole
model, a basic approach to predict communication delays is to used a linear
model featured by an overhead cost and a communication rate factor (applied to
message length and network path). In network based on wormhole communica-
tions, this kind of models is sufficient in case of each communication is indepen-
dent and does not share any network resource. Although, as one or several MPI
applications, composed by several MPI tasks, can spread messages through over-
lapped communication time, these linear models poorly predict communication
delays.

A first approach of communication sharing effects was introduce by [8]. The
authors predict communication delay with a linear model taking into account
the path sharing over a Myrinet network of workstation. Their study was based

Prediction of Communication Latency over Complex Network Behaviors 175

on the protocols GM and BIP but without MPI as user interface. Their model
gives a first approach of sharing network resource. Communications are model-
ing by a piece-wise linear equation, and in case of sharing path, this equation
is multiplied by the maximum number of communications within the sharing
conflict. They evaluate their model against two communication schemes with
synchronous sends. Their model gives good results for some communications of
their schemes, but the authors do not provide more insight about communication
influences and so for communication delays predicted with low accuracy. This
paper enhances the understanding of network conflicts, and presents conflicts of
communication between SMP nodes using MPI as user communication interface.

4 Conflict Analysis

Our approach, to understand communication behaviors over Myrinet, is to mea-
sure communication time following different communication schemes. The anal-
ysis focus on a set of particular schemes suitable to enclose most of the com-
munication behaviors. Communications in these schemes can be of two types:
external communication, going through the Myrinet links and switch, or internal,
between two tasks on two processors of the same SMP node. These communica-
tion schemes must be relevant of network communication conflicts. A network
conflict is produce when simultaneous communications access the same network
component. We study three kinds of network conflicts:

– sharing resource system of node in full-duplex communication
– sharing one part of a full-duplex link
– conflict between internal communication and external communication

4.1 Testbed

The platform used to take these communication time measures is the INRIA’s
icluster2 [1] composed by 104 bi-Itamium2 nodes. Its Myrinet network includes
one 128-port switch (reference M3-E128) connected to Myrinet interconnect
cards (reference M3F-PCI64C-2). Measured latency is equal to 13.9μs. The
Myrinet protocol is a GM protocol version 2.1.9 accessed by a LAM 7.1.1 MPI
2 implementation [6]. In LAM small messages have a length lower than 64Kb.
We keep this delimitation between small and long messages. MPI tasks will be
mapped as one task per processors, meaning that a node can have at maximum
two MPI tasks. Linux kernel is on version 2.4.21.

4.2 Communication Method and Measurements

Several way of implementing communication between MPI tasks can lead to
different network performance. As consequence, it is interesting to introduce in
this paragraph our communication method of the different benchmarks used to
analyze network behavior.

176 M. Martinasso and J.-F. Méhaut

Sending is done through blocking send defined by the standard MPI Send
primitive. To synchronize MPI tasks between them, we used a MPI synchroniza-
tion barrier, we highlight to the reader that using synchronization barrier gives
implicitly an order for the tasks to continue their executions.

Cache effects can also influence measurements. To avoid cache effects, we
executed several not-measured communication before each benchmark. A side
effect of this cache avoidance method is to set the Myrinet switch and so to not
take into account the time to create the different wormholes between nodes. As
a Myrinet switch per-hop delay is about 0.5μs, this side effect of cache avoidance
can be consider as insignificant.

Measured time is done at the source task, starting before the MPI send and
ending when the MPI send method terminates. Message length corresponds to
the length specified in the MPI Send primitive, and does not correspond to the
effective length send over the network (MPI implementation add a small envelope
to the message). Thus, effective message length are always greater than specified
length and a 0-specified length is not meaningless. If one MPI task has to receive
two messages from two others tasks, we used the MPI flag MPI ANY SOURCE
in the receive function, to avoid a fixed order of receive.

4.3 Communication Schemes

Communication schemes are necessary to test communication behaviors. A com-
munication scheme is a set of communications between MPI tasks.

Therefore, a communication scheme is characterized by its MPI task distri-
butions over the nodes and by its communications parameters, such as number
of communications, message length, starting time, etc. To help in understand-
ing, communication schemes will be identified by the string ”c/n − p1p2..pc”
where c is the number of communications, n the number of nodes and the re-
maining sequence of pairs represents the communicating nodes. As an example,
consider a two-communication scheme over three nodes identified by 2/3-0121
in which both node 0 and node 2 send messages to node 1. To graphically view
the communication scheme identification, the reader can refer to Fig. 1.

4.4 Communication Conflicts Analysis

Conflicts appear when tasks send messages through complex communication
schemes. We associate communication schemes into several set used to express
the three network conflicts mentioned above, plus one start case used as refer-
ence of communication time. We test these schemes with homogeneous commu-
nications (same start time and same messages length for each communication)
and heterogeneous communications. For each schemes, we evaluate the average
communication time and standard deviation of each communication. These cal-
culations is done over a sample size of 10000 experiments.

Experiments. In our investigation of network conflict, we had made a large
number of experiments. We present in this section only relevant cases. The
curves, presented in next section, are calculated with schemes set to homoge-
neous communications.

Prediction of Communication Latency over Complex Network Behaviors 177

node 3

node 0
id = 1/1−00

(a)
(b)

node 0 node 1
id = 2/2−0101

(a) (b)

node 1 node 2node 0
id = 2/3−1012

(a) (a) (c)(b) (b)

node 0 node 0node 1 node 1node 2 node 2
id = 2/3−0112 id = 3/4−011232

node 0 node 1
id = 2/2−0110

(a)
(b)

(b)(a)

node 0 node 1
id = 2/3−0121

node 2

(a)(a)
(b)(b)

node 1node 1 node 0node 0
id = 2/2−0111id = 2/2−1011

node 0 node 1
id = 1/2−01

Fig. 1. Identification of communication schemes

Reference Cases: 1/1-00 and 1/2-01. Schemes with only one communication
will serve us as reference to compare network conflicts. Scheme 1/1-00 determines
reference time for internal communication and scheme 1/2-01 for external com-
munication. Fig. 2 shows different average and standard deviation values for
these schemes in function of message length (in Bytes). To evaluate the Lam
MPI time overhead we add the same curve with only the GM protocol, calcu-
lated with the tool gm allsize provided with the GM library. We remind the
fact that the GM curves do not include the MPI envelope length, which has
significant effects for small messages.

One first analysis, comparing this two schemes show that the average com-
munication time is regular for both communications (small standard deviation).
More precisely for long messages, the time is linear (y = α.x+ β) in function of
the message length. If we go further in this direction with more experiments, we
can calculate the linear coefficients α and β. In case of external communication
αext = 0.004193 [μs.Byte−1] and βext = 78.125[μs] for internal communication
αint = 0.004301 [μs.Byte−1] and βint = 59.59[μs].

If we look at internal communication with small messages, as sender and
receiver share the same system resources and the same system load, we have
a higher variability (higher standard deviation) as their communication delays
are low and close to system resource sharing latency. The stair shape for small
messages comes from the GM protocol version 2.1, which fragments long mes-
sages into packets of most 4KB [2]. If we compare both internal and external
communication, it appears that for messages greater than 256KB, internal com-
munication consumes more time than external communication, probably caused
by the same reason of system resource sharing delay.

Sharing Resource System on Full-Duplex Link: 2/2-0110, 2/3-0112. Both
scheme 2/2-0110 and 2/3-0112 test the sharing resource system accessed, on full-
duplex link, by both send and receive methods in the same time. Figure 3 presents
the delays of scheme 2/2-0110, the delay values of scheme 2/3-0112 are similar.For

178 M. Martinasso and J.-F. Méhaut

 0
 20
 40
 60
 80

 100
 120

 0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 (

us
)

MPI user datasize (Byte)

GM
Scheme 1/2-01

Standard deviation

 0

 20

 40

 60

 80

 100

 120

D
el

ay
 (

us
)

GM
Standard deviation

Scheme 1/1-00

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1MB512KB256KB128KB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 1/1-00
Scheme 1/2-01

Standard deviation
GM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

16MB8MB4MB2MB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 1/1-00
Scheme 1/2-01

Standard deviation
GM

– External and internal communications have
regular μ and σ.

– Internal communications are more irregu-
lar for small messages (higher σ) and con-
sume more time, caused by shared system
resource.

– Lam-GM vs GM, small messages: stair func-
tion is intensified.

– Lam-GM vs GM, long messages: GM values

are close to Lam MPI.

Fig. 2. 1/1-00 and 1/2-01 schemes comparison, μ and σ values

small messages, as we test sharing resources is difficult to well interpret the delay
with high standard deviation. Nevertheless communication (a) appears to follow
a stair function (as scheme 1/2-01).Communication (b) is more chaotic. We re-
mind that MPI synchronization barrier involves an implicit order, and in our case
communication (a) starts before communication (b), explaining the more chaotic
aspect of communication (b). For long messages, both (a) and (b) have the same
communication time, with a small standard deviation. Still, the comparison with
scheme 1/2-01 shows a delay caused by system resource sharing.

To estimate the rate of this delay, we used heterogeneous communication.
Considering a linear equation as y = αo.x + βo, we can measure the sharing
overhead rate αo = 0.004663 [μs.Byte−1] and βo = 102.33[μs]. This overhead
is explained by the Myrinet NIC architecture, which includes a DMA engine
shared for data transfer (sending/receiving) between the NIC memory and the
host memory.

Sharing One Part of the Full-Duplex Link: 2/2-0101, 2/3-0121, 2/3-1012.
The three schemes 2/2-0101, 2/3-0121 and 2/3-1012 test the half-part sharing
of full-duplex link, following combinations of sending and receiving. The scheme
2/3-0121 delays are presented in Fig. 4, but these three schemes reveal the same
communication behavior. Small message delays are regular following a stair case
function.

Long messages indicate an interesting behavior. The delay for both com-
munication (a) and (b) of the three schemes are two times the delay of the

Prediction of Communication Latency over Complex Network Behaviors 179

 0
 20
 40
 60
 80

 100
 120
 140

 0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 (

us
)

MPI user datasize (Byte)

Standard deviation
Scheme 2/2-0110(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160

D
el

ay
 (

us
)

Standard deviation
Scheme 2/2-0110(b)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1MB512KB256KB128KB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 2/2-0110(a)
Scheme 2/2-0110(b)

Scheme 1/2-01
Standard deviation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

16MB8MB4MB2MB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 2/2-0110(a)
Scheme 2/2-0110(b)

Scheme 1/2-01
Standard deviation

– Small message delays are most irregular, and
it is difficult to have a good interpretation of
their communication latencies.

– We observe for long messages that both com-
munication delay for (a) and (b) are similar.

– In case of long messages, we can observe

a linear delay in function of the message

length in comparison with scheme 1/2-01.

This overhead delay represents the sharing

resource overhead.

Fig. 3. 2/2-0110 and 1/2-01 schemes comparison, μ and σ values

reference scheme. This particularity was already shown in [8]. In their Myrinet
model of communication, in case of simultaneous communications, they multi-
ply their equation of communication delay by the maximum number of messages
concurrently using links on the path.

Indeed, this communication behavior is more complicated, if we test it in het-
erogeneous case with different start time and message lengths. Within this case,
for one message, communication delay will be augmented by the intersection
time of all the others communications with the same destination node (and so in
case of same message lengths and same start time, the delay will be multiplied by
the number of communications). We can explain this effect by the fact that the
GM protocol fragments packets enabling the interlacing of the communications
over the shared part of the network path.

External Versus Internal Communication: 2/2-0111, 2/2-1011. In that
paragraph we evaluate external and internal communication together. Figure 5
presents the behavior of scheme 2/2-0111, (scheme 2/2-1011 has an equivalent
behavior).

For small messages we get again a stair function for both schemes. For long
messages we notice that the outgoing external communication is greater than
the internal communication, but in case of incoming external communication it
is the contrary. Mixing message lengths, communications are serialized meaning
that one communication starts after the other ends (and its delay is the sum
of both delays). More specifically, the high standard deviation of both schemes
reveals an order between communications. This order is not always identical

180 M. Martinasso and J.-F. Méhaut

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 (

us
)

MPI user datasize (Byte)

Standard deviation
Scheme 2/3-0121(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

D
el

ay
 (

us
)

Standard deviation
Scheme 2/3-0121(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1MB512KB256KB128KB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 2/3-0121(a)
Scheme 2/3-0121(b)

Scheme 1/2-01
Standard deviation

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

16MB8MB4MB2MB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 2/3-0121(a)
Scheme 2/3-0121(b)

Scheme 1/2-01
Standard deviation

– Small messages follow a stair function.
– Long messages are interlacing adding a delay

equal to the intersection time of the com-
munications, and in case of homogeneous
communication, the delay is multiplied by
the number of communications.

Fig. 4. 2/3-0121 and 1/2-01 schemes comparison, μ and σ values

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 (

us
)

MPI user datasize (Byte)

Standard deviation
Scheme 2/2-0111(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160

D
el

ay
 (

us
)

Standard deviation
Scheme 2/2-0111(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1MB512KB256KB128KB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 2/2-0111(a)
Scheme 2/2-0111(b)

Scheme 1/1-00
Standard deviation

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

16MB8MB4MB2MB

D
el

ay
 (

us
)

MPI user datasize (Byte)

Scheme 2/2-0111(a)
Scheme 2/2-0111(b)

Scheme 1/1-00
Standard deviation

– Small messages follow a stair function.
– Long messages are in exclusive access

creating communication delays with a not
constant order (high standard deviation).

Fig. 5. 2/2-0111 and 1/1-00 schemes comparison, μ and σ values

among the 10000 experiments. In other words, during a set of experiments, in
some experiments external communication waits for internal communication,
and in some other experiments it is inverted, and this whatever the scheme.

Prediction of Communication Latency over Complex Network Behaviors 181

Probably, the main reason for this effect is the serialization of the MPI Recv
method call in the source code of the benchmark. Effectively, as a task MPI
need to receive two messages from two different sources, we used two calls of
MPI Recv with the MPI ANY SOURCE flag. This flag avoid a fixed order, but
we cannot remove the order.

As we test only with bi-processor SMP nodes, we cannot really understand
this conflict, as we cannot set simultaneously external and internal communica-
tion (a common interval time between communications leads to ordered commu-
nications on bi-processor nodes).

5 Myrinet Communication Model over SMP Cluster

The previous section described experiments over communication conflicts of
Myrinet communications through MPI. This section will present a model of
communication over Myrinet and MPI taking into account these communication
conflicts. We chose to only study long messages, as consequence of the strong
standard deviation of small message delays that does not permit to have a good
insight of network conflicts and can lead to wrongly identify the model accuracy.
Furthermore, our tests (on bi-processors) do not provide us a good comprehen-
sion of external/internal conflict and so to present a model of it.

We model sharing resources conflict and conflict of sharing an half part of
full-duplex links by two functions over communications. Communications are
represented by vectors of four elements: source node, destination node, start
time, and message length. Communications are written like s st,m �� d where a
message of length m is send at time st from s to d.

We are interested in the computation of the communication delay δ. In case
of no conflict, a communication delay is calculated by the linear function delay
defined as:

delay(m,α, β) =
{

0, m = 0
α ∗m+ β, otherwise

where α and β are measured and m is the message length.

Sharing Resource Conflict. Sharing resource conflict occurs only when a node
shares sending communications and receiving communications with a common
interval time.

rate

T

rate

α+β

α +βoo

Fig. 6. Sharing rate

Thus, the function used to model sharing re-
source conflict is only defined over communica-
tions where for a set C of N communications
� i ∈ C, j ∈ C | srci �= destj or srcj �= desti and⋂N

k=1[stk; stk + delay(mk, α, β)] �= ∅.
The model is described as follow: let two com-

munications within this conflict, their delays will
be composed by a communication delay with rate
(αo, βo) applied to the intersection length of both

182 M. Martinasso and J.-F. Méhaut

messages and a communication delay with rate (α, β) applied to the rest of the
message length.

We define the function Share, which calculates the communication delays
δ1 and δ2 of two communications, C1 = i st1,m1 �� j and C2 = j st2,m2 �� k with
st1 ≤ st2, on sharing resource conflict:

Share(C1, C2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if st1 + delay(m1, α, β) ≤ st2 + delay(m2, α, β){
δ1 = delay(m1 − γ, α, β) + delay(γ, αo, βo)
δ2 = delay(m2 − γ, αo, βo) + delay(γ, αo, βo)

otherwise{
δ1 = delay(m1 −m2, α, β) + delay(m2, αo, βo)
δ2 = delay(m2, αo, βo)

with γ = m1 − st2−st1
α .

Sharing an Half Part of Full-Duplex Links: Interlacing. Sharing an half part
of full-duplex links appears when communications on a same node and with a
common interval time are sending or receiving messages. This conflict creates an
interlacing effect. As the precedent case, the function used to model this conflict
is only defined over communications where for a setC ofN communications, � i ∈
C, j ∈ C | srci �= srcj or destj �= desti and

⋂N
k=1[stk; stk + delay(mk, α, β)] �= ∅.

T

fair interlacing

Fig. 7. Fair interlacing

In this model, we add for each communication
message length, the communication intersection
length. Then, we compute the communication la-
tency like in there were any conflict. In that way
we consider a fair interlacing of messages frag-
mented by the protocol GM.

We define the function Inter, which calcu-
lates the communication delays δ1 and δ2 of two
communications, C1 = i st1,m1 �� j and C2 =

i st2,m2�� k with st1 ≤ st2, on sharing half part
of full-duplex link, as:

Inter(C1, C2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if st1 + delay(m1, α, β) ≤ st2 + delay(m2, α, β){
δ1 = delay(m1 + γ, α, β)
δ2 = delay(m2 + γ, α, β)

otherwise{
δ1 = delay(m1 +m2, α, β)
δ2 = delay(2 ∗m2, α, β)

with γ = m1 − st2−st1
α .

Mixing Conflicts. Complex communication schemes can lead to have in the
same time both conflicts. Let’s take an example, consider communications: C1 =
i st1,m1 �� j , C2 = j st2,m2 �� k , and C3 = l st3,m3�� k .

Communication delays are calculated like in previous cases separating con-
flicts, even if communication in distinct conflicts have a common interval time.

Prediction of Communication Latency over Complex Network Behaviors 183

From the example, we get: Share(C1, C2)=(δ1, δ′2) and Inter(C2, C3) = (δ′′2 , δ3),
even if C1 and C3 have a common interval. Communication delay of C2 is cal-
culated as δ2 = max(δ′2, δ′′2). We generalized the example, for all combination
of Share and Inter, taking the maximum calculated delay of communication in
both conflicts.

6 Model Accuracy

In this last section we evaluate the accuracy of our model against observed delays.
Observed delays were calculated over a sample length of 10000 experiments.
The value of the function parameters are α = 0.004193, β = 78.125, αo =
0.004663 and βo = 102.33. We confront our model to different schemes with
communications having different start time (Δ as start time delay) and message
lengths. One issue we met, is to make an interval delay about few ms between
communication start time. We used the function usleep with a setting parameter
creating the expected interval delay. We present for each conflict some relevant
results among the large number of experiments we did.

Table 1 displays communication time for reference scheme (without conflict).
The modeling values match quite perfectly the average observed values, as the
parameters of the function delay were determined from these values.

Tables 2 and 3 display results for scheme 2/2-0110, representing the sharing
resource conflict. Our communication time prediction is close to observed values
for homogeneous and heterogeneous communications, validating the model using
two different communication rates.

Tables 4 and 5 display results for scheme 2/3-0121, and confront our model
against the conflict of sharing an half part of full-duplex links. We suggested a

Table 1. Communication time (μs) for scheme 1/2-01, using the function delay

256 KB 2 MB 4 MB 8 MB

obs 1177 ± 13 8872 ± 89 17663 ± 176 35250 ± 352

mod 1177 8771 17664 35251

Table 2. Communications delay (μs) for scheme 2/2-0110

Δ = 0 Δ � 1000 Δ � 4000 Δ � 8000

obs
256 KB (a) 1321 ± 21 (a) 1244 ± 40 (a) x (a) x
256 KB (b) 1329 ± 42 (b) 1232 ± 40 (b) x (b) x

mod
256 KB (a) 1324 (a) 1290 (a) x (a) x
256 KB (b) 1324 (b) 1290 (b) x (b) x

obs
4 MB (a) 19026 ± 73 (a) 18979 ± 205 (a) 18885 ± 136 (a) 18672 ± 46
4 MB (b) 19081 ± 202 (b) 19000 ± 155 (b) 18839 ± 67 (b) 18650 ± 192

mod
4 MB (a) 19660 (a) 19626 (a) 19290 (a) 18841
4 MB (b) 19660 (b) 19626 (b) 19290 (b) 18841

184 M. Martinasso and J.-F. Méhaut

Table 3. Communications delay (μs) for scheme 2/2-0110

Δ = 0 Δ � 1000 Δ � 10000 Δ � 30000

obs
256 KB (a) 1468 ± 53 (a) 1231 ± 62 (a) x (a) x
4 MB (b) 17889 ± 117 (b) 17796 ± 158 (b) x (b) x

mod
256 KB (a) 1324 (a) 1324 (a) x (a) x
4 MB (b) 17890 (b) 17890 (b) x (b) x

obs
2 MB (a) 9810 ± 63 (a) 9678 ± 74 (a) 10041 ± 61 (a) 9657 ± 42
8 MB (b) 36055 ± 200 (b) 36085 ± 191 (b) 35926 ± 192 (b) 35953 ± 207

mod
2 MB (a) 9881 (a) 9881 (a) 9881 (a) 9553
8 MB (b) 36339 (b) 36339 (b) 36339 (b) 35933

Table 4. Communications delay (μs) for scheme 2/3-0121

Δ = 0 Δ � 1000 Δ � 4000 Δ � 8000

obs
256 KB (a) 2138 ± 33 (a) 1339 ± 183 (a) x (a) x
256 KB (b) 2198 ± 10 (b) 1339 ± 189 (b) x (b) x

mod
256 KB (a) 2276 (a) 1276 (a) x (a) x
256 KB (b) 2276 (b) 1276 (b) x (b) x

obs
4 MB (a) 32232 ± 109 (a) 31637 ± 262 (a) 32240 ± 114 (a) 27694 ± 275
4 MB (b) 34215 ± 43 (b) 33561 ± 274 (b) 34219 ± 63 (b) 29129 ± 350

mod
4 MB (a) 35251 (a) 34251 (a) 31252 (a) 27251
4 MB (b) 35251 (b) 34251 (b) 31252 (b) 27251

Table 5. Communications delay (μs) for scheme 2/3-0121

Δ = 0 Δ � 1000 Δ � 10000 Δ � 30000

obs
256 KB (a) 2046 ± 27 (a) 1231 ± 62 (a) x (a) x
4 MB (b) 18634 ± 88 (b) 17796 ± 158 (b) x (b) x

mod
256 KB (a) 2276 (a) 1276 (a) x (a) x
4 MB (b) 18764 (b) 17764 (b) x (b) x

obs
2 MB (a) 16075 ± 72 (a) 15074 ± 250 (a) 16218 ± 85 (a) 15053 ± 285
8 MB (b) 43428 ± 116 (b) 42289 ± 290 (b) 43541 ± 105 (b) 42326 ± 388

mod
2 MB (a) 17664 (a) 17664 (a) 17664 (a) 14044
8 MB (b) 44044 (b) 44044 (b) 44044 (b) 40424

model with a fair interlacing communications. Results validate this choice, but
in case of different communication start time, the communication starting first
seems to be faster than the second one, and thus creating a interlacing favoring
the first communication. Nevertheless this favored-first interlacing effect seems
to be really difficult to quantify, and a fair interlacing predict accurately this
conflict.

Mixing conflict is the most difficult behavior to model. The model gives good
results, Table 6, but seems to reduce its accuracy if communications in different

Prediction of Communication Latency over Complex Network Behaviors 185

Table 6. Communications delay (μs) for scheme 3/4-011232

Δab = Δbc = 0 Δab � 1000, Δbc � 2000 Δab � 1000, Δbc � 6000

obs
1 MB (a) 6071 ± 158 (a) 5672 ± 144 (a) 5088 ± 68
2 MB (b) 16831 ± 138 (b) 15511 ± 456 (b) 11635 ± 337
4 MB (c) 25873 ± 17 (c) 24261 ± 450 (c) 19882 ± 287

mod
1 MB (a) 4991 (a) 4657 (a) 4657
2 MB (b) 17664 (b) 15664 (b) 11664
4 MB (c) 26458 (c) 24458 (c) 20458

conflicts are overlapped. In that case more complex phenomenon appears making
in relation communications in different conflicts.

7 Conclusion

The main interest of this paper was to study and understand the behavior of
communication conflicts over a cluster of SMP nodes. We used complex com-
munication schemes to exhibit three main classes of conflict and to study their
behaviors. Our analysis was based on Lam-MPI as communication interface, over
a bi-processor cluster with a Myrinet network.

From this analysis we accurately model two conflicts and their combina-
tions, and we validated it against several communication schemes. Two conflicts
were identified: sharing system resource conflict and sharing half part of a full-
duplex link conflict. To understand plainly the third conflict between internal
and external communications, the presented analysis was limited by the used of
bi-processor nodes.

In future works, we envisage to achieve the same study over different high
performance networks and protocols, such as Quadrics or Infiny Band, and with
cluster of multi-processor nodes greater than bi-processor as aim to extend the
communication model.

References

1. Icluster2, 2004. http://i-cluster2.inrialpes.fr/.
2. GM Performance Measurements, 2005. http://www.myricom.com/myrinet/

performance/index.html.
3. Alexandrov A., Ionescu M., Schauser K. and Scheiman C. LogGP: Incorporating

Long Messages into the LogP model - One step closer towards a realistic model
for parallel computation. 7th Annual Symposium on Parallel Algorithms and Ar-
chitectures, July 1995.

4. B. Tourancheau. High Speed Networks for Clusters, the BIP-Myrinet Experience.
In Proceedings of the 7th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface, page 9, 2000.

5. Culler D., Karp R., Patterson D., Sahay A., Santos E., Schauser K., Subramonian
R. and von Eicken T. LogP: a practical model of parallel computation. Commun.
ACM, 39(11):78–85, 1996.

186 M. Martinasso and J.-F. Méhaut

6. G. Burns, R. Daoud and J. Vaigl. LAM: An Open Cluster Environment for MPI.
In Proceedings of Supercomputing Symposium, pages 379–386, 1994.

7. K. Al-Tawil and C. A. Mortiz. Performance modeling and evaluation of MPI. J.
Parallel Distrib. Comput., 61(2):202–223, 2001.

8. Kim S. C. and Lee S. Measurement and Prediction of Communication Delays in
Myrinet Networks. J. Parallel Distrib. Comput., 61(11):1692–1704, 2001.

9. Liu J., Chandrasekaran B., Wu J., Jiang W., Kini S., YU W., Buntinas D., Wyck-
off P. and D K. Panda. Performance Comparison of MPI Implementations over
InfiniBand, Myrinet and Quadrics. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 58, 2003.

10. M. Martinasso. Étude et modélisation de la congestion réseau sur des architec-
tures de grappes modulaires. In 16ème Rencontres Francophones du Parallélisme
- RENPAR’05, April 2005.

11. Martin R., Vahdat A., Culler D. and Anderson T. Effects of communication latency,
overhead, and bandwidth in a cluster architecture. Proceedings of the 24th annual
international symposium on Computer architecture, pages 85–97, 1997.

12. Message Passing Interface Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications, pages 165–414, 1994.

13. S. Pakin, M. Lauria and A. Chien. High performance messaging on workstations:
Illinois Fast Messages (FM) for Myrinet. 1995.

A Diffusion Approximation Model of an

Electronic-Optical Node

Tadeusz Czachórski1 and Ferhan Pekergin2

1 IITiS, Polish Academy of Sciences,
ul. Ba�ltycka 5, 44-100 Gliwice, Poland

tadek@iitis.gliwice.pl
2 LIPN, CNRS UMR 7030 Université Paris-Nord,

99, avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

pekergin@lipn.univ-paris13.fr

Abstract. The article presents a diffusion approximation model applied
to investigate the process of filling a large optical packet by smaller and
coming irregularly electronical packets. The use of diffusion approxima-
tion enables us to include the general distributions of interarrival times,
also the self-similarity of the input process, as well as to investigate tran-
sient states. We propose a novel diffusion process with jumps representing
the end of the filling the buffer due to arrival of too large packet and we
give the transient solution to this process. The model allows us to study
the distribution of interdeparture times and the distribution of the space
occupied in the optical packet.

1 Introduction

Designing of smart edge routers and shaping the self-similar traffic in optical
switched networks arise recently a lot of interest. Here, we propose an analyti-
cal approach which we consider useful in modelling and dimensioning of buffers
in the edge routers between electronic and optical networks. We study a sin-
gle buffer where packets of various sizes, classified by the class of service and
the destination, are stored to build an optical packet of a fixed size. We al-
ready studied this problem with the use of simulation model, remarking that
self-similar traffic at the entrance of such a buffer remains self-similar when
leaving it. Now we are building analytical model based on diffusion approxi-
mation. In section 2 we summarize the diffusion approximation and our pre-
vious contributions to this approach, i.e. a method to solve transient diffu-
sion models, in section 3 we present the new model to analyse the process of
buffer filling, in section 4 a numerical example proves that this approach may
give reasonable results in relatively short (compared to simulation, especially
simulation of transient states) time.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 187–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 T. Czachórski and F. Pekergin

2 The Principles of Diffusion Approximation: G/G/1/N
Model

Let A(x), B(x) denote the interarrival and service time distributions at a service
station. The distributions are general, it is assumed that their two first moments
are known: E[A] = 1/λ, E[B] = 1/μ, Var[A] = σ2

A, Var[B] = σ2
B. Denote also

the squared coefficients of variation C2
A = σ2

Aλ
2, C2

B = σ2
Bμ2. Let N(t) be the

number of customers present in the system at time t. For a single class FIFO
queue, the changes N(t + Δt) − N(t) have approximately normal distribution
with mean (λ − μ)Δt and variance (σ2

Aλ
3 + σ2

Bμ3)Δt, provided that the time
Δt is sufficiently long and the station is working without interruption, e.g. [K1].
Diffusion approximation, e.g. [G1] replaces the process N(t) by a continuous
diffusion process X(t) whose incremental changes dX(t) = X(t+ dt)−X(t) are
normally distributed with the mean βdt and variance αdt, where β, α are the
coefficients of the diffusion equation

∂f(x, t;x0)
∂t

=
α

2
∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
(1)

which defines the conditional pdf f(x, t;x0)dx = P [x ≤ X(t) < x+ dx | X(0) =
x0] of X(t). Hence, both processes X(t) and N(t) have normally distributed
changes; the choice β = λ − μ, α = σ2

Aλ
3 + σ2

Bμ3 = C2
Aλ + C2

Bμ ensures the
same ratio of time-growth of mean and variance of these distributions. Function
f(n, t;n0) approximates the distribution p(n, t;n0) of customers of all classes
present in the queue.

Formal justification of diffusion approximation is in limit theorems forG/G/1
system given by Iglehart [I1]. If N̂n is a series of random variables derived from
N(t):

N̂n =
N(nt)− (λ− μ)nt
(σ2

Aλ
3 + σ2

Bμ3)
√
n
,

then the series is weakly convergent (in the sense of distribution) to ξ where ξ(t)
is a standard Wiener process (diffusion process with β = 0 i α = 1) provided
that � > 1, i.e. if the system is unstable. In the case of � = 1 the series N̂n is
convergent to ξR. The ξR(t) process is ξ(t) process limited to half-axis x > 0 :
ξR(t) = ξ(t) − inf [ξ(u), 0 ≤ u ≤ t]. There is no similar theorems for service
stations in equilibrium (� < 1) and we should rely on heuristic confirmation of
the utility of this approximation.

If the input stream λ is composed ofK classes of customers having intensities
λ(k), with total intensity λ =

∑K
k=1 λ

(k) and service parameters for a class k are

E[B(k)] = 1/μk, Var[B(k)] = σ
(k)
B

2
, then the PDF B(x) of joint for all classes

service time distribution is expressed as

B(x) =
K∑

k=1

λ(k)

λ
B(k)(x) ,

A Diffusion Approximation Model of an Electronic-Optical Node 189

and

1
μ

=
K∑

k=1

λ(k)

λ

1
μ(k)

,

C2
B = μ2

K∑
k=1

λ(k)

λ

1

μ(k)2
(C(k)

B

2
+ 1)− 1 . (2)

If we assume that the input streams are independent, the global number of
arrived during Δt customers is normally distributed with variance λC2

AΔt =∑K
k=1 λ

(k)C
(k)
A

2
Δt, hence

C2
A =

K∑
k=1

λ(k)

λ
C

(k)
A

2
. (3)

The above equations yield α, β of the diffusion equation.
Boundary conditions for Eq. (1) should be also defined. In [G1] diffusion

approximation of a G/G/1/N station was studied as a process X(t) which is
defined on the closed interval x ∈ [0, N]. When the process comes to x = 0, it
remains there for a time exponentially distributed with the parameter λ and then
it returns to x = 1; when it comes to x = N , it remains there for a time which is
exponentially distributed with the parameter μ and then it starts at x = N − 1.
The use of barriers with jumps (instantaneous returns) gives better results than
the use of reflecting barriers applied earlier [N1] where probability of the process
being at the barriers was neglected. With barriers with jumps, the diffusion
equation is supplemented by the balance equations for p0(t) = P [X(t) = 0],
pN (t) = P [X(t) = N] and becomes

∂f(x, t;x0)
∂t

=
α

2
∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
+

+λp0(t)δ(x − 1)
+μpN(t)δ(x −N + 1) ,

dp0(t)
dt

= lim
x→0

[
α

2
∂f(x, t;x0)

∂x
− βf(x, t;x0)]

−λp0(t) ,
dpN (t)

dt
= − lim

x→N
[
α

2
∂f(x, t;x0)

∂x
− βf(x, t;x0)]

−μpN(t) . (4)

In original works only the steady-state solution of Eq. (4) is given. Our approach,
proposed in [C1], is first to solve the diffusion equation with absorbing barriers
(the process ends when it comes to a barrier) placed at x = 0 and x = N with
the use of standard analytical methods (the method of mirrors) and obtain the
pdf φ(x, t;x0) of this process, then to express the pdf f(x, t;x0) of the diffusion

190 T. Czachórski and F. Pekergin

with instantaneous returns from the barriers as a superposition of functions
φ(x, t;x0):

f(x, t;ψ) = φ(x, t;ψ) +
∫ t

0

g1(τ)φ(x, t − τ ; 1)dτ +∫ t

0

gN−1(τ)φ(x, t − τ ;N − 1)dτ (5)

where for t = 0, φ(x, t;x0) = δ(x− x0) and for t > 0

φ(x, t;x0) =
1√

2Παt

∞∑
n=−∞

{
exp

[
βx′n
α
− (x − x0 − x′n − βt)2

2αt

]
−

exp
[
βx′′n
α
− (x − x0 − x′′n − βt)2

2αt

]}
(6)

x′n = 2nN , x′′n = −2x0 − x′n, and ψ is the initial condition and φ(x, t;ψ) =∫ N

0 φ(x, t; ξ)ψ(ξ)dξ. Functions g1(τ), gN−1(τ) are the densities of starting new
processes (after a jump from the barrier) at points x = 1 and x = N − 1. These
densities are given by a system of balance equations (7), (9) for probability flows
coming in and out of the barriers; the equations make use of first passage times
from starting points to the barriers and of the densities of sojourn times in the
barriers (the assumption on exponentially distributed times spent in barriers is
not now needed).

Densities γ0(t), γN (t) of probability that at time t the process enters x = 0
or x = N are

γ0(t) = p0(0)δ(t) + [1− p0(0)− pN (0)]γψ,0(t) +∫ t

0

g1(τ)γ1,0(t− τ)dτ

+
∫ t

0

gN−1(τ)γN−1,0(t− τ)dτ ,

γN (t) = pN (0)δ(t) + [1− p0(0)− pN(0)]γψ,N (t) +∫ t

0

g1(τ)γ1,N (t− τ)dτ

+
∫ t

0

gN−1(τ)γN−1,N (t− τ)dτ , (7)

where γ1,0(t), γ1,N (t), γN−1,0(t), γN−1,N(t) are densities of the first passage
times between corresponding points, e.g.

γ1,0(t) = lim
x→0

[
α

2
∂φ(x, t; 1)

∂x
− βφ(x, t; 1)] . (8)

A Diffusion Approximation Model of an Electronic-Optical Node 191

For absorbing barriers

lim
x→0

φ(x, t;x0) = lim
x→N

φ(x, t;x0) = 0 ,

hence γ1,0(t) = limx→0
α
2

∂φ(x,t;1)
∂x . The density function of first passage time from

x = x0 to x = 0 is

γx0,0(t) = lim
x→0

[
α

2
∂

∂x
φ(x, t;x0)− βφ(x, t;x0)]

=
x0√

2Παt3
e−

(βt+1)2

2αt .

The functions γψ,0(t), γψ,N (t) denote densities of probabilities that the initial
process, started at t = 0 at the point ξ with density ψ(ξ) will end at time t by
entering respectively x = 0 or x = N .

Densities g1(t) and gN (t) may be expressed with the use of functions γ0(t)
and γN (t):

g1(τ) =
∫ τ

0

γ0(t)l0(τ − t)dt ,

gN−1(τ) =
∫ τ

0

γN (t)lN (τ − t)dt , (9)

where l0(x), lN (x) are the densities of sojourn times in x = 0 and x = N ; the
distributions of these times are not restricted to exponential ones as it is in Eq.
(4). The integrals in Eq. (5) are in fact convolutions of functions and we may
rewrite this equation as

f(x, t;ψ) = φ(x, t;ψ) + g1(t) ∗ φ(x, t; 1)dτ +
gN−1(t) ∗ φ(x, t;N − 1) (10)

where * denotes the convolution, or, transforming it with the use of Laplace
transform, as

f̄(x, s;ψ) = φ̄(x, s;ψ) + ḡ1(s) φ̄(x, s; 1)
+ḡN−1(s) φ̄(x, s;N − 1) . (11)

Laplace transforms of Eqs. (7), (9) give ḡ1(s) and ḡN−1(s), hence the Laplace
transform f̄(x, s;ψ) of the density function f(x, t;ψ) is obtained and supple-
mented by transforms of probabilities that at the moment t the process is in a
barrier

p̄0(s) =
1
s

[γ̄0(s)− ḡ1(s)] ,

p̄N (s) =
1
s

[γ̄N (s)− ḡN−1(s)] . (12)

Expressions (11), (12) are inverted numerically, e.g. with the use of Stehfest
algorithm.

192 T. Czachórski and F. Pekergin

This transient solution is obtained for constant parameters. To introduce
α(t), β(t) reflecting evolution of input streams, the time axis is divided into
small intervals during which parameters are kept constant and the solution at
the end of one interval gives the initial conditions to the diffusion equation in
the next interval and with new parameters. Sometimes we need diffusion param-
eters α(x, t), β(x, t) depending also on the value of the process – this is a way
to reflect control mechanisms reacting on the queue size or to model parallel
servers. In this case, the diffusion interval x ∈ [0, N] is divided into subinter-
vals of appropriate (e.g. unitary) length and the parameters are kept constant
within these subintervals. The equations for space-intervals are solved together
with balance equations for probability flows between neighboring intervals. For
each time- and space-subinterval with constant parameters, transient solution is
obtained. As previously, the Laplace transforms of density functions are inverted
numerically.

This method was implemented in a software package and is able to solve large
queueing network models: we analyzed already transient states at a network of
37 stations of G/G/20/20 type representing a part of wireless cellular network.
It was also used to model dynamics of flows subject to some traffic control
mechanisms encountered in communication networks:

— control mechanisms at the entrance of a network: leaky bucket, also in
presence of correlated (self-similar) input, jumping window, and sliding window;

— space-priority queues at a network switch: a queue with threshold and
with push-out algorithm;

— the traffic dynamics along a virtual path composed of a certain number of
nodes, and a feed-back algorithm of traffic control between nodes and sources.

3 The Buffer Model

Basing on the solution developped in the previous section and using similar
notation, we build a diffusion model for the assembly buffer at electronic-optical
(E/O) node. We assume that the size of incoming electronic packets is between
1 and M blocks, without precising the size of block, i.e. the granularity of the
input stream. The input stream in the model is composed of M independent
streams and a stream m, m = 1, . . .M represents packets of the size of m blocks.
The parameters of this stream are λm, C2

Am. As the diffusion proces represents
the number of blocks, we should determine the mean value and variance of
the number of blocks arriving during a time-unit. Assuming that once for m
times we have an arrival of a block following specified pattern and then (m− 1)
immediate arrivals correlated with the first one, we obtain the parameters for
the block interarrival time distribution

λmb = mλm, C2
Amb = mC2

Am +m− 1 (13)

The parameters of the total input stream being a sum ofM streams are computed
using (3) and (13). We study the accumulation of blocks in the buffer, therefore

A Diffusion Approximation Model of an Electronic-Optical Node 193

the diffusion parameters are defined only by input process,there is no service
time,

β =
M∑

m=1

λmb α =
M∑

m=1

λmbC
2
Amb. (14)

We assume the asynchronous work of the node: when an incoming packet is too
large to be put into the buffer (the number of blocks in this packet is greater
than the place still available in the buffer), the content of the buffer is sent as
optical packet and the last packet that did not match the left buffer space is put
to the empty buffer – the process of building a new packet is being started. We
assume also the time-out T after which the packet is sent regardless its content.

The goal of the model is to obtain the distribution of interdeparture times
and the distribution of the number of blocks occupied in the optical packet
leaving the node.

Let N be the size of optical buffer expressed in blocks. The value of the
diffusion process X(t) at time t represents the current number of blocks already
occupied inside the buffer. We consider diffusion process on the interval x ∈
(0, N − 1). Within this interval we distinguish M subintervals: subinterval no.1
(0, N −M), and M − 1 subintervals of unitary length: subinterval no. 2 is x ∈
(N −M,N −M + 1), . . . , subinterval no. M is x ∈ (N − 2, N − 1). Between
subintervals, i.e. at the points x = N−M ,N−M+1, . . . ,N−2 and x = N−1 we
place imaginary barriers that allow us to make a balance of probability flows and
to represent interactions among subintervals. The barriers are introduced only to
manipulate the probability density flows. These flows represent the probability
densities corresponding to the events that the incoming packet is too large to
be placed at the buffer, hence the optical packet is sent and the filling of a new
packet is started. E.g. the flow from the barrier placed at x = N −M going to
x = M corresponds to the arrival of a packet of M blocks when in the buffer
there is only the place for M − 1 blocks. An optical packet lacking M − 1 blocks
is sent and M blocks are put to the empty buffer starting the filling of a new
packet. The barriers are absorbing ones, as at previous section, hence we may
use for each subinterval the solution for the process density f(x, t;x0) similar to
the obtained above in Eq. (10) giving only proper starting points and starting
intensities. The flows absorbed by the barriers reappear on their other side at
the distance ε.

Let γL
i (t) represent the flow coming to the barrier placed at x = i from its

left side and γR
i (t) be the flow coming to this barrier from its right side. The

flows start diffusion processes at both sides of the barrier, at points x = i−ε and
x = i+ ε with intensities gL

i (t) and gR
i (t). The whole flow γR

i (t) is transmitted
to x = i− ε

gL
N−i(t) = γR

N−i(t)

but only a part of the flow gL
i (t) enters x = i+ε. The flow gL

i (t) is divided in the
following way. The part of this probability flow which corresponds to the arrivals

194 T. Czachórski and F. Pekergin

of packets which are smaller than M − i blocks and may be put into the buffer
reappears immediately at x = i+ ε as gR

i (t). The part of γL
i (t) which represents

the arrivals of packets having exactly the size of M − i blocks still available at
the buffer is directed to the barrier at x = 0 (the optical packet is sent full, with
maximal number of blocks occupied). The part of γL

i (t) representing the flow
of packets of size k > N − i which are too large to be stocked in the current
optical packet is directed to the points x = k at the first interval. The barrier at
x = N − 1 injects flows to x = 0 (the arrivals of one-block packets completing
the buffer) and to x = 2, . . . ,M .

The barrier at x = 0 acts similarly as in G/G/1/N model, the sojourn time
in this barrier corresponds to the time when the buffer is empty, then the jumps
are performed to points x = 1, . . .M as to the empty buffer the packets of the
size 1, . . . ,M may arrive.

Having all this in mind we determine the intensity g0,k(t) of jumps (i.e the
density of starting a new diffusion process at a corresponding point) from the
barrier at x = 0 to a point x = k:

g0,k(τ) =
∫ τ

0

kλk∑M
l=1 lλl

γ0(t)l0(τ − t)dt ,

where l0(t) is the soujourn time density and the input flow γ0(t) contains all
flows directed to the barrier from other barriers as well as flows coming to if
from starting points inside the first interval:

γ0(t) = γψ1,0(t) +
M∑
l=1

gl(t) ∗ γl,0(t) + gL
N−M (t) ∗ γN−M−ε(t) +

M∑
l=1

γL
N−l(t)Λl (15)

The first term corresponds to the flow coming from initial distribution of the
probability mass (function ψ1(x) inside first interval), the second line represents
flows coming from starting points inside first interval (x = 1, 2, . . . ,M and x =
N −M − ε), and the last sum gathers flows from barriers. We denote:

Λi =
iλi∑M
l=1 lλl

, Ωk =
∑k

l=1 Λl∑M
l=1 Λl

Let us note that
gR

N−i(t) = Ωi−1γ
L
N−i(t)

and
gi(t) = Λiγ0(t) ∗ l0(t)

A Diffusion Approximation Model of an Electronic-Optical Node 195

The solution for the first subinterval 0 < x ≤ N −M

f1(x, t;ψ1) = φ(x, t;ψ1) +
M∑
i=1

gi(t) ∗ φ(x, t; i) +

gL
N−M (t) ∗ φ(x, t;N −M − ε), (16)

for an interval i = 2, . . .M − 1

fi(x, t;ψi) = φ(x, t;ψi) +
gR

N−M+i−2(t) ∗ φ(x, t;N −M + i− 2 + ε)(t) +

gL
N−M+i−1(t) ∗ φ(x, t;N −M + i− 1− ε), (17)

and

fM (x, t;ψM) = φ(x, t;ψi) +
gR

N−2(t) ∗ φ(x, t;N − 2 + ε)(t) (18)

We obtain steady-state solution finding

lim
s→0

sf̄(x, s;ψi) = lim
t→∞ f(x, t;ψi).

The density of the packet interdeparture times d(t) is obtained by summing
all densities that end the buffer filling, namely all probability flows from barriers
at x = N −M, . . .N − 1 to points x = 0, 1, . . . ,M computed in the model where
these flows are not reinjected into the diffusion interval but accumulated in a
supplementary state ”departure of the packet”.

To incorporate in the model the timeout T , the probability mass which at
time t = T is still inside the interval (0, N − 1) (have not yet gone to the sup-
plementary state) is at this moment moved immediately to the supplementary
state. The distribution of the number of blocs inside the dispatched packet is
obtained using probability of all possible events: probability mass accumulted
at the supplementary state through the jumps from barriers to x = 0 represents
probability that the packet leavs with all blocks occupied. Probability mass ac-
cumulated in the supplementary state coming through jumps to x = 1 represents
probability that the packet leaves with one block empty, etc.

4 Numerical Example

In numerical example below we take N = 50, 100, 150, 200, 250, M = 20,
pm = 1/M (the traffic intensity for each stream is λm = 0.01), m = 1, . . . 20,
i.e. the size of optical packet is N = 50, 100, 150, 200, 250 blocks, the electronic
packets are of size 1, . . . , 20 blocks, and all these packets are equiprobable. The
streams are Poisson, hence C2

Am = 1, m = 1, . . . 20. Naturally, we may easily
insert any value of λm, pm, C2

Am.

196 T. Czachórski and F. Pekergin

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 5 10 15 20 25 30 35 40 45

Buffer occupancy , N=50, M=20

t=10
t=20
t=30
t=40
t=70

Fig. 1. Distribution f(x, t; 0) of the number of blocks in the buffer as a function of
time, N = 50

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10 20 30 40 50 60 70 80 90

Buffer occupancy , N=100, M=20

t=10
t=20
t=30
t=40
t=60

t=100

Fig. 2. Distribution f(x, t; 0) of the number of blocks in the buffer as a function of
time, N = 100

Figs. 1-5 show the solution f(x, t; 0) of diffusion equations, that means the
functions f1(x, t; 0), . . . , fM (x, t; 0) given by eqs. (16), (17), (18). They present
the buffer filling as a function of time. We have chosen the case x0 = 0: the
initial buffer is empty. Numerical inversion of Laplace transforms was done with

A Diffusion Approximation Model of an Electronic-Optical Node 197

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 20 40 60 80 100 120 140

Buffer occupancy , N=150, M=20

t=20
t=30
t=40
t=60
t=80

t=100

Fig. 3. Distribution f(x, t; 0) of the number of blocks in the buffer as a function of
time, N = 150

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 20 40 60 80 100 120 140 160 180

Buffer occupancy , N=200, M=20

t=10
t=20
t=30
t=40
t=60
t=80

t=100

Fig. 4. Distribution f(x, t; 0) of the number of blocks in the buffer as a function of
time, N = 200.

198 T. Czachórski and F. Pekergin

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 50 100 150 200

Buffer occupancy , N=250, M=20

t=10
t=20
t=30
t=40
t=50
t=60
t=70
t=80
t=90

t=100

Fig. 5. Distribution f(x, t; 0) of the number of blocks in the buffer as a function of
time, N = 250

the use of Stehfest algorithm. In this algorithm a function f(t) is obtained from
its transform f̄(s) for any fixed argument t as

f(t) =
ln 2
2

N∑
i=1

Vi f̄

(
ln 2
t
i

)
, (19)

where

Vi = (−1)H/2+i × (20)

×
min(i,H/2)∑
k=% i+1

2 &
kH/2+1(2k)!

(H/2− k)!k!(k − 1)!(i− k)!(2k − i)! .

H is an even integer end depends on a computer precision; we used H = 14.
The figures illustrate the ease with which transient solutions may be stud-

ied for different sets of parameters and prove the numerical soundness of the
procedure: the introduction of 20 subintervals with multiplicity of flows between
barriers does not disturb the results. Some other results, such as interdeparture
time distribution or the distribution of the number of blocks inside optical pack-
ets, having clue importance for the quality of service at the optical side of the
network may be obtained on their basis.

5 Conclusions

Presented model may be useful to investigate the transient states and the dy-
namics of flows on the edge between electronic and optical networks. They may

A Diffusion Approximation Model of an Electronic-Optical Node 199

include self-similar input rates and investigate the influence of the node on the
characteristics of the traffic. We do not present here any real validation of the
model, but a comparison with simulation results presented in [D1] as well as
long-term experience with other diffusion models, and their validation via simu-
lations, prove that such models give in general reasonable estimations. However,
the programming effort needed to obtain them is not negligable.

Acknowledgment

This work has been supported by the CNRS-PAN project Diffusion approxima-
tion in transient analysis and evaluation of networks with integrated services and
the EuroNGI Network of Excellence.

References

[C1] Czachórski, T.: A method to solve diffusion equation with instantaneous return
processes acting as boundary conditions. Bulletin of Polish Academy of Sciences,
Technical Sciences, 41, no. 4, pp. 417-451, 1993.

[D1] Domańska, J., Kotuliak, I., Atmaca, T., and Czachórski, T.: Optical packet filling.
Proc. of 10th Polish Teletraffic Symposium, 2003.

[G1] Gelenbe, E. On Approximate Computer Systems Models. Journal of ACM, 22
(1975), no. 2.

[I1] Iglehart, D.: Weak Convergence in Queueing Theory. Advances in Applied Prob-
ability 5 (1973), no. 5, 570-594.

[K1] Kleinrock, L.: Queueing Systems, vol. II. Wiley, New York, 1976.
[N1] Newell, G. F.: Applications of Queueing Theory. Chapman and Hall, London,

1971.

Choreographing Security and Performance Analysis for
Web Services

Stephen Gilmore1, Valentin Haenel1, Leı̈la Kloul2, and Monika Maidl3

1 Laboratory for Foundations of Computer Science, The University of Edinburgh, Scotland
2 PRiSM, Université de Versailles, 45, avenue des Etats-Unis, 78000 Versailles, France

3 Siemens AG, CT IC3, Otto-Hahn-Ring 6, 81739 München, Germany

Abstract. We describe a UML-based method which supports model-driven
development of service-oriented architectures including those used in Web ser-
vices. Analysable content is extracted from the UML models in the form of pro-
cess calculus descriptions. These are analysed to provide strong guarantees of
satisfactory security and performance. The results are reflected back in the form
of a modified version of the UML model which highlights points of the design
which can give rise to operational difficulties. A design platform supporting the
methodology, Choreographer, interoperates with state-of-the-art UML modelling
tools such as Poseidon. We illustrate the approach on an example.

1 Introduction

Web services must deliver secure services to users in order that financial and other
confidential transactions can be conducted without interference. Off-the-shelf solutions
are not available. Web services need to build end-to-end security from the point-to-
point security afforded by standard network protocols. Even if a secure system can be
created, scaling up to large user populations provides a steep challenge. The availability
of many different forms of assistance (caching, stateless session beans, process isolation
and others) means that the challenge of building scalable systems is complicated further
by difficult-to-quantify approaches to system performance tuning.

We have developed a design platform, Choreographer, which seeks to assist with
the development of secure systems with quantified levels of performance. To provide
an accessible entry point for practising Web service developers the methodology which
we support uses the UML. This is a novel feature of our work: we use a modelling lan-
guage where a specification language or process calculus might more often be used to
initiate the analysis. Many UML designs are not analysed either qualitatively or quan-
titatively. Here we provide support for both types of analysis, and illustrate the value of
the analysis via an example.

We use a range of UML diagram types to express the security and performance
considerations of the system. As a principle, we use standard UML notation: there are
no notational extensions or additional diagram types. This decision has two beneficial
consequences. First, a UML modeller using this methodology does not need to learn
any supplementary notation. Second, we are able to use standard UML tools such as
Poseidon [1] to edit the UML diagrams which we use.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 200–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Choreographing Security and Performance Analysis for Web Services 201

We use class diagrams, collaboration diagrams, sequence diagrams and state dia-
grams to describe the system under study in UML terms. Additional diagram types
may be used in the UML project which is accepted as an input to Choreographer. These
can be used for other purposes in model-driven development, such as automatic code
generation, and will not interfere with the analysis process. Our aim is to disrupt exist-
ing model-driven development approaches as little as possible while adding value to the
UML modelling work which would be going on in any case.

Different models can be used for different purposes in the design of an application
and so the methodology supported by our design platform allows modellers to either do
a security analysis alone, or a performance analysis, or both. That is, the annotated ver-
sions of models which result from one run can be used again as inputs to Choreographer
to perform a different type of analysis. The consequence of this is that a modeller using
an established operational procedure to determine satisfactory levels of security (resp.
performance) can use our design platform to do performance (resp. security) analysis
alone. They are not forced to adopt both of the kinds of analysis which we offer if they
do not need both, or already have a preferred way to do one of them.

The original contribution of this paper is to present a UML-based methodology
for integrated security and performance analysis. The method is supported by a well-
engineered tool and set on the formal foundation of dedicated process calculi with cus-
tom analysers. We describe the UML-based methodology which Choreographer sup-
ports and discuss the implementation of the Choreographer platform itself. We describe
its use on a typical Web service creation problem: a Web-based micro-business. We
believe that the Choreographer software tool could also be used for high-level analy-
sis of other service-oriented architecture questions such as the assessment of service
discovery protocols but we do not demonstrate this in the present paper.

Structure of This Paper: The paper is structured as follows: the Choreographer analysis
tool is presented in Section 2. The example application is a web-based micro business,
described in Section 3. This is followed by a UML model and its associated performance
and security models in Sections 4, 5 and 6. Related work and conclusions follow.

2 Choreographer

One feature of the methodology which we support with the Choreographer design plat-
form tool is that modellers are able to express the models which are input to Choreog-
rapher in standard UML. The analysis process is initiated by invoking Choreographer
on a UML project archive. The formal content of the UML model is stored in such
an archive in an XML-based interchange representation (XMI). Software connectors
termed extractors process the XMI representation of the input model and derive an
analysable form of the model expressed in a process calculus. We use different process
calculi for security and performance analysis: LySa [2] for the former and PEPA [3] for
the latter.

Another key feature of the method is that the results of the analysis are reflected
back as a modified version of the original UML model. The reflectors which do this
are also available as software components which take the original UML project and

202 S. Gilmore et al.

the results of the analysers as inputs and write their results as complete UML projects
in which the results of the analysis have been incorporated. The purpose of this is to
ensure that the interpretation of the analysis results can be undertaken at the UML level
and that the UML is not being used only as a model description language from which a
process calculus representation is generated.

The Choreographer platform is designed to support UML-centered development but
is flexible enough to accommodate other modes of use in addition. These might simply
be preferred by designers or developers who are using the platform or they might be
needed to support a style of development favoured by the institution or software house
which commissioned the development. Thus, a guiding principle of the design of Chore-
ographer is that the processing of UML models should be made visible to the developer
in order that the mapping between UML diagram elements and constructs of the pro-
cess calculi beneath is transparent. This principle ensures that modellers have access
to the representations which are needed to understand how their diagram elements are
interpreted in the analysis process.

Fig. 1. The Choreographer user interface

In terms of its appearance, the Choreographer platform follows the conventional
design of an IDE, as seen in Figure 1. The main design area divides into an explorer
on the left, an editor on the right, and a message console beneath these. The explorer
provides a view onto the local file system which is structured in order to group related
documents into logical projects. The editor is language-aware with contextual modes:
we have implemented editors for the process calculi which we use in the security and
performance analysis process. The console is used to feed back to the user information
about the progress of commands or analyses which have been launched from the appli-
cation menus. Concise summaries of the analyses are printed into the console to allow
information about the outcome to be obtained without having to initiate the reflection
process and render the results in the Poseidon UML modelling tool.

Choreographing Security and Performance Analysis for Web Services 203

3 The Web-Based Business System

The case study provided by our industrial partner is a business-to-business Web ser-
vice to enable e-business based on a peer-to-peer authentication and communication
paradigm. The objective of this system is to provide support to micro web-based busi-
nesses which do not themselves have the capability to develop proprietary solutions for
e-business.

The service is accessible through both wired Internet connections and mobile
devices using standard protocols such as the wireless application protocol. The sys-
tem will present the various services offered by the service providers according to a
coherent layout and will provide an interface for service access. While users should
be able to process their transactions on a peer-to-peer basis, it is necessary to provide
a central portal at which users register and can search for services. Registration and
searching for services can be handled by UDDI.

The system naturally decomposes into three parts: the portal, service providers and
customers (Figure 2). The upper part of Figure 2 describes that part of the functionality
which involves the portal. The lower part concerns the peer-to-peer functionality.

The Portal. The portal enables remote data search and service navigation. Moreover
it constitutes the interface between the customers and the service providers during the
on-line business transactions. The e-business data management provides access to dis-
tributed products and services catalogues. The portal supports a significant number of
concurrent sessions while providing end-to-end security of the transactions.

The Service Provider. A new service provider joining the system first must register at
the portal. A registered service provider can publish its services onto the portal dynam-
ically. The list of its services can be accessed by any customer through the portal. Each
provider will be able to modify its published services list by adding a new product;
changing the characteristics of an existing one; or removing a service from the list. At
any moment, a service provider can quit the system by unregistering from the portal.
The service provider can also handle transactions directly with customers who have
registered at the service provider.

Service Provider

Service Provider

Service Provider

Service Provider

Customer

Customer

Customer

Customer

Portal

transaction

publish

search

register

search

transaction

register

Fig. 2. Architecture of the web-based business system

204 S. Gilmore et al.

The customer. Like the service providers, new customers have to register at the portal
before being able to use its services. The registered customers are informed by the portal
about available services, the newly published services, and the modified or removed
ones. The user may perform on-line transactions via the portal to buy products he is
interested in by selecting them from the list. The customers’ order requests are then
routed by the portal to the appropriate service provider. Alternatively, a customer can
choose to communicate peer-to-peer with a chosen service provider after registering
directly with this service provider.

4 UML Model of the System

We turn now to our model of the above system. The performance model of the sys-
tem consists of a collaboration between sequential object instances which undertake
timed activities either individually, or in collaboration with other objects. Thus the
UML diagram types which are used to describe this model are class diagrams (iden-
tifying the kinds of the objects in the system), state diagrams (detailing the behaviour
of the objects) and collaboration diagrams (introducing an operational configuration of
the system with named object instances collaborating on sets of activities).

Performance analysis of the system is conducted via the generation and solution of a
continuous-time Markov chain (CTMC) representation of the system, thus the durations
of all of the activities in the system are quantified by providing the parameter to a
negative exponential distribution.

The state diagram which represents a buyer in the system is shown in Figure 3.
Other components in the model are not much more complex than that of the buyers.

Figure 4 shows that the model of the service providers in the system have common syn-
chronisation points with the buyers (reflecting exchanges which are not routed through
the central portal in the system, for reasons of scalability). Where these synchronisation
points occur, one of the interacting components specifies the rate of occurrence of the
activity and the other passively co-operates with these activities.

Buyer Buyer1 Buyer2

Buyer3

new_request / rate(r)

update_request / rate(T)

get_product_list / rate(T)

select_product / rate(r1)

restart / rate(r2)

select_product / rate(r1)

restart /

check_out / rate(r3)

Fig. 3. State diagram of the Buyer in the Web-based micro-business model

Choreographing Security and Performance Analysis for Web Services 205

Provider

Provider0

Provider1

Provider2

update_request / rate(s)

transmit_order / rate(T)
get_own_list / rate(T)

add_product / rate(s1)

delete_product / rate(s2)

change_value / rate(r3)

quit / rate(s4)

process_order / rate(s5)

Fig. 4. State diagram of the Provider in the Web-based micro-business model

Principal

+ PK+:PublicKey
−PK−:PrivateKey
+ cert :Certificate
−ID:Document

+ msg (p:Msg):
+ checkmsg ():void
+ checkdecrypt ():void

<< principal >>

A

−NA:Nonce
−Key:SessionKey
−vcertB:Certificate
−vPKB:PublicKey
−vSKB:int
−vNB:Nonce

+ premsg1 ():void
+ postmsg2 ():void
+ premsg3 ():void

<< principal >>

B

−NB:Nonce
−vKey:SessionKey
−vCertA :Certificate
−vEKA:PublicKey
−vPKA:int
−vNA:Nonce

+ postmsg1 ():void
+ presmg2 ():void
+ postmsg3 ():void

Fig. 5. The class diagram for the principals involved in secure transactions

In the UML design, security relevant information is specified by the ForLySa pro-
file [4], which provides the means to annotate class diagrams and sequence diagrams
with security-specific data. More precisely, ForLysa allows us to specify cryptographic
security protocols with two participants (A and B) who typically exchange a new
session key. Such protocols use cryptographic concepts like cryptographic keys and
nonces, which are provided by two classes in the ForLysa profile: the class Msg for
messages and the class Principal for participants of the protocol. The class Msg has
attributes holding the sender and receiver of the message and the encrypted and unen-
crypted payloads of the message; the latter are objects of appropriate classes, and these
classes contain methods for encrypting and decrypting data. The class Principal con-
tains attributes for the private/public keys or symmetric keys associated with a principal,
and specifies methods for sending and checking of messages.

206 S. Gilmore et al.

i:A j:B

: msg(out)

: postmsg1

: checkdecrypt

: premsg2

: msg(out)

: premsg

: postmsg2

: checkdecrypt

: checkmsg

: premsg3

: msg(out)

: checkmsg

: postmsg3

: checkdecrypt

cryptoPointA

cryptoPointB

Fig. 6. The sequence diagram of the protocol for the principals involved in secure transactions

As an example, we show the UML design in Choreographer of the cryptographic
security protocol described in Section 6, consisting of a class diagram and a sequence
diagram. The class diagram, shown in Figure 5, specifies two principals A and B, as
subclasses of Principal, which have attributes to hold the data generated or acquired
during a run of the protocol.

The sequence diagram in Figure 6 describes the exchange of messages between
A and B which defines the protocol. For each message, first the sender prepares and
encrypts the content in method premsg by providing values for the attributes of a vari-
able out of class Msg. When receiving a message, the recipient checks its contents
(eg. correct addresses) with method checkmsg, then decrypts the encrypted parts with
method postmsg. This assigns a value to the attribute which holds the decrypted content
of the message. The decrypted part is then analysed in checkdecrypt where the receiver
checks that the content has the required format. Figure 5 shows the call sequence for
these methods, while the body of each method is specified by constraints which are not
visible in the diagram.

5 Performance Analysis

The performance analysis of the above UML project proceeds by extracting a perfor-
mance model in Hillston’s Performance Evaluation Process Algebra (PEPA) [3]. This
extraction is performed automatically by the Choreographer design platform.

Choreographing Security and Performance Analysis for Web Services 207

5.1 The PEPA Model

The objects whose behaviour is specified by state diagrams in the UML model give
rise to PEPA components in the process algebra model. The first component, Portal,
models the behaviour of the interface between the service providers and the customers.
The second component, Provider, models any provider registered in the system. The
last component, Buyer, is used to model the behaviour of a customer. Note that in this
model, we assume that both buyers and providers are already known to the system: they
have already registered.

Component Buyer. In an on-line transaction, the system user starts by sending a request
to the portal about a specific product he is interested in—for example, books. This can
be done by a simple click on the icon titled “Books” in the main pages of available prod-
ucts provided by the portal. This is modelled by action type new request. The response
of the portal is to send to the customer the catalogue or list of books available with all
characteristics. We model this using action type get product list. Once the customer has
the targeted list, he can select all the items he wants (action select product) and then go
to the check out (action check out). This last step allows the buyer to place an order for
selected items. At any moment the customer can change his mind and stop the process.
This is modelled using action type restart. Note that action type get product list has an
unspecified rate in component Buyer because the rate is defined by the portal which will
send the list of products at his rhythm.

Buyer
def= (new request, r).Buyer1 + (update request,�).Buyer

Buyer1
def= (get product list,�).Buyer2

Buyer2
def= (select product, r1).Buyer3 + (restart, r2).Buyer

Buyer3
def= (select product, r1).Buyer3 + (restart, r2).Buyer

+ (check out, r3).Buyer

Component Provider. Once a service provider is registered, he may either send a
request to the system to update the list of products or services he has published or
receive an order from the portal. The former is modelled using action type
update request and the latter using action type transmit order. In the first case, he
will receive the list of services he owns (action get own list) and can then make all
of the changes which he wants to using action types add product, delete product and
change values. Once he is finished with the updates he can leave the system (action type
quit). In the second case, he will consider the customer order and do what is necessary
to satisfy the request. This is modelled using action type process order.

Provider
def= (update request, s).P rovider0 + (transmit order,�).P rovider2

Provider0
def= (get own list,�).P rovider1

Provider1
def= (add product, s1).P rovider1 + (delete product, s2).P rovider1

+ (change values, s3).P rovider1 + (quit, s4).P rovider

Provider2
def= (process order, s5).P rovider

208 S. Gilmore et al.

Component Portal. The portal manages both the buyers and the providers. All activ-
ities of component Portal are synchronizing activities, either with the buyers or the
providers.

Portal
def= (new request,�).Portal1 + (update request,�).Portal3
+ (select product,�).Portal1 + (restart,�).Portal
+ (check out,�).Portal2 + (get product list, v1).Portal1

Portal1
def= (get product list, v1).Portal1 + (select product,�).Portal1
+ (restart,�).Portal + (check out,�).Portal2
+ (new request,�).Portal1

Portal2
def= (transmit order, v).Portal + (select product,�).Portal2
+ (restart,�).Portal2 + (check out,�).Portal2
+ (new request,�).Portal2 + (get product list, v1).Portal2

Portal3
def= (get list, v2).Portal3 + (add product,�).Portal3
+ (delete product,�).Portal3 + (change values,�).Portal3
+ (quit,�).Portal

The Complete System: The behaviour of the actors of the online system and their
interactions between each other are captured by component Web Business which is
defined as follows:

Web Business
def=

(Buyer ��
K
. . . ��

K
Buyer) ��

L

(
(Provider|| . . . ||Provider) ��

M
Portal

)
where the synchronising sets are defined as follows:

K = {update request}
L = {new request, get product list, select product, restart, check out,

update request}
M = {update request, get own list, transmit order, add product,

delete product, change values, quit}

Remark: The use of action update request in component Buyer ensures that during the
updates of a product list by its owner, the buyers do not have access to this list. As all
components of the model must synchronise on update request, it will not be enabled
unless all occurrences of component Buyer are in their initial state.

5.2 Numerical Results

In this section we give an idea of the performance measures which we can compute in
the context of such an application. We are mainly interested in the throughput of the
portal. We consider a system composed of five buyers and one provider. This simple
system allows us to retain intellectual control of the behaviour of the throughput in a
system with a portal based architecture. All curves are plotted as a function of the arrival
rate r of the requests of one buyer.

Choreographing Security and Performance Analysis for Web Services 209

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 3 4 5 6 7 8 9 10

t
h
r
o
u
g
h
p
u
t

(
r
e
q
u
e
s
t
s
/
s
)

Arrival rate (r)

"Total throughput"
"Transmit"

(a) Total throughput

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

T
h
r
o
u
g
h
p
u
t

(
r
e
q
u
e
s
t
s
/
s
)

Arrival rate (r)

"get_own_list"

(b) Throughput for provider requests

Fig. 7. Throughput computation

– Figure 7(a) depicts the total throughput of the portal in terms of buyer’s requests to
get a product list and to select a product from a list, and the provider’s requests to
get its own list. This figure also gives the throughput part related to the transmission
of the orders to the provider. As we can see, the transmission of the buyer’s orders is
a very small part of the throughput of the system. This may be explained by the fact
that the buyers spend the greater part of their time selecting products. Moreover,
once an item is selected, a buyer may decide to abandon or restart. Thus not all
buyers end up checking out with purchases.

– Figure 7(b) shows the behaviour of the part of the portal throughput related to
the provider requests (get own list). Unlike what we have seen in Figure 7(a), this
throughput decreases as the arrival rate increases. As we have more requests from
the buyers, the portal spends more time dealing with these requests, and thus less
time with the provider requests.

6 Security Analysis

The security of a networked service depends heavily on the ability of users to send
confidential messages via wireless or Internet connections, and to confirm the identity
of the partner in their message exchange. Cryptographic techniques are usually used
both to ensure the confidentiality of messages and for authentication.

But cryptography is not a magic wand to make everything all right. The main issue
is that sending encrypted messages is only safe if only the authorized parties have the
corresponding key. So data security becomes a key management problem [5], and the
main task consists of designing an appropriate protocol for authenticated key exchange.
Such a protocol allows two or more participants to exchange a cryptographic session
key in such a way that the participants are assured that only the intended parties obtain
the session key. Confidentiality and integrity of data is then guaranteed by encrypting
all data with the session key. The main tool for providing proper authentication in such
a key-exchange protocol is again cryptography, and hence an analysis tool must be
able to deal with cryptographic concepts. Before describing the LySatool [2] used by
Choreographer, we first discuss the security requirements of the web-based business

210 S. Gilmore et al.

system, and show the key exchange protocol chosen for the project. The protocol can
be realised by the use of WS-Security, which provides all of the necessary mechanisms.

6.1 Security Analysis for the Web-Based Business System

In the case study, all communication should be encrypted to guarantee data confiden-
tiality and integrity. This means that before starting a data exchange, a service provider
and a customer or the portal and a user have to use a protocol for authenticated session
key exchange.

For this protocol, there is a choice between using either symmetric cryptography or
public key cryptography in a protocol for authenticated key exchange. When using sym-
metric key cryptography, the communication has to be conducted via a central server,
and all users have to share initial symmetric keys with the server. The design goal of the
project of providing peer-to-peer communication between service providers and cus-
tomers would be violated if communication between users necessarily involved a cen-
tral server. Moreover, initial distribution of secret symmetric keys is difficult to achieve
in a practical way. Hence a protocol based on public key cryptography is used. In order
to link a user identity U to a public key, it is essential to use certificates certU , e.g.
X.509 certificates, which are signed by some trusted certification authority.

(1) A → B: A, certA
(2) B → A: {B, NB}:K+

A, certB
(3) A → B: {A, NB, KAB}:K+

B

The aim of the protocol is to provide authenticated key exchange betweenA andB,
i.e. after the exchange both A and B are assured that only they know the new session
key KAB . More precisely, correct authentication is achieved by the protocol if A can
be sure that message (3) can only be decrypted by B, while B knows that message (3)
can only be sent by A.

6.2 LySa Model of the Protocol

The informal notation of the protocol used above leaves implicit a number of assump-
tions and does not completely describe actions such as decrypting with a certain key,
comparing nonces, and checking certificates. Moreover it is crucial to specify the envi-
ronment in which the protocol is executed, i.e. the actions which potential attackers can
perform.

For a formal analysis, these assumptions have to be specified. LySa provides a for-
mat for this, which is essentially a process algebra, enriched by cryptographic notions
such as encryption and decryption, symmetric keys, public and private keys, allowing it
to model authenticated key exchange protocols. More precisely, LySa is based on the π-
calculus. The main difference from the π-calculus and the Spi-calculus is that there are
no channels: messages can be arbitrarily intercepted and redirected. Moreover, pattern
matching is used to check that a message contains expected values (such as nonces),
and to bind values to free variables. Each participant in the protocol (in our case A and
B) is modelled by a separate process. Each message of the protocol corresponds to two

Choreographing Security and Performance Analysis for Web Services 211

actions: one performed by the sender who encrypts and sends the message, and one per-
formed by the receiver who decrypts the message, checks the content, and might store
parts of it.

As an example, consider message (3), sent from A to B. Sending of messages is
denoted by 〈. . .〉.

(newKAB)〈A,B, {|A, vNB ,KAB|} : K+
B〉

The first argument in the 〈. . .〉 expression denotes the sender (A), the second the
recipient (B), and the rest is the content of the message. The content in this case
consists of only one, encrypted, part. The terms are either names such as A, B, and
KAB , or variables such as vNB which has been bound to the value of NB when A
received message (2). Sending message (3) is preceded by generating a new session
keyKAB which nobody exceptA knows. This is modelled by restriction with the ‘new’
operator.

Input of a message is denoted by (. . .). We show the receiving action associated
with (3), which is performed by process B:

(A,B;x).decrypt x as {|A,NB ; vK|} : K−
B

An incoming message is matched with an output, whereby the terms before the
semicolon have to match while the variables after the semicolon are bound to values
after successful matching. Accordingly, the first term denotes the sender and the second
term denotes the recipient of the message. Encrypted terms are bound to a free variable
and decrypted in the next step. Pattern matching is again applied to the content of an
encrypted message. In the example,B only accepts the message if the first argument is
A, and the second is the nonce NB which B has chosen for message (2). Note that B
has to decide with which key to decrypt the message. For message (3), this is the private
key K−

B .
As described, the protocol consists of two classes of processes: the process for

A and the process for B. In the LySa model every participant can act either as A or
B. Moreover, the replication operator ! indicates that any pair of participants perform
an unlimited number of possibly concurrent sessions. The attacker built into the LySa
model has the usual powers of the standard Dolev-Yao attacker [6], i.e. they can use
all of the information obtained from messages sent between participants to compose
messages which can be sent to any participant.

6.3 Security Analysis with LySa

The analysis performed by the LySatool is to ask whether for multiple runs of the pro-
tocols between a number of participants, and in the presence of a standard (Dolev-
Yao) network attacker, correct authentication is guranteed. The underlying technique
is static analysis, more specifically the Succinct Solver Suite [7] provides the imple-
mentation of the solution procedures which are deployed to effect the analysis. LySa
has been designed to verify correct authentication, and can also check confidential-
ity of data. The analysis of correct authentication is based on the use of assertions,
which annotate the points in the protocol at which encryption and decryption takes

212 S. Gilmore et al.

place (‘cryptopoints’). At an encryption point these assertions specify the destinations
where it is believed that the complementary decryption can occur. At a decryption point
the assertions specify the points where it is believed that the complementary encryption
occurred.

For the key exchange protocol of the web-based business system, the LySa asser-
tions specify that message (3) is correctly authenticated. More precisely, sending of
message (3) is annotated with [at a3 dest b3] while receiving of message (3) has anno-
tation [at b3 orig a3].

Hence, the assertions state correct (mutual) authentication of the communicating
parties. The LySa tool checks whether an attacker is able to impersonate a legitimate
participant and hence violate correct authentication. If the analysis shows that all asser-
tions are correct in the presence of an attacker, we learn that the protocol guarantees
correct authentication.

We have analysed the key exchange protocol for the web-based business system
with LySa and shown that it provides authenticated key exchange. Moreover, we exper-
imented with variants of the protocol and showed that omitting data from messages in
the protocol makes it insecure. As an example, we show an attack which is possible
when omitting the name A in message (3):

(1) A → B: A, certA
(2) B → A: {B, NB}:K+

A, certB
(3) A → B: { NB, KAB}:K+

B

After A has started a regular session with B, the attacker I starts a parallel session
with B, and afterwards sends the response of B instead of the second message in the
first session. Then the intruder intercepts the response of A in the first session and
misuses it as message (3) in the second session.

(1) A → B: A, certA
(1’) I → B: I, certI
(2’) B → I: {B, NB’ }:K+

I

(2) IB → A: {B, NB’ }:K+
A

(3) A → IB: { NB’, K }:K+
B

(3’) I → B: { NB’, K}:K+
B

The result is thatK is the new session key for the sessionA thinks she is conducting
with B as well as for the session between B and I . This means that I can intercept
messages encrypted by A with the key KAB and make B believe that the message
comes from I .

7 Related Work

With regard to the performance analysis of UML models there are a range of significant
prior works which have similarities with the performance-related part of our work. In
many cases, these map UML diagrams of various kinds to other analysable representa-
tions including stochastic Petri nets [8, 9], layered queueing networks [10], generalised

Choreographing Security and Performance Analysis for Web Services 213

semi-Markov processes [11] and others. Some works are particularly noteworthy for
their careful consideration of the role of the UML metamodel in the performance anal-
ysis process [12]. Our work has some similarities with the above, and many differences
(different diagram types, different performance analysis technology). Two things are
unique to our work here: an integrated technology for security analysis and the use of
reflectors to reflect the results of the analysis back to the UML level.

Other methodologies based on UML have been defined in order to specify security
aspects of designs. UMLsec by Jan Jürjens [13, 14] is a versatile profile that includes
a wide range of high-level security concepts like secrecy, integrity, no-down-flow, fair
exchange etc. and allows the user to specify hardware platforms such as LAN, smart
card, Internet and others. It is however not possible to specify correct authentication,
which is the main security requirement on the key exchange protocols which are part
of the case studies that we have considered. As in the UML content processed by
the LySa extractor, UMLsec protocols are specified by sequence diagrams, and the
constraints used in the sequence diagrams are similar. However, the UML use sup-
ported by the LySa extractor provides a means to specify cryptopoints in sequence
diagrams, which is an essential prerequisite for analysing correct authentication with
LySa.

8 Conclusions

We have presented a novel method for analysing security and performance questions
about UML-described systems which follow a modern, open design pattern. The classes
of behaviours understood within the system are described by class and state diagrams.
The interactions between object instances of these classes are described using collab-
oration diagrams and sequence diagrams. The Choreographer design platform auto-
matically processes descriptions of systems structured in this way, and packaged as a
UML project. Process algebra representations of the formal content of the diagrams are
extracted and passed to efficient analysers which check performance and security prop-
erties. The results of these analysers can be inspected directly or reflected back through
the Choreographer design platform in order to present all of the analysis at the UML
level.

Through the use of the UML as an interface to the security and performance analysis
process we hope that we have an accessible framework which could attract developers
facing difficulties in engineering secure systems with high performance to consider for-
mal analysis as a beneficial complement to their current design practices. There are
many benefits to the use of formal modelling and analysis methods, not the least of
which is the ability to display that due care and attention has been taken in the develop-
ment of secure services which are to be used in business-to-business contexts.

Acknowledgements. The work described in the present paper was undertaken while
the authors were supported by the DEGAS (Design Environments for Global Applica-
tionS) project IST-2001-32072 funded by the FET Proactive Initiative on Global Com-
puting. The Choreographer design platform is a Java application which has been suc-
cessfully tested on Windows and Red Hat Linux systems. It is available for download
from http://www.lfcs.ed.ac.uk/choreographer.

214 S. Gilmore et al.

References

[1] Gentleware AG systems. Poseidon for UML web site, November 2004. http://www.
gentleware.com/.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H.R. Nielson. Automatic validation of
protocol narration. In Proc. of the 16th Computer Security Foundations Workshop (CSFW
2003), pages 126–140. IEEE Computer Security Press, 2003.

[3] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

[4] M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini. For-LySa: UML for authenti-
cation analysis. In C. Priami and P. Quaglia, editors, Proceedings of the second workshop
on Global Computing, volume 3267 of Lecture Notes in Computer Science, pages 92–105,
Rovereto, Italy, 2004. Springer Verlag.

[5] Dieter Gollmann. Computer Security. Wiley, 1999.
[6] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 22(6):198–208, 1983.
[7] F. Nielson, H.R. Nielson, H. Sun, M. Buchholtz, R.R. Hansen, H. Pilegaard, and H. Seidl.

The Succinct Solver suite. In Proceedings of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), volume 2988 of LNCS, pages 251–265. Springer-
Verlag, 2004.

[8] J.P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to stochastic
Petri nets: Application to software performance analysis. In Proceedings of the Seventeenth
International Symposium on Computer and Information Sciences, pages 405–409, Orlando,
Florida, October 2002. CRC Press.

[9] Juan Pablo López-Grao, José Merseguer, and Javier Campos. From UML activity diagrams
to Stochastic Petri nets: application to software performance engineering. In Proceedings
of the fourth international Workshop on Software and Performance, pages 25–36. ACM
Press, 2004.

[10] D.C. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-based
derivation of LQN models from UML specifications. In Proceedings of Tools’02, number
2324 in LNCS, pages 159–177. Springer-Verlag, April 2002.

[11] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and O. P. Waldhorst. Performance
analysis of time-enhanced UML diagrams based on stochastic processes. In Tucci [15],
pages 25–34.

[12] S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and statecharts
to analysable Petri net models. In Tucci [15], pages 35–45.

[13] Jan Jürjens. UMLsec: Extending UML for secure systems development. In 5th Intl. Con-
ference on the Unified Modeling Language (UML) 2000, LNCS 2460, 2002.

[14] Jan Jürjens. Secure Systems Development with UML. Springer, 2004.
[15] Salvatore Tucci, editor. Proceedings of the Third International Workshop on Software and

Performance (WOSP 2002). ACM Press, Rome, Italy, July 2002.

Application of Formal Methods to the Analysis

of Web Services Security�

Llanos Tobarra, Diego Cazorla, Fernando Cuartero, and Gregorio Dı́az

Escuela Politécnica Superior de Albacete,
Universidad de Castilla-La Mancha. 02071 Albacete, Spain

{mtobarra, dcazorla, fernando, gregorio}@info-ab.uclm.es

Abstract. Web Services technologies have introduced a new challenge
for security protocols. Traditional security protocols cannot handle in-
termediaries and the flexibility of Web Services bindings. Thus, several
proposals for introducing security in Web Services have been presented.
One of these is Web Services Security. In this paper we illustrate how
this protocol works, with an example, and analyse whether it is a good
option guaranteeing the security of Web Services.

Keywords: Protocols and standards for WS, Security of WS, Secure
Electronic Commerce.

1 Introduction

The rapid development of the World Wide Web in recent years has dramatically
increased the exchange of information between clients and companies, and has
also boosted electronic commerce transactions. Traditionally, the environment
where electronic transactions occur consists of a web server that offers ‘services’
to human clients who use a web browser to select the information or products
they wish to obtain. Nowadays this view is changing; companies wish to offer
and use services automatically, i.e., they want to ‘live’ in a world where interop-
erability between various software applications running on separate platforms is
possible, and, for example, Java can talk with Perl, and Windows applications
can talk to UNIX applications.

A technology that has emerged recently and offers these kinds of transactions
is Web Services [27]. Web Services implements a new Service Oriented Archi-
tecture (SOA), which is based on loosely coupled services. In a Web Services
environment we find the following components:

– Service providers : they implement the web service and, in most cases, publish
the service interface and the service registry information.

� This work has been partially supported by the MCyT project “Description and
Performance of Distributed Systems and Application to Multimedia Systems” (Ref.
TIC2003-07848-c02-02) and the JCCM project “Design and Implementation of Effi-
cient Multimedia Systems by using Formal Techniques” (Ref. PAC-03001)

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 215–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 L. Tobarra et al.

– Service brokers : they allow clients to access the service interface and the
implementation information.

– Service clients : they look for a service in a broker registry and then connect
to the service provider in order to use it.

One of the most important issues in Web Services development is that each
functional block should be platform or programming language-independent, and
accessible for everybody. Thus, each block has to be described using an internet
standard. The most important internet standards related to web services are the
following:

– XML (eXtensible Markup Language)[26] is a markup language which un-
derlies most of the specifications related to Web Services. XML is actually
a metalanguage (a language for describing other languages) which lets you
design your own customised markup languages for unlimited different types
of documents

– SOAP (Simple Object Access Protocol)[22] is an XML-based messaging pro-
tocol used to encode the information in Web Services request and response
messages before sending them over a network. SOAP messages are indepen-
dent of any operating system or protocol and may be transported using a
variety of Internet protocols, including SMTP, MIME and HTTP.

– WSDL (Web Services Description Language)[23] is an XML format for de-
scribing network services as a set of endpoints operating on messages con-
taining either document-oriented or procedure-oriented information. Service
providers use a WSDL document to specify available services. It also contains
service access information.

– UDDI (Universal Description, Discovery and Integration)[19] is the client-
side API and a server implementation based on SOAP. It stores and retrieves
information about service providers and web services.

In order to use a web service, a client obtains a WSDL file in which a particular
web service is described. If the client knows where the web service is located,
they can retrieve it directly. Otherwise they can search for it using the UDDI
protocol. Then, they prepare a SOAP request, which is an XML document that
follows an XML schema. Each SOAP message is composed of a main element
called an envelope. Each envelope has two main parts: payload data, included into
the body, and one or more headers that contain control data such as addressing
data, security items or quality options. The client sends the request through a
transport protocol, usually HTTP. When a web service receives a request, it
executes the requested actions and responds to the client with a SOAP response
message. This message includes the result of the actions.

One of the main problems in using web services is that they are exposed
to security attacks. Traditional security protocols, such as SSL [7], TLS [1] and
IPsec[13], are used to protect communication between two agents in a network.
Nevertheless, these are point-to-point technologies, whereas web services need
end-to-end level security because the information does not travel straight to the
endpoint; usually information needs to pass through several intermediate agents

Application of Formal Methods to the Analysis of Web Services Security 217

that may need to use or alter some parts of the information. Moreover, traditional
security protocols secure communication at transport rather than message level.
Therefore, messages are protected only while in transit on the wire.

In order to introduce security in web services, we can consider (among others)
the following protocols: Web Services Security [11], Security Assertions Markup
Language (SAML) [21], Identity Federation [18] and Extensible Access Control
Markup Language (XACML) [20].

In this paper we will focus on Web Services Security (WS-Security), a proto-
col that extends SOAP in order to implement message integrity and confidential-
ity. While SOAP provides a flexible technique for structuring messages, it does
not directly address how to secure these messages. WS-Security builds on the
SOAP specification, structuring the use of essential security capabilities. WS-
Security uses binary tokens for authentication, digital signatures for integrity
and content-level encryption for confidentiality. It is based on XML Encryption
[24] and XML Signature [25] and guarantees the integrity and confidentiality of
information. Several companies such as IBM, Microsoft and Sun have adapted
its development tools for Web Services in order to support this security protocol.

In line with the development of e-commerce and security protocols, some
techniques have also been developed to model a system and check its properties
on it. One of the most promising techniques of this type is model checking.
Model checking [5] is a formal methods based technique for verifying finite-
state-concurrent systems, and has been implemented in several tools. One of the
main advantages of this technique is that it is automatic and allows us to see if
a system works properly or not. In case the system does not work as expected,
the model checking tool provides a trace that leads to the source of the error.

In this paper we present a formal verification of WS-Security using the
Casper/FDR2 toolbox [15,6]. Casper is a compiler that accepts a syntax very
similar to the syntax used to specify protocols, and translates a model into CSP
[9] code which is verified using the model checker FDR2. Although Casper uses
a general purpose model checker, the translation to CSP code is done auto-
matically and transparently to the user, and the results of the verification are
presented in terms of the Casper model.

We have modelled and analysed a web service application (license server)
previously developed by using Microsoft .NET 2003 and Microsoft Web Services
Enhancement (WSE) [16]. We have abstracted the application code in order to
build a simple Casper model which deals with the exchange of sensitive (en-
crypted and signed) information (SOAP messages) between client and server.

Several papers [12,8,17] can be found which use formal methods to analyse
Web Services, and in which formal methods are used to analyse the behaviour
and the performance of web services standards; these analyses help designers
to correct any errors. More related to our work, however, are [14] and [4]. The
first maps out of SOAP messages (including WS-Security information) to Casper
input is presented. The second one presents a scripting language called TulaFale
for specifying SOAP security protocols and verifying attacks. TulaFale is based
on Pi-Calculus and some extensions for symbolic cryptographic operations. They

218 L. Tobarra et al.

verified the WS-Security protocol family in [2] with this tool. These same group
of researchers have developed an implementation of an automatic tool, described
in [3], that translates security policy files into a TulaFale script and verifies some
properties by invoking a theorem prover.

The paper is organised as follows. In Section 2 we describe our web service
application (software license server) and the SOAP messages that client and
server exchange. In Section 3 we build the Casper specification that models the
system, describe the security requirements that the system should achieve, and
verify the model against these requirements. Finally, in Section 4 we give our
conclusions and some outlines for future work.

2 A Web Services Example: A Software License Server

In this section we illustrate how WS-Security works, through an example. A
software company offers on its web site a set of applications for its clients. When a
client wants to use one of these programs they register through a web service and
pay for several licenses through a payment service. Then, they can download the
programmes and get several product keys using another web service (the license
server). If they do not register they will not be able to install the application
because during the installation process they will be asked for the product key.
A general overview of the system is depicted in fig. 1.

Fig. 1. General overview of the system

We shall look at two web services:

1. A web service for registering clients, where a client gives their financial data,
a set of selected applications and a number of licenses for each application.

2. A web service for obtaining product keys. This web service generates a new
product key if the client is registered. The web service accepts as parameters
a username, password and product identifier.

First, a client who wants to use several software products must be registered in
the system. In order to register, the client connects to the register web service and
send their data. Then, the license server processes the information and generates
an invoice that is sent to the payment service that carries out the purchase order.
When the payment service responds to the server with a payment authorisation

220 L. Tobarra et al.

tween server and client. WS-Security also allows us to cipher data to guarantee
its confidentiality, thus, we must encrypt the request message body.

We must cipher the response body too. In it, the server sends the product
key. If an intruder can guess it, they will be able to install the program without
paying for it. It is the client who pays instead of the intruder in this case. The
server must guarantee the confidentiality of the product key, which must be a
secret shared with the client.

When the server generates a product key, this key is valid for only one kind
of application. If the client asks for a key to a program and tries to install a
different one, they will not be able to use the received key in the installation. An
intruder can alter the request message and change the selected application code,
meaning the client receives an incorrect key and that, therefore, they cannot
install the program. Thus, the integrity of the message must be checked in order
to avoid these kinds of attacks. WS-Security offers the possibility of signing a
message; this way, both agents, server and client, can verify the integrity of the
signed parts.

WS-Security adds a new header element called Security to each SOAP mes-
sage (see fig. 3). In it, we include the necessary security tokens for the message.
The first XML element is usually a BinarySecurityToken, which represents a
binary token as a X.509 certificate, or a Kerberos ticket. It is used to sign mes-
sage parts and to cipher symmetric keys. In this case we only sign the message
with it. The request message will contain the client certificate, and the response
message the server certificate.

WS-Security allows clients to first sign and then cipher messages or vice
versa. The order of these two operations is determined by the order of XML
Signature elements and XML Encryption elements in the Security header. We
will consider the case of when a message is ciphered and then signed, i.e., when
XML Encryption elements appear after the Signature element, as represented in
fig. 3. If the message were ciphered after being signed the order of the elements
would be different.

The Signature element contains a digital signature computed from several
parts of the message. It is divided into two main parts: information about how
the signature was computed, represented by the SignedInfo element, and the sig-
nature value in the SignatureValue element. The first part deals with the canoni-
calisation method and the signature algorithm. It includes a list of references in
the References element. For each signed part in the message there is a Reference
element that points to a signed part of the message, that in turn informs us of
the digest algorithm and the digest result. There is also a KeyInfo element that
refers to the certificate used in the signature.

The EncryptedKey element represents a symmetric key that is ciphered with
the other public agent key. The EncryptionMethod element indicates which algo-
rithm is used to cipher the key. Then, there is a KeyInfo element that makes a
reference to the certificate used to secure the key. If the certificate is unknown
to the receiver, the producer must include it in a BinarySecurityToken. After the
KeyInfo item there is a CipherValue element which includes the ciphered value of

Application of Formal Methods to the Analysis of Web Services Security 221

Fig. 3. Abstract structure of a SOAP Message with WS-Security

the key. If the shared key has been exchanged before, it will contain a reference
to that key instead of its ciphered value. In the last subelement of EncryptedKey,
the ReferenceList element, is a list of references in which each reference points to
a ciphered message part. When a message part is encrypted, it is replaced by a
EncryptedData, where there is a reference to the key, and the result of the cipher
process.

If we look at encryption before signature, the protocol works as follows:

– First, the client creates a SOAP request message without any security mea-
sures.

– Then, they include a security header and generate a symmetric key that
ciphers the message with the server public key. The key is added to the
message.

– The client ciphers their username, their password and the selected appli-
cation code with the newly generated symmetric key. The body element is
replaced by an EncryptedData element as a result of this step.

– The client computes a digital signature from the ciphered body of the mes-
sage. The client adds all the security elements corresponding to the digital
signature and sends the message to the server.

– The server receives the message and verifies the digital signature, it then
decrypts the message body and checks the client data with the function

222 L. Tobarra et al.

registered. This function returns true if the username and password are
correct. Otherwise it returns false.

– If the client is registered, the server will generate a product key.
– Finally, the server prepares the SOAP response message following the same

steps as the client and sends it to the client.

3 Verification of the Web Service

In this section we will analyse, using the model checking tool Casper, whether
the web service described in the previous section allows a registered client to
connect to a server and obtain a valid key for a software product. In order to
achieve this client aim, WS-Security must guarantee the following results:

– Confidentiality of username and password in the request message, and the
product key or code element in the response message.

– Integrity of the full SOAP envelope.

In our model, we will consider an intruder who can perform the following actions:

– Overhear and intercept all the messages over the network.
– Modify the messages. The intruder can add bytes, delete bytes or change the

value of several bytes.
– Generate new messages using its initial knowledge or parts of the overheard

messages.
– Send a new or captured message to another entity in the system.

We will assume that the intruder cannot perform any cryptanalysis.
We use Casper syntax to represent a SOAP message (see fig. 4). First, we

suppose that all digest functions, encryption methods and signature algorithms
are secure. In WS-Security there is only one hash function, SHA-1, which is rep-
resented by the hash type function sha in our protocol description. Computation
of the digest of several variables is represented as sha(v1,...,vn). If we wish
to represent a message m that is ciphered with the key K, we do so with the
expression {m}K.

We will suppose that the clients and the web service server know each other’s
certificates. We represent certificates by means of two functions: PK(A), which
returns the public key of the agent A, and SK(A), which returns the private key
of the agent A. This allows us to represent binary tokens as X.509 certificates
and Kerberos tickets.

We described WS-Security messages in the previous section. Firstly, there is
a certificate that, as we have just explained is replaced by two functions. Then,
there is an EncryptedKey element, a symmetric key ciphered with the receiver
public key, represented by {Key}PK(Receiver). Only the owner of the private
key partnering the public one can decipher it and find out the symmetric key.
After the symmetric key there is a digital signature. A digital signature is a
digest value ciphered with the signer’s private key. The sender signs the message
body after it has been encrypted, so we have {sha({Body}Key)}SK(Agent).

Application of Formal Methods to the Analysis of Web Services Security 223

Fig. 4. Representation of the analysed system and the resulting protocol

In the request message we represent the body with three important variables:
username, password and application code. In the response message we represent
the body with the variable code which represents the product key. The body of
each message is ciphered with the corresponding symmetric key, included in the
EncryptedKey.

We now check the following properties:

1. Aliveness(Client,Server) and Aliveness(Server,Client). Both properties check
that the client executes the protocol with the server, and vice versa. So,
the intruder cannot take the place of the client nor the server.

2. StrongSecret(Client,name,[server]) and StrongSecret(Client, pwd,[server]).
These search a trace where the intruder can guess the value of the username
name and the password pwd.

3. Secret(Client, KC, [Server]). This verifies that the client only shares a sym-
metric key, KC, with the server and that the intruder cannot guess it. So,
if the intruder does not know it, they will not be able to decrypt the mes-
sage body. The difference between Secret and StrongSecret is that the latter
checks all traces, even though the protocol has not been executed completely.

4. Agreement(Client,Server,[KC, name, pwd, apcode]). This verifies that the
client executes a complete run of the protocol with the server and that both
share the same value for the variables username, password and application
code.

5. StrongSecret(Server, code, [Client]). This confirms that the protocol guaran-
tees the confidentiality of the variable code, which represents the product
key.

6. Secret(Server, KS, [Client]). This checks that the server only shares a sym-
metric key, KS, with the client and that the intruder cannot guess it. So, if

224 L. Tobarra et al.

Fig. 5. Attack on the protocol for obtaining a license

the intruder does not know it, they will not be able to decrypt the message
body.

7. Agreement(Server,Client,[KS,name,pwd,apcode,KC,code]). This checks that
the server executes a complete run of the protocol with the client, and that
they share the same value for the following variables: KS, name, pwd, apcode,
KC and code. Thus, it verifies the integrity of the two messages.

We check all these properties with Casper and our system specification. We look
at two different situations. In the first, a client only wants a product key for a
single program and runs the protocol once. In the second, the client runs the
protocol twice because they want to install two different software programs, sw1
and sw2.

In the first case, Casper finds an attack (see fig. 5). The intruder knows the
client public key, so can find out the value of sha({name,pwd,apcode}KC). From
this information, the intruder can generate a correct request message and is then
able to take the place of the client. The intruder executes the protocol, with the
server as an intermediary. The problem is that the username and the password
are not associated with the agent identifier. Therefore we must include the agent
identifier in the message. A possible option is to use WS-Addressing, which allows
us to include sender identifier and receiver identifier amongst other information.
We include these identifiers and we sign them. The resulting protocol is

1. Client → Server: {KC}PK(Server),

{sha({name, pwd, apcode}KC, Server,Client)} SK(Client),

{name, pwd, apcode}KC
[registered(name,pwd)]

2. Server→ Client: {KS}PK(Client),

{sha({code}KC, Server,Client)}SK(Server),

{code}KS

226 L. Tobarra et al.

Fig. 7. Second attack on the protocol for obtaining a license with two executions

using a special kind of variable. With this variable we can represent the creation
time but not the expiry time; thus, we have to include a condition in the time-
stamp which checks how many time units have passed since the message was
sent. Taking time-stamps into account, the protocol specification is as follows:

1. Client → Server:
Clock,{KC}PK(Server),

{sha({name, pwd, apcode }KC, Server,Client, Clock)}SK(Client),

{name, pwd, apcode}KC
[registered(name,pwd) and (Clock==now or Clock==now-1)]

2. Server → Client:
Clock,{KS}PK(Client), {sha({code}KC, Server,Client, Clock)}SK(Server),

{code}KS
[Clock==now or Clock==now-1]

Casper time-stamps and protocol time-stamps nevertheless have a different
semantics. While Casper only gives consideration to local clocks, i.e., each agent
(process) has an internal clock, represented by an integer, which starts from
zero when the agent sends the first message, WS-Security time-stamps are ob-
tained from global clock, i.e., each time-stamp is a date includes the day, month,
year, hour, minutes and seconds. Thus, in Casper it is possible for two differ-
ent messages to have the same time-stamp because they were sent by different
agents, while in WS-Security it is very difficult for two messages to have the
same time-stamp.

Application of Formal Methods to the Analysis of Web Services Security 227

Although we have found an attack on the Casper model including time-
stamps, we cannot conclude that WS-Security suffers from this attack, because
in fact, the model is not representing the protocol.

The second solution considered above to avoid replay attacks was to introduce
a unique message identifier. In this case, the server can store every message
identifier and check whether a new message is actually new or is being replayed.
The message identifier should be signed in order to guarantee its integrity. The
protocol model could be as follows:

1. Client → Server:
MessageID1,{KC}PK(Server),

{sha({name, pwd, apcode }KC, Server,Client, MessageID1)}SK(Client),

{name, pwd, apcode}KC
[registered(name,pwd)]

2. Server → Client:
MessageID2,{KS}PK(Client),

{sha({code}KC, Server,Client, MessageID2)}SK(Server), {code}KS

Despite this, in Casper we cannot represent the server cache of message iden-
tifiers, so we cannot check if this version guarantees all the security properties.

4 Conclusions and Future Work

In this paper we have presented a web service application (a software license
server) that studies security issues by means of WS-Security. In order to analyse
whether this web service is secure, we have built the SOAP messages exchanged
by the client and the server, and then translated these messages into Casper
syntax in order to verify some security properties. We have looked at two sce-
narios: in the first, a client wishes to obtain a single product key, whereas in the
second the client wishes to obtain two different product keys.

Taking into account the results of the verification, we can put forward the
following conclusions:

– Even in the most simple case, an intruder could supplant the client and
obtain a product key. This means that, besides WS-Security another mech-
anism is needed which allows agents to identify themselves. One possibility
is to use WS-Addressing which allows us to insert in a SOAP message infor-
mation about the participants.

– Even if we use WS-Addressing, it is possible that an intruder could obtain
a product key if we consider a more sophisticated environment (the two run
version). In this case, the problem is which the intruder can record messages
that can be used to perform a replay attack.

The problem in the second case is that a message can be stored and replayed
as many times as the intruder needs. As mentioned before, a unique message
identifier, or a time-stamp with a short validity period, could be a solution to this

228 L. Tobarra et al.

attack. Unfortunately, Casper failed to model SOAP messages that include time-
stamps and/or messages identifiers, so we cannot say whether this model is secure
or not. We could use another feature of WS-Security in order to avoid replay
attacks. We could add a UsernameToken element to a SOAP message signed
by the client. This element contains a username, the corresponding password
and a nonce (a fresh random value), which guarantees the uniqueness of the
message. The username and password are secrets shared between the client and
the server. Thus, we should only have to add the nonce to our representation of
the protocol.

Another solution could be to identify each message as part of a flow or a
conversation. Some protocols, such as WS-ReliableMessaging, include in each
message a unique identifier for each sequence of messages. It also includes the
number of the message in the sequence. Each time a client starts a new sequence
the identifier is renewed. When an agent wants to establish a sequence it sends a
request for a new sequence identifier to the other end. Then it can send its mes-
sage. The other end should send an acknowledgement of the received message.
When an agent does not want to send more messages, it must send a finished se-
quence message. All these control messages are an overhead for a simple protocol,
as with the one we have analysed.

Our future work is concerned with building a model of the system which al-
lows us to prove that WS-Security (working together with other protocols such as
WS-Addressing and/or WS-ReliableMessaging) is a good option in guaranteeing
the security of Web Services (including replay attacks).

Finally, it is worth pointing out that WS-Security does not provide a full
security solution by itself. It should be used with other protocols. In a re-
quest/response conversation a client and a server do not negotiate any security
options. So it is recommended that developers use WS-Policy to establish the
security requirements of clients and servers. Currently, a set of complementary
protocols is being developed to complement the security level of WS-Security.
These include WS-Trust and WS-Secure Language [10].

References

1. T. Dierks; C. Allen. ”The TLS Protocol. Version 1.0 ”. RFC 2246. Standards
track, Network Working Group, January 1999.

2. K. Bhargavan, C. Fournet, A.D. Gordon, and R.Corin. “Secure Sessions for Web
Services”. August 2004. At http://research.microsoft.com/projects/samoa/

secure-sessions-with-scripts.pdf.

3. K. Bhargavan, C. Fournet, and A.D. Gordon. Verifying policy-based security for
web services. In CCS ’04: Proceedings of the 11th ACM conference on Computer
and communications security, pages 268–277, New York, NY, USA, 2004. ACM
Press.

4. K. Bhargavan, C. Fournet, and A.D. Gordon, and R. Pucella. Tulafale: A security
tool for web services. In Formal Methods for Components and Objects: Second
International Symposium, FMCO 2003, volume 3188 of Lecture Notes in Computer
Science, pages 197 – 222. Springer, November 2003.

Application of Formal Methods to the Analysis of Web Services Security 229

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

6. Formal Systems (Europe) Limited. FDR Manual.
http://www.fsel.com/fdr2_manual.html.

7. O. Alan Freier, Philip Karlton, and Paul C. Kocher. ”The SSL Protocol Version
3.0”. Internet draft, Netscape, March 1996.

8. G.Dı́az, J. Pardo, E. Cambronero, V. Valero, and F. Cuartero. “Verification of Web
Services with Timed Automata”. 1st Int’l Workshop on Automated Specification
and Verification of Web Sites, 2005.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. IBM and Microsoft. “Security in a Web Services World: a proposed architecture

and roadmap”.
http://www.-106.ibm.com/developerworks/library/ws-secmap/, April 2002.

11. IBM, Microsoft, and VeriSign. “Web Services Security (WS-Security). Version
1.0”. April 2002.

12. J.E. Johnson, D.E. Langworthy, L. Lamport, and F.H.Vogt. “Formal Specification
of a Web Services Protocol”. Electronic Notes in Theoretical Computer Science
105 (2004) 147-158, February 2004.

13. S. Kent and K. Seo. Security architecture for the internet protocol. Internet Draft,
october 2004.

14. E. Kleiner and A.W.Roscoe. “Web Services Security: a preliminary study using
Casper and FDR”. Proceedings of the Workshop on Automated Reasoning for
Security Protocol Analysis (ARSPA 2004), June 2004.

15. G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of
Computer Security, 6:53–84, 1998.

16. Microsoft. Microsoft Web Services Enhacements (WSE) 2.0.
http://http://msdn.microsoft.com/webservices/building/wse/.

17. S. Nakijima. “On verifying Web Services Flows”. Proc. SAINT 2002 Workshop,
pages 223–224, January 2002.

18. OASIS. “Identity Federation. Liberty Alliance Project ”, 2004.
19. OASIS. “UDDI Version 3.0.2”.

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3, Octo-
ber 2004.

20. OASIS. “eXtensible Access Control Markup Language (XACML) v2.0”, February
2005.

21. OASIS. “Security Assertion Markup Language (SAML) v2.0 ”, April 2005.
22. W3C. “Simple Object Access Protocol (SOAP) 1.1”.

http://www.w3c.org/TR/2000/NOTE-SOAP-20000508, May 2000.
23. W3C. “Web Services Description Language (WSDL) 1.1 ”.

http://www.w3.org/TR/wsdl, March 2001.
24. W3C. “XML Encryption Syntax and Processing”.

http://www.w3c.org/TR/2002/REC-xmldend-core-20021210, December 2002.
25. W3C. “XML Signature Syntax and Processing”.

http://www.w3c.org/TR/2002/REC-xmldsig-core-20020212, February 2002.
26. W3C. “Extensible Markup Language (XML)1.1”.

http://www.w3.org/TR/2004/REC-xml11-20040204/, April 2004.
27. W3C. “Web Services Architecture”.

http://www.w3c.org/TR/2004/NOTE-ws-arch-20040211, February 2004.

Automatic Translation of WS-CDL

Choreographies to Timed Automata�

Gregorio Diaz, Juan-José Pardo, Maŕıa-Emilia Cambronero,
Valent́ın Valero, and Fernando Cuartero

Departamento de Informática,
Universidad de Castilla-La Mancha,

Escuela Politécnica Superior de Albacete. 02071 - Spain
{gregorio, jpardo, emicp, valentin, fernando}@info-ab.uclm.es

Abstract. In this paper we show how we can translate Web Services
described by WS-CDL into a timed automata orchestration, and more
specifically we are interested in Web services with time restrictions.
Our starting point are Web Services descriptions written in WSBPEL-
WSCDL (XML-based description languages). These descriptions are then
automatically translated into timed automata, and then, we use a well
known tool that supports this formalism (UPPAAL) to simulate and
analyse the system behaviour. As illustration we take a particular case
study, an airline ticket reservation system.

1 Introduction

In the last years some new techniques and languages for developing distributed
application have appeared, such as the Extensible Markup Language, XML, and
some new Web Services frameworks [7,13,18] for describing interoperable data
and platform neutral business interfaces, enabling more open business transac-
tions to be developed.

Web Services are a key component of the emerging, loosely coupled, Web-
based computing architecture. A Web Service is an autonomous, standards-based
component whose public interfaces are defined and described using XML [15].
Other systems may interact with a Web Service in a manner prescribed by its
definition, using XML based messages conveyed by Internet protocols.

The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host applica-
tions. The future of E-Business applications requires the ability to perform long-
lived, peer-to-peer collaborations between the participating services, within or
across the trusted domains of an organization.

The Web Service architecture stack targeted for integrating interacting ap-
plications consists of the following components [15]:
� This work has been supported by the CICYT project “Description and Evaluation

of Distributed Systems and Application to Multimedia Systems”,TIC2003-07848-
C02-02 and the UCLM project ”Aplicación de Métodos Formales al Desarrollo y
Verificación de Web Services”

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 230–242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatic Translation of WS-CDL Choreographies to Timed Automata 231

– SOAP[13]: It defines the basic formatting of a message and the basic de-
livery options independent of programming language, operating system, or
platform.

– WSDL[18]: It describes the static interface of a Web Service. Then, at this
point the message set and the message characteristics of end points are here
defined. Data types are defined by XML Schema specifications.

– Registry[7]: It makes visible an available Web Service, and it also describes
the concrete capabilities of a Web Service.

– Security layer: It ensures that exchanged informations are not modified or
forged in a verifiable manner and that parties can be authenticated.

– Reliable Messaging layer: It provides a reliable layer for the exchange of
information between parties.

– Context, Coordination and Transaction layer: It defines interopera-
ble mechanisms for propagating context of long-lived business transactions
and enables parties to meet correctness requirements by following a global
agreement protocol.

– Business Process Languages layer[2,8]: It describes the execution logic
of Web Services based applications by defining their control flows (such as
conditional, sequential, parallel and exceptional execution) and prescribing
the rules for consistently managing their non-observable data.

– Choreography layer[15]: It describes collaborations of parties by defining
from a global viewpoint their common and complementary observable be-
havior, where information exchanges occur, when the jointly agreed ordering
rules are satisfied.

The Web Services Choreography specification is aimed at the composition of
interoperable collaborations between any type of party regardless of the support-
ing platform or programming model used by the implementation of the hosting
environment.

Web Services cover a wide range of systems, which in many cases have strong
time constraints (for instance, peer-to-peer collaborations may have time limits
to be completed). Then, in many Web Services descriptions these time aspects
can become very important. Actually, they are currently covered by the top
level layers in Web Services architectures with elements such as time-outs and
alignments. Time-outs allow each party to fix the available time for an action to
occur, while alignments are synchronizations between two peer-to-peer parties.

Thus, it becomes important for Web Services frameworks to ensure the cor-
rectness of systems with time constraints. For instance, we can think in a failure
of a bank to receive a large electronic funds transfer on time, which may result
in huge financial losses. Then, there is growing consensus that the use of formal
methods, development methods based on some formalism, could have signifi-
cant benefits in developing E-business systems due to the enhanced rigor these
methods bring [14]. Furthermore, these formalisms allow us to reason with the
constructed models, analysing and verifying some properties of interest of the
described systems. One of these formalisms are timed automata [1], which are
very used in model checking [6], and there are some well-known tools supporting
them, like UPPAAL [9,10,16] and KHRONOS [3].

232 G. Diaz et al.

Then, our goal with this paper is to describe how we can translate Web Ser-
vices with time constraints into a formalism using automatic techniques in order
to verify it. This verification process starts from the top level layers of Web Ser-
vices architectures (Business Process Language Layer and Choreography layer).
The particular Business Process Language layer that we use here is the Web
Service Business Process Execution Language (WS-BPEL) [2], and the concrete
Choreography Layer that we use is the Web Service Choreography Description
Language (WS-CDL) [15]. Therefore, the starting point are specification docu-
ments written in WS-CDL and WS-BPEL. However, these description languages
are not very useful for the verification process. Thus, these descriptions are au-
tomatically translated into timed automata, and the UPPAAL tool is used to
simulate and verify the system correctness.

As illustration of this methodology, we use a particular case study, an airline
ticket reservation system, whose description contains some time constraints.

The paper is structured as follows. In Section 2 we describe the main fea-
tures of WSBPEL - WSCDL. The translation of WSCDL documents into timed
automata is presented in Section 3. In Section 4 we apply this methodology to
the case study, and the UPPAAL tool is used to describe, simulate and analyze
the obtained timed automata. Finally, the conclusions and the future work are
presented in Section 5.

2 WSBPEL - WSCDL Description

The Web Services Choreography specification is aimed at being able to precisely
describe collaborations between any type of party regardless of the supporting
platform or programming model used by the implementation of the hosting en-
vironment. Using the Web Services Choreography specification, a contract con-
taining a ”global” definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes, from a global
viewpoint, the common and complementary observable behavior of all the par-
ties involved. Each party can then use the global definition to build and test
solutions that conform to it. The global specification is in turn realized by com-
bination of the resulting local systems, on the basis of appropriate infrastructure
support.

In real-world scenarios, corporate entities are often unwilling to delegate con-
trol of their business processes to their integration partners. Choreography offers
a means by which the rules of participation within a collaboration can be clearly
defined and agreed to, jointly. Each entity may then implement its portion of the
Choreography as determined by the common or global view. It is the intent of
WS-CDL that the conformance of each implementation to the common view ex-
pressed in WS-CDL is easy to determine. Figure 1 demonstrates a possible usage
of the Choreography Description Language, where we see that we use WS-BPEL
as the Business Process Execution Layer (BPEL for short).

WS-CDL describes interoperable, collaborations between parties. In order
to facilitate these collaborations, services commit to mutual responsibilities by

Automatic Translation of WS-CDL Choreographies to Timed Automata 233

Fig. 1. WS-CDL and WS-BPEL usage

establishing Relationships. Their collaboration takes place in a jointly agreed set
of ordering and constraint rules, whereby information is exchanged between the
parties. The WS-CDL model consists of the following entities:

– Participant Types, Role Types and Relationship Types within a
Choreography. Information is always exchanged between parties within or
across trust boundaries. A Role Type enumerates the observable behavior
a party exhibits in order to collaborate with other parties. A Relationship
Type identifies the mutual commitments that must be made between two
parties for them to collaborate successfully. A Participant Type is grouping
together those parts of the observable behavior that must be implemented
by the same logical entity or organization.

– Information Types, Variables and Tokens. Variables contain informa-
tion about commonly observable objects in a collaboration, such as the in-
formation exchanged or the observable information of the Roles involved.
Tokens are aliases that can be used to reference parts of a Variable. Both
Variables and Tokens have Types that define the structure of what the Vari-
able contains or the Token references.

– Choreographies define collaborations between interacting parties:
• Choreography Life-line: It shows the progression of a collaboration.

Initially, the collaboration is established between the parties; then, some
work is performed within it, and finally it completes either normally or
abnormally.

• Choreography Exception Block: It specifies the additional interac-
tions that should occur when a Choreography behaves in an abnormal
way.

234 G. Diaz et al.

• Choreography Finalizer Block: It describes how to specify additional
interactions that should occur to modify the effect of an earlier suc-
cessfully completed Choreography (for example to confirm or undo the
effect).

– Channels establish a point of collaboration between parties by specifying
where and how information is exchanged.

– Work Units prescribe the constraints that must be fulfilled for making
progress and thus performing actual work within a Choreography.

– Activities and Ordering Structures. Activities are the lowest level com-
ponents of the Choreography that perform the actual work. Ordering Struc-
tures combine activities with other Ordering Structures in a nested structure
to express the ordering conditions in which information within the Choreog-
raphy is exchanged.

– Interaction Activity is the basic building block of a Choreography, which
results in an exchange of information between parties and possible synchro-
nizations of their observable information changes, and the actual values of
the exchanged information.

2.1 WS-BPEL

WS-BPEL is an interface description language. It describes the observable be-
haviour of a service by defining business processes consisting of stateful long-
running interactions in which each interaction has a beginning, a defined be-
haviour and an end, all of this being modelled by a flow, which consists of a
sequence of activities. The behaviour context of each activity is defined by a
scope, which provides fault handlers, event handlers, compensation handlers, a
set of data variables and correlation sets.

Let us now see a brief description of these components:

– Events, which describe the flow execution in an event driven manner.
– Variables, which are defined by using WSDL schemes, for internal or ex-

ternal purposes, and are used in the message flow.
– Correlations, which identify processes interacting by means of messages.
– Fault handling, defining the behaviour when an exception has been thrown.
– Event handling, defining the behaviour when an event occurs.
– Activities, which represent the basic unit of behaviour of a Web Service.

In essence, WS-BPEL describes the behaviour of a Web Service in terms of
choreographed activities.

3 Translation

Figure 2 illustrates the relationship between WS-CDL, the choreography layer
and the orchestration level (WS-BPEL), taking an orchestra as a metaphor of
this relation. The key document is the director score, which corresponds to the
WS-CDL document, in which each participant is represented as well as the time

Automatic Translation of WS-CDL Choreographies to Timed Automata 235

Fig. 2. From the Choreography layer to the Orchestration layer

it enters into action. Furthermore, the wind, percussion and strings scores corre-
spond to the WS-BPEL documents, which show the behaviour of each particular
group.

From this Figure we can also see that WS-CDL documents are translated into
timed automata in a first step, which is the main goal covered with this paper,
and in a second step we intend to translate the timed automata thus obtained
into WS-BPEL documents. Therefore, we now present the automatic translation
from WS-CDL documents into timed automata. For this purpose, we must first
analyse the WS-CDL documents in order to identify the common shared points
between them. The first stage is to obtain the general structure describing the
system that we are analyzing. In timed automata, this structure is defined by the
so-called System, which consists of the individual processes that must be executed
in parallel. Each one of these processes is defined by using a template. Templates
are used to describe the different behaviors that are available in the system.

Then, for each component of a WS-CDL description we have the following
correspondence in timed automata (see Fig. 3 for a schematic presentation of
this correspondence):

Role: They are used to describe the behaviour of each class of party that we are
using in the choreography. Thus, this definition matches with the definition
of a template in timed automata terminology.

Relation type: They are used to define the communications between two roles,
and the needed channels for these communications. In timed automata we
just need to assign a new channel for each one of these channels, which are
the parameters of the templates that take part in the communication.

236 G. Diaz et al.

Role = Template
Relation Type = Channel+

Participant Type = Process+

Channel Type = Channel
Variables = Variables
Choreography = Choreography+ | Activity
Activity = Work Unit | Sequence | Paralelism | Choice
Sequence = Activity+

Paralelism = Activity+

Choice = Activity+

Work Unit = State & Guard & Invariant

where the symbols +, | are BNF notation, and & is used to join information

Fig. 3. Schematic view of the translation

Participant type: They define the different parties that participate in the
choreography. In timed automata they are processes participating in the
system.

Channel types: A channel is a point of collaboration between parties, together
with the specification of how the information is exchanged. As said before,
channels of WS-CDL correspond with channels of timed automata.

Variables: They are easily translated, as timed automata in UPPAAL support
variables, which are used to represent some information.

Now the problem is to define the behaviour of each template. This behaviour
is defined by using the information provided by the flow of choreographies. Chore-
ographies are sets of workunits or sets of activities. Thus, activities and workunits
are the basic components of the choreographies, and they capture the behavior
of each component. Activities can be obtained as result of a composition of other
activities, by using sequential composition, parallelism and choice. In terms of
timed automata these operators can be easily translated:

– The sequential composition of activities is translated by concatenating the
corresponding timed automata.

– Parallel activities are translated by the cartesian product of the correspond-
ing timed automata.

– Choices are translated by adding a node into the automata which is con-
nected with the initial nodes of the alternatives.

Finally, time restrictions are associated in WS-CDL with workunits and in-
teraction activities. These time restrictions are introduced in timed automata
by means of guards and invariants. Therefore, in case a workunit of an activity
has a time restriction we associate a guard to the edge that correspond to the
initial point of this workunit in the corresponding timed automaton.

Automatic Translation of WS-CDL Choreographies to Timed Automata 237

4 Case Study: Travel Reservation System

Some examples of the use of WS-CDL can be found in [4,5,11]. The case study
that we are going to use to illustrate how the translation works is inspired from
the work [11], where this particular case study was used to illustrate how timed
automata can be used for the formal verification of properties.

This system consists of three participants: a Traveller, a Travel Agent and
an Airline Reservation System, whose behaviour is as follows:

A Traveller is planning on taking a trip. Once he has decided the concrete
trip he wants to make he submits it to a Travel Agent by means of his local Web
Service software (Order Trip). The Travel Agent selects the best itinerary ac-
cording to the criteria established by the Traveller. For each leg of this itinerary,
the Travel Agent asks the Airline Reservation System to verify the availability of
seats (Verify Seats Availability). Thus, the Traveller has the choice of accepting
or rejecting the proposed itinerary, and he can also decide not to take the trip
at all.

– In case he rejects the proposed itinerary, he may submit the modifications
(Change Itinerary), and wait for a new proposal from the Travel Agent.

– In case he decides not to take the trip, he informs the Travel Agent (Cancel
Itinerary) and the process ends.

– In case he decides to accept the proposed itinerary (Reserve Tickets), he
will provide the Travel Agent with his Credit Card information in order to
properly book the itinerary.

Once the Traveller has accepted the proposed itinerary, the Travel Agent
connects with the Airline Reservation System in order to reserve the seats (Re-

Fig. 4. Flow of the messages exchanged

238 G. Diaz et al.

<interaction name="reservation&booking"

channelVariable="travelAgentAirlineChannel"

operation="reservation&booking"

align="true"

initiate="true" >

<participate relationshipType="TravelAgentAirline"

fromRole="TravelAgent" toRole="Airline" />

<exchange name="reservation"

informationType="reservation" action="request" >

<send variable="tns:reservationOrderID" causeException="true" />

<receive variable="tns:reservationAckID" causeException="true" />

</exchange>

<exchange name="booking" informationType="booking" action="respond">

<send variable="tns:bookingRequestID" causeException="true"/>

<receive variable="bookingAckID" causeException="true" />

</exchange>

<timeout time-to-complete="24:00" />

<record name="bookingTimeout" when="timeout" causeException="true"/>

<source

variable="AL:getVariable(’tns:reservationOrderCancel’, ’’, ’’)"/>

<target

variable="TA:getVariable(’tns:reservationOrderCancel’, ’’, ’’)"/>

</record>

</interaction>

Fig. 5. Part of WS-CDL especification

serve Seats). However, it may occur that at that moment no seat is available for
a particular leg of the trip, because some time has elapsed from the moment in
which the availability check was made. In that case the Travel Agent is informed
by the Airline Reservation System of that situation (No seats), and the Travel
Agent informs the Traveller that the itinerary is not possible (Notify of Cancel-
lation). Once made the reservation the Travel Agent informs the Traveller (Seats
Reserved). However, this reservation is only valid for a period of just one day,
which means that if a final confirmation has not been received in that period,
the seats are unreserved and the Travel Agent is informed. Thus, the Traveller
can now either finalize the reservation or cancel it. If he confirms the reservation
(Book Tickets), the Travel Agent asks the Airline Reservation System to finally
book the seats (Book Seats).

According to the previous description, the high level flow of the messages
exchanged within the global process (which is called PlanAndBookTrip) is that
shown in Fig. 4.

4.1 Translation of the Case Study

Figure 5 presents a detailed piece of the WS-CDL document describing our
example. It describes part of the relationship between the Airline and the Travel

Automatic Translation of WS-CDL Choreographies to Timed Automata 239

x<24

check_seats? available_seat!
reserve_seat?

reserve_seat_ok!
x:=0

x<24

book_seat?

no_available_seat!

x==24
timeout!

x<24
cancel_reserve_seat?

cancel_reserve_seat_ok!

book_seat_ok!

receive_tickets!

book_seat_no!

reserve_seat_no!

Fig. 6. Timed automata for airline Reservation System

ordertrip!

available!

cancel_itinerary?

change_itinerary?

reserve_tickets?

reserve_seat!reserve_seat_no?

reserve_seat_ok?timeout?
notify_timeout!

check_seats!

available_seat?

no_available_seat?

no_available!

book_seat!
book_seat_ok?

receive_statement!

cancel_reserve_seat!

cancel_reserve_seat_ok?

accept_cancel!

book_seat_no?

book_ticket?

cancel_reservation?

timeout?

no_reservation!

no_reservation!

Fig. 7. Timed automata for Travel agent web service

Agent. This interaction establishes the time in which the reservation is available,
in this case one day.

We have used this WSCDL document to obtain the translation into timed
automata. Following the guidelines described above we have obtained in this case
three timed automata: the traveler, the travel agent and the airline company.
These automata are shown in Figures 6, 7 and 8.

Notice the use of the clock x in the timed automaton corresponding to the
airline reservation system, which is used to control when the reservation expires.
This clock is initialized when the action reserved seat is done.

240 G. Diaz et al.

Start

ordertrip?

available?

change_itinerary!

cancel_itinerary!

reserve_tickets!

cancel_reservation!

book_ticket!

receive_statement?

notify_timeout?

receive_tickets?

accept_cancel?

no_available?

no_reservation?

no_reservation?

Fig. 8. Timed automata for traveler

5 Conclusions and Future Work

Nowdays Web Services are becoming a powerful tool for the implementation of
distributed applications over Internet. In many cases these services have associ-
ated time restrictions, as we have seen in the case study that we have presented.
Therefore, the specification and design of Web Services can be made by using
some well known formalisms, as timed automata, and tools supporting them
(UPPAAL) in order to verify and validate the system behavior. Consequently,
it becomes of interest to obtain a translation of the specifications written in a
Choreography language (WS-CDL) into timed automata in order to exploit these
capabilities that timed automata can provide us. Thus, in this paper we have
seen how this translation can be made, and it has been applied to a particular
case study. We are currently implementing this translation in a tool that uses
UPPAAL as the engine for the simulation and verification.

Our future work will focus on the second step of this methodology of tra-
duction, in which our intention is the generation of WS-BPEL documents from
WS-CDL documents, using as intermediary objects the timed automata obtained
with the translation presented in this paper. Notice that these timed automata
will have some internal information, which will not be used by UPPAAL, but that
will be necessary in order to obtain the corresponding WS-BPEL documents.

Once this second step has been completed we will have a complete methodol-
ogy for obtaining correct orchestration descriptions of Web Services from chore-
ography descriptions.

Automatic Translation of WS-CDL Choreographies to Timed Automata 241

References

1. R. Alur and D. Dill, Automata for modeling real–time systems, In Proceedings of
the 17th International Colloquium on Automata, Languages and Programming,
volume 443, Editors. Springer–Verlag, 1990.

2. Assaf Arkin, Sid Askary, Ben Bloch, et. al., Web Services Business Pro-
cess Execution Language Version 2.0, Editors. OASIS Open, December
2004. In http://www.oasis-open.org/committees/download.php/10347/wsbpel-
specification-draft-120204.htm

3. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis and S. Yovine, Kronos: A
model-checking tool for real-time systems, In Proc. 1998 Computer-Aided Verifica-
tion, CAV’98, Vancouver, Canada, June 1998. Lecture Notes in Computer Science
1427, Springer-Verlag.

4. Mario Bravetti, Roberto Lucchi, Gianluigi Zavattaro and Roberto Gorrieri , Web
Services for E-commerce: guaranteeing security access and quality of service, In
Proc. of the 19th ACM Symposium on Applied Computing (SAC’04), special track
on E-Commerce Technologies , ACM Press, 2004.

5. Mario Bravetti, Claudio Guidi, Roberto Lucchi and Gianluigi Zavattaro , Sup-
porting E-commerce system formalization with Choreography Languages, In Proc.
of the 20th ACM Symposium on Applied Computing (SAC’05), special track on
E-Commerce Technologies , ACM Press, 2005.

6. Edmund M. Clarke and Jr. and Orna Grumberg and Doron A. Peled, Model Check-
ing, MIT Press, 1999.

7. Luc Clement, Andrew Hately, Claus von Riegen and Tony Rogers,
UDDI Version 3.0.2, Editors. OASIS Open, 19 October 2004. In
http://uddi.org/pubs/uddi v3.htm.

8. Francisco Curbera et al. Business Process Execution Language for Web Services,
Version 1.0. In http://xml.coverpages.org/WS-BPELv10.pdf.

9. G. Diaz, F. Cuartero, V. Valero and F. Pelayo, Automatic Verification of the TLS
Handshake Protocol, In proceedings of the 2004 ACM Symposium on Applied Com-
puting.

10. G. Diaz, K.G. Larsen, J. Pardo, F. Cuartero and V. Valero, An approach to handle
Real Time and Probabilistic behaviors in e-commerce: Validating the SET Protocol,
In proceedings of the 2005 ACM Symposium on Applied Computing.

11. G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero and F. Cuartero, Verification of
Web Services with Timed Autoamata, In proceedings of First International Work-
shop on Automated Specification and Verification of Web Sites, Valencia, March
2005.

12. Eurostat yearbook 2004. The statistical guide to Europe. Data 1992-2002. Euro-
pean Commission: EUROSTAT, Office for Official Publications of the European
Communities, 2004

13. Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, et. al., SOAP Version 1.2
Part 1: Messaging Framework , Editors. World Wide Web Consortium, 24 June
2003. In http://www.w3.org/TR/soap12-part1.

14. Constance Heitmeyer and Dino Mandrioli. Formal Methods for Real-Time Com-
puting. John Wiley & Sons. 1996.

15. Nickolas Kavantzas et al. Web Service Choreography Description Language
(WSCDL) 1.0. In http://www.w3.org/TR/ws-cdl-10/.

16. K. Larsen and P. Pettersson and Wang Yi, Uppaal in a Nutshell, Int. Journal on
Software Tools for Technology Transfer, Editors. Springer–Verlag vol.1, 1997.

242 G. Diaz et al.

17. Jean Paoli, Eve Maler, Tim Bray, et. al.,Extensible Markup Language (XML) 1.0
(Third Edition), Editors. World Wide Web Consortium, 04 February 2004. In
http://www.w3.org/TR/2004/REC-xml-20040204.

18. Sanjiva Weerawarana, Roberto Chinnici, Martin Gudgin, et. al., Web Services De-
scription Language (WSDL) Version 2.0 Part 1: Core Language, Editors. World
Wide Web Consortium, 03 August 2004. In http://www.w3.org/2002/ws/desc/.

19. Simon Woodman, et al., Specification and Verification of Composite Web Services,
In proocedings of The 8th Enterprise Distributed Object Computing Conference
2004.

Executable Semantics for Compensating CSP

Michael Butler and Shamim Ripon

School of Electronics and Computer Science,
University of Southampton, UK
{mjb, sr03r}@ecs.soton.ac.uk

Abstract. Compensation is an error recovery mechanism for long-
running transactions. Compensating CSP is a variant of the CSP process
algebra with constructs for orchestration of compensations. We present
a simple operational semantics for Compensating CSP and outline an
encoding of this semantics in Prolog. This provides a basis for imple-
mentation and model checking of the language.

1 Introduction

Web services technology provides a platform on which to develop distributed
services. In order to define web service composition, that is, the definition of
complex services out of simple ones, web services choreography has been intro-
duced. There have been several proposals for describing web services for business
processes presented in the recent years including BPML [3] by BPMI, XLANG
[20] and BizTalk [16] by Microsoft, WSFL [15] by IBM, BPEL4WS [10] by OASIS
(draft standard).

Business transactions involve interaction and coordination between several
services. Business transactions need to deal with faults that can arise in any stage
of such an environment and this is both difficult and critical. In a long running
transaction the usual database approaches, e.g., rollback, are not possible to
handle faults. Usually, a long-running transaction interacts with the real world
which makes it difficult to undo the transaction. In order to recover from faults
in long-running transactions, the concept of compensation was introduced [11].
Compensation is the act of making amendments or making up of a previously
completed task. If a long-running transaction fails, appropriate compensations
are run to compensate for completed parts of the transaction.

Operational semantics is given by a set of rules which specify how the states
of a program change during execution. The overall states of the program are
divided into a number of components. Each rule specifies certain precondition
on the content of some component and their new content after application of the
rule.

The Compensating CSP (cCSP) language was introduced by Butler et al [9]
as a language to model long running transactions in the framework of CSP pro-
cess algebra [12]. The semantics of the cCSP language was described by using
denotational semantics (trace semantics). This paper presents the operational
semantics of standard as well as compensable processes of compensating CSP

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 243–256, 2005.
Springer-Verlag Berlin Heidelberg 2005

244 M. Butler and S. Ripon

using the approach of Plotkin [18]. The operational semantics gives a precise
understanding of the execution of the language. Roscoe [19] describes the oper-
ational semantics of standard CSP and our work builds on that.

We make the operational semantics executable by directly encoding the rules
in Prolog. Our hope is that this can serve as a useful basis for model checking
cCSP processes. XTL [1] is a model checker which allows a wide range of system
specification. It accepts specifications written by using high level Prolog pred-
icates describing the transition between different states of the system. Given a
Prolog encoding of the operational semantics, the XTL package provides us with
an experimental animator and model checker for cCSP.

This paper is organized as follows. Section 2 gives a brief introduction of
the cCSP language. Followed by the introduction of the language, Section 3
presents the operational semantics of cCSP. An executable semantics of the
operational semantics is presented in Section 4. Section 5 presents the related
work and motivates our contribution with respect to them. Concluding remarks
are drawn up in Section 6 and some future directions of the present work are
mentioned.

2 Compensating CSP

In this section we briefly introduce the cCSP language. The language was in-
spired by two main ideas: transaction processing features and process algebra,
especially CSP. As in CSP, processes in compensating CSP are modelled in terms
of atomic events they can engage in and the operators provided by the language
support sequencing, choice, parallel composition of processes. In order to sup-
port failed transactions, compensation operators are introduced and processes
are categorized into standard and compensable processes. We use P,Q to identify
standard processes and PP,QQ to identify compensable processes.

The syntax of compensating CSP is summarised in Figure 1. The basic unit
of a standard process is an atomic event. Standard process are constructed with
the usual CSP operators for choice, sequencing and parallel composition. The
process SKIP terminates immediately successfully. The language also provides
interrupts and interrupt handling. The primitive process THROW throws an
interrupt immediately. In a purely sequential process, the exception causes an
immediate disruption to the flow of control. An interrupt handler may be used
to catch interrupts: in P � Q, an interrupt raised by P triggers execution of the
handler Q. In parallel processes, the whole group of parallel processes may fail
when one of the processes throws an exception and all the other processes are
willing to disrupt their flow of control and yield to the exception. A process that
is ready to terminate is also willing to yield to an interrupt. A process may also
yield at mid points in its execution. Yield points are inserted in a process though
the primitive Y IELD process. For example, P ;Y IELD; Q is willing to yield to
an interrupt in between execution of P and Q. Parallel composition is defined
so that throwing of an interrupt in one process synchronises with yielding in
another process. The current version of cCSP does not support synchronised

Executable Semantics for Compensating CSP 245

Standard processes:
P, Q ::= A (atomic action)

| P ; Q (sequential composition)
| P � Q (choice)
| P ‖ Q (parallel composition)
| SKIP (normal termination)
| THROW (throw an interrupt)
| Y IELD (yield to an interrupt)
| P � Q (interrupt handler)
| [PP] (transaction block)

Compensable processes:
PP, QQ ::= P ÷ Q (compensation pair)

| PP ; QQ
| PP � QQ
| PP ‖ QQ
| SKIPP
| THROWW
| Y IELDD

Fig. 1. Syntax of compensating CSP

communication between parallel processes. Parallel process groups synchronise
only on joint execution of compensation, joint termination and joint interruption.

A compensable process is one which has compensation actions attached to
it. A compensable process consists of a forward behaviour and a compensation
behaviour. In the case of an exception, compensation will be executed to com-
pensate the forward behaviour. Both the forward and compensation behaviour
are standard processes. The basic way of constructing a compensable process
is through the compensation pair construct P ÷ Q, where P is the forward
behaviour and Q is its associated compensation. Q should be designed to com-
pensate for the effect of P and may be run long after P has completed.

The parallel and sequential composition operators for compensable processes
are designed in a way which ensures that after the failure of a transaction the nec-
essary atomic transactions are performed in an appropriate order to compensate
the effect of already performed actions. Sequential composition of compensable
processes is defined so that the compensations for all performed actions will be
accumulated in the reverse order to their original performance. Parallel compo-
sition of compensable processes is defined so that compensations for performed
actions will be accumulated in parallel.

By enclosing a compensable process PP in a transaction block [PP] we get
a complete transaction which converts the compensable process PP into a stan-
dard process. The behaviours of the transaction block are defined in terms of the
behaviour of PP . Successfully completed PP represents successful completion of
the whole transaction block and compensations are no longer needed. When the
forward behaviour of PP throws an interrupt, the compensations are executed
in the appropriate order and the interrupt is not observable outside the block.

246 M. Butler and S. Ripon

A standard process can be transformed onto a compensable process by adding
to it a compensation process, which actually does nothing (SKIP). The compens-
able basic processes, which we get from standard basic processes, are as follows:

SKIPP = SKIP ÷ SKIP

THROWW = THROW ÷ SKIP

Y IELDD = Y IELD ÷ SKIP

An example of a transaction for processing customer orders in a warehouse is
presented in Figure 2 in the cCSP language. The first step in the transaction is
a compensation pair. The primary action of this pair is to accept the order and
deduct the order quantity from the inventory database. The compensation action
simply adds the order quantity back to the total in the inventory database. After
an order is received from a customer, the order is packed for shipment, and a
courier is booked to deliver the goods to the customer. The PackOrder process
packs each of the items in the order in parallel. Each PackItem activity can be
compensated by a corresponding UnpackItem. Simultaneously with the packing
of the order, a credit check is performed on the customer. The credit check is
performed in parallel because it normally succeeds, and in this normal case the
company does not wish to delay the order unnecessarily. In the case that a credit
check fails, an interrupt is thrown causing the transaction to stop its execution,
with the courier possibly having been booked and possibly some of the items
having being packed. In case of failure, the semantics of the transaction block
will ensure that the appropriate compensation activities will be invoked for those
activities that did take place.

OrderT ransaction = [ProcessOrder]

ProcessOrder = (AcceptOrder ÷ RestockOrder) ; FulfillOrder

FulfillOrder = BookCourier ÷ CancelCourier ‖
PackOrder ‖
CreditCheck ; (Ok; SKIPP

� NotOk ; THROWW)

PackOrder = ‖ i ∈ Items • (PackItem(i) ÷ UnpackItem(i))

Fig. 2. Order transaction example

3 Operational Semantics

The operational semantics is a way of defining the behaviour of processes by
specifying atomic transitions on process terms. We will write labelled transition

P
A−→ P ′

PP
A−→ PP ′

Executable Semantics for Compensating CSP 247

to denote that execution of event A causes the transition from term P or PP to
term P ′ or PP ′ respectively.

The set of events that a process can perform is called its alphabet. We dif-
ferentiate between observable and terminal events. The set of observable events
is represented by Σ. The terminal events Ω = {�, !, ?} represent the different
ways in which a process may terminate: successful termination is represented by
the

√
event, throwing of an interrupt is represented by the ! event and yielding

is represented by the ? event. In order to define the semantics we extend the
syntax with the null process 0 that cannot perform any events. The terminal
events effect standard and compensable processes differently. When a standard
process performs a terminal event ω (ω ∈ Ω) then the process is finished either
normally or abnormally and no further operation occurs.

P
ω−→ 0 (ω ∈ Ω)

When a compensable process PP executes a terminal event, instead of evolv-
ing to the null process (0), it evolves to a standard process P representing its
compensation.

PP
ω−→ P (ω ∈ Ω)

In Section 3.2 we will see how these resulting compensations are treated by the
various operators for compensable processes.

3.1 Semantics of Standard Processes

This section presents the operational semantics of standard processes of com-
pensating CSP. A process A performs the atomic event and then terminates
successfully:

A
A−→ SKIP (A ∈ Σ)

SKIP , THROW and Y IELD are primitive processes of cCSP. The effect of
terminal events on the special processes are presented here:

SKIP
√
−→ 0

THROW
!−→ 0

Y IELD
√
−→ 0

Y IELD
?−→ 0

In a sequential composition P ; Q, P may perform non-terminal events while
Q is preserved:

P
α−→ P ′

P ; Q α−→ P ′; Q
(α ∈ Σ)

If the first process P terminates normally, then Q starts and the
√

action is
hidden from outside:

P
√
−→ 0 ∧Q

α−→ Q′

P ; Q α−→ Q′ (α ∈ Σ ∪Ω)

248 M. Butler and S. Ripon

When the first process P performs a throw or a yield then the whole sequential
composition is terminated:

P
ω−→ 0

P ; Q ω−→ 0
(ω ∈ {!, ?})

The interrupt handler is similar to sequential composition, except that the
flow of control from the first to the second process is caused by the throw event
rather than the

√
event:

P
α−→ P ′

P � Q
α−→ P ′ � Q

(α ∈ Σ)

P
!−→ 0 ∧Q

α−→ Q′

P � Q
α−→ Q′ (α ∈ Σ ∪Ω)

P
ω−→ 0

P � Q
ω−→ 0

(ω ∈ Ω ∧ ω �=!)

In choice operation occurrence of an event in either of the processes resolves
the choice:

P
α−→ P ′

P � Q
α−→ P ′

Q
α−→ Q′

P � Q
α−→ Q′ (α ∈ Σ ∪Ω)

We are only considering the parallel processes synchronising on terminal
events. In a parallel composition, either process may progress independently by
performing a non-terminal event:

P
α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

Q
α−→ Q′

P ‖ Q
α−→ P ‖ Q′ (α ∈ Σ)

Processes placed in parallel will synchronise on joint termination or joint inter-
ruption. If we consider ω and ω′ are the terminal events of two distinct parallel
processes then their joint event will be ω&ω′. The definition of this operator is
shown in Table 1. Synchronisation of standard processes is defined as follows:

P
ω−→ 0 ∧ Q

ω′−→ 0

P ‖ Q
ω&ω′−→ 0

3.2 Semantics of Compensable Processes

In this section we present the semantics of the operators for compensable pro-
cesses. Recall that a compensable process consists of forward behaviour and
compensation behaviour.

The compensation pair (P ÷Q) is constructed from two standard processes.
The first one is called forward process which is executed during normal execution

Executable Semantics for Compensating CSP 249

Table 1. Synchronization of terminal events

ω ω′ ω&ω′

! ! !
! ? !
!

√
!

? ? ?
?

√
?√ √ √

and the second one is called the compensation of the forward process which is
stored for future use when it is required for compensation. If the forward process
can perform a non-terminal event, then so can the pair:

P
α−→ P ′

P ÷ Q
α−→ P ′ ÷ Q

(α ∈ Σ)

If the forward process terminates normally, then the pair terminates with Q as
the resulting compensation.

P
√
−→ 0

P ÷ Q
√
−→ Q

If the forward process terminates abnormally, then so does the pair, resulting in
an empty compensation process:

P
ω−→ 0

P ÷ Q
ω−→ SKIP

(ω ∈ {!, ?})

The definition of the compensation pair defined in the traces model of cCSP [9]
has a subtle difference to that presented here. An extra behaviour for the com-
pensation pair was included in the traces model definition which allows the com-
pensation pair to yield immediately with an empty compensation. This forces
an automatic yield at the beginning of the compensation pair. The same be-
haviour can be obtained using the definition presented here by adding a yield
sequentially followed by the forward process.

P ÷′ Q =̂ (Y IELD;P)÷Q

As for the standard case, in a sequential composition PP ; QQ, PP may
perform non-terminal events while QQ is preserved:

PP
α−→ PP ′

PP ; QQ
α−→ PP ′; QQ

(α ∈ Σ)

If PP throws or yields to an interrupt, the whole process terminates and the
compensation from PP is returned:

PP
ω−→ P

PP ; QQ
ω−→ P

(ω ∈ Ω ∧ ω �= √
)

250 M. Butler and S. Ripon

If PP terminates normally, QQ commences and the compensation from PP
should be maintained to be composed with the compensation from QQ at a later
stage. In order to deal with this we introduce a new auxiliary construct to the
language of the form 〈QQ, P 〉. The effect of 〈QQ, P 〉 is to execute the forward
behaviour of QQ and then compose the compensation from QQ with P . This is
used to define the transfer of control in a sequential composition:

PP
√
−→ P ∧QQ

α−→ QQ′

PP ; QQ
α−→ 〈QQ′, P 〉 (α ∈ Σ)

However, if QQ involves in a terminal event after PP terminates normally,
then instead of introducing the new auxiliary construct, the maintained com-
pensations of both processes are accumulated.

PP
√
−→ P ∧QQ

ω−→ Q

PP ; QQ
ω−→ Q ; P

(ω ∈ Ω)

The process QQ in the construct 〈QQ, P 〉 can perform non-terminating
events:

QQ
α−→ QQ′

〈QQ, P 〉 α−→ 〈QQ′, P 〉 (α ∈ Σ)

When QQ terminates then its compensation is composed in front of the
existing compensation, which ensures that the compensations are accumulated
in reverse order to their original sequential operation:

QQ
ω−→ Q

〈QQ, P 〉 ω−→ Q;P
(ω ∈ Ω)

An event in PP or QQ resolves the choice in a choice composition.

PP
α−→ PP ′

PP � QQ
α−→ PP ′

QQ
α−→ QQ′

PP � QQ
α−→ QQ′ (α ∈ Σ)

The terminal events (
√

,!,?) also resolve the choice resulting in the corresponding
compensations:

PP
ω−→ P

PP � QQ
ω−→ P

QQ
ω−→ Q

PP � QQ
ω−→ Q

(ω ∈ Ω)

Parallel processes evolve independently through non-terminal events:

PP
α−→ PP ′

PP ‖ QQ
α−→ PP ′ ‖ QQ

QQ
α−→ QQ′

PP ‖ QQ
α−→ PP ‖ QQ′ (α ∈ Σ})

Executable Semantics for Compensating CSP 251

As the processes are compensable, when they synchronise over any terminal
events, the forward processes are terminated and the corresponding compensa-
tion processes will be accumulated in parallel:

PP
ω−→ P ∧ QQ

ω′−→ Q

PP ‖ QQ
ω&ω′−→ P ‖ Q

Although a transaction block is a standard process rather than a compensable
process, we describe its semantics in this section rather than the previous one
since it requires an understanding of the semantics of compensable processes. A
transaction block is formed from a compensable process PP by enclosing PP in
a transaction block [PP]. A transaction block converts a compensable process
into a standard process. A non-terminal event changes the state of the process
inside the block:

PP
α−→ PP ′

[PP] α−→ [PP ′]
(α ∈ Σ)

Successful completion of the forward behaviour of the compensable process of a
transaction block represents successful completion of the whole block and com-
pensation is no longer needed and it is discarded:

PP
√
−→ P

[PP]
√
−→ 0

When the forward behaviour throws an exception, then the resulting compensa-
tion is run:

PP
!−→ P ∧ P α−→ P ′

[PP] α−→ P ′ (α ∈ Σ ∪Ω)

Since a transaction block is a standard process, P ′ in this rule is not a com-
pensation that is stored for later execution, rather it describes the behaviour of
[PP] after execution of event α.

Note that there is no rule for a yield transition (?) in a transaction block.
This is because a transaction block does not yield to interrupts from the outside.
Yields by a sub-process of PP will synchronise with interrupts from some other
sub-process resulting in the ! event making yields within PP non-observable.

3.3 Correspondence with Trace Semantics

When both an operational and denotational semantics are defined for a partic-
ular language, a natural question is how these are related. In this section, we
briefly describe the way in which we are attempting to show the correspondence
between the operational semantics presented in this paper and the denotational
semantics presented in traces model shown in [9].

252 M. Butler and S. Ripon

Given our operational rules for cCSP which defines a labelled transition re-
lation between process terms, we can define a lifted transition relation labelled
by sequences of events in the usual way:

P
s−→ Q

Roscoe [19] describes how to extract the traces from operational rules as follows:

traces(P) = {s ∈ Σ∗�| ∃Q.P s−→ Q}
We derive traces from the operational rules in a similar way. In the standard
traces model for CSP, process are modelled as prefixed-closed sets of traces.
However, in the traces model for cCSP, processes are modelled as sets of com-
pleted traces, where a completed trace ends in one of the terminal symbols
Ω = {�, ?, !}. The traces model for cCSP is not closed under trace prefixes.

Standard traces are defined as set of traces of the form p〈ω〉 where p ∈ Σ∗

and ω ∈ Ω. The derived traces of a standard cCSP process P are denoted by
DT (P) which is defined as follows:

DT (P) = { p〈ω〉 | P p〈ω〉−→ 0 }
As compensable processes contain forward behaviour and compensation be-

haviour, they are modelled as pairs of traces of the form (p〈ω〉, p′〈ω′〉) where
p〈ω〉 represents forward behaviour and p′〈ω′〉 represents the corresponding com-
pensation behaviour. The derived traces of a compensable cCSP process PP are
denoted by DT (PP) which is defined as follows:

DT (PP) = { (p〈ω〉, p′〈ω′〉) | ∃P · PP p〈ω〉−→ P ∧ P p′〈ω′〉−→ 0 }
Let T (P) be the traces of a standard term P as defined in [9]. Similarly

for T (PP). By structural induction over process terms P and PP , it should be
possible to prove the following correspondence:

DT (P) = T (P)
DT (PP) = T (PP)

4 Prolog Implementation

In this section we outline a prolog implementation of the operational semantics
presented in Section 3. We encode the operational rules as Prolog clauses and we
use a tool which can animate this encoded semantics and support model checking
and refinement of the specification. XTL [1] is a model checker which allows a
wide range of system specification. It accepts specifications written by using high
level Prolog predicates describing the transition between different states of the
system. The XTL animator supports step by step animation showing transition
between different states of specification and also support backtracking.

Executable Semantics for Compensating CSP 253

The input language for XTL is very simple. There are two key predicates
that can be entered into XTL: trans/3 and prop/2 where:

trans(A,S1,S2): A transition from state S1 to state S2 by the action A.
prop(S,P): property P holds in state S.

Consider the following simple system specified in this way:

trans(a1,p,q). trans(a2,q,p). trans(a3,r,r).
prop(p,safe). prop(q,safe). prop(r,unsafe).

These lines specify that by the action a1, there is a transition from p to q, that
action a2 causes the reverse transition and action a3 causes r to r. The property
clauses specify that state p and q are safe and that r is unsafe. The XTL model
checker supports checking of temporal properties written in CTL (Computation
Tree Logic) of systems specified in this way.

As the operational semantics of compensating CSP are described by using op-
erational rules, they are easily transferable to corresponding trans/3 predicates.
We reproduce some operational rules and their corresponding Prolog predicates.
For example, consider one of the rules for sequential composition of standard
processes:

P
α−→ P ′

P ; Q α−→ P ′; Q
(α ∈ Σ)

The Prolog representation of this is:

trans(seq(P,Q),A,seq(P1,Q)):-
member(A,sigma),
trans(P,A,P1).

Compensable processes are encoded in a similar way with the compensable
operators being differentiated from the standard ones. For example, consider the
following rule for compensable sequential composition:

PP
α−→ PP ′

PP ; QQ
α−→ PP ′; QQ

(α ∈ Σ)

This is represented in prolog as:

trans(cseq(PP,QQ),A,cseq(PP1,QQ)):-
member(A,sigma),
trans(PP,A,PP1).

The XTL package provides us with an experimental animator and model
checker for cCSP. We are currently investigating the use of this further. We
are also investigating the use of the prolog encoding as a basis for a refinement
checking tool. Refinement checking is currently supported by the ProB model
checker [14] using similar prolog techniques to XTL.

254 M. Butler and S. Ripon

5 Related Work

Bocchi et al [2] define a language πt-calculus for modelling long-running trans-
actions based on Milner’s π-calculus [17]. The πt-calculus includes a transaction
construct that contains a compensation handler and a fault manager. In this ap-
proach a transaction process remains active as long as its compensation might
be required. This doesn’t allow for the sequential composition of compensable
transactions in which compensations are composed in reverse order.

Recently, Laneve and Zavattaro [13] defined a calculus for web transactions
called webπ which is an extension of asynchronous π-calculus with timed transac-
tion construct. The major aspects considered in webπ are that the processes are
interruptible, failure handlers are activated when main processes are interrupted
and time which is considered in order to deal with latency of web activities or
with message losses. A transaction executes either until its termination or un-
til it fails and upon failure the compensation is activated. However, it has the
similar problem as πt-calculus where compensations of sequentially composed
transactions are not preserved in reverse order and it is not possible to get the
compensation of a successfully completed process after the failure of a process
composed sequentially with the previous one.

One of the authors (Butler) was involved in the development of the StAC
(Structured Activity Compensation) language [6,7] for modelling long-running
business transactions which includes compensation constructs. An important
difference between StAC and cCSP is that instead of the execution of compen-
sations being part of the definition of a transaction block, StAC has explicit
primitives for running or discarding installed compensations (reverse and ac-
cept respectively). This separation of the accept and reverse operators from
compensation scoping prevents the definition of a simple compositional seman-
tics: the semantics of the reverse operator cannot be defined on its own as its
behaviour depends on the context in which it is called. This necessitated the
use of configurations involving installed compensation contexts in the opera-
tional semantics for StAC. Note that BPEL also has an operator for explicit
invocation of compensation. A mapping from BPEL to StAC may be found
in [8].

Bruni et al [5] have developed an operational semantics for a language with
similar operators to cCSP, including compensation pairs and transaction blocks
(or sagas as they call them). As in cCSP, and unlike StAC, the invocation of
compensation in a saga is automatic depending on failure or success which leads
to a neater operational semantics. However, unlike the work presented here,
the operational semantics in [5] is defined by using big-step semantics. Big-step
semantics describe how the overall results of the execution are obtained. The big
step semantics are closer to the trace semantics while our small-step semantics
describes how compensating processes should be executed. A comparison of the
operators of cCSP and the language described in [5] may be found in [4].

Executable Semantics for Compensating CSP 255

6 Conclusions and Future Work

Compensating CSP has evolved from the development of the StAC language.
StAC has a somewhat complicated operational semantics because of the need to
maintain compensation contexts in process configurations. Compensating CSP
was developed through a trace semantics which forces a compositional semantic
definition. This leads to a more structured treatment of compensation which
in turn has lead to a much simpler operational semantics than that of StAC.
We are currently working on proving the corespondence between the trace and
operational semantic models of cCSP.

Our operational semantics provides the basis for a prototype model checker
for cCSP as well as a basis for an implementation strategy for a language with
compensations.

Acknowledgements

Thanks to Hernan Melgratti and to the anonymous WS-FM05 referees for useful
comments on an earlier version of the paper. Thanks for Michael Leuschel for
help with XTL.

References

1. Juan C. Augusto, Michael Leuschel, Michael Butler, and Carla Ferreira. Using
the extensible model checker XTL to verify StAC business specifications. In 3rd
Workshop on Automated Verification of Critical Systems (AVoCS 2003), pages
253–266, Southampton, UK, 2003.

2. Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A calulus for long-running
transactions. In FMOODS’03, volume 2884 of LNCS, pages 124–138. Springer-
Verlag, 2003.

3. Business Process Modeling Language (BPML). [www.bpmi.org].
4. Roberto Bruni, Michael Butler, Carla Ferreira, Tony Hoare, Hernan Melgratti, and

Ugo Montanari. Reconciling two approaches to compensable flow composition.
Technical report, 2005.

5. Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical foundations
for compensations in flow composition languages. In POPL, pages 209–220, 2005.

6. Michael Butler and Carla Ferreira. A process compensation language. In Integrated
Formal Methods(IFM’2000), volume 1945 of LNCS, pages 61 – 76. Springer-Verlag,
2000.

7. Michael Butler and Carla Ferreira. An operational semantics for StAC, a language
for modelling long-running business transactions. In Coordination 2004, volume
2949 of LNCS. Springer-Verlag, 2004.

8. Michael Butler, Carla Ferreira, and M.Y. Ng. Precise modelling of compensating
business transactions and its application to BPEL. Journal of Universal Computer
Science, to appear, 2005.

9. Michael Butler, Tony Hoare, and Carla Ferreira. A trace semactics for long-running
transaction. In A.E. Abdallah, C.B. Jones, and J.E. Sanders, editors, Proceedings
of 25 Years of CSP, volume 3525 of Springer LNCS, London, 2004.

256 M. Butler and S. Ripon

10. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web services, version 1.1., 2003.
[http://www-106.ibm.com/developerworks/library/ws-bpel/].

11. H. Garcia-Molina and K. Salem. Sagas. In ACM SIGMOD, pages 249–259. ACM
Press, 1987.

12. C.A.R. Hoare. Communicating Sequential Process. Prentice Hall, 1985.
13. Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. In

FoSSaCS, volume 3441 of LNCS, pages 282–298, 2005.
14. Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro

Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855–874. Springer-Verlag, September 2003.

15. Frank Leymann. The web services flow language (WSFL 1.0). Technical report,
Member IBM Academy of Technology, IBM Software Group, 2001. [http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf].

16. B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, and A. Mi-
tal. Biztalk server 2000 business process orchestration. IEEE Data Engineering
Bulletin,, 24(1):35–39, 2001.

17. Robin Milner. A calculus of mobile processes. Journal of Information and com-
puting, 100(1):1–77, 1992.

18. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, September 1981.

19. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, pearson
edition, 1998.

20. S.Thatte. XLANG: Web Services for Business Process Design. Microsoft Corpo-
ration, 2001. [www.gotdotnet.com/team/xml/wsspace/xlang-c].

Verifying the Conformance of Web Services to

Global Interaction Protocols: A First Step�

M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella

Dipartimento di Informatica — Università degli Studi di Torino,
C.so Svizzera, 185 — I-10149 Torino (Italy)

{baldoni, baroglio, mrt, patti, schi}@di.unito.it

Abstract. Global choreographies define the rules that peers should re-
spect in their interaction, with the aim of guaranteeing interoperability.
An abstract choreography can be seen as a protocol specification; it does
not refer to specific peers and, especially in an open application domain,
it might be necessary to retrieve a set of web services that fit in it. A
crucial issue, that is raising attention, is verifying whether the business
process of some peers, in particular the parts that encode the commu-
nicative behavior, will produce interactions which are conformant to the
agreed protocol (legality issue). Such issue is tackled by the so called
conformance test, which is a means for certifying the capability of in-
teracting of the involved parts: two peers that are proved conformant
to a same protocol will actually interoperate by producing a legal con-
versation. This work proposes an approach to the verification of a priori
conformance of a business process to a protocol, which is based on the
theory of formal languages and guarantees the interoperability of peers
that are individually proved conformant.

Keywords: web service interaction protocols, conformance test, formal
verification, finite state automata.

1 Introduction

In this work we propose a formal framework for verifying the conformance and
the interoperability of web services with respect to a high-level specification of
the global protocol. This proposal builds upon experience of protocol confor-
mance problems in the research area of Multi-agent systems (MASs).

Web services are heterogeneous devices that can be “composed” (in a broad
meaning) so as to accomplish complex tasks. Even though web services are not
necessarily agents, the two share some similarities. For instance, they are usu-
ally supposed to bear an executable description of their business process, that,

� This research is partially supported by MIUR Cofin 2003 “Logic-based develop-
ment and verification of multi-agent systems” national project and by the European
Commission and by the Swiss Federal Office for Education and Science within the
6th Framework Programme project REWERSE number 506779.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 257–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

258 M. Baldoni et al.

in particular, accounts for their interactive behavior. Similarly, agents are com-
monly supposed to make their communicative behavior (the agent’s interaction
policy) public. In both cases this description can be used to take decisions about
the entity, such as deciding if it can take part to a system of cooperating parties.

According to Agent-Oriented Software Engineering [14], a distinction is made
between the global and the individual points of view of the interaction between
the various parties. The global viewpoint is captured by an abstract protocol,
expressed by formalisms like AUML, automata or Petri Nets. The local viewpoint
of one of the parties, instead, is captured by the agent’s policy. Being part of the
agent implementation, policies are usually written in some executable language.
Having these two descriptions it is possible to decide if an agent can take a role
in an interaction. In fact, this problem can be read as the problem of proving if
the agent’s policy conforms to the abstract protocol specification.

A similar need of distinguishing a global and a local view of the interaction
is recently emerging also in the area of Service Oriented Architectures. In this
case there is a distinction between the choreography of a set of peers, i.e. a global
specification of the way a group of peers interact, and the concept of behavioral
interface, seen as the specification of the interaction from the point of view of an
individual peer: “The fundamental difference between the concept of choreogra-
phy on the one hand, and the concept of behavioral interface (i.e., BPEL abstract
process) on the other, is that a choreography focuses on interactions seen from
a global viewpoint, while behavioral interfaces focus on communication actions
seen from the viewpoint of one of the participants” [4]. A third concept is that
of orchestration (e.g. BPEL executable process) which, intuitively, describes the
whole service, i.e. both its communicative and its non-communicative behav-
ior, allowing execution. The recent W3C proposal of the choreography language
WS-CDL [15] is emblematic. In fact the idea behind it is to introduce specific
choreography languages as languages for a high-level specification, captured from
a global perspective, distinguishing this representation from the other two, that
will be based upon ad hoc languages (like BPEL or ebXML).

Taking this perspective, choreographies and agent interaction protocols un-
doubtedly share a common purpose. In fact, they both aim at expressing global
interaction protocols, i.e. rules that define the global behavior of a system of
cooperating parties. The respect of these rules guarantees the interoperability
of the parties (i.e. the capability of actually producing an interaction), and that
the interactions will satisfy given requirements.

One problem that becomes crucial is the development of formal methods for
verifying if the behavior of a peer respects a choreography. The applications
would be various. A choreography could be used at design time (a priori) for
verifying that the internal processes of a service enable it to participate appropri-
ately in the interaction. At run-time, choreographies could be used to verify that
everything is proceeding according to the agreements. A choreography could also
be used unilaterally to detect exceptions (e.g. a message was expected but not
received) or help a participant in sending messages in the right order and at the
right time. Moreover, choreographies allow the implementation of a top-down

Verifying the Conformance of Web Services to Global Interaction Protocols 259

methodology in the design of web services. The work in [7] already takes this
approach by using WS-CDL and BPEL4WS as complementary design tools: the
first design step of an interaction protocol (for the peers of an e-commerce sys-
tem) consists in the development of a WS-CDL description; this is followed by an
implementation step, where BPEL4WS is exploited for representing the behav-
ior of the single peers [7]. A further step could be exploiting formal methods for
synthesizing behavioral interfaces (e.g. abstract BPEL) from the choreography
definition, on the line of the work in [8].

In the literature the problem of verifying conformance of the behavior of an
individual to a general interaction protocol is known as conformance testing.
A conformance test can be considered as a tool that, by verifying the respect
of a protocol, certifies the interoperability of a set of parties: we expect that
two parties which are proved conformant to a same protocol will produce an
interaction, that is legal w.r.t. the encoded rules, when they will interact. In the
last years two kinds of conformance have been studied w.r.t. MASs [12]: a priori
conformance (checked at design time) [9,10], and run-time conformance [3,1]. If
we call a conversation a specific interaction between two agents, consisting only
of communicative acts, the former is a property of the implementation as a whole
–intuitively it checks if an agent will never produce conversations that violate
the abstract interaction protocol specification–, while the latter is a property of
the on-going conversation, aimed at verifying if that conversation is legal. Notice
that the same tests are envisioned for choreographies and for the individual peers
that should play a role defined in them.

In this work we focus on testing a priori conformance and develop a frame-
work based on the use of formal languages. In our framework a global interaction
protocol (a choreography), is represented as a finite state automaton, whose al-
phabet is the set of messages exchanged among peers. It specifies permitted
conversations. Atomic services (peers), that have to be composed according to
the choreography, are described as finite state automata as well. Given such a
representation we capture a concept of conformance that answers positively to
all these questions: is it possible to verify that a peer, playing a role in a given
global protocol, produces at least those conversations which guarantee interoper-
ability with other conformant peers? Will such a peer always follow one of these
conversations when interacting with the other parties in the context of the pro-
tocol? Will it always be able to conclude the legal conversations it is involved in?
Technically, the conformance test is based on the acceptance of both the peer’s
behavior and the global protocol by a special finite state automaton. The inter-
esting characteristic of this test is that it guarantees the interoperability of peers
that are proved conformant individually and independently from one another.

This approach can be applied to a wide variety of cases with the proviso that
both the protocol specification and the behavioral interface can be specified by
regular expressions. Besides simplicity and readability, the reason for adopting
regular expressions is that they guarantee decidability. Of course, in this way
it is not possible to represent concurrency. We are aware of this limit but this
is just a first step of a wider research, and we mean to extend the approach in

260 M. Baldoni et al.

the near future. Focussing on finite state automata is not too much restrictive,
anyway, because many protocols used in MASs can be expressed in this way and
we believe that the same holds for many web services. So far, the framework only
deals with 2-party global protocols. This is also, of course, a limitation that we
aim to relax in future work by extending the framework (see the conclusions for
further discussion). To make this proposal more concrete in Section 4 we explain
these ideas with the help of an example, in which we consider a choreography
and a web service; we show that the latter conforms to the former and, thus,
it will be able to interoperate with any other service that is as well conformant
and that plays another role.

2 Conformant and Interoperable Peers

A business process is a program that defines the behavior of a specific peer, im-
plemented in some programming language. We focus on the interactive behavior
of the peer and we will denote it by the term conversation policy of the peer. A
choreography specifies the overall behavior of a group of interacting peers; many
proposals of languages (e.g. WSCI and WS-CDL) for representing choreogra-
phies can be found in the literature. Also in this case we will focus only on that
part of the choreography that denotes the message exchange among the parties.
For this reason, hereafter the term choreography and the term (conversation)
protocol will be used as synonims.

We face the problem of conformance verification by interpreting “a priori
conformance” as a property that relates two formal languages: the language of
the conversations allowed by the conversation policy of a peer, and the language
of the conversations allowed by a choreography. They will respectively be denoted
by L(pws

lang) and L(pspec), where spec is the choreography specification language,
lang is the language in which the policy, executed by the peer ws, is written, and
p is the name of the policy or of the protocol at issue. The assumption that we
do throughout this paper is that the two languages are regular sets. This choice
restricts the kinds of protocols to which our proposal can be applied, because
finite state automata cannot represent concurrent operations, however, it is still
significant because a wide family of protocols (and policies) of practical use can
be expressed in a way that can be mapped onto such automata. Moreover, the use
of regular sets ensures decidability. Another assumption is that the conversation
protocol encompasses only two peers. The extension to a greater number of peers
will be tackled as future work. Notice that the peers might be implemented in
different languages.

A conversation protocol specifies the sequences of messages that can possibly
be exchanged by the involved peers, and that we consider as legal. In agent lan-
guages that account for communication, messages (named “speech acts”) often
have the form m(ags, agr, l), where m is the performative, ags (sender) and
agr (receiver) are two agents and l is the message content. It is not restrictive
to assume that messages have this form also in the case of web services and
to assume that conversations are sequences of messages of this form [2]. In the

Verifying the Conformance of Web Services to Global Interaction Protocols 261

following analysis it is important to distinguish the incoming messages, w.r.t. a
specific peer ws, from the messages sent by it. We respectively denote the for-
mer, where ws plays the role of the receiver, by m(←−ws), and the latter, where ws
is the sender, by and m(−→ws). We will also simply write ←−m (incoming message)
and −→m (outgoing message) when the peer that receives or sends the message is
clear from the context. Notice that these are just short notations, that underline
the role of a given peer from the individual perspective of that peer. This view
is consistent with the unilateral view typical of languages like BPEL [6], used
to represent behavioral interfaces from the point of view of a peer. So, for in-
stance, m(wss, wsr, l) is written as m(←−−wsr) from the point of view of wsr, and
m(−−→wss) from the point of view of the sender but the three notions denote the
same object.

A conversation, denoted by σ, is a sequence of messages that represents a
dialogue of a set of peers. We say that a conversation is legal w.r.t. a protocol
if it respects the specifications given by the protocol. Since L(pspec) is the set of
all the legal conversations according to p, the definition is as follows.

Definition 1 (Legal conversation). We say that a conversation σ is legal
w.r.t. a protocol specification pspec when σ ∈ L(pspec).

We can now explain, with the help of simple examples, the intuition behind
the terms “conformance” and “interoperability”, that we will then formalize.

Interoperability is the capability of a peer of actually producing a conver-
sation when interacting with another.

A new peer can be introduced in an execution context provided that it satisfies
the rules of the system. As long as this happens, it will not be necessary to verify
interoperability with the single components of the system. This can be done by
checking the interactive behavior of the peer against the rules of the group, i.e.
against its interaction protocol. Such a proof is known as conformance test and
must, intuitively, guarantee the following expectations.

We expect that two peers, that conform to a protocol, will produce a legal
conversation, when interacting with one another.

Let us begin with considering the following case: suppose that the communicative
behavior of the peer ws is defined by a policy that accounts for two conversations
{m1(−→ws)m2(←−ws),m1(−→ws)m3(←−ws)}. This means that after sending a message m1,
the peer expects one of the two messages m2 or m3. Let us also suppose that
the protocol specification only allows the first conversation, i.e. that the only
possible incoming message is m2. Is the policy conformant? According to Def.
1 the answer should be no, because the policy allows an illegal conversation.
Nevertheless, when the peer will interact with another peer that is conformant
to the protocol, the message m3 will never be received because the partner will
never send it. So, in this case, we would like the a priori conformance test to
accept the policy as conformant to the specification.

Talking about incoming messages, let us now consider the symmetric case,
in which the protocol specification states that after the peer ws has sent m1, the

262 M. Baldoni et al.

other peer can alternatively answer m2 or m4 (ws’s policy, instead, is the same
as above). In this case, the expectation is that ws’s policy is not conformant
because, according to the protocol, there is a possible legal conversation (the
one with answer m4) that can be enacted by the interlocutor (which is not
under the control of ws), which ws cannot handle. So it does not comply to the
specifications.

As a first observation we expect the policy to be able to handle any in-
coming message, foreseen by the protocol, and we ignore those cases in
which the policy foresees an incoming message that is not supposed to
be received at that point of the conversation, according to the protocol
specification.

Let us, now, suppose that peer ws’s policy can produce the following conver-
sations {m1(←−ws)m2(−→ws), m1(←−ws)m3(−→ws)} and that the set of conversations al-
lowed by the protocol specification is {m1(←−ws)m2(−→ws)}. Trivially, this policy is
not conformant to the protocol because ws can send a message (m3) that cannot
be handled by any interlocutor that is conformant to the protocol.

The second observation is that we expect a policy to never send a message
that, according to the specification, is not supposed to be sent at that point
of the conversation.

Instead, in the symmetric case in which the policy contains only the conversation
{m1(←−ws)m2(−→ws)} while the protocol states that ws can answer to m1 alterna-
tively by sending m2 or m3, conformance holds. The reason is that at any point
of its conversations the peer will always send legal messages. The restriction of
the set of possible alternatives (w.r.t. the protocol) depends on the peer im-
plementor’s own criteria. However, the peer must foresee at least one of such
alternatives otherwise the conversation will be interrupted. Trivially, the case in
which the policy contains only the conversation {m1(←−ws)} is not conformant.

The third observation is that we expect that a policy always allows the
peer to send one of the messages foreseen by the protocol at every point
of the possible conversations. However, it is not necessary that a policy
envisions all the possible alternatives.

To summarize, at every point of a conversation, we expect that a conformant
policy never sends messages that are not expected, according to the protocol,
and we also expect it to be able to handle any message that can possibly be re-
ceived, once again according to the protocol. However, the policy is not obliged
to foresee (at every point of conversation) an outgoing message for every alterna-
tive included in the protocol (but it must foresee at least one of them). Incoming
and outgoing messages are, therefore, not handled in the same way.

These expectations are motivated by the desire to define a minimal set of
conditions which assure the construction of a conformance test that guarantees
the interoperability of peers. We claim –and we will show– that two peers that
respect this minimal set of conditions (w.r.t. an agreed protocol) will actually

Verifying the Conformance of Web Services to Global Interaction Protocols 263

be able to interact, respecting the protocol. The relevant point is that this certi-
fication is a property that can be checked on each single single peer, rather than
on the choreographed system as a whole.

3 Conformance Test

In order to decide if a policy is conformant to a protocol specification, it is not
sufficient to perform an inclusion test; instead, as we have intuitively shown by
means of the above examples, it is necessary to prove mutual properties of both
L(pws

lang) and L(pspec). The method that we propose, for proving such properties,
consists in verifying that both languages are recognized by a special finite state
automaton, whose construction we are now going to explain. Such an automaton
is based on the automaton that accepts the intersection of the two languages.
This, however, is not sufficient, because there are further conditions to consider,
for instance there are conversations that we mean to allow but that do not belong
to the intersection.

3.1 The Automaton Mconf

If L(pws
lang) and L(pspec) are regular, they are accepted by two (deterministic)

finite automata, that we respectively denote by M(pws
lang) and M(pspec), that we

can assume as having the same alphabet (see [13]). An automaton is a five-tuple
(Q, Σ, δ, q0,F), where Q is a finite set of states, Σ is a finite input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ is a transition
function mapping Q × Σ to Q. In a finite automaton we can always classify
states in two categories: alive states, that lie on a path from the initial state to
a final state, and dead states, the other ones. Intuitively, alive states accept the
language of the prefixes of the strings accepted by the automaton.

For reasons that will be made clear shortly, we request the two automata
to show the following property: the edges that lead to a same state must all be
labelled either by incoming messages or by outgoing messages w.r.t. ws.

Definition 2 (IO-automaton). Given an automaton M = (Q, Σ, δ, q0,F), let
Eq = {m | δ(p,m) = q} for q ∈ Q. We say that M is an IO-automaton iff
for every q ∈ Q, Eq alternatively consists only of incoming or only of outgoing
messages w.r.t. a peer ws.

Notice that an automaton that does not show this property can always be trans-
formed so as to satisfy it, in linear time w.r.t. the number of states, by splitting
those states that do not satisfy the property. We will denote a state q that is
reached only by incoming messages by the notation←−q (we will call it an I-state),
and a state q that is reached only by outgoing messages by −→q (an O-state).

Finally, let us denote by M×(pws
lang, pspec) the deterministic finite automa-

ton that accepts the language L(pws
lang) ∩ L(pspec). It is defined as follows. Let

M(pws
lang) be the automaton (QP , Σ, δP , qP0 ,F

P) and M(pspec) the automaton
(QS , Σ, δS, qS0 ,F

S):

264 M. Baldoni et al.

M×(pws
lang, pspec) = (QP ×QS , Σ, δ, [qP0 , q

S
0],FP × FS)

where for all qP in QP , qS in QS , and m in Σ, δ([qP , qS],m) = [δP (qP ,m), δS

(qS ,m)]. We will briefly denote this automaton by M×.
Notice that all the conversations that are accepted by M× are surely con-

formant (Def. 1). For the so built automaton, it is easy to prove the following
property.

Proposition 1. M×(pws
lang , pspec) is an IO-automaton ifM(pws

lang) andM(pspec)
are two IO-automata.

−→m3

←−m4

[aP , aS]

←−m1
[qP

0 , qS
0] [fP , fS]

[
−→
aP ,

−→
dS] [

−→
dP ,

−→
aS]

[
←−
dP ,

←−
aS] [

←−
aP ,

←−
dS]

−→m2

Fig. 1. A general schema of the Mconf automaton. From bottom-right clockwise cases
(a), (b), (c), and (d).

Definition 3 (Automaton Mconf). The finite state automaton Mconf(pag
lang,

pspec) is built by applying the following steps to M×(pag
lang, pspec) until none is

applicable:

(a) if ←−q = [
←−
aP ,

←−
dS] in Q is an I-state, such that

←−
aP is an alive state and

←−
dS is

a dead state, we set δ(←−q ,m) = ←−q for every m in Σ, and we put ←−q in F ;
(b) if ←−q = [

←−
dP ,

←−
aS] in Q is an I-state, such that

←−
dP is dead and

←−
aS is alive, we

set δ(←−q ,m) = ←−q for every m in Σ, without modifying F ;
(c) if −→q = [

−→
aP ,

−→
dS] in Q is an O-state, such that

−→
aP is alive and

−→
dS is dead, we

set δ(−→q ,m) = −→q for every m in Σ (without modifying F);
(d) if −→q = [

−→
dP ,

−→
aS] in Q is an O-state, such that

−→
dP is dead and

−→
aS is alive, we

set δ(−→q ,m) = −→q for every m in Σ, and we put −→q in F .

These four transformation rules can, intuitively, be explained as follows. Rule
(a) handles the case in which, at a certain point of the conversation, according
to the policy it is possible to receive a message that, instead, cannot be received
according to the specification (it is the case of message ←−m1 in Figure 1). Actu-
ally, if the peer will interact with another peer that respects the protocol, this
message can never be received, so we can ignore the paths generated by the
policy from the message at issue onwards. Since this case does not compromise

Verifying the Conformance of Web Services to Global Interaction Protocols 265

conformance, we want our automaton to accept all these strings. For this reason
we set the state as final. Rule (b) handles the symmetric case (Figure 1, message←−m4), in which at a certain point of the conversation it is possible, according to
the specification, to receive a message, that is not accounted for by the imple-
mentation. In this case the state at issue is turned into a trap state (a state
that is not final and that has no transition to a different state); by doing so, all
the conversations that are foreseen by the specification from that point onwards
will not be accepted by Mconf . Rule (c) handles the cases in which a message
can possibly be sent by the peer, according to the policy, but it is not possible
according to the specification (Figure 1, message −→m3). In this case, the policy is
not conformant, so we transform the current state in a trap state. By doing so,
part of the conversations possibly generated by the policy will not be accepted
by the automaton. The symmetric case (Figure 1, message −→m2), instead, does
not prevent conformance, in fact, a peer is free not to send a message foreseen by
the protocol. However, the conversations that can be generated from that point,
according to the latter, are to be accepted as well. For this reason the state is
turned into an accepting looping state.

One may wonder if the application of rules (b) and (c) could prevent the
reachability of states, that have been set as accepting states by the other two
rules. Notice that their application cannot prevent the reachability of alive-alive
accepting states, i.e. those that accept the strings belonging to the intersection of
the two languages, because all the four rules only work on dead states. If a state
has been set as a trap state (either by rule (b) or (c)), whatever conversation is
possibly generated after it by the policy is illegal w.r.t. the specification. So it is
correct that the automaton is modified in such a way that the policy language
is not accepted by it and that the final state cannot be reached any more.

3.2 Conformance and Interoperability

We can now discuss how to check that a peer conforms to a given protocol. The
following is a first definition of conformance, that guarantees the expectations
that we have explained by examples in Section 2. That is: the peer will always
send, at any point of conversation, messages that are legal according to pspec

(though it is not necessary that it foresees all the alternatives), and it will be
able to handle at least every incoming message, expected by the protocol. A first
attempt of defining conformance is the following.

Definition 4. A policy pws
lang is conformant to a protocol specification pspec iff

the automaton Mconf(pws
lang, pspec) accepts both languages L(pws

lang) and L(pspec).

The following proposition underlines the role of the public protocol of representing
the set of all the possible interlocutors.

Proposition 2. All the conversations that a policy pws
lang, that is conformant

according to Def. 4 to a protocol specification pspec, will produce when it interacts
with any peer that is equally conformant to pspec, are always legal w.r.t. this
protocol, according to Def. 1.

266 M. Baldoni et al.

Proof. Let us consider the general schema of Mconf in Figure 1. If pws
lang is

conformant, L(pws
lang) is accepted by Mconf . Then, by construction Mconf does

not contain any state [
−→
aP ,

−→
dS] due to illegal messages sent by the peer nor it

contains any state [
←−
dP ,

←−
aS] due to incoming messages that are not accounted for

by the policy. Obviously, no conversation σ in L(pws
lang) can be accepted by states

of the kind [
−→
dP ,

−→
aS] because the peer does not send the messages required to reach

such states. Finally, no conversation produced by the send will be accepted by
states of the kind [

←−
aP ,

←−
dS] if the interlocutor is also conformant to the protocol,

because the latter cannot send illegal messages. q.e.d.

In other words, whatever conversation is in the intersection ∩i=1,2
wsi

L(pwsi

langi
),

where pwsi

langi
, i = 1, 2 are the conversation policies of two peers that conform

to pspec, it is legal. However, we would like conformance to have a stronger
implication: if two peers, playing the two roles of a same protocol, are proved
conformant to it, we would like each of them to be able to lead to an end
all the conversations it is involved in by the other peer (which will respect the
protocol). Def. 4 guarantees the satisfaction of the first two expectations reported
in Section 2, however, it is not enough to guarantee the above statement (third
expectation), which requires that, at every state of the conversation, if a role
is supposed to send a message out of a set of possibilities, the peer’s policy
envisions at least one of them.

Given L(pspec) and L(pws
lang), let us consider M(pspec) = (QS , Σ, δS , qS0 ,

FS) and Mconf(pws
lang, pspec) = (QP ×QS, Σ, δ, [qP0 , q

S
0], Fconf). Let us consider

those states qS ∈ QS , that emit edges labelled with outgoing messages, w.r.t. ws,
which are part of strings accepted by M(pspec) (legal conversations according
to the protocol specification). More formally, for each such state qS there is at
least one m(−→ws) such that δS(qS ,m(−→ws)) = pS and pS is an alive state. We will
denote by MessqS the set of all such messages.

Definition 5 (Complete automaton). We say that the automaton Mconf is
complete iff for all states of form [qP , qS] of Mconf , such that MessqS �= ∅, there
is a message m(−→ws)′ ∈MessqS such that δ([qP , qS],m(−→ws)′) is a state of Mconf

composed of two alive states.

Definition 6 (Policy conformance test). A policy pws
lang is conformant to a

protocol specification pspec iff the automaton Mconf(pws
lang, pspec) is complete and

it accepts both languages L(pws
lang) and L(pspec).

We are now in condition to state that a policy that passes the above test can
carry on any conformant conversation it is involved in.

Theorem 1. Given a policy pws
lang that is conformant to a protocol specification

pspec, according to the test in Def. 6, for every prefix σ′ that is common to the
two languages L(pspec) and L(pws

lang), there is a conversation σ = σ′σ′′ such that
σ is in the intersection of L(pws

lang) and L(pspec).

Verifying the Conformance of Web Services to Global Interaction Protocols 267

Proof. (sketch) If σ’ is a common prefix, then it leads to a state of the automaton
Mconf of the kind [aP , aS] (see Figure 1). By the same reasons on which the proof
of Prop. 2 is based, if there is a conversation σ = σ′σ′′ in L(pws

lang), then this must
be a legal conversation. Now, at every step after the state [aP , aS] mentioned
above, due to policy conformance all the incoming messages (w.r.t. the peer)
must be foreseen by the policy. Moreover, due to the completeness of Mconf ,
in the case of outgoing messages, the policy must foresee at least one of them.
Therefore, from [aP , aS] it is possible to perform one more common step. q.e.d.

Notice that the intersection of L(pws
lang) and L(pspec) cannot be empty because

of policy conformance, and also that Theorem 1 does not entail that the two
languages coincide (i.e. the policy is not necessarily a full implementation of
the protocol). As a consequence, given that the conversation policies of two
peers ws1 and ws2, playing the different roles of an interaction protocol pspec,
are conformant to the protocol, according to Def. 6, and denoting by I the
intersection ∩i=1,2

wsi
L(pwsi

langi
), we can prove ws1 and ws2 interoperability. The

demonstration is similar to the previous one. Roughly, it is immediate to prove
that every prefix that is common to the two policies also belongs to the protocol,
then, by a reasoning process that is close to the previous demonstration, it is
possible to prove that a common legal conversation must exist

Proposition 3 (Interoperability). For every prefix σ′ that is common to the
two languages L(pws1

lang1
) and L(pws2

lang2
), there is a conversation σ = σ′σ′′ such

that σ ∈ I.

Starting from regular languages, all the steps that we have described that lead
to the construction of Mconf and allow the verification of policy conformance,
are decidable and the following theorem holds.

Theorem 2. Policy conformance is decidable when L(pws
lang) and L(pspec) are

regular languages.

4 An Example

Let us, now, show by means of an example how the proposed conformance test
works. Given an interaction protocol (a choreography) and the interaction policy
of a specific web service, we mean to verify (a priori, at design time) if the web
service fits the interaction schema encoded by the choreography, from the point
of view of one of the roles (the role that the peer should play). We will, then,
verify its a priori conformance. Given that conformance holds, we are guaranteed
that the service will be able to interoperate with any other service, equally proved
conformant to the protocol, that will play the other foreseen role. The protocol
is reported in a graphical notation in Fig. 2. It is very simple: the peer that
plays the role “cinema” waits for a request from another peer (the request is
whether a certain movie is played); then, it can alternatively send the requested
information (yes or no) or refuse to supply information; the protocol is ended by
an acknowledgement from the customer to the cinema.

268 M. Baldoni et al.

cinema customer

request(customer, cine)

refuse(cine,customer)

inform(cine,customer)

inform(customer, cine)

alternative

Fig. 2. The interaction protocol as an AUML sequence diagram [17]

qS
0

qS
3

(b)

qS
1 qS

2

inform(
←−−
cine)

inform(
−−→
cine)

refuse(
−−→
cine)

qP
0

qP
2

inform(
−−→
cine)

qP
1

(a)

inform(
←−−
cine)

request(
←−−
cine)request(

←−−
cine)

(c)

[qP
1 , qS

1]

[dP , qS
2]

[qP
0 , qS

2] [qP
2 , qS

3]

inform(
←−−
cine)inform(

−−→
cine)

[qP
0 , qS

0]
refuse(

−−→
cine)

request(
←−−
cine)

inform(
←−−
cine)

request(
←−−
cine)

[dP , qS
2]

[qP
2 , dS]

Fig. 3. (a) Policy of agent cine; (b) global protocol specification; (c) Mconf automaton.
Only the part relevant to the discussion is shown.

The peer’s policy could, for instance, be described in an executable business
process language, such as BPEL4WS. Actually, in the literature other authors
have already proposed algorithms for extracting a formal representation from a
BPEL representation. For instance, Viroli [18] proposes a formal semantics for
this language, focussing right on the message exchange and correlation sets. It
is not difficult to see that, disregarding the operator that concerns concurrency
(flow), the exception and fault handlers, and correlation sets, it is possible to
turn a BPEL description in a regular language (i.e. a finite state automaton).
Fig. 3 (a) reports a finite state automaton that represents the interactive behav-
ior of our cinema service, 1 Briefly, the web service has a reactive behavior and it
is not trivial to see that it conforms to the protocol: it waits for a message; if it is
1 The program of the customer is not given: we will suppose that it adheres to the

public and global choreography, against which we check the peer’s conformance.

Verifying the Conformance of Web Services to Global Interaction Protocols 269

a request from a customer, then it (always) supplies the requested information;
if it is an acknowledgement it stops. In the remainder of the paper we will refer
to this web service by the name cine. For what concerns the choreography, we
can say something similar, at least for what concerns the current proposal for
WS-CDL. If we ignore the constructs for dealing with concurrency it is possible
to turn a choreography in an automaton. The automaton reported in Fig. 3(b),
for instance, is obtained straightforwardly from the WS-CDL representation re-
ported in the Appendix.

The question that we want to answer is whether cine’s policy is conformant
to the given protocol, and we will discuss whether another agent that plays
as a customer and that is proved conformant to the protocol will actually be
able to interoperate with this particular player of the cinema role. 2 The pro-
tocol allows only two conversations between cine and customer (the content of
the message is not relevant in this example, so we skip it): request(customer,
cine) inform(cine, customer) inform(customer, cine) and request(customer, cine)
refuse(cine, customer) inform(customer, cine). Let us denote this protocol by
get info movieWSCDL (WS-CDL is the specification language). Let us now con-
sider the web service cine. The service’s behavior depends on the message that it
receives, and its policy allows an infinite number of conversations of any length.
Let us denote this language by get info moviecine

BPEL (BPEL should be the im-
plementation language). In general, it allows all the conversations that begin
with a (possibly empty) series of exchanges of kind request(←−−cine) followed by
inform(−−→cine), concluded by a message of kind inform(←−−cine).

To verify its conformance to the protocol, and then state its interoperabil-
ity with other peers that respect such protocol, we need to build the Mconf

automaton for its policy and the protocol specification. For brevity, we skip
its construction steps and directly report Mconf in Fig. 3(c). Let us now an-
alyze Mconf for answering our queries. Trivially, the automaton is complete
and it accepts both languages (of the policy and of the protocol), therefore,
get info moviecine

BPEL is policy conformant to get info movieWSCDL. Moreover,
when the service interacts with another service customer whose policy is confor-
mant to get info movieWSCDL, the messages request(←−−cine) and inform(←−−cine) will
not be received by cine in all the possible states it expects them. The reason is
simple: for receiving them it is necessary that the interlocutor utters them, but
by definition (it is conformant) it will not. The fact that refuse(−−→cine) is never
uttered by cine does not compromise conformance and interoperability.

5 Conclusions and Future Work

In this work we propose a formal framework that can be applied for verify-
ing the conformance and the interoperability of web services with respect to a
global protocol definition which is meant to be provided at the choreography
level. The idea is that a choreography definition can be exploited at design time
2 Notice that in Fig. 3 all the short notations for the messages are to be interpreted

as incoming or outgoing messages w.r.t. the cinema service.

270 M. Baldoni et al.

for verifying that the internal processes of a web service will enable it to par-
ticipate appropriately in the choreography. For achieving this goal we need a
formal framework for specifying both general interaction protocols and web ser-
vices’ local interaction policies. We proposed a framework based on the theory of
formal languages, where both the global protocol and the web service behavior
are expressed by using finite state automata. Finite-state automata have been
adopted also by Berardi et al. [5] but for web service composition.

Within this framework we formalize a notion of a priori conformance (see
Def. 6), having some important property. First, it guarantees that the service,
at any point of its conversations, can only send messages which are legal w.r.t.
the global interaction protocol, because of the Mconf construction step, given
by rule (c). Moreover it guarantees that the service will be able to handle any
incoming message, foreseen by the protocol. Notice that the service may also
expect incoming messages, that are not expected by the protocol specification,
for this does not prevent the correct interaction with another conformant service.
Finally, it guarantees that the service will always send at least one of the messages
foreseen by the protocol, although it is not necessary that its policy envisions
all the possible alternatives (e.g. the designer can restrict the set of the possible
answers). All these properties define a minimal set of conditions which, on the
one hand, ensure the preservation of the interoperability of the peers, while, on
the other hand, they give some flexibility in designing service policies.

As we explained from the very beginning the current choice of finite state au-
tomata bears some serious limitation: the impossibility of tackling concurrency.
Moreover, the framework so far can only check conformance of a service, whose
behavioral interface contains interactions with only another service. Multi-party
interaction is not tackled. These limitations were, in a way, necessary to allow
the identification of a set of concepts and of conditions that characterize inter-
operability and its verification: the first step of the work. As future directions
of research, however, it is mandatory to study, on the one hand, the possible
extensions to policies that encode the interaction with many parties, and on
the other to study whether it is possible to decide conformance in presence of
concurrency, by adopting more expressive kinds of automata. For what concerns
the first problem we think (but still have to prove) that the test as it is now
could quite easily be extended so as to tackle unilateral interactions with many
parties which do not interact with one another. For what concerns the latter
problem, instead, it will be necessary to identify alternative representations. For
instance, process algebras are formal tools that are commonly used for verifying
properties of interacting processes, we could study whether and how to apply
them to prove a property like conformance. Also concurrent regular expressions
[11] should be investigated. Last but not least, a crucial point is the semantics
of the languages used for representing choreographies and behavioral interfaces
(or orchestrations), e.g. BPEL4WS and WS-CDL, which is not precisely defined
yet. The absence of a formal semantics is, indeed, an obstacle to the automation
of property check in service oriented applications. Concerning BPEL4WS, some
proposal of a formal semantics exists and the proposed formal methods derive

Verifying the Conformance of Web Services to Global Interaction Protocols 271

from formal models for concurrency and coordination of distributed systems (e.g.
process algebras) [18,16].

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. In Proc. of the
Workshop on Logic and Communication in Multi-Agent Systems, LCMAS 2003,
volume 85(2), Eindhoven, the Netherlands, 2003. Elsevier.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
3. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying pro-

tocol conformance for logic-based communicating agents. In Proc. of CLIMA V,
LNCS series 2005. To appear.

4. A. Barros, M. Dumas, and P. Oaks. A critical overview of the web ser-
vices choreography description language(ws-cdl). Business Process Trends, 2005.
http://www.bptrends.com.

5. D. Berardi, D. Calvanese, G. G. De Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic composition of e-services that export their behavior. In Proc. of ICSOC
2003, LNCS 2910, pages 43–58. Springer, 2003.

6. BPEL4WS. http://www-106.ibm.com/developerworks/library/ws-bpel. 2003.
7. M. Bravetti, C. Guidi, R. Lucchi, and G. Zavattaro. Supporting e.commerce sys-

tems formalization with choreography languages. In Proc. of SAC’05. ACM Press,
2005.

8. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new approach
to design and analysis of e-service composition. In Proc. of WWW’03, 2003.

9. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In Proc. of IJCAI-2003, pages 679–684. 2003.

10. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication
protocols. In Advances in agent communication languages, LNAI 2922, pages 91–
107. Springer-Verlag, 2004.

11. V. Garg and M.T. Ragunath. Concurrent regular expressions and their relationship
to Petri nets. Theoretical Computer Science, 96:285–304, 1992.

12. F. Guerin and J. Pitt. Verification and Compliance Testing. In Communication
in Multiagent Systems, LNAI 2650, pages 98–112. Springer, 2003.

13. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Company, 1979.

14. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In Communication
in Multiagent Systems, LNAI 2650, pages 179–193. Springer, 2003.

15. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web services choreography
description language version 1.0. Available at http://www.w3.org/TR/ws-cdl-10,
2004.

16. M. Mazzara and R. Lucchi. A framework for generic error handling in business
processes. In Proc. of WS-FM 2004, volume 105 of ENTCS. Elsevier, 2004.

17. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Proc. of
the Agent-Oriented Information System Workshop at AAAI’00. 2000.

18. M. Viroli. Towards a formal foundation to orchestration languages. In Proc. of
WS-FM 2004, volume 105 of ENTCS, pages 51–71, Eindhoven, the Netherlands,
2004. Elsevier.

From Theory to Practice in
Transactional Composition of Web Services�

Roberto Bruni1, Gianluigi Ferrari1, Hernán Melgratti1, Ugo Montanari1,
Daniele Strollo2, and Emilio Tuosto1

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy

{bruni, giangi, melgratt, ugo, etuosto}@di.unipi.it
2 Istituto Alti Studi IMT Lucca, Italy
daniele.strollo@imtlucca.it

Abstract. We address the problem of composing Web Services in long-running
transactional business processes, where compensations must be dealt with ap-
propriately. The framework presented in this paper is a Java API called Java
Transactional Web Services (JTWS), which provides suitable primitives for wrap-
ping and invoking Web Services as activities in long-running transactions. JTWS
adheres to a process calculi formalisation of long-running transactions, called
Naı̈ve Sagas, which fixes unambiguously the implemented compensation policy.
In particular, the primitives provided by JTWS are in one-to-one correspondence
with the primitives of Sagas, and they are abstract enough to hide the complex
details of their realization, thus favouring usability. Moreover, JTWS orchestrates
business processes in a distributed way.

1 Introduction

One of the emerging issues when aggregating Web Services (WS) is constituted by the
so-called long-running transactions (LRTs), i.e., the possibility of requiring a set of WS
interactions to be executed atomically. Note that the problem is not just to coordinate
the updates of a distributed repository (e.g., a database), since components are indepen-
dent and any of them is responsible for maintaining the consistency on local data. In
order to achieve atomicity, LRTs may use compensations, namely, ad-hoc activities that
are responsible for undoing the effects of partial executions when the overall orchestra-
tion cannot be completed. In fact, most of the languages proposed in recent years for
orchestrating WS (e.g., WSCL [30], BPML [6], WSFL [23], XLANG [31], BPEL4WS [4])
include primitives for handling LRTs. Noteworthy, all those proposals formalise the or-
chestration syntax but not the semantics, whose informal description can make the in-
tended behaviour of constructs ambiguous and can lead to different implementations of
the same language. (As an example, see the large list of open issues for BPEL4WS [5].)
Moreover, those proposals mix together many different concepts and programming con-
structs. Hence, it is difficult to establish a clear semantics for them because of the mutual
interactions of such different constructs.
� Research supported by the Project FET-GC II SENSORIA and by the Project HPRN-CT-2002-

00275 SEGRAVIS.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 272–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Theory to Practice in Transactional Composition of Web Services 273

In this paper, we first take advantage of a formal framework for isolating and study-
ing LRTs and then we use an experimental framework for implementing and exercising
the theoretical choices in a WS scenario. We are aimed at building a framework for
coordinating transactional compositions of WS over a solid formal basis. The main
goal of our work is two-fold. Firstly, we provide application designers with a formally
specified language for defining transactional aggregations at a high level of abstrac-
tion, i.e., in terms of the involved WS and the control flow among them regardless of
low level details, e.g. distribution, asynchrony. Secondly, after selecting a coordination
infrastructure, we map high level transactional primitives into concrete orchestration
patterns. One of the main advantages of our approach lies in the reciprocal benefits that
theory and practice can gain in this case. For instance, several alternative semantics can
be given when composing parallel transactional flows [7]. The possibility of giving pro-
totype implementations of those semantics and apply them to realistic scenarios (like
WS applications) can help in evaluating and refining the theoretical models. Moreover,
applications deployed with the aid of formal methods are more robust.

The high level language we choose is Naı̈ve Sagas [9], a process calculus for com-
pensable transactions, while the orchestration infrastructure we propose is Java Trans-
actional Web Services (JTWS) [27], an execution platform that supports the transactional
capabilities of Naı̈ve Sagas. Indeed, JTWS embeds the transactional policies of Naı̈ve
Sagas into a framework for programming WS.

From the existing calculi for LRTs [13,12,14,16,9,3,22,8,15,18,25,24], we have
chosen Naı̈ve Sagas because it exposes the orchestration mechanism behind LTRs In
fact, activities in a saga are described at the high level of abstraction, where the elemen-
tary actions are not interpreted. Transactional flows are processes built by composing
with the standard parallel and sequential composition plus the compensation pair con-
struct. Given two actions A and B, the compensation pair A÷B corresponds to a process
that uses B as compensation for A. Intuitively, A÷B yields two flows of execution: the
forward flow and the backward flow. During the forward flow, A÷B starts its execution
by running A and then, when A finishes: (i) B is “installed” as compensation for A, and
(ii) the control is forwardly propagated to the other stages of the transactions. In case
of a failure in the rest of the transaction, the backward flow starts so that the effects of
executing A must be rolled back. This is achieved by activating the installed compen-
sation B and afterward by propagating the rollback to the activities that were executed
before A. Note that B is not installed if A is not executed.

The execution platform JTWS is a Java implementation of the APIs defined in
[27,21]. JTWS is based on a signal passing style of programming. Conceptually, JTWS
is divided in two levels: Java Signal Core Layer (JSCL) and Java Transactional Layer
(JTL). The former provides a set of primitives for defining and handling the flow of sig-
nals among components. The latter, uses the primitives of JSCL to define the behaviour
of transactional constructs according to Naı̈ve Sagas. Basically, WS are wrapped into
JTWS components that exchange a fixed set of suitable signals. Similarly, JTWS fixes a
precise flow of signals for composed services. It is worth remarking that the JSCL layer
provides a general framework for implementing different transactional policies. Indeed,
one can easily change the behaviours of transactions by replacing the JTL layer. There-

274 R. Bruni et al.

fore, we can prototype and experiment with different semantics for transactional flows
without changing the code of the application.

Related Works. Several process calculi have been proposed to deal with different
flavours of transactions. Notably, models for ACID (i.e., usual database transactions)
transactions in Linda [17] have been proposed in [1,11,20,10]. Unlike Sagas, ACID

transactions are regarded as not suitable for computations that may elapse for a long
period of time. Similarly, our work differs in scope from [18], which is aimed at ex-
tending an object oriented programming language with primitives for handling ACID

transactions.
Another mainstream in transactional process calculi takes as starting point well-

known name passing calculi, like π and Join, and adds to them transactional features
like compensable nested contexts [3], timed transactions [22,24], interacting compens-
able transactions [8] and event scopes [25]. We prefer Sagas to those approaches be-
cause Sagas naturally abstracts away from low level computations and communication
patterns, while it highlights the composition structure of transactional processes. Simi-
larly, we prefer Sagas to approaches like [15], where the coordination mechanism relies
on the operations performs over a centralised log.

Sagas is much more in the spirit of StAC [12,13] and cCSP [14]. (We refer to [7] for
a detailed comparison.) We prefer Sagas to those proposals because it is more compact.

As far as the execution platform is concerned, our approach is different from the
existing implementations of orchestration languages such as Biztalk [2], Oracle BPEL
Process Manager [26] and WebSphere [28], because JTWS does not rely on an engine
that rules the execution of a composed process. Instead, JTWS translate transactional
primitives as suitable interaction patterns among services over a middleware. It is worth
noting that the coordination logic in JTWS is kept distributed (i.e., JTWS establishes a
kind of choreography [29] among involved services). In some sense, JTWS is similar in
spirit to [19]. Noteworthy, the work in [19] is aimed at specifying a middleware able to
implement several transactional models, while our work is main concerned at showing
how transactional models can be mapped into a concrete middleware.

2 Background: Sagas Calculus

In this section we introduce the formal basis for the implementation of the JTL package.
In particular, we exploit a process algebra for compensable flow composition that is
essentially the algebra of Naı̈ve Sagas in [9], but whose semantics is here presented in
the simpler style of compensating CSP (cCSP) [14].

2.1 Syntax

Sagas are built over a set of atomic activities Σ∪ {0,THROW}, where 0 (the nil ac-
tivity) and T HROW (the interrupting activity) are two distinguished elements. Atomic
activities are ranged over by A, B, ... The set of processes is defined as follows:

(NAÏVE SAGAS) S,T ::= A | [P] | S;T | S|T
(COMPENSABLE PROCESSES) P,Q ::= A÷B | P;Q | P|Q

From Theory to Practice in Transactional Composition of Web Services 275

COMPOSITION OF STANDARD TRACES

Sequential
{ p〈�〉;s = ps

p〈ω〉;s = p〈ω〉 when ω �= �

Parallel p〈ω〉||q〈ω′〉= {r〈ω&ω′〉 | r ∈ int(p,q)}, where
ω ! ! ! ? ? �
ω′ ! ? � ? � �

ω&ω′ ! ! ! ? ? �

and

{ int(p,〈〉) = {p}
int(〈〉,q) = {q}

int(〈x〉p,〈y〉q) = {〈x〉r | r ∈ int(p,〈y〉q)} ∪ {〈y〉r | r ∈ int(〈x〉p,q)}

TRACES OF Naı̈ve Sagas

Γ � 0 = {〈�〉}
Γ � A = {〈A,�〉} when A ∈ Σ∧Γ(A) = �
Γ � A = {〈!〉} when A = THROW ∨ (A ∈ Σ∧Γ(A) =!)
Γ � S;T = {s;t | Γ � s ∈ S ∧ Γ � t ∈ T}
Γ � S|T = {s′ | s′ ∈ (s||t) ∧ Γ � s ∈ S ∧ Γ � t ∈ T}
Γ � [P] = {p〈�〉 | Γ � (p〈�〉,s) ∈ P} ∪ {ps | Γ � (p〈!〉,s) ∈ P}

Fig. 1. Trace semantics of Naı̈ve Sagas

A Naı̈ve Sagas is either a basic activity A, a transaction block enclosing a compens-
able process [P], the sequential composition S;T of sagas, or the parallel composition
S|T of sagas. A basic compensable process is a compensation pair A÷B where A is a
basic activity and B is its compensation. We write A as an abbreviation for A÷0. Com-
pensable processes can be composed either in sequence P;Q or in parallel P|Q. Without
loss of generality, we assume that any activity in Σ appears at most once in any saga
(resp. process), i.e. that different instances of the same action are named differently.

2.2 Semantics

The semantics is defined in terms of admissible execution traces. A trace for a saga is a
string s〈ω〉, where s ∈ Σ∗ is said the observable flow and ω ∈ Ω is the final event, with
Ω = {�, !,?} (� stands for success, ! for fail, and ? for yielding to a concurrent interrupt
and it is assumed that Σ∩Ω = /0). Hereafter, we let p,q,r range over Σ∗ and s,t range
over the set of traces Σ∗Ω. The sequential composition s; t concatenates the observable
flows of s and t only when s terminates with success, otherwise it is s. The composition
of two concurrent traces p〈ω〉||q〈ω′〉 corresponds to the set int(p,q) of all possible
interleavings of the observable flows p and q followed by the final event ω&ω′, where
the associative and commutative operator & defines the final event corresponding to the
parallel composition of traces. The set of traces is evaluated according to a scenario Γ :
Σ → {�, !} decreeing the success or failure of each basic activity. We write Γ � S = S′
if S and S′ represent the same set of traces under the scenario Γ. We write Γ � s ∈ S if
the set of traces associated to S under the scenario Γ includes s.

Figure 1 summarises the trace semantics of Naı̈ve Sagas. The definition for the
traces of sagas is straightforward. The most interesting definition is for a transaction

276 R. Bruni et al.

COMPOSITION OF COMPENSABLE TRACES

Comp. pair
{ p〈�〉÷ s = (p〈�〉,s)

p〈ω〉÷ s = (p〈ω〉,〈�〉) when ω �= �

Sequential
{ (p〈�〉,s);(t,t ′) = (pt,t ′;s)

(p〈ω〉,s);(t,t ′) = (p〈ω〉,s) when ω �= �

Parallel

⎧⎪⎪⎨⎪⎪⎩
(p〈�〉,s)||(q〈�〉,t) = {(r〈�〉,s′) | r ∈ int(p,q) ∧ s′ ∈ (s||t)}

∪ {(r〈?〉,〈ω〉) | r〈ω〉 ∈ (ps||qt)}
(p〈ω〉,s)||(q〈ω′〉,t) = {(r〈ω&ω′〉,〈ω′′〉) | r〈ω′′〉 ∈ (ps||qt)}

when ω&ω′ ∈ {!,?}

TRACES OF COMPENSABLE PROCESSES

Γ � A÷B = {s÷ t | Γ � s ∈ A ∧ Γ � t ∈ B}
Γ � P;Q = {s;t | Γ � s ∈ P ∧ Γ � t ∈Q}
Γ � P|Q = {s′ | Γ � s′ ∈ (s||t) ∧ Γ � s ∈ P ∧ Γ � t ∈Q}

Fig. 2. Trace semantics of compensable processes

block [P]. Note that any trace of a compensable process P is a pair (p〈ω〉,s), where
p〈ω〉 is the forward trace and s is the corresponding compensation trace. Then, the defi-
nition for [P] selects all successful traces of P (i.e., p〈�〉), and the traces corresponding
to the failed forward flows followed by their compensations, i.e., ps. A compensated
trace ps ending with � corresponds to an aborted execution that has been compensated
successfully. Instead, if the compensated trace finishes with !, then the execution of
some compensation failed. We refer to the latter case as to an execution that raises an
exception. Moreover, note that a trace that finishes with � has not enough information
to distinguishing whether it corresponds to the successful execution of the forward flow
(i.e., a commit) or to a successfully compensated flow (i.e., an abort with a complete
compensation). Note that all pairs whose forward traces end with ? are just discarded.

Figure 2 gives the semantics of compensable processes. The traces of a compen-
sation pair are just given by the pairs of traces for the forward and backward flows,
but the compensation is installed only if the forward activity ends with success. When
composing compensable traces in series, the forward trace corresponds to the sequen-
tial composition of the original forward traces, while compensations are executed in
the reverse order w.r.t. the associated forward activities. The parallel composition is
defined as suitable interleavings of the forward and the backward flows. The parallel
composition of two successful traces contains all the interleavings of the forward flows
compensated with the interleavings of the original compensations, and a set of yield-
ing traces. Yielding traces stand for the behaviours of processes P|Q in case they are
composed in parallel with a process that fails, for instance P|Q|THROW. Note that this
is the only case where yielding behaviours are generated in the semantics (in partic-
ular, neither backward traces, nor standard traces can ever contain the final event ?).
Finally, the parallel composition when at least one trace ends with ? or ! is defined as
the interleavings of the original compensated flows.

The trace semantics can be used to prove interesting laws which hold under every
scenario. We write S≡ T if for all Γ we have Γ � S = T . For example, it can be readily

From Theory to Practice in Transactional Composition of Web Services 277

Prepare Order

Update Stock

Accept Order

Refuse Order

Prepare Order

Update Stock

Update Credit

Refund Money

Fig. 3. A parallel saga for handling orders

proved that sequential and parallel compositions of sagas (resp. compensable processes)
are associative and commutative under any scenario Γ. Other easy equivalences are:

0;P ≡ P;0 ≡ P THROW;P ≡ T HROW
0;S ≡ S;0 ≡ S|0 ≡ S THROW;S ≡ THROW

THROW÷A ≡ THROW÷0 [A÷A′|B÷B′|THROW] ≡ (A;A′)|(B;B′)

We describe here a small example illustrating the features of Naı̈ve Sagas.

Example 1 (Handling Purchase Orders). Consider the simple business process for han-
dling purchase orders depicted in Figure 3. The first activity Accept Order handles a
request from a client and it is compensated by Refuse Order, which will contact the
client to notify her/him that the order was cancelled. After that, both the balance of the
client’s account is updated and the order is prepared. The step Update Credit charges
the amount of the order to the balance of the client. This activity could fail, for instance
when the client has not enough credit to proceed, which will activate the compensation
installed so far (i.e., Refuse Order). Instead, if it succeeds, then the compensation Re-
fund Money is also installed. Refund Money is responsible for updating the balance with
the amount detracted previously. Finally, Prepare Order handles the packaging of the
order and updates the stock. Its compensation Update Stock will increment the stock
with the proper values. Using the obvious acronyms in place of activities, the saga for
handling purchase orders can be written as

HPO-saga
def= [A.O.÷R.O.;(U.C.÷R.M.|P.O.÷U.S.)]

In a scenario Γ in which all activities are successful, the set of traces will be

Γ � HPO-saga = {〈A.O.,U.C.,P.O.,�〉,〈A.O.,P.O.,U.C.,�〉)}
Instead, in a scenario Γ′ like Γ but where the client has not enough credit to proceed,
the activity Update Credit fails and thus

Γ′ � HPO-saga = {〈A.O.,P.O.,U.S.,R.O.,�〉}
As a last scenario, consider Γ′′ like Γ′ but where upon failure of Update Credit the
compensation Update Stock of the activity Prepare Order fails because the goods cannot
be unpackaged without damage. Then, the saga will raise an exception:

Γ′′ � HPO-saga = {〈A.O.,P.O., !〉}

278 R. Bruni et al.

2.3 Discussion

The calculus we have presented is obtained by mixing the ingredients coming from two
different proposals [9,14]. For example, the use of scenarios comes from [9], while the
interleaving trace semantics is more in the style of [14]. For the sake of presentation,
we focus here just on parallel sagas by leaving out several other features considered
in [9,14], like exception handling, choices, and nesting.

The integration the two approaches is sustained by the detailed comparison carried
out in [7], where Sagas [9] and cCSP [14] are reconciled. In particular, it is shown that
for the sequential composition both approaches coincide in the way in which compen-
sations are installed and activated, while different compensation policies are used for
parallel composition. In fact, [9] proposes already two different semantics for parallel
compensations, called naı̈ve and revised. Nevertheless, none of them coincides with the
one in [14]. The key difference lies in the activation of sibling compensations in paral-
lel branches of a transaction when one of the branches compensates. In fact there are
several policies for notifying the abort to sibling processes. Roughly, such policies can
be characterised in terms of two orthogonal strategies: (i) whether the forward flow can
be interrupted to activate the compensation procedure as soon as possible or not; and
(ii) whether the compensation procedure is activated in a centralised or in a distributed
way. The combination of these strategies gives the following four different policies

No Interrupt & Centralized (emerged in [7]) ⊆ No Interrupt & Distrib. (Naı̈ve Sagas [9])

⊆ ⊆
Interrupt & Centralized (cCSP [14]) ⊆ Interrupt & Distrib. (Revised Sagas [9])

The main result in [7] is to relate the different semantics arising in the four cases,
which justifies the inclusion relations depicted above. Suitable counterexamples for
proving that Naı̈ve Sagas �⊆ cCSP and cCSP �⊆ Naı̈ve Sagas are given in [7].

The four strategies mentioned above correspond to alternative implementations for
the compensation mechanism. The policy adopted by the semantics in Figures 1 and 2
is no interruption and distributed compensation, a distributed procedure for compen-
sating parallel branches that may allow the execution of activities of the backward flow
even when parts of siblings forward flow are still in execution. As an example, the
aforementioned law [A÷A′ | B÷B′ | THROW]≡ A;A′|B;B′ illustrates this policy. Note
that the forward flow is executed completely (i.e., A and B) but parallel branches are
independently compensated for, e.g. A′ can be executed even before B completes.

We conclude this section by remarking that our calculus is tailored to Naı̈ve Sagas,
and hence some syntactic assumptions and the semantics in Figures 1 and 2 are slightly
different w.r.t. the presentation in [7], where a uniform style of description for the four
policies has been preferred.

3 Java Transactional Web Services

In this section we describe JTWS, a Java-implementation of Naı̈ve Sagas based on the
APIs introduced in [27,21]. The programming pattern adopted in JTWS is based on

From Theory to Practice in Transactional Composition of Web Services 279

(a) JSCL generic gate (b) Transactional gate

Fig. 4. Gates

signal passing. Basically, WS become JTWS components that interact by exchanging
suitable signals. It is possible to divide JTWS in two conceptual levels, JSCL and JTL:
the former provides the signal handling primitives that the latter uses to define the trans-
actional ones. Hereafter, JTWS components are called gates.

Signal Core Layer. The signal layer JSCL abstracts the primitive mechanisms for defin-
ing and exchanging signals among gates. A signal represents an event that occurs on a
given gate, for instance, a service may notify a successful execution by emitting a suit-
able signal. Like in the event-notification pattern, “handlers” are associated to signals.
Handlers must subscribe in order to be notified and are not necessarily unique, i.e., a
signal may have several associated handlers. Unlike the event-notification pattern, JSCL
gates behave as handlers and emitters for different signals at the same time.

The class SIGNAL defines the JSCL signals that carry some internal information
(e.g., sender/receiver identifiers, synchronous/asynchronous, timestamp...) and session
data. The session data can be accessed by invoking the methods for getting/setting the
session attributes (e.g., GETPARAM, SETPARAMVALUE, ID). (For a detailed presenta-
tion of the whole session and internal data APIs, the reader is referred to [27] . Details
therein are not necessary to understand the rest of the paper.)

Conceptually, a generic JTWS gate, graphically represented in Figure 4(a), controls
its internal resources and communicates with other gates by means of I/O ports where
signals of a specified type can be received/sent. Ports are an idealisation, indeed in
JTWS they are not effectively implemented as objects, but are characterised by the signal
types. Therefore, signals having different types corresponds to signals sent on different
ports. All the types of the input (or output) ports of a gate are pairwise distinct.

Ports are connected through links that carry signals from emitters to handlers. The
links in JSCL are typed, unidirectional and unicast (namely, links connect a single emit-
ter to a single handler). More complex scenarios (e.g., multi-casting, bi-directionality)
can be obtained by opportunely connecting links. For instance, multi-casting is achieved
by connecting the same emitter to several handlers (with as many links as the handlers).
As for the ports, links are not explicitly implemented in JTWS; links are effectively rep-
resented by writing the information about the handlers in the internal data of the signal.
The emitter e can create a link toward the handler h by executing e.CREATELINK(t,h)
that also specifies the type t of the link. Afterward, e can emit signals toward h with
the EMITSIGNAL method provided by the API. If many links exist between e and h, the
type of the emitted signal is used to determine which is the actual link to be used.

Transactional Layer. JTL represents a specialisation of JSCL focused on describing the
transactional aspects related to the forward and backward flows across gates. This level

280 R. Bruni et al.

fixes the set of the signals that gates may exchange and their semantics. According to
Naı̈ve Sagas, JTL gates must handle four flows of execution, which are represented
by the signals FORWARD, COMMIT, ROLLBACK and EXCEPTION. All of them are
exchanged on specific ports (see Section 4 for details).

The signal FORWARD encodes the forward flow of sagas and implements the normal
execution. The remaining signals encode the backward flows. More precisely, COMMIT

corresponds to the flow of the correct termination of a saga, while ROLLBACK and
EXCEPTION detect the failures of the saga. Indeed, ROLLBACK encodes the flow of
execution that starts when a normal execution fails and EXCEPTION encodes the flow
starting when a rollback flow fails.

A transactional gate (shortly T G) can be defined by specialising the class TRANS-
ACTIONALCOMPONENT and implementing the methods ONFORWARD, ONCOMMIT,
ONROLLBACK and ONEXCEPTION that handle the corresponding signals. The mecha-
nism to emit a signal is inherited from JSCL. The classes TRANSACTIONALSEQUENCE

and TRANSACTIONALPARALLEL provide the methods for creating transactional gates
by sequential and parallel composition of T Gs. Their public interfaces remain the same
as the one of T G so that they can be inductively composed, as shown in Sections 4.1
and 4.2. Moreover, they are equipped with the method addInternalComponent that
allows to add a new gate to an existing sequential or parallel gate.

4 Sagas in JTWS

The main ingredients of the translation from Naı̈ve Sagas to JTWS are: (1) the signals
representing the states of the transactions, (2) the atomic tasks representing the atomic
actions of Naı̈ve Sagas and (3) the transactional generic gates corresponding to sagas.

The signal EXCEPTION implements the final event ’!’ while ROLLBACK and COM-
MIT are the counterpart of ’�’, the final event decorating the traces that successfully
terminate either their forward or backward flows. Furthermore, ROLLBACK is used as
the (internal) signal for starting the compensation of a saga, while COMMIT represents
the normal termination. Hereafter, we assume that signal emissions do not fail.

At the JSCL level, the method onHandleSignal is overridden so that the appro-
priate method is invoked when a signal is received. For instance, when a ROLLBACK

is emitted, the onHandleSignal of all the registered handlers are called so that the
method associated to it (i.e., onRollback) is invoked.

4.1 Gates for Compensation Pairs and Sequential Composition

Transactional gates are objects of the class TG and are the building blocks of sagas,
which are obtained by gluing together transactional gates. Basically, a transactional gate
is a generalisation of the elementary step A÷B, graphically represented in Figure 4(b).
The atomic actions A and B are implemented as objects A and B, respectively, in a class
implementing the interface AtomicTask:
public interface AtomicTask {
public abstract Object execute (Signal signal) throws AtomicActionException;

}

From Theory to Practice in Transactional Composition of Web Services 281

public class Step extends
GenericTransactionalGate {
private AtomicTask A = null;
private AtomicTask B = null;

public comp(AtomicTask A, AtomicTask B)
{this.A = A; this.B = B }

public int onForward(Signal signal) {
try {
if (A != null) then A.execute(signal);
signal.setType(SignalType.FORWARD);
emitSignal(signal);

} catch (AtomicActionException e) {
signal.setType(SignalType.ROLLBACK);
emitSignal(signal);

}
}
public int onCommit(Signal signal) {
signal.setType(SignalType.COMMIT);
emitSignal(signal);

}

public int onRollback(Signal signal) {
try {

if (B != null) then B.execute(signal);
signal.setType(SignalType.ROLLBACK);
emitSignal(signal);

} catch (AtomicActionException e) {
signal.setType(SignalType.EXCEPTION);
emitSignal(signal);

}
}
public int onException(Signal signal) {
try {

signal.setType(SignalType.EXCEPTION);
emitSignal(signal);

} catch (Object e) {
emitSignal(signal);

}
}

}

Fig. 5. The class GenericTransactionalGate

where we assume that an AtomicTask object starts its execution when its execute
method is invoked on a signal and throws an exception if a failure occurs.

The function comp(A,B) records A and B into a transactional gate as illustrated in
Figure 4(b). Intuitively, A starts its execution when a FORWARD signal is received on the
in port. Commenting on Figure 5, when the onForward method is executed, the gate
tries to run A; whenever the execution of A normally terminates, the FORWARD signal
is propagated. On the contrary, if A throws an exception, a ROLLBACK is emitted. The
other methods act similarly.

If A normally terminates its execution, comp(A,B) forwards on the out port the
signal for invoking the next gates in the saga. When a COMMIT signal is received on
the cmI port, the gate comp(A,B) forwards it on the cmO port.

If an exception occurs during the execution of A, then comp(A,B) emits a ROLL-
BACK on port rbO so that the gates waiting for the result of the saga can compensate.
Differently, A signal received on port exI informs that a previously executed compensa-
tion have raises an exception. For instance, if B catches an exception, it emits on its exO
port the signal EXCEPTION. Hence, the gate that receives it will backwardly propagate
EXCEPTION to the previous gates in the saga.

Transactional gates can be sequentially composed in an easy manner as illustrated
in Figure 6(a). An arrow from a port to another represents a link for a specific type
of signals from the emitter to the handlers. Hence, all the target gates of the arrow
have been registered as handlers for that signal. For instance, in Figure 6(a), the signals
emitted from Q on its cmO are handled by P, which receives them on the cmI port. As
explained in Section 3, the ports are associated with the proper methods that should be
executed when a signal is received on them; for instance, signals received on rbI are
associated with the onRollback method that activates the compensation of the gate.

Given two transactional gates P and Q, seq(P,Q) yields the transactional gate having
as in, cmO, rbO and exO ports those of P, while the ports out, cmI, rbI and exI are those
of Q. The behaviour of seq(P,Q) is as follows: any FORWARD signal received from the

282 R. Bruni et al.

(a) Sequential sagas (b) Parallel sagas

Fig. 6. Composition of sagas

in port of P is sent on the out port of P if it terminates normally, otherwise a ROLLBACK

is sent on the cmO port of P. Gate Q after receiving the FORWARD (i.e., P has executed
correctly) executes as any other gate. Notice that, in case Q fails its normal execution,
the ROLLBACK is handled by P, which starts its compensation and either backwardly
propagates the ROLLBACK (if the compensation succeeds) on the port rbO of P or emits
an EXCEPTION signal on the port exO of P (if the compensation of P fails).

Signals received from Q on its cmI and exI ports are simply propagated (on the
corresponding ports) to P, which backwardly propagates them to the rest of the saga.

4.2 Gates for Parallel Composition and Sagas

The behaviour of a parallel saga is the most complex among the coordination constructs
of Naı̈ve Sagas. The function par yields the transactional gate obtained by composing
in parallel a (finite) number of transactional gates. For simplicity, we illustrate par in
the case of the parallel composition of two gates P and Q, as illustrated in Figure 6(b)
(for simplicity we connect some ports by using reference symbols £, @ and * instead
of drawing a line). The case where more than two gates are composed in parallel is
analogous and equivalent to compose P | Q with R.

Function par uses two auxiliary gates: the Trigger and the Collector. These
gates are transparent to the users. Note that the Trigger and the Collector are not
transactional gates themselves. On the invocation signal, the Trigger simply triggers
all the gates of the parallel saga. The Collector manages the result of the parallel saga
and interfaces the intermediate results of P and Q with the transactional gates outside the
saga. As shown in Figure 6(b), Collector has the ports for receiving/sending signals
to P and Q and those for external gates cmI, cmO, rbI, rbO, etc.

The parallel saga is activated when Trigger sends the FORWARD received from its
in port to its out port. According to our assumption, P and Q start their executions. At
this point several cases are possible depending on the results from P, Q and the signals
from the gates external to the parallel saga. In order to forward the invocation signal, the
Collector waits for the invoke signals from P and Q. When those signals are received,
Collector waits for the rest of the saga to communicate the result.

From Theory to Practice in Transactional Composition of Web Services 283

1. If a COMMIT is received on port cmI, then it is forwarded on cmO’ to P and Q
which forward it on their cmO ports to Collector. Once all the commit signals are
collected, a COMMIT is emitted on the port cmO of Collector.

2. If a ROLLBACK is received on port rbI, then it is forwarded on rbO’ to P and Q
which activate their compensations. At this point, either P and Q signal a ROLL-
BACK on their rbO ports or one of them emits a exception on exO. In the former
case, analogously to the previous case, the rollback is propagated on the rbO port of
Collector. If one of P or Q (or both of them) emits an exception, then Collector
propagates an exception signal on exO instead of a rollback one on cmO.

3. If an EXCEPTION is received on port exI, then it is forwarded on rbO’ to P and
Q (which activate their compensations). At this point, the signals from P and Q are
ignored and Collector emits an exception signal on exO.

Either P or Q might fail their normal execution and emits a ROLLBACK signal. Con-
sider that P emits a ROLLBACK signal. In this case, the simplest scenario is when also
Q emits a ROLLBACK: Collector will simply emit a ROLLBACK of its rbO port. If
Q sends an FORWARD signal, as soon as Collector receives it replies with a ROLL-
BACK for Q. Afterward, if Q sends the second ROLLBACK, Collector proceeds as in
the previous case; on the contrary, Q might reply with an EXCEPTION signal. In this
case, Collector signals an exception on its exO port.

By closure(P), any saga can be seen as a method invocation. This is obtained by
simply connecting the out port of the gate P with its cmI port. The saga is invoked by
sending a signal on the in port of P. The control is returned when P emits a signal either
on port cmO or on rbO. An exception is raised if P emits a signal on port exO.

Finally, we summarise the mapping from Naı̈ve Sagas to JTWS as follows:

[[A÷B]] = comp(A,B) [[P;Q]] = seq([[P]], [[Q]])
[[P|Q]] = par([[P]], [[Q]]) [[[P]]] = closure([[P]])

5 A Case Study

In this section, we exemplify the use of JTWS to accomplish the task of providing trans-
actional behaviour to WS composition. Our case study scenario will focus on the de-
velopment of an application combining two overlay networks, namely the Internet and
a telecommunication network. The application provides a SMS Taxi Booking facil-
ity. The basic idea of the application is that registered customers can book a taxi by
sending a SMS text message to the Taxi call-centre. The customer gets a SMS reply
back from the taxi company confirming the booking along with the estimated arrival
time, place, fare and vehicle details. Moreover, the full amount of the fare at the end
of the journey will be payed on-line by exploiting the registered information about cus-
tomer credit card. This application has been designed, deployed, and executed within
a framework that integrates WS, a rich set of telecommunication services (including
call/session control, messaging features, presence and location features) and WS for
telecommunications (Parlay X WS) [27]. Our aim is to show the adequacy of JTWS (and
the underlying process calculus Naı̈ve Sagas) for designing LRTs. Indeed, our case
study offers a test-bed for the programming features of JTWS.

284 R. Bruni et al.

Fig. 7. SMS Taxi Booking Service

seq (
comp (UserProfile, null),
comp (RetrieveReservation, LogFailure),
par (
comp (Bank, RestoreAmount),
comp (CreditCardMgr, RestoreAmount)

),
comp(SendSMS, null)

)

Fig. 8. Stage3: The On-line Payment

Figure 7 illustrates the overall structure of the application. The SMS Taxi Booking
service is structured into three stages. The first stage treats the taxi booking activities.
The second stage manages the communications for the confirmation of the booking.
Finally, the last stage handles the taxi payment service. We focus on the implementation
of the first and third stages, which involve non-trivial transactional facets. The saga
implementing the first stage is just the sequential composition of several services:

[ReceivedSMS÷SendSMSErr; UserProfile; LocateUser; SearchTC; MakeCall]

The ReceiveSMS service is the access gateway of the application and it is activated
upon receipt of the SMS message. Its main activity consists in generating the activation
signal for all the other services, which check whether the customer is authorised to
access the service (UserProfile), determine the location of the user (LocateUser),
select the Taxi Company (SearchTC) and finally set up a call between the taxi company
and the customer (MakeCall). Note that the ReceiveSMS compensation (sendSMSErr)
is indeed the only compensation of the whole sequence: it will be executed in case of
the failure of the booking (an appropriate error message will be sent to the user). The
compensations of the other services are all empty, indeed none of them modifies the
local state and their failures just activate the emission of the ROLLBACK signal.

The saga in Figure 8 describes the more interesting implementation of the third stage
of the application. Intuitively, after having retrieved the reservation data, the services

From Theory to Practice in Transactional Composition of Web Services 285

for the payment of the fare are activated. This is done by the parallel execution of
two activities: one performs the money transfer to the taxi company account (Bank),
the other charges the fare on the customer credit card (CrediCard). In both cases, the
compensations of failures restore the data on the corresponding account.

Our experimentation has shown that Naı̈ve Sagas and JTWS provide a natural setting
to design and deploy transactional business processes at a high level of abstraction.
Indeed, the coordination details are hidden inside the JSCL implementation.

6 Concluding Remarks

Starting from a formal specification of parallel sagas we have presented JTWS, a Java
API that provides the basic primitives for composing WS in (compensable, parallel)
LRTs. The implementation is conceptually separated in two layers: JSCL and JTL. The
former is a general framework for building networks of gates connected by typed sig-
nals. The latter is a specialised variant of JSCL where gates come equipped with few
carefully selected signals that are tailored to the treatment of WS transactions. The
underlying JSCL layer makes the implementation fully distributed. The overall con-
tribution is a setting for designing business process transactions where three level are
reconciled: (1) a visual/graphical representation of parallel sagas, (2) a process calcu-
lus description in bijective correspondence with sagas diagrams, and (3) an executable,
distributed translation of symbolic processes.

One interesting result of our experimentation is that level 2 is crucial for linking
business analyst designs (level 1) to their actual implementations (level 3). Indeed, as
already observed in [7], the process calculus formalisation forces us to deal with design
choices that are not so evident at level 1 (e.g. centralised vs. distributed interrupt and
compensation). Furthermore, level 3 can test and ensure that the design choices made
at level 2 are really implementable / feasible.

As future work, we intend to exploit the flexibility of JSCL to implement and exper-
iment with the alternative design choices identified in [7], including advanced features
like nesting, speculative choice and alternative activities to provide a full-fledged trans-
actional framework.

References

1. B. Anderson and D. Shasha. Persistent linda: Linda + transactions + query processing. Re-
search Directions in High-Level Parallel Programming Languages, vol. 574 of Lect. Notes
in Comput. Sci., pp. 93–109. Springer, 1992.

2. BizTalk Server Web site. http://www.microsoft.com/biztalkserver.
3. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. Proc. of

FMOODS’03, vol. 2884 of Lect. Notes in Comput. Sci., pp. 124–138. Springer, 2003.
4. BPEL Specification (v.1.1). http://www.ibm.com/developerworks/library/ws-bpel.
5. BPEL and BTP issues list. http://www.choreology.com/external.
6. Business Process Modeling Language. http://www.bpmi.org/BPML.htm.
7. R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, and U. Montanari. Comparing two

approaches to compensable flow composition. To appear in Proc. of CONCUR 2005.

286 R. Bruni et al.

8. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi: extending
Join. Proc. of IFIP-TCS 2004, pp. 569–582. Kluwer, 2004.

9. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in flow
composition languages. Proc. of POPL 2005, pp. 209–220. ACM Press, 2005.

10. R. Bruni and U. Montanari. Concurrent models for Linda with Transactions. Mathematical
Structure in Computer Science, 14(3):421–468, Cambridge University Press, 2004.

11. N. Busi and G. Zavattaro. On the serializability of transactions in javaspaces. Elect. Notes in
Th. Comput. Sci., vol. 54. Elsevier, 2001.

12. M. Butler, M. Chessell, C. Ferreira, C. Griffin, P. Henderson, and D. Vines. Extending the
concept of transaction compensation. IBM Systems Journal, 41(4):743–758, 2002.

13. M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. Proc. of Coordination 2004, vol. 2949 of Lect. Notes in
Comput. Sci., pp. 87–104. Springer, 2004.

14. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. Proc.
of 25 Years of CSP, vol. 3525 of Lect. Notes in Comput. Sci., pp. 133–150. Springer, 2005.

15. T. Chothia and D. Duggan. An architecture for secure fault-tolerant global applications.
Theor. Comput. Sci., 322(3):567–613, 2004.

16. V. Danos and J. Krivine. Reversible communicating systems. Proc. of CONCUR 2004, vol.
3170 of Lect. Notes in Comput. Sci., pp. 293–307. Springer, 2005.

17. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

18. A. Hosking, S. Jagannathan, J. Vitek, and A. Welc. A semantic framework for designer
transactions. Proc. of ESOP 2004, vol. 2986 of Lect. Notes in Comput. Sci., pp. 249–263.
Springer, 2004.

19. I. Houston, M. Little, I. Robinson, S. Shrivastava, and S. Wheater. The corba activity service
framework for supporting extended transactions. Softw. Pract. Exper., 33(4):351–373, 2003.

20. S. Jagannathan and J. Vitek. Optimistic concurrency semantics for transactions in coordi-
nation languages. Proc. of Coordination 2004, vol. 2949 of Lect. Notes in Comp. Sci., pp.
183–198. Springer, 2004.

21. Java Transactional Web Services. http://www.di.unipi.it/∼etuosto/jtws.html.
22. C. Laneve and G. Zavattaro. Foundations of web transactions. Proc. of FoSSaCS 2005, vol.

3441 of Lect. Notes in Comp. Sci., pp. 282–298. Springer, 2005.
23. F. Leymann. Web Services Flow Language (v.1.0). http://www-306.ibm.com/software/

webservices/pdf/WSFL.pdf.
24. M. Mazzara and S. Govoni. A case study of web services orchestration. Proc. of Coordination

2005, vol. 3454 of Lect. Notes in Comput. Sci., pp. 1–16. Springer, 2005.
25. M. Mazzara and R. Lucchi. A framework for generic error handling in business processes.

Proc. of WS-FM 2004, Elect. Notes in Th. Comput. Sci., vol. 105, pp. 133–145. Elsevier,
2004.

26. Oracle BPEL Process Manager. http://www.oracle.com/technology/bpel.
27. D. Strollo. Composizionalità di transazioni e Web Services nell’ambito della telefonia mo-

bile. Master’s thesis, Dipartimento di Informatica, Pisa, 2005. In Italian.
28. WebSphere. http://www-306.ibm.com/software/info1/websphere/index.jsp .
29. Web Services Choreography Description Language (v.1.0). http://www.w3.org/TR/ws-

cdl-10
30. Web Services Conversation Language (v.1.0). http://www.w3.org/TR/wscl10/.
31. Web Services for Business Process Design (XLANG). http://www.gotdotnet.com/

team/xml wsspecs/xlang-c/default.htm.

Timing Issues in Web Services Composition

Manuel Mazzara

Department of Computer Science, University of Bologna, Italy
mazzara@cs.unibo.it

Abstract. webπ is a recent process calculus introduced to formally
specify Web Services composition. It extends the π-calculus with timed
workunits, namely an asynchronous and temporized mechanism for
events raising and catching. In this paper we encode Berger-Honda
Timed-π in webπ timed workunits and we prove a simulation theorem.
The overall perspective of this work is to make webπ comparable with
both real composition languages and well established models for dis-
tributed components.

1 Introduction

Service Oriented Computing (SOC) is an emerging paradigm for distributed
computing and e-business processing that finds its origin in object-oriented and
component computing. Web services technology is a widespread accepted in-
stantiation of SOC which should facilitate integration of newly built and legacy
applications both within and across organizational boundaries avoiding difficul-
ties due to different platform, heterogeneous programming languages, security
firewall, etc... Exploiting this kind of ubiquitous network fabric would result in
an increase of productivity and in a reduction of costs in B2B processes [17]. The
idea behind this approach is to allow independently developed applications to be
exposed as services and interconnected exploiting the already set up Web infras-
tructure with relative standards (HTTP [31], XML [12], SOAP [7] and WSDL
[11]). These technologies, related to develop basic services and interconnect them
on a point-to point basis, can be considered well established but B2B processing
requires managing complex interactions involving a large number of participants
and none of the above standards are able to meet this need. The way to build
complex services out of simpler ones is called composition and it is still an open
challenge [28].

Different organizations are presently working on composition proposals. The
most important in the past have been IBM’s WSFL [21] and Microsoft’s XLANG
[29]. These two have then converged in Web Services Business Process Execution
Language [3] (WS-BPEL or BPEL for short) which is presently a working draft
by OASIS. Another recent proposal in phase of standardization by the World
Wide Web Consortium (W3C) is WS-CDL [18]. Both allow the definition of
workflow-based composition of services with some similarities and some differ-
ences. Describing in details a synopsis between these two proposals is beyond
the scope of this paper, however in section 2 some points will be sketched.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 287–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 M. Mazzara

1.1 Need for Foundations

XLANG, WS-BPEL and WS-CDL are claimed to be based on formal models
(the π-calculus or its variant) to allow rigorous mathematical reasoning. For
example, WS-CDL authors explicitly state to be in some relation with fusions
and solos. In particular, WS-CDL is built atop the Global Model formalism
(as presented in [17]) which refers to a precise π-calculus variant: the Explicit
Solos Calculus [13], the theory underlying the Fusion Machine (a virtual machine
implementing in a distributed manner the π-calculus). However, despite all this
hype, no interesting relations with process algebras have been so far emphasized
(no conceptual tools for analysis and reasoning, no software verification). In this
way any mathematical rigor becomes pointless.

webπ∞ [24] has been introduced to fill this gap. It is a simple and conser-
vative extension of the π-calculus where the original algebra is augmented with
an operator for asynchronous events raising and catching in order to enable the
programming of widely accepted error handling techniques (such as long run-
ning transactions and compensations) with a reasonable simplicity. The ability
to handle time is also considered a very appropriate feature when programming
transactions where business services cannot wait forever for the reply of other
parties. For this reason, webπ∞ has a timed counterpart, webπ [19], which al-
lows events to be temporized, i.e. to happen not only when processes explicitly
raise them but also when timers expire. We address the problem of compos-
ing services starting directly from the π-calculus and considering our proposals
as foundational models for composition simply to verify statements regarding
any mathematical foundations of composition languages and not to say that
the π-calculus is more suitable than other models (such as Petri nets) for these
purposes. For an ongoing discussion about these foundational aspects refer to
[30].

1.2 Error Handling and Web Transactions

Loosely coupled components like Web services, being autonomous in their deci-
sions, may refuse requests and suspend their functionality without notice, thus
making their behavior unreliable to other activities. Henceforth, most of the
web languages also include the notion of loosely coupled transaction – called
web transaction [22] in the following – as a unit of work involving loosely cou-
pled activities that may last long periods of time. These transactions, being
orthogonal to administrative domains, have the typical atomicity and isolation
properties relaxed, and instead of assuming a perfect roll-back in case of failure,
support the explicit programming of compensation activities. Web transactions
usually contain the description of three processes; the body, the failure handler,
and the compensation.

The failure handler is responsible for reacting to events that occur during
the execution of the body; when these events occur, the body is blocked and
the failure handler is activated. The compensation, on the contrary, is installed
when the body commits; it remains available for outer transactions to require

Timing Issues in Web Services Composition 289

some undo of previously performed actions. BPEL and WS-CDL both use this
approach. However, in [25,23] we showed that different mechanisms for error
handling are not necessary and we presented the BPEL semantics in terms of
webπ∞ which is based on the idea of event notification as the unique error
handling mechanism. The same is feasible considering WS-CDL. This result
allows us to extend any semantic considerations about webπ∞ and webπ to BPEL
and WS-CDL.

1.3 Contribution of the Paper

In [24] we used webπ∞ as a theoretical and foundational model for web services
composition and we proved its usefulness formalizing an e-commerce transac-
tional scenario experimented in our preliminary work [14]. In those papers we
did not address timing issues at all. We recognized the limits of those works and
the usefulness of time handling when programming business transactions. For
this reason, in this paper we consider timed transactions, i.e. transactions that
can be interrupted by a timeout. Real workflow languages presently provide this
feature: XLANG, for instance, includes a notion of timed transaction as a special
case of long running activity. BPEL also allows similar behaviors by means of
alarm clocks.

To meet the challenge of time in composition, webπ has been equipped with
an explicit mechanism for time elapsing and timeout handling. Adding time
we are able to express more meaningful and realistic scenarios in composition.
The webπ model of time is inspired by Berger-Honda Timed-π skipping the idle
rule plus some minor variations. In this paper we present a synopsis of the two
approaches underlying differences and similarities. We show the ability of webπ
to cope with timing issues in a context of B2B web transactions proving that
skipping the idle rule is not source of expressiveness loss. To do this we encode
their time construct, called timer, in our timed workunit and we prove in detail a
simulation theorem. This is intended as a major result of the paper and convinces
us of the great flexibility of webπ.

Another contribution stands in section 2 where we clarify some semantical
aspects of composition languages and where we modify some terminology of webπ
presenting detailed motivations. The overall perspective of this work is to make
webπ comparable with both real composition languages and well established
model for distributed components.

1.4 Related Work

Other papers discussing the formal semantics of compensable activities in this
context are: the work by Hoare [15] which is mainly inspired by XLANG, the cal-
culus of Butler and Ferreira [10] which is inspired by BPBeans, the πt-calculus [6]
considering BizTalk and the work [8] dealing with short-lived transactions in
BizTalk. The work in [9] also presents the formal semantics for a hierarchy of
transactional calculi with increasing expressiveness.

290 M. Mazzara

1.5 Outline of the Paper

The paper is structured as follows: after the above introduction, section 2 tries
to clarify some semantical aspects of composition languages and of our model.
Section 3 presents webπ with its syntax and semantics while section 4 is devoted
to an analogous description of the counterpart, πt. The encoding of timers is
showed and explained in section 5 where the correctness proof is also detailed
and described. Finally, section 6 reports some conclusive considerations.

2 WS-BPEL, WS-CDL and webπ

It is worth noting that in this paper we are changing some terminology with
respect to previous works presenting webπ [19,20] or webπ∞ [24,23]. In partic-
ular we are replacing the term transaction or timed transaction with the term
timed workunit and the term compensation with the term event handler. This is
because we believe that, using the old terminology and continuously associating
webπ with real composition languages like WS-BPEL or WS-CDL, confusion
and ambiguity can raise.

As explained in detail in [23], the WS-BPEL Recovery Framework has two
different mechanisms for coping with abnormal situations: fault handler and com-
pensation handler. Also WS-CDL provides mechanisms with a similar semantics
called exceptions and finalizers. The basic wrapper containing operations and
associated handlers is scope for WS-BPEL and choreography for WS-CDL.
These mechanisms are thought to be used at different stages of computation:
fault handling during the execution of an activity while compensation handling
after its successful completion. While fault/exception handlers are typically pro-
vided by classical concurrent programming languages, compensation handlers or
finalizers are peculiar to composition languages. Compensations are related with
long running web transactions and the relative semantic deserves some attention.

It is important to remind that scopes and choreographies can be structured
in a tree of nesting. Both WS-BPEL and WS-CDL allow compensations (or
finalizer) to be available for a scope (or choreography) after its successful termi-
nation. BPEL has a constraint which forces a compensation to be triggered only
by an enclosing scope which failed for some reason. WS-CDL, instead, allows a
finalizer to be simply activated by a parent choreography which failed or not,
without imposing particular constraints (motivation for this decision are related
to speculative parallelism and can be found at [1,2]).

Anyway, compensation semantics is strictly about ”partially reversing” of
successful activities included in a ”larger work” which failed. Differently, fault
handling is a mechanism thought to interrupt ”immediately” an activity when
some abnormal situation happens. At that point, the normal execution is bro-
ken and no way to access the compensation handler is still available. After these
considerations it is easy to see how webπ semantics is very far from the com-
pensation semantics of composition languages. Indeed, webπ mechanism is more
similar to fault handling. Anyway, we want to avoid to call it fault handler be-
cause we want to provide a foundational mechanism which is able, as already

Timing Issues in Web Services Composition 291

showed, to encode both the presented mechanisms. In some sense, our work is
close to the CORBA Activity Service Framework [16] which uses a similar event
signalling mechanism. Both these approaches result more flexible with respect
to WS-BPEL and WS-CDL semantics. For this reason we call it event handler.
In fact, it is simply a generic framework for event handling and catching.

A last remark deserves to be made to clarify completely any possible ob-
jections. While WS-CDL does not support additional mechanisms except the
two described above, WS-BPEL provides also a third mechanism called event
handler, as in webπ. Its semantics, however, is different: a BPEL event han-
dler listens to messages or alarm clock concurrently to the scope execution and
handles all the events concurrently, even when multiple instances occur. If the
scope terminates but some of these occurrences are still alive, they are allowed
to normally terminate their execution. We showed that also this semantic can
be encoded in webπ, so the presence of this additional machinery is not harmful.
Anyway, it is important to underline that, although the names are equal, the
behaviors are different.

We decided to adopt what we intend to be the more foundational mechanism
to encode all the others and we gave it a name which was as general as possible.
As a consequence of all these considerations, we changed also the term trans-
action in workunit, because, in general, a transaction is the composed effect of
many workunits, not just a single one.

3 The Calculus webπ

webπ is a timed extension of the asynchronous π-calculus with an explicit wrap-
ping constructor for activities and an associated event handler, developed in or-
der to provide mathematical foundation for composition languages. Composition
essentially describes workflow, with a particular emphasis on the communication
aspects of loosely coupled activities, i.e. activities executed by remote, hetero-
geneous and independent services that could belong to different administrative
domains, such as different companies.

3.1 webπ Syntax

The syntax of webπ relies on a countable set of names, ranged over by x, y, z,u,w,
s, s′ · · ·. Tuples of names are written ũ. Natural numbers {0, 1, 2, 3, · · ·} or ∞ are
ranged over by n,m, · · ·. The set of processes is defined by the following syntax:

P ::= (processes)
0 (nil)
| x 〈ũ〉 (message)
| x(ũ).P (input)
| (x)P (restriction)
| P |P (parallel composition)
| !x(ũ).P (lazy replication)
| 〈|P ; P |〉ns (timed workunit)

292 M. Mazzara

A process can be the inert process 0, a message x 〈ũ〉 sent on a name x that
carries a tuple of names ũ, an input x(ũ).P that consumes a message x 〈w̃〉 and
behaves like P{w̃/ũ}, a restriction (u)P that behaves as P except that inputs and
messages on u are prohibited, a parallel composition of processes, a replicated
input !x(ũ).P that consumes a message x 〈w̃〉 and behaves like P{w̃/ũ} | !x(ũ).P
or a timed workunit 〈|P ; R|〉ns that behaves as the body P except that the
event handler R is triggered after n steps or because the opportune abort signal
s 〈〉 is received. The label n is called the time stamp. We remark that workunit
names should be used with output capability only. For instance, it is not possible
to write s().P . Our intuition is that workunit names are process identifiers,
therefore two different workunits should never have the same name. Even if we
conform with such intuition in this paper, we purposely do not enforce in webπ
a discipline for the use of these names.

The calculus accounts for time by using positive natural numbers or ∞.
The timeless workunit 〈|P ; R|〉s is an abbreviation for 〈|P ; R|〉∞s , and we
assume that ∞ + 1 = ∞. Input x(ũ).P , restriction (x)P and lazy replication
!x(ũ).P are binders of names ũ, x, and ũ, respectively. The scope of these
binders is the process P . We use the standard notions of alpha-equivalence,
free and bound names of processes, noted fn(P) and bn(P), respectively. In par-
ticular, fn(〈|P ; R|〉nx) = fn(P) ∪ fn(R) ∪ {x} and alpha-equivalence equates
(x)(〈|P ; Q|〉nx) with (s)(〈|P{s/x} ; Q{s/x}|〉ns).

3.2 The Reduction Semantics

We are now ready to introduce the formal specification of the semantics of webπ.
Following the tradition of π-calculus [26,27], we first define a structural congru-
ence which equates all agents we will never want to distinguish for any semantic
reason, and then use this when giving the operational semantics.

Definition 1. The structural congruence ≡ is the least congruence closed with
respect to alpha-renaming, satisfying the abelian monoid laws for parallel (asso-
ciativity, commutativity and 0 as identity), and the following axioms:

1. the scope laws:

(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,
P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P)

〈|(z)P ; Q|〉ns ≡ (z)〈|P ; Q|〉ns , if z �∈ {s} ∪ fn(Q)
〈|P ; (z)Q|〉0s ≡ (z)〈|P ; Q|〉0s , if z �∈ {s} ∪ fn(P)

2. the repetition law:
!x(ũ).P ≡ x(ũ).P | !x(ũ).P

3. the workunit laws:

〈|0 ; Q|〉sx ≡ 0
〈|〈|P ; Q|〉ns′ |R ; R′|〉ms ≡ 〈|P ; Q|〉ns′ | 〈|R ; R′|〉ms

Timing Issues in Web Services Composition 293

4. the floating laws:

〈|z 〈ũ〉 |P ; Q|〉ns ≡ z 〈ũ〉 | 〈|P ; Q|〉ns
〈|y(ṽ).P |P ′ ; z 〈ũ〉 |Q|〉0s ≡ z 〈ũ〉 | 〈|y(ṽ).P |P ′ ; Q|〉0s

The scope and repetition laws are almost standard: let us discuss worku-
nit and floating laws. The law 〈|0 ; Q|〉ns ≡ 0 defines committed workunits,
namely those with 0 as body. These workunits, being committed, are equiva-
lent to 0 and, therefore, cannot fail anymore. The law 〈|〈|P ; Q|〉ns′ |R ; R′|〉ms ≡
〈|P ; Q|〉ns′ | 〈|R ; R′|〉ms moves workunits outside the parent, thus flattening the
nesting. Notwithstanding this flattening, the parent can still affect the children
by means of workunit names. The law 〈|z 〈ũ〉 |P ; R|〉ns ≡ z 〈ũ〉 | 〈|P ; R|〉ns floats
messages outside workunits, thus modelling the fact that messages are particles
uploaded on the network as soon as they are emitted. The intended semantics
is the following: if a process emits a message, this message traverses the sur-
rounding boundaries, until it reaches the corresponding input. In case an outer
workunit fails, recoveries for this message may be detailed inside the relative
handler.

The main technical difficulty is time elapsing. In this model all the processes
run on the same orchestrator, thus competing for the same processor time. We
assume that every reduction costs one time slot. When a subprocess performs a
reduction, the flow of time is communicated to all the running processes. This
amounts to decrease the time stamps of the running timed workunits by 1,
thus triggering handler processes of those that become dead. This operation is
modelled by the time stepper function below, which is an accommodation to
webπ of the corresponding function in [4]. The definition of this function and
two other auxiliary functions are in order:

the input predicate inp(P): this predicate verifies whether a process con-
tains an input that is not underneath a workunit. Formally:

inp(x(ũ).P)
inp((x)P) if inp(P)
inp(P |Q) if inp(P) or inp(Q)
inp(!x(ũ).P)

the time stepper function φ(P): this function decreases the time stamp by
1 and is defined inductively in the following way:

φ((x)P) = (x)φ(P)
φ(P |Q) = φ(P) |φ(Q)

φ(〈|P ; R|〉0s) =
{ 〈|φ(P) ; φ(R)|〉0s if inp(P)
〈|φ(P) ; R|〉0s otherwise

φ(〈|P ; R|〉n+1
s) = 〈|φ(P) ; R|〉ns
φ(P) = P otherwise

All the preliminaries are in place for the definition of the reduction relation.

294 M. Mazzara

Definition 2. The reduction relation → is the least relation satisfying the fol-
lowing reductions:

(com) x 〈ṽ〉 |x(ũ).Q → Q{ṽ/ũ}

(fail) s 〈〉 | 〈|z(ũ).P |Q ; R|〉n+1
s → 〈|z(ũ).P |φ(Q) ; R|〉0s

and closed under ≡, (x) , and the rules:

P → Q

P |R→ Q |φ(R)

P → Q

〈|P ; R|〉n+1
s → 〈|Q ; R|〉ns

P → Q

〈|y(ṽ).R |R′ ; P |〉0s → 〈|y(ṽ).R |φ(R′) ; Q|〉0s

Rule (com) is standard in process calculi and models the input-output interac-
tion. Rule (fail) models workunits failure: when an abort is emitted, the corre-
sponding workunit is terminated by setting the time stamp to 0, thus activating
the event handler (last rule). On the contrary, aborts are not possible if the
workunit is already terminated, namely every thread in the body has completed
its own work. The inference rules lift reductions to parallel contexts and workunit
contexts, updating them because a time slot is elapsed.

We say that P has a barb x, and write P ↓ x, if P manifests an output on
the free name x.

Definition 3. Let P ↓ x be the least relation satisfying the rules and closed for
≡:

x 〈ũ〉 ↓ x
(z)P ↓ x if P ↓ x and x �= z

(P |Q) ↓ x if P ↓ x or Q ↓ x
〈|P ; R|〉0s ↓ x if P ↓ x or (inp(P) and R ↓ x)
〈|P ; R|〉n+1

s ↓ x if P ↓ x

4 The Calculus πt

The advent of π-calculus has shown how diverse computational structures in
both sequential and concurrent computing are uniformly representable as in-
teracting processes. This allows the application of standard syntactic reasoning
methods developed for process calculi to a wide variety of computational phe-
nomena. However, in spite of its high expressive power and its interaction-based
computing model, the π-calculus does not suffice for a complete and satisfactory
description of basic elements of distributed computing systems. This is due to the
difficult in decomposing some operations and phenomena in terms of message-
passing, because they represent computational mechanisms left implicit or not
treated in the π-calculus. For example, loss of message in transit, timers, process

Timing Issues in Web Services Composition 295

failure and recovery are not taken into account by the π-calculus. The work by
Berger — his PhD thesis [5] and other papers (for example [4])— is concerned
on the study of an extension for the original π-calculus in order to provide a
reasonable framework able to represent more realistic distributed systems. He
tried to give extensions that can be basic and incremental, i.e. that combinations
of a few simple extensions can represent a wide range of phenomena essentials
to distributed systems.

4.1 Core Syntax

In this section we will illustrate the core syntax of the calculus presented by
Berger.

P ::= (processes)
0 (nil)
| x 〈ỹ〉 (message)
| x(ỹ).P (input)
| (x)P (restriction)
| P |P (parallel composition)
| !x(ỹ).P (lazy replication)
| timern(x(ṽ).P,Q) (timer)

A timer is a pair of processes, say P and Q, and a deadline n, which rep-
resents the amount of disposed time. The semantic of timers is quite simple:
a timer timern(μ.P,Q) waits for a μ action until the total amount of time n
elapses. If the action μ is performed, the timer reduces to the continuation P ,
and the timeout continuation Q is discarded. Contrariwise, if the time n elapses
without any action μ, the timer reduces to the continuation Q, and the time-in
continuation P is discarded. The introduction of timers requires some exten-
sions to the original π-calculus, which is not able to manage time. In particular,
Berger and Honda introduce the time-stepper function φt , which indicates how
the time passing influences the various constructs:

φt(P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
timern−1(Q, R) if P = timern(Q, R), t > 1
R if P = timern(Q, R), t � 1
φt(Q) |φt(R) if P = Q |R
(x)φt(Q) if P = (x)Q
P else

Thus φ(P)t ticks each timer in P by one discrete degree: this can be thought
of as the passing of, say, one second. Now we can introduce the reduction se-
mantics, ≡t is as usual.

Definition 4. The reduction relation →t is the least relation satisfying the fol-
lowing axioms and rules, and closed with respect to ≡t and (x) :

296 M. Mazzara

(rep)

x 〈ṽ〉 | !x(ỹ).P →t P{ṽ/ỹ} | !x(ũ).P
(stop)

timern+1(x(ṽ).P,Q) |x 〈ỹ〉 →t P{ỹ/ṽ}
(idle)

P →t φt(P)

(par)

P →t P
′

P |Q →t P
′ |φt(Q)

Rules (stop) and (par) are quite simple; they model the execution of timers
and parallel processes. The rule (idle), instead, is a little more subtle: it allows
the computation to pause or idle at arbitrary moments and, through repeated
applications, for an unlimited period of time.

Now, we are ready to introduce the concept of barb, which will be used to
prove the correctness of timers encoding. Informally, we say that P has a barb
x, and write P ↓t x, if P manifests an output on the free name x.

Definition 5. Let P ↓t x be the least relation satisfying the rules and closed for
≡t:

x 〈ỹ〉 ↓t x
(P |Q) ↓t x if P ↓t x or Q ↓t x

(x)P ↓t y if P ↓t y and y �= x

5 Encoding Timers

In this section we show how to implement timers using workunits, then we will
prove the correctness of this encoding. To this end we define the recursive func-
tion [[[P]]] : πt→ webπ which maps πt in webπ processes:

Definition 6 (πt encoding in webπ). Timers are defined by induction on n,
for the missing cases it holds [[[P]]] = P .

[[[timer1(y(ũ).P, Q)]]] = (x)(s)(〈|y(ũ).x 〈ũ〉 ; [[[Q]]]|〉1s | x(ũ).[[[P]]])

[[[timern(y(ũ).P, Q)]]] = (x)(s)(〈|y(ũ).x 〈ũ〉 ; [[[timern−1(y(ũ).P, Q)]]]|〉1s | x(ũ).[[[P]]])

It is worth noting that this is not the only function satisfying our goals. We
decided to adopt it after several investigations in order to achieve a tradeoff
between mathematical elegance and quick understandability.

The encoding of a timer set to 1 behaves as follows: if the input-prefix y(ũ)
can react, the workunit emits the output message x 〈ũ〉, which triggers the con-
tinuation P . In this case, the workunit becomes the null process 0, and commits.
Otherwise, if the input-prefix cannot react, it triggers the handler, reducing to
the time-out continuation Q. It is easy to see that this is the expected behavior.
The inductive case is quite similar, because it uses the same workunit set to 1.
In this case, however, the event handling process is the recursive encoding of
a timer, in which the deadline has approached of one unit. If the input-prefix

Timing Issues in Web Services Composition 297

y(ũ) can react, the workunit triggers the time-in continuation P , and commits;
otherwise, the workunit runs the handler, and the timer encoding is called re-
cursively.

The proposed encoding has obviously the required behavior, but it is weak,
i.e. it requires an additional computational step, with respect to the native timer
construct. In particular, when the input-prefix reacts, we must trigger the time-
in continuation, while the timers in πt reduce directly. Let us illustrate this issue
with an example. The πt program

timern(x(ũ).y 〈z̃〉,Q) |x 〈ṽ〉 | timer2(y(w̃).R,S)

reduces, in one step, in the program

y 〈z̃〉 | timer1(y(w̃).R,S)

for the rules (stop) and (par). Moreover, this evolves in R{z̃/w̃}. The corre-
spondent encoding in webπ, instead, reduces, with an adjunctive τ step, in the
program

y 〈z̃〉 | (x)(s)(〈|y(w̃).x 〈w̃〉 ; [[[S]]]|〉0s |x(w̃).[[[R]]])

for (com) and the rules for parallel and time elapsing. The point is that, while in
the πt program the second timer had still a possibility to trigger, in its correspon-
dent encoding the timer has elapsed and the time-out continuation is executed.
Fortunately, this issue is harmless, because in πt we could execute idle steps, ap-
plying the rule (idle), in order to synchronize with the correspondent encoding
in webπ. In particular, after triggering a timer, we execute an idle step:

y 〈z̃〉 | timer1(y(w̃).R,S)

reduces with the rule (idle) to

y 〈z̃〉 | timer0(y(w̃).R,S)

and finally to the time-out continuation S.
This example stress out an important difference between πt and webπ, i.e.

the former is divergent, because it is possible to idle the computation for an
unlimited period of time, while the latter does not allow to delay reductions to
favor idle steps. So, what we are doing is encoding one of the many possible
computations.

Now we will prove that a simulation exists between πt processes encodings
and the processes themselves. Although it is possible to prove the existence of
a simulation avoiding any particular constraints, for the sake of brevity we will
show just a restricted proof. We will not allow a process P in a parallel context
C[·]|P to be or to contain time sensitive operators (timers or timed workunits)
and we use the notation P−. As a consequence, we will avoid nested timed
workunits because it is always possible to extrude by structural congruence and
run them in parallel.

298 M. Mazzara

Definition 7 (Contexts). Process contexts, noted C[·], are defined by the fol-
lowing grammar:

C[·] ::= [·] | C[·]|P− | (x)C[·]
We always assume that when we write C[P] the resulting process is well-formed.

The result can be easily extended to the general case but we got a longer
proof. The basic idea behind the extended proof stands in the explanation above.
When we introduce time sensitive operators in the context we have to force πt

processes to synchronize with the correspondent encoding in webπ applying the
rule (idle). The inductive case for parallel in the second part of the proof has to
be extended with the relative sub-cases for time sensitive operators. This require
some space and does not give additional hints about the result. For this reason
we do not present here that part.

In order to present the proof we must introduce some preliminary definitions.

If → is a binary relation, →n is a shorthand for
→ . . .→︸ ︷︷ ︸

n . We write →+ if →n

for some n > 0. The Barbed Simulation is the basic machinery we use to provide
the correctness proof:

Definition 8 (Barbed Simulation). A barbed simulation S is a binary rela-
tion between processes such that P SQ implies

1. if P ↓ x then Q ↓ x
2. if P → P ′ then Q →+ Q′ and P ′ SQ′

Barbed similarity is the largest barbed simulation that is closed under contexts.
P and Q are barbed similar and we write P 	 Q if P SQ for some barbed
simulation S .

Since we are simulating processes over different systems we need a particular
adaptation of the above definition:

Proposition 1 (Barbed Simulation over Different Systems). Given two
different systems (P,→P , ↓P ,≡P) and (Q,→Q, ↓Q,≡Q), let us define
S = {(P,Q) | P ∈ P,Q ∈ Q} such that (P,Q) ∈ S implies:

1. if P ↓P x then Q ↓Q x
2. if P →P P

′ and Q →+
Q Q′ then P ′ ≡P P

′′ and (P ′′,Q′′) ∈ S with Q′′ ≡Q Q′

In the following we consider the two systems (P,→, ↓,≡) and (Q,→t, ↓t,≡t)
where P are webπ processes and Q are πt processes. The following theorem
proves that, if a timer encoded by the timed workunit behaves in a certain way,
also πt timers can behave in the same way.

Theorem 1 (Barbed Similarity between [[[P]]] and P).

∀ P ∈ πt, C[[[[P]]]] 	 C[P]

Timing Issues in Web Services Composition 299

Proof. The relation S defined as follows is a barbed simulation:

S = {([[[P]]], P) | P ∈ πt}
∪ {((x)(s)(〈|x 〈ṽ〉 ; [[[Q]]]|〉0s |x(ũ).[[[P]]]), P{ṽ/ũ}) | P,Q ∈ πt}
∪ {((x)(s)(〈|y(ũ).x 〈ṽ〉 ; [[[Q]]]|〉0s |x(ũ).[[[P]]]),Q) | P,Q ∈ πt}
∪ ≡t

Let us prove the two conditions required to have a simulation.

1. Firstly, if C[[[[P]]]] ↓ x then C[P] ↓t x. By induction over contexts:

(a) Base Case: if C[·] is [·]: By induction on the structure of P :
i. P is not a timer: the statement is obvious, because the encoding in

this case is the identity function;
ii. P is a timer: its encoding does not show any barb, so the statement

is banally true;

(b) Inductive Case for Restriction: we have to prove that if (y)C[[[[P]]]] ↓
x then (y)C[P] ↓t x. If C[[[[P]]]] ↓ x, there are two possible cases:
i. we restrict the actual name x: (x)C[[[[P]]]] ↓, so the statement is ba-

nally true.
ii. we restrict the name y, y �= x: if (y)C[[[[P]]]] ↓ x, (y)C[P] ↓t x, so the

statement is true.

(c) Inductive Case for Parallel: we have to prove that if C[[[[P]]]] |Q ↓ x
then C[P] |Q ↓t x:
if C[[[[P]]]] |Q ↓ x, then C[[[[P]]]] ↓ x or Q ↓ x; moreover, C[P] ↓t x or Q ↓t x
by inductive hypothesis. This means that C[P] |Q ↓t x.

2. The second part of the proof consists in showing that if C[[[[P]]]] → P ′ then
C[P] →+

t P
′′ and P ′ S P ′′. By induction over contexts:

(a) Base Case: if C[·] is [·]: By induction on the structure of P :
i. P is not a timer: the encoding of P is the identity function, and this

preserves the relation:

[[[P]]]=P and [[[P]]] → P ′, then ∃ P ′′ such that P →t P
′′ and P ′=P ′′

ii. P is a timer of the shape timer1(y(ũ).A,B):

[[[timer1(y(ũ).A,B)]]] = (x)(s)(〈|y(ũ).x 〈ũ〉 ; [[[B]]]|〉1s |x(ũ).[[[A]]])

This object cannot reduce by itself, it would require some other pro-
cess running in parallel to trigger y(ũ) or to make possible for the
time to pass. Thus, the statement is obviously true.

iii. P is a timer of the shape timern(y(ũ).A,B):

[[[timern(y(ũ).A, B)]]] = (x)(s)(〈|y(ũ).x 〈ũ〉 ; [[[timern−1(y(ũ).A, B)]]]|〉1s |x(ũ).[[[A]]])

this object cannot reduce. The same considerations of above holds.

300 M. Mazzara

(b) Inductive case for restriction: if C[·] is (x)C[·], we have to prove that if
(x)C[[[[P]]]] → P ′, then (x)C[P] →t P

′′ and P ′ S P ′′. If (x)C[[[[P]]]] → (x)Q,
then C[[[[P]]]] → Q. By inductive hypothesis, C[P] →t Q′ such that QSQ′.
By structural congruence, (x)QS (x)Q′.

(c) Inductive case for parallel: if C[·] is C[·]|P−, we have to prove that
if C[[[[P]]]] |Q → P ′, then C[P] |Q →t P

′′ and P ′ S P ′′. C[[[[P]]]] |Q can
reduce for three reasons:

i. C[[[[P]]]] |Q → C[[[[P]]]]′ |Q: we can say that C[[[[P]]]] → C[[[[P]]]]′ and, ap-
plying the inductive hypothesis, C[P] →t C[P]′ and C[[[[P]]]]′ S C[P]′.
Now, [[[C[P]]]]′ |QS C[P]′ |Q.

ii. C[[[[P]]]] |Q → C[[[[P]]]] |Q′: This case is symmetric with respect to the
previous one.

iii. C[[[[P]]]] |Q → C[[[[P]]]]′ |Q′: since Q is not time sensitive, we must
consider only the following sub-cases:

A. P does not contain a timer: [[[·]]] is the identity function, and the
statement is obvious.

B. Q triggers a timer in P receiving the message y 〈ṽ〉 :
the process has the shape [[[timern(y(ũ).A,B)]]] | y 〈ṽ〉 |Q′′ and re-
duces to (x)(s)(〈|x 〈ṽ〉 ; [[[timern−1(y(ũ).A,B)]]]|〉0s |x(ũ).[[[A]]]) |Q′′.
On the other side, timern(y(ũ).A,B) | y 〈ṽ〉 |Q′′ in one step
reduces to A{ṽ/ũ} |Q′′.
Now, (x)(s)(〈|x 〈ṽ〉 ; [[[timern−1(y(ũ).A,B)]]]|〉0s |x(ũ).[[[A]]]) |Q′′ is
in relation S with A{ṽ/ũ} |Q′′ by definition of S and inductive
hypothesis.

C. P contains a timer and Q makes it possible for the time to pass
and for the workunit to trigger the handler. The timer can have
two possible forms:

– P is a timer of the shape timer1(y(ũ).A,B):
[[[timer1(y(ũ).A,B)]]] = (x)(s)(〈|y(ũ).x 〈ũ〉 ; [[[B]]]|〉1s |x(ũ).[[[A]]])
This process reduces to (x)(s)(〈|y(ũ).x 〈ṽ〉 ; [[[B]]]|〉0s |x(ũ).[[[A]]]).
On the other hand, timer1(y(ũ).A,B) →t B and, by definition
of S : (x)(s)(〈|y(ũ).x 〈ṽ〉 ; [[[B]]]|〉0s |x(ũ).[[[A]]])S B.

– P is a timer of the shape timern(y(ũ).A,B):

[[[timern(y(ũ).A, B)]]]=(x)(s)(〈|y(ũ).x 〈ũ〉 ; [[[timern−1(y(ũ).A, B)]]]|〉1s |x(ũ).[[[A]]])

This process reduces to:
(x)(s)(〈|y(ũ).x 〈ṽ〉 ; [[[timern−1(y(ũ).A,B)]]]|〉0s |x(ũ).[[[A]]]).
On the other hand, timern(y(ũ).A,B) →t

timern−1(y(ũ).A,B) by the rule (idle) and, by defini-
tion of S :
(x)(s)(〈|y(ũ).x 〈ṽ〉 ; [[[timern−1(y(ũ).A, B)]]]|〉0s |x(ũ).[[[A]]])S timern−1(y(ũ).A, B).

Timing Issues in Web Services Composition 301

6 Conclusions

In this paper we showed how webπ is able to cope with timing issues in the same
way as Berger-Honda did. To show this we encoded their time construct, called
timer, in our timed workunit and we proved a simulation theorem. The proof
has some limitations. Firstly, we did not show the proof including time sensitive
operators in parallel. As explained this was just for the sake of brevity and
we gave some hints about the extension of the proof. A second point, instead,
deserves more attention. Unfortunately, the result we presented is not symmetric,
in the sense that we proved simply a simulation and not a bisimulation. For this
reason our result could be considered too limited. However, we are working on
extended results and we are quite confident about related theorems. We strongly
rely on the fact that an analogous result can be proved for the viceversa. In
particular C[P] 	 C[[[[P]]] | τ∗] should hold. Another interesting result to verify
is whether P 	 Q ⇔ [[[P]]] 	 [[[Q]]]. Presently, we are also showing how timed
constructs of composition languages (e.g. BPEL alarm clocks) can be formalized
in this timed calculus. This work can be intended as an extension of we did in
[23] for the untimed ones but presenting here this kind of formalization goes
beyond the scope of the paper.

Finally, we want to remark the fact that any mathematical rigor becomes
pointless without the ability to provide conceptual tools for analysis and rea-
soning or software tools for verification. In this sense contracts conformance
verification between different services should be investigated in the future.

References

1. Business Process Execution Language open issues list. http://www.oasis-
open.org/apps/group public/download.php/11285/wsbpel issues34.html.

2. Questions on Choreology’s coordinated choreographies proposals.
http://lists.w3.org/Archives/Public/public-ws-chor/2004Nov/0016.html.

3. Assaf Arkin et al. Web Service Business Process Execution Language. OASIS,
February 2005.

4. Martin Berger. Towards Abstractions for Distributed Systems. PhD thesis, Imperial
College, London, 2002.

5. Martin Berger and Kohei Honda. The Two-Phase Commit Protocol in an Extended
π-Calculus. In Proc. EXPRESS’00, volume 39 of ENTCS, 2000.

6. Laura Bocchi, Cosimo Laneve and Gianluigi Zavattaro. A calculus for long running
transactions. In Proc. FMOODS ’03, volume 2884 of LNCS. Springer-Verlag, 2003.

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen,
S. Thatte and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
[http://www.w3.org/TR/SOAP/], W3C, Note 08, May 2000.

8. Roberto Bruni, Cosimo Laneve and Ugo Montanari. Orchestrating transactions in
the join calculus. In CONCUR 2002, volume 2421 of LNCS. Springer-Verlag, 2002.

9. Roberto Bruni, Hernán Melgratti and Ugo Montanari. Theoretical foundations for
compensations in flow composition languages. In POPL. ACM, 2005. To appear.

10. Michael Butler and Carla Ferreira. An operational semantics for stac, a langage
for modelling long-running businness transactions. In COORDINATION 2004,
volume 2949 of LNCS. Springer-Verlag, 2004.

302 M. Mazzara

11. Erik Christensen, Francisco Curbera, Greg Meredith and Sanjiva Weerawarana.
Web Services Description Language (WSDL 1.1). W3C, 2001.

12. World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C
Recommendation, 1998. http://www.w3.org/TR/REC-XML.

13. Philippa Gardner, Cosimo Laneve and Lucian Wischik. The fusion machine (ex-
tended abstract). In CONCUR 2002, volume 2421 of LNCS. Springer-Verlag, 2002.

14. Claudio Guidi, Roberto Lucchi and Manuel Mazzara. A formal framework for web
services coordination. In FOCLASA 2004. To appear in ENTCS, Elsevier. To
appear.

15. Tony Hoare. Long-running transactions. http://research.microsoft.com.
16. Iain Houston, Mark C. Little, Ian Robinson, Santosh K. Shrivastava and Stuart M.

Wheater. The CORBA activity service framework for supporting extended trans-
actions. Softw. Pract. Exper. 33(4): 351-373 (2003).

17. Nickolas Kavantzas. Aggregating web services: Choreography and ws-
cdl. http://lists.w3.org/Archives/Public/www-archive/2004Jun/att-0008/WS-
CDL-April200 4.pdf.

18. Nickolas Kavantzas, David Burdett, Gregory Ritzinger and Yves Lafon. Web Ser-
vices Choreography Description Language Version 1.0. OASIS, October 2004.

19. Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. In
Fossacs’05, volume 3441 of LNCS. Springer-Verlag, 2005.

20. Cosimo Laneve and Gianluigi Zavattaro. Webπ at work. In In Proc. of Symposium
on Trustworthy Global Computing (TGC’05), LNCS. Springer-Verlag, 2005. To
appear.

21. Frank Leymann. Web Services Flow Language (WSFL 1.0). [http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf], Member IBM
Academy of Technology, IBM Software Group, 2001.

22. Mark Little. Web services transactions: Past, present and future.
http://www.idealliance.org/papers/dx xml03/ html/abstract/05-02-02.html.

23. Roberto Lucchi and Manuel Mazzara. A π-calculus based semantics for ws-bpel.
Journal of Logic and Algebraic Programming (JLAP). To appear.

24. Manuel Mazzara and Sergio Govoni. A case study of web services orchestration.
In COORDINATION 2005, volume 3454 of LNCS. Springer-Verlag, 2005.

25. Manuel Mazzara and Roberto Lucchi. A framework for generic error handling in
business processes. In First International Workshop on Web Services and Formal
Methods (WS-FM), volume 105 of ENTCS. Elsevier, 2004.

26. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

27. Robin Milner, Joachim Parrow and David Walker. A Calculus for Mobile Processes.
Journal of Information and Computation, 100:1–77, 1992.

28. Chris Peltz. Web services orchestration and choreography. IEEE Computer,
36(10):46–52, 2003.

29. S. Thatte. XLANG: Web Services for Business Process Design. Microsoft Corpo-
ration, 2001.

30. Wil van der Aalst. Pi-calculus versus petri nets: Let us eat ’humble pie’ rather
than further inflate the.

31. W3C. HTTP - HyperText Transfer Protocol Specification. www.w3.org/protocols.

A Compositional Operational Semantics

for OWL-S

Barry Norton, Simon Foster, and Andrew Hughes

Department of Computer Science, University of Sheffield, UK
b.norton@dcs.shef.ac.uk

Abstract. Software composition via workflow specifications has re-
ceived a great deal of attention recently. One reason is the high degree of
fit with the encapsulation of software modules in service-oriented fash-
ion. In the Industry, existing workflow languages have been merged to
form WS-BPEL, the Business Process Execution Language for Web Ser-
vices. In the Research community OWL-S, a ontology for web services,
has been submitted for standardisation alongside OWL, the Web On-
tology Language in which it is expressed. The OWL-S Process Model is
based on an abstraction of the common features of industrial workflow
languages. On the one hand, WS-BPEL has only informal semantics; on
the other, the type of semantics given to ontology-based work tends to
be structural rather than computationally oriented. As a result the se-
mantics developed for DAML-S, which led to OWL-S, are still deficient
in some regards. In this paper we shall survey the existing semantics
and introduce a novel semantics for the latest version of OWL-S that is
focussed on the principle of compositionality, so far not tackled.

1 Introduction

A recent article in the inaugural editorial of the International Journal on Seman-
tic Web and Information Systems [12] reviewed the properties necessary for work
on semantics for the Semantic Web. One fundamental proposed explained was
that of compositionality. While well understood by the formal methods commu-
nity as a property that should apply to behavioural semantics, the time is right
to make this point, and present means to achieve it, to the semantic web (ser-
vices) community. Generally stated, this principal means that where semantics
are given to a formal language, any respective members of the equivalence classes
of two terms should semantically compose into the same equivalence class as the
semantics given to the composite expressed in the target language.

There are two important practical consequences that we should like to draw
out in the context of behavioural semantics for service composition. The first is
the ability to form a semantic model for an orchestration, step by step matching
the workflow by which it is syntactically expressed, as this is built via interaction
with an editor. The point is to avoid rebuilding the semantic model from scratch
at each step. By rather extending the model incrementally, we can hope to
represent semantic properties to the user in real time.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 303–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 B. Norton, S. Foster, and A. Hughes

The second consequence relates to the principal of substitutability, to which
compositionality leads. Practically this allows us to take any member of the
equivalence class of the semantics for a term to represent that term as further
composition takes place. This allows us to somewhat avoid the state explosion
problem, fundamental to concurrent systems, by abstracting from internal states
at each point encapsulation takes place, having shown that a so-called observa-
tional equivalence that we shall review later, is a congruence in our intermediate
syntax for semantic translation. Such an observational theory, allowing this ab-
straction, is the basis of the process calculus CCS [5] which is extended with
mobility to form the Pi-Calculus [6], the inspiration for much work in workflow-
oriented service composition.

Our previous work [8] has demonstrated the compositional modelling of
dataflow-oriented software composition using a novel process calculus CaSE,
a conservative extension of CCS. This calculus develops on the tradition of en-
coding the progress of time qualitatively via abstract ticks of a clock related to
communication behaviour via the principle of maximal progress [4], i.e. where
silent actions are preemptive over clock transitions. CaSE introduced the con-
cept of setting scopes under which behaviour is measured by a specific clock,
running at a different rate from other such, via an operator that at once ‘hides’
that clock, i.e. makes it both immune from the preemptive effects of outsiders’
silent actions and unobservable to outsiders, and makes it preemptive over the
clocks that are still open in the outside.

Our previous model was for systems where scheduling is governed in a data-
driven fashion according to generalised dataflow graphs and in a serialised fashion,
i.e. with course-grained interleavings so that the execution of each actor is atomic.
InOWL-S this executionmodel is just one (specifically theAnyOrderprocess type)
of several in an algebraic definition of workflow-oriented processes — analogous
to ‘components’ in our previous work — defined hierarchically in terms of perfor-
mances — analogous to our previous ‘component instances’ [3].

Rather than defining a compositional model for a grammar directly based on
the Process Model part of the OWL-S ontology, we define a derived formal lan-
guage, which we called CASheW-S (named for our project on the Composition
And Semantic Enhancement of Web Services) that has a greater degree of ‘com-
posability’ than this. In particular we seperate a first class notion of connection
from the definition of performance. In OWL-S, performances have to be declared
with their complete inbound dataflow attached. In CASheW-S, performances and
connections between them can be seperately composed in the same way as they
are in a graphical editor.

In the following section we will complete and explain our adapted syntax
and review its informal semantics. In Section 3 we will present our syntax and
operational semantics for a conservative extension to CaSE, which we name
CaSHew-NUtS for Calculus for Synchronous Hierarchies extended with Non-
deterministic and Un-timed Synchronisations. With this in place we can present
a translation from our CASheW-S syntax into CaSHew-NUtS in Section 4. We
compare this to existing approaches in Section 5 and conlude in Section 6.

A Compositional Operational Semantics for OWL-S 305

2 CASheW-S Syntax

As shown in Table 1, processes in CASheW-S are either atomic or composite.
Both are named from a set we chose, for the purposes of the semantics, to range
over with m. Composite processes are defined in terms of performances of other
processes each of which is given a name that, for our purposes, we allow to be
ranged over by n and o and, like process names, must be guaranteed unique.

When it comes to the declaration of dataflow, there are two differences from
OWL-S, but each allows a direct and compositional translation from the con-
structs there. We consider first the Connection syntax, introduced with the key-
word Connect. This is a first class equivalent to the more restrictive Value-
Source construct, as well as providing part of the role of the ValueFunction con-
struct, in OWL-S. This also allows us to clarify the role of the Produce construct,
which we cast as a specialisation to these connections rather than a specialisation
of performance as in OWL-S, and to introduce the dual Consume construct.

Table 1. The CASheW-S Process Type

Process ::= AtomicProcess m AProcess |
CompositeProcess m CProcess

ConsumeList ProduceList
CProcess ::= Any-Order P erformanceList |

Sequence P erformanceList |
Split P erformanceList |
SplitJoin P erformanceList |
ChooseOne P erformanceList |
IfThenElse P erformance P erformance |
RepeatWhile P erformance |
RepeatUntil P erformance

P erformance ::= Perform n Process DataAggregation
Connection ::= Connect n c o a j

P erformanceList ::= P erformance |
(P erformanceList);P erformance |
(P erformanceList);Connection

DataAggregation ::= V alueDataList
V alueCollectorList

V alueData ::= ValueData a
V alueDataList ::= ε | V alueData V alueDataTail
V alueDataTail ::= ε | ; V alueData V alueDataTail
V alueCollector ::= ValueCollector a k

V alueCollectorList ::= ε | V alueCollector V alueCollectorTail
V alueCollectorTail ::= ε | ; V alueCollector V alueCollectorTail

Consume ::= Consume a n b j
ConsumeList ::= ε | Consume ConsumeTail
ConsumeTail ::= ε | ; Consume ConsumeTail

Produce ::= Produce c n d
ProduceList ::= ε | Produce ProduceTail
ProduceTail ::= ε | ; Produce ProduceTail

306 B. Norton, S. Foster, and A. Hughes

ValueSource and ValueFunction declarations in OWL-S are strictly tied to
performances, in particular their implicit destinations, meaning that a perfor-
mance must declare explicitly its complete in-coming dataflow when composed
into a system, and can not be the subject (in the role of destination) to any
further dataflow. In CASheW-S we should like to represent the degree of com-
position appropriate to an interactive editor and so allow connections to be
composed as first class entities between any existing performances. As such they
must identify two performances, n and o, and respectively the output c of the
destination, and the input a of the source. It also declares a (numbered) com-
ponent of the input, which is to be supplied, j.

Performances can split the inputs of the process being performed into com-
ponents via the ValueCollector construct. This allows the second function of
OWL-S ValueFunctions to be represented (the actual definition of the associ-
ated function is elided, just as it is as an XML literal in OWL-S, but we must
know how many communications are needed). Whereas OWL-S performances
contain ValueData, ValueFunction and ValueSource declarations, their associ-
ated DataAggregation construct in CASheW-S contain only ValueData and Val-
ueCollector declarations. The dataflow that provides the input components of
the value collectors, as well as the other inputs not provided as constants via
value data declarations (implicitly having only a singleton component, numbered
0), is defined via connections. In our semantics these will become atomic names
for channels cn and an

j respectively. OWL-S performances can be composition-
ally translated since the implicit connections can be immediately composed with
the CASheW-S performance.

In order to define a composite process two different type of connections are
needed. To define a prototypical input, a, this must be associated with a com-
ponent, bnj , of a performance input (associated with the prototypical input, b,
defined by the process performed) of some component performance, n. This type
of connection is introduced with the keywordConsume. The keyword Produce,
unlike the one in OWL-S, is the direct dual to this, connecting a performance
output, dn, to the prototypical output, c, of the enclosing composite process. Nei-
ther of these constructs requires the use of the poorly named so-called dummy
variable ‘theParentPerform’ used in OWL-S, but can be translated directly from
such OWL-S Produce and ValueSource declarations.

3 CaSHew-NUtS

To provide an operational semantics for the CASheW-S language, we translate
each term into the process calculus CaSHew-NUtS, for which the core syntax is
defined in Table 2.

This depends on the labels defined in Table 3, which are divided into actions
(α, β), on the left, and clocks (ρ, σ), on the right, and gives rise to an operational
semantics in terms of a labelled transition system where terms are nodes and the
edges represent behaviours labelled from the union of actions and clocks (γ), the
latter being indexed from the set 0, 1 to represent whether they respect maximal

A Compositional Operational Semantics for OWL-S 307

Table 2. Core CaSHew-NUtS Syntax

E ::= 0 | Δ | Δσ | α.E | ��E��σ(E) | E��σ(E) | E + E | E|E |
E [a �→ b] | E \ a | E/σ | E//σ | μX.E | X

Table 3. CaSHew-NUtS Labels

a, a, b, b, · · · ∈ Λ ∪ Λ ρ, σ, · · · ∈ T
L ⊆ Λ T ⊆ T
A = Λ ∪ Λ ∪ {τ} L = A ∪ C C = T × {0, 1}

α, β, · · · ∈ A γ, δ, · · · ∈ L ρi, σj · · · ∈ C

Table 4. Derived CaSEew-NUtS Syntax

a.E = a.E + Δ �E�σ(F) = ��E + Δσ��σ(F) ΔT = Σσ∈T Δσ

aT .E = a.E + ΔT E�σ(F) = E + Δσ��σ(F)
σ.E = 0�σ(E) a.E = Σi<|a| ai.〈a1 · · · a(i−1) · a(i+1) · · · a|a|〉.E

σT .E = ΔT �σ(E) where |a| > 1; 〈a〉.E = a.E

progress or not. The transition relation is of type E ×L× E , and is the greatest
such relation that satisfies the rules in Table 5.

As in CaSE [8], we ensure the well-definedness of the semantics by making
the negative definitions in the latter side conditions depend only on auxiliary
well-formed sets (so-called initial actions, IA, and initial clocks, IC), rather than
the transition relation itself. The main difference is in the effect of maximal
progress on, and determinism of, clocks. Whereas the latter principle has an
immediate preemptive effect in CaSE, i.e. the presence of a τ -transition removes
all σ-transitions from the semantics, in CaSHew-NUtS we simply note the effect
in the index to the label (cf. rule Com4). In particular a σ1-labelled transition is
respectful of maximal progress and deterministic, a σ0-labelled transition is not.

Regarding determinism, whereas in CaSE the so-called ‘time-out’ operators
%E&σ(F) and +E,σ(F), by which clocks are introduced, overrides previous transi-
tions on that clock, CaSHew-NUtS has variant operators %%E&&σ(F) and ++E,,σ(F)
where the index of the previous clock is simply decremented so that there is at
most one deterministic transition, labelled σ1, per clock σ.

We take advantage of these changes in the semantics by having two hiding
operators in CaSHew-NUtS. The first, E/σ, brings hidden clocks back in line
with CaSE by only turning into silent actions deterministic, maximal progress-
respectful clocks, σ1. As in CaSE, this both closes the scope of a clock, so that it is
neither synchronised, nor open to preemption by, the environment, but is capable
of preempting open clocks (a kind of hierarchical scoping, as explained in [8]).
In order to exploit the new semantics we have a second hiding operator, E//σ,
which allows non-deterministic and non-maximal-progress-respecting clocks to
be hidden as well. This allows us to synchronise agents that still have internal
work to do, as we shall later consider in giving semantics to the ‘Split’ operator.

308 B. Norton, S. Foster, and A. Hughes

Table 5. Operational Semantics for CaSHew-NUtS

Idle
0

σ1−→ 0
Stall

Δσ
ρ1−→ Δσ

1

Act
α.E

α→ E
Patient

a.E
σ1−→ a.E

Sum1
E

α→ E′

E + F
α→ E′

Sum2
F

α→ F ′

E + F
α→ F ′

Sum3
E

σi−→ E′ F
σj−→ F ′

E + F
σi·j−→ E′ + F ′

Com1
E

α→ E′

E | F
α→ E′ | F

Com2
F

α→ F ′

E | F
α→ E | F ′

Com3
E

a→ E′, F a→ F ′

E | F
τ→ E′ | F ′

Com4
E

σi−→ E′ F
σj−→ F ′

E | F
σi·j·k−→ E′ | F ′

b

TO1
��E��σ(F)

σi−→ F
a TO2

E
σi−→ E′

��E��σ(F)
σ0−→ E′

TO3
E

γ→ E′

��E��σ(F)
γ→ E′

2

STO1
E��σ(F)

σi−→ F
a STO2

E
σi−→ E′

E��σ(F)
σ0−→ E′

STO3a
E

α→ E′

E��σ(F)
α→ E′ 2 STO3b

E
ρi−→ E′

E��σ(F)
ρi−→ E′��σ(F)

1

Hid1
E

σ1−→ E′

E/σ
τ→ E′/σ

Hid2
E

α→ E′

E/σ
α→ E′/σ

Hid3
E

ρi−→ E′

E/σ
ρi−→ E′/σ

1, c

UHid1
E

σi−→ E′

E//σ
τ→ E′//σ

UHid2
E

α→ E′

E//σ
α→ E′//σ

UHid3
E

ρi−→ E′

E//σ
ρi−→ E′//σ

1, d

Res
E

γ→ E′

E \ a
γ→ E′ \ a

γ /∈ {a, a} Rel
E

γ→ E′

E[f]
f(γ)→ E′[f]

Rec
E

γ→ E′

μX.E
γ→ E′{μX.E/X}

where: 1) ρ �= σ and: a) i = 0 if τ ∈ IA(E), 1 otherwise
2) �i · γ = σi b) k = 0 if τ ∈ IA(E | F), 1 otherwise

c) σ1 /∈ IA(E)
d) �i · σi ∈ IA(E)

A Compositional Operational Semantics for OWL-S 309

Table 6. Initial Action Set

IA(0) = ∅
IA(Δ) = ∅

IA(Δσ) = ∅
IA(a.E) = {a}
IA(τ.E) = {τ}

IA(�E�σ(F)) = IA(E)

IA(E�σ(F)) = IA(E)

IA(E + F) = IA(E) ∪ IA(F)

IA(E | F) = IA(E) ∪ IA(F)

∪{τ | a ∈ IA(E) ∧ a ∈ IA(F)}
IA(μX.E) = IA(E)

IA(X) = ∅
IA(E \ L) = IA(E) \ (L ∪ L)

IA(E/σ) = IA(E) ∪ {τ | σ1 ∈ IC(E)}
IA(E//σ) = IA(E) ∪ {τ | σi ∈ IC(E)}

Table 7. Initial Clock Set

IC(0) = {σ1 | σ ∈ T }
IC(Δ) = ∅

IC(Δσ) = {ρ1 | ρ ∈ T ∧ ρ �= σ}
IC(a.E) = {σ1 | σ ∈ T }
IC(τ.E) = ∅

IC(�E�σ(F)) = IC(E)

∪{σ1 | τ /∈ IA(E)}
∪{σ0 | τ ∈ IA(E)}

IC(E�σ(F)) = IC(E)

∪{σ1 | τ /∈ IA(E)}
∪{σ0 | τ ∈ IA(E)}

IC(E + F) = {σi·j | σi ∈ IC(E)

∧ σj ∈ IC(F)}
IC(E | F) = {σi·j·(1−|{τ}∩IA(E | F)|) |

σi ∈ IC(E)

∧ σj ∈ IC(F)}
IC(μX.E) = IC(E)

IC(X) = ∅
IC(E \ L) = IC(E)

IC(E/σ) =

{
∅ (if σ1 ∈ IC(E))
IC(E) (otherwise)

IC(E//σ) =

{
∅ (if ∃i · σi ∈ IC(E))
IC(E) (otherwise)

In this work we shall consider only deterministic clocks so we derive the CaSE
timeout operator, and several other derived operators used in that system, as
follows:
A symmetric relation R ⊆ P ×P is a weak bisimulation if whenever〈P,Q〉 ∈ R:

– If P
γ→ P ′, γ �= τ , then ∃Q′ ·Q τ→∗ γ→ τ→∗

Q′ and 〈P ′,Q′〉 ∈ R
– If P τ→ P ′ then ∃Q′ ·Q τ→∗

Q′ and 〈P ′,Q′〉 ∈ R
We say that P is weakly equivalent to Q and write P ≈ Q, if 〈P,Q〉 ∈ R for
some weak bisimulation R.

A symmetric relation R ⊆ P ×P is a temporal observation congruence if when-
ever 〈P,Q〉 ∈ R:

1. P α→ P ′ implies ∃Q′.Q τ→∗ α→ τ→∗
Q′ and P ′ ≈ Q′ .

2. P σ→ P ′ implies ∃Q′.Q σ→ Q′ and 〈P ′,Q′〉 ∈ R .

310 B. Norton, S. Foster, and A. Hughes

Proposition 1. Compositionality
Temporal observation congruence is compositional through all operators.

Proposition 2. Full Abstraction
Temporal observation congruence is the coarsest congruence contained in tem-
poral weak bisimulation.

4 CASheW-S Semantics in CaSHew-NUtS

In the semantic translation from the CASheW-S to the CaSHew-NUtS language
we will use the variables in Table 8.

When we want to represent a collection we will use the corresponding capital,
for instance A is a set of inputs; we abuse this syntax slightly by allowing lists
to be represented the same way so that G represents, for instance, a consume
list as defined in the CASheW-S syntax. Finally Q stretches the notation further
by representing a CASheW-S performance list which has connections, as well as
performances, as members and strictly has a performance at the head (and is
expanded by ‘snocing’, i.e. adding new members to the tail, and decomposed by
reverse tail recursion).

At the top level we look at the semantics of processes. Our main semantic
function [[]] is of type p –> m –> A –> C –> E (which then composes with
the CaSHew-NUtS semantic function to derive a labelled transition system).
There are two possibilities matched by this function: the atomic process and the
composite process.

For an atomic process the process name must match the one declared syntac-
tically, the inputs and outputs must match those semantically associated with
the AProcess, the syntactic nature of which we have left open. One possibility is
to consider all services as grounded in WSDL and having ‘functional’ behaviour,
i.e. with all inputs required, and all outputs produced, at every execution. In
this case all AProcess semantics will take the form shown in Figure 1, generalised

Table 8. Variables

p : Process q : Performance
m : Process Name n, o : Performance Name
a, b : (Process) Input an

j , bo
j : (Performance) Input Component

c, d : (Process) Output cn, do : (Performance) Broadcast Output
g : Consume u : Value Data
h : Produce v : Value Collector

w : AProcess z : CProcess

Table 9. Process Semantics

m[[AtomicProcess m w]]AC = m[[w]]AC
m[[CompositeProcess m z G H]]AC

= (m[[z]]A
m

Cm | [[G]]A∅ | [[H]]∅C) \ Am ∪ Cm / {σcn | cn ∈ Cm}

A Compositional Operational Semantics for OWL-S 311

a

b
r

e

τc

b

a

d

Fig. 1. Example AProcess Semantics

for different numbers of inputs and outputs, and the match will be syntactically
based on a representation of WSDL. Our aim in the wider context, however, is
to plug in a semantic translation of a choreography language at this point.

WSMO has proposed that two process models should be associated with a
service to be properly described [11]. One, which we concentrate on in this pa-
per, is named the orchestration and focuses on how the behaviour of a composite
process is formed from the behaviour of its component services. The choreogra-
phy, on the other hand establishes, in terms of interaction, how a client should
interact with the service. There are many forms that this could take, and as yet
little agreement, but our own previous work [9] has generalised on the ideas of
interface automata [2].

We previously concentrated on data-driven scheduling of generalised
dataflow-oriented systems, and showed how to accommodate statefulness, op-
tional inputs and non-determinism in semantics such a scheme. In particular,
automata allow us to easily mix statefulness and non-determinism, by represent-
ing the internal behaviour with an explicit silent action τ or choice between these.
To these transition labels for inputs and outputs (we overline outputs as is usual
in CCS) we add ‘scheduling signals’ that allow us to be explicit about ‘readiness’
for execution. The signal r signifies readiness (and can be non-deterministically
offered alongside further inputs to show that these are optional), and is followed
by signal e, which signifies permission to execute.

All of these features are widely claimed necessary in the composition of se-
mantic web services, where the notion of service is as much based on work in
agents as on SOAP/WSDL web services. The Any-Order composite process is
given informal semantics as interleaving execution of the components explicitly
according to their readiness to execute (based on inputs as well as non-data
preconditions, from which we abstract).

The guiding principle for our semantics will therefore be drawn from our ex-
isting model scheme [8], where the prototypical level (here called processes, there
components) are described in terms of such automata, and where compositions
at the instance level (here called performances, there component instances) will
be given a compositional semantics by means of a ‘token passing game’, synchro-
nised by clocks. The ability to turn such clocks into silent actions, away from
which we can abstract away in our equivalence theory in temporal observation
congruence, gives us a means to form such an interface automaton (with no
explicit clocks) for a composite process. As shown, the inputs and outputs for
such are based on the Produces and Consumes contained, the other inputs and

312 B. Norton, S. Foster, and A. Hughes

Table 10. Produce and Consume Semantics

[[Consume a n b j]]
{a}
∅ = μX.a.bn

j .X

[[Produce c n d]]∅{c} = μX.dn.c.X

outputs of the composite CProcess being restricted away. At the same time, the
clocks that coordinate the outputs, as described later, are hidden according to
maximal progress.

Table 10 shows the semantics that are given to Consume and Produce dec-
larations. In basic terms, these cyclically convert from process inputs to perfor-
mance inputs, and from performance outputs to process outputs, respectively.
The underlining in the syntax, as defined in the derived syntax, represents the
timing of the two communications involved: the initial input is ‘patient’, meaning
that an unspecified amount of time can pass on all clocks (cf. rule Patient) while
the agent waits for the input; the subsequent output is ‘insistent’ meaning that
this communication is instantaneous, i.e. can be measured on no clock. This is
represented in transition diagrams for these two agents shown in Figures 2 and 3
respectively. The double circle means that any clock not explicitly shown ‘idles’,
i.e. has a self-transition at the state; the single circle means that any clock not
explicitly shown cannot tick, i.e. has no transitions.

bnj

a

Fig. 2. Consume Semantics

c

dn

Fig. 3. Produce Semantics

Table 11. Data Aggregation Semantics

x[[K; L]]A
L∪AK

CK ∪CL = x[[K]]A
K

CK | x[[L]]A
L

CL

Table 12. General Composition Semantics

[[ValueData a]]{a} = μX.a.X
n[[ValueCollector a k]]

{an
j | j<k}

a = μX.〈an
j | j < k〉.τ.a.X

These agents are composed, to make a ConsumeList and ProduceList respec-
tively, according to the general composition semantics shown in Table 12 (where
x can stand for any symbol, including the absence of any such, and K and L
any non-bracketed list, i.e. any list in the CASheW-S syntax except the Perfor-
manceList). This is based directly on parallel composition and the accumulation
of inputs and outputs.

A Compositional Operational Semantics for OWL-S 313

Table 13. Performance Semantics

(m,n)[[Perform n p U V]]
{an

0 | a∈Am∧a/∈CU ∧a/∈CV }∪AV

{cn | c∈Cm}
= ([[U]]CU | [[V]]A

V

CV | m[[p]]A
m

Cm [{a �→ an
0 | a ∈ Am ∧ a /∈ CU ∧ a /∈ CV }]

| Πc∈CmμX.cσcn .μY.cn
σm .Y �σcn

(X)) \ CU ∪ CV ∪ Cm

Table 14. Connection Semantics

m[[Connect n c o a j]] = μX. cn. ao
j .σcn

. X

cn

σcn

c
σcn

σm

Fig. 4. Broadcast Semantics

ao
j

cn

σcn

Fig. 5. Connection Semantics

This composition is also used in forming ValueDataLists and ValueCollec-
torLists from the individual semantics shown in Table 11.

Using this we are able to form semantics for performances as shown in
Table 13.

Table 15. CProcess Semantics

m[[AnyOrder Q]]AC = m
an[[Q]]AC \ t / σm

m[[Sequence Q]]AC = m
se[[Q]]AC \ t / σm

m[[Split Q]]AC = (m
sp[[Q]]AC | μX.σm.r.e.σm.σm.X) // σm

m[[SplitJoin Q]]AC = (m
sj [[Q]]AC | μX.σm.r.e.σm.σm.X) // σm

m[[ChooseOne Q]]AC = (m
co[[Q]]AC | μX.ri.r.e.ei

σm .σm.X) \ {ei, ri} / σm

m[[IfThenElse Perform n pn Un V n Perform o po Uo V o]]A
n∪Ao

Cn∪Do

= ((m,n)[[Perform n pn Un V n]]A
n

Cn [e �→ en, r �→ rn] |
(m,o)[[Perform o po Uo V o]]A

o

Co [e �→ eo, r �→ ro] |
μX.(τ.rn.r.e.en

σn .σn.X + τ.ro.r.e.eo
σo .σo.X))

\{en, eo, rn, ro} / σn / σo

m[[RepeatWhile Perform n p U V]]AC

= ((m,n)[[Perform n p U V]]AC [e �→ ei, r �→ ri] |
μX.(τ.ri.r.e.ei

σn .σn.μY.(τ.X + τ.ri.ei
σn .σn.Y)

+τ.r.e.X)) \ {ei, ri} / σn

m[[RepeatUntil Perform n p U V]]AC

= ((m,n)[[Perform n p U V]]AC [e �→ ei, r �→ ri] |
μX.ri.r.e.ei

σn .σn.μY.(τ.X+

τ.ri.ei
σn .σn.Y)) \ {ei, ri} / σn

314 B. Norton, S. Foster, and A. Hughes

Table 16. Connection Composition Semantics

m
x [[(Q);Connect n c o a j]]AC = m[[Connect n c o a j]]AC | m

x [[Q]]AC

Table 17. Performance Composition Semantics

m
an[[Perform n p U V]]AC

= ((m,n)[[Perform n p U V]]AC [e �→ ei, r �→ ri] |
μX.ri

{σm,σn}.(r.e.ei{σm,σn}.σn
σm .�t.σm

σn .X�σm(X) +

t.ei.σn
σm .�t.σm

σn .X�σm(X))) \ {ei, ri}/σn

m
an[[(Q);Perform n p U V]]A

Q∪An

CQ∪Cn

= m
an[[Perform n p U V]]A

n

Cn | m
an[[Q]]A

Q

CQ

m
se[[Perform n p U V]]AC

= ((m,n)[[Perform n p U V]]A
n

Cn [e �→ ei, r �→ ri] |
μX.ri.r.e.ei{σm,σn}.σn

σm�t.σm
σn .X�σm(X))/σn \ {ri, ei}

m
se[[(Q);Perform n p U V]]A

Q∪An

CQ∪Cn

= (n[[Perform n p U V]]A
n

Cn [e �→ ei, r �→ ri] | m
se[[Q]]A

Q

CQ [t �→ ti] |
μX.ti

σn .ri.ei{σm,σn}.σn
σm�t.σm

σn .X�σm(X))/σn \ {ri, ei}
m
sp[[Perform n p U V]]AC

= ((m,n)[[Perform n p U V]]AC [e �→ ei, r �→ ri] |
μX.ri

{σm,σn}.σ
m.σm

σn .ei{σm,σn}.σm
σn .X) \ {ei, ri}/σn

m
sp[[(Q);Perform n p U V]]A

Q∪An

CQ∪Cn

= m
sp[[Perform n p U V]]A

n

Cn | m
sp[[Q]]A

Q

CQ

m
sj [[Perform n p U V]]AC

= ((m,n)[[Perform n p U V]]AC [e �→ ei, r �→ ri] |
μX.ri

{σm,σn}.σm.σm
σn .ei{σm,σn}.σn

σm .σm
σn .X) \ {ei, ri}/σn

m
sj [[(Q);Perform n p U V]]A

Q∪An

CQ∪Cn

= m
sj [[Perform n p U V]]A

n

Cn | m
sj [[Q]]A

Q

CQ

m
co[[Perform n p U V]]AC

= (m,n)[[Perform n p U V]]AC [e �→ ei, r �→ ri]/σn

m
co[[(Q);Perform n p U V]]A

Q∪An

CQ∪Cn

= m
co[[Perform n p U V]]A

n

Cn | m
co[[Q]]A

Q

CQ

This composes the semantics of the ValueDataList and ValueCollectorList
with the process being performed, having renamed those inputs not removed by
a ValueData or componentised by a ValueCollector to form a single-component
performance input (an

0), with one agent per process output (Π represents dis-
tributed parallel composition) that turns these into broadcast outputs. This
broadcast agent is illustrated with the transition diagram in Figure 4. While
waiting for a value this is patient in all clocks but is instantaneous in the unique

A Compositional Operational Semantics for OWL-S 315

associated clock σcn

. Once the process output c is received, it will be broadcast
as cn until the associated clock ticks. As we know from the semantics for com-
posite processes, each such clock will be hidden under the conditions of maximal
progress. This means that whenever there is an agent that can receive the broad-
cast, the subsequent silent action will prevent the clock. In this way the instant
measured by the clock will necessarily contain each such communication.

We arrange for this communication by giving connections the semantics de-
tailed in Table 14 and illustrated in Figure 5.

This agent patiently waits for the broadcast but then insistently relays this
to the recipient performance. Only the value has been passed on will the agent
synchronise on the associated clock to signal the end of the broadcast instant.
It must wait for this clock before picking up a new value to avoid duplicates.

Having shown the semantics for performances we are now able to continue the
semantics for composite processes. At the top level the semantics for CProcess
are as shown in Table 15.

The first five types of composite process — Any-Order, Sequence, Split, Split-
Join and ChooseOne — are defined over a list of performances and connections
and we should therefore like to form a semantics for the list which is open to
further composition under the clock σm. Since the exact form of composition
depends on the process context, we define a family of semantic functions where
this is a parameter. These functions are detailed in Table 17. Since the list
may also include connections, we include a generic rule for composing these in
Table 16.

The other types of composition are expressed directly in terms of their com-
ponents and we similarly give them direct semantics, using silent transitions to
encode the non-deterministic choice that is implicit.

5 Related Work

The original semantics for DAML-S were provided via translation to Petri
Nets [7]. As well as problems with providing compositionality for a mathematical
semantics for these, the translation was fundamentally non-compositional. Syn-
chronisations were built for the fixed number of performances involved, for each
form of composite behaviour, that are not open to the composition of further
performances. Furthermore, the semantics was provided for a very early version
of DAML-S, the fore-runner to OWL-S, where only control flow and no data
flow was described. The question of the effect of data on control flow, which
we have modelled as an explicit ‘readiness to execute’ signal, was therefore not
considered at all. This would very much restrict the ability to use that model
for analysis.

A more developed operational semantics have been provided in process
calculus-like style derived from Concurrent Haskell/Erlang semantics [1]. In this
work an intermediate language called ‘Core DAML-S’ is treated to structured
operational semantics like shown here for CaSHew-NUtS. Unfortunately no com-
positionality result is provided, or provable, for the Core DAML-S semantics

316 B. Norton, S. Foster, and A. Hughes

since no equivalence theory is nominated. Furthermore, again the translation
from the full process model is non-compositional since fixed size ‘spawn’ pro-
cesses are created, as are agents which wait for fixed numbers of synchronisations
signalling completion, not open to further composition once formed. Finally,
since the dataflow for loop-type processes were not fixed, no semantics were
given for these. In our formalism it is feasible nevertheless to offer semantics for
the control-flow part of these processes.

6 Conclusions and Future Work

Our intention in establishing compositional operational semantics for OWL-
S is twofold. First we should like to implement the semantics to provide an
orchestration engine, which we are developing as an open source project in
Haskell. The previous semantics have inspired the so-called DAML-S Virtual
Machine [10], though this has not been made widely available. An informal ar-
gument about correctness of the DAML-S Virtual Machine is indirect, based on
re-interpretation of the semantics as logical predicates. Our implementation will
be more direct, with an inductive datatype directly representing the CaSHew-
NUtS syntax and a step function directly representing its operational semantics.

Our second aim is to extend the verification results we have for our previous
model [8]. In particular we should like to check the consistency of dataflows
in an automatic fashion. In the same way as this has been cast as a system
of behavioural types in our previous work [9], we should like to establish a
formal link between orchestration and choreography. Whereas these are seperate
models in current approaches, our belief is that application developers using
service-oriented architectures should assign choreography models at each level
of composition and a formal check that this choreography is consistent with
the orchestration defined should implicitly check the internal consistency of the
orchestration.

References

1. Anupriya Ankolekar, Frank Huch, and Katia Sycara. Concurrent execution se-
mantics of DAML-S with subtypes. In Proc. 1st Intl. Semantic Web Conference
(ISWC2002), volume 2342 of LNCS, pages 308–332. Springer Verlag, May 2002.

2. L. de Alfaro and T.A. Henzinger. Interface automata. In Proc. 8th European Soft.
Eng. Conference and 9th ACM SIGSOFT International Symposium on Founda-
tions of Soft. Eng. (ESEC/FSE 2001), volume 26, 5 of Software Engineering Notes,
pages 109–120. ACM Press, 2001.

3. David Martin et al. OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.1/overview/, 2004.

4. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117(2):221–239, March 1995.

5. A. J. R. G. Milner. Communication and Concurrency. Prentice Hall, 1989.
6. A. J. R. G. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cam-

brudge University Press, 1999.

A Compositional Operational Semantics for OWL-S 317

7. Srini Narayanan and Sheila A. McIlraith. Simulation, verification and automated
composition of web services. In Proc. 11th Intl. World Wide Web Conference
(WWW2002), May 7-10 2002.

8. B. Norton, G. Lüttgen, and M. Mendler. A compositional semantic theory for
synchronous component-based design. In 14th Intl. Conference on Concurreny
Theory (CONCUR ’03), number 2761 in LNCS. Springer-Verlag, 2003.

9. Barry Norton and Matt Fairtlough. Reactive types for dataflow-oriented software
architectures. In Danielle C. Martin, editor, Proceedings of 4th IEEE/IFIP Confer-
ence on Software Architecture (WICSA2004), volume P2172, pages 211–220. IEEE
Computer Society Press, 2004.

10. Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and Katia Sycara.
The DAML-S virtual machine. In Proc. 2nd Intl. Semantic Web Conference
(ISWC2002), volume 2870 of LNCS, pages 290–305. Springer Verlag, 2003.

11. Dumitru Roman, Holger Lausen, and Uwe Keller. WSMO final draft.
http://www.wsmo.org/TR/d2/v1.1/, February 2005.

12. A. Sheth, C. Ramakrishnan, and C. Thomas. Semantics for the Semantic Web:
The implicit, the formal and the powerful. Intl. Journal on Semantic Web and
Information Systems, 1(1):1–18, 2005.

A Parametric Communication Model for the

Verification of BPEL4WS Compositions�

Raman Kazhamiakin and Marco Pistore

DIT, University of Trento,
via Sommarive 14, 38050, Trento, Italy

{raman, pistore}@dit.unitn.it

Abstract. In this paper we describe an approach for the verification of
Web service compositions defined by a set of BPEL4WS processes. The
key aspect of such a verification task is the model adopted for represent-
ing the communications among the services participating to the com-
position. Indeed, these communications are asynchronous and buffered
in the existing execution frameworks, while most verification approaches
adopt a synchronous communication model for efficiency reasons. In our
approach, we model the asynchronous nature of Web service interactions
without introducing buffers, by allowing a reordering of the messages ex-
changed during these interactions. This way, we can provide an accurate
model of a wider class of service composition scenarios, while preserving
an efficient performance in verification.

1 Introduction

Web services provide the basis for the development and execution of business pro-
cesses that are distributed over the network and available via standard interfaces
and protocols [9]. Service composition [10] is one of the most promising ideas
underlying Web services: new functionalities can be defined and implemented
by combining and interacting with pre-existing services. Different standards and
languages have been proposed to develop Web service compositions. BPEL4WS
(Business Process Execution Language for Web Services, BPEL for short) [3] is
one of the emerging standards for describing a key aspect for the composition of
Web services: the behavior of the service. It provides a core of process descrip-
tion concepts that allow for the definition of business processes interactions.
This core of concepts is used both for defining the internal business processes
of a participant to a business interaction and for describing and publishing the
external business protocol that defines the interaction behavior of a participant
without revealing its internal behavior.

BPEL opens up the possibility of applying a range of formal techniques to
the verification of the behavior of Web services, and different approaches have

� This work is partially funded by the MIUR-FIRB project RBNE0195K5, “Knowl-
edge Level Automated Software Engineering”, and by the MIUR-PRIN 2004 project
“Advanced Artificial Intelligence Systems for Web Services”.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 318–332, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Parametric Communication Model for the Verification 319

been defined for verifying BPEL [7,11,13,12,8,15]. We are interested in particular
in those techniques that are applied to the verification of BPEL compositions:
in this case, we have to verify the behaviors generated by the interactions of a
set of BPEL processes, each specifying the workflow and the protocol of one of
the services participating to the composition.

A key aspect for this kind of verification is the model adopted for represent-
ing the communications among the Web services. Indeed, the actual mechanism
implemented in the existing BPEL execution engines is both very complex and
implementation dependent. More precisely, BPEL processes exchange messages
in an asynchronous way; incoming messages go through different layers of soft-
ware, and hence through multiple queues, before they are actually consumed in
the BPEL activity; and overpasses are possible among the exchanged messages.

On the other hand, most of the approaches proposed for a formal verification
of BPEL compositions are based on a synchronous model of communications,
which does not require message queues and hence allows for a better performance
in verification. This synchronous mechanism relies on some strong hypotheses
on the interactions allowed in the composition: at a given moment in time, only
one of the components can emit a message, and the receiver of that message is
ready to accept it (see e.g., [8]).

In our experience, these hypotheses are not satisfied by many Web service
composition scenarios of practical relevance, where critical runs can happen
among messages emitted by different Web services. This is the case, for in-
stance, when a Web service can receive inputs concurrently from two different
sources, or when a service which is executing a time consuming task can receive
a cancellation message before the task is completed.

Our goal is to provide extended composition mechanisms, where the hypothe-
ses on synchronous communications are weakened, but an explicit introduction of
message queues is still not required. This way, an accurate modelling is possible
for a wider class of service composition scenarios, while an efficient performance
is still possible.

In this paper, we propose a parametric model of composition, which is based
on synchronous communications, but which allows for a reordering of the ex-
changed messages in order to model critical runs and message overpasses that
may occur in the execution of BPEL processes. More precisely, we define three
variants of this mechanism, depending on the degree of reordering allowed in the
messages. The first variant, where no reordering is possible, corresponds to the
synchronous model of [8]. The second variant permits to reorder only messages
sent or received by different partners, that is, it takes into account that a differ-
ence between the order of emission and the order of reception of the messages
due to the distributed nature of Web services. The third variant, finally, allows
for reordering messages also between the same two partners, thus considering
message overpasses that can occur in the message queues of the BPEL engines.

For each of the three composition models, we define a validity check, that
determines whether the model is adequate for a given composition scenario.
Moreover, we define a composition and verification algorithm that is correct

320 R. Kazhamiakin and M. Pistore

and complete for those scenarios that pass the validity check. We have imple-
mented the proposed approach and we report our preliminary experiments in its
application to a case study based on a Virtual Travel Agency domain.

The paper is structured as follows. In Sect. 2 we introduce several instances of
the case study that motivate the necessity to consider different variants of com-
munication mechanism. Section 3 explains how BPEL processes can be trans-
lated into state transition systems. We give the formal definition of the extended
composition and the notion of composition validity in Sect. 4, and describe differ-
ent models basing on these notions in Sect. 5. Section 6 explains the architecture
of the described analysis framework and reports the results of its experimental
evaluation. Conclusions and future work are presented in Sect. 7.

2 Modelling BPEL Compositions

In order to illustrate the problem of modelling BPEL compositions we consider
several variants of the Virtual Travel Agency domain. The goal of the Virtual
Travel Agency is to provide a combined flight and hotel booking service by
integrating separate, independent existing services: a Flight booking service,
and a Hotel booking service. Thus, the composition describes the interactions of
four partners: User, Virtual Travel Agency (VTA), Hotel and Flight services (see
Fig. 1.a). We model the composition using BPEL specifications that describe the
workflows and the interactions of the four partners.

Example 1: Tickets Reservation Scenario. The case study describes the behavior
exposed by VTA that allows the user to book a flight to the specified place and
reserve a room in the hotel at that place for a given period of time. Provided
a reservation offer, the user can accept or reject it, sending a corresponding
message to the VTA service (Fig. 1.b).

The Flight booking service becomes active upon a request for a given loca-
tion (e.g., Paris) and a given period of time (e.g., August, 15-20). In the case
the booking is not possible, this is signaled to the requestor, and the protocol
terminates. Otherwise, the requestor is notified with an offer information and
the protocol stops waiting for either a positive or negative acknowledgment. In
case of positive answer the flight is successfully booked and the reservation ticket
is sent, otherwise the interaction terminates with failure. Figure 1.c represents
the protocol provided by the Flight booking service. The protocol of the Hotel
service is similar.

The behavior of the VTA is as follows. Having received a reservation request
from the user, VTA interacts with Flight and Hotel services to obtain ticket
offers and expects either a negative answer if this is not possible (in which case
the user is notified and the protocol terminates failing), or provides the user
with an offer indicating hotel, flights and cost of the trip. After that the user
may either accept or refuse the offer, and in the first case VTA provides the user
with the tickets obtained from Hotel and Flight. The diagram corresponding to
the BPEL protocol of VTA is represented in Fig. 1.d.

A Parametric Communication Model for the Verification 321

[RECEIVE]
Flight Request

[INVOKE]
Flight NA

[INVOKE]
Flight Offer

NA FAILURE
[PICK]

NA FAILURE

[SWITCH]
IsAvailable

SUCCESS

[INVOKE]
Flight Ticket

NO YES

[INVOKE]
request

SUCCESS

[PICK]

NA FAILURE

[RECEIVE]
TicketNA FAILURE

[SWITCH]
ACKNACK

[INVOKE]
nAck

[INVOKE]
Ack

[RECEIVE]
Request

[PICK]

[INVOKE]
Flight Request

[INVOKE]
NA

NA FAILURE

[INVOKE]
Hotel Request

[PICK]

[INVOKE]
Flight nAck

[INVOKE]
NA

NA FAILURE

[INVOKE]
Offer

[PICK]

[INVOKE]
Flight nAck

[INVOKE]
Hotel nAck

[INVOKE]
Flight Ack

[RECEIVE]
Flight Ticket

FAILURE
[INVOKE]
Hotel Ack

[RECEIVE]
Hotel Ticket

[INVOKE]
Ticket

SUCCESSb) User process c) Flight process d) VTA process

[ON MESSAGE]
Offer

[ON MESSAGE]
NA

[ON MESSAGE]
Flight NA

[ON MESSAGE]
Flight Offer

[ON MESSAGE]
Hotel NA

[ON MESSAGE]
Hotel Offer

[ON MESSAGE]
nAck

[ON MESSAGE]
Ack

[ON MESSAGE]
Flight nAck

[ON MESSAGE]
Flight Ack

a) VTA composition

User

VTA
Flight Service

Hotel Service
Ack / Nack

Flight Request

Offer / NA

Offer / NA

Ack / Nack

Offer / NA

Ack / Nack

Request

Ticket

Flight Ticket

Hotel Ticket

Hotel Request

Fig. 1. Composition participants

The scenario exhibits an important property that allows for a very simple
communication mechanism. At any moment of time only one message can be
emitted by one of the partners. Moreover, such a message is acceptable by the
corresponding receiver. Using the terminology of [8], the composition model sat-
isfies the synchronous compatibility, autonomy and lossless composition prop-
erties. As a consequence, a synchronous communication model can be used to
define the composition without loosing completeness of behaviors.

Example 2: Reservation with Cancellation. Unfortunately, the simplified com-
munication model of the previous example is not applicable to all kinds of in-
teractions. An indicative example is the business process with event handlers.
Let us consider an extension of the above case study, such that the User, after
having acknowledged the provided offer, can decide to cancel booking operation.
In this case the User sends a Cancel message to the VTA process and waits for
an outcome of the cancellation. The cancellation is forwarded to the Flight pro-
cess (and similarly to the Hotel process, we omit this for the sake of simplicity).
The latter waits a certain time for a cancellation message and if it is received,
sends the notification about successful cancellation. Or, if time runs out, sends
a ticket to the VTA thus forcing the failure of cancellation; then it consumes the
cancellation sent by the VTA and ignores it. The excerpts of the corresponding
process specifications are represented in Fig. 2.

322 R. Kazhamiakin and M. Pistore

[RECEIVE]
Cancel

[INVOKE]
Flight Ack

[INVOKE]
No Cancel

[INVOKE]
Cancel Flight

[INVOKE]
Yes Cancel

[INVOKE]
Ticket

. . .

[PICK]

[INVOKE]
Flight Ticket

[RECEIVE]
Flight Ack

[INVOKE]
Flight Cancelled

[PICK]

[ON ALARM]
Time Out

[RECEIVE]
Cancel Flight

[ON MESSAGE]
Flight Cancelled

[ON MESSAGE]
Flight Ticket

[ON MESSAGE]
Cancel Flight

FlightVTA

Fig. 2. VTA and Flight processes parts for the cancellation management

The verification under the synchronous communication model is not able to
manage this example correctly and reports a deadlock. Indeed, if the Flight ser-
vice fails to wait for a cancellation, the onAlarm activity is fired and it then tries
to send a ticket to the VTA process. Meanwhile, the latter receives a cancel-
lation message from User and then tries to send the cancellation to the Flight
service. Therefore both services will try to send messages to each other and the
composition is in a deadlock, since this is not acceptable by the synchronous
semantics.

This deadlock is not real, in the sense it does not occur in real BPEL en-
gines; since the Web services communications are asynchronous, and the message
emission is not blocking, both processes will emit messages to each other. Both
messages will be consumed then and the composition terminates correctly.

The problem we are facing here is that the synchronous model is too strict.
The message delivery and processing may require a certain time, thus leading
to situations where concurrent message emissions take place. These situations,
however, are not allowed in the synchronous communication model. In order to
verify correctly the considered example, a relaxed model is needed that allows
to consider these concurrent message emissions.

Example 3: Extended Cancellation Scenario Let us consider a further modi-
fication of the case study. Now the fact that the cancellation is not possible is
signalled with the special messages: NoCancel for the User and NoFlightCancel
for the VTA process. Having sent the cancellation to the Flight service, the VTA
waits for the message indicating that the cancellation is possible or not. In the
latter case it waits for the ticket and sends a ticket to the User. The Flight service
on the other side behaves as before with the only difference that, after emitting
the ticket and receiving the cancellation, it sends a notification about cancella-
tion rejection (i.e. NoFlightCancel message). The corresponding diagrams are
represented in Fig. 3.

Even if one verifies the example allowing for concurrent message emission
the following incorrect scenario will result. The Flight service sends a ticket and

A Parametric Communication Model for the Verification 323

[INVOKE]
Cancel Flight

[INVOKE]
Yes Cancel

[PICK]

[INVOKE]
No Cancel

[INVOKE]
Ticket

[INVOKE]
Flight Ticket

[RECEIVE]
Flight Ack

[INVOKE]
Flight Cancelled

[PICK]

[ON ALARM]
Time Out

[RECEIVE]
Cancel Flight

[INVOKE]
No Flight Cancel

[RECEIVE]
Flight Ticket

[ON MESSAGE]
No Flight Cancel

[ON MESSAGE]
Flight Cancelled

[ON MESSAGE]
Cancel Flight

FlightVTA

Fig. 3. VTA and Flight processes parts for the complex cancellation management

waits for a cancellation, the VTA process sends a cancellation, the Flight service
in turn rejects a cancellation and finishes. The VTA has received a ticket and
then a cancellation rejection, but it is not able to process the messages in this
order. Only if the execution of processes in the run-time environment allows
for reordering of messages (which is the case for existing implementations) the
deadlock disappears, since the cancellation rejection can be processed before the
ticket message.

This example shows a necessity not only to consider systems which do not fol-
low the synchronous communication semantics, but also to accept less restrictive
models where message reordering is allowed.

This chain can be further prolonged, leading to more complex communication
models. One can think of lossy channels, complex ordering conditions, complex
queue models etc. Notice, however, that each model requires additional assump-
tions on the environment where the analyzed system is supposed to execute.
These conditions are not always possible to be enforced, or verified. Moreover,
the complexity of the verification problem being applied to a certain model sig-
nificantly varies up to undecidability.

In the following we will introduce the generalized model of the composition,
suitable for the analysis of certain classes of communication models.

3 BPEL Processes as State Transition Systems

BPEL provides an operational description of the (stateful) behavior of Web
services on top of the service interfaces defined in their WSDL specifications.
An abstract BPEL description identifies the partners of a service, its internal
variables, and the operations that are triggered upon the invocation of the ser-
vice by some of the partners. Operations include assigning variables, invoking
other services and receiving responses, forking parallel threads of execution, and
nondeterministically picking one amongst different courses of actions. Standard
imperative constructs such as if-then-else, case choices, and loops, are also sup-
ported.

324 R. Kazhamiakin and M. Pistore

[RECEIVE]
Flight Request

[INVOKE]
Flight NA

[INVOKE]
Flight Offer

NA FAILURE
[PICK]

NA FAILURE

[SWITCH]
IsAvailable

SUCCESS

NO YES

[ON MESSAGE]
Flight Ack

[ON MESSAGE]
Flight nAck

PROCESS
Flight;

TYPE
Time; Location; Flight;

STATE
{IN_FlightRequest, SWITCH_IsAvailable, OUT_FlightNA,
NAFailure, OUT_Offer, PICK_ACK, SUCCESS};

INPUT
fRequest (t : Time, l : Location); fAck; fNAck;

OUTPUT
fOffer (t : Time, f : Flight); fNA;

VAR
fRequest_location : Location; fRequest_time : Time;
fOffer_flight : Flight; fOffer_time : Time;

INIT
state = IN_FlightRequest;
fRequest_location = fRequest_time = fOffer_flight =
fOffer_time = UNDEF;

TRANS
IN_FlightRequest - [IN fRequest(t,l)] -> SWITCH_IsAvailable,

fRequest_time = t,
fRequest_location = l;

SWITCH_IsAvailable - [TAU] -> OUT_FlightNA;
SWITCH_IsAvailable - [TAU] -> OUT_Offer;
OUT_FlightNA - [OUT FligtNA] -> NAFailure;
OUT_Offer - [OUT fOffer(fOffer_time, fOffer_flight)]-> PICK_ACK;
PICK_ACK - [IN fAck] -> SUCCESS;
PICK_ACK - [IN fNAck] -> NAFailure;

Fig. 4. The Flight BPEL process and the corresponding STS

We encode BPEL processes as state transition systems which describe dy-
namic systems that can be in one of their possible states (some of which are
marked as initial states) and can evolve to new states as a result of performing
some actions. Following the standard approach in process algebras, actions are
distinguished in input actions, which represent the reception of messages, output
actions, which represent messages sent to external services, and a special action
τ , called internal action. The action τ is used to represent internal evolutions
that are not visible to external services, i.e., the fact that the state of the system
can evolve without producing any output, and independently from the reception
of inputs. A transition relation describes how the state can evolve on the basis
of inputs, outputs, or of the internal action τ .

Definition 1 (State transition system). A state transition system Σ is a
tuple 〈S ,S0, I ,O,R〉 where:

– S is the finite set of states and S0 ⊆ S is the set of initial states;
– I is a finite set of input actions and O is a finite set of output actions;
– R ⊆ S × (I ∪ O ∪ {τ})× S is the transition relation.

Figure 4 shows the abstract BPEL process of the Flight service and the
corresponding state transition system. The set of states S models the steps of
the evolution of the process and the values of its variables. The special internal
variable state tracks the information about the current execution step. The
other variables (e.g., fOffer flight, fOffer time) correspond to those used
by the process to store significant information. In the initial states S0 all the
variables are undefined but state that is set to IN FlightRequest.

A Parametric Communication Model for the Verification 325

The evolution of the process is modeled through a set of possible transi-
tions. Each transition defines its applicability conditions on the source state,
its firing action, and the destination state. For instance, “SWITCH IsAvailable
- [TAU] -> OUT FlightNA” states that an action τ can be executed in state
SWITCH IsAvailable and leads to the state OUT FlightNA.

According to the formal model, we distinguish among three different kinds of
actions. The input actions I model all the incoming requests to the process and
the information they bring (i.e., fRequest is used for the receiving of the initial
request, while fAck models the confirmation of the order and fNAck its cancella-
tion). The output actions O represent the outgoing messages (i.e., FlightNA is
used when there are no tickets for the required date and location, while fOffer
is used to bid the particular flight for the request). The action τ is used to
model internal evolutions of the process, as for instance assignments and deci-
sion making (e.g., when the Flight process is in the state SWITCH IsAvailable
and performs internal activities to decide whether there are tickets available).

We remark that the definition of the state transition system provided in Fig. 4
is parametric w.r.t. the types Time, Location, and Flight used in the messages.
In order to obtain a concrete state transition system, finite ranges have to be
assigned to these types.

4 Extended Composition Model

A parallel product with synchronous communications is widely used as a compo-
sition model for Web services [7]. As shown in Sect. 2, this model is however not
adequate for the description of scenarios where more complicated interactions
are essential. We now define an extended composition model that is applicable
to those scenarios. We start with some preliminary definitions.

Let Σ = 〈S ,S0, I ,O,R〉 be an STS. Let s = s0, α0, s1, α1, . . . , αn−1, sn be
a trace from s0 to sn and σ = α0, α1, . . . , αn−1, where αi ∈ I ∪ O ∪ {τ}, be a
sequence of actions executed on the trace. We write s0

σ→ sn, if there is such a
trace, and call Act(σ) ⊆ (I ∪ O)∗ an action word that consists of the sequence
of actions αi �= τ executed in trace σ. We use ε to denote Act(τ∗). In the next
definition transitions on action words are used to define extended STSs.

Definition 2 (Extended STS). Given STS Σ = 〈S ,S0, I ,O,R〉 its extended
STS, written as Σ̂ = 〈S,S0, I,O, R̂〉, R̂ ⊆ S×(I ∪O)∗×S is defined as follows:

for each pair of states s, s′, s.t. s σ→ s′, (s,Act(σ), s′) ∈ R̂.

We say that a transition t of extended STS is included by some bigger transi-
tion t′, written as t ! t′, if a trace described by the transition t′ contains a trace
described by t as a subsequence. For instance, the transition (s1, ab, s3) describ-
ing the trace s1, a, s2, b, s3 is included by the transition (s0, abc, s4) describing
the trace s0, τ, s1, a, s2, b, s3, c, s4.

The key idea underlying the introduced composition model is to provide an
extended parallel product, where the synchronization is performed on compatible
extended transitions.

326 R. Kazhamiakin and M. Pistore

Intuitively, two extended transitions t1 ∈ R̂1 and t2 ∈ R̂2 are compatible,
written as t1 ≈ t2, whenever they contain the same actions, even if we allow
the order of actions in transitions to be different. The definition of compatibility
relation depends on the particular communication model. It may require, for
instance, that the matched symbols should appear in the same order, in the
same places in words, etc. We will see the examples of this in the following
section.

We define the product of extended state transition systems only for closed
systems, that is all the communication actions of them should be shared. For
the sake of simplicity we will introduce the definition of the product only for two
STSs. The definition can be easily extended to the case with arbitrary numbers
of components.

Definition 3 (Extended parallel product). Let Σ̂1 and Σ̂2 be two extended
STSs with I1 = O2 and I2 = O1. Their extended product, written Σ̂1‖̂Σ̂2 is
an extended STS defined as follows:

– S = S1 × S2;
– S0 = S1

0 × S2
0 ;

– I = O = ∅;
– t = ((s1, s2), ε, (s′1, s

′
2)) ∈ R̂ if

• (s1, ε, s′1) ∈ R̂1 ∧ s2 = s′2, or (s2, ε, s′2) ∈ R̂2 ∧ s1 = s′1;
• ∃ t1 = (s1,σ1, s

′
1) ∈ R̂1, t2 = (s2,σ2, s

′
2) ∈ R̂2, t1 ≈ t2;

The transition relation in the definition includes two types of transitions.
The first type describe actions where no communications appear (internal tran-
sitions). In transitions of second type each communication operation takes place
at both sides (synchronized communication).

We remark that, due to the fact that the output actions are non-blocking in
Web service interaction, the extended composition may represent an unfaithful
model of the execution. Consider for instance the following modification of the
cancellation mechanism (Fig. 5). VTA sends a cancellation to the Flight service
and either receives a ticket from it, concluding that the cancellation is rejected,
or a time-out occurs and it concludes that the cancellation can be performed.
On the other side, the Flight service simply sends a ticket accepting then the
cancellation. In this example there is a possibility for the VTA service to send a
cancellation confirmation to the user even if the Flight service sends a ticket. It is
easy to see that this scenario, which occurs in real executions, will not be present
in the extended composition model. Therefore, verification results obtained on
such model may be wrong as they do not consider all scenarios that can occur
in real executions. In order to be able to figure out such situations we introduce
the definition of valid extended parallel product. If the product is shown to be
valid then it describes all possible scenarios and therefore is a faithful model of
execution and can be safely used for further verification.

Intuitively, the situation where some messages can be emitted without being
ever consumed should not occur in valid composition. We say that two extended
transitions t1 ∈ R̂1 and t2 ∈ R̂2 are partially compatible, written as t1 ∼ t2, if
some output actions in one trace can be unmatched in the other trace.

A Parametric Communication Model for the Verification 327

[RECEIVE]
Cancel

[INVOKE]
No Cancel

[INVOKE]
Cancel Flight

[INVOKE]
Ticket

[PICK]

[INVOKE]
Flight Ticket

[RECEIVE]
Flight Ack

[RECEIVE]
Cancel Flight[ON MESSAGE]

Flight Ticket
[ON ALARM]

Time Out

[INVOKE]
Yes Cancel

FlightVTA

Fig. 5. Incorrect cancellation management

Definition 4 (Valid Composition). Given two extended STSs Σ̂1 and Σ̂2,
we say that their composition Σ1‖̂Σ2 is valid if for any state (s1, s2) reachable
in the composition and any two transitions t1 = (s1,σ1, s

′
1) and t2 = (s2,σ2, s

′
2),

such that t1 ∼ t2, there are transitions t′1 - t1 and t′2 - t2, such that t′1 ≈ t′2.

That is, the problem of checking the validity of the composition consists of
finding reachable partially compatible extended transitions where some outputs
can not be matched in any longer transitions.

5 Interpretation of Communication Models

We consider three instantiations of the general communication model introduced
in the previous section. They correspond to the different cases of interactions
introduced in Sect. 2. Formally, these models differ only in the way the actions
in traces are matched when the compatibility is determined.

We remark that the extended composition model we introduce in this work
relies on certain assumptions on the run-time environment. The following as-
sumptions are common for any model we consider below:

– an output transition of the STS is non-blocking, i.e. the message can be
emitted regardless a possibility to be ever consumed;

– the channels are perfect, i.e. the messages are not lost;
– the execution is fair, i.e. the enabled action can not be continuously ignored.

As we will show later, a particular model may additionally introduce certain
specific assumptions.

5.1 Synchronous Communications

In this model the total order of all communication actions is relevant. That
is, transitions are compatible if their sequences of communication actions are
equivalent.

328 R. Kazhamiakin and M. Pistore

Definition 5 (Synchronous Compatibility). Let Σ̂1 and Σ̂2 be two extended
STSs, t1 = (s1,σ1, s

′
1) ∈ R̂1 and t2 = (s2,σ2, s

′
2) ∈ R̂2 extended transitions.

Transitions t1 and t2 are compatible under synchronous communications model,
written as t1 ≈s t2 if σ1 = σ2.

The validity of the system under this model coincides with the synchronizabil-
ity property introduced in [8], i.e. the system is valid under this model whenever
it does not allow for any concurrent message emissions. The example represented
in Fig. 1 fits in this model. The composition of processes does not introduce any
concurrent emissions, while the example in the Fig. 2 does. Therefore, the former
can be faithfully verified under synchronous communication semantics, while the
latter requires different semantic model, where the discovered kinds of executions
might be considered as correct.

Due to the strong validity condition there is no need to put additional re-
strictions on the underlying middleware. Whenever the composition appears to
be valid under this semantics, it can be executed independently of the BPEL
engine implementation.

5.2 Ordered Asynchronous Communications

In the example of Fig. 2 there is a situation where the Flight and the VTA pro-
cesses can send messages to each other simultaneously, thus violating the syn-
chronous semantics. However, these messages are then consumed. Moreover, the
mutual order of message emissions/consumptions is preserved in the composi-
tion. We position the systems of such kind as systems with ordered asynchronous
communication semantics.

The compatibility relation for this class of systems has the following features.
First, it handles each pair of partners separately. Second it distinguishes between
the ordering of inputs from the ordering of outputs.

Definition 6 (Ordered Asynchronous Compatibility). Let Σ̂1 and Σ̂2 be
two extended STS, t1 = (s1,σ1, s

′
1) ∈ R̂1 and t2 = (s2,σ2, s

′
2) ∈ R̂2.

Let ωI
1 be the subsequence of σ1, obtained by removing all actions symbols

that are not input actions received from Σ̂2. Analogously, ωO
1 is the subseqeunce

of σ1 with only outputs to Σ̂2.
Transitions t1 and t2 are compatible under ordered asynchronous communi-

cation model, written as t1 ≈o t2, if ωI
1 = ωO

2 ∧ ωI
2 = ωO

1 .

This model is able to describe important scenarios, such as cancellation, that
violate the synchronous communication semantics. It has to be noticed that the
validity of the system under this model relies on the fact that the order in which
messages are emitted has to be the same as the order in which they are con-
sumed by the service. This, however, may be violated by real execution engines
thus leading to incorrect behaviors. In order to avoid them, one should either
verify that the system does not introduce incorrect behaviors under unordered
communication model (see below), or enforce the order correctness explicitly in
run-time. This can be done by introducing special monitors that will signal if
the reordering has actually appeared.

A Parametric Communication Model for the Verification 329

NuSMV AnalysisTranslation

W1

:
:
:

Wn

C
om

po
ne

nt
S

er
vi

ce
s

Σ1

:
:
:

Σn

Step 1 Step 2

Global
Extended

STS

Step 3 Step 4

Communication
Model

Verification
Properties

Valid

Validity
Counterexample

Property
Counterexample

B
P

E
L2

S
TS

TR
A

N
S

LA
TI

O
N

S
TS

C
O

M
P

O
S

IT
IO

N

D
A

TA
P

R
O

P
A

G
A

TI
O

N

S
TS

 to
N

uS
M

V

V
A

LI
D

IT
Y

A
N

A
LY

S
IS

V
E

R
IF

IC
A

TI
O

N

Fig. 6. The approach

5.3 Unordered Asynchronous Communications

While the previous model correctly describes the example in Fig. 2, it shows
problems with the example in Fig. 3. The reason is that the latter will work
correctly only if the order of messages is not relevant for consideration.

Such a model describes the systems where the order in which the messages
are sent and received is irrelevant.

Definition 7 (Unordered Asynchronous Compatibility). Let Σ̂1 and Σ̂2

be two extended STSs, t1 = (s1,σ1, s
′
1) ∈ R̂1 and t2 = (s2,σ2, s

′
2) ∈ R̂2.

Transitions t1 and t2 are compatible under unordered asynchronous commu-
nication model, written as t1 ≈u t2, if for any action symbol α appeared in σ1

there is distinct corresponding action symbol appearing in σ2.

This communication model is more liberal with respect to the previous in
the sense that it permits more behaviors in the analyzed system. However, this
requires a sophisticated queueing mechanism to be implemented in the BPEL
engine.

6 Implementing the Approach

A preliminary prototype of a verification tool based on the parameric commuin-
cation model presented in this paper has been implemented within the Astro
toolkit and is available as part of the project (http://www.astroproject.org).
Figure 6 represents the underlying architecture.

The tool consists of two modules. The first module, namely Translation mod-
ule, is used to transform the initial set of BPEL process specifications into a spec-
ification accepted by the NuSMVmodel checker [6] for further analysis. There
the input processes are transformed to the STS form; the extended product of
their skeletons is built; the product is completed by adding the data manipulation
operations and the result is emitted as NuSMVspecification. The specification
is then passed to the analysis module, which verifies the specification. There the
validity of the specification with respect to the given communication model is
checked and the properties verification is then performed.

The algorithm that translates BPEL into NuSMVspecification relies on the
following key consideration: in the extended composition it is not necessary to

330 R. Kazhamiakin and M. Pistore

Table 1. Verification results

Instance Model Translation Validity Deadlock LTL

Example 1 Synchronous 0.5sec 1sec (valid) 0.5 sec 0.5sec

Example 2 Synchronous 2sec 4sec (invalid) – –
Ordered 4sec 3sec (valid) 3sec 3sec

Example 3 Synchronous 4sec 5sec (invalid) – –
Ordered 8sec 5sec (invalid) – –
Unordered 9sec 5sec (valid) 5sec 4sec

consider all those extended transitions which contain as a prefix shorter transi-
tions. I.e., if t1 and t2 are transitions of the extended composition, and t1 ! t2,
then t2 can be removed from the model without loosing behaviors. In the algo-
rithm, we generate extended transitions incrementally, detect the compatibility
as soon as it appears, and ignore longer transitions. This permits a finite sys-
tem representation of the composed system and allows for efficient verification
techniques to be applied. The only case when this approach may not work is
when the composition contains cycles. In this case, we force a termination in
the algorithm whenever an “incomplete” transition (in the sense of unmatched
outputs) tries to traverse a cycle more than once. This condition may lead to
consider invalid some scenarios that are actually valid. However, this problem
does not appear in a wide range of interaction scenarios and models, including
all non-cyclic protocols (such as those considered in Sect. 2), and all verifications
based on the synchronous communication model. Currently we are working on
a general solution for this problem.

We tested our approach on the different instantiations of VTA case study
introduced in Sect. 2. The ranges of the domain types used in the messages (e.g.
Flight, Time) were set to three values for each type. Although the examples
described in the paper are relatively simple, they still are considerably more
complex with respect to the set of samples presented in other tools (e.g. [8,7]).
The size of the (reachable) state space ranges in the examples from 500 to 2200
states. The results of the verification are summarized in the Table 1. For the
valid systems also property verification was tested. Besides checking the models
for deadlocks, we checked also a property, specified as a Linear-time Temporal
Logic formula, that states that the User eventually finishes the process with
success if and only if both the Flight and Hotel processes eventually succeed.

7 Related Work and Conclusions

In this paper we presented a unified framework for the analysis and verification
of Web service compositions provided as BPEL specifications. The framework
is based on the special form of composition, namely extended parallel product,
that allows one to analyze whether the given system is valid under particular
communication model. We have shown how different examples of composed sys-

A Parametric Communication Model for the Verification 331

tems require increasingly sophisticated communication models, which can be
expressed in terms of out framework. The presented analysis approach allows
one to iteratively check the validity of the given system against different com-
munication models. Whenever the model is valid the actual verification of the
system can be performed where different properties of interest can be checked.

The problem of analysis of communication systems with (potentially infinite)
channels is widely studied in literature. Although the problem is undecidable in
general [4], there are a lot of works on restricted subclasses of such systems for
which certain problems were shown to be decidable (see e.g. [2]). In particular, an
interesting class of systems that can be represented using Petri Nets formalism is
widely used for analysis of asynchronous systems and workflows [14,1]. Opposite
to these works we investigate different cases of bounded models and make an
attempt to prove the validity of the considered system under these models.

With respect to Web service analysis approaches, in particular BPEL
processes, several works were described. The closest to our approach are the
tools presented in [7] and [8]. The first one, namely LTSA-BPEL4WS, is based
on the process algebra formalisms and allows for the analysis of basic properties
of BPEL specifications, such as safety and progress checks. The tool currently
does not support the analysis of composition of several BPEL specifications and
was unable to handle complex specifications as those of the VTA case study.
Moreover, it is based on the synchronous communications model thus being re-
strictive with respect to the set of systems it is able to correctly analyze. On
the contrary, the WSAT tool [8] is equipped with the synchronizability analysis
techniques that allow to check whether the behavior of the system is valid un-
der synchronous communications semantics. However, the techniques currently
provided allow only for partial analysis. That is, if the analyzed system does not
pass the check it is not necessarily the case that the system is not synchroniz-
able. The reason is that the synchronizability analysis is based on sufficient but
not necessary conditions and that it ignores the information appearing in tran-
sitions conditions thus leading to spurious violations of the synchronizability.
Also the provided techniques do not exceed the limits of the synchronizability
analysis, and therefore do not allow for the reasoning about more sophisticated
communication models.

One can also refer to works of [16], where the analysis is performed basing on
Timed Automata, and of [5], inspired by process algebra notations. All these ap-
proaches exploit only the synchronous communication semantics, thus ruling out
a certain class of systems (e.g. systems with cancellation), which are important
in practice and can be managed in the proposed framework. On the contrary the
aim of our approach is to attempt to find an appropriate communication model
for the given system, under which it behaves correctly.

There are several directions for further research. We currently work on the
extension of the translation from BPEL to STS for better coverage of constructs
represented in the language. We also work on the optimizations of the validity
analysis algorithm and enrichment of the approach with the possibility to reason
about wider scope of communication models. Furthermore, we are interested

332 R. Kazhamiakin and M. Pistore

in application of “knowledge level” reasoning techniques in order to perform
the analysis of possibly infinite ranges of values and improve the verification
performance shown in the previous section.

References

1. W. M. P. van der Aalst. Challenges in Business Process Management: Verification
of Business Processing Using Petri Nets. Bulletin of the EATCS 80: 174-199, 2003.

2. P.A. Abdulla and B. Jonsson. Channel Representations in Protocol Verification
(Preliminary Version). In Proc. CONCUR’01, August 2001.

3. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana. Business Process
Execution Language for Web Services (version 1.1), 2003.

4. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 2(5):323–342, April 1983.

5. M. Koshkina and F. Breugel. Modelling and Verifying Web Service Orchestration
by means of the Concurrency Workbench. Proceedings of the Workshop on Testing,
Analysis and Verification of Web Services (TAV-WEB), ACM SIGSOFT Software
Engineering Notes, 29(5), September 2004.

6. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer
(STTT), 2(4), 2000.

7. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of Web
Service Compositions. In Proc. ASE’03, 2003.

8. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc.
WWW’04, 2004.

9. S. Graham, S. Simenov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura, and
R. Neyama. Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI. Sams, 2001.

10. R. Khalaf, N. Mukhi, and S. Weerawarana. Service Oriented Composition in
BPEL4WS. In Proc. WWW’03, 2003.

11. J. Koehler and B. Srivastava. Web Service Composition: Current Solutions and
Open Problems. In Proc. of ICAPS’03 Workshop on Planning for Web Services,
2003.

12. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Compo-
sition of Web Services. In Proc. WWW’02, 2002.

13. S. Nakajima. Model-checking verification for reliable web service. In Proc. OOP-
SLA’02 Workshop on OOWS, 2002.

14. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall,
1981.

15. M. Pistore, M. Roveri, P. Busetta. Requirements-Driven Verification of Web Ser-
vices. In Proc. WS-FM’04, ENTCS, 2004.

16. P. Geguang, Z. Xiangpeng, W. Shuling, and Q. Zongyan. Towards the Semantics
and Verification of BPEL4WS. In Proc. WS-FM’04, ENTCS, 2004.

Reasoning About Interaction Patterns in

Choreography

Roberto Gorrieri, Claudio Guidi, and Roberto Lucchi

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy
{gorrieri, cguidi, lucchi}@cs.unibo.it

Abstract. Choreography languages provide a top-view design way for
describing complex systems composed of services distributed over the
network. The basic building block of such languages is the interaction
between two peers which are of two kinds: request and request-respond.
WS-CDL, which is the most representative choreography language, sup-
ports a pattern for programming the request interaction and two patterns
for the request-respond one. Furthermore, it allows to specify if an in-
teraction is aligned or not whose meaning is related to the possibility to
control when the interaction completes. In this paper we reason about
interaction patterns by analyzing their adequacy when considering the
fact that they have to support the alignment property. We show the in-
adequacy of the two patterns supporting the request-respond interaction;
one of them because it does not permit to reason on alignment at the
right granularity level and the other one for some expressiveness lacks.

1 Introduction

Service Oriented Computing (SOC) paradigm provides a mean to design complex
systems by exploiting and composing services available over the network. Web
services technology, which is one of the most prominent technologies for SOC,
provides several languages for composing services, the so-called orchestration
(e.g., WSFL [4], XLANG [6], WS-BPEL [5]) and choreography (e.g. WS-CDL
[7], WSCI [10]) languages. Althought there is not a common agreement on the
meaning of orchestration and choreography, in [1] we have shown how orchestra-
tion and choreography work at different levels. On the one hand orchestration
describes how to compose services from the point of view of a single entity, the
so-called orchestrator, which coordinates the entire system, while on the other
hand, choreography describes all the interdependencies among the different in-
teractions between participants in a top-view way.

The most interesting proposal for choreography is Web Services Choreogra-
phy Description Language (WS-CDL) which is an XML-based language. In a
few words, choreography is composed of a static part describing the system (i.e.
participants, variables and channels) and another one describing the behavior,
that is the conversation rules of the system. The basic building block of WS-CDL
for describing the conversational part is the interaction that can be composed

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 333–348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

334 R. Gorrieri, C. Guidi, and R. Lucchi

by using sequential, parallel and alternative operators. An interaction describes
a messages exchange between two participants and can be of two kinds: request
and request-respond. A request interaction consists of a message exchanged by
a participant to another one, while a request-respond is composed of a message
transmitted by a participant to another one followed by a response message in
the opposite direction.

Since the request-respond is a complex interaction containing two message
exchanges, it is possible to define it in different ways. Indeed, it is possible to
program separately the request and the response or programming them with a
construct dealing with the entire request-respond interaction in an atomic way.
Here we talk about interaction patterns referring to the language mechanisms
which allow to express the request and the request-respond interaction types.

WS-CDL supports three different interaction patterns: the request, the
atomic request-respond and the splitted request-respond. The request pattern
simply maps the request interactions type. The splitted request-respond pattern
allows to manage separately the request and the respond message exchanges,
thus allowing for example to describe that a certain activity have to be per-
formed after the request and before the respond. The atomic request-respond
pattern allows to express the entire request-respond interaction as an atomic
construct; in this case it is not possible to associate an activity that is to be
performed “within” that interaction. An interesting property which can be asso-
ciated to interactions is the alignment, that is the possibility to control when an
interaction completes. WS-CDL permits to set alignment property at the level
of both single message exchange (request and respond), by using the splitted
request-respond pattern, and at the level of entire request-respond interaction
by using the atomic one.

In this paper we reason about the interaction patterns analyzing their ad-
equacy considering the fact that they have to support the alignment property.
To this end we present a core sublanguage of WS-CDL, equipped with a formal
semantics, supporting the three interaction patterns above. We show that for the
request-respond interaction the splitted pattern does not capture the essence of
the alignment property and it allows to program not valid conversations, while
the atomic one allows to reason at the right granularity level but it lacks in
expressiveness w.r.t. the splitted one. Furthermore, by using some examples we
show that the atomic request-respond pattern has less expressive power than the
splitted one. The investigation described above have one meaningful implication:
the formal semantics of a significant fragment of WS-CDL has been defined. In-
deed, to the best of our knowledge, this work represents the first attempt towards
the formalization of WS-CDL semantics.

Finally, in light of the results obtained in this paper we show how our formal
languageCL presented in [3] deals with the right granularity level for the request-
respond interaction, concluding that it can be considered a good starting point
towards the definition of a formal framework for choreography.

The paper is structured as follows. Section 2 presents a core language of
WS-CDL and its semantics. Section 3 is devoted to formally reason on the

Reasoning About Interaction Patterns in Choreography 335

request-respond interaction patterns provided by WS-CDL. Section 4 concludes
the paper with some final remarks.

2 The WSCDLcore Language

As previously mentioned WS-CDL is composed of a static part describing the
system (i.e. participants, variables and channels) and another one describing the
conversation rules the participants have to follow.

In [3] we have presented a formal language proposal for representing chore-
ography where we have extracted its essence following the same description ap-
proach of WS-CDL. Our proposal indeed, is composed by two parts: a declarative
part and a conversational one. The former deals with the formalization of the
participants involved in the choreography whereas the latter deals with the con-
versation rules they have to follow in order to interact each other.

In this paper choreographies are defined by exploiting the declarative part
of our formal model, while the conversation rules are expressed by introducing
a formal language which accounts for a significant fragment of WS-CDL. It is
worth noting that the declarative part is not a faithful representation of the WS-
CDL contructs which deal with participants, variables and channels but it just
addresses their basic concepts. However, since we are interested on reasoning
about interaction patterns, we can abstract from these details.

As far as the conversational part is concerned, here we present the language
WSCDLcore which formally represents the WS-CDL patterns we are interested
in. The semantics of this language will be presented in terms of another language
CLP . Although that there are few differences between them, this choice is due
to the fact that it simplifies the comparison with our conversation language CL
whose semantics is defined in terms of the same language CLP . In the following
indeed, we are interested to test and verify the suitability of CL considering the
issues raised by this paper.

In the following we explain the declarative part and we present WSCDLcore

syntax and semantics.

2.1 Declarative Part

Here we explain the declarative part of our choreography formal model which is
based on the concept of role. A role represents the behaviour that a participant
has to exhibit in order to fulfill the activity defined by the choreography. Each
role can store variables and exhibit operations.

As far as variables are concerned, we associate to each role a set of variables
which represent the information managed by the role and which will be used in
the interactions between roles. In our proposal variables are only names without
any values and they are exploited in order to represent the data flow among the
roles.

As far as operations are concerned, each role is equipped with a set of oper-
ations it has to exhibit which essentially represent the access points that will be

336 R. Gorrieri, C. Guidi, and R. Lucchi

used by the other roles to interact with the owner one. Operations can have one
of the following interaction modalities: One-Way or Request-Response.

In particular we remind that operations are defined in WSDL specifications
[9] and they are the only mechanism for interacting with a Web Service. Briefly,
an operation contains the definition of an incoming message for a service and,
when used, the definition of the response message. Two different kinds of oper-
ation exist:

– One-Way : only the incoming message is defined.
– Request-Response: both the incoming message and the response one are

defined.

When a Web service is invoked by using a One-Way operation, it receives
the incoming message and starts its activities. On the other hand, when a Web
Service is invoked by using a Request-Response operation, the service receives
the message, starts its activities and, at the end, replies to the invoker with a
response message.

Let us now introduce the formalization of roles, variables and operations.
Let V ar be the set of variables ranged over by x, y, z, k. We denote with x̃

tuples of variables, for instance, we may have x̃ = 〈x1, x2, ..., xn〉.
Let OpName be the set of operation names, ranged over by o, and OpT ype =

{ow, rr} be the set of operation types where ow denotes a One-Way operation
whereas rr denotes the Request-Response one.

An operation is described by its operation name and operation type. Namely,
let Op be the set of operations defined as follows:

Op = {(o, t) | o ∈ OpName, t ∈ OpT ype}

A role is described by a role name, the set of operations it exhibits and by a
set of variables. Namely, let RName be the set of the role names, ranged over
by ρ. The set Role, containing all the possible roles, is defined as follows:1

Role = {(ρ, ω,V) | ρ ∈ RName, ω ∈ ℘(Op),V ∈ P(V ar)}

Exploiting this formalization, in the following we present the WSCDLcore

language.

2.2 Conversational Part

Before presenting the syntax of the WSCDLcore language, we intend to spend
some words in order to highlight some WS-CDL basics. In particular we focus
on the basic building block <interaction> which can be composed exploiting
the tags <sequence>, <parallel> and <choice> representing, respectively, the
sequential, parallel and alternative composition. Now, we remind some basics of
the WS-CDL <interaction> tag in order to explain its functioning.

1 Given a set S, with ℘(S) we denote the powerset of S.

Reasoning About Interaction Patterns in Choreography 337

The tag <interaction> is used for defining interactions and it has some
enclosed elements and attributes. For the sake of this paper we are interested
in discussing the inner tags <participate> and <exchange> and the attributes
channelVariables, operation and align. We refer to WS-CDL specifications
for more details.
The description of the inner tags follows:

– <participate>: this tag defines the participants involved in the interactions
exploiting the attributes relationshipType, fromRole and toRole. In WS-
CDL specification the participants involved in a choreography are described
exploiting a complex hierarchical structure. Briefly, the roles express the
observable behaviours of a participant and the relationships express the peer-
to-peer links between participants.

– <exchange>: this tag defines the variables exchanged by the sender and
the receiver. It contains two elements <send> and <receive> where the
former defines the information sent by the sender whereas the latter defines
the information received by the receiver. The attribute action defines the
direction of the interaction and has two possible values: request or respond.
In the first case the interaction is performed from the role fromRole, which
is the sender, to the role toRole which is the receiver. In the second case the
toRole is the sender and the fromRole is the receiver.
One or two exchange tags can be defined within the tag interaction. If there
are two exchange elements one must have action equal to request and the
other must assume the value respond. The former defines the information
exchange during the request interaction and the latter during the response
one.

The description of the main attributes of the <interaction> tag follows:

– The attributes channelVariable and operation define the WS-CDL chan-
nel and the WSDL operation on which the interaction is performed and
which has to belong to the interaction target.

– The attribute align defines if the interaction must be aligned or not. In
the following we quote from the specification[7] the definition of the align
attribute:

If the align attribute is set to “false” for the Interaction, then it
means that the:
• Request exchange completes successfully for the requesting Role

once it has successfully sent the information of the Variable spec-
ified within the send element and the Request exchange com-
pletes successfully for the accepting Role once it has successfully
received the information of the Variable specified within the re-
ceive element

• Response exchange completes successfully for the accepting Role
once it has successfully sent the information of the Variable spec-
ified within the send elementand the Response exchange com-

338 R. Gorrieri, C. Guidi, and R. Lucchi

pletes successfully for the requesting Role once it has success-
fully received the information of the Variable specified within
the receive element

If the align attribute is set to “true” for the Interaction, then it means
that the Interaction completes successfully if its Request and Response
exchanges complete successfully[...]:

• A Request exchange completes successfully once both the re-
questing Role has successfully sent the information of the Vari-
able specified within the send element and the accepting Role
has successfully received the information of the Variable speci-
fied within the receive element

• A Response exchange completes successfully once both the ac-
cepting Role has successfully sent the information of the Vari-
able specified within the send element and the requesting Role
has successfully received the information of the Variable specified
within the receive element

This definition is far to be formal and deserves to be commented. An inter-
action is aligned when both the roles are aware of its state. On the contrary,
it must be considered not aligned when the sender and the receiver act with-
out a common knowledge about the interaction state. From the choreography
point of view, that is a system top view, a common knowlegde about the
interaction state is linked to the fact that it is possible to verify its termina-
tion or not. For this reason here we discriminate between aligned interaction
and the not aligned one considering the fact that it is possible to control
their termination or not.

Considering the meaning of the WS-CDL <interaction> tag, we extract
three kinds of interaction patterns:

– request
– splitted request-respond
– atomic request-respond

The three type of interactions patterns request, splitted request-respond and
atomic request-respond directly follow from the <exchange> elements within the
<interaction> tag.

The request pattern is characterized by an interaction defined with only one
exchange element and the action set to request. The operation through which
the interaction is performed must be a One-Way operation.

In the following we present the WS-CDL code for a request interaction pat-
tern where opAB is a One-Way operation:

<interaction name="interactionAB" channelVariable="tns:ABchan"
operation="tns:opAB" align="true" >
<participate relationshipType="tns:relationshipAB"

Reasoning About Interaction Patterns in Choreography 339

fromRole="tns:roleA" toRole="tns:roleB"/>
<exchange name="requestAB" action="request">

<send variable="cdl:getVariable("tns:x", "", "")" />
<receive variable="cdl:getVariable("tns:y", "", "")"/>

</exchange>
</interaction>

The splitted request-respond pattern is characterized by two different inter-
actions defined on the same Request-Response operation: one for expressing the
request interaction and the other one for expressing the respond one. This pat-
tern allows to program the request-response interaction in a low level manner
where the two single interactions can be managed separately. In the following
we present the WS-CDL code for a splitted request-respond pattern where a
choreography C is performed between the request and the respond interactions:

<sequence>
<interaction name="interactionCD" channelVariable="tns:CDchan"

operation="tns:opCD" align="true" >
<participate relationshipType="tns:relationshipCD"

fromRole="tns:roleC" toRole="tns:roleD"/>
<exchange name="requestCD" action="request">

<send variable="cdl:getVariable("tns:z", "", "")" />
<receive variable="cdl:getVariable("tns:k", "", "")"/>

</exchange>
</interaction>
<perform>

<!-- Choreography C -->
</perform>
<interaction name="interactionCD2" channelVariable="tns:CDchan"

operation="tns:opCD" align="true" >
<participate relationshipType="tns:relationshipCD"

fromRole="tns:roleC" toRole="tns:roleD"/>
<exchange name="responseCD" action="respond">

<send variable="cdl:getVariable("tns:w", "", "")" />
<receive variable="cdl:getVariable("tns:q", "", "")"/>

</exchange>
</interaction>

</sequence>

The atomic request-respond pattern is characterized by two exchange ele-
ments defined within the interaction tag. One represents the request exchange
and the other represents the respond. The operation through which the in-
teraction is performed must be a Request-Response one. In the following we
present the WS-CDL code for an atomic request-respond pattern where opCD is
a Request-Response operation:

340 R. Gorrieri, C. Guidi, and R. Lucchi

<interaction name="interactionCD" channelVariable="tns:CDchan"
operation="tns:opCD" align="true" >
<participate relationshipType="tns:relationshipCD"

fromRole="tns:roleC" toRole="tns:roleD"/>
<exchange name="requestCD" action="request">

<send variable="cdl:getVariable("tns:z", "", "")" />
<receive variable="cdl:getVariable("tns:k", "", "")"/>

</exchange>
<exchange name="responseCD" action="respond">

<send variable="cdl:getVariable("tns:w", "", "")" />
<receive variable="cdl:getVariable("tns:q", "", "")"/>

</exchange>
</interaction>

Moreover, each interaction can be enriched with the alignment property set-
ting the align attribute of the tag interaction. In the examples above we have
considered all aligned interactions.

Now we are ready to present the syntax of WSCDLcore which deals with
such a kind of patterns. We start by modeling only the request and splitted
request-respond patterns without considering the atomic request-respond one.
Such a kind of pattern will be separately discussed in section 3 where we show
that it is a special case of the splitted request-respond pattern.

Let us now present the syntax of WSCDLcore:

Ccore ::= 0 | μ | μA | Ccore;Ccore | Ccore ‖ Ccore | Ccore + Ccore

μ ::= request(ρA, ρB, o, x̃, ỹ) | respond(ρA, ρB, o, x̃, ỹ)

A conversation can be a terminated conversation 0, a not aligned interac-
tion μ, an aligned interaction 2 μA or the sequential, parallel and alternative
composition of conversations.

The interactions can be a request interaction or a respond one. Considering
their arguments we have that:

– ρA and ρB represent the invoker role and the invoked one, respectively.
– o is the operation through which the interaction is performed and which has

to be exhibited by the invoked role ρB.
– x̃ and ỹ are respectively the variables of ρA and ρB.

When a request interaction completes, the direction of the interaction is from
role ρA to role ρB and x̃ will populate3 ỹ whereas when a respond interaction
2 Even if the correct notation is request(ρA, ρB, o, x̃, ỹ)A and
respond(ρA, ρB, o, x̃, ỹ)A, for the sake of clarity, we will use the notation
requestA(ρA, ρB , o, x̃, ỹ) and respondA(ρA, ρB, o, x̃, ỹ).

3 In WS-CDL slang the term populate means that the values instantiated by the
variables x̃ will be stored within the variables ỹ. Since we use variables as names, in
the following we will exploit the term populate in order to express the fact that an
interaction represents an information flow from variables x̃ to variables ỹ.

Reasoning About Interaction Patterns in Choreography 341

completes the direction is from role ρB to role ρA and ỹ will populate x̃. Depend-
ing on the type of the operation o the respond interaction is allowed or not. If o
is a One-Way operation only a request interaction is allowed on that operation
whereas if o is a Request-Response operation the two interactions are allowed
and the respond one must logically follow the request. When an interaction is
not aligned it is not possible to control when it completes whereas for the aligned
one this is possible.

Finally, conversations can be: i) the sequential composition of two conver-
sations Ccore;C′

core whose meaning is that C′
core can be performed after Ccore

completes, ii) the parallel composition of two conversations Ccore ‖ C′
core which

represents the concurrent execution of conversations Ccore and C′
core, and iii)

the alternative composition of two conversations Ccore +C′
core whose meaning is

that the conversation to be performed is non-deterministically selected between
Ccore and C′

core.
Now we define a choreography. A choreography, denoted by CHCDL, is de-

fined by a pair (Ccore, Σ) where Ccore ∈ WSCDLcore and Σ ⊆ Role. Here we
consider only well-formed choreographies whose definition follows:

Definition 1 (Well-formed set of roles). Let Σ ⊆ Role. The set of roles Σ
is well-formed if the following conditions hold:

1. Σ is finite;
2. if (ρi, ωi,σi) ∈ Σ and (ρj , ωj ,σj) ∈ Σ and ρi = ρj then i = j.

Definition 2 (Well-formed choreography). Let (Ccore, Σ) be a choreogra-
phy; Ccore is well-formed if:

1. for any operation request(ρA, ρB, o, x̃, ỹ) and requestA(ρA, ρB, o, x̃, ỹ) it
contains, the following conditions hold:
(a) (ρA, ωA,VA), (ρB , ωB,VB) ∈ Σ for some ωA,VA and ωB,VB;
(b) (o, ow) ∈ ωB ∨ (o, rr) ∈ ωB;
(c) x̃ and ỹ have the same arity;
(d) x̃ ⊆ VA and ỹ ⊆ VB

2. for any operation respond(ρA, ρB, o, x̃, ỹ) and respondA(ρA, ρB, o, x̃, ỹ):
(a) (ρA, ωA,VA), (ρB , ωB,VB) ∈ Σ for some ωA,VA and ωB,VB;
(b) (o, rr) ∈ ωB;
(c) x̃ and ỹ have the same arity;
(d) x̃ ⊆ VA, ỹ ⊆ VB

Definition 1 states that a set of roles Σ is well-formed if it is finite and the
set of role names are all distinct.

Definition 2 states constraints for the interactions. Conditions (a) require
that the roles involved are contained in the system, conditions (b) guarantee that
the role which receives the interaction exhibits the operation used to interact (in
the case of a respond interaction the type of the operation must be Request-
Response), conditions (c) ensure that the sender and the receiver use the same
number of variables and, finally, conditions (d) ensure that the specified variables
belong to the corresponding role.

342 R. Gorrieri, C. Guidi, and R. Lucchi

2.3 The Semantics

The semantics of WSCDLcore is presented in terms of the semantics of an
auxiliary language CLP which has been already used to define the semantics of
our conversation language CL.

Syntax of CLP . The auxiliary language is defined by the following grammar:

CP ::= 0 | μ | CP ;CP | CP ‖ CP | CP + CP

μ ::= (ρA, ρB, o, x̃, ỹ, dir)

In the following we use CLP , ranged over by CP , to denote the set of conversa-
tions of such a language. We limit the description to the interaction μ since the
composition operators ;,+,‖ have the same meaning of those of WSCDLcore.

(ρA, ρB, o, x̃, ỹ, dir) means that an interaction from role ρA to role ρB is
performed. In particular, o is the name of the operation (o, t) ∈ Operation on
which the message exchange is performed. Variables x̃ and ỹ are those used by
the sender and the receiver, respectively. When the interaction completes, it is
assumed that the information represented by the variables x̃ will populate the
variables ỹ. Finally, dir ∈ {↑, ↓} indicates whether the interaction is a request
(↑) or a response (↓) of o. Thus the dir parameter is needed for allowing us to
reason on simple interaction and at the same time for preserving information
about the type of the operation on which the message exchange is performed.

Semantics of CLP . CP → C′
P means that the conversation CP evolves in one

step in a conversation C′
P . We define → as the least relation which satisfies the

axioms and rules of Table 1 and closed w.r.t. ≡.

Table 1. Semantics of CLP conversations

(Interaction)

(ρA, ρB, o, x̃, ỹ, dir) → 0

(Sequence)
CP → C′

P

CP ; DP → C′
P ; DP

(Parallel)
CP → C′

P

CP | DP → C′
P | DP

(Choice)
CP → C′

P

CP + DP → C′
P

(Structural Congruenge)

0; CP ≡ CP CP | 0 ≡ CP CP + 0 = CP

CP + DP ≡ DP + CP CP | DP ≡ DP | CP

(CP + DP) + EP ≡ CP + (DP + EP)
(CP | DP) | EP ≡ CP | (DP | EP)

Reasoning About Interaction Patterns in Choreography 343

The structural congruence ≡ is the least congruence closed w.r.t. the axioms
of Table 1 which express the fact that abelian monoid laws for parallel and choice
operators hold (associativity, commutativity and 0 as identity) and the sequence
operator CP ;DP enables DP only when CP completes.

The description of axioms and rules follows. The axiom Interaction de-
scribes the behavior of an interaction. ρA is the name of the sender role whereas
ρB is the name of the receiver one, while o is the operation name used to interact
and x̃, ỹ are the variables used by the sender and the receiver to exchange data,
respectively. The rules Sequence, Parallel and Choice are standard.

Mapping of WSCDLcore. We define a mapping from WSCDLcore conver-
sations into terms of CLP . Definition 3 defines the mapping function. Request
and respond interactions are mapped in an interaction of CLP where in the first
case the direction parameter is ↑ and in the second is ↓. The rule 4 stands that
either the aligned and the not aligned interactions are implemented in the same
way. Their different behaviour is strictly related to the fact that it is not possible
to control when the not aligned one completes. Such a difference is expressed in
rules 5 and 6 where the sequence is preserved only in the case of the aligned in-
teraction. In the opposite case, the sequence operator is replaced by the parallel
one. Indeed, the sequence of a not aligned interaction with another conversation
is implicitly a parallel composition of them because, since it is not possible to
control when the not aligned interaction completes, it is impossible to express
the fact that a certain conversation have to be performed after its completion.
Thus, it is impossible to support sequencing of not aligned interaction.

For example, let C = request(ρA, ρB, o, x̃, ỹ); requestA(ρC , ρD, o
′, z̃, k̃) be a

conversation. The fact that the first request is not aligned implies that it is not
possible to control when it completes. On the other hand, the sequence operator
guarantees that the conversation which follows can be executed only when the
previous one has completed. However, in this case such a condition cannot be
tested. This means that it is not possible to control the sequential execution of
not aligned interactions, therefore we map not aligned interactions composed in
sequence by replacing the operator with the parallel one. Consequently, exploit-
ing the rule 6 of the mapping function, the conversation C behaves as:

[[[C]]] = [[[request(ρA, ρB, o, x̃, ỹ)]]] ‖ [[[requestA(ρC , ρD, o
′, z̃, k̃)]]]

Finally the mapping preserves the parallel and the alternative composition.

Definition 3 (The mapping function). The function [[[]]] : WSCDLcore →
CLP is defined inductively as follows:

1. [[[0]]] = 0

2. [[[requestA(ρA, ρB, o, x̃, ỹ)]]] = (ρA, ρB, o, x̃, ỹ, ↑)

3. [[[respondA(ρA, ρB, o, x̃, ỹ)]]] = (ρA, ρB, o, x̃, ỹ, ↓)

344 R. Gorrieri, C. Guidi, and R. Lucchi

4. [[[μ]]] = [[[μA]]]

5. [[[μA;Ccore]]] = [[[μA]]]; [[[Ccore]]]

6. [[[μ;Ccore]]] = [[[μ]]] ‖ [[[Ccore]]]

7. [[[Ccore ‖ C′
core]]] = [[[Ccore]]] ‖ [[[C′

core]]]

8. [[[Ccore + C′
core]]] = [[[Ccore]]] + [[[C′

core]]]

3 The Request-Respond Patterns

This section is devoted to reason about the two request-respond interaction
patterns supported by WS-CDL and represents the main contribute of this paper.
In the first part we criticize the splitted request-respond pattern because it is
not reasonable to specify separately the alignment property for the request and
the respond. In the second part we model the atomic request-respond pattern
where the alignment property is referred to the entire interaction showing that
this is the right granularity level where alignment property has to be defined.
Furthermore, we show that the atomic request-respond interaction has some
lacks of expressiveness w.r.t. the splitted one.

3.1 Splitted Request-Respond Pattern

As confirmed by the choreography working group in the official mailing list [8],
a splitted request-respond pattern programmed in a conversation, say C, is con-
sidered valid when, for all the possible computation paths of C, the request is
executed before the respond, and in the case the request is performed the corre-
sponding respond is executed. This directly follows by the fact that it is strictly
related with the Request-Response operations where the response is subordinate
to the request. Thus we can express splitted request-respond interactions in the
following ways:

a) request(ρA, ρB, o, x̃, ỹ);C[respondA(ρA, ρB, o, z̃, k̃)]
b) request(ρA, ρB, o, x̃, ỹ);C[respond(ρA, ρB, o, z̃, k̃)]
c) requestA(ρA, ρB, o, x̃, ỹ);C[respondA(ρA, ρB, o, z̃, k̃)]
d) requestA(ρA, ρB, o, x̃, ỹ);C[respond(ρA, ρB, o, z̃, k̃)]

where C[] is any conversation context. Here we intend to reason on the mean-
ing of the alignment property for a splitted request-respond pattern, referring
in particular on cases a) and b) where the request is not aligned. The follow-
ing proposition expresses that any interaction with a not aligned request on
a Request-Response operation is not valid. The idea directly follows from the
semantics of the not aligned interaction. Indeed, in the cases a) and b) we can-
not guarantee that a not aligned request is performed before the corresponding

Reasoning About Interaction Patterns in Choreography 345

respond. Consequently, in a request-respond interaction we always have to use
aligned requests.

Proposition 1. Let (o, rr) ∈ Op be an operation. For any conversation context
C[], for any ρA and ρB, for any x̃ and ỹ, the conversations

– request(ρA, ρB, o, x̃, ỹ);C[respondA(ρA, ρB, o, z̃, k̃)]
– request(ρA, ρB, o, x̃, ỹ);C[respond(ρA, ρB, o, z̃, k̃)]

are not valid.

Let us consider the following example where C is the following conversation
in order to clarify the meaning of the notion above:

C = request(ρA, ρB, o, x̃, ỹ); respondA(ρA, ρB, o, z̃, k̃)

C behaves as follows:

[[[C]]] = [[[request(ρA, ρB, o, x̃, ỹ)]]] ‖ [[[respondA(ρA, ρB, o, z̃, k̃)]]]

It is easy to observe that such an interaction is not valid because it is trivial
to prove that there exist a computation path where the respond is performed
before the request.

Thus, in a splitted request-respond interaction the request must be always
aligned. Now we can assume that the aligned property shifts always on the
respond interaction. The cases c) and d) above express this concept.

The case c) represents the aligned interaction whereas the case d) the not
aligned one. Let us now consider the case d), does it make sense? Although it
is syntactically correct, in our opinion, it represents a wrong interpretation of
the request-respond interaction. The alignment property indeed means that we
cannot control when an interaction completes. In the case d) we can control that
the first part of a request-respond interaction completes leaving the not aligned
behaviour only on the second one. Here we cannot state if WS-CDL authors
were willing to allow such a behaviour but, in our opinion, the case d) does
not address the nature of the alignment because we interpret a request-respond
interaction, even splitted, as a unique concept where a property must hold on
the entire interaction.

We conclude that, in our opinion, it is not reasonable to express alignment
property at the level of single message exchange. For these reasons the splitted
request-respond pattern is inadequate for expressing the alignment property.

3.2 Atomic Request-Respond Pattern

In this section we introduce the atomic request-respond pattern showing that it
defines only valid conversations and allows to express the alignment property at
the granularity level of the entire request-respond interaction which seems to be
the right approach.

346 R. Gorrieri, C. Guidi, and R. Lucchi

Here we extend the core language of Section 2.2 with the atomic request-
respond pattern where the interactions μ are defined as it follows:

μ ::= request(ρA, ρB, o, x̃, ỹ) | respond(ρA, ρB, o, x̃, ỹ) | rr(ρA, ρB, o, x̃, ỹ, z̃, k̃)

The atomic request-respond, denoted with rr(ρA, ρB, o, x̃, ỹ, z̃, k̃), means that
ρA performs a request-respond with ρB by using variables x̃ (of ρA) and ỹ (of ρB)
for the request message and variables z̃ (of ρA) and k̃ (of ρB) for the response.

The semantics of the extended language is obtained by adding the following
encoding rule to the ones of Definition 3:

[[[rrA(ρA, ρB, o, x̃, ỹ, z̃, k̃)]]] =
[[[requestA(ρA, ρB, o, x̃, ỹ)]]]; [[[respondA(ρA, ρB, o, z̃, k̃)]]]

The atomic request-respond pattern is expressed in terms of the splitted
one; it is trivial to verify that such kind of interactions are all valid accordinlgy
with the notion given in section 3.1. Indeed, the request is aligned as well as
the respond thus the sequential operator guarantees that the request is always
performed before the respond.

So far, we have only presented the semantics of rrA without discussing that
of rr. This is due to the fact that it is implicitly linked to the semantics of
the alignment property. What does it mean performing a not aligned atomic
request-respond? In this case we cannot control when the entire request-respond
interaction completes. The semantics of such a condition follows from rules 4, 5
and 6 of the mapping function:

[[[rr(ρA, ρB, o, x̃, ỹ, z̃, k̃);C]]] = ([[[rr(ρA, ρB, o, x̃, ỹ, z̃, k̃)]]]) ‖ [[[C]]]
[[[rrA(ρA, ρB, o, x̃, ỹ, z̃, k̃);C]]] = [[[rr(ρA, ρB, o, x̃, ỹ, z̃, k̃)]]]; [[[C]]]

Here the alignment property is expressed at the level of the entire request-
respond interaction contrarily to the case of the splitted one. Considering the two
request-respond patterns, we conclude that the right granularity level for express-
ing the alignment property is represented by the atomic request-respond pattern.

Let us now consider the expressiveness of this construct w.r.t. the splitted
one. Considering the semantics of the atomic request-respond pattern it is trivial
to observe that it is less expressive than the splitted one. The following examples
prove that there exist an expressiveness gap because they cannot be programmed
by using the atomic pattern.

1. requestA(ρA, ρB, o, x̃, ỹ);C; respondA(ρA, ρB, o, z̃, k̃)
2. requestA(ρA, ρB, o, x̃, ỹ); (respondA(ρA, ρB, o, z̃, k̃) ‖ D)
3. requestA(ρA, ρB, o, x̃, ỹ);C; (respondA(ρA, ρB, o, z̃, k̃) ‖ D)

where C is a choreography which is performed between the request and the re-
spond interactions and D is a choreography which is executed in parallel with
the respond interaction and after the request interaction accordingly with the
semantics.

Reasoning About Interaction Patterns in Choreography 347

Summarizing, the atomic request-respond interaction pattern on the one
hand has the right granularity level for expressing the alignment property and
on the other hand it lacks expressiveness.

4 Conclusions

In this paper we have presented the formal semantics of a significant fragment of
WS-CDL which provides a mean to deal with interactions. We have analysed the
adequacy of such interaction patterns when the alignment property is considered
by showing that the request-respond patterns do not represent the best choice.
Indeed, the splitted one permits to align the single message exchange which, on
the one hand allows to express not valid conversations and, on the other hand
implements the not aligned property in a way which, in our opinion, does not ad-
dress the nature of the alignment property. The atomic request-respond pattern
on the contrary, provides the right level to reason about alignment but presents
significant lacks of expressiveness (e.g. it is not possible to express that a certain
conversation must be performed during the execution of a request-respond).

To the best of our knowledge, this is the first attempt towards the definition
of interaction patterns in choreography when aligned property is considered. The
only works which deal with choreography languages are [2] and [7]. In the former
Web Service Choreography Interface (WSCI) [10] language is modeled whereas
in the latter our formal language CL is presented.
CL, whose semantics is expressed in terms of CLP , supports two interaction

patterns where one is exactly the request of WSCDLcore while the other one,
used to program the request-respond, has a semantics which sounds like:

requestA(ρA, ρB, o, x̃, ỹ);C; respondA(ρA, ρB, o, z̃, k̃)

such a pattern has the same granularity level of the atomic one of WSCDLcore

and covers some of its lacks of expressiveness. Indeed, it is trivial to verify that
with this pattern it is possible to express an inner conversation between the
request and the respond (example 1 of section 3.2). In light of these observations
CL can be considered a good starting point for representing choreography.

As future works we intend to reason on other aspects of WS-CDL and at the
same time to improve our formal language CL. Furthermore, we are interested to
investigate the relationships which exist between the choreography approach and
the orchestration one by introducing a notion of conformance between the two
models starting by studying how the choreography alignment property affects a
related orchestration.

References

1. Mario Bravetti, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Sup-
porting e-commerce systems formalization with choreography languages. In SAC,
pages 831–835, 2005.

348 R. Gorrieri, C. Guidi, and R. Lucchi

2. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services chore-
ographies. In M. Bravetti and G. Zavattaro, editors, Proc. of 1st International
Workshop on Web Services and Formal Methods (WS-FM 2004), volume 105 of
ENTCS. Elsevier, 2004.

3. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Towards a formal
framework for Choreography. In Proc. of 3rd International Workshop on Dis-
tributed and Mobile Collaboration (DMC 2005). IEEE Computer Society Press. To
appear.

4. F. Leymann. Web Services Flow Language (WSFL 1.0). [http://www-4.ibm.com/
software/solutions/webservices/pdf/WSFL.pdf], Member IBM Academy of Tech-
nology, IBM Software Group, 2001.

5. Microsoft,IBM, Siebel Systems, BEA. Business Process Execution Language for
Web Services Version 1.1. [http://www-106.ibm.com/developerworks/library/ws-
bpel/].

6. S. Thatte. XLANG: Web Services for Business Process Design. [http://
www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm], Microsoft Corpora-
tion, 2001.

7. W3C. Web Services Choreography Description Language Version 1.0. Work-
ing draft 17 December 2004. [http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217/].

8. W3C. Web Services Choreography Working Group, public mailing list. public-ws-
chor@w3.org.

9. W3C. Web Services Description Language (WSDL) 1.1. http://www.w3.org/

TR/wsdl.
10. World Wide Web Consortium (W3C). Web service choreography interface (wsci)

1.0. [http://www.w3.org/TR/wsci], 2002.

Author Index

Baldoni, M. 257
Baroglio, C. 257
Bradley, Jeremy T. 155
Brown Jr., Allen L. 18
Bruni, Roberto 272
Bušić, Ana 94
Buchholz, Peter 79
Butler, Michael 243

Cambronero, Maŕıa-Emilia 230
Cazorla, Diego 215
Ciardo, Gianfranco 15
Cuartero, Fernando 230
Cuartero, Fernando 215
Czachórski, Tadeusz 187

Dao-Thi, Thu-Ha 64
Dayar, Tuǧrul 51
De Jager, Douglas V. 155
De Turck, Koen 124
Diaz, Gregorio 215, 230
Dumas, M. 35

Ferrari, Gianluigi 272
Foster, Simon 303
Fourneau, Jean-Michel 94

Gilmore, Stephen 200
Gorrieri, Roberto 333
Guidi, Claudio 333

Haenel, Valentin 200
Harrison, Peter 1
Hughes, Andrew 303

Kazhamiakin, Raman 318
Kloul, Lëıla 200
Knottenbelt, William J. 155

Laneve, Cosimo 18
Lucchi, Roberto 333

Méhaut, Jean-François 172
Maidl, Monika 200
Mairesse, Jean 64
Marchand, Corine 139
Martelli, A. 257
Martinasso, Maxime 172
Mazzara, Manuel 287
Melgratti, Hernán 272
Meredith, L. Gregory 18
Montanari, Ugo 272

Norton, Barry 303

Pardo, Juan-José 230
Patti, V. 257
Pekergin, Ferhan 187
Pekergin, Nihal 109
Pistore, Marco 318

Ripon, Shamim 243
Russell, N. 35

Schifanella, C. 257
Strollo, Daniele 272

Tari, Árpaád 79
Telek, Miklós, 79
ter Hofstede, A.H.M. 35
Tobarra, Llanos 215
Trifunović, Aleksandar 155
Tuosto, Emilio 272

Valero, Valent́ın 230
van der Aalst, W.M.P. 35
Verbeek, H.M.W. 35
Vincent, Jean-Marc 139

Wittevrongel, Sabine 124
Wohed, P. 35

Younès, Sana 109

	Frontmatter
	Invited Speakers
	Performance Engineering and Stochastic Modelling
	Implicit Representations and Algorithms for the Logic and Stochastic Analysis of Discrete--State Systems
	<Literal>PiDuce</Literal>: A Process Calculus with Native <Literal>XML</Literal> Datatypes
	Life After BPEL?

	EPEW
	On Moments of Discrete Phase-Type Distributions
	Zero-Automatic Queues
	A Unified Approach to the Moments Based Distribution Estimation -- Unbounded Support
	Bounds for Point and Steady-State Availability: An Algorithmic Approach Based on Lumpability and Stochastic Ordering
	Stochastic Model Checking with Stochastic Comparison
	Delay Analysis of the Go-Back-N ARQ Protocol over a Time-Varying Channel
	Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks: Modelling and Experiments
	Hypergraph Partitioning for Faster Parallel PageRank Computation
	Prediction of Communication Latency over Complex Network Behaviors on SMP Clusters
	A Diffusion Approximation Model of an Electronic-Optical Node

	WS-FM
	Choreographing Security and Performance Analysis for Web Services
	Application of Formal Methods to the Analysis of Web Services Security
	Automatic Translation of WS-CDL Choreographies to Timed Automata
	Executable Semantics for Compensating CSP
	Verifying the Conformance of Web Services to Global Interaction Protocols: A First Step
	From Theory to Practice in Transactional Composition of Web Services
	Timing Issues in Web Services Composition
	A Compositional Operational Semantics for OWL-S
	A Parametric Communication Model for the Verification of BPEL4WS Compositions
	Reasoning About Interaction Patterns in Choreography

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

