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Abstract. Recent experimental findings appear to confirm that the nature of the 
states governing synaptic plasticity is discrete rather than continuous. This 
means that learning models based on discrete dynamics have more chances to 
provide a ground basis for modelling the underlying mechanisms associated 
with plasticity processes in the brain. In this paper we shall present the physical 
implementation of a learning model for Spiking Neural Networks (SNN) that is 
based on discrete learning variables. After optimizing the model to facilitate its 
hardware realization it is physically mapped on the POEtic tissue, a flexible 
hardware platform for the implementation of bio-inspired models. The imple-
mentation estimates obtained show that is possible to conceive a large-scale im-
plementation of the model able to handle real-time visual recognition tasks. 

1   Introduction 

Among the different types of artificial neural networks models that have been investi-
gated during the last decades spiking neural networks have attracted large research 
efforts [1], [2] because of their biological plausibility and their suitability for a physi-
cal hardware implementation. These neural paradigms usually consider a simplified 
model for the neuron that is based in an integration process for its inputs and the de-
livery of an output spike when the membrane potential exceeds a given threshold. 

Among different learning mechanisms Spike Timing Dependent Plasticity (STDP), 
i.e., the modification of the synaptic weights depending on the time correlation be-
tween pre- and post-synaptic spikes, has raised an increasing interest [3] due to ex-
perimental evidence [4] and observations suggesting that synaptic plasticity may be 
based on discrete dynamics [5]. 

In this paper we shall consider a spiking neural network model [6] based on STDP 
learning rules whose learning dynamics is based on discrete variables. This model has 
demonstrated excellent properties for discriminating dynamic input stimuli in large-
scale networks [7].   
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The rest of the paper is structured as follows: in the next section we shall provide a 
brief summary of the learning scheme proposed in the considered model. Then we 
shall provide the hardware implementation of this model and the procedure for its 
functional validation. The accuracy of the internal variables used in the model is then 
scaled down to allow for a compact hardware implementation. After validating this 
optimization the resulting model is implemented using the POEtic tissue, a prototyp-
ing platform for bio-inspired models. Finally, the conclusions and our current devel-
opment work are outlined. 

2   A Biologically Inspired SNN Model 

The model consists of Leaky Integrate-and-Fire neuromimes connected by synapses 
with variable weight depending on the time correlation between pre- and post-
synaptic spikes. The synaptic potentials are added until their result Vi(t) overcomes a 
certain threshold, θ.  Then a spike is produced, and the membrane value is reset. The 
simplified equation of the membrane value is: 
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where  kmem=exp(-∆t/τmem),  Vi(t) is the value of the membrane and  Si(t) is the state 
variable which signals the occurrence of a spike.  The value of ,Jij is the output of 
each synapse  (ij)  where j is the projecting neuron and i is the actual neuron. 

When a spike occurs in the pre-synaptic neuron, the actual value of the synaptic 
output Jij is added to the weight of the synapse multiplied by an activation variable A. 
Conversely, if there is no pre-synaptic spike then the output Jij is decremented by a 
factor ksyn.  Then, the value of  ,Jij  corresponds to the following equation: 
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where  R is the type of the neuron, either excitatory or inhibitory. 
If the actual neuron is inhibitory, the factor ksyn will reset the output of the synapse 

after a time step; if the actual neuron is excitatory, the update of the synaptic output 
depends on the projecting neuron and the STDP rule is applied. An inhibitory cell can 
not influence another inhibitory cell, i.e. assume a synaptic weight of zero between  
two inhibitory neurons. The basic synaptic strengths are chosen in order to maintain a 
balanced excitatory/inhibitory activity within the network. 

The changes in strength of an excitatory-excitatory synapse depend on the variable 
A which is a function of on an internal variable  Lij given by the following equation: 

Lij(t+1)=kact·Lij(t) + (YDj(t)·Si(t)) – (YDi(t)·Sj(t))     (3) 

where  kact is a kinetic activity factor, which is the same for all the synapses and YD is 
a “learning” decaying variable that depends on the interval between a pre-synaptic 
spike and a post-synaptic spike. When there is a spike, YD reaches its maximum value 
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at the next time step. In the absence of a spike the value of YD will be decremented by 
the kinetic factor klearn, which is the same for all synapses. When a pre-synaptic spike 
occurs just before a post-synaptic spike, then the variable Lij is increased and the syn-
aptic strength becomes larger, thus corresponding to a potentiation of the synapse. 
When a pre-synaptic spike occurs just after a post-synaptic spike, the variable Lij  is 
decreased,  the synaptic weight is weakened , thus corresponding to a depression of 
the synapse. For all kind of synapses, except the excitatory-excitatory, the activation 
variable is always is set to 1. 

The network layout was chosen with 80% of excitatory and 20% inhibitory neu-
rons. Each unit was fully connected within a 5x5 neighborhood, i.e. connected to 24 
neurons (Fig. 1). 

 

Fig. 1. Connectivity of a single neuron 

3   Hardware Implementation 

From a structural point of view the SNN model considered in this paper is constituted 
by four main building blocks: the neuron block, the decay block, the learning block 
and the synapse block. 

The neuron block is in charge of implementing the dynamics of the membrane by 
integrating the pre-synaptic spikes, as indicated in Eq. (1). The characteristics of the 
parameters of this block are the following: 

• The membrane potential has a resolution of 12 bits, with a range [-2048, 2047], 
and the threshold is kept fixed to +640. 

• The membrane decay function has a time constant value of τ=20. 
• The refractory period is set to 1 time unit. 

The decay block will be used in both learning and synapse blocks.  This block is 
aimed to implement a logarithmic decay of the input; it is obtained with a subtraction 
and controlling the time when it is done depending on the input value. This block is 
used in many parts of the design and the decaying variable has been labeled x in Fig-
ure 2. A new value of x will be the input of a shift register which is controlled by the 
most significant bit (MSB) of x and by an external parameter mpar. The output of this 
shift register will be subtracted from the original value of x. This operation will be 
done when the time control indicates it. The time control is implemented by the value 
of a counter that is compared with the result of choosing between the external value 
step and the product  (MSB–mpar)·step.  The decay variable τ depends on the input 
parameters  mpar  and  step. 
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Fig. 2. Diagram of the decay block 

The learning block “measures” the interval between a spike in the projecting neu-
ron j and the actual neuron i.  Depending on these timings and the types of the two 
neurons, the synaptic strength will be modified. 

When a spike is produced by the projecting neuron, the variable YD is set to its 
maximum value and starts to decay. If a spike is produced by the actual neuron im-
mediately after the presynaptic neuron the value of YDj is added to the decaying value 
of L.  Conversely, if a spike is produced at first in the actual neuron and later in the 
projecting neuron, then the value of YDi is subtracted to the decaying value of L.  

If the L variable overcomes a certain threshold  Lth, positive or negative, then the 
activation variable A is increased or decreased, respectively, unless the variable had 
reached  its maximum or minimum, respectively.  If the variable A is increased, then 
L is reset to the value L-2·Lth; if A is decreased, then L is reset to L+2·Lth.  

Figure 3 illustrates the organization of the learning block.  
The characteristics of the parameters of the learning block are the following: 

• The YD variable has a resolution of 6 bits. 
• The time constant for the variable YD is τ=20.  
• The learning variable L of 8 bits and ·Lth is within the range [-128,127]. 
• The activation variable A is coded by 2 bits and takes four states.  
• To improve the sensitivity of the block for long intervals between spikes the 

time constant for the variable L is set to 4000, but it can be changed depending 
on the network size implementation. 

The synapse block is aimed to set the value of J (analogous to the the sum of all 
post-synaptic membrane potentials) and  depends on four factors: the activation level 
A of the synapse, the spiking state of the projecting neuron Sj and the types of the pre- 
and post-synaptic neurons (Ri and Rj). 

A given weight is set for each synapse. This weight is multiplied by the activation 
variable A by means of a shift register, such that if A=0, the weight is multiplied by 0, 
if A=1 it is multiplied by 1, if A=2 it is multiplied by 2, and if A=3 it is multiplied by 
4. This weighted output is added to the decaying value of the variable J.  
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Fig. 3. Diagram of the learning block 
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Fig. 4. Diagram of the synapse block 

This operation depends on the neuronal types (Ri and Rj). In the current case study 
there are only two types of neurons, excitatory and inhibitory. If both neurons are 
inhibitory the weight of the synapse is set to 0 and the value of J is always 0 and no 
decay is implemented.  For the other three types of synapses the time constants are 
multiplexed, and the multiplexer is controlled by the types of neurons (Ri,Rj). The 
value of J is obtained at the output of the decay block controlled by the multiplexer. 
Figure 4 shows the organization of the synapse block. 

The characteristics of the parameters of the synapse block are the following: 

• The internal resolution of the block is 10 bits, but the output resolution is 8 
bits, becasue the internal value of J is divided by 4 to keep the correct scaling 
with the other parameters. 

• The time constants used by this block are listed in Table 1. 

Table 1. Time constants for different types of synapses. R=0 corresponds to an excitatory and 
R=1 to an inhibitory neuron. 

Time  
Constant (τ) 

Projecting  
 Neuron Type (Rj)

Actual  
Neuron Type (Ri)

20 0 0 

0 0 1 

3 1 0 

0 1 1 
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4   Parameters Tuning 

The resolution required to represent the values of the variables and the number of 
operations to be performed may pose a serious limitation for the final implementation. 
Therefore, an important step consisted in evaluating the model and tuning its parame-
ters in order to get a satisfactory performance. The implementation used in this study 
has been based on a neural network of size 15x15 with a connectivity pattern of 24 
neurons corresponding to a neighborhood of 5x5 (Fig. 1).  The distribution of the 20% 
inhibitory cells was random. The weights, w, and the initial activation variables, A, 
were also chosen randomly.  Dynamic gradient stimuli have been applied to the neu-
ral network. A sequence of vertical bars of gradient intensity move over “strips” of 
neurons placed in the 2D array of the neural network (Fig. 5).   

 

Fig. 5. Input signal applied to the neural network. The arrow to the right means forward sense 
and the arrow to the left means reverse sense. 

The vertical bars may move at different speeds (i.e. spatial frequency).  A neuron 
“hit” by the stimulus receives an input that is proportional to the gradient intensity. 
The activity of the network has been studied in a “training” condition and in a “test” 
condition.  During training the spatial frequency of the stimulus has been incremented 
by discrete harmonics (2x, 4x, etc.) in one direction (the “forward” direction).  During 
test, the stimuli were presented in both forward and reverse sense. A Gaussian noise 
(Mean 0, SD= 48) is applied to all neurons during all the time.  The characteristics of 
the input applied to each neuron are the following: 

• TCLK: 20 ns. Maximum amplitude: 127. 
• Training period: 20 us. Forward sense  
• Test period: 10 us. Forward and Reverse sense 

The activity calculated over a “strip” of neurons perpendicular to the direction of 
the movement represents a measure of  “local” activity.  In this case, the strip is one-
column wide. In Fig. 6 the “local” activity is measured by the count of spikes pro-
duced as a function of the time steps. We can observe that in the forward sense there 
exists an activation pattern with a temporal correlation, but in reverse sense the net-
work output has no such temporal correlation. This result demonstrates that the se-
lected structure of our neural network is able to perform an implicit recognition of 
dynamic features based on simple unsupervised STDP rules.  
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(a) (b) 

Fig. 6. Local activity in column 1. (a) test stimuli are applied in forward sense. (b) test stimuli 
are applied in reverse sense. 

At a first attempt the resolution of the parameters has been reduced by 2 bits and 
some values and time constants have been changed to keep the correct scaling. Table 2 
shows the new values of the internal parameters after this optimization process. The 
final organization resulting from this optimization process is depicted in Fig. 7. The 
simplified model resulting from this optimization has been validated again using the 
same input stimuli presented in Fig. 5. The results of these simulations demonstrate that 
the model is still capable of discriminating the input stimuli applied in the forward and 
in the reverse directions.  

Due to the complexity of the design, the simplification of the model is very impor-
tant to avoid redundancy or to use just the necessary components. For this reason, a 
further simplification of all the building blocks that constitute the model has been 
performed [8].  
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Fig. 7. Block diagram for the serial implementation of the neuron model 
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Table 2. Resolution of the parameters for an optimized implementation 

Parameter New value 

Membrane resolution 10 bits 

Threshold +160 

Input (J) resolution 6 bits 

Weights  
   (Ri,Rj) (00, 01, 10, 11) 

 
    [0:8], [64:128], [128:256], [0:0] 

YD resolution 4 bits 

L resolution 6 bits 

Membrane decay time constant  20 

YD decay time constant  20 

L decay time constant  4000 

JRi,Rj decay time constants  
   (Ri,Rj) (00, 01, 10, 11) 

 
    (20, 0, 3, 0)    values not optimized 

5   Implementation on the POEtic Tissue 

The POEtic tissue [9] constitutes a flexible hardware substrate that has been specifi-
cally conceived in order to permit the efficient implementation of bio-inspired mod-
els. The tissue may be constructed as a regular array composed of POEtic chips, each 
of them integrating a custom 32-bit RISC microprocessor and a custom FPGA with 
dynamic routing capabilities. 

The custom FPGA included in the POEtic chip is composed of a bi-dimensional ar-
ray of elementary programmable elements, called molecules. Each molecule contains 
a flip-flop, a 16-bit lookup table (LUT) and a switchbox that permits to establish pro-
grammable connections between molecules. 

After the optimization carried out on the neural model in order to facilitate its hard-
ware realization it has been mapped on to the molecules that constitute the POEtic de-
vice. The molecule organization shown in Fig. 8 corresponds to the actual structure of the 
FPGA present in the POEtic device, which is arranged as an 8x18 array of molecules. 

The VHDL models developed for the POEtic tissue have been configured and simu-
lated to validate the functionality of the neuron model designed above. After this valida-
tion stage the strategy for the simulation of large-scale SNN models has been consid-
ered. Since in its actual implementation the POEtic chip only allows for the implemen-
tation of a single neuron and the current number of POEtic chips is far less than 10,000 
it will be necessary to use a smaller array of POEtic chips whose functionality should be 
time–multiplexed in order to emulate the entire network. This means that every POEtic 
chip should be able to manage a local memory in charge of storing the weights and 
learning variables corresponding to the different neurons it is emulating in time. 
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Fig. 8. Molecule-level implementation of the SNN model 

A 16-neurons network organized as a 4x4 array has been constructed using this 
principle. This would permit the emulation of a 10,000-neurons network in 625 mul-
tiplexing cycles. Bearing in mind that each neuron is able to complete a time step in 
150 clock cycles, this means that the minimum clock frequency required to handle 
input stimuli in real time (i.e., to process visual input stimuli at 50 frames/second) is 
around 5 MHz far within the possibilities of the actual clock frequency achieved by 
the POEtic tissue (between 50 MHz and 100 MHz). 

The visual stimuli will come from an OmniVision OV5017 monochrome 384x288 
CMOS digital camera. Specific VHDL and C code have been developed in order to 
manage the digital images coming from the camera. To test the application, artificial 
image sequences have been generated on a display and then captured by the camera 
for its processing by the network. 

6   Conclusions 

In this paper we have considered an unsupervised model for modifiable synapses in a 
Spiking Neural Network based on discrete interval variables. This model has demon-
strated a good performance when used for learning and recognition tasks that involve 
dynamic input stimuli. 

The basic parameters that define the model dynamics have been optimized in order 
to provide a hardware friendly implementation. The resulting model has been imple-
mented in the POEtic tissue, a flexible hardware platform conceived for the physical 
realization of bio-inspired models. The results of the current implementation demon-
strate that the proposed approach is capable of supporting real-time needs of large-
scale spiking neural networks models. 

Our current work is concentrated on the physical implementation of the real-time 
image recognition tasks using the development boards that have been constructed for 
the POEtic tissue. 
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