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Preface 

The flying machines proposed by Leonardo da Vinci in the fifteenth century, the self-
reproducing automata theory proposed by John von Neumann in the middle of the 
twentieth century and the current possibility of designing electronic and mechanical 
systems using evolutionary principles are all examples of the efforts made by humans 
to explore the mechanisms present in biological systems that permit them to tackle 
complex tasks. These initiatives have recently given rise to the emergent field of bio-
inspired systems and evolvable hardware. The inaugural workshop, Towards 
Evolvable Hardware, took place in Lausanne in October 1995, followed by the 
successive events of the International Conference on Evolvable Systems: From 
Biology to Hardware, held in Tsukuba (Japan) in October 1996, in Lausanne 
(Switzerland) in September 1998, in Edinburgh (UK) in April 2000, in Tokyo (Japan) 
in October 2001, and in Trondheim (Norway) in March 2003. 

Following the success of these past events the sixth international conference was 
aimed at presenting the latest developments in the field, bringing together researchers 
who use biologically inspired concepts to implement real systems in artificial 
intelligence, artificial life, robotics, VLSI design, and related domains. The sixth 
conference consolidated this biennial event as a reference meeting for the community 
involved in bio-inspired systems research. 

All the papers received were reviewed by at least three independent reviewers, thus 
guaranteeing a high-quality bundle for ICES 2005. The conference included three 
keynote talks entitled: “Perspectives in Complex Systems Research”, “Neural Coding 
of Auditory Information” and “Evolutionary Approaches to Articulated Robot 
Locomotion”. The conference program consisted of 21 technical presentations and a 
panel debate. Additionally, a varied social program was set up to foster the exchange 
of ideas in an enjoyable environment. 

We would like to thank the reviewers for their time and effort in reviewing all of 
the submitted papers. We would also like to thank the other members of the 
Organizing Committee. We wish to thank the following for their direct support of this 
conference: the Technical University of Catalunya (UPC), the Department of 
Electronics of the Technical University of Catalunya, the Spanish Ministry of 
Education, Culture and Sports, the Funding Agency for Universities and Research of 
the Generalitat de Catalunya (AGAUR), and Xilinx, Inc. Last, but not least, we would 
like to thank all the authors who invested so much time and effort in their research 
work and decided to join us in making ICES 2005 a successful event. 

And what is to come next? It is not so easy to make forecasts in a research field 
that is moving as fast as ours about findings and understanding relating to the basic 
mechanisms that underlie the living forms we can observe. Of course, technology will 
play a major role in allowing for an actual realization of these principles, and this is 
where nanotechnology and new FPGA architectures will provide the necessary 
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substrate. However, in our opinion it will be the close cooperation between 
bioscientists, mathematicians and engineers that will result in a framework able to 
permit the construction of artifacts with emergent properties similar to those we can 
see even in the simplest living being. For sure in the next ICES conference we will 
see most of the topics that we have covered in the past, including evolving hardware 
design (both digital and analogue); evolutionary hardware design methodologies; self-
repairing hardware; self-replicating hardware; embryonic hardware and self-
developing systems; morphogenesis; neural hardware and adaptive hardware 
platforms; autonomous robots; evolutionary robotics; and molecular computation. As 
for the new topics that will emerge in this research field, it is our feeling that the 
breakthroughs coming in the life sciences in the coming years will provide avenues 
for facing challenges that, like consciousness, still constitute what Schopenhauer 
termed the world’s knot. 

We hope you enjoy reading these proceedings as much as we enjoyed putting them 
together. 

September 2005 J. Manuel Moreno
Jordi Madrenas

Jordi Cosp
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Tomáš Mart́ınek, Lukáš Sekanina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Evolution of Analog Circuits

Operational Amplifiers: An Example for Multi-objective Optimization
on an Analog Evolvable Hardware Platform

Martin Trefzer, Jörg Langeheine, Karlheinz Meier,
Johannes Schemmel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



X Table of Contents

Intrinsic Evolution of Controllable Oscillators in FPTA-2
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An Adaptive Self-tolerant Algorithm 
for Hardware Immune System 

Wenjian Luo, Xin Wang, Ying Tan, Yiguo Zhang, and Xufa Wang 

Department of Computer Science and Technology,  
University of Science and Technology of China, Hefei 230027, China 

{wjluo, ytan, xfwang}@ustc.edu.cn 
{sinbarwx, ygzhang}@mail.ustc.edu.cn 

Abstract. Hardware immune systems have been studied with some initial 
achievements in recent years. Hardware immune systems are inspired by bio-
logical immune systems and they are expected to have many interesting charac-
teristics, such as self-adaptive, self-learning and fault tolerant abilities. How-
ever, as novel intelligent systems, hardware immune systems are faced with 
many problems. This paper focuses on autoimmunization that is an inevitable 
problem when designing a complex hardware immune system. After the co-
stimulation mechanism of biological immune system is simply introduced as a 
metaphor, a novel self-adaptive and self-tolerant algorithm for hardware im-
mune systems is proposed in this paper. Inspired by the co-stimulation mecha-
nism, the algorithm endows hardware immune systems with the capability of 
self-tolerance by automatically updating detector set and making the self set 
more complete. It can increase the accuracy of detection and decrease the rate 
of false positive effectively. Results of simulation experiments demonstrate the 
validity of this algorithm.  

1   Introduction 

Many works have been devoted to computational methods that are inspired by bio-
logical immune system in recent years [1-2]. As novel computational methods of 
Computational Intelligence (CI), this kind of research is called as Artificial Immune 
Systems (AISs) or methods. Among the many works about AIS, the concept of hard-
ware immune systems is a younger one, which is proposed as a novel approach to 
designing a kind of hardware system with the fault tolerant ability [3-4].  

So far, some works about hardware immune system have already been done. The ar-
chitecture of a hardware immune system is firstly discussed and studied by D. W. Brad-
ley and A. M. Tyrrell [3]. Also, A. M. Tyrrell and his colleagues proposed the concept 
of Immunotronics, and tried to construct a new theory about the design of fault tolerant 
hardware [5-6]. Based on Embryonic Array, R. Canham and A. M. Tyrrell proposed a 
multi-layered hardware artificial immune system with learning ability, which used the 
fact that the immune system consists of acquired immune subsystem and innate immune 
subsystem for reference. The acquired layer of the immune system monitors the behav-
iors of system for unusual activities, and the non-learning innate layer is then employed 
to localize the fault if possible [7]. R. Canham and A. M. Tyrrell also developed a novel 
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artificial immune system, in which a detector of an immune system can be defined as a 
column in a 2-D feature space, and the generation and learning of detectors are fully 
automatic. It has been applied to robotics as an error detection system [8]. A. Tarakanov 
and D. Dasgupta proposed a novel architecture for building immunochips. The immu-
nochip, by which information can be processed in a parallel and distributed manner, was 
evaluated with the problem of detecting dangerous ballistic situations in near-Earth 
space [9]. 

Generally, when the negative selection algorithm [10] is used to perform error de-
tection in a complex fault tolerant hardware system, a complete set of self strings can 
not be obtained. Therefore, a part of matured detectors could become a threat to the 
system under monitoring because these detectors may match some unknown self 
strings. This problem is similar to the autoimmunization in biological immune system. 
For complex hardware systems, this problem seems inevitable, but there is no effec-
tive solution up to now. 

Inspired by the co-stimulation mechanism which is used to maintain self-tolerance 
in biological immune systems, an adaptive self-tolerant algorithm for hardware im-
mune system is proposed in this paper, it adopts Concurrent Error Detection (CED) 
technology [11] to provide the co-stimulation signal for the error detection system. It 
is named as ASTA-CED (the Adaptive Self-tolerant Algorithm with Concurrent Error 
Detection). The co-stimulation signal drives the error detection system to update the 
detector set automatically, delete detectors which bring autoimmune behaviors and 
generate new valid detectors. Therefore, ASTA-CED can avoid the occurrences of 
autoimmunization. Simulation experiments are carried out to show that this proposed 
algorithm can increase the accuracy of detection and decrease the ratio of false posi-
tives effectively. 

The co-stimulation mechanism of biological immune system is simply discussed in 
section 2. Section 3 gives an introduction of the ASTA-CED in detail. Section 4 dem-
onstrates the design of simulation experiments and the experimental results. And 
discussions are also given in section 4. Finally, section 5 is devoted to conclusions 
and future studies. 

2   Immune Metaphor 

In the natural immune system, an inactive T-cell’s activation needs not only the anti-
gen recognition signal (the first signal), but also co-stimulation (the second signal) 
[12]. The source of the second signal can be various, mainly coming from the combi-
nation of B7 molecules on the surface of antigen presentation cells (APC) and CD28 
molecules on the surface of T-cells. Although the second signal does not have speci-
ficity, without the second signal, a T-cell that has already obtained the first signal will 
become an anergy cell (which can not take its own responsibility), and even die. The 
activation process of a T-cell is presented in Fig. 1 [12]. 

Among many kinds of cells interacting with T-cells, only the professional APCs 
(playing a professional role of presenting a peptide of an antigen to T-cells and pro-
viding other corresponding signals) can provide the first and second signals to acti-
vate T-cells at the same time [12]. If a T-cell recognizes an antigen’s peptide from 
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Fig. 1. This briefly shows that the activation of a T-cell should get the first and second signals. 
Here both first and second signals come from APC. However, the second signal, as a signal of 
co-stimulation, can come from various immune cells or molecules. 

cells other than professional APCs, generally it will become an anergy cell because of 
the lack of the second signal. In fact, this is not likely to be a bad thing, because the 
antigen recognized is generally a self antigen at this time. In the biological immune 
system, new birth lymphocytes will undergo a maturation process, in which lympho-
cytes that bind with self proteins are destroyed. Hence, when released within the 
body, binding to a protein indicates it is non-self and may be a harmful pathogen. But 
the fact indicates that not all self proteins are presented to the maturing lymphocytes. 
This means some of the matured lymphocytes are still dangerous to the body. Thus, 
making the lymphocytes threatening the body become anergy cells or dies. This proc-
ess is very helpful for the maintaining of self-tolerance [12]. 

Artificial hardware immune systems are presented with a similar problem, the cur-
rent learning requires a period of fault free operation during which all the self states 
are presented. Although there are applications where this is possible, this can become 
a non-trivial task in some complex systems [7]. So, a mechanism to provide the sec-
ond signals for artificial hardware immune systems is required. 

3   ASTA-CED Algorithm 

The negative selection algorithm is used for performing the detection of invalid state 
transitions. The negative selection algorithm, developed by Forrest and her colleagues 
[10, 13], is based on the generation process of T-Cells within the immune system. 
Forrest and her colleagues use a string to represent the self and non-self individuals. 
Partial matching between these self strings and non-self strings is used as a matching 
rule to distinguish between self and non-self. A set of detector strings are generated 
such that they do not match with all self strings, and they only match with non-self 
strings. Hence, the matching between a detector and the strings being protected gives 
an indication that some abnormal behaviors have occurred, and this indication is used 
as the first signal to the error detection system. In ASTA-CED algorithm, strings are 
used for representing the system’s state transition but not just states because invalid 
state transitions can occur between valid states. 

Concurrent Error Detection (CED) is widely used in highly dependable computing 
systems. It is a kind of on-line parity checking technology [11]. In the ASTA-CED 
algorithm, CED is used for performing parity checking on system’s outputs and gen- 
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Fig. 2. This is the flow chart of ASTA-CED algorithm. The CED is used as a co-stimulation 
signal in ASTA-CED. Driven by this co-stimulation signal, the self set becomes more and more 
complete and the detector set evolves to be more and more efficient. 

erating co-stimulation signals, because it is a simple and comparatively inexpensive 
technology to implement. 

The ASTA-CED algorithm can be specified as shown in Fig. 2, in which S is the 
set of self (valid state transition) strings, and R is the set of detectors. The following is 
the description of the algorithm shown in Fig. 2. Here, it assumes that the initial set S 
is incomplete because a complete self set can not be obtained in general. 

(1) Perform partial matching between state transitions and detectors in R one by one; 
(2) If a detector r matches a state transition string, go to (3), or else back to (1); 
(3) Report the error, if there is no co-stimulation from CED, go to (4), or else back 

to (1); 
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(4) Update the set S by inserting the new self string obtained by detector r, and de-
lete r from R; 

(5) Generate a new premature detector r’ randomly; 
(6) If r’ doesn’t match any string in S, go to (7), or delete it and back to (5); 
(7) If r’ is included in the current set R, delete it, or else insert it into R; 
(8) Back to (1). 

The aim of steps (5)-(8) is to generate a new detector and prevent the generating of 
new detectors from consuming too many resources of the system. The process of error 
detection can be regarded as the evolutionary process of the detector set R, by which 
the algorithm endows the hardware immune system with the capability of adaptive 
self-tolerance.  

In the following experiments, every state transition of the whole string space ap-
pears once in a single cycle. When the detector set undergoes such a cycle, in fact it 
has evolved for one generation. 

4   Experiments 

4.1   Design of the Experiments 

Based on the experiment of error detection of Finite State Machine (FSM) designed 
by A. M. Tyrrell [5], a co-stimulation generating module – CED and a controller are 
added to the simulation experiment, which is described as shown in Fig. 3. Partial 
matching of a state transition string from the FSM and a detector string from the de-
tector set R will generate the first signal to the controller, and send an alarm to the 
results record module. At the same time, the self flag (which is set for every self 
string in S in advance) of the current state transition is sent to the results record mod-
ule too. So the results recorded can be used for validating the performance of the 
ASTA-CED. In the CED module, the result of parity checking of the system’s output 
will be sent to the controller as the second signal (co-stimulation), and then the con-
troller decides whether R need to be updated according to the first and second signals. 
If necessary, R would be updated. 

 

Fig. 3. This shows the design of the simulation experiment. In this experimental system, the 
CED is used to generate the second signal. The first and second signals are sent to the Control-
ler Module that justify whether a matching result represented by the first signal is really an 
abnormal behavior or not. The final experimental results are stored in Results Record module. 
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Fig. 4. This shows the bit-string representation of state transitions. Only previous state and 
current state are used because only the state transition is considered in this paper. The input 
state is ignored. 

Here it supposes that valid state transitions generate valid outputs, and invalid state 
transitions generate invalid outputs, moreover, and every invalid output just fails at a 
single bit (here, the “invalid outputs” means outputs that fails to pass the parity check-
ing). Bit-strings are used for representing state transitions and detectors in a form 
shown in Fig. 4 [4]. 

4.2   Results 

The ASTA-CED algorithm is compared with the traditional Negative Selection Algo-
rithm (traditional NSA) which does not have a co-stimulation mechanism in the same 
situation. The length of the bit-string is 10, and then the size of string space O is 1024. 
The number of total self strings Ns is fixed at 60. The partial match length c is 8.  

The parameter a, which is the proportion of self strings already known in advance 
among the complete set of self strings, is set to {1.0, 0.9, 0.8, …, 0.1} for observing 
the change of the results against it. 

Every state transition in space O appears for 40 times in an independent run of the 
algorithm. In other words, the detector set R in ASTA-CED algorithm will evolve for 
40 generations in an independent run. And the results take the average values over 15 
independent runs for every value of the parameter a. 

The self set of every independent run is generated randomly. The size of initial 
immature detector set is fixed to 324. Both initial immature and mature detector sets 
of ASTA-CED are the same as that of traditional NSA. The size of initial mature 
detector set is Nr1 , Table 1 lists the average values of Nr1 against values of a.  

It should be noted that the detector set of traditional NSA is fixed. However, the de-
tector set of ASTA-CED will evolve step by step, and its evolution is driven by the 
co-stimulation signal (i.e. CED). 

In an independent run, it is assumed that PS is the number of valid state transitions 
detected as normal behaviors by the system; FS is the number of valid state transitions 
detected as abnormal behaviors; PN is the number of invalid state transitions detected 
as normal behaviors; and FN is the number of invalid state transitions detected as 
abnormal behaviors. The following three statistical results are defined to make the 
comparisons between ASTA-CED and traditional NSA. 

FNFS
FNPr += ,  

FSPS
FSPw += ,  

FNPN
PNPf +=  
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Table 1. The average sizes of initial mature detector sets of the two algorithms against values 
of a. The mature detector set is the detector set after being filtered out the immature detectors 
that matches self individuals from the immature detector set. The size of initial immature detec-
tor set is always set as 324.  

a 1.00 0.90 0.80 0.70 0.60 
Average Nr1 195.5 206.5 220.0 225.0 240.5 

a 0.50 0.40 0.30 0.20 0.10 
Average Nr1 253.5 264.5 274.5 296.0 309.5 

Table 2. Pr of traditional NSA and ASTA-CED 

ASTA-CED 
a 

Traditional 
NSA Average value from 

1 to 20 generations 
Average value from 
21 to 40 generations 

1.00 1.0000 1.0000 1.0 

0.90 0.9934 0.9993 1.0 
0.80 0.9881 0.9989 1.0 

0.70 0.9816 0.9978 1.0 
0.60 0.9741 0.9969 1.0 
0.50 0.9698 0.9963 1.0 
0.40 0.9634 0.9953 1.0 

0.30 0.9586 0.9947 1.0 
0.20 0.9505 0.9936 1.0 

0.10 0.9466 0.9923 1.0 

Table 3. Pw of traditional NSA and ASTA-CED algorithms 

ASTA-CED 
a 

Traditional 
NSA Average value from 

1 to 20 generations 
Average value from 
21 to 40 generations 

1.00 0.0000 0.0000 0.0 
0.90 0.0814 0.0081 0.0 
0.80 0.1546 0.0138 0.0 

0.70 0.2441 0.0281 0.0 
0.60 0.3580 0.0407 0.0 
0.50 0.4231 0.0476 0.0 

0.40 0.5289 0.0635 0.0 
0.30 0.6103 0.0696 0.0 

0.20 0.7567 0.0838 0.0 
0.10 0.8381 0.1046 0.0 
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Table 4. Pf of traditional NSA and ASTA-CED algorithms 

ASTA-CED 
a 

Traditional 
NSA Average value from 

1 to 20 generations 
Average value from 
21 to 40 generations 

1.00 0.2431 0.2431 0.2431 

0.90 0.2218 0.2413 0.2421 

0.80 0.1813 0.1970 0.1974 

0.70 0.1714 0.1971 0.1990 

0.60 0.1403 0.1771 0.1797 

0.50 0.1319 0.1807 0.1839 

0.40 0.1112 0.1443 0.1475 

0.30 0.0982 0.1635 0.1673 

0.20 0.0722 0.1729 0.1766 

0.10 0.0514 0.1393 0.1449 
 
 
Table 2, Table 3 and Table 4 show the comparison between ASTA-CED and tradi-

tional NSA on average values of Pr, Pw and Pf. The comparisons in the first 20 gen-
erations, those are shown separately, indicate that on Pr and Pw, the results of ASTA-
CED algorithm is much better than that of traditional NSA, this is due to the detectors 
matching self strings are deleted and new detectors are generated, and the Pr of the 
two algorithms increase with a, and both the Pw of them decrease as a increases; but 
only Pf of ASTA-CED algorithm is a little higher than that of traditional NSA, this 
will be discussed in the next section.  

The comparisons in the last 20 generations are also shown separately in Table 2, 3 
and 4. It is clear that in the last 20 generations, there is no detector matching a self 
string. In other words, the evolution of detector set R has been finished before these 
generations. For Pf, the results are similar to that of the first 20 generations. 

Some other aspects of ASTA-CED algorithm can be observed in Fig. 5. Firstly, in 
Fig. 5(a), it indicates that the number of new detectors inserted into R is smaller than 
 

 

 

Fig. 5. This shows some characteristics of ASTA-CED. (a) The updating process of detector set 
R. (b) The changing curve of Pw in generations. 
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Table 5. The average sizes of final detector sets of  ASTA-CED against values of a  

a 1.00 0.90 0.80 0.70 0.60 
Average Nr2 195.5 201.5 215.5 208.5 225.5 

a 0.50 0.40 0.30 0.20 0.10 
Average Nr2 235.0 244.0 246.5 263.0 266.5 

 
 
the number of deleted detector from R, this means that the size of R has shrunk in 
ASTA-CED algorithm. The size of final detector set of ASTA-CED is Nr2. Table 5 
lists the average values of Nr2 against values of a over 15 independent runs. On the 
other hand, in Fig. 5(b), the probability of false positive Pw declines rapidly to 0 
against generations. 

4.3   Discussions 

In Table 1, Table 2 and Table 3, the experimental results indicate that ASTA-CED 
algorithm is better than the traditional NSA both at Pr and Pw, but is poorer than tradi-
tional NSA at Pf. The following is a brief discussion about this phenomenon. 

Since partial matching mechanism is being used here, even if a complete detector 
set can be obtained, the self strings and non-self strings matching over c contiguous 
bits will result in the presence of undetectable non-self strings, namely holes [13-14]. 
There are strings in the “hole” that are unable to be detected because any detectors 
matching them would also match some self strings. The relevant analyses of this phe-
nomenon have been investigated by D’haeseleer in [14].  

In Fig. 6, for a particular partial match length c, given S0 as the incomplete set of 
self got in advance and S1 as the more complete set of self obtained in the error detec-
tion procedure. Suppose h0 and h1 are the holes induced by S0 and S1 respectively, and 
R and R’ are the detector sets generated against S0 and S1 respectively, and  
 

 

Fig. 6. Analyses on failure probability Pf. O is the whole string space. S0 is the initial incom-
plete set of self, while S1 is the more complete set of self obtained in the course of error detec-
tion. R and R’ are the detector sets generated against S0 and S1 respectively, while h0 and h1 are 
the holes induced by S0 and S1 respectively. 
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O is the whole string space. It is noted that here R and R’ are regarded as complete 
or almost complete detector sets. This can be guaranteed by randomly generating 
enough premature detectors or using the greedy detector generating algorithms 
proposed in [13]. 

Firstly, it should be noted that S0 is a subset of S1, because S1 is more complete than 
S0. Strings in h0 can not be detected by R, and strings in h1 are undetectable to R’. 
Secondly, there can be self strings in the h0, but no self string in the h1. Suppose that 
all of self strings in h0 make up of a set of Sh0. Finally, according to the counting 
method of holes in [14], (h0- Sh0) is a subset of h1. Therefore, on the one hand, non-
self strings in h1 can not be detected by R’, while possible to be detected by R. On the 
other hand, non-self strings in (h0- Sh0) can not be detected by R’ and R. Thus, if Pf0 is 
the failure probability of R, and Pf1 is the failure probability of R’, it can be concluded 
that Pf0< Pf1. Fortunately, the problem with holes can be avoided by adopting a match-
ing rule with a variable matching length c [14]. 

5   Conclusion 

In the design of a complex hardware immune system, autoimmunization is an inevita-
ble problem. In this paper, a novel self-adaptive algorithm, namely ASTA-CED, is 
proposed as a solution. Concurrent Error Detection (CED) technology is used for 
providing co-stimulation to the error detection system, and the detector set is updated 
automatically, then the occurrence of autoimmunization can be avoided. Results of 
simulation experiments prove that this new algorithm has increased the accuracy of 
detection and decreased the ratio of false positives effectively. 

However, there are also some future works that should be studied to improve this 
algorithm. Firstly, CED is a technology based on parity checking, so it can only detect 
single bit fault. Secondly, since CED is used for checking the system’s output in this 
paper, this might be unsuitable when considering some applications. We are looking 
for more suitable co-stimulation mechanisms, and we will explore better approaches 
to building up self-tolerance in hardware immune systems. 
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Abstract. While the fault repair capability of Evolvable Hardware (EH) 
approaches have been previously demonstrated, further improvements to fault 
handling capability can be achieved by exploiting population diversity during all 
phases of the fault  handling process. A new paradigm for online EH regeneration 
using Genetic Algorithms (GAs) called Consensus Based Evaluation (CBE) is 
developed where the performance of individuals is assessed based on broad 
consensus of the population instead of a conventional fitness function. Adoption 
of CBE enables information contained in the population to not only enrich the 
evolutionary process, but also support fault detection and isolation. On-line 
regeneration of functionality is achieved without additional test vectors by using 
the results of competitions between individuals in the population. Relative fitness 
measures support adaptation of the fitness evaluation procedure to support 
graceful degredation even in the presence of unpredictable changes in the 
operational environment, inputs, or the FPGA application. Application of CBE to 
FPGA-based multipliers demonstrates 100% isolation of randomly injected stuck-
at faults and evolution of a complete regeneration within 135 repair iterations 
while precluding the propagation of any discrepant output. The throughput of the 
system is maintained at 85.35% throughout the repair process.  

1   Introduction 

Evolutionary mechanisms can actively restore mission-critical functionality in 
SRAM-based reprogrammable devices such as Field Programmable Gate Arrays 
(FPGAs). They provide an alternative to device redundancy for dealing with 
permanent degradation due to radiation-induced stuck-at-faults, thermal fatigue, oxide 
breakdown, electromigration, and other local permanent damage without the 
increased weight and size normally associated with spares. Hence, recent research has 
focused on employing the capability for reconfiguration inherent in field 
programmable devices to increase reliability and autonomy [1], [2], [3], [4], [5]. In 
these experiments, fault-tolerance is evolved at design time, or achieved at repair-time 
using evolution after taking a detected failed unit offline.  In both cases, GAs 
provided a population-based optimization algorithm with the objective of producing a 
single best-fit individual as the final product. They rely on a pre-determined static 
fitness function that does not consider an individual's utility relative to the rest of the 



 CBE for Fault Isolation and On-line Evolutionary Regeneration 13 

 

population. The evaluation mechanisms used in previous approaches depend on the 
application of exhaustive test vectors to determine the individual with the best 
response to all possible inputs.  However, given that partially complete repairs are 
often the best attainable [4], [2], other individuals may outperform the best-fit 
individual over the range of inputs of interest. In particular, there is no guarantee that 
the individual with the best absolute fitness measure for an exhaustive set of test 
inputs will correspond to the individual within the population that has the best 
performance among individuals under the subset of inputs actually applied. Thus, 
exhaustive evaluation of regenerated alternatives is computationally expensive, yet 
not necessarily indicative of the optimal performing individual among a population of 
partially correct repairs.  Hence, two innovations are developed herein for self-
adaptive EH regeneration: 

1) Elimination of additional test vectors, and 
2) Temporal Assessment based on aging and outlier identification 

In Consensus-based Evaluation (CBE), an initial population of functionally 
identical (same input-output behavior), yet physically distinct (alternative design or 
place-and-route realization) FPGA configurations is produced at design time.  During 
runtime, these individuals compete for selection based on discrepancy favoring fault-
free behavior. Discrepant behaviour, where the outputs of two competing individuals 
do not agree on a bit-by-bit basis, is used as the basis for the performance evaluation 
process.  Any operationally visible fault will decrease the fitness of just those 
configurations that use it.  Over a period of time, as the result of successive 
comparisons, a consensus emerges from the population regarding the relative fitness 
of all individuals. This allows the classification of configurations into ranges of 
relative reliabilities based on their observed performance during online operation. 

2   Related Work 

Adaptive regeneration has been investigated as an alternative to using pre-determined 
spares. Most researchers [2], [3], [5], [6] focus on using traditional GAs to identify a 
single best-fit individual at the termination of the evolutionary computation. 
Keymeulen, Stoica, and Zebulum [1] use a design-time emphasis to improve fault 
tolerance.  They develop evolutionary techniques so that a circuit is initially designed 
to remain functional even in presence of various faults. Their population-based fault 
tolerant design method evolves diverse circuits and then selects the most fault-
insensitive individual. In this paper we propose a system that achieves improved fault 
tolerance by using a runtime adaptive algorithm that emphasizes the utilization of 
responses observed during the actual operation of the device. While their population-
based fault tolerance approach provides passive run-time tolerance, CBE is dynamic 
and actively improves the fault tolerance of the system according to environmental 
demands. 

Yao and Liu [7] emphasize that in evolutionary systems, the population contains 
more information than any one individual. They develop two examples to 
demonstrate the use of the information contained in the population in the domains of 
artificial neural networks and rule based systems respectively. The last population is 
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used efficiently and out-performs the single best-fit individual in these two examples. 
[8] presents four methods for combining the different individuals in the final 
population to generate the solution. They provide results for three data sets, namely 
the Australian credit card assessment problem, the heart disease problem and the 
diabetes problem, which show that solutions obtained by combining individuals 
outperform any single individual. While the authors devise a method to utilize the 
information contained in the population to improve the final solution, they fail to use 
the information in the population to improve the learning and optimization process 
itself. Also, the authors emphasize that learning systems are different from 
optimization problems, and that information contained in the population is only useful 
in learning systems. The proposed approach clearly indicates that even optimization 
and repair problems can benefit from population information. More recently, in [9] 
the authors describe using fitness sharing and negative correlation to create a diverse 
population of solutions. A combined solution is then obtained using a gating 
algorithm that ensures the best response to the observed stimuli. In EHW, it may not 
always be possible to combine solutions without additional physical resources that 
may be fault-prone. In our approach, all individuals in the population are recognized 
as possible solutions, with the best emerging candidate being selected based on their 
runtime response and performance track record. The authors also claim that applying 
the described techniques to EHW should be a straightforward matter, but do not 
describe any applications or examples. They state the absence of an optimal way of 
predicting the future performance of evolved circuits in unseen environments. We 
show that it is possible for an adaptive system to keep track of the relative 
performances of individuals and implicitly build a consensus.  

Layzell and Thompson [10] identify Populational Fault Tolerance (PFT) as an 
inherent quality of EHW. They state that due to the incremental nature of 
evolutionary algorithms, the solution changes along the course of evolution to adapt 
to faults. The evolutionary history of the evolved circuit was used to arrive at the 
conclusion that PFT is an inherent quality in evolutionary design due to the 
incremental incorporation of additional components into a prototype depending on 
conditions. They speculate that PFT is less likely to occur for online evolution in 
varying environments. An evolutionary process that uses absolute fitness measures 
and exhaustive tests may not be able to provide adaptive fault tolerance.  

Previous research has not focused on leveraging the robustness of a population to 
improve the detection and isolation phases, or to achieve an online evolution process. 
Problems related to fault tolerance in online evolution identified by the existing 
approaches are addressed by the new Consensus-based Evaluation scheme. Online 
evolution defines an essentially different problem from a traditional GA optimization 
problem. To address the problem effectively, a new fitness evaluation paradigm is 
required. With relative fitness measures based on competition, a running consensus is 
produced regarding the fitness of individuals in repsonse to the actual environmental 
stimuli. This can be used by the regeneration process to adapt to runtime requirements 
and improve the fault tolerance of the population. The CBE approach presents a new 
online adaptive repair mechanism that fully exploits the advantages of population-
based evolutionary methods. It utilizes a temporal voting approach whereby the 
outputs of two competing instances are compared at any instant and alternative 
pairings are considered over time.  The presence or absence of a discrepancy is used 
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to adjust the discrepancy values (DVs) of both individuals without rendering any 
judgment at that instant on which individual is actually faulty. The faulty, or later 
exonerated, configuration is determined over time through other pairings of 
competing configurations. The competitive process is applied repeatedly to form a 
strong consensus across the diverse pool of alternatives. The fitness of individuals is 
determined through this continuing runtime process by evaluating the real time 
performance of individuals in comparison to others in the population. Instead of using 
an absolute fitness function, with the concomitant exhaustive testing, relative 
discrepancy values are used as the threshold to identify faulty individuals. Also, the 
system actively selects individuals that perform the best, given the current 
environment. Healthy individuals are used to achieve the repair of individuals 
affected by faults. The proposed approach makes full use of the fact that repair 
complexity is far less than design complexity. CBE achieves improved fault tolerance 
by making extensive use of the information contained in the population – both as raw 
material for creating new individuals, and as information that enables faster and more 
accurate fault isolation. Any improvement in the fault isolation process speeds up the 
regeneration process by directing the GA search in the proper direction. The use of a 
relative fitness measure and temporal consensus improves the fault tolerance and 
adaptability of the population.  

3   Autonomous Regeneration Using CBE 

A GA performs a multi-directional search by maintaining a population of potential 
solutions and encouraging information formation and exchange along these 
directions. By encouraging direct competition between individuals in the population, 
a relative fitness measure based on consensus can be generated. The objective fitness 
function used in traditional GAs can be effectively replaced by the emergent 
consensus and relative fitness measure. The relative fitness measure is inherently 
dynamic, and by using an Evaluation Window for the individuals, an accurate 
reflection of the environmental conditions and changes can be achieved. Multiple 
potential directions for future exploration can be created and utilized depending on 
the conditions prevalent during the evolutionary process. 

In the CBE approach, an initial population of Pristine individuals is created by 
manual design.  These primordial configurations are functionally-identical (same 
input-output behavior), yet they utilize physically-distinct resources (alternative 
design or place-and-route implementations). For puposes of illustration, assume two 
competing half-configurations labeled Functional Logic Left (“L”) and Functional 
Logic Right (“R”) are loaded in tandem on the physical FPGA platform. The half-
configurations occupy mutually exclusive physical resources to implement identical 
functionality. This realizes a conventional Concurrent Error Detection (CED) 
arrangement to identify at least any single resource fault with certainty [11]. As in 
traditional CED approaches, comparison of the outputs of the two resident half-
configurations will produce either discrepant or matching outputs which will indicate 
the presence or absence of faulty resources in the FPGA hardware platform 
respectively.  
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Under CBE, whenever two half-configurations disagree, the Discrepancy Value 
(DV) of both half-configurations are incremented.  By repeated pairing over a period 
of time, only those half-configurations which do not use faulty resources will 
eventually become preferred.  This is because the DV of a faulty half-configuration is 
always increased regardless of its pairing, yet the DV of fault-free half-configurations 
which are paired together do not increase. This process occurs as part of the normal 
processing throughput of the FPGA without additional test vectors or other diagnostic 
routines.  The determination of a configuration’s health state is based on its 
cumulative DV relative to DV of the other individuals in the population evaluated 
over a period called the Evaluation Window, denoted by EW.  

3.1   CBE Procedure 

The procedure begins with pre-designed individuals that are fault-free. These 
individuals are divided into two groups, L and R, where each group of individuals 
uses mutually exclusive physical resources. This is essential to ensure that one 
individual each form both groups can reside and compete in tandem on the FPGA. In 
addition, every individual can belong to one of four states – Pristine, Suspect, Under-
repair or Refurbished. In the beginning, all individual are pristine. At any given point 
of time, one individual each from the L and R groups compete with each other. State 
transistions occur according to the result of pairwise output comparison. A 
comparison can lead to two results - “L=R” and “L≠R” indicating whether the two 
resident half-configurations produce either matching or discrepant outputs, 
respectively. When L=R occurs then both individuals retain their Pristine state.  
However when their outputs disagree then both the configurations are demoted to the 
Suspect pool and the DV of both individuals is increased.  Whenever such a transition 
occurs, a Fault Alert indicator is issued because two functionally-identical circuits 
disagree.  Hence at least one resource fault must have occurred.   

More formally, the i-th half configuration remains in the Suspect pool until its DV 
fi evaluated over the preceding EW pairings rises above the Repair Discrepancy Value 
(fi < DVR) which is defined as average DV of entire population accumulated over EW.  
The i-th half-configuration is then marked as Under Repair until its DV drops below 
the Operational Discrepancy Value (fi ≥ DVO) which is defined as average DV of the 
healthy individuals among the population (Pristine, Suspect and Refurbished) 
accumulated over EW.  Under the fault-free circumstance, DVO = DVR until the faulty 
individuals appear in the population as a result of emergent hardware faults. 
Thereafter, fOT is modified such that DVO ≤ DVR which provides dithering immunity 
such that the configuration is indeed Refurbished.  

Over a period of time the DV of an individual could increase further and complete 
regeneration becomes possible though not necessarily externally distinguishable from 
partial regeneration.  Competing half-configurations remain Refurbished unless their 
DV rises above the Repair DV, at which time they again demoted to the Under Repair 
state. 

The procedural flow of the CBE algorithm that calculates the health state 
transitions is depicted in Figure 1.  After initialization, Selection of the L and R half-
configurations occurs which are then loaded into the FPGA.  The Detection process is 
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Fig. 1. Procedural Flow in the CBE Technique 

conducted when the normal data processing inputs are applied to the FPGA.  Based 
on agreement or disagreement among the outputs of the two competing L and R half-
configurations, Discrepancy Value Adjustment for both individuals occurs.  The 
central PRIMARY LOOP representing discrepancy-free behavior can repeat 
indefinitely without any reconfiguration of the FPGA.  Only when outputs disagree do 
alternate configurations need to be loaded.  For Under Repair individuals, if fi > DVR 
then Genetic Operators are invoked only once on the resident configurations.  The 
modified configuration is then immediately returned to the pool of competing 
configurations and the Selection step is resumed under normal FPGA throughput 
processing operations.   

3.2  Selection and Detection Process 

The Selection and Detection processes are shown in Figure 2.  The usual flow is for 
Pristine, Suspect, and then Refurbished individuals to be preferred in that order for 
one half-configuration.  On the other hand, the other half-configuration is selected 
based on a stochastic process determined by the Re-introduction Rate (λR).  In 
particular, Under Repair individuals are selected as one of the competing half-
configurations on average at a rate equal to λR.  Henceforth, this now genetically-
modified configuration will be re-introduced into the operational throughput flow as a 
new competitor to potentially exhibit fault-free behavior against the larger pool of 
configurations not currently undergoing repair.   

An additional innovation is that λR is not only a continuous variable, but can be 
adapted under autonomous control.  In particular, we strive for Mean-Time-To-Repair 
(MTTR) < Mean-Time-Between-Failures (MTBF) by monitoring the ratio of the 
number of computations elapsed between and adjusting λR accordingly. 

  The Detection process is presented in the lower right corner of Figure 2. If a 
discrepancy is observed as a result of output comparison, the FPGA is reconfigured 
with a different pair of competing configurations and the output of the device is 
temporarily held to be recalculated by the newly selected L and R half-configurations.  
These repeated computations and comparisons imply no additional cost since the 
device remains online and operational and the normal data throughput continues 
uninterrupted. 
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Fig. 2. Selection and Detection in the CBE Technique 

 

Fig. 3. Fitness State Adjustment Processes in the CBE Technique 
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3.3   Fitness State Adjustment Process 

Figure 3 depicts the Fitness State Adjustment Process in CBE. Whenever a 
discrepancy is detected, the discrepancy values of the individuals involved are 
updated. The new discrepancy values are then compared to the Repair Discrepancy 
Value DVR and Operational Discrepancy Value DVO to determine whether the 
individuals move from one fitness state to another. Ideally, the repair and operational 
discrepancy values are computed over EW comparisons for the population. As soon as 
the all the individuals in the population have completed at least EW comparisons, new 
values of these thresholds are obtained. Since it may be impractical to wait for all 
individuals to complete the requisite iterations, an individual can undergo a state 
transition after it finishes EW iterations. A Sliding window is defined, which reduces 
the latency involved in updating DVR and DVO by considering a subset of individuals 
instead of the whole population. With a sliding window, the values of these thresholds 
are updated upon the completion of the requisite number of iterations by the number 
of individuals defined by the sliding window. For Under Repair individuals, GA 
operators are invoked once every EW iterations.  

4   Evolutionary Fault Repair Circuit 

The hypothetical FPGA structure used in the CBE approach is the same as that in 
Miller, Thomson[12].  The feed-forward combinational logic digital circuit uses a 
rectangular array of nodes with two inputs and one output. Each node represents a 
Look-up Table (LUT) in the FGPA device, and a Configurable Logic Block (CLB) is 
composed of four LUTs. In the array, each CLB will be a row of the array and two 
LUTs are represented as four columns of the array. There are five dyadic functions -- 
OR, AND, XOR, NOR, NAND -- and one unary-function NOT, each of which can be 
assigned to an LUT. The LUTs in the CLB array are indexed from 1 to n. Array 
routing is defined by the internal connectivity and the inputs/outputs of the array. 
Internal connectivity is specified by the connections between the array cells. The 
inputs of the cells can only be the outputs of cells with lower row numbers. Thus, the 
linear labelling and connection restrictions impose a feed-forward structure on the 
combinational circuit. 

A 3×3 Multiplier is implemented using the above FPGA structure. XOR gates are 
purposely excluded from the initial designs which leads to designs with a higher 
number of the gates than conventional 3×3 Multiplier designs to increase the design 
space. The entire configuration needs 21 CLBs. The population of competing 
alternatives is then divided into two groups, L and R, where each group uses an 
exclusive set of physical resources. For crossover to occur such that offspring are 
guaranteed to utilize only mutually-exclusive physical resources with other resident 
half-configurations, a two-point crossover operation is carried out with another 
randomly selected Pristine, Suspect or Refurbished individual belonging to the same 
group. By enforcing speciation breeding occurs exclusively in L or R, and non-
interfering resource use is maintained. The random crossover points are chosen along 
the boundary of CLBs so that intra-CLB crossover is not possible. The mutation 
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operator randomly changes the LUT’s functionality or reconnects one input of the 
LUT to a new randomly selected output inside the CLB.  

5   Experimental Results 

An initial population of 20 fault-free configurations was partitioned into mutually 
exclusive sub-populations L and R, each containing 10 configurations. Varying stuck-
at faults were injected into the architecture that represents permanent physical faults. 
Several fault isolation and regeneration experiments were carried out using a software 
simulator. The EW used in the experiment is 600, which can statistically guarantee that 
all of 64 input combinations appear at the inputs at least once with probablity of 
99.5%, when input combinations are selected at random. For the 3×3 multiplier, the 
total possible number of input combinations is 26=64. Thus n = 64 represents the total 
number of unique input combinations to the simulated FPGA. In the simulation, m 
(0≤m≤64) is defined as the number of input combinations for which a fault is 
manifested at the output of the simulated circuit. The number of input combinations 
for which the output does not match the desired value measures the impact of a fault 
on an individual. Fault isolation characteristics are analyzed first without considering 
the regeneration process. 

The second set of regenerative experiments investigates the regeneration of 
functionality using CBE. The GA uses a two-point crossover, with a crossover rate of 
0.05 and the mutation rate is 0.8. The re-introduction rate is 10%. With the simulated 
FPGA remaining partially online, all of the regeneration experiments achieved full 
fault recovery within a few hundred repair operations with normal functional data 
input. During the regeneration period, data throughput is average 87.94. That is, only 
13.16% of the total computations had to be recalculated in order to preclude 
propagation of discrepant outputs. 

5.1   Fault Isolation Experiments 

Pairs of individuals, one each from the L and the R groups are loaded on the FPGA in 
a repetitive random process. The outputs are compared to check for discrepancies. 
Judgment on the fault characteristics of an individual is reserved till it completes EW 
pairings, and an Observation Interval is complete. A Sliding Window of evaluation is 
defined as five EW, after which one observation interval is complete and individuals 
who have completed an EW are evaluated to identify outliers. The DV of a faulty 
configuration will increase each time it is compared to another individual. A fault-free 
individual will see increases in its DV only when it is compared to a faulty individual. 
Individuals with a DV that exceeds the observed arithmetic mean by one standard 
deviation are identified as faulty. For example, if 1-out-of-64 outputs are affected in 
one L individual due to a fault, the expected DV of this individual after EW pairings is 
DVL= 1/64* EW =9.375, assuming equal likelihoods for inputs. A faulty individual can 
be expected to be identified once every two observation intervals, since the width of 
each observation interval is defined by 5*EW. The average DV of the R individuals 
that this is paired with be DVR =1/64* EW /10=0.9375, assuming equal selection 
likelihoods. 
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Two metrics Operational DV (DVO) and Repair DV (DVR) are calculated and used 
in the CBA evaluation. DVO is defined as arithmetic mean of the observed DV of all 
healthy individuals over a sliding winodw and the DVR is defined as arithmetic mean 
of the DV of all individuals considered in the sliding window, including any that may 
be faulty. If no faulty individuals have been detected, DVO will equal DVR, otherwise 
the DVO  < DVR as the faulty individuals substantially increase the mean DV. DVO  and 
DVR are subsequently used in the CBE fault repair mechanism to define the state 
transitions of individuals. If an individual has a DV < DVO, it is probably fault-free 
and can be used for fault-free computation. If the DV of an individual exceeds DVR, 

then the individual is placed in the Under-Repair group. 
In the first experiment, only one individual is affected by a failure in the physical 

resource, which causes a 1-out-of-64 fault in the individual. Before the fault occurs, 
the system operates with a 100% throughput, and all individuals have a DV equal to 
zero. As shown in Figure 4, the fault occurs at time t = 0 and the faulty individual is 
repeatedly detected and identified at various observation intervals. DVO = DVR 

whenever no faulty individual have been detected over a sliding window. The faulty 
individual is always detected, but since it has not completed EW pairing, judgment is 
reserved, as shown in the plot. When a faulty individual is isolated, the DVO will be 
less than DVR and the faulty DV will be located outside of the DVR+DVσ, where DVσ 
represents the standard deviation of the discrepancy values.  

Figure 5 shows that the isolated individual’s DV deviates by 1σ or more, typically 
3σ. This shows error-free isolation and that faults are never incorrectly identified. 
Also, 100% of the faulty individuals are identified within statistically acceptable 
values for their discrepancies. 

The average DV of individuals will increase proportionately with fault impact. 
This leads to increased isolation latency, as shown in Figure 6, for the second 
experiment, where the characteristics of isolating a single faulty individual with a 10-
out-of-64 fault impact are shown. Since there are more faults, the faulty individual is 
expected to show a discrepancy (10/64)*600 = 93.75 times over its evaluation 
window. To complete these iterations, it will therefore require (93.75/5) = 18.75 
observation intervals, as opposed to 1.88 previously, which leads to both increased 
discrepancy values for the isolated individuals and an increased time between 
 

Fig. 4. Isolation of a single faulty L individual 
with a 1-out-of-64 fault impact 

Fig. 5. Plot of Standard Deviations of DV 
with a 1-out-of-64 fault impact 



22 K. Zhang, R.F. DeMara, and C.A. Sharma 

 

Fig. 6. Isolation of a single faulty L individual 
with a 10-out-of-64 fault impact 

Fig. 7.  Performance with a single faulty 
individual with 10-out-of-64 fault 
impact 

successive isolations as compared to Figure 4. The detection latency remains 
unaffected. Figure 7 shows that for a single faulty L individual, with a 10-out-of-64 
fault impact, isolation always succeeds when expected.  

However, when more than one individual is affected by a resource fault, isolation 
is more time-consuming and difficult as shown in Figure 8, which depicts the 
isolation characteristics when 4 L  and 4 R individuals are affected by 1-out-of-64 
faults. Expected isolations do not occur approximately 40% of the time, as the 
average discrepancy value of the population is higher, making outlier isolation 
difficult. The faulty individuals are always detected, but the higher number of 
discrepancies prevents them from completing EW

 iterations within an observation 
interval. However, a fault-free individual is never incorrectly identified as being 
faulty.  

 

Fig. 8. Isolation of  8 faulty individuals, 4 L and 4 R, each with a 1-out-of-64 fault impact 

5.2   Regeneration of Functionality 

CBE-based regeneration experiments were performed on a simulated FPGA platform 
for the 3x3 multiplier application.  Starting with an initial population of 20 viable 
configurations, random stuck-at faults were injected randomly into one of the 21 
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CLBs that were utilized to implement the multiplier.  The fault reduced the number of 
correct outputs from 64-out-of-64 to 54-out-of-64.  Regeneration was performed 
using a fitness-state adjustment process that utilized the results of the isolation 
process described in previous sections. A re-introduction rate of 10% was selected for 
selecting individuals under repair for performance evaluation. Higher re-introduction 
rates would lower the throughput whereas if the re-introduction rate is too low, the 
repair process will be unduly slowed down due to the decreased opportunities to 
evaluate the performance of the individuals under repair. A low crossover rate of 0.05 
was used to ensure that the diversity in the population is preserved. The initial seeding 
population consists entirely of diverse hand-designed individuals. The mutation rate 
of 0.8 is required to ensure that the algorithm can explore alternatives by changing the 
logical functionality of LUTs and the interconnections between them.  

While the simulated FPGA remained partially online, regeneration improved 
correctness to 64-out-of-64 possible outputs. Including iterations that produced 
functional outputs, the process concluded after a total of 218076 iterations. Complete 
repair was achieved after only 135 repair iterations when starting with a highly 
diverse initial population. The fault-affected individual was loaded on the FPGA for a 
total of 31636 iterations. During the regeneration period, data throughput was 
85.54%. Hence, only 14.46% of the total computations needed to be redundant in 
order to preclude propagation of any discrepant outputs, even when candidate repairs 
were being re-introduced to refurbish the impacted FPGA configuration without 
additional test vectors. The throughput will be significantly higher when the system 
starts from a fault-free situation, since a large number of the initial iterations before 
the occurrence of the fault will contribute to improving the throughput. Fault isolation 
using consensus-based evaluation improved the performance of the repair process 
eliminating the use of an absolute fitness function. The diversity of the initial 
population provides for increased fault tolerance and also the raw material for 
realizing the repair.  

6   Conclusion 

Online EH regeneration essentially defines a problem that is different from offline 
EH design.  CBE leverages the fact that a failed system’s Repair Complexity can 
often be much more computationally tractable than either its original Design 
Complexity or its Re-Design Complexity, both of which operate in the absence of a 
diverse population of previously completely correct alternatives. In particular, 
"repair" implies working design(s) being available before the occurrence of a 
resource failure.  A population of working designs can thus facilitate repair by 
providing diverse alternates.  Conventional fitness evaluation associates a rigid 
individual-centric fitness measure defined at design-time.  CBE uses instead, a self-
adapting population-centric assessment method at run-time. Population-centric 
assessment methods such as CBE can provide an additional degree of adaptability 
and autonomy. Finally, an additional benefit of CBE is that fitness evaluation 
becomes independent of the application running on the FPGA enabling model-free 
assessment during evolutionary repair. 
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Abstract. The ideas presented in this paper are results of a new research pro-
ject, "Reconfigurable POEtic Tissue". The goal of the project was the develop-
ment of a hardware platform capable of implementing bio-inspired systems, in 
digital hardware. In particular, the final hardware device, while similar to other 
FPGAs, was designed with a number of novel features which facilitate fault-
tolerance. These include dynamic reconfiguration and on-chip re-programming. 
This paper considers these features in the context of fault-tolerant system design 
and shows how an ensemble of different, but often complementary, techniques 
might be produced using these novel device features. Such characteristics are 
crucial for many control systems, particularly with safety implications. 

1   Introduction 

Ensuring the reliability of computing and electronic systems has always been a chal-
lenge. As the complexity of systems increases the inclusion of reliability measures 
becomes progressively more complex, but are often a necessity for VLSI circuits 
where a single error could potentially render an entire system useless. 

Reducing the failure probability and increasing reliability has been a goal of elec-
tronic systems designers ever since the first components were developed. No matter 
how much care is taken designing and building an electronic system, sooner or later 
an individual component will fail. For systems operating in remote environments such 
as space, control and deep-sea applications, the effect of a single failure could results 
in a multi-million pound installation being rendered useless. With safety critical sys-
tems such as aircraft, mobile robotics the effects are even more severe. Reliability 
techniques need to be implemented in these applications and many more. The devel-
opment of fault tolerant techniques was driven by the need for ultra-high availability, 
reduced maintenance costs, and long life applications to ensure systems can continue 
to function in spite of faults occurring. The implementation of a fault tolerant mecha-
nism requires four stages: Detection of the error, Confinement of the error, to prevent 
propagation through the system, Error recovery, to remove the error from the system, 
Fault treatment and continued system service, to repair and return the system to nor-
mal operation. 

We deal with the detection of errors and error recovery in this paper. But first we 
should comment on the new architectural aspects of the POEtic device that make it so 
amenable to fault-tolerant designs. 
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The aim of this paper is to present some of the ideas developed in the framework of 
a new research project, called "Reconfigurable POEtic Tissue" (or "POEtic” for short) 
[1], recently completed under the aegis of the European Community. After a short 
introduction to the POE project for the design of bio-inspired hardware, the paper will 
present an outline of the POEtic device built during the project and of the main fea-
tures designed into the device that aids fault-tolerant system design, experimental 
results are given to illustrate the efficacy of the device and these special features. 

2   The POEtic Project 

The goal of the POEtic project was:  

 “... development of a flexible computational substrate inspired by the evo-
lutionary, developmental and learning phases in biological systems.” 

The POEtic tissue is a multi-cellular, self-contained, flexible, and physical sub-
strate designed to interact with the environment, to develop and dynamically adapt its 
functionality through a process of evolution, development, and learning to a dynamic 
and partially unpredictable environment, and to self-repair parts damaged by aging or 
environmental factors in order to remain viable and perform similar functionalities. 

Following the three models of bio-inspiration, the POEtic tissue was designed logi-
cally as a three-layer structure (Figure 1 gives an abstract view of this relating to hard-
ware): 

• The phylogenetic model acts on the genetic material of a cell. Each cell can con-
tain the entire genome of the tissue. Typically, in the architecture defined above, 
it could be used to find and select the genes of the cells for the genotype layer. 

• The ontogenetic model concerns the development of the individual. It should act 
mostly on the mapping or configuration layer of the cell, implementing cellular 
differentiation and growth. In addition, ontogenesis will have an impact on the 
overall architecture of the cells where self-repair (healing) is concerned. 

• The epigenetic model modifies the behavior of the organism during its operation, 
and is therefore best applied to the phenotype layer. 

 

Fig. 1. The three organizational layers of the POEtic project 



 Hardware Fault-Tolerance Within the POEtic System 27 

Defining separate layers for each model has a number of advantages, as it allows 
the user to decide whether to implement any or all models for a given problem, and 
lets the structure of each layer to be adapted to the model. This adaptability is 
achieved by implementing the cells on a molecular substrate, in practice a surface of 
programmable logic. 

The final hardware design (VLSI device) has a number of specific novel features 
built into its fabric to assist with bio-inspired designs. It is shown here that these fea-
tures can also be used effectively for the design of fault-tolerant systems. 

2.1   Operational Mode 

A molecule has eight different operational modes, to speed up some operations, and to 
use the routing plane. Here we briefly describe the different modes, and they will be 
completely described in [2]. 

In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four inputs. 
In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a result de-

pending on three inputs. The first result can go through the flip-flop, and is the first 
output. The second one can be used as a second output, and is directly sent to the 
south neighbor (can serve as a carry in parallel operations). 

In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift register. 
This mode could be used to compare a serial input data with a data stored in the 8-bit 
shift register. 

In Shift Memory mode, the 16 bits are used as a shift register, in order to store 
data, for example a genome. One input controls the shift, and another one is the input 
of the shift memory. 

In Input mode, the molecule is a cellular input, connected to the inter-cellular rout-
ing plane. One input is used to enable the communication. When inactive, the mole-
cule can accept a new connection, but won’t initiate a connection. When active, a 
routing process will be launched at least until this input connects to its source. A sec-
ond input selects the routing mode of the entire POEtic tissue. 

In Output mode, the molecule is a cellular output, connected to the intercellular 
routing plane. One input is used to enable the communication. When inactive, the 
molecule can accept a new connection, but won’t initiate a connection. When active, a 
routing process will be launched at least until this output connects to one target. An-
other input supplies the value sent to the routing plane, as so to another cell. 

In Trigger mode, the 16-bit shift register should contain "000...01" for a 16- bit 
address system. It is used by the routing plane to synchronize the address decoding 
during the routing process. One input is a circuit enable, that can disable every DFFs 
in the tissue, and another one can reset the routing, and so start a new routing. 

In Configure mode, the molecule can partially configure its neighborhood. One 
input is the configuration control signal, and another one is the configuration shifting 
to the neighbors.  

The mode of a molecule is stored in 3 bits of the configuration. 
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2.2   Partial Reconfiguration 

The configuration system of the molecules can be seen as a shift register of 76 bits 
split into 5 blocks: the LUT, the selection of the LUT’s input, the switch box, the 
mode of operation, and an extra block for all other configuration bits. Each block 
contains, as shown in Figure 2, together with its configuration, one bit indicating, in 
case of a reconfiguration coming from a neighbour, if the block has to be bypassed. 
This bit can only be loaded from the microprocessor, and remains stable during the 
entire lifetime of the organism. 

 

Fig. 2. Organisation of the configuration bits for partial reconfiguration 

The special configure mode allows a molecule to partially reconfigure its 
neighbourhood. It sends bits coming from another molecule to the configuration of 
one of its neighbours. By chaining the configurations of neighbouring molecules, it is 
possible to modify multiple molecules at the same time. 

3   Reconfiguration and Fault-Tolerance 

The POEtic project provides a unique platform for investigating mechanisms at work 
in biological systems which exhibit fault-tolerant behaviours and it is the intent of the 
following work to demonstrate this through the development of a cellular ontogenetic 
fault-tolerant mechanism on the POEtic tissue based upon growth. 

Self-repair, or healing, is a critical mechanism within an organism’s response to 
damage involving the growth of new resources, in the form of cells, and their integra-
tion into the organism replacing damaged ones. An electronic system cannot grow 
new silicon resources in response to device faults in the same way and so growth in 
silicon is generally emulated by having redundant resources into which the system 
can grow. The POEtic architecture provides novel features which are particularly 
useful for implementing models of growth in digital hardware including the underly-
ing molecular architecture, dynamic routing and self-configuration of the tissue. 

3.1   Growth  

The work reported here is inspired by two important features of growth: those of cell 
division and cellular differentiation. Cell division is a process of self-replication 
through which cells produce copies of themselves. Cellular differentiation is the proc-
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ess through which cells organise themselves by taking on specific functional types 
depending upon their positions within an organism. 

Prompted by these distinct modes of growth a novel cell design has been implemented 
on the POEtic tissue in the context of a test application. Implementation of an embryonic 
array emulating the processes of cellular differentiation is described in this paper. 

3.2   Test Application 

In order to investigate issues regarding the implementation of cellular fault-tolerant 
mechanisms on the POEtic tissue a test application has been defined based upon the 
audio application presented in [3]. The test application consists of a cell constructed 
from nine one-dimensional waveguide mesh elements (for those not familiar with 
waveguide meshes, each mesh element can be considered as a particular type of proc-
essing element, the Ps in Figure 3 represent values passing between neighbouring 
mesh (processing) elements) – this application requires real-time (audio) processing. 
Cells can be chained together to form a one-dimensional waveguide with length an 
arbitrary multiple of nine, Figures 3 & 4. While this is a specific application executed 
within the POEtic project, the work reported here is generic and appropriate for any 
application on one or more devices. 

3.3   Fault Detection  

Biological mechanisms for fault detection in themselves provide a rich field of re-
search to which the POEtic platform is applicable [4]. However as the aim of the cell 
designs is to investigate growth mechanisms a standard hardware redundancy tech-
nique has been chosen to provide fault detection in the designs. It is based upon the 
assumptions that faults will occur discretely in time and that a fault is only of signifi-
cance if it causes the cell function at its outputs to deviate from correct behaviour. 
Based upon these assumptions we can duplicate and compare two systems, a fault will 
cause the values at the outputs of cell function copies to differ. This discrepancy is 
detected by a XOR logic functions comparing the cell function outputs and combined 
into a fault flag by an OR logic function. The advantages of this method for fault 
detection are that it is simple, acts at the resolution of a single clock cycle, operates 
on-line and is applicable to any cell function. 
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Fig. 3. Nine mesh-element one-dimensional waveguide cell with left and right input streams 
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Fig. 4. Cell output in response to pulses applied to one input 

4   Embryonic Implementation on the POEtic Tissue 

An embryonic array consists of an array of cells implemented in reconfigurable logic 
each of which contains a set of configuration strings describing every cell function 
within the system which the cells are to form.  This set of configuration strings is analo-
gous to the biological genome contained within every living cell. Each configuration 
string is analogous to a gene and can be directly translated into the cell function it de-
scribes in the hardware of the cell. Development of the system is achieved through dif-
ferentiation during which each cell identifies its configuration string with respect to its 
location within the array and uses it to configure its function [5], detailed in Figure 5. 

4.1   Cell Function Areas 

Cell function areas are the areas of the cell where the cell application functionality is 
performed. Duplication of the cell function enables fault detection by the method 
described above. The areas are initially blank and require configuration from a stored 
gene. They consist of molecules which have the partial configuration inputs from their 
neighbours chained together as illustrated in Figure 6 and all configuration registers 
enabled for configuration. This allows an arbitrary cell function to be configured 
within them. The stored gene therefore consists of the contents of the configuration 
registers for each molecule in the function listed in the order in which they appear in 
the chain from the head to the tail. 

4.2   Genome Storage  

The stored genome consists of individual gene blocks each of which can be selected 
by the differentiation system to be the source for configuration of the function areas 
within the cell. The genes consist of shift memory molecules which store the configu- 
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Fig. 5. Embryonic cell design on the POEtic tissue (Cell has a single gene in its genome for 
illustrative purposes) 
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ration string in their look up tables (LUTs). The inputs and outputs of the memory 
molecules are chained together in the same way as the molecules in the function con-
figuration areas. During configuration of the function areas every gene in the stored 
genome shifts its contents out from its head with the string from the gene selected by 
the differentiation process being channelled into the cell function areas. 

The head of each gene block is looped back into the tail by connecting the memory 
molecule output of the head molecule to the input of the tail molecule so that the 
contents of the gene block are retained, illustrated in Figures 7 & 8. 

4.3   Fault Detection in the Stored Genome: Cyclic Redundancy Check  

Approximately four times as many molecules are required to store each gene than are 
used in the function block that it describes and an embryonic cell will require as many 
genes as there are different cells in the system. As both function copies are configured 
from the same stored gene, a fault in the gene will go undetected by the redundancy 
fault-detection system as both copies will be producing the same erroneous outputs. 

A second fault-detection system has therefore been implemented in the embryonic 
cell design in the form of a cyclic redundancy code (CRC) which can detect faults in 
the gene being used to configure the cell function by means of a frame check se-
quence (FCS) which is tagged onto the end of every gene [6].  

On configuration of the cell function areas the configuration string for the selected 
gene including the FCS is passed through the CRC register as the cell function areas 
are configured. If the stored gene is incorrupt then the output of all of the CRC regis-
ter elements will be zero at the end of this process. Otherwise at least one of the out-
puts of the register elements will be high indicating a fault in the gene. 

4.4   Cell Nucleus 

The cell nucleus is responsible for controlling the five main processes of the embry-
onic cell. These are cellular differentiation, cell function configuration, fault detec-
tion, apoptosis and routing.  

Cellular Differentiation: Each of the embryonic cells in the array has a differentia-
tion input and output molecule. These inputs and outputs are linked in a chain across 
the tissue. On receiving a zero at its input each cell asynchronously sets its output to 
zero. The first cell in the chain has its input connected to a source external to the tis-
sue into which the differentiation signal is driven. This signal consists of a series of 
ones equal in length to the number of cells in the organism being developed. The first 
cell in the chain therefore receives a series of ones equal in number to this value be-
fore receiving a zero. At this point the output of cell one is asynchronously reset to 
zero causing a chain reaction through which all cell differentiation outputs down the 
chain asynchronously reset to zero. This terminates the differentiation process in the 
cells, each of which will have received one less one at its differentiation input than the 
previous cell in the chain. The cells then select their allocated genes depending upon 
the number of ones received at their differentiation inputs. Cells which receive no 
ones at their inputs blank their function areas and are left as unused spare cells. This 
process can be instigated at any point by simply driving the differentiation signal into 
the differentiation chain. 
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Cell Function Configuration: Completion of the differentiation process triggers a 
molecule configuration counter. The counter enables the shift input to each of the 
gene blocks in the stored genome and enables a configuration molecule which feeds 
the output of the selected gene into the configuration input of the tail of the function 
area configuration chain. 

When the counter indicates that the number of molecules in a cell function area 
have been configured, the enable to the configuration molecule is disabled and the 
counter resets. At this point the function areas of the cell have been programmed with 
the selected gene and are ready for integration into the system. Before this can occur 
however the FCS must be shifted through the CRC register to check that the gene is 
correct. This is controlled by a second counter which is triggered by the overflow of 
the first and shifts the gene blocks by a further 32 bits driving the FCS out of the gene 
block through the CRC register. 

Fault Detection: In the cell nucleus the values at the outputs of the two cell function 
copies are compared and a fault flagged in response to a discrepancy. The integrity of 
the configuration of these function copies is tested by the CRC register on configura-
tion and if corrupt a fault is flagged. The cell nucleus combines these two fault flags 
into a single signal which triggers cell apoptosis and differentiation of the system. 

Differentiation in response to a fault is triggered by the faulty cell setting the 
‘mol_enable_out’ signal on its trigger molecule low. This is detected by the external 
system controlling the differentiation signal input to the tissue which drives the signal 
into the differentiation chain in response. 

Apoptosis: Apoptosis in a faulty embryonic cell is achieved by selecting the blank 
gene, simply a source of zeros, and bypassing the delay which the cell would other-
wise introduce into the differentiation chain. This shifts the differentiation values 
received downstream of the faulty cell one cell down the chain and causes the cell to 
blank its function areas removing any molecules such as input and output molecules 
which may interfere with the operation of the system. 

Routing: Having completed the processes of cellular differentiation and configuration 
the final step in producing the functioning embryonic system is to route together any 
input and output molecules which have been configured in the function areas of the 
cells.  

The cell which receives the differentiation value equal to the number of cells in the 
system, i.e. the first healthy cell in the differentiation chain, is assigned the task of 
triggering the routing process. Every cell contains a trigger molecule capable of this. 
On completing the configuration of their function areas every cell sends a pulse on the 
‘start_routing_enable’ signal to its inputs entering them into the routing process. This 
pulse is also sent to the ‘reset_routing’ input on the cell’s trigger molecule via a gate. 
The output of this gate is enabled if it is the first working cell in the chain thereby 
triggering the routing process. This system is required as firing multiple trigger mole-
cules on the tissue will result in multiple routing processes being instigated wasting 
clock-cycles [2]. 
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Fig. 9. Fault-free cell I/O Fig. 10. I/O with faults. Fault-tolerance OFF. 
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Fig. 11. I/O with faults. Fault-tolerance ON. 

4.5   Simulations and Results 

The cell design described above has been simulated in the presence of randomly gen-
erated faults using the POEtic design tool POEticmol [7]. As POEticmol simulates the 
behaviour of the POEtic device using the VHDL description from which the device is 
fabricated accurate simulations of the effects of faults on system behaviour can be 
made.  

A number of signal elements are randomly chosen and are forced into a fault con-
dition during the simulation. Each signal element is randomly allocated a clock-cycle 
number from the pre-specified duration of the simulation upon which to become 
faulty. The fault model used is the ‘stuck-at’ fault, or single hard error. The number of 
faults forced in the simulation is set at a value high enough to guarantee a satisfactory 
yield of terminal cell faults rather than at a value which is a realistic representation of 
fault rates for the real device with respect to the test application. 
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Some example results showing the behaviour of the embryonic cell design in re-
sponse to randomly generated faults can be seen in Figures 9 to 11. The figures each 
show the input and output data for two cells, a working cell and a spare cell (both 
working and spare cells are exposed to faults during the simulations), simulated over 
five runs of a fixed number of output words. Each run has a different randomly gener-
ated set of faults which are to be forced into the tissue. The design is reset after the 
end of each run and any faults forced into the tissue are removed. Each cell design is 
simulated under three conditions. In the first simulation no faults are forced into the 
tissue. This generates the target output which the fault-tolerant system is aiming to 
achieve. In the second simulation faults are forced into the tissue but the fault-
detection and growth mechanisms are disabled. In the third simulation the same faults 
are forced into the tissue with the fault-detection and growth mechanisms enabled.  

In Figure 10 it can be seen that unprotected embryonic cell sustains a terminal fault 
in run 2. In run 2 of Figure 11 it can be seen that with the fault-tolerant systems en-
abled the system has detected the induced fault and instigated apoptosis of the faulty 
cell and re-growth of the system. Data loss in the embryonic system is illustrated by 
the zero output between points a) and b) produced by the newly grown system. At 
point a) the system is repaired and fully functional but its response to the input pulse 
previous to the fault being detected has been wiped by re-growth. By point b) the 
correct system response to this input has become negligible and a new input pulse 
stimulates the repaired embryonic system producing incorrupt output data. 

5   Conclusion 

An embryonic cellular fault-tolerant mechanism has been successfully implemented 
in simulation on the POEtic tissue. The transparency of the process of mapping an 
embryonic design onto the POEtic architecture has also been demonstrated. Unlike 
embryonic implementations on generic FPGA architectures which require complex 
stages of synthesis and careful tailoring of the embryonic architecture for the target 
device, compact embryonic designs can be built directly on the POEtic tissue at the 
molecular level. Results of preliminary simulations in the presence of randomly intro-
duced faults show that the cell design is capable of successfully detecting, repairing 
and recovering from terminal faults in cell function.  
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Abstract. This paper describes circuit evolutionary experiments at extreme low 
temperatures, including the test of all system components at this extreme 
environment (EE). In addition to hardening-by-process and hardening-by-
design, “hardening-by-reconfiguration”, when applicable, could be used to 
mitigate drifts, degradation, or damage on electronic devices (chips) in EE, by 
using re-configurable devices and an adaptive self-reconfiguration of their 
circuit topology. Conventional circuit design exploits device characteristics 
within a certain temperature/radiation range; when that is exceeded, the circuit 
function degrades. On a reconfigurable device, although component parameters 
change in EE, a new circuit design, suitable for new parameter values, may be 
mapped into the reconfigurable structure to recover the initial circuit function. 
This paper demonstrates this technique for circuit evolution and recovery at 
liquid nitrogen temperatures (-196.6°C). In addition, preliminary tests are 
performed to assess the survivability of the evolutionary processor at extreme 
low temperatures. 

1   Introduction 

Future NASA missions to Moon, Mars and Beyond will face Extreme Environments 
(EE), including environments with large temperature swings, such as between -180°C 
and 120°C at the initial landing sites on the Moon, low temperatures of -220 °C to -
233°C during the polar/crater Moon missions, and -180°C for Titan in-situ mission. 
High temperatures of 460°C and harsh sulfuric acid environment will be encountered 
for Venus Surface Exploration and Sample Return mission.  High radiation levels will 
be faced for Jupiter’s Icy Moons Orbiter (JIMO) missions: 5MRad Total Ionizing 
Dose (TID) for Europa Surface and Subsurface mission. These extreme environments 
of extreme low temperatures and high radiation induce drifts, degradation, or damage 
into electronic devices and reliability issues of package designs and associated 
materials.  
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The current approach for space electronics designs is to use commercial-of-the-
shelf or military range electronics protected through passive (insulation) or active 
thermal control, and heavy metal (high weight) shielding for radiation reduction. This  
increases weight and volume, and is compounded by power loss, and  leads to 
additional cost for the mission. More importantly, as missions will target operations 
with smaller instruments/rovers and operations in areas without solar exposure, these 
approaches sometimes become infeasible and it will be more expensive. In many 
cases the electronics must be co-located with the sensor or actuator in the extreme 
environment, without the option of being insulated or shielded properly, for example 
panoramic camera and its electronics in Mars Exploration Rover project. Therefore, 
developing EE-robust electronics would have several advantages including lower 
costs, less power, no thermal control, and offering in some cases, the only reasonable 
solution.  

Conventional approaches to Extreme Environment Electronics include hardening-
by-process (HBP), i.e. fabricating devices using materials and device designs with 
higher tolerance to EE, (e.g using special materials like Silicon Carbide for high 
temperatures, or Silicon-on Insulator for radiation, ceramic materials for packaging). 
Another promising approach is hardening-by-design (HBD), i.e. use of special 
design/compensation schemes. For example, circuit techniques, such as auto-zero 
correction, are used to alleviate the problem of the (temperature dependent) offset 
voltages in Operational Transconductance Amplifiers (OTA) operated at low 
temperatures [1]. Both these hardening approaches are limited, in particular for analog 
electronics, by the fact that current designs are fixed and, as components are affected 
by EE, these drifts alter functionality. 

A recent approach pioneered by JPL is to mitigate drifts, degradation, or damage 
on electronic devices in EE by using re-configurable devices and an adaptive self-
reconfiguration of circuit topology. This new approach, referred here as hardening-
by-reconfiguration (HBR) mitigates drifts, degradation, or damage on electronic 
devices in EE by using reconfigurable devices and an adaptive self-reconfiguration of 
circuit topology. In HBR, although device parameters change in EE, while devices 
still operate (albeit on a different point of their characteristic) a new circuit design, 
suitable for new parameter values, is mapped into the reconfigurable system to 
recover the initial circuit functionality. Partly degraded resources are still used, while 
completely damaged resources are bypassed. The new designs, suitable for various 
environmental conditions, can be determined prior to operation or determined in-situ 
by reconfiguration algorithms running on a built-in digital controller. 

The scope of this paper is on HBR for extreme low-temperatures, since other 
studies have been performed for high temperatures and radiation environments [2]. 
The application here described encompasses the separate testing of the whole 
Evolvable Hardware system (Evolutionary Processor + Re-configurable chip) at low 
temperatures, following the assumption that the entire system will be exposed to the 
space EE. In the experiments, we demonstrate the evolution and recovery of circuits 
at liquid nitrogen temperatures (-196.5°C) and verify the operational limitation of the 
evolutionary processor at low temperatures. This adds to our previous experiments 
where only the re-configurable chip was exposed to EE [2].  
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The Stand-Alone Board Level Evolvable (SABLE) system [3] designed by JPL is 
used in the experiments described in this paper. This system consists of a Digital 
Signal processor (DSP) working as an evolutionary processor and a reconfigurable 
mixed signal chip, the Field Programmable Transistor Array (FPTA).  Section 2 of 
this paper overviews the SABLE system. Section 3 describes the experiments and 
section 4 concludes the research work performed.  

2   Overview of SABLES 

SABLES integrates an FPTA and a DSP implementing the Evolutionary Processor 
(EP) as shown in Figure 1. The system is stand-alone and is connected to the PC only 
for the purpose of receiving specifications and communicating back the results of 
evolution for analysis [3].  

 

FPTA EP (DSP) PC 

Board  

Fig. 1. Block diagram of a simple stand-alone evolvable system 
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Fig. 2. Schematic of the FPTA-2 Cell 
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The FPTA has transistor level reconfigurability, consisting of an 8x8 array of 
reconfigurable cells. Each cell has a transistor array as well as a set of other 
programmable resources, including programmable resistors and static capacitors. 
Figure 2 provides a detailed view of the reconfigurable transistor array cell. The 
reconfigurable circuitry consists of 14 transistors connected through 44 switches and 
is able to implement different building blocks for analog processing, such as two- and 
three-stage OpAmps and Gaussian computational circuits. Details of the FPTA-2 can 
be found elsewhere [2,3].  

The evolutionary algorithm is implemented in a DSP that directly controls the FPTA-
2, together forming a board-level evolvable system with fast internal communication 
ensured by a 32-bit bus operating at 7.5MHz. Details of the evolutionary platform (EP) 
were presented in [4]. Over four orders of magnitude speed-up of evolution was 
obtained on the FPTA-2 chip compared to SPICE simulations on a Pentium processor 
(this performance figure was obtained for a circuit with approximately 100 transistors; 
the speed-up advantage increases with the size of the circuit).  

3   Low Temperature Experiments 

This paper particularly focuses on analog/digital electronics at low-temperatures [5]. 
The experiments cover separate tests of the whole Evolvable Hardware system: the 
Evolutionary Processor (the DSP in the SABLE system) and the FPTA tested at low 
temperatures. Table 1 summarizes the experiments setup. 

Table 1. Summary of Experiments 

Function Device 
Tested 

Temperature Individuals/Generations 

Maximization of 
chromosome 
value 

DSP Between -110oC 
and -120oC 

100/464 

Half-Wave 
Rectifier 

FPTA -196.5°C 100/300 

NOR Gate FPTA -196.5°C 100/300 

Controllable 
Oscillator 

FPTA -196.5°C 100/300 

 

 3.1   DSP Tests at Low-Temperatures 

Previous experiments focused exclusively on the tests of the FPTA chips at extreme 
environments. However, no tests have been reported so far on the behavior of the 
Evolutionary Processors (EP) at extreme environments.  This particular experiment 
focuses on low-temperature characterization of the DSP working as the EP. 
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A 320C6701 DSP was tested in a board fabricated by Innovative Integration 
(SBC62). The board communicates with a PC through a JTAG connection. During the 
test only the DSP board was placed on the low-temperature chamber: the PC and the 
JTAG were outside.  

The FPTA chip was not used in this arrangement.  The DSP was tested by running 
a simple Genetic Algorithm (GA) whose target was a simple optimization problem 
(the maximization of the number of ‘1’s in the chromosomes). This problem is solved 
in less than 1 minute, after 464 generations. The GA results are deterministic, i.e., the 
same for each run.  

The temperature of the chamber/test article has been driven to 0oC with a scan rate 
of 5oC/min from room temperature.  The dwell time at 0oC temperature was for 8 
minutes and electrical measurements were made during this time.  Later, the 
temperature of the chamber has been driven to –30oC, –60oC, –90oC, –120oC at a scan 
rate of 5oC/min and electrical measurements were made respectively during the dwell 
(Figure 3).   

A Failure was observed during the testing at –120oC step. Electrical measurements 
were made at –90oC again and the DSP regained its characteristics.  This procedure 
was repeated again: the temperature was driven to –90oC, –100oC, –110oC and –
120oC to narrow the temperature range. The dwell time at each temperature was for 5 
minutes and electrical measurements were made during this time. The DSP was 
functioning at –90oC, –100oC, and –110oC.  The failure was again observed during the 
testing in a temperature range of –110oC to –120oC. During the failure the DSP did 
not communicate with the PC. The PC-DSP communication link was the only means 
to read out the DSP outputs in this experiment. 

Other Evolutionary Processors implementations, including FPGAs and other DSP 
models, will be tested. The final goal of the experiments is to have an implementation 
operational at -180oC or below. 

 

Electrical tests 
performed

 
 

Fig. 3. Temperature Profile in the DSP Test. Time in the horizontal axis and temperature in the 
vertical axis. 
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3.2   Half-Wave Rectifier  

The low temperature test bed for these experiments used liquid nitrogen, establishing 
a temperature of -196.5°C.  In order to study the effect of low temperatures on the 
FPTA device only (the DSP was at room temperature), the chip was placed on a 
separate board that was immersed into liquid nitrogen.  This setup did not allow a 
control for intermediate temperatures between room ambient and liquid nitrogen as 
described in the previous experiment. A standard ceramic package was used for the 
chip. A half-wave rectifier was then evolved at -196.6°C with the following setup. 

The fitness function given below does a simple sum of errors between the target 
function and the output from the FPTA.   The input was a 2 kHz excitation sine wave 
of 2V amplitude, while the target waveform was the rectified sine wave. The fitness 
function rewarded those individuals exhibiting behavior closer to target (by using a 
sum of differences between the response of a circuit and the target) and penalized 
those farther from it. The fitness function was: 
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where R(ts) is the circuit output, S(ts) is the circuit stimulus, n is the number of 
sampled outputs,  and Vmax is 2V (the supply voltage). The output must follow the 
input during half-cycle, staying constant at a level of half way between the rails (1V) 
in the other half. 

After the evaluation of 100 individuals, these were sorted according to fitness and a 
9% (elite percentage) portion was set aside, while the remaining individuals 
underwent crossover (70% rate), either among themselves or with an individual from 
the elite, and then mutation (4% rate). The entire population was then reevaluated. 
The experiment used 2 cells and was run for 300 generations.  

The oscilloscope caption is shown in Figure 4a. This was not a robust solution (and 
it was not even expected to be, since evolutionary algorithm was not asked, through 
 

 

Out 
 
In 

(A)                                                 (B) 

 
 
Fig. 4. Half-wave rectifier evolved at -196C (A); solution is not robust and degrades when 
returned to room temperature (B). An environmental noise signal is also present at the circuit 
input. 
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the fitness function, to respond to an entire temperature range) and when taken out to 
room temperature the response deteriorated as shown in Figure 4b.  

3.3   NOR Gate 

A NOR gate was evolved at -196.5°C using the same method described in section 3.2. 
Two FPTA cells were used and the experiment processed 100 individuals along 300 
generations.  Figure 5.a shows the oscilloscope picture of the evolved solution at -196.6°C. 
The same solution was tested at room temperature using another FPTA chip, producing an 
almost identical behavior (Figure 4b). This is in contrast to the rectifier behavior.  

3.4   Recovery of Controllable Oscillator at Low Temperatures 

Four cells of the FPTA were used to evolve a controllable oscillator. This circuit 
receives a digital input and it should oscillate when the input is at one digital level 
 

Out 
 
In2 
 
In1 

(A)                                                               (B) 

0     0      0     1 

0     1    1       0 

1    0      1      0 

 0    0      0     1 

 0    1    1       0 

 1    0     1      0 

 

Fig. 5. NOR circuit evolved and tested at -196.5°C (A); the same circuit was tested successfully 
at room temperature (B).  An environmental noise signal is also present at the circuit input. 
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Fig. 6. Evolved controllable oscillator at room temperature and deteriorated response at  
–196.6°C 
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(either ‘0’ and ‘1’) and stay at ground for the other level. Initially, a controllable 
oscillator was evolved at room temperature, the circuit behavior being depicted in 
Figure 6a. The circuits output a 70kHz sine wave (with a small degree of harmonic 
components) when the input is ‘0’. When the same circuit is tested at -196.5°C, it can 
be observed a distortion (increase in harmonics) at the output (Figure 6b). 

The controllable oscillator was evolved again at -196.5°C, the response being 
displayed in Figure 7. It can be observed that the output distortion largely has been 
removed. In addition, evolution found a circuit that oscillates for a high level input, in 
contrast with the room temperature solution. 

Out 
 
 
 
 
 
In 

 

Fig. 7.  Evolved controllable oscillator at low temperature 

4   Conclusions and Future Work 

The results summarized above prove the concept, yet have the following limitations: 
1) the tests were of short duration, 2) did not implement temperature cycling, 3) did 
not use the combined EHW system (DSP and FPTA) at low temperature 
simultaneously, 4) were not demonstrated on complex analog or digital circuits 
performing in an application.  

Particularly, the DSP Board worked down to -110oC, but failed for further lower 
temperatures. A short-term goal is to test other Evolutionary Processor 
implementations, such as FPGAs, for an extended operation at -180oC.  

Longer term goals planned for this effort are: demonstrate the integrated 
reconfigurable array-reconfiguration logic in the same chip under temperatures cycles 
accurately replicating those in Moon and Mars and for longer duration and in 
combined radiation/temperature tests, performing a sensor processing function. More 
specifically, the overall objective of the new effort is to develop/demonstrate 
reconfigurable analog electronics performing characteristic analog functions 
(filtering, amplification, etc) for extended operations in extreme environment with 
temperatures cycling in the range of –180°C and 120°C and cumulative radiation of at 
least 300kRad total ionizing dose (TID).  The objective is to develop and validate Self 
Reconfigurable Electronics for Extreme Environments (SRE-EE) technology by 
demonstrating a Self-Reconfigurable Analog Array (SRAA) IC in sustained (over 200 
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hours) operation at temperatures between -180°C and 120°C, and irradiated to 
300kRad total ionizing dose (TID). The temperature range of -180°C and 120°C 
covers the temperature range for both Moon and Mars environments and 300kRad 
TID reflects accumulative dose during very long Mars missions (100kRad for near-
term missions), or missions beyond the Moon and Mars, such as to Jupiter’s Icy 
Moons. This would validate the technology for Moon and Mars temperature and 
Jupiter radiation environments and the even harsher radiation environments for 
missions beyond. 
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Faculty of Information Technology, Brno University of Technology,
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Abstract. A specialized architecture was developed and evaluated to
evolve relatively large sorting networks in an ordinary FPGA. Genetic
unit and fitness function are also implemented on the same FPGA. We
evolved sorting networks up to N=28. The evolution of the largest sorting
networks requires 10 hours in FPGA running at 100 MHz. The experi-
ments were performed using COMBO6 card.

1 Introduction

Sorting networks (SN) have recently been recognized as potentially suitable ob-
jects for the evolutionary design and optimization [2,4]. They are also interesting
from a hardware viewpoint because of their regular and combinational nature
suitable for pipeline processing. For instance, Koza et al. have used genetic pro-
gramming to evolve small sorting networks directly in a field programmable gate
array (FPGA) [6].

Similarly, effective hardware implementations of median circuits are crucial
for high-performance signal processing. By the median circuit we mean a circuit
calculating the median value from its inputs. That can be accomplished either
by reading the middle value of the output sorted vector calculated by a corre-
sponding sorting network or by designing of a specialized median circuit [10].
All the mentioned approaches share a common feature – the time of a candidate
SN evaluation grows exponentially with growing number of inputs.

The objective of this paper is to evolve as large as possible sorting networks
in a reasonable time. In order to perform these investigations, a novel virtual
reconfigurable circuit architecture optimized for evolution of sorting networks
has been proposed and implemented on the top of a conventional FPGA. The
architecture is configured using the chromosomes generated by evolutionary al-
gorithm which is implemented on the same FPGA. The chromosome encodes
the functions performed by virtual programmable elements; however, the inter-
connection of these elements remains fixed. Since the FPGA implementation of
the programmable element is inexpensive, it can operate as a wire and thus in
fact the evolutionary algorithm also modifies the interconnection. As the fitness
calculation is also carried out in the same FPGA, we can benefit from pipeline
processing allowing reasonable time of a candidate circuit evaluation. The main
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feature of the proposed implementation is that everything is implemented in a
cutting-edge reconfigurable hardware platform available today. For the exper-
iments presented we utilized the COMBO6 card developed in the Liberouter
project [7]. A personal computer is used only for a communication with the
COMBO6 card, i.e. for reading the results. We evaluated various variants of the
evolvable sorting network, including the size of the virtual reconfigurable circuit
and the parameters of the evolutionary algorithm. The main objective is to find
as large correct sorting network as possible in minimal time; neither area nor
delay are optimised.

The paper is organized as follows. Section 2 briefly introduces sorting and
median networks and evolutionary approaches to their design. In Section 3 the
proposed complete hardware implementation is described. Results of synthesis
for COMBO6 are reported in Section 4. Section 5 summarizes the obtained
results. Section 6 deals with discussion of the obtained results and directions of
future work. Conclusions are given in Section 7.

2 A Brief Survey of Relevant Research

2.1 Sorting and Median Networks

A compare–swap of two elements (a, b) compares and exchanges a and b so that
we obtain a ≤ b after the operation. A sorting network is defined as a sequence
of compare–swap operations that depends only on the number of elements to
be sorted, not on the values of the elements [5]. The advantage of the sorting
network is that the sequence of comparisons is fixed. Thus it is suitable for
parallel processing and hardware implementation, especially if the number of
sorted elements is small. Figure 1 shows an example of a sorting network.

The number of compare–swap components and the delay are two crucial
parameters of any sorting network. Table 1 shows the number of compare–swap
components and delay of the best currently known sorting networks (for N ≤ 16).
These values are derived from the Knuth’s book [5] and from paper [1].

Having a sorting network for N inputs, the median is simply the output value
at the middle position (odd Ns only). For example, efficient calculation of the
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Fig. 1. (a) A 3-sorting network consists of 3 components, i.e. of 6 subcomponents

(elements of maximum or minimum). A 3-median network consists of 4 subcomponents.

(b) Alternative symbol.
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Table 1. Parameters of the best-known sorting networks

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10

Comparators 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

median value is important in image processing where median filters are widely
used with N = 3x3 or 5x5 [9]. Note that the popular implementation of the
9-median circuit in an FPGA proposed by Smith is also area-optimal (in terms
of the number of components) [14].

The zero–one principle helps with evaluating sorting networks (and median
circuits as well). It states that if a sorting network with N inputs sorts all
2N input sequences of 0’s and 1’s into nondecreasing order, it will sort any
arbitrary sequence of N numbers into nondecreasing order [5]. This principle
will be utilized in the fitness function.

2.2 Evolutionary Approaches

Some of sorting and median networks were (re)discovered using evolutionary
techniques [2,4,6,10]. Evolutionary techniques were also utilized to discover fault-
tolerant sorting networks [12]. Since fitness function is typically based on the use
of the zero–one principle, the evolution of larger sorting networks is not scalable
(because the size of the test set doubles by increasing the number of inputs
by 1). It is usually impossible to obtain the perfect solution (that sorts all 2N

input vectors) if only a subset of input vectors is utilized during the evolutionary
design [3].

2.3 Intrinsic Evolution in FPGAs

In order to speed up candidate networks evaluation, Koza et al. have evaluated
candidate sorting networks in Xilinx XC6216 FPGA. Genetic programming uti-
lized for designing sorting networks was running in PC. For example, using
population size 60k, minimal 8-SN was evolved on generation 58, and using a
population size 100k, minimal 9-SN was evolved on generation 105. The evolution
of minimal 7-SN required 69 minutes on the FPGA (31 generations, population
size 1000). The evaluation of a candidate sorting network in XC6216 FPGA was
46 times faster than in Pentium 90MHz [6].

Some other FPGA-based implementations of complete evolvable systems
have been proposed for various problems in the recent years. There are some
examples: In Tufte and Haddow’s approach only register values representing co-
efficients of a digital filters were evolved [15]. Sloarch and Sharman [13] have
proposed intrinsic evolution of small combinational circuits in FPGA. An auto-
matic feature identification algorithm that utilizes functional level operators was
developed for multi-spectral images in [8]. The concept of virtual reconfigurable
circuit (i.e. the second level of reconfiguration implemented in a conventional
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FPGA) was utilized in papers [11,16]. We use a hardware implementation of
evolutionary algorithm because it overcomes the bottleneck introduced by slow
communication between the FPGA and a personal computer (in which the evo-
lution is usually performed). The proposed architecture for evolution of large
sorting networks is based on Koza’s seminal work [6] and Sekanina and Friedl’s
complete hardware implementation of an evolvable combination circuit [11]. Un-
like in Koza’s approach evolutionary algorithm will be implemented in hardware.

3 The Proposed Architecture

The proposed architecture for sorting network evolution consists of four basic
components—Control Unit, Fitness Unit, Genetic Unit and Virtual Reconfig-
urable Circuit Unit (VRC Unit). All the units are implemented on a single
FPGA. The block structure of the architecture is shown on the Figure 2.
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Fig. 2. Block structure of the proposed architecture

All operations are controlled by the control unit which is connected to PCI
bus and executes the commands entered by user. For example, evolution can be
started or stopped, the number of iterations can be specified, etc. The Genetic
Unit executes genetic algorithm and contains all population members. VRC unit
is a reconfigurable circuit in which the evolution is performed. That is imple-
mented as a second level of reconfiguration on the FPGA. VRC is configured
using chromosomes generated by Genetic Unit.

3.1 Genetic Unit

Genetic algorithm is based only on the mutation operator (bit inversion); cross-
over is not taken into account in this paper. We are going to investigate its
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usefulness in next research. Population size is configurable. The new population
is always generated from the best member of the previous one. Genetic algorithm
operates in following steps: (1) Initialization Unit generates the first population
at random (Linear Feedback Shift Register seeded from software is utilized). (2)
Mutation Unit changes a given number of genes (bits) of a population member
(this number is configurable) and the modified member is loaded into the VRC—
it represents an image operators. (3) Genetic Unit is waiting for the evaluation
performed by Fitness Unit and if the fitness value obtained is better than the
parent’s fitness then the chromosome replaces its parent. (4) This is repeated
until the appropriate number of generations is produced.

3.2 VRC Unit

The unit consists of VRC elements that can perform different operations accord-
ing to the selected configuration. Figure 3 shows its inteface.

A

B

OA

OB

CFG

Fig. 3. VRC element architecture

Each element consists of two input and two output ports (everything is 1
bit). The functionality is determined by two configuration bits, which are used
to select one of four different operations. All operations can be performed in one
clock cycle. The result is stored into the register (local in each element) which
offers to use VRC elements in a pipelined structure.

Sorting networks are usually composed of Compare&Swap components with
various interconnection. For this reason, the proposed VRC element is designed
to perform Compare&Swap operation. Alternatively, it can operate as a wire or
cross-wire. The relation between configuration bits and functionality is shown in
the following list:

– 00 – direct connection from inputs to outputs
– 01 – Compare&Swap operation – maximum on the upper output
– 10 – Compare&Swap operation – minimum on the upper output
– 11 – cross connection inputs to outputs

The VRC unit is composed of VRC elements in a fixed structure which is
shown in Figure 3. Although the interconnection is invariable it can be changed
if CFG = 00 or 11 is selected. The architecture is different for even Ns (left side
in Fig. 4) and odd Ns (right side in Fig. 4).

A VRC element is connected to the four nearest neighbors. Even columns
have inputs and outputs shifted by one item. This one-item-shift is necessary to
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Fig. 4. Odd and even VRC array architecture

establish interconnection between arbitrary two Compare&Swap components or
to compare different items. The architecture for odd Ns differs only in the first
and last row where the remaining item is always connected to the next column
via the synchronization register.

The proposed VRC array supports fully pipelined processing because every
element contains synchronization register for the output values. Therefore, VRC
array can produce one result in a clock cycle. Unlike VRCs in [11,16] this VRC
element architecture is also optimized for hardware resources. Only two LUTs
have to be utilized to create one VRC element. This optimization enables to fit
a large VRC array within the single chip and thus to find sorting networks with
many inputs.

3.3 Fitness Unit

The Fitness unit is used to generate unsorted sequences and evaluate results
calculated by VRC unit. N -bit counter generates the unsorted input vectors,
i.e. all possible combinations over N bits. In the evaluation process all vectors
unsorted by VRC have to be identified.

The fitness value is defined as the number of unsorted vectors coming from
the VRC unit. The unsorted vector is detected if for any item ai in the vector
ai < ai+1 does not hold. This is performed in parallel by a set of comparators in
only one clock cycle. The number of unsorted vectors is stored in a counter which
is incremented when an unsorted vector is identified. The content of the counter
is presented as a fitness value which is valid after all input vectors are evaluated.
In this paper, we are interested only in functionality of sorting networks; the
number of components is not optimized.

4 Results of Synthesis

The proposed architecture is designed for evolution of sorting networks having
different number of inputs. From this point of view, the size of the VRC array
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Table 2. XC2V-3000 FPGA utilization for various VRC and N

N VRC Slices Chip
length Elements Utilization

10 5x30 1731 12 %
12 6x36 2262 15 %
14 7x42 2735 19 %
16 8x48 3207 22 %
18 9x54 3795 26 %
20 10x60 4431 30 %
22 11x66 5675 39 %
24 12x72 6412 44 %
26 13x78 7314 51 %
28 14x84 8173 57 %
30 15x90 9232 64 %
32 16x96 10223 71 %
36 18x108 12468 86 %

has to be scalable and support as many rows and columns as possible. On the
other hand, the design with VRC array has to fit within the single chip. For this
reason, the proposed VRC element was optimized for the hardware resources
utilization.

The implementation of this architecture and evaluation of results have been
performed on available COMBO6 hardware platform. COMBO6 is a PCI card
equipped with a Field Programmable Gate Array XC2V-3000, TCAM memory,
static and dynamic Random Access Memories and some other components.

The synthesis results in Table 2 show hardware resources utilization of the
XC2V-3000 FPGA for different size of the VRC array and N . It can be seen that
the FPGA utilization for the largest VRC array 18 × 108 is only 86 % without
performance lost.

5 Experimental Results

Various VRC architectures were synthesized up to N = 20. For each VRC size,
80 independent experiments are performed and analyzed. We used four-member
population and produced 50000 generations. Only mutation operator is used; 4
bits are inverted in chromosome in average.

Table 3 shows that it is possible to find correct sorting networks (for relatively
large Ns) in a reasonable time. The first column shows the vector length (i.e.
N). The number of correct sorting networks discovered out of 80 runs is reported
in the second column. In 4th column there is the average number of generations
needed to find the perfect solution (and its standard deviation in 5th column).
The last column contains the time needed to generate and evaluate one individual
(i.e. 2N test cases). The evaluation of a candidate network requires 1.3 ms for
N = 16 and 40s for N = 32 (at 50MHz).
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Table 3. Sorting networks evolved in FPGA

N VRC size #Perfect Average num. of Standard Evaluation time
length (elements) solutions generations deviation of one candidate

4 2x8 80 94 2.55556 512 ns
6 3x16 80 458 31.44444 1.28 us
8 4x16 80 2217 24.66667 5.12 us
10 5x32 80 6378 65.66667 20.48 us
12 6x32 76 8673 666.88889 81.92 us
14 7x32 75 11322 718.55556 327.67 us
16 8x32 66 19467 477.44444 1.31 ms
18 9x64 20 25306 3732.77778 5.24 ms
20 10x64 17 31344 150.00000 20.97 ms

Table 4. Large sorting networks evolved in FPGA

N VRC size Number of Evaluation time Total time
length (elements) generation of one candidate of evolution

22 11x64 4044 83.89 ms 5.6 min
24 12x64 4804 335.54 ms 26.9 min
26 13x64 10027 1.342 s 3.7 h
28 14x64 13483 5.368 s 20.1 h

In order to evolve larger sorting networks we applied an adaptive mutation.
With respect to N we mutated 4 – 12 bits per chromosome. If no improvement
in fitness value is observed in last 1000 generations, the number of mutated bits
is increased by 2. If an improvement is observed, the mutation ratio is changed
back to the previous value. Table 4 presents some of the evolved sorting networks
up to N = 28. The evolution of a 28-input sorting network requires more than
20 hours (at 50 MHz). The design can easily work at 100 MHz as well.

6 Discussion

In fitness functions, all possible input combinations are evaluated, i.e. 2N test
vectors are evaluated for N -input sorting network. In [10] median networks
(whose evaluation is of the same complexity as for sorting networks) were evolved
up to N = 25 in software. However, component-optimal solutions were not ob-
tained for larger N . It was reported that the fitness calculation (performed in
software) is very time consuming for N ≥ 23 and evolution requires days to find
a solution. Here we demonstrated that a special architecture implemented in
hardware could make the evolutionary design significantly faster. Alternatively,
we could reduce the training set; however, we have never obtained a perfect
solution with the reduced training set.
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We have evolved relatively large combinational circuits (28 inputs, 28 out-
puts) from scratch in a relatively short time (about 20 hours) and in (relatively
low-cost) commercial off-the-shelf hardware. On the other hand, we have used a
lot of domain knowledge for solving this problem (the usage of compare&swap
components, invariable interconnection of components etc. is typical only for this
problem). We demonstrated what complex circuits can be evolved on commer-
cially available FPGAs. The evaluation of a single candidate sorting network for
N = 28 was compared against highly optimised SW implementation running in
Xeon 3 GHz. Our FPGA evaluation running at 100 MHz is 40× faster then the
software approach.

A strongly generic approach was utilized during VHDL design. All the im-
plemented units are parameterized using various constants (such as the size of
chromosome, the number of mutations etc.). Therefore, it is easy to modify the
design and to obtain a totally different evolvable system in a very short time.
The FPGA communicates with PC via special software allowing designer to
prepare scripts describing experiments that have to be performed. Typically, de-
signer specifies the VRC, EA and fitness function, perform synthesis, upload the
evolvable system into FPGA and execute all experiments described in scripts.

7 Conclusions

A specialized architecture was developed and evaluated to evolve relatively
large sorting networks in an ordinary FPGA. We evolved sorting networks up
to N = 28. The evolution of the largest sorting networks requires 10 hours in
FPGA running at 100 MHz. In next research, the number of components utilized
in the evolved networks will be optimized. As target future application of this
approach we consider adaptive routing in computer networks.
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Abstract. Evolvable Hardware arises as a promising solution for automatic 
digital synthesis of digital and analog circuits. During the last decade, a special 
interest has been focused on evolving digital systems by directly mapping a 
chromosome on the FPGA configuration bitstream. This approach allowed a 
great degree of flexibility for evolving circuits. Nowadays, FPGAs routing 
scheme does not allow doing it in such flexible and safe way, so additional con-
straints must be introduced. In this paper we summarize three techniques for 
performing hardware evolution by exploiting the capacities of Virtex families. 
Among our proposals there are high and low level approaches, and coarse and 
fine grained components. A modular based evolution, with pre- placed and 
routed components, provides a coarse grain approach. Two techniques for  
directly modifying LUT contents on hard macros provide a fine grained evolu-
tion. Finally, integrating both approaches, coarse and fine grain, provides a 
more general and powerful framework. 

1   Introduction 

Designing analog and digital electrical circuits is, by tradition, a hard engineering 
task, vulnerable to human errors, and no one can guarantee the optimality of a solu-
tion. Design automation has become a challenge for tool designers, and given the 
increasing complexity of circuits, higher description levels are needed. Evolvable 
Hardware (EHW) arises as a promising solution to this problem: from a given behav-
ior specification of a circuit, an evolutionary algorithm (EA) can find a circuit able to 
implement this function. EAs take inspiration from the principles of biological evolu-
tion decoding a phenotype from a genotype. The genotype is a number string, where 
the genetic operations, cross-over and mutation, are applied. Reproduction is per-
formed by cross-over of genomes and mutation is performed on a probabilistic way. 
From this genome a phenotype is decoded for obtaining a circuit with a given set of 
components and connectivity (in the case of EHW). A fitness note is assigned to this 
individual given the performance exhibited according to a fitness function. EHW have 
shown to perform well finding solutions [1] from simple Boolean functions to com-
plex analog circuits, sometimes performing better than hand-made solutions.   

For evolving hardware there is a first main issue to address: the hardware substrate 
supporting the evolved circuit. Different custom chips have been proposed for this 
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purpose with very interesting results: the main interest on proposing an architecture is 
that commercial FPGAs are designed for general purpose applications, so they would 
not necessarily fit the requirements for evolvable architectures. Custom evolvable 
chips use to provide dynamic and partial reconfiguration, dispose of multi-context 
memories and can be configured with random configuration bitstreams. The commer-
cial options main advantage is the absence of non-recurrent engineering, as any gen-
eral purpose architecture, under the cost of reduced flexibility and performance. 

Different chips and platforms have been developed providing the flexibility neces-
sary for evolving analog, digital and mixed circuits; some of them have been designed 
specifically targeting evolvable hardware, while others have just found in evolvable 
hardware another application field. Among them one can find different levels of 
granularity, different types of reconfiguration, including dynamic and static recon-
figurations, possibility of loading partial configuration bitstreams, and the utilization 
of context memories.  

One of the more recent chips is the POEtic tissue [2], a platform for bio-inspired 
hardware composed of three layers: phenotype, mapping, and genotype, each one of 
them supporting each of the three axes of life: phylogenesis (evolution), ontogenesis 
(development) and epigenesis (learning). Previous work on evolvable architectures 
have been done by Moreno et al. with FIPSOC [3, 4], a chip integrating digital and 
analog programmable circuits, with a dynamic multi-context reconfiguration for the 
digital section, focusing on evolution of parallel cellular machines. Higuchi’s group 
has developed an evolvable LSI chip [5], which includes a genetic algorithm unit, and 
the ability to process two chromosomes in parallel. Layzell developed the Evolvable 
Motherboard (EM) [6], a diagonal matrix of analogue switches, connected to a set of 
daughter-boards, which contain the basic components for performing the evolution.  

Other platforms, such as MorphoSys [7], DREAM [8], and Palmo [9], were not ini-
tially designed for bio-inspired systems; however, their flexible and performing archi-
tecture fits well with EHW requirements.  

Among commercial options, the FPGA XC6200 from Xilinx (already obsolete for 
commercial reasons) constituted the perfect platform for intrinsic evolvable hardware; 
it was possible to download any arbitrary bitstream without risking contentions, given 
its multiplexer-based connection architecture. Additionally, this FPGA family al-
lowed dynamic reconfiguration, making it more flexible for adaptive algorithms in a 
general sense. Maybe the most known work using these devices is that of Adrian 
Thompson [10, 11]  who refers to intrinsic as “belonging to the point at issue” and it 
reflects very well his work. He evolved analog circuits, by exploiting the dynamics 
inherent to the physical properties of the FPGA internal components. On the same 
way cooperative robot controllers have been also evolved with these FPGAs with 
impressive results [12]. Such success of these families has motivated researchers to 
implement the same architecture on other still available FPGAs: [13] presents an 
“emulated” 6200-like cell on commercial available architectures (XC4010 and Altera 
EPF6010A), and they evolve a configuration bitstream which does not configure the 
FPGA itself but the “emulated” 6200-like cells.  

More recent work on evolvable circuits on commercial FPGAs has focused on 
Virtex and Virtex-II architectures from Xilinx (and will extend to Virtex IV). The 
special interest on these devices is their partial dynamic reconfigurability, with the 
limitation, compared with the XC6200, that no arbitrary configuration bitstreams can 
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be loaded. This limitation is given by the multidirectional nature of the connection-
ism: it is possible, with an incorrect bitstream, to interconnect two logic gate outputs 
damaging the device. 

For evolving circuits on Virtex architectures one must take care of not generating 
invalid bitstreams – i.e. bitstreams causing internal contentions – and different ap-
proaches have been proposed for dealing with that problem. At the University of York 
they have used Jbits, a Java API for describing circuits and manipulating configura-
tion bitstreams, for evolving circuits. From a genome they map LUTs contents for 
evolving simple combinatorial functions [14], or robot controllers for obstacle avoid-
ance [15]. Also using Jbits, Levi and Guccione from Xilinx have developed a tool 
called GeneticFPGA [16], which from a chromosome translates a configuration bit-
stream, making easy to generate legal bitstreams. Even if Jbits provides interesting 
features for EHW, it has several limitations, such as the impossibility to run on an 
embedded platform (for on-chip evolution), dependability on supported FPGA fami-
lies and supported boards, incompatibility with other hardware description languages 
(HDLs), and a limited support from Xilinx, mainly reflected in an insufficient  
documentation.  

In this paper we present 3 techniques to evolve circuits on Virtex families without 
depending on Jbits. Two of these techniques are mainly based on the two flows for 
partial reconfiguration proposed by Xilinx in [17], while the third one consists on 
directly manipulating the bitstream without depending on any Xilinx tool. In section 2 
we describe the two design flows proposed by Xilinx for performing dynamic partial 
reconfiguration in a safe way. In section 3 we describe how these techniques can be 
used for evolving hardware systems. And, finally, section 4 concludes. 

2   Dynamic Partial Reconfiguration on Xilinx Families 

FPGAs are programmable logic devices that permit the implementation of digital 
systems. They provide an array of logic cells that can be configured to perform a 
given function by means of a configuration bitstream. Some FPGAs allow performing 
partial reconfiguration, where a reduced bitstream reconfigures only a given subset of 
internal components. Dynamic Partial Reconfiguration (DPR) is done while the de-
vice is active: certain areas of the device can be reconfigured while other areas remain 
operational and unaffected by the reprogramming. For the Xilinx’s FPGA families 
Virtex, Virtex-E, Virtex-II, Virtex-II Pro (applicable also for Spartan-II and Spartan-
IIE) there are two documented flows to perform DPR: Module Based and Difference 
Based [17].  

With the Difference Based flow the designer must manually edit low-level 
changes. Using the FPGA Editor, a low level edition tool, the designer can change the 
configuration of several kinds of components such as: look-up-table equations, inter-
nal RAM contents, I/O standards, multiplexers, flip-flop initialization and reset val-
ues. After editing the changes, a partial bitstream is generated, containing only the 
differences between the before and the after designs. For complex designs, the Differ-
ence Based flow results inaccurate due to the low-level edition in the bitstream  
generation.  
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The Module Based flow allows the designer to split the whole system into mod-
ules. For each module, the designer generates a configuration bitstream starting from 
an HDL description and going through the synthesis, mapping, placement, and rout-
ing procedures, independently of other modules. Some of these modules may be re-
configurable and others fixed (see figure 1). A complete initial bitstream must be 
generated, and then, partial bitstreams are generated for each reconfigurable module. 
Hardwired Bus Macros must be included. These macros guarantee that each time 
partial reconfiguration is performed routing channels between modules remain un-
changed, avoiding contentions inside the FPGA and keeping correct inter-module 
connections.  

 

Fig. 1. Design Layout with Two Reconfigurable Modules (From [17]) 

3   Evolving Techniques 

In this section we present 3 techniques for EHW on Virtex families. The first one is a 
coarse grained high level solution, well suited for architecture exploration. The sec-
ond and the third one, very related among them, constitute a fine grained low level 
solution, well suited for fine tuning.  

3.1   Module Based 

The main consequence of the aforementioned features of DPR is a modular structure, 
where each module communicates solely with his neighbor modules through a bus 
macro (Figure 1). This structure matches well with modular architectures, such as 
layered neural networks, fuzzy systems, multi-stage filtering, etc. All systems with 
high needs of adaptability, and which can largely benefit from architecture explora-
tion. Anyway, some design constraints must be respected: inputs and outputs of the 
full network must be previously fixed, as well as the number of layers and the connec-
tivity among them (number and direction of connections). While each layer can have 
whatever kind of internal connectivity, connections among them are fixed through bus 
macros and restricted to neighbor layers. 
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Evolving artificial neural networks topologies by using this method have been re-
ported in [18, 19]. For each module, there exists a pool of different possible configu-
rations. Each configuration may contain a layer topology - i.e. a certain number of 
neurons with a given connectivity. Each module can be configured with different 
layer topologies, provided that they offer the same external view (i.e. the same inputs 
and outputs). Several generic layer configurations are generated to obtain a library of 
layers, which may be used for different applications.  

A GA is responsible for determining which configuration bitstream is downloaded 
to the FPGA. The GA considers a full network as an individual. For each application 
the GA may find the combination of layers that best solves the problem. Input and 
output fixed modules contain the required logic to code and decode external signals 
and to evaluate the fitness of the individual depending on the application. 

Two ways of generating bitstreams can be identified by using this technique: (1) by 
letting the EA to modify HDL or the netlist descriptions of the system or (2) by pre- 
placing and routing all the possible modules to be used. The first option, letting the 
EA to modify HDL or netlist specifications, would definitely result in prohibitive 
execution times: a full placement and routing process should be executed for each 
individual, which is typically a very heavy computing task. The second option, pre- 
placing and routing modules, results more accurate for EHW. Under this approach 
one can see each module as a coarse grain configurable block that can be configured 
with a set of predefined components. The EA would select the best combination of 
components to solve the problem. This technique results accurate for a global coarse 
search; however, for fine tuning it must be used another adaptation technique. For 
instance, in [18] a spiking neural network topology is evolved with this technique, but 
hebbian learning adjusts synaptic weights for each individual.  

3.2   Hard-Macros Difference Based 

Lower level partial bitstreams can be generated by using the Difference-Based flow. 
Using this technique to modify circuits requires a previous knowledge of the physical 
placement of the logical components implementing the target function – i.e. the logi-
cal function to be evolved – in the FPGA. By using hard macros one can define place-
ment constraints; one can place each hard macro and, knowing LUT positions, one 
can modify them by using Difference-Based reconfiguration [17]. Hard macros must 
be designed by low level specification of a system: using the FPGA_editor one can 
define a system in terms of the FPGA basic components. Every CLB, LUT and flip-
flop must be manually placed, and a semi-automatic routing must be performed.  

Cooperative coevolution of fuzzy systems using this technique is described in [20]. 
They define two hard macros: a parameter macro and a fuzzy rule macro. The func-
tionality of a parameter macro is just storing a constant parameter. After specifying 
placement constraints for this macro one can access and modify its contents automati-
cally by using the FPGA editor. On the same way, the fuzzy rule macro can be auto-
matically configured to implement a fuzzy-OR or a fuzzy-AND function (different 
from their Boolean counterparts). 

For using this technique, the first step is to define an initial HDL description of the 
system. This description must include the hard macros to be evolved as black boxes. 
The hard macros must be designed before the placement and routing process. Place-
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ment constraints must be specified for the hard macros, taking care of not overlapping 
them. After placing and routing the design, one must check that hard macros have 
been placed as desired. Now the system is ready to be evolved: a genetic algorithm 
running on your favourite programming language will generate LUT contents from a 
chromosome and will run a script for modifying the LUT contents on the 
FPGA_editor. Then a partial bitstream, just containing the LUT modifications, will be 
generated and downloaded to the FPGA. 

This technique provides the possibility of fine tuning systems, under the cost of not 
allowing topological or connectionism modifications. It is well suited for evolving 
systems with cellular structures, such as neural networks, fuzzy system rules, or cellu-
lar automata, among others, with the main drawback of a dependence of Xilinx tools 
for modifying LUT contents and generating the bitstream. Even if the placement and 
routing process must not be executed for every individual, it is still not suited for on-
system evolution. 

3.3   Bitstream Manipulation 

Up to now, all described evolving techniques are highly dependant on Xilinx tools, 
making them restrictive for on-chip evolution. An attempt for providing a similar 
functionality from Jbits running on-chip has been proposed by Xilinx engineers [21]: 
XPART (Xilinx Partial Reconfiguration Toolkit) is an application program interface 
(API), for Microblaze or PowerPC microprocessors, that provides methods to read 
and modify select FPGA resources by using the ICAP (Internal Configuration Access 
Port). Anyway, XPART was never released.  

Directly evolving the configuration bitstream has been a very common technique. 
It has been widely used with the XC6200 family and on other custom platforms sum-
marized in section 1. However, in every case one must maintain a fixed section – i.e. 
not evolved – in the bitstream. For instance, Thompson in [10], uses an XC6216 with 
an array of 64x64 logic cells, but the evolved circuit uses just an array of 10x10 logic 
cells, while keeping fixed input and output. In this case the evolved section of the 
bitstream is just that containing the 10x10 array while the sections for IO blocks and 
the remaining cells are kept constant during the evolution. 

Exactly the same principle can be applied for Virtex families, including Virtex II, 
Virtex II-Pro and eventually Virtex 4: LUT contents can be evolved, while keeping a 
fixed routing. By using hard macros, as described in 3.2, one can describe a comput-
ing cell. This computing cell can implement a neuron, a fuzzy rule, a simple LUT, or 
any function, including one or several LUTs; it can include also flip-flops for making 
the design synchronous, or it can just implement combinatorial circuits. LUTs con-
figuration can be modified in an arbitrary way; however, routing must remain fixed. 
Connectivity among components of a computing cell is manually set when designing 
the hard macro; connectivity among computing cells is defined by an HDL descrip-
tion of the full system. Although routing must remain fixed during evolution, LUTs 
can be evolved as multiplexers, where the selection is done by the configuration bit-
stream. An implementation using this principle is described in [22], where they pre-
sent a cellular automata evolution running on a Virtex-E.  

For the Virtex family, the XAPP151 [23] describes in a detailed way the configura-
tion bitstream, specifying the position of LUT contents on the bitstream. However, for 
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the Virtex II family this documentation is not available and just a limited bitstream 
description can be found in [24]. A Virtex-II bitstream is divided by columns and 
each column is composed by frames. There are different column types, each type with 
a given number of frames, as described in figure 2 (for more details refer to [24]). 
However, there is no documentation about frame composition, consequently, no in-
formation about LUT contents. 

We present in the following paragraphs how to address LUT contents on a bit-
stream. This problem can be solved by exploring the bitstream content. In the Virtex-
II architecture each CLB has 4 slices arranged 2x2. This arrangement makes that each 
CLB column has 2 slices columns, which are numerated in the format XiYj, with i 
from 0 to 2n-1 beginning from the left (n is the number of CLB columns) and j from 0 
to 2m-1 beginning from the bottom (m is the number of CLB rows). For instance, for 
an XC2V40 (with array 8x8) the slice placed at the top left of the component is called 
the slice X0Y15. Each one of these slices has 2 LUTs called G-LUT and F-LUT.  

 

 

Fig. 2. Virtex-II configuration bitstream composition 

Table 1. Frame description. The first 12 bytes configure the IOB, the next 2 bytes configure the 
G-LUT contents for the top slice, the next byte has an unknown functionality, the next 2 
configure the G-LUT, … This sequence is repeated for every slice, and finishes by the bottom 
IOB configuration. * Supposing it is the second frame of the first CLB column for an XC2V40. 

Description Size (bytes) 
Top IOB 12 
Top slice G-LUT  (slice X0Y15)* 2 
-- 1 
Top slice F-LUT   (slice X0Y15)* 2 
2nd slice G-LUT (slice X0Y14)* 2 
-- 1 
2nd slice F-LUT (slice X0Y14)* 2 
… 
… 

 

Bottom slice F-LUT (slice X0Y0)* 2 
Bottom IOB 12 
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Even if it is not documented, LUT contents can be localized in the configuration 
bitstream. As shown in figure 2 a CLB column contains 22 frames; the contents for 
the first slices column LUTs – i.e. with an even X – can be found in the second frame, 
while for the second slices column – i.e. with an odd X – are in the third frame. Frame 
contents are described in Table 1. It must be noticed also that, as in Virtex family, 
LUT configurations are stored inverted – i.e. for an 4-input AND function, LUT con-
tents must be 1000 0000 0000 0000, but actually it stored like 0111 1111 1111 1111 
or 7F FF in hex format –. Additionally, the bit order is swapped in F-LUTs respective 
to G-LUTs – i.e. the same AND function in a G-LUT is stored 7F FF in the configura-
tion bitstream, while for a F-LUT function it is stored FF FE –. 

Based on this description one can determine any LUT content position on the bit-
stream by applying the following equation: 

 
Position=  Size of the header 

          +  #GCLK_col_frames X  #bytes/frame 
          + #IOB_col_frames  X   #bytes/frame 
          + #IOI_col_frames    X   #bytes/frame 
          + #Xcoord_of_CLB_col  X  #CLB_col_frames  X  #bytes/frame 
          + 1 frame X  #bytes/frame          if slice X coord is even 
          + 2 frames X  #bytes/frame           if slice X coord is odd 
          + 12 bytes    -- IOB config. 
          + 5 bytes X slice_Ycoord(from top) 
          + 0 bytes     if G-LUT 
          + 3 bytes    if F-LUT 
 

Almost all these values are constant for every Virtex-II family devices; just the 
#bytes/frame depends on the number of CLB rows of the device. The header size is 
variable, and depends on the configuration options enabled for the bitstream (Details 
on the header can be found in [24]). 

Accessing LUT contents on a partial bitstream is even easier, since one can directly 
address the target frame by setting the frame address in the bitstream header as de-
scribed in [24]. Then, the table 1 description may be used for directly localizing LUT 
contents on the frame. 

Accessing the configuration bitstream, as described in this section, allows evolving 
circuits in a very flexible way. By defining an initial interconnection schema one can 
let an on-chip – or off-chip – processor to simply modify partial bitstreams just  
containing the LUT-frames. This powerful approach can be largely improved when 
combined with the technique proposed in section 3.1, allowing additionally different 
connectionism schemas (unfortunately predefined and fixed).   

4   Conclusions  

In this paper we presented three techniques for evolving hardware on Virtex families. 
The first technique, module based, provides a high level abstraction of the system and 
fits well for coarse topology exploration; anyway, it remains inaccurate for fine tun-
ing, given its coarse grain nature. The second technique, hard macros difference 
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based, is a good complement for the first technique: by manually placing hard macros 
one can modify CLB contents. It allows fine tuning, but the overall routing must re-
main fixed. The third method, bitstream manipulation, provides almost the same fea-
tures that the second one with the great advantage that, given its independence from 
Xilinx tools, it can run on-system, under the cost of a slight flexibility loses. 

By integrating the coarse grain with a fine grain approach one can largely enhance 
the search space and increase the flexibility of the evolvable platform. By evolving a 
system at topology and LUT contents level, one can play with the trade-off explora-
tion vs. exploitation: fine tuning parameters while major topology changes are per-
formed. Different basic computing units may be used, specified as hard macros, such 
as artificial neurons, fuzzy rules, or cellular automata.  

Even if Virtex families are not specifically conceived for EHW, methodologies can 
be proposed for exploiting their performance and flexibility features. These method-
ologies may rely on the techniques presented in this paper and should deal with the 
kind of basic element - modules or hard macros – to evolve, as well as the genome 
coding or the type of EA best suited for a given structure.  
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Abstract. There have been introduced a number of systems with evolvable hard-
ware on a single chip. To overcome the lack of flexibility in these systems, we
propose a single-chip evolutionary system with the evolutionary algorithm im-
plemented in software on a built-in processor. This architecture is implemented
in a Xilinx Virtex-II Pro FPGA with an embedded PowerPC processor. This al-
lows for a rapid processing of the time consuming parts in hardware and leaving
other parts to more easily modifiable software. This platform will be beneficial
for future work regarding both cost and compactness. Experiments have been
performed on the physical device with software running in parallel with fitness
computation in digital logic. The results show that the system uses only twice as
much time when compared to a PC running at 10 times faster clock speed.

1 Introduction

Evolution time is critical for online evolvable systems. Further, often the compactness
and cost of the system would be important. Thus, integrating as much as possible of a
system on a single chip would be important.

There have been undertaken some implementations earlier. Kajitani et al have intro-
duced several LSI (Large-Scale Integrated Circuits) devices with evolution undertaken
in hardware [2,3]. The benefit of such an approach is the evolution speed but the prob-
lem is lack of flexibility. This would be important since there are often many degrees
of freedom when evolving hardware systems. On-chip evolution using a prototype of
the VLSI (Very Large-Scale Integration) POEtic chip has also been reported [7]. A
robot controller and logic functions (3-input multiplexer and full adder) were evolved.
The architecture contains an on-chip custom 32-bit processor, and a bio-inspired ar-
ray of building blocks. This chip is specialized for the implementation of bio-inspired
mechanisms.

In this paper, we demonstrate how a commercial FPGA (Field Programmable Gate
Array) can provide a platform for System-On-Chip evolution. This is by integrating the
evolution running as software on a processor with the target evolvable hardware imple-
mented in reconfigurable logic. This allows for fast fitness computation – normally the
most time consuming part of evolution, by measuring fitness in hardware communicat-
ing with a processor within the same hardware chip.

Implementing complete evolution in an FPGA has been proposed by Tufte and Had-
dow in [12]. The evolving design is implemented in the same device as the evolutionary
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algorithm. A similar approach is proposed by Perkins et al in [6]. Significant speedup is
achieved for non-linear filtering compared to conventional processing. Several custom
accelerators in FPGA for solving a protein folding problem have been introduced by
Shackleford et al [10].

Running complete evolution within a Virtex XC2V3000 FPGA has been reported
by Sekanina [9]. In this work the evolution (mutation only) is implemented in reconfig-
urable logic. Correctly working 3×3 and 3×4 bit multipliers were evolved.

In the work presented in this paper, a XC2VP7 Virtex-II Pro FPGA has been applied.
It consists of reconfigurable logic, a PowerPC 405 hard-core processor block, on-chip
RAM and high speed serial links for external interfaces.

There has been developed one other system for the Virtex-II Pro device [8]. This
work is based on designing a co-processor for an analog neural network ASIC. This is
contrasted to our work, where we focus on evolution of digital circuits and an evolution-
ary system in a single device. Further, in our system, all parts of the evolution (except
the fitness evaluation, which is implemented in digital logic) are undertaken in software,
providing a flexible system for later modifications. This is slower than implementing the
evolution in dedicated hardware, but it is expected that the fitness evaluation time will
still be the most time consuming part. This balanced software-hardware approach will
allow for a low implementation effort while still being able to have a single-chip design,
suitable for embedded real-world applications.

Another motivation, for having on-chip evolution and fitness computation in a sin-
gle unit, is that it allows for scalable systems. By connecting a number of such units
into a grid, they can perform concurrent evolution. Thus, this will be a very scalable
architecture as well as flexible. In addition to the flexibility provided by software, the
hardware would also be relatively easy to modify.

To demonstrate the achievable performance, experiments will be based on evolving
small multiplier circuits. This will be to document the speed of evolution rather than
evolution of very large and complex circuits which time has not allowed us to do so far.
A number of papers have earlier contained work on evolving multipliers off-chip and
extrinsically [4,5,13,11].

The next section introduces the applied FPGA followed by our architecture in Sec-
tion 3. Results from the implementation are given in Section 4. Finally, Section 5 con-
cludes the paper.

2 The Virtex-II Pro FPGA

The design is synthesized for a Xilinx Virtex-II Pro (XC2VP7-FG456-7) – see Fig. 1.
This device contains 11,088 logic cells, 792 Kbit dual-port SRAM - named Block Se-
lectRAM (BRAM), and one PowerPC 405 (PPC) embedded processor. The maximum
processor speed is 300MHz.

The FPGA is situated on a Memec Design Virtex-II Pro development board. The
board also contains two Xilinx XC18V04 configuration EEPROMS, 32MB SDRAM,
Rocket I/O ports, an RS-232 port, an LCD panel and other useful connectors.
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Fig. 1. The prototype board with the Virtex-II Pro FPGA

3 Implementing Evolutionary Algorithm on FPGA

In this section, the implementation of the evolvable hardware system will be detailed.

3.1 System Overview

The on-chip system is built using the Xilinx Embedded Development Kit (EDK) [15].
EDK is a collection of Intellectual Property (IP) cores and tools for building embedded
systems on FPGAs. The hardware and software parts of the system can be specified
parametrically through various configuration files, and net lists and libraries are auto-
matically generated.

The architecture consists of a set of modules interconnected with buses. The bus
system is a part of IBM’s CoreConnect architecture [16]. Two main buses are used to
connect the on-chip peripherals – the Processor Local Bus (PLB) and the On-chip Pe-
ripheral Bus (OPB), as seen in Fig. 2. The PLB is a high-performance 64-bit datapath
bus, while the OPB is a 32-bit wide bus designed for peripherals with lower require-
ments. These buses can be run in different clock domains, and they are interconnected
with the PLB to OPB bridge.

The communication intensive modules are connected to the PLB: The PPC CPU
and 64KB BRAM for program instructions. The PPC processor is connected as a bus
master to the PLB. In addition to the PLB interface, there are two On-Chip Memory
(OCM) interfaces in the PPC [14]. These are used as dedicated interfaces between the
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Fig. 2. Hardware architecture including our target EHW

FPGA BRAM and the PPC core. One OCM is for the instruction-side memory space
and the other is for the data-side memory space. These interfaces are usually used for
accessing instruction and data caches, built from BRAM (there is no cache inside the
PPC block). The advantage of these OCM interfaces over the PLB interface is that no
bus arbitration is necessary for memory access, and the instruction and data accesses
do not have to share the same interfaces. In our design, 8KB of BRAM is connected to
the instruction side OCM interface, used as an instruction cache. 16KB is connected to
the data side OCM interface. This memory is used as storage for all program data, ie.
no access to the PLB is needed at all. This increases program execution speed. In our
case, a 2× program execution speed increase was obtained by introducing instruction
caching, and another 3× increase was obtained by accessing all program data through
the data side interface.

The target evolvable hardware is at the moment connected to the OPB. This will
be detailed in section 3.3. Various on-chip peripherals are also connected to the OPB,
including a UART for RS-232 serial communications, an LCD interface and a LED in-
terface. An SDRAM controller can also be connected to the OPB should more memory
be needed.

3.2 Implementing a Genetic Algorithm on the PPC

A Genetic Algorithm (GA) was implemented to run on the PPC. The program was writ-
ten in C and compiled and linked using the PPC405 version of the GNU GCC compiler
tools. Some system limitations had to be taken into consideration when implementing
the GA on the embedded PPC system.

Firstly, program memory is limited. A maximum of 64KB of BRAM was allowed
for the executable size. Although there exists 32MB of SDRAM on the development
board, it was decided to only use BRAM internal to the FPGA. The BRAM is faster,
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and it allows for the program to be loaded directly from the bitstream that configures the
FPGA. A program which is too large to fit into the BRAM would have to be loaded into
SDRAM using a boot loader from external nonvolatile memory at startup (although
during development it is possible to initialize SDRAM through the JTAG interface).
SDRAM could still be used for data storage, but this would be a rather slow solution, at
least if no data caching is used.

Secondly, there is no floating point support on the PPC405. Floating point opera-
tions used in C programs have to be emulated, unless a floating point co-processor is
available. Emulating floating point is not speed efficient, and it increases the executable
size.

The limitations on the executable size led us to use of C instead of C++, and to
minimize the use of standard library functions. Speed considerations made us avoid
using floating point in time-critical program parts. Ideally, only fixed point or integer
solutions should be employed in order to reduce the executable size.

The combination of C-only programming, restricted use of library functions and
floating point operations, makes the implementation slightly more challenging and time
consuming than it would have been on a PC. However, the degree of program flexibility
and the speed of algorithm implementation is still very high compared to assembly
programming or custom hardware solutions. Having the above-mentioned limitations
in mind, the program was developed mostly using Microsoft’s Visual Studio, and it can
be run on both the PC and the FPGA platform. Only a few code paths had to be written
specifically for the PPC. The PC version of the program is equally fast as if it would
have been developed for PC only.

The GA implemented for this experiment follows the Simple GA style, given by
Goldberg [1]. Fitness scaling has been implemented, including linear scaling. A fitness-
proportionate selection scheme is implemented through the use of a roulette wheel
mechanism. The individuals are sorted with the qsort algorithm. For mutation, instead
of having one probability of mutation for every bit in the genome, a quicker solution
has been adopted. The number of mutations, n, for the whole genome is calculated by a
random lookup in a 10-position array. Then, n random places are mutated (bit-flipped)
in the genome. This is more efficient than performing a check for every bit if a mutation
should occur or not.

3.3 Target Evolvable Hardware

The target EHW is implemented as an OPB slave peripheral module – see Fig. 3. In-
terfacing with the OPB bus has been simplified by the use of a Xilinx IP Interface core
(IPIF). This provides a simpler interface standard, the Xilinx IPIC, for the user module.
IPIF cores exist for both OPB and PLB buses, so an adaptation of the target EHW to
the PLB should be a feasible task.

Control and configuration of this module are undertaken through register write op-
erations. Genome values are written to registers which are again connected to the con-
figuration inputs of each functional unit. Registers are also provided for feeding the
EHW with inputs and for storing the outputs.
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Fig. 3. The architecture of the target EHW system

Fig. 4. The architecture of the functional unit array subsystem

As an example application, a configurable functional unit array has been imple-
mented – see Fig. 4. Each subsystem evolved consists of a fixed-size array of functional
units. The array consists of n unit layers from input to output.

Each unit’s three inputs in layer l are connected to the outputs of three units in
layer l − 1. Each of the input signals can be inverted. Each unit can have one of four
functions: BUF, MUX, AND, or XOR. The function of each unit and its three inputs are
configurable and determined by evolution. The encoding of each functional unit in the
genome string is as follows, in the case of 4 different functions for each unit and 8 units
in each layer:
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Function (2 bit) Input 1 (4 bit) Input 2 (4 bit) Input 3 (4 bit)

Of the 4 bits for each input, one bit is toggling an inversion of the input signal,
while the 3 others code for which output from the previous layer to use. For our array
consisting of 6 layers with 8 units, the genome string length becomes (2 +(3× 4))×
6× 8 = 672 bit long. The array is constructed in a pipelined fashion, that is, registers
are connected to the outputs of each layer. Currently, this is not exploited for fitness
evaluation. Only one training vector is evaluated at a time.

3.4 GA Parameters and Fitness Function

For the evolution, a population size of 20 is used. Elitism is used, thus, the best indi-
viduals from each generation are carried over to the next generation. The (single point)
crossover rate is 0.5, thus the cloning rate is 0.5. A roulette wheel selection scheme is
applied, and linear scaling is used. The mutation rate is expressed as a probability for a
certain number, n, of mutations on each genome. The probabilities are as follows:

n 0 1 2 3
p(n) 1

10
6

10
2
10

1
10

The fitness function is computed in the following way:

F = ∑
vec

∑
outp

x where x =
{

0 if y �= d
1 if y = d

(1)

For each output the computed output y is compared to the target d. If these are equal
then 1 is added to the fitness function. The function sum these values for the assigned
outputs (outp) for the assigned truth table vectors (vec).

4 Results

This section presents and discusses the results of our implementation and experiments.

4.1 Device Utilization and Clock Speed

Table 1 shows the amount of logic used for our target EHW module containing an 8×6
functional unit array. A maximum of 20% of the FPGA’s total resources are used. The
total resource usage for the system, including bus structure and peripherals, is 43%. This

Table 1. Device utilization for the EHW module

Resource Used Available Percent
Slices 1025 4928 20
Slice Flip Flops 896 9856 9
4 input LUTs 1231 9856 12
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indicates that there is more space for either more complex EHW modules, or a larger
number of them. The FPGA used for these experiments is also relatively small com-
pared to the larger Virtex-II Pro and Virtex-4 FX devices - devices with up to 142,000
logic cells are available at the time of writing.

The maximum clock frequencies currently attained are 200MHz for the PPC core,
and 50MHz for the rest of the system, including both PLB and OPB modules. The
maximum possible speed for the PPC is stated to be 300MHz, and 100MHz for the
rest of the system. Since no analysis has currently been done to localize bottlenecks, it
should be possible to increase these frequencies later.

4.2 Evolution Speed

Evolution runs were conducted on our on-chip evolution system and a Pentium 4 (P4)
workstation for speed comparisons. The P4 workstation has a clock frequency of 2GHz.
For the speed test, 10,000 generations of 20 individuals were evolved. The fitness eval-
uation was for a 2 × 2 bit multiplier, thus 16 input/output vectors were used.

Raw GA Execution Speed. The execution time of only the GA operation without
fitness evaluation was measured. The results are shown in the first row of table 2. As
can be seen, the P4 system outperforms the on-chip system. This was expected, as the P4
processor is running at a much higher clock frequency and operates with a more efficient
memory interface and caches. However, although the clock frequency of the P4 is 10
times greater than on the PPC, the evolution speed is only around 6.4 times greater. This
may be explained by processor architecture factors, such as the high number of pipeline
stages on the P4, in effect giving a lower instructions per clock cyle count.

Table 2. Evolution speeds on PPC and P4 systems

Configuration PPC P4
GA without fitness evaluation 8.3s 1.3s
GA with fitness evaluation 20.0s 8.6s
Fitness time in % of total 59 85

GA with Fitness Evaluation Speed. The execution time of the GA operation including
fitness evaluation was then measured. The phenotype is evaluated in hardware on the
on-chip system and simulated in software on the P4 for comparison.

The results are shown in the second row of table 2. Here, the P4 system is still faster
than the on-chip system, but this time only by a factor of 2.3. The hardware evaluation
is advantageous to the on-chip system, but it is still limited by time-consuming fitness
evaluation administration in software. An estimate of the time for a complete hardware
fitness evaluation is around 9.7s, but this number would increase if the number of train-
ing vectors becomes higher.

The on-chip system will be little affected by increased complexity in the phenotype
structure, whereas the simulated fitness evaluation will be more time-consuming.
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4.3 Circuits Evolved

Correct 2 × 2 bit multiplier circuits were evolved after an average of 5702 generations
over 10 evolution runs. The same experiment was conducted as a verification on the
PC platform, where the average was 5649. The different numbers can be explained by
the different programs using different random number generators. Still, the results are
rather similar, which indicates that the FPGA implementation works correctly.

4.4 Discussion

The system architecture should be analyzed more thoroughly in order to obtain higher
clock frequencies. A higher bus speed would be beneficial for the configuration phase
of the target EHW, especially as the genomes get large. This could be combined with
moving the target EHW module to the PLB bus, in order to get a wider datapath. A
way of bursting data could also be explored. A direct connection to the other side of the
PPC’s data BRAM would also be possible, since the BRAM is dual-ported.

To speed up fitness evaluation, certain software operations can be moved into hard-
ware. For digital circuits with defined training vectors, like the multiplier circuits, it
would be advantageous to make a system that feeds the EHW circuit with one training
vector per clock cycle. As the functional unit array is pipelined, the number of cycles
needed for one complete fitness evaluation of an individual would be roughly equal
to the number of training vectors. Another option would be to increase the number of
EHW units on the same chip. However, an increased degree of hardware specialization
may come at the prize of reduced flexibility and, naturally, a higher implementation
effort.

We have presented the result of our first initial experiments on the evolutionary
platform. Our motivation for implementing evolution on the PPC is mainly that we
would like to apply the platform for evolving systems for real-world applications in
the future. A large part of the total computation time is used for the fitness computa-
tion even for evolving the small (2 bit) multiplier in a relatively small circuit above.
Thus, we expect that for more complex problems with much data to measure fitness on,
the amount of time used for evolution compared to fitness computation will be small.
On the other hand, to experiment with several evolutionary and bio-inspired methods,
flexibility would be important. This is obtainable with our platform with the processor
containing the parts not critical on computation time. This would also be important with
our goal of designing a scalable system with incremental evolution.

5 Conclusions

The paper has presented an approach for evolving digital circuits in a new technology
– System-On-Chip by FPGA. The work is focused on demonstrating the potential of
running evolution on an embedded processor in an FPGA. The first experiments – by
measuring performance of the real device, are promising. As this technology progresses,
it will probably be an interesting platform for cost effective evolution in embedded
systems.
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Abstract. This paper describes an evolvable image filter which is com-
pletely implemented in a field programmable gate array. The proposed
system is able to evolve an image filter in a few seconds if corrupted
and original images are supplied by user. The architecture is generic and
can easily be modified to realize other evolvable systems. COMBO6 card
with Xilinx Virtex xc2v3000 FPGA is used as a target platform.

1 Introduction

As image processing deals with large data sets, a hardware implementation of
image processing algorithms becomes unavoidable in many applications to ensure
reasonable processing time. Furthermore, efficient image processing algorithms
require a certain level of intelligence to correctly interpret and present the in-
put data. An adaptation is required in many cases. Hence image processing in
general, and image filtering in particular, belong to most popular applications
of evolvable hardware [4]. Evolvable hardware can be utilized either to find the
required solution at the design time (i.e. to assist the designer during the design
process) or to ensure (perhaps real-time) adaptation of hardware at the runtime.
The both approaches have been reported in literature (see [1, 9, 13, 17]).

The objective of this paper is to explore the performance of an evolvable
image filter that is completely implemented in a Field Programmable Gate Ar-
ray (FPGA). In order to perform these investigations, a smoothing filter (whose
function can be evolved) was implemented in FPGA. The main feature of the pro-
posed implementation is that everything is implemented in a cutting-edge recon-
figurable hardware platform available today. For the presented experiments we
utilized the PCI COMBO6 card developed in the Liberouter project [7]. There-
fore, our results should indicate what is possible to do with such the FPGA-based
evolvable systems nowadays. Evolutionary algorithm, implemented in hardware,
is used to find the filter which minimizes the difference between the corrupted
image and training image. These images are stored in RAM memories available
on COMBO6. A personal computer is used only for communication with the
COMBO6 card, i.e. for writing/reading the images to/from RAMs etc. The per-
formed experiments should allow us to exactly determine the adaptation time
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and the quality of the evolved filters and, consequently, to specify the class of
applications in which the filters could be evolved in real-time. We evaluated vari-
ous variants of the evolvable filter, including the size of the virtual reconfigurable
circuit and the parameters of the evolutionary algorithm. A crucial feature of
the proposed architecture is that all EA operations as well as reconfiguration are
completely overlapped by evaluation of candidate circuits, i.e. they are for free.

A lot of work has been done in the area of image filter evolution. Section 2
briefly introduces the field and emphasizes the differences between our approach
and the existing approaches. In Section 3 the proposed complete hardware imple-
mentation is described. Section 4 summarizes the obtained results. Advantages
and disadvantages of the evolvable system and potential applications are dis-
cussed in Section 5. Conclusions are given in Section 6.

2 Evolution of Image Filters in FPGA: A Survey

Various approaches have been proposed to the evolutionary design of image op-
erators (filters). The authors of paper [5] evolved circuits for edge detection using
elementary binary operations supported in FPGAs. Other edge detectors (also
evolved in an FPGA) were represented as 2D arrays of integers that defined the
convolution kernel [2]. Ebner evolved an edge detector using genetic program-
ming which approximates the Canny edge detector [3]. An automatic feature
identification algorithm that utilizes functional level operators like mean, stan-
dard deviation, convolution and linear scale was developed for multi-spectral
images [9]. The evolutionary approach usually works in the time domain and
produces non-linear filters. In many cases the evolved filters have exhibited bet-
ter properties (the cost, quality of filtering) than conventional filters (such as
median and mean filters, Sobel operators etc.) in tasks such as Gaussian or
salt-and-pepper noise removal or edge detection [13, 11].

This work extends the approach initially developed by Sekanina [10, 11] who
has evolved novel image filters (for 3×3 neighbourhood) using Cartesian genetic
programming (CGP) applied at the functional level. Furthermore, the hardware
implementation of CGP was proposed for FPGAs [13, 12]. However, in his ap-
proach image filters were evolved only by using a virtual reconfigurable circuit
simulated in software that could eventually be implemented of the top of a con-
ventional FPGA (no evolution in hardware was performed). Recently, Zhang et
al. have implemented a very similar virtual reconfigurable circuit in FPGA and
evolved some image operators in FPGA [17, 16]. Smith et al. used the same
approach [15]. However, they have not evaluated the complete hardware imple-
mentation (including the evolutionary algorithm) in FPGA. Their papers do not
indicate the time of evolution and speeding up against the software approach.
It seems that some parts of evolutionary algorithm (such as circuit evaluation)
have been carried out in software. As their system was proposed as asynchronous
utilizing local handshaking protocols [16] they were not able to make the system
completely pipelined. For similar purposes Sekanina and Friedl have proposed
a completely pipelined implementation of an evolvable combinational unit for
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FPGAs that can be considered as an evolvable IP core [14]. They obtained a
significant speedup against the software approach. In this paper we will derive
a complete hardware implementation of the evolvable filter according to the
approach [14].

3 The Proposed Architecture

Architecture of the evolvable image filter is based on the component approach
to evolvable hardware [13, 12, 11]. As Fig. 1 shows, it is composed of three main
components—Fitness Unit, Genetic Unit and Virtual Reconfigurable Circuit.
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Fig. 1. Architecture of the evolvable image filter in FPGA

3.1 Virtual Reconfigurable Circuit

Every image operator will be considered as a digital circuit of nine 8bit inputs and
a single 8bit output, which processes gray-scaled (8bits/pixel) images. As Fig. 2
shows every pixel value of the filtered image is calculated using a corresponding
pixel and its eight neighbours in the processed image.

We approached the problem using Cartesian Genetic Programming (CGP)
operating at the functional level. In contrast to the conventional CGP [8]—where
gates and 1 bit connection wires are utilized—Configurable Functional Blocks
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(CFBs) and 8bit datapaths are employed [6]. Our model of the reconfigurable
circuit consists of 2-input CFBs placed in a grid of nc columns and nr rows.

Any input of each CFB may be connected to the primary circuit inputs.
Any input of each CFB may be connected to the output of a CFB, which is
placed anywhere in the preceding column. The interconnection is implemented
using multiplexers. Any CFB can be programmed to realize one of functions
given in Table 1. These functions were recognized as useful for this task in [11].
Configuration bits of VRC are directly connected to the multiplexers that control
the selection of CFB inputs and CFB functions. The reconfiguration is performed
column by column. The computation is pipelined; a column represents a stage
of the pipeline. Registers are inserted between columns in order to synchronize
the input pixels with CFB outputs.

Table 1. Functions in CFBs

Number Function Description

0 x ∨ y binary or

1 x ∧ y binary and

2 x ⊕ y binary xor

3 x + y addition

4 x + ys addition with saturation

5 (x + y) >> 1 average

6 Max(x, y) maximum

7 Min(x, y) minimum

3.2 Fitness Unit

The design objective is to minimize the difference between the filtered image
and the original image. Let u denote a corrupted image and let v denote a
filtered image. The original (uncorrupted) version of u will be denoted as w.
The image size is K×K (K=256) pixels but only the area of 254 × 254 pixels is
considered because the pixel values at the borders are ignored and thus remain
unfiltered. The fitness value of a candidate filter is obtained as follows: (1) the
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VRC is configured using a candidate chromosome, (2) the circuit created is used
to produce pixel values in the image v, and (3) the fitness value is calculated as

fitness = 255.(K − 2)2 −
K−2∑
i=1

K−2∑
j=1

|v(i, j) − w(i, j)|.

Fitness computation is realized in Fitness Unit. The pixels of corrupted image
u are loaded from external SSRAM memory and forwarded to inputs of VRC.
Pixels of filtered image v are sent back to the Fitness Unit, where they are com-
pared with the pixels of original image w. Filtered image is simultaneously stored
into the additional SSRAM memory. Note that all image data are stored in exter-
nal SSRAM memories due to the limited resources available in the FPGA chip.

3.3 Genetic Unit

Genetic algorithm is based only on the mutation operator (bit inversion); simi-
larly to experiments reported in [13] a crossover is not taken into account. Pop-
ulation size is configurable. The new population is always generated from the
best member of the previous one. Genetic algorithm operates in following steps:
(1) Initialization Unit generates the first population at random (LFSR seeded
from software is utilized). (2) Mutation Unit changes a given number of genes
(bits) of a population member (this number is configurable) and the modified
member is loaded into the VRC; it represents an image operators. (3) Genetic
Unit is waiting for the evaluation performed by Fitness Unit and if the fitness
value is better that the parent’s fitness then the chromosome replaces its parent.
(4) This is repeated until an appropriate number of generations are produced.

4 Experimental Results

4.1 Target Platform

COMBO6 developed in the Liberouter project is a PCI card primarily dedicated
for a dual-stack (IPv4 and IPv6) router hardware accelerator. This board offers
a very high computational power (FPGA Virtex XC2V3000 by Xilinx, Inc. with
more than 3 mil. equivalent gates, up to 2GB DDR SDRAM, up to 9Mbit context
addressable memory, and the three 2MB SSRAM memories) and so it is well
suited for development and the use in various application domains, including
evolvable hardware. We decided to use this card for our experiments because
it offers us a sufficient performance and capacity of FPGA. Furthermore, the
design software is available for free.

4.2 Synthesis for COMBO6

In order to compare different implementations we have decided to synthesize the
whole system with VRC of size 8×4 CFBs and 8×7 CFBs. The evolutionary al-
gorithm operates in the same way for both implementations; however, the size of
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chromosome depends on the number of CFBs. The results of synthesis obtained
using Leonardo Spectrum and Xilinx ISE tools are shown in the following table.

Table 2. Results of synthesis for Virtex II xc2v3000 FPGA

Resource Avail Used 8x4 Utilization Used 8x7 Utilization

Function Generators 28672 10638 37.1% 18432 64.2%

Slices 14336 6175 43.0% 10042 70.0%

Dffs or Latches 30724 3172 10.3% 3668 11.9%

IOBs 256 684 236 34.0% 236 34.0%

Block RAMs 96 2 2.0% 3 3.0%

4.3 Time of Evolution

The evaluation of candidate filters consists of three basic activities: (1) prepara-
tion of a new candidate chromosome (filter), (2) reconfiguration of VRC circuit
according to the prepared chromosome, and (3) evaluation of the filter. As most
time is spent in filter evaluation, the architecture of evolvable image filter is
designed in order to overlap the evaluation by other activities (1, 2). Therefore,
because there is no overhead for reconfiguration of VRC (VRC is reconfigured
at the beginning of filter evaluation) and the preparation of a new candidate
circuit configuration is performed during the evaluation, it is possible to express
the time of evaluation of a single filter as:

teval = (K − 2)2.
1
f

= (256 − 2)2.
1

50.106
= 1.29ms

if the size of images is 256 x 256 pixels and the system operates at 50 MHz.
Time of evolution can be expressed as follows:

te = tinit + g.n.teval,

where g is the number of generations, n is population size and tinit is time needed
to generate the initial population (tinit is negligible).

4.4 Functional Evaluation

The proposed evolvable image filter has been used to remove two types of noise–
Gaussian noise (σ = 16) and Salt-and-Pepper noise (5% pixels with white or
black shots)—that are popular in evolvable hardware literature [13, 11, 16, 15].
Original as well as filtered versions of Lena image were utilized in the fitness
function. As the image is relatively large (256 x 256 pixels) we can assume that
the evolved filter is general, i.e. the filter is able to remove the same type of noise
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also from other images. Examples of filtered images and evolved filters are given
in Table 5 and Figure 3.

We performed 100 runs for each problem and measured mdpp (mean differ-
ence per pixel) and checked the final generation. The average number of gen-
erations was calculated for the 100 runs. The evolution was stopped when no
improvement in the best fitness value was detected over the last 5000 genera-
tions. Table 3 and 4 summarize the experiments. We performed the experiments
with population size of four individuals and with the ratio of mutations 3 bits
per chromosome; then we repeated all the experiments with mutation of 6 bits
in chromosome. All the experiments were also performed for two different sizes
of VRC: 8 × 4 and 8 × 7 CFBs.

Fig. 3. Evolved Salt and Pepper filter

Table 3. Results for Salt-and-Pepper noise

VRC
size

Number
of mutations

The best
mdpp

In
generation

Average
mdpp

Average
num. of gen.

8x4 3 0.64 4548 3.75 10475.00

8x4 6 0.51 36765 3.06 12189.00

8x7 3 0.77 8130 4.11 8617.00

8x7 6 0.48 22346 3.69 10340.00
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Table 4. Results for Gaussian noise

VRC
size

Number
of mutations

The best
MDPP

In
generation

Average
MDPP

Average
num. of gen.

8x4 3 6.47 13767 7.98 10496.00

8x4 6 6.49 16058 7.77 10698.00

8x7 3 7.33 8435 10.10 7602.00

8x7 6 6.43 26647 8.27 8553.00

Table 5. The filter was evolved using Lena image and tested on other images

5 Discussion

We can compare the best-obtained results with the results reported in literature.
In reference [11], the three best Salt-and-Pepper noise filters have mdpp 0.379,
0.507 and 0.656. The three best values of mdpp for Gaussian noise are 6.243,
6.312 and 6.326. Tables 3 and 4 show that the filters evolved here and in [11]
exhibit a very similar quality. A small improvement visible in [11] is probably
due the fact that some other properties (such as testability) were required for
the filters in [11]; these properties were not considered in our hardware imple-
mentation. The influence of the mutation ratio and size of VRC is unclear from
these experiments. Some other experiments will be arranged to clarify it.

From Tables 3 and 4 it can be derived that 9871 generations (i.e. 51 seconds
at 50MHz) are needed in average to finish the evolution. The obtained time is
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very reasonable if the proposed system should operate “instead” of a designer in
the image filter design task. For some application, our solution could also oper-
ate as real-time evolving filter. However, if we consider that 100MHz operation
frequency is easily reachable at COMBO6 and the training image could consist
of 128 x 128 pixels only then the time of evolution is 6.3 second. Note that the
speedup we obtained against the software approach (Pentium III/800MHz) is 50
if the FPGA operates at 100 MHz.

Our VHDL design benefits from a generic approach. All the implemented
units are parameterized using various constants (such as the size of chromosome,
the number of mutations, the size and topology of VRC, the size of input images
etc.). Therefore, a novel FPGA-based implementation for some other evolvable
systems can be obtained in a very short time. The FPGA communicates with
PC via a special software allowing the designer to prepare scripts describing
experiments that have to be performed. Typically, designer specifies the VRC,
EA and fitness function, performs synthesis, uploads the evolvable system into
FPGA and executes all experiments described in scripts. This approach can be
considered as user-friendly interface to evolvable hardware.

6 Conclusions

A complete FPGA-based implementation of an evolvable image filter was realized
and experimentally evaluated in an FPGA. The proposed system is able to evolve
image filters in a few seconds. The architecture is generic and can easily be
modified to realize other evolvable systems. Future research will be devoted to
integrating the proposed solution to a real-world industrial application.
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Abstract. This work tackles the problem of synthesizing transferable and reusa-
ble operational amplifiers on a field programmable transistor array: the Heidel-
berg FPTA. A multi-objective evolutionary algorithm is developed, in order to be
able to include various specifications of an operational amplifier into the process
of circuit synthesis. Additionally, the presented algorithm is designed to preserve
the diversity within the population troughout evolution and is therefore able to
efficiently explore the design space. Furthermore, the evolved circuits are proven
to work on the chip as well as in simulation outside the FPTA. Schematics of
good solutions are presented and their characteristics are compared to those of
basic manually created reference designs.

1 Introduction

Analog circuit development is a discipline of electronic design that demands a lot of
knowledge and experience as well as a considerable amount of creativity in solving
diverse problems from the designer. The design of task specific operational amplifiers
(OP) is an example for an exercise that has to be done by experienced designers and
exactly such OPs are essential building blocks of many electronic circuits. Contrary to
digital circuit design there is still a lack of supporting tools for automatic synthesis and
sizing of transistor circuits.

To date, to the authors knowledge, only a few analytic solutions for analog design
automation are available. Examples in which previously known topologies are tested
while the sizing of the components is done by an optimization algorithm are given
in [1, 2]. In a great number of approaches, the topology is also to be found automati-
cally, therefore, developmental strategies [3,4,5,6] or heuristic interconnection of build-
ing blocks [7] are applied, in order to deal with the high complexity of amplifiers. An
alternative possibility is to choose a multi-objective evolutionary algorithm [8, 9], in
order to face the fact that, for the solution of almost every complex problem, numer-
ous variables have to be taken into account for optimization. Operational amplifiers as
well as other transistor circuits found to this point by means of hardware evolution in
conjunction with multi-objective optimization (MO) are reported in [10, 11, 12]. Fur-
thermore, a multi-objective approach provides the designer with a variety of choices

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 86–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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instead of only one more or less good solution. This is a great advantage, especially in
cases in which trade-offs have to be made, e.g. between gain and speed of an amplifier.

In this paper a multi-objective evolutionary algorithm, based on previous work [13]
and referred to as the MO-Turtle GA, is presented and successfully used for the synthesis
of differential amplifiers on the Heidelberg FPTA [14]. Other current results, obtained
by using this FPTA, can be found in [15]. As proposed in an earlier publication [13],
one of the aims is to synthesize circuits that contain only relevant components, thus, are
easier to understand according to engineering criteria. The evolved circuits are proven
to work on the chip as well as in simulation outside the FPTA. Schematics of good
solutions are presented in this work and their characteristics are compared to those of
manually created OPs. Two series of experiments are carried out using in one case a
pair of PMOS transistors and in the other case a pair of NMOS transistors as input.

2 Evolvable Hardware System

The evolution system consists of three main parts: The FPTA that hosts the configurable
CMOS transistor array, a controller with a PCI interface that connects the FPTA to a
standard PC and the software that runs the multi-objective evolutionary algorithm and
communicates with the FPTA via the controller. Thus, the experimental setup and the
candidate configurations for the transistor array are generated on the PC and then trans-
ferred to the controller. Subsequently, the controller configures the FPTA and measures
the output of the circuits under test. The software on the PC reads back the results and
carries out the evolutionary steps. These components provide a real time test environ-
ment for the evolved circuits.

The transistor array consists of 16x16
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Fig. 1. The block diagram of an FPTA
MOS transistor cell

configurable CMOS transistor cells (Fig. 1).
Each cell contains a transistor that can be con-
figured by selecting values for its width W
and length L within W = 1, 2, ..., 15 μm and
L = 0.6, 1, 2, 4, 8 μm. The terminals (source,
drain and gate) can be connected to one of
the cells outside connections (N,S,W,E), vdd
or gnd. Additionally, it is possible to directly
connect the nodes (N,S,W,E) to each other,
which provides routing capabilities. Half
of the cells are designed as programmable
PMOS and NMOS transistors respectively
and are arranged in a checkerboard pattern.
Owing to the four nodes available for rout-
ing and terminal connections, one cell mostly
serves either as transistor cell or routing cell. However, both capabilities are not sepa-
rated. The array is enclosed by IO cells that can apply voltages to the border cells or
measure the output voltages of the evolved circuit. A detailed description of the FPTA
is given in [14].
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3 The Multi-objective Evolutionary Algorithm

Since the evolution of operational amplifiers is a challenging task, a multi-objective
strategy, first proposed in [16], is used for the experiments. This allows for a separate
evaluation and optimization of different properties of the circuits, which would not
be possible with a single objective algorithm. The MO-Turtle GA consists of a non-
dominated sorting algorithm and a crowding distance measure, which are described
in Sec. 3.2 and are based on those from the non-dominated sorting genetic algorithm,
presented in [8, 17]. Using an MO approach offers two important advantages: First,
numerous results can be harvested from the non-dominated front (NDF) instead of only
one, providing trade-off solutions for the different objectives. Second, the population is
of great diversity during the whole evolution, for the reason that individuals with a bad
over-all performance survive as long as they are superior in at least one objective. Thus,
crossover gains importance by combining differently specialized individuals.

3.1 Variation Operators of the MO-Turtle GA

The variation operators of the Turtle GA, reported in [13], are employed, namely the
Random Wires mutation and the Implanting Block of Cells crossover. The implementa-
tion of both operators is adapted to the FPTA’s architecture and described in the follow-
ing. A complete description is reported in [13].

Random Wires (Mutation). The mutation operator consists of the create mode and the
erase mode. The create mode connects random nodes within the FPTA’s transistor array
and thereby randomly inserts components into the active circuit. Contrary to that, the
erase mode randomly disconnects nodes and removes transistors. The mutation operator
is carried out recursively until the resulting circuit contains no dangling nodes and no
floating transistor terminals. The width and length of all active transistors is mutated
due to a configurable probability.

Implanting a Foreign Block of Cells (Crossover). The implanting crossover operator
is carried out in two stages. The first stage exchanges randomly sized and positioned
rectangular blocks of transistor cells between two randomly selected individuals. While
the size of both blocks has to be the same for each individual, the positions of the blocks
may differ. Since this operation in general breaks the layout of both previously intact
circuits, the second stage fixes the occurring floating nodes by executing the random
wires mutation operator for each of them. Thus, again, the resulting circuits contain no
floating nodes.

3.2 Non-dominated Sorting and Crowding Distance

Non-dominated Sorting. All individuals are classified by calculating their level of non-
domination, as shown in Fig. 2, due to their objective values pi. An individual p is said
to dominate q, denoted by p � q, if and only if p is partially less than q (Eq. 1).

∀i ∈ (1, . . . , n), pi ≤ qi ∧ ∃i ∈ (1, . . . , n) : pi < qi (1)

NDF := {p ∈ P | �p′ ∈ P : p′ � p} (2)
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All p satisfying Eq. 1, 2 provide the first non-dom. front NDF1. The succeeding
NDFs are found by removing the individuals of NDFk from the population P ′ = P \
NDFk and by recalculating Eq. 1, 2 for the new population P ′ until NDFk+1 is empty.

Crowding Distance. The crowding distance cdist is a measure for the density of solutions
within the vicinity of a particular individual p within the fitness landscape (Fig. 2). All
objective values are considered for calculating the quantity cdist which represents an
average distance to the nearest neighbors of p and is assigned to each individual of the
population. Therefore cdist is used to steer the evolution towards a uniform distribution
of the individuals over the NDF.

3.3 Evolutionary Step

Three populations are used for evolution: A repository population RP and a new pop-
ulation NP of size N and an intermediate population IP of size 2N . The algorithm
is initialized by randomly generating individuals for IP and measuring their objective
values. Subsequently, the evolutionary loop is started by performing non-dominated
sorting and calculating crowding distances for IP = RP∪NP. The next step is to refill
RP with the best individuals of IP by using tournament selection with the first selection
method (SM1), described in the next subsection, on the obtained NDFs. Hereby, NDFk

is allowed to occupy at most 1

2k of the available space in RP. In case the size of NDFk

is less than or equal to the available space, the whole NDFk is copied to RP. Finally,
a new population NP of size N is created from IP by using tournament selection with
SM2 and applying mutation and crossover.
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Fig. 2. Left: An example set of individuals—which are to be optimized for two objectives—is
depicted. The first three NDFs, obtained by evaluating Eq. 1, 2, are drawn in. It is expected that
the NDFs propagate towards better fitness values throughout evolution. Additionally, the rank
of the NDF is equal to the level of non-domination for each individual of the respective NDF.
Right: In this example, the individuals are not distributed uniformly over the NDF. Therefore,
in order to be able to drive evolution towards such a uniform distribution, a partial order of the
individuals within an NDF is defined by the crowding-distance cdist. The value of cdist for an
example individual p is derived from the distance to the next neighbors of p.
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Table 1. An overview of all test-modes (TM) and their corresponding objectives. The aim is to
minimize the fitness; thus, in the cases where the objective value is to be maximized, the recip-
rocal or absolute value is used as fitness. Pull to rails is chosen as main objective, for the reason
that it judges a fundamental behavior of an amplifier and the fitness-value improves smoothly.

TM objective fitness description

TM1pull to rails min. (Vtar − Vout)
2 (main objective)

TM1DC offset min. sum of DC offsets of the set of curves
TM1dev. of DC offset min. standard deviation of the DC offsets
TM2slew-rate max. (use recip.)sum of slew-rates of all steps
TM2settling-time min. time when Vout settles within ±10% of Vtar

TM2deviation from Vtar min. (Vtar − Vout)
2

TM3magnitude max. (use abs.) damping of the fundamental frequency at unity gain
TM3harmonic distortion min. sum of ampl. of harmonics if above −60dB
TM4phase-shift min. phase-shift of sin between Vout and VI+
TM4sin-curve deviation min. (Vtar − Vout)

2

— resource consumptionmin. sum of used transistors

3.4 Tournament Selection Schemes

Tournament selection with a tournament size of 2 is used as selection scheme. The
selection mechanism (SM) for creating the repository is slightly different from that for
creating the new population. In the first case (SM1), the decision which competitor wins
is simply based on the comparison between the individuals’ level of non-domination
and crowding distance cdist (Cond. 3 is true), whereas in the second case (SM2) it is
additionally based on a randomly selected objective and on the main objective (Tab. 1)
(more than one of the Cond. 3-5 are true).

These two kinds of tournament selection provide on the one hand high diversity
within the repository population by making pure pareto-decisions (SM1) and, on the
other hand, drive evolution to improve single objectives and the main objective (SM2).

p, q ∈ P : p � q ∨ (p = q ∧ cdist(p) > cdist(q)) (3)

Fitness(pmain-objective) < Fitness(qmain-objective) (4)

Fitness(prandom-objective) < Fitness(qrandom-objective) (5)

4 Experimental Setup

The experiments are run at a generation size of 200 for IP and a number of 4000 gener-
ations per evolution run. Individuals are mutated with a probability of 0.6 and crossover
is carried out with a probability of 0.4 and a maximum block-size of 4 × 4 transistor
cells. An area of 9× 9 transistor cells is provided to the evolving circuit. Both, the non-
inverting (I+) and the inverting (I-) input of the circuit are statically connected to the
gate of a transistor of the same flavor, in order to avoid meaningless amplifiers. Two se-
ries of experiments, each of 20 evolution runs, are carried out using PMOS input in the
first case and NMOS input in the second case. Free resources of the transistor array are
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used to attach a randomly (by mutation) variable capacitive load to the circuits output
and to implement two test benches for the circuit under test: One for open loop testing
and another one with full feedback to the inverting input. Thus, a gain of 1 is assumed
for the latter. Since the feedback is realized using only the configuration capabilities
of the transistor array—where no constant resistors, capacities or current sources are
available—it is not feasible to measure properties like gain or common-mode rejection
ratio (CMRR) directly on the chip. Nevertheless it is possible to measure and evaluate
important properties of an amplifier, namely open-loop behavior, slew-rate, settling-
time, DC offset, harmonic distortion and phase-shift, directly on the FPTA.

4.1 Test Modes for the Measurements on the FPTA

Three kinds of test-modes (TMi) have been developed to perform these measurements
delivering a total of 11 objective values listed in Tab. 1.

TM1: Open-Loop Behavior, Offset. The task is to pull Vout to Vtar = 5V if VI+ > VI-

and to Vtar = 0V if VI+ < VI- and to keep the offset voltage Vos low or at least constant.
A set of nine curves at VI+ = 1.5, 1.75, . . . , 3.5V , each consisting of 100 randomly
applied sample voltages for VI- = 0 . . . 5V , is used as test pattern. TM1 delivers fitness
values for three objectives, namely pull to rails, DC offset and deviation of DC offset.

TM2: Slew-Rate, Settling-Time. The challenge for the output is to follow two voltage-
steps from VI+ = 1.5V to 2.5V and from VI+ = 2.5V to 3.5V in tstep = 0.25 μs.
Fitness values for the slew-rate and the settling-time are calculated from the period of
time between the step and the point of time when Vout has settled at the new target
voltage Vtar ≡ VI+. An additional objective is given by the deviation of Vtar from Vout.

TM3 & TM4: Magnitude, Phase-Shift, Harmonic Distortion. A further demand on an
OP is to distort and damp the input signal as less as possible and to keep the phase-
shift constant below 180 ◦ in order to cause the amplifier to remain stable. These
properties are measured in TM3 by applying three different sinusoidal signals with
f = 5, 50 and500 kHz to the input and comparing them to the circuits output Vtar ≡ VI+.
A discrete fourier transform is used to calculate the power spectrum of the output sig-
nal for each frequency. Subsequently, fitness values for magnitude and total harmonic
distortion (THD) are calculated from the power spectrum. Additionally, the output of a
sinusoidal input signal of f = 20 kHz is used in TM4 to obtain values for the phase-shift
and the deviation of VI+ from Vout.

4.2 Simulation Setup

The simulations are carried out with the SPICE3 simulator described in [18]. BSIM3v2
transistor models are used for simulation. SPICE netlists are extracted from the cir-
cuits that have been evolved on the transistor array by using the MO-Turtle GA. The
input voltage patterns correspond to those used for the on-chip measurements. A load-
capacity of 10 pF is attached to the circuits’ output in simulation. Fitness values, cal-
culated from the simulation results, are obtained by using the same fitness functions as
throughout evolution.
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5 Results

All evolution runs ended up in similar regions of fitness, although the overall perfor-
mance of the circuits is slightly better for those with NMOS input than for those with
PMOS input, as can be seen from Tab. 2. For all evolved circuits the simulation results
are worse than those obtained from the chip and about half of them did not work at all
outside the FPTA. Nevertheless, each evolutionary run features a significant amount of
individuals performing at least similar in simulation and on the transistor array. Exam-
ple NDFs for the resulting circuits are depicted in Fig. 3 and 4.

5.1 Performance of the Multi-objective Approach

An example of how the NDF develops throughout evolution is depicted in Fig. 3. For
some objectives (e.g. magnitude, offset) the NDF converges towards better fitness values

Table 2. The no. of runs that contain at least one individual that achieved a better (or not more
then 10% worse) fitness value than the manually made circuits for a given no. of objectives.
In all cases the manually made OPs obtained better fitness values for distortion and resource
consumption than the evolved circuits. The reason for this is the placement and routing of the
evolved solutions which often contain longer wires and therefore produce more noise.

in no. of objectives
1 2 3 4 5 6 7 8 9 10 11

no. of NMOS runs
better than ref. 20 20 18 5 1 0 0 0 0 0 0
max. 10% worse than ref. 20 20 18 5 5 2 1 1 0 0 0

no. of PMOS runs
better than ref. 20 20 18 4 2 1 0 0 0 0 0
max. 10% worse than ref. 20 20 19 6 5 3 1 1 1 0 0
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Fig. 3. An example run (NMOS input) with good performance is chosen and the depicted NDFs
are recalculated by considering only the two objectives shown in the respective plot for illus-
tration. The position of a manually made OP (reference), described in Sect. 5.2, is marked by
a triangle. Left: The NDF for offset over magnitude converges towards better fitness over time.
Right: In contrast to this, the NDF for dev. of offset over magnitude is spread over wide ranges of
fitness.
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Fig. 4. The NDFs of a run (NMOS input) with good performance, obtained from the measuring
on the FPTA and from the simulation, are depicted above. The graphs show a multi-dimensional
projection of the NDF into the plane spanned by the respective objectives. Left: Offset over mag-
nitude. Right: phase-shift over magnitude.

over time, as can be nicely seen from Fig. 3 (left). Other objectives (e.g. magnitude,
offset-deviation) show a different behavior where the front as a whole does not further
converge, but is spread over wide ranges of fitness. An example for the latter is shown
in Fig. 3 (right). Additionally, the position of a manually created design, described in
Sec. 5, within the objective space is marked by a triangle.

Projections of the whole NDF into the plane spanned by the respective objectives—
taking all objectives into account for computation—are graphed in Fig. 4. This illus-
trates nicely the complexity of the NDF troughout the optimization process. After all,
the main benefit of using an MO approach for the evolution of operational amplifiers on
the Heidelberg FPTA is the possibility to efficiently explore the search space taking care
of both, the diversity of the population and the various demands on the target circuit.

5.2 Solutions for the Operational Amplifier

The FPTA is configured with manually created circuits, one with PMOS and one with
NMOS input respectively, in order to be able to assess the quality of the synthesized
circuits compared to human-made solutions. Each of the references consists of a differ-
ential input stage and a simple inverter-output stage. The fitness values are measured
for both reference designs, using exactly the same setup as throughout evolution, and
are compared to those of the evolved circuits. As can be seen from Tab. 2, almost each
run contains at least one individual that outperforms the corresponding reference OP in
up to 3 objectives and about 5 runs feature similar performance in up to 5 objectives.
In all cases the manually made OPs obtained better fitness values for distortion
(noise) and resource consumption than the evolved circuits. The reason for this is the
placement and routing of the evolved solutions which often contain longer wires and
therefore produce more noise.

Opposite to the competition with the reference circuits on the FPTA, the evolved
circuits come off worse if typical characteristics of OPs are compared in simulation. As
can be seen from Tab. 3 especially those properties that cannot be measured directly on
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Table 3. Comparison between characteristics of evolved circuits with a good performance and the
reference circuits (NMOS and PMOS input). The values are obtained from SPICE simulations.

parameter NMOS (evo) NMOS (ref) PMOS (evo) PMOS (ref)

open-loop gain 33 dB 57 dB 29 dB 65 dB
0dB bandwidth 13 MHz 77 MHz 6MHz 33 MHz
offset −80mV 28 mV 230 mV 20 mV
slew-rate (+) 40 V

μs
100 V

μs
15 V

μs
25 V

μs

slew-rate (-) 15 V
μs

30 V
μs

35 V
μs

45 V
μs

settling-time 0.4 μs 0.2 μs 0.3 μs 0.2 μs
phase-margin 91 ◦ 50 ◦ 92 ◦ 50 ◦

common mode rejection 30 dB > 40 dB 20 dB > 40 dB
out voltage swing 2.2 V 4.8 V 2.8 V 4.8 V
input common mode range 2.5 V 4.2 V 3.5 V 4.3 V

Fig. 5. Schematics of the evolved circuits; shorted transistors are grayed. Left: NMOS input tran-
sistors. Right: PMOS input transistors. In both cases the MO-Turtle GA achieved to synthesize
differential input stages and some kind of biasing circuitry. The evolved solutions thus far lack of
an output gain-stage.

the transistor array during evolution—thus, cannot be evaluated by a fitness function
(e.g. open-loop gain)—return rather poor results. Contrary to that, the characteristics
that are represented by an objective perform similar, e.g. offset, slew-rate and settling-
time. Since the output voltage swing and the 0dB bandwidth are correlated to a good
open-loop gain, those values are also not as good as those of the manually made OPs.

In both cases the phase-margin of the evolved solution is higher than those of the
reference OPs. This is interesting insofar, that it is on the one hand a very good re-
sult, since the aim of the corresponding objective is to minimize the phase-shift. On the
other hand, forcing the phase-shift towards zero could possibly thwart the evolution of
output gain-stages. If this is the case, it would be better to allow for a certain phase-
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Fig. 6. The graphs above show characteristics of evolved operational amplifiers obtained from
spice simulation. For illustration, evolved circuits with PMOS (—) and NMOS (- - -) input re-
spectively and featuring good performance are chosen.

margin in the objective function. Hence, this could be the reason why in both examples
depicted in Fig. 5—which represent evolved circuits with good performance—the al-
gorithm was able to synthesize clearly recognizable differential input stages as well as
biasing circuitry, but failed in appending a simple inverter, which would provide sig-
nificantly better performance. Finally, some important characteristics of the evolved
circuits are shown in Fig. 6.

6 Conclusion and Outlook

The main achievement of the presented method is that reusable and substrate-indepen-
dent circuits are evolved successfully and human-understandable schematics of good
solutions can be drawn. Hence, it is possible to analyze the resulting circuits and to
investigate how the algorithm is solving problems on the hardware substrate. As an
example, it has been shown that the presented algorithm is able to synthesize operational
amplifiers on the Heidelberg FPTA. The fact that the evolution of OPs is a difficult task
suggests that the MO-Turtle GA can be applied to a variety of problems.

The resulting circuits are extracted into netlists and simulated outside the substrate
on which they were evolved. About 50% of the outcome is performing equally well
on the chip and in simulation and can therefore be transferred to other technologies.
The presented multi-objective approach allows for considering various objectives dur-
ing evolution. Thus, it is possible to efficiently explore the design space and converge
to regions of fitness comparable to those which are obtained by basic human reference
designs measured on the chip. Unfortunately, the algorithm failed in synthesizing addi-
tional gain-stages. The reason for this is probably the lack of a suitable gain test bench
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due to the fact that even well approved human designs do not achieve significantly bet-
ter fitness. In this case it is more likely that the abilities of the FPTA limit the search for
good solutions than the algorithm itself. This indeed, will only be solved by a second
generation FPTA.

Future work will be done to understand to what extent the architecture of the transis-
tor array influences the performance of the algorithm and what can be done to improve
it. Furthermore, the MO-Turtle GA will be enhanced to allow the creation and deletion
of structures like differential pairs or inverters in one step. Hereby, all transistors of
those structures could be marked for a simultaneous W/L mutation.
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Lukáš Sekanina and Ricardo S. Zebulum

1 Faculty of Information Technology, Brno University of Technology,
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Abstract. Simple one- and two-bit controllable oscillators were intrin-
sically evolved using only four cells of Field Programmable Transistor
Array (FPTA-2). These oscillators can produce different oscillations for
different setting of control signals. Therefore, they could be used, in prin-
ciple, to compose complex networks of oscillators that could exhibit rich
dynamical behavior in order to perform a computation or to model a
desired system.

1 Introduction

The conventional design of analog as well as digital oscillators is difficult since it
requires a lot of experience. Designers must guarantee that their oscillators meet
the specifications in terms of the frequency of oscillations, amplitude, phase,
shape of signal, sufficient power and some other properties. Oscillators are also
usually very sensitive to the environment (temperature, electromagnetic field,
etc.) in which they operate. In the recent years various EA-based approaches
have been proposed to design the oscillators automatically [1,3,8]. Oscillators
were evolved at the opamp, transistor and gate levels. In general, the results
show that evolution of oscillators with required properties is difficult.

Oscillators do play an important role not only in the area of electronic cir-
cuits. Oscillatory networks have been studied as information processors by many
researchers because they can be constructed from realistic nonlinear dynamical
systems and are biologically plausible (furthermore, for example, cellular neural
networks or spiking neural networks have practical applications).

Networks of oscillators can be identified in neural systems or genetic regu-
latory networks. Recently, a synthetic network capable of producing sustained
oscillations in protein concentrations was presented [2]. The “repressilator” con-
sisted of three genes (for simplicity, called a, b, c), expressing three proteins
(respectively, A, B, C). The network formed a ring: Protein A repressed tran-
scription of gene b; B repressed c; and C repressed a. For certain biochemi-
cal parameters, this cyclic repression produced self-sustained roughly sinusoidal
oscillations over the entire growth phase of the host Escherichia coli cells. In
another work, a model for controlling a synthetic gene network of coupled os-
cillators was presented [11]. Unlike the repressilator, the oscillator consisted of
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only two genes (x and y) and was of the relaxation type. Both proteins were
under the control of a promoter that was activated by the protein X , and pro-
tein Y was a protease of X . Oscillations arose because Y degrades X and thus
reduces its own expression level (because X activates transcription of y). Neural
oscillators inspired by olfactory cortex models were investigated in [13]. They
can be utilized as a dynamical context addressable memory [7] or to perform
logic computation in which synchronized oscillations are considered as logic 1
and desynchronized oscillations as logic 0. Logic gates AND, NOR and NXOR
were implemented by means of these networks [13].

Networks of oscillators can be composed of a controllable oscillator as a
building block, i.e. of an oscillator whose output can be controlled using the
input signals enabling or disabling oscillations. These signals are taken from the
outputs of other oscillators in the network. The first step to build networks of
oscillators is creating the controllable oscillators. Therefore, the objective of this
paper is to explore whether controllable oscillators can be evolved intrinsically in
a physical platform reconfigurable at the transistor level. We decided to utilize
the transistor level because we assume that more various and richer dynamic be-
havior can be obtained than at the gate level. In next step of research the evolved
controllable oscillators will be connected in oscillator networks. As we are not
primarily interested in the frequency of oscillations, we propose a simple fitness
function operating in the time domain. In this work the controllable oscillators
are evolved directly in the Field Programmable Transistor Array (FPTA-2). The
oscillators have one or two digital control inputs and produce various oscillations
for different input stimuli.

In practice, the networks of oscillators could perform useful parallel asyn-
chronous computation in the way similar to cellular automata, for example,
in signal processing tasks. Having inspiration in the mentioned genetic regula-
tory networks, the evolved networks of oscillators could implement non-trivial
genotype-phenotype mappings useful for embryonic electronics [5,9]. Further-
more, in addition to traditional models of genetic control networks developed by
Kauffman and others [4], the system could be used to model and study natural
gene regulations (see the evolution of limit cycle dynamics in electronic models
in [10]).

The paper is organized as follows. Section 2 briefly introduces the area of
evolutionary design of oscillators. In Section 3 FPTA chip and SABLES sys-
tem are described. The proposed evolutionary design method is formulated in
Section 4. While Section 5 summarizes the obtained results, Section 6 discusses
them. Conclusions are given in Section 7.

2 Evolutionary Design of Electronic Oscillators

Oscillators are difficult to design manually. Hence the evolutionary approach was
utilized to perform this task. Oscillators are usually evolved in the way similar
to other analog circuits evolution [15]. However, the evolutionary approach does
not work as well as in case of other analog circuits (e.g. filters). That is also
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demonstrated in Koza’s list of human-competitive results that does not contain
any oscillator circuits; on the other hand it contains about 20 analog circuits
[6]. The construction of fitness function is very important especially in case of
evolution of oscillators. The analysis of circuit behavior performed in the fitness
function can be based on various principles: time domain analysis, frequency
domain analysis or transfer function analysis. Corresponding fitness landscapes
are usually extremely rugged; oscillations appear only in a very specific parts of
the search space.

Huelsbergen et al. evolved oscillators (astable multivibrators) from primitive
logic components in Xilinx XC6216 FPGA [3]. They reported results of in Silico
oscillator evolution for ten target frequencies in three cell-array sizes (6x8, 8x8,
and 16x16). Considering all three cell-array sizes, the system discovered rela-
tively accurate oscillators – over 97% of their pulses correct – for five of the ten
frequencies and required only a small number of GA runs. In fitness function,
the output signal was compared against a binary string containing the required
combinations of 0s and 1s; thus the number of missed pulses could be calculated.
It was not at all understood how the evolved circuits function. For example, rela-
tive to the speed of the FPGA’s gates (nanosecond transition times), the evolved
oscillators are of rather low frequency.

Aggarwal has used genetic algorithm to evolve opamp-based sinusoidal os-
cillators [1]. His algorithm looks for a suitable passive network (consisting of a
given number of resistors and capacitors) connected to a single opamp. In fitness
function a symbolic analysis was used to find out the transfer function which
contains specific expressions indicating oscillations. It was found that the GA
rediscovered all the twelve canonic single opamp-based topologies. Some new
interesting opamp-based topologies of oscillators were also discovered.

Field programmable analog array MPAA020 of Motorola was utilized to
evolve opamp-based oscillators [14]. The fitness function tried to maximize the
voltage difference between samples of the outputs at specified time points. The
evolved circuit generated a close-to-perfect square wave of 3 Volts amplitude and
frequency of 200 kHz.

Layzell and Thompson evolved oscillators in Evolvable Motherboard at the
transistor level [8]. The circuit population was rich on oscillator circuits and GA
was used to optimize the frequency – measured directly in the fitness calculation
process.

Except Aggarwal’s results (who has worked at symbolic level), the aim of the
mentioned approaches was to demonstrate that oscillators can be evolved in the
given target platform. The evolved oscillators were not used in any application.
No other types of evolved oscillators, such as controllable oscillators or voltage-
controlled oscillators have been reported in literature.

3 Evolvable Platform: FPTA-2 and SABLES

A complete stand-alone board-level evolvable system (SABLES) is built by inte-
grating the FPTA and a DSP implementing the Evolutionary design algorithm
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[12]. The system is connected to the PC only for the purpose of receiving specifi-
cations and communicating back the result of evolution for analysis. The system
fits in a box 8“ x 8“ x 3“. Communication between DSP and FPTA is very fast
with a 32-bit bus operating at 7.5MHz. The evaluation time depends on the tests
performed on the circuit. Many of the tests attempted here require less than two
milliseconds per individual, and runs of populations of 100 individuals from 100
to 200 generations require only 20 seconds.

Fig. 1. FPTA-2 architecture (left) and schematic of cell transistor array (right). The

cell contains additional capacitors and programmable resistors (not shown).

The FPTA is an evolution-oriented reconfigurable architecture (EORA). It
has a configurable granularity at the transistor level. It can map analog, digi-
tal and mixed signal circuits. The architecture of the FPTA consists of an 8x8
array of re-configurable cells. Each cell has a transistor array as well as a set
of programmable resources, including programmable resistors and static capac-
itors. Figure 1 provides a broad view of the chip architecture together with a
detailed view of the reconfigurable transistor array cell. The reconfigurable cir-
cuitry consists of 14 transistors connected through 44 switches. A total of 5000
bits is used to program the whole chip. The pattern of interconnection between
cells is similar to the one used in commercial FPGAs: each cell interconnects
with its north, south, east and west neighbors. The reader can refer to [12] for
more information on the FPTA-2.

4 Design Method

The controllable oscillators will be designed using a standard genetic algorithm
operating directly with configurations of FPTA-2 as chromosomes. Only a few
cells of the FPTA will be utilized for the experiments. Figure 2 shows the cells
and the connection of input and output signals. No external components (such as
RC circuits) were considered for these experiments. The frequency of oscillations
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depends only on the configuration and internal characteristics (such as delay of
transistors) of FPTA-2.

The genetic algorithm running in a DSP uses the roulette-wheel selection,
crossover and mutation. Candidate solutions are evaluated directly in FPTA-2.
In this process, all possible combinations of logic values over the input control
signals (a and b) are applied at the circuit inputs and oscillations are detected
at the output y. The genetic algorithm must promote the chromosomes that
cause oscillations if they are required and keep the output invariable otherwise.
In particular 240 values are sampled, digitized and utilized during the evaluation
of a candidate circuit. Because of simplicity we decided to evaluate candidate
circuits in the time domain. Oscillators controlled using a single input signal
a[i] are designed using the fitness function whose basic structure is given in the
following pseudo-code:

Algorithm 1:
i = 0; fitness = 0;
while (i < samples)
{

// oscillations
ones = 0; zeroes = 0; penalty = 0;
while (i < samples and a[i] is High)
{

if (y[i] < LL) zeroes = zeroes + 1;
else if (y[i] > HL) ones = ones + 1;
else penalty = penalty + 1;

}
fitness = fitness + k1 * abs(ones – zeroes) + kp * penalty;

// no oscillations
ones = 0; zeroes = 0; penalty = 0;
while (i < samples and a[i] is Low)
{

if (y[i] < LL) zeroes = zeroes + 1;
else if (y[i] > HL) ones = ones + 1;
else penalty = penalty + 1;

}
fitness = fitness + k2 * (zeroes + ones – abs(zeroes + ones)) + kp * penalty;

}

If a[i] is at log. 1 (High), the circuit should oscillate; otherwise, the circuit
should not. Here, i = 1 . . . 240 samples are evaluated at the circuit output y[i].
The zeroes counter indicates the number of output values that are considered as
lower than a given threshold value LL (LL = 0.45MV where MV determines
the maximum output voltage 1.8V). The ones counter indicates the number of
output values that are considered as higher than a threshold value HL (HL =
0.55MV ). Note that, here, the fitness should be minimized. The situation in
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which the circuit should oscillate (i.e. the number of zeroes and ones is similar
but non-zero) is evaluated in the first nested while loop. The second nested loop
deals with the situation in which the output should not oscillate. Penalty counter
is used to avoid staying in the middle of MV range. The values of constants k1, k2

and kp are determined experimentally, and kp � k1 = k2. A very similar fitness
function has been utilized to design oscillators controlled using two bits.

5 Experimental Results

If a single cell of FPTA is configured as an inverter and its output is connected
to its input then oscillations are always observable. We utilized this property in
our approach. Figure 2 shows the experimental setup used to evolve controllable
oscillators using four and five FPTA-2 cells. The solid lines in Fig. 2 denote
external physical connections (wires) used to connect the cells. These connec-
tions were utilized to promote a specific design pattern which is typical for the
conventional oscillators composed of three inverters. In addition to these con-
nections, the evolution could interconnect the cells using the internal switches of
the FPTA-2. Behavior of a cell is defined using 77 configuration bits. However,
three words (48 bits) are not evolved for the cells that belong to the cells that are
connected in a ring; indeed, they are taken from the configuration bitstream of a
conventional inverter and used during all experiments. This strategy is applied
in order to obtain some oscillations in a shorter time. We know that conventional
oscillators can be designed in this way. In fact we were not able to evolve any
oscillators without this setup. Parameters of GA are as follows: the population
size = 100, the crossover probability = 70%, and the mutation probability =
10%. Depending on experiment 300-1000 generations were produced.

5.1 One-Bit Controllable Oscillators

Various one-bit controllable oscillators were evolved using the setup from Fig 2A.
Figure 3 shows typical oscillations we obtained (the frequency of oscillations
is 90.9kHz). Similar other oscillators we evolved that operate at the following
frequencies: 41.6kHz, 22.7kHz, 83.3kHz, and 38.5 kHz. The shape of the output
signal is usually very close to the sine wave; however, with some distortions. We
also attempted to change the frequency of oscillations by means of increasing
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Fig. 2. Cells used and their connection. a and b are control signals; y is the output

signal.
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a
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Fig. 3. Evolved 1-bit controllable oscillator (f = 90.9kHz)

a

y

Fig. 4. Evolved 1-bit controllable oscillator (f = 83.3 kHz for both waves)

voltage at the control input. However, we were not able to evolve such a kind
of controllable oscillators. In another setup, a circuit producing two types of
oscillations was evolved (Figure 4). In order to obtain this result, we required in
the fitness functions that ones = 2 ∗ zeroes when the control signal is at logic 0.

5.2 Two-Bit Controllable Oscillators

The two-bit controllable oscillators utilize two input signals, a and b, to control
the oscillations. As shown in Fig. 2B, they consist of five cells. The oscillations,
controlled through cells 0 and 1, should emerge in cells 2, 3 and 4. The proposed
fitness function has been modified in order to consider all four combinations
over the inputs a and b. For instance, we required to have oscillations only
when a = b = 1. Figure 5 shows a typical behavior we obtained. Let us define
the following logic interpretation of that behavior. Let oscillations mean logic 1
and let no oscillations mean logic 0. Then the evolved circuit whose behavior
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Fig. 5. Evolved 2-bit controllable oscillator operating as AND (f = 50 kHz)
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Fig. 6. Evolved 2-bit controllable oscillator generating four different behaviors

is depicted in Fig. 5 can be understood as logic function AND. Considering
this interpretation we were able to evolved various other logic functions, and
surprisingly, we also evolved exclusive-or (XOR) function.

In another experiment we evolved a circuit that exhibits four different be-
haviors for four different combinations of the control inputs. It generates a signal
of frequency 27.7kHz for a = 1 and b = 1, 50kHz for a = 1 and b = 0, 35.7kHz
for a = 0 and b = 1 and no oscillations for a = 0 and b = 0 (see Fig. 6).

6 Discussion

The presented work has addressed the question whether the evolutionary ap-
proach is able to discover controllable oscillators at the transistor level. The
answer is positive, i.e. the transistors available for the evolutionary design can
be composed together by means of an automated evolutionary process in or-
der to establish one- and two-bit controllable oscillators. The search was not
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performed completely from scratch. We promoted some “ring”-based structures
and partially preconfigured the cells in the ring. No oscillations have appeared
in case of a complete evolution from scratch. On the other hand no information
showing a way how to stop/enable oscillations was provided for the evolution.
Therefore, the evolutionary approach really discovered how to create controllable
oscillators. It is interesting that we were able to repeat almost all experiments
reported in Section 5.2 also using only four cells of FPTA-2. The setup is shown
in Fig. 2C.

The success of evolution also depends on values of coefficient k1, k2 and kp.
If the penalty for oscillations is too high, no oscillating candidate circuits are
visible. If the penalty for no oscillations is too high, the population contains
many oscillators; however, it is impossible to control the oscillations via the
input control signals. Looking for suitable values of these coefficients is a very
time consuming experimental work requiring tens of runs of the GA. Once the
values of coefficients are fixed, a 1-bit controllable oscillator is usually found in
approximately 30% of runs and 2-bit controllable oscillator in 10% of runs.

The main disadvantage of the proposed fitness function is that it is difficult
to specify the frequency of oscillations and shape of the wave. The time domain
analysis allowed us to specify only the required number of values higher or lower
than a given threshold value. More sophisticated search for a given frequency of
oscillations (e.g. a multiobjective method) would probably require the analysis
in the frequency domain which, however, requires more computational effort.
On the other hand the oscillators in network have not to work at a predefined
frequency. They can operate at different frequencies that are suitable for a given
platform.

7 Conclusions

Simple one- and two-bit controllable oscillators were intrinsically evolved using
only four cells at the transistor level directly in FPTA-2. We can control the
oscillations using logic signals which in principle allows us to build networks of
oscillators. The question for future research is whether the output oscillations
are able to control other oscillators in order to connect them into a complex
network.
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Abstract. In this paper the role of non-linear control structures for the
development of multifunctional robot behavior in a self-organized way
is discussed. This discussion is based on experiments where combina-
tions of two behavioral tasks are incrementally evolved. The evolution-
ary experiments develop recurrent neural networks of general type in a
systematically way. The resulting networks are investigated according to
the underlying structure-function relations. These investigations point to
necessary properties providing multifunctionality, scalability, and open-
ended evolutionary strategies in Evolutionary Robotics.

1 Introduction

Evolutionary robotics (ER) as the study and development of behavioral con-
trol for autonomous robots through self-organizing processes based on artificial
evolution is a widely accepted approach [10,14]. With respect to natural evo-
lution and simplest forms of natural life there are many researches criticizing
the dissatisfying outcomes of current work in ER [4,5]. In [5] it is claimed that
open-ended evolutionary processes are necessary to overcome crucial limitations
of current ER models and to generate more complex and interesting results.

However ER models providing open-ended evolutionary processes are imple-
mented, the agents must be incrementally evolved. With respect to behavioral
control this means control structures must facilitate incremental evolution. Such
an approach should also cope with the scalability problem of ER models in
general [1,3,4].

The crux of incremental control structure evolution is the integration of new
behavioral functionality without loosing existing capabilities. In this paper we
propose an approach to make this problem more tractable. We present incremen-
tally evolved control structures which are systematically investigate to study the
underlying dynamical properties and control principles providing (1) coordina-
tion of different behavioral tasks, and (2) the development of multifunctionality.
In [2] it is claimed that a serious and systematical analysis of concrete examples
of evolved agents are the prerequisite for dynamical explanation and ”abstract-
ing” general principles” of situated autonomous agents. Therefore we present
robotic tasks which at first might seem rather simple, but this simplicity allows
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minimal systems which are exactly what we need to give a detailed descrip-
tion of the effects of the purposed incremental evolutionary approach on the
dynamical properties of already existing control structures with innate basic
functionalities. Based on these results we discuss the role of non-linearity for (1)
open-ended evolutionary processes and (2) the development of multifunctionality
in a self-organized way.

2 Setup

We present experiments which systematically apply two methods of incremental
evolution of recurrent neural networks (RNN), also referred to as neuro-modules:
(1) expansion method and (2) fusion method [6]. Each method is realized by a
restrictive and semi-restrictive technique. Restrictive means that neither already
existing structural elements (hidden neurons and synapses) nor parameters (bias
and weight terms) of the initial basic building modules can be changed. hereas,
semi-restrictive means that parameters can be changed, while the structure re-
main fixed [6], too.

Expansion and fusion methods are realized with an evolutionary algorithm,
the ENS3-algorithm (described in [6,13]). Using a standard additive neuron
model with sigmoidal transfer function σ(x) and time discrete dynamics the
ENS3-algorithm evolves neural structures and optimizes the corresponding pa-
rameters at the same time. Besides from a task specific input-output struc-
ture, the neuron type, and the constraint that input neurons have only outgo-
ing weights, nothing else is determined. Therefore, any kind of recurrent neural
connections, like self-connections and loops can emerge during the evolutionary
process.

As an incrementally evolved robot task, we chose a reactive light seeking
behavior. Light seeking includes the coordination of a positive and negative
tropism - phototaxis and obstacle avoidance. In the following light seeking be-
havior means that a robot has to follow a light source and has to stop in front
of it while it is avoiding collision with any objects in its environment. For these
studies the Khepera robot [9] and a 2-dimensional simulation software [8] is used.
Note, that all evolution experiments and analysis are done in simulation but all
resulting controllers were tested on the physical hardware as well to approve that
the observed behavior in real world is qualitatively the same as in simulation.

3 Experiments

The Khepera robot is driven by two DC-motors (control signals ml, mr), which
are able to move the left and right wheel forward (positive signals) and backward
(negative signals). The sensor data of the Khepera are delivered by its eight infra-
red sensors. They can be executed in two modes, measuring light intensity (sensor
values l0, l1, . . . l7) and distances to obstacles (sensor values d0, d1, . . . , d7). The
sensor values ln and dn are mapped into the closed interval [0.0; 1.0]. For the
light sensors, values ln = 0.0 refers to darkness and ln = 1.0 to the maximal
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measurable light intensity. The proximity values dn are zero if no obstacle is
detected and value 1.0 represents a collision. In all presented experiments the
sensor values dn and ln are summarized as follows:

i1 :=
1
3
(d0 + d1 + d2), i2 :=

1
3
(d2 + d3 + d4),

i3 :=
1
2
(l0 + l1), i4 :=

1
2
(l2 + l3), i5 :=

1
2
(l4 + l5), i6 :=

1
2
(l6 + l7).

Where i1 and i2 represents the distance to obstacles at the robot’s left and right
side. The values i3 and i5 indicates the light intensity at the left and the right, i4
the intensity at the front, and i6 at the rear. According to this setup the input-
output structure of the neuro-modules that were evolved for the light seeking task
is represented by six input neurons (I1, I2, . . . I6) and two output neurons (O1

and O2). The values i1, . . . , i6 are the inputs of the corresponding input neurons
I1, . . . , I6 of the neuro-module. Since input neurons are only used as buffers the
values in can also be seen as the outputs of the corresponding input neurons In.
As transfer function we applied σ(x) := 1

1+e−x , the standard sigmoid. According
to the problem of handicapped navigation possibilities with only positive control
signals a special post-processing is implemented. We functionally decompose the
two output neurons. The left output neuron O1 controls the speed and O2 the
turning angle of the robot’s movement. This is formalized as follows:

ml := �(5.0 · (o1 − (2 · o2 − 1.0))) + 0.5�,

mr := �(5.0 · (o1 + (2 · o2 − 1.0))) + 0.5�.
In such a way we get positive and negative integer values, used as motor control
signals for the Khepera robot, simulated as well as real.

3.1 Basic Building Modules

For the following experiments we used two basic building modules. The neural
structure of module GO, solving an obstacle avoidance task, and its resulting
behavior in a simulated environment is show in Fig. 1 (a). This module has an
even 2-ring between O1 and O2. Its weight configuration is critical and therefore
hysteresis effects can be expected. A robot controlled by this module generates
a straight forward movement, if no obstacle is detected. The robot is able to
escape from dead-ends and sharp corners.

Fig. 1 (b) shows the second basic building module GL, performing a positive
phototropism. Module GL is basically feedforward organized. Hence, this module
can only provide fixpoint attractors. The resulting robot behavior shows a strong
drive to the right, if no light is detected. The drive to the right is forced by the
bias term 0.2 of O2. The bias term causes an output value larger than 0.5 that
generates a turning angle unequal zero. If the robot detects light it moves straight
to it and stops in front of it.
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Fig. 1. (a) Neuro-module GO solving an obstacle avoidance task, (b) neuro-module GL
performing a positive phototropism, and the resulting robot behavior in simulation

3.2 Expansion of a Basic Module

Two neuro-modules resulting from the expansion experiments are shown in
Fig. 2. Neuro-module GO⇒L is one outcome of the restrictive and GO→L one
of the semi-restrictive expansion experiments.

Aside from the undercritical self-connection of O2 the new structural elements
of GO⇒L are only feedforward organized (Fig 2(a)). These new connections are
coming from the input neurons delivering light sensor data. With respect to the
feedforward organization of the new connections one can not expect additional
non-trivial dynamical effects. Robots controlled by this module show a drive to
the right, if no obstacle and light is detected. If a light source is detected, the
robot orients to it and comes to a halt in front of it. It has not lost its capability
to escape from dead-ends (Fig 2(a)).

Considering the semi-restricted evolved neuro-module GO→L one can find
only three new connections (Fig 2(b)). Like in module GO⇒L all the new con-
nections come from the input neurons delivering the light sensor data and are
feedforward organized. However, the weights of the initial structure have strik-
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Fig. 2. Neuro-module GO⇒L resulting from (a) the restrictive module expansion, (b)

neuro-module GO→L resulting from the semi-restrictive module expansion, and the

resulting light seeking behavior. The grey color indicates the unchanged elements.
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ingly changed. The self-connection of O1 has become critical and it is now able
to generate a hysteresis effect. Furthermore the 2-ring between O1 and O2 has
become odd. This 2-ring can generate periodic and chaotic attractors [11]. If the
robot detects no obstacle and no light, its resulting behavior is characterized
by irregular and slight drives to the left as well as to the right (Fig. 2(b)). The
semi-restrictive evolved module GO→L can also escape from dead-ends as well as
it comes to a halt in front of a light source.

3.3 Fusion of the Two Basic Modules

The initial structures of the following fusion experiments include the two mod-
ules GO and GL. The output neurons of both modules become hidden neurons
(H1,...4) of the initial structure. During the evolutionary process the insertion of
new connections coming from the input neurons was not allowed. This guaran-
tees that no structural elements emerge, which could exclude the basic modules.
Figure 3 shows two examples of resulting neuro-modules, restrictive (GO⇔L) and
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Fig. 3. (a) Neuro-module GO⇔L resulting from the restrictive module fusion and (b)

neuro-module GO↔L resulting from the semi-restrictive module fusion and their result-

ing light seeking behavior. The grey color indicates the unchanged elements.

semi-restrictive (GO↔L) evolved by our fusion method. Considering the structure
of module GO⇔L (Fig. 3 (a)) the evolved coupling between the two basic modules
GO and GL does not include any new hidden neurons but a lot of new synaptic
connections. These connections show many recurrences, like self-connections and
rings. Nevertheless, only one 2-ring (H3 and O1) has a critical weight parameter
configuration, that provides non-trivial dynamical properties. The 2-ring be-
tween H3 and O1 is odd and can generate periodic as well as chaotic attractors.
With respect to the resulting robot behavior (see Fig. 3 (a)) one can observe
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a strong drive to the left, if no obstacle and light is detected. In the case of
obstacle detection the module produces large turning angles to avoid a collision.
Again, module GO⇔L successfully produces a light seeking behavior including
the escapes from dead-ends as well as a halt in front of a light source.

The semi-restrictive evolved coupling of module GO↔L (Fig. 3 (b)) consists
of only a few new connections. There are even no new recurrences. New dy-
namical properties originally generated by these new connections can not be
expected. They can at most provide non-trivial dynamical features which are
generated by the structures of the basic modules GO and GL. And again, these
basic modules have strikingly changed. The self-connection of hidden neuron H4

has become critical. Hence, H4 can generate period-2 oscillations. Similar to the
semi-restrictive extended module GO→L the former even 2-ring of basic module
GO has become an odd 2-ring. Therefore, this 2-ring between H1 and H2 can
also generate periodic as well as chaotic oscillations. A robot controlled by mod-
ule GO↔L moves straight forward if no obstacle and light is detected. It also
produces a halt in front of a light source. But the turning angles generated by
this module during obstacle avoidance are very large. Note, that the generation
of these large turning angles reduces the exploration capabilities, insofar as we
understand and define well exploration by the robot’s visited area.

3.4 Free and Starting from Scratch

The following two light seeking modules (Fig. 4) are evolved in such a way that
either the underlying initial structures can be removed or no initial structure
was given.

Neuro-module GO−L (Fig. 4 (a)) is an example of a free expansion. That
means, although the evolutionary process was initialized with the basic mod-
ule GO, the elements of this initial structure were not locked during evolution.
Hence, all elements of the initial structure could be modified by the variation
operator during the evolutionary process, including the deletion of initialized
connections. As it can be seen in Fig. 4(a) the resulting structure is purely
feedforward organized. All recurrences of the initial structure GO were removed
during the evolutionary process. According to this feedforward structure the re-
sulting robot behavior is determined only by fixpoint attractors. Nevertheless,
also this simply feedforward structure enables the robot to escape from dead-
ends, to stop in front of a light source and to robustly move straight forward, if
no obstacle and light is detected.

The last light seeking module GOL (Fig. 4 (b)) is evolved without any pre-
defined control, because the evolutionary process was initialized with the empty
initial structure. With respect to the number of synapses and hidden neurons this
is the smallest control structure and also purely feedforward organized. Although
its resulting behavior shows a strong drive to the left it successfully solves the
light seeking task.
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Fig. 4. (a) Neuro-module GO−L resulting from the free module expansion and (b)

neuro-module GOL resulting from evolution starting with an empty initial structure

4 Discussion of the Structure-Function Relations

Clarifying the relationship between evolved structure, its inherent dynamics, and
the resulting robot behavior we identify five different behavioral patterns: (1)
moving forward, (2) avoiding obstacles, (3) orientation to the light, (4) halt in
front of an light source, and (5) solving the conflict between obstacle avoidance
and approaching the light. In the following we will only focus on two behavioral
patterns: orientation to the light and halt in front of a light source.

These patterns correspond to specific sensor value configurations. The halt in
front of a light source is basically characterized by a high activation of all front
light sensor values, while distance sensors and the light sensor at the rear have low
activations (i3,4,5 ↑ i1,2,6 ↓). The orientation to a light source can be character-
ized as the transition from behavioral pattern moving forward (i1,2,...6 ↓) to the
halt in front of a light. We symbolize this transition as follows: i4 ↑ i3,5 � i1,2,6 ↓.

To identify relevant attractors for specific parameter configurations the four
neuro-modules were simulated as dynamical systems, de-coupled from con-
straints of the body and environmental interactions. Based on this simulations
we have an indication which attractor generates the observed behavior patterns.
The results are summarized in Table 1.

Due to its feedforward organization, the behavior relevant dynamics of neuro-
modules GOL and GO−L are purely based on fixpoint attractors. With respect
to these attractors the two modules can be seen as a simple superposition of the
two basic modules GO and GL.

Contrary, all modules resulting from the expansion and fusion experiments
show an increase of complexity according to the behavior relevant dynamical
properties. This becomes most obvious, if the dynamical properties providing
the orientation to the light are investigated. The bifurcation diagrams in Fig. 5
indicate that the dynamical features generating an orientation to the light are
beyond simple fixpoint dynamics.
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Table 1. Attractors of the neuro-modules under specific parameter configurations

modules moving forward obstacle avoidance halt in front orienting
of a light source to the light

in ↓ i1,2 ↑ i3,...6 ↓ i3,4,5 ↑ i4 ↑ i3,5 �
i1,2,6 ↓ i1,2,6 ↓

GO fixpoint fixpoint - -

GL fixpoint - fixpoint fixpoint

GO⇒L fixpoint fixpoint fixpoint hysteresis

GO→L chaotic fixpoint fixpoint chaotic

GO⇔L chaotic chaotic fixpoint chaotic

GO↔L perio-2 hysteresis and period-2 fixpoint period-2

GO−L fixpoint fixpoint fixpoint fixpoint

GOL fixpoint fixpoint fixpoint fixpoint

GO⇒L GO→L GO⇔L GO↔L

Fig. 5. Behavior relevant attractors causing a halt in front of a light source indicated

by bifurcation diagrams of the four light seeking modules. Upper: output value o1

over the input value i4, other input values in = 0. Lower: output value o2 over input

value i4, other input values in = 0.

For instance while a robot, controlled by neuro-module GO→L or GO⇔L, is
approaching a light source the speed control is realized by chaotic attractors.
The turning angle in module GO→L is also modulated by a chaotic attractor
(Fig. 5).

Considering module GO↔L we observe that orientation to a light source is
provided by a period-2 attractor (Fig. 5). The period-2 oscillation creates a
permanent alteration of o2 between 0 and 1. Over time this generates an effective
motor signal of 0.5, which is the mean of this stream of output values. The value
0.5 represents a turning value of zero and the robot moves straight due to o1≈1.0.



116 M. Hülse, S. Wischmann, and F. Pasemann

0

0.4

0.8

440 460 480

neuron
output

time steps

neuron
output

0.8

0.4

0

460440
time steps

480

Fig. 6. The neuron outputs o2 (left) and i4 (right) over time of neuro-module GO↔L.

The data are recorded while the robot is approaching a light source. The orientation

to the light is realized by a modulation of the amplitude of a period-2 oscillation.

If the amplitude is changing, the mean of this output stream is changing, too
(between time step 440 and 460 in the left diagram of Fig. 6). Therefore, the
effective motor signals become unequal zero, which creates a turn towards the
light, indicated by the increased activity of i4 (right diagram Fig. 6).

Regarding neuro-module GO⇒L there is a hysteresis effect active while the
robot is approaching the light. This hysteresis effect creates a discrete switch
between the turning angles represented by the values 0.39 and 0.96 of o2 (Fig. 5).
Such a hard switch produces the zigzag close to a light source (compare to path
plot of Fig. 2 (a)).

5 Conclusion

In this paper we presented incrementally evolved neuro-modules solving a light
seeking task for a Khepera robot. We have systematically applied two methods:
expansion and fusion. These two methods based on a structure evolution of var-
ious recurrent neural networks. The expansion method extends the structure of
RNNs, while fusion couples two RNNs to combine different behavioral function-
alities. The scope of these experiment was (1) the study of the coordination of
different behaviors within one neural control structure and (2) the control prin-
ciples which allow the integration of new behavioral capabilities without losing
the old functionality.

The extended and coupled neuro-modules show an increase of complexity
with respect to the behavior relevant dynamical properties. Additionally, we
have shown that if relevant dynamics of a behavioral function are modified, the
control principles of this robot behavior also fundamentally change. For instance,
neuro-module GO↔L utilizes a ”frequency and amplitude” coding to generate the
required motor signals. Such a coding was not grounded in the basic modules,
neither in GO nor in GL. As simple as the presented evolution experiments are
they provide a minimal setup which allowed us a detailed study of the effects of
the presented incremental evolution on the dynamical properties of the resulting
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control structures which leads us to the conclusion that in ER the role of non-
linear control principles can hardly be overemphasized.

Indeed, the two examples GO−L and GOL demonstrate how the development
of multifunctionality can be organized by a simple superposition of behavior
relevant dynamical properties. Hence, multifunctionality can also be generated
without new non-trivial dynamical features and non-linear couplings. But, these
two examples also show: The development of a simple superposition either goes
hand in hand with a remove of initial elements and functionality or has to start
with an empty initial structure. These observations suggest that multifunction-
ality organized by linear control structures must start from scratch each time a
new function has to be integrated. This will become unwieldy for open-ended
evolutionary processes at a certain level of desired behavioral complexity. If those
effects can already be observed in a simple combination of a positive and nega-
tive tropism, a stick to linear control structures in ER models must be carefully
evaluated.

Relating our results to some state of the art research, we stress three major
points: (1) Multifunctionality and task related switchings are natural properties
of non-linear coupled systems [7]. (2) The development of multifunctionality is
a indispensable prerequisite for open-ended artificial evolutionary processes [5].
(3) Open-ended artificial evolution must develop multifunctionality incremen-
tally to cope the scalability problem [1,3]. Considering these aspects and our
results, we claim, that control structures must be based on non-linear principles,
if they should provide open-ended artificial evolutionary processes in Evolution-
ary Robotics.
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Abstract. Computation of a collision-free path for a movable object
among obstacles is an important problem in the fields of robotics. The
simplest version of motion planning consists of generating a collision-free
path for a movable object among known and static obstacles. In this pa-
per, we introduce a two stage evolutionary algorithm. The first stage is
designed to compute a collision-free path in a known environment. The
second stage is designed to make on-the-fly updates of the robot current
path according to the dynamic environmental modifications. Evolution-
ary techniques have proven to be useful to both quickly compute a new
path and to take advantage of the initial path from the first stage. The
tests have been made using simulations and a Lego Mindstorms Robot.

1 Introduction

An important problem in the fields of robotics is to compute a collision-free path
for a movable robot among obstacles from an initial position to a goal position
through a known environment [1], [5], [7]. Many approaches have been proposed
to tackle various versions of the same problem with different characteristics.
From the control point of view, the goal is to have stability and controllability
of the movable object using techniques coming from both linear and non-linear
system theories [1]. Other kinds of techniques are complete searches like the
automata theory which uses geometric characteristics of the environment [1], [3].
A number of recent publications have proposed methods based on heuristics,
which have been successfully applied to solve complex combinatorial instances
of the motion planning problem, [2], [4], [5], [6], [7], [8]. The most well known
approaches use the map knowledge dividing it into a set of free zones and zones
with obstacles. They are thus able to compute a static path usually named offline
planning. However, the real-world problem is intrinsically dynamic, i.e., the robot
is dropped in an environment which can continuously changes, [9], [10]. Some
researchers have applied encouraging genetic algorithms for path planning in
dynamic environments [5], [6], [8]. Usually, the path is constructed with a
set of lines and the algorithms work on unions without taking into account
some aspects as the controllability of the robot when it is walking on the lines.
� Supported by the Fondecyt Project 1040364.
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Furthermore, the dynamic planner works using a complete knowledge of the
obstacle that the mobil robot will find.

However, in real applications the degree of this knowledge strongly depends
on the capacity of the perception of the robot. In this paper, we propose a two
stage evolutionary algorithm which uses a grid with variable resolution (from
fine grain to coarse grain). The first stage is designed to compute a near-optimal
collision-free path in a known environment. The second stage is designed to
make on-the-fly updates of the robot current path according to the dynamic
environmental modifications. The idea of this stage is to find a new path, as
fast as possible, avoiding collisions. In the best case, the solution given by the
second stage can also be a near-optimal one. The two stages are not completely
independent. The second stage is called when the environment in the current
robot path changes. The local planner uses the remaining part of the current
path as a member of its starting population (coming from the first stage or
from the previous local planner execution). Because we are working with Lego
Mindstorms Robots we have both processing and available memory limitations.
Moreover, these robots have also limitations in their sensorial system. Thus, in
our approach, the local planner does not require a complete knowledge of the
dynamic map modifications. Therefore, our aim here is to propose an efficient
algorithm which requires a reasonable processing time and which also does not
require neither a complex sensorial system nor a large amount of memory.

The article is organized as follows: in the next section we introduce the Evo-
lutionary planner, in section 3 we present in detail the structure of the Global
Planner. Section 4 introduces the Local Planner. In Section 5 we present the
Tests. Finally, in section 6 we present the conclusions and future work.

2 The Evolutionary Planner

In our approach we consider the environment divided into cells (grid). The cell
size is equal to the robot size. Thus, we only allow robot moves to one of the
four cardinal points. We define a map by a grid and the obstacles. The map
represents the priori information available for the robot containing the principal
characteristics of the environment where it will walk. The goal of the evolution-
ary planner in the first stage is to find the shortest path from the initial map,
beginning from (0,0) cell to the (n,m) cell. We called this stage global planner.
In the second stage, the algorithm adapts the initial path to new conditions of
the environment. We called this stage local planner. Thus, the solution is the
sequence of visited cells representing the shortest path from the starting cell to
the ending cell. In Figure 1, we present the general skeleton of the algorithm.

Both planners use the same map description based on cells, the same genetic
representation and the same handling constraint strategies.

2.1 Genetic Representation

Our algorithm uses a string of cells with variable length as representation. Each
cell is identified by its coordinates x and y on the nxm grid, and by a boolean
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Evolutionary Planner( )
Begin
init cell=(x init,y init);

goal cell=(x goal,y goal); i=0;

path.cell[i++]=init cell;

path=Global planner(init cell, goal cell, map);

while (!goal reached)

if ( perturbation(path.cell[i]) )

then
map update( perturbation(path.cell[i]) );

path=Local planner(i,map);

i=0

else
execute movement(i);

endif
endwhile
End

Fig. 1. Evolutionary Planner Algorithm

value obj which indicates if the cell belongs to a free or a collision zone. The
environment map is the whole set of cells.

[x0, y0, obj0] → [x1, y1, obj1] → [x2, y2, obj2] → . . . [xp−1, yp−1, objp−1]

2.2 Constraints

The motion planning problem has many constraints. In our algorithm these
constraints are divided in two sets. One set contains the constraints which we
imposed to be satisfied by all the chromosomes in all the generations. They are:

– 0 ≤ xi < n, ∀i : 0..k
– 0 ≤ yi < m, ∀i : 0..k
– (xi+1, yi+1) ∈ {(xi + 1, yi), (xi, yi + 1), (xi − 1, yi), (xi, yi − 1)}

It means that any sequence of cells must be inside the map, and we also impose
the path continuity. Each population satisfies this constraint set, as well as the
initial population. The second set of constraints is:

– obji �= 1, ∀i
– (xi, yi) �= (xj , yj) si i �= j

The first constraint represents the collision-free condition. The second one in-
dicates that the robot must move to another cell in the next step. This set of
constraints is managed by the evaluation function with a penalty factor.

3 Evolutionary Planner: Global Stage

The goal of this stage is to find the shortest path on the map from the initial
cell to a goal cell considering known and static obstacles. The generation of the
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Initial Population(path)
Begin
Set data(init cell,goal cell,map dimension);

while(last cell path != goal cell)

if(not in a corner)

then
prob=random probability();

if(prob<=Prob back && backward<Max backward)

then
N=random number();

add backward(N,random backward successor);

backward++;

else
add to path(random backward successor);

endif
sino
add to path(random forward successor);

endif
endwhile
eliminate redundance(path);

End

Fig. 2. Initial Population algorithm

initial population is shown in Figure 2. This population is randomly generated
but it satisfies the first set of constraints detailed in the above section.The move
to go ahead or to come back are inserted randomly on the path.

3.1 Evaluation Function

As we mentioned before the evaluation function searches for a minimal path but
also includes a penalization factor in relation to the violation of the collision-free
condition. It is shown by the following equation:

F (path) =
(

path size()
n + m − 1

)
+ PENALTY ·

⎛
⎝path size()−1∑

i=0

obji

⎞
⎠ (1)

This equation takes into account that the theoretical optimal path size, without
either obstacles nor backward moves, is equal to n + m − 1.

3.2 Genetic Operators

We have designed four genetic operators. Three of them are asexual operators.
The key idea of the recombination operator named Intersection-Bridge crossover
is to create two offsprings which inherit a sub-path from two parents. Each asex-
ual operator has a specific task. Arc-operator is created to repair chromosomes
which represent paths with collisions. Smooth-operator is designed to generate
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a smoother path than a given path by discarding some unnecessary visited cells.
Finally, the mutation operator is charged to include more exploration to the
algorithm by applying a random path modification. They are described in the
following sections.

Intersection-Bridge Operator. This operator creates two children from two
parents. It has two modes which can be applied. If the two parents have some
common cells in their paths, that is, there are intersections in their pathes,
the cross-point is randomly selected from the intersection points. It is shown in
Figure 3.

When there is no intersection point, the operator acts in bridge mode. The
operator randomly selects a cross-point generating two children. Then, each child
will be repaired by including a bridge in order to satisfy the continuity constraint.
It is shown in Figure 4.

Parents Child1 Child2

Fig. 3. Intersection Mode

Parents Child1 Child2

Fig. 4. Bridge Mode

Individual RepairedIndividual

Fig. 5. Arc-Operator Example
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Arc-Operator(path)

Begin

foreach cell in path

set=collision set(path);

for i=0 to total set

size=1; accepted change=false;

while(size<Max arc size && !accepted change)

segment=projects arc(size,set[i]);

if(collisions(segment)==0)

then

replace(segment, set[i]);

accepted change=true;

else

size++;

endif

endwhile

if(collisions(segment)!=0 && collision(segment)<collision(set[i]) )

then

replace(segment,set[i]);

endif

endfor

endforeach

End

Fig. 6. Arc Operator Algorithm

Arc-Operator. The goal of this operator is to repair collisions. It extends the
path to the borders of the obstacle cells, and goes around the collision zone as
is illustrated in Figure 5. The Arc-operator algorithm is shown in Figure 6. This
operator repairs but does not worry about the path length.

Smooth Operator. The key idea of this operator is to discard some visited
cells which are not needed. Applying this change could help to decrease the path
length. The entry of this operator is a collision-free path, therefore it will be
only applied to a chromosome where all obji are equal to zero.

Mutation Operator. This operator selects a k-cells-length sub-path chang-
ing it randomly either to the upper cells or to the lower cells, given a random
generated width value, from the current path. The k value is also randomly se-
lected. It takes into account only the first set of constraints. It allows for low
cost exploration.

Structure of the Global Planner. The algorithm uses a Roulette Wheel
algorithm to select individuals from the population. The complete procedure is
shown in Figure 7.
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Global Planner(map, init cell, goal cell )
Begin
Initial population()

while (gen < Max Gen && !goal reached )

Evaluate(chromosomes)

Select(chromosomes)

Intersection-Bridge-Crossover(paths)

Mutation(paths)

Arc Operator(paths)

Smooth Operator(paths)

Update population();

gen++

if ( collisions()==0 && is optimal size() )

then
goal reached=true

endif
endwhile
return best path()

End

Fig. 7. Global Planner Algorithm

4 Evolutionary Planner: Local Stage

The Local Stage of the algorithm allows the robot to find a new path given
some new obstacles in its current path. In the beginning, its current path is the
path given by the Global Stage. When the robot is in front of a new obstacle,
the Local Planner starts building a new path which becomes its current path.
The process continues until the robot reaches the goal cell. This algorithm is an
online planning path, it only uses asexual operators because a new path must
be found as fast as possible. The local planner starts its evaluation from the cell
where an unknown object has been found. It does not include already visited
cells from the current path.

5 Tests

We have divided the tests in simulation and real-world experiments.

5.1 Simulations

We use nine maps with various characteristics to evaluate the Evolutionary Plan-
ner. They are regular and irregular polygonals. The test cases are shown in Figure
9, they also have different dimensions. A1 is 50x50, B1 is 60x40, C1 is 60x60,
D1 is 80x60, A2 is 100x100, B2 is 800x600, C2 is 800x600, D2 is 1000x1000,
A3 is 1500x1500, B3 is 3000x2000 and the maps C3 and D3 using various res-
olution. Their size corresponds to the image resolution. The cell decomposition
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Local Planner(map, current cell, goal cell )
Begin
Initial population(); gen=0; count=0

insert old path(paths)

while (gen < Max Gen && !acceptable solution )

Evaluate(paths)

Mutation(paths)

Arc Operator(paths)

Smooth Operator(paths)

Update population()

gen++

if(collisions()=0 && invariable size path())

then
count++

endif
if(collisions()==0 && (is optimal size() || count>Max Count))

then
goal reached=true

endif
endwhile
return best path();

End

Fig. 8. Local Planner algorithm

is in pixel, where a white pixel indicates that it is a free collision cell. The
benchmarks A1, C3, A2, B2 have been proposed in [5]. The other ones have been
specially generated to include more complex shapes in the map as irregularities,
labyrinth and with objects which have a different order of magnitude in size.

Hardware. The hardware platform for the experiments was a PC Pentium IV,
2Ghz with 256 MB RAM under the Fedora Core 2 Kernel 2.6 operating system.
The algorithm has been implemented in C.

Gobal Planner Tests. The first test was carried out to test the Global Planner
with known static environments.

The optimal path is the shortest free-collision one. Every tested case has an
optimal solution. In all of the following results, the algorithm has been limited to
20 iterations. It uses a crossover probability equal to 0.9, mutation and smooth
operator probabilities equal to 0.3 and arc-operator probability equal to 0.5. The
population size was 10 and the PENALTY factor is equal to 1000. All of these
parameter values were defined by tuning.

The Initial Best Chromosome Length is the number of cells of the best path
from the initial population (from the evaluation point of view), and the number
of its collisions is shown in the Initial Best Chromosome Collisions column. In the
same way the Final Best Chromosome Length and the Final Best Chromosome
Collisions indicates the characteristics of the best path found by the algorithm.
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A B C D

1)

2)

3)

Fig. 9. Benchmarks Maps

Initial Conditions Final Conditions

ID Best Best Number Generations CPU Time
map Chromosome Chromosome to find to satisfy

Length Collisions Length Collisions Optimal Constraints [m:s]

A1 99 28 99 0 3 2 0:1

B1 107 18 99 3 - - 0:2

C1 127 32 119 0 1 1 0:1

D1 145 33 139 0 5 4 0:1

A2 205 28 199 0 10 10 0:1

B2 1405 256 1399 0 4 2 0:17

C2 1405 414 1399 0 6 5 0:24

D2 2007 474 1999 0 5 5 1:9

A3 2999 1429 2999 0 5 4 1:36

B3 5023 1116 4999 0 3 2 1:36

Fig. 10. Results of Global Planner

The Number Generations to find Optimal and the Number Generations to sat-
isfy Constraints are the number of generations required by the algorithm to find
the best path and the first chromosome which respectively satisfied all the con-
straints. We can observe that the algorithm is able to satisfy the constraints very
quickly. The labyrinth and the non polygonal problems are the hardest ones for
the Global Planner. The algorithm cannot find the optimal solution for B1. It
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Resolution Number Generations Final Conditions
to satisfy to find Best Chromosome Time[m:s]

Constraints Optimal Path Length Collisions

C3 Map
100x100 3 2 199 0 0:1
500x500 3 3 999 0 0:12

1000x1000 3 2 1999 0 0:50
2500x2500 4 4 4999 0 5:40

D3 Map
100x100 25 3 199 0 0:3
500x500 6 5 999 0 0:17

1000x1000 27 13 1999 0 3:37
2500x2500 12 12 4999 0 14:58

Fig. 11. Tests with Various Maps Resolution

means that we must design a specific operator for this kind of map. However,
for other maps, the algorithm has been very efficient and has found the optimal
known values in a reasonable CPU time as shown in the Figure 5.1.

Another kind of test has been done to evaluate how the resolution can affect
the performance of the algorithm. We use maps C3 and D3 because each one is
representative of a polygonal and a non-polygonal map. Their initial resolution is
1000x1000 pixels. We have increased and decreased their resolution. The results
are shown in Figure 11. The size of the search space increases when the resolution
is higher. In these cases, this kind of algorithm will have a better performance
than the complete techniques which in the worst case, visit all the cells.

Local Planner Tests. In order to test the dynamic adaptation of the algorithm
some objects have been created in the initial path computed by the Global Plan-
ner, to generate unexpected collisions. The test reported here are using maps C3

and D3. The obstacles inserted have a 2x3 cells dimensions. We have considered
small objets because of the limitations of the sensorial system of our robots.

Map Initial Obstacles Coordinates New Path Length
Path a b c d a b c d

C3
100x100 199 (4,1) (5,3) (7,3) (86,76) 198 195 189 37
500x500 999 (98,67) (193,182) (336,244) (458,254) 838 624 423 287

1000x1000 1999 (405,18) (620,36) (973,84) (978,265) 1580 1343 942 760

D3
100x100 199 (1,4) (17,24) (26,48) (35,48) 194 158 129 120
500x500 999 (157,8) (219,175) (330,333) (393,428) 834 605 336 198

1000x1000 1999 (188,235) (446,362) (561,470) (872,856) 1576 1191 968 271

Fig. 12. Test for Local Planner



An On-the-fly Evolutionary Algorithm for Robot Motion Planning 129

Offline Online 1 Online 2 Online 3

1)

2)

Fig. 13. Local Planner Tests

Figure 12 shows the length of the path obtained after four obstacles {a,b,
c,d}. The Local Planner computes the New Path Length from the robot current
position, where it found an obstacle, to the ending cell. Depending on both the
current path and the obstacle cells, the robot could go backward to find a new
collision-free path, as it shows Figure 13.

We have observed that the Local Planner is able to quickly find a new path
without collision and the given solution usually shares sub-paths with the ini-
tial shortest path. This shows that the chromosome coming from the Global
Planner’s shortest path, helps the algorithm to converge faster.

5.2 Real-World Test: Lego Mindstorms Robot

The RCX is the programmable LEGO brick that controls the robot actions. It
has a limited RAM of 32KB. Using infrared communication RCX communi-
cates with our computer, described in the above section, sending messages back
and forth. The Lego Mindstorms robot uses marks on the floor as a navigation
system. Its sensorial system is composed by:

– Three light sensors for positioning and navigation, to follow lines on the floor
– Three tactile sensors to identify collision with another object

The cell size was equal to the robot size. The algorithm allows the robot to go
from an initial point to the ending point and also to adapt its path, according
to the new obstacles introduced in its current path. Because of it is a real-world
robot, the algorithm strongly uses the sensorial system of the robot to both,
quickly act in case of collision, and if it is required, to modify its current path
on-line.
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6 Conclusions

The Evolutionary Planner Algorithm that we proposed in this paper can sig-
nificantly contribute to do efficient motion planning for robots with difficult
limitations like memory capacity and sensorial systems. The most important
contribution is the Local Planner, which uses the specialized asexual operators
to be able to quickly find a new path that avoids collisions. However, it still
has several limitations. First of all, the four cardinal points movement must be
extended to allow diagonal moves which are more realistic. A second limita-
tion comes from environments with labyrinths, where the algorithm requires a
specialized operator to handle this situation.
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Abstract. Embedded Cartesian Genetic Programming (ECGP) is a form of Ge-
netic Programming based on an acyclic directed graph representation. In this 
paper we investigate the use of ECGP together with a technique called Product 
Reduction (PR) to reduce the time required to evolve a digital multiplier. The 
results are compared with Cartesian Genetic Programming (CGP) with and 
without PR and show that ECGP improves evolvability and also that PR im-
proves the performance of both techniques by up to eight times on the digital 
multiplier problems tested. 

1   Introduction 

The evolution of digital multipliers has proved to be very difficult for evolutionary 
techniques (particularly when the number of bits in the multiplicands is greater than 
three) [4][7][11][12][13]. Cartesian Genetic Programming (CGP) [5][6] is one tech-
nique that has been used to attack such problems. Even though CGP does not have the 
equivalent of Automatically Defined Functions (ADFs) it was empirically demon-
strated to be more computationally efficient than Genetic Programming (GP) [3] with 
Automatically Defined Functions (ADF’s) on the even parity and 2-bit multiplier 
problems [5]. Embedded Cartesian Genetic Programming (ECGP) is a development 
of CGP that allows the construction and evolution of modules that can be called from 
the main CGP code and has been shown to perform better than standard CGP on a se-
ries of parity problems [14]. In this paper we apply ECGP to the multiplier problem. 
We also introduce a new approach called Product Reduction (PR), which is designed 
to make evolving digital multipliers easier.  

The plan for the paper is as follows: Section 2 is an overview of related work. In 
section 3 we describe ECGP and compare it with CGP before describing PR in 
section 4. The details of our experiments are shown in section 5 followed by the re-
sults and comparisons for all three experiments in section 6. Section 7 gives conclu-
sions and some suggestions for future work. 

2   Module Acquisition and Automatically Defined Functions 

Module acquisition (MA) [1] adds two operators to the evolutionary process, compress 
that selects a section of the genotype to make it immune to manipulation from operators 
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(the module) and expand which decompresses a module in the genotype therefore al-
lowing this section of the genotype to be manipulated once more. The fitness of a geno-
type is unaffected by these operators. MA allows the possibility of having modules 
within modules. These techniques have been shown to decrease the time taken to find a 
solution. Rosca's method of Adaptive Representation through Learning (ARL) [8] also 
extracted program segments that were encapsulated and used to augment the GP func-
tion set. However, recently Dessi et al [2] showed that random selection of program 
sub-code for re-use is more effective than other Rosca’s method across a range of prob-
lems. Once the contents of modules are themselves allowed to evolve (as in ECGP) they 
become a form of ADF, however in contrast to Koza's form of ADFs [3] and Spector's 
Automatically Defined Macros [9], there is no explicit specification of the number or in-
ternal structure of such modules. This freedom does exist in Spector's PushGP [10]. 

3   Embedded Cartesian Genetic Programming (ECGP) 

3.1   Representation 

ECGP and CGP share the same structure and represent a program as a directed graph 
(that for feed-forward functions is acyclic). The genotype is a list of integers that en-
code the connections and functions of each node of the directed graph. CGP used a 
program topology defined by a rectangular grid of nodes with a user defined number 
of rows and columns. However, later work in CGP always chose the number of rows 
to be one, thus giving a one-dimensional topology. This is always used in ECGP.  In 
CGP, the genotype is a fixed length representation (in terms of genes) in which the 
number of nodes in the program (phenotype) can vary but is bounded. In ECGP the 
genotype is a variable length representation (in terms of genes and nodes) in which 
the number of nodes and genes in the graph is bounded. The variable number of nodes 
in the ECGP genotype is the result of the compression and expansion of modules and 
the variable number of genes (which allows each node to have a variable number of 
inputs) is a result of the re-use of modules and some of the module mutation opera-
tors, which can change the number of inputs of a node. In Fig. 1 an example of the 
differences between a CGP and an ECGP genotype are shown. Despite these differ-
ences, both CGP and ECGP are initialized with a CGP style genotype. This means 
that all of the initial genotypes in the population have the same number of nodes and 
genes and every node represents a primitive function (i.e. no modules are present).  
Each of the nodes consists of two parts: a node header and a node body. The node 
header encodes the primitive function or module (by their unique identifier) that the 
node represents and the type of the node (type I or type II) if the node represents a 
module (the concept of module type is explained in section 3.4). The node body en-
codes the inputs of the node. Each input is encoded by two integers: one represents 
the index of the node or program input (terminal) in the genotype and the other repre-
sents the output of the node (note nodes can have multiple outputs) – see Fig. 2. The 
number of inputs and outputs that a node has is dictated by the arity of its function. 

The nodes take their inputs in a feed forward manner from either the output of a 
previous node or from a program inputs (terminals). The program inputs are 
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connections between the inputs of the nodes that are going to be encapsulated into 
a module and the outputs of any previous nodes or program inputs (terminals) in 
the genotype when the module is created. Likewise, the number of module out-
puts possessed by a module is determined by the number of connections between 
the inputs of the latter nodes in the genotype and the outputs of the nodes that are 
going to be encapsulated in the module, when it is created. Any module created 
by the compress operator is represented in the genotype of an individual as a type 
I node. The node header (i.e. the primitive function or module that the node 
represents) in any type I node is immune from the genotype point mutation opera-
tor therefore allowing the type I node to remain in the genotype of an individual 
until it is removed by the expand operator (see Table 1). 

Table 1. Nodes types and their properties 

Node 
Type 

Action of 
Compress 

Action of 
Expand 

Action of Genotype Point Mutation 

I Creation Destruction Change node inputs 
II Immune Immune Creation or destruction or change node inputs 

The expand operator destroys a type I node by replacing it in the genotype of an 
individual with the nodes contained in the module that the type I node represented. 
The inputs of all of the latter nodes in the genotype of the individual are updated in 
the final stage of both the compress and expand operators so that all the connections 
remain intact. The reasons for this is that, the compress and expand operators only 
make a structural change to the genotype of an individual and have no affect on geno-
type fitness, as the genotypes before and after the action of these operators represent 
the same directed graph. The expand operator has twice the probability of being ap-
plied to the genotype than the compress operator. We found that this introduces a 
pressure for good modules to replicate quickly in the genotype of an individual in or-
der to survive. This can be seen as survival-of-the-fittest modules within the genotype 
itself. 

Modules can replicate within the genotype of an individual through the action of 
the genotype point mutation operator. This is identical to that used in CGP with the 
exception that it can mutate the function of a node to any of the primitive functions or 
any available modules in the module list. If a node is mutated to represent a module it 
is classed as a type II node and is treated like a standard node. This means the geno-
type point mutation operator can also mutate the function of a type II node to any of 
the pre-defined functions or any available modules in the module list. It can also mu-
tate any of the inputs of the type II node in the same way it would mutate the inputs of 
a standard node. If the function of a standard node or type II node is mutated, the new 
node keeps however many of the original nodes inputs it needs and randomly gener-
ates any extra inputs it may require. Type II nodes are also immune from the expand 
operator as this could cause excessive growth of the genotype that could possibly lead 
to bloat. 
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To summarize the properties of node types I and II are shown in Table 1. The main 
reasons for the two types of module is to try and reduce the excessive growth of the 
genotype and to also help induce a selection pressure on the modules so that they 
have to replicate in the genotype (i.e. make the transition from being represented by 
type I to type II nodes) and be associated with a high fitness genotype in order to sur-
vive. Once the module is represented by a type II node it is harder for the module to 
be removed from the module list, as it has a lower probability that it will be removed 
from the genotype (i.e. it cannot be expanded). This is both advantageous as it allows 
good modules to stay in the module list but is also disadvantageous as it could possi-
bly allow the evolution of the genotype to progress a lot slower. 

The module genotypes contained in the module list can also be evolved through the 
action of five different operators: module point mutation, add-input, add-output, re-
move-input and remove-output. The module point mutation operator is a restricted 
version of the CGP genotype point mutation operator, as it can still mutate the inputs 
and function of any node contained in the module genotype but it is not allowed to in-
troduce any type II nodes into the module genotype. It can also mutate which node 
output each of the module outputs are connected to.  

The add-input and add-output operators allow greater connectivity to and from 
the contents of a module by increasing the number of module inputs or module out-
puts by one respectively each time either operator is applied, making a more gener-
alized module. When the add-input operator is applied to a module, the gene repre-
senting the number of module inputs in the module header part of the module 
genotype is incremented by one and an extra gene is inserted into all nodes (type I 
and type II) representing the module in the genotype of the individual, as a ran-
domly chosen value for the new module input. Likewise, when the add-output op-
erator is applied to a module, the gene representing the number of module outputs 
in the module header part of the module genotype is incremented by one and two 
extra genes are added to the module output section of the module genotype, as ran-
domly chosen values for the node index and node output that the new module out-
put is connected to.  

Alternatively, the remove-input and remove-output operators reduce the connec-
tivity to and from the contents of a module, by decreasing the number of module in-
puts or module outputs by one respectively each time either operator is applied, there-
fore making a more specialized module. When the remove-output operator is applied 
to a module, the gene representing the number of module inputs in the module header 
part of the module genotype is decremented by one and the gene corresponding to the 
module input randomly chosen is removed from all nodes (type I and type II) repre-
senting the module in the genotype of an individual. Likewise, when the remove-
output operator is applied to a module, the gene representing the number of module 
outputs in the module header part of the module genotype is decremented by one and 
the two genes corresponding to the randomly chosen module output are removed from 
the module output section of the module genotype. All of the operators: add-input, 
add-output, remove-input, and remove-output must comply with the restrictions on 
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the number of module inputs and module outputs at all times. Further information 
about all of the module operators (including figures explaining their operation) is 
available in our previous work [14]. 

4   Product Reduction (PR) 

In digital multipliers we require n2 AND gates to compute the product bits. Product 
reduction (PR) assumes that these have already been provided. It uses the outputs of 
these gates as inputs to the remaining circuit (which is evolved). PR transforms the 
standard truth table of 22n rows to an input-output table having 22n – 2(2n) – 2 rows. 
The width of the PR table is increased from the 2n inputs found in the standard truth 
table to n2 inputs because n2 AND Boolean functions are required to produce the 
product of every combination of bits. The length of the PR table however is reduced 
because the PR table contains multiple row entries all containing zeros due to multi-
plication by 0, which can be reduced to a single row.  

5   Experiment Details 

The performance of CGP and ECGP both with and without PR was tested on the digi-
tal multiplier problem (2x2 and 3x3 bit). The fitness is defined as the number of 
phenotype output bits that differ from the perfect n-bit digital multiplier. A perfect 
solution has score zero. 

The parameter settings used for CGP and ECGP in all of the experiments are 
shown in Table 2. The probability values chosen for the ECGP operators were found 
to be optimal by a trial and error process in previous ECGP experiments.  

Table 2. Parameter settings used for CGP and ECGP in all of the experiments. The operator 
rate is expressed as a percentage of the genotype length. Both the operator rates and probabili-
ties are per generation. 50 independent runs used. 

Parameter Value 
Population size 5 

Initial genotype size 200 nodes (600 genes) 
Function set {AND, AND with one input inverted, 

OR, XOR} 
Genotype point mutation rate 3% (18 Genes) 

Genotype point mutation probability 1 
Compress/Expand probability 0.1/0.2 

Module point mutation probability 0.04 
Add/Remove input probability 0.01/0.02 

Add/Remove output probability 0.01/0.02 
Maximum module size (ECGP only) 5 or 10 nodes 
Module list initial state (ECGP only) Empty 
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6   Results 

For all experiments, the Computational Effort (CE) was calculated using the formula 
found in Fig. 6 [3] with z=99% and are shown in Table 3. They are only relevant 
when comparing CGP and ECGP with the same number of nodes in their genotypes 
and the same rate for the genotype point mutation operator because CE figures for 
CGP and ECGP vary significantly depending on these values, therefore potentially 
causing an unfair comparison. We have only compared the CE figures of ECGP with 
CGP because no other researchers have provided CE figures for their GP techniques 
on these problems. 

P(M ,i) = N s(i)

N total

, R(z) = ceil
log(1− z)

log(1− P(M ,i))

  
   
   

  
   
   
, I (M ,i,z) = MR(z)(i +1)  

Fig. 6. The Computational Effort (CE) formula from [3] where i represents the generation num-
ber, Ns(i) represents the number of successful runs by generation i, Ntotal represents the total num-
ber of runs and M represents the number of individuals in the population. P(M,i) represents the 
cumulative probability of success, R(z) represents the number of independent runs required to give 
a probability of success z by generation i and I(M,i,z) represents the minimum number of indi-
viduals which must be processed to give a probability of success z by generation i. 

Table 3. The CE figures for CGP and ECGP for the digital multiplier problems with and with-
out product reduction. The maximum module size is shown in brackets. 

 2-Bit Multiplier 3-Bit Multiplier 
CGP 37,600 18,509,600 

CGP with PR 5,600 2,498,800 
ECGP (5) 46,000 8,400,400 

ECGP with PR (5) 6,000 1,560,400 
ECGP (10) 61,600 2,795,200 

ECGP with PR (10) 7,600 688,800 
CGP-PR Speedup 6.7 7.4 

ECGP-PR (5) Speedup 7.7 5.4 
ECGP-PR (10) Speedup 8.1 4.1 

For both of the digital multipliers tested over all fifty runs, both CGP and ECGP 
with and without PR produced 100% successful solutions. The results from both mul-
tipliers clearly show that CGP with PR performs between 6.7 and 7.4 times faster than 
CGP without PR and that ECGP with PR performs between 7.7 and 5.4 (with a 
maximum module size of five) or 8.1 and 4.1 (with a maximum module size of ten) 
times faster than ECGP without PR depending on the chosen maximum module size. 
We note that, rather unexpectedly, the speedup with CGP increases with problem dif-
ficulty, while the opposite is true with ECGP where the speedup decreases. We think 
this is because most of the time taken by CGP without PR to find a solution is used 
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organizing the AND Boolean functions in the 1-bit multiplication section of the cir-
cuit. However, ECGP without PR finds the 2x1-bit Multiplier module and re-uses it to 
quickly find and organize the 1-bit multiplication section. Therefore by eliminating 
the 1-bit multiplication section from the search space by using PR, saves CGP more 
time than ECGP as the problem scales in difficulty. 

Comparing the results of CGP and ECGP (both with and without PR) on the indi-
vidual problems shows that CGP performs quicker than ECGP on the 2-bit multiplier 
problem. This could be because the exploration of code in the modules hinders the 
performance of ECGP on small problems, as the results show that by reducing the 
maximum module size makes the performance of ECGP closer to that of CGP. How-
ever, ECGP does perform substantially better than CGP on the harder 3-bit multiplier 
problem, suggesting that ECGP may perform better on even larger, more complex 
problems. This speedup could be because ECGP is building and re-using modules 
containing useful partial solutions out of the primitive functions such as the 1-bit half 
adder and the 1-bit full adder. The results also show that for harder problems, ECGP 
performs better with a larger maximum module size (doubling the maximum module 
size, halved the computational effort for the 3-bit multiplier). This could be because 
the more nodes a module has the easier it is to find partial solutions. This is an inter-
esting concept and will be investigated further in future work. 

All of the experiments were run on a single processor desktop PC with 512MB of 
memory. The time taken to complete 50 runs of each problem varied between a few 
minutes to a few hours depending on problem difficulty and whether PR was used. 
ECGP only took fractionally longer to complete one thousand generations on any 
problem than CGP showing that the computational time required for the overhead of 
module acquisition is quite small and the computational time taken for fitness evalua-
tion (both CGP and ECGP) is by far the dominant factor. 

7   Conclusion 

We have presented for the first time the application of PR with CGP and ECGP on the 
difficult digital multiplier problem. PR is shown to significantly speedup the perform-
ance of CGP and ECGP when compared with CGP and ECGP without PR on both 
multipliers tested. However, CGP was shown to perform better than ECGP on the 
simpler 2-bit multiplier problem but ECGP performed better on the harder 3-bit mul-
tiplier problem indicating that ECGP may perform substantially better than CGP on 
even larger problems. This is a promising result for ECGP as the results presented in 
this paper follow a very similar trend to those found in our previous work [14].  

It was also found that the maximum module size chosen for ECGP can drastically 
affect performance and will be investigated further in future investigations. Currently 
ECGP does not allow modules within modules. However, we do have a working ver-
sion of ECGP that allows embedded sub-modules but we are currently investigating 
the problem of bloat within the embedded sub-modules found in the inactive areas of 
the module genotype. When a solution is found, we intend to allow embedded sub-
modules in future work as this could lead to an even greater boost in performance. 
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Abstract. Cartesian Genetic Programming (CGP) has successfully been applied 
to the evolution of simple image processing filters and implemented in intrinsic 
evolvable hardware by the authors. However, conventional CGP exhibits the un-
desirable characteristic of positional dependence in which the specific location of 
genes within the chromosome has a direct or indirect influence on the phenotype. 
An implicit context representation of CGP (IRCGP) has been implemented by the 
authors which is positionally independent and outperforms conventional CGP in 
this application.  This paper describes the additional benefits of IRCGP when con-
sidering alternative geometries for the hardware components. Results presented 
show that smaller hardware arrays under IRCGP are more robust and outperform 
equivalent arrays implemented in conventional CGP.  

1   Introduction 

A form of genetic programming (GP) [1] termed Cartesian Genetic Programming 
(CGP) [8,9] has been successfully adapted for the evolution of simple image process-
ing filters [11,12] and subsequently implemented in hardware [14,15].  A criticism of 
CGP (and GP in general) is that the location of genes within the chromosome has a 
direct or indirect influence on the resulting phenotype [6].  In other words, the order 
in which specific information regarding the definition of the GP is stored has a direct 
or indirect effect on the operation, performance and characteristics of the resulting 
program. Such effects are considered undesirable as they may mask or modify the 
role of the specific genes in the generation of the phenotype (or resulting program). 
Consequently, GPs are often referred to as possessing a direct or indirect context 
representation. 

An alternative representation for GPs in which genes do not express positional de-
pendence has been proposed by Lones and Tyrrell [3-7].  Termed implicit context 
representation, the order in which genes are used to describe the phenotype (or result-
ing program) is determined after their self-organised binding, based on their own 
characteristics and not their specific location within the genotype.  The result is an 
implicit context representation version of traditional parse-tree based GP termed En-
zyme Genetic Programming. The authors have since implemented an implicit context 
representation of CGP, termed Implicit Context Representation Cartesian Genetic 
Programming (IRCGP), specifically for the evolution of image processing filters [13]. 
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This paper reports the additional benefits of IRCGP when considering alternative 
geometries for the constituent hardware components.  Specifically, the performance 
of IRCGP and conventional CGP are compared over a range of hardware component 
configurations. 

Section 2 of the paper gives a brief introduction to the use of conventional CGP for 
evolving image processing filters. Section 3 describes the implementation of implicit 
context representation of CGP (IRCGP).  Section 4 presents results obtained from 
both conventional and implicit context representation CGP for a range of different 
hardware configurations. Conclusions are presented in Section 5. 

2   Cartesian Genetic Programming for Evolving Image Processing 
Filters 

Cartesian Genetic Programming (CGP) was first proposed by Miller [8,9] as an alter-
native representation for genetic programming which does not require the use of a 
parse-tree based programming language and does not exhibit uncontrolled expansion 
commonly termed bloat [2].  As opposed to the rigid tree structure representation of 
traditional GP, CGP permits the arrangement of functions in a far more flexible, typi-
cally rectangular format, referenced by conventional Cartesian co-ordinates. 

An extension of CGP for evolving image processing filters was proposed by 
Sekanina [11-12] and subsequently implemented in hardware by Zang et al. [14,15] as 
shown in Figure 1. 

 
 

 

Fig. 1. Extended Cartesian Genetic Programming for evolution of image processing filters 

A number of processing elements (PEs) are arranged in a rectangular format, each 
connected to a data bus.  The inputs I0 to I8 are the pixel values obtained from a con-
ventional 3 x 3 neighborhood image filter; these are manipulated by the PEs and the 
output replaces the pixel of interest in the processed image.  The structure of the PE, 
shown in Figure 2, comprises two multiplexers and a functional block.  The multi-
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plexers can be configured, according to the values of cfg1 and cfg2 respectively, to 
select the output of another PE or image pixel input I0 to I8, as long as it is connected 
to the same data bus.  In the specific hardware representation considered here, this 
requires that the PE or input be located in the two columns immediately preceding the 
PE containing the multiplexer in question.  The outputs of the two multiplexers are 
then provided as inputs to the functional block; the function applied to them is deter-
mined by cfg3 and selected from the available functions listed in Table 1. 

 

Fig. 2. Architecture of the processing element 

Table 1. Functions available for configuration of the processing element’s functional block 

Code  Function Code Function 
F0: X  >> 1 F8: (3) (X+Y+1) >> 1 
F1: X >> 2 F9: X & 0x0F 
F2: ~ X F10: X & 0xF0 
F3: X & Y F11: X | 0x0F 
F4: X | Y F12: X | 0x F0 
F5: (1) X ^ Y F13: (4) (X&0x0F) | (Y&0xF0)
F6: X + Y F14: (X&0x0F) ^ (Y&0xF0)
F7: (2) (X+Y) >> 1 F15: (X&0x0F) & (Y&0xF0)

7 4 3    4 0 3    6 1 3    8 5 3    2 11 3    2 1 3    0 4 3    12 3 3    10 9 1    12 16 3    9 
13 1    14 11 3    17 18 3    19 20 3    20 20 3    15 20 3    17 19 4    24 19 2    19 24 4    
21 22 3    22 26 4    27 22 3    28 21 1    25 23 3    28 

Fig. 3. Example chromosome for configuration of the extended CGP 

The PEs within the architecture are configure by means of a chromosome, an ex-
ample of which is given in Figure 3. 

The chromosome consists of a string of integer values, arranged logically in groups 
of three, providing values for cfg1 (multiplex 1 input), cfg2 (multiplex 2 input) and 
cfg3 (functional block function index), respectively, for each PE in the representation. 

& bitwise AND function 
| bitwise OR function 
^ bitwise XOR function 
~ bitwise inverter or NOT function 
>> bitwise right shift 
X, Y inputs to functional block 
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A number of these chromosomes form the individuals of a population which are 
initialised with random values.  Each chromosome is then used to configure the hard-
ware representation which, in turn, is used to process a test image.  The image result-
ing from this operation is compared with an ideal (uncorrupted image), and a fitness 
score derived, which is then associated with the respective individual’s chromosome.  
After all the individuals in the population have been evaluated in this manner, the 
fittest is retained and used as the parent for a subsequent generation of individuals. 
These new individuals are generated by simply mutating the parent in a non-
deterministic manner. 

Yang et al demonstrated that the image filters evolved in this way out performed 
conventional median and Gaussian image filters [14,15]. 

3   Implict Context Representation 

3.1   Overview 

As described in Section 1, CGP can be described as an indirect context representa-
tion; the position a particular gene occupies in the chromosome has an influence on 
the resulting phenotype, or in the case of extended CGP considered in Section 2, the 
configuration of the hardware representation. 

The effect or meaning of a component in the evolved or resulting program is de-
termined by its absolute or relative position in the program representation. The man-
ner in which components are referenced in CGP is considered arbitrary as there is no 
correlation between a component’s absolute coordinates and its behaviour. Therefore 
it can be argued that indirect context representation has no effect beyond describing 
the connectivity of a specific program. This is also the case when considering the 
behaviour of components in different programs. Components with the same function-
ality may have different coordinates and those with different functionality the same 
coordinates. Hence, any form of recombination, such as crossover is unlikely to be 
constructive in the evolutionary process and could explain why this has not been 
found to be useful in CGP [4]. 

A lack of positional independence also has an important effect on the relationship 
between genes that in combination effect good performance. Recombination will not 
preserve the relationship of these genes, commonly referred to as building blocks, 
when conventional forms of crossover are employed. Various attempts have been 
adopted to minimise the destructive effect that such positional dependence in the 
representation by preserving building blocks that describe the beneficial relationship 
between particular genes. In GAs this is termed linkage learning, and has been im-
plemented by limiting the destructive effect of crossover operations limiting by using 
special crossover templates [10]. However, this does not overcome the underlying 
problem which is associated with the program representation. A further concern with 
an indirect context representation such as CGP is that when a component’s input ref-
erences are mutated, the resulting arrangement of components is in no way represents 
the degree of mutation applied and hence, cannot be varied in a gradual manner.  

Therefore, ideally, the evolution of a system should be independent of the position 
of genes within the chromosome, but should still be a result of the values of those 
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genes.  This is termed an implicit context representation by Lones and Tyrrell [3], 
who have developed a form the conventional parse-tree type GP that exploits this 
representation, called Enzyme Genetic Programming (EGP). The biological inspira-
tion for Enzyme GP is the metabolic pathway, and the role of enzymes which express 
computational characteristics. This is not dissimilar to the logic network employed in 
this work to evolve the image filters described in Section 2 [6]. 

Implicit context representation employs an enzyme model comprising a shape, ac-
tivity and specificities (or binding sites) [5], as shown in Figure 4. Along with inputs 
and outputs, the enzyme model can be considered a program component from which a 
genetic program may be constructed.  The shape describes how the enzyme is seen by 
other program components. Similarly, the binding sites determine the shape (and 
hence type) of program component the enzyme wishes to bind to. Finally, the activity 
determines the logical function the enzyme is to perform.  A typical EGP will com-
prise a set number of inputs and outputs and a number of enzyme models or compo-
nents.  Initial values for each component’s binding sites and logical function are as-
signed non-deterministically; the component’s shape, however, is derived from a 
combination of its binding sites’ shapes and logical function which is considered in 
Section 3.2. 

Once initialized, components are bound together to form a network, as shown in 
Figure 5.  The order in which components are bound is determined by the closeness of 
match between a component’s binding site shape and another component’s shape. The 
best matching components are bound first and the process is repeated until a network 
has formed in which no further binding is possible. 

  

Fig. 4. Enzyme model illus-
trating shape, activity and 
specificities (binding sites) [5] 

Fig. 5. Calculation of a component’s shape from its binding 
site shapes and logical function [6] 
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Over time, components may evolve through mutation.  Mutation is applied to the 
component’s binding sites and logical function with a pre-determined probability.  
When this occurs, a new component shape is derived accordingly and may lead to 
different binding between components occurring.  This in turn may result in a modi-
fied network. 

3.2   Implicit Context Representation CGP 

The purpose of Implicit Context Representation CGP (IRCGP) is to combine the 
benefits of an implicit context representation (described above in Section 3.1) with the 
extended Cartesian Genetic Program for evolving image filters described in Section 2. 

The processing elements within the extended CGP are particularly suited to the 
implicit context representation implementation.  However, instead of employing a 
parse-tree arrangement, the existing CGP Cartesian arrangement is maintained.  The 
significant difference to conventional CGP is the manner in which components are 
selected and interconnected within the representation. To achieve this, each compo-
nent is equipped with two binding sites and a shape (as shown in Figure 6), which 
relate directly to the inputs and outputs of a component in the existing extended CGP 
representation. 

As previously described, the values for the elements in the binding site shapes are 
initially assigned non-deterministically, as is the component’s function. However, the 
output shape is numerically derived from the binding site shape and component func-
tion as illustrated in Figure 7. 

 

Fig. 6. Component binding sites and shape Fig. 7. Calculation of component’s shape from 
binding sites’ shape and component function 

Formation of the CGP network begins with the assignment of an output component 
(Figure 8a); this will ultimately provide a new value for the pixel under consideration 
in the filtered image.  The binding sites of the output component are then made active 
and will bind to components according the closeness of match between their respec-
tive shapes (Figures 8b-8d).  (Closeness of match is based on the sum of differences 
between the elements of the two shapes.) Once bound, component’s binding sites will 
also become active and will bind to other components in the same way. Binding be-
tween components is always undertaken on a “best-fit first” basis until no further 
binding is possible.  
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Fig. 8a. Network composition begins with 
non-deterministic allocation of the output 
component, O1 

Fig. 8b. The component whose shape 
matches either of the output component’s 
binding sites most closely, is chosen for 
binding 

  
Fig. 8c. Binding continues on a “best match-
first” basis 

Fig. 8d. Binding is completed when no 
further components can be bound 

The physical hardware places constraints in the manner with which the formation 
of the network takes place. Successful binding of a new component may only take 
place if there is sufficient space for that component in the hardware representation.  
Typically, this means that any newly bound component must be placed in one of the 
two columns to the left of the existing component.  Similarly, input components I0 to 
I8 (holding the image pixel values) may only be bound to components one or two 
columns to their right in the representation. 

Once all possible binding has completed, the resulting network is applied to a test 
image and, the resulting filtered image, compared with the original, uncorrupted image.  
A fitness score for the individual is described by equation (1), which is identical to that 
used in previous image filtering evolution by Sekanina [11,12] and Yang [14,15]. 
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(1) 

Where: 
i,j are the image co-ordinates 
filt(i,j) is the image resulting from the resulting filter operation 
ideal(i,j) is the ideal (original uncorrupted) image 
H, W is the height and width of the image respectively 
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For the purpose of clarity, this fitness score is presented as a percentage of the im-
age score possible, in this case, the original image. 

3.2.1   Redundancy and Reuse 
It can be seen from the way in which components are selected for inclusion in the 
network that there is provision for both redundancy and reuse of components.  The 
pool of available components need not be restricted to the number required to popu-
late the network; additional components can be made available to facilitate redun-
dancy.  Further, reuse of components is permitted, by allowing an output of one com-
ponent to satisfy the input of more than one other component. 

3.2.2   Mutation 
Two separate mutation operations are performed according to predefined probabili-
ties: (i) to the binding sites of the components and, (ii) to the index that selects the 
component’s function from those available (as defined in Table 1).  Once these muta-
tions have been performed, new shapes for each component are derived as described 
in Section 3 and shown in Figure 7. 

3.2.3   Selection Scheme 
A conventional, q-tournament selection scheme is adopted; one of the advantages 
being that it does not require a global fitness comparison of all individuals in the 
population. From the population, a group of q individuals is randomly chosen (where 
q is the tournament size). The fittest individual from the tournament group will be 
selected and placed in a pool for recombination. The process is repeated until the 
required number of individuals has been attained. Experimentation suggests that for 
this application, a 9-tournament scheme is most likely to provide best performance for 
both maximum and average fitness over 20 runs.  

3.2.4   Crossover Operator 
An important benefit of an implicit context representation is that recombination supports 
meaningful variation filtering, i.e. the effects of inappropriate variation events are sup-
pressed, whilst promoting meaningful change, leading to fitter solutions. For the implicit 
context representation of CGP described here, a conventional 2-point crossover was 
used to exchange components available to the two individuals. This is simply imple-
mented as each component available to each individual is held in a sequential list. 

4   Results 

Results are presented for 20 runs of the implicit context representation CGP (IRCGP) 
compared with the conventional extension of CGP (ECGP), for each of the hardware 
component configurations shown in Table 2. The task was for the algorithms to 
evolve an image processing filter that reduces noise on a version the ‘Lena’ image 
corrupted with Gaussian noise (  = 16), shown in Figure 10b. A list of algorithm 
parameters for IRCGP is given in Table 3. 

Results for the fitness score of IRCGP compared with ECGP are presented graphi-
cally in Figure 9 and listed in Table 2.  These values are represented as a percentage 
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Table 2. Fitness scores for evolved image filters 

Hardware Configuration (Rows x Columns) 
 1 

(3x3) 
2 

(4x3) 
3 

(4x4) 
4 

(4x5) 
5 

(4x6) 
IRCGP Average Best Fitness 
(%) 

97.460 97.498 97.500 97.513 97.522 

ECGP Average Best Fitness (%) 97.377 97.390 97.450 97.486 97.507 
IRCGP Overall Best Fitness (%) 97.517 97.519 97.533 97.537 97.544 
ECGP Overall Best Fitness (%) 97.480 97.480 97.499 97.520 97.528 
Two-tailed P value 0.00163 1.16e-06 0.000271 0.002563 0.026045 
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Fig. 9.  Results for Implicit Context Representation CGP (IRCGP) and Conventional Extended 
CGP (ECGP) 

Table 3. Program parameters for IRCGP 

Parameter Value 
Population size 150 
Number of generations 150 
Number of runs 20 
Function mutation rate 1.0% 
Binding site mutation rate 0.6% 
Number of available functions 4 

Available functions 

    X^Y  
    (X+Y+1)>>1 
    (X+Y)>>1   
    (X&0x0F)|(Y&0xF0)                 

 
 

(increasing complexity ) 
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Fig. 10a. Original ‘Lena’ image Fig. 10b. ‘Lena’ image corrupted with added 
Gaussian noise (σ =16) 

  

Fig. 10c. Image after applying ECGP evolved 
filter 

Fig. 10d. Image after applying IRCGP evolved 
filter 

of the best possible fitness score, in this case, the original image (Figure 10a). The 
results show that IRCGP outperforms ECGP for all hardware configurations, both in 
overall and average best fitness values.  Examples of the resulting images for ECGP 
and IRCGP are shown in Figures 10c and 10d respectively.  The two-tailed P value 
gives support for statistical significance. It is of particular interest that the fitness of 
IRCGP for small hardware component configurations (particularly four rows and four 
columns) remains close to the performance of larger configurations (such as the con-
ventional four rows and six columns). 

Once evolved, the filter was also applied to another image, ‘Baboon’ (Figure 11a), 
again corrupted with guassian noise in the same way as for ‘Lena’ (as shown in 
Figure 11b). Results presented in Table 4 and Figures 11c and 11d, show that the 
IRCGP again outperforms ECGP.  
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Table 4. Fitness scores for ‘Baboon’ image corrupted with Gaussian noise (  = 16) 

 ECGP(%) IRCGP (%) 
Overall best fitness 93.965 94.007 
Average best fitness 93.937 93.967 

 
 

  

Fig. 11a. Original ‘Baboon’ image Fig. 11b. ‘Baboon’ image corrupted with Gaus-
sian noise 

  

Fig. 11c. Image after applying ECGP evolved 
filter 

Fig. 11d. Image after applying IRCGP evolved 
filter 
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5   Conclusion 

This paper considers the benefits of an implicit context representation of CGP (IRCGP) 
over a number of different hardware component configurations.  The results presented 
show that IRCGP outperforms conventional extended CGP (ECGP) in all hardware con-
figurations tested and also demonstrates a more consistent performance and stability.  
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Abstract. In our previous work, we have demonstrated that evolution
can be used to program liquid crystal to act as a signal processing device.
In this work we discuss the stability and reconfigurability of a real time
robot controller evolved in liquid crystal. We envisage these issues will
be important when programming or evolving in other physical systems.

1 Introduction

Allowing computer controlled evolution (CCE) to manipulate novel physical me-
dia can allow much greater scope for the discovery of unconventional solutions.
Last year the authors demonstrated, for the first time, that CCE could manip-
ulate liquid crystal to perform signal processing tasks (i.e frequency discrimina-
tion, robot control). In [4] Harding and Miller showed that liquid crystal could
be used as a medium for evolution. They were able to rapidly evolve simple
transistor like behaviour and in [3] they demonstrated that it was relatively easy
to evolve a liquid crystal to discriminate between pairs of dissimilar frequen-
cies. The task was first considered by Adrian Thompson (using an FPGA) [10].
Recently we have investigated other tasks including robot control.

Here we examine some practical issues relating to evolving devices in liquid
crystal. In particular we look at these issues in the case of evolving a real time
robot controller for obstacle avoidance. We found that solutions were relatively
unstable, and were greatly influenced by previous configurations. In this paper
we investigate this phenomenon in detail.

1.1 The Field Programmable Matter Array

In [8] a device that the authors referred to as a Field Programmable Matter Ar-
ray(FPMA) was described. A FPMA is a device that can be used to manipulate
a material under computer control by applying voltages that induce physical
changes within a substance, and that these changes may interact in unexpected
ways that may be exploitable under evolution.

Different candidate materials were cited for possible use as the evolvable sub-
strate in the FPMA. They all share several characteristics : the material should
be configurable by an applied voltage/current, the material should affect an in-
cident signal (e.g. optical and electronic) and should be able to be reset back to

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 155–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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its original state. Examples of these include electroactive polymers, voltage con-
trolled colloids, bacterial consortia, liquid crystal, and nanoparticle suspensions.
In previous work we have demonstrated that liquid crystal is indeed a suitable
material to form the basis of the FPMA.

Liquid crystal (LC) is commonly defined as a substance that can exist in a
mesomorphic state [1,7]. Mesomorphic states have a degree of molecular order
that lies between that of a solid crystal (long-range positional and orientational)
and a liquid, gas or amorphous solid (no long-range order). In LC there is long-
range orientational order but no long-range positional order.

2 The Liquid Crystal Evolvable Motherboard

The Liquid Crystal Evolvable Motherboard (LCEM) is circuit that uses four
cross-switch matrix devices to dynamically configure circuits that connect to
the liquid crystal. The switches are used to wire the 64 connections on the LCD
to one of 8 external connections. The external connections are: input voltages,
grounding, signals and connections to measurement devices. Each of the external
connectors can be wired to any of the connections to the LCD.

The external connections of the LCEM are connected a PC’s analogue inputs
and outputs. Connections can be assigned for the input signals, measurement,
and for fixed voltages (plus a ground connection). The value of the fixed volt-
ages is determined by a genetic algorithm[6], but is constant throughout each
evaluation.

In the experiments presented here, the liquid crystal glass sandwich was
removed from the display controller it was originally mounted on, and placed
on the LCEM. The display is a passive monochromatic matrix LCD with a
resolution for 180 by 120 pixels. Unfortunately neither the internal structure
nor the electrical characteristics of the LCD are known. The display has a large
number of connections (in excess of 200), and is roughly positioned over the pads
on the PCB, with many of the PCB pads touching more than 1 of the connectors

�
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PC

Analogue Output
Confi guration

Liquid Crystal
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Fitness

Generate 
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Fig. 1. Equipment configuration



Evolution in Materio 157

Fig. 2. The LCEM

Liquid Crystal Display

8x16 Analog Switch Array

8 External Connectors

LCD contacts,

32 per side 

- 64 in total.

Fig. 3. Schematic of LCEM

on the LCD. This means that we are applying configuration voltages to several
areas of LC at the same time.

It is important to note that other than the control circuitry for the switch
arrays there are no other active components on the motherboard - only analogue
switches, smoothing capacitors, resistors and the LCD are present.

3 A Liquid Crystal Robot Controller

In these experiments we used a simulated robot that has two sensors (mounted
with 30 degrees of separation) and two wheels for mobility. The simulated sensor
readings are converted into signals fed to the evolvable motherboard. Signals read
from the evolvable motherboard are then used to control the behaviour of the
simulated robot. The intention being that the signal processing, and majority of
the robot control should be performed in the liquid crystal. Two sonar distances
sensors and two motors can be considered to be ”directly” connected to the
evolvable motherboard, and then routed to the liquid crystal.

We defined each distance sensor to output a square wave with a frequency
proportional to the distance in a straight line from the sensor to an obstacle. For
near objects the output was 1Hz, for far objects the output frequency is 5000Hz.
No artificial noise is added to the distance measured, however the mechanism
by which the waves are generated by the computer will add noise and timing
problems. There is also an expected 50ms delay between a distance reading and
a change in frequency.

Two connections from the LCEM are used as inputs to the two motor con-
trollers. The two motors are mounted either side of the simulated robot, and
allow for the robot to be steered. If the voltage is high (i.e. above 0.3V) a motor
is switched fully on, when low the motor is set to a slow speed. If both inputs
are high the robot drives forward, with both inputs off the robot is stationery. If
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only one motor is enabled, the robot turns. The threshold voltage for enabling
a motor was chosen arbitrarily. The robot has a small turning circle, and does
not pivot on the switched off wheel.

3.1 The Genetic Algorithm

The genetic representation for each individual is made of two parts. The first part
specifies the connectivity; the second part determines the configuration voltages
applied to the the LCD. Each of the 64 connectors on the LCD can be connected
to one of the eight external connectors or left to float (see Figure 3). Each of
the connectors is represented by a number from 0 to 7 and no connection is
represented by 8. Hence the genotype for connectivity is a string of 64 integers
in the range 0 to 8. The remainder of the genotype specifies the voltages applied
to the pins on the external connector that are not used for signal injection /
monitoring. One of the external connectors is always connected to ground. Two
are reserved for the incident signals (distance readings) and two connections for
motor control. The remaining three connectors have static voltages applied to
them that are determined by evolution. All these connectors can be routed to
various places in the liquid crystal display according to the connection scheme
decided by evolution. Each voltage is represented as a 16-bit integer, the 65536
possible values map to the voltage levels output from -10V to +10V. The second
section of the genotype is therefore represented as a string of three 16bit integers.

In all the following experiments, a population of 40 individuals was used. The
mutation rate was set to 5 mutations per individual. Elitism was used, with 5
individuals selected from the population going through to the next generation.
Selection was performed using tournament selection based on a sample of 5 indi-
viduals. Evolutionary runs were limited to 200 generations. With each individual
taking approximately 60 seconds to evaluate. The fitness function rewarded con-
trollers that were able to travel around the environment without colliding with
obstacles and for exploring as much of the environment as possible.

Further details of the fitness function, genotype and related operators can be
found in [5].

3.2 Results

The fitness function rewarded perfect solutions with a score of 10000, with 0 as
the lowest possible score. Solutions that have a fitness of over 6700 represent
robots that have navigated to leave the top section of the map. Solutions below
this score fail to fully explore the map - however they may cover large areas of
the top half of the map but never escape through the gap. In our evolutionary
runs we found 36% of runs obtained a near perfect score. The average number of
generations to find a good solution is 62, with the fastest solution found within
22 generations.

Figures 4 to 9 shows sections of the ”fossil record” of the evolution of one
controller. We can see that after learning not to drive in circles, the robot learns
to move forward, and then learns to turn when it approaches a wall. After it



Evolution in Materio 159

Fig. 4. Fitness=515 Fig. 5. fitness=3819 Fig. 6. fitness=4607

Fig. 7. fitness=6772 Fig. 8. fitness=7229 Fig. 9. fitness=9796

learns to start following the wall it quickly searches the entire map, and gets the
highest fitness.

4 Investigating Solution Stability

When incident signals are applied to the liquid crystal display, we can see their
effect - some of the pixels go dark - indicating that the molecular direction has
been changed. This means that the configuration of the liquid crystal is changing
as we are applying signals. To draw an analogy with circuit design, the incident
signals would be changing component values or changing the circuit topology,
which would have an effect on the behaviour of the system. This is likely to be
detrimental to the measured performance of the circuit, and also we expect to
a liquid crystal solution. When a solution is evolved the fitness function auto-
matically measures it stability over the period of the evaluation. Changes made
by the incident signals can be considered part of the genotype to phenotype
mapping. Solutions that cannot cope with their initial configurations being al-
tered will achieve a low score. However, the fitness function cannot measure the
behaviour beyond the end of the evaluation time - however a stable solution is
still desirable.

Another issue of stability is that of the genotype to phenotype mapping.
When a configuration is applied to the liquid crystal, do the molecules go back to
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exactly how they were when this configuration was tried previously? We cannot
be sure - since we cannot directly measure the properties of every molecule,
and in a highly complex system such as LC it would be unlikely to reorder in
precisely the same way. Assuming, that there is a strong correlation between
genotype and phenotype, then it is likely that evolution will cope with this extra
noise. The fact that it is possible to evolve in liquid crystal, shows that we
should expect good genotype/phenotype correlation, however as the results in
this paper indicate, this is not the case.

In [9] it is noted that the behaviour of circuits evolved intrinsically can be
influenced by previous configurations - therefore their behaviour (and hence fit-
ness) is dependent not only on the currently evaluated individuals configuration
but on those that came before. For example, in a circuit capacitors may still
hold charge from a previously tested circuit. This charge would then effect the
circuits operation, however if the circuit was tested again with no stored charge
a different behaviour would be expected and a different fitness score would be
obtained - and the fitness function would essentially be noisy. Not only does
this effect the ability to evolve circuits, but would mean that some circuits are
not valid. Without the influence of the previously evaluated circuits the cur-
rent solution may not function as expected. The behaviour does not have to
be worse when dependent on previous configurations - there is no reason why
the previous configuration cannot have a positive influence. It is expected that
such problems will have analogies in evolution in materio. The configurations
are likely to be highly sensitive to initial conditions (i.e. conditions introduced
by previous configurations), as the ability to configure a system is reliant on the
emergent properties of the material. The behaviour of emergent systems, such
as Conway’s ”Life” [2] or Wolfram’s cellular automata [11] are highly depen-
dent on the starting configuration. Small perturbations in the initial starting
arrangement can prevent solutions from becoming stable.

In these experiments, we investigate the stability of the solution, by looking
at the performance of the solution for extended periods of time and the effect of
previous configurations on the behaviour of the system.

4.1 Observing Continued Behaviour

The wall avoiding robot task often produced solutions that would take approx-
imately 30 seconds to evaluate before the robot collided with an obstacle. This
raised the issue of for how long are solutions stable? This experiment investi-
gates the performance of solutions over a period of time. If the liquid crystal was
being affected by the incident signals, and being reprogrammed, then it would
be expected that the behaviour would change. A change in behaviour would
change the fitness score measured by the fitness function. The fitness function
used for this task returns an absolute fitness value - any change in behaviour
should result in a different fitness value.

In these experiments robot controllers were evolved (as described in section 3)
and when an individual received a high fitness score we repeatedly ran the eval-
uation function and recorded the fitness for the subsequent evaluations. The
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Fig. 10. Graph showing degradation of fitness when individuals are reloaded and

tested, as described in section 4.1

Fig. 11. Graph showing degradation of fitness when individuals are reloaded and

tested, with intermediate individuals loaded in between, as described in section 4.2.

The number of intermediate random individuals increases on each reload.
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individuals were re-evaluated 10 times - giving a total running time of approxi-
mately 5 minutes.

4.2 Drift and the Reloading of Configuration

This experiment demonstrates the affect that previous configurations have on
the behaviour of the current evaluation. The experiment is similar to that in
section 4.1, however the configuration of the liquid crystal is modified in between
evaluations. This was done by applying a number of random configurations, and
then reapplying the configuration specified in the current individual. The intent
is to disrupt the liquid crystal as much as possible, and to try and randomize
the molecular configuration. This evaluation process can be summarised as:

1. Apply individual, and test fitness.
2. If the solution is good (i.e. with fitness>6700) then continue

otherwise, goto step 1 and evaluate next individual.
3. N = 0
4. Apply N random Configurations to LC
5. Apply individual
6. Test and record fitness
7. N = N + 1
8. If N<6 repeat from step 4.

If configurations are dependent on previous configurations then the fitness
values would be expected to be affected, and as there are few solutions the
fitness would be expected to decrease. If the configurations are independent of
each other, then the fitness results should be relatively consistent throughout
the evaluation procedure.

4.3 Results

From Figure 10, it can be seen from the reduced fitness scores that most so-
lutions fail to operate over long periods of time. However, some solutions do
continue to function correctly for several evaluations. The results also show that
the behaviour can deteriorate, and then recover. From Figure 11 it is apparent
that previous configurations have a large effect on the behaviour of the system.
Applying other configurations causes the evolved behaviour to worsen in every
case. The fitness does vary through each iteration, however it never returns to
the level initially achieved.

5 Conclusions

The effects observed in these experiments may preclude this set-up from hav-
ing any real practical application. The issue of reliable genotype to phenotype
mapping and reliable behaviour from the phenotype are serious problems. How-
ever, these are preliminary results from our first attempt at direct evolution in
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material. With further investigation, we believe that there will be methods to
overcome these problems.

The most obvious solution is to find a more stable material. Liquid crystal was
chosen as a candidate material because of the ease at which we could manipulate
it. However there may be more suitable materials, that can be made less sensitive
to disruption caused by incident signals.

The next potential solution is to evolve stable solutions. In the experiments in
this section, solutions were stable only for a few seconds - however there was no
pressure imposed for evolution to find solutions that had any robustness. With
the robot controller, solutions had to remain stable for a much longer period -
typically 30 seconds. It is apparent when forced to produce time-robust solutions
evolution in liquid crystal is capable of doing so.

Another approach, for certain tasks, may be to find a different way to interact
with the material. At the moment the method of communication with the liquid
crystal is through different frequencies of electrical signals. This will have the
effect of continually reconfiguring the system. It is not clear if this is the most
appropriate way to present information to the system.

Liquid crystals are normally associated with displays as they can modify light
passing through them. We can assume that light does not effect the liquid crystal
and is only affected by it. If we used a camera to observe changes in light coming
through the display we could see any differences in the properties of the light and
use this as an output. Liquid crystal is also able to change the properties of sound
waves passing through it. This technique is normally used to study the structure
of the liquid. If the structure is modified using computer controlled evolution,
it should be possible to alter the effect it has on sound waves. Incident signals
could be applied using a speaker, and the output detected with a microphone.

Despite the issues of stability, the system is still evolvable. It would appear
from the experiment in section 4.2 that there is little inheritance of behaviour
from one generation to the next - as applying similar (and even the same) con-
figurations may not result in the same phenotypic behaviour. However, the evo-
lutionary algorithm still succeeds in finding solutions despite the highly noisy
search space. In future we intend to investigate this further, and determine if
there are any properties of this system that could be utilised by other evolvable
systems.
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Abstract. After a reminder of the Tom Thumb algorithm, originally
designed for the self-replication of two-dimensional (2D) loops, this pa-
per presents its application to the hardware implementation of 3D self-
replicating structures. This self-replication process is achieved by trans-
lation and transcription of a configuration information in a three-dimens-
ional data and signals cellular automaton (DSCA). The corresponding
hardware implementation takes place in the BioCube, a new 3D reconfig-
urable electronic medium with input, output and computation abilities.

1 Introduction

The main goal of this paper is to present the hardware implementation of three-
dimensional (3D) self-replicating structures endowed with universal construction
and universal computation properties. Basically designed for the self-replication
of two-dimensional (2D) loops with universal construction and universal compu-
tation, the Tom Thumb algorithm [5] is revisited here in order to deal with the
third dimension. According to this algorithm, a configuration information made
of flag data and code data is used twice during the self-replication process. First
by translation, where the information ends up trapped in the new replicated
loop, defining both its structure and its functionality. Secondly by transcription,
where the information remains mobile and moves along the loop in order to
allow further replications. By addition of only a few supplementary flags, the
Tom Thumb algorithm allows the self-replication of 3D structures provided with
universal construction and computation capabilities.

In Section 2, the 3D Tom Thumb algorithm will be described by means of a
minimal structure composed of eight cells which will grow and then self-replicate
for triggering the growth of three identical structures. This example is sufficient
for deriving the detailed architecture of a three-dimensional data and signals
cellular automaton (DSCA) [9]. The specifications of this three-dimensional,
seven-neighbor DSCA and the design of its basic cell are described in Section 3.
Section 4 presents the hardware implementation of 3D self-replicating structures
in the BioCube, our new 3D reconfigurable electronic medium for bio-inspired
systems. Section 5 will conclude by opening new avenues based on the self-
replication of 3D universal structures.
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c© Springer-Verlag Berlin Heidelberg 2005



166 A. Stauffer, D. Mange, and F. Vannel

2 The 3D Tom Thumb Algorithm

The minimal 3D structure is made up of eight cells organized as a 2×2×2 array.
In order to show the growth and the self-replication of this minimal structure,
we introduce 2D graphical representations. In Figure 1, the eight cells of the
minimal structure are organized as two levels L = 1 and L = 2 of two rows
by two columns. Each cell is able to store in its four memory positions four
configuration data. The original configuration information is a string of 16 data
moving counterclockwise by one data at each time step (t = 0, 1, 2, ...).

The graphical representation as well as the hexadecimal representation of the
data composing the configuration string are detailed in Figure 2. They are either
empty data (0), code data (from 1 to E) or flag data (from 1 to 9 in addition
to F). The code data is used to define the functionality of the structure. The
flag data is used to build the connections between the cells of the structure and
to create branches for self-replication. Furthermore, each data is given a status
and corresponds eventually to a mobile data, indefinitely moving around the
structure, or a fixed data, definitely trapped in a memory position of a cell.

At each time step, a data of the original configuration string is shifted from
right to left and simultaneously stored in the lower leftmost cell (Figure 1). Note
that the first, third, ... data of the string (i.e. each odd data) is always a flag

1 2 3 4 5 6 7 8

t = 0

L = 2

L = 1

Fig. 1. 2D representation of the minimal 3D structure (2× 2× 2 cells) with its config-

uration string at the start (t = 0)

: empty data (0)

- : don't care data (1 ... F)

C

F

: code data (1 ... E)

: flag data (1 ... 9, F)

-

-

: north connection flag (1)

: east connection flag (2)

: south connection flag (3)

: west connection flag (4)

: up connection flag (5)

: down connection flag (6)

: north branch and
  east connection flag (7)
: east branch and
  up connection flag (8)
: up branch and
  down connection flag (9)
: branch activation and
  north connection flag (F)

: mobile data

: fixed data

Fig. 2. Graphical and hexadecimal representations of the data
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F , while the second, fourth, ... data (i.e. each even data) is always a code C.
According to the Tom Thumb algorithm [5], the construction of the structure,
i.e. storing the fixed data and defining the paths for mobile data, depends on
two major patterns (Figure 3).

F

C F'

F F

C C F

F'' C F'F''

C' F'F''C'' C' F'F''C''

t t +1

t t +1
(b)

(a)

Fig. 3. Memory patterns for constructing a structure. (a) Shift data. (b) Load data.
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Fig. 4. Constructing the minimal structure (t = 4: north path, t = 8: east path, t = 12:

south path, t = 16: up path, t = 20: north path (L = 2) and north branch (L = 1),

t = 24: west path (L = 2) and east branch (L = 1), t = 28: south path, t = 32: down

path and structure completion).
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– If the two, three or four rightmost memory positions of a cell are empty
(blank squares), the data are shifted by one position to the right (shift data).

– If the rightmost memory position is empty, the data are shifted by one po-
sition to the right (load data). In this situation, the rightmost F ′ and C′

data are trapped in the cell (fixed data), and a new connection is estab-
lished from the second leftmost position toward the northward, eastward,
southward, westward, upward or downward cell, depending on the fixed flag
information (F ′ = 1 or F, 2 or 7, 3, 4, 5 or 8, 6 or 9).

Applying the memory patterns of Figure 3 to our original configuration
string, we get two data trapped in a cell and a new connection toward another
cell of the structure every four time steps (Figure 4). At time t = 32, 32 data,
i.e. twice the contents of the original configuration, have been stored in the 32
memory positions of the final structure. 16 data are fixed data, defining both
its structure and its functionality, and the 16 remaining ones are mobile data,
composing a copy of the original configuration information. Translation (i.e. con-
struction of the structure) as well as transcription (i.e. copy of the configuration)
have been therefore achieved.

In order to self-replicate, the original structure is able to trigger the con-
struction of three copies, nothward, eastward and upward. At time t = 19, the
pattern of data initiates the construction of the northward structure. In this
pattern, the lower level upper leftmost cell is characterized by two specific flags,
i.e. a fixed flag indicating a north branch (F = 7) and the branch activation flag
(F = F). This pattern is visible in Figure 5a (third row). The new path to the
northward structure starts from the second leftmost memory position (Figure 4).
At time t = 23 and t = 47, the patterns corresponding to the third row of the
eastward and upward signals in Figure 5b and e initiate self-replication of the
structure to the east and to the top respectively. The other patterns are needed
for constructing the inner paths of the structure.

The self-replicating structure in Figure 6 is an example of a non minimal four-
column, three-rows and three-level structure. All the non minimal structures can
be realized according to this implementation which keeps the number of column
even in order to properly close the data path. These non minimal structures
involve a new flag (Figure 7) and two more construction patterns (Figure 8).

F C

F C

C'' C' F C

F C

F C

F C

F C

F C

C'' C'

F C

C'' C'

F C

(a) (b)

(c)

(d) (e) (f)

Fig. 5. Patterns of data triggering the path signals. (a) Northward. (b) Eastward. (c)

Southward. (d) Westward. (e) Upward. (f) Downward.
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Fig. 6. Example of a non minimal structure (4 × 3 × 3 cells)

: east branch and west connection flag (A)

Fig. 7. Graphical and hexadecimal representations of the additional data

C'' C'F C

(a) (b)

Fig. 8. Additional patterns of data triggering the path signals. (a) Westward. (b) East-

ward.

3 The Data and Signals Cellular Automaton (DSCA)

Data and signals cellular automata (DSCA) were originally conceived to provide
a formal framework for designing growing structures [8], [7]. Such an automaton
is made up of an array of cells, each of which is implemented as a digital system
processing both data and signals in discrete time steps. The cellular array (grid)
is n-dimensional, where n = 1, 2, 3 is used in practice.

In growing structures, the data and the signals represents two different types
of information. The data constitute the information that travels through the
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grown structure. The signals constitute the information that controls the growth
of the structure.

The basic cell of our three-dimensional seven-neighbor DSCA works with the
northward (N), eastward (E), southward (S), westward (W ), upward (U) and
downward (D) directed data (D) and signals (S) (Figure 9). The cell computes
its digital outputs O from its digital inputs I.

SDI3:0

DO3:0
EDI3:0
NDI3:0

WDI3:0

ENC GEN

P
A

3:
0

DIMUX

G
A

3:
0

NSO
ESO
SSO
WSO

NSI
ESI
SSI
WSI

P
B

3:
0

LDPLDP

PB3:0
PA3:0
GA3:0

DOBUF

I3:0

ENO
G

B
3:

0
UDI3:0
DDI3:0

USI
DSI

USO
DSO

Fig. 9. Basic cell of the three-dimensional seven-neighbor DSCA

This cell is designed as a digital system, resulting from the interconnection of
a data processing unit and a control unit. The processing unit handles the data.
It is made up of the following resources:

– A 6-input multiplexer DIMUX for the selection of one of the six data input
lines, NDI3 : 0, EDI3 : 0, SDI3 : 0, WDI3 : 0, UDI3 : 0, or DDI3 : 0.

– A 4-level stack interconnecting two 4-bit registers GA3:0 and GB3:0 for the
propagation of the configuration data with two 4-bit registers PA3:0 and
PB3:0 for the memorization of the configuration data.

– A buffer DOBUF to enable the data output DO3 : 0.

The control unit computes the signals. It combines three resources:

– A signal inputs SI encoder ENC.
– A 4-bit data input register I3:0 for the memorization of the selection operated

by the multiplexer DIMUX.
– A signal outputs SO generator GEN.

The operation tables of the data input multiplexer, the stack registers, the
data output buffer and the data input register are given in Appendix A. This ap-
pendix presents also the truth table of the encoder as well as the logic equations
of the generator.
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4 The BioCube Hardware Implementation

The BioCube is intended as a reconfigurable 3D computing structure capable of
interacting with its environment by means of touch-sensitive elements coupled
with LED displays. Its structure is inspired from cellular organisms, who are 3D
cell arrays.

The BioCube contains 64 units, arranged as 4 layers of 4 rows by 4 columns.
Each unit, integrated inside a plastic bubble, has 6 pipe links with the neigh-
boring units. Figure 10 shows the structure of the BioCube.

Fig. 10. The BioCube 3D computing structure

Each BioCube unit is made up the following parts:

– A proximity sensor acting as an input element able to detect a finger touching
any part of the plastic bubble.

– A three color LED serving as an output element designed to illuminate the
sphere uniformly with one from 16’777’216 colors (8 bits for each basic color).

– A reconfigurable computing element implemented as an FPGA (Spartan 3
XC3S200 Xilinx FPGA) with 200’000 equivalent logic gates. Some of its
interesting features are the embedded 18x18 multipliers, the several 18Kb
Block Ram and the four digital clock managers (DCM) who give the possi-
bility to multiply the clock frequency.
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– A flash memory and a CPLD. The flash memory can save up to four different
FPGA configurations. The CPLD only serves to program the FPGA with
one of these configurations.

– A 50Mhz input clock that the FPGA can multiply up to 300 Mhz with one
internal DCM .

– I/O connections with the neighboring units made as 10 wire cables in order
to limit the routing from bubble to bubble. Communications using serial
data transfers, the signals are multiplexed in each FPGA according to these
serial links.

The BioCube is placed on a table for structure robustness purpose and in
order to supply the power to its 64 units. This system is controlled by a computer.
A simple software and a specific interface allow the synchronization of the 64
units with an external clock driven by the PC. The software performs a second
task in sending new FPGA configurations to the units that can be saved in flash
memory slots. An interesting feature is the possibility to run different FPGA
configurations in each bubble. With this option, we can, for example, configure
all the internal bubbles with one application, and the external bubbles with
another one. The BioCube logic complexity amounts to a total of about 13 mio.
reconfigurable gates.

Figure 11 shows the 3D self-replication of the 2 × 2 × 2 minimal loop. For
demonstration purpose, a trigger was added in order to launch the self-replication
process. The copy of the loop in a given direction is therefore activated by
touching some specific bubbles.

Fig. 11. The 2 × 2 × 2 minimal loop and its upward 3D self-replication
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5 Conclusion

Several years before the publication of the historical paper by Crick and Wat-
son [10] revealing the existence and the detailed architecture of the DNA double
helix, von Neumann was already able to point out that self-replication was a two-
mode process able to both interpret (translation mode) and copy (transcription
mode) a one-dimensional description, the configuration string. Self-replication
will allow not only to grow, but also to repair complete 3D structures. Self-
replication is now considered as a central mechanism indispensable for circuits
that will be implemented through the nascent field of nanotechnologies [1] partic-
ularly when fault-tolerant properties associated with developmental approaches
are taken into consideration.

A first field of application of the self-replication of 3D structures is quite natu-
rally the classical self-replicating automata, such as three-dimensional reversible
automata [2] or asynchronous cellular automata [6].

A second, and possibly more important field of application is Embryonics,
where artificial multicellular organisms are based on the growth of a cluster of
cells, themselves produced by cellular division and cellular differentiation [3] [4].

Other possible open avenues are in the field of autonomic computing. An
autonomic computer needs to possess many characteristics of the living being,
like the ability to healing itself for instance. This means that the autonomic
system has to know its own resources in order to reconfigure itself and to call up
redundant elements in case of a malfunction. By borrowing from living creatures
three principles of organization (multicellular organization, cellular division, and
cellular differentiation), we plan to design bio-inspired computing machines able
to grow, to self-replicate and self-repair, thus bringing an original solution to the
new era of 3D nanoscale autonomic computers.
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Appendix A: Tables and Equations of the DSCA Basic
Cell

Figures 12 to 17 show the individual tables describing the input multiplexer,
the stack registers, the output buffer, the input register, and the signal en-
coder.

The generator implements the output signals according to the following equa-
tions where PBZ represents an empty data (0) in the memorization register
PB3:0 and GAF a branch activation and north connection flag (F) in the prop-
agation register GA3:0.

NSO = PBZ.PA3′.PA2′.PA1′.PA0
+ PBZ.PA3.PA2.PA1.PA0
+ GAF.PB3′.PB2.PB1.PB0 (1)

ESO = PBZ.PA3′.PA2′.PA1.PA0′

+ PBZ.PA3′.PA2.PA1.PA0
+ GAF.PB3.PB2′.PB1′.PB0′

+ GAF.PB3.PB2′.PB1.PB0′ (2)
SSO = PBZ.PA3′.PA2′.PA1.PA0 (3)

WSO = PBZ.PA3′.PA2.PA1′.PA0′

+ PBZ.PA3.PA2′.PA1.PA0′ (4)
USO = PBZ.PA3′.PA2.PA1′.PA0

+ PBZ.PA3.PA2′.PA1′.PA0′

+ GAF.PB3.PB2′.PB1′.PB0 (5)
DSO = PBZ.PA3′.PA2.PA1.PA0′

+ PBZ.PA3.PA2′.PA1′.PA0 (6)
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ZERO

operation description

DI = 0
DI = NDISELECT NDI
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1
1
1
1
1
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0
0
0
0
1
1

0
0
1
1
0
0

0
1
0
1
0
1

Fig. 12. Operation table of the data input multiplexer DIMUX

LOAD

operation description

GA <= DI
GB <= GA

Fig. 13. Operation table of the propagation registers GA3:0 and GB3:0

HOLD

LOAD

operation description

PA <= PA
PB <= PB
PA <= GB

LDP

0

1
PB <= PA

Fig. 14. Operation table of the memorization registers PA3:0 and PB3:0 (LDP =

PB3′.PB2′.PB1′.PB0′)

ZERO

operation description

DO = 0
DO = GB

ENO

0
1TRUE

Fig. 15. Operation table of the data output buffer DOBUF (ENO = PB3 + PB2 +

PB1 + PB0
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- - - - -
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1 - - - -
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0 0 1 - -
- - - 1 -
- - - - 1

Fig. 16. Truth table of the encoder ENC (ID = I3.I2.I1′.I0)
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HOLD

operation description

I <= I
I <= D

LDI

0
1LOAD

Fig. 17. Operation table of the data input register I3:0 (LDI = NSI + ESI + SSI +

WSI + USI + DSI)
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Abstract. This paper will present the final hardware realization of a new family 
of programmable devices that has specifically being conceived in order to ad-
dress the prototyping of bio-inspired principles. The devices are organized 
around a custom 32-bit RISC microprocessor and a custom FPGA. The internal 
architecture devised for the devices is scalable, so that it is possible to construct 
a physical hardware platform whose size matches the requirements of the appli-
cation to be handled. To facilitate the development of applications for this 
hardware platform a complete set of design tools has been developed. 

1   Introduction 

During the last years standard programmable devices have been extensively used to 
provide physical implementations for bio-inspired principles, either as a direct sub-
strate [1] or as a supporting platform for extended architectures [2], [3], [4]. Even 
some custom programmable architectures [5], [6] have been developed in order to 
provide an efficient substrate for the realization of these principles. However, there is 
still a lack of an integrated system able to offer at the same time the basic features 
required to implement actual autonomous bio-inspired hardware: 

• Partial dynamic reconfiguration, i.e., the ability to modify the functionality of a 
section of the design while it is in normal operation and with a delay compara-
ble to the execution delay of the system. Even if this capability is being offered 
by the programmable devices offered by Xilinx [7] and Atmel [8] it is usually 
limited by the lack of information about the physical configuration string or by 
the granularity of the reconfiguration area. 

• Self-configuration, i.e., the capability of the programmable device of modify-
ing its functionality using its own resources. This feature is already present in 
the Cell Matrix devices [5]. 

• Dynamic routing, i.e., the possibility of changing in real time the connectivity 
between the elementary programmable cells included in the system without the 
need for an external compiler. 

The main goal of the POEtic project [9] was the development of a flexible hard-
ware substrate able to provide capabilities similar to those present in living beings, 
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like evolution, development, self-replication, self-repair and learning. One of the 
major outcomes of the project was an integrated programmable electronic system, the 
POEtic chip, that provides in a single device the three features mentioned above: 
partial dynamic reconfiguration, self-configuration and dynamic routing. We shall 
demonstrate that the combination of these capabilities in a single hardware substrate 
provides an efficient platform for the prototyping and development of artifacts based 
on bio-inspired principles. 

The rest of the paper is organized as follows: in the next section we shall present 
the major features included in the architecture conceived for the POEtic devices. Then 
we shall review the actual physical implementation of the device and the development 
environment that has been built around it. Finally, the conclusions and our current 
work will be outlined. 

2   The POEtic Architecture 

The structural organization of a POEtic chip is represented in Fig. 1. 

Environment
subsystem
Environment
subsystem

System
interface
System
interface

Organic
subsystem
Organic

subsystem
O

I

to other POEtic chips

to other POEtic chips

sensors

actuators

system bus

POEtic chip
 

Fig. 1. Organization of the POEtic chip 

As it can be deduced from this figure, a POEtic chip is constituted by three main 
building blocks: 

• Environment subsystem: This is the component of the tissue that is in 
charge of managing the interaction with the environment. This interaction 
can be considered at two different time scales: on-line interaction and evolu-
tion (phylogenesis). The on-line interaction refers to the continuous process 
by means of which a given individual implemented in the tissue is sensitive 
to the input stimuli that arrive from the external environment. These stimuli 
may take the form of any physical magnitude (light, pressure, temperature, 
…), and after a conditioning and conversion processes are translated into in-
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ternal signals that may be used by the individual either to extract some 
knowledge from the environment or to produce an output as a result of some 
internal processing. These output signals may be later translated, by means of 
a set of proper actuators, into physical magnitudes that are reverted as output 
actions to the environment. This on-line interaction constitutes the basic sen-
sor-actuator loop that permits a given individual to adapt its behaviour to the 
specific characteristics of the environment where it is placed. The second 
kind of interaction with the environment acts at a population level and ex-
ceeds the life time of an individual. In this case the sensor-actuator loop is 
used to define the basic substrate (the genome) of the individuals that are ca-
pable of adapting its behaviour to the environment in the most efficient way 
according to a given fitness measure. 

• Organic subsystem: It is in charge of implementing the behaviour of an indi-
vidual, following the principles described by the innate information that has re-
sulted from the evolutionary process. Therefore, it is the goal of this system to 
permit the development (ontogenesis) of a given functionality from the infor-
mation stored in a genome, and also to permit the adaptation (epigenesis) of 
this functionality according to the stimuli received from the environment. 

• System interface: This element will allow for an efficient communication be-
tween the environment and the organic subsystem of the tissue. It also consti-
tutes the substrate that will provide the basic mechanisms that will permit the 
scalability of the tissue. 

2.1   The Environment Subsystem and System Interface 

The environment subsystem of the POEtic tissue has been built around a custom 32-
bit microprocessor with an efficient and flexible system bus, based on the AMBA 
specification [10], and several custom peripherals. The reason for using a centralised 
system to carry out evolutionary processes is motivated by the fact that, even if evolu-
tion acts on a population of individuals, at the end there must be a global unit that 
should evaluate the fitness of the individuals and determine those from which the next 
population has to be constructed. Therefore, the functionality of the individuals will 
be implemented in the organic subsystem, but it is the microprocessor that constitutes 
the core of the environment subsystem that will drive the basic steps of the evolution-
ary process, as well as the interaction of the individuals with the environment. Addi-
tionally, the use of a programmable unit to implement the phylogenetic mechanisms 
of the tissue will permit to test and develop different evolutionary strategies, since this 
will imply just an update of the software executed by the microprocessor. Finally, this 
alternative will largely simplify the management of the acquisition/conversion units 
that are required to handle the sensor-actuator loop needed to complete the epigenetic 
and phylogenetic processes to be implemented by the tissue. 

The system interface of the Poetic device plays a major role in allowing for its 
scalability features. This means that it is possible to connect several POEtic chips in 
order to construct an electronic tissue whose size can be accommodated to the actual 
needs of a given application without posing specific constraints neither on the system 
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architecture nor in the connectivity pattern among the POEtic chips that constitute the 
tissue. 

In this way, a POEtic tissue can be constructed as a bidimensional array constituted 
by POEtic chips. The connectivity between these chips is based on two different 
buses, named organic (O) and interface (I) buses. The signals that constitute the or-
ganic bus permit to communicate (at a cellular level) the organic subsystems present 
in every POEtic chip. The interface bus carries those signals that permit to handle the 
collection of POEtic chips as a single tissue, so that from a user point of view the 
tissue has only one environment subsystem and one organic subsystem. This is repre-
sented in Fig. 2. 
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Fig. 2. Scalability properties of the POEtic tissue 

2.2   The Organic Subsystem 

The organic subsystem of the POEtic device is made up of 2 layers, as depicted in 
Fig. 3: a two-dimensional array of basic elements, called molecules, and a two-
dimensional array of routing units. Each molecule is connected to its four neighbours 
in a regular structure. Mainly containing a 16-bit look-up table (LUT) and a flip-flop 
(DFF), it has the capability of accessing the routing layer that is used for inter-cellular 
communication. This second layer implements a dynamic routing algorithm allowing 
the creation of data paths between cells at runtime. 

A molecule has eight different operational modes, to speed up some operations, 
and to use the routing plane.  

• In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four 
inputs. 

• In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a re-
sult depending on three inputs. The first result can go through the flip-flop, 
and is the first output. The second one can be used as a second output, and is 
directly sent to the south neighbor (can serve as a carry in parallel opera-
tions). 
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Fig. 3. Organization of the organic subsystem 

• In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift reg-
ister. This mode could be used to compare a serial input data with a data 
stored in the 8-bit shift register. 

• In Shift Memory mode, the 16 bits are used as a shift register, in order to 
store data, for example a genome. One input controls the shift, and another 
one is the input of the shift memory. 

• In Input mode, the molecule is a cellular input, connected to the inter-
cellular routing plane.  

• In Output mode, the molecule is a cellular output, connected to the inter-
cellular routing plane. 

• In Trigger mode, the 16-bit shift register should contain "000...01" for a 16-
bit identifier system. It is used by the routing plane to synchronize the identi-
fier decoding during the routing process.  

• In Configure mode, the molecule can partially configure its neighborhood. 
One input is the configuration control signal, and another one is the configu-
ration shifting to the neighbors. 

The configuration of the device can be made in a parallel manner, through a 32-bit 
bus. The 76 configuration bits of a molecule are split into three 32-bit words. Addi-
tionally, the configuration system of the molecules can be seen as a shift register of 76 
bits split into 5 blocks: the LUT, the selection of the LUT’s input, the switch box, the 
mode of operation, and an extra block for all other configuration bits. Each block 
contains, as shown in Fig. 4, together with its configuration, one bit indicating, in case 
of a reconfiguration coming from a neighbour, if the block has to be bypassed. This 
bit can only be loaded from the microprocessor. 

The special configure mode allows a molecule to partially reconfigure its 
neighbourhood. It sends bits coming from another molecule to the configuration of 
one of its neighbours. By chaining the configurations of neighbouring molecules, it is  
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Fig. 4. Organization of the configuration bits for partial reconfiguration 

possible to modify multiple molecules at the same time, allowing, for example, the 
synaptic weights in a neuron to be changed. Moreover, this mechanism permits to 
use up to 54 of the configuration bits to store information, that can be accessed 
serially. 

2.3   Dynamic Routing 

The dynamic routing system is designed to automatically connect the cells’ inputs and 
outputs. Each output of a cell has a unique identifier. For each of its inputs, the cell 
stores the identifier of the source from which it needs information. A non-connected 
input (target) or output (source) can initiate the creation of a path by broadcasting its 
identifier, in case of an output, or the identifier of its source, in case of an input. The 
path is then created using a parallel implementation of the breadth-first search algo-
rithm. When all paths have been created, the organism can start operation, and exe-
cute its task, until a new routing is launched, for example after a cell addition or a 
cellular self-repair. 

Our approach has many advantages, compared to a static routing process. First of 
all, a software implementation of a shortest path algorithm, such as Lee’s [11], is very 
time-consuming for a processor, while our parallel implementation requires a very 
small number of clock cycles to finalize a path. Secondly, when a new cell is created 
it can start a routing process, without the need of recalculating all paths already cre-
ated. Thirdly, a cell has the possibility of restarting the routing process of the entire 
organism, if needed (for instance after a self-repair). Finally, our approach is totally 
distributed, without any global control over the routing process, so that the algorithm 
can work without the need of the central micro-processor. 

The routing algorithm is executed in four phases:  

Phase 1: Finding a Master  
In this phase, every target or source that wants to and is not connected to its corre-
spondent partner tries to become master of the routing process. A simple priority 
mechanism chooses the most bottom-left routing unit to be the master, as shown in 
Fig. 5. Note that there is no global control for this priority, every routing unit knowing 
whether or not it is the master. This phase is over in one clock cycle, as the propaga-
tion of signals is combinational. 
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Fig. 5. Three consecutive steps of the routing algorithm. The black routing unit will be the 
master, and therefore will perform its routing. 

Phase 2: Broadcasting the Address  
Once a master has been selected, it sends its address in case of a source, or the address 
of the needed source in case of a target. It is sent serially, in n clock cycles, where n 
is the size of the address. The same path as in the first phase is used to broadcast the 
address, as shown in Fig. 6. 

 

Fig. 6. The propagation direction of the address: north → south | east → south, west, and north | 
south → north | west → north, east, and south | routing unit → north, east, south, and west 

Every routing unit, except the one that sends the address, compares the incoming 
value with its own address (stored in the molecule underneath). At the end of this 
phase, that is, after n clock cycles, each routing unit knows if it is involved in this 
path. In practice, there has to be one and only one source, and at least one target. 

Phase 3: Eliminating sources and targets  
In some situations, a source should start a routing process, for instance, in a devel-
opmental process. In such a process, it would be useful to have many sources and 
targets with the same ID. So at this stage, it is possible there is more than one 
source involved in the routing process. In order to avoid multiple sources, in this 
phase that lasts only one clock cycle, if a source is at the origin of the routing proc-
ess, it sends a signal to every other routing unit, to let them know a source is at the 
origin. Then every other source with the same ID disabled its participation in the 
current process. 

The same disable is performed in case a target launched the routing process. 
Every target that is not the master disables its participation to the current process, to 
ensure that the target that started the process will be the only one connected to a 
source.  

Phase 4: Building the Shortest Path  
The last phase, largely inspired by [12], creates a shortest path between the selected 
source and the selected targets. An example involving 8 sources and 8 targets is 
shown in Fig. 7, for a densely connected network. 
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Fig. 7. Test case with a densely connected network 

A parallel implementation of the breadth-first search algorithm allows the routing 
units to find the shortest path between a source and many targets. Starting from the 
source, an expansion process tries to find targets. When one is reached, the path is 
fixed, and all the routing resources used for the path will not be available for the next 
successive iterations of the algorithm. 

3   Physical Realization 

The POEtic chip has been implemented and fabricated as an ASIC of 54 mm2 using a 
0.35 μm CMOS process. The chip, whose layout is depicted in Fig. 8, contains 144 
molecules organized as an 8x18 array and the complete environment subsystem ex-
plained previously. Even if implemented using a standard technology the ASIC im-
plementation of the POEtic tissue demonstrates its superior integration capabilities 
when compared with those offered by standard prototyping platforms (the prototyping 
experiments performed within the framework of the project show that an FPGA with 
3 million system gates capacity is able to implement the functionality of just 80 PO-
Etic molecules). 

Specific development boards have been constructed in order to test the POEtic de-
vices and to implement practical applications on them. These are depicted in Fig. 9. 
Fig. 9(a) represents the master board, containing one POEtic chip, Flash and SDRAM 
memory blocks and a USB communication unit that permits to create an interface 
with an external host. Fig. 9(b) depicts the slave board, containing a 2 x 2 array of 
POEtic chips. The slave board can be attached to the master board, and it is also pos-
sible to connect several slave boards between them in order to create an electronic 
tissue with the required size for the application to be handled. 

Since the complete POEtic tissue has been specified and developed using a stan-
dard hardware description language (VHDL) it can be implemented in a standard 
prototyping platform (though with limited functionality due to the capacity restric-
tions of current programmable devices). Therefore, in order to facilitate the 
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Fig. 8. Layout of the POEtic chip 

 

Fig. 9. Details of (a) the master and (b) slave boards developed for the POEtic devices 

use of the tissue by external users a complete set of tools have been developed within 
the framework of the project. This set includes a schematic editor and synthesizer, a 
molecule-level design entry and simulation tool for the organic subsystem, a C com-
piler and an assembler integrated in a graphical user interface with language-sensitive 
editing capabilities, a graphical user interface for the simulation of programs devel-
oped for the microprocessor and a system debugger. 
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4   Conclusions 

The POEtic project has produced at its end the first programmable integrated system 
with capabilities inspired in the organization principles present in living beings: evo-
lution, development/growth, self-replication, self-repair and learning. The resulting 
electronic device permits to construct a multi-cellular tissue whose size can be 
adapted to the specific requirements of the application to be handled. The internal 
architecture of the device includes features, like dynamic partial reconfiguration, self-
configuration or in-hardware dynamic routing, that were never combined (if not pre-
sent at all) in any past electronic device. 

In this paper we have presented the architecture that has been conceived for the 
POEtic devices, as well as the internal organization of its main constituent elements. 
Then the physical implementation details of the integrated systems and the develop-
ment boards constructed to create applications based on these devices. The whole 
system has been described and developed using a standard hardware description lan-
guage (VHDL). This, together with the set of tools that have been developed for the 
devices, will permit to test the concepts developed within the project using standard 
prototyping platforms. 

The availability of this brand new family of programmable devices thus opens long 
term opportunities for the implementation of electronic systems and applications able 
to take profit of these new features. Among them we could consider the following list: 

• Autonomous adaptive systems for deep space exploration. 
• Safety critical systems in the aeronautics and the automotive domains. 
• Sensor integration for distributed, highly immersive sensor and actuator en-

vironments. 
• Personalized, user-adaptable assistant systems. 
• User-adaptable monitoring and early warning systems for handicapped or 

elderly people. 

Our current work is concentrated in the prototyping of large-scale spiking neural 
networks models with bio-inspired learning mechanisms using the prototyping plat-
form offered by the POEtic devices. 
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Abstract. Recent experimental findings appear to confirm that the nature of the 
states governing synaptic plasticity is discrete rather than continuous. This 
means that learning models based on discrete dynamics have more chances to 
provide a ground basis for modelling the underlying mechanisms associated 
with plasticity processes in the brain. In this paper we shall present the physical 
implementation of a learning model for Spiking Neural Networks (SNN) that is 
based on discrete learning variables. After optimizing the model to facilitate its 
hardware realization it is physically mapped on the POEtic tissue, a flexible 
hardware platform for the implementation of bio-inspired models. The imple-
mentation estimates obtained show that is possible to conceive a large-scale im-
plementation of the model able to handle real-time visual recognition tasks. 

1   Introduction 

Among the different types of artificial neural networks models that have been investi-
gated during the last decades spiking neural networks have attracted large research 
efforts [1], [2] because of their biological plausibility and their suitability for a physi-
cal hardware implementation. These neural paradigms usually consider a simplified 
model for the neuron that is based in an integration process for its inputs and the de-
livery of an output spike when the membrane potential exceeds a given threshold. 

Among different learning mechanisms Spike Timing Dependent Plasticity (STDP), 
i.e., the modification of the synaptic weights depending on the time correlation be-
tween pre- and post-synaptic spikes, has raised an increasing interest [3] due to ex-
perimental evidence [4] and observations suggesting that synaptic plasticity may be 
based on discrete dynamics [5]. 

In this paper we shall consider a spiking neural network model [6] based on STDP 
learning rules whose learning dynamics is based on discrete variables. This model has 
demonstrated excellent properties for discriminating dynamic input stimuli in large-
scale networks [7].   
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The rest of the paper is structured as follows: in the next section we shall provide a 
brief summary of the learning scheme proposed in the considered model. Then we 
shall provide the hardware implementation of this model and the procedure for its 
functional validation. The accuracy of the internal variables used in the model is then 
scaled down to allow for a compact hardware implementation. After validating this 
optimization the resulting model is implemented using the POEtic tissue, a prototyp-
ing platform for bio-inspired models. Finally, the conclusions and our current devel-
opment work are outlined. 

2   A Biologically Inspired SNN Model 

The model consists of Leaky Integrate-and-Fire neuromimes connected by synapses 
with variable weight depending on the time correlation between pre- and post-
synaptic spikes. The synaptic potentials are added until their result Vi(t) overcomes a 
certain threshold, θ.  Then a spike is produced, and the membrane value is reset. The 
simplified equation of the membrane value is: 
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where  kmem=exp(-Δt/τmem),  Vi(t) is the value of the membrane and  Si(t) is the state 
variable which signals the occurrence of a spike.  The value of ,Jij is the output of 
each synapse  (ij)  where j is the projecting neuron and i is the actual neuron. 

When a spike occurs in the pre-synaptic neuron, the actual value of the synaptic 
output Jij is added to the weight of the synapse multiplied by an activation variable A. 
Conversely, if there is no pre-synaptic spike then the output Jij is decremented by a 
factor ksyn.  Then, the value of  ,Jij  corresponds to the following equation: 
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where  R is the type of the neuron, either excitatory or inhibitory. 
If the actual neuron is inhibitory, the factor ksyn will reset the output of the synapse 

after a time step; if the actual neuron is excitatory, the update of the synaptic output 
depends on the projecting neuron and the STDP rule is applied. An inhibitory cell can 
not influence another inhibitory cell, i.e. assume a synaptic weight of zero between  
two inhibitory neurons. The basic synaptic strengths are chosen in order to maintain a 
balanced excitatory/inhibitory activity within the network. 

The changes in strength of an excitatory-excitatory synapse depend on the variable 
A which is a function of on an internal variable  Lij given by the following equation: 

Lij(t+1)=kact·Lij(t) + (YDj(t)·Si(t)) – (YDi(t)·Sj(t))     (3) 

where  kact is a kinetic activity factor, which is the same for all the synapses and YD is 
a “learning” decaying variable that depends on the interval between a pre-synaptic 
spike and a post-synaptic spike. When there is a spike, YD reaches its maximum value 
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at the next time step. In the absence of a spike the value of YD will be decremented by 
the kinetic factor klearn, which is the same for all synapses. When a pre-synaptic spike 
occurs just before a post-synaptic spike, then the variable Lij is increased and the syn-
aptic strength becomes larger, thus corresponding to a potentiation of the synapse. 
When a pre-synaptic spike occurs just after a post-synaptic spike, the variable Lij  is 
decreased,  the synaptic weight is weakened , thus corresponding to a depression of 
the synapse. For all kind of synapses, except the excitatory-excitatory, the activation 
variable is always is set to 1. 

The network layout was chosen with 80% of excitatory and 20% inhibitory neu-
rons. Each unit was fully connected within a 5x5 neighborhood, i.e. connected to 24 
neurons (Fig. 1). 

 

Fig. 1. Connectivity of a single neuron 

3   Hardware Implementation 

From a structural point of view the SNN model considered in this paper is constituted 
by four main building blocks: the neuron block, the decay block, the learning block 
and the synapse block. 

The neuron block is in charge of implementing the dynamics of the membrane by 
integrating the pre-synaptic spikes, as indicated in Eq. (1). The characteristics of the 
parameters of this block are the following: 

• The membrane potential has a resolution of 12 bits, with a range [-2048, 2047], 
and the threshold is kept fixed to +640. 

• The membrane decay function has a time constant value of τ=20. 
• The refractory period is set to 1 time unit. 

The decay block will be used in both learning and synapse blocks.  This block is 
aimed to implement a logarithmic decay of the input; it is obtained with a subtraction 
and controlling the time when it is done depending on the input value. This block is 
used in many parts of the design and the decaying variable has been labeled x in Fig-
ure 2. A new value of x will be the input of a shift register which is controlled by the 
most significant bit (MSB) of x and by an external parameter mpar. The output of this 
shift register will be subtracted from the original value of x. This operation will be 
done when the time control indicates it. The time control is implemented by the value 
of a counter that is compared with the result of choosing between the external value 
step and the product  (MSB–mpar)·step.  The decay variable τ depends on the input 
parameters  mpar  and  step. 
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Fig. 2. Diagram of the decay block 

The learning block “measures” the interval between a spike in the projecting neu-
ron j and the actual neuron i.  Depending on these timings and the types of the two 
neurons, the synaptic strength will be modified. 

When a spike is produced by the projecting neuron, the variable YD is set to its 
maximum value and starts to decay. If a spike is produced by the actual neuron im-
mediately after the presynaptic neuron the value of YDj is added to the decaying value 
of L.  Conversely, if a spike is produced at first in the actual neuron and later in the 
projecting neuron, then the value of YDi is subtracted to the decaying value of L.  

If the L variable overcomes a certain threshold  Lth, positive or negative, then the 
activation variable A is increased or decreased, respectively, unless the variable had 
reached  its maximum or minimum, respectively.  If the variable A is increased, then 
L is reset to the value L-2·Lth; if A is decreased, then L is reset to L+2·Lth.  

Figure 3 illustrates the organization of the learning block.  
The characteristics of the parameters of the learning block are the following: 

• The YD variable has a resolution of 6 bits. 
• The time constant for the variable YD is τ=20.  
• The learning variable L of 8 bits and ·Lth is within the range [-128,127]. 
• The activation variable A is coded by 2 bits and takes four states.  
• To improve the sensitivity of the block for long intervals between spikes the 

time constant for the variable L is set to 4000, but it can be changed depending 
on the network size implementation. 

The synapse block is aimed to set the value of J (analogous to the the sum of all 
post-synaptic membrane potentials) and  depends on four factors: the activation level 
A of the synapse, the spiking state of the projecting neuron Sj and the types of the pre- 
and post-synaptic neurons (Ri and Rj). 

A given weight is set for each synapse. This weight is multiplied by the activation 
variable A by means of a shift register, such that if A=0, the weight is multiplied by 0, 
if A=1 it is multiplied by 1, if A=2 it is multiplied by 2, and if A=3 it is multiplied by 
4. This weighted output is added to the decaying value of the variable J.  
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Fig. 4. Diagram of the synapse block 

This operation depends on the neuronal types (Ri and Rj). In the current case study 
there are only two types of neurons, excitatory and inhibitory. If both neurons are 
inhibitory the weight of the synapse is set to 0 and the value of J is always 0 and no 
decay is implemented.  For the other three types of synapses the time constants are 
multiplexed, and the multiplexer is controlled by the types of neurons (Ri,Rj). The 
value of J is obtained at the output of the decay block controlled by the multiplexer. 
Figure 4 shows the organization of the synapse block. 

The characteristics of the parameters of the synapse block are the following: 

• The internal resolution of the block is 10 bits, but the output resolution is 8 
bits, becasue the internal value of J is divided by 4 to keep the correct scaling 
with the other parameters. 

• The time constants used by this block are listed in Table 1. 

Table 1. Time constants for different types of synapses. R=0 corresponds to an excitatory and 
R=1 to an inhibitory neuron. 

Time  
Constant (τ) 

Projecting  
 Neuron Type (Rj)

Actual  
Neuron Type (Ri)

20 0 0 

0 0 1 

3 1 0 

0 1 1 



 Implementation of Biologically Plausible Spiking Neural Networks Models 193 

4   Parameters Tuning 

The resolution required to represent the values of the variables and the number of 
operations to be performed may pose a serious limitation for the final implementation. 
Therefore, an important step consisted in evaluating the model and tuning its parame-
ters in order to get a satisfactory performance. The implementation used in this study 
has been based on a neural network of size 15x15 with a connectivity pattern of 24 
neurons corresponding to a neighborhood of 5x5 (Fig. 1).  The distribution of the 20% 
inhibitory cells was random. The weights, w, and the initial activation variables, A, 
were also chosen randomly.  Dynamic gradient stimuli have been applied to the neu-
ral network. A sequence of vertical bars of gradient intensity move over “strips” of 
neurons placed in the 2D array of the neural network (Fig. 5).   

 

Fig. 5. Input signal applied to the neural network. The arrow to the right means forward sense 
and the arrow to the left means reverse sense. 

The vertical bars may move at different speeds (i.e. spatial frequency).  A neuron 
“hit” by the stimulus receives an input that is proportional to the gradient intensity. 
The activity of the network has been studied in a “training” condition and in a “test” 
condition.  During training the spatial frequency of the stimulus has been incremented 
by discrete harmonics (2x, 4x, etc.) in one direction (the “forward” direction).  During 
test, the stimuli were presented in both forward and reverse sense. A Gaussian noise 
(Mean 0, SD= 48) is applied to all neurons during all the time.  The characteristics of 
the input applied to each neuron are the following: 

• TCLK: 20 ns. Maximum amplitude: 127. 
• Training period: 20 us. Forward sense  
• Test period: 10 us. Forward and Reverse sense 

The activity calculated over a “strip” of neurons perpendicular to the direction of 
the movement represents a measure of  “local” activity.  In this case, the strip is one-
column wide. In Fig. 6 the “local” activity is measured by the count of spikes pro-
duced as a function of the time steps. We can observe that in the forward sense there 
exists an activation pattern with a temporal correlation, but in reverse sense the net-
work output has no such temporal correlation. This result demonstrates that the se-
lected structure of our neural network is able to perform an implicit recognition of 
dynamic features based on simple unsupervised STDP rules.  
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(a) (b) 

Fig. 6. Local activity in column 1. (a) test stimuli are applied in forward sense. (b) test stimuli 
are applied in reverse sense. 

At a first attempt the resolution of the parameters has been reduced by 2 bits and 
some values and time constants have been changed to keep the correct scaling. Table 2 
shows the new values of the internal parameters after this optimization process. The 
final organization resulting from this optimization process is depicted in Fig. 7. The 
simplified model resulting from this optimization has been validated again using the 
same input stimuli presented in Fig. 5. The results of these simulations demonstrate that 
the model is still capable of discriminating the input stimuli applied in the forward and 
in the reverse directions.  

Due to the complexity of the design, the simplification of the model is very impor-
tant to avoid redundancy or to use just the necessary components. For this reason, a 
further simplification of all the building blocks that constitute the model has been 
performed [8].  
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Table 2. Resolution of the parameters for an optimized implementation 

Parameter New value 

Membrane resolution 10 bits 

Threshold +160 

Input (J) resolution 6 bits 

Weights  
   (Ri,Rj) (00, 01, 10, 11) 

 
    [0:8], [64:128], [128:256], [0:0] 

YD resolution 4 bits 

L resolution 6 bits 

Membrane decay time constant  20 

YD decay time constant  20 

L decay time constant  4000 

JRi,Rj decay time constants  
   (Ri,Rj) (00, 01, 10, 11) 

 
    (20, 0, 3, 0)    values not optimized 

5   Implementation on the POEtic Tissue 

The POEtic tissue [9] constitutes a flexible hardware substrate that has been specifi-
cally conceived in order to permit the efficient implementation of bio-inspired mod-
els. The tissue may be constructed as a regular array composed of POEtic chips, each 
of them integrating a custom 32-bit RISC microprocessor and a custom FPGA with 
dynamic routing capabilities. 

The custom FPGA included in the POEtic chip is composed of a bi-dimensional ar-
ray of elementary programmable elements, called molecules. Each molecule contains 
a flip-flop, a 16-bit lookup table (LUT) and a switchbox that permits to establish pro-
grammable connections between molecules. 

After the optimization carried out on the neural model in order to facilitate its hard-
ware realization it has been mapped on to the molecules that constitute the POEtic de-
vice. The molecule organization shown in Fig. 8 corresponds to the actual structure of the 
FPGA present in the POEtic device, which is arranged as an 8x18 array of molecules. 

The VHDL models developed for the POEtic tissue have been configured and simu-
lated to validate the functionality of the neuron model designed above. After this valida-
tion stage the strategy for the simulation of large-scale SNN models has been consid-
ered. Since in its actual implementation the POEtic chip only allows for the implemen-
tation of a single neuron and the current number of POEtic chips is far less than 10,000 
it will be necessary to use a smaller array of POEtic chips whose functionality should be 
time–multiplexed in order to emulate the entire network. This means that every POEtic 
chip should be able to manage a local memory in charge of storing the weights and 
learning variables corresponding to the different neurons it is emulating in time. 
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Fig. 8. Molecule-level implementation of the SNN model 

A 16-neurons network organized as a 4x4 array has been constructed using this 
principle. This would permit the emulation of a 10,000-neurons network in 625 mul-
tiplexing cycles. Bearing in mind that each neuron is able to complete a time step in 
150 clock cycles, this means that the minimum clock frequency required to handle 
input stimuli in real time (i.e., to process visual input stimuli at 50 frames/second) is 
around 5 MHz far within the possibilities of the actual clock frequency achieved by 
the POEtic tissue (between 50 MHz and 100 MHz). 

The visual stimuli will come from an OmniVision OV5017 monochrome 384x288 
CMOS digital camera. Specific VHDL and C code have been developed in order to 
manage the digital images coming from the camera. To test the application, artificial 
image sequences have been generated on a display and then captured by the camera 
for its processing by the network. 

6   Conclusions 

In this paper we have considered an unsupervised model for modifiable synapses in a 
Spiking Neural Network based on discrete interval variables. This model has demon-
strated a good performance when used for learning and recognition tasks that involve 
dynamic input stimuli. 

The basic parameters that define the model dynamics have been optimized in order 
to provide a hardware friendly implementation. The resulting model has been imple-
mented in the POEtic tissue, a flexible hardware platform conceived for the physical 
realization of bio-inspired models. The results of the current implementation demon-
strate that the proposed approach is capable of supporting real-time needs of large-
scale spiking neural networks models. 

Our current work is concentrated on the physical implementation of the real-time 
image recognition tasks using the development boards that have been constructed for 
the POEtic tissue. 
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Abstract. This paper proposes an adaptive waveform control in a data trans-
ceiver and demonstrates an adaptive transceiver LSI with a waveform control-
ler. The LSI optimizes on-site transmission performance, with adjustments 
based on measurements for the whole transmission system, including cable 
properties. Utilizing genetic algorithm (GA), our adjustment method has 
achieved a transmission speed that is four times faster (1.6GHz) than current 
standards (400MHz) for IEEE1394. 

1   Introduction 

The demand for high-speed data transmission is rapidly increasing. As transceiver 
LSIs are required to operate at faster data transmission rates, however, new problems, 
such as waveform distortion that is known as inter-symbol interference [1], become 
more acute. 

Conventional solutions such as pre-emphasis techniques [1] are of limited effec-
tiveness in compensating for the cable properties of specific length transmission lines. 
Accordingly, we propose a new approach of adaptive waveform control, where the 
properties of the entire transmission system are adaptively compensated by a genetic 
algorithm [2-4].  This approach makes it possible to adaptively adjust for the on-site 
conditions where the transceiver LSI and the transmission cable are actually used.  
The transceiver LSI with adaptive adjustment has successfully achieved a transmis-
sion speed of 1.6GHz, which is four times faster than the current IEEE1394 standard 
(400MHz), and a cable length of 21m, which is four times longer than the current 
USB standard (5m). 

2   Adaptive Waveform Control Transceiver 

Fig. 1 illustrates the concept of the newly developed adaptive waveform controller.  
The transmitter in the transceiver LSI includes a driver that controls waveforms 
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according to parameters determined by the GA. The receiver in the transceiver in-
cludes evaluation circuitry that evaluates waveform quality. 

The transceiver has three operational modes; a normal-speed mode, an adjustment 
mode, and a high-speed mode. Adjustment is carried out in the following manner: 
After operating in normal-speed mode (at either IEEE1394 or USB standards), ad-
justment, which shifts operation to the high-speed mode, is executed in four steps (see 
Fig. 1). 

1. Waveform-control parameters are initialized by the adjustment program, and a test 
signal is transmitted, once it has been pre-emphasized according to the parameters. 

2. When the test signal reaches the receiver, the waveform is evaluated in terms of its 
quality and assigned a value (i.e., the GA fitness value). 

3. This evaluation value is then fed back to the transmitter. 
4. The transmitter invokes the adjustment program to obtain a better parameter setting. 

By repeating these four steps, the optimal parameter setting is obtained that provide 
the fastest transmission. 

We use a steady-state GA for the automatic waveform control on a PC, because it 
is suitable for hardware implementation.  The GA is executed by iterating the follow-
ing procedure: (1) select one individual from the population, (2) perform a crossover 
operation between this individual and the individual with the highest fitness value, 
and (3) if one of two generated individuals has a better fitness value than the worst 
individual in the population, then that individual replaces the worst individual. 

Fig. 2 shows a block diagram of the waveform control transmitter. The circuit con-
sists of 8 amplifiers that are current-mode driver circuits. Each driver circuit has a 
current-source, within the range of 0 and 12.28mA (12 bits), and a polarity switch (1 
bit).  These parameters are adaptively adjusted by the steady state GA. 

Fig. 3 illustrates the principle behind the adjustment of the waveform control.  The 
rectangular wave for the input data is delayed by 8 steps creating 8 waves, and these 
delayed waves are then converted in terms of amplitude and polarity, and are finally 
combined to form the output data. 

 

Fig. 1.  Concept of adaptive waveform control 
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Fig. 2.  Block diagram of the waveform control transmitter 

 

Fig. 3.  The principle behind the adjustment of the waveform control 

The measurement system, as shown in Fig. 4, consists of the transceiver LSI for 
transmission, a commercially available transmission cable (either IEEE1394 or USB), 
a digital oscilloscope (HP54750A) as a receiver, and a PC to execute the GA.  GA 
evaluation values are measured by the oscilloscope.   

The program on the PC controls the system and automatically adjusts the transmit-
ter using the GA.  The parameters of the transmitter are eight analog values that range 
between 0 and 12.28mA (12 bits / value, represented by A1, A2, … , A8) for the 
current-mode drivers, and a digital value (8 bits, represented by D), which determines 
the values of the eight polarity switches.  A GA chromosome is represented with 104 
bits by connecting these bit strings.  The fitness function of the GA is eye height (see 
Fig. 4) which represents the quality of the received waveform as measured by the 
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Fig. 4.  Block diagram of the measurement system 

oscilloscope.  The population size is 30.  The crossover and mutation rates are 0.8 and 
0.1, respectively. 

GA learning is conducted in two stages in order to accelerate adjustment.  First, the 
GA is executed in order to learn two analog values (A1 and A8), and the digital value 
(D) (while the remaining six analog values are set to 0).  Next, these learned values 
are used as initial values for the next stage of the GA, which learns all 8 analog values 
and the digital value.  Thus, in this two-stage method, a rough waveform is initially 
learned and its shape is subsequently refined. 

3   Results and Discussion 

A chip, as shown in Fig. 5, has been designed and fabricated by 0.13μm CMOS tech-
nology. The area of the transmitter circuit, shown as a white rectangle, is 0.22mm2. 
This area, however, could be reduced for practical implementation by incorporating 
the circuitry into the I/O buffer area. 

 

Fig. 5.  Photo of the 0.13μm CMOS LSI chip 
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Table 1.  Measured threshold margins* for (a) IEEE1394 and (b) USB 

Bold: with GA adaptive adjustment waveform control 
(  ): without pre-emphasis,  —: unable to transmit 
*Threshold margin = eye height / amplitude 

 
 

      (a) Without pre-emphasis        (b) With GA adaptive adjustment 
waveform control 

Fig. 6.  Eye diagrams of a transmission with an IEEE1394 cable (1.6GHz, 9 m) 

On average, adjustment required 200 evaluations, that is, testing of 200 transmitter 
configurations, for each stage. Each evaluation consists of two key processes; (1) GA 
execution (requiring less than 1 ms), and (2) waveform sampling (needing less than 1 
ms for one million data symbols at 1GHz). Thus, each evaluation requires approxi-
mately 2 ms, indicating that the total adjustment time would normally be less than one 
second. 

Measurements of threshold margins, as an index of waveform quality, are shown in 
Table 1, which also include no pre-emphasis conditions for comparison. These meas-
urements show significant improvements at various speeds and cable lengths due to 
adaptive GA-adjustment waveform control. With the IEEE1394 cable (Table 1 (a)), 
transmission performance is four times faster and three times longer than the current 
standard (400MHz, 4.5m).  With the USB cable (Table 1 (b)), performance is two 
times faster and four times longer than the current standard (480MHz, 5m). Eye dia-
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grams for the IEEE1394 cable are shown in Fig. 6.  Eye height as a function of the 
number of GA evaluations is shown in Fig. 7.  The optimum parameters for the 
transmitter are shown in Table 2. 

Fig. 7.  Eye height as a function of the number of GA evaluations (IEEE1394, 1.6GHz, 13.5m, 
average of 5 executions) 

Table 2.  The parameters of the transmitter for IEEE1394 cables adjusted by GA 

 A1 A2 A3 A4 A5 A6 A7 A8 D 
Stage1 3.94 0 0 0 0 0 0 10.21 0F 
Stage2 8.95 0.14 0.13 0.14 0.15 0.13 12.28 10.32 0F 

4   Conclusion 

We have clearly demonstrated effectiveness of GA-based adaptive waveform control 
using developed LSI that optimizes performance for the entire transmission system 
within a practically short time. Our adjustment method has achieved a transmission 
speed of 1.6GHz that is four times faster than the current standard (400MHz) for 
IEEE1394 and a cable length of 21m that is four times longer than current standard 
(5m) for USB. 

In this paper, we have focused on data transmission for USB and IEEE1394 cables.  
In related work, we have proposed data transmission for on-board and back-plane 
connections with adaptive waveform control.  Experimental results show that high 
speed I/O for parallel bit data transmission was realized at 2Gbps for each data bit line 
of 70cm in length [5]. 
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Abstract. One of the challenges in engineering design is responding to a
change of design requirements. Previously we presented a four-arm sym-
metric evolved antenna for NASA’s Space Technology 5 mission. How-
ever, the mission’s orbital vehicle was changed, putting it into a much
lower earth orbit, changing the specifications for the mission. With min-
imal changes to our evolutionary system, mostly in the fitness function,
we were able to evolve antennas for the new mission requirements and,
within one month of this change, two new antennas were designed and
prototyped. Both antennas were tested and both had acceptable perfor-
mance compared with the new specifications. This rapid response shows
that evolutionary design processes are able to accommodate new require-
ments quickly and with minimal human effort.

1 Introduction

One of the challenges in engineering design is responding to a change in design
requirements. Previously we presented our work in using evolutionary algorithms
to automatically design an X-band antenna for NASA’s Space Technology 5
(ST5) spacecraft [4]. Since our original evolutionary runs and the fabrication
and testing of antennas ST5-3-10 and ST5-4W-03, the launch vehicle for the
ST5 spacecraft has changed resulting in a lower orbit and different antenna
requirements. With traditional engineering design such a change in requirements
would necessitate redoing much of the design work with a near doubling of design
costs. In contrast, with an evolutionary design system for automatically creating
antennas once the software has been developed, modifying it to produce antennas
for a similar design problem requires only a minimal amount of human effort to
implement the change a re-evolve new antennas with minimal additional cost.
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The ST5 mission consists of three spacecraft which will orbit at close separa-
tions in a highly elliptical geosynchronous transfer orbit and will communicate
with a 34 meter ground-based dish antenna. Each spacecraft will have two anten-
nas attached, one on each side of the spacecraft, Figure 1. Initially the spacecraft
were to fly approximately 35,000 km above Earth and the requirements for the
communications antenna were for a gain pattern of ≥0 dBic from 40◦ - 80◦ from
zenith. With the change in launch vehicle and the new, lower orbit this necessi-
tated the addition of a new requirement on the gain pattern of ≥-5 dBic from 0◦

40◦ from zenith. The complete set of requirements for the antennas on the ST5
Mission are summarized in table 1. VSWR is a way to quantify reflected-wave
interference, a measure of the impedance mismatch. It is the ratio between the
highest voltage and the lowest voltage in the signal envelope along a transmission
line, with a ratio of 1 being perfect VSWR.

Fig. 1. Photograph of the ST5 mock-up with antennas mounted (only the antenna on

the top deck is visible)

In the rest of this paper we describe the two evolutionary design systems
we used for evolving the initial antennas for this mission and the changes we
made to them to address the change in mission requirements. We then present
the performance of the new antenna designs, both from simulation and from
fabricated units. One of our newly evolved antennas, ST5-33.142.7, meets the
new mission requirements and has successfully passed environmental testing.
Three of these antennas are scheduled to be launched in 2006 and will be the
first evolved hardware in space and the first evolved antennas to be fielded.

2 Evolutionary Antenna Design Systems

As a result of the new ST5 mission requirements we needed to change both the
type of antenna we were evolving and the fitness function. The original antennas
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Table 1. Key ST5 Antenna Requirements

Property Specification

Transmit Frequency 8470 MHz
Receive Frequency 7209.125 MHz
VSWR < 1.2 : 1 at Transmit Freq

< 1.5 : 1 at Receive Freq
Original Gain Pattern ≥ 0 dBic, 40◦ ≤ θ ≤ 80◦, 0◦ ≤ φ ≤ 360◦

Additional Gain Pattern Requirement ≥ -5 dBic, 0◦ ≤ θ ≤ 40◦, 0◦ ≤ φ ≤ 360◦

Input Impedance 50 Ω
Diameter < 15.24 cm
Height < 15.24 cm
Antenna Mass < 165 g

we evolved were constrained to a monopole wire antenna with four identical arms,
with each arm rotated 90◦ from its neighbors. There the EA evolved genotypes
that specified the design for one arm and the phenotype consisted of four copies
of the evolved arm. Because of symmetry, the previous four-arm design has a
null at zenith that is built into the design and is unacceptable for the revised
mission. To achieve an antenna that meets the new mission requirements the new
antenna designs were configured to produce a single arm. In addition, because of
the difficulties we experienced in fabricating branching antennas to the required
precision, here we constrained our antenna designs to non-branching antennas.
In the remainder of this section we describe the two evolutionary algorithms
we used to evolve antennas for the ST5 mission and how we changed them to
address the new requirements.

2.1 Parameterized EA for Non-branching Designs

The first EA was used in our previous work in evolutionary antenna design [3]
and it is a standard genetic algorithm (GA) that evolves non-branching wire
forms. With this EA the design space used a vector of real-valued triplets that
specify the X, Y and Z locations of segment end-points. The fitness function
for this EA used pattern quality scores at 7.2 GHz and 8.47 GHz. Unlike the
second EA, VSWR was not explicitly used in this fitness calculation, rather it
is included implicitly by how it affects the gain pattern. To quantify the pattern
quality at a single frequency, PQf , the following formula was used:

PQf =
∑

0◦ ≤ φ < 360◦

0◦ ≤ θ ≤ 80◦

(gainφ,θ − T )2 if gainφ,θ < T

where gainφ,θ is the gain of the antenna in dBic (right-hand polarization) at a
particular angle, T is the target gain (3 dBic was used in this case), φ is the
azimuth, and θ is the elevation. To compute the overall fitness of an antenna
design, the pattern quality measures at the transmit and receive frequencies were
summed, lower values corresponding to better antennas:
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F = PQ7.2 + PQ8.47

Modifying this evolutionary design system to produce antennas for the new orbit
consisted of changing the fitness function to check angles 0◦ ≤ θ < 40◦ as well
the original range of 40◦ ≤ θ ≤ 80◦.

2.2 Open-Ended EA

The second EA uses an open-ended, variable-length representation in which el-
ements of the genotype specify how to construct the antenna. Each node in the
tree-structured representation is an antenna-construction operator and an an-
tenna is created by executing the operators at each node in the tree, starting
with the root node. In constructing an antenna the current state (location and
orientation) is maintained and operators add wires or change the current state.
The operators are as follows:

– forward(length, radius) - add a wire with the given length and radius ex-
tending from the current location and then change the current state location
to the end of the new wire.

– rotate-x(angle) - change the orientation by rotating it by the specified
amount (in radians) about the x-axis.

– rotate-y(angle) - change the orientation by rotating it by the specified
amount (in radians) about the y-axis.

– rotate-z(angle) - change the orientation by rotating it by the specified
amount (in radians) about the z-axis.

Since we constrained antennas to a single, bent wire with no branching each
node in the genotype has at most one child. This constructive representation
for encoding antennas is an extension of our previous work in using a linear-
representation for encoding rod-based robots [2]. Aside from restricting antennas
to not having branches, the only changes made to this evolutionary design system
to address the new mission requirements were to change the fitness function.

The fitness function used to evaluate antennas is a function of the VSWR
and gain values on the transmit and receive frequencies. These three components
are multiplied together to produce the overall fitness score of an antenna design:

F = vswr × gain× standard deviation

The objective of the EA is to produce antenna designs that minimize F .
The VSWR component of the fitness function is constructed to put strong

pressure to evolving antennas with receive and transmit VSWR values below
the required amounts of 1.2 and 1.5, reduced pressure at a value below these
requirements (1.15 and 1.25) and then no pressure to go below 1.1:

vr = VSWR at receive frequency

v′r =

⎧⎨
⎩

vr + 2.0(vr − 1.25) if vr > 1.25
vr if 1.25 > vr > 1.1
1.1 if vr < 1.1
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vt = VSWR at transmit frequency

v′t =

⎧⎨
⎩

vt + 2.0(vt − 1.15) if vt > 1.15
vt if 1.15 > vt > 1.1
1.1 if vt < 1.1

vswr = v′rv
′
t

The gain-penalty component of the fitness function uses the gain (in decibels) in
5◦ increments about the angles of interest: from 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 360◦.
For each angle, the calculated gain score from simulation is compared against the
target gain for that elevation and the outlier gain, which is the minimum gain
value beyond which lower gain values receive a greater penalty. Gain penalty
values are further adjusted based on the importance of the elevation:

gain penalty (i, j):
gain = calculated gain at θ = 5◦i , φ = 5◦j;
if (gain ≥ target[i]) {

penalty := 0.0;
} else if ((target[i] > gain) and (gain ≥ outlier[i])) {

penalty := (target[i] - gain);
} else { /* outlier[i] > gain */

penalty := (target[i]-outlier[i]) + 3.0 * (outlier[i] - gain));
}
return penalty * weight[i];

Target gain values at a given elevation are stored in the array target[] and
are 2.0 dBic for i equal from 0 to 16 and are -3.0 dBic for i equal to 17 and
18. Outlier gain values for each elevation are stored in the array outlier[] and
are 0.0 dBic for i equal from 0 to 16 and are -5.0 dBic for i equal to 17 and 18.
Each gain penalty is scaled by values scored in the array weight[]. For the low
band the values of weight[] are 0.1 for i equal to 0 through 7; values 1.0 for i
equal to 8 through 16; and 0.05 for i equal to 17 and 18. For the high band the
values of weight[] are 0.4 for i equal to 0 through 7; values 3.0 for i equal to 8
through 12; 3.5 for i equal to 13; 4.0 for i equal to 14; 3.5 for i equal to 15; 3.0
for i equal to 16; and 0.2 for i equal to 17 and 18. The final gain component of
the fitness score of an antenna is the sum of gain penalties for all angles.

To put evolutionary pressure on producing antennas with smooth gain pat-
terns around each elevation, the third component in scoring an antenna is based
on the standard deviation of gain values. This score is a weighted sum of the
standard deviation of the gain values for each elevation θ. The weight value used
for a given elevation is the same as is used in calculating the gain penalty.

This fitness function differs from the one we used previously [4] in the fidelity
to which the desired gain pattern can be specified and in explicitly rewarding
for a smooth pattern. Our previous fitness function with the constructive EA
had one target gain value for all elevations and weighted all elevations equal.
With the new fitness function different target gain values can be set for different
elevation angles and also the importance of achieving the desired gain at a given
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angle is specified through setting the weight value for a given elevation. The
other difference with this fitness function is that previously there was a separate
penalty for “outlier” gain values whereas in the new fitness function this is
included in the gain component of the fitness score and a new component that
measures pattern smoothness is included.

3 Evolved Antennas

To re-evolve antennas for the new ST5 mission requirements we used the same
EA setup as in our initial set of evolutionary runs, however, we did not seed the
first generation with previously evolved antenna designs. For the non-branching
EA, a population of fifty individuals was used, 50% of which is kept from gen-
eration to generation. The mutation rate was 1%, with the Gaussian mutation
standard deviation of 10% of the value range. The non-branching EA was halted
after one hundred generations had been completed, the EA’s best score was
stagnant for forty generations, or EA’s average score was stagnant for ten gener-
ations. For the branching EA, a population size of two hundred individuals was
evolved with a generational EA. Parents were selected with remainder stochas-
tic sampling based on rank, using exponential scaling [5]. New individuals were
created with an equal probability of using mutation or recombination. The Nu-
merical Electromagnetics Code, Version 4 (NEC4) [1] was used to evaluate all
antenna designs.

The best antennas evolved by the two EAs were then evaluated on a second
antenna simulation package, WIPL-D, with the addition of a 6” ground plane
to determine which designs to fabricate and test on the ST5 mock-up. The best
antenna design from each EA was selected for fabrication and these are shown in

(a) (b)

Fig. 2. Evolved antenna designs: (a) evolved using a vector of parameters, named ST5-

104.33; and (b) evolved using a constructive process, named ST5-33.142.7.
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(a) (b)

Fig. 3. Simulated 3D patterns for ST5-104.33 and ST5-33.142.7 on 6” ground plane

at 8470 MHz for RHCP polarization. Simulation performed by WIPL-D. Patterns are

similar for 7209 MHz.

Fig. 4. RHCP vs LHCP performance of ST5-104.33. Plot has 2 dB/division.
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Fig. 5. Measured patterns on ST-5 mock-up of QHA antenna and ST5-104.33 plus

QHA antenna. Phi 1 = 0 deg., Phi 2 = 90 deg.

Figure 2. For these runs a single antenna evaluation took a few seconds of wall-
clock time to simulate and an entire run took approximately six to ten hours.

3.1 Simulated Results

Both antenna designs have excellent simulated RHCP patterns, as shown in
Figure 3 for the transmit frequency. The antennas also have good circular polar-
ization purity across a wide range of angles, as shown in Figure 4 for ST5-104.33.
To the best of our knowledge, this quality has never been seen before in this form
of antenna.

3.2 Measured Results

The antennas were measured on the ST5 mock-up (Figure 1), and the results
are shown in Figure 5. Because each spacecraft has two antennas, one on each
side of the spacecraft, of interest is the performance of pairs of antennas on the
spacecraft. The evolved antennas were arrayed with a Quadrafilar Helix Antenna
(QHA) developed by New Mexico State University’s Physical Science Laboratory
that was the original antenna for this mission. This figure shows plots of two
QHA antennas together, and a QHA and an ST5-104.33 antenna. Results are
similar for ST5-33.142.7, which is the design that has been selected for use on
the ST5 mission. Compared to using two QHAs together, the evolved antennas
have much greater gain across the angles of interest.

4 Conclusion

Previously we reported our work on evolving two X-band antennas for potential
use on NASA’s upcoming ST5 mission to study the magnetosphere. While those
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Fig. 6. Three images of a flight antenna; the evolved wire configuration for the radiator

sits on top of a 6” diameter ground plane and is encased inside a radome.

antennas were mission compliant, a change in launch vehicle resulted in a change
in orbit for the ST5 spacecraft and a change in requirements for their communi-
cation antennas. In response to this change in requirements we reconfigured our
evolutionary design systems and in under four weeks we were able to evolve new
antenna designs that were acceptable to ST5 mission planners.

The first set of new ST5 evolved antenna flight units were delivered to God-
dard Space Flight Center (GSFC) on February 25, 2005 (Figure 6). These flight
units have passed all environmental testing and the current baseline plan is to fly
at least three evolved antennas when the mission launches in 2006. Our ability to
rapidly re-evolve new antenna designs shows that the evolutionary design process
lends itself to rapid response to changing requirements, not only for automated
antenna design but for automated design in general.
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Appendix: Genotype of ST5-33.142.7

Listed below is the evolved genotype of antenna ST5-33.142.7. The format for
this tree-structured genotype consists of the operator followed by a number stat-
ing how many children this operator has, followed by square brackets which
start ’[’ and end ’]’ the list of the node’s children. For example the format for
a node which is operator 1 and has two subtrees is written: operator1 2 [
subtree-1 subtree-2 ]. Since antennas were constrained to be non-branching
each non-leaf node in has at most one child. The different operators in the
antenna-constructing language are given in section 2.2.

rotate-z(0.723536) 1 [ rotate-x(2.628787) 1 [ rotate-z(1.145415) 1
[ rotate-x(1.930810) 1 [ rotate-z(2.069497) 1 [ rotate-x(1.822537)
1 [ forward(0.007343,0.000406) 1 [ rotate-z(1.901507) 1 [
forward(0.013581,0.000406) 1 [ rotate-x(1.909851) 1 [
rotate-y(2.345316) 1 [ rotate-y(0.308043) 1 [ rotate-y(2.890265) 1
[ rotate-x(0.409742) 1 [ rotate-y(2.397507) 1 [
forward(0.011671,0.000406) 1 [ rotate-x(2.187298) 1 [
rotate-y(2.497974) 1 [ rotate-y(0.235619) 1 [ rotate-x(0.611508) 1
[ rotate-y(2.713447) 1 [ rotate-y(2.631141) 1 [
forward(0.011597,0.000406) 1 [ rotate-y(1.573367) 1 [
forward(0.007000,0.000406) 1 [ rotate-x(-0.974118) 1 [
rotate-y(2.890265) 1 [ rotate-z(1.482916) 1 [
forward(0.019955,0.000406) ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]
] ] ] ] ] ] ] ]
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Abstract. We propose a tuning method for MEMS gyroscopes based on evolu-
tionary computation to efficiently increase the sensitivity of MEMS gyroscopes 
through tuning. The tuning method was tested for the second generation 
JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the fre-
quency response of the MEMS device in open-loop operation We also report on 
the development of a hardware platform for integrated tuning and closed-loop 
operation of MEMS gyroscopes. The control of this device is implemented 
through a digital design on a Field Programmable Gate Array (FPGA). The 
hardware platform easily transitions to an embedded solution that allows for the 
miniaturization of the system to a single chip. 

1   Introduction 

Future NASA missions would benefit tremendously from an inexpensive, navigation 
grade, miniaturized inertial measurement unit (IMU), which surpasses the current 
state-of-the art in performance, compactness (both size and mass) and power effi-
ciency.  Towards this end, under current development at JPL’s MEMS Technology 
Group are several different designs for environment tolerant [10], high performance, 
low mass and volume, low power MEMS gyroscopes. The accuracy with which the 
rate of rotation of micro-gyros can be determined depends crucially on the properties 
of the resonant structure. It is both difficult and expensive to attempt to achieve these 
desired characteristics in the fabrication process, especially in the case of small 
MEMS structures, and thus one has limited overall sensor performance due to un-
avoidable fabrication inaccuracies. 
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The sensitivity of the MEMS gyroscope is maximized when the resonant frequencies 
of the two modes of freedom of the MEMS gyroscope are identical. Symmetry of con-
struction is necessary to attain this degeneracy. However, despite a symmetric design, 
perfect degeneracy is never attained in practice. Many methods have been developed for 
tuning MEMS post-resonator gyroscopes. For example [1] and [2] use adaptive and 
closed-loop methods, while [3] changes the frame of the pick-off signal. Our approach 
of gyro tuning is achieved through an electrostatic biasing approach [11]. This approach 
consists of  applying bias voltages to built-in tuning pads to electrostatically soften the 
mechanical springs. Because of the time consuming nature of the tuning process when 
performed manually, in practice any set of bias voltages that produce degeneracy is 
viewed as acceptable at the present time.  Thus a need exists for reducing the time nec-
essary for performing the tuning operation, and for finding the optimally tuned configu-
ration, which employs the minimal maximum tuning voltage.  

This paper describes the application of evolutionary computation to this optimiza-
tion problem. Our open-loop and closed-loop methods used the following fitness 
function for each set of bias voltages applied to the built-in tuning pads: the frequency 
split between the two modes of resonance of the MEMS gyroscope. Our open-loop 
evaluation proceeds in two steps. First, it measures the open-loop frequency response 
using a dynamic signal analyzer. Second, it evaluates the frequency of resonance of 
both modes by fitting Lorentzian curves to the experimental data. The process of 
setting the bias voltages and the evaluation of the frequency split is completely com-
puter automated. The computer controls a signal analyzer and programmable power 
supplies through General Purpose Interface Bus (GPIB). Our method has demon-
strated that we can obtain a frequency split of 52mHz fully automatically in one hour 
compared with 200mHz obtained manually by humans in several hours.  

The closed-loop method is based on controlling the gyro in a closed-loop along one 
axis and measuring the resonance frequencies along this axis at a given set of bias 
voltages, then swapping and driving the other axis, thereby extracting the resonant 
frequency of both axes.  An evolutionary algorithm is then applied iteratively to mod-
ify the bias voltages until the resonant frequency of each axis is equal.  A major ad-
vantage of this closed-loop approach is that the resonant frequencies can be extracted 
quickly (~1 second) as compared to the open-loop control system, which takes two 
orders of magnitude longer. The design of the closed-loop control approach is realized 
on an FPGA with augmented portability for future designs and implementations. 

This paper is organized such that Section 2 describes the mechanics of the MEMS 
micro-gyro, Section 3 describes the evolutionary computation applied to open-loop 
measurements of the resonance frequencies, Section 4 describes the closed-loop 
hardware platform and the results of our preliminary experiments, and Section 5 de-
scribes future directions and summarizes the project results. 

2   Mechanism of the JPL MEMS Micro-gyroscope 

The mechanical design of the JPL MEMS micro-gyro can be seen in Figure 1. The 
JPL/Boeing MEMS post resonator gyroscope (PRG), is a MEMS analogue to the 
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Fig. 1. A magnified picture of the JPL MEMS micro-gyroscope with sense axis Y (S2-, S2+ 
electrodes used to sense, D2-, D2+, D2in- and D2in+ used to drive along the sense axis) and 
drive axis X (D1-, D1+, D1in-, and D1in+ used to drive, S1-, S1+ electrodes used to sense 
along the drive axis)  and the electrodes used for biasing (B1, B2, BT1, BT2)  (picture courtesy 
of C. Peay, JPL). 

classical Foucault pendulum.  A pyrex post, anodically bonded to a silicon plate, is 
driven into a rocking mode along an axis (labeled as X in Figure 1) by sinusoidal 
actuation via electrodes beneath the plate.  In a rotating reference frame the post is 
coupled to the Coriolis force, which exerts a tangential “force” on the post.  Another 
set of electrodes beneath the device senses this component of motion along an axis 
(labeled as Y in the figure) perpendicular to the driven motion.  The voltage that is 
required to null out this motion is directly proportional to the rate of rotation to which 
the device is subjected and the voltage scale is reduced proportionally to the fre-
quency split between the two modes of resonance.  A change in capacitance occurs as 
the top plate vibrates due to the oscillating gap variation between this plate and the 
electrodes underneath.  This change in capacitance generates a time-varying sinusoi-
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dal charge that can be converted to a voltage using the relationship V=Q/C.  The post 
can be driven around the drive axis by applying a time-varying voltage signal to the 
drive petal electrodes labeled D1-, D1+, D1in-, and D1in+ in Figure 1.  Because there 
is symmetry in the device, either of the two axes can be designated as the drive axis.  
Each axis has a capacitive petal for sensing oscillations as well; driving axis: labeled 
S1+ and S1- in Figure 1, sensing axis: labeled S2+ and S2- in Figure 1. The micro-
gyro has additional plates that allow for electrostatic softening of the silicon springs, 
labeled B1, BT1, B2, and BT2 in Figure 1.  Static bias voltages can be used to modify 
the amount of softening for each oscillation mode.  In an ideal, symmetric device, the 
resonant frequencies of both modes are equal; however, unavoidable manufacturing 
imperfections in the machining of the device can cause asymmetries in the silicon 
structure of the device, resulting in a frequency split between the resonant frequencies 
of these two modes.  The frequency split reduces the voltage scale used to measure 
the rate of rotation to which the device is subjected, and thus the sensitivity for detec-
tion of rotation is decreased. By adjusting the static bias voltages on the capacitor 
plates, frequencies of resonance for both modes are modified to match each other; this 
is referred to as the tuning of the device using an electrostatic biasing approach [11]. 

In order to extract the resonant frequencies of the vibration modes, there are two 
general methods: 1) open-loop and 2) closed-loop control [9].  In an open-loop sys-
tem, we are measuring the frequency response along the drive axis over a 50Hz band 
and extract from the measurement the frequency split. A faster method is a closed-
loop control, whereby the gyro is given an impulse disturbance and is allowed to 
oscillate freely between the two resonance frequencies, using a hardware platform to 
control the switch of the drive-angles. 

3   Evolutionary Computation Using Open-Loop Measurement 

3.1   Instrumentation Platform for Open-Loop Frequency Response 

The open-loop measurement consists of exciting the drive axis with a sine wave at a 
given frequency and measuring the resulting amplitude.  This is done repeatedly 
throughout the frequency spectrum (frequency range from 3,300Hz to 3,350Hz; 50Hz 
span; 800 points,). Because of cross-coupling between the different axes, two peaks in 
the amplitude response will appear at two different frequencies, showing the resonant 
frequencies of both axes (Figure 4). This takes approximately 1.4 minutes to complete 
using our instrumentation platform (Figure 2) and must be repeated at least three 
times to average out noise. 

The platform includes one GPIB programmable power supply for DC voltage, a 
GPIB signal analyzer to extract frequency responses (from 3.3kHz to 3.35kHz) of the 
gyro in open-loop, and a computer (PC) to control the instruments and to execute the 
evolutionary optimization algorithms. The power supply DC voltage controls the 
electrostatic bias voltages (connected to the plates B1, BT1, B2, and BT2 in Figure 1) 
that are used to modify the amount of damping to each oscillation mode. The GPIB 
signal analyzer generates a sine wave with a variable frequency (from 3300 Hz to 
3350 Hz with a stepsize of 62.5 mHz – 800 points, 50Hz span) on the drive electrode 
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(D1-, D1+, D1in-, and D1in+ in Figure 1) and measures the response signal on the 
sense electrode (S1-, S1+ in Figure 1) along the drive axis X.  

A PC runs the instrument control tool, the measurement tool, and the evolutionary 
computation tool. The instrument control software sets up the static bias voltages 
using the GPIB power supply DC voltage and measures the frequency response along 
the X axis using the GPIB signal analyzer as shown in Figure 2. The software calcu-
lates the frequency split using peak fitting algorithms. Finally, the evolutionary com-
putation software determines the new DC bias voltages from the frequency split. This 
procedure is repeated until a satisfactory (user-defined)  frequency split is obtained.  

AGT 
35670A

Analyzer
(2 channel)

Genetic 
Algorithm

Gyro

DC Power 
Supplies

B1, B2, BT1, BT2
Stimulus 1,2 (τ) 

 Response 1,2 (θ) 

void SetupDC(float B1, float BT1, 
float B2, 
float BT2)

void SetupStimulus (float startF, 
float span)

Option1:
void GetResponse (float * f1, float * f2, float * 
f1a, float * f2a)
[minimize abs(f1-f2), maybe use f1a and f2a 
(amplitude) information]
Option2: void GetResponse (float * f_split)
[minimize f_split ]

void 
Init_Instruments()

Evolutionary 
Algorithms  

 

Fig. 2. Software interface between the modified Simulated Annealing/modified Genetic Algo-
rithm (Dynamic Hill Climbing) and the Instrumentation Platform using a GPIB programmable 
power supply DC voltage and a signal analyzer. The modified Simulated Annealing and the 
modified Genetic Algorithm are running on a PC, which controls the bias voltages and receives 
the frequencies of both resonance modes. 

3.2   Results of Evolutionary Computation 

The MEMS post resonator micro-gyroscope is subject to an electro-static fine-tuning 
procedure, performed by hand, which is necessary due to unavoidable manufacturing 
inaccuracies. In order to fine-tune the gyro, 4 bias voltages applied to 8 capacitor 
plates have to be determined within a range of –60V to +15V. The manual tuning 
took several hours and obtained a frequency split of 200 mHz. 

In order to fully automate the time-taking manual fine-tuning process, we have es-
tablished a hardware/software interface to the existing manual gyro-tuning hardware-
setup using commercial-off-the-shelf (COTS) components described in Section 3.1. 

We developed and implemented two stochastic optimization techniques, for effi-
ciently determining the optimal tuning voltages and incorporated them in the hard-
ware/software interface: a modified simulated annealing related algorithm [7,8] and a 
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modified genetic algorithm with limited evaluation (Dynamic Hill Climbing) [5,6]. 
These optimization techniques have also been used for other space applications [4]. 

3.2.1   Simulated Annealing Approach 
We were able to successfully fine-tune both the MEMS post-resonator gyroscope and 
MEMS disk-resonating gyroscope (a different gyro-design not discussed here) within 
one hour for the first time fully automatically. After only 49 iterations with the modi-
fied Simulated Annealing related optimization algorithm we obtained a frequency 
split of 125mHz within a 1V-discretization of the search space, starting with an initial 
split of 2.625Hz, using a 50Hz span and 800 points on the signal analyzer for the 
MEMS post-resonator gyroscope (Figure 3A). For the MEMS disk-resonating-
gyroscope we obtained a frequency split of 250mHz/500mHz within a 0.1V-/0.01V-
discretization of the search space, starting with an initial split of 16.125Hz/16.25Hz, 
after 249/12 iterations using a 200Hz span and 800 points on the signal analyzer (Fig-
ure 3B). All three results are better than what can be accomplished manually but 
worse than the results obtained by dynamic hill climbing (modified genetic algo-
rithm). The reason for this is that instead of the peak fitting algorithm employed in the 
modified genetic algorithm approach a simplified, direct peak-finding procedure was 
used in the Simulated Annealing approach. 
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Fig. 3. Frequency split as a function of number of evaluations: Simulated Annealing iterations: 
(A) for the MEMS post-resonator gyroscope; (B) for the MEMS disk-resonating gyroscope. (C) 
Dynamic Hill Climbing algorithm (modified genetic algorithm). 

3.2.2   Genetic Related Algorithm Approach 
We were also able to fine-tune the MEMS post-resonator gyroscope within one hour 
fully automatically using a modified genetic algorithm: dynamic hill climbing. 
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Figure 3 (C) shows the progress of the optimization algorithm aimed at minimizing 
the frequency split. Each evaluation is a proposed set of bias voltages. Our optimiza-
tion method only needed 47 evaluations (51 min) to arrive at a set of bias voltages 
that produced a frequency split of less than 100mHz. 

Figures 4 and 5 show the frequency response for the unbiased micro-gyro respec-
tively before and after tuning using the dynamic hill climbing and the peak fitting 
algorithm.  

After optimization of the bias voltages (Figure 5), the frequency split has been 
minimized to less than 100mHz and the two peaks are indistinguishable on an HP 
spectrum analyzer at 62.5mHz / division (50Hz span, 800 points) setting, which was 
used during the optimization process. 

The frequency split of 52mHz was verified using a higher resolution mode of the 
signal analyzer. 
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Fig. 4. Frequency response (top: 50Hz band, bottom: 6Hz band) before tuning using the modi-
fied genetic algorithm. The frequency split is 1564.8mHz. The Y axis is measured in dB. The 
initial values of the four bias voltages are: B1 = 14.00V, BT1 = 14.00V, B2 = 14.00V, and BT2 
= 14.00V. The bottom picture shows a zoomed-in display of the frequency split over a 6Hz 
band. 
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Fig. 5. Frequency response (top: 50Hz band, bottom: 5Hz band) after tuning using the modified 
genetic algorithm. The Y axis is measured in dB. The tuning frequency split is 52mHz. The opti-
mized values of the four bias voltages are: B1 = 4.00V, BT1 = 4.00V, B2 = 14.00V, and BT2 = -
16.00V. The bottom picture shows a zoomed-in display of the frequency split over a 4Hz band. 

4   Hardware Platform Using Closed-Loop Frequency Response 

The principle of closed-loop electrostatic biasing is based on measuring the resonance 
frequencies of the drive axis at a given set of bias voltages then swapping and driving 
the other axis, thereby extracting the resonant frequencies of both axes.  An algorithm 
is then applied iteratively to modify the bias voltages until the resonant frequency of 
each axis is equal.  A major advantage of this closed-loop approach is that the reso-
nant frequencies can be extracted quickly (~1 second) as compared to the open-loop 
control system, which takes two orders of magnitude longer. The design of the elec-
trostatic biasing approach is realized on an FPGA with augmented portability for 
future designs and implementations. 

4.1   Control of the MEMS Micro-gyro 

The closed-loop approach requires a closed-loop control whereby the gyro is given an 
impulse disturbance and is allowed to oscillate freely.  This so-called “pinging” of the 
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vibration mode allows the gyroscope to immediately settle to its natural frequency.  
The corresponding frequency, F1, is measured from the sensing plate under the drive 
axis X.  Because the device is relatively symmetric, the drive and sense axes are 
swapped and the other mode is pinged to get F2.  The difference in the frequencies, 
i.e., frequency split, is determined very quickly using this technique, about 1.5 sec-
onds, roughly 50 times faster than from the open-loop control method.  This ability to 
quickly swap the drive axis with the sense axis is a feature of our FPGA Gyro Digital 
System (GDS). 

The circuitry of the closed-loop control system includes a drive loop and a sense re-
balance loop [3].  The drive loop takes the input from the “drive sense” petal (S1-, S1+ 
electrodes along the drive axis), and outputs the forcing signal to the “drive drive” petal 
electrodes (D1-, D1+, D1in- and D1in+ electrodes along the drive axis).  The sense 
rebalance loop receives input from the “sense sense” petal (S2-, S2+ electrodes along 
the sense axis), and forces or rebalances the oscillations back along the drive axis with a 
forcing signal to the “sense drive” (D2-, D2+, D2in- and D2in+ electrodes).  The magni-
tude of this forcing function in the rebalance loop is related to the angular rate of rota-
tion.  The closed-loop control has also several scaling coefficients, denoted as Ki, which 
allow for a mixing of the sensed signals from both axes and a swapping of the drive- 
and sense-axis, thus permitting the tuning algorithm to measure the resonance frequency 
along the X- or Y-axis, or, indeed, any axis between X and Y [9]. 

The drive loop implements an Automatic Gain Control (AGC) loop combined with 
finite impulse response (FIR) filters. Because the amplitude of the freely oscillating 
drive axis will naturally decay, the AGC is implemented in a way to lightly drive or 
damp, depending on the circumstance, the drive axis so that the amplitude of the 
driven signal is constant and the gyroscope is maintained in an oscillation mode at the 
natural frequency. The optimal parameters of the FIR filters and the AGC loop to 
maintain the oscillation of the gyroscope have been determined by the UCLA team 
using a DSP measurement system and a UCLA MatLab modeling tool [12]. 

4.2   Gyro Digital System (GDS) 

The system used to implement the control, operation, and observability of the micro-
gyro is referred to as the Gyro Digital System (GDS).  Figure 6 illustrates the imple-
mentation of the analog and digital systems used to control the micro-gyro.  The key 
circuit elements that allow proper operation of the micro-gyro include the audio codec 
(Stereo Digital to Analog Converter DAC), high voltage Analog to Digital Converters 
(ADCs), IEEE-1294 Enhanced Parallel Port (EPP) interface replaced by a UART 
interface, frequency measurement and the Digital Signal Processor (DSP) functional-
ity integrated into a Xilinx Virtex II FPGA.   

The audio codec is used to translate the analog sensing signals for both the drive 
and the sense axes.  Its stereo capabilities allow for two inputs and two outputs.   The 
high-voltage DACs are utilized for the setting of the electrostatic bias voltages on the 
gyroscope, which range from +15V to -60V.  The parallel port interface allows for 
user input/output capabilities.  The user can configure the coefficients for the finite 
impulse response (FIR) filters along with the scaling coefficients (K1 through K8) 
and automatic gain control (AGC) proportional integral (PI) coefficients (Kp and Ki).  
The codec is configured through this interface as well. 



224 D. Keymeulen et al. 

 

Fig. 6. Block diagram of the entire closed-loop control system 

4.3   Results  

Using this FPGA digital control system, the micro-gyro was operated for a period of 
several hours and provided a frequency measurement that was stable to 1 mHz.   

This FPGA system has not yet been tested in the mode where the drive- and sense-
axes are swapped, but we have performed experiments using a DSP platform con-
trolled by a Simulink environment running on a PC that demonstrates the feasibility 
of the closed-loop approach. In Figure 7 we show the frequency response of a non-
tuned MEMS gyroscope (B1=B2=BT1=BT2=14V) with two peaks for each of the 
 
 

 

Fig. 7. Bode magnitude of the experimental frequency response data for a non-tuned MEMS 
micro-gyroscope (B1=B2=BT1=BT2=14V) 
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resonance frequencies. Using a closed-loop control, the UCLA team was able to find 
the correct AGC and FIR filter parameters to maintain the gyro in an oscillating mode 
at the natural frequency. The DSP platform measured the frequency of both modes by 
swapping the drive and sense axis (F1=3210.73Hz and F2=3212.2Hz). Keeping the 
value of the AGC and FIR parameters constant and changing the value of the DC bias 
voltage, we were able to maintain the gyro in an oscillation mode and to extract both 
resonance frequencies, which have changed due to the update DC bias voltage. The 
next step is to couple the FPGA frequency measurement with the genetic algorithm 
(GA) and the simulated annealing (SA) running on the PC. The ultimate goal is to 
implement the GA and the SA on a microprocessor integrated into a FPGA. 

5   Conclusion 

The tuning method for MEMS micro-gyroscopes based on evolutionary computation 
shows great promise as a technology to replace the cumbersome, manual tuning proc-
ess. We demonstrated, using an open-loop measurement, that we can, for the first time 
fully automatically, obtain a four times smaller frequency split at a tenth of the time, 
compared to human performance. We also showed that the closed-loop system has the 
option of swapping the drive- and sense-axes, thus decreasing the time required for 
tuning by more than a factor of fifty compared to the open-loop approach. Addition-
ally, a future design will include a microprocessor on-chip to allow for in-situ re-
tuning of the MEMS micro-gyroscope if there is an unexpected change in the behav-
ior due to radiation, temperature shift,  or other faults. 

The novel capability of fully automated gyro tuning, integrated in a single device 
next to the gyro, enables robust, low-mass and low-power high-precision Inertial 
Measurement Unit (IMU) systems to calibrate themselves autonomously during ongo-
ing missions, e.g., Mars Ascent Vehicle. 

References 

1. Leland, R.P., “Adaptive mode tuning vibrational gyroscopes”, IEEE Trans. Control Sys-
tems Tech., vol. 11, no. 2, pp242-247, March 2003. 

2. Painer C.C., Shkel A.M., “Active structural error suppression in MEMS vibratory rate in-
tegrating gyroscopes”, IEEE Sensors Journal, vol.3, no.5, pp. 595-606, Oct. 2003. 

3. Y. Chen, R. M’Closkey, T. Tran and B. Blaes. “A control and signal processing integrated 
circuit for the JPL-Boeing micromachined gyroscopes” (submitted to IEEE) 

4. R. J. Terrile, et al., “Evolutionary Computation Technologies for Space Systems”, in Pro-
ceedings of the IEEE Aerospace Conference, Big Sky, March 2005 

5. J.H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan 
Press, Ann Arbor, Michigan, 1975. 

6. D. Yuret, M. de la Maza, “Dynamic Hill Climbing – Overcoming limitations of optimiza-
tion teqniques”, AI Laboratory, MIT, Cambridge, MA 02139, USA 

7. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, “Equation of 
State Calculation by Fast Computing Machines,” J. of Chem. Phys., 21, 1087--1091, 1953. 

8. S. Kirkpatrick, C.D. Gelat, M.P. Vecchi,, “Optimization by Simulated Annealing,” Sci-
ence, 220, 671--680, 1983. 



226 D. Keymeulen et al. 

9. K. Hayworth, “Continuous Tuning and Calibration of Vibratory Gyroscopes”, In NASA 
Tech Brief, Oct 2003 (NPO-30449)  

10. M. I. Ferguson, D. Keymeulen, C. Peay, K. Yee, D. Li, “Effect of Temperature on MEMS 
Vibratory Rate Gyroscope”, in Proceedings of the IEEE Aerospace Conference, Big Sky, 
March 2005. 

11. K. Hayworth, K. Shcheglov, T. Humphreys, A. Challoner, “Electrostatic Spring Softening 
in Redundant Degree of Freedom resonators”, patent US 6,823,734 B1, JPL and Boeing, 
Nov. 30, 2004. 

12. R. M’Closkey and D. Kim, “Real-time tuning of JPL-Boeing MEMS gyro”, personal com-
munication, JPL, March 2005. 

 



Author Index

Alfaro, Teddy 119

Barker, Will 25

Cai, Xinye 143

DeMara, Ronald F. 12

Eriksson, Jan 188

Ferguson, Michael I. 215
Fink, Wolfgang 215
Foor, David 215

Glette, Kyrre 66
Guo, Xin 37

Harding, Simon 155
Higuchi, Tetsuya 198
Hornby, Gregory S. 205
Hülse, Martin 108

Iglesias, Javier 188
Iijima, Yosuke 198
Iwata, Masaya 198

Kasai, Yuji 198
Keymeulen, Didier 37, 215
Kim, Dennis 215
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