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Abstract. Our main interest is oriented towards keeping both local and
parallel jobs together in a non-dedicated cluster. In order to obtain some
profits from the parallel applications, it is important to consider time
and space sharing as a mean to enhance the scheduling decisions. In this
work, we introduce an integral scheduling system for non-dedicated clus-
ters, termed CISNE. It includes both a previously developed dynamic
coscheduling system and a space-sharing job scheduler to make better
scheduling decisions than can be made separately. CISNE allows multi-
ple parallel applications to be executed concurrently in a non dedicated
Linux cluster with a good performance, as much from the point of view
of the local user as that of the parallel application user. This is possible
without disturbing the local user and obtaining profits for the parallel
user. The good performance of CISNE has been evaluated in a Linux
cluster.

1 Introduction

There are several studies in the literature whose main aim is to determine the
interaction and effects of space-sharing (S.S.) and time-sharing (T.S.) policies.
Nevertheless, most of them are focused on dedicated environments. Furthermore,
many of these studies center on Gang Scheduling [1, 2], combined with some kind
of backfilling [1] policy for doing the job distribution.

In this work, we want to show a new scheduling approach focused on non-
dedicated cluster systems. The use of non-dedicated systems for parallel compu-
tation is based on various studies [3] that prove the effectiveness of making good
use of the idle CPU cycles by executing distributed applications.

In this article, we present a new system named CISNE. Our system com-
bines S.S. and T.S. scheduling techniques, in order to take advantage of the idle
computer resources available across the cluster. CISNE is set up basically of a
dynamic coscheduling technique and a job scheduler.
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The dynamic coscheduling system, termed CCS, is the T.S. scheduling com-
ponent. Traditional dynamic coscheduling techniques [4] rely on the commu-
nication behavior of an application, to simultaneously schedule the communi-
cating processes of a job. Unlike those techniques, CCS takes its scheduling
decisions from the occurrence of local events, such as communication, mem-
ory, Input/Output and CPU, together with foreign events received from remote
nodes. This allows CCS to assure the progress of parallel jobs without disturb-
ing local users, and even using an MultiProgramming Level (MPL) greater than
one. In addition it is possible to re-balance the resources assigned to parallel
tasks throughout the cluster. CCS was previously developed [5], and now we
present the modifications that allows it to be incorporated into an integral clus-
ter scheduling system, such as CISNE.

The job scheduler, named LoRaS, is the S.S. scheduling component of CISNE.
It is responsible for distributing the parallel workload among the cluster nodes.
This is performed by taking into account the state of the cluster system, the char-
acteristics of applications already running and those of the waiting jobs. Based
on those considerations and the coscheduling restrictions, different techniques
for assigning jobs to processors are proposed and evaluated in this article.

CISNE was implemented in a non-dedicated Linux cluster. In this framework,
we evaluated the interaction between T.S. and S.S. techniques. This experimen-
tation shows that our proposal obtains better performance than the rest of the
evaluated techniques, as much from the point of view of the local user as that
of the parallel applications user and the system administrator.

The remainder of this paper is as follows: in section 2 we explain the main
problems to solve and our goals for this article. In section 3 the CISNE system
is presented. The efficiency measurements of CISNE are performed in Section 4.
Finally, the main conclusions and future work are explained in Section 5.

2 T.S. and S.S. Interaction Problems

The choice of a dynamic coscheduler as a T.S. system is based on the fact that
this kind of system is better suited to a non-dedicated environment than an
explicit (or gang) T.S. coscheduling schema [6]. However, this choice has some
implications for the S.S. schema, that force us to develop our own system.

The main effect could be found in the lack of an Ousterhout matrix [7],
present in every explicit coscheduling system. In such a system, the parallel
machine could be seen as a set of n parallel virtual machines (VM). The matrix
provides information about the parallel jobs and their forming tasks, as well as
the mapping onto the VMs. Every VM is synchronized to each other by means
of a global context switch. Thus, there is no interaction among the VMs, which
also means none between the parallel tasks.

On the other hand, in a T.S. system based on dynamic coscheduling tech-
niques, there is no such matrix. Thus, it is not possible to apply the S.S. tech-
niques to each row. As a consequence, and in order to improve the global per-
formance of the system, the (now existing) interaction among the running ap-



222 Mauricio Hanzich et al.

plications has to be considered [8]. Therefore, one of the main goals of this work
is to find the kind and degree of interaction between the system management
components (T.S. and S.S. schemes) to achieve the maximum performance in
distributed tasks without damaging the local ones.

The studies carried out by Choi et al. revealed the sensitivity of the implicit
coscheduling techniques in relation to the mapping and the execution order of
the parallel applications over the cluster (if the MPL is greater than one). In
addition, the type of applications (CPU or communication bound) running con-
currently over the cluster, and the global system state, can have a great influ-
ence on the coscheduling performance. Another factor to take into account in a
non-dedicated cluster is the local user activity, which has to be monitorized pe-
riodically. The control of those factors allows the S.S. system to schedule better,
while it helps the T.S. system to avoid intrusions into the local tasks.

In such a scenario, the best S.S. scheduling of a parallel workload is not
obvious and hence some questions arise including how the distribution of the
parallel applications over the cluster affects the coscheduler performance, how
the inter-arrival time affects the turnaround time of the parallel applications,
and finally, whether it is worth applying a complex scheduling policy and, if so,
which. Our main goal in this work is to shed some light on those questions.

3 CISNE: Cooperative and Integrated Scheduler
for Non-dedicated Environments

In order to provide a system that merges space and time sharing scheduling, we
propose a new integral system called CISNE. The time sharing scheduling is done
by a dynamic coscheduling technique, named CCS (Cooperating CoScheduling)
[5], developed previously by our group. Concerning about the space scheduling
problem, we present a system called LoRaS. This system is responsible for dis-
tributing parallel applications throughout the cluster using information about
the system state, the applications to be launched and the CCS characteristics.

Fig. 1 shows the integration of CCS and LoRaS into CISNE. It shows the
main components making up the virtual machine. As we can see in the fig-
ure, the interaction between the nodes follows a master-slave paradigm. There
is one server node (master with the most important control and management
functions), and the remaining ones interact with the server in a client (slave)
mode.

In the following sections, the CCS and LoRaS systems are explained sepa-
rately.

3.1 CCS (Cooperating CoScheduling) System

Our T.S. system provides an execution environment where the parallel applica-
tions could be dynamically coscheduled. Besides, the given resources are balanced
and the interactive responsiveness of the local applications is totally preserved.
In order to reach this situation, CCS uses the architecture shown in fig. 1, where
each module goal is:
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Fig. 1. LoRaS-CCS Architecture

– Dynamic Coscheduling: no processes should wait for a non-scheduled pro-
cess for synchronization/communication. This is achieved by means of in-
creasing the communicating task priority, even causing CPU preemption.
(implemented inside the Linux kernel).

– Job Interaction Mechanism (JIM): preserves the local user tasks responsive-
ness. In order to reach its goal, this module manages the amount of resources
(CPU and memory) given to the parallel tasks in the node. This is done by
means of a social contract [9], which establish the amount of resources that
could be given to the parallel and local loads, when the node is not idle
(implemented inside the Linux kernel).

– Cooperating Scheme: this module collaborates with the JIM module in order
to balance the resources (memory & CPU) given to the parallel applications
throughout the cluster. It is responsible for the exchange of several events,
such as the login or logout of a local user into a specific node, or the stop-
ping (restarting) event generated by the JIM module for a specific parallel
application. This happen whenever it has to preserve the local responsiveness
(implemented in user space).

3.2 LoRaS (Long Range Scheduler) System
LoRaS implements a Job Scheduler in the user space, which provides a Space-
Sharing scheduling mechanism. The following is the description of the LoRaS
modules shown in fig.1:

– Client : sends a job execution request (JER) to the server module on behalf
of a parallel user.

– Server : the admittance of new JERs to be executed in the system is per-
formed by the server module. This JER is then forwarded to the Job Sched-
uler module.
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– Job Scheduler : executes every received JER using the configured policy. It
is important to mention that JER execution is conditioned by the cluster
state. If there is no possibility of executing the job on its arrival, then the
petition has to wait in a queue for the requested resources.

– Policy (submodule): establishes the possibility of executing a JER for a given
cluster state and the JER resources request. This module is designed in
such a way that it is easy to change its functionality and hence the LoRaS
scheduling system.

– Job Dispatcher : considering that every job can have its own characteristics
(e.g. a PVM or MPI job), it is necessary to configure the job before launching
it. Hence, this module is responsible for doing these previously required tasks.

– Node Control : this module has two different functions. On one hand it
launches and controls the job execution. On the other hand, it gathers infor-
mation from the node state and informs the Job scheduler (and hence, the
policy submodule) so that it can take better scheduling decisions.

3.3 Implemented and Evaluated Policies

In this section, we propose several S.S. techniques oriented towards non-dedicated
clusters. Unlike traditional techniques oriented to dedicated cluster, all our pro-
posals are characterized by the fact of taking the cluster state into account.

The first proposed policy, named Uniform, is characterized by the following:
(a) it merges differently oriented applications (i.e. communication or compu-
tation) in the same node and (b) it runs applications one over another in an
ordered manner, whenever possible. By doing this, we expect to increase the
coscheduling probability of the CCS system. By ordering the applications we
mean to launch parallel applications in such a way that each task of a couple of
parallel applications runs in the same set of nodes. This situation is depicted in
fig. 2.a and we call it a Uniform situation.

Fig. 2. Difference between a uniform (a) and a normal (b) policy

However, the Uniform policy executes the applications in any free place if
there is no space for them in a uniform place. Besides, it is important to mention
that in every case the policy must try to help to preserve the local user activity by
not overloading nodes with some local tasks. This is done by limiting the amount
of usable memory and the MPL, respecting the established social contract.
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The problem of arranging different size (number of needed nodes) applica-
tions in a uniform way, was dealt with by always arranging smaller applications
over bigger ones. Therefore, little applications can start sooner, while bigger
applications do not notice to much effect from the coscheduling point of view.

The second proposed policy, termed Normal, considers the state of the system
nodes, but does not consider the running job distributions as the uniform does.
Thus, the resulting scheduling can reach a situation like the one depicted in fig.
2.b. where an application like J3 shares its nodes with a couple of applications.
This situation tends to diminish the coscheduling system performance and hence
the application execution time is increased.

In addition, both normal and uniform policies are compared against a Basic
policy where we execute the parallel workload with an MPL = 1, which means
at most one parallel task per node. Finally, and in order to compare with a well
known S.S. policy, we introduce an EASY backfilling [10] policy in our evaluation.
The EASY policy executes a job not-at-the-head of the jobs queue, whenever
this does not delay the start of the job at the head. By including this policy,
we can show the effect of incrementing the MPL compared with the use of an
EASY policy with an MPL = 1.

It is important to note that for every evaluated policy, we use a FCFS policy
for queuing each arriving job. Doing this, we ensure the absence of starvation in
the system and a fair treatment for every job.

4 Experimentation

This experimentation is divided into two sections. The first section compares
our coscheduling system in relation to traditional coscheduling systems based
exclusively on communication events. The second set of results shows how CISNE
performs under our defined S.S. policies.

In order to simulate a non-dedicated cluster, we need two different kinds of
workloads. On one hand, we need to simulate local user activity and, on the
other hand, we need some parallel applications that arrive at some interval.

The local workload was carried out by running a synthetic benchmark. This
allowed the CPU load, memory requirements and network traffic used by the
local user to be fixed. In order to assign these values in a realistic way, we
monitored the average resources used by real users. According to this monitoring,
we defined two local user profiles. The first profile identifies 65% of the users with
high needs on inter-activeness (called XWindows user: 15% CPU, 35% Mem.,
0,5KB/sec LAN), while the other profile distinguishes 35% of the users with
web navigation needs (called Internet user: 20% CPU, 60% Mem., 3KB/sec.
LAN). This benchmark alternate CPU activity with interactivity by means of
running several system calls and different data transfers to memory. In order
to measure the level of intrusion into the local load, our benchmark provide
us with the system call latency. Besides, and according to the values observed
in the monitoring, we loaded the 25% of the nodes with local workload in our
experiments.
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The parallel workload was a list of 90 NAS parallel applications with a size of
2, 4 or 8 tasks that reached the system following a Poisson distribution [2]. The
chosen NAS applications were: CG (mem: 55-120MB / CPU: 65-70% / time:
37-51 sec.), IS (mem: 70-260MB / CPU: 58-69% / time: 40-205 sec.), MG (mem:
60-220MB / CPU: 82-89% / time: 26-240 sec.) and BT (mem: 7-60MB / CPU:
85-93% / time: 90-180 sec.). The parallel jobs were merged so that the entire
workload had a balanced requirement of computation and communication (25%
of the workload composed by each application). It is important to note that the
MPL reached for the workload depended on the system state at each moment,
but in no case it surpassed an MPL = 4. This was established in order to respect
the social contract, which was set to 50% of the resources available for each kind
of load (local/parallel) [5].

Both workloads were executed in an Linux cluster composed of 16 P-IV
(1,8GHz) nodes with 512MB of memory and a fast ethernet interconnection
network.

4.1 Evaluating the Time-Sharing Systems

In this section we have compared the CCS policy in relation to the plain Linux
scheduler and two well known communication-driven coscheduling strategies: im-
plicit and (isolated) dynamic coscheduling. In implicit coscheduling, a process
waiting for messages spins for a determined time before blocking. In contrast,
dynamic coscheduling deals with all messages arrivals (like CCS, but without re-
source balancing). It works by increasing the receiving task priority, even causing
CPU preemption of the task being executed inside.

They were evaluated by running the parallel workload for several values of
MPL (1 to 4). The parallel workload was executed applying a Normal S.S. policy.
Its performance was measured by means of the slowdown. This is the response-
time ratio of a job in a non-dedicated system in relation to the time needed in
a system dedicated to this job.

From fig. 3.a, we can see that the slowdown of the parallel applications is
always better for our CCS coscheduling system. In fact, this difference increases
with the value of the MPL. This good CCS behavior is due to the interaction
of the coscheduling scheme with the adaptive and balanced resource allocation
carried out by CCS. In addition, the social contract implemented by CCS main-
tains the response time (measured by the mean of the local benchmark system
call latency in fig. 3.b) always under 400ms. This limit for the Response Time,
established by [11], is an acceptable threshold before the user can notice a lack
of inter-activeness.

These results encouraged us to use CCS to integrate a coscheduler into the
CISNE system.

4.2 Evaluating the CISNE Integrated System

In this subsection, we want to show the performance of CISNE, by applying
the described space-sharing policies to the CCS system. This interaction will be
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Fig. 3. Parallel applications slowdown (a) and system call latency (b) under the eval-
uated policies

quantified by measuring the turnaround time of the parallel applications com-
paring the Uniform, Normal, Basic and EASY policies. In addition, we measure
the makespan of the workloads (i.e. the executing time of the whole workload).
Doing this it is possible to evaluate CISNE from a system administrator’s point
of view.

Fig. 4.a shows the turnaround, wait and execution time for every evaluated
policy. Here we can see that the normal and backfilling policies give us almost
the same behavior, while the uniform policy performs better by reducing the
execution time and hence the waiting time of the workload. From this figure, it
is also clear that the turnaround time is dictated by the waiting time. On the
other hand, it would be desirable to evaluate the effect of the execution time
as the predominant turnaround factor. With this aim, we executed the parallel
workload doubling the inter-arrival time between applications. Fig. 4.b shows
the results obtained for the same policies.

Fig. 4. Turnaround, Wait and Execution time for the exercised workloads

From those figures, it is clear that the job distribution policy has a great
impact on the underlying coscheduling system performance, considering the re-
duction in the execution time. This effect arises for two different reasons: on
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one hand, the applications compete for different kinds of resource, letting them
evolve without disturbing each other. On the other hand, the fact of merging
applications with different communication patterns (under the Uniform policy),
improves the performance of the coscheduler. This is due to a CCS enhance-
ment in recognizing the communication needs. It is important to note that the
execution time for the backfilling and basic policies are better due to the MPL
restriction.

Another effect that it is important to mention is how the waiting time is
noticeably reduced when we apply a Uniform policy. This effect is not only due
to a decrease in the execution time, but due to a better resource distribution that
enhances the scheduling opportunities. Actually, this effect is not just a benefit
of the Uniform policy, but a problem of the Normal one. The main problem
is that the Normal policy tends to distribute the resources in such a way that
the total available memory throughout the cluster could be enough to execute
an application, but there are not enough nodes with enough free memory for
launching it. However the Uniform policy tends to localize the available resources
and then the scheduling possibility is enhanced in the average case. This is due
to the elevated percentage of small applications in the workloads tested. That
fact was verified in [2] to be representative of the reality.

In order to take a closer look at the enhancement of the coscheduling per-
formance, fig. 5.a shows how the selected policy affects the jobs slowdown. This
graphic is calculated by comparing the Normal and Uniform policies with the
Basic policy (Slowdown = 1), where every job is executed in isolation (except
for some local activity). The figure shows how a uniform policy could reduce
the slowdown from 40% (1,40) to less than 15% (1,15). This demonstrates the
good performance of our coscheduling system as the close interaction with the
S.S technique and, once again, that the level of resources is enough to increase
the MPL with almost no detriment to the (parallel) application execution time.

Fig. 5. (a) Applications slowdown for the Normal and Uniform policies compared with
the Basic policy. (b) Workloads Makespan for the evaluated workloads and policies

Another aspect we want to analyze is the CISNE behavior from the system
point of view (makespan). The results for both workloads (i.e. single and double
arrival time), can be observed in fig. 5.b for the policies evaluated.

A couple of effects can be extracted from the figure. First of all, a backfilling
policy behaves better with a shorter workload arrival time than with a longer
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one. This is due to a longer (waiting) jobs queue that enhances the backfilling
opportunities. Considering the Normal and Uniform policies, it is clear that the
last one has some advantages. In this case, the effect is directly related to a
better resource usage and the enhancement in the application turnaround time.

5 Conclusions and Future Work

This work presents a new integral system, named CISNE, that considers both
S.S and T.S. concerns, which is applied on a non-dedicated cluster. Using this
framework, the paper analyzes how the performance of a dynamic coscheduling
system could be affected by the distribution policy over a non-dedicated clus-
ter. With this aim, we evaluated four policies oriented to non-dedicated clusters:
Uniform, Normal, Backfilling and Basic. We found that a Uniform policy (i.e. a
set of applications running on the same set of nodes), can dramatically diminish
the turnaround time of the applications (up to 76%) compared with other ap-
proaches. In addition, the performance of a uniform distribution was evaluated
considering a turnaround time limited, on one hand, by the waiting time (single
arrival time workload), and on the other hand by the execution time (double ar-
rival time workload). In both scenarios a Uniform policy was shown to perform
well, even from the system point of view (makespan). It is important to note
that those gains were obtained without disturbing the system responsiveness.

Considering our future work and taking into account that the Uniform and
EASY policies attack the scheduling problem from different points of view, they
could be combined in a schema where the MPL is greater than one and we also
apply a backfilling policy. To do this, we have to define a prediction model to
establish the execution time of a parallel application considering the cluster state
and the interaction between the running applications.
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