

Lecture Notes in Computer Science 3637
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

J. Manuel Moreno Jordi Madrenas
Jordi Cosp (Eds.)

Evolvable Systems:
From Biology
to Hardware

6th International Conference, ICES 2005
Sitges, Spain, September 12-14, 2005
Proceedings

13

Volume Editors

J. Manuel Moreno
Jordi Madrenas
Jordi Cosp
Technical University of Catalunya
Department of Electronic Engineering
Campus Nord, Building C4, c/Jordi Girona 1-3
08034 Barcelona, Spain
E-mail: {moreno,madrenas,jcosp}@eel.upc.edu

Library of Congress Control Number: 2005931797

CR Subject Classification (1998): B.6, B.7, F.1, I.6, I.2, J.2, J.3

ISSN 0302-9743
ISBN-10 3-540-28736-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28736-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11549703 06/3142 5 4 3 2 1 0

Preface

The flying machines proposed by Leonardo da Vinci in the fifteenth century, the self-
reproducing automata theory proposed by John von Neumann in the middle of the
twentieth century and the current possibility of designing electronic and mechanical
systems using evolutionary principles are all examples of the efforts made by humans
to explore the mechanisms present in biological systems that permit them to tackle
complex tasks. These initiatives have recently given rise to the emergent field of bio-
inspired systems and evolvable hardware. The inaugural workshop, Towards
Evolvable Hardware, took place in Lausanne in October 1995, followed by the
successive events of the International Conference on Evolvable Systems: From
Biology to Hardware, held in Tsukuba (Japan) in October 1996, in Lausanne
(Switzerland) in September 1998, in Edinburgh (UK) in April 2000, in Tokyo (Japan)
in October 2001, and in Trondheim (Norway) in March 2003.

Following the success of these past events the sixth international conference was
aimed at presenting the latest developments in the field, bringing together researchers
who use biologically inspired concepts to implement real systems in artificial
intelligence, artificial life, robotics, VLSI design, and related domains. The sixth
conference consolidated this biennial event as a reference meeting for the community
involved in bio-inspired systems research.

All the papers received were reviewed by at least three independent reviewers, thus
guaranteeing a high-quality bundle for ICES 2005. The conference included three
keynote talks entitled: “Perspectives in Complex Systems Research”, “Neural Coding
of Auditory Information” and “Evolutionary Approaches to Articulated Robot
Locomotion”. The conference program consisted of 21 technical presentations and a
panel debate. Additionally, a varied social program was set up to foster the exchange
of ideas in an enjoyable environment.

We would like to thank the reviewers for their time and effort in reviewing all of
the submitted papers. We would also like to thank the other members of the
Organizing Committee. We wish to thank the following for their direct support of this
conference: the Technical University of Catalunya (UPC), the Department of
Electronics of the Technical University of Catalunya, the Spanish Ministry of
Education, Culture and Sports, the Funding Agency for Universities and Research of
the Generalitat de Catalunya (AGAUR), and Xilinx, Inc. Last, but not least, we would
like to thank all the authors who invested so much time and effort in their research
work and decided to join us in making ICES 2005 a successful event.

And what is to come next? It is not so easy to make forecasts in a research field
that is moving as fast as ours about findings and understanding relating to the basic
mechanisms that underlie the living forms we can observe. Of course, technology will
play a major role in allowing for an actual realization of these principles, and this is
where nanotechnology and new FPGA architectures will provide the necessary

VI Preface

substrate. However, in our opinion it will be the close cooperation between
bioscientists, mathematicians and engineers that will result in a framework able to
permit the construction of artifacts with emergent properties similar to those we can
see even in the simplest living being. For sure in the next ICES conference we will
see most of the topics that we have covered in the past, including evolving hardware
design (both digital and analogue); evolutionary hardware design methodologies; self-
repairing hardware; self-replicating hardware; embryonic hardware and self-
developing systems; morphogenesis; neural hardware and adaptive hardware
platforms; autonomous robots; evolutionary robotics; and molecular computation. As
for the new topics that will emerge in this research field, it is our feeling that the
breakthroughs coming in the life sciences in the coming years will provide avenues
for facing challenges that, like consciousness, still constitute what Schopenhauer
termed the world’s knot.

We hope you enjoy reading these proceedings as much as we enjoyed putting them
together.

September 2005 J. Manuel Moreno
Jordi Madrenas

Jordi Cosp

Organization

Organizing Committee

General Chair Juan Manuel Moreno Arostegui, Technical University
of Catalunya (UPC), Spain

Program Co-chair Gianluca Tempesti, Swiss Federal Institute of Technology,
Lausanne, Switzerland

Program Co-chair Joan Cabestany, Technical University of Catalunya
(UPC), Spain

Local Chair Jordi Madrenas, Technical University of Catalunya
(UPC), Spain

Publicity Chair Jordi Cosp, Technical University of Catalunya (UPC),
Spain

International Steering Committee

Pauline C. Haddow, Norwegian University of Science and Technology, Norway
Tetsuya Higuchi, Electrotechnical Laboratory, Japan
Julian Miller, University of York, UK
Jim Torresen, University of Oslo, Norway
Andy Tyrrell, University of York, UK

Program Committee

Wolfgang Banzhaf, University of Newfoundland, Canada
Peter Bentley, University College London, UK
Stefano Cagnoni, Universitá di Parma, Italy
Prabhas Chongstitvatana, Chulalongkorn University, Thailand
Carlos A. Coello, CINVESTAV-IPN, Mexico
Marco Dorigo, Université Libre de Bruxelles, Belgium
Rolf Drechsler, University of Bremen, Germany
Marc Ebner, Universität Würzburg, Germany
Stuart J. Flockton, Royal Holloway University of London, UK
Dario Floreano, Swiss Federal Institute of Technology, Lausanne, Switzerland
Andrew Greensted, University of York, UK
Tim Gordon, University College London, UK
Darko Grundler, Univesity of Zagreb, Croatia
Pauline C. Haddow, Norwegian University of Science and Technology, Norway

VIII Organization

David M. Halliday, University of York, UK
Alister Hamilton, Edinburgh University, UK
Arturo Hernandez Aguirre, Tulane University, USA
Francisco Herrera, University of Granada, Spain
Tetsuya Higuchi, Electrotechnical Laboratory, Japan
Masaya Iwata, National Institute of Advanced Industrial Science and Technology

(AIST), Japan
Tatiana Kalganova, Brunel University, UK
Didier Keymeulen, Jet Propulsion Laboratory, USA
William B. Langdon, University College London, UK
Yong Liu, University of Aizu, Japan
Jason Lohn, NASA Ames Research Center, USA
Daniel Mange, Swiss Federal Institute of Technology, Lausanne, Switzerland
Karlheinz Meier, University of Heidelberg, Germany
Julian Miller, University of York, UK
David Montana, BBN Technologies, USA
Juan Manuel Moreno Arostegui, Technical University of Catalunya (UPC), Spain
Masahiro Murakawa, National Institute of Advanced Industrial Science and

Technology (AIST), Japan
Eduardo Sanchez, Swiss Federal Institute of Technology, Lausanne, Switzerland
Lukas Sekanina, Brno University of Technology, Czech Republic
Moshe Sipper, Ben-Gurion University, Israel
Giovanni Squillero, Politecnico di Torino, Italy
André Stauffer, Swiss Federal Institute of Technology, Lausanne, Switzerland
Adrian Stoica, Jet Propulsion Lab, USA
Gianluca Tempesti, Swiss Federal Institute of Technology, Lausanne, Switzerland
Christof Teuscher, University of California, San Diego (UCSD), USA
Jon Timmis, University of Kent at Canterbury, UK
Adrian Thompson, University of Sussex, UK
Jim Torresen, University of Oslo, Norway
Gunnar Tufte, Norwegian University of Science and Technology, Norway
Andy Tyrrell, University of York, UK
Milan Vasilko, Bournemouth University, UK
Alessandro Villa, Université Joseph Fourier, Grenoble, France
Moritoshi Yasunaga, University of Tsukuba, Japan
Ricardo Zebulum, Jet Propulsion Lab, USA

Sponsoring Institutions

We wish to thank the following for their contribution to the success of this conference:

Ministry of Education, Culture and Sports of Spain
Funding Agency for Universities and Research of the Generalitat de Catalunya

(AGAUR)
Technical University of Catalunya (UPC)
Department of Electronics of the Technical University of Catalunya

Xilinx, Inc.

Table of Contents

Fault Tolerance and Recovery

An Adaptive Self-tolerant Algorithm for Hardware Immune System
Wenjian Luo, Xin Wang, Ying Tan, Yiguo Zhang, Xufa Wang 1

Consensus-Based Evaluation for Fault Isolation and On-line
Evolutionary Regeneration

Kening Zhang, Ronald F. DeMara, Carthik A. Sharma 12

Hardware Fault-Tolerance Within the POEtic System
Will Barker, Andy M. Tyrrell . 25

Evolvable Hardware System at Extreme Low Temperatures
Ricardo S. Zebulum, Adrian Stoica, Didier Keymeulen,
Lukas Sekanina, Rajeshuni Ramesham, Xin Guo 37

Platforms for Evolving Digital Systems

Intrinsic Evolution of Sorting Networks: A Novel Complete Hardware
Implementation for FPGAs

Jan Kořenek, Lukáš Sekanina . 46

Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs
Andres Upegui, Eduardo Sanchez . 56

A Flexible On-chip Evolution System Implemented on a Xilinx
Virtex-II Pro Device

Kyrre Glette, Jim Torresen . 66

An Evolvable Image Filter: Experimental Evaluation of a Complete
Hardware Implementation in FPGA

Tomáš Mart́ınek, Lukáš Sekanina . 76

Evolution of Analog Circuits

Operational Amplifiers: An Example for Multi-objective Optimization
on an Analog Evolvable Hardware Platform

Martin Trefzer, Jörg Langeheine, Karlheinz Meier,
Johannes Schemmel . 86

X Table of Contents

Intrinsic Evolution of Controllable Oscillators in FPTA-2
Lukáš Sekanina, Ricardo S. Zebulum . 98

Evolutionary Robotics

The Role of Non-linearity for Evolved Multifunctional Robot Behavior
Martin Hülse, Steffen Wischmann, Frank Pasemann 108

An On-the-fly Evolutionary Algorithm for Robot Motion Planning
Teddy Alfaro, Maŕıa-Cristina Riff . 119

Evolutionary Hardware Design Methodologies

Improving the Evolvability of Digital Multipliers Using Embedded
Cartesian Genetic Programming and Product Reduction

James Alfred Walker, Julian Francis Miller . 131

Benefits of Employing an Implicit Context Representation on Hardware
Geometry of CGP

Xinye Cai, Stephen L. Smith, Andy M. Tyrrell . 143

Evolution in Materio: Investigating the Stability of Robot Controllers
Evolved in Liquid Crystal

Simon Harding, Julian F. Miller . 155

Bio-inspired Architectures

Hardware Implementation of 3D Self-replication
André Stauffer, Daniel Mange, Fabien Vannel . 165

POEtic: A Prototyping Platform for Bio-inspired Hardware
J. Manuel Moreno, Yann Thoma, Eduardo Sanchez 177

Implementation of Biologically Plausible Spiking Neural Networks
Models on the POEtic Tissue

J. Manuel Moreno, Jan Eriksson, Javier Iglesias,
Alessandro E.P. Villa . 188

Table of Contents XI

Applications

Adaptive Waveform Control in a Data Transceiver for Multi-speed
IEEE1394 and USB Communication

Yuji Kasai, Eiichi Takahashi, Masaya Iwata, Yosuke Iijima,
Hidenori Sakanashi, Masahiro Murakawa, Tetsuya Higuchi 198

Evolution, Re-evolution, and Prototype of an X-Band Antenna for
NASA’s Space Technology 5 Mission

Jason D. Lohn, Gregory S. Hornby, Derek S. Linden 205

Hardware Platforms for MEMS Gyroscope Tuning Based on
Evolutionary Computation Using Open-Loop and Closed-Loop
Frequency Response

Didier Keymeulen, Michael I. Ferguson, Wolfgang Fink,
Boris Oks, Chris Peay, Richard Terrile, Yen-Cheng, Dennis Kim,
Eric MacDonald, David Foor . 215

Author Index . 227

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 1 – 11, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Self-tolerant Algorithm
for Hardware Immune System

Wenjian Luo, Xin Wang, Ying Tan, Yiguo Zhang, and Xufa Wang

Department of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China

{wjluo, ytan, xfwang}@ustc.edu.cn
{sinbarwx, ygzhang}@mail.ustc.edu.cn

Abstract. Hardware immune systems have been studied with some initial
achievements in recent years. Hardware immune systems are inspired by bio-
logical immune systems and they are expected to have many interesting charac-
teristics, such as self-adaptive, self-learning and fault tolerant abilities. How-
ever, as novel intelligent systems, hardware immune systems are faced with
many problems. This paper focuses on autoimmunization that is an inevitable
problem when designing a complex hardware immune system. After the co-
stimulation mechanism of biological immune system is simply introduced as a
metaphor, a novel self-adaptive and self-tolerant algorithm for hardware im-
mune systems is proposed in this paper. Inspired by the co-stimulation mecha-
nism, the algorithm endows hardware immune systems with the capability of
self-tolerance by automatically updating detector set and making the self set
more complete. It can increase the accuracy of detection and decrease the rate
of false positive effectively. Results of simulation experiments demonstrate the
validity of this algorithm.

1 Introduction

Many works have been devoted to computational methods that are inspired by bio-
logical immune system in recent years [1-2]. As novel computational methods of
Computational Intelligence (CI), this kind of research is called as Artificial Immune
Systems (AISs) or methods. Among the many works about AIS, the concept of hard-
ware immune systems is a younger one, which is proposed as a novel approach to
designing a kind of hardware system with the fault tolerant ability [3-4].

So far, some works about hardware immune system have already been done. The ar-
chitecture of a hardware immune system is firstly discussed and studied by D. W. Brad-
ley and A. M. Tyrrell [3]. Also, A. M. Tyrrell and his colleagues proposed the concept
of Immunotronics, and tried to construct a new theory about the design of fault tolerant
hardware [5-6]. Based on Embryonic Array, R. Canham and A. M. Tyrrell proposed a
multi-layered hardware artificial immune system with learning ability, which used the
fact that the immune system consists of acquired immune subsystem and innate immune
subsystem for reference. The acquired layer of the immune system monitors the behav-
iors of system for unusual activities, and the non-learning innate layer is then employed
to localize the fault if possible [7]. R. Canham and A. M. Tyrrell also developed a novel

2 W. Luo et al.

artificial immune system, in which a detector of an immune system can be defined as a
column in a 2-D feature space, and the generation and learning of detectors are fully
automatic. It has been applied to robotics as an error detection system [8]. A. Tarakanov
and D. Dasgupta proposed a novel architecture for building immunochips. The immu-
nochip, by which information can be processed in a parallel and distributed manner, was
evaluated with the problem of detecting dangerous ballistic situations in near-Earth
space [9].

Generally, when the negative selection algorithm [10] is used to perform error de-
tection in a complex fault tolerant hardware system, a complete set of self strings can
not be obtained. Therefore, a part of matured detectors could become a threat to the
system under monitoring because these detectors may match some unknown self
strings. This problem is similar to the autoimmunization in biological immune system.
For complex hardware systems, this problem seems inevitable, but there is no effec-
tive solution up to now.

Inspired by the co-stimulation mechanism which is used to maintain self-tolerance
in biological immune systems, an adaptive self-tolerant algorithm for hardware im-
mune system is proposed in this paper, it adopts Concurrent Error Detection (CED)
technology [11] to provide the co-stimulation signal for the error detection system. It
is named as ASTA-CED (the Adaptive Self-tolerant Algorithm with Concurrent Error
Detection). The co-stimulation signal drives the error detection system to update the
detector set automatically, delete detectors which bring autoimmune behaviors and
generate new valid detectors. Therefore, ASTA-CED can avoid the occurrences of
autoimmunization. Simulation experiments are carried out to show that this proposed
algorithm can increase the accuracy of detection and decrease the ratio of false posi-
tives effectively.

The co-stimulation mechanism of biological immune system is simply discussed in
section 2. Section 3 gives an introduction of the ASTA-CED in detail. Section 4 dem-
onstrates the design of simulation experiments and the experimental results. And
discussions are also given in section 4. Finally, section 5 is devoted to conclusions
and future studies.

2 Immune Metaphor

In the natural immune system, an inactive T-cell’s activation needs not only the anti-
gen recognition signal (the first signal), but also co-stimulation (the second signal)
[12]. The source of the second signal can be various, mainly coming from the combi-
nation of B7 molecules on the surface of antigen presentation cells (APC) and CD28
molecules on the surface of T-cells. Although the second signal does not have speci-
ficity, without the second signal, a T-cell that has already obtained the first signal will
become an anergy cell (which can not take its own responsibility), and even die. The
activation process of a T-cell is presented in Fig. 1 [12].

Among many kinds of cells interacting with T-cells, only the professional APCs
(playing a professional role of presenting a peptide of an antigen to T-cells and pro-
viding other corresponding signals) can provide the first and second signals to acti-
vate T-cells at the same time [12]. If a T-cell recognizes an antigen’s peptide from

 An Adaptive Self-tolerant Algorithm for Hardware Immune System 3

Fig. 1. This briefly shows that the activation of a T-cell should get the first and second signals.
Here both first and second signals come from APC. However, the second signal, as a signal of
co-stimulation, can come from various immune cells or molecules.

cells other than professional APCs, generally it will become an anergy cell because of
the lack of the second signal. In fact, this is not likely to be a bad thing, because the
antigen recognized is generally a self antigen at this time. In the biological immune
system, new birth lymphocytes will undergo a maturation process, in which lympho-
cytes that bind with self proteins are destroyed. Hence, when released within the
body, binding to a protein indicates it is non-self and may be a harmful pathogen. But
the fact indicates that not all self proteins are presented to the maturing lymphocytes.
This means some of the matured lymphocytes are still dangerous to the body. Thus,
making the lymphocytes threatening the body become anergy cells or dies. This proc-
ess is very helpful for the maintaining of self-tolerance [12].

Artificial hardware immune systems are presented with a similar problem, the cur-
rent learning requires a period of fault free operation during which all the self states
are presented. Although there are applications where this is possible, this can become
a non-trivial task in some complex systems [7]. So, a mechanism to provide the sec-
ond signals for artificial hardware immune systems is required.

3 ASTA-CED Algorithm

The negative selection algorithm is used for performing the detection of invalid state
transitions. The negative selection algorithm, developed by Forrest and her colleagues
[10, 13], is based on the generation process of T-Cells within the immune system.
Forrest and her colleagues use a string to represent the self and non-self individuals.
Partial matching between these self strings and non-self strings is used as a matching
rule to distinguish between self and non-self. A set of detector strings are generated
such that they do not match with all self strings, and they only match with non-self
strings. Hence, the matching between a detector and the strings being protected gives
an indication that some abnormal behaviors have occurred, and this indication is used
as the first signal to the error detection system. In ASTA-CED algorithm, strings are
used for representing the system’s state transition but not just states because invalid
state transitions can occur between valid states.

Concurrent Error Detection (CED) is widely used in highly dependable computing
systems. It is a kind of on-line parity checking technology [11]. In the ASTA-CED
algorithm, CED is used for performing parity checking on system’s outputs and gen-

4 W. Luo et al.

Fig. 2. This is the flow chart of ASTA-CED algorithm. The CED is used as a co-stimulation
signal in ASTA-CED. Driven by this co-stimulation signal, the self set becomes more and more
complete and the detector set evolves to be more and more efficient.

erating co-stimulation signals, because it is a simple and comparatively inexpensive
technology to implement.

The ASTA-CED algorithm can be specified as shown in Fig. 2, in which S is the
set of self (valid state transition) strings, and R is the set of detectors. The following is
the description of the algorithm shown in Fig. 2. Here, it assumes that the initial set S
is incomplete because a complete self set can not be obtained in general.

(1) Perform partial matching between state transitions and detectors in R one by one;
(2) If a detector r matches a state transition string, go to (3), or else back to (1);
(3) Report the error, if there is no co-stimulation from CED, go to (4), or else back

to (1);

 An Adaptive Self-tolerant Algorithm for Hardware Immune System 5

(4) Update the set S by inserting the new self string obtained by detector r, and de-
lete r from R;

(5) Generate a new premature detector r’ randomly;
(6) If r’ doesn’t match any string in S, go to (7), or delete it and back to (5);
(7) If r’ is included in the current set R, delete it, or else insert it into R;
(8) Back to (1).

The aim of steps (5)-(8) is to generate a new detector and prevent the generating of
new detectors from consuming too many resources of the system. The process of error
detection can be regarded as the evolutionary process of the detector set R, by which
the algorithm endows the hardware immune system with the capability of adaptive
self-tolerance.

In the following experiments, every state transition of the whole string space ap-
pears once in a single cycle. When the detector set undergoes such a cycle, in fact it
has evolved for one generation.

4 Experiments

4.1 Design of the Experiments

Based on the experiment of error detection of Finite State Machine (FSM) designed
by A. M. Tyrrell [5], a co-stimulation generating module – CED and a controller are
added to the simulation experiment, which is described as shown in Fig. 3. Partial
matching of a state transition string from the FSM and a detector string from the de-
tector set R will generate the first signal to the controller, and send an alarm to the
results record module. At the same time, the self flag (which is set for every self
string in S in advance) of the current state transition is sent to the results record mod-
ule too. So the results recorded can be used for validating the performance of the
ASTA-CED. In the CED module, the result of parity checking of the system’s output
will be sent to the controller as the second signal (co-stimulation), and then the con-
troller decides whether R need to be updated according to the first and second signals.
If necessary, R would be updated.

Fig. 3. This shows the design of the simulation experiment. In this experimental system, the
CED is used to generate the second signal. The first and second signals are sent to the Control-
ler Module that justify whether a matching result represented by the first signal is really an
abnormal behavior or not. The final experimental results are stored in Results Record module.

6 W. Luo et al.

Fig. 4. This shows the bit-string representation of state transitions. Only previous state and
current state are used because only the state transition is considered in this paper. The input
state is ignored.

Here it supposes that valid state transitions generate valid outputs, and invalid state
transitions generate invalid outputs, moreover, and every invalid output just fails at a
single bit (here, the “invalid outputs” means outputs that fails to pass the parity check-
ing). Bit-strings are used for representing state transitions and detectors in a form
shown in Fig. 4 [4].

4.2 Results

The ASTA-CED algorithm is compared with the traditional Negative Selection Algo-
rithm (traditional NSA) which does not have a co-stimulation mechanism in the same
situation. The length of the bit-string is 10, and then the size of string space O is 1024.
The number of total self strings Ns is fixed at 60. The partial match length c is 8.

The parameter a, which is the proportion of self strings already known in advance
among the complete set of self strings, is set to {1.0, 0.9, 0.8, …, 0.1} for observing
the change of the results against it.

Every state transition in space O appears for 40 times in an independent run of the
algorithm. In other words, the detector set R in ASTA-CED algorithm will evolve for
40 generations in an independent run. And the results take the average values over 15
independent runs for every value of the parameter a.

The self set of every independent run is generated randomly. The size of initial
immature detector set is fixed to 324. Both initial immature and mature detector sets
of ASTA-CED are the same as that of traditional NSA. The size of initial mature
detector set is Nr1 , Table 1 lists the average values of Nr1 against values of a.

It should be noted that the detector set of traditional NSA is fixed. However, the de-
tector set of ASTA-CED will evolve step by step, and its evolution is driven by the
co-stimulation signal (i.e. CED).

In an independent run, it is assumed that PS is the number of valid state transitions
detected as normal behaviors by the system; FS is the number of valid state transitions
detected as abnormal behaviors; PN is the number of invalid state transitions detected
as normal behaviors; and FN is the number of invalid state transitions detected as
abnormal behaviors. The following three statistical results are defined to make the
comparisons between ASTA-CED and traditional NSA.

FNFS
FNPr += ,

FSPS
FSPw += ,

FNPN
PNPf +=

 An Adaptive Self-tolerant Algorithm for Hardware Immune System 7

Table 1. The average sizes of initial mature detector sets of the two algorithms against values
of a. The mature detector set is the detector set after being filtered out the immature detectors
that matches self individuals from the immature detector set. The size of initial immature detec-
tor set is always set as 324.

a 1.00 0.90 0.80 0.70 0.60
Average Nr1 195.5 206.5 220.0 225.0 240.5

a 0.50 0.40 0.30 0.20 0.10
Average Nr1 253.5 264.5 274.5 296.0 309.5

Table 2. Pr of traditional NSA and ASTA-CED

ASTA-CED
a

Traditional
NSA Average value from

1 to 20 generations
Average value from
21 to 40 generations

1.00 1.0000 1.0000 1.0

0.90 0.9934 0.9993 1.0
0.80 0.9881 0.9989 1.0

0.70 0.9816 0.9978 1.0
0.60 0.9741 0.9969 1.0
0.50 0.9698 0.9963 1.0
0.40 0.9634 0.9953 1.0

0.30 0.9586 0.9947 1.0
0.20 0.9505 0.9936 1.0

0.10 0.9466 0.9923 1.0

Table 3. Pw of traditional NSA and ASTA-CED algorithms

ASTA-CED
a

Traditional
NSA Average value from

1 to 20 generations
Average value from
21 to 40 generations

1.00 0.0000 0.0000 0.0
0.90 0.0814 0.0081 0.0
0.80 0.1546 0.0138 0.0

0.70 0.2441 0.0281 0.0
0.60 0.3580 0.0407 0.0
0.50 0.4231 0.0476 0.0

0.40 0.5289 0.0635 0.0
0.30 0.6103 0.0696 0.0

0.20 0.7567 0.0838 0.0
0.10 0.8381 0.1046 0.0

8 W. Luo et al.

Table 4. Pf of traditional NSA and ASTA-CED algorithms

ASTA-CED
a

Traditional
NSA Average value from

1 to 20 generations
Average value from
21 to 40 generations

1.00 0.2431 0.2431 0.2431

0.90 0.2218 0.2413 0.2421

0.80 0.1813 0.1970 0.1974

0.70 0.1714 0.1971 0.1990

0.60 0.1403 0.1771 0.1797

0.50 0.1319 0.1807 0.1839

0.40 0.1112 0.1443 0.1475

0.30 0.0982 0.1635 0.1673

0.20 0.0722 0.1729 0.1766

0.10 0.0514 0.1393 0.1449

Table 2, Table 3 and Table 4 show the comparison between ASTA-CED and tradi-

tional NSA on average values of Pr, Pw and Pf. The comparisons in the first 20 gen-
erations, those are shown separately, indicate that on Pr and Pw, the results of ASTA-
CED algorithm is much better than that of traditional NSA, this is due to the detectors
matching self strings are deleted and new detectors are generated, and the Pr of the
two algorithms increase with a, and both the Pw of them decrease as a increases; but
only Pf of ASTA-CED algorithm is a little higher than that of traditional NSA, this
will be discussed in the next section.

The comparisons in the last 20 generations are also shown separately in Table 2, 3
and 4. It is clear that in the last 20 generations, there is no detector matching a self
string. In other words, the evolution of detector set R has been finished before these
generations. For Pf, the results are similar to that of the first 20 generations.

Some other aspects of ASTA-CED algorithm can be observed in Fig. 5. Firstly, in
Fig. 5(a), it indicates that the number of new detectors inserted into R is smaller than

Fig. 5. This shows some characteristics of ASTA-CED. (a) The updating process of detector set
R. (b) The changing curve of Pw in generations.

 An Adaptive Self-tolerant Algorithm for Hardware Immune System 9

Table 5. The average sizes of final detector sets of ASTA-CED against values of a

a 1.00 0.90 0.80 0.70 0.60
Average Nr2 195.5 201.5 215.5 208.5 225.5

a 0.50 0.40 0.30 0.20 0.10
Average Nr2 235.0 244.0 246.5 263.0 266.5

the number of deleted detector from R, this means that the size of R has shrunk in
ASTA-CED algorithm. The size of final detector set of ASTA-CED is Nr2. Table 5
lists the average values of Nr2 against values of a over 15 independent runs. On the
other hand, in Fig. 5(b), the probability of false positive Pw declines rapidly to 0
against generations.

4.3 Discussions

In Table 1, Table 2 and Table 3, the experimental results indicate that ASTA-CED
algorithm is better than the traditional NSA both at Pr and Pw, but is poorer than tradi-
tional NSA at Pf. The following is a brief discussion about this phenomenon.

Since partial matching mechanism is being used here, even if a complete detector
set can be obtained, the self strings and non-self strings matching over c contiguous
bits will result in the presence of undetectable non-self strings, namely holes [13-14].
There are strings in the “hole” that are unable to be detected because any detectors
matching them would also match some self strings. The relevant analyses of this phe-
nomenon have been investigated by D’haeseleer in [14].

In Fig. 6, for a particular partial match length c, given S0 as the incomplete set of
self got in advance and S1 as the more complete set of self obtained in the error detec-
tion procedure. Suppose h0 and h1 are the holes induced by S0 and S1 respectively, and
R and R’ are the detector sets generated against S0 and S1 respectively, and

Fig. 6. Analyses on failure probability Pf. O is the whole string space. S0 is the initial incom-
plete set of self, while S1 is the more complete set of self obtained in the course of error detec-
tion. R and R’ are the detector sets generated against S0 and S1 respectively, while h0 and h1 are
the holes induced by S0 and S1 respectively.

10 W. Luo et al.

O is the whole string space. It is noted that here R and R’ are regarded as complete
or almost complete detector sets. This can be guaranteed by randomly generating
enough premature detectors or using the greedy detector generating algorithms
proposed in [13].

Firstly, it should be noted that S0 is a subset of S1, because S1 is more complete than
S0. Strings in h0 can not be detected by R, and strings in h1 are undetectable to R’.
Secondly, there can be self strings in the h0, but no self string in the h1. Suppose that
all of self strings in h0 make up of a set of Sh0. Finally, according to the counting
method of holes in [14], (h0- Sh0) is a subset of h1. Therefore, on the one hand, non-
self strings in h1 can not be detected by R’, while possible to be detected by R. On the
other hand, non-self strings in (h0- Sh0) can not be detected by R’ and R. Thus, if Pf0 is
the failure probability of R, and Pf1 is the failure probability of R’, it can be concluded
that Pf0< Pf1. Fortunately, the problem with holes can be avoided by adopting a match-
ing rule with a variable matching length c [14].

5 Conclusion

In the design of a complex hardware immune system, autoimmunization is an inevita-
ble problem. In this paper, a novel self-adaptive algorithm, namely ASTA-CED, is
proposed as a solution. Concurrent Error Detection (CED) technology is used for
providing co-stimulation to the error detection system, and the detector set is updated
automatically, then the occurrence of autoimmunization can be avoided. Results of
simulation experiments prove that this new algorithm has increased the accuracy of
detection and decreased the ratio of false positives effectively.

However, there are also some future works that should be studied to improve this
algorithm. Firstly, CED is a technology based on parity checking, so it can only detect
single bit fault. Secondly, since CED is used for checking the system’s output in this
paper, this might be unsuitable when considering some applications. We are looking
for more suitable co-stimulation mechanisms, and we will explore better approaches
to building up self-tolerance in hardware immune systems.

Acknowledgement. This work is supported by NSFC Foundation (No. 60404004),
Nature Science Major Foundation from Anhui Education Bureau (No. 2004kj360zd)
and Chinese Post-doc Science Foundation (No. 2003034433).

References

[1] Castro, de L.N., Timmis, J.. Artificial Immune Systems: a New Computational Intelli-
gence Approach. Springer-Verlag, London, (2002)

[2] Dasgupta, D., Ji, Z, et al. Artificial Immune System(AIS) Research in the Last Five
Years. Proceedings of the IEEE Congress on Evolutionary Computation (CEC’2003),
Canberra, Australia, (2003) 123-130

[3] Bradley, D.W., Tyrrell, A.M.. The Architecture For A Hardware Immune System. Pro-
ceedings of the 3rd NASA/dod Workshop on Evolvable Hardware, Long Beach, Cail-
fornia, July 12 – 14 (2001) 193-200

 An Adaptive Self-tolerant Algorithm for Hardware Immune System 11

[4] Bradley, D.W., Tyrrell A.M.. A Hardware Immune System for Benchmark State Ma-
chine Error Detection. Proceedings of the 2002 Congress on Evolutionary Computation,
Honolulu, USA, (2002) 813-818

[5] Bradley, D.W., Tyrrell A.M.. Immunotronics - Novel Finite-State-Machine Architec-
tures with Built-in Self-Test Using Self-Nonself Differentiation. IEEE Transactions on
Evolutionary Computation, Vol.6, 3 (2002) 227-38

[6] Tyrrell, A.M.. Computer know Thy self!: A Biological Way to Look at fault Tolerance.
Proceedings of 2nd EuroMicro/IEEE Workshop Dependable Computing Systems, Sep-
tember, (1999) 129–135

[7] Canham, R., Tyrrell, A.M.. A Learning, Multi-Layered, Hardware Artificial Immune
System Implemented upon an Embryonic Array. Proceedings of 5th International Con-
ference on Evolvable Systems, (2003) 174–185

[8] Canham, R., Jackson, A.H., Tyrrell, A.M.. Robot Error Detection Using an Artificial
Immune System. Proceedings of NASA/DoD Conference on Evolvable Hardware, July
(2003) 199 – 207

[9] Tarakanov, A., Dasgupta, D.. An Immunochip Architecture and its Emulation. Proceed-
ings of NASA/DoD Conference on Evolvable Hardware, July 15-18 (2002) 261-265

[10] Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.. Self-nonself Discrimination in a
Computer. Proceedings of the 1994 IEEE Symposium on Research in Security and Pri-
vacy. Los Alamitos, CA: IEEE Computer Society Press, (1994) 202-212.

[11] Chaohuang, Z., Saxena, N., McCluskey, E.J.. Finite State Machine Synthesis with Con-
current Error Detection. Proceedings of International Test Conference, Sept. 28-30
(1999) 672 – 679.

[12] Guang-yan, Zhou. Principles of Immunology. Scientific and Technical Documents Pub-
lishing House, Shanghai (2000)

[13] D’haeseleer, P., Forrest, S., Helman, P.. An Immunological Approach to Change Detec-
tion: Algorithms, Analysis and Implications. Proceedings of the IEEE Symposium on
Security and Privacy, IEEE Computer Society Press (1996)

[14] D’haeseleer, P.. Further Efficient Algorithms for Generating Antibody Strings. Depart-
ment of Computer Science, University of New Mexico, Technical Report CS95-3 (1995)

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 12 – 24, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Consensus-Based Evaluation for Fault Isolation
and On-line Evolutionary Regeneration

Kening Zhang, Ronald F. DeMara, and Carthik A. Sharma

Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL 32816-2450

demara@mail.ucf.edu

Abstract. While the fault repair capability of Evolvable Hardware (EH)
approaches have been previously demonstrated, further improvements to fault
handling capability can be achieved by exploiting population diversity during all
phases of the fault handling process. A new paradigm for online EH regeneration
using Genetic Algorithms (GAs) called Consensus Based Evaluation (CBE) is
developed where the performance of individuals is assessed based on broad
consensus of the population instead of a conventional fitness function. Adoption
of CBE enables information contained in the population to not only enrich the
evolutionary process, but also support fault detection and isolation. On-line
regeneration of functionality is achieved without additional test vectors by using
the results of competitions between individuals in the population. Relative fitness
measures support adaptation of the fitness evaluation procedure to support
graceful degredation even in the presence of unpredictable changes in the
operational environment, inputs, or the FPGA application. Application of CBE to
FPGA-based multipliers demonstrates 100% isolation of randomly injected stuck-
at faults and evolution of a complete regeneration within 135 repair iterations
while precluding the propagation of any discrepant output. The throughput of the
system is maintained at 85.35% throughout the repair process.

1 Introduction

Evolutionary mechanisms can actively restore mission-critical functionality in
SRAM-based reprogrammable devices such as Field Programmable Gate Arrays
(FPGAs). They provide an alternative to device redundancy for dealing with
permanent degradation due to radiation-induced stuck-at-faults, thermal fatigue, oxide
breakdown, electromigration, and other local permanent damage without the
increased weight and size normally associated with spares. Hence, recent research has
focused on employing the capability for reconfiguration inherent in field
programmable devices to increase reliability and autonomy [1], [2], [3], [4], [5]. In
these experiments, fault-tolerance is evolved at design time, or achieved at repair-time
using evolution after taking a detected failed unit offline. In both cases, GAs
provided a population-based optimization algorithm with the objective of producing a
single best-fit individual as the final product. They rely on a pre-determined static
fitness function that does not consider an individual's utility relative to the rest of the

 CBE for Fault Isolation and On-line Evolutionary Regeneration 13

population. The evaluation mechanisms used in previous approaches depend on the
application of exhaustive test vectors to determine the individual with the best
response to all possible inputs. However, given that partially complete repairs are
often the best attainable [4], [2], other individuals may outperform the best-fit
individual over the range of inputs of interest. In particular, there is no guarantee that
the individual with the best absolute fitness measure for an exhaustive set of test
inputs will correspond to the individual within the population that has the best
performance among individuals under the subset of inputs actually applied. Thus,
exhaustive evaluation of regenerated alternatives is computationally expensive, yet
not necessarily indicative of the optimal performing individual among a population of
partially correct repairs. Hence, two innovations are developed herein for self-
adaptive EH regeneration:

1) Elimination of additional test vectors, and
2) Temporal Assessment based on aging and outlier identification

In Consensus-based Evaluation (CBE), an initial population of functionally
identical (same input-output behavior), yet physically distinct (alternative design or
place-and-route realization) FPGA configurations is produced at design time. During
runtime, these individuals compete for selection based on discrepancy favoring fault-
free behavior. Discrepant behaviour, where the outputs of two competing individuals
do not agree on a bit-by-bit basis, is used as the basis for the performance evaluation
process. Any operationally visible fault will decrease the fitness of just those
configurations that use it. Over a period of time, as the result of successive
comparisons, a consensus emerges from the population regarding the relative fitness
of all individuals. This allows the classification of configurations into ranges of
relative reliabilities based on their observed performance during online operation.

2 Related Work

Adaptive regeneration has been investigated as an alternative to using pre-determined
spares. Most researchers [2], [3], [5], [6] focus on using traditional GAs to identify a
single best-fit individual at the termination of the evolutionary computation.
Keymeulen, Stoica, and Zebulum [1] use a design-time emphasis to improve fault
tolerance. They develop evolutionary techniques so that a circuit is initially designed
to remain functional even in presence of various faults. Their population-based fault
tolerant design method evolves diverse circuits and then selects the most fault-
insensitive individual. In this paper we propose a system that achieves improved fault
tolerance by using a runtime adaptive algorithm that emphasizes the utilization of
responses observed during the actual operation of the device. While their population-
based fault tolerance approach provides passive run-time tolerance, CBE is dynamic
and actively improves the fault tolerance of the system according to environmental
demands.

Yao and Liu [7] emphasize that in evolutionary systems, the population contains
more information than any one individual. They develop two examples to
demonstrate the use of the information contained in the population in the domains of
artificial neural networks and rule based systems respectively. The last population is

14 K. Zhang, R.F. DeMara, and C.A. Sharma

used efficiently and out-performs the single best-fit individual in these two examples.
[8] presents four methods for combining the different individuals in the final
population to generate the solution. They provide results for three data sets, namely
the Australian credit card assessment problem, the heart disease problem and the
diabetes problem, which show that solutions obtained by combining individuals
outperform any single individual. While the authors devise a method to utilize the
information contained in the population to improve the final solution, they fail to use
the information in the population to improve the learning and optimization process
itself. Also, the authors emphasize that learning systems are different from
optimization problems, and that information contained in the population is only useful
in learning systems. The proposed approach clearly indicates that even optimization
and repair problems can benefit from population information. More recently, in [9]
the authors describe using fitness sharing and negative correlation to create a diverse
population of solutions. A combined solution is then obtained using a gating
algorithm that ensures the best response to the observed stimuli. In EHW, it may not
always be possible to combine solutions without additional physical resources that
may be fault-prone. In our approach, all individuals in the population are recognized
as possible solutions, with the best emerging candidate being selected based on their
runtime response and performance track record. The authors also claim that applying
the described techniques to EHW should be a straightforward matter, but do not
describe any applications or examples. They state the absence of an optimal way of
predicting the future performance of evolved circuits in unseen environments. We
show that it is possible for an adaptive system to keep track of the relative
performances of individuals and implicitly build a consensus.

Layzell and Thompson [10] identify Populational Fault Tolerance (PFT) as an
inherent quality of EHW. They state that due to the incremental nature of
evolutionary algorithms, the solution changes along the course of evolution to adapt
to faults. The evolutionary history of the evolved circuit was used to arrive at the
conclusion that PFT is an inherent quality in evolutionary design due to the
incremental incorporation of additional components into a prototype depending on
conditions. They speculate that PFT is less likely to occur for online evolution in
varying environments. An evolutionary process that uses absolute fitness measures
and exhaustive tests may not be able to provide adaptive fault tolerance.

Previous research has not focused on leveraging the robustness of a population to
improve the detection and isolation phases, or to achieve an online evolution process.
Problems related to fault tolerance in online evolution identified by the existing
approaches are addressed by the new Consensus-based Evaluation scheme. Online
evolution defines an essentially different problem from a traditional GA optimization
problem. To address the problem effectively, a new fitness evaluation paradigm is
required. With relative fitness measures based on competition, a running consensus is
produced regarding the fitness of individuals in repsonse to the actual environmental
stimuli. This can be used by the regeneration process to adapt to runtime requirements
and improve the fault tolerance of the population. The CBE approach presents a new
online adaptive repair mechanism that fully exploits the advantages of population-
based evolutionary methods. It utilizes a temporal voting approach whereby the
outputs of two competing instances are compared at any instant and alternative
pairings are considered over time. The presence or absence of a discrepancy is used

 CBE for Fault Isolation and On-line Evolutionary Regeneration 15

to adjust the discrepancy values (DVs) of both individuals without rendering any
judgment at that instant on which individual is actually faulty. The faulty, or later
exonerated, configuration is determined over time through other pairings of
competing configurations. The competitive process is applied repeatedly to form a
strong consensus across the diverse pool of alternatives. The fitness of individuals is
determined through this continuing runtime process by evaluating the real time
performance of individuals in comparison to others in the population. Instead of using
an absolute fitness function, with the concomitant exhaustive testing, relative
discrepancy values are used as the threshold to identify faulty individuals. Also, the
system actively selects individuals that perform the best, given the current
environment. Healthy individuals are used to achieve the repair of individuals
affected by faults. The proposed approach makes full use of the fact that repair
complexity is far less than design complexity. CBE achieves improved fault tolerance
by making extensive use of the information contained in the population – both as raw
material for creating new individuals, and as information that enables faster and more
accurate fault isolation. Any improvement in the fault isolation process speeds up the
regeneration process by directing the GA search in the proper direction. The use of a
relative fitness measure and temporal consensus improves the fault tolerance and
adaptability of the population.

3 Autonomous Regeneration Using CBE

A GA performs a multi-directional search by maintaining a population of potential
solutions and encouraging information formation and exchange along these
directions. By encouraging direct competition between individuals in the population,
a relative fitness measure based on consensus can be generated. The objective fitness
function used in traditional GAs can be effectively replaced by the emergent
consensus and relative fitness measure. The relative fitness measure is inherently
dynamic, and by using an Evaluation Window for the individuals, an accurate
reflection of the environmental conditions and changes can be achieved. Multiple
potential directions for future exploration can be created and utilized depending on
the conditions prevalent during the evolutionary process.

In the CBE approach, an initial population of Pristine individuals is created by
manual design. These primordial configurations are functionally-identical (same
input-output behavior), yet they utilize physically-distinct resources (alternative
design or place-and-route implementations). For puposes of illustration, assume two
competing half-configurations labeled Functional Logic Left (“L”) and Functional
Logic Right (“R”) are loaded in tandem on the physical FPGA platform. The half-
configurations occupy mutually exclusive physical resources to implement identical
functionality. This realizes a conventional Concurrent Error Detection (CED)
arrangement to identify at least any single resource fault with certainty [11]. As in
traditional CED approaches, comparison of the outputs of the two resident half-
configurations will produce either discrepant or matching outputs which will indicate
the presence or absence of faulty resources in the FPGA hardware platform
respectively.

16 K. Zhang, R.F. DeMara, and C.A. Sharma

Under CBE, whenever two half-configurations disagree, the Discrepancy Value
(DV) of both half-configurations are incremented. By repeated pairing over a period
of time, only those half-configurations which do not use faulty resources will
eventually become preferred. This is because the DV of a faulty half-configuration is
always increased regardless of its pairing, yet the DV of fault-free half-configurations
which are paired together do not increase. This process occurs as part of the normal
processing throughput of the FPGA without additional test vectors or other diagnostic
routines. The determination of a configuration’s health state is based on its
cumulative DV relative to DV of the other individuals in the population evaluated
over a period called the Evaluation Window, denoted by EW.

3.1 CBE Procedure

The procedure begins with pre-designed individuals that are fault-free. These
individuals are divided into two groups, L and R, where each group of individuals
uses mutually exclusive physical resources. This is essential to ensure that one
individual each form both groups can reside and compete in tandem on the FPGA. In
addition, every individual can belong to one of four states – Pristine, Suspect, Under-
repair or Refurbished. In the beginning, all individual are pristine. At any given point
of time, one individual each from the L and R groups compete with each other. State
transistions occur according to the result of pairwise output comparison. A
comparison can lead to two results - “L=R” and “L≠R” indicating whether the two
resident half-configurations produce either matching or discrepant outputs,
respectively. When L=R occurs then both individuals retain their Pristine state.
However when their outputs disagree then both the configurations are demoted to the
Suspect pool and the DV of both individuals is increased. Whenever such a transition
occurs, a Fault Alert indicator is issued because two functionally-identical circuits
disagree. Hence at least one resource fault must have occurred.

More formally, the i-th half configuration remains in the Suspect pool until its DV
fi evaluated over the preceding EW pairings rises above the Repair Discrepancy Value
(fi < DVR) which is defined as average DV of entire population accumulated over EW.
The i-th half-configuration is then marked as Under Repair until its DV drops below
the Operational Discrepancy Value (fi ≥ DVO) which is defined as average DV of the
healthy individuals among the population (Pristine, Suspect and Refurbished)
accumulated over EW. Under the fault-free circumstance, DVO = DVR until the faulty
individuals appear in the population as a result of emergent hardware faults.
Thereafter, fOT is modified such that DVO ≤ DVR which provides dithering immunity
such that the configuration is indeed Refurbished.

Over a period of time the DV of an individual could increase further and complete
regeneration becomes possible though not necessarily externally distinguishable from
partial regeneration. Competing half-configurations remain Refurbished unless their
DV rises above the Repair DV, at which time they again demoted to the Under Repair
state.

The procedural flow of the CBE algorithm that calculates the health state
transitions is depicted in Figure 1. After initialization, Selection of the L and R half-
configurations occurs which are then loaded into the FPGA. The Detection process is

 CBE for Fault Isolation and On-line Evolutionary Regeneration 17

Fig. 1. Procedural Flow in the CBE Technique

conducted when the normal data processing inputs are applied to the FPGA. Based
on agreement or disagreement among the outputs of the two competing L and R half-
configurations, Discrepancy Value Adjustment for both individuals occurs. The
central PRIMARY LOOP representing discrepancy-free behavior can repeat
indefinitely without any reconfiguration of the FPGA. Only when outputs disagree do
alternate configurations need to be loaded. For Under Repair individuals, if fi > DVR
then Genetic Operators are invoked only once on the resident configurations. The
modified configuration is then immediately returned to the pool of competing
configurations and the Selection step is resumed under normal FPGA throughput
processing operations.

3.2 Selection and Detection Process

The Selection and Detection processes are shown in Figure 2. The usual flow is for
Pristine, Suspect, and then Refurbished individuals to be preferred in that order for
one half-configuration. On the other hand, the other half-configuration is selected
based on a stochastic process determined by the Re-introduction Rate (λR). In
particular, Under Repair individuals are selected as one of the competing half-
configurations on average at a rate equal to λR. Henceforth, this now genetically-
modified configuration will be re-introduced into the operational throughput flow as a
new competitor to potentially exhibit fault-free behavior against the larger pool of
configurations not currently undergoing repair.

An additional innovation is that λR is not only a continuous variable, but can be
adapted under autonomous control. In particular, we strive for Mean-Time-To-Repair
(MTTR) < Mean-Time-Between-Failures (MTBF) by monitoring the ratio of the
number of computations elapsed between and adjusting λR accordingly.

 The Detection process is presented in the lower right corner of Figure 2. If a
discrepancy is observed as a result of output comparison, the FPGA is reconfigured
with a different pair of competing configurations and the output of the device is
temporarily held to be recalculated by the newly selected L and R half-configurations.
These repeated computations and comparisons imply no additional cost since the
device remains online and operational and the normal data throughput continues
uninterrupted.

18 K. Zhang, R.F. DeMara, and C.A. Sharma

Fig. 2. Selection and Detection in the CBE Technique

Fig. 3. Fitness State Adjustment Processes in the CBE Technique

 CBE for Fault Isolation and On-line Evolutionary Regeneration 19

3.3 Fitness State Adjustment Process

Figure 3 depicts the Fitness State Adjustment Process in CBE. Whenever a
discrepancy is detected, the discrepancy values of the individuals involved are
updated. The new discrepancy values are then compared to the Repair Discrepancy
Value DVR and Operational Discrepancy Value DVO to determine whether the
individuals move from one fitness state to another. Ideally, the repair and operational
discrepancy values are computed over EW comparisons for the population. As soon as
the all the individuals in the population have completed at least EW comparisons, new
values of these thresholds are obtained. Since it may be impractical to wait for all
individuals to complete the requisite iterations, an individual can undergo a state
transition after it finishes EW iterations. A Sliding window is defined, which reduces
the latency involved in updating DVR and DVO by considering a subset of individuals
instead of the whole population. With a sliding window, the values of these thresholds
are updated upon the completion of the requisite number of iterations by the number
of individuals defined by the sliding window. For Under Repair individuals, GA
operators are invoked once every EW iterations.

4 Evolutionary Fault Repair Circuit

The hypothetical FPGA structure used in the CBE approach is the same as that in
Miller, Thomson[12]. The feed-forward combinational logic digital circuit uses a
rectangular array of nodes with two inputs and one output. Each node represents a
Look-up Table (LUT) in the FGPA device, and a Configurable Logic Block (CLB) is
composed of four LUTs. In the array, each CLB will be a row of the array and two
LUTs are represented as four columns of the array. There are five dyadic functions --
OR, AND, XOR, NOR, NAND -- and one unary-function NOT, each of which can be
assigned to an LUT. The LUTs in the CLB array are indexed from 1 to n. Array
routing is defined by the internal connectivity and the inputs/outputs of the array.
Internal connectivity is specified by the connections between the array cells. The
inputs of the cells can only be the outputs of cells with lower row numbers. Thus, the
linear labelling and connection restrictions impose a feed-forward structure on the
combinational circuit.

A 3×3 Multiplier is implemented using the above FPGA structure. XOR gates are
purposely excluded from the initial designs which leads to designs with a higher
number of the gates than conventional 3×3 Multiplier designs to increase the design
space. The entire configuration needs 21 CLBs. The population of competing
alternatives is then divided into two groups, L and R, where each group uses an
exclusive set of physical resources. For crossover to occur such that offspring are
guaranteed to utilize only mutually-exclusive physical resources with other resident
half-configurations, a two-point crossover operation is carried out with another
randomly selected Pristine, Suspect or Refurbished individual belonging to the same
group. By enforcing speciation breeding occurs exclusively in L or R, and non-
interfering resource use is maintained. The random crossover points are chosen along
the boundary of CLBs so that intra-CLB crossover is not possible. The mutation

20 K. Zhang, R.F. DeMara, and C.A. Sharma

operator randomly changes the LUT’s functionality or reconnects one input of the
LUT to a new randomly selected output inside the CLB.

5 Experimental Results

An initial population of 20 fault-free configurations was partitioned into mutually
exclusive sub-populations L and R, each containing 10 configurations. Varying stuck-
at faults were injected into the architecture that represents permanent physical faults.
Several fault isolation and regeneration experiments were carried out using a software
simulator. The EW used in the experiment is 600, which can statistically guarantee that
all of 64 input combinations appear at the inputs at least once with probablity of
99.5%, when input combinations are selected at random. For the 3×3 multiplier, the
total possible number of input combinations is 26=64. Thus n = 64 represents the total
number of unique input combinations to the simulated FPGA. In the simulation, m
(0≤m≤64) is defined as the number of input combinations for which a fault is
manifested at the output of the simulated circuit. The number of input combinations
for which the output does not match the desired value measures the impact of a fault
on an individual. Fault isolation characteristics are analyzed first without considering
the regeneration process.

The second set of regenerative experiments investigates the regeneration of
functionality using CBE. The GA uses a two-point crossover, with a crossover rate of
0.05 and the mutation rate is 0.8. The re-introduction rate is 10%. With the simulated
FPGA remaining partially online, all of the regeneration experiments achieved full
fault recovery within a few hundred repair operations with normal functional data
input. During the regeneration period, data throughput is average 87.94. That is, only
13.16% of the total computations had to be recalculated in order to preclude
propagation of discrepant outputs.

5.1 Fault Isolation Experiments

Pairs of individuals, one each from the L and the R groups are loaded on the FPGA in
a repetitive random process. The outputs are compared to check for discrepancies.
Judgment on the fault characteristics of an individual is reserved till it completes EW
pairings, and an Observation Interval is complete. A Sliding Window of evaluation is
defined as five EW, after which one observation interval is complete and individuals
who have completed an EW are evaluated to identify outliers. The DV of a faulty
configuration will increase each time it is compared to another individual. A fault-free
individual will see increases in its DV only when it is compared to a faulty individual.
Individuals with a DV that exceeds the observed arithmetic mean by one standard
deviation are identified as faulty. For example, if 1-out-of-64 outputs are affected in
one L individual due to a fault, the expected DV of this individual after EW pairings is
DVL= 1/64* EW =9.375, assuming equal likelihoods for inputs. A faulty individual can
be expected to be identified once every two observation intervals, since the width of
each observation interval is defined by 5*EW. The average DV of the R individuals
that this is paired with be DVR =1/64* EW /10=0.9375, assuming equal selection
likelihoods.

 CBE for Fault Isolation and On-line Evolutionary Regeneration 21

Two metrics Operational DV (DVO) and Repair DV (DVR) are calculated and used
in the CBA evaluation. DVO is defined as arithmetic mean of the observed DV of all
healthy individuals over a sliding winodw and the DVR is defined as arithmetic mean
of the DV of all individuals considered in the sliding window, including any that may
be faulty. If no faulty individuals have been detected, DVO will equal DVR, otherwise
the DVO < DVR as the faulty individuals substantially increase the mean DV. DVO and
DVR are subsequently used in the CBE fault repair mechanism to define the state
transitions of individuals. If an individual has a DV < DVO, it is probably fault-free
and can be used for fault-free computation. If the DV of an individual exceeds DVR,

then the individual is placed in the Under-Repair group.
In the first experiment, only one individual is affected by a failure in the physical

resource, which causes a 1-out-of-64 fault in the individual. Before the fault occurs,
the system operates with a 100% throughput, and all individuals have a DV equal to
zero. As shown in Figure 4, the fault occurs at time t = 0 and the faulty individual is
repeatedly detected and identified at various observation intervals. DVO = DVR

whenever no faulty individual have been detected over a sliding window. The faulty
individual is always detected, but since it has not completed EW pairing, judgment is
reserved, as shown in the plot. When a faulty individual is isolated, the DVO will be
less than DVR and the faulty DV will be located outside of the DVR+DVσ, where DVσ
represents the standard deviation of the discrepancy values.

Figure 5 shows that the isolated individual’s DV deviates by 1σ or more, typically
3σ. This shows error-free isolation and that faults are never incorrectly identified.
Also, 100% of the faulty individuals are identified within statistically acceptable
values for their discrepancies.

The average DV of individuals will increase proportionately with fault impact.
This leads to increased isolation latency, as shown in Figure 6, for the second
experiment, where the characteristics of isolating a single faulty individual with a 10-
out-of-64 fault impact are shown. Since there are more faults, the faulty individual is
expected to show a discrepancy (10/64)*600 = 93.75 times over its evaluation
window. To complete these iterations, it will therefore require (93.75/5) = 18.75
observation intervals, as opposed to 1.88 previously, which leads to both increased
discrepancy values for the isolated individuals and an increased time between

Fig. 4. Isolation of a single faulty L individual
with a 1-out-of-64 fault impact

Fig. 5. Plot of Standard Deviations of DV
with a 1-out-of-64 fault impact

22 K. Zhang, R.F. DeMara, and C.A. Sharma

Fig. 6. Isolation of a single faulty L individual
with a 10-out-of-64 fault impact

Fig. 7. Performance with a single faulty
individual with 10-out-of-64 fault
impact

successive isolations as compared to Figure 4. The detection latency remains
unaffected. Figure 7 shows that for a single faulty L individual, with a 10-out-of-64
fault impact, isolation always succeeds when expected.

However, when more than one individual is affected by a resource fault, isolation
is more time-consuming and difficult as shown in Figure 8, which depicts the
isolation characteristics when 4 L and 4 R individuals are affected by 1-out-of-64
faults. Expected isolations do not occur approximately 40% of the time, as the
average discrepancy value of the population is higher, making outlier isolation
difficult. The faulty individuals are always detected, but the higher number of
discrepancies prevents them from completing EW

 iterations within an observation
interval. However, a fault-free individual is never incorrectly identified as being
faulty.

Fig. 8. Isolation of 8 faulty individuals, 4 L and 4 R, each with a 1-out-of-64 fault impact

5.2 Regeneration of Functionality

CBE-based regeneration experiments were performed on a simulated FPGA platform
for the 3x3 multiplier application. Starting with an initial population of 20 viable
configurations, random stuck-at faults were injected randomly into one of the 21

 CBE for Fault Isolation and On-line Evolutionary Regeneration 23

CLBs that were utilized to implement the multiplier. The fault reduced the number of
correct outputs from 64-out-of-64 to 54-out-of-64. Regeneration was performed
using a fitness-state adjustment process that utilized the results of the isolation
process described in previous sections. A re-introduction rate of 10% was selected for
selecting individuals under repair for performance evaluation. Higher re-introduction
rates would lower the throughput whereas if the re-introduction rate is too low, the
repair process will be unduly slowed down due to the decreased opportunities to
evaluate the performance of the individuals under repair. A low crossover rate of 0.05
was used to ensure that the diversity in the population is preserved. The initial seeding
population consists entirely of diverse hand-designed individuals. The mutation rate
of 0.8 is required to ensure that the algorithm can explore alternatives by changing the
logical functionality of LUTs and the interconnections between them.

While the simulated FPGA remained partially online, regeneration improved
correctness to 64-out-of-64 possible outputs. Including iterations that produced
functional outputs, the process concluded after a total of 218076 iterations. Complete
repair was achieved after only 135 repair iterations when starting with a highly
diverse initial population. The fault-affected individual was loaded on the FPGA for a
total of 31636 iterations. During the regeneration period, data throughput was
85.54%. Hence, only 14.46% of the total computations needed to be redundant in
order to preclude propagation of any discrepant outputs, even when candidate repairs
were being re-introduced to refurbish the impacted FPGA configuration without
additional test vectors. The throughput will be significantly higher when the system
starts from a fault-free situation, since a large number of the initial iterations before
the occurrence of the fault will contribute to improving the throughput. Fault isolation
using consensus-based evaluation improved the performance of the repair process
eliminating the use of an absolute fitness function. The diversity of the initial
population provides for increased fault tolerance and also the raw material for
realizing the repair.

6 Conclusion

Online EH regeneration essentially defines a problem that is different from offline
EH design. CBE leverages the fact that a failed system’s Repair Complexity can
often be much more computationally tractable than either its original Design
Complexity or its Re-Design Complexity, both of which operate in the absence of a
diverse population of previously completely correct alternatives. In particular,
"repair" implies working design(s) being available before the occurrence of a
resource failure. A population of working designs can thus facilitate repair by
providing diverse alternates. Conventional fitness evaluation associates a rigid
individual-centric fitness measure defined at design-time. CBE uses instead, a self-
adapting population-centric assessment method at run-time. Population-centric
assessment methods such as CBE can provide an additional degree of adaptability
and autonomy. Finally, an additional benefit of CBE is that fitness evaluation
becomes independent of the application running on the FPGA enabling model-free
assessment during evolutionary repair.

24 K. Zhang, R.F. DeMara, and C.A. Sharma

Acknowledgments

This research was supported in part by NASA Intelligent Systems NRA Contract
NNA04CL07A.

References

1. D. Keymeulen, A. Stoica, and R. Zebulum, "Fault-Tolerant Evolvable Hardware using
Field Programmable Transistor Arrays," IEEE Transactions on Reliability, Vol.49, No. 3,
Sept. 2000

2. S. Vigander, “Evolutionary Fault Repair of Electronics in Space Applications”,
Dissertation, Norwegian University Sci. Tech., Trondheim, Norway, February 28, 2001

3. J. D. Lohn, G. Larchev, and R. F. DeMara, “A Genetic Representation for Evolutionary
Fault Recovery in Virtex FPGAs,” Proceedings of the 5th International Conference on
Evolvable Systems (ICES), Trondheim, Norway, March 17-20, 2003

4. J. D. Lohn, G. Larchev, and R. F. DeMara, “Evolutionary Fault Recovery in a Virtex
FPGA Using a Representation That Incorporates Routing,” Proceedings of 17th
International Parallel and Distributed Processing Symposium, Nice, France, April 22-26,
2003

5. M. Garvie and A. Thompson, "Scrubbing away transients and Jiggling around the
permanent: Long survival of FPGA systems through evolutionary self-repair,"
Proceedings of the 10th IEEE Intl. On-Line Testing Symposium, pp. 155-160, 2004

6. A. P. Shanthi and Ranjani Parthasarathi, “Exploring FPGA Structures for Evolving Fault
Tolerant Hardware”, Proceedings of the 5th NASA / DoD Workshop on Evolvable
Hardware, pp. 184-191, 2003

7. Yao. X, Liu. Y and Darwen. P, “How to make best use of evolutionary learing,” In R.
Stocker, H. Jelinek, and B. Durnota, editors, Complex Systems: From Local Interactions to
Global Phenomena, Amsterdam, pp. 229-242, 1996

8. Yao. X and Liu. Y,“Making use of population information in evolutionary artificial neural
networks”, IEEE Trans. On Systems, Man and Cybernetics, Part B: Cybernetics, 28(3), pp.
417-425, 1998

9. Yao. X and Liu. Y, “Getting most of evolutionary approaches,” In A. Stoica, J. Lohn, R.
Kata, D. Keymeulen & R. Zebulum(eds), Proceedings of 2002 NASA/DOD Conference on
Evolvable Hardware, IEEE Computer Society, Alexandria, Virginia, pp. 8-14, 15-18 July
2002

10. Layezll. P and Thompson. A., “Understanding the inherent Qualities of Evolved Circuits:
Evolutionary History as a Predictor of Fault Tolerance,” Proceedings of Third Conf on
Evolvable Systems: From Biology to Hardware (ICES00), Vol. 1801 of LNCS, pp. 133-
142, Springer, April, 2000

11. Subhasish Mitra and Edward J. McCluskey, "Which Concurrent Error Detection Scheme
to Choose?" Proceedings of 2000 International Test Conference, Atlantic City, NJ, pp.
985-994, Oct. 3-5, 2000

12. Julian F. Miller, Peter Thomson, ”Cartesian Genetic Programming”, Proceedings of the
Third European Conference on Genetic Programming (EuroGP2000).LNCS, Vol. 1802,
(2000), pp.121-132, Springer-Verlag, 2000

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 25 – 36, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Hardware Fault-Tolerance Within the POEtic System

Will Barker and Andy M Tyrrell

Department of Electronics, Heslington, University of York, York YO10 5DD, UK
amt@ohm.york.ac.uk

http://www.elec.york.ac.uk/intsys/inspired/inspired.html

Abstract. The ideas presented in this paper are results of a new research pro-
ject, "Reconfigurable POEtic Tissue". The goal of the project was the develop-
ment of a hardware platform capable of implementing bio-inspired systems, in
digital hardware. In particular, the final hardware device, while similar to other
FPGAs, was designed with a number of novel features which facilitate fault-
tolerance. These include dynamic reconfiguration and on-chip re-programming.
This paper considers these features in the context of fault-tolerant system design
and shows how an ensemble of different, but often complementary, techniques
might be produced using these novel device features. Such characteristics are
crucial for many control systems, particularly with safety implications.

1 Introduction

Ensuring the reliability of computing and electronic systems has always been a chal-
lenge. As the complexity of systems increases the inclusion of reliability measures
becomes progressively more complex, but are often a necessity for VLSI circuits
where a single error could potentially render an entire system useless.

Reducing the failure probability and increasing reliability has been a goal of elec-
tronic systems designers ever since the first components were developed. No matter
how much care is taken designing and building an electronic system, sooner or later
an individual component will fail. For systems operating in remote environments such
as space, control and deep-sea applications, the effect of a single failure could results
in a multi-million pound installation being rendered useless. With safety critical sys-
tems such as aircraft, mobile robotics the effects are even more severe. Reliability
techniques need to be implemented in these applications and many more. The devel-
opment of fault tolerant techniques was driven by the need for ultra-high availability,
reduced maintenance costs, and long life applications to ensure systems can continue
to function in spite of faults occurring. The implementation of a fault tolerant mecha-
nism requires four stages: Detection of the error, Confinement of the error, to prevent
propagation through the system, Error recovery, to remove the error from the system,
Fault treatment and continued system service, to repair and return the system to nor-
mal operation.

We deal with the detection of errors and error recovery in this paper. But first we
should comment on the new architectural aspects of the POEtic device that make it so
amenable to fault-tolerant designs.

26 W. Barker and A.M. Tyrrell

The aim of this paper is to present some of the ideas developed in the framework of
a new research project, called "Reconfigurable POEtic Tissue" (or "POEtic” for short)
[1], recently completed under the aegis of the European Community. After a short
introduction to the POE project for the design of bio-inspired hardware, the paper will
present an outline of the POEtic device built during the project and of the main fea-
tures designed into the device that aids fault-tolerant system design, experimental
results are given to illustrate the efficacy of the device and these special features.

2 The POEtic Project

The goal of the POEtic project was:

 “... development of a flexible computational substrate inspired by the evo-
lutionary, developmental and learning phases in biological systems.”

The POEtic tissue is a multi-cellular, self-contained, flexible, and physical sub-
strate designed to interact with the environment, to develop and dynamically adapt its
functionality through a process of evolution, development, and learning to a dynamic
and partially unpredictable environment, and to self-repair parts damaged by aging or
environmental factors in order to remain viable and perform similar functionalities.

Following the three models of bio-inspiration, the POEtic tissue was designed logi-
cally as a three-layer structure (Figure 1 gives an abstract view of this relating to hard-
ware):

• The phylogenetic model acts on the genetic material of a cell. Each cell can con-
tain the entire genome of the tissue. Typically, in the architecture defined above,
it could be used to find and select the genes of the cells for the genotype layer.

• The ontogenetic model concerns the development of the individual. It should act
mostly on the mapping or configuration layer of the cell, implementing cellular
differentiation and growth. In addition, ontogenesis will have an impact on the
overall architecture of the cells where self-repair (healing) is concerned.

• The epigenetic model modifies the behavior of the organism during its operation,
and is therefore best applied to the phenotype layer.

Fig. 1. The three organizational layers of the POEtic project

 Hardware Fault-Tolerance Within the POEtic System 27

Defining separate layers for each model has a number of advantages, as it allows
the user to decide whether to implement any or all models for a given problem, and
lets the structure of each layer to be adapted to the model. This adaptability is
achieved by implementing the cells on a molecular substrate, in practice a surface of
programmable logic.

The final hardware design (VLSI device) has a number of specific novel features
built into its fabric to assist with bio-inspired designs. It is shown here that these fea-
tures can also be used effectively for the design of fault-tolerant systems.

2.1 Operational Mode

A molecule has eight different operational modes, to speed up some operations, and to
use the routing plane. Here we briefly describe the different modes, and they will be
completely described in [2].

In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four inputs.
In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a result de-

pending on three inputs. The first result can go through the flip-flop, and is the first
output. The second one can be used as a second output, and is directly sent to the
south neighbor (can serve as a carry in parallel operations).

In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift register.
This mode could be used to compare a serial input data with a data stored in the 8-bit
shift register.

In Shift Memory mode, the 16 bits are used as a shift register, in order to store
data, for example a genome. One input controls the shift, and another one is the input
of the shift memory.

In Input mode, the molecule is a cellular input, connected to the inter-cellular rout-
ing plane. One input is used to enable the communication. When inactive, the mole-
cule can accept a new connection, but won’t initiate a connection. When active, a
routing process will be launched at least until this input connects to its source. A sec-
ond input selects the routing mode of the entire POEtic tissue.

In Output mode, the molecule is a cellular output, connected to the intercellular
routing plane. One input is used to enable the communication. When inactive, the
molecule can accept a new connection, but won’t initiate a connection. When active, a
routing process will be launched at least until this output connects to one target. An-
other input supplies the value sent to the routing plane, as so to another cell.

In Trigger mode, the 16-bit shift register should contain "000...01" for a 16- bit
address system. It is used by the routing plane to synchronize the address decoding
during the routing process. One input is a circuit enable, that can disable every DFFs
in the tissue, and another one can reset the routing, and so start a new routing.

In Configure mode, the molecule can partially configure its neighborhood. One
input is the configuration control signal, and another one is the configuration shifting
to the neighbors.

The mode of a molecule is stored in 3 bits of the configuration.

28 W. Barker and A.M. Tyrrell

2.2 Partial Reconfiguration

The configuration system of the molecules can be seen as a shift register of 76 bits
split into 5 blocks: the LUT, the selection of the LUT’s input, the switch box, the
mode of operation, and an extra block for all other configuration bits. Each block
contains, as shown in Figure 2, together with its configuration, one bit indicating, in
case of a reconfiguration coming from a neighbour, if the block has to be bypassed.
This bit can only be loaded from the microprocessor, and remains stable during the
entire lifetime of the organism.

Fig. 2. Organisation of the configuration bits for partial reconfiguration

The special configure mode allows a molecule to partially reconfigure its
neighbourhood. It sends bits coming from another molecule to the configuration of
one of its neighbours. By chaining the configurations of neighbouring molecules, it is
possible to modify multiple molecules at the same time.

3 Reconfiguration and Fault-Tolerance

The POEtic project provides a unique platform for investigating mechanisms at work
in biological systems which exhibit fault-tolerant behaviours and it is the intent of the
following work to demonstrate this through the development of a cellular ontogenetic
fault-tolerant mechanism on the POEtic tissue based upon growth.

Self-repair, or healing, is a critical mechanism within an organism’s response to
damage involving the growth of new resources, in the form of cells, and their integra-
tion into the organism replacing damaged ones. An electronic system cannot grow
new silicon resources in response to device faults in the same way and so growth in
silicon is generally emulated by having redundant resources into which the system
can grow. The POEtic architecture provides novel features which are particularly
useful for implementing models of growth in digital hardware including the underly-
ing molecular architecture, dynamic routing and self-configuration of the tissue.

3.1 Growth

The work reported here is inspired by two important features of growth: those of cell
division and cellular differentiation. Cell division is a process of self-replication
through which cells produce copies of themselves. Cellular differentiation is the proc-

 Hardware Fault-Tolerance Within the POEtic System 29

ess through which cells organise themselves by taking on specific functional types
depending upon their positions within an organism.

Prompted by these distinct modes of growth a novel cell design has been implemented
on the POEtic tissue in the context of a test application. Implementation of an embryonic
array emulating the processes of cellular differentiation is described in this paper.

3.2 Test Application

In order to investigate issues regarding the implementation of cellular fault-tolerant
mechanisms on the POEtic tissue a test application has been defined based upon the
audio application presented in [3]. The test application consists of a cell constructed
from nine one-dimensional waveguide mesh elements (for those not familiar with
waveguide meshes, each mesh element can be considered as a particular type of proc-
essing element, the Ps in Figure 3 represent values passing between neighbouring
mesh (processing) elements) – this application requires real-time (audio) processing.
Cells can be chained together to form a one-dimensional waveguide with length an
arbitrary multiple of nine, Figures 3 & 4. While this is a specific application executed
within the POEtic project, the work reported here is generic and appropriate for any
application on one or more devices.

3.3 Fault Detection

Biological mechanisms for fault detection in themselves provide a rich field of re-
search to which the POEtic platform is applicable [4]. However as the aim of the cell
designs is to investigate growth mechanisms a standard hardware redundancy tech-
nique has been chosen to provide fault detection in the designs. It is based upon the
assumptions that faults will occur discretely in time and that a fault is only of signifi-
cance if it causes the cell function at its outputs to deviate from correct behaviour.
Based upon these assumptions we can duplicate and compare two systems, a fault will
cause the values at the outputs of cell function copies to differ. This discrepancy is
detected by a XOR logic functions comparing the cell function outputs and combined
into a fault flag by an OR logic function. The advantages of this method for fault
detection are that it is simple, acts at the resolution of a single clock cycle, operates
on-line and is applicable to any cell function.

P1
OUT

P1
IN

P2
IN

P2
OUT

Mesh Element

Cell

Intra-Cellular Connection

Inter-Cellular Connection

Fig. 3. Nine mesh-element one-dimensional waveguide cell with left and right input streams

30 W. Barker and A.M. Tyrrell

Time (Words)

Left input value Left output value Right output valuePressure

Fig. 4. Cell output in response to pulses applied to one input

4 Embryonic Implementation on the POEtic Tissue

An embryonic array consists of an array of cells implemented in reconfigurable logic
each of which contains a set of configuration strings describing every cell function
within the system which the cells are to form. This set of configuration strings is analo-
gous to the biological genome contained within every living cell. Each configuration
string is analogous to a gene and can be directly translated into the cell function it de-
scribes in the hardware of the cell. Development of the system is achieved through dif-
ferentiation during which each cell identifies its configuration string with respect to its
location within the array and uses it to configure its function [5], detailed in Figure 5.

4.1 Cell Function Areas

Cell function areas are the areas of the cell where the cell application functionality is
performed. Duplication of the cell function enables fault detection by the method
described above. The areas are initially blank and require configuration from a stored
gene. They consist of molecules which have the partial configuration inputs from their
neighbours chained together as illustrated in Figure 6 and all configuration registers
enabled for configuration. This allows an arbitrary cell function to be configured
within them. The stored gene therefore consists of the contents of the configuration
registers for each molecule in the function listed in the order in which they appear in
the chain from the head to the tail.

4.2 Genome Storage

The stored genome consists of individual gene blocks each of which can be selected
by the differentiation system to be the source for configuration of the function areas
within the cell. The genes consist of shift memory molecules which store the configu-

 Hardware Fault-Tolerance Within the POEtic System 31

Dupli cate
Cel l Fun ct ion

Ar ea s

Cel l Nuc leus :-
Con trol of ce ll

fun ct ions

Geno m e
Storage

CR C

FCS ta gged
on to gen e

Molecu le

Fig. 5. Embryonic cell design on the POEtic tissue (Cell has a single gene in its genome for
illustrative purposes)

 Head

Tail

Configuration
string from
stored gene

Shift

Fig. 6. Cell function area configuration chain Fig. 7. Gene block

Gene
Select

Gene 1

Gene 2

Shift

Configuration
string from

selected gene

Fig. 8. Stored genome consisting of selectable gene blocks

Configuration
string from

selected gene

N

S

W E

Configuration
Input

Head Tail

Configure

Configuration
Molecule

32 W. Barker and A.M. Tyrrell

ration string in their look up tables (LUTs). The inputs and outputs of the memory
molecules are chained together in the same way as the molecules in the function con-
figuration areas. During configuration of the function areas every gene in the stored
genome shifts its contents out from its head with the string from the gene selected by
the differentiation process being channelled into the cell function areas.

The head of each gene block is looped back into the tail by connecting the memory
molecule output of the head molecule to the input of the tail molecule so that the
contents of the gene block are retained, illustrated in Figures 7 & 8.

4.3 Fault Detection in the Stored Genome: Cyclic Redundancy Check

Approximately four times as many molecules are required to store each gene than are
used in the function block that it describes and an embryonic cell will require as many
genes as there are different cells in the system. As both function copies are configured
from the same stored gene, a fault in the gene will go undetected by the redundancy
fault-detection system as both copies will be producing the same erroneous outputs.

A second fault-detection system has therefore been implemented in the embryonic
cell design in the form of a cyclic redundancy code (CRC) which can detect faults in
the gene being used to configure the cell function by means of a frame check se-
quence (FCS) which is tagged onto the end of every gene [6].

On configuration of the cell function areas the configuration string for the selected
gene including the FCS is passed through the CRC register as the cell function areas
are configured. If the stored gene is incorrupt then the output of all of the CRC regis-
ter elements will be zero at the end of this process. Otherwise at least one of the out-
puts of the register elements will be high indicating a fault in the gene.

4.4 Cell Nucleus

The cell nucleus is responsible for controlling the five main processes of the embry-
onic cell. These are cellular differentiation, cell function configuration, fault detec-
tion, apoptosis and routing.

Cellular Differentiation: Each of the embryonic cells in the array has a differentia-
tion input and output molecule. These inputs and outputs are linked in a chain across
the tissue. On receiving a zero at its input each cell asynchronously sets its output to
zero. The first cell in the chain has its input connected to a source external to the tis-
sue into which the differentiation signal is driven. This signal consists of a series of
ones equal in length to the number of cells in the organism being developed. The first
cell in the chain therefore receives a series of ones equal in number to this value be-
fore receiving a zero. At this point the output of cell one is asynchronously reset to
zero causing a chain reaction through which all cell differentiation outputs down the
chain asynchronously reset to zero. This terminates the differentiation process in the
cells, each of which will have received one less one at its differentiation input than the
previous cell in the chain. The cells then select their allocated genes depending upon
the number of ones received at their differentiation inputs. Cells which receive no
ones at their inputs blank their function areas and are left as unused spare cells. This
process can be instigated at any point by simply driving the differentiation signal into
the differentiation chain.

 Hardware Fault-Tolerance Within the POEtic System 33

Cell Function Configuration: Completion of the differentiation process triggers a
molecule configuration counter. The counter enables the shift input to each of the
gene blocks in the stored genome and enables a configuration molecule which feeds
the output of the selected gene into the configuration input of the tail of the function
area configuration chain.

When the counter indicates that the number of molecules in a cell function area
have been configured, the enable to the configuration molecule is disabled and the
counter resets. At this point the function areas of the cell have been programmed with
the selected gene and are ready for integration into the system. Before this can occur
however the FCS must be shifted through the CRC register to check that the gene is
correct. This is controlled by a second counter which is triggered by the overflow of
the first and shifts the gene blocks by a further 32 bits driving the FCS out of the gene
block through the CRC register.

Fault Detection: In the cell nucleus the values at the outputs of the two cell function
copies are compared and a fault flagged in response to a discrepancy. The integrity of
the configuration of these function copies is tested by the CRC register on configura-
tion and if corrupt a fault is flagged. The cell nucleus combines these two fault flags
into a single signal which triggers cell apoptosis and differentiation of the system.

Differentiation in response to a fault is triggered by the faulty cell setting the
‘mol_enable_out’ signal on its trigger molecule low. This is detected by the external
system controlling the differentiation signal input to the tissue which drives the signal
into the differentiation chain in response.

Apoptosis: Apoptosis in a faulty embryonic cell is achieved by selecting the blank
gene, simply a source of zeros, and bypassing the delay which the cell would other-
wise introduce into the differentiation chain. This shifts the differentiation values
received downstream of the faulty cell one cell down the chain and causes the cell to
blank its function areas removing any molecules such as input and output molecules
which may interfere with the operation of the system.

Routing: Having completed the processes of cellular differentiation and configuration
the final step in producing the functioning embryonic system is to route together any
input and output molecules which have been configured in the function areas of the
cells.

The cell which receives the differentiation value equal to the number of cells in the
system, i.e. the first healthy cell in the differentiation chain, is assigned the task of
triggering the routing process. Every cell contains a trigger molecule capable of this.
On completing the configuration of their function areas every cell sends a pulse on the
‘start_routing_enable’ signal to its inputs entering them into the routing process. This
pulse is also sent to the ‘reset_routing’ input on the cell’s trigger molecule via a gate.
The output of this gate is enabled if it is the first working cell in the chain thereby
triggering the routing process. This system is required as firing multiple trigger mole-
cules on the tissue will result in multiple routing processes being instigated wasting
clock-cycles [2].

34 W. Barker and A.M. Tyrrell

Time (Words)

Pressure

Run 1 Run 2 Run 3 Run 4 Run 5

Left input value Left output value Right output value

Time (Words)

Pressure

Run 1 Run 2 Run 3 Run 4 Run 5

Left input value Left output value Right output value

Fig. 9. Fault-free cell I/O Fig. 10. I/O with faults. Fault-tolerance OFF.

Time (W ords)

Press ure

Run 1 Run 2 Run 3 Run 4 Run 5

Left input value Left output value Right output value

a

b

Fig. 11. I/O with faults. Fault-tolerance ON.

4.5 Simulations and Results

The cell design described above has been simulated in the presence of randomly gen-
erated faults using the POEtic design tool POEticmol [7]. As POEticmol simulates the
behaviour of the POEtic device using the VHDL description from which the device is
fabricated accurate simulations of the effects of faults on system behaviour can be
made.

A number of signal elements are randomly chosen and are forced into a fault con-
dition during the simulation. Each signal element is randomly allocated a clock-cycle
number from the pre-specified duration of the simulation upon which to become
faulty. The fault model used is the ‘stuck-at’ fault, or single hard error. The number of
faults forced in the simulation is set at a value high enough to guarantee a satisfactory
yield of terminal cell faults rather than at a value which is a realistic representation of
fault rates for the real device with respect to the test application.

 Hardware Fault-Tolerance Within the POEtic System 35

Some example results showing the behaviour of the embryonic cell design in re-
sponse to randomly generated faults can be seen in Figures 9 to 11. The figures each
show the input and output data for two cells, a working cell and a spare cell (both
working and spare cells are exposed to faults during the simulations), simulated over
five runs of a fixed number of output words. Each run has a different randomly gener-
ated set of faults which are to be forced into the tissue. The design is reset after the
end of each run and any faults forced into the tissue are removed. Each cell design is
simulated under three conditions. In the first simulation no faults are forced into the
tissue. This generates the target output which the fault-tolerant system is aiming to
achieve. In the second simulation faults are forced into the tissue but the fault-
detection and growth mechanisms are disabled. In the third simulation the same faults
are forced into the tissue with the fault-detection and growth mechanisms enabled.

In Figure 10 it can be seen that unprotected embryonic cell sustains a terminal fault
in run 2. In run 2 of Figure 11 it can be seen that with the fault-tolerant systems en-
abled the system has detected the induced fault and instigated apoptosis of the faulty
cell and re-growth of the system. Data loss in the embryonic system is illustrated by
the zero output between points a) and b) produced by the newly grown system. At
point a) the system is repaired and fully functional but its response to the input pulse
previous to the fault being detected has been wiped by re-growth. By point b) the
correct system response to this input has become negligible and a new input pulse
stimulates the repaired embryonic system producing incorrupt output data.

5 Conclusion

An embryonic cellular fault-tolerant mechanism has been successfully implemented
in simulation on the POEtic tissue. The transparency of the process of mapping an
embryonic design onto the POEtic architecture has also been demonstrated. Unlike
embryonic implementations on generic FPGA architectures which require complex
stages of synthesis and careful tailoring of the embryonic architecture for the target
device, compact embryonic designs can be built directly on the POEtic tissue at the
molecular level. Results of preliminary simulations in the presence of randomly intro-
duced faults show that the cell design is capable of successfully detecting, repairing
and recovering from terminal faults in cell function.

Acknowledgements

The authors would like to acknowledge the contribution of all the other members of
the POEtic project funded by the Future and Emerging Technologies programme
(IST-FET) of the European Community, under grant IST-2000-28027 (POETIC). The
information provided is the sole responsibility of the authors and does not reflect the
Community's opinion. The Community is not responsible for any use that might be
made of data appearing in this publication. The Swiss participants to this project are
supported under grant 00.0529-1 by the Swiss government.

36 W. Barker and A.M. Tyrrell

References

1. Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M.,
Rosenberg, J. and Villa, A.E.P. “POEtic Tissue: An Integrated Architecture for Bio-
Inspired Hardware”, Proceedings of 5th International Conference on Evolvable Systems,
Trondheim, pp 129-140, March 2003.

2. Thoma, Y., Tempesti, G., Sanchez, E. and Moreno J-M. “POEtic: An Electronic Tissue for
Bio-Inspired Cellular Applications”, BioSystems, pp. 191-200, 74: 1-3, 2004

3. Cooper, C.H.V., Howard, D.M. and Tyrrell, A.M. ‘Using GAs to Create a Waveguide
Model of the Oral Vocal Tract’, 6th European Workshop on Evolutionary Computation in
Image Analysis and Signal Processing, Coimbra, Portugal, pp 2880-288 April 2004.

4. Canham, R. O., Tyrrell, A. M., “A Multilayered Immune System for Hardware Fault Toler-
ance within an Embryonic Array”, 1st International Conference on Artificial Immune Sys-
tems, Canterbury, September 2002.

5. D. Mange, M. Sipper, A. Stauffer, G. Tempesti. "Towards Robust Integrated Circuits: The
Embryonics Approach", Proceedings of the IEEE, vol. 88, no. 4, April 2000, pp. 516-541.

6. Costello D.J. Jnr, Lin S. “Error Control Coding”, 2nd Ed. Prentice Hall 2004, pp 136-188
7. Thoma Y., Sanchez E., Hetherington C., Roggen D., Moreno J-M. “Prototyping with a bio-

inspired reconfigurable chip”, Proc. 15th International Workshop on Rapid System Proto-
typing (RSP 2004), Geneva, Switzerland, June 2004.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 37 – 45, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolvable Hardware System
at Extreme Low Temperatures

Ricardo S. Zebulum, Adrian Stoica, Didier Keymeulen, Lukas Sekanina*,
Rajeshuni Ramesham, and Xin Guo**

Jet Propulsion Laboratory/Caltech, NASA, 4800 Oak Grove Drive,
Pasadena, CA 91109, USA

ricardo.zebulum@jpl.nasa.gov

Abstract. This paper describes circuit evolutionary experiments at extreme low
temperatures, including the test of all system components at this extreme
environment (EE). In addition to hardening-by-process and hardening-by-
design, “hardening-by-reconfiguration”, when applicable, could be used to
mitigate drifts, degradation, or damage on electronic devices (chips) in EE, by
using re-configurable devices and an adaptive self-reconfiguration of their
circuit topology. Conventional circuit design exploits device characteristics
within a certain temperature/radiation range; when that is exceeded, the circuit
function degrades. On a reconfigurable device, although component parameters
change in EE, a new circuit design, suitable for new parameter values, may be
mapped into the reconfigurable structure to recover the initial circuit function.
This paper demonstrates this technique for circuit evolution and recovery at
liquid nitrogen temperatures (-196.6°C). In addition, preliminary tests are
performed to assess the survivability of the evolutionary processor at extreme
low temperatures.

1 Introduction

Future NASA missions to Moon, Mars and Beyond will face Extreme Environments
(EE), including environments with large temperature swings, such as between -180°C
and 120°C at the initial landing sites on the Moon, low temperatures of -220 °C to -
233°C during the polar/crater Moon missions, and -180°C for Titan in-situ mission.
High temperatures of 460°C and harsh sulfuric acid environment will be encountered
for Venus Surface Exploration and Sample Return mission. High radiation levels will
be faced for Jupiter’s Icy Moons Orbiter (JIMO) missions: 5MRad Total Ionizing
Dose (TID) for Europa Surface and Subsurface mission. These extreme environments
of extreme low temperatures and high radiation induce drifts, degradation, or damage
into electronic devices and reliability issues of package designs and associated
materials.

 * Brno University of Technology, Czech Republic (Visiting scientist at JPL/Caltech during fall

of 2004).
** Chromatech, Alameda CA 94501, USA.

38 R.S. Zebulum et al.

The current approach for space electronics designs is to use commercial-of-the-
shelf or military range electronics protected through passive (insulation) or active
thermal control, and heavy metal (high weight) shielding for radiation reduction. This
increases weight and volume, and is compounded by power loss, and leads to
additional cost for the mission. More importantly, as missions will target operations
with smaller instruments/rovers and operations in areas without solar exposure, these
approaches sometimes become infeasible and it will be more expensive. In many
cases the electronics must be co-located with the sensor or actuator in the extreme
environment, without the option of being insulated or shielded properly, for example
panoramic camera and its electronics in Mars Exploration Rover project. Therefore,
developing EE-robust electronics would have several advantages including lower
costs, less power, no thermal control, and offering in some cases, the only reasonable
solution.

Conventional approaches to Extreme Environment Electronics include hardening-
by-process (HBP), i.e. fabricating devices using materials and device designs with
higher tolerance to EE, (e.g using special materials like Silicon Carbide for high
temperatures, or Silicon-on Insulator for radiation, ceramic materials for packaging).
Another promising approach is hardening-by-design (HBD), i.e. use of special
design/compensation schemes. For example, circuit techniques, such as auto-zero
correction, are used to alleviate the problem of the (temperature dependent) offset
voltages in Operational Transconductance Amplifiers (OTA) operated at low
temperatures [1]. Both these hardening approaches are limited, in particular for analog
electronics, by the fact that current designs are fixed and, as components are affected
by EE, these drifts alter functionality.

A recent approach pioneered by JPL is to mitigate drifts, degradation, or damage
on electronic devices in EE by using re-configurable devices and an adaptive self-
reconfiguration of circuit topology. This new approach, referred here as hardening-
by-reconfiguration (HBR) mitigates drifts, degradation, or damage on electronic
devices in EE by using reconfigurable devices and an adaptive self-reconfiguration of
circuit topology. In HBR, although device parameters change in EE, while devices
still operate (albeit on a different point of their characteristic) a new circuit design,
suitable for new parameter values, is mapped into the reconfigurable system to
recover the initial circuit functionality. Partly degraded resources are still used, while
completely damaged resources are bypassed. The new designs, suitable for various
environmental conditions, can be determined prior to operation or determined in-situ
by reconfiguration algorithms running on a built-in digital controller.

The scope of this paper is on HBR for extreme low-temperatures, since other
studies have been performed for high temperatures and radiation environments [2].
The application here described encompasses the separate testing of the whole
Evolvable Hardware system (Evolutionary Processor + Re-configurable chip) at low
temperatures, following the assumption that the entire system will be exposed to the
space EE. In the experiments, we demonstrate the evolution and recovery of circuits
at liquid nitrogen temperatures (-196.5°C) and verify the operational limitation of the
evolutionary processor at low temperatures. This adds to our previous experiments
where only the re-configurable chip was exposed to EE [2].

 Evolvable Hardware System at Extreme Low Temperatures 39

The Stand-Alone Board Level Evolvable (SABLE) system [3] designed by JPL is
used in the experiments described in this paper. This system consists of a Digital
Signal processor (DSP) working as an evolutionary processor and a reconfigurable
mixed signal chip, the Field Programmable Transistor Array (FPTA). Section 2 of
this paper overviews the SABLE system. Section 3 describes the experiments and
section 4 concludes the research work performed.

2 Overview of SABLES

SABLES integrates an FPTA and a DSP implementing the Evolutionary Processor
(EP) as shown in Figure 1. The system is stand-alone and is connected to the PC only
for the purpose of receiving specifications and communicating back the results of
evolution for analysis [3].

FPTA EP (DSP) PC

Board

Fig. 1. Block diagram of a simple stand-alone evolvable system

CM

Cell_in1

Cell_in2

Cell_in3

Cell_in4

Cell_in5

Cell_in6

Cell_in7

Cell_in8

Current
Mirror

s52

s54

s63

s55

s62

s60

s[48-51]

Cell_out1

Cell_out2

s56

s57

s58

s59

s74

s73

s72

s71

s70

s69

s66

s[44-47] s67

s68

s61

s53
M1 M2

M3

M5 M6

M7 M8

M9

M10

M11

M12

M13

M14

s16

s21

s17

s18

s19

s20 s22

s24

s0
s25

s26

s27

s28

s31 s29 s30

s2

s11

s1

s9

s3

s5
s4

s6

s7

s8

s13

s10

s39

s12

s23

s38

s42

s40

s41

s37

s35

s34

s33

s36

s32

s15

s43

Current Source

In6

In1 In2

Out3

Cm1

Cm2

Cc
(5pF)

In5_Out1

Out4

In3

In4

Out2

s14 In5_Out1

Out3

Out4

In1

In2

In3

In4

S75

S76

RM

S64

WM

S65

In2In5_Out1

M4

Vdd

Gnd

Fig. 2. Schematic of the FPTA-2 Cell

40 R.S. Zebulum et al.

The FPTA has transistor level reconfigurability, consisting of an 8x8 array of
reconfigurable cells. Each cell has a transistor array as well as a set of other
programmable resources, including programmable resistors and static capacitors.
Figure 2 provides a detailed view of the reconfigurable transistor array cell. The
reconfigurable circuitry consists of 14 transistors connected through 44 switches and
is able to implement different building blocks for analog processing, such as two- and
three-stage OpAmps and Gaussian computational circuits. Details of the FPTA-2 can
be found elsewhere [2,3].

The evolutionary algorithm is implemented in a DSP that directly controls the FPTA-
2, together forming a board-level evolvable system with fast internal communication
ensured by a 32-bit bus operating at 7.5MHz. Details of the evolutionary platform (EP)
were presented in [4]. Over four orders of magnitude speed-up of evolution was
obtained on the FPTA-2 chip compared to SPICE simulations on a Pentium processor
(this performance figure was obtained for a circuit with approximately 100 transistors;
the speed-up advantage increases with the size of the circuit).

3 Low Temperature Experiments

This paper particularly focuses on analog/digital electronics at low-temperatures [5].
The experiments cover separate tests of the whole Evolvable Hardware system: the
Evolutionary Processor (the DSP in the SABLE system) and the FPTA tested at low
temperatures. Table 1 summarizes the experiments setup.

Table 1. Summary of Experiments

Function Device
Tested

Temperature Individuals/Generations

Maximization of
chromosome
value

DSP Between -110oC
and -120oC

100/464

Half-Wave
Rectifier

FPTA -196.5°C 100/300

NOR Gate FPTA -196.5°C 100/300

Controllable
Oscillator

FPTA -196.5°C 100/300

 3.1 DSP Tests at Low-Temperatures

Previous experiments focused exclusively on the tests of the FPTA chips at extreme
environments. However, no tests have been reported so far on the behavior of the
Evolutionary Processors (EP) at extreme environments. This particular experiment
focuses on low-temperature characterization of the DSP working as the EP.

 Evolvable Hardware System at Extreme Low Temperatures 41

A 320C6701 DSP was tested in a board fabricated by Innovative Integration
(SBC62). The board communicates with a PC through a JTAG connection. During the
test only the DSP board was placed on the low-temperature chamber: the PC and the
JTAG were outside.

The FPTA chip was not used in this arrangement. The DSP was tested by running
a simple Genetic Algorithm (GA) whose target was a simple optimization problem
(the maximization of the number of ‘1’s in the chromosomes). This problem is solved
in less than 1 minute, after 464 generations. The GA results are deterministic, i.e., the
same for each run.

The temperature of the chamber/test article has been driven to 0oC with a scan rate
of 5oC/min from room temperature. The dwell time at 0oC temperature was for 8
minutes and electrical measurements were made during this time. Later, the
temperature of the chamber has been driven to –30oC, –60oC, –90oC, –120oC at a scan
rate of 5oC/min and electrical measurements were made respectively during the dwell
(Figure 3).

A Failure was observed during the testing at –120oC step. Electrical measurements
were made at –90oC again and the DSP regained its characteristics. This procedure
was repeated again: the temperature was driven to –90oC, –100oC, –110oC and –
120oC to narrow the temperature range. The dwell time at each temperature was for 5
minutes and electrical measurements were made during this time. The DSP was
functioning at –90oC, –100oC, and –110oC. The failure was again observed during the
testing in a temperature range of –110oC to –120oC. During the failure the DSP did
not communicate with the PC. The PC-DSP communication link was the only means
to read out the DSP outputs in this experiment.

Other Evolutionary Processors implementations, including FPGAs and other DSP
models, will be tested. The final goal of the experiments is to have an implementation
operational at -180oC or below.

Electrical tests
performed

Fig. 3. Temperature Profile in the DSP Test. Time in the horizontal axis and temperature in the
vertical axis.

42 R.S. Zebulum et al.

3.2 Half-Wave Rectifier

The low temperature test bed for these experiments used liquid nitrogen, establishing
a temperature of -196.5°C. In order to study the effect of low temperatures on the
FPTA device only (the DSP was at room temperature), the chip was placed on a
separate board that was immersed into liquid nitrogen. This setup did not allow a
control for intermediate temperatures between room ambient and liquid nitrogen as
described in the previous experiment. A standard ceramic package was used for the
chip. A half-wave rectifier was then evolved at -196.6°C with the following setup.

The fitness function given below does a simple sum of errors between the target
function and the output from the FPTA. The input was a 2 kHz excitation sine wave
of 2V amplitude, while the target waveform was the rectified sine wave. The fitness
function rewarded those individuals exhibiting behavior closer to target (by using a
sum of differences between the response of a circuit and the target) and penalized
those farther from it. The fitness function was:

−

= −
<−

=
1

0 max otherwise2/)(

)2/(for)()(n

t s

sss

s
VtR

nttStR
F

where R(ts) is the circuit output, S(ts) is the circuit stimulus, n is the number of
sampled outputs, and Vmax is 2V (the supply voltage). The output must follow the
input during half-cycle, staying constant at a level of half way between the rails (1V)
in the other half.

After the evaluation of 100 individuals, these were sorted according to fitness and a
9% (elite percentage) portion was set aside, while the remaining individuals
underwent crossover (70% rate), either among themselves or with an individual from
the elite, and then mutation (4% rate). The entire population was then reevaluated.
The experiment used 2 cells and was run for 300 generations.

The oscilloscope caption is shown in Figure 4a. This was not a robust solution (and
it was not even expected to be, since evolutionary algorithm was not asked, through

Out

In

(A) (B)

Fig. 4. Half-wave rectifier evolved at -196C (A); solution is not robust and degrades when
returned to room temperature (B). An environmental noise signal is also present at the circuit
input.

 Evolvable Hardware System at Extreme Low Temperatures 43

the fitness function, to respond to an entire temperature range) and when taken out to
room temperature the response deteriorated as shown in Figure 4b.

3.3 NOR Gate

A NOR gate was evolved at -196.5°C using the same method described in section 3.2.
Two FPTA cells were used and the experiment processed 100 individuals along 300
generations. Figure 5.a shows the oscilloscope picture of the evolved solution at -196.6°C.
The same solution was tested at room temperature using another FPTA chip, producing an
almost identical behavior (Figure 4b). This is in contrast to the rectifier behavior.

3.4 Recovery of Controllable Oscillator at Low Temperatures

Four cells of the FPTA were used to evolve a controllable oscillator. This circuit
receives a digital input and it should oscillate when the input is at one digital level

Out

In2

In1

(A) (B)

0 0 0 1

0 1 1 0

1 0 1 0

 0 0 0 1

 0 1 1 0

 1 0 1 0

Fig. 5. NOR circuit evolved and tested at -196.5°C (A); the same circuit was tested successfully
at room temperature (B). An environmental noise signal is also present at the circuit input.

In

Out

(A) (B)

Fig. 6. Evolved controllable oscillator at room temperature and deteriorated response at
–196.6°C

44 R.S. Zebulum et al.

(either ‘0’ and ‘1’) and stay at ground for the other level. Initially, a controllable
oscillator was evolved at room temperature, the circuit behavior being depicted in
Figure 6a. The circuits output a 70kHz sine wave (with a small degree of harmonic
components) when the input is ‘0’. When the same circuit is tested at -196.5°C, it can
be observed a distortion (increase in harmonics) at the output (Figure 6b).

The controllable oscillator was evolved again at -196.5°C, the response being
displayed in Figure 7. It can be observed that the output distortion largely has been
removed. In addition, evolution found a circuit that oscillates for a high level input, in
contrast with the room temperature solution.

Out

In

Fig. 7. Evolved controllable oscillator at low temperature

4 Conclusions and Future Work

The results summarized above prove the concept, yet have the following limitations:
1) the tests were of short duration, 2) did not implement temperature cycling, 3) did
not use the combined EHW system (DSP and FPTA) at low temperature
simultaneously, 4) were not demonstrated on complex analog or digital circuits
performing in an application.

Particularly, the DSP Board worked down to -110oC, but failed for further lower
temperatures. A short-term goal is to test other Evolutionary Processor
implementations, such as FPGAs, for an extended operation at -180oC.

Longer term goals planned for this effort are: demonstrate the integrated
reconfigurable array-reconfiguration logic in the same chip under temperatures cycles
accurately replicating those in Moon and Mars and for longer duration and in
combined radiation/temperature tests, performing a sensor processing function. More
specifically, the overall objective of the new effort is to develop/demonstrate
reconfigurable analog electronics performing characteristic analog functions
(filtering, amplification, etc) for extended operations in extreme environment with
temperatures cycling in the range of –180°C and 120°C and cumulative radiation of at
least 300kRad total ionizing dose (TID). The objective is to develop and validate Self
Reconfigurable Electronics for Extreme Environments (SRE-EE) technology by
demonstrating a Self-Reconfigurable Analog Array (SRAA) IC in sustained (over 200

 Evolvable Hardware System at Extreme Low Temperatures 45

hours) operation at temperatures between -180°C and 120°C, and irradiated to
300kRad total ionizing dose (TID). The temperature range of -180°C and 120°C
covers the temperature range for both Moon and Mars environments and 300kRad
TID reflects accumulative dose during very long Mars missions (100kRad for near-
term missions), or missions beyond the Moon and Mars, such as to Jupiter’s Icy
Moons. This would validate the technology for Moon and Mars temperature and
Jupiter radiation environments and the even harsher radiation environments for
missions beyond.

Acknowledgement

The work described in this paper was performed at the Jet Propulsion Laboratory,
California Institute of Technology and was sponsored by the National Aeronautics
and Space Administration.

References

1. S. C. Terry, B. J. Blalock, J. R. Jackson, S, Chen, C.S. Durisety, M.M. Mojarradi, E.
Kolawa, " Development of Robust Analog and Mixed-Signal Electronics for Extreme
Environments Applications", IEEE Aerospace Conference, Big Sky, MT, March 2004.

2. A. Stoica, D. Keymeulen, T. Arslan, V. Duong, R. Zebulum, I. Ferguson and X. Guo,
"Circuit Self-Recovery Experiments in Extreme Environments", Proceedings of the 2004
NASA/DoD Conference on Evolvable Hardware, pp. 142-145, Seattle, USA, June 2004.

3. A Stoica, R.S. Zebulum, M.I. Ferguson, D. Keymeulen, V. Duong. “Evolving Circuits in
Seconds: Experiments with a Stand-Alone Board-Level Evolvable System.”, 2002 NASA/DoD
Conf. on Evolvable Hardware, July 15-18, 2002, IEEE Computer Press, pp. 67-74.

4. M.I. Ferguson, A. Stoica, D. Keymeulen and R. Zebulum and V. Duong, " An Evolvable
Hardware Platform based on DSP and FPTA ". In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2002), July 7-11, 2002, USA. Menlo Park,
CA. Pages: 145-152: AAAI Press.

5. Hairapetian, A., Gitlin, D., Viswanathan, C.R., “Low-Temperature Mobility Measurements
on CMOS Devices”, IEEE Transactions on Electron Devices, V. 36, N. 8, August, 1989.

Intrinsic Evolution of Sorting Networks: A Novel

Complete Hardware Implementation for FPGAs

Jan Kořenek and Lukáš Sekanina

Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

{korenek, sekanina}@fit.vutbr.cz

Abstract. A specialized architecture was developed and evaluated to
evolve relatively large sorting networks in an ordinary FPGA. Genetic
unit and fitness function are also implemented on the same FPGA. We
evolved sorting networks up to N=28. The evolution of the largest sorting
networks requires 10 hours in FPGA running at 100 MHz. The experi-
ments were performed using COMBO6 card.

1 Introduction

Sorting networks (SN) have recently been recognized as potentially suitable ob-
jects for the evolutionary design and optimization [2,4]. They are also interesting
from a hardware viewpoint because of their regular and combinational nature
suitable for pipeline processing. For instance, Koza et al. have used genetic pro-
gramming to evolve small sorting networks directly in a field programmable gate
array (FPGA) [6].

Similarly, effective hardware implementations of median circuits are crucial
for high-performance signal processing. By the median circuit we mean a circuit
calculating the median value from its inputs. That can be accomplished either
by reading the middle value of the output sorted vector calculated by a corre-
sponding sorting network or by designing of a specialized median circuit [10].
All the mentioned approaches share a common feature – the time of a candidate
SN evaluation grows exponentially with growing number of inputs.

The objective of this paper is to evolve as large as possible sorting networks
in a reasonable time. In order to perform these investigations, a novel virtual
reconfigurable circuit architecture optimized for evolution of sorting networks
has been proposed and implemented on the top of a conventional FPGA. The
architecture is configured using the chromosomes generated by evolutionary al-
gorithm which is implemented on the same FPGA. The chromosome encodes
the functions performed by virtual programmable elements; however, the inter-
connection of these elements remains fixed. Since the FPGA implementation of
the programmable element is inexpensive, it can operate as a wire and thus in
fact the evolutionary algorithm also modifies the interconnection. As the fitness
calculation is also carried out in the same FPGA, we can benefit from pipeline
processing allowing reasonable time of a candidate circuit evaluation. The main

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 46–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Intrinsic Evolution of Sorting Networks 47

feature of the proposed implementation is that everything is implemented in a
cutting-edge reconfigurable hardware platform available today. For the exper-
iments presented we utilized the COMBO6 card developed in the Liberouter
project [7]. A personal computer is used only for a communication with the
COMBO6 card, i.e. for reading the results. We evaluated various variants of the
evolvable sorting network, including the size of the virtual reconfigurable circuit
and the parameters of the evolutionary algorithm. The main objective is to find
as large correct sorting network as possible in minimal time; neither area nor
delay are optimised.

The paper is organized as follows. Section 2 briefly introduces sorting and
median networks and evolutionary approaches to their design. In Section 3 the
proposed complete hardware implementation is described. Results of synthesis
for COMBO6 are reported in Section 4. Section 5 summarizes the obtained
results. Section 6 deals with discussion of the obtained results and directions of
future work. Conclusions are given in Section 7.

2 A Brief Survey of Relevant Research

2.1 Sorting and Median Networks

A compare–swap of two elements (a, b) compares and exchanges a and b so that
we obtain a ≤ b after the operation. A sorting network is defined as a sequence
of compare–swap operations that depends only on the number of elements to
be sorted, not on the values of the elements [5]. The advantage of the sorting
network is that the sequence of comparisons is fixed. Thus it is suitable for
parallel processing and hardware implementation, especially if the number of
sorted elements is small. Figure 1 shows an example of a sorting network.

The number of compare–swap components and the delay are two crucial
parameters of any sorting network. Table 1 shows the number of compare–swap
components and delay of the best currently known sorting networks (for N ≤ 16).
These values are derived from the Knuth’s book [5] and from paper [1].

Having a sorting network for N inputs, the median is simply the output value
at the middle position (odd Ns only). For example, efficient calculation of the

min

max
min

max

in0

in1

in2 max

min
11110000

11001100

10101010

10000000

11101000

11111110

(a) (b)

Fig. 1. (a) A 3-sorting network consists of 3 components, i.e. of 6 subcomponents

(elements of maximum or minimum). A 3-median network consists of 4 subcomponents.

(b) Alternative symbol.

48 J. Kořenek and L. Sekanina

Table 1. Parameters of the best-known sorting networks

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10

Comparators 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

median value is important in image processing where median filters are widely
used with N = 3x3 or 5x5 [9]. Note that the popular implementation of the
9-median circuit in an FPGA proposed by Smith is also area-optimal (in terms
of the number of components) [14].

The zero–one principle helps with evaluating sorting networks (and median
circuits as well). It states that if a sorting network with N inputs sorts all
2N input sequences of 0’s and 1’s into nondecreasing order, it will sort any
arbitrary sequence of N numbers into nondecreasing order [5]. This principle
will be utilized in the fitness function.

2.2 Evolutionary Approaches

Some of sorting and median networks were (re)discovered using evolutionary
techniques [2,4,6,10]. Evolutionary techniques were also utilized to discover fault-
tolerant sorting networks [12]. Since fitness function is typically based on the use
of the zero–one principle, the evolution of larger sorting networks is not scalable
(because the size of the test set doubles by increasing the number of inputs
by 1). It is usually impossible to obtain the perfect solution (that sorts all 2N

input vectors) if only a subset of input vectors is utilized during the evolutionary
design [3].

2.3 Intrinsic Evolution in FPGAs

In order to speed up candidate networks evaluation, Koza et al. have evaluated
candidate sorting networks in Xilinx XC6216 FPGA. Genetic programming uti-
lized for designing sorting networks was running in PC. For example, using
population size 60k, minimal 8-SN was evolved on generation 58, and using a
population size 100k, minimal 9-SN was evolved on generation 105. The evolution
of minimal 7-SN required 69 minutes on the FPGA (31 generations, population
size 1000). The evaluation of a candidate sorting network in XC6216 FPGA was
46 times faster than in Pentium 90MHz [6].

Some other FPGA-based implementations of complete evolvable systems
have been proposed for various problems in the recent years. There are some
examples: In Tufte and Haddow’s approach only register values representing co-
efficients of a digital filters were evolved [15]. Sloarch and Sharman [13] have
proposed intrinsic evolution of small combinational circuits in FPGA. An auto-
matic feature identification algorithm that utilizes functional level operators was
developed for multi-spectral images in [8]. The concept of virtual reconfigurable
circuit (i.e. the second level of reconfiguration implemented in a conventional

Intrinsic Evolution of Sorting Networks 49

FPGA) was utilized in papers [11,16]. We use a hardware implementation of
evolutionary algorithm because it overcomes the bottleneck introduced by slow
communication between the FPGA and a personal computer (in which the evo-
lution is usually performed). The proposed architecture for evolution of large
sorting networks is based on Koza’s seminal work [6] and Sekanina and Friedl’s
complete hardware implementation of an evolvable combination circuit [11]. Un-
like in Koza’s approach evolutionary algorithm will be implemented in hardware.

3 The Proposed Architecture

The proposed architecture for sorting network evolution consists of four basic
components—Control Unit, Fitness Unit, Genetic Unit and Virtual Reconfig-
urable Circuit Unit (VRC Unit). All the units are implemented on a single
FPGA. The block structure of the architecture is shown on the Figure 2.

0

1

2

3

4

5

0

1

2

3

4

5

Fitness

Values

VRC Unit Fitness Unit

Generation

Sequence

Evaluation

Sequence

Genetic Unit

Control unit

PCI bus

of all
Configuration

members

Mutations

Population

Fig. 2. Block structure of the proposed architecture

All operations are controlled by the control unit which is connected to PCI
bus and executes the commands entered by user. For example, evolution can be
started or stopped, the number of iterations can be specified, etc. The Genetic
Unit executes genetic algorithm and contains all population members. VRC unit
is a reconfigurable circuit in which the evolution is performed. That is imple-
mented as a second level of reconfiguration on the FPGA. VRC is configured
using chromosomes generated by Genetic Unit.

3.1 Genetic Unit

Genetic algorithm is based only on the mutation operator (bit inversion); cross-
over is not taken into account in this paper. We are going to investigate its

50 J. Kořenek and L. Sekanina

usefulness in next research. Population size is configurable. The new population
is always generated from the best member of the previous one. Genetic algorithm
operates in following steps: (1) Initialization Unit generates the first population
at random (Linear Feedback Shift Register seeded from software is utilized). (2)
Mutation Unit changes a given number of genes (bits) of a population member
(this number is configurable) and the modified member is loaded into the VRC—
it represents an image operators. (3) Genetic Unit is waiting for the evaluation
performed by Fitness Unit and if the fitness value obtained is better than the
parent’s fitness then the chromosome replaces its parent. (4) This is repeated
until the appropriate number of generations is produced.

3.2 VRC Unit

The unit consists of VRC elements that can perform different operations accord-
ing to the selected configuration. Figure 3 shows its inteface.

A

B

OA

OB

CFG

Fig. 3. VRC element architecture

Each element consists of two input and two output ports (everything is 1
bit). The functionality is determined by two configuration bits, which are used
to select one of four different operations. All operations can be performed in one
clock cycle. The result is stored into the register (local in each element) which
offers to use VRC elements in a pipelined structure.

Sorting networks are usually composed of Compare&Swap components with
various interconnection. For this reason, the proposed VRC element is designed
to perform Compare&Swap operation. Alternatively, it can operate as a wire or
cross-wire. The relation between configuration bits and functionality is shown in
the following list:

– 00 – direct connection from inputs to outputs
– 01 – Compare&Swap operation – maximum on the upper output
– 10 – Compare&Swap operation – minimum on the upper output
– 11 – cross connection inputs to outputs

The VRC unit is composed of VRC elements in a fixed structure which is
shown in Figure 3. Although the interconnection is invariable it can be changed
if CFG = 00 or 11 is selected. The architecture is different for even Ns (left side
in Fig. 4) and odd Ns (right side in Fig. 4).

A VRC element is connected to the four nearest neighbors. Even columns
have inputs and outputs shifted by one item. This one-item-shift is necessary to

Intrinsic Evolution of Sorting Networks 51

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Fig. 4. Odd and even VRC array architecture

establish interconnection between arbitrary two Compare&Swap components or
to compare different items. The architecture for odd Ns differs only in the first
and last row where the remaining item is always connected to the next column
via the synchronization register.

The proposed VRC array supports fully pipelined processing because every
element contains synchronization register for the output values. Therefore, VRC
array can produce one result in a clock cycle. Unlike VRCs in [11,16] this VRC
element architecture is also optimized for hardware resources. Only two LUTs
have to be utilized to create one VRC element. This optimization enables to fit
a large VRC array within the single chip and thus to find sorting networks with
many inputs.

3.3 Fitness Unit

The Fitness unit is used to generate unsorted sequences and evaluate results
calculated by VRC unit. N -bit counter generates the unsorted input vectors,
i.e. all possible combinations over N bits. In the evaluation process all vectors
unsorted by VRC have to be identified.

The fitness value is defined as the number of unsorted vectors coming from
the VRC unit. The unsorted vector is detected if for any item ai in the vector
ai < ai+1 does not hold. This is performed in parallel by a set of comparators in
only one clock cycle. The number of unsorted vectors is stored in a counter which
is incremented when an unsorted vector is identified. The content of the counter
is presented as a fitness value which is valid after all input vectors are evaluated.
In this paper, we are interested only in functionality of sorting networks; the
number of components is not optimized.

4 Results of Synthesis

The proposed architecture is designed for evolution of sorting networks having
different number of inputs. From this point of view, the size of the VRC array

52 J. Kořenek and L. Sekanina

Table 2. XC2V-3000 FPGA utilization for various VRC and N

N VRC Slices Chip
length Elements Utilization

10 5x30 1731 12 %
12 6x36 2262 15 %
14 7x42 2735 19 %
16 8x48 3207 22 %
18 9x54 3795 26 %
20 10x60 4431 30 %
22 11x66 5675 39 %
24 12x72 6412 44 %
26 13x78 7314 51 %
28 14x84 8173 57 %
30 15x90 9232 64 %
32 16x96 10223 71 %
36 18x108 12468 86 %

has to be scalable and support as many rows and columns as possible. On the
other hand, the design with VRC array has to fit within the single chip. For this
reason, the proposed VRC element was optimized for the hardware resources
utilization.

The implementation of this architecture and evaluation of results have been
performed on available COMBO6 hardware platform. COMBO6 is a PCI card
equipped with a Field Programmable Gate Array XC2V-3000, TCAM memory,
static and dynamic Random Access Memories and some other components.

The synthesis results in Table 2 show hardware resources utilization of the
XC2V-3000 FPGA for different size of the VRC array and N . It can be seen that
the FPGA utilization for the largest VRC array 18 × 108 is only 86 % without
performance lost.

5 Experimental Results

Various VRC architectures were synthesized up to N = 20. For each VRC size,
80 independent experiments are performed and analyzed. We used four-member
population and produced 50000 generations. Only mutation operator is used; 4
bits are inverted in chromosome in average.

Table 3 shows that it is possible to find correct sorting networks (for relatively
large Ns) in a reasonable time. The first column shows the vector length (i.e.
N). The number of correct sorting networks discovered out of 80 runs is reported
in the second column. In 4th column there is the average number of generations
needed to find the perfect solution (and its standard deviation in 5th column).
The last column contains the time needed to generate and evaluate one individual
(i.e. 2N test cases). The evaluation of a candidate network requires 1.3 ms for
N = 16 and 40s for N = 32 (at 50MHz).

Intrinsic Evolution of Sorting Networks 53

Table 3. Sorting networks evolved in FPGA

N VRC size #Perfect Average num. of Standard Evaluation time
length (elements) solutions generations deviation of one candidate

4 2x8 80 94 2.55556 512 ns
6 3x16 80 458 31.44444 1.28 us
8 4x16 80 2217 24.66667 5.12 us
10 5x32 80 6378 65.66667 20.48 us
12 6x32 76 8673 666.88889 81.92 us
14 7x32 75 11322 718.55556 327.67 us
16 8x32 66 19467 477.44444 1.31 ms
18 9x64 20 25306 3732.77778 5.24 ms
20 10x64 17 31344 150.00000 20.97 ms

Table 4. Large sorting networks evolved in FPGA

N VRC size Number of Evaluation time Total time
length (elements) generation of one candidate of evolution

22 11x64 4044 83.89 ms 5.6 min
24 12x64 4804 335.54 ms 26.9 min
26 13x64 10027 1.342 s 3.7 h
28 14x64 13483 5.368 s 20.1 h

In order to evolve larger sorting networks we applied an adaptive mutation.
With respect to N we mutated 4 – 12 bits per chromosome. If no improvement
in fitness value is observed in last 1000 generations, the number of mutated bits
is increased by 2. If an improvement is observed, the mutation ratio is changed
back to the previous value. Table 4 presents some of the evolved sorting networks
up to N = 28. The evolution of a 28-input sorting network requires more than
20 hours (at 50 MHz). The design can easily work at 100 MHz as well.

6 Discussion

In fitness functions, all possible input combinations are evaluated, i.e. 2N test
vectors are evaluated for N -input sorting network. In [10] median networks
(whose evaluation is of the same complexity as for sorting networks) were evolved
up to N = 25 in software. However, component-optimal solutions were not ob-
tained for larger N . It was reported that the fitness calculation (performed in
software) is very time consuming for N ≥ 23 and evolution requires days to find
a solution. Here we demonstrated that a special architecture implemented in
hardware could make the evolutionary design significantly faster. Alternatively,
we could reduce the training set; however, we have never obtained a perfect
solution with the reduced training set.

54 J. Kořenek and L. Sekanina

We have evolved relatively large combinational circuits (28 inputs, 28 out-
puts) from scratch in a relatively short time (about 20 hours) and in (relatively
low-cost) commercial off-the-shelf hardware. On the other hand, we have used a
lot of domain knowledge for solving this problem (the usage of compare&swap
components, invariable interconnection of components etc. is typical only for this
problem). We demonstrated what complex circuits can be evolved on commer-
cially available FPGAs. The evaluation of a single candidate sorting network for
N = 28 was compared against highly optimised SW implementation running in
Xeon 3 GHz. Our FPGA evaluation running at 100 MHz is 40× faster then the
software approach.

A strongly generic approach was utilized during VHDL design. All the im-
plemented units are parameterized using various constants (such as the size of
chromosome, the number of mutations etc.). Therefore, it is easy to modify the
design and to obtain a totally different evolvable system in a very short time.
The FPGA communicates with PC via special software allowing designer to
prepare scripts describing experiments that have to be performed. Typically, de-
signer specifies the VRC, EA and fitness function, perform synthesis, upload the
evolvable system into FPGA and execute all experiments described in scripts.

7 Conclusions

A specialized architecture was developed and evaluated to evolve relatively
large sorting networks in an ordinary FPGA. We evolved sorting networks up
to N = 28. The evolution of the largest sorting networks requires 10 hours in
FPGA running at 100 MHz. In next research, the number of components utilized
in the evolved networks will be optimized. As target future application of this
approach we consider adaptive routing in computer networks.

Acknowledgments

The research was performed with the financial support of FRVS 3042/2005/G1
project Evolutionary design of sorting and median networks in FPGAs. Lukas
Sekanina was supported from the research project of the Grant Agency of the
Czech Republic under No. 102/03/P004 Evolvable hardware based applications
design methods.

References

1. Devillard, N.: Fast Median Search: An ANSI C Implementation. 1998
http://ndevilla.free.fr/median/median/index.html

2. Hillis, W. D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42 (1990) 228–234

3. Imamura, K., Foster, J. A., Krings, A. W.: The Test Vector Problem and Limita-
tions to Evolving Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on
Evolvable Hardware, IEEE CS Press, 2000, p. 75–79

Intrinsic Evolution of Sorting Networks 55

4. Juillé, H.: Evolution of Non-Deterministic Incremental Algorithms as a New Ap-
proach for Search in State Spaces. In Proc. of 6th Int. Conf. on Genetic Algorithms,
Morgan Kaufmann, 1995, p. 351–358

5. Knuth, D. E.: The Art of Computer Programming: Sorting and Searching (2nd
ed.), Addison Wesley, 1998

6. Koza, J. R., Bennett III., F. H., Andre, D., Keane, M. A.: Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann, 1999

7. Liberouter project. www.liberouter.org
8. Porter, R.: Evolution on FPGAs for Feature Extraction. PhD thesis, Queensland

University of Technology, Brisbane, Australia, 2001, p. 229
9. Sekanina, L.: Evolvable components: From Theory to Hardware Implementations,

Springer-Verlag, Natural Computing Series, 2003
10. Sekanina, L.: Evolutionary Design Space Exploration for Median Circuits. In: Ap-

plications of Evolutionary Computing, Coimbra, Portugalsko, LNCS 3005, Springer
Verlag, 2004, p. 240-249

11. Sekanina, L., Friedl, S.: On Routine Implementation of Virtual Evolvable Devices
Using COMBO6. In: Proc. of the 2004 NASA/DoD Conference on Evolvable Hard-
ware, Seattle, USA, IEEE Computer Society Press, 2004, p. 63-70

12. Shepherd, R., Foster, J.: Inherent Fault Tolerance in Evolved Sorting Networks. In
Proc. of GECCO 2003, LNCS 2723, Springer Verlag, 2003, p. 456–457

13. Sloarch, C., Sharman, K.: The Design and Implementation of Custom Architectures
for Evolvable Hardware Using Off-the-Shelf Progarmmable Devices. In: Proc. of the
3rd International Conference on Evolvable Systems: From Biology to Hardware
ICES’00, LNCS 1801, Springer-Verlag, Berlin, 2000, p. 197–207

14. Smith, J. I.: Implementing Median Filters in XC4000E FPGAs. Xcell 23, Xilinx,
1996 http://www.xilinx.com/xcell/xl23/xl23 16.pdf

15. Tufte, G., Haddow, P.: Evolving an Adaptive Digital Filter. In: Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware. IEEE Computer Society, 2000, p.
143–150

16. Zhang, Y., Smith, S., Tyrrell, A.: Intrinsic Evolvable Hardware in Digital Filter
Design. In: Applications of Evolutionary Computing, Berlin, DE, Springer, LNCS
3005, 2004, p. 389-398

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 56 – 65, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving Hardware by Dynamically Reconfiguring
Xilinx FPGAs

Andres Upegui and Eduardo Sanchez

Ecole Polytechnique Fédérale de Lausanne – EPFL,
Logic Systems Laboratory – LSL, 1015 Lausanne, Switzerland
(andres.upegui, eduardo.sanchez)@epfl.ch

Abstract. Evolvable Hardware arises as a promising solution for automatic
digital synthesis of digital and analog circuits. During the last decade, a special
interest has been focused on evolving digital systems by directly mapping a
chromosome on the FPGA configuration bitstream. This approach allowed a
great degree of flexibility for evolving circuits. Nowadays, FPGAs routing
scheme does not allow doing it in such flexible and safe way, so additional con-
straints must be introduced. In this paper we summarize three techniques for
performing hardware evolution by exploiting the capacities of Virtex families.
Among our proposals there are high and low level approaches, and coarse and
fine grained components. A modular based evolution, with pre- placed and
routed components, provides a coarse grain approach. Two techniques for
directly modifying LUT contents on hard macros provide a fine grained evolu-
tion. Finally, integrating both approaches, coarse and fine grain, provides a
more general and powerful framework.

1 Introduction

Designing analog and digital electrical circuits is, by tradition, a hard engineering
task, vulnerable to human errors, and no one can guarantee the optimality of a solu-
tion. Design automation has become a challenge for tool designers, and given the
increasing complexity of circuits, higher description levels are needed. Evolvable
Hardware (EHW) arises as a promising solution to this problem: from a given behav-
ior specification of a circuit, an evolutionary algorithm (EA) can find a circuit able to
implement this function. EAs take inspiration from the principles of biological evolu-
tion decoding a phenotype from a genotype. The genotype is a number string, where
the genetic operations, cross-over and mutation, are applied. Reproduction is per-
formed by cross-over of genomes and mutation is performed on a probabilistic way.
From this genome a phenotype is decoded for obtaining a circuit with a given set of
components and connectivity (in the case of EHW). A fitness note is assigned to this
individual given the performance exhibited according to a fitness function. EHW have
shown to perform well finding solutions [1] from simple Boolean functions to com-
plex analog circuits, sometimes performing better than hand-made solutions.

For evolving hardware there is a first main issue to address: the hardware substrate
supporting the evolved circuit. Different custom chips have been proposed for this

 Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs 57

purpose with very interesting results: the main interest on proposing an architecture is
that commercial FPGAs are designed for general purpose applications, so they would
not necessarily fit the requirements for evolvable architectures. Custom evolvable
chips use to provide dynamic and partial reconfiguration, dispose of multi-context
memories and can be configured with random configuration bitstreams. The commer-
cial options main advantage is the absence of non-recurrent engineering, as any gen-
eral purpose architecture, under the cost of reduced flexibility and performance.

Different chips and platforms have been developed providing the flexibility neces-
sary for evolving analog, digital and mixed circuits; some of them have been designed
specifically targeting evolvable hardware, while others have just found in evolvable
hardware another application field. Among them one can find different levels of
granularity, different types of reconfiguration, including dynamic and static recon-
figurations, possibility of loading partial configuration bitstreams, and the utilization
of context memories.

One of the more recent chips is the POEtic tissue [2], a platform for bio-inspired
hardware composed of three layers: phenotype, mapping, and genotype, each one of
them supporting each of the three axes of life: phylogenesis (evolution), ontogenesis
(development) and epigenesis (learning). Previous work on evolvable architectures
have been done by Moreno et al. with FIPSOC [3, 4], a chip integrating digital and
analog programmable circuits, with a dynamic multi-context reconfiguration for the
digital section, focusing on evolution of parallel cellular machines. Higuchi’s group
has developed an evolvable LSI chip [5], which includes a genetic algorithm unit, and
the ability to process two chromosomes in parallel. Layzell developed the Evolvable
Motherboard (EM) [6], a diagonal matrix of analogue switches, connected to a set of
daughter-boards, which contain the basic components for performing the evolution.

Other platforms, such as MorphoSys [7], DREAM [8], and Palmo [9], were not ini-
tially designed for bio-inspired systems; however, their flexible and performing archi-
tecture fits well with EHW requirements.

Among commercial options, the FPGA XC6200 from Xilinx (already obsolete for
commercial reasons) constituted the perfect platform for intrinsic evolvable hardware;
it was possible to download any arbitrary bitstream without risking contentions, given
its multiplexer-based connection architecture. Additionally, this FPGA family al-
lowed dynamic reconfiguration, making it more flexible for adaptive algorithms in a
general sense. Maybe the most known work using these devices is that of Adrian
Thompson [10, 11] who refers to intrinsic as “belonging to the point at issue” and it
reflects very well his work. He evolved analog circuits, by exploiting the dynamics
inherent to the physical properties of the FPGA internal components. On the same
way cooperative robot controllers have been also evolved with these FPGAs with
impressive results [12]. Such success of these families has motivated researchers to
implement the same architecture on other still available FPGAs: [13] presents an
“emulated” 6200-like cell on commercial available architectures (XC4010 and Altera
EPF6010A), and they evolve a configuration bitstream which does not configure the
FPGA itself but the “emulated” 6200-like cells.

More recent work on evolvable circuits on commercial FPGAs has focused on
Virtex and Virtex-II architectures from Xilinx (and will extend to Virtex IV). The
special interest on these devices is their partial dynamic reconfigurability, with the
limitation, compared with the XC6200, that no arbitrary configuration bitstreams can

58 A. Upegui and E. Sanchez

be loaded. This limitation is given by the multidirectional nature of the connection-
ism: it is possible, with an incorrect bitstream, to interconnect two logic gate outputs
damaging the device.

For evolving circuits on Virtex architectures one must take care of not generating
invalid bitstreams – i.e. bitstreams causing internal contentions – and different ap-
proaches have been proposed for dealing with that problem. At the University of York
they have used Jbits, a Java API for describing circuits and manipulating configura-
tion bitstreams, for evolving circuits. From a genome they map LUTs contents for
evolving simple combinatorial functions [14], or robot controllers for obstacle avoid-
ance [15]. Also using Jbits, Levi and Guccione from Xilinx have developed a tool
called GeneticFPGA [16], which from a chromosome translates a configuration bit-
stream, making easy to generate legal bitstreams. Even if Jbits provides interesting
features for EHW, it has several limitations, such as the impossibility to run on an
embedded platform (for on-chip evolution), dependability on supported FPGA fami-
lies and supported boards, incompatibility with other hardware description languages
(HDLs), and a limited support from Xilinx, mainly reflected in an insufficient
documentation.

In this paper we present 3 techniques to evolve circuits on Virtex families without
depending on Jbits. Two of these techniques are mainly based on the two flows for
partial reconfiguration proposed by Xilinx in [17], while the third one consists on
directly manipulating the bitstream without depending on any Xilinx tool. In section 2
we describe the two design flows proposed by Xilinx for performing dynamic partial
reconfiguration in a safe way. In section 3 we describe how these techniques can be
used for evolving hardware systems. And, finally, section 4 concludes.

2 Dynamic Partial Reconfiguration on Xilinx Families

FPGAs are programmable logic devices that permit the implementation of digital
systems. They provide an array of logic cells that can be configured to perform a
given function by means of a configuration bitstream. Some FPGAs allow performing
partial reconfiguration, where a reduced bitstream reconfigures only a given subset of
internal components. Dynamic Partial Reconfiguration (DPR) is done while the de-
vice is active: certain areas of the device can be reconfigured while other areas remain
operational and unaffected by the reprogramming. For the Xilinx’s FPGA families
Virtex, Virtex-E, Virtex-II, Virtex-II Pro (applicable also for Spartan-II and Spartan-
IIE) there are two documented flows to perform DPR: Module Based and Difference
Based [17].

With the Difference Based flow the designer must manually edit low-level
changes. Using the FPGA Editor, a low level edition tool, the designer can change the
configuration of several kinds of components such as: look-up-table equations, inter-
nal RAM contents, I/O standards, multiplexers, flip-flop initialization and reset val-
ues. After editing the changes, a partial bitstream is generated, containing only the
differences between the before and the after designs. For complex designs, the Differ-
ence Based flow results inaccurate due to the low-level edition in the bitstream
generation.

 Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs 59

The Module Based flow allows the designer to split the whole system into mod-
ules. For each module, the designer generates a configuration bitstream starting from
an HDL description and going through the synthesis, mapping, placement, and rout-
ing procedures, independently of other modules. Some of these modules may be re-
configurable and others fixed (see figure 1). A complete initial bitstream must be
generated, and then, partial bitstreams are generated for each reconfigurable module.
Hardwired Bus Macros must be included. These macros guarantee that each time
partial reconfiguration is performed routing channels between modules remain un-
changed, avoiding contentions inside the FPGA and keeping correct inter-module
connections.

Fig. 1. Design Layout with Two Reconfigurable Modules (From [17])

3 Evolving Techniques

In this section we present 3 techniques for EHW on Virtex families. The first one is a
coarse grained high level solution, well suited for architecture exploration. The sec-
ond and the third one, very related among them, constitute a fine grained low level
solution, well suited for fine tuning.

3.1 Module Based

The main consequence of the aforementioned features of DPR is a modular structure,
where each module communicates solely with his neighbor modules through a bus
macro (Figure 1). This structure matches well with modular architectures, such as
layered neural networks, fuzzy systems, multi-stage filtering, etc. All systems with
high needs of adaptability, and which can largely benefit from architecture explora-
tion. Anyway, some design constraints must be respected: inputs and outputs of the
full network must be previously fixed, as well as the number of layers and the connec-
tivity among them (number and direction of connections). While each layer can have
whatever kind of internal connectivity, connections among them are fixed through bus
macros and restricted to neighbor layers.

60 A. Upegui and E. Sanchez

Evolving artificial neural networks topologies by using this method have been re-
ported in [18, 19]. For each module, there exists a pool of different possible configu-
rations. Each configuration may contain a layer topology - i.e. a certain number of
neurons with a given connectivity. Each module can be configured with different
layer topologies, provided that they offer the same external view (i.e. the same inputs
and outputs). Several generic layer configurations are generated to obtain a library of
layers, which may be used for different applications.

A GA is responsible for determining which configuration bitstream is downloaded
to the FPGA. The GA considers a full network as an individual. For each application
the GA may find the combination of layers that best solves the problem. Input and
output fixed modules contain the required logic to code and decode external signals
and to evaluate the fitness of the individual depending on the application.

Two ways of generating bitstreams can be identified by using this technique: (1) by
letting the EA to modify HDL or the netlist descriptions of the system or (2) by pre-
placing and routing all the possible modules to be used. The first option, letting the
EA to modify HDL or netlist specifications, would definitely result in prohibitive
execution times: a full placement and routing process should be executed for each
individual, which is typically a very heavy computing task. The second option, pre-
placing and routing modules, results more accurate for EHW. Under this approach
one can see each module as a coarse grain configurable block that can be configured
with a set of predefined components. The EA would select the best combination of
components to solve the problem. This technique results accurate for a global coarse
search; however, for fine tuning it must be used another adaptation technique. For
instance, in [18] a spiking neural network topology is evolved with this technique, but
hebbian learning adjusts synaptic weights for each individual.

3.2 Hard-Macros Difference Based

Lower level partial bitstreams can be generated by using the Difference-Based flow.
Using this technique to modify circuits requires a previous knowledge of the physical
placement of the logical components implementing the target function – i.e. the logi-
cal function to be evolved – in the FPGA. By using hard macros one can define place-
ment constraints; one can place each hard macro and, knowing LUT positions, one
can modify them by using Difference-Based reconfiguration [17]. Hard macros must
be designed by low level specification of a system: using the FPGA_editor one can
define a system in terms of the FPGA basic components. Every CLB, LUT and flip-
flop must be manually placed, and a semi-automatic routing must be performed.

Cooperative coevolution of fuzzy systems using this technique is described in [20].
They define two hard macros: a parameter macro and a fuzzy rule macro. The func-
tionality of a parameter macro is just storing a constant parameter. After specifying
placement constraints for this macro one can access and modify its contents automati-
cally by using the FPGA editor. On the same way, the fuzzy rule macro can be auto-
matically configured to implement a fuzzy-OR or a fuzzy-AND function (different
from their Boolean counterparts).

For using this technique, the first step is to define an initial HDL description of the
system. This description must include the hard macros to be evolved as black boxes.
The hard macros must be designed before the placement and routing process. Place-

 Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs 61

ment constraints must be specified for the hard macros, taking care of not overlapping
them. After placing and routing the design, one must check that hard macros have
been placed as desired. Now the system is ready to be evolved: a genetic algorithm
running on your favourite programming language will generate LUT contents from a
chromosome and will run a script for modifying the LUT contents on the
FPGA_editor. Then a partial bitstream, just containing the LUT modifications, will be
generated and downloaded to the FPGA.

This technique provides the possibility of fine tuning systems, under the cost of not
allowing topological or connectionism modifications. It is well suited for evolving
systems with cellular structures, such as neural networks, fuzzy system rules, or cellu-
lar automata, among others, with the main drawback of a dependence of Xilinx tools
for modifying LUT contents and generating the bitstream. Even if the placement and
routing process must not be executed for every individual, it is still not suited for on-
system evolution.

3.3 Bitstream Manipulation

Up to now, all described evolving techniques are highly dependant on Xilinx tools,
making them restrictive for on-chip evolution. An attempt for providing a similar
functionality from Jbits running on-chip has been proposed by Xilinx engineers [21]:
XPART (Xilinx Partial Reconfiguration Toolkit) is an application program interface
(API), for Microblaze or PowerPC microprocessors, that provides methods to read
and modify select FPGA resources by using the ICAP (Internal Configuration Access
Port). Anyway, XPART was never released.

Directly evolving the configuration bitstream has been a very common technique.
It has been widely used with the XC6200 family and on other custom platforms sum-
marized in section 1. However, in every case one must maintain a fixed section – i.e.
not evolved – in the bitstream. For instance, Thompson in [10], uses an XC6216 with
an array of 64x64 logic cells, but the evolved circuit uses just an array of 10x10 logic
cells, while keeping fixed input and output. In this case the evolved section of the
bitstream is just that containing the 10x10 array while the sections for IO blocks and
the remaining cells are kept constant during the evolution.

Exactly the same principle can be applied for Virtex families, including Virtex II,
Virtex II-Pro and eventually Virtex 4: LUT contents can be evolved, while keeping a
fixed routing. By using hard macros, as described in 3.2, one can describe a comput-
ing cell. This computing cell can implement a neuron, a fuzzy rule, a simple LUT, or
any function, including one or several LUTs; it can include also flip-flops for making
the design synchronous, or it can just implement combinatorial circuits. LUTs con-
figuration can be modified in an arbitrary way; however, routing must remain fixed.
Connectivity among components of a computing cell is manually set when designing
the hard macro; connectivity among computing cells is defined by an HDL descrip-
tion of the full system. Although routing must remain fixed during evolution, LUTs
can be evolved as multiplexers, where the selection is done by the configuration bit-
stream. An implementation using this principle is described in [22], where they pre-
sent a cellular automata evolution running on a Virtex-E.

For the Virtex family, the XAPP151 [23] describes in a detailed way the configura-
tion bitstream, specifying the position of LUT contents on the bitstream. However, for

62 A. Upegui and E. Sanchez

the Virtex II family this documentation is not available and just a limited bitstream
description can be found in [24]. A Virtex-II bitstream is divided by columns and
each column is composed by frames. There are different column types, each type with
a given number of frames, as described in figure 2 (for more details refer to [24]).
However, there is no documentation about frame composition, consequently, no in-
formation about LUT contents.

We present in the following paragraphs how to address LUT contents on a bit-
stream. This problem can be solved by exploring the bitstream content. In the Virtex-
II architecture each CLB has 4 slices arranged 2x2. This arrangement makes that each
CLB column has 2 slices columns, which are numerated in the format XiYj, with i
from 0 to 2n-1 beginning from the left (n is the number of CLB columns) and j from 0
to 2m-1 beginning from the bottom (m is the number of CLB rows). For instance, for
an XC2V40 (with array 8x8) the slice placed at the top left of the component is called
the slice X0Y15. Each one of these slices has 2 LUTs called G-LUT and F-LUT.

Fig. 2. Virtex-II configuration bitstream composition

Table 1. Frame description. The first 12 bytes configure the IOB, the next 2 bytes configure the
G-LUT contents for the top slice, the next byte has an unknown functionality, the next 2
configure the G-LUT, … This sequence is repeated for every slice, and finishes by the bottom
IOB configuration. * Supposing it is the second frame of the first CLB column for an XC2V40.

Description Size (bytes)
Top IOB 12
Top slice G-LUT (slice X0Y15)* 2
-- 1
Top slice F-LUT (slice X0Y15)* 2
2nd slice G-LUT (slice X0Y14)* 2
-- 1
2nd slice F-LUT (slice X0Y14)* 2
…
…

Bottom slice F-LUT (slice X0Y0)* 2
Bottom IOB 12

 Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs 63

Even if it is not documented, LUT contents can be localized in the configuration
bitstream. As shown in figure 2 a CLB column contains 22 frames; the contents for
the first slices column LUTs – i.e. with an even X – can be found in the second frame,
while for the second slices column – i.e. with an odd X – are in the third frame. Frame
contents are described in Table 1. It must be noticed also that, as in Virtex family,
LUT configurations are stored inverted – i.e. for an 4-input AND function, LUT con-
tents must be 1000 0000 0000 0000, but actually it stored like 0111 1111 1111 1111
or 7F FF in hex format –. Additionally, the bit order is swapped in F-LUTs respective
to G-LUTs – i.e. the same AND function in a G-LUT is stored 7F FF in the configura-
tion bitstream, while for a F-LUT function it is stored FF FE –.

Based on this description one can determine any LUT content position on the bit-
stream by applying the following equation:

Position= Size of the header

 + #GCLK_col_frames X #bytes/frame
 + #IOB_col_frames X #bytes/frame
 + #IOI_col_frames X #bytes/frame
 + #Xcoord_of_CLB_col X #CLB_col_frames X #bytes/frame
 + 1 frame X #bytes/frame if slice X coord is even
 + 2 frames X #bytes/frame if slice X coord is odd
 + 12 bytes -- IOB config.
 + 5 bytes X slice_Ycoord(from top)
 + 0 bytes if G-LUT
 + 3 bytes if F-LUT

Almost all these values are constant for every Virtex-II family devices; just the
#bytes/frame depends on the number of CLB rows of the device. The header size is
variable, and depends on the configuration options enabled for the bitstream (Details
on the header can be found in [24]).

Accessing LUT contents on a partial bitstream is even easier, since one can directly
address the target frame by setting the frame address in the bitstream header as de-
scribed in [24]. Then, the table 1 description may be used for directly localizing LUT
contents on the frame.

Accessing the configuration bitstream, as described in this section, allows evolving
circuits in a very flexible way. By defining an initial interconnection schema one can
let an on-chip – or off-chip – processor to simply modify partial bitstreams just
containing the LUT-frames. This powerful approach can be largely improved when
combined with the technique proposed in section 3.1, allowing additionally different
connectionism schemas (unfortunately predefined and fixed).

4 Conclusions

In this paper we presented three techniques for evolving hardware on Virtex families.
The first technique, module based, provides a high level abstraction of the system and
fits well for coarse topology exploration; anyway, it remains inaccurate for fine tun-
ing, given its coarse grain nature. The second technique, hard macros difference

64 A. Upegui and E. Sanchez

based, is a good complement for the first technique: by manually placing hard macros
one can modify CLB contents. It allows fine tuning, but the overall routing must re-
main fixed. The third method, bitstream manipulation, provides almost the same fea-
tures that the second one with the great advantage that, given its independence from
Xilinx tools, it can run on-system, under the cost of a slight flexibility loses.

By integrating the coarse grain with a fine grain approach one can largely enhance
the search space and increase the flexibility of the evolvable platform. By evolving a
system at topology and LUT contents level, one can play with the trade-off explora-
tion vs. exploitation: fine tuning parameters while major topology changes are per-
formed. Different basic computing units may be used, specified as hard macros, such
as artificial neurons, fuzzy rules, or cellular automata.

Even if Virtex families are not specifically conceived for EHW, methodologies can
be proposed for exploiting their performance and flexibility features. These method-
ologies may rely on the techniques presented in this paper and should deal with the
kind of basic element - modules or hard macros – to evolve, as well as the genome
coding or the type of EA best suited for a given structure.

References

[1] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Taka-
hashi, K. Toda, M. Salami, N. Kajihara, and N. Otsu, "Real-world applications of analog
and digital evolvable hardware", IEEE Transactions on Evolutionary Computation, vol. 3,
pp. 220-235, 1999.

[2] Y. Thoma, G. Tempesti, E. Sanchez, and J. M. M. Arostegui, "POEtic: an electronic tis-
sue for bio-inspired cellular applications", Biosystems, vol. 76, pp. 191-200, 2004.

[3] J. M. Moreno, J. Cabestany, J. Madrenas, E. Canto, J. Faura, and J. M. Insenser, "Ap-
proaching Evolvable Hardware to Reality: The Role of Dynamic Reconfiguration and
Virtual Meso-Structures", presented at Seventh International Conference on Microelec-
tronics for Neural, Fuzzy and Bio-Inspired Systems, Granada, Spain, 1999.

[4] J. M. Moreno, J. Madrenas, J. Faura, E. Canto, J. Cabestany, and J. M. Insenser, "Feasible
evolutionary and self-repairing hardware by means of the dynamic reconfiguration capa-
bilities of the FIPSOC devices", Evolvable Systems: From Biology to Hardware, vol.
1478, pp. 345-355, 1998.

[5] M. Iwata, I. Kajitani, Y. Liu, N. Kajihara, and T. Higuchi, "Implementation of a Gate-
Level Evolvable Hardware Chip", Evolvable Systems: From Biology to Hardware, vol.
2210, pp. 38, 2001.

[6] P. Layzell, "'Evolvable Motherboard': A test platform for the research of intrinsic hard-
ware evolution", Tech rep. University of Sussex, 1998.

[7] G. Lu, E. M. C. Filho, V. Castro Alves, H. Singh, M.-h. Lee, N. Bagherzadeh, and F. J.
Kurdahi, "The MorphoSys Dynamically Reconfigurable System-on-Chip", Proceedings
of The First NASA/DOD Workshop on Evolvable Hardware, pp. 152, 1999.

[8] J. Becker, T. Pionteck, and M. Glesner, "DReAM: A Dynamically Reconfigurable Archi-
tecture for Future Mobile Communication Applications", Field-Programmable Logic and
Applications. The Roadmap to Reconfigurable Computing: 10th International Confer-
ence, FPL 2000, Villach, Austria, August 27-30, 2000. Proceedings, vol. 1896, pp. 312,
2000.

 Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs 65

[9] A. Hamilton, K. Papathanasiou, M. R. Tamplin, and T. Brandtner, "Palmo: Field pro-
grammable analogue and mixed-signal VLSI for evolvable hardware", Evolvable Systems:
From Biology to Hardware, vol. 1478, pp. 335-344, 1998.

[10] A. Thompson, "An evolved circuit, intrinsic in silicon, entwined with physics", Evolvable
Systems: From Biology to Hardware, vol. 1259, pp. 390-405, 1997.

[11] A. Thompson and P. Layzell, "Evolution of robustness in an electronics design", Proc. of
Evolvable Systems: From Biology to Hardware,, vol. 1801, pp. 218-228, 2000.

[12] D.-W. Lee, C.-B. Ban, K.-B. Sim, H.-S. Seok, Lee Kwang-Ju, and B.-T. Zhang, "Behav-
ior evolution of autonomous mobile robot using genetic programming based on evolvable
hardware", Proceeding of 2000 IEEE International Conference on Systems, Man, and Cy-
bernetics, vol. 5, pp. 3835-3840, 2000.

[13] C. Slorach and K. Sharman, "The design and implementation of custom architectures for
evolvable hardware using off-the-shelf programmable devices", Evolvable Systems: From
Biology to Hardware, Proceedings, vol. 1801, pp. 197-207, 2000.

[14] G. Hollingworth, S. Smith, and A. Tyrrell, "The intrinsic evolution of Virtex devices
through Internet reconfigurable logic", Evolvable Systems: From Biology to Hardware,
Proceedings, vol. 1801, pp. 72-79, 2000.

[15] A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary algorithm for the promotion of
evolvable hardware", IEE Proceedings-Computers and Digital Techniques, vol. 151, pp.
267-275, 2004.

[16] D. Levi and S. A. Guccione, "GeneticFPGA: Evolving Stable Circuits on Mainstream
FPGA Devices", Proceedings of The First NASA/DOD Workshop on Evolvable Hard-
ware, pp. 12, 1999.

[17] Xilinx_Corp., "XAPP 290: Two Flows for Partial Reconfiguration: Module Based or Dif-
ference Based": www.xilinx.com, Sept, 2004.

[18] A. Upegui, C. A. Peña-Reyes, and E. Sanchez, "An FPGA platform for on-line topology
exploration of spiking neural networks", Microprocessors and Microsystems. In press,
2005.

[19] A. Upegui, C. A. Peña-Reyes, and E. Sanchez, "A methodology for evolving spiking neu-
ral-network topologies on line using partial dynamic reconfiguration", presented at ICCI -
International Conference on Computational Intelligence, Medellin, Colombia, 2003.

[20] G. Mermoud, A. Upegui, C. A. Peña-Reyes, and E. Sanchez, "A Dynamically-
Reconfigurable FPGA Platform for Evolving Fuzzy Systems", in The 8th International
Work-Conference on Artificial Neural Networks (IWANN'2005), (To appear) 2005.

[21] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P. Sundararajan, "A self-
reconfiguring platform", Proceedings of Field-Programmable Logic and Applications,
vol. 2778, pp. 565-574, 2003.

[22] G. Tufte and P. C. Haddow, "Biologically-inspired: A rule-based self-reconfiguration of a
virtex chip", Computational Science - Iccs 2004, Pt 3, Proceedings, vol. 3038, pp. 1249-
1256, 2004.

[23] Xilinx_Corp., "XAPP 151:Virtex Series Configuration Architecture User Guide":
www.xilinx.com, Oct, 2004.

[24] Xilinx_Corp., "Virtex-II Platform FPGA User Guide": www.xilinx.com, March 2005.

A Flexible On-chip Evolution System Implemented
on a Xilinx Virtex-II Pro Device

Kyrre Glette and Jim Torresen

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway
{kyrrehg, jimtoer}@ifi.uio.no

Abstract. There have been introduced a number of systems with evolvable hard-
ware on a single chip. To overcome the lack of flexibility in these systems, we
propose a single-chip evolutionary system with the evolutionary algorithm im-
plemented in software on a built-in processor. This architecture is implemented
in a Xilinx Virtex-II Pro FPGA with an embedded PowerPC processor. This al-
lows for a rapid processing of the time consuming parts in hardware and leaving
other parts to more easily modifiable software. This platform will be beneficial
for future work regarding both cost and compactness. Experiments have been
performed on the physical device with software running in parallel with fitness
computation in digital logic. The results show that the system uses only twice as
much time when compared to a PC running at 10 times faster clock speed.

1 Introduction

Evolution time is critical for online evolvable systems. Further, often the compactness
and cost of the system would be important. Thus, integrating as much as possible of a
system on a single chip would be important.

There have been undertaken some implementations earlier. Kajitani et al have intro-
duced several LSI (Large-Scale Integrated Circuits) devices with evolution undertaken
in hardware [2,3]. The benefit of such an approach is the evolution speed but the prob-
lem is lack of flexibility. This would be important since there are often many degrees
of freedom when evolving hardware systems. On-chip evolution using a prototype of
the VLSI (Very Large-Scale Integration) POEtic chip has also been reported [7]. A
robot controller and logic functions (3-input multiplexer and full adder) were evolved.
The architecture contains an on-chip custom 32-bit processor, and a bio-inspired ar-
ray of building blocks. This chip is specialized for the implementation of bio-inspired
mechanisms.

In this paper, we demonstrate how a commercial FPGA (Field Programmable Gate
Array) can provide a platform for System-On-Chip evolution. This is by integrating the
evolution running as software on a processor with the target evolvable hardware imple-
mented in reconfigurable logic. This allows for fast fitness computation – normally the
most time consuming part of evolution, by measuring fitness in hardware communicat-
ing with a processor within the same hardware chip.

Implementing complete evolution in an FPGA has been proposed by Tufte and Had-
dow in [12]. The evolving design is implemented in the same device as the evolutionary

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 66–75, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Flexible On-chip Evolution System Implemented on a Xilinx Virtex-II Pro Device 67

algorithm. A similar approach is proposed by Perkins et al in [6]. Significant speedup is
achieved for non-linear filtering compared to conventional processing. Several custom
accelerators in FPGA for solving a protein folding problem have been introduced by
Shackleford et al [10].

Running complete evolution within a Virtex XC2V3000 FPGA has been reported
by Sekanina [9]. In this work the evolution (mutation only) is implemented in reconfig-
urable logic. Correctly working 3×3 and 3×4 bit multipliers were evolved.

In the work presented in this paper, a XC2VP7 Virtex-II Pro FPGA has been applied.
It consists of reconfigurable logic, a PowerPC 405 hard-core processor block, on-chip
RAM and high speed serial links for external interfaces.

There has been developed one other system for the Virtex-II Pro device [8]. This
work is based on designing a co-processor for an analog neural network ASIC. This is
contrasted to our work, where we focus on evolution of digital circuits and an evolution-
ary system in a single device. Further, in our system, all parts of the evolution (except
the fitness evaluation, which is implemented in digital logic) are undertaken in software,
providing a flexible system for later modifications. This is slower than implementing the
evolution in dedicated hardware, but it is expected that the fitness evaluation time will
still be the most time consuming part. This balanced software-hardware approach will
allow for a low implementation effort while still being able to have a single-chip design,
suitable for embedded real-world applications.

Another motivation, for having on-chip evolution and fitness computation in a sin-
gle unit, is that it allows for scalable systems. By connecting a number of such units
into a grid, they can perform concurrent evolution. Thus, this will be a very scalable
architecture as well as flexible. In addition to the flexibility provided by software, the
hardware would also be relatively easy to modify.

To demonstrate the achievable performance, experiments will be based on evolving
small multiplier circuits. This will be to document the speed of evolution rather than
evolution of very large and complex circuits which time has not allowed us to do so far.
A number of papers have earlier contained work on evolving multipliers off-chip and
extrinsically [4,5,13,11].

The next section introduces the applied FPGA followed by our architecture in Sec-
tion 3. Results from the implementation are given in Section 4. Finally, Section 5 con-
cludes the paper.

2 The Virtex-II Pro FPGA

The design is synthesized for a Xilinx Virtex-II Pro (XC2VP7-FG456-7) – see Fig. 1.
This device contains 11,088 logic cells, 792 Kbit dual-port SRAM - named Block Se-
lectRAM (BRAM), and one PowerPC 405 (PPC) embedded processor. The maximum
processor speed is 300MHz.

The FPGA is situated on a Memec Design Virtex-II Pro development board. The
board also contains two Xilinx XC18V04 configuration EEPROMS, 32MB SDRAM,
Rocket I/O ports, an RS-232 port, an LCD panel and other useful connectors.

68 K. Glette and J. Torresen

Fig. 1. The prototype board with the Virtex-II Pro FPGA

3 Implementing Evolutionary Algorithm on FPGA

In this section, the implementation of the evolvable hardware system will be detailed.

3.1 System Overview

The on-chip system is built using the Xilinx Embedded Development Kit (EDK) [15].
EDK is a collection of Intellectual Property (IP) cores and tools for building embedded
systems on FPGAs. The hardware and software parts of the system can be specified
parametrically through various configuration files, and net lists and libraries are auto-
matically generated.

The architecture consists of a set of modules interconnected with buses. The bus
system is a part of IBM’s CoreConnect architecture [16]. Two main buses are used to
connect the on-chip peripherals – the Processor Local Bus (PLB) and the On-chip Pe-
ripheral Bus (OPB), as seen in Fig. 2. The PLB is a high-performance 64-bit datapath
bus, while the OPB is a 32-bit wide bus designed for peripherals with lower require-
ments. These buses can be run in different clock domains, and they are interconnected
with the PLB to OPB bridge.

The communication intensive modules are connected to the PLB: The PPC CPU
and 64KB BRAM for program instructions. The PPC processor is connected as a bus
master to the PLB. In addition to the PLB interface, there are two On-Chip Memory
(OCM) interfaces in the PPC [14]. These are used as dedicated interfaces between the

A Flexible On-chip Evolution System Implemented on a Xilinx Virtex-II Pro Device 69

Fig. 2. Hardware architecture including our target EHW

FPGA BRAM and the PPC core. One OCM is for the instruction-side memory space
and the other is for the data-side memory space. These interfaces are usually used for
accessing instruction and data caches, built from BRAM (there is no cache inside the
PPC block). The advantage of these OCM interfaces over the PLB interface is that no
bus arbitration is necessary for memory access, and the instruction and data accesses
do not have to share the same interfaces. In our design, 8KB of BRAM is connected to
the instruction side OCM interface, used as an instruction cache. 16KB is connected to
the data side OCM interface. This memory is used as storage for all program data, ie.
no access to the PLB is needed at all. This increases program execution speed. In our
case, a 2× program execution speed increase was obtained by introducing instruction
caching, and another 3× increase was obtained by accessing all program data through
the data side interface.

The target evolvable hardware is at the moment connected to the OPB. This will
be detailed in section 3.3. Various on-chip peripherals are also connected to the OPB,
including a UART for RS-232 serial communications, an LCD interface and a LED in-
terface. An SDRAM controller can also be connected to the OPB should more memory
be needed.

3.2 Implementing a Genetic Algorithm on the PPC

A Genetic Algorithm (GA) was implemented to run on the PPC. The program was writ-
ten in C and compiled and linked using the PPC405 version of the GNU GCC compiler
tools. Some system limitations had to be taken into consideration when implementing
the GA on the embedded PPC system.

Firstly, program memory is limited. A maximum of 64KB of BRAM was allowed
for the executable size. Although there exists 32MB of SDRAM on the development
board, it was decided to only use BRAM internal to the FPGA. The BRAM is faster,

70 K. Glette and J. Torresen

and it allows for the program to be loaded directly from the bitstream that configures the
FPGA. A program which is too large to fit into the BRAM would have to be loaded into
SDRAM using a boot loader from external nonvolatile memory at startup (although
during development it is possible to initialize SDRAM through the JTAG interface).
SDRAM could still be used for data storage, but this would be a rather slow solution, at
least if no data caching is used.

Secondly, there is no floating point support on the PPC405. Floating point opera-
tions used in C programs have to be emulated, unless a floating point co-processor is
available. Emulating floating point is not speed efficient, and it increases the executable
size.

The limitations on the executable size led us to use of C instead of C++, and to
minimize the use of standard library functions. Speed considerations made us avoid
using floating point in time-critical program parts. Ideally, only fixed point or integer
solutions should be employed in order to reduce the executable size.

The combination of C-only programming, restricted use of library functions and
floating point operations, makes the implementation slightly more challenging and time
consuming than it would have been on a PC. However, the degree of program flexibility
and the speed of algorithm implementation is still very high compared to assembly
programming or custom hardware solutions. Having the above-mentioned limitations
in mind, the program was developed mostly using Microsoft’s Visual Studio, and it can
be run on both the PC and the FPGA platform. Only a few code paths had to be written
specifically for the PPC. The PC version of the program is equally fast as if it would
have been developed for PC only.

The GA implemented for this experiment follows the Simple GA style, given by
Goldberg [1]. Fitness scaling has been implemented, including linear scaling. A fitness-
proportionate selection scheme is implemented through the use of a roulette wheel
mechanism. The individuals are sorted with the qsort algorithm. For mutation, instead
of having one probability of mutation for every bit in the genome, a quicker solution
has been adopted. The number of mutations, n, for the whole genome is calculated by a
random lookup in a 10-position array. Then, n random places are mutated (bit-flipped)
in the genome. This is more efficient than performing a check for every bit if a mutation
should occur or not.

3.3 Target Evolvable Hardware

The target EHW is implemented as an OPB slave peripheral module – see Fig. 3. In-
terfacing with the OPB bus has been simplified by the use of a Xilinx IP Interface core
(IPIF). This provides a simpler interface standard, the Xilinx IPIC, for the user module.
IPIF cores exist for both OPB and PLB buses, so an adaptation of the target EHW to
the PLB should be a feasible task.

Control and configuration of this module are undertaken through register write op-
erations. Genome values are written to registers which are again connected to the con-
figuration inputs of each functional unit. Registers are also provided for feeding the
EHW with inputs and for storing the outputs.

A Flexible On-chip Evolution System Implemented on a Xilinx Virtex-II Pro Device 71

Fig. 3. The architecture of the target EHW system

Fig. 4. The architecture of the functional unit array subsystem

As an example application, a configurable functional unit array has been imple-
mented – see Fig. 4. Each subsystem evolved consists of a fixed-size array of functional
units. The array consists of n unit layers from input to output.

Each unit’s three inputs in layer l are connected to the outputs of three units in
layer l − 1. Each of the input signals can be inverted. Each unit can have one of four
functions: BUF, MUX, AND, or XOR. The function of each unit and its three inputs are
configurable and determined by evolution. The encoding of each functional unit in the
genome string is as follows, in the case of 4 different functions for each unit and 8 units
in each layer:

72 K. Glette and J. Torresen

Function (2 bit) Input 1 (4 bit) Input 2 (4 bit) Input 3 (4 bit)

Of the 4 bits for each input, one bit is toggling an inversion of the input signal,
while the 3 others code for which output from the previous layer to use. For our array
consisting of 6 layers with 8 units, the genome string length becomes (2 +(3× 4))×
6× 8 = 672 bit long. The array is constructed in a pipelined fashion, that is, registers
are connected to the outputs of each layer. Currently, this is not exploited for fitness
evaluation. Only one training vector is evaluated at a time.

3.4 GA Parameters and Fitness Function

For the evolution, a population size of 20 is used. Elitism is used, thus, the best indi-
viduals from each generation are carried over to the next generation. The (single point)
crossover rate is 0.5, thus the cloning rate is 0.5. A roulette wheel selection scheme is
applied, and linear scaling is used. The mutation rate is expressed as a probability for a
certain number, n, of mutations on each genome. The probabilities are as follows:

n 0 1 2 3
p(n) 1

10
6

10
2
10

1
10

The fitness function is computed in the following way:

F = ∑
vec

∑
outp

x where x =
{

0 if y �= d
1 if y = d

(1)

For each output the computed output y is compared to the target d. If these are equal
then 1 is added to the fitness function. The function sum these values for the assigned
outputs (outp) for the assigned truth table vectors (vec).

4 Results

This section presents and discusses the results of our implementation and experiments.

4.1 Device Utilization and Clock Speed

Table 1 shows the amount of logic used for our target EHW module containing an 8×6
functional unit array. A maximum of 20% of the FPGA’s total resources are used. The
total resource usage for the system, including bus structure and peripherals, is 43%. This

Table 1. Device utilization for the EHW module

Resource Used Available Percent
Slices 1025 4928 20
Slice Flip Flops 896 9856 9
4 input LUTs 1231 9856 12

A Flexible On-chip Evolution System Implemented on a Xilinx Virtex-II Pro Device 73

indicates that there is more space for either more complex EHW modules, or a larger
number of them. The FPGA used for these experiments is also relatively small com-
pared to the larger Virtex-II Pro and Virtex-4 FX devices - devices with up to 142,000
logic cells are available at the time of writing.

The maximum clock frequencies currently attained are 200MHz for the PPC core,
and 50MHz for the rest of the system, including both PLB and OPB modules. The
maximum possible speed for the PPC is stated to be 300MHz, and 100MHz for the
rest of the system. Since no analysis has currently been done to localize bottlenecks, it
should be possible to increase these frequencies later.

4.2 Evolution Speed

Evolution runs were conducted on our on-chip evolution system and a Pentium 4 (P4)
workstation for speed comparisons. The P4 workstation has a clock frequency of 2GHz.
For the speed test, 10,000 generations of 20 individuals were evolved. The fitness eval-
uation was for a 2 × 2 bit multiplier, thus 16 input/output vectors were used.

Raw GA Execution Speed. The execution time of only the GA operation without
fitness evaluation was measured. The results are shown in the first row of table 2. As
can be seen, the P4 system outperforms the on-chip system. This was expected, as the P4
processor is running at a much higher clock frequency and operates with a more efficient
memory interface and caches. However, although the clock frequency of the P4 is 10
times greater than on the PPC, the evolution speed is only around 6.4 times greater. This
may be explained by processor architecture factors, such as the high number of pipeline
stages on the P4, in effect giving a lower instructions per clock cyle count.

Table 2. Evolution speeds on PPC and P4 systems

Configuration PPC P4
GA without fitness evaluation 8.3s 1.3s
GA with fitness evaluation 20.0s 8.6s
Fitness time in % of total 59 85

GA with Fitness Evaluation Speed. The execution time of the GA operation including
fitness evaluation was then measured. The phenotype is evaluated in hardware on the
on-chip system and simulated in software on the P4 for comparison.

The results are shown in the second row of table 2. Here, the P4 system is still faster
than the on-chip system, but this time only by a factor of 2.3. The hardware evaluation
is advantageous to the on-chip system, but it is still limited by time-consuming fitness
evaluation administration in software. An estimate of the time for a complete hardware
fitness evaluation is around 9.7s, but this number would increase if the number of train-
ing vectors becomes higher.

The on-chip system will be little affected by increased complexity in the phenotype
structure, whereas the simulated fitness evaluation will be more time-consuming.

74 K. Glette and J. Torresen

4.3 Circuits Evolved

Correct 2 × 2 bit multiplier circuits were evolved after an average of 5702 generations
over 10 evolution runs. The same experiment was conducted as a verification on the
PC platform, where the average was 5649. The different numbers can be explained by
the different programs using different random number generators. Still, the results are
rather similar, which indicates that the FPGA implementation works correctly.

4.4 Discussion

The system architecture should be analyzed more thoroughly in order to obtain higher
clock frequencies. A higher bus speed would be beneficial for the configuration phase
of the target EHW, especially as the genomes get large. This could be combined with
moving the target EHW module to the PLB bus, in order to get a wider datapath. A
way of bursting data could also be explored. A direct connection to the other side of the
PPC’s data BRAM would also be possible, since the BRAM is dual-ported.

To speed up fitness evaluation, certain software operations can be moved into hard-
ware. For digital circuits with defined training vectors, like the multiplier circuits, it
would be advantageous to make a system that feeds the EHW circuit with one training
vector per clock cycle. As the functional unit array is pipelined, the number of cycles
needed for one complete fitness evaluation of an individual would be roughly equal
to the number of training vectors. Another option would be to increase the number of
EHW units on the same chip. However, an increased degree of hardware specialization
may come at the prize of reduced flexibility and, naturally, a higher implementation
effort.

We have presented the result of our first initial experiments on the evolutionary
platform. Our motivation for implementing evolution on the PPC is mainly that we
would like to apply the platform for evolving systems for real-world applications in
the future. A large part of the total computation time is used for the fitness computa-
tion even for evolving the small (2 bit) multiplier in a relatively small circuit above.
Thus, we expect that for more complex problems with much data to measure fitness on,
the amount of time used for evolution compared to fitness computation will be small.
On the other hand, to experiment with several evolutionary and bio-inspired methods,
flexibility would be important. This is obtainable with our platform with the processor
containing the parts not critical on computation time. This would also be important with
our goal of designing a scalable system with incremental evolution.

5 Conclusions

The paper has presented an approach for evolving digital circuits in a new technology
– System-On-Chip by FPGA. The work is focused on demonstrating the potential of
running evolution on an embedded processor in an FPGA. The first experiments – by
measuring performance of the real device, are promising. As this technology progresses,
it will probably be an interesting platform for cost effective evolution in embedded
systems.

A Flexible On-chip Evolution System Implemented on a Xilinx Virtex-II Pro Device 75

Acknowledgments

The research is funded by the Research Council of Norway through the project Biologi-
cal-Inspired Design of Systems for Complex Real-World Applications (project no
160308/V30).

References

1. D. Goldberg. Genetic Algorithms in search, optimization, and machine learning. Addison–
Wesley, 1989.

2. I. Kajitani et al. A myoelectric controlled prosthetic hand with an evolvable hardware lsi
chip. Technology and Disability, 15(2):129–143, 2003.

3. I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, and T. Higuchi. An evolvable hardware chip
and its application as a multi-function prosthetic hand controller. In Proc. of 16th National
Conference on Artificial Intelligence (AAAI-99), pages 182–187, 1999.

4. T. Kalganova. Bidirectional incremental evolution in extrinsic evolvable hardware. In J. Lohn
et al., editor, Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 65–74.
IEEE Computer Society, Silicon Valley, USA, July 2000.

5. J.F. Miller, D. Job, and V.K. Vassilev. Principles in the evolutionary design of digital circuits
– Part I. Journal of Genetic Programming and Evolvable Machines, 1(1):8–35, 2000.

6. S. Perkins, P. Porter, and N. Harvey. Self-contained spatially-structured genetic algorithm for
signal processing. In J. Miller et al., editors, Evolvable Systems: From Biology to Hardware.
Third International Conference, ICES 2000, volume 1801 of Lecture Notes in Computer
Science, pages 165–174. Springer-Verlag, 2000.

7. D. Roggen, Y. Thoma, and E. Sanchez. An evolving and developing cellular electronic
circuit. In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. A. Watson, editors, ALife9:
Proceedings of the Ninth International Conference on Artificial Life, pages 33–38, Boston,
MA, 2004. MIT Press.

8. T. Schmitz et al. Speeding up hardware evolution: A coprocessor for evolutionary algorithms.
In P. Hadddow A. Tyrrel and J. Torresen, editors, Evolvable Systems: From Biology to Hard-
ware. Fifth International Conference, ICES’03, volume 2606 of Lecture Notes in Computer
Science, pages 274–285. Springer-Verlag, 2003.

9. L. Sekanina and S. Friedl. On routine implementation of virtual evolvable devices using
combo6. In Proc. of the 2004 NASA/DoD Conference on Evolvable Hardware, pages 63–70.
IEEE, 2004.

10. B. Shackleford et al. A high-performance, pipelined, FPGA-based genetic algorithm ma-
chine. Journal of Genetic Programming and Evolvable Machines, 2(1):33–60, 2001.

11. J. Torresen. Evolving multiplier circuits by training set and training vector partitioning. In
P. Hadddow A. Tyrrel and J. Torresen, editors, Evolvable Systems: From Biology to Hard-
ware. Fifth International Conference, ICES’03, volume 2606 of Lecture Notes in Computer
Science, pages 228–237. Springer-Verlag, 2003.

12. Gunnar Tufte and Pauline C. Haddow. Prototyping a ga pipeline for complete hardware
evolution. In 1st NASA / DoD Workshop on Evolvable Hardware (EH ’99), pages 18–25,
1999.

13. D. Job V. Vassilev and J. Miller. Towards the automatic design of more efficient digital cir-
cuits. In J. Lohn et al., editor, Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware,
pages 151–160. IEEE Computer Society, Silicon Valley, USA, July 2000.

14. Xilinx Inc. PowerPC 405 Processor Block Reference Guide, August 2004.
15. Xilinx Inc. Embedded System Tools Reference Manual, February 2005.
16. Xilinx Inc. Processor IP Reference Guide, February 2005.

An Evolvable Image Filter: Experimental

Evaluation of a Complete Hardware
Implementation in FPGA

Tomáš Mart́ınek and Lukáš Sekanina

Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

{martinto, sekanina}@fit.vutbr.cz

Abstract. This paper describes an evolvable image filter which is com-
pletely implemented in a field programmable gate array. The proposed
system is able to evolve an image filter in a few seconds if corrupted
and original images are supplied by user. The architecture is generic and
can easily be modified to realize other evolvable systems. COMBO6 card
with Xilinx Virtex xc2v3000 FPGA is used as a target platform.

1 Introduction

As image processing deals with large data sets, a hardware implementation of
image processing algorithms becomes unavoidable in many applications to ensure
reasonable processing time. Furthermore, efficient image processing algorithms
require a certain level of intelligence to correctly interpret and present the in-
put data. An adaptation is required in many cases. Hence image processing in
general, and image filtering in particular, belong to most popular applications
of evolvable hardware [4]. Evolvable hardware can be utilized either to find the
required solution at the design time (i.e. to assist the designer during the design
process) or to ensure (perhaps real-time) adaptation of hardware at the runtime.
The both approaches have been reported in literature (see [1, 9, 13, 17]).

The objective of this paper is to explore the performance of an evolvable
image filter that is completely implemented in a Field Programmable Gate Ar-
ray (FPGA). In order to perform these investigations, a smoothing filter (whose
function can be evolved) was implemented in FPGA. The main feature of the pro-
posed implementation is that everything is implemented in a cutting-edge recon-
figurable hardware platform available today. For the presented experiments we
utilized the PCI COMBO6 card developed in the Liberouter project [7]. There-
fore, our results should indicate what is possible to do with such the FPGA-based
evolvable systems nowadays. Evolutionary algorithm, implemented in hardware,
is used to find the filter which minimizes the difference between the corrupted
image and training image. These images are stored in RAM memories available
on COMBO6. A personal computer is used only for communication with the
COMBO6 card, i.e. for writing/reading the images to/from RAMs etc. The per-
formed experiments should allow us to exactly determine the adaptation time

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 76–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Evolvable Image Filter 77

and the quality of the evolved filters and, consequently, to specify the class of
applications in which the filters could be evolved in real-time. We evaluated vari-
ous variants of the evolvable filter, including the size of the virtual reconfigurable
circuit and the parameters of the evolutionary algorithm. A crucial feature of
the proposed architecture is that all EA operations as well as reconfiguration are
completely overlapped by evaluation of candidate circuits, i.e. they are for free.

A lot of work has been done in the area of image filter evolution. Section 2
briefly introduces the field and emphasizes the differences between our approach
and the existing approaches. In Section 3 the proposed complete hardware imple-
mentation is described. Section 4 summarizes the obtained results. Advantages
and disadvantages of the evolvable system and potential applications are dis-
cussed in Section 5. Conclusions are given in Section 6.

2 Evolution of Image Filters in FPGA: A Survey

Various approaches have been proposed to the evolutionary design of image op-
erators (filters). The authors of paper [5] evolved circuits for edge detection using
elementary binary operations supported in FPGAs. Other edge detectors (also
evolved in an FPGA) were represented as 2D arrays of integers that defined the
convolution kernel [2]. Ebner evolved an edge detector using genetic program-
ming which approximates the Canny edge detector [3]. An automatic feature
identification algorithm that utilizes functional level operators like mean, stan-
dard deviation, convolution and linear scale was developed for multi-spectral
images [9]. The evolutionary approach usually works in the time domain and
produces non-linear filters. In many cases the evolved filters have exhibited bet-
ter properties (the cost, quality of filtering) than conventional filters (such as
median and mean filters, Sobel operators etc.) in tasks such as Gaussian or
salt-and-pepper noise removal or edge detection [13, 11].

This work extends the approach initially developed by Sekanina [10, 11] who
has evolved novel image filters (for 3×3 neighbourhood) using Cartesian genetic
programming (CGP) applied at the functional level. Furthermore, the hardware
implementation of CGP was proposed for FPGAs [13, 12]. However, in his ap-
proach image filters were evolved only by using a virtual reconfigurable circuit
simulated in software that could eventually be implemented of the top of a con-
ventional FPGA (no evolution in hardware was performed). Recently, Zhang et
al. have implemented a very similar virtual reconfigurable circuit in FPGA and
evolved some image operators in FPGA [17, 16]. Smith et al. used the same
approach [15]. However, they have not evaluated the complete hardware imple-
mentation (including the evolutionary algorithm) in FPGA. Their papers do not
indicate the time of evolution and speeding up against the software approach.
It seems that some parts of evolutionary algorithm (such as circuit evaluation)
have been carried out in software. As their system was proposed as asynchronous
utilizing local handshaking protocols [16] they were not able to make the system
completely pipelined. For similar purposes Sekanina and Friedl have proposed
a completely pipelined implementation of an evolvable combinational unit for

78 T. Mart́ınek and L. Sekanina

FPGAs that can be considered as an evolvable IP core [14]. They obtained a
significant speedup against the software approach. In this paper we will derive
a complete hardware implementation of the evolvable filter according to the
approach [14].

3 The Proposed Architecture

Architecture of the evolvable image filter is based on the component approach
to evolvable hardware [13, 12, 11]. As Fig. 1 shows, it is composed of three main
components—Fitness Unit, Genetic Unit and Virtual Reconfigurable Circuit.

Memory
Fitness

Mutation

Unit

Population

Memory

A

B

conf.

C

A

B

conf.

C

A

B

conf.

C

...

A

B

conf.

C

A

B

conf.

C

A

B

conf.

C

...

A

B

conf.

C

A

B

conf.

C

A

B

conf.

C

...

A

B

conf.

C

A

B

conf.

C

A

B

conf.

C

...

A

B

conf.

C

A

B

conf.

C

A

B

conf.

C

...

Random number
Generator

Pixels
Input

Image
Corrupted

Image
Filtered

Image
Original

Fitness

Conf.

pixel
Filtered

SSRAM SSRAM SSRAM

Virtual Reconfigurable Circuit Genetic Unit

vrc_col(i) vrc_col(i)

...

...

vrc_col(i) vrc_col(i)vrc_col(i)

value

Interface

Initialization

Unit

Computation
Pixel

Bufffer Controler
SSRAMs GA

Controller

Fitness

Fitness Unit

Fig. 1. Architecture of the evolvable image filter in FPGA

3.1 Virtual Reconfigurable Circuit

Every image operator will be considered as a digital circuit of nine 8bit inputs and
a single 8bit output, which processes gray-scaled (8bits/pixel) images. As Fig. 2
shows every pixel value of the filtered image is calculated using a corresponding
pixel and its eight neighbours in the processed image.

We approached the problem using Cartesian Genetic Programming (CGP)
operating at the functional level. In contrast to the conventional CGP [8]—where
gates and 1 bit connection wires are utilized—Configurable Functional Blocks

An Evolvable Image Filter 79

Input

Image

Virtual
Reconfigurable

Circuit

Filtered

Image

I4
I5

I7
I6
I3

I8

I2
I1
I0

Operator

Image

Fig. 2. Image Operator

(CFBs) and 8bit datapaths are employed [6]. Our model of the reconfigurable
circuit consists of 2-input CFBs placed in a grid of nc columns and nr rows.

Any input of each CFB may be connected to the primary circuit inputs.
Any input of each CFB may be connected to the output of a CFB, which is
placed anywhere in the preceding column. The interconnection is implemented
using multiplexers. Any CFB can be programmed to realize one of functions
given in Table 1. These functions were recognized as useful for this task in [11].
Configuration bits of VRC are directly connected to the multiplexers that control
the selection of CFB inputs and CFB functions. The reconfiguration is performed
column by column. The computation is pipelined; a column represents a stage
of the pipeline. Registers are inserted between columns in order to synchronize
the input pixels with CFB outputs.

Table 1. Functions in CFBs

Number Function Description

0 x ∨ y binary or

1 x ∧ y binary and

2 x ⊕ y binary xor

3 x + y addition

4 x + ys addition with saturation

5 (x + y) >> 1 average

6 Max(x, y) maximum

7 Min(x, y) minimum

3.2 Fitness Unit

The design objective is to minimize the difference between the filtered image
and the original image. Let u denote a corrupted image and let v denote a
filtered image. The original (uncorrupted) version of u will be denoted as w.
The image size is K×K (K=256) pixels but only the area of 254 × 254 pixels is
considered because the pixel values at the borders are ignored and thus remain
unfiltered. The fitness value of a candidate filter is obtained as follows: (1) the

80 T. Mart́ınek and L. Sekanina

VRC is configured using a candidate chromosome, (2) the circuit created is used
to produce pixel values in the image v, and (3) the fitness value is calculated as

fitness = 255.(K − 2)2 −
K−2∑
i=1

K−2∑
j=1

|v(i, j) − w(i, j)|.

Fitness computation is realized in Fitness Unit. The pixels of corrupted image
u are loaded from external SSRAM memory and forwarded to inputs of VRC.
Pixels of filtered image v are sent back to the Fitness Unit, where they are com-
pared with the pixels of original image w. Filtered image is simultaneously stored
into the additional SSRAM memory. Note that all image data are stored in exter-
nal SSRAM memories due to the limited resources available in the FPGA chip.

3.3 Genetic Unit

Genetic algorithm is based only on the mutation operator (bit inversion); simi-
larly to experiments reported in [13] a crossover is not taken into account. Pop-
ulation size is configurable. The new population is always generated from the
best member of the previous one. Genetic algorithm operates in following steps:
(1) Initialization Unit generates the first population at random (LFSR seeded
from software is utilized). (2) Mutation Unit changes a given number of genes
(bits) of a population member (this number is configurable) and the modified
member is loaded into the VRC; it represents an image operators. (3) Genetic
Unit is waiting for the evaluation performed by Fitness Unit and if the fitness
value is better that the parent’s fitness then the chromosome replaces its parent.
(4) This is repeated until an appropriate number of generations are produced.

4 Experimental Results

4.1 Target Platform

COMBO6 developed in the Liberouter project is a PCI card primarily dedicated
for a dual-stack (IPv4 and IPv6) router hardware accelerator. This board offers
a very high computational power (FPGA Virtex XC2V3000 by Xilinx, Inc. with
more than 3 mil. equivalent gates, up to 2GB DDR SDRAM, up to 9Mbit context
addressable memory, and the three 2MB SSRAM memories) and so it is well
suited for development and the use in various application domains, including
evolvable hardware. We decided to use this card for our experiments because
it offers us a sufficient performance and capacity of FPGA. Furthermore, the
design software is available for free.

4.2 Synthesis for COMBO6

In order to compare different implementations we have decided to synthesize the
whole system with VRC of size 8×4 CFBs and 8×7 CFBs. The evolutionary al-
gorithm operates in the same way for both implementations; however, the size of

An Evolvable Image Filter 81

chromosome depends on the number of CFBs. The results of synthesis obtained
using Leonardo Spectrum and Xilinx ISE tools are shown in the following table.

Table 2. Results of synthesis for Virtex II xc2v3000 FPGA

Resource Avail Used 8x4 Utilization Used 8x7 Utilization

Function Generators 28672 10638 37.1% 18432 64.2%

Slices 14336 6175 43.0% 10042 70.0%

Dffs or Latches 30724 3172 10.3% 3668 11.9%

IOBs 256 684 236 34.0% 236 34.0%

Block RAMs 96 2 2.0% 3 3.0%

4.3 Time of Evolution

The evaluation of candidate filters consists of three basic activities: (1) prepara-
tion of a new candidate chromosome (filter), (2) reconfiguration of VRC circuit
according to the prepared chromosome, and (3) evaluation of the filter. As most
time is spent in filter evaluation, the architecture of evolvable image filter is
designed in order to overlap the evaluation by other activities (1, 2). Therefore,
because there is no overhead for reconfiguration of VRC (VRC is reconfigured
at the beginning of filter evaluation) and the preparation of a new candidate
circuit configuration is performed during the evaluation, it is possible to express
the time of evaluation of a single filter as:

teval = (K − 2)2.
1
f

= (256 − 2)2.
1

50.106
= 1.29ms

if the size of images is 256 x 256 pixels and the system operates at 50 MHz.
Time of evolution can be expressed as follows:

te = tinit + g.n.teval,

where g is the number of generations, n is population size and tinit is time needed
to generate the initial population (tinit is negligible).

4.4 Functional Evaluation

The proposed evolvable image filter has been used to remove two types of noise–
Gaussian noise (σ = 16) and Salt-and-Pepper noise (5% pixels with white or
black shots)—that are popular in evolvable hardware literature [13, 11, 16, 15].
Original as well as filtered versions of Lena image were utilized in the fitness
function. As the image is relatively large (256 x 256 pixels) we can assume that
the evolved filter is general, i.e. the filter is able to remove the same type of noise

82 T. Mart́ınek and L. Sekanina

also from other images. Examples of filtered images and evolved filters are given
in Table 5 and Figure 3.

We performed 100 runs for each problem and measured mdpp (mean differ-
ence per pixel) and checked the final generation. The average number of gen-
erations was calculated for the 100 runs. The evolution was stopped when no
improvement in the best fitness value was detected over the last 5000 genera-
tions. Table 3 and 4 summarize the experiments. We performed the experiments
with population size of four individuals and with the ratio of mutations 3 bits
per chromosome; then we repeated all the experiments with mutation of 6 bits
in chromosome. All the experiments were also performed for two different sizes
of VRC: 8 × 4 and 8 × 7 CFBs.

Fig. 3. Evolved Salt and Pepper filter

Table 3. Results for Salt-and-Pepper noise

VRC
size

Number
of mutations

The best
mdpp

In
generation

Average
mdpp

Average
num. of gen.

8x4 3 0.64 4548 3.75 10475.00

8x4 6 0.51 36765 3.06 12189.00

8x7 3 0.77 8130 4.11 8617.00

8x7 6 0.48 22346 3.69 10340.00

An Evolvable Image Filter 83

Table 4. Results for Gaussian noise

VRC
size

Number
of mutations

The best
MDPP

In
generation

Average
MDPP

Average
num. of gen.

8x4 3 6.47 13767 7.98 10496.00

8x4 6 6.49 16058 7.77 10698.00

8x7 3 7.33 8435 10.10 7602.00

8x7 6 6.43 26647 8.27 8553.00

Table 5. The filter was evolved using Lena image and tested on other images

5 Discussion

We can compare the best-obtained results with the results reported in literature.
In reference [11], the three best Salt-and-Pepper noise filters have mdpp 0.379,
0.507 and 0.656. The three best values of mdpp for Gaussian noise are 6.243,
6.312 and 6.326. Tables 3 and 4 show that the filters evolved here and in [11]
exhibit a very similar quality. A small improvement visible in [11] is probably
due the fact that some other properties (such as testability) were required for
the filters in [11]; these properties were not considered in our hardware imple-
mentation. The influence of the mutation ratio and size of VRC is unclear from
these experiments. Some other experiments will be arranged to clarify it.

From Tables 3 and 4 it can be derived that 9871 generations (i.e. 51 seconds
at 50MHz) are needed in average to finish the evolution. The obtained time is

84 T. Mart́ınek and L. Sekanina

very reasonable if the proposed system should operate “instead” of a designer in
the image filter design task. For some application, our solution could also oper-
ate as real-time evolving filter. However, if we consider that 100MHz operation
frequency is easily reachable at COMBO6 and the training image could consist
of 128 x 128 pixels only then the time of evolution is 6.3 second. Note that the
speedup we obtained against the software approach (Pentium III/800MHz) is 50
if the FPGA operates at 100 MHz.

Our VHDL design benefits from a generic approach. All the implemented
units are parameterized using various constants (such as the size of chromosome,
the number of mutations, the size and topology of VRC, the size of input images
etc.). Therefore, a novel FPGA-based implementation for some other evolvable
systems can be obtained in a very short time. The FPGA communicates with
PC via a special software allowing the designer to prepare scripts describing
experiments that have to be performed. Typically, designer specifies the VRC,
EA and fitness function, performs synthesis, uploads the evolvable system into
FPGA and executes all experiments described in scripts. This approach can be
considered as user-friendly interface to evolvable hardware.

6 Conclusions

A complete FPGA-based implementation of an evolvable image filter was realized
and experimentally evaluated in an FPGA. The proposed system is able to evolve
image filters in a few seconds. The architecture is generic and can easily be
modified to realize other evolvable systems. Future research will be devoted to
integrating the proposed solution to a real-world industrial application.

Acknowledgements

The research was performed with the financial support of the FRVS 2987/2005/-
G1 project The utilization of evolutionary algorithms for implementations of
image filters in FPGAs. Lukas Sekanina was supported from the research project
of the Grant Agency of the Czech Republic under No. 102/03/P004 Evolvable
hardware based applications design methods.

References

[1] Burian, A., Takala, J.: Evolved Gate Arrays for Image Restoration. Proc. of 2004
Congress on Evolutionary Computing, IEEE Publ. Press, 2004, p. 1185-1192

[2] Dumoulin, J. et al.: Special Purpose Image Convolution with Evolvable Hard-
ware. In: Real-World Applications of Evolutionary Computing – Proc. of the 2nd
Workshop on Evolutionary Computation in Image Analysis and Signal Processing.
LNCS 1803, Springer, 2000, p. 1–11

[3] Ebner, M.: On the Evolution of Edge Detectors for Robot Vision Using Genetic
Programming. In: SOAVE 97: Selbstorganisation von Adaptivem Verhalten, VDI
Verlag 1997, p. 127–134

An Evolvable Image Filter 85

[4] Higuchi, T. et al.: Real-World Applications of Analog and Digital Evolvable Hard-
ware. IEEE Trans. on Evolutionary Computation, Vol. 3, No. 3, 1999, p. 220–235

[5] Hollingworth, G., Tyrrell, A., Smith, S.: Simulation of Evolvable Hardware to
Solve Low Level Image Processing Tasks. In: Proc. of the Evolutionary Im-
age Analysis, Signal Processing and Telecommunications Workshop. LNCS 1596,
Springer, 1999, p. 46–58

[6] Murakawa, M. et al.: Evolvable Hardware at Function Level. In: Proc. of the
Parallel Problem Solving from Nature PPSN IV, LNCS 1141, Springer-Verlag
Berlin, 1996, p. 62–72

[7] Liberouter project. www.liberouter.org
[8] Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital

Circuits – Part I. Genetic Programming and Evolvable Machines, Vol. 1, No. 1,
2000, p. 8–35

[9] Porter, R.: Evolution on FPGAs for Feature Extraction. PhD thesis, Queensland
University of Technology, Brisbane, Australia, 2001, p. 229

[10] Sekanina, L.: Image Filter Design with Evolvable Hardware. In: Applications of
Evolutionary Computing – Proc. of the 4th Workshop on Evolutionary Computa-
tion in Image Analysis and Signal Processing EvoIASP’02, LNCS 2279, Springer-
Verlag, Berlin, 2002, p. 255–266

[11] Sekanina, L., Ruzicka, R.: Easily Testable Image Operators: The Class of Circuits
Where Evolution Beats Engineers. In: Proc. of the 2003 NASA/DoD Conference
on Evolvable Hardware, USA, IEEE Computer Society Press, 2003, p. 135-144

[12] Sekanina, L.: Virtual Reconfigurable Circuits for Real-World Applications of
Evolvable Hardware. In: Proc. of the 5th International Conference Evolvable Sys-
tems: From Biology to Hardware, ICES 2003, Trondheim, Norway, LNCS 2606,
Springer-Verlag, 2003, p. 186-197

[13] Sekanina, L.: Evolvable components: From Theory to Hardware Implementations,
Springer-Verlag, Natural Computing Series, 2003

[14] Sekanina, L., Friedl, S.: On Routine Implementation of Virtual Evolvable Devices
Using COMBO6. In: Proc. of the 2004 NASA/DoD Conference on Evolvable Hard-
ware, Seattle, USA, IEEE Computer Society Press, 2004, p. 63-70

[15] Smith, S., Leggett, S., Tyrrell, A.: An Implicit Context Representation for Evolv-
ing Image Processing Filters. In: Applications of Evolutionary Computing, LNCS
3449, Berlin, Springer Verlag, 2005, p. 407-416

[16] Zhang, Y., Smith, S., Tyrrell, A.: Intrinsic Evolvable Hardware in Digital Filter
Design. In: Applications of Evolutionary Computing, Berlin, DE, Springer, LNCS
3005, 2004, p. 389-398

[17] Zhang, Y., Smith, S., Tyrrell, A.: Digital Circuit Design Using Intrinsic Evolvable
Hardware. In Proc of the 2004 NASA/DoD Conference on Evolvable Hardware.
Seattle, USA, IEEE CS Press, 2004, p. 55-62

Operational Amplifiers: An Example
for Multi-objective Optimization on an Analog

Evolvable Hardware Platform

Martin Trefzer, Jörg Langeheine, Karlheinz Meier, and Johannes Schemmel

Ruprecht-Karls-University of Heidelberg, Kirchhoff Institute for Physics,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

+49 (0)6221 54-9838
martin.trefzer@kip.uni-heidelberg.de

http://www.kip.uni-heidelberg.de/vision/projects/eh/

Abstract. This work tackles the problem of synthesizing transferable and reusa-
ble operational amplifiers on a field programmable transistor array: the Heidel-
berg FPTA. A multi-objective evolutionary algorithm is developed, in order to be
able to include various specifications of an operational amplifier into the process
of circuit synthesis. Additionally, the presented algorithm is designed to preserve
the diversity within the population troughout evolution and is therefore able to
efficiently explore the design space. Furthermore, the evolved circuits are proven
to work on the chip as well as in simulation outside the FPTA. Schematics of
good solutions are presented and their characteristics are compared to those of
basic manually created reference designs.

1 Introduction

Analog circuit development is a discipline of electronic design that demands a lot of
knowledge and experience as well as a considerable amount of creativity in solving
diverse problems from the designer. The design of task specific operational amplifiers
(OP) is an example for an exercise that has to be done by experienced designers and
exactly such OPs are essential building blocks of many electronic circuits. Contrary to
digital circuit design there is still a lack of supporting tools for automatic synthesis and
sizing of transistor circuits.

To date, to the authors knowledge, only a few analytic solutions for analog design
automation are available. Examples in which previously known topologies are tested
while the sizing of the components is done by an optimization algorithm are given
in [1, 2]. In a great number of approaches, the topology is also to be found automati-
cally, therefore, developmental strategies [3,4,5,6] or heuristic interconnection of build-
ing blocks [7] are applied, in order to deal with the high complexity of amplifiers. An
alternative possibility is to choose a multi-objective evolutionary algorithm [8, 9], in
order to face the fact that, for the solution of almost every complex problem, numer-
ous variables have to be taken into account for optimization. Operational amplifiers as
well as other transistor circuits found to this point by means of hardware evolution in
conjunction with multi-objective optimization (MO) are reported in [10, 11, 12]. Fur-
thermore, a multi-objective approach provides the designer with a variety of choices

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 86–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Operational Amplifiers: An Example for Multi-objective Optimization 87

instead of only one more or less good solution. This is a great advantage, especially in
cases in which trade-offs have to be made, e.g. between gain and speed of an amplifier.

In this paper a multi-objective evolutionary algorithm, based on previous work [13]
and referred to as the MO-Turtle GA, is presented and successfully used for the synthesis
of differential amplifiers on the Heidelberg FPTA [14]. Other current results, obtained
by using this FPTA, can be found in [15]. As proposed in an earlier publication [13],
one of the aims is to synthesize circuits that contain only relevant components, thus, are
easier to understand according to engineering criteria. The evolved circuits are proven
to work on the chip as well as in simulation outside the FPTA. Schematics of good
solutions are presented in this work and their characteristics are compared to those of
manually created OPs. Two series of experiments are carried out using in one case a
pair of PMOS transistors and in the other case a pair of NMOS transistors as input.

2 Evolvable Hardware System

The evolution system consists of three main parts: The FPTA that hosts the configurable
CMOS transistor array, a controller with a PCI interface that connects the FPTA to a
standard PC and the software that runs the multi-objective evolutionary algorithm and
communicates with the FPTA via the controller. Thus, the experimental setup and the
candidate configurations for the transistor array are generated on the PC and then trans-
ferred to the controller. Subsequently, the controller configures the FPTA and measures
the output of the circuits under test. The software on the PC reads back the results and
carries out the evolutionary steps. These components provide a real time test environ-
ment for the evolved circuits.

The transistor array consists of 16x16

W/L

1:6 Analog Mux

1:6 Analog Mux

vdd gnd

Drain

Gate

Source

1:
6

A
na

lo
g

M
ux

gnd

vdd

N

W

S

E

N W S E

vdd gndN W S E

N

W

S

E

S

N

EW

Fig. 1. The block diagram of an FPTA
MOS transistor cell

configurable CMOS transistor cells (Fig. 1).
Each cell contains a transistor that can be con-
figured by selecting values for its width W
and length L within W = 1, 2, ..., 15 μm and
L = 0.6, 1, 2, 4, 8 μm. The terminals (source,
drain and gate) can be connected to one of
the cells outside connections (N,S,W,E), vdd
or gnd. Additionally, it is possible to directly
connect the nodes (N,S,W,E) to each other,
which provides routing capabilities. Half
of the cells are designed as programmable
PMOS and NMOS transistors respectively
and are arranged in a checkerboard pattern.
Owing to the four nodes available for rout-
ing and terminal connections, one cell mostly
serves either as transistor cell or routing cell. However, both capabilities are not sepa-
rated. The array is enclosed by IO cells that can apply voltages to the border cells or
measure the output voltages of the evolved circuit. A detailed description of the FPTA
is given in [14].

88 M. Trefzer et al.

3 The Multi-objective Evolutionary Algorithm

Since the evolution of operational amplifiers is a challenging task, a multi-objective
strategy, first proposed in [16], is used for the experiments. This allows for a separate
evaluation and optimization of different properties of the circuits, which would not
be possible with a single objective algorithm. The MO-Turtle GA consists of a non-
dominated sorting algorithm and a crowding distance measure, which are described
in Sec. 3.2 and are based on those from the non-dominated sorting genetic algorithm,
presented in [8, 17]. Using an MO approach offers two important advantages: First,
numerous results can be harvested from the non-dominated front (NDF) instead of only
one, providing trade-off solutions for the different objectives. Second, the population is
of great diversity during the whole evolution, for the reason that individuals with a bad
over-all performance survive as long as they are superior in at least one objective. Thus,
crossover gains importance by combining differently specialized individuals.

3.1 Variation Operators of the MO-Turtle GA

The variation operators of the Turtle GA, reported in [13], are employed, namely the
Random Wires mutation and the Implanting Block of Cells crossover. The implementa-
tion of both operators is adapted to the FPTA’s architecture and described in the follow-
ing. A complete description is reported in [13].

Random Wires (Mutation). The mutation operator consists of the create mode and the
erase mode. The create mode connects random nodes within the FPTA’s transistor array
and thereby randomly inserts components into the active circuit. Contrary to that, the
erase mode randomly disconnects nodes and removes transistors. The mutation operator
is carried out recursively until the resulting circuit contains no dangling nodes and no
floating transistor terminals. The width and length of all active transistors is mutated
due to a configurable probability.

Implanting a Foreign Block of Cells (Crossover). The implanting crossover operator
is carried out in two stages. The first stage exchanges randomly sized and positioned
rectangular blocks of transistor cells between two randomly selected individuals. While
the size of both blocks has to be the same for each individual, the positions of the blocks
may differ. Since this operation in general breaks the layout of both previously intact
circuits, the second stage fixes the occurring floating nodes by executing the random
wires mutation operator for each of them. Thus, again, the resulting circuits contain no
floating nodes.

3.2 Non-dominated Sorting and Crowding Distance

Non-dominated Sorting. All individuals are classified by calculating their level of non-
domination, as shown in Fig. 2, due to their objective values pi. An individual p is said
to dominate q, denoted by p � q, if and only if p is partially less than q (Eq. 1).

∀i ∈ (1, . . . , n), pi ≤ qi ∧ ∃i ∈ (1, . . . , n) : pi < qi (1)

NDF := {p ∈ P | �p′ ∈ P : p′ � p} (2)

Operational Amplifiers: An Example for Multi-objective Optimization 89

All p satisfying Eq. 1, 2 provide the first non-dom. front NDF1. The succeeding
NDFs are found by removing the individuals of NDFk from the population P ′ = P \
NDFk and by recalculating Eq. 1, 2 for the new population P ′ until NDFk+1 is empty.

Crowding Distance. The crowding distance cdist is a measure for the density of solutions
within the vicinity of a particular individual p within the fitness landscape (Fig. 2). All
objective values are considered for calculating the quantity cdist which represents an
average distance to the nearest neighbors of p and is assigned to each individual of the
population. Therefore cdist is used to steer the evolution towards a uniform distribution
of the individuals over the NDF.

3.3 Evolutionary Step

Three populations are used for evolution: A repository population RP and a new pop-
ulation NP of size N and an intermediate population IP of size 2N . The algorithm
is initialized by randomly generating individuals for IP and measuring their objective
values. Subsequently, the evolutionary loop is started by performing non-dominated
sorting and calculating crowding distances for IP = RP∪NP. The next step is to refill
RP with the best individuals of IP by using tournament selection with the first selection
method (SM1), described in the next subsection, on the obtained NDFs. Hereby, NDFk

is allowed to occupy at most 1

2k of the available space in RP. In case the size of NDFk

is less than or equal to the available space, the whole NDFk is copied to RP. Finally,
a new population NP of size N is created from IP by using tournament selection with
SM2 and applying mutation and crossover.

fitness for objective 1

fit
ne

ss
fo

r
ob

je
ct

iv
e

2

NDF3

NDF1
NDF2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

overcrowded area

fitness for objective 1

fit
ne

ss
fo

r
ob

je
ct

iv
e

2

NDF1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Left: An example set of individuals—which are to be optimized for two objectives—is
depicted. The first three NDFs, obtained by evaluating Eq. 1, 2, are drawn in. It is expected that
the NDFs propagate towards better fitness values throughout evolution. Additionally, the rank
of the NDF is equal to the level of non-domination for each individual of the respective NDF.
Right: In this example, the individuals are not distributed uniformly over the NDF. Therefore,
in order to be able to drive evolution towards such a uniform distribution, a partial order of the
individuals within an NDF is defined by the crowding-distance cdist. The value of cdist for an
example individual p is derived from the distance to the next neighbors of p.

90 M. Trefzer et al.

Table 1. An overview of all test-modes (TM) and their corresponding objectives. The aim is to
minimize the fitness; thus, in the cases where the objective value is to be maximized, the recip-
rocal or absolute value is used as fitness. Pull to rails is chosen as main objective, for the reason
that it judges a fundamental behavior of an amplifier and the fitness-value improves smoothly.

TM objective fitness description

TM1pull to rails min. (Vtar − Vout)
2 (main objective)

TM1DC offset min. sum of DC offsets of the set of curves
TM1dev. of DC offset min. standard deviation of the DC offsets
TM2slew-rate max. (use recip.)sum of slew-rates of all steps
TM2settling-time min. time when Vout settles within ±10% of Vtar

TM2deviation from Vtar min. (Vtar − Vout)
2

TM3magnitude max. (use abs.) damping of the fundamental frequency at unity gain
TM3harmonic distortion min. sum of ampl. of harmonics if above −60dB
TM4phase-shift min. phase-shift of sin between Vout and VI+
TM4sin-curve deviation min. (Vtar − Vout)

2

— resource consumptionmin. sum of used transistors

3.4 Tournament Selection Schemes

Tournament selection with a tournament size of 2 is used as selection scheme. The
selection mechanism (SM) for creating the repository is slightly different from that for
creating the new population. In the first case (SM1), the decision which competitor wins
is simply based on the comparison between the individuals’ level of non-domination
and crowding distance cdist (Cond. 3 is true), whereas in the second case (SM2) it is
additionally based on a randomly selected objective and on the main objective (Tab. 1)
(more than one of the Cond. 3-5 are true).

These two kinds of tournament selection provide on the one hand high diversity
within the repository population by making pure pareto-decisions (SM1) and, on the
other hand, drive evolution to improve single objectives and the main objective (SM2).

p, q ∈ P : p � q ∨ (p = q ∧ cdist(p) > cdist(q)) (3)

Fitness(pmain-objective) < Fitness(qmain-objective) (4)

Fitness(prandom-objective) < Fitness(qrandom-objective) (5)

4 Experimental Setup

The experiments are run at a generation size of 200 for IP and a number of 4000 gener-
ations per evolution run. Individuals are mutated with a probability of 0.6 and crossover
is carried out with a probability of 0.4 and a maximum block-size of 4 × 4 transistor
cells. An area of 9× 9 transistor cells is provided to the evolving circuit. Both, the non-
inverting (I+) and the inverting (I-) input of the circuit are statically connected to the
gate of a transistor of the same flavor, in order to avoid meaningless amplifiers. Two se-
ries of experiments, each of 20 evolution runs, are carried out using PMOS input in the
first case and NMOS input in the second case. Free resources of the transistor array are

Operational Amplifiers: An Example for Multi-objective Optimization 91

used to attach a randomly (by mutation) variable capacitive load to the circuits output
and to implement two test benches for the circuit under test: One for open loop testing
and another one with full feedback to the inverting input. Thus, a gain of 1 is assumed
for the latter. Since the feedback is realized using only the configuration capabilities
of the transistor array—where no constant resistors, capacities or current sources are
available—it is not feasible to measure properties like gain or common-mode rejection
ratio (CMRR) directly on the chip. Nevertheless it is possible to measure and evaluate
important properties of an amplifier, namely open-loop behavior, slew-rate, settling-
time, DC offset, harmonic distortion and phase-shift, directly on the FPTA.

4.1 Test Modes for the Measurements on the FPTA

Three kinds of test-modes (TMi) have been developed to perform these measurements
delivering a total of 11 objective values listed in Tab. 1.

TM1: Open-Loop Behavior, Offset. The task is to pull Vout to Vtar = 5V if VI+ > VI-

and to Vtar = 0V if VI+ < VI- and to keep the offset voltage Vos low or at least constant.
A set of nine curves at VI+ = 1.5, 1.75, . . . , 3.5V , each consisting of 100 randomly
applied sample voltages for VI- = 0 . . . 5V , is used as test pattern. TM1 delivers fitness
values for three objectives, namely pull to rails, DC offset and deviation of DC offset.

TM2: Slew-Rate, Settling-Time. The challenge for the output is to follow two voltage-
steps from VI+ = 1.5V to 2.5V and from VI+ = 2.5V to 3.5V in tstep = 0.25 μs.
Fitness values for the slew-rate and the settling-time are calculated from the period of
time between the step and the point of time when Vout has settled at the new target
voltage Vtar ≡ VI+. An additional objective is given by the deviation of Vtar from Vout.

TM3 & TM4: Magnitude, Phase-Shift, Harmonic Distortion. A further demand on an
OP is to distort and damp the input signal as less as possible and to keep the phase-
shift constant below 180 ◦ in order to cause the amplifier to remain stable. These
properties are measured in TM3 by applying three different sinusoidal signals with
f = 5, 50 and500 kHz to the input and comparing them to the circuits output Vtar ≡ VI+.
A discrete fourier transform is used to calculate the power spectrum of the output sig-
nal for each frequency. Subsequently, fitness values for magnitude and total harmonic
distortion (THD) are calculated from the power spectrum. Additionally, the output of a
sinusoidal input signal of f = 20 kHz is used in TM4 to obtain values for the phase-shift
and the deviation of VI+ from Vout.

4.2 Simulation Setup

The simulations are carried out with the SPICE3 simulator described in [18]. BSIM3v2
transistor models are used for simulation. SPICE netlists are extracted from the cir-
cuits that have been evolved on the transistor array by using the MO-Turtle GA. The
input voltage patterns correspond to those used for the on-chip measurements. A load-
capacity of 10 pF is attached to the circuits’ output in simulation. Fitness values, cal-
culated from the simulation results, are obtained by using the same fitness functions as
throughout evolution.

92 M. Trefzer et al.

5 Results

All evolution runs ended up in similar regions of fitness, although the overall perfor-
mance of the circuits is slightly better for those with NMOS input than for those with
PMOS input, as can be seen from Tab. 2. For all evolved circuits the simulation results
are worse than those obtained from the chip and about half of them did not work at all
outside the FPTA. Nevertheless, each evolutionary run features a significant amount of
individuals performing at least similar in simulation and on the transistor array. Exam-
ple NDFs for the resulting circuits are depicted in Fig. 3 and 4.

5.1 Performance of the Multi-objective Approach

An example of how the NDF develops throughout evolution is depicted in Fig. 3. For
some objectives (e.g. magnitude, offset) the NDF converges towards better fitness values

Table 2. The no. of runs that contain at least one individual that achieved a better (or not more
then 10% worse) fitness value than the manually made circuits for a given no. of objectives.
In all cases the manually made OPs obtained better fitness values for distortion and resource
consumption than the evolved circuits. The reason for this is the placement and routing of the
evolved solutions which often contain longer wires and therefore produce more noise.

in no. of objectives
1 2 3 4 5 6 7 8 9 10 11

no. of NMOS runs
better than ref. 20 20 18 5 1 0 0 0 0 0 0
max. 10% worse than ref. 20 20 18 5 5 2 1 1 0 0 0

no. of PMOS runs
better than ref. 20 20 18 4 2 1 0 0 0 0 0
max. 10% worse than ref. 20 20 19 6 5 3 1 1 1 0 0

magnitude [dB]

of
fs

et
[m

V
]

reference

gen. 400
gen. 900
gen. 1k
gen. 4k

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

magnitude [dB]

of
fs

et
de

vi
at

io
n

[m
V

]

reference

gen. 400
gen. 900
gen. 1k
gen. 4k

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

Fig. 3. An example run (NMOS input) with good performance is chosen and the depicted NDFs
are recalculated by considering only the two objectives shown in the respective plot for illus-
tration. The position of a manually made OP (reference), described in Sect. 5.2, is marked by
a triangle. Left: The NDF for offset over magnitude converges towards better fitness over time.
Right: In contrast to this, the NDF for dev. of offset over magnitude is spread over wide ranges of
fitness.

Operational Amplifiers: An Example for Multi-objective Optimization 93

magnitude [dB]

of
fs

et
[m

V
]

proj. of NDF, all dim. (simulation)
proj. of NDF, all dim. (evolution)

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

magnitude [dB]

ph
as

e
sh

if
t[

◦]

proj. of NDF (simulation)
proj. of NDF (evolution)

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

Fig. 4. The NDFs of a run (NMOS input) with good performance, obtained from the measuring
on the FPTA and from the simulation, are depicted above. The graphs show a multi-dimensional
projection of the NDF into the plane spanned by the respective objectives. Left: Offset over mag-
nitude. Right: phase-shift over magnitude.

over time, as can be nicely seen from Fig. 3 (left). Other objectives (e.g. magnitude,
offset-deviation) show a different behavior where the front as a whole does not further
converge, but is spread over wide ranges of fitness. An example for the latter is shown
in Fig. 3 (right). Additionally, the position of a manually created design, described in
Sec. 5, within the objective space is marked by a triangle.

Projections of the whole NDF into the plane spanned by the respective objectives—
taking all objectives into account for computation—are graphed in Fig. 4. This illus-
trates nicely the complexity of the NDF troughout the optimization process. After all,
the main benefit of using an MO approach for the evolution of operational amplifiers on
the Heidelberg FPTA is the possibility to efficiently explore the search space taking care
of both, the diversity of the population and the various demands on the target circuit.

5.2 Solutions for the Operational Amplifier

The FPTA is configured with manually created circuits, one with PMOS and one with
NMOS input respectively, in order to be able to assess the quality of the synthesized
circuits compared to human-made solutions. Each of the references consists of a differ-
ential input stage and a simple inverter-output stage. The fitness values are measured
for both reference designs, using exactly the same setup as throughout evolution, and
are compared to those of the evolved circuits. As can be seen from Tab. 2, almost each
run contains at least one individual that outperforms the corresponding reference OP in
up to 3 objectives and about 5 runs feature similar performance in up to 5 objectives.
In all cases the manually made OPs obtained better fitness values for distortion
(noise) and resource consumption than the evolved circuits. The reason for this is the
placement and routing of the evolved solutions which often contain longer wires and
therefore produce more noise.

Opposite to the competition with the reference circuits on the FPTA, the evolved
circuits come off worse if typical characteristics of OPs are compared in simulation. As
can be seen from Tab. 3 especially those properties that cannot be measured directly on

94 M. Trefzer et al.

Table 3. Comparison between characteristics of evolved circuits with a good performance and the
reference circuits (NMOS and PMOS input). The values are obtained from SPICE simulations.

parameter NMOS (evo) NMOS (ref) PMOS (evo) PMOS (ref)

open-loop gain 33 dB 57 dB 29 dB 65 dB
0dB bandwidth 13 MHz 77 MHz 6MHz 33 MHz
offset −80mV 28 mV 230 mV 20 mV
slew-rate (+) 40 V

μs
100 V

μs
15 V

μs
25 V

μs

slew-rate (-) 15 V
μs

30 V
μs

35 V
μs

45 V
μs

settling-time 0.4 μs 0.2 μs 0.3 μs 0.2 μs
phase-margin 91 ◦ 50 ◦ 92 ◦ 50 ◦

common mode rejection 30 dB > 40 dB 20 dB > 40 dB
out voltage swing 2.2 V 4.8 V 2.8 V 4.8 V
input common mode range 2.5 V 4.2 V 3.5 V 4.3 V

Fig. 5. Schematics of the evolved circuits; shorted transistors are grayed. Left: NMOS input tran-
sistors. Right: PMOS input transistors. In both cases the MO-Turtle GA achieved to synthesize
differential input stages and some kind of biasing circuitry. The evolved solutions thus far lack of
an output gain-stage.

the transistor array during evolution—thus, cannot be evaluated by a fitness function
(e.g. open-loop gain)—return rather poor results. Contrary to that, the characteristics
that are represented by an objective perform similar, e.g. offset, slew-rate and settling-
time. Since the output voltage swing and the 0dB bandwidth are correlated to a good
open-loop gain, those values are also not as good as those of the manually made OPs.

In both cases the phase-margin of the evolved solution is higher than those of the
reference OPs. This is interesting insofar, that it is on the one hand a very good re-
sult, since the aim of the corresponding objective is to minimize the phase-shift. On the
other hand, forcing the phase-shift towards zero could possibly thwart the evolution of
output gain-stages. If this is the case, it would be better to allow for a certain phase-

Operational Amplifiers: An Example for Multi-objective Optimization 95

frequency [Hz]

op
en

-l
oo

p
ga

in
[d

B
]

100 101 102 103 104 105 106 107

-10

-5

0

5

10

15

20

25

30

35

time [us]

ou
tp

ut
[V

]

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

frequency [Hz]

ph
as

e
[◦

]

100 101 102 103 104 105 106 107
-100

-80

-60

-40

-20

0

20

input+ [V]

ou
tp

ut
vo

lta
ge

sw
in

g
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

frequency [Hz]

C
M

R
R

[d
B

]

100 101 102 103 104 105 106 107 108 109 1010
0

5

10

15

20

25

30

35

input+ [V]

in
pu

tc
om

m
on

m
od

e
re

je
ct

io
n

[V
]

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 6. The graphs above show characteristics of evolved operational amplifiers obtained from
spice simulation. For illustration, evolved circuits with PMOS (—) and NMOS (- - -) input re-
spectively and featuring good performance are chosen.

margin in the objective function. Hence, this could be the reason why in both examples
depicted in Fig. 5—which represent evolved circuits with good performance—the al-
gorithm was able to synthesize clearly recognizable differential input stages as well as
biasing circuitry, but failed in appending a simple inverter, which would provide sig-
nificantly better performance. Finally, some important characteristics of the evolved
circuits are shown in Fig. 6.

6 Conclusion and Outlook

The main achievement of the presented method is that reusable and substrate-indepen-
dent circuits are evolved successfully and human-understandable schematics of good
solutions can be drawn. Hence, it is possible to analyze the resulting circuits and to
investigate how the algorithm is solving problems on the hardware substrate. As an
example, it has been shown that the presented algorithm is able to synthesize operational
amplifiers on the Heidelberg FPTA. The fact that the evolution of OPs is a difficult task
suggests that the MO-Turtle GA can be applied to a variety of problems.

The resulting circuits are extracted into netlists and simulated outside the substrate
on which they were evolved. About 50% of the outcome is performing equally well
on the chip and in simulation and can therefore be transferred to other technologies.
The presented multi-objective approach allows for considering various objectives dur-
ing evolution. Thus, it is possible to efficiently explore the design space and converge
to regions of fitness comparable to those which are obtained by basic human reference
designs measured on the chip. Unfortunately, the algorithm failed in synthesizing addi-
tional gain-stages. The reason for this is probably the lack of a suitable gain test bench

96 M. Trefzer et al.

due to the fact that even well approved human designs do not achieve significantly bet-
ter fitness. In this case it is more likely that the abilities of the FPTA limit the search for
good solutions than the algorithm itself. This indeed, will only be solved by a second
generation FPTA.

Future work will be done to understand to what extent the architecture of the transis-
tor array influences the performance of the algorithm and what can be done to improve
it. Furthermore, the MO-Turtle GA will be enhanced to allow the creation and deletion
of structures like differential pairs or inverters in one step. Hereby, all transistors of
those structures could be marked for a simultaneous W/L mutation.

Acknowledgment

This work is supported by the Ministerium für Wissenschaft, Forschung und Kunst,
Baden-Württemberg, Stuttgart, Germany.

References

1. Hershenson, M., Boyd, S., Lee, T.H.: Optimal design of a cmos op-amp via geometric pro-
gramming. In: IEEE Transactions on Computer-Aided Design. (2001) 1–21

2. Arpad Buermen, Janez Puhan, T.T.: Robust design and optimization of operating amplifiers.
(2003) 745–750

3. Vieira, P.F., Botelho, L.B., Mesquita, A.: Evolutionary synthesis of analog circuits using only
mos transistors. In Zebulum, Ricardo S., Gwaltney, David, Hornby, Gregory, Keymeulen, Di-
dier Lohn, Jason, and Stoica, Adrian, ed.: Proceedings of the 2004 NASA/DoD Conference
on Evolvable Hardware, Los Alamitos, IEEE Computer Society Press (2004) 38–45

4. Sripramong, T., Toumazou, C.: The invention of cmos amplifiers using genetic programming
and current-flow analysis. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 21 (2002) 1237–1252

5. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Design of a high-gain operational
amplifier and other circuits by means of genetic programming. In In Angeline, Peter
J., Reynolds, Robert G., McDonnell, John R., and Eberhart, Russ, ed.: Evolutionary Pro-
gramming VI. 6th International Conference, EP97, Proceedings. Volume 1213 of Lecture
Notes in Computer Science., Indianapolis, Indiana, USA, Springer-Verlag, Berlin (1997)
125–136

6. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Evolution using genetic program-
ming of a low-distortion 96 decibel operational amplifier. In: Proceedings of the 1997 ACM
Symposium on Applied Computing, San Jose, California, USA, New York: Association for
Computing Machinery (1997) 207–216

7. Kruiskamp, W., Leenaerts, D.: Darwin: Cmos opamp synthesis by means of a genetic algo-
rithm. In: DAC ’95: Proceedings of the 32nd ACM/IEEE Conference on Design Automation,
New York, NY, USA, ACM Press (1995) 433–438

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimisation: Nsga-ii. In: Proceedings of the 6th International
Conference on Parallel Problem Solving from Nature. (2000) 849–858

9. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

Operational Amplifiers: An Example for Multi-objective Optimization 97

10. Hernandez Aguirre, A., Zebulum, R.S., Coello Coello, C.A.: Evolutionary multiobjective
design targeting a field programmable transistor array. In Zebulum, Ricardo S., Gwaltney,
David, Hornby, Gregory, Keymeulen, Didier Lohn, Jason, and Stoica, Adrian, ed.: Proceed-
ings of the 2004 NASA/DoD Conference on Evolvable Hardware, Los Alamitos, IEEE Com-
puter Society Press (2004) 199–205

11. Zebulum, R., Pacheco, M., Vellasco, M.: A novel multi-objective optimization methodology
applied to the synthesis of cmos operational amplifiers. Journal of Solid-State Devices and
Circuits (2000) 10–15

12. Zebulum, R.S., Pacheco, M.A., Vellasco, M.: A multi-objective optimisation methodology
applied to the synthesis of low-power operational amplifiers. In Cheuri, I.J., dos Reis Filho,
C.A., eds.: Proceedings of the XIII International Conference in Microelectronics and Pack-
aging. Volume 1., Curitiba, Brazil (1998) 264–271

13. Trefzer, M., Langeheine, J., Schemmel, J., Meier, K.: New genetic operators to facilitate
understanding of evolved transistor circuits. In Zebulum, R.S., Gwaltney, D., Hornby, G.,
Keymeulen, D., Lohn, J., Stoica, A., eds.: Proceedings of the 2004 NASA/DoD Conference
on Evolvable Hardware, Los Alamitos, IEEE Computer Society Press (2004) 217–224

14. Langeheine, J., Becker, J., Fölling, S., Meier, K., Schemmel, J.: A CMOS FPTA chip for
intrinsic hardware evolution of analog electronic circuits. In: Proc. of the Third NASA/DOD
Workshop on Evolvable Hardware, Long Beach, CA, USA, IEEE Computer Society Press
(2001) 172–175

15. Garvie, M.: Reliable Electronics through Artificial Evolution. PhD thesis, University of
Sussex (2004)

16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley (1989)

17. Deb, K., Goel, T.: Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better
Convergence. In Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D., eds.: First Inter-
national Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag. Lecture
Notes in Computer Science No. 1993 (2001) 67–81

18. Quarles, T., Newton, A., Pederson, D., Sangiovanni-Vincentelli, A.: SPICE3 Version 3f3
User s Manual. Department of Electrical Engineering and Computer Sciences, University of
California Berkeley, Ca., 94720. (1993)

Intrinsic Evolution of Controllable Oscillators

in FPTA-2

Lukáš Sekanina and Ricardo S. Zebulum

1 Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
sekanina@fit.vutbr.cz, rzebulum@mail2.jpl.nasa.gov

Abstract. Simple one- and two-bit controllable oscillators were intrin-
sically evolved using only four cells of Field Programmable Transistor
Array (FPTA-2). These oscillators can produce different oscillations for
different setting of control signals. Therefore, they could be used, in prin-
ciple, to compose complex networks of oscillators that could exhibit rich
dynamical behavior in order to perform a computation or to model a
desired system.

1 Introduction

The conventional design of analog as well as digital oscillators is difficult since it
requires a lot of experience. Designers must guarantee that their oscillators meet
the specifications in terms of the frequency of oscillations, amplitude, phase,
shape of signal, sufficient power and some other properties. Oscillators are also
usually very sensitive to the environment (temperature, electromagnetic field,
etc.) in which they operate. In the recent years various EA-based approaches
have been proposed to design the oscillators automatically [1,3,8]. Oscillators
were evolved at the opamp, transistor and gate levels. In general, the results
show that evolution of oscillators with required properties is difficult.

Oscillators do play an important role not only in the area of electronic cir-
cuits. Oscillatory networks have been studied as information processors by many
researchers because they can be constructed from realistic nonlinear dynamical
systems and are biologically plausible (furthermore, for example, cellular neural
networks or spiking neural networks have practical applications).

Networks of oscillators can be identified in neural systems or genetic regu-
latory networks. Recently, a synthetic network capable of producing sustained
oscillations in protein concentrations was presented [2]. The “repressilator” con-
sisted of three genes (for simplicity, called a, b, c), expressing three proteins
(respectively, A, B, C). The network formed a ring: Protein A repressed tran-
scription of gene b; B repressed c; and C repressed a. For certain biochemi-
cal parameters, this cyclic repression produced self-sustained roughly sinusoidal
oscillations over the entire growth phase of the host Escherichia coli cells. In
another work, a model for controlling a synthetic gene network of coupled os-
cillators was presented [11]. Unlike the repressilator, the oscillator consisted of

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 98–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Intrinsic Evolution of Controllable Oscillators in FPTA-2 99

only two genes (x and y) and was of the relaxation type. Both proteins were
under the control of a promoter that was activated by the protein X , and pro-
tein Y was a protease of X . Oscillations arose because Y degrades X and thus
reduces its own expression level (because X activates transcription of y). Neural
oscillators inspired by olfactory cortex models were investigated in [13]. They
can be utilized as a dynamical context addressable memory [7] or to perform
logic computation in which synchronized oscillations are considered as logic 1
and desynchronized oscillations as logic 0. Logic gates AND, NOR and NXOR
were implemented by means of these networks [13].

Networks of oscillators can be composed of a controllable oscillator as a
building block, i.e. of an oscillator whose output can be controlled using the
input signals enabling or disabling oscillations. These signals are taken from the
outputs of other oscillators in the network. The first step to build networks of
oscillators is creating the controllable oscillators. Therefore, the objective of this
paper is to explore whether controllable oscillators can be evolved intrinsically in
a physical platform reconfigurable at the transistor level. We decided to utilize
the transistor level because we assume that more various and richer dynamic be-
havior can be obtained than at the gate level. In next step of research the evolved
controllable oscillators will be connected in oscillator networks. As we are not
primarily interested in the frequency of oscillations, we propose a simple fitness
function operating in the time domain. In this work the controllable oscillators
are evolved directly in the Field Programmable Transistor Array (FPTA-2). The
oscillators have one or two digital control inputs and produce various oscillations
for different input stimuli.

In practice, the networks of oscillators could perform useful parallel asyn-
chronous computation in the way similar to cellular automata, for example,
in signal processing tasks. Having inspiration in the mentioned genetic regula-
tory networks, the evolved networks of oscillators could implement non-trivial
genotype-phenotype mappings useful for embryonic electronics [5,9]. Further-
more, in addition to traditional models of genetic control networks developed by
Kauffman and others [4], the system could be used to model and study natural
gene regulations (see the evolution of limit cycle dynamics in electronic models
in [10]).

The paper is organized as follows. Section 2 briefly introduces the area of
evolutionary design of oscillators. In Section 3 FPTA chip and SABLES sys-
tem are described. The proposed evolutionary design method is formulated in
Section 4. While Section 5 summarizes the obtained results, Section 6 discusses
them. Conclusions are given in Section 7.

2 Evolutionary Design of Electronic Oscillators

Oscillators are difficult to design manually. Hence the evolutionary approach was
utilized to perform this task. Oscillators are usually evolved in the way similar
to other analog circuits evolution [15]. However, the evolutionary approach does
not work as well as in case of other analog circuits (e.g. filters). That is also

100 L. Sekanina and R.S. Zebulum

demonstrated in Koza’s list of human-competitive results that does not contain
any oscillator circuits; on the other hand it contains about 20 analog circuits
[6]. The construction of fitness function is very important especially in case of
evolution of oscillators. The analysis of circuit behavior performed in the fitness
function can be based on various principles: time domain analysis, frequency
domain analysis or transfer function analysis. Corresponding fitness landscapes
are usually extremely rugged; oscillations appear only in a very specific parts of
the search space.

Huelsbergen et al. evolved oscillators (astable multivibrators) from primitive
logic components in Xilinx XC6216 FPGA [3]. They reported results of in Silico
oscillator evolution for ten target frequencies in three cell-array sizes (6x8, 8x8,
and 16x16). Considering all three cell-array sizes, the system discovered rela-
tively accurate oscillators – over 97% of their pulses correct – for five of the ten
frequencies and required only a small number of GA runs. In fitness function,
the output signal was compared against a binary string containing the required
combinations of 0s and 1s; thus the number of missed pulses could be calculated.
It was not at all understood how the evolved circuits function. For example, rela-
tive to the speed of the FPGA’s gates (nanosecond transition times), the evolved
oscillators are of rather low frequency.

Aggarwal has used genetic algorithm to evolve opamp-based sinusoidal os-
cillators [1]. His algorithm looks for a suitable passive network (consisting of a
given number of resistors and capacitors) connected to a single opamp. In fitness
function a symbolic analysis was used to find out the transfer function which
contains specific expressions indicating oscillations. It was found that the GA
rediscovered all the twelve canonic single opamp-based topologies. Some new
interesting opamp-based topologies of oscillators were also discovered.

Field programmable analog array MPAA020 of Motorola was utilized to
evolve opamp-based oscillators [14]. The fitness function tried to maximize the
voltage difference between samples of the outputs at specified time points. The
evolved circuit generated a close-to-perfect square wave of 3 Volts amplitude and
frequency of 200 kHz.

Layzell and Thompson evolved oscillators in Evolvable Motherboard at the
transistor level [8]. The circuit population was rich on oscillator circuits and GA
was used to optimize the frequency – measured directly in the fitness calculation
process.

Except Aggarwal’s results (who has worked at symbolic level), the aim of the
mentioned approaches was to demonstrate that oscillators can be evolved in the
given target platform. The evolved oscillators were not used in any application.
No other types of evolved oscillators, such as controllable oscillators or voltage-
controlled oscillators have been reported in literature.

3 Evolvable Platform: FPTA-2 and SABLES

A complete stand-alone board-level evolvable system (SABLES) is built by inte-
grating the FPTA and a DSP implementing the Evolutionary design algorithm

Intrinsic Evolution of Controllable Oscillators in FPTA-2 101

[12]. The system is connected to the PC only for the purpose of receiving specifi-
cations and communicating back the result of evolution for analysis. The system
fits in a box 8“ x 8“ x 3“. Communication between DSP and FPTA is very fast
with a 32-bit bus operating at 7.5MHz. The evaluation time depends on the tests
performed on the circuit. Many of the tests attempted here require less than two
milliseconds per individual, and runs of populations of 100 individuals from 100
to 200 generations require only 20 seconds.

Fig. 1. FPTA-2 architecture (left) and schematic of cell transistor array (right). The

cell contains additional capacitors and programmable resistors (not shown).

The FPTA is an evolution-oriented reconfigurable architecture (EORA). It
has a configurable granularity at the transistor level. It can map analog, digi-
tal and mixed signal circuits. The architecture of the FPTA consists of an 8x8
array of re-configurable cells. Each cell has a transistor array as well as a set
of programmable resources, including programmable resistors and static capac-
itors. Figure 1 provides a broad view of the chip architecture together with a
detailed view of the reconfigurable transistor array cell. The reconfigurable cir-
cuitry consists of 14 transistors connected through 44 switches. A total of 5000
bits is used to program the whole chip. The pattern of interconnection between
cells is similar to the one used in commercial FPGAs: each cell interconnects
with its north, south, east and west neighbors. The reader can refer to [12] for
more information on the FPTA-2.

4 Design Method

The controllable oscillators will be designed using a standard genetic algorithm
operating directly with configurations of FPTA-2 as chromosomes. Only a few
cells of the FPTA will be utilized for the experiments. Figure 2 shows the cells
and the connection of input and output signals. No external components (such as
RC circuits) were considered for these experiments. The frequency of oscillations

102 L. Sekanina and R.S. Zebulum

depends only on the configuration and internal characteristics (such as delay of
transistors) of FPTA-2.

The genetic algorithm running in a DSP uses the roulette-wheel selection,
crossover and mutation. Candidate solutions are evaluated directly in FPTA-2.
In this process, all possible combinations of logic values over the input control
signals (a and b) are applied at the circuit inputs and oscillations are detected
at the output y. The genetic algorithm must promote the chromosomes that
cause oscillations if they are required and keep the output invariable otherwise.
In particular 240 values are sampled, digitized and utilized during the evaluation
of a candidate circuit. Because of simplicity we decided to evaluate candidate
circuits in the time domain. Oscillators controlled using a single input signal
a[i] are designed using the fitness function whose basic structure is given in the
following pseudo-code:

Algorithm 1:
i = 0; fitness = 0;
while (i < samples)
{

// oscillations
ones = 0; zeroes = 0; penalty = 0;
while (i < samples and a[i] is High)
{

if (y[i] < LL) zeroes = zeroes + 1;
else if (y[i] > HL) ones = ones + 1;
else penalty = penalty + 1;

}
fitness = fitness + k1 * abs(ones – zeroes) + kp * penalty;

// no oscillations
ones = 0; zeroes = 0; penalty = 0;
while (i < samples and a[i] is Low)
{

if (y[i] < LL) zeroes = zeroes + 1;
else if (y[i] > HL) ones = ones + 1;
else penalty = penalty + 1;

}
fitness = fitness + k2 * (zeroes + ones – abs(zeroes + ones)) + kp * penalty;

}

If a[i] is at log. 1 (High), the circuit should oscillate; otherwise, the circuit
should not. Here, i = 1 . . . 240 samples are evaluated at the circuit output y[i].
The zeroes counter indicates the number of output values that are considered as
lower than a given threshold value LL (LL = 0.45MV where MV determines
the maximum output voltage 1.8V). The ones counter indicates the number of
output values that are considered as higher than a threshold value HL (HL =
0.55MV). Note that, here, the fitness should be minimized. The situation in

Intrinsic Evolution of Controllable Oscillators in FPTA-2 103

which the circuit should oscillate (i.e. the number of zeroes and ones is similar
but non-zero) is evaluated in the first nested while loop. The second nested loop
deals with the situation in which the output should not oscillate. Penalty counter
is used to avoid staying in the middle of MV range. The values of constants k1, k2

and kp are determined experimentally, and kp � k1 = k2. A very similar fitness
function has been utilized to design oscillators controlled using two bits.

5 Experimental Results

If a single cell of FPTA is configured as an inverter and its output is connected
to its input then oscillations are always observable. We utilized this property in
our approach. Figure 2 shows the experimental setup used to evolve controllable
oscillators using four and five FPTA-2 cells. The solid lines in Fig. 2 denote
external physical connections (wires) used to connect the cells. These connec-
tions were utilized to promote a specific design pattern which is typical for the
conventional oscillators composed of three inverters. In addition to these con-
nections, the evolution could interconnect the cells using the internal switches of
the FPTA-2. Behavior of a cell is defined using 77 configuration bits. However,
three words (48 bits) are not evolved for the cells that belong to the cells that are
connected in a ring; indeed, they are taken from the configuration bitstream of a
conventional inverter and used during all experiments. This strategy is applied
in order to obtain some oscillations in a shorter time. We know that conventional
oscillators can be designed in this way. In fact we were not able to evolve any
oscillators without this setup. Parameters of GA are as follows: the population
size = 100, the crossover probability = 70%, and the mutation probability =
10%. Depending on experiment 300-1000 generations were produced.

5.1 One-Bit Controllable Oscillators

Various one-bit controllable oscillators were evolved using the setup from Fig 2A.
Figure 3 shows typical oscillations we obtained (the frequency of oscillations
is 90.9kHz). Similar other oscillators we evolved that operate at the following
frequencies: 41.6kHz, 22.7kHz, 83.3kHz, and 38.5 kHz. The shape of the output
signal is usually very close to the sine wave; however, with some distortions. We
also attempted to change the frequency of oscillations by means of increasing

y
a

y
a b

y
a

ba

0 0123 1231 0234

(A) (B) (C)

Fig. 2. Cells used and their connection. a and b are control signals; y is the output

signal.

104 L. Sekanina and R.S. Zebulum

a
y

Fig. 3. Evolved 1-bit controllable oscillator (f = 90.9kHz)

a

y

Fig. 4. Evolved 1-bit controllable oscillator (f = 83.3 kHz for both waves)

voltage at the control input. However, we were not able to evolve such a kind
of controllable oscillators. In another setup, a circuit producing two types of
oscillations was evolved (Figure 4). In order to obtain this result, we required in
the fitness functions that ones = 2 ∗ zeroes when the control signal is at logic 0.

5.2 Two-Bit Controllable Oscillators

The two-bit controllable oscillators utilize two input signals, a and b, to control
the oscillations. As shown in Fig. 2B, they consist of five cells. The oscillations,
controlled through cells 0 and 1, should emerge in cells 2, 3 and 4. The proposed
fitness function has been modified in order to consider all four combinations
over the inputs a and b. For instance, we required to have oscillations only
when a = b = 1. Figure 5 shows a typical behavior we obtained. Let us define
the following logic interpretation of that behavior. Let oscillations mean logic 1
and let no oscillations mean logic 0. Then the evolved circuit whose behavior

Intrinsic Evolution of Controllable Oscillators in FPTA-2 105

a

y

b
0

0

1

0

0

1 1

1

Fig. 5. Evolved 2-bit controllable oscillator operating as AND (f = 50 kHz)

1

a

y

b
0

0

1

0

0

1

1

37.5kHz

1

0kHz 27.7kHz50kHz

Fig. 6. Evolved 2-bit controllable oscillator generating four different behaviors

is depicted in Fig. 5 can be understood as logic function AND. Considering
this interpretation we were able to evolved various other logic functions, and
surprisingly, we also evolved exclusive-or (XOR) function.

In another experiment we evolved a circuit that exhibits four different be-
haviors for four different combinations of the control inputs. It generates a signal
of frequency 27.7kHz for a = 1 and b = 1, 50kHz for a = 1 and b = 0, 35.7kHz
for a = 0 and b = 1 and no oscillations for a = 0 and b = 0 (see Fig. 6).

6 Discussion

The presented work has addressed the question whether the evolutionary ap-
proach is able to discover controllable oscillators at the transistor level. The
answer is positive, i.e. the transistors available for the evolutionary design can
be composed together by means of an automated evolutionary process in or-
der to establish one- and two-bit controllable oscillators. The search was not

106 L. Sekanina and R.S. Zebulum

performed completely from scratch. We promoted some “ring”-based structures
and partially preconfigured the cells in the ring. No oscillations have appeared
in case of a complete evolution from scratch. On the other hand no information
showing a way how to stop/enable oscillations was provided for the evolution.
Therefore, the evolutionary approach really discovered how to create controllable
oscillators. It is interesting that we were able to repeat almost all experiments
reported in Section 5.2 also using only four cells of FPTA-2. The setup is shown
in Fig. 2C.

The success of evolution also depends on values of coefficient k1, k2 and kp.
If the penalty for oscillations is too high, no oscillating candidate circuits are
visible. If the penalty for no oscillations is too high, the population contains
many oscillators; however, it is impossible to control the oscillations via the
input control signals. Looking for suitable values of these coefficients is a very
time consuming experimental work requiring tens of runs of the GA. Once the
values of coefficients are fixed, a 1-bit controllable oscillator is usually found in
approximately 30% of runs and 2-bit controllable oscillator in 10% of runs.

The main disadvantage of the proposed fitness function is that it is difficult
to specify the frequency of oscillations and shape of the wave. The time domain
analysis allowed us to specify only the required number of values higher or lower
than a given threshold value. More sophisticated search for a given frequency of
oscillations (e.g. a multiobjective method) would probably require the analysis
in the frequency domain which, however, requires more computational effort.
On the other hand the oscillators in network have not to work at a predefined
frequency. They can operate at different frequencies that are suitable for a given
platform.

7 Conclusions

Simple one- and two-bit controllable oscillators were intrinsically evolved using
only four cells at the transistor level directly in FPTA-2. We can control the
oscillations using logic signals which in principle allows us to build networks of
oscillators. The question for future research is whether the output oscillations
are able to control other oscillators in order to connect them into a complex
network.

Acknowledgments

The research described in this paper was performed at the Jet Propulsion Lab-
oratory, California Institute of Technology and was sponsored by the National
Aeronautics and Space Administration (NASA). Lukas Sekanina was supported
by the Fulbright scholarship and from the research project of the Grant Agency
of the Czech Republic under No. 102/04/0737 Modern methods of digital system
synthesis.

Intrinsic Evolution of Controllable Oscillators in FPTA-2 107

References

1. Aggarwal, V.: Evolving Sinusoidal Oscillators Using Genetic Algorithms. In Proc.
of the 2003 NASA/DoD Conference on Evolvable Hardware, Chicago, USA, IEEE
Computer Society, 2003, p. 67–76

2. Elowitz, M. B., Leibler, S.: A Synthetic Oscillatory Network of Transcriptional
Regulators. Nature (London) Vol. 403, 2000, p. 335–338

3. Huelsbergen, L., Rietman, E., Slous, R.: Evolving Oscillators in Silico. IEEE Trans.
on Evolutionary Computation. Vol. 1, No. 3, 1999, p. 197–204

4. Kauffman, S. A.: The Origins of Order: Self Organization and Selection in Evolu-
tion. Oxford University Press, 1993

5. Koopman, A.: Hardware-Friendly Genetic Regulatory Networks in POEtic Tissues.
MSc Thesis. Utrecht University, 2004, 75 p.

6. Koza, J.: 36 Human-Competitive Results Produced by Genetic Programming.
http://www.genetic-programming.com/humancompetitive.html

7. Kozma, R., Freeman, W.: Chaotic Resonance-Methods and Applications for Robust
Classification of Noisy and Variable Patterns. Neural Networks. Vol. 4, No. 1., 2001,
p. 103–121

8. Layzell, P., Thompson, A.: Understanding Inherent Qualities of Evolved Circuits:
Evolutionary History as a Predictor of Fault Tolerance. In Proc. of the 3rd Evolv-
able Systems: From Biology to Hardware Conference, LNCS 1801, Springer-Verlag,
2000, p. 133–142

9. Mange, D. et al.: Towards Robust Integrated Circuits: The Embryonics Approach.
Proc. of IEEE. Vol. 88, No. 4, 2000, p. 516–541

10. Mason, J., Linsay, P. S., Glass, L.: Evolving Complex Dynamics in Electronic
Models of Genetic Networks. Chaos, Vol. 14, No. 3, 2004, p. 707–715

11. McMillen, D. et al.: Synchronizing Genetic Relaxation Oscillators by Intercell Sig-
naling. Proc. of the National Academy of Sciences of the USA, Vol. 99, No. 2, 2002,
p. 679–684

12. Stoica, A. et al.: Evolving Circuits in Seconds: Experiments with a Stand-Alone
Board Level Evolvable System. In Proc. of the 2002 NASA/DoD Conference on
Evolvable Hardware, Alexandria Virginia, USA, IEEE Computer Society, 2002, p.
67–74

13. Xu, D., Principe, J. C., Harris, J. G.: Logic Computation Using Coupled Neural
Oscillators. In Proc. of IEEE Intl. Symposium on Circuits and Systems, 2004, p.
788–791

14. Zebulum, R. S., Pacheco, M., Vellasco, M.: Analog Circuits Evolution in Extrin-
sic and Intrinsic Mode. In Proc. of the 2nd Evolvable Systems: From Biology to
Hardware Conference, LNCS 1478, Springer-Verlag, 1998, p. 154–165

15. Zebulum, R., Pacheco, M., Vellasco, M.: Evolutionary Electronics – Automatic
Design of Electronic Circuits and Systems by Genetic Algorithms. CRC Press,
Boca Raton 2002

The Role of Non-linearity for Evolved

Multifunctional Robot Behavior

Martin Hülse, Steffen Wischmann, and Frank Pasemann

Fraunhofer Institute, Autonomous Intelligent Systems,
53754 Sankt Augustin, Germany

{martin.huelse, steffen.wischmann, frank.pasemann}@ais.fraunhofer.de
http://www.ais.fraunhofer.de/~INDY

Abstract. In this paper the role of non-linear control structures for the
development of multifunctional robot behavior in a self-organized way
is discussed. This discussion is based on experiments where combina-
tions of two behavioral tasks are incrementally evolved. The evolution-
ary experiments develop recurrent neural networks of general type in a
systematically way. The resulting networks are investigated according to
the underlying structure-function relations. These investigations point to
necessary properties providing multifunctionality, scalability, and open-
ended evolutionary strategies in Evolutionary Robotics.

1 Introduction

Evolutionary robotics (ER) as the study and development of behavioral con-
trol for autonomous robots through self-organizing processes based on artificial
evolution is a widely accepted approach [10,14]. With respect to natural evo-
lution and simplest forms of natural life there are many researches criticizing
the dissatisfying outcomes of current work in ER [4,5]. In [5] it is claimed that
open-ended evolutionary processes are necessary to overcome crucial limitations
of current ER models and to generate more complex and interesting results.

However ER models providing open-ended evolutionary processes are imple-
mented, the agents must be incrementally evolved. With respect to behavioral
control this means control structures must facilitate incremental evolution. Such
an approach should also cope with the scalability problem of ER models in
general [1,3,4].

The crux of incremental control structure evolution is the integration of new
behavioral functionality without loosing existing capabilities. In this paper we
propose an approach to make this problem more tractable. We present incremen-
tally evolved control structures which are systematically investigate to study the
underlying dynamical properties and control principles providing (1) coordina-
tion of different behavioral tasks, and (2) the development of multifunctionality.
In [2] it is claimed that a serious and systematical analysis of concrete examples
of evolved agents are the prerequisite for dynamical explanation and ”abstract-
ing” general principles” of situated autonomous agents. Therefore we present
robotic tasks which at first might seem rather simple, but this simplicity allows

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 108–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Role of Non-linearity for Evolved Multifunctional Robot Behavior 109

minimal systems which are exactly what we need to give a detailed descrip-
tion of the effects of the purposed incremental evolutionary approach on the
dynamical properties of already existing control structures with innate basic
functionalities. Based on these results we discuss the role of non-linearity for (1)
open-ended evolutionary processes and (2) the development of multifunctionality
in a self-organized way.

2 Setup

We present experiments which systematically apply two methods of incremental
evolution of recurrent neural networks (RNN), also referred to as neuro-modules:
(1) expansion method and (2) fusion method [6]. Each method is realized by a
restrictive and semi-restrictive technique. Restrictive means that neither already
existing structural elements (hidden neurons and synapses) nor parameters (bias
and weight terms) of the initial basic building modules can be changed. hereas,
semi-restrictive means that parameters can be changed, while the structure re-
main fixed [6], too.

Expansion and fusion methods are realized with an evolutionary algorithm,
the ENS3-algorithm (described in [6,13]). Using a standard additive neuron
model with sigmoidal transfer function σ(x) and time discrete dynamics the
ENS3-algorithm evolves neural structures and optimizes the corresponding pa-
rameters at the same time. Besides from a task specific input-output struc-
ture, the neuron type, and the constraint that input neurons have only outgo-
ing weights, nothing else is determined. Therefore, any kind of recurrent neural
connections, like self-connections and loops can emerge during the evolutionary
process.

As an incrementally evolved robot task, we chose a reactive light seeking
behavior. Light seeking includes the coordination of a positive and negative
tropism - phototaxis and obstacle avoidance. In the following light seeking be-
havior means that a robot has to follow a light source and has to stop in front
of it while it is avoiding collision with any objects in its environment. For these
studies the Khepera robot [9] and a 2-dimensional simulation software [8] is used.
Note, that all evolution experiments and analysis are done in simulation but all
resulting controllers were tested on the physical hardware as well to approve that
the observed behavior in real world is qualitatively the same as in simulation.

3 Experiments

The Khepera robot is driven by two DC-motors (control signals ml, mr), which
are able to move the left and right wheel forward (positive signals) and backward
(negative signals). The sensor data of the Khepera are delivered by its eight infra-
red sensors. They can be executed in two modes, measuring light intensity (sensor
values l0, l1, . . . l7) and distances to obstacles (sensor values d0, d1, . . . , d7). The
sensor values ln and dn are mapped into the closed interval [0.0; 1.0]. For the
light sensors, values ln = 0.0 refers to darkness and ln = 1.0 to the maximal

110 M. Hülse, S. Wischmann, and F. Pasemann

measurable light intensity. The proximity values dn are zero if no obstacle is
detected and value 1.0 represents a collision. In all presented experiments the
sensor values dn and ln are summarized as follows:

i1 :=
1
3
(d0 + d1 + d2), i2 :=

1
3
(d2 + d3 + d4),

i3 :=
1
2
(l0 + l1), i4 :=

1
2
(l2 + l3), i5 :=

1
2
(l4 + l5), i6 :=

1
2
(l6 + l7).

Where i1 and i2 represents the distance to obstacles at the robot’s left and right
side. The values i3 and i5 indicates the light intensity at the left and the right, i4
the intensity at the front, and i6 at the rear. According to this setup the input-
output structure of the neuro-modules that were evolved for the light seeking task
is represented by six input neurons (I1, I2, . . . I6) and two output neurons (O1

and O2). The values i1, . . . , i6 are the inputs of the corresponding input neurons
I1, . . . , I6 of the neuro-module. Since input neurons are only used as buffers the
values in can also be seen as the outputs of the corresponding input neurons In.
As transfer function we applied σ(x) := 1

1+e−x , the standard sigmoid. According
to the problem of handicapped navigation possibilities with only positive control
signals a special post-processing is implemented. We functionally decompose the
two output neurons. The left output neuron O1 controls the speed and O2 the
turning angle of the robot’s movement. This is formalized as follows:

ml := �(5.0 · (o1 − (2 · o2 − 1.0))) + 0.5�,

mr := �(5.0 · (o1 + (2 · o2 − 1.0))) + 0.5�.
In such a way we get positive and negative integer values, used as motor control
signals for the Khepera robot, simulated as well as real.

3.1 Basic Building Modules

For the following experiments we used two basic building modules. The neural
structure of module GO, solving an obstacle avoidance task, and its resulting
behavior in a simulated environment is show in Fig. 1 (a). This module has an
even 2-ring between O1 and O2. Its weight configuration is critical and therefore
hysteresis effects can be expected. A robot controlled by this module generates
a straight forward movement, if no obstacle is detected. The robot is able to
escape from dead-ends and sharp corners.

Fig. 1 (b) shows the second basic building module GL, performing a positive
phototropism. Module GL is basically feedforward organized. Hence, this module
can only provide fixpoint attractors. The resulting robot behavior shows a strong
drive to the right, if no light is detected. The drive to the right is forced by the
bias term 0.2 of O2. The bias term causes an output value larger than 0.5 that
generates a turning angle unequal zero. If the robot detects light it moves straight
to it and stops in front of it.

The Role of Non-linearity for Evolved Multifunctional Robot Behavior 111

(a)
O1 O2

I1 I2

−8.0 −9
.0

−9
.0

3.0 −4.0

6.0

4.0
8.

0

3.0 (b)

O1 O2

I3

I4

I5

I6

0.23.0

−5

55

−0.2

−5 −10−5−5

−1

Fig. 1. (a) Neuro-module GO solving an obstacle avoidance task, (b) neuro-module GL
performing a positive phototropism, and the resulting robot behavior in simulation

3.2 Expansion of a Basic Module

Two neuro-modules resulting from the expansion experiments are shown in
Fig. 2. Neuro-module GO⇒L is one outcome of the restrictive and GO→L one
of the semi-restrictive expansion experiments.

Aside from the undercritical self-connection of O2 the new structural elements
of GO⇒L are only feedforward organized (Fig 2(a)). These new connections are
coming from the input neurons delivering light sensor data. With respect to the
feedforward organization of the new connections one can not expect additional
non-trivial dynamical effects. Robots controlled by this module show a drive to
the right, if no obstacle and light is detected. If a light source is detected, the
robot orients to it and comes to a halt in front of it. It has not lost its capability
to escape from dead-ends (Fig 2(a)).

Considering the semi-restricted evolved neuro-module GO→L one can find
only three new connections (Fig 2(b)). Like in module GO⇒L all the new con-
nections come from the input neurons delivering the light sensor data and are
feedforward organized. However, the weights of the initial structure have strik-

(a)

O1 O2

I1 I2

I3

I4

I5

I6

3.0 −4.0

−8.0

4.0

6.0
3.0 −0.5

8.0−9
.0

−9.0

−14.0
−14.0

6.0

1.5

−2.0

(b)

O1 O2

I1 I2

I3

I4

I5

I6

12.6

−5.02.0

−17.5 16.87.
6

9.0

−17.0

18.0 −17.0

6.0

0.5

Fig. 2. Neuro-module GO⇒L resulting from (a) the restrictive module expansion, (b)

neuro-module GO→L resulting from the semi-restrictive module expansion, and the

resulting light seeking behavior. The grey color indicates the unchanged elements.

112 M. Hülse, S. Wischmann, and F. Pasemann

ingly changed. The self-connection of O1 has become critical and it is now able
to generate a hysteresis effect. Furthermore the 2-ring between O1 and O2 has
become odd. This 2-ring can generate periodic and chaotic attractors [11]. If the
robot detects no obstacle and no light, its resulting behavior is characterized
by irregular and slight drives to the left as well as to the right (Fig. 2(b)). The
semi-restrictive evolved module GO→L can also escape from dead-ends as well as
it comes to a halt in front of a light source.

3.3 Fusion of the Two Basic Modules

The initial structures of the following fusion experiments include the two mod-
ules GO and GL. The output neurons of both modules become hidden neurons
(H1,...4) of the initial structure. During the evolutionary process the insertion of
new connections coming from the input neurons was not allowed. This guaran-
tees that no structural elements emerge, which could exclude the basic modules.
Figure 3 shows two examples of resulting neuro-modules, restrictive (GO⇔L) and

I1 I2 I3 I4 I5 I6

H3 H4H2H1

O1 O2

3.0

3.0

−8.0 −9.0

−4.0

6.0

4.0

−5.0
−10.0

−5.0

−5.0

3.0

−1.0

0.2

5.0

−0.2

−5.0 5.0
8.0−9.0

−2.9

−1.53

−1.45

−0.16

−4.5
9.36

0.02

0.36

−1.86

−0.06

1.45

−3.46

−4.69

2.3

6.22

I1 I2 I3 I4 I5 I6

H3 H4H2H1

O1 O2

0.0 −12.0

3.2

−10.0

−11.6

11.7
5.0

−13.6
−8.7 4.8

28.8
−8.4

0.0 4.0

−9.3

14.6

−2.7
12.1

7.3

−9.8

−2.9−7.8 0.0

−5.5

−22.0−0.5

0.3

(a) (b)

Fig. 3. (a) Neuro-module GO⇔L resulting from the restrictive module fusion and (b)

neuro-module GO↔L resulting from the semi-restrictive module fusion and their result-

ing light seeking behavior. The grey color indicates the unchanged elements.

semi-restrictive (GO↔L) evolved by our fusion method. Considering the structure
of module GO⇔L (Fig. 3 (a)) the evolved coupling between the two basic modules
GO and GL does not include any new hidden neurons but a lot of new synaptic
connections. These connections show many recurrences, like self-connections and
rings. Nevertheless, only one 2-ring (H3 and O1) has a critical weight parameter
configuration, that provides non-trivial dynamical properties. The 2-ring be-
tween H3 and O1 is odd and can generate periodic as well as chaotic attractors.
With respect to the resulting robot behavior (see Fig. 3 (a)) one can observe

The Role of Non-linearity for Evolved Multifunctional Robot Behavior 113

a strong drive to the left, if no obstacle and light is detected. In the case of
obstacle detection the module produces large turning angles to avoid a collision.
Again, module GO⇔L successfully produces a light seeking behavior including
the escapes from dead-ends as well as a halt in front of a light source.

The semi-restrictive evolved coupling of module GO↔L (Fig. 3 (b)) consists
of only a few new connections. There are even no new recurrences. New dy-
namical properties originally generated by these new connections can not be
expected. They can at most provide non-trivial dynamical features which are
generated by the structures of the basic modules GO and GL. And again, these
basic modules have strikingly changed. The self-connection of hidden neuron H4

has become critical. Hence, H4 can generate period-2 oscillations. Similar to the
semi-restrictive extended module GO→L the former even 2-ring of basic module
GO has become an odd 2-ring. Therefore, this 2-ring between H1 and H2 can
also generate periodic as well as chaotic oscillations. A robot controlled by mod-
ule GO↔L moves straight forward if no obstacle and light is detected. It also
produces a halt in front of a light source. But the turning angles generated by
this module during obstacle avoidance are very large. Note, that the generation
of these large turning angles reduces the exploration capabilities, insofar as we
understand and define well exploration by the robot’s visited area.

3.4 Free and Starting from Scratch

The following two light seeking modules (Fig. 4) are evolved in such a way that
either the underlying initial structures can be removed or no initial structure
was given.

Neuro-module GO−L (Fig. 4 (a)) is an example of a free expansion. That
means, although the evolutionary process was initialized with the basic mod-
ule GO, the elements of this initial structure were not locked during evolution.
Hence, all elements of the initial structure could be modified by the variation
operator during the evolutionary process, including the deletion of initialized
connections. As it can be seen in Fig. 4(a) the resulting structure is purely
feedforward organized. All recurrences of the initial structure GO were removed
during the evolutionary process. According to this feedforward structure the re-
sulting robot behavior is determined only by fixpoint attractors. Nevertheless,
also this simply feedforward structure enables the robot to escape from dead-
ends, to stop in front of a light source and to robustly move straight forward, if
no obstacle and light is detected.

The last light seeking module GOL (Fig. 4 (b)) is evolved without any pre-
defined control, because the evolutionary process was initialized with the empty
initial structure. With respect to the number of synapses and hidden neurons this
is the smallest control structure and also purely feedforward organized. Although
its resulting behavior shows a strong drive to the left it successfully solves the
light seeking task.

114 M. Hülse, S. Wischmann, and F. Pasemann

(a)

O1 O2

I1 I2

I3

I4

I5

I6

−6.0

−2
8.

0

10.0

−6.0 20.0

0.1

−3.0

−2.0

−25.0

(b)

O1 O2

I1 I2

I3

I4

I5

I6

4.6

−23.0

−2
.0

17.0

−0.25

−3.0
4.0

−16.5

Fig. 4. (a) Neuro-module GO−L resulting from the free module expansion and (b)

neuro-module GOL resulting from evolution starting with an empty initial structure

4 Discussion of the Structure-Function Relations

Clarifying the relationship between evolved structure, its inherent dynamics, and
the resulting robot behavior we identify five different behavioral patterns: (1)
moving forward, (2) avoiding obstacles, (3) orientation to the light, (4) halt in
front of an light source, and (5) solving the conflict between obstacle avoidance
and approaching the light. In the following we will only focus on two behavioral
patterns: orientation to the light and halt in front of a light source.

These patterns correspond to specific sensor value configurations. The halt in
front of a light source is basically characterized by a high activation of all front
light sensor values, while distance sensors and the light sensor at the rear have low
activations (i3,4,5 ↑ i1,2,6 ↓). The orientation to a light source can be character-
ized as the transition from behavioral pattern moving forward (i1,2,...6 ↓) to the
halt in front of a light. We symbolize this transition as follows: i4 ↑ i3,5 � i1,2,6 ↓.

To identify relevant attractors for specific parameter configurations the four
neuro-modules were simulated as dynamical systems, de-coupled from con-
straints of the body and environmental interactions. Based on this simulations
we have an indication which attractor generates the observed behavior patterns.
The results are summarized in Table 1.

Due to its feedforward organization, the behavior relevant dynamics of neuro-
modules GOL and GO−L are purely based on fixpoint attractors. With respect
to these attractors the two modules can be seen as a simple superposition of the
two basic modules GO and GL.

Contrary, all modules resulting from the expansion and fusion experiments
show an increase of complexity according to the behavior relevant dynamical
properties. This becomes most obvious, if the dynamical properties providing
the orientation to the light are investigated. The bifurcation diagrams in Fig. 5
indicate that the dynamical features generating an orientation to the light are
beyond simple fixpoint dynamics.

The Role of Non-linearity for Evolved Multifunctional Robot Behavior 115

Table 1. Attractors of the neuro-modules under specific parameter configurations

modules moving forward obstacle avoidance halt in front orienting
of a light source to the light

in ↓ i1,2 ↑ i3,...6 ↓ i3,4,5 ↑ i4 ↑ i3,5 �
i1,2,6 ↓ i1,2,6 ↓

GO fixpoint fixpoint - -

GL fixpoint - fixpoint fixpoint

GO⇒L fixpoint fixpoint fixpoint hysteresis

GO→L chaotic fixpoint fixpoint chaotic

GO⇔L chaotic chaotic fixpoint chaotic

GO↔L perio-2 hysteresis and period-2 fixpoint period-2

GO−L fixpoint fixpoint fixpoint fixpoint

GOL fixpoint fixpoint fixpoint fixpoint

GO⇒L GO→L GO⇔L GO↔L

Fig. 5. Behavior relevant attractors causing a halt in front of a light source indicated

by bifurcation diagrams of the four light seeking modules. Upper: output value o1

over the input value i4, other input values in = 0. Lower: output value o2 over input

value i4, other input values in = 0.

For instance while a robot, controlled by neuro-module GO→L or GO⇔L, is
approaching a light source the speed control is realized by chaotic attractors.
The turning angle in module GO→L is also modulated by a chaotic attractor
(Fig. 5).

Considering module GO↔L we observe that orientation to a light source is
provided by a period-2 attractor (Fig. 5). The period-2 oscillation creates a
permanent alteration of o2 between 0 and 1. Over time this generates an effective
motor signal of 0.5, which is the mean of this stream of output values. The value
0.5 represents a turning value of zero and the robot moves straight due to o1≈1.0.

116 M. Hülse, S. Wischmann, and F. Pasemann

0

0.4

0.8

440 460 480

neuron
output

time steps

neuron
output

0.8

0.4

0

460440
time steps

480

Fig. 6. The neuron outputs o2 (left) and i4 (right) over time of neuro-module GO↔L.

The data are recorded while the robot is approaching a light source. The orientation

to the light is realized by a modulation of the amplitude of a period-2 oscillation.

If the amplitude is changing, the mean of this output stream is changing, too
(between time step 440 and 460 in the left diagram of Fig. 6). Therefore, the
effective motor signals become unequal zero, which creates a turn towards the
light, indicated by the increased activity of i4 (right diagram Fig. 6).

Regarding neuro-module GO⇒L there is a hysteresis effect active while the
robot is approaching the light. This hysteresis effect creates a discrete switch
between the turning angles represented by the values 0.39 and 0.96 of o2 (Fig. 5).
Such a hard switch produces the zigzag close to a light source (compare to path
plot of Fig. 2 (a)).

5 Conclusion

In this paper we presented incrementally evolved neuro-modules solving a light
seeking task for a Khepera robot. We have systematically applied two methods:
expansion and fusion. These two methods based on a structure evolution of var-
ious recurrent neural networks. The expansion method extends the structure of
RNNs, while fusion couples two RNNs to combine different behavioral function-
alities. The scope of these experiment was (1) the study of the coordination of
different behaviors within one neural control structure and (2) the control prin-
ciples which allow the integration of new behavioral capabilities without losing
the old functionality.

The extended and coupled neuro-modules show an increase of complexity
with respect to the behavior relevant dynamical properties. Additionally, we
have shown that if relevant dynamics of a behavioral function are modified, the
control principles of this robot behavior also fundamentally change. For instance,
neuro-module GO↔L utilizes a ”frequency and amplitude” coding to generate the
required motor signals. Such a coding was not grounded in the basic modules,
neither in GO nor in GL. As simple as the presented evolution experiments are
they provide a minimal setup which allowed us a detailed study of the effects of
the presented incremental evolution on the dynamical properties of the resulting

The Role of Non-linearity for Evolved Multifunctional Robot Behavior 117

control structures which leads us to the conclusion that in ER the role of non-
linear control principles can hardly be overemphasized.

Indeed, the two examples GO−L and GOL demonstrate how the development
of multifunctionality can be organized by a simple superposition of behavior
relevant dynamical properties. Hence, multifunctionality can also be generated
without new non-trivial dynamical features and non-linear couplings. But, these
two examples also show: The development of a simple superposition either goes
hand in hand with a remove of initial elements and functionality or has to start
with an empty initial structure. These observations suggest that multifunction-
ality organized by linear control structures must start from scratch each time a
new function has to be integrated. This will become unwieldy for open-ended
evolutionary processes at a certain level of desired behavioral complexity. If those
effects can already be observed in a simple combination of a positive and nega-
tive tropism, a stick to linear control structures in ER models must be carefully
evaluated.

Relating our results to some state of the art research, we stress three major
points: (1) Multifunctionality and task related switchings are natural properties
of non-linear coupled systems [7]. (2) The development of multifunctionality is
a indispensable prerequisite for open-ended artificial evolutionary processes [5].
(3) Open-ended artificial evolution must develop multifunctionality incremen-
tally to cope the scalability problem [1,3]. Considering these aspects and our
results, we claim, that control structures must be based on non-linear principles,
if they should provide open-ended artificial evolutionary processes in Evolution-
ary Robotics.

References

1. Beer, R. D.: An dynamical systems perspective on agent-environment interaction.
Artificial Intelligence 72 (1995) 173 – 215

2. Beer, R. D.: The dynamics of active categorical perception in an evolved model
agent. Adaptive Behavior 11 (2003) 209 – 243

3. Brooks, R. A.: Artificial life and real robots. In: Proceedings of the First European
Conference on Artificial Life, MIT Press (1992) 3–10

4. Clark, A.: Being There: Putting Brain, Body and World Together Again. MIT
Press, 1997.

5. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: Evolving eleman-
tary robotic units able to self-assemble and selfreproduce. Connection Science 16
(2004) 227–248

6. Hülse, M., Wischmann, S., and Pasemann, F.: Structure and function of evolved
neuro-controllers for autonomous robots. Connection Science 16 (2004) 249–266

7. Kelso, S.: Dynamic Patterns, MIT Press, 1995.

8. Michel, O.: Khepera Simulator, Package version 2.0. Freeware mobile robot simula-
tor written at the University of Nice Sophia-Antipolis by Oliver Michel. Download-
able from the World Wide Web at http://wwwi3s.unice.fr/∼om/khep-sim.html.

9. Mondada, F., Franzi, E., Ienne, P.: Mobile robots miniturization: A tool for inves-
tigation in control algorithms. In: Proc. of ISER’ 93, Kyoto, 1993.

118 M. Hülse, S. Wischmann, and F. Pasemann

10. Nolfi, S., and Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. MIT Press, Cambridge, 2000.

11. Pasemann, F.: Characteristics of periodic attractors in neural ring networks. Neural
Networks 8 (1995) 421 – 429.

12. Pasemann, F.: Structure and dynamics of recurrent neuro-modules. Theory in Bio-
sciences 117 (1998) 1 – 17.

13. Pasemann, F., Steinmetz, U., Hülse, M., and Lara, B.: Robot control and the
evolution of modular neurodynamics. Theory in Biosciences 120 (2001) 311–326

14. Walker, J., Garrett, S., Wilson, M.: Evolving controllers for real robots: A survey
of the literature. Adaptive Behavior 11 (2003) 179–203.

An On-the-fly Evolutionary Algorithm

for Robot Motion Planning�

Teddy Alfaro and Maŕıa-Cristina Riff

Department of Computer Science, Universidad Técnica Federico Santa Maŕıa,
Valparáıso, Chile

{Teddy.Alfaro, Marı́a-Cristina.Riff}@inf.utfsm.cl

Abstract. Computation of a collision-free path for a movable object
among obstacles is an important problem in the fields of robotics. The
simplest version of motion planning consists of generating a collision-free
path for a movable object among known and static obstacles. In this pa-
per, we introduce a two stage evolutionary algorithm. The first stage is
designed to compute a collision-free path in a known environment. The
second stage is designed to make on-the-fly updates of the robot current
path according to the dynamic environmental modifications. Evolution-
ary techniques have proven to be useful to both quickly compute a new
path and to take advantage of the initial path from the first stage. The
tests have been made using simulations and a Lego Mindstorms Robot.

1 Introduction

An important problem in the fields of robotics is to compute a collision-free path
for a movable robot among obstacles from an initial position to a goal position
through a known environment [1], [5], [7]. Many approaches have been proposed
to tackle various versions of the same problem with different characteristics.
From the control point of view, the goal is to have stability and controllability
of the movable object using techniques coming from both linear and non-linear
system theories [1]. Other kinds of techniques are complete searches like the
automata theory which uses geometric characteristics of the environment [1], [3].
A number of recent publications have proposed methods based on heuristics,
which have been successfully applied to solve complex combinatorial instances
of the motion planning problem, [2], [4], [5], [6], [7], [8]. The most well known
approaches use the map knowledge dividing it into a set of free zones and zones
with obstacles. They are thus able to compute a static path usually named offline
planning. However, the real-world problem is intrinsically dynamic, i.e., the robot
is dropped in an environment which can continuously changes, [9], [10]. Some
researchers have applied encouraging genetic algorithms for path planning in
dynamic environments [5], [6], [8]. Usually, the path is constructed with a
set of lines and the algorithms work on unions without taking into account
some aspects as the controllability of the robot when it is walking on the lines.
� Supported by the Fondecyt Project 1040364.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 119–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

120 T. Alfaro and M.-C. Riff

Furthermore, the dynamic planner works using a complete knowledge of the
obstacle that the mobil robot will find.

However, in real applications the degree of this knowledge strongly depends
on the capacity of the perception of the robot. In this paper, we propose a two
stage evolutionary algorithm which uses a grid with variable resolution (from
fine grain to coarse grain). The first stage is designed to compute a near-optimal
collision-free path in a known environment. The second stage is designed to
make on-the-fly updates of the robot current path according to the dynamic
environmental modifications. The idea of this stage is to find a new path, as
fast as possible, avoiding collisions. In the best case, the solution given by the
second stage can also be a near-optimal one. The two stages are not completely
independent. The second stage is called when the environment in the current
robot path changes. The local planner uses the remaining part of the current
path as a member of its starting population (coming from the first stage or
from the previous local planner execution). Because we are working with Lego
Mindstorms Robots we have both processing and available memory limitations.
Moreover, these robots have also limitations in their sensorial system. Thus, in
our approach, the local planner does not require a complete knowledge of the
dynamic map modifications. Therefore, our aim here is to propose an efficient
algorithm which requires a reasonable processing time and which also does not
require neither a complex sensorial system nor a large amount of memory.

The article is organized as follows: in the next section we introduce the Evo-
lutionary planner, in section 3 we present in detail the structure of the Global
Planner. Section 4 introduces the Local Planner. In Section 5 we present the
Tests. Finally, in section 6 we present the conclusions and future work.

2 The Evolutionary Planner

In our approach we consider the environment divided into cells (grid). The cell
size is equal to the robot size. Thus, we only allow robot moves to one of the
four cardinal points. We define a map by a grid and the obstacles. The map
represents the priori information available for the robot containing the principal
characteristics of the environment where it will walk. The goal of the evolution-
ary planner in the first stage is to find the shortest path from the initial map,
beginning from (0,0) cell to the (n,m) cell. We called this stage global planner.
In the second stage, the algorithm adapts the initial path to new conditions of
the environment. We called this stage local planner. Thus, the solution is the
sequence of visited cells representing the shortest path from the starting cell to
the ending cell. In Figure 1, we present the general skeleton of the algorithm.

Both planners use the same map description based on cells, the same genetic
representation and the same handling constraint strategies.

2.1 Genetic Representation

Our algorithm uses a string of cells with variable length as representation. Each
cell is identified by its coordinates x and y on the nxm grid, and by a boolean

An On-the-fly Evolutionary Algorithm for Robot Motion Planning 121

Evolutionary Planner()
Begin
init cell=(x init,y init);

goal cell=(x goal,y goal); i=0;

path.cell[i++]=init cell;

path=Global planner(init cell, goal cell, map);

while (!goal reached)

if (perturbation(path.cell[i]))

then
map update(perturbation(path.cell[i]));

path=Local planner(i,map);

i=0

else
execute movement(i);

endif
endwhile
End

Fig. 1. Evolutionary Planner Algorithm

value obj which indicates if the cell belongs to a free or a collision zone. The
environment map is the whole set of cells.

[x0, y0, obj0] → [x1, y1, obj1] → [x2, y2, obj2] → . . . [xp−1, yp−1, objp−1]

2.2 Constraints

The motion planning problem has many constraints. In our algorithm these
constraints are divided in two sets. One set contains the constraints which we
imposed to be satisfied by all the chromosomes in all the generations. They are:

– 0 ≤ xi < n, ∀i : 0..k
– 0 ≤ yi < m, ∀i : 0..k
– (xi+1, yi+1) ∈ {(xi + 1, yi), (xi, yi + 1), (xi − 1, yi), (xi, yi − 1)}

It means that any sequence of cells must be inside the map, and we also impose
the path continuity. Each population satisfies this constraint set, as well as the
initial population. The second set of constraints is:

– obji �= 1, ∀i
– (xi, yi) �= (xj , yj) si i �= j

The first constraint represents the collision-free condition. The second one in-
dicates that the robot must move to another cell in the next step. This set of
constraints is managed by the evaluation function with a penalty factor.

3 Evolutionary Planner: Global Stage

The goal of this stage is to find the shortest path on the map from the initial
cell to a goal cell considering known and static obstacles. The generation of the

122 T. Alfaro and M.-C. Riff

Initial Population(path)
Begin
Set data(init cell,goal cell,map dimension);

while(last cell path != goal cell)

if(not in a corner)

then
prob=random probability();

if(prob<=Prob back && backward<Max backward)

then
N=random number();

add backward(N,random backward successor);

backward++;

else
add to path(random backward successor);

endif
sino
add to path(random forward successor);

endif
endwhile
eliminate redundance(path);

End

Fig. 2. Initial Population algorithm

initial population is shown in Figure 2. This population is randomly generated
but it satisfies the first set of constraints detailed in the above section.The move
to go ahead or to come back are inserted randomly on the path.

3.1 Evaluation Function

As we mentioned before the evaluation function searches for a minimal path but
also includes a penalization factor in relation to the violation of the collision-free
condition. It is shown by the following equation:

F (path) =
(

path size()
n + m − 1

)
+ PENALTY ·

⎛
⎝path size()−1∑

i=0

obji

⎞
⎠ (1)

This equation takes into account that the theoretical optimal path size, without
either obstacles nor backward moves, is equal to n + m − 1.

3.2 Genetic Operators

We have designed four genetic operators. Three of them are asexual operators.
The key idea of the recombination operator named Intersection-Bridge crossover
is to create two offsprings which inherit a sub-path from two parents. Each asex-
ual operator has a specific task. Arc-operator is created to repair chromosomes
which represent paths with collisions. Smooth-operator is designed to generate

An On-the-fly Evolutionary Algorithm for Robot Motion Planning 123

a smoother path than a given path by discarding some unnecessary visited cells.
Finally, the mutation operator is charged to include more exploration to the
algorithm by applying a random path modification. They are described in the
following sections.

Intersection-Bridge Operator. This operator creates two children from two
parents. It has two modes which can be applied. If the two parents have some
common cells in their paths, that is, there are intersections in their pathes,
the cross-point is randomly selected from the intersection points. It is shown in
Figure 3.

When there is no intersection point, the operator acts in bridge mode. The
operator randomly selects a cross-point generating two children. Then, each child
will be repaired by including a bridge in order to satisfy the continuity constraint.
It is shown in Figure 4.

Parents Child1 Child2

Fig. 3. Intersection Mode

Parents Child1 Child2

Fig. 4. Bridge Mode

Individual RepairedIndividual

Fig. 5. Arc-Operator Example

124 T. Alfaro and M.-C. Riff

Arc-Operator(path)

Begin

foreach cell in path

set=collision set(path);

for i=0 to total set

size=1; accepted change=false;

while(size<Max arc size && !accepted change)

segment=projects arc(size,set[i]);

if(collisions(segment)==0)

then

replace(segment, set[i]);

accepted change=true;

else

size++;

endif

endwhile

if(collisions(segment)!=0 && collision(segment)<collision(set[i]))

then

replace(segment,set[i]);

endif

endfor

endforeach

End

Fig. 6. Arc Operator Algorithm

Arc-Operator. The goal of this operator is to repair collisions. It extends the
path to the borders of the obstacle cells, and goes around the collision zone as
is illustrated in Figure 5. The Arc-operator algorithm is shown in Figure 6. This
operator repairs but does not worry about the path length.

Smooth Operator. The key idea of this operator is to discard some visited
cells which are not needed. Applying this change could help to decrease the path
length. The entry of this operator is a collision-free path, therefore it will be
only applied to a chromosome where all obji are equal to zero.

Mutation Operator. This operator selects a k-cells-length sub-path chang-
ing it randomly either to the upper cells or to the lower cells, given a random
generated width value, from the current path. The k value is also randomly se-
lected. It takes into account only the first set of constraints. It allows for low
cost exploration.

Structure of the Global Planner. The algorithm uses a Roulette Wheel
algorithm to select individuals from the population. The complete procedure is
shown in Figure 7.

An On-the-fly Evolutionary Algorithm for Robot Motion Planning 125

Global Planner(map, init cell, goal cell)
Begin
Initial population()

while (gen < Max Gen && !goal reached)

Evaluate(chromosomes)

Select(chromosomes)

Intersection-Bridge-Crossover(paths)

Mutation(paths)

Arc Operator(paths)

Smooth Operator(paths)

Update population();

gen++

if (collisions()==0 && is optimal size())

then
goal reached=true

endif
endwhile
return best path()

End

Fig. 7. Global Planner Algorithm

4 Evolutionary Planner: Local Stage

The Local Stage of the algorithm allows the robot to find a new path given
some new obstacles in its current path. In the beginning, its current path is the
path given by the Global Stage. When the robot is in front of a new obstacle,
the Local Planner starts building a new path which becomes its current path.
The process continues until the robot reaches the goal cell. This algorithm is an
online planning path, it only uses asexual operators because a new path must
be found as fast as possible. The local planner starts its evaluation from the cell
where an unknown object has been found. It does not include already visited
cells from the current path.

5 Tests

We have divided the tests in simulation and real-world experiments.

5.1 Simulations

We use nine maps with various characteristics to evaluate the Evolutionary Plan-
ner. They are regular and irregular polygonals. The test cases are shown in Figure
9, they also have different dimensions. A1 is 50x50, B1 is 60x40, C1 is 60x60,
D1 is 80x60, A2 is 100x100, B2 is 800x600, C2 is 800x600, D2 is 1000x1000,
A3 is 1500x1500, B3 is 3000x2000 and the maps C3 and D3 using various res-
olution. Their size corresponds to the image resolution. The cell decomposition

126 T. Alfaro and M.-C. Riff

Local Planner(map, current cell, goal cell)
Begin
Initial population(); gen=0; count=0

insert old path(paths)

while (gen < Max Gen && !acceptable solution)

Evaluate(paths)

Mutation(paths)

Arc Operator(paths)

Smooth Operator(paths)

Update population()

gen++

if(collisions()=0 && invariable size path())

then
count++

endif
if(collisions()==0 && (is optimal size() || count>Max Count))

then
goal reached=true

endif
endwhile
return best path();

End

Fig. 8. Local Planner algorithm

is in pixel, where a white pixel indicates that it is a free collision cell. The
benchmarks A1, C3, A2, B2 have been proposed in [5]. The other ones have been
specially generated to include more complex shapes in the map as irregularities,
labyrinth and with objects which have a different order of magnitude in size.

Hardware. The hardware platform for the experiments was a PC Pentium IV,
2Ghz with 256 MB RAM under the Fedora Core 2 Kernel 2.6 operating system.
The algorithm has been implemented in C.

Gobal Planner Tests. The first test was carried out to test the Global Planner
with known static environments.

The optimal path is the shortest free-collision one. Every tested case has an
optimal solution. In all of the following results, the algorithm has been limited to
20 iterations. It uses a crossover probability equal to 0.9, mutation and smooth
operator probabilities equal to 0.3 and arc-operator probability equal to 0.5. The
population size was 10 and the PENALTY factor is equal to 1000. All of these
parameter values were defined by tuning.

The Initial Best Chromosome Length is the number of cells of the best path
from the initial population (from the evaluation point of view), and the number
of its collisions is shown in the Initial Best Chromosome Collisions column. In the
same way the Final Best Chromosome Length and the Final Best Chromosome
Collisions indicates the characteristics of the best path found by the algorithm.

An On-the-fly Evolutionary Algorithm for Robot Motion Planning 127

A B C D

1)

2)

3)

Fig. 9. Benchmarks Maps

Initial Conditions Final Conditions

ID Best Best Number Generations CPU Time
map Chromosome Chromosome to find to satisfy

Length Collisions Length Collisions Optimal Constraints [m:s]

A1 99 28 99 0 3 2 0:1

B1 107 18 99 3 - - 0:2

C1 127 32 119 0 1 1 0:1

D1 145 33 139 0 5 4 0:1

A2 205 28 199 0 10 10 0:1

B2 1405 256 1399 0 4 2 0:17

C2 1405 414 1399 0 6 5 0:24

D2 2007 474 1999 0 5 5 1:9

A3 2999 1429 2999 0 5 4 1:36

B3 5023 1116 4999 0 3 2 1:36

Fig. 10. Results of Global Planner

The Number Generations to find Optimal and the Number Generations to sat-
isfy Constraints are the number of generations required by the algorithm to find
the best path and the first chromosome which respectively satisfied all the con-
straints. We can observe that the algorithm is able to satisfy the constraints very
quickly. The labyrinth and the non polygonal problems are the hardest ones for
the Global Planner. The algorithm cannot find the optimal solution for B1. It

128 T. Alfaro and M.-C. Riff

Resolution Number Generations Final Conditions
to satisfy to find Best Chromosome Time[m:s]

Constraints Optimal Path Length Collisions

C3 Map
100x100 3 2 199 0 0:1
500x500 3 3 999 0 0:12

1000x1000 3 2 1999 0 0:50
2500x2500 4 4 4999 0 5:40

D3 Map
100x100 25 3 199 0 0:3
500x500 6 5 999 0 0:17

1000x1000 27 13 1999 0 3:37
2500x2500 12 12 4999 0 14:58

Fig. 11. Tests with Various Maps Resolution

means that we must design a specific operator for this kind of map. However,
for other maps, the algorithm has been very efficient and has found the optimal
known values in a reasonable CPU time as shown in the Figure 5.1.

Another kind of test has been done to evaluate how the resolution can affect
the performance of the algorithm. We use maps C3 and D3 because each one is
representative of a polygonal and a non-polygonal map. Their initial resolution is
1000x1000 pixels. We have increased and decreased their resolution. The results
are shown in Figure 11. The size of the search space increases when the resolution
is higher. In these cases, this kind of algorithm will have a better performance
than the complete techniques which in the worst case, visit all the cells.

Local Planner Tests. In order to test the dynamic adaptation of the algorithm
some objects have been created in the initial path computed by the Global Plan-
ner, to generate unexpected collisions. The test reported here are using maps C3

and D3. The obstacles inserted have a 2x3 cells dimensions. We have considered
small objets because of the limitations of the sensorial system of our robots.

Map Initial Obstacles Coordinates New Path Length
Path a b c d a b c d

C3
100x100 199 (4,1) (5,3) (7,3) (86,76) 198 195 189 37
500x500 999 (98,67) (193,182) (336,244) (458,254) 838 624 423 287

1000x1000 1999 (405,18) (620,36) (973,84) (978,265) 1580 1343 942 760

D3
100x100 199 (1,4) (17,24) (26,48) (35,48) 194 158 129 120
500x500 999 (157,8) (219,175) (330,333) (393,428) 834 605 336 198

1000x1000 1999 (188,235) (446,362) (561,470) (872,856) 1576 1191 968 271

Fig. 12. Test for Local Planner

An On-the-fly Evolutionary Algorithm for Robot Motion Planning 129

Offline Online 1 Online 2 Online 3

1)

2)

Fig. 13. Local Planner Tests

Figure 12 shows the length of the path obtained after four obstacles {a,b,
c,d}. The Local Planner computes the New Path Length from the robot current
position, where it found an obstacle, to the ending cell. Depending on both the
current path and the obstacle cells, the robot could go backward to find a new
collision-free path, as it shows Figure 13.

We have observed that the Local Planner is able to quickly find a new path
without collision and the given solution usually shares sub-paths with the ini-
tial shortest path. This shows that the chromosome coming from the Global
Planner’s shortest path, helps the algorithm to converge faster.

5.2 Real-World Test: Lego Mindstorms Robot

The RCX is the programmable LEGO brick that controls the robot actions. It
has a limited RAM of 32KB. Using infrared communication RCX communi-
cates with our computer, described in the above section, sending messages back
and forth. The Lego Mindstorms robot uses marks on the floor as a navigation
system. Its sensorial system is composed by:

– Three light sensors for positioning and navigation, to follow lines on the floor
– Three tactile sensors to identify collision with another object

The cell size was equal to the robot size. The algorithm allows the robot to go
from an initial point to the ending point and also to adapt its path, according
to the new obstacles introduced in its current path. Because of it is a real-world
robot, the algorithm strongly uses the sensorial system of the robot to both,
quickly act in case of collision, and if it is required, to modify its current path
on-line.

130 T. Alfaro and M.-C. Riff

6 Conclusions

The Evolutionary Planner Algorithm that we proposed in this paper can sig-
nificantly contribute to do efficient motion planning for robots with difficult
limitations like memory capacity and sensorial systems. The most important
contribution is the Local Planner, which uses the specialized asexual operators
to be able to quickly find a new path that avoids collisions. However, it still
has several limitations. First of all, the four cardinal points movement must be
extended to allow diagonal moves which are more realistic. A second limita-
tion comes from environments with labyrinths, where the algorithm requires a
specialized operator to handle this situation.

References

1. Latombe J.C., Robot Motion Planning, Kluwer Academic Pub., Boston, 1991.
2. Nilsson N.J., A mobile automanton: an aplication of artificial intelligence tech-

niques, International Joint Conference on Artificial Intelligence, pp. 509-520, 1969.
3. Ahuja N., Ahuja Y.K., Gross Motion Planning, ACM Computing Surveys, 24, N.3,

pp. 219-291, Sep. 1992.
4. Zalama E., Arquitectura Neuronal no supervisada para el control de un robot móvil

en entornos no estacionarios, Universidad de Valladolid, España 1995.
5. Xiao J., Michalewicz Z., Adaptive Evolutionary Planner/Navigator for Mobile

Robots, IEEE Transactions on Evolutionary Computation, vol. 1(1), pp.18-28, 1997.
6. Smierzchalski R., Michalewicz Z., Path Planning in Dynamic Enviroments, chapter

in “Innovations in Machine Intelligence and Robot Perception”, Springer-Verlag,
2004.

7. Elshamli A., Hussein A., Areibi S., Genetic Algorithm for Dynamic Path Planning,
School of Enginnering, University of Guelph, Canada, May 2004.

8. Elshamli A., Hussein A., Areibi S., Mobile Robots Path planning Optimization,
School of Enginnering, University of Guelph, Canada, 2004.

9. Borenstein J., Feng L., Measurement and Correction of Systematic Odometry
Error in Mobile Robot, IEEE Journal of Robotics and Automation, vol.12, N.6,
pp. 869-880, 1996.

10. Tonouchi Y., Tsubouchi T., Arimoto S., Fusion of Dead-Recogning Position wiht a
workspace model for a mobile robot by Bayesian Inference, Int. Conf. on Intelligent
Robots and Systems, Munich, Germany, pp. 1347-1354, Sep. 1994.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 131 – 142, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improving the Evolvability of Digital Multipliers Using
Embedded Cartesian Genetic Programming

and Product Reduction

James Alfred Walker and Julian Francis Miller

Department of Electronics, University of York, Heslington, York, YO10 5DD, UK
{jaw500, jfm}@ohm.york.ac.uk

Abstract. Embedded Cartesian Genetic Programming (ECGP) is a form of Ge-
netic Programming based on an acyclic directed graph representation. In this
paper we investigate the use of ECGP together with a technique called Product
Reduction (PR) to reduce the time required to evolve a digital multiplier. The
results are compared with Cartesian Genetic Programming (CGP) with and
without PR and show that ECGP improves evolvability and also that PR im-
proves the performance of both techniques by up to eight times on the digital
multiplier problems tested.

1 Introduction

The evolution of digital multipliers has proved to be very difficult for evolutionary
techniques (particularly when the number of bits in the multiplicands is greater than
three) [4][7][11][12][13]. Cartesian Genetic Programming (CGP) [5][6] is one tech-
nique that has been used to attack such problems. Even though CGP does not have the
equivalent of Automatically Defined Functions (ADFs) it was empirically demon-
strated to be more computationally efficient than Genetic Programming (GP) [3] with
Automatically Defined Functions (ADF’s) on the even parity and 2-bit multiplier
problems [5]. Embedded Cartesian Genetic Programming (ECGP) is a development
of CGP that allows the construction and evolution of modules that can be called from
the main CGP code and has been shown to perform better than standard CGP on a se-
ries of parity problems [14]. In this paper we apply ECGP to the multiplier problem.
We also introduce a new approach called Product Reduction (PR), which is designed
to make evolving digital multipliers easier.

The plan for the paper is as follows: Section 2 is an overview of related work. In
section 3 we describe ECGP and compare it with CGP before describing PR in
section 4. The details of our experiments are shown in section 5 followed by the re-
sults and comparisons for all three experiments in section 6. Section 7 gives conclu-
sions and some suggestions for future work.

2 Module Acquisition and Automatically Defined Functions

Module acquisition (MA) [1] adds two operators to the evolutionary process, compress
that selects a section of the genotype to make it immune to manipulation from operators

132 J.A. Walker and J.F. Miller

(the module) and expand which decompresses a module in the genotype therefore al-
lowing this section of the genotype to be manipulated once more. The fitness of a geno-
type is unaffected by these operators. MA allows the possibility of having modules
within modules. These techniques have been shown to decrease the time taken to find a
solution. Rosca's method of Adaptive Representation through Learning (ARL) [8] also
extracted program segments that were encapsulated and used to augment the GP func-
tion set. However, recently Dessi et al [2] showed that random selection of program
sub-code for re-use is more effective than other Rosca’s method across a range of prob-
lems. Once the contents of modules are themselves allowed to evolve (as in ECGP) they
become a form of ADF, however in contrast to Koza's form of ADFs [3] and Spector's
Automatically Defined Macros [9], there is no explicit specification of the number or in-
ternal structure of such modules. This freedom does exist in Spector's PushGP [10].

3 Embedded Cartesian Genetic Programming (ECGP)

3.1 Representation

ECGP and CGP share the same structure and represent a program as a directed graph
(that for feed-forward functions is acyclic). The genotype is a list of integers that en-
code the connections and functions of each node of the directed graph. CGP used a
program topology defined by a rectangular grid of nodes with a user defined number
of rows and columns. However, later work in CGP always chose the number of rows
to be one, thus giving a one-dimensional topology. This is always used in ECGP. In
CGP, the genotype is a fixed length representation (in terms of genes) in which the
number of nodes in the program (phenotype) can vary but is bounded. In ECGP the
genotype is a variable length representation (in terms of genes and nodes) in which
the number of nodes and genes in the graph is bounded. The variable number of nodes
in the ECGP genotype is the result of the compression and expansion of modules and
the variable number of genes (which allows each node to have a variable number of
inputs) is a result of the re-use of modules and some of the module mutation opera-
tors, which can change the number of inputs of a node. In Fig. 1 an example of the
differences between a CGP and an ECGP genotype are shown. Despite these differ-
ences, both CGP and ECGP are initialized with a CGP style genotype. This means
that all of the initial genotypes in the population have the same number of nodes and
genes and every node represents a primitive function (i.e. no modules are present).
Each of the nodes consists of two parts: a node header and a node body. The node
header encodes the primitive function or module (by their unique identifier) that the
node represents and the type of the node (type I or type II) if the node represents a
module (the concept of module type is explained in section 3.4). The node body en-
codes the inputs of the node. Each input is encoded by two integers: one represents
the index of the node or program input (terminal) in the genotype and the other repre-
sents the output of the node (note nodes can have multiple outputs) – see Fig. 2. The
number of inputs and outputs that a node has is dictated by the arity of its function.

The nodes take their inputs in a feed forward manner from either the output of a
previous node or from a program inputs (terminals). The program inputs are

 Improving the Evolvability of Digital Multipliers Using ECGP and PR 137

connections between the inputs of the nodes that are going to be encapsulated into
a module and the outputs of any previous nodes or program inputs (terminals) in
the genotype when the module is created. Likewise, the number of module out-
puts possessed by a module is determined by the number of connections between
the inputs of the latter nodes in the genotype and the outputs of the nodes that are
going to be encapsulated in the module, when it is created. Any module created
by the compress operator is represented in the genotype of an individual as a type
I node. The node header (i.e. the primitive function or module that the node
represents) in any type I node is immune from the genotype point mutation opera-
tor therefore allowing the type I node to remain in the genotype of an individual
until it is removed by the expand operator (see Table 1).

Table 1. Nodes types and their properties

Node
Type

Action of
Compress

Action of
Expand

Action of Genotype Point Mutation

I Creation Destruction Change node inputs
II Immune Immune Creation or destruction or change node inputs

The expand operator destroys a type I node by replacing it in the genotype of an
individual with the nodes contained in the module that the type I node represented.
The inputs of all of the latter nodes in the genotype of the individual are updated in
the final stage of both the compress and expand operators so that all the connections
remain intact. The reasons for this is that, the compress and expand operators only
make a structural change to the genotype of an individual and have no affect on geno-
type fitness, as the genotypes before and after the action of these operators represent
the same directed graph. The expand operator has twice the probability of being ap-
plied to the genotype than the compress operator. We found that this introduces a
pressure for good modules to replicate quickly in the genotype of an individual in or-
der to survive. This can be seen as survival-of-the-fittest modules within the genotype
itself.

Modules can replicate within the genotype of an individual through the action of
the genotype point mutation operator. This is identical to that used in CGP with the
exception that it can mutate the function of a node to any of the primitive functions or
any available modules in the module list. If a node is mutated to represent a module it
is classed as a type II node and is treated like a standard node. This means the geno-
type point mutation operator can also mutate the function of a type II node to any of
the pre-defined functions or any available modules in the module list. It can also mu-
tate any of the inputs of the type II node in the same way it would mutate the inputs of
a standard node. If the function of a standard node or type II node is mutated, the new
node keeps however many of the original nodes inputs it needs and randomly gener-
ates any extra inputs it may require. Type II nodes are also immune from the expand
operator as this could cause excessive growth of the genotype that could possibly lead
to bloat.

138 J.A. Walker and J.F. Miller

To summarize the properties of node types I and II are shown in Table 1. The main
reasons for the two types of module is to try and reduce the excessive growth of the
genotype and to also help induce a selection pressure on the modules so that they
have to replicate in the genotype (i.e. make the transition from being represented by
type I to type II nodes) and be associated with a high fitness genotype in order to sur-
vive. Once the module is represented by a type II node it is harder for the module to
be removed from the module list, as it has a lower probability that it will be removed
from the genotype (i.e. it cannot be expanded). This is both advantageous as it allows
good modules to stay in the module list but is also disadvantageous as it could possi-
bly allow the evolution of the genotype to progress a lot slower.

The module genotypes contained in the module list can also be evolved through the
action of five different operators: module point mutation, add-input, add-output, re-
move-input and remove-output. The module point mutation operator is a restricted
version of the CGP genotype point mutation operator, as it can still mutate the inputs
and function of any node contained in the module genotype but it is not allowed to in-
troduce any type II nodes into the module genotype. It can also mutate which node
output each of the module outputs are connected to.

The add-input and add-output operators allow greater connectivity to and from
the contents of a module by increasing the number of module inputs or module out-
puts by one respectively each time either operator is applied, making a more gener-
alized module. When the add-input operator is applied to a module, the gene repre-
senting the number of module inputs in the module header part of the module
genotype is incremented by one and an extra gene is inserted into all nodes (type I
and type II) representing the module in the genotype of the individual, as a ran-
domly chosen value for the new module input. Likewise, when the add-output op-
erator is applied to a module, the gene representing the number of module outputs
in the module header part of the module genotype is incremented by one and two
extra genes are added to the module output section of the module genotype, as ran-
domly chosen values for the node index and node output that the new module out-
put is connected to.

Alternatively, the remove-input and remove-output operators reduce the connec-
tivity to and from the contents of a module, by decreasing the number of module in-
puts or module outputs by one respectively each time either operator is applied, there-
fore making a more specialized module. When the remove-output operator is applied
to a module, the gene representing the number of module inputs in the module header
part of the module genotype is decremented by one and the gene corresponding to the
module input randomly chosen is removed from all nodes (type I and type II) repre-
senting the module in the genotype of an individual. Likewise, when the remove-
output operator is applied to a module, the gene representing the number of module
outputs in the module header part of the module genotype is decremented by one and
the two genes corresponding to the randomly chosen module output are removed from
the module output section of the module genotype. All of the operators: add-input,
add-output, remove-input, and remove-output must comply with the restrictions on

 Improving the Evolvability of Digital Multipliers Using ECGP and PR 139

the number of module inputs and module outputs at all times. Further information
about all of the module operators (including figures explaining their operation) is
available in our previous work [14].

4 Product Reduction (PR)

In digital multipliers we require n2 AND gates to compute the product bits. Product
reduction (PR) assumes that these have already been provided. It uses the outputs of
these gates as inputs to the remaining circuit (which is evolved). PR transforms the
standard truth table of 22n rows to an input-output table having 22n – 2(2n) – 2 rows.
The width of the PR table is increased from the 2n inputs found in the standard truth
table to n2 inputs because n2 AND Boolean functions are required to produce the
product of every combination of bits. The length of the PR table however is reduced
because the PR table contains multiple row entries all containing zeros due to multi-
plication by 0, which can be reduced to a single row.

5 Experiment Details

The performance of CGP and ECGP both with and without PR was tested on the digi-
tal multiplier problem (2x2 and 3x3 bit). The fitness is defined as the number of
phenotype output bits that differ from the perfect n-bit digital multiplier. A perfect
solution has score zero.

The parameter settings used for CGP and ECGP in all of the experiments are
shown in Table 2. The probability values chosen for the ECGP operators were found
to be optimal by a trial and error process in previous ECGP experiments.

Table 2. Parameter settings used for CGP and ECGP in all of the experiments. The operator
rate is expressed as a percentage of the genotype length. Both the operator rates and probabili-
ties are per generation. 50 independent runs used.

Parameter Value
Population size 5

Initial genotype size 200 nodes (600 genes)
Function set {AND, AND with one input inverted,

OR, XOR}
Genotype point mutation rate 3% (18 Genes)

Genotype point mutation probability 1
Compress/Expand probability 0.1/0.2

Module point mutation probability 0.04
Add/Remove input probability 0.01/0.02

Add/Remove output probability 0.01/0.02
Maximum module size (ECGP only) 5 or 10 nodes
Module list initial state (ECGP only) Empty

140 J.A. Walker and J.F. Miller

6 Results

For all experiments, the Computational Effort (CE) was calculated using the formula
found in Fig. 6 [3] with z=99% and are shown in Table 3. They are only relevant
when comparing CGP and ECGP with the same number of nodes in their genotypes
and the same rate for the genotype point mutation operator because CE figures for
CGP and ECGP vary significantly depending on these values, therefore potentially
causing an unfair comparison. We have only compared the CE figures of ECGP with
CGP because no other researchers have provided CE figures for their GP techniques
on these problems.

P(M ,i) = N s(i)

N total

, R(z) = ceil
log(1− z)

log(1− P(M ,i))

, I (M ,i,z) = MR(z)(i +1)

Fig. 6. The Computational Effort (CE) formula from [3] where i represents the generation num-
ber, Ns(i) represents the number of successful runs by generation i, Ntotal represents the total num-
ber of runs and M represents the number of individuals in the population. P(M,i) represents the
cumulative probability of success, R(z) represents the number of independent runs required to give
a probability of success z by generation i and I(M,i,z) represents the minimum number of indi-
viduals which must be processed to give a probability of success z by generation i.

Table 3. The CE figures for CGP and ECGP for the digital multiplier problems with and with-
out product reduction. The maximum module size is shown in brackets.

 2-Bit Multiplier 3-Bit Multiplier
CGP 37,600 18,509,600

CGP with PR 5,600 2,498,800
ECGP (5) 46,000 8,400,400

ECGP with PR (5) 6,000 1,560,400
ECGP (10) 61,600 2,795,200

ECGP with PR (10) 7,600 688,800
CGP-PR Speedup 6.7 7.4

ECGP-PR (5) Speedup 7.7 5.4
ECGP-PR (10) Speedup 8.1 4.1

For both of the digital multipliers tested over all fifty runs, both CGP and ECGP
with and without PR produced 100% successful solutions. The results from both mul-
tipliers clearly show that CGP with PR performs between 6.7 and 7.4 times faster than
CGP without PR and that ECGP with PR performs between 7.7 and 5.4 (with a
maximum module size of five) or 8.1 and 4.1 (with a maximum module size of ten)
times faster than ECGP without PR depending on the chosen maximum module size.
We note that, rather unexpectedly, the speedup with CGP increases with problem dif-
ficulty, while the opposite is true with ECGP where the speedup decreases. We think
this is because most of the time taken by CGP without PR to find a solution is used

 Improving the Evolvability of Digital Multipliers Using ECGP and PR 141

organizing the AND Boolean functions in the 1-bit multiplication section of the cir-
cuit. However, ECGP without PR finds the 2x1-bit Multiplier module and re-uses it to
quickly find and organize the 1-bit multiplication section. Therefore by eliminating
the 1-bit multiplication section from the search space by using PR, saves CGP more
time than ECGP as the problem scales in difficulty.

Comparing the results of CGP and ECGP (both with and without PR) on the indi-
vidual problems shows that CGP performs quicker than ECGP on the 2-bit multiplier
problem. This could be because the exploration of code in the modules hinders the
performance of ECGP on small problems, as the results show that by reducing the
maximum module size makes the performance of ECGP closer to that of CGP. How-
ever, ECGP does perform substantially better than CGP on the harder 3-bit multiplier
problem, suggesting that ECGP may perform better on even larger, more complex
problems. This speedup could be because ECGP is building and re-using modules
containing useful partial solutions out of the primitive functions such as the 1-bit half
adder and the 1-bit full adder. The results also show that for harder problems, ECGP
performs better with a larger maximum module size (doubling the maximum module
size, halved the computational effort for the 3-bit multiplier). This could be because
the more nodes a module has the easier it is to find partial solutions. This is an inter-
esting concept and will be investigated further in future work.

All of the experiments were run on a single processor desktop PC with 512MB of
memory. The time taken to complete 50 runs of each problem varied between a few
minutes to a few hours depending on problem difficulty and whether PR was used.
ECGP only took fractionally longer to complete one thousand generations on any
problem than CGP showing that the computational time required for the overhead of
module acquisition is quite small and the computational time taken for fitness evalua-
tion (both CGP and ECGP) is by far the dominant factor.

7 Conclusion

We have presented for the first time the application of PR with CGP and ECGP on the
difficult digital multiplier problem. PR is shown to significantly speedup the perform-
ance of CGP and ECGP when compared with CGP and ECGP without PR on both
multipliers tested. However, CGP was shown to perform better than ECGP on the
simpler 2-bit multiplier problem but ECGP performed better on the harder 3-bit mul-
tiplier problem indicating that ECGP may perform substantially better than CGP on
even larger problems. This is a promising result for ECGP as the results presented in
this paper follow a very similar trend to those found in our previous work [14].

It was also found that the maximum module size chosen for ECGP can drastically
affect performance and will be investigated further in future investigations. Currently
ECGP does not allow modules within modules. However, we do have a working ver-
sion of ECGP that allows embedded sub-modules but we are currently investigating
the problem of bloat within the embedded sub-modules found in the inactive areas of
the module genotype. When a solution is found, we intend to allow embedded sub-
modules in future work as this could lead to an even greater boost in performance.

142 J.A. Walker and J.F. Miller

References

[1] Angeline, P. J. Pollack, J. (1993) Evolutionary Module Acquisition, Proceedings of the
2nd Annual Conference on Evolutionary Programming, pp. 154-163, MIT Press, Cam-
bridge.

[2] Dessi, A. Giani, A. Starita, A. (1999) An Analysis of Automatic Subroutine Discovery in
Genetic Programming, GECCO 1999: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 996-1001, Morgan-Kaufmann, San Francisco.

[3] Koza, J. R. (1992, 1994) Genetic Programming I and II. MIT Press, London.
[4] Miller, J. F., Thomson, P., and Fogarty T. C. (1997) Designing Electronic Circuits Using

Evolutionary Algorithms. Arithmetic Circuits: A Case Study, Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science: Recent Advancements and
Industrial Applications. Editors: D. Quagliarella, J. Periaux, C. Poloni and G. Winter,
Wiley.

[5] Miller, J. F. (1999) An Empirical Study of the Efficiency of Learning Boolean Functions
using a Cartesian Genetic Programming Approach, GECCO 1999: Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando, Florida, pp 1135-1142,
Morgan Kaufmann, San Francisco.

[6] Miller, J. F. and Thomson, P. (2000) Cartesian Genetic Programming, Proceedings of the
3rd European Conference on Genetic Programming, Edinburgh, Lecture Notes in Com-
puter Science, Vol. 1802, pp 121-132, Springer-Verlag, Berlin.

[7] Miller, J. F., Job D., and Vassilev, V. K (2000) Principles in the Evolutionary Design of
Digital Circuits – Part I, Genetic Programming and Evolvable Machines, Vol. 1, pp. 8-35.

[8] Rosca, J. P. (1995) Genetic Programming Exploratory Power and the Discovery of Func-
tions, Proceedings of the 4th Annual Conference of Evolutionary Programming, San
Diego, pp 719-736, MIT Press, Cambridge.

[9] Spector, L. (1996) Simultaneous Evolution of Programs and their Control Structures, Ad-
vances in Genetic Programming II, pp. 137-154, MIT Press, Cambridge.

[10] Spector, L. (2001) Autoconstructive Evolution: Push, PushGP, and Pushpop, Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO-2001, pp. 137-146.
San Francisco, CA: Morgan Kaufmann Publishers

[11] Torresen, J. (2003) Evolving Multiplier Circuits by Training Set and Training Vector Par-
titioning, Proceedings of the 5th International Conference on Evolvable Hardware,
ICES03, Lecture Notes in Computer Science, Vol. 2606, pp. 228-237, Springer-Verlag,
Berlin.

[12] Torresen, J. (2004) Exploring Knowledge Schemes for Efficient Evolution of Hardware,
Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware (EH-2004), pp.
209-216, IEEE Comp. Society Press.

[13] Vassilev, V. K. and Miller J. F. (2000) Scalability Problems of Digital Circuit Evolution,
Proceedings of the 2nd NASA/DOD Workshop on Evolvable Hardware, pp. 55-64, IEEE
Comp. Society Press.

[14] Walker, J. A. Miller, J. F. (2004) Evolution and Acquisition of Modules in Cartesian Ge-
netic Programming, Proceedings of the 7th European Conference on Genetic Program-
ming, Lecture Notes in Computer Science, Vol. 3003, pp 187-197, Springer-Verlag,
Berlin.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 143 – 154, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Benefits of Employing an Implicit Context
Representation on Hardware Geometry of CGP

Xinye Cai, Stephen L. Smith, and Andy M. Tyrrell

Department of Electronics, The University of York, Heslington, York YO10 5DD, UK
{sls5, amt}@ohm.york.ac.uk

Abstract. Cartesian Genetic Programming (CGP) has successfully been applied
to the evolution of simple image processing filters and implemented in intrinsic
evolvable hardware by the authors. However, conventional CGP exhibits the un-
desirable characteristic of positional dependence in which the specific location of
genes within the chromosome has a direct or indirect influence on the phenotype.
An implicit context representation of CGP (IRCGP) has been implemented by the
authors which is positionally independent and outperforms conventional CGP in
this application. This paper describes the additional benefits of IRCGP when con-
sidering alternative geometries for the hardware components. Results presented
show that smaller hardware arrays under IRCGP are more robust and outperform
equivalent arrays implemented in conventional CGP.

1 Introduction

A form of genetic programming (GP) [1] termed Cartesian Genetic Programming
(CGP) [8,9] has been successfully adapted for the evolution of simple image process-
ing filters [11,12] and subsequently implemented in hardware [14,15]. A criticism of
CGP (and GP in general) is that the location of genes within the chromosome has a
direct or indirect influence on the resulting phenotype [6]. In other words, the order
in which specific information regarding the definition of the GP is stored has a direct
or indirect effect on the operation, performance and characteristics of the resulting
program. Such effects are considered undesirable as they may mask or modify the
role of the specific genes in the generation of the phenotype (or resulting program).
Consequently, GPs are often referred to as possessing a direct or indirect context
representation.

An alternative representation for GPs in which genes do not express positional de-
pendence has been proposed by Lones and Tyrrell [3-7]. Termed implicit context
representation, the order in which genes are used to describe the phenotype (or result-
ing program) is determined after their self-organised binding, based on their own
characteristics and not their specific location within the genotype. The result is an
implicit context representation version of traditional parse-tree based GP termed En-
zyme Genetic Programming. The authors have since implemented an implicit context
representation of CGP, termed Implicit Context Representation Cartesian Genetic
Programming (IRCGP), specifically for the evolution of image processing filters [13].

144 X. Cai, S.L. Smith, and A.M. Tyrrell

This paper reports the additional benefits of IRCGP when considering alternative
geometries for the constituent hardware components. Specifically, the performance
of IRCGP and conventional CGP are compared over a range of hardware component
configurations.

Section 2 of the paper gives a brief introduction to the use of conventional CGP for
evolving image processing filters. Section 3 describes the implementation of implicit
context representation of CGP (IRCGP). Section 4 presents results obtained from
both conventional and implicit context representation CGP for a range of different
hardware configurations. Conclusions are presented in Section 5.

2 Cartesian Genetic Programming for Evolving Image Processing
Filters

Cartesian Genetic Programming (CGP) was first proposed by Miller [8,9] as an alter-
native representation for genetic programming which does not require the use of a
parse-tree based programming language and does not exhibit uncontrolled expansion
commonly termed bloat [2]. As opposed to the rigid tree structure representation of
traditional GP, CGP permits the arrangement of functions in a far more flexible, typi-
cally rectangular format, referenced by conventional Cartesian co-ordinates.

An extension of CGP for evolving image processing filters was proposed by
Sekanina [11-12] and subsequently implemented in hardware by Zang et al. [14,15] as
shown in Figure 1.

Fig. 1. Extended Cartesian Genetic Programming for evolution of image processing filters

A number of processing elements (PEs) are arranged in a rectangular format, each
connected to a data bus. The inputs I0 to I8 are the pixel values obtained from a con-
ventional 3 x 3 neighborhood image filter; these are manipulated by the PEs and the
output replaces the pixel of interest in the processed image. The structure of the PE,
shown in Figure 2, comprises two multiplexers and a functional block. The multi-

 Benefits of Employing an Implicit Context Representation 145

plexers can be configured, according to the values of cfg1 and cfg2 respectively, to
select the output of another PE or image pixel input I0 to I8, as long as it is connected
to the same data bus. In the specific hardware representation considered here, this
requires that the PE or input be located in the two columns immediately preceding the
PE containing the multiplexer in question. The outputs of the two multiplexers are
then provided as inputs to the functional block; the function applied to them is deter-
mined by cfg3 and selected from the available functions listed in Table 1.

Fig. 2. Architecture of the processing element

Table 1. Functions available for configuration of the processing element’s functional block

Code Function Code Function
F0: X >> 1 F8: (3) (X+Y+1) >> 1
F1: X >> 2 F9: X & 0x0F
F2: ~ X F10: X & 0xF0
F3: X & Y F11: X | 0x0F
F4: X | Y F12: X | 0x F0
F5: (1) X ^ Y F13: (4) (X&0x0F) | (Y&0xF0)
F6: X + Y F14: (X&0x0F) ^ (Y&0xF0)
F7: (2) (X+Y) >> 1 F15: (X&0x0F) & (Y&0xF0)

7 4 3 4 0 3 6 1 3 8 5 3 2 11 3 2 1 3 0 4 3 12 3 3 10 9 1 12 16 3 9
13 1 14 11 3 17 18 3 19 20 3 20 20 3 15 20 3 17 19 4 24 19 2 19 24 4
21 22 3 22 26 4 27 22 3 28 21 1 25 23 3 28

Fig. 3. Example chromosome for configuration of the extended CGP

The PEs within the architecture are configure by means of a chromosome, an ex-
ample of which is given in Figure 3.

The chromosome consists of a string of integer values, arranged logically in groups
of three, providing values for cfg1 (multiplex 1 input), cfg2 (multiplex 2 input) and
cfg3 (functional block function index), respectively, for each PE in the representation.

& bitwise AND function
| bitwise OR function
^ bitwise XOR function
~ bitwise inverter or NOT function
>> bitwise right shift
X, Y inputs to functional block

146 X. Cai, S.L. Smith, and A.M. Tyrrell

A number of these chromosomes form the individuals of a population which are
initialised with random values. Each chromosome is then used to configure the hard-
ware representation which, in turn, is used to process a test image. The image result-
ing from this operation is compared with an ideal (uncorrupted image), and a fitness
score derived, which is then associated with the respective individual’s chromosome.
After all the individuals in the population have been evaluated in this manner, the
fittest is retained and used as the parent for a subsequent generation of individuals.
These new individuals are generated by simply mutating the parent in a non-
deterministic manner.

Yang et al demonstrated that the image filters evolved in this way out performed
conventional median and Gaussian image filters [14,15].

3 Implict Context Representation

3.1 Overview

As described in Section 1, CGP can be described as an indirect context representa-
tion; the position a particular gene occupies in the chromosome has an influence on
the resulting phenotype, or in the case of extended CGP considered in Section 2, the
configuration of the hardware representation.

The effect or meaning of a component in the evolved or resulting program is de-
termined by its absolute or relative position in the program representation. The man-
ner in which components are referenced in CGP is considered arbitrary as there is no
correlation between a component’s absolute coordinates and its behaviour. Therefore
it can be argued that indirect context representation has no effect beyond describing
the connectivity of a specific program. This is also the case when considering the
behaviour of components in different programs. Components with the same function-
ality may have different coordinates and those with different functionality the same
coordinates. Hence, any form of recombination, such as crossover is unlikely to be
constructive in the evolutionary process and could explain why this has not been
found to be useful in CGP [4].

A lack of positional independence also has an important effect on the relationship
between genes that in combination effect good performance. Recombination will not
preserve the relationship of these genes, commonly referred to as building blocks,
when conventional forms of crossover are employed. Various attempts have been
adopted to minimise the destructive effect that such positional dependence in the
representation by preserving building blocks that describe the beneficial relationship
between particular genes. In GAs this is termed linkage learning, and has been im-
plemented by limiting the destructive effect of crossover operations limiting by using
special crossover templates [10]. However, this does not overcome the underlying
problem which is associated with the program representation. A further concern with
an indirect context representation such as CGP is that when a component’s input ref-
erences are mutated, the resulting arrangement of components is in no way represents
the degree of mutation applied and hence, cannot be varied in a gradual manner.

Therefore, ideally, the evolution of a system should be independent of the position
of genes within the chromosome, but should still be a result of the values of those

 Benefits of Employing an Implicit Context Representation 147

genes. This is termed an implicit context representation by Lones and Tyrrell [3],
who have developed a form the conventional parse-tree type GP that exploits this
representation, called Enzyme Genetic Programming (EGP). The biological inspira-
tion for Enzyme GP is the metabolic pathway, and the role of enzymes which express
computational characteristics. This is not dissimilar to the logic network employed in
this work to evolve the image filters described in Section 2 [6].

Implicit context representation employs an enzyme model comprising a shape, ac-
tivity and specificities (or binding sites) [5], as shown in Figure 4. Along with inputs
and outputs, the enzyme model can be considered a program component from which a
genetic program may be constructed. The shape describes how the enzyme is seen by
other program components. Similarly, the binding sites determine the shape (and
hence type) of program component the enzyme wishes to bind to. Finally, the activity
determines the logical function the enzyme is to perform. A typical EGP will com-
prise a set number of inputs and outputs and a number of enzyme models or compo-
nents. Initial values for each component’s binding sites and logical function are as-
signed non-deterministically; the component’s shape, however, is derived from a
combination of its binding sites’ shapes and logical function which is considered in
Section 3.2.

Once initialized, components are bound together to form a network, as shown in
Figure 5. The order in which components are bound is determined by the closeness of
match between a component’s binding site shape and another component’s shape. The
best matching components are bound first and the process is repeated until a network
has formed in which no further binding is possible.

Fig. 4. Enzyme model illus-
trating shape, activity and
specificities (binding sites) [5]

Fig. 5. Calculation of a component’s shape from its binding
site shapes and logical function [6]

148 X. Cai, S.L. Smith, and A.M. Tyrrell

Over time, components may evolve through mutation. Mutation is applied to the
component’s binding sites and logical function with a pre-determined probability.
When this occurs, a new component shape is derived accordingly and may lead to
different binding between components occurring. This in turn may result in a modi-
fied network.

3.2 Implicit Context Representation CGP

The purpose of Implicit Context Representation CGP (IRCGP) is to combine the
benefits of an implicit context representation (described above in Section 3.1) with the
extended Cartesian Genetic Program for evolving image filters described in Section 2.

The processing elements within the extended CGP are particularly suited to the
implicit context representation implementation. However, instead of employing a
parse-tree arrangement, the existing CGP Cartesian arrangement is maintained. The
significant difference to conventional CGP is the manner in which components are
selected and interconnected within the representation. To achieve this, each compo-
nent is equipped with two binding sites and a shape (as shown in Figure 6), which
relate directly to the inputs and outputs of a component in the existing extended CGP
representation.

As previously described, the values for the elements in the binding site shapes are
initially assigned non-deterministically, as is the component’s function. However, the
output shape is numerically derived from the binding site shape and component func-
tion as illustrated in Figure 7.

Fig. 6. Component binding sites and shape Fig. 7. Calculation of component’s shape from
binding sites’ shape and component function

Formation of the CGP network begins with the assignment of an output component
(Figure 8a); this will ultimately provide a new value for the pixel under consideration
in the filtered image. The binding sites of the output component are then made active
and will bind to components according the closeness of match between their respec-
tive shapes (Figures 8b-8d). (Closeness of match is based on the sum of differences
between the elements of the two shapes.) Once bound, component’s binding sites will
also become active and will bind to other components in the same way. Binding be-
tween components is always undertaken on a “best-fit first” basis until no further
binding is possible.

 Benefits of Employing an Implicit Context Representation 149

Fig. 8a. Network composition begins with
non-deterministic allocation of the output
component, O1

Fig. 8b. The component whose shape
matches either of the output component’s
binding sites most closely, is chosen for
binding

Fig. 8c. Binding continues on a “best match-
first” basis

Fig. 8d. Binding is completed when no
further components can be bound

The physical hardware places constraints in the manner with which the formation
of the network takes place. Successful binding of a new component may only take
place if there is sufficient space for that component in the hardware representation.
Typically, this means that any newly bound component must be placed in one of the
two columns to the left of the existing component. Similarly, input components I0 to
I8 (holding the image pixel values) may only be bound to components one or two
columns to their right in the representation.

Once all possible binding has completed, the resulting network is applied to a test
image and, the resulting filtered image, compared with the original, uncorrupted image.
A fitness score for the individual is described by equation (1), which is identical to that
used in previous image filtering evolution by Sekanina [11,12] and Yang [14,15].

−

=

−

=

−−−−=
2

1

2

1

),(),()2).(2.(255
H

i

W

j

jifiltjiidealWHfitness

(1)

Where:
i,j are the image co-ordinates
filt(i,j) is the image resulting from the resulting filter operation
ideal(i,j) is the ideal (original uncorrupted) image
H, W is the height and width of the image respectively

150 X. Cai, S.L. Smith, and A.M. Tyrrell

For the purpose of clarity, this fitness score is presented as a percentage of the im-
age score possible, in this case, the original image.

3.2.1 Redundancy and Reuse
It can be seen from the way in which components are selected for inclusion in the
network that there is provision for both redundancy and reuse of components. The
pool of available components need not be restricted to the number required to popu-
late the network; additional components can be made available to facilitate redun-
dancy. Further, reuse of components is permitted, by allowing an output of one com-
ponent to satisfy the input of more than one other component.

3.2.2 Mutation
Two separate mutation operations are performed according to predefined probabili-
ties: (i) to the binding sites of the components and, (ii) to the index that selects the
component’s function from those available (as defined in Table 1). Once these muta-
tions have been performed, new shapes for each component are derived as described
in Section 3 and shown in Figure 7.

3.2.3 Selection Scheme
A conventional, q-tournament selection scheme is adopted; one of the advantages
being that it does not require a global fitness comparison of all individuals in the
population. From the population, a group of q individuals is randomly chosen (where
q is the tournament size). The fittest individual from the tournament group will be
selected and placed in a pool for recombination. The process is repeated until the
required number of individuals has been attained. Experimentation suggests that for
this application, a 9-tournament scheme is most likely to provide best performance for
both maximum and average fitness over 20 runs.

3.2.4 Crossover Operator
An important benefit of an implicit context representation is that recombination supports
meaningful variation filtering, i.e. the effects of inappropriate variation events are sup-
pressed, whilst promoting meaningful change, leading to fitter solutions. For the implicit
context representation of CGP described here, a conventional 2-point crossover was
used to exchange components available to the two individuals. This is simply imple-
mented as each component available to each individual is held in a sequential list.

4 Results

Results are presented for 20 runs of the implicit context representation CGP (IRCGP)
compared with the conventional extension of CGP (ECGP), for each of the hardware
component configurations shown in Table 2. The task was for the algorithms to
evolve an image processing filter that reduces noise on a version the ‘Lena’ image
corrupted with Gaussian noise (= 16), shown in Figure 10b. A list of algorithm
parameters for IRCGP is given in Table 3.

Results for the fitness score of IRCGP compared with ECGP are presented graphi-
cally in Figure 9 and listed in Table 2. These values are represented as a percentage

 Benefits of Employing an Implicit Context Representation 151

Table 2. Fitness scores for evolved image filters

Hardware Configuration (Rows x Columns)
 1

(3x3)
2

(4x3)
3

(4x4)
4

(4x5)
5

(4x6)
IRCGP Average Best Fitness
(%)

97.460 97.498 97.500 97.513 97.522

ECGP Average Best Fitness (%) 97.377 97.390 97.450 97.486 97.507
IRCGP Overall Best Fitness (%) 97.517 97.519 97.533 97.537 97.544
ECGP Overall Best Fitness (%) 97.480 97.480 97.499 97.520 97.528
Two-tailed P value 0.00163 1.16e-06 0.000271 0.002563 0.026045

97.35

97.37

97.39

97.41

97.43

97.45

97.47

97.49

97.51

97.53

97.55

1 2 3 4 5

Hardware Configuration

F
it

ne
ss

 (
%

) IRCGP ---Max Fitness
ECGP ---Max Fitness
IRCGP ---Average Fitness
ECGP ---Average Fitness

Fig. 9. Results for Implicit Context Representation CGP (IRCGP) and Conventional Extended
CGP (ECGP)

Table 3. Program parameters for IRCGP

Parameter Value
Population size 150
Number of generations 150
Number of runs 20
Function mutation rate 1.0%
Binding site mutation rate 0.6%
Number of available functions 4

Available functions

 X^Y
 (X+Y+1)>>1
 (X+Y)>>1
 (X&0x0F)|(Y&0xF0)

(increasing complexity)

152 X. Cai, S.L. Smith, and A.M. Tyrrell

Fig. 10a. Original ‘Lena’ image Fig. 10b. ‘Lena’ image corrupted with added
Gaussian noise (σ =16)

Fig. 10c. Image after applying ECGP evolved
filter

Fig. 10d. Image after applying IRCGP evolved
filter

of the best possible fitness score, in this case, the original image (Figure 10a). The
results show that IRCGP outperforms ECGP for all hardware configurations, both in
overall and average best fitness values. Examples of the resulting images for ECGP
and IRCGP are shown in Figures 10c and 10d respectively. The two-tailed P value
gives support for statistical significance. It is of particular interest that the fitness of
IRCGP for small hardware component configurations (particularly four rows and four
columns) remains close to the performance of larger configurations (such as the con-
ventional four rows and six columns).

Once evolved, the filter was also applied to another image, ‘Baboon’ (Figure 11a),
again corrupted with guassian noise in the same way as for ‘Lena’ (as shown in
Figure 11b). Results presented in Table 4 and Figures 11c and 11d, show that the
IRCGP again outperforms ECGP.

 Benefits of Employing an Implicit Context Representation 153

Table 4. Fitness scores for ‘Baboon’ image corrupted with Gaussian noise (= 16)

 ECGP(%) IRCGP (%)
Overall best fitness 93.965 94.007
Average best fitness 93.937 93.967

Fig. 11a. Original ‘Baboon’ image Fig. 11b. ‘Baboon’ image corrupted with Gaus-
sian noise

Fig. 11c. Image after applying ECGP evolved
filter

Fig. 11d. Image after applying IRCGP evolved
filter

154 X. Cai, S.L. Smith, and A.M. Tyrrell

5 Conclusion

This paper considers the benefits of an implicit context representation of CGP (IRCGP)
over a number of different hardware component configurations. The results presented
show that IRCGP outperforms conventional extended CGP (ECGP) in all hardware con-
figurations tested and also demonstrates a more consistent performance and stability.

References

1. J. Koza: Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press (1992)

2. W. Langdon: Quadratic bloat in genetic programming. In D. Whitley, D. Goldberg, and E.
Cantu-Paz, editors, Proceedings of the 2000 Genetic and Evolutionary Computation Con-
ference (2000) 451-458

3. M. A. Lones and A. M. Tyrrell: Enzyme genetic programming. Proc. 2001 Congress on
Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE
Press. Vol. 2 (2001) 1183–1190

4. M. A. Lones and A. M. Tyrrell: Crossover and Bloat in the Functionality Model of En-
zyme Genetic Programming. Proc. Congress on Evolutionary Computation 2002 (2002)
986-992

5. M. A. Lones and A. M. Tyrrell: Biomimetic Representation with Enzyme Genetic Pro-
gramming. Journal of Genetic Programming and Evolvable Machines. Vol.3 No.2 (2002)
193-217

6. M. A. Lones: Enzyme Genetic Programming. PhD Thesis, University of York, UK, (2003)
7. M. A. Lones and A. M. Tyrrell: Modelling biological evolvability: implicit context and

variation filtering in enzyme generic programming. BioSystems (2004)
8. J. Miller and P. Thomson: Cartesian genetic programming. in Third European Conf. Ge-

netic Programming, R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C.
Fogarty (eds.). Vol. 1802 Lecture Notes in Computer Science, Springer (2000)

9. J. F. Miller, D. Job, and V. K. Vasilev: Principles in the evolutionary design of digital cir-
cuits—Part I. Genetic Programming and Evolvable Machines, Vol. 1 (2000) 7–36

10. J. Schaffer and A. Morishima: An adaptive crossover distribution mechanism for genetic
algorithms”. Proceedings of the Second International Conference on Genetic Algorithms
and their Applications, 1987.

11. L. Sekanina, V. Drabek: Automatic Design of Image Operators Using Evolvable Hardware.
Fifth IEEE Design and Diagnostic of Electronic Circuits and Systems (2002) 132-139

12. L. Sekanina. Image Filter Design with Evolvable Hardware. Applications of Evolutionary
Computing – Proceedings of the 4th Workshop on Evolutionary Computation in Image
Analysis and Signal Processing (EvoIASP’02), Lecture Notes in Computer Science. Vol.
2279 Springer-Verlag, Berlin (2002) 255-266

13. S.L. Smith, S. Leggett and A.M. Tyrrell: An Implicit Context Representation for Evolving
Image Processing Filters– Proceedings of the 7th Workshop on Evolutionary Computation
in Image Analysis and Signal Processing (EvoIASP’05), Lecture Notes in Computer Sci-
ence. Vol. 3449. Springer-Verlag, Berlin (2005) 407-416

14. Z. Yang, S.L. Smith and A.M. Tyrrell: Intrinsic Evolvable Hardware in Digital Filter Design.
Lecture Notes in Computer Science. Vol.3005 Springer-Verlag, Berlin (2004) 389-398

15. Z. Yang, S.L. Smith and A.M. Tyrrell: Digital Circuit Design using Intrinsic Evolvable Hard-
ware. Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, Seattle (2004)

Evolution in Materio: Investigating the Stability

of Robot Controllers Evolved in Liquid Crystal

Simon Harding and Julian F. Miller

Department of Electronics, University of York, York, UK
{slh, jfm}@evolutioninmaterio.com
http://www.evolutioninmaterio.com

Abstract. In our previous work, we have demonstrated that evolution
can be used to program liquid crystal to act as a signal processing device.
In this work we discuss the stability and reconfigurability of a real time
robot controller evolved in liquid crystal. We envisage these issues will
be important when programming or evolving in other physical systems.

1 Introduction

Allowing computer controlled evolution (CCE) to manipulate novel physical me-
dia can allow much greater scope for the discovery of unconventional solutions.
Last year the authors demonstrated, for the first time, that CCE could manip-
ulate liquid crystal to perform signal processing tasks (i.e frequency discrimina-
tion, robot control). In [4] Harding and Miller showed that liquid crystal could
be used as a medium for evolution. They were able to rapidly evolve simple
transistor like behaviour and in [3] they demonstrated that it was relatively easy
to evolve a liquid crystal to discriminate between pairs of dissimilar frequen-
cies. The task was first considered by Adrian Thompson (using an FPGA) [10].
Recently we have investigated other tasks including robot control.

Here we examine some practical issues relating to evolving devices in liquid
crystal. In particular we look at these issues in the case of evolving a real time
robot controller for obstacle avoidance. We found that solutions were relatively
unstable, and were greatly influenced by previous configurations. In this paper
we investigate this phenomenon in detail.

1.1 The Field Programmable Matter Array

In [8] a device that the authors referred to as a Field Programmable Matter Ar-
ray(FPMA) was described. A FPMA is a device that can be used to manipulate
a material under computer control by applying voltages that induce physical
changes within a substance, and that these changes may interact in unexpected
ways that may be exploitable under evolution.

Different candidate materials were cited for possible use as the evolvable sub-
strate in the FPMA. They all share several characteristics : the material should
be configurable by an applied voltage/current, the material should affect an in-
cident signal (e.g. optical and electronic) and should be able to be reset back to

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 155–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 S. Harding and J.F. Miller

its original state. Examples of these include electroactive polymers, voltage con-
trolled colloids, bacterial consortia, liquid crystal, and nanoparticle suspensions.
In previous work we have demonstrated that liquid crystal is indeed a suitable
material to form the basis of the FPMA.

Liquid crystal (LC) is commonly defined as a substance that can exist in a
mesomorphic state [1,7]. Mesomorphic states have a degree of molecular order
that lies between that of a solid crystal (long-range positional and orientational)
and a liquid, gas or amorphous solid (no long-range order). In LC there is long-
range orientational order but no long-range positional order.

2 The Liquid Crystal Evolvable Motherboard

The Liquid Crystal Evolvable Motherboard (LCEM) is circuit that uses four
cross-switch matrix devices to dynamically configure circuits that connect to
the liquid crystal. The switches are used to wire the 64 connections on the LCD
to one of 8 external connections. The external connections are: input voltages,
grounding, signals and connections to measurement devices. Each of the external
connectors can be wired to any of the connections to the LCD.

The external connections of the LCEM are connected a PC’s analogue inputs
and outputs. Connections can be assigned for the input signals, measurement,
and for fixed voltages (plus a ground connection). The value of the fixed volt-
ages is determined by a genetic algorithm[6], but is constant throughout each
evaluation.

In the experiments presented here, the liquid crystal glass sandwich was
removed from the display controller it was originally mounted on, and placed
on the LCEM. The display is a passive monochromatic matrix LCD with a
resolution for 180 by 120 pixels. Unfortunately neither the internal structure
nor the electrical characteristics of the LCD are known. The display has a large
number of connections (in excess of 200), and is roughly positioned over the pads
on the PCB, with many of the PCB pads touching more than 1 of the connectors

�
V

T

Vin

Vout

Analogue In

PC

Analogue Output
Confi guration

Liquid Crystal

Measure

Fitness

Generate

test signal

Fig. 1. Equipment configuration

Evolution in Materio 157

Fig. 2. The LCEM

Liquid Crystal Display

8x16 Analog Switch Array

8 External Connectors

LCD contacts,

32 per side

- 64 in total.

Fig. 3. Schematic of LCEM

on the LCD. This means that we are applying configuration voltages to several
areas of LC at the same time.

It is important to note that other than the control circuitry for the switch
arrays there are no other active components on the motherboard - only analogue
switches, smoothing capacitors, resistors and the LCD are present.

3 A Liquid Crystal Robot Controller

In these experiments we used a simulated robot that has two sensors (mounted
with 30 degrees of separation) and two wheels for mobility. The simulated sensor
readings are converted into signals fed to the evolvable motherboard. Signals read
from the evolvable motherboard are then used to control the behaviour of the
simulated robot. The intention being that the signal processing, and majority of
the robot control should be performed in the liquid crystal. Two sonar distances
sensors and two motors can be considered to be ”directly” connected to the
evolvable motherboard, and then routed to the liquid crystal.

We defined each distance sensor to output a square wave with a frequency
proportional to the distance in a straight line from the sensor to an obstacle. For
near objects the output was 1Hz, for far objects the output frequency is 5000Hz.
No artificial noise is added to the distance measured, however the mechanism
by which the waves are generated by the computer will add noise and timing
problems. There is also an expected 50ms delay between a distance reading and
a change in frequency.

Two connections from the LCEM are used as inputs to the two motor con-
trollers. The two motors are mounted either side of the simulated robot, and
allow for the robot to be steered. If the voltage is high (i.e. above 0.3V) a motor
is switched fully on, when low the motor is set to a slow speed. If both inputs
are high the robot drives forward, with both inputs off the robot is stationery. If

158 S. Harding and J.F. Miller

only one motor is enabled, the robot turns. The threshold voltage for enabling
a motor was chosen arbitrarily. The robot has a small turning circle, and does
not pivot on the switched off wheel.

3.1 The Genetic Algorithm

The genetic representation for each individual is made of two parts. The first part
specifies the connectivity; the second part determines the configuration voltages
applied to the the LCD. Each of the 64 connectors on the LCD can be connected
to one of the eight external connectors or left to float (see Figure 3). Each of
the connectors is represented by a number from 0 to 7 and no connection is
represented by 8. Hence the genotype for connectivity is a string of 64 integers
in the range 0 to 8. The remainder of the genotype specifies the voltages applied
to the pins on the external connector that are not used for signal injection /
monitoring. One of the external connectors is always connected to ground. Two
are reserved for the incident signals (distance readings) and two connections for
motor control. The remaining three connectors have static voltages applied to
them that are determined by evolution. All these connectors can be routed to
various places in the liquid crystal display according to the connection scheme
decided by evolution. Each voltage is represented as a 16-bit integer, the 65536
possible values map to the voltage levels output from -10V to +10V. The second
section of the genotype is therefore represented as a string of three 16bit integers.

In all the following experiments, a population of 40 individuals was used. The
mutation rate was set to 5 mutations per individual. Elitism was used, with 5
individuals selected from the population going through to the next generation.
Selection was performed using tournament selection based on a sample of 5 indi-
viduals. Evolutionary runs were limited to 200 generations. With each individual
taking approximately 60 seconds to evaluate. The fitness function rewarded con-
trollers that were able to travel around the environment without colliding with
obstacles and for exploring as much of the environment as possible.

Further details of the fitness function, genotype and related operators can be
found in [5].

3.2 Results

The fitness function rewarded perfect solutions with a score of 10000, with 0 as
the lowest possible score. Solutions that have a fitness of over 6700 represent
robots that have navigated to leave the top section of the map. Solutions below
this score fail to fully explore the map - however they may cover large areas of
the top half of the map but never escape through the gap. In our evolutionary
runs we found 36% of runs obtained a near perfect score. The average number of
generations to find a good solution is 62, with the fastest solution found within
22 generations.

Figures 4 to 9 shows sections of the ”fossil record” of the evolution of one
controller. We can see that after learning not to drive in circles, the robot learns
to move forward, and then learns to turn when it approaches a wall. After it

Evolution in Materio 159

Fig. 4. Fitness=515 Fig. 5. fitness=3819 Fig. 6. fitness=4607

Fig. 7. fitness=6772 Fig. 8. fitness=7229 Fig. 9. fitness=9796

learns to start following the wall it quickly searches the entire map, and gets the
highest fitness.

4 Investigating Solution Stability

When incident signals are applied to the liquid crystal display, we can see their
effect - some of the pixels go dark - indicating that the molecular direction has
been changed. This means that the configuration of the liquid crystal is changing
as we are applying signals. To draw an analogy with circuit design, the incident
signals would be changing component values or changing the circuit topology,
which would have an effect on the behaviour of the system. This is likely to be
detrimental to the measured performance of the circuit, and also we expect to
a liquid crystal solution. When a solution is evolved the fitness function auto-
matically measures it stability over the period of the evaluation. Changes made
by the incident signals can be considered part of the genotype to phenotype
mapping. Solutions that cannot cope with their initial configurations being al-
tered will achieve a low score. However, the fitness function cannot measure the
behaviour beyond the end of the evaluation time - however a stable solution is
still desirable.

Another issue of stability is that of the genotype to phenotype mapping.
When a configuration is applied to the liquid crystal, do the molecules go back to

160 S. Harding and J.F. Miller

exactly how they were when this configuration was tried previously? We cannot
be sure - since we cannot directly measure the properties of every molecule,
and in a highly complex system such as LC it would be unlikely to reorder in
precisely the same way. Assuming, that there is a strong correlation between
genotype and phenotype, then it is likely that evolution will cope with this extra
noise. The fact that it is possible to evolve in liquid crystal, shows that we
should expect good genotype/phenotype correlation, however as the results in
this paper indicate, this is not the case.

In [9] it is noted that the behaviour of circuits evolved intrinsically can be
influenced by previous configurations - therefore their behaviour (and hence fit-
ness) is dependent not only on the currently evaluated individuals configuration
but on those that came before. For example, in a circuit capacitors may still
hold charge from a previously tested circuit. This charge would then effect the
circuits operation, however if the circuit was tested again with no stored charge
a different behaviour would be expected and a different fitness score would be
obtained - and the fitness function would essentially be noisy. Not only does
this effect the ability to evolve circuits, but would mean that some circuits are
not valid. Without the influence of the previously evaluated circuits the cur-
rent solution may not function as expected. The behaviour does not have to
be worse when dependent on previous configurations - there is no reason why
the previous configuration cannot have a positive influence. It is expected that
such problems will have analogies in evolution in materio. The configurations
are likely to be highly sensitive to initial conditions (i.e. conditions introduced
by previous configurations), as the ability to configure a system is reliant on the
emergent properties of the material. The behaviour of emergent systems, such
as Conway’s ”Life” [2] or Wolfram’s cellular automata [11] are highly depen-
dent on the starting configuration. Small perturbations in the initial starting
arrangement can prevent solutions from becoming stable.

In these experiments, we investigate the stability of the solution, by looking
at the performance of the solution for extended periods of time and the effect of
previous configurations on the behaviour of the system.

4.1 Observing Continued Behaviour

The wall avoiding robot task often produced solutions that would take approx-
imately 30 seconds to evaluate before the robot collided with an obstacle. This
raised the issue of for how long are solutions stable? This experiment investi-
gates the performance of solutions over a period of time. If the liquid crystal was
being affected by the incident signals, and being reprogrammed, then it would
be expected that the behaviour would change. A change in behaviour would
change the fitness score measured by the fitness function. The fitness function
used for this task returns an absolute fitness value - any change in behaviour
should result in a different fitness value.

In these experiments robot controllers were evolved (as described in section 3)
and when an individual received a high fitness score we repeatedly ran the eval-
uation function and recorded the fitness for the subsequent evaluations. The

Evolution in Materio 161

Fig. 10. Graph showing degradation of fitness when individuals are reloaded and

tested, as described in section 4.1

Fig. 11. Graph showing degradation of fitness when individuals are reloaded and

tested, with intermediate individuals loaded in between, as described in section 4.2.

The number of intermediate random individuals increases on each reload.

162 S. Harding and J.F. Miller

individuals were re-evaluated 10 times - giving a total running time of approxi-
mately 5 minutes.

4.2 Drift and the Reloading of Configuration

This experiment demonstrates the affect that previous configurations have on
the behaviour of the current evaluation. The experiment is similar to that in
section 4.1, however the configuration of the liquid crystal is modified in between
evaluations. This was done by applying a number of random configurations, and
then reapplying the configuration specified in the current individual. The intent
is to disrupt the liquid crystal as much as possible, and to try and randomize
the molecular configuration. This evaluation process can be summarised as:

1. Apply individual, and test fitness.
2. If the solution is good (i.e. with fitness>6700) then continue

otherwise, goto step 1 and evaluate next individual.
3. N = 0
4. Apply N random Configurations to LC
5. Apply individual
6. Test and record fitness
7. N = N + 1
8. If N<6 repeat from step 4.

If configurations are dependent on previous configurations then the fitness
values would be expected to be affected, and as there are few solutions the
fitness would be expected to decrease. If the configurations are independent of
each other, then the fitness results should be relatively consistent throughout
the evaluation procedure.

4.3 Results

From Figure 10, it can be seen from the reduced fitness scores that most so-
lutions fail to operate over long periods of time. However, some solutions do
continue to function correctly for several evaluations. The results also show that
the behaviour can deteriorate, and then recover. From Figure 11 it is apparent
that previous configurations have a large effect on the behaviour of the system.
Applying other configurations causes the evolved behaviour to worsen in every
case. The fitness does vary through each iteration, however it never returns to
the level initially achieved.

5 Conclusions

The effects observed in these experiments may preclude this set-up from hav-
ing any real practical application. The issue of reliable genotype to phenotype
mapping and reliable behaviour from the phenotype are serious problems. How-
ever, these are preliminary results from our first attempt at direct evolution in

Evolution in Materio 163

material. With further investigation, we believe that there will be methods to
overcome these problems.

The most obvious solution is to find a more stable material. Liquid crystal was
chosen as a candidate material because of the ease at which we could manipulate
it. However there may be more suitable materials, that can be made less sensitive
to disruption caused by incident signals.

The next potential solution is to evolve stable solutions. In the experiments in
this section, solutions were stable only for a few seconds - however there was no
pressure imposed for evolution to find solutions that had any robustness. With
the robot controller, solutions had to remain stable for a much longer period -
typically 30 seconds. It is apparent when forced to produce time-robust solutions
evolution in liquid crystal is capable of doing so.

Another approach, for certain tasks, may be to find a different way to interact
with the material. At the moment the method of communication with the liquid
crystal is through different frequencies of electrical signals. This will have the
effect of continually reconfiguring the system. It is not clear if this is the most
appropriate way to present information to the system.

Liquid crystals are normally associated with displays as they can modify light
passing through them. We can assume that light does not effect the liquid crystal
and is only affected by it. If we used a camera to observe changes in light coming
through the display we could see any differences in the properties of the light and
use this as an output. Liquid crystal is also able to change the properties of sound
waves passing through it. This technique is normally used to study the structure
of the liquid. If the structure is modified using computer controlled evolution,
it should be possible to alter the effect it has on sound waves. Incident signals
could be applied using a speaker, and the output detected with a microphone.

Despite the issues of stability, the system is still evolvable. It would appear
from the experiment in section 4.2 that there is little inheritance of behaviour
from one generation to the next - as applying similar (and even the same) con-
figurations may not result in the same phenotypic behaviour. However, the evo-
lutionary algorithm still succeeds in finding solutions despite the highly noisy
search space. In future we intend to investigate this further, and determine if
there are any properties of this system that could be utilised by other evolvable
systems.

References

1. D. Demus, J Goodby, G W Gray, H W Spiess, and V Vill, editors. Handbook of
Liquid Crystals, volume 1,2A,2B,3. July 1998.

2. Martin Gardner. Mathematical games: The fantastic combinations of john conways
new solitaire game life. In Scientific American, volume 223, pages 120–123, 1970.

3. Simon Harding and Julian F. Miller. Evolution in materio: A tone discriminator
in liquid crystal. In In Proceedings of the Congress on Evolutionary Computation
2004 (CEC’2004), volume 2, pages 1800–1807, 2004.

4. Simon Harding and Julian F. Miller. Evolution in materio: Initial experiments
with liquid crystal. In Proceedings of 2004 NASA/DoD Conference on Evolvable
Hardware (EH’04), pages 298–305, 2004.

164 S. Harding and J.F. Miller

5. Simon Harding and Julian F. Miller. Evolution in materio : A real time robot
controller in liquid crystal. In To appear in the proceedings of 2005 NASA/DoD
Conference On Evolvable Hardware, 2005.

6. John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1992.

7. I. C. Khoo. Liquid Crystals: physical properties and nonlinear optical phenomena.
Wiley, 1995.

8. J. F. Miller and K. Downing. Evolution in materio: Looking beyond the silicon
box. In Proceedings of NASA/DoD Evolvable Hardware Workshop, pages 167–176,
2002.

9. Adrian Stoica, Ricardo Salem Zebulum, and Didier Keymeulen. Mixtrinsic evolu-
tion. In ICES, pages 208–217, 2000.

10. A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In
Tetsuya Higuchi, Masaya Iwata, and L. Weixin, editors, Proc. 1st Int. Conf. on
Evolvable Systems (ICES’96), volume 1259 of LNCS, pages 390–405. Springer-
Verlag, 1997.

11. Stephen Wolfram. A new kind of science. Wolfram Media Inc., Champaign, Ilinois,
US, United States, 2002.

Hardware Implementation of 3D Self-replication

André Stauffer, Daniel Mange, and Fabien Vannel

Logic Systems Laboratory, Swiss Federal Institute of Technology,
IN-Ecublens, CH-1015 Lausanne, Switzerland
{name.surname}@epfl.ch, lslwww.epfl.ch

Abstract. After a reminder of the Tom Thumb algorithm, originally
designed for the self-replication of two-dimensional (2D) loops, this pa-
per presents its application to the hardware implementation of 3D self-
replicating structures. This self-replication process is achieved by trans-
lation and transcription of a configuration information in a three-dimens-
ional data and signals cellular automaton (DSCA). The corresponding
hardware implementation takes place in the BioCube, a new 3D reconfig-
urable electronic medium with input, output and computation abilities.

1 Introduction

The main goal of this paper is to present the hardware implementation of three-
dimensional (3D) self-replicating structures endowed with universal construction
and universal computation properties. Basically designed for the self-replication
of two-dimensional (2D) loops with universal construction and universal compu-
tation, the Tom Thumb algorithm [5] is revisited here in order to deal with the
third dimension. According to this algorithm, a configuration information made
of flag data and code data is used twice during the self-replication process. First
by translation, where the information ends up trapped in the new replicated
loop, defining both its structure and its functionality. Secondly by transcription,
where the information remains mobile and moves along the loop in order to
allow further replications. By addition of only a few supplementary flags, the
Tom Thumb algorithm allows the self-replication of 3D structures provided with
universal construction and computation capabilities.

In Section 2, the 3D Tom Thumb algorithm will be described by means of a
minimal structure composed of eight cells which will grow and then self-replicate
for triggering the growth of three identical structures. This example is sufficient
for deriving the detailed architecture of a three-dimensional data and signals
cellular automaton (DSCA) [9]. The specifications of this three-dimensional,
seven-neighbor DSCA and the design of its basic cell are described in Section 3.
Section 4 presents the hardware implementation of 3D self-replicating structures
in the BioCube, our new 3D reconfigurable electronic medium for bio-inspired
systems. Section 5 will conclude by opening new avenues based on the self-
replication of 3D universal structures.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 165–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

166 A. Stauffer, D. Mange, and F. Vannel

2 The 3D Tom Thumb Algorithm

The minimal 3D structure is made up of eight cells organized as a 2×2×2 array.
In order to show the growth and the self-replication of this minimal structure,
we introduce 2D graphical representations. In Figure 1, the eight cells of the
minimal structure are organized as two levels L = 1 and L = 2 of two rows
by two columns. Each cell is able to store in its four memory positions four
configuration data. The original configuration information is a string of 16 data
moving counterclockwise by one data at each time step (t = 0, 1, 2, ...).

The graphical representation as well as the hexadecimal representation of the
data composing the configuration string are detailed in Figure 2. They are either
empty data (0), code data (from 1 to E) or flag data (from 1 to 9 in addition
to F). The code data is used to define the functionality of the structure. The
flag data is used to build the connections between the cells of the structure and
to create branches for self-replication. Furthermore, each data is given a status
and corresponds eventually to a mobile data, indefinitely moving around the
structure, or a fixed data, definitely trapped in a memory position of a cell.

At each time step, a data of the original configuration string is shifted from
right to left and simultaneously stored in the lower leftmost cell (Figure 1). Note
that the first, third, ... data of the string (i.e. each odd data) is always a flag

1 2 3 4 5 6 7 8

t = 0

L = 2

L = 1

Fig. 1. 2D representation of the minimal 3D structure (2× 2× 2 cells) with its config-

uration string at the start (t = 0)

: empty data (0)

- : don't care data (1 ... F)

C

F

: code data (1 ... E)

: flag data (1 ... 9, F)

-

-

: north connection flag (1)

: east connection flag (2)

: south connection flag (3)

: west connection flag (4)

: up connection flag (5)

: down connection flag (6)

: north branch and
 east connection flag (7)
: east branch and
 up connection flag (8)
: up branch and
 down connection flag (9)
: branch activation and
 north connection flag (F)

: mobile data

: fixed data

Fig. 2. Graphical and hexadecimal representations of the data

Hardware Implementation of 3D Self-replication 167

F , while the second, fourth, ... data (i.e. each even data) is always a code C.
According to the Tom Thumb algorithm [5], the construction of the structure,
i.e. storing the fixed data and defining the paths for mobile data, depends on
two major patterns (Figure 3).

F

C F'

F F

C C F

F'' C F'F''

C' F'F''C'' C' F'F''C''

t t +1

t t +1
(b)

(a)

Fig. 3. Memory patterns for constructing a structure. (a) Shift data. (b) Load data.

4

12

8

1

23

4

5 2

12

16

34

3

16

1

27

8 45

6 3

24

1

2

4

5

67

8

1

23

44

2

20

1

3

56

7

81

2

4

2

28

1

3

5

678 1

2

3

45

6

3

32

1

2

4

5

67

81

2

8

7

3

4

5

6

Fig. 4. Constructing the minimal structure (t = 4: north path, t = 8: east path, t = 12:

south path, t = 16: up path, t = 20: north path (L = 2) and north branch (L = 1),

t = 24: west path (L = 2) and east branch (L = 1), t = 28: south path, t = 32: down

path and structure completion).

168 A. Stauffer, D. Mange, and F. Vannel

– If the two, three or four rightmost memory positions of a cell are empty
(blank squares), the data are shifted by one position to the right (shift data).

– If the rightmost memory position is empty, the data are shifted by one po-
sition to the right (load data). In this situation, the rightmost F ′ and C′

data are trapped in the cell (fixed data), and a new connection is estab-
lished from the second leftmost position toward the northward, eastward,
southward, westward, upward or downward cell, depending on the fixed flag
information (F ′ = 1 or F, 2 or 7, 3, 4, 5 or 8, 6 or 9).

Applying the memory patterns of Figure 3 to our original configuration
string, we get two data trapped in a cell and a new connection toward another
cell of the structure every four time steps (Figure 4). At time t = 32, 32 data,
i.e. twice the contents of the original configuration, have been stored in the 32
memory positions of the final structure. 16 data are fixed data, defining both
its structure and its functionality, and the 16 remaining ones are mobile data,
composing a copy of the original configuration information. Translation (i.e. con-
struction of the structure) as well as transcription (i.e. copy of the configuration)
have been therefore achieved.

In order to self-replicate, the original structure is able to trigger the con-
struction of three copies, nothward, eastward and upward. At time t = 19, the
pattern of data initiates the construction of the northward structure. In this
pattern, the lower level upper leftmost cell is characterized by two specific flags,
i.e. a fixed flag indicating a north branch (F = 7) and the branch activation flag
(F = F). This pattern is visible in Figure 5a (third row). The new path to the
northward structure starts from the second leftmost memory position (Figure 4).
At time t = 23 and t = 47, the patterns corresponding to the third row of the
eastward and upward signals in Figure 5b and e initiate self-replication of the
structure to the east and to the top respectively. The other patterns are needed
for constructing the inner paths of the structure.

The self-replicating structure in Figure 6 is an example of a non minimal four-
column, three-rows and three-level structure. All the non minimal structures can
be realized according to this implementation which keeps the number of column
even in order to properly close the data path. These non minimal structures
involve a new flag (Figure 7) and two more construction patterns (Figure 8).

F C

F C

C'' C' F C

F C

F C

F C

F C

F C

C'' C'

F C

C'' C'

F C

(a) (b)

(c)

(d) (e) (f)

Fig. 5. Patterns of data triggering the path signals. (a) Northward. (b) Eastward. (c)

Southward. (d) Westward. (e) Upward. (f) Downward.

Hardware Implementation of 3D Self-replication 169

1 C B A

2

3

5

4

6

7

9

8

8 D E 1

9

8

6

7

5

4

2

3

7 6 5 4

A

B

D

C

E

1

3

2

1

2 3 4 5

6

78

9A

BC

D

E

1 2

3 4

5 6

7

89A

B C D

E

12

34

56

7

8

L = 3

L = 2

L = 1

Fig. 6. Example of a non minimal structure (4 × 3 × 3 cells)

: east branch and west connection flag (A)

Fig. 7. Graphical and hexadecimal representations of the additional data

C'' C'F C

(a) (b)

Fig. 8. Additional patterns of data triggering the path signals. (a) Westward. (b) East-

ward.

3 The Data and Signals Cellular Automaton (DSCA)

Data and signals cellular automata (DSCA) were originally conceived to provide
a formal framework for designing growing structures [8], [7]. Such an automaton
is made up of an array of cells, each of which is implemented as a digital system
processing both data and signals in discrete time steps. The cellular array (grid)
is n-dimensional, where n = 1, 2, 3 is used in practice.

In growing structures, the data and the signals represents two different types
of information. The data constitute the information that travels through the

170 A. Stauffer, D. Mange, and F. Vannel

grown structure. The signals constitute the information that controls the growth
of the structure.

The basic cell of our three-dimensional seven-neighbor DSCA works with the
northward (N), eastward (E), southward (S), westward (W), upward (U) and
downward (D) directed data (D) and signals (S) (Figure 9). The cell computes
its digital outputs O from its digital inputs I.

SDI3:0

DO3:0
EDI3:0
NDI3:0

WDI3:0

ENC GEN

P
A

3:
0

DIMUX

G
A

3:
0

NSO
ESO
SSO
WSO

NSI
ESI
SSI
WSI

P
B

3:
0

LDPLDP

PB3:0
PA3:0
GA3:0

DOBUF

I3:0

ENO
G

B
3:

0
UDI3:0
DDI3:0

USI
DSI

USO
DSO

Fig. 9. Basic cell of the three-dimensional seven-neighbor DSCA

This cell is designed as a digital system, resulting from the interconnection of
a data processing unit and a control unit. The processing unit handles the data.
It is made up of the following resources:

– A 6-input multiplexer DIMUX for the selection of one of the six data input
lines, NDI3 : 0, EDI3 : 0, SDI3 : 0, WDI3 : 0, UDI3 : 0, or DDI3 : 0.

– A 4-level stack interconnecting two 4-bit registers GA3:0 and GB3:0 for the
propagation of the configuration data with two 4-bit registers PA3:0 and
PB3:0 for the memorization of the configuration data.

– A buffer DOBUF to enable the data output DO3 : 0.

The control unit computes the signals. It combines three resources:

– A signal inputs SI encoder ENC.
– A 4-bit data input register I3:0 for the memorization of the selection operated

by the multiplexer DIMUX.
– A signal outputs SO generator GEN.

The operation tables of the data input multiplexer, the stack registers, the
data output buffer and the data input register are given in Appendix A. This ap-
pendix presents also the truth table of the encoder as well as the logic equations
of the generator.

Hardware Implementation of 3D Self-replication 171

4 The BioCube Hardware Implementation

The BioCube is intended as a reconfigurable 3D computing structure capable of
interacting with its environment by means of touch-sensitive elements coupled
with LED displays. Its structure is inspired from cellular organisms, who are 3D
cell arrays.

The BioCube contains 64 units, arranged as 4 layers of 4 rows by 4 columns.
Each unit, integrated inside a plastic bubble, has 6 pipe links with the neigh-
boring units. Figure 10 shows the structure of the BioCube.

Fig. 10. The BioCube 3D computing structure

Each BioCube unit is made up the following parts:

– A proximity sensor acting as an input element able to detect a finger touching
any part of the plastic bubble.

– A three color LED serving as an output element designed to illuminate the
sphere uniformly with one from 16’777’216 colors (8 bits for each basic color).

– A reconfigurable computing element implemented as an FPGA (Spartan 3
XC3S200 Xilinx FPGA) with 200’000 equivalent logic gates. Some of its
interesting features are the embedded 18x18 multipliers, the several 18Kb
Block Ram and the four digital clock managers (DCM) who give the possi-
bility to multiply the clock frequency.

172 A. Stauffer, D. Mange, and F. Vannel

– A flash memory and a CPLD. The flash memory can save up to four different
FPGA configurations. The CPLD only serves to program the FPGA with
one of these configurations.

– A 50Mhz input clock that the FPGA can multiply up to 300 Mhz with one
internal DCM .

– I/O connections with the neighboring units made as 10 wire cables in order
to limit the routing from bubble to bubble. Communications using serial
data transfers, the signals are multiplexed in each FPGA according to these
serial links.

The BioCube is placed on a table for structure robustness purpose and in
order to supply the power to its 64 units. This system is controlled by a computer.
A simple software and a specific interface allow the synchronization of the 64
units with an external clock driven by the PC. The software performs a second
task in sending new FPGA configurations to the units that can be saved in flash
memory slots. An interesting feature is the possibility to run different FPGA
configurations in each bubble. With this option, we can, for example, configure
all the internal bubbles with one application, and the external bubbles with
another one. The BioCube logic complexity amounts to a total of about 13 mio.
reconfigurable gates.

Figure 11 shows the 3D self-replication of the 2 × 2 × 2 minimal loop. For
demonstration purpose, a trigger was added in order to launch the self-replication
process. The copy of the loop in a given direction is therefore activated by
touching some specific bubbles.

Fig. 11. The 2 × 2 × 2 minimal loop and its upward 3D self-replication

Hardware Implementation of 3D Self-replication 173

5 Conclusion

Several years before the publication of the historical paper by Crick and Wat-
son [10] revealing the existence and the detailed architecture of the DNA double
helix, von Neumann was already able to point out that self-replication was a two-
mode process able to both interpret (translation mode) and copy (transcription
mode) a one-dimensional description, the configuration string. Self-replication
will allow not only to grow, but also to repair complete 3D structures. Self-
replication is now considered as a central mechanism indispensable for circuits
that will be implemented through the nascent field of nanotechnologies [1] partic-
ularly when fault-tolerant properties associated with developmental approaches
are taken into consideration.

A first field of application of the self-replication of 3D structures is quite natu-
rally the classical self-replicating automata, such as three-dimensional reversible
automata [2] or asynchronous cellular automata [6].

A second, and possibly more important field of application is Embryonics,
where artificial multicellular organisms are based on the growth of a cluster of
cells, themselves produced by cellular division and cellular differentiation [3] [4].

Other possible open avenues are in the field of autonomic computing. An
autonomic computer needs to possess many characteristics of the living being,
like the ability to healing itself for instance. This means that the autonomic
system has to know its own resources in order to reconfigure itself and to call up
redundant elements in case of a malfunction. By borrowing from living creatures
three principles of organization (multicellular organization, cellular division, and
cellular differentiation), we plan to design bio-inspired computing machines able
to grow, to self-replicate and self-repair, thus bringing an original solution to the
new era of 3D nanoscale autonomic computers.

References

1. K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computa-
tion. John Wiley, New York, 1992.

2. K. Imai, T. Hori, and K. Morita. Self-reproduction in three-dimensional reversible
cellular space. Artificial Life, 8(2):155–174, 2002.

3. N. J. Macias and L. J. K. Durbeck. Self-assembling circuits with autonomous fault
handling. In A. Stoica, J. Lohn, R. Katz, D. Keymeulen, and R. S. Zebulum,
editors, Proceedings of the 2002 NASA/DOD Workshop Conference on Evolvable
Hardware, pages 46–55, Los Alamitos, CA, 2002. IEEE Computer Society Press.

4. D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated
circuits: The Embryonics approach. Proceedings of the IEEE, 88(4):516–541, April
2000.

5. D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. Self-replicating loop with
universal construction. Physica D, 191(1-2):178–192, April 2004.

6. C. L. Nehaniv. Self-reproduction in asynchronous cellular automaton. In A. Stoica,
J. Lohn, R. Katz, D. Keymeulen, and R. S. Zebulum, editors, Proceedings of the
2002 NASA/DOD Workshop Conference on Evolvable Hardware, pages 201–209,
Los Alamitos, CA, 2002. IEEE Computer Society Press.

174 A. Stauffer, D. Mange, and F. Vannel

7. A. Stauffer and M. Sipper. Biomorphs implemented as a data and signals cellular
automaton. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kin, and J. Ziegler,
editors, Proceedings of the 7th European Conference on Artificial Life (ECAL
2003), volume 2801 of Advances in Artificial Life, pages 235–241, Berlin Heidelberg,
2003. Springer-Verlag.

8. A. Stauffer and M. Sipper. Data and signals: A new kind of cellular automaton for
growing systems. In J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Sto-
ica, and M. I. Ferguson, editors, Proceedings of the 2003 NASA/DOD Conference
on Evolvable Hardware, pages 235–241, Los Alamitos, CA, 2003. IEEE Computer
Society.

9. A. Stauffer and M. Sipper. The data-and-signals cellular automaton and its appli-
cation to growing structures. Artificial Life, 10(4):463–477, 2004.

10. J. D.Watson and F. H. C. Crick. A structure for desoxyribose nucleid acid. Nature,
171:737–738, 1953.

Appendix A: Tables and Equations of the DSCA Basic
Cell

Figures 12 to 17 show the individual tables describing the input multiplexer,
the stack registers, the output buffer, the input register, and the signal en-
coder.

The generator implements the output signals according to the following equa-
tions where PBZ represents an empty data (0) in the memorization register
PB3:0 and GAF a branch activation and north connection flag (F) in the prop-
agation register GA3:0.

NSO = PBZ.PA3′.PA2′.PA1′.PA0
+ PBZ.PA3.PA2.PA1.PA0
+ GAF.PB3′.PB2.PB1.PB0 (1)

ESO = PBZ.PA3′.PA2′.PA1.PA0′

+ PBZ.PA3′.PA2.PA1.PA0
+ GAF.PB3.PB2′.PB1′.PB0′

+ GAF.PB3.PB2′.PB1.PB0′ (2)
SSO = PBZ.PA3′.PA2′.PA1.PA0 (3)

WSO = PBZ.PA3′.PA2.PA1′.PA0′

+ PBZ.PA3.PA2′.PA1.PA0′ (4)
USO = PBZ.PA3′.PA2.PA1′.PA0

+ PBZ.PA3.PA2′.PA1′.PA0′

+ GAF.PB3.PB2′.PB1′.PB0 (5)
DSO = PBZ.PA3′.PA2.PA1.PA0′

+ PBZ.PA3.PA2′.PA1′.PA0 (6)

Hardware Implementation of 3D Self-replication 175

ZERO

operation description

DI = 0
DI = NDISELECT NDI

SELECT EDI
SELECT SDI
SELECT WDI
SELECT UDI
SELECT DDI

DI = EDI
DI = SDI
DI = WDI
DI = UDI
DI = DDI

0 0 0 0

I3:0

1
1
1
1
1
1

0
0
0
0
1
1

0
0
1
1
0
0

0
1
0
1
0
1

Fig. 12. Operation table of the data input multiplexer DIMUX

LOAD

operation description

GA <= DI
GB <= GA

Fig. 13. Operation table of the propagation registers GA3:0 and GB3:0

HOLD

LOAD

operation description

PA <= PA
PB <= PB
PA <= GB

LDP

0

1
PB <= PA

Fig. 14. Operation table of the memorization registers PA3:0 and PB3:0 (LDP =

PB3′.PB2′.PB1′.PB0′)

ZERO

operation description

DO = 0
DO = GB

ENO

0
1TRUE

Fig. 15. Operation table of the data output buffer DOBUF (ENO = PB3 + PB2 +

PB1 + PB0

1 1 0 1

D3:0

1
1
1
1
1
1

1
0
0
1
0
0

0
0
0
0
1
1

1
0
1
0
0
1

SSIUSI WSIESINSIDSIID

1
0
0
0
0
0
0

-
1
0
0
0
-
-

- - - - -
- - - - -
1 - - - -
0 1 - - -
0 0 1 - -
- - - 1 -
- - - - 1

Fig. 16. Truth table of the encoder ENC (ID = I3.I2.I1′.I0)

176 A. Stauffer, D. Mange, and F. Vannel

HOLD

operation description

I <= I
I <= D

LDI

0
1LOAD

Fig. 17. Operation table of the data input register I3:0 (LDI = NSI + ESI + SSI +

WSI + USI + DSI)

J. M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 177 – 187, 2005.
© Springer-Verlag Berlin Heidelberg 2005

POEtic: A Prototyping Platform
for Bio-inspired Hardware

J. Manuel Moreno1, Yann Thoma2, and Eduardo Sanchez2

1 Technical University of Catalunya, Dept. of Electronic Engineering,
Campus Nord, Building C4, c/Jordi Girona 1-3, 08034-Barcelona, Spain

moreno@eel.upc.edu
2 Swiss Federal Institute of Technology Lausanne, Logic Systems Laboratory,

IN-Ecublens, CH-1015, Switzerland
{Yann.Thoma, Eduardo.Sanchez}@epfl.ch

Abstract. This paper will present the final hardware realization of a new family
of programmable devices that has specifically being conceived in order to ad-
dress the prototyping of bio-inspired principles. The devices are organized
around a custom 32-bit RISC microprocessor and a custom FPGA. The internal
architecture devised for the devices is scalable, so that it is possible to construct
a physical hardware platform whose size matches the requirements of the appli-
cation to be handled. To facilitate the development of applications for this
hardware platform a complete set of design tools has been developed.

1 Introduction

During the last years standard programmable devices have been extensively used to
provide physical implementations for bio-inspired principles, either as a direct sub-
strate [1] or as a supporting platform for extended architectures [2], [3], [4]. Even
some custom programmable architectures [5], [6] have been developed in order to
provide an efficient substrate for the realization of these principles. However, there is
still a lack of an integrated system able to offer at the same time the basic features
required to implement actual autonomous bio-inspired hardware:

• Partial dynamic reconfiguration, i.e., the ability to modify the functionality of a
section of the design while it is in normal operation and with a delay compara-
ble to the execution delay of the system. Even if this capability is being offered
by the programmable devices offered by Xilinx [7] and Atmel [8] it is usually
limited by the lack of information about the physical configuration string or by
the granularity of the reconfiguration area.

• Self-configuration, i.e., the capability of the programmable device of modify-
ing its functionality using its own resources. This feature is already present in
the Cell Matrix devices [5].

• Dynamic routing, i.e., the possibility of changing in real time the connectivity
between the elementary programmable cells included in the system without the
need for an external compiler.

The main goal of the POEtic project [9] was the development of a flexible hard-
ware substrate able to provide capabilities similar to those present in living beings,

178 J.M. Moreno, Y. Thoma, and E. Sanchez

like evolution, development, self-replication, self-repair and learning. One of the
major outcomes of the project was an integrated programmable electronic system, the
POEtic chip, that provides in a single device the three features mentioned above:
partial dynamic reconfiguration, self-configuration and dynamic routing. We shall
demonstrate that the combination of these capabilities in a single hardware substrate
provides an efficient platform for the prototyping and development of artifacts based
on bio-inspired principles.

The rest of the paper is organized as follows: in the next section we shall present
the major features included in the architecture conceived for the POEtic devices. Then
we shall review the actual physical implementation of the device and the development
environment that has been built around it. Finally, the conclusions and our current
work will be outlined.

2 The POEtic Architecture

The structural organization of a POEtic chip is represented in Fig. 1.

Environment
subsystem
Environment
subsystem

System
interface
System
interface

Organic
subsystem
Organic

subsystem
O

I

to other POEtic chips

to other POEtic chips

sensors

actuators

system bus

POEtic chip

Fig. 1. Organization of the POEtic chip

As it can be deduced from this figure, a POEtic chip is constituted by three main
building blocks:

• Environment subsystem: This is the component of the tissue that is in
charge of managing the interaction with the environment. This interaction
can be considered at two different time scales: on-line interaction and evolu-
tion (phylogenesis). The on-line interaction refers to the continuous process
by means of which a given individual implemented in the tissue is sensitive
to the input stimuli that arrive from the external environment. These stimuli
may take the form of any physical magnitude (light, pressure, temperature,
…), and after a conditioning and conversion processes are translated into in-

 POEtic: A Prototyping Platform for Bio-inspired Hardware 179

ternal signals that may be used by the individual either to extract some
knowledge from the environment or to produce an output as a result of some
internal processing. These output signals may be later translated, by means of
a set of proper actuators, into physical magnitudes that are reverted as output
actions to the environment. This on-line interaction constitutes the basic sen-
sor-actuator loop that permits a given individual to adapt its behaviour to the
specific characteristics of the environment where it is placed. The second
kind of interaction with the environment acts at a population level and ex-
ceeds the life time of an individual. In this case the sensor-actuator loop is
used to define the basic substrate (the genome) of the individuals that are ca-
pable of adapting its behaviour to the environment in the most efficient way
according to a given fitness measure.

• Organic subsystem: It is in charge of implementing the behaviour of an indi-
vidual, following the principles described by the innate information that has re-
sulted from the evolutionary process. Therefore, it is the goal of this system to
permit the development (ontogenesis) of a given functionality from the infor-
mation stored in a genome, and also to permit the adaptation (epigenesis) of
this functionality according to the stimuli received from the environment.

• System interface: This element will allow for an efficient communication be-
tween the environment and the organic subsystem of the tissue. It also consti-
tutes the substrate that will provide the basic mechanisms that will permit the
scalability of the tissue.

2.1 The Environment Subsystem and System Interface

The environment subsystem of the POEtic tissue has been built around a custom 32-
bit microprocessor with an efficient and flexible system bus, based on the AMBA
specification [10], and several custom peripherals. The reason for using a centralised
system to carry out evolutionary processes is motivated by the fact that, even if evolu-
tion acts on a population of individuals, at the end there must be a global unit that
should evaluate the fitness of the individuals and determine those from which the next
population has to be constructed. Therefore, the functionality of the individuals will
be implemented in the organic subsystem, but it is the microprocessor that constitutes
the core of the environment subsystem that will drive the basic steps of the evolution-
ary process, as well as the interaction of the individuals with the environment. Addi-
tionally, the use of a programmable unit to implement the phylogenetic mechanisms
of the tissue will permit to test and develop different evolutionary strategies, since this
will imply just an update of the software executed by the microprocessor. Finally, this
alternative will largely simplify the management of the acquisition/conversion units
that are required to handle the sensor-actuator loop needed to complete the epigenetic
and phylogenetic processes to be implemented by the tissue.

The system interface of the Poetic device plays a major role in allowing for its
scalability features. This means that it is possible to connect several POEtic chips in
order to construct an electronic tissue whose size can be accommodated to the actual
needs of a given application without posing specific constraints neither on the system

180 J.M. Moreno, Y. Thoma, and E. Sanchez

architecture nor in the connectivity pattern among the POEtic chips that constitute the
tissue.

In this way, a POEtic tissue can be constructed as a bidimensional array constituted
by POEtic chips. The connectivity between these chips is based on two different
buses, named organic (O) and interface (I) buses. The signals that constitute the or-
ganic bus permit to communicate (at a cellular level) the organic subsystems present
in every POEtic chip. The interface bus carries those signals that permit to handle the
collection of POEtic chips as a single tissue, so that from a user point of view the
tissue has only one environment subsystem and one organic subsystem. This is repre-
sented in Fig. 2.

P P
I

O P

I O I O I O

I

O

P

I O

P

I O

I

O P

I O

I

O

P

I O

I

O

I

O

I

O P

I O

I

O P

I O

I

O

I O I O I O

I

O

I

O

I

O

P P
I

O P

I O I O I O

I

O

P

I O

P

I O

I

O P

I O

I

O

P

I O

I

O

I

O

I

O P

I O

I

O P

I O

I

O

I O I O I O

I

O

I

O

I

O

P P
II

OO P

I O I O I OII OO II OO II OO

II

OO

P

II OO

P

II OO

II

OO P

II OO

II

OO

P

II OO

I

O

I

O

I

O

II

OO

II

OO

II

OO P

II OO

II

OO P

II OO

II

OO

I O I O I OII OO II OO II OO

I

O

I

O

I

O

II

OO

II

OO

II

OOEnvironment
subsystem

Organic
subsystem

sensorsactuators

POEtic chip

Environment
subsystem
Environment
subsystem

Organic
subsystem
Organic

subsystem

sensorsactuators

POEtic chip

Environment
subsystem

Organic
subsystem

sensorsactuators

POEtic tissue

Environment
subsystem
Environment
subsystem

Organic
subsystem
Organic

subsystem

sensorsactuators

POEtic tissue

Fig. 2. Scalability properties of the POEtic tissue

2.2 The Organic Subsystem

The organic subsystem of the POEtic device is made up of 2 layers, as depicted in
Fig. 3: a two-dimensional array of basic elements, called molecules, and a two-
dimensional array of routing units. Each molecule is connected to its four neighbours
in a regular structure. Mainly containing a 16-bit look-up table (LUT) and a flip-flop
(DFF), it has the capability of accessing the routing layer that is used for inter-cellular
communication. This second layer implements a dynamic routing algorithm allowing
the creation of data paths between cells at runtime.

A molecule has eight different operational modes, to speed up some operations,
and to use the routing plane.

• In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four
inputs.

• In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a re-
sult depending on three inputs. The first result can go through the flip-flop,
and is the first output. The second one can be used as a second output, and is
directly sent to the south neighbor (can serve as a carry in parallel opera-
tions).

 POEtic: A Prototyping Platform for Bio-inspired Hardware 181

Fig. 3. Organization of the organic subsystem

• In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift reg-
ister. This mode could be used to compare a serial input data with a data
stored in the 8-bit shift register.

• In Shift Memory mode, the 16 bits are used as a shift register, in order to
store data, for example a genome. One input controls the shift, and another
one is the input of the shift memory.

• In Input mode, the molecule is a cellular input, connected to the inter-
cellular routing plane.

• In Output mode, the molecule is a cellular output, connected to the inter-
cellular routing plane.

• In Trigger mode, the 16-bit shift register should contain "000...01" for a 16-
bit identifier system. It is used by the routing plane to synchronize the identi-
fier decoding during the routing process.

• In Configure mode, the molecule can partially configure its neighborhood.
One input is the configuration control signal, and another one is the configu-
ration shifting to the neighbors.

The configuration of the device can be made in a parallel manner, through a 32-bit
bus. The 76 configuration bits of a molecule are split into three 32-bit words. Addi-
tionally, the configuration system of the molecules can be seen as a shift register of 76
bits split into 5 blocks: the LUT, the selection of the LUT’s input, the switch box, the
mode of operation, and an extra block for all other configuration bits. Each block
contains, as shown in Fig. 4, together with its configuration, one bit indicating, in case
of a reconfiguration coming from a neighbour, if the block has to be bypassed. This
bit can only be loaded from the microprocessor.

The special configure mode allows a molecule to partially reconfigure its
neighbourhood. It sends bits coming from another molecule to the configuration of
one of its neighbours. By chaining the configurations of neighbouring molecules, it is

182 J.M. Moreno, Y. Thoma, and E. Sanchez

Fig. 4. Organization of the configuration bits for partial reconfiguration

possible to modify multiple molecules at the same time, allowing, for example, the
synaptic weights in a neuron to be changed. Moreover, this mechanism permits to
use up to 54 of the configuration bits to store information, that can be accessed
serially.

2.3 Dynamic Routing

The dynamic routing system is designed to automatically connect the cells’ inputs and
outputs. Each output of a cell has a unique identifier. For each of its inputs, the cell
stores the identifier of the source from which it needs information. A non-connected
input (target) or output (source) can initiate the creation of a path by broadcasting its
identifier, in case of an output, or the identifier of its source, in case of an input. The
path is then created using a parallel implementation of the breadth-first search algo-
rithm. When all paths have been created, the organism can start operation, and exe-
cute its task, until a new routing is launched, for example after a cell addition or a
cellular self-repair.

Our approach has many advantages, compared to a static routing process. First of
all, a software implementation of a shortest path algorithm, such as Lee’s [11], is very
time-consuming for a processor, while our parallel implementation requires a very
small number of clock cycles to finalize a path. Secondly, when a new cell is created
it can start a routing process, without the need of recalculating all paths already cre-
ated. Thirdly, a cell has the possibility of restarting the routing process of the entire
organism, if needed (for instance after a self-repair). Finally, our approach is totally
distributed, without any global control over the routing process, so that the algorithm
can work without the need of the central micro-processor.

The routing algorithm is executed in four phases:

Phase 1: Finding a Master
In this phase, every target or source that wants to and is not connected to its corre-
spondent partner tries to become master of the routing process. A simple priority
mechanism chooses the most bottom-left routing unit to be the master, as shown in
Fig. 5. Note that there is no global control for this priority, every routing unit knowing
whether or not it is the master. This phase is over in one clock cycle, as the propaga-
tion of signals is combinational.

 POEtic: A Prototyping Platform for Bio-inspired Hardware 183

Fig. 5. Three consecutive steps of the routing algorithm. The black routing unit will be the
master, and therefore will perform its routing.

Phase 2: Broadcasting the Address
Once a master has been selected, it sends its address in case of a source, or the address
of the needed source in case of a target. It is sent serially, in n clock cycles, where n
is the size of the address. The same path as in the first phase is used to broadcast the
address, as shown in Fig. 6.

Fig. 6. The propagation direction of the address: north → south | east → south, west, and north |
south → north | west → north, east, and south | routing unit → north, east, south, and west

Every routing unit, except the one that sends the address, compares the incoming
value with its own address (stored in the molecule underneath). At the end of this
phase, that is, after n clock cycles, each routing unit knows if it is involved in this
path. In practice, there has to be one and only one source, and at least one target.

Phase 3: Eliminating sources and targets
In some situations, a source should start a routing process, for instance, in a devel-
opmental process. In such a process, it would be useful to have many sources and
targets with the same ID. So at this stage, it is possible there is more than one
source involved in the routing process. In order to avoid multiple sources, in this
phase that lasts only one clock cycle, if a source is at the origin of the routing proc-
ess, it sends a signal to every other routing unit, to let them know a source is at the
origin. Then every other source with the same ID disabled its participation in the
current process.

The same disable is performed in case a target launched the routing process.
Every target that is not the master disables its participation to the current process, to
ensure that the target that started the process will be the only one connected to a
source.

Phase 4: Building the Shortest Path
The last phase, largely inspired by [12], creates a shortest path between the selected
source and the selected targets. An example involving 8 sources and 8 targets is
shown in Fig. 7, for a densely connected network.

184 J.M. Moreno, Y. Thoma, and E. Sanchez

Fig. 7. Test case with a densely connected network

A parallel implementation of the breadth-first search algorithm allows the routing
units to find the shortest path between a source and many targets. Starting from the
source, an expansion process tries to find targets. When one is reached, the path is
fixed, and all the routing resources used for the path will not be available for the next
successive iterations of the algorithm.

3 Physical Realization

The POEtic chip has been implemented and fabricated as an ASIC of 54 mm2 using a
0.35 μm CMOS process. The chip, whose layout is depicted in Fig. 8, contains 144
molecules organized as an 8x18 array and the complete environment subsystem ex-
plained previously. Even if implemented using a standard technology the ASIC im-
plementation of the POEtic tissue demonstrates its superior integration capabilities
when compared with those offered by standard prototyping platforms (the prototyping
experiments performed within the framework of the project show that an FPGA with
3 million system gates capacity is able to implement the functionality of just 80 PO-
Etic molecules).

Specific development boards have been constructed in order to test the POEtic de-
vices and to implement practical applications on them. These are depicted in Fig. 9.
Fig. 9(a) represents the master board, containing one POEtic chip, Flash and SDRAM
memory blocks and a USB communication unit that permits to create an interface
with an external host. Fig. 9(b) depicts the slave board, containing a 2 x 2 array of
POEtic chips. The slave board can be attached to the master board, and it is also pos-
sible to connect several slave boards between them in order to create an electronic
tissue with the required size for the application to be handled.

Since the complete POEtic tissue has been specified and developed using a stan-
dard hardware description language (VHDL) it can be implemented in a standard
prototyping platform (though with limited functionality due to the capacity restric-
tions of current programmable devices). Therefore, in order to facilitate the

 POEtic: A Prototyping Platform for Bio-inspired Hardware 185

Fig. 8. Layout of the POEtic chip

Fig. 9. Details of (a) the master and (b) slave boards developed for the POEtic devices

use of the tissue by external users a complete set of tools have been developed within
the framework of the project. This set includes a schematic editor and synthesizer, a
molecule-level design entry and simulation tool for the organic subsystem, a C com-
piler and an assembler integrated in a graphical user interface with language-sensitive
editing capabilities, a graphical user interface for the simulation of programs devel-
oped for the microprocessor and a system debugger.

186 J.M. Moreno, Y. Thoma, and E. Sanchez

4 Conclusions

The POEtic project has produced at its end the first programmable integrated system
with capabilities inspired in the organization principles present in living beings: evo-
lution, development/growth, self-replication, self-repair and learning. The resulting
electronic device permits to construct a multi-cellular tissue whose size can be
adapted to the specific requirements of the application to be handled. The internal
architecture of the device includes features, like dynamic partial reconfiguration, self-
configuration or in-hardware dynamic routing, that were never combined (if not pre-
sent at all) in any past electronic device.

In this paper we have presented the architecture that has been conceived for the
POEtic devices, as well as the internal organization of its main constituent elements.
Then the physical implementation details of the integrated systems and the develop-
ment boards constructed to create applications based on these devices. The whole
system has been described and developed using a standard hardware description lan-
guage (VHDL). This, together with the set of tools that have been developed for the
devices, will permit to test the concepts developed within the project using standard
prototyping platforms.

The availability of this brand new family of programmable devices thus opens long
term opportunities for the implementation of electronic systems and applications able
to take profit of these new features. Among them we could consider the following list:

• Autonomous adaptive systems for deep space exploration.
• Safety critical systems in the aeronautics and the automotive domains.
• Sensor integration for distributed, highly immersive sensor and actuator en-

vironments.
• Personalized, user-adaptable assistant systems.
• User-adaptable monitoring and early warning systems for handicapped or

elderly people.

Our current work is concentrated in the prototyping of large-scale spiking neural
networks models with bio-inspired learning mechanisms using the prototyping plat-
form offered by the POEtic devices.

Acknowledgements

The work presented in this paper has been funded by the grant IST-2000-28027 (PO-
Etic) of the European Community and by grant OFES 00.0529-2 of the Swiss gov-
ernment. The information provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

References

1. Vinger, K.A., Torresen, J.: Implementing evolution of FIR-filters efficiently in an FPGA.
Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE Computer So-
ciety (2003) 26–29

 POEtic: A Prototyping Platform for Bio-inspired Hardware 187

2. Haddow, P.C., Tufte, G.: Bridging the Genotype-Phenotype Mapping for Digital FPGAs.
Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE Computer So-
ciety (2001) 109-115

3. Sekanina, L: Virtual reconfigurable Circuits for Real-World Applications of Evolvable
Hardware. Evolvable Systems: From Biology to hardware. Lecture Notes in Computer
Science, Vol. 2606. Springer-Verlag, Berlin Heidelberg New York (2003) 186-197

4. Sekanina, L., Friedl, S.: On Routine Implementation of Virtual Evolvable Devices Using
COMBO6. Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE
Computer Society (2004) 63-70

5. Macias, N.J.: The PIG Paradigm: The design and Use of a Massively Parallel Fine
Grained Self-Reconfigurable Infinitely Scalable Architecture. Proceedings of the
NASA/DoD Conference on Evolvable Hardware. IEEE Computer Society (1999) 175-180

6. Macias, N.J, Durbeck, L.J.K.: Self-assembling Circuits with Autonomous Fault Handling.
Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE Computer So-
ciety (2002) 46-55

7. Ullmann, M., Hübner, M., Grim, B., Becker, J.: On-Demand FPGA Run-Time System for
Dynamical Reconfiguration with Adaptive Priorities. Field Programmable Logic and Ap-
plications. Lecture Notes in Computer Science, Vol. 3203. Springer-Verlag, Berlin Hei-
delberg New York (2003) 454-463

8. Bartosinski, R., Danek, M., Honzik, P., Matousek, R.: Dynamic Reconfiguration in
FPGA-based SoC designs. Proceedings of the 2005 ACM/SIGDA 13th international
Symposium on Field-programmable gate arrays (2005) 274

9. Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M.,
Rosenberg, J., Villa, A.E.P.: POEtic Tissue: An Integrated Architecture for Bio-Inspired
Hardware. Evolvable Systems: From Biology to Hardware. Lecture Notes in Computer
Science, Vol. 2606. Springer-Verlag, Berlin Heidelberg New York (2003)129-140

10. ARM. Amba specification, rev 2.0. advanced risc machines ltd (arm).
http://www.arm.com/armtech/amba_spec (1999)

11. Lee. C.Y.: An algorithm for path connections and its applications. IRE Transactions on
Electronic Computers, Vol EC-10:3 (1961) 346-365

12. Moreno, J.M., Sanchez, E., Cabestany, J: An in-system routing strategy for evolvable
hardware programmable platforms. Proceedings of the NASA/DoD Conference on Evolv-
able Hardware. IEEE Computer Society (1999) 157-166

J. M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 188 – 197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Implementation of Biologically Plausible Spiking Neural
Networks Models on the POEtic Tissue

J. Manuel Moreno1, Jan Eriksson2, Javier Iglesias2,3, and Alessandro E.P. Villa3

1 Technical University of Catalunya, Dept. of Electronic Engineering,
Campus Nord, Building C4, c/Jordi Girona 1-3, 08034-Barcelona, Spain

moreno@eel.upc.edu
2 Laboratory of Neuroheuristics, Information Systems Department INFORGE,

University of Lausanne, Lausanne, Switzerland
jan@lnh.unil.ch, Javier.Iglesias@unil.ch

3 INSERM U318, University Joseph-Fourier Grenoble 1, Pavillon B,
CHUG Michallon, BP217, F-38043 Grenoble Cedex 9, France

Alessandro.Villa@ujf-grenoble.fr
http://www.nhrg.org

Abstract. Recent experimental findings appear to confirm that the nature of the
states governing synaptic plasticity is discrete rather than continuous. This
means that learning models based on discrete dynamics have more chances to
provide a ground basis for modelling the underlying mechanisms associated
with plasticity processes in the brain. In this paper we shall present the physical
implementation of a learning model for Spiking Neural Networks (SNN) that is
based on discrete learning variables. After optimizing the model to facilitate its
hardware realization it is physically mapped on the POEtic tissue, a flexible
hardware platform for the implementation of bio-inspired models. The imple-
mentation estimates obtained show that is possible to conceive a large-scale im-
plementation of the model able to handle real-time visual recognition tasks.

1 Introduction

Among the different types of artificial neural networks models that have been investi-
gated during the last decades spiking neural networks have attracted large research
efforts [1], [2] because of their biological plausibility and their suitability for a physi-
cal hardware implementation. These neural paradigms usually consider a simplified
model for the neuron that is based in an integration process for its inputs and the de-
livery of an output spike when the membrane potential exceeds a given threshold.

Among different learning mechanisms Spike Timing Dependent Plasticity (STDP),
i.e., the modification of the synaptic weights depending on the time correlation be-
tween pre- and post-synaptic spikes, has raised an increasing interest [3] due to ex-
perimental evidence [4] and observations suggesting that synaptic plasticity may be
based on discrete dynamics [5].

In this paper we shall consider a spiking neural network model [6] based on STDP
learning rules whose learning dynamics is based on discrete variables. This model has
demonstrated excellent properties for discriminating dynamic input stimuli in large-
scale networks [7].

 Implementation of Biologically Plausible Spiking Neural Networks Models 189

The rest of the paper is structured as follows: in the next section we shall provide a
brief summary of the learning scheme proposed in the considered model. Then we
shall provide the hardware implementation of this model and the procedure for its
functional validation. The accuracy of the internal variables used in the model is then
scaled down to allow for a compact hardware implementation. After validating this
optimization the resulting model is implemented using the POEtic tissue, a prototyp-
ing platform for bio-inspired models. Finally, the conclusions and our current devel-
opment work are outlined.

2 A Biologically Inspired SNN Model

The model consists of Leaky Integrate-and-Fire neuromimes connected by synapses
with variable weight depending on the time correlation between pre- and post-
synaptic spikes. The synaptic potentials are added until their result Vi(t) overcomes a
certain threshold, θ. Then a spike is produced, and the membrane value is reset. The
simplified equation of the membrane value is:

=+⋅

=
=+

0)()()(

1)(0
)1(

tSwhentJtVk

tSwhen
tV

iijimem

i

i
 (1)

where kmem=exp(-Δt/τmem), Vi(t) is the value of the membrane and Si(t) is the state
variable which signals the occurrence of a spike. The value of ,Jij is the output of
each synapse (ij) where j is the projecting neuron and i is the actual neuron.

When a spike occurs in the pre-synaptic neuron, the actual value of the synaptic
output Jij is added to the weight of the synapse multiplied by an activation variable A.
Conversely, if there is no pre-synaptic spike then the output Jij is decremented by a
factor ksyn. Then, the value of ,Jij corresponds to the following equation:

=⋅

=⋅+
=+

0)()(

1)())(()(
)1(

tSwhentJk

tSwhentAwtJ
tJ

jijsyn

jRiRjRiRjij

ij
 (2)

where R is the type of the neuron, either excitatory or inhibitory.
If the actual neuron is inhibitory, the factor ksyn will reset the output of the synapse

after a time step; if the actual neuron is excitatory, the update of the synaptic output
depends on the projecting neuron and the STDP rule is applied. An inhibitory cell can
not influence another inhibitory cell, i.e. assume a synaptic weight of zero between
two inhibitory neurons. The basic synaptic strengths are chosen in order to maintain a
balanced excitatory/inhibitory activity within the network.

The changes in strength of an excitatory-excitatory synapse depend on the variable
A which is a function of on an internal variable Lij given by the following equation:

Lij(t+1)=kact·Lij(t) + (YDj(t)·Si(t)) – (YDi(t)·Sj(t)) (3)

where kact is a kinetic activity factor, which is the same for all the synapses and YD is
a “learning” decaying variable that depends on the interval between a pre-synaptic
spike and a post-synaptic spike. When there is a spike, YD reaches its maximum value

190 J.M. Moreno et al.

at the next time step. In the absence of a spike the value of YD will be decremented by
the kinetic factor klearn, which is the same for all synapses. When a pre-synaptic spike
occurs just before a post-synaptic spike, then the variable Lij is increased and the syn-
aptic strength becomes larger, thus corresponding to a potentiation of the synapse.
When a pre-synaptic spike occurs just after a post-synaptic spike, the variable Lij is
decreased, the synaptic weight is weakened , thus corresponding to a depression of
the synapse. For all kind of synapses, except the excitatory-excitatory, the activation
variable is always is set to 1.

The network layout was chosen with 80% of excitatory and 20% inhibitory neu-
rons. Each unit was fully connected within a 5x5 neighborhood, i.e. connected to 24
neurons (Fig. 1).

Fig. 1. Connectivity of a single neuron

3 Hardware Implementation

From a structural point of view the SNN model considered in this paper is constituted
by four main building blocks: the neuron block, the decay block, the learning block
and the synapse block.

The neuron block is in charge of implementing the dynamics of the membrane by
integrating the pre-synaptic spikes, as indicated in Eq. (1). The characteristics of the
parameters of this block are the following:

• The membrane potential has a resolution of 12 bits, with a range [-2048, 2047],
and the threshold is kept fixed to +640.

• The membrane decay function has a time constant value of τ=20.
• The refractory period is set to 1 time unit.

The decay block will be used in both learning and synapse blocks. This block is
aimed to implement a logarithmic decay of the input; it is obtained with a subtraction
and controlling the time when it is done depending on the input value. This block is
used in many parts of the design and the decaying variable has been labeled x in Fig-
ure 2. A new value of x will be the input of a shift register which is controlled by the
most significant bit (MSB) of x and by an external parameter mpar. The output of this
shift register will be subtracted from the original value of x. This operation will be
done when the time control indicates it. The time control is implemented by the value
of a counter that is compared with the result of choosing between the external value
step and the product (MSB–mpar)·step. The decay variable τ depends on the input
parameters mpar and step.

 Implementation of Biologically Plausible Spiking Neural Networks Models 191

SHIFT
REG

- FF

6

1

load

init_x

MSB

- *

>

mpar step

dec_x

>

counter

rst

Fig. 2. Diagram of the decay block

The learning block “measures” the interval between a spike in the projecting neu-
ron j and the actual neuron i. Depending on these timings and the types of the two
neurons, the synaptic strength will be modified.

When a spike is produced by the projecting neuron, the variable YD is set to its
maximum value and starts to decay. If a spike is produced by the actual neuron im-
mediately after the presynaptic neuron the value of YDj is added to the decaying value
of L. Conversely, if a spike is produced at first in the actual neuron and later in the
projecting neuron, then the value of YDi is subtracted to the decaying value of L.

If the L variable overcomes a certain threshold Lth, positive or negative, then the
activation variable A is increased or decreased, respectively, unless the variable had
reached its maximum or minimum, respectively. If the variable A is increased, then
L is reset to the value L-2·Lth; if A is decreased, then L is reset to L+2·Lth.

Figure 3 illustrates the organization of the learning block.
The characteristics of the parameters of the learning block are the following:

• The YD variable has a resolution of 6 bits.
• The time constant for the variable YD is τ=20.
• The learning variable L of 8 bits and ·Lth is within the range [-128,127].
• The activation variable A is coded by 2 bits and takes four states.
• To improve the sensitivity of the block for long intervals between spikes the

time constant for the variable L is set to 4000, but it can be changed depending
on the network size implementation.

The synapse block is aimed to set the value of J (analogous to the the sum of all
post-synaptic membrane potentials) and depends on four factors: the activation level
A of the synapse, the spiking state of the projecting neuron Sj and the types of the pre-
and post-synaptic neurons (Ri and Rj).

A given weight is set for each synapse. This weight is multiplied by the activation
variable A by means of a shift register, such that if A=0, the weight is multiplied by 0,
if A=1 it is multiplied by 1, if A=2 it is multiplied by 2, and if A=3 it is multiplied by
4. This weighted output is added to the decaying value of the variable J.

192 J.M. Moreno et al.

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Fig. 3. Diagram of the learning block

Shift
reg

w

A

+

sj
Jτ

Ri,Rj

20 reg
3
0

Shift
reg

w

A

+

sj
Jτ20 reg

3
0

Fig. 4. Diagram of the synapse block

This operation depends on the neuronal types (Ri and Rj). In the current case study
there are only two types of neurons, excitatory and inhibitory. If both neurons are
inhibitory the weight of the synapse is set to 0 and the value of J is always 0 and no
decay is implemented. For the other three types of synapses the time constants are
multiplexed, and the multiplexer is controlled by the types of neurons (Ri,Rj). The
value of J is obtained at the output of the decay block controlled by the multiplexer.
Figure 4 shows the organization of the synapse block.

The characteristics of the parameters of the synapse block are the following:

• The internal resolution of the block is 10 bits, but the output resolution is 8
bits, becasue the internal value of J is divided by 4 to keep the correct scaling
with the other parameters.

• The time constants used by this block are listed in Table 1.

Table 1. Time constants for different types of synapses. R=0 corresponds to an excitatory and
R=1 to an inhibitory neuron.

Time
Constant (τ)

Projecting
 Neuron Type (Rj)

Actual
Neuron Type (Ri)

20 0 0

0 0 1

3 1 0

0 1 1

 Implementation of Biologically Plausible Spiking Neural Networks Models 193

4 Parameters Tuning

The resolution required to represent the values of the variables and the number of
operations to be performed may pose a serious limitation for the final implementation.
Therefore, an important step consisted in evaluating the model and tuning its parame-
ters in order to get a satisfactory performance. The implementation used in this study
has been based on a neural network of size 15x15 with a connectivity pattern of 24
neurons corresponding to a neighborhood of 5x5 (Fig. 1). The distribution of the 20%
inhibitory cells was random. The weights, w, and the initial activation variables, A,
were also chosen randomly. Dynamic gradient stimuli have been applied to the neu-
ral network. A sequence of vertical bars of gradient intensity move over “strips” of
neurons placed in the 2D array of the neural network (Fig. 5).

Fig. 5. Input signal applied to the neural network. The arrow to the right means forward sense
and the arrow to the left means reverse sense.

The vertical bars may move at different speeds (i.e. spatial frequency). A neuron
“hit” by the stimulus receives an input that is proportional to the gradient intensity.
The activity of the network has been studied in a “training” condition and in a “test”
condition. During training the spatial frequency of the stimulus has been incremented
by discrete harmonics (2x, 4x, etc.) in one direction (the “forward” direction). During
test, the stimuli were presented in both forward and reverse sense. A Gaussian noise
(Mean 0, SD= 48) is applied to all neurons during all the time. The characteristics of
the input applied to each neuron are the following:

• TCLK: 20 ns. Maximum amplitude: 127.
• Training period: 20 us. Forward sense
• Test period: 10 us. Forward and Reverse sense

The activity calculated over a “strip” of neurons perpendicular to the direction of
the movement represents a measure of “local” activity. In this case, the strip is one-
column wide. In Fig. 6 the “local” activity is measured by the count of spikes pro-
duced as a function of the time steps. We can observe that in the forward sense there
exists an activation pattern with a temporal correlation, but in reverse sense the net-
work output has no such temporal correlation. This result demonstrates that the se-
lected structure of our neural network is able to perform an implicit recognition of
dynamic features based on simple unsupervised STDP rules.

194 J.M. Moreno et al.

(a) (b)

Fig. 6. Local activity in column 1. (a) test stimuli are applied in forward sense. (b) test stimuli
are applied in reverse sense.

At a first attempt the resolution of the parameters has been reduced by 2 bits and
some values and time constants have been changed to keep the correct scaling. Table 2
shows the new values of the internal parameters after this optimization process. The
final organization resulting from this optimization process is depicted in Fig. 7. The
simplified model resulting from this optimization has been validated again using the
same input stimuli presented in Fig. 5. The results of these simulations demonstrate that
the model is still capable of discriminating the input stimuli applied in the forward and
in the reverse directions.

Due to the complexity of the design, the simplification of the model is very impor-
tant to avoid redundancy or to use just the necessary components. For this reason, a
further simplification of all the building blocks that constitute the model has been
performed [8].

reg-L

reg-tL

reg-A

reg-J

comp

reg

reg
+ reg

reg

reg

reg
learning

reg-tJ

synapse

reg

reg

sj

YDj

ns,tm

ns

YDi

si

Vth

Vi

reg-w

ns,tm

-

reg-Lreg-L

reg-tLreg-tL

reg-Areg-A

reg-Jreg-J

comp

reg

reg
+ reg

reg

reg

reg
learning

reg-tJreg-tJ

synapse

reg

reg

sj

YDj

ns,tm

ns

YDi

si

Vth

Vi

reg-w

ns,tm

-

Fig. 7. Block diagram for the serial implementation of the neuron model

 Implementation of Biologically Plausible Spiking Neural Networks Models 195

Table 2. Resolution of the parameters for an optimized implementation

Parameter New value

Membrane resolution 10 bits

Threshold +160

Input (J) resolution 6 bits

Weights
 (Ri,Rj) (00, 01, 10, 11)

 [0:8], [64:128], [128:256], [0:0]

YD resolution 4 bits

L resolution 6 bits

Membrane decay time constant 20

YD decay time constant 20

L decay time constant 4000

JRi,Rj decay time constants
 (Ri,Rj) (00, 01, 10, 11)

 (20, 0, 3, 0) values not optimized

5 Implementation on the POEtic Tissue

The POEtic tissue [9] constitutes a flexible hardware substrate that has been specifi-
cally conceived in order to permit the efficient implementation of bio-inspired mod-
els. The tissue may be constructed as a regular array composed of POEtic chips, each
of them integrating a custom 32-bit RISC microprocessor and a custom FPGA with
dynamic routing capabilities.

The custom FPGA included in the POEtic chip is composed of a bi-dimensional ar-
ray of elementary programmable elements, called molecules. Each molecule contains
a flip-flop, a 16-bit lookup table (LUT) and a switchbox that permits to establish pro-
grammable connections between molecules.

After the optimization carried out on the neural model in order to facilitate its hard-
ware realization it has been mapped on to the molecules that constitute the POEtic de-
vice. The molecule organization shown in Fig. 8 corresponds to the actual structure of the
FPGA present in the POEtic device, which is arranged as an 8x18 array of molecules.

The VHDL models developed for the POEtic tissue have been configured and simu-
lated to validate the functionality of the neuron model designed above. After this valida-
tion stage the strategy for the simulation of large-scale SNN models has been consid-
ered. Since in its actual implementation the POEtic chip only allows for the implemen-
tation of a single neuron and the current number of POEtic chips is far less than 10,000
it will be necessary to use a smaller array of POEtic chips whose functionality should be
time–multiplexed in order to emulate the entire network. This means that every POEtic
chip should be able to manage a local memory in charge of storing the weights and
learning variables corresponding to the different neurons it is emulating in time.

196 J.M. Moreno et al.

Fig. 8. Molecule-level implementation of the SNN model

A 16-neurons network organized as a 4x4 array has been constructed using this
principle. This would permit the emulation of a 10,000-neurons network in 625 mul-
tiplexing cycles. Bearing in mind that each neuron is able to complete a time step in
150 clock cycles, this means that the minimum clock frequency required to handle
input stimuli in real time (i.e., to process visual input stimuli at 50 frames/second) is
around 5 MHz far within the possibilities of the actual clock frequency achieved by
the POEtic tissue (between 50 MHz and 100 MHz).

The visual stimuli will come from an OmniVision OV5017 monochrome 384x288
CMOS digital camera. Specific VHDL and C code have been developed in order to
manage the digital images coming from the camera. To test the application, artificial
image sequences have been generated on a display and then captured by the camera
for its processing by the network.

6 Conclusions

In this paper we have considered an unsupervised model for modifiable synapses in a
Spiking Neural Network based on discrete interval variables. This model has demon-
strated a good performance when used for learning and recognition tasks that involve
dynamic input stimuli.

The basic parameters that define the model dynamics have been optimized in order
to provide a hardware friendly implementation. The resulting model has been imple-
mented in the POEtic tissue, a flexible hardware platform conceived for the physical
realization of bio-inspired models. The results of the current implementation demon-
strate that the proposed approach is capable of supporting real-time needs of large-
scale spiking neural networks models.

Our current work is concentrated on the physical implementation of the real-time
image recognition tasks using the development boards that have been constructed for
the POEtic tissue.

 Implementation of Biologically Plausible Spiking Neural Networks Models 197

Acknowledgements

The work presented in this paper has been funded by the grant IST-2000-28027 (PO-
Etic) of the European Community and by grant OFES 00.0529-2 of the Swiss gov-
ernment. The information provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

References

1. Maas, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Mod-
els. Neural Networks 10 (1997) 1659–1671.

2. Hill, S.L., Villa, A.E.P.: Dynamic transitions in global network activity influenced by the
balance of excitation and inhibition. Network: Computation in Neural Systems 8 (1997)
165-184.

3. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neuroscience 3
(2000) 1178–1183.

4. Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like
structure depends on temporal order. Nature 387 (1997) 278–281.

5. Montgomery, J.M., Madison, D.V.: Discrete synaptic states define a major mechanism of
synapse plasticity. Trends in Neurosciences 27 (2004) 744-750.

6. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Halliday, D., Rosenberg, J.,
Moreno, J.M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue.
Evolvable Systems: From Biology to hardware. Lecture Notes in Computer Science 2606
(2003) 165-173.

7. Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A.E.P.: Dynamics of pruning in
simulated large-scale spiking neural networks. Biosystems Vol. 79 (2005) 11-20.

8. Torres, O., Eriksson, J., Moreno, J.M., Villa, A.E.P.: Hardware optimization and serial im-
plementation of a novel spiking neuron model for the POEtic tissue. BioSystems 76 (2003)
201–208.

9. Moreno, J.M., Thoma, Y., Sanchez, E., Torres, O., Tempesti, G.: Hardware Realization of a
Bio-inspired POEtic Tissue. Proceedings of the NASA/DoD Conference on Evolvable
Hardware. IEEE Computer Society (2004) 237-244.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 198 – 204, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Waveform Control in a Data Transceiver
for Multi-speed IEEE1394 and USB Communication

Yuji Kasai1, Eiichi Takahashi1, Masaya Iwata1, Yosuke Iijima1,2,
Hidenori Sakanashi1, Masahiro Murakawa1, and Tetsuya Higuchi1

1 MIRAI, Advanced Semiconductor Research Center, AIST,
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan

{y.kasai, e.takahashi, m.iwata, y.iijima}@aist.go.jp
http://unit.aist.go.jp/asrc/asrc-5/index_en.html

2 Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennoudai, Tsukuba 305-8577, Japan

Abstract. This paper proposes an adaptive waveform control in a data trans-
ceiver and demonstrates an adaptive transceiver LSI with a waveform control-
ler. The LSI optimizes on-site transmission performance, with adjustments
based on measurements for the whole transmission system, including cable
properties. Utilizing genetic algorithm (GA), our adjustment method has
achieved a transmission speed that is four times faster (1.6GHz) than current
standards (400MHz) for IEEE1394.

1 Introduction

The demand for high-speed data transmission is rapidly increasing. As transceiver
LSIs are required to operate at faster data transmission rates, however, new problems,
such as waveform distortion that is known as inter-symbol interference [1], become
more acute.

Conventional solutions such as pre-emphasis techniques [1] are of limited effec-
tiveness in compensating for the cable properties of specific length transmission lines.
Accordingly, we propose a new approach of adaptive waveform control, where the
properties of the entire transmission system are adaptively compensated by a genetic
algorithm [2-4]. This approach makes it possible to adaptively adjust for the on-site
conditions where the transceiver LSI and the transmission cable are actually used.
The transceiver LSI with adaptive adjustment has successfully achieved a transmis-
sion speed of 1.6GHz, which is four times faster than the current IEEE1394 standard
(400MHz), and a cable length of 21m, which is four times longer than the current
USB standard (5m).

2 Adaptive Waveform Control Transceiver

Fig. 1 illustrates the concept of the newly developed adaptive waveform controller.
The transmitter in the transceiver LSI includes a driver that controls waveforms

 Adaptive Waveform Control in a Data Transceiver 199

according to parameters determined by the GA. The receiver in the transceiver in-
cludes evaluation circuitry that evaluates waveform quality.

The transceiver has three operational modes; a normal-speed mode, an adjustment
mode, and a high-speed mode. Adjustment is carried out in the following manner:
After operating in normal-speed mode (at either IEEE1394 or USB standards), ad-
justment, which shifts operation to the high-speed mode, is executed in four steps (see
Fig. 1).

1. Waveform-control parameters are initialized by the adjustment program, and a test
signal is transmitted, once it has been pre-emphasized according to the parameters.

2. When the test signal reaches the receiver, the waveform is evaluated in terms of its
quality and assigned a value (i.e., the GA fitness value).

3. This evaluation value is then fed back to the transmitter.
4. The transmitter invokes the adjustment program to obtain a better parameter setting.

By repeating these four steps, the optimal parameter setting is obtained that provide
the fastest transmission.

We use a steady-state GA for the automatic waveform control on a PC, because it
is suitable for hardware implementation. The GA is executed by iterating the follow-
ing procedure: (1) select one individual from the population, (2) perform a crossover
operation between this individual and the individual with the highest fitness value,
and (3) if one of two generated individuals has a better fitness value than the worst
individual in the population, then that individual replaces the worst individual.

Fig. 2 shows a block diagram of the waveform control transmitter. The circuit con-
sists of 8 amplifiers that are current-mode driver circuits. Each driver circuit has a
current-source, within the range of 0 and 12.28mA (12 bits), and a polarity switch (1
bit). These parameters are adaptively adjusted by the steady state GA.

Fig. 3 illustrates the principle behind the adjustment of the waveform control. The
rectangular wave for the input data is delayed by 8 steps creating 8 waves, and these
delayed waves are then converted in terms of amplitude and polarity, and are finally
combined to form the output data.

Fig. 1. Concept of adaptive waveform control

PC
Peripheral

IEEE1394 or USB cable

4. The transmitter
invokes the
adjustment program .

3. The evaluation
value is fed back
to the transmitter.

2. The waveform
is evaluated in
terms of its quality.

1. A test signal is
transmitted.

PC
Peripheral

IEEE1394 or USB cable

4. The transmitter
invokes the
adjustment program .

3. The evaluation
value is fed back
to the transmitter.

2. The waveform
is evaluated in
terms of its quality.

1. A test signal is
transmitted.

200 Y. Kasai et al.

Fig. 2. Block diagram of the waveform control transmitter

Fig. 3. The principle behind the adjustment of the waveform control

The measurement system, as shown in Fig. 4, consists of the transceiver LSI for
transmission, a commercially available transmission cable (either IEEE1394 or USB),
a digital oscilloscope (HP54750A) as a receiver, and a PC to execute the GA. GA
evaluation values are measured by the oscilloscope.

The program on the PC controls the system and automatically adjusts the transmit-
ter using the GA. The parameters of the transmitter are eight analog values that range
between 0 and 12.28mA (12 bits / value, represented by A1, A2, … , A8) for the
current-mode drivers, and a digital value (8 bits, represented by D), which determines
the values of the eight polarity switches. A GA chromosome is represented with 104
bits by connecting these bit strings. The fitness function of the GA is eye height (see
Fig. 4) which represents the quality of the received waveform as measured by the

Polarity
Switch

Delay Delay

Transmit
Data

Transmit
Data

I b1 I b2 I b8

Output

Polarity
Switch

Delay

Output

Polarity
Switch

Polarity
Switch
Polarity
Switch

Delay Delay

Transmit
Data

Transmit
Data

I b1 I b2 I b8

Output

Polarity
Switch
Polarity
Switch

Delay

Output

Polarity
Switch

CombinePolarity

0

1

1

1

Delay

Current
(mV)

12

6

1

1

Input data

Output data after
waveform control

CombinePolarity

0

1

1

1

Delay

Current
(mV)

12

6

1

1

Input data

Output data after
waveform control

 Adaptive Waveform Control in a Data Transceiver 201

Fig. 4. Block diagram of the measurement system

oscilloscope. The population size is 30. The crossover and mutation rates are 0.8 and
0.1, respectively.

GA learning is conducted in two stages in order to accelerate adjustment. First, the
GA is executed in order to learn two analog values (A1 and A8), and the digital value
(D) (while the remaining six analog values are set to 0). Next, these learned values
are used as initial values for the next stage of the GA, which learns all 8 analog values
and the digital value. Thus, in this two-stage method, a rough waveform is initially
learned and its shape is subsequently refined.

3 Results and Discussion

A chip, as shown in Fig. 5, has been designed and fabricated by 0.13μm CMOS tech-
nology. The area of the transmitter circuit, shown as a white rectangle, is 0.22mm2.
This area, however, could be reduced for practical implementation by incorporating
the circuitry into the I/O buffer area.

Fig. 5. Photo of the 0.13μm CMOS LSI chip

Transceiver LSI
Amp

IEEE1394 or USB Cable

PC

Measured cable attenuation:
IEEE1394; 12dB at 800MHz, 9m
USB; 12dB at 480MHz, 11m

Oscilloscope

Eye Height

Transceiver LSI
Amp

IEEE1394 or USB Cable

PC

Measured cable attenuation:
IEEE1394; 12dB at 800MHz, 9m
USB; 12dB at 480MHz, 11m

Oscilloscope

Eye Height

Oscilloscope

Eye Height

Transmitter
(0.22mm)2
Transmitter
(0.22mm)2

202 Y. Kasai et al.

Table 1. Measured threshold margins* for (a) IEEE1394 and (b) USB

Bold: with GA adaptive adjustment waveform control
(): without pre-emphasis, —: unable to transmit
*Threshold margin = eye height / amplitude

 (a) Without pre-emphasis (b) With GA adaptive adjustment
waveform control

Fig. 6. Eye diagrams of a transmission with an IEEE1394 cable (1.6GHz, 9 m)

On average, adjustment required 200 evaluations, that is, testing of 200 transmitter
configurations, for each stage. Each evaluation consists of two key processes; (1) GA
execution (requiring less than 1 ms), and (2) waveform sampling (needing less than 1
ms for one million data symbols at 1GHz). Thus, each evaluation requires approxi-
mately 2 ms, indicating that the total adjustment time would normally be less than one
second.

Measurements of threshold margins, as an index of waveform quality, are shown in
Table 1, which also include no pre-emphasis conditions for comparison. These meas-
urements show significant improvements at various speeds and cable lengths due to
adaptive GA-adjustment waveform control. With the IEEE1394 cable (Table 1 (a)),
transmission performance is four times faster and three times longer than the current
standard (400MHz, 4.5m). With the USB cable (Table 1 (b)), performance is two
times faster and four times longer than the current standard (480MHz, 5m). Eye dia-

Cable 4.5m 9m 13.5m

400MHz 0.81 0.84 0.80

800MHz 0.79 0.78 0.71

1.2GHz 0.77 0.67 0.51

1.6GHz 0.84 0.68 0.40

(0.67) (0.62) (0.47)

(a) IEEE1394

(0.31) (0.19) (—)

(0.37) (—) (—)

(—) (—) (—)

480MHz

960MHz

Cable 5m 11m 21m

0.80 0.84 0.75

0.78 0.64 0.46

1.6GHz 0.58 0.15 —

(0.56) (0.29) (0.16)

(0.16) (—) (—)

(—) (—) (—)

(b) USB

Cable 4.5m 9m 13.5m

400MHz 0.81 0.84 0.80

800MHz 0.79 0.78 0.71

1.2GHz 0.77 0.67 0.51

1.6GHz 0.84 0.68 0.40

(0.67) (0.62) (0.47)

(a) IEEE1394

(0.31) (0.19) (—)

(0.37) (—) (—)

(—) (—) (—)

480MHz

960MHz

Cable 5m 11m 21m

0.80 0.84 0.75

0.78 0.64 0.46

1.6GHz 0.58 0.15 —

(0.56) (0.29) (0.16)

(0.16) (—) (—)

(—) (—) (—)

(b) USB

10mV

1ns

10mV

1ns

10mV

1ns

10mV

1ns

 Adaptive Waveform Control in a Data Transceiver 203

grams for the IEEE1394 cable are shown in Fig. 6. Eye height as a function of the
number of GA evaluations is shown in Fig. 7. The optimum parameters for the
transmitter are shown in Table 2.

Fig. 7. Eye height as a function of the number of GA evaluations (IEEE1394, 1.6GHz, 13.5m,
average of 5 executions)

Table 2. The parameters of the transmitter for IEEE1394 cables adjusted by GA

 A1 A2 A3 A4 A5 A6 A7 A8 D
Stage1 3.94 0 0 0 0 0 0 10.21 0F
Stage2 8.95 0.14 0.13 0.14 0.15 0.13 12.28 10.32 0F

4 Conclusion

We have clearly demonstrated effectiveness of GA-based adaptive waveform control
using developed LSI that optimizes performance for the entire transmission system
within a practically short time. Our adjustment method has achieved a transmission
speed of 1.6GHz that is four times faster than the current standard (400MHz) for
IEEE1394 and a cable length of 21m that is four times longer than current standard
(5m) for USB.

In this paper, we have focused on data transmission for USB and IEEE1394 cables.
In related work, we have proposed data transmission for on-board and back-plane
connections with adaptive waveform control. Experimental results show that high
speed I/O for parallel bit data transmission was realized at 2Gbps for each data bit line
of 70cm in length [5].

Acknowledgments

This work was supported by NEDO. The authors would like to thank Dr. Hirose, Dr.
Masuhara and Prof. Otsuka at MIRAI for their critical reading of the manuscript.

Number of GA evaluation

GA parameters
Population size: 30
Crossover rate: 0.8
Mutation rate: 0.1E

ye
 h

ei
g

ht
 (

m
V

)

Stage 1 Stage 2

Number of GA evaluation

GA parameters
Population size: 30
Crossover rate: 0.8
Mutation rate: 0.1E

ye
 h

ei
g

ht
 (

m
V

)

Stage 1 Stage 2

204 Y. Kasai et al.

References

1. Fiedler, A., Mactaggart, R., Welch, J., Krishnan, S.: A 1.0625Gbps transceiver with 2x-
oversampling and transmit signal pre-emphasis. ISSCC Digest of Technical Papers (1997)
238-239

2. Murakawa, M., et al.: An AI-calibrated IF filter: a yield enhancement method with area and
power dissipation reductions. IEEE J. Solid State Circuits, Vol. 38, No. 3, (2003) 495-502

3. Holland, J. H.: Adaptation in Natural and Artificial Systems. The University of Michigan
Press (1975)

4. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison
Wesley, Reading (1989)

5. Endou, N., Kasai, Y., Iwata, M., Takahashi, E., Higuchi, T.: Galois field computation LSI: a
reconfigurable chip for high-speed communication. 2005 Symposium on VLSI Circuits Di-
gest of Technical Papers (2005) (in press).

Evolution, Re-evolution, and Prototype

of an X-Band Antenna for NASA’s Space
Technology 5 Mission

Jason D. Lohn1, Gregory S. Hornby2, and Derek S. Linden3

1 Computational Sciences Division, NASA Ames Research Center,
Moffett Field, CA 94035, USA

jlohn@arc.nasa.gov

http://ic.arc.nasa.gov/projects/esg/
2 QSS Group Inc., NASA Ames Research Center,

Moffett Field, CA 94035, USA
hornby@email.arc.nasa.gov

3 JEM Engineering, 8683 Cherry Lane,
Laurel, MD 20707

dlinden@jemengineering.com

Abstract. One of the challenges in engineering design is responding to a
change of design requirements. Previously we presented a four-arm sym-
metric evolved antenna for NASA’s Space Technology 5 mission. How-
ever, the mission’s orbital vehicle was changed, putting it into a much
lower earth orbit, changing the specifications for the mission. With min-
imal changes to our evolutionary system, mostly in the fitness function,
we were able to evolve antennas for the new mission requirements and,
within one month of this change, two new antennas were designed and
prototyped. Both antennas were tested and both had acceptable perfor-
mance compared with the new specifications. This rapid response shows
that evolutionary design processes are able to accommodate new require-
ments quickly and with minimal human effort.

1 Introduction

One of the challenges in engineering design is responding to a change in design
requirements. Previously we presented our work in using evolutionary algorithms
to automatically design an X-band antenna for NASA’s Space Technology 5
(ST5) spacecraft [4]. Since our original evolutionary runs and the fabrication
and testing of antennas ST5-3-10 and ST5-4W-03, the launch vehicle for the
ST5 spacecraft has changed resulting in a lower orbit and different antenna
requirements. With traditional engineering design such a change in requirements
would necessitate redoing much of the design work with a near doubling of design
costs. In contrast, with an evolutionary design system for automatically creating
antennas once the software has been developed, modifying it to produce antennas
for a similar design problem requires only a minimal amount of human effort to
implement the change a re-evolve new antennas with minimal additional cost.

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 205–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 J.D. Lohn, G.S. Hornby, and D.S. Linden

The ST5 mission consists of three spacecraft which will orbit at close separa-
tions in a highly elliptical geosynchronous transfer orbit and will communicate
with a 34 meter ground-based dish antenna. Each spacecraft will have two anten-
nas attached, one on each side of the spacecraft, Figure 1. Initially the spacecraft
were to fly approximately 35,000 km above Earth and the requirements for the
communications antenna were for a gain pattern of ≥0 dBic from 40◦ - 80◦ from
zenith. With the change in launch vehicle and the new, lower orbit this necessi-
tated the addition of a new requirement on the gain pattern of ≥-5 dBic from 0◦

40◦ from zenith. The complete set of requirements for the antennas on the ST5
Mission are summarized in table 1. VSWR is a way to quantify reflected-wave
interference, a measure of the impedance mismatch. It is the ratio between the
highest voltage and the lowest voltage in the signal envelope along a transmission
line, with a ratio of 1 being perfect VSWR.

Fig. 1. Photograph of the ST5 mock-up with antennas mounted (only the antenna on

the top deck is visible)

In the rest of this paper we describe the two evolutionary design systems
we used for evolving the initial antennas for this mission and the changes we
made to them to address the change in mission requirements. We then present
the performance of the new antenna designs, both from simulation and from
fabricated units. One of our newly evolved antennas, ST5-33.142.7, meets the
new mission requirements and has successfully passed environmental testing.
Three of these antennas are scheduled to be launched in 2006 and will be the
first evolved hardware in space and the first evolved antennas to be fielded.

2 Evolutionary Antenna Design Systems

As a result of the new ST5 mission requirements we needed to change both the
type of antenna we were evolving and the fitness function. The original antennas

Evolution, Re-evolution, and Prototype of an X-Band Antenna 207

Table 1. Key ST5 Antenna Requirements

Property Specification

Transmit Frequency 8470 MHz
Receive Frequency 7209.125 MHz
VSWR < 1.2 : 1 at Transmit Freq

< 1.5 : 1 at Receive Freq
Original Gain Pattern ≥ 0 dBic, 40◦ ≤ θ ≤ 80◦, 0◦ ≤ φ ≤ 360◦

Additional Gain Pattern Requirement ≥ -5 dBic, 0◦ ≤ θ ≤ 40◦, 0◦ ≤ φ ≤ 360◦

Input Impedance 50 Ω
Diameter < 15.24 cm
Height < 15.24 cm
Antenna Mass < 165 g

we evolved were constrained to a monopole wire antenna with four identical arms,
with each arm rotated 90◦ from its neighbors. There the EA evolved genotypes
that specified the design for one arm and the phenotype consisted of four copies
of the evolved arm. Because of symmetry, the previous four-arm design has a
null at zenith that is built into the design and is unacceptable for the revised
mission. To achieve an antenna that meets the new mission requirements the new
antenna designs were configured to produce a single arm. In addition, because of
the difficulties we experienced in fabricating branching antennas to the required
precision, here we constrained our antenna designs to non-branching antennas.
In the remainder of this section we describe the two evolutionary algorithms
we used to evolve antennas for the ST5 mission and how we changed them to
address the new requirements.

2.1 Parameterized EA for Non-branching Designs

The first EA was used in our previous work in evolutionary antenna design [3]
and it is a standard genetic algorithm (GA) that evolves non-branching wire
forms. With this EA the design space used a vector of real-valued triplets that
specify the X, Y and Z locations of segment end-points. The fitness function
for this EA used pattern quality scores at 7.2 GHz and 8.47 GHz. Unlike the
second EA, VSWR was not explicitly used in this fitness calculation, rather it
is included implicitly by how it affects the gain pattern. To quantify the pattern
quality at a single frequency, PQf , the following formula was used:

PQf =
∑

0◦ ≤ φ < 360◦

0◦ ≤ θ ≤ 80◦

(gainφ,θ − T)2 if gainφ,θ < T

where gainφ,θ is the gain of the antenna in dBic (right-hand polarization) at a
particular angle, T is the target gain (3 dBic was used in this case), φ is the
azimuth, and θ is the elevation. To compute the overall fitness of an antenna
design, the pattern quality measures at the transmit and receive frequencies were
summed, lower values corresponding to better antennas:

208 J.D. Lohn, G.S. Hornby, and D.S. Linden

F = PQ7.2 + PQ8.47

Modifying this evolutionary design system to produce antennas for the new orbit
consisted of changing the fitness function to check angles 0◦ ≤ θ < 40◦ as well
the original range of 40◦ ≤ θ ≤ 80◦.

2.2 Open-Ended EA

The second EA uses an open-ended, variable-length representation in which el-
ements of the genotype specify how to construct the antenna. Each node in the
tree-structured representation is an antenna-construction operator and an an-
tenna is created by executing the operators at each node in the tree, starting
with the root node. In constructing an antenna the current state (location and
orientation) is maintained and operators add wires or change the current state.
The operators are as follows:

– forward(length, radius) - add a wire with the given length and radius ex-
tending from the current location and then change the current state location
to the end of the new wire.

– rotate-x(angle) - change the orientation by rotating it by the specified
amount (in radians) about the x-axis.

– rotate-y(angle) - change the orientation by rotating it by the specified
amount (in radians) about the y-axis.

– rotate-z(angle) - change the orientation by rotating it by the specified
amount (in radians) about the z-axis.

Since we constrained antennas to a single, bent wire with no branching each
node in the genotype has at most one child. This constructive representation
for encoding antennas is an extension of our previous work in using a linear-
representation for encoding rod-based robots [2]. Aside from restricting antennas
to not having branches, the only changes made to this evolutionary design system
to address the new mission requirements were to change the fitness function.

The fitness function used to evaluate antennas is a function of the VSWR
and gain values on the transmit and receive frequencies. These three components
are multiplied together to produce the overall fitness score of an antenna design:

F = vswr × gain× standard deviation

The objective of the EA is to produce antenna designs that minimize F .
The VSWR component of the fitness function is constructed to put strong

pressure to evolving antennas with receive and transmit VSWR values below
the required amounts of 1.2 and 1.5, reduced pressure at a value below these
requirements (1.15 and 1.25) and then no pressure to go below 1.1:

vr = VSWR at receive frequency

v′r =

⎧⎨
⎩

vr + 2.0(vr − 1.25) if vr > 1.25
vr if 1.25 > vr > 1.1
1.1 if vr < 1.1

Evolution, Re-evolution, and Prototype of an X-Band Antenna 209

vt = VSWR at transmit frequency

v′t =

⎧⎨
⎩

vt + 2.0(vt − 1.15) if vt > 1.15
vt if 1.15 > vt > 1.1
1.1 if vt < 1.1

vswr = v′rv
′
t

The gain-penalty component of the fitness function uses the gain (in decibels) in
5◦ increments about the angles of interest: from 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 360◦.
For each angle, the calculated gain score from simulation is compared against the
target gain for that elevation and the outlier gain, which is the minimum gain
value beyond which lower gain values receive a greater penalty. Gain penalty
values are further adjusted based on the importance of the elevation:

gain penalty (i, j):
gain = calculated gain at θ = 5◦i , φ = 5◦j;
if (gain ≥ target[i]) {

penalty := 0.0;
} else if ((target[i] > gain) and (gain ≥ outlier[i])) {

penalty := (target[i] - gain);
} else { /* outlier[i] > gain */

penalty := (target[i]-outlier[i]) + 3.0 * (outlier[i] - gain));
}
return penalty * weight[i];

Target gain values at a given elevation are stored in the array target[] and
are 2.0 dBic for i equal from 0 to 16 and are -3.0 dBic for i equal to 17 and
18. Outlier gain values for each elevation are stored in the array outlier[] and
are 0.0 dBic for i equal from 0 to 16 and are -5.0 dBic for i equal to 17 and 18.
Each gain penalty is scaled by values scored in the array weight[]. For the low
band the values of weight[] are 0.1 for i equal to 0 through 7; values 1.0 for i
equal to 8 through 16; and 0.05 for i equal to 17 and 18. For the high band the
values of weight[] are 0.4 for i equal to 0 through 7; values 3.0 for i equal to 8
through 12; 3.5 for i equal to 13; 4.0 for i equal to 14; 3.5 for i equal to 15; 3.0
for i equal to 16; and 0.2 for i equal to 17 and 18. The final gain component of
the fitness score of an antenna is the sum of gain penalties for all angles.

To put evolutionary pressure on producing antennas with smooth gain pat-
terns around each elevation, the third component in scoring an antenna is based
on the standard deviation of gain values. This score is a weighted sum of the
standard deviation of the gain values for each elevation θ. The weight value used
for a given elevation is the same as is used in calculating the gain penalty.

This fitness function differs from the one we used previously [4] in the fidelity
to which the desired gain pattern can be specified and in explicitly rewarding
for a smooth pattern. Our previous fitness function with the constructive EA
had one target gain value for all elevations and weighted all elevations equal.
With the new fitness function different target gain values can be set for different
elevation angles and also the importance of achieving the desired gain at a given

210 J.D. Lohn, G.S. Hornby, and D.S. Linden

angle is specified through setting the weight value for a given elevation. The
other difference with this fitness function is that previously there was a separate
penalty for “outlier” gain values whereas in the new fitness function this is
included in the gain component of the fitness score and a new component that
measures pattern smoothness is included.

3 Evolved Antennas

To re-evolve antennas for the new ST5 mission requirements we used the same
EA setup as in our initial set of evolutionary runs, however, we did not seed the
first generation with previously evolved antenna designs. For the non-branching
EA, a population of fifty individuals was used, 50% of which is kept from gen-
eration to generation. The mutation rate was 1%, with the Gaussian mutation
standard deviation of 10% of the value range. The non-branching EA was halted
after one hundred generations had been completed, the EA’s best score was
stagnant for forty generations, or EA’s average score was stagnant for ten gener-
ations. For the branching EA, a population size of two hundred individuals was
evolved with a generational EA. Parents were selected with remainder stochas-
tic sampling based on rank, using exponential scaling [5]. New individuals were
created with an equal probability of using mutation or recombination. The Nu-
merical Electromagnetics Code, Version 4 (NEC4) [1] was used to evaluate all
antenna designs.

The best antennas evolved by the two EAs were then evaluated on a second
antenna simulation package, WIPL-D, with the addition of a 6” ground plane
to determine which designs to fabricate and test on the ST5 mock-up. The best
antenna design from each EA was selected for fabrication and these are shown in

(a) (b)

Fig. 2. Evolved antenna designs: (a) evolved using a vector of parameters, named ST5-

104.33; and (b) evolved using a constructive process, named ST5-33.142.7.

Evolution, Re-evolution, and Prototype of an X-Band Antenna 211

(a) (b)

Fig. 3. Simulated 3D patterns for ST5-104.33 and ST5-33.142.7 on 6” ground plane

at 8470 MHz for RHCP polarization. Simulation performed by WIPL-D. Patterns are

similar for 7209 MHz.

Fig. 4. RHCP vs LHCP performance of ST5-104.33. Plot has 2 dB/division.

212 J.D. Lohn, G.S. Hornby, and D.S. Linden

Fig. 5. Measured patterns on ST-5 mock-up of QHA antenna and ST5-104.33 plus

QHA antenna. Phi 1 = 0 deg., Phi 2 = 90 deg.

Figure 2. For these runs a single antenna evaluation took a few seconds of wall-
clock time to simulate and an entire run took approximately six to ten hours.

3.1 Simulated Results

Both antenna designs have excellent simulated RHCP patterns, as shown in
Figure 3 for the transmit frequency. The antennas also have good circular polar-
ization purity across a wide range of angles, as shown in Figure 4 for ST5-104.33.
To the best of our knowledge, this quality has never been seen before in this form
of antenna.

3.2 Measured Results

The antennas were measured on the ST5 mock-up (Figure 1), and the results
are shown in Figure 5. Because each spacecraft has two antennas, one on each
side of the spacecraft, of interest is the performance of pairs of antennas on the
spacecraft. The evolved antennas were arrayed with a Quadrafilar Helix Antenna
(QHA) developed by New Mexico State University’s Physical Science Laboratory
that was the original antenna for this mission. This figure shows plots of two
QHA antennas together, and a QHA and an ST5-104.33 antenna. Results are
similar for ST5-33.142.7, which is the design that has been selected for use on
the ST5 mission. Compared to using two QHAs together, the evolved antennas
have much greater gain across the angles of interest.

4 Conclusion

Previously we reported our work on evolving two X-band antennas for potential
use on NASA’s upcoming ST5 mission to study the magnetosphere. While those

Evolution, Re-evolution, and Prototype of an X-Band Antenna 213

Fig. 6. Three images of a flight antenna; the evolved wire configuration for the radiator

sits on top of a 6” diameter ground plane and is encased inside a radome.

antennas were mission compliant, a change in launch vehicle resulted in a change
in orbit for the ST5 spacecraft and a change in requirements for their communi-
cation antennas. In response to this change in requirements we reconfigured our
evolutionary design systems and in under four weeks we were able to evolve new
antenna designs that were acceptable to ST5 mission planners.

The first set of new ST5 evolved antenna flight units were delivered to God-
dard Space Flight Center (GSFC) on February 25, 2005 (Figure 6). These flight
units have passed all environmental testing and the current baseline plan is to fly
at least three evolved antennas when the mission launches in 2006. Our ability to
rapidly re-evolve new antenna designs shows that the evolutionary design process
lends itself to rapid response to changing requirements, not only for automated
antenna design but for automated design in general.

Acknowledgments

The work described in this paper was supported by Mission and Science Measure-
ment Technology, NASA Headquarters, under its Computing, Information, and
Communications Technology Program. The work was performed at the Com-
putational Sciences Division, NASA Ames Research Center, Linden Innovation
Research and JEM Engineering, and NASA Goddard Space Flight Center. The
support of Ken Perko of Microwave Systems Branch at NASA Goddard and
Bruce Blevins of the Physical Science Laboratory at New Mexico State Univer-
sity is gratefully acknowledged.

References

1. G. J. Burke and A. J. Poggio. Numerical electromagnetics code (nec)-method of
moments. Technical Report UCID18834, Lawrence Livermore Lab, Jan 1981.

2. G. S. Hornby, H. Lipson, and J. B. Pollack. Generative representations for the
automatic design of modular physical robots. IEEE Transactions on Robotics and
Automation, 19(4):703–719, 2003.

3. D. S. Linden and E. E. Altshuler. Automating wire antenna design using genetic
algorithms. Microwave Journal, 39(3):74–86, March 1996.

214 J.D. Lohn, G.S. Hornby, and D.S. Linden

4. J. D. Lohn, G. S. Hornby, and D. S. Linden. An Evolved Antenna for Deployment
on NASA’s Space Technology 5 Mission. In U.-M. O’Reilly, R. L. Riolo, T. Yu, and
B. Worzel, editors, Genetic Programming Theory and Practice II. Kluwer, in press.

5. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, 1992.

Appendix: Genotype of ST5-33.142.7

Listed below is the evolved genotype of antenna ST5-33.142.7. The format for
this tree-structured genotype consists of the operator followed by a number stat-
ing how many children this operator has, followed by square brackets which
start ’[’ and end ’]’ the list of the node’s children. For example the format for
a node which is operator 1 and has two subtrees is written: operator1 2 [
subtree-1 subtree-2]. Since antennas were constrained to be non-branching
each non-leaf node in has at most one child. The different operators in the
antenna-constructing language are given in section 2.2.

rotate-z(0.723536) 1 [rotate-x(2.628787) 1 [rotate-z(1.145415) 1
[rotate-x(1.930810) 1 [rotate-z(2.069497) 1 [rotate-x(1.822537)
1 [forward(0.007343,0.000406) 1 [rotate-z(1.901507) 1 [
forward(0.013581,0.000406) 1 [rotate-x(1.909851) 1 [
rotate-y(2.345316) 1 [rotate-y(0.308043) 1 [rotate-y(2.890265) 1
[rotate-x(0.409742) 1 [rotate-y(2.397507) 1 [
forward(0.011671,0.000406) 1 [rotate-x(2.187298) 1 [
rotate-y(2.497974) 1 [rotate-y(0.235619) 1 [rotate-x(0.611508) 1
[rotate-y(2.713447) 1 [rotate-y(2.631141) 1 [
forward(0.011597,0.000406) 1 [rotate-y(1.573367) 1 [
forward(0.007000,0.000406) 1 [rotate-x(-0.974118) 1 [
rotate-y(2.890265) 1 [rotate-z(1.482916) 1 [
forward(0.019955,0.000406)]
]]]]]]]]

J.M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 215 – 226, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Hardware Platforms for MEMS Gyroscope Tuning
Based on Evolutionary Computation Using Open-Loop

and Closed-Loop Frequency Response

Didier Keymeulen1, Michael I. Ferguson1, Wolfgang Fink1, Boris Oks1, Chris Peay1,
Richard Terrile1, Yen-Cheng2, Dennis Kim2, Eric MacDonald3, and David Foor4

1 Jet Propulsion Laboratory, MS 303-300, 4800 Oak Grove Dr.,
Pasadena, CA 91109, USA

didier.keymeulen@jpl.nasa.gov
http://ehw.jpl.nasa.gov

2 Mechanical and Aerospace Engineering Department, University of California,
Los Angeles, CA 90095-1597
dongj@seas.ucla.edu

3 University of Texas at El Paso, 500 West University dr., El Paso, TX, 79968-0523
emac@ytep.edu

4 Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363
quatro@ieee.org

Abstract. We propose a tuning method for MEMS gyroscopes based on evolu-
tionary computation to efficiently increase the sensitivity of MEMS gyroscopes
through tuning. The tuning method was tested for the second generation
JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the fre-
quency response of the MEMS device in open-loop operation We also report on
the development of a hardware platform for integrated tuning and closed-loop
operation of MEMS gyroscopes. The control of this device is implemented
through a digital design on a Field Programmable Gate Array (FPGA). The
hardware platform easily transitions to an embedded solution that allows for the
miniaturization of the system to a single chip.

1 Introduction

Future NASA missions would benefit tremendously from an inexpensive, navigation
grade, miniaturized inertial measurement unit (IMU), which surpasses the current
state-of-the art in performance, compactness (both size and mass) and power effi-
ciency. Towards this end, under current development at JPL’s MEMS Technology
Group are several different designs for environment tolerant [10], high performance,
low mass and volume, low power MEMS gyroscopes. The accuracy with which the
rate of rotation of micro-gyros can be determined depends crucially on the properties
of the resonant structure. It is both difficult and expensive to attempt to achieve these
desired characteristics in the fabrication process, especially in the case of small
MEMS structures, and thus one has limited overall sensor performance due to un-
avoidable fabrication inaccuracies.

216 D. Keymeulen et al.

The sensitivity of the MEMS gyroscope is maximized when the resonant frequencies
of the two modes of freedom of the MEMS gyroscope are identical. Symmetry of con-
struction is necessary to attain this degeneracy. However, despite a symmetric design,
perfect degeneracy is never attained in practice. Many methods have been developed for
tuning MEMS post-resonator gyroscopes. For example [1] and [2] use adaptive and
closed-loop methods, while [3] changes the frame of the pick-off signal. Our approach
of gyro tuning is achieved through an electrostatic biasing approach [11]. This approach
consists of applying bias voltages to built-in tuning pads to electrostatically soften the
mechanical springs. Because of the time consuming nature of the tuning process when
performed manually, in practice any set of bias voltages that produce degeneracy is
viewed as acceptable at the present time. Thus a need exists for reducing the time nec-
essary for performing the tuning operation, and for finding the optimally tuned configu-
ration, which employs the minimal maximum tuning voltage.

This paper describes the application of evolutionary computation to this optimiza-
tion problem. Our open-loop and closed-loop methods used the following fitness
function for each set of bias voltages applied to the built-in tuning pads: the frequency
split between the two modes of resonance of the MEMS gyroscope. Our open-loop
evaluation proceeds in two steps. First, it measures the open-loop frequency response
using a dynamic signal analyzer. Second, it evaluates the frequency of resonance of
both modes by fitting Lorentzian curves to the experimental data. The process of
setting the bias voltages and the evaluation of the frequency split is completely com-
puter automated. The computer controls a signal analyzer and programmable power
supplies through General Purpose Interface Bus (GPIB). Our method has demon-
strated that we can obtain a frequency split of 52mHz fully automatically in one hour
compared with 200mHz obtained manually by humans in several hours.

The closed-loop method is based on controlling the gyro in a closed-loop along one
axis and measuring the resonance frequencies along this axis at a given set of bias
voltages, then swapping and driving the other axis, thereby extracting the resonant
frequency of both axes. An evolutionary algorithm is then applied iteratively to mod-
ify the bias voltages until the resonant frequency of each axis is equal. A major ad-
vantage of this closed-loop approach is that the resonant frequencies can be extracted
quickly (~1 second) as compared to the open-loop control system, which takes two
orders of magnitude longer. The design of the closed-loop control approach is realized
on an FPGA with augmented portability for future designs and implementations.

This paper is organized such that Section 2 describes the mechanics of the MEMS
micro-gyro, Section 3 describes the evolutionary computation applied to open-loop
measurements of the resonance frequencies, Section 4 describes the closed-loop
hardware platform and the results of our preliminary experiments, and Section 5 de-
scribes future directions and summarizes the project results.

2 Mechanism of the JPL MEMS Micro-gyroscope

The mechanical design of the JPL MEMS micro-gyro can be seen in Figure 1. The
JPL/Boeing MEMS post resonator gyroscope (PRG), is a MEMS analogue to the

 Hardware Platforms for MEMS Gyroscope Tuning 217

X

Y

Ω

X

Y

Z

θ1

θ2

Fig. 1. A magnified picture of the JPL MEMS micro-gyroscope with sense axis Y (S2-, S2+
electrodes used to sense, D2-, D2+, D2in- and D2in+ used to drive along the sense axis) and
drive axis X (D1-, D1+, D1in-, and D1in+ used to drive, S1-, S1+ electrodes used to sense
along the drive axis) and the electrodes used for biasing (B1, B2, BT1, BT2) (picture courtesy
of C. Peay, JPL).

classical Foucault pendulum. A pyrex post, anodically bonded to a silicon plate, is
driven into a rocking mode along an axis (labeled as X in Figure 1) by sinusoidal
actuation via electrodes beneath the plate. In a rotating reference frame the post is
coupled to the Coriolis force, which exerts a tangential “force” on the post. Another
set of electrodes beneath the device senses this component of motion along an axis
(labeled as Y in the figure) perpendicular to the driven motion. The voltage that is
required to null out this motion is directly proportional to the rate of rotation to which
the device is subjected and the voltage scale is reduced proportionally to the fre-
quency split between the two modes of resonance. A change in capacitance occurs as
the top plate vibrates due to the oscillating gap variation between this plate and the
electrodes underneath. This change in capacitance generates a time-varying sinusoi-

218 D. Keymeulen et al.

dal charge that can be converted to a voltage using the relationship V=Q/C. The post
can be driven around the drive axis by applying a time-varying voltage signal to the
drive petal electrodes labeled D1-, D1+, D1in-, and D1in+ in Figure 1. Because there
is symmetry in the device, either of the two axes can be designated as the drive axis.
Each axis has a capacitive petal for sensing oscillations as well; driving axis: labeled
S1+ and S1- in Figure 1, sensing axis: labeled S2+ and S2- in Figure 1. The micro-
gyro has additional plates that allow for electrostatic softening of the silicon springs,
labeled B1, BT1, B2, and BT2 in Figure 1. Static bias voltages can be used to modify
the amount of softening for each oscillation mode. In an ideal, symmetric device, the
resonant frequencies of both modes are equal; however, unavoidable manufacturing
imperfections in the machining of the device can cause asymmetries in the silicon
structure of the device, resulting in a frequency split between the resonant frequencies
of these two modes. The frequency split reduces the voltage scale used to measure
the rate of rotation to which the device is subjected, and thus the sensitivity for detec-
tion of rotation is decreased. By adjusting the static bias voltages on the capacitor
plates, frequencies of resonance for both modes are modified to match each other; this
is referred to as the tuning of the device using an electrostatic biasing approach [11].

In order to extract the resonant frequencies of the vibration modes, there are two
general methods: 1) open-loop and 2) closed-loop control [9]. In an open-loop sys-
tem, we are measuring the frequency response along the drive axis over a 50Hz band
and extract from the measurement the frequency split. A faster method is a closed-
loop control, whereby the gyro is given an impulse disturbance and is allowed to
oscillate freely between the two resonance frequencies, using a hardware platform to
control the switch of the drive-angles.

3 Evolutionary Computation Using Open-Loop Measurement

3.1 Instrumentation Platform for Open-Loop Frequency Response

The open-loop measurement consists of exciting the drive axis with a sine wave at a
given frequency and measuring the resulting amplitude. This is done repeatedly
throughout the frequency spectrum (frequency range from 3,300Hz to 3,350Hz; 50Hz
span; 800 points,). Because of cross-coupling between the different axes, two peaks in
the amplitude response will appear at two different frequencies, showing the resonant
frequencies of both axes (Figure 4). This takes approximately 1.4 minutes to complete
using our instrumentation platform (Figure 2) and must be repeated at least three
times to average out noise.

The platform includes one GPIB programmable power supply for DC voltage, a
GPIB signal analyzer to extract frequency responses (from 3.3kHz to 3.35kHz) of the
gyro in open-loop, and a computer (PC) to control the instruments and to execute the
evolutionary optimization algorithms. The power supply DC voltage controls the
electrostatic bias voltages (connected to the plates B1, BT1, B2, and BT2 in Figure 1)
that are used to modify the amount of damping to each oscillation mode. The GPIB
signal analyzer generates a sine wave with a variable frequency (from 3300 Hz to
3350 Hz with a stepsize of 62.5 mHz – 800 points, 50Hz span) on the drive electrode

 Hardware Platforms for MEMS Gyroscope Tuning 219

(D1-, D1+, D1in-, and D1in+ in Figure 1) and measures the response signal on the
sense electrode (S1-, S1+ in Figure 1) along the drive axis X.

A PC runs the instrument control tool, the measurement tool, and the evolutionary
computation tool. The instrument control software sets up the static bias voltages
using the GPIB power supply DC voltage and measures the frequency response along
the X axis using the GPIB signal analyzer as shown in Figure 2. The software calcu-
lates the frequency split using peak fitting algorithms. Finally, the evolutionary com-
putation software determines the new DC bias voltages from the frequency split. This
procedure is repeated until a satisfactory (user-defined) frequency split is obtained.

AGT
35670A

Analyzer
(2 channel)

Genetic
Algorithm

Gyro

DC Power
Supplies

B1, B2, BT1, BT2
Stimulus 1,2 (τ)

 Response 1,2 (θ)

void SetupDC(float B1, float BT1,
float B2,
float BT2)

void SetupStimulus (float startF,
float span)

Option1:
void GetResponse (float * f1, float * f2, float *
f1a, float * f2a)
[minimize abs(f1-f2), maybe use f1a and f2a
(amplitude) information]
Option2: void GetResponse (float * f_split)
[minimize f_split]

void
Init_Instruments()

Evolutionary
Algorithms

Fig. 2. Software interface between the modified Simulated Annealing/modified Genetic Algo-
rithm (Dynamic Hill Climbing) and the Instrumentation Platform using a GPIB programmable
power supply DC voltage and a signal analyzer. The modified Simulated Annealing and the
modified Genetic Algorithm are running on a PC, which controls the bias voltages and receives
the frequencies of both resonance modes.

3.2 Results of Evolutionary Computation

The MEMS post resonator micro-gyroscope is subject to an electro-static fine-tuning
procedure, performed by hand, which is necessary due to unavoidable manufacturing
inaccuracies. In order to fine-tune the gyro, 4 bias voltages applied to 8 capacitor
plates have to be determined within a range of –60V to +15V. The manual tuning
took several hours and obtained a frequency split of 200 mHz.

In order to fully automate the time-taking manual fine-tuning process, we have es-
tablished a hardware/software interface to the existing manual gyro-tuning hardware-
setup using commercial-off-the-shelf (COTS) components described in Section 3.1.

We developed and implemented two stochastic optimization techniques, for effi-
ciently determining the optimal tuning voltages and incorporated them in the hard-
ware/software interface: a modified simulated annealing related algorithm [7,8] and a

220 D. Keymeulen et al.

modified genetic algorithm with limited evaluation (Dynamic Hill Climbing) [5,6].
These optimization techniques have also been used for other space applications [4].

3.2.1 Simulated Annealing Approach
We were able to successfully fine-tune both the MEMS post-resonator gyroscope and
MEMS disk-resonating gyroscope (a different gyro-design not discussed here) within
one hour for the first time fully automatically. After only 49 iterations with the modi-
fied Simulated Annealing related optimization algorithm we obtained a frequency
split of 125mHz within a 1V-discretization of the search space, starting with an initial
split of 2.625Hz, using a 50Hz span and 800 points on the signal analyzer for the
MEMS post-resonator gyroscope (Figure 3A). For the MEMS disk-resonating-
gyroscope we obtained a frequency split of 250mHz/500mHz within a 0.1V-/0.01V-
discretization of the search space, starting with an initial split of 16.125Hz/16.25Hz,
after 249/12 iterations using a 200Hz span and 800 points on the signal analyzer (Fig-
ure 3B). All three results are better than what can be accomplished manually but
worse than the results obtained by dynamic hill climbing (modified genetic algo-
rithm). The reason for this is that instead of the peak fitting algorithm employed in the
modified genetic algorithm approach a simplified, direct peak-finding procedure was
used in the Simulated Annealing approach.

A

B

Frequency Split vs. Number of Evaluations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

Number of Evaluations

F
re

q
u

en
cy

 S
p

lit
 (

H
z)

Fig. 3. Frequency split as a function of number of evaluations: Simulated Annealing iterations:
(A) for the MEMS post-resonator gyroscope; (B) for the MEMS disk-resonating gyroscope. (C)
Dynamic Hill Climbing algorithm (modified genetic algorithm).

3.2.2 Genetic Related Algorithm Approach
We were also able to fine-tune the MEMS post-resonator gyroscope within one hour
fully automatically using a modified genetic algorithm: dynamic hill climbing.

 Hardware Platforms for MEMS Gyroscope Tuning 221

Figure 3 (C) shows the progress of the optimization algorithm aimed at minimizing
the frequency split. Each evaluation is a proposed set of bias voltages. Our optimiza-
tion method only needed 47 evaluations (51 min) to arrive at a set of bias voltages
that produced a frequency split of less than 100mHz.

Figures 4 and 5 show the frequency response for the unbiased micro-gyro respec-
tively before and after tuning using the dynamic hill climbing and the peak fitting
algorithm.

After optimization of the bias voltages (Figure 5), the frequency split has been
minimized to less than 100mHz and the two peaks are indistinguishable on an HP
spectrum analyzer at 62.5mHz / division (50Hz span, 800 points) setting, which was
used during the optimization process.

The frequency split of 52mHz was verified using a higher resolution mode of the
signal analyzer.

3300 3310 3320 3330 3340 3350
-50

-40

-30

-20

-10

0

10

20

30

40
Lorentzian Fit Split = 1.5648 Hz

Frequency (Hz)

A
m

pl
itu

de
 o

f O
sc

ill
at

io
n

(a
rb

itr
ar

y
un

its
)

 Experimental Data
 L1
 L2
 Combination = L1+L2

3321 3322 3323 3324 3325 3326 3327
0

5

10

15

20

25

30

35
Lorentzian Fit Split = 1.5648 Hz

Frequency (Hz)

A
m

pl
itu

de
 o

f O
sc

ill
at

io
n

(a
rb

itr
ar

y
un

its
)

Fig. 4. Frequency response (top: 50Hz band, bottom: 6Hz band) before tuning using the modi-
fied genetic algorithm. The frequency split is 1564.8mHz. The Y axis is measured in dB. The
initial values of the four bias voltages are: B1 = 14.00V, BT1 = 14.00V, B2 = 14.00V, and BT2
= 14.00V. The bottom picture shows a zoomed-in display of the frequency split over a 6Hz
band.

222 D. Keymeulen et al.

3300 3310 3320 3330 3340 3350
-50

-40

-30

-20

-10

0

10

20

30

40

50
Lorentzian Fit Split = 0.05237 Hz

Frequency (Hz)

A
m

pl
itu

de
 o

f O
sc

ill
at

io
n

(a
rb

itr
ar

y
un

its
)

 Experimental Data
 L1
 L2
 Combination = L1+L2

3323.5 3324 3324.5 3325 3325.5 3326 3326.5 3327 3327.5
0

5

10

15

20

25

30

35

40

Lorentzian Fit Split = 0.05237 Hz

Frequency (Hz)

A
m

pl
itu

de
 o

f O
sc

ill
at

io
n

(a
rb

itr
ar

y
un

its
)

Fig. 5. Frequency response (top: 50Hz band, bottom: 5Hz band) after tuning using the modified
genetic algorithm. The Y axis is measured in dB. The tuning frequency split is 52mHz. The opti-
mized values of the four bias voltages are: B1 = 4.00V, BT1 = 4.00V, B2 = 14.00V, and BT2 = -
16.00V. The bottom picture shows a zoomed-in display of the frequency split over a 4Hz band.

4 Hardware Platform Using Closed-Loop Frequency Response

The principle of closed-loop electrostatic biasing is based on measuring the resonance
frequencies of the drive axis at a given set of bias voltages then swapping and driving
the other axis, thereby extracting the resonant frequencies of both axes. An algorithm
is then applied iteratively to modify the bias voltages until the resonant frequency of
each axis is equal. A major advantage of this closed-loop approach is that the reso-
nant frequencies can be extracted quickly (~1 second) as compared to the open-loop
control system, which takes two orders of magnitude longer. The design of the elec-
trostatic biasing approach is realized on an FPGA with augmented portability for
future designs and implementations.

4.1 Control of the MEMS Micro-gyro

The closed-loop approach requires a closed-loop control whereby the gyro is given an
impulse disturbance and is allowed to oscillate freely. This so-called “pinging” of the

 Hardware Platforms for MEMS Gyroscope Tuning 223

vibration mode allows the gyroscope to immediately settle to its natural frequency.
The corresponding frequency, F1, is measured from the sensing plate under the drive
axis X. Because the device is relatively symmetric, the drive and sense axes are
swapped and the other mode is pinged to get F2. The difference in the frequencies,
i.e., frequency split, is determined very quickly using this technique, about 1.5 sec-
onds, roughly 50 times faster than from the open-loop control method. This ability to
quickly swap the drive axis with the sense axis is a feature of our FPGA Gyro Digital
System (GDS).

The circuitry of the closed-loop control system includes a drive loop and a sense re-
balance loop [3]. The drive loop takes the input from the “drive sense” petal (S1-, S1+
electrodes along the drive axis), and outputs the forcing signal to the “drive drive” petal
electrodes (D1-, D1+, D1in- and D1in+ electrodes along the drive axis). The sense
rebalance loop receives input from the “sense sense” petal (S2-, S2+ electrodes along
the sense axis), and forces or rebalances the oscillations back along the drive axis with a
forcing signal to the “sense drive” (D2-, D2+, D2in- and D2in+ electrodes). The magni-
tude of this forcing function in the rebalance loop is related to the angular rate of rota-
tion. The closed-loop control has also several scaling coefficients, denoted as Ki, which
allow for a mixing of the sensed signals from both axes and a swapping of the drive-
and sense-axis, thus permitting the tuning algorithm to measure the resonance frequency
along the X- or Y-axis, or, indeed, any axis between X and Y [9].

The drive loop implements an Automatic Gain Control (AGC) loop combined with
finite impulse response (FIR) filters. Because the amplitude of the freely oscillating
drive axis will naturally decay, the AGC is implemented in a way to lightly drive or
damp, depending on the circumstance, the drive axis so that the amplitude of the
driven signal is constant and the gyroscope is maintained in an oscillation mode at the
natural frequency. The optimal parameters of the FIR filters and the AGC loop to
maintain the oscillation of the gyroscope have been determined by the UCLA team
using a DSP measurement system and a UCLA MatLab modeling tool [12].

4.2 Gyro Digital System (GDS)

The system used to implement the control, operation, and observability of the micro-
gyro is referred to as the Gyro Digital System (GDS). Figure 6 illustrates the imple-
mentation of the analog and digital systems used to control the micro-gyro. The key
circuit elements that allow proper operation of the micro-gyro include the audio codec
(Stereo Digital to Analog Converter DAC), high voltage Analog to Digital Converters
(ADCs), IEEE-1294 Enhanced Parallel Port (EPP) interface replaced by a UART
interface, frequency measurement and the Digital Signal Processor (DSP) functional-
ity integrated into a Xilinx Virtex II FPGA.

The audio codec is used to translate the analog sensing signals for both the drive
and the sense axes. Its stereo capabilities allow for two inputs and two outputs. The
high-voltage DACs are utilized for the setting of the electrostatic bias voltages on the
gyroscope, which range from +15V to -60V. The parallel port interface allows for
user input/output capabilities. The user can configure the coefficients for the finite
impulse response (FIR) filters along with the scaling coefficients (K1 through K8)
and automatic gain control (AGC) proportional integral (PI) coefficients (Kp and Ki).
The codec is configured through this interface as well.

224 D. Keymeulen et al.

Fig. 6. Block diagram of the entire closed-loop control system

4.3 Results

Using this FPGA digital control system, the micro-gyro was operated for a period of
several hours and provided a frequency measurement that was stable to 1 mHz.

This FPGA system has not yet been tested in the mode where the drive- and sense-
axes are swapped, but we have performed experiments using a DSP platform con-
trolled by a Simulink environment running on a PC that demonstrates the feasibility
of the closed-loop approach. In Figure 7 we show the frequency response of a non-
tuned MEMS gyroscope (B1=B2=BT1=BT2=14V) with two peaks for each of the

Fig. 7. Bode magnitude of the experimental frequency response data for a non-tuned MEMS
micro-gyroscope (B1=B2=BT1=BT2=14V)

 Hardware Platforms for MEMS Gyroscope Tuning 225

resonance frequencies. Using a closed-loop control, the UCLA team was able to find
the correct AGC and FIR filter parameters to maintain the gyro in an oscillating mode
at the natural frequency. The DSP platform measured the frequency of both modes by
swapping the drive and sense axis (F1=3210.73Hz and F2=3212.2Hz). Keeping the
value of the AGC and FIR parameters constant and changing the value of the DC bias
voltage, we were able to maintain the gyro in an oscillation mode and to extract both
resonance frequencies, which have changed due to the update DC bias voltage. The
next step is to couple the FPGA frequency measurement with the genetic algorithm
(GA) and the simulated annealing (SA) running on the PC. The ultimate goal is to
implement the GA and the SA on a microprocessor integrated into a FPGA.

5 Conclusion

The tuning method for MEMS micro-gyroscopes based on evolutionary computation
shows great promise as a technology to replace the cumbersome, manual tuning proc-
ess. We demonstrated, using an open-loop measurement, that we can, for the first time
fully automatically, obtain a four times smaller frequency split at a tenth of the time,
compared to human performance. We also showed that the closed-loop system has the
option of swapping the drive- and sense-axes, thus decreasing the time required for
tuning by more than a factor of fifty compared to the open-loop approach. Addition-
ally, a future design will include a microprocessor on-chip to allow for in-situ re-
tuning of the MEMS micro-gyroscope if there is an unexpected change in the behav-
ior due to radiation, temperature shift, or other faults.

The novel capability of fully automated gyro tuning, integrated in a single device
next to the gyro, enables robust, low-mass and low-power high-precision Inertial
Measurement Unit (IMU) systems to calibrate themselves autonomously during ongo-
ing missions, e.g., Mars Ascent Vehicle.

References

1. Leland, R.P., “Adaptive mode tuning vibrational gyroscopes”, IEEE Trans. Control Sys-
tems Tech., vol. 11, no. 2, pp242-247, March 2003.

2. Painer C.C., Shkel A.M., “Active structural error suppression in MEMS vibratory rate in-
tegrating gyroscopes”, IEEE Sensors Journal, vol.3, no.5, pp. 595-606, Oct. 2003.

3. Y. Chen, R. M’Closkey, T. Tran and B. Blaes. “A control and signal processing integrated
circuit for the JPL-Boeing micromachined gyroscopes” (submitted to IEEE)

4. R. J. Terrile, et al., “Evolutionary Computation Technologies for Space Systems”, in Pro-
ceedings of the IEEE Aerospace Conference, Big Sky, March 2005

5. J.H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan
Press, Ann Arbor, Michigan, 1975.

6. D. Yuret, M. de la Maza, “Dynamic Hill Climbing – Overcoming limitations of optimiza-
tion teqniques”, AI Laboratory, MIT, Cambridge, MA 02139, USA

7. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, “Equation of
State Calculation by Fast Computing Machines,” J. of Chem. Phys., 21, 1087--1091, 1953.

8. S. Kirkpatrick, C.D. Gelat, M.P. Vecchi,, “Optimization by Simulated Annealing,” Sci-
ence, 220, 671--680, 1983.

226 D. Keymeulen et al.

9. K. Hayworth, “Continuous Tuning and Calibration of Vibratory Gyroscopes”, In NASA
Tech Brief, Oct 2003 (NPO-30449)

10. M. I. Ferguson, D. Keymeulen, C. Peay, K. Yee, D. Li, “Effect of Temperature on MEMS
Vibratory Rate Gyroscope”, in Proceedings of the IEEE Aerospace Conference, Big Sky,
March 2005.

11. K. Hayworth, K. Shcheglov, T. Humphreys, A. Challoner, “Electrostatic Spring Softening
in Redundant Degree of Freedom resonators”, patent US 6,823,734 B1, JPL and Boeing,
Nov. 30, 2004.

12. R. M’Closkey and D. Kim, “Real-time tuning of JPL-Boeing MEMS gyro”, personal com-
munication, JPL, March 2005.

Author Index

Alfaro, Teddy 119

Barker, Will 25

Cai, Xinye 143

DeMara, Ronald F. 12

Eriksson, Jan 188

Ferguson, Michael I. 215
Fink, Wolfgang 215
Foor, David 215

Glette, Kyrre 66
Guo, Xin 37

Harding, Simon 155
Higuchi, Tetsuya 198
Hornby, Gregory S. 205
Hülse, Martin 108

Iglesias, Javier 188
Iijima, Yosuke 198
Iwata, Masaya 198

Kasai, Yuji 198
Keymeulen, Didier 37, 215
Kim, Dennis 215
Kořenek, Jan 46

Langeheine, Jörg 86
Linden, Derek S. 205
Lohn, Jason D. 205
Luo, Wenjian 1

MacDonald, Eric 215
Mange, Daniel 165
Mart́ınek, Tomáš 76
Meier, Karlheinz 86
Miller, Julian Francis 131, 155
Moreno, J. Manuel 177, 188
Murakawa, Masahiro 198

Oks, Boris 215

Pasemann, Frank 108
Peay, Chris 215

Ramesham, Rajeshuni 37
Riff, Maŕıa-Cristina 119

Sakanashi, Hidenori 198
Sanchez, Eduardo 56, 177
Schemmel, Johannes 86
Sekanina, Lukáš 37, 46, 76, 98
Sharma, Carthik A. 12
Smith, Stephen L. 143
Stauffer, André 165
Stoica, Adrian 37

Takahashi, Eiichi 198
Tan, Ying 1
Terrile, Richard 215
Thoma, Yann 177
Torresen, Jim 66
Trefzer, Martin 86
Tyrrell, Andy M. 25, 143

Upegui, Andres 56

Vannel, Fabien 165
Villa, Alessandro E.P. 188

Walker, James Alfred 131
Wang, Xin 1
Wang, Xufa 1
Wischmann, Steffen 108

Yen-Cheng 215

Zebulum, Ricardo S. 37, 98
Zhang, Kening 12
Zhang, Yiguo 1

	Frontmatter
	Fault Tolerance and Recovery
	An Adaptive Self-tolerant Algorithm for Hardware Immune System
	Consensus-Based Evaluation for Fault Isolation and On-line Evolutionary Regeneration
	Hardware Fault-Tolerance Within the POEtic System
	Evolvable Hardware System at Extreme Low Temperatures

	Platforms for Evolving Digital Systems
	Intrinsic Evolution of Sorting Networks: A Novel Complete Hardware Implementation for FPGAs
	Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs
	A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device
	An Evolvable Image Filter: Experimental Evaluation of a Complete Hardware Implementation in FPGA

	Evolution of Analog Circuits
	Operational Amplifiers: An Example for Multi-objective Optimization on an Analog Evolvable Hardware Platform
	Intrinsic Evolution of Controllable Oscillators in FPTA-2

	Evolutionary Robotics
	The Role of Non-linearity for Evolved Multifunctional Robot Behavior
	An On-the-fly Evolutionary Algorithm for Robot Motion Planning

	Evolutionary Hardware Design Methodologies
	Improving the Evolvability of Digital Multipliers Using Embedded Cartesian Genetic Programming and Product Reduction
	Benefits of Employing an Implicit Context Representation on Hardware Geometry of CGP
	Evolution In Materio: Investigating the Stability of Robot Controllers Evolved in Liquid Crystal

	Bio-inspired Architectures
	Hardware Implementation of 3D Self-replication
	POEtic: A Prototyping Platform for Bio-inspired Hardware
	Implementation of Biologically Plausible Spiking Neural Networks Models on the POEtic Tissue

	Applications
	Adaptive Waveform Control in a Data Transceiver for Multi-speed IEEE1394 and USB Communication
	Evolution, Re-evolution, and Prototype of an X-Band Antenna for NASA's Space Technology 5 Mission
	Hardware Platforms for MEMS Gyroscope Tuning Based on Evolutionary Computation Using Open-Loop and Closed-Loop Frequency Response

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

