

Lecture Notes in Computer Science 3648
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

José C. Cunha Pedro D. Medeiros (Eds.)

Euro-Par 2005
Parallel Processing

11th International Euro-Par Conference
Lisbon, Portugal, August 30 – September 2, 2005
Proceedings

13

Volume Editors

José C. Cunha
Pedro D. Medeiros
Universidade Nova de Lisboa
Faculdade de Ciências e Technologia CITI Centre
Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: {jcc,pm}@di.fct.unl.pt

Library of Congress Control Number: 2005931410

CR Subject Classification (1998): C.1-4, D.1-4, F.1-3, G.1-2, H.2

ISSN 0302-9743
ISBN-10 3-540-28700-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28700-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11549468 06/3142 5 4 3 2 1 0

Preface

Euro-Par Conference Series

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel computing. The major themes
can be divided into the broad categories of hardware, software, algorithms and
applications for parallel computing. The objective of Euro-Par is to provide a
forum within which to promote the development of parallel computing both as
an industrial technique and an academic discipline, extending the frontier of
both the state of the art and the state of the practice. This is particularly im-
portant at a time when parallel computing is undergoing strong and sustained
development and experiencing real industrial take-up. The main audience for,
and participants in, Euro-Par are seen as researchers in academic departments,
government laboratories and industrial organizations. Euro-Par’s objective is to
be the primary choice of such professionals for the presentation of new results
in their specific areas. Euro-Par is also interested in applications which demon-
strate the effectiveness of the main Euro-Par themes. Previous Euro-Par confer-
ences took place in Stockholm, Lyon, Passau, Southampton, Toulouse, Munich,
Manchester, Paderborn, Klagenfurt, and Pisa. Next year, the conference will
take place in Dresden. Euro-Par has a permanent Web site where its history and
organization are described: http://www.europar.org. The Euro-Par conference
series is traditionally organized in cooperation with the International Federa-
tion for Information Processing (IFIP), in cooperation with the Association for
Computer Machinery (ACM), and in cooperation with the Institute of Electrical
and Electronics Engineers (IEEE) Computer Society, Technical Committee on
Parallel Processing (TCPP).

Euro-Par 2005 in Lisbon, Portugal

Euro-Par 2005 was the eleventh conference in the Euro-Par series. It was orga-
nized by the Centre for Informatics and Information Technology (CITI) and the
Department of Informatics of the Faculty of Science and Technology of Univer-
sidade Nova de Lisboa, at the Campus of Monte de Caparica.

The conference included three invited tutorials: Testing Multi-threaded and
Distributed Applications (Eitan Farchi and Shmuel Ur, IBM, Haifa); Kerrighed,
a Single System Image Cluster Operating System (Christine Morin and Re-
naud Lottiaux, IRISA/INRIA); and Creating and Managing Distributed Sci-
entific Workflows (presented by Omer F. Rana, joint work with Ian Taylor,
Matthew Shields and David W. Walker, Cardiff University).

VI Preface

The conference included invited talks by José A.B. Fortes (Advanced Com-
puting and Information Systems Lab, University of Florida), On the Use of
Virtualization and Service Technologies to Enable Grid Computing; by José E.
Moreira (IBM Systems and Technology Group, Rochester), The Evolution of
the Blue Gene/L Supercomputer; by Omer F. Rana (Cardiff University), Agent
based Computational Grids: Research Issues and Challenges; and by Raymond
Bair (Laboratory Computing Resource Center, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory), Science on a Large Scale. A full
paper of the talk given by Fortes, and the abstracts of the talks by Moreira,
Rana, and Bair, are included in these proceedings.

A co-located workshop was organized by the GridCoord European initia-
tive on grid computing, on Really Large-Scale Grid Architecture, gathering re-
searchers from the CoreGrid NoE and leading researchers experienced with the
actual deployment of applications at a very large scale. The workshop was based
on the contribution of invited speakers, and the workshop attendance was free for
Euro-Par 2005 participants. The CoreGRID EU Network of Excellence organized
several working meetings during the conference, enriching the opportunities for
debate of Euro-Par related topics.

Euro-Par 2005 Statistics

Euro-Par 2005 was organized according to the traditional conference format,
in 16 topics covering a diversity of dimensions of parallel and distributed com-
puting. Each topic was supervised by a committee of four persons: a global
chair, a local chair, and two vice-chairs. The call for papers attracted a total of
388 submissions, representing 44 countries (based on the corresponding author’s
country). An average of 3.8 review reports were collected for each paper, for a
grand total of 1470 review reports that involved about 700 different reviewers. A
total of 121 full papers were accepted: 120 regular papers, and one distinguished
paper. This year, there was no call for short papers, unlike previous conferences.
Eventually, the camera-ready version of one paper was not submitted by one
author, and therefore 120 papers are actually included in the proceedings. Pa-
pers were accepted from 23 different countries. The principal contributors by
country were the USA (30 accepted papers), France (17 accepted papers), Spain
(16 accepted papers), and Germany (13 accepted papers).

Acknowledgments

Euro-Par 2005 was made possible due to the support of many individuals and
organizations. The CITI Centre, the Department of Informatics, and the Fac-
ulty of Science and Technology of Universidade Nova de Lisboa were the main
conference institutional sponsors. A number of institutional and industrial spon-
sors gave their contributions and/or participated in organizing exhibits at the
conference site. Their names and logos appear on the Euro-Par 2005 Web site:

Preface VII

http://europar05.di.fct.unl.pt. In particular, we gratefully acknowledge the sup-
port from IBM Portugal.

Special thanks are due to the authors of all the submitted papers, the mem-
bers of the topic committees, and all reviewers in all topics, for their contributions
to the success of this conference.

We are grateful to the members of the Euro-Par Steering Committee for their
support. In particular, Marco Danelutto, co-organizer of Euro-Par 2004, and
Harald Kosch, co-organizer of Euro-Par 2003, never failed to give us their prompt
advice regarding all the organization details. We owe special thanks to Christian
Lengauer, chairman of the Steering Committee, who was always available for
sharing with us his experience in the organization of Euro-Par, and for giving us
friendly advice, support, and encouragement. We also thank Luc Bougé, vice-
chair, for his vision and contributions to improve Euro-Par conferences. We are
gratefull to Springer for publishing these proceedings. In particular, to Alfred
Hofmann, and also specially to Ursula Barth, for their permanent availability
and willingness to solve the difficulties that appeared in the preparation of the
proceedings.

Euro-Par 2005 was co-sponsored by the IFIP TC10/WG10.3, and organized
in cooperation with ACM (SIGACT, SIGARCH, SIGMETRICS, SIGMM, SIG-
MOBILE, SIGMOD, SIGOPS and SIGSOFT), and in technical cooperation with
the IEEE Computer Society TCPP.

Euro-Par 2005 was a GridCoord and a CoreGRID event, with co-located
activities from these EU initiatives, and we thank Luc Bougé and Thierry Priol
for their influence in making this possible.

We gratefully acknowledge the enthusiastic support from the Rector of the
University and the Dean of the Faculty. Locally, we thank the staff of the De-
partment of Informatics and the CITI research centre, funded by the Portuguese
Ministério da Ciência, Tecnologia e Ensino Superior and all the people from the
faculty services, as well as Filipa Reis, head secretary of the department, and
Madalena Almeida, from Viagens Abreu, who made possible the local organi-
zation of Euro-Par 2005. In particular, we acknowledge the excellent efforts of
the local team: Jorge Custódio, Carmen Morgado, Paulo Lopes, Vı́tor Duarte,
João Lourenço, Cećılia Gomes, Rui Marques, Miguel Mauŕıcio, and the student
volunteers, who were all committed to solving the numerous problems related to
the conference organization.

It was our pleasure and an honor to host Euro-Par 2005 at Universidade
Nova de Lisboa. We hope all the participants enjoyed the technical programme
and the social events organized during the conference.

Lisbon, June 2005 José C. Cunha
Pedro D. Medeiros

Organization

Euro-Par Steering Committee

Chair
Christian Lengauer University of Passau, Germany

Vice-Chair
Luc Bougé ENS Cachan, France

European Representatives
José Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Rainer Feldmann University of Paderborn, Germany
Christos Kaklamanis Computer Technology Institute, Greece
Paul Kelly Imperial College London, United Kingdom
Harald Kosch University of Klagenfurt, Austria
Thomas Ludwig University of Heidelberg, Germany
Emilio Luque Universitat Autònoma of Barcelona, Spain
Luc Moreau University of Southampton, United Kingdom
Rizos Sakellariou University of Manchester, United Kingdom

Non-European Representatives
Jack Dongarra University of Tennessee at Knoxville, USA
Shinji Tomita Kyoto University, Japan

Honorary Members
Ron Perrott Queen’s University Belfast, United Kingdom
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observers
Wolfgang Nagel Dresden University of Technology, Germany
Anne-Marie Kermarrec IRISA Rennes, France

X Organization

Euro-Par 2005 Local Organization

Euro-Par 2005 was organized by the CITI Research Centre and the Department
of Informatics of the Faculty of Science and Technology of Universidade Nova
de Lisboa.

Conference Chair

José C. Cunha

Conference Vice-Chair

Pedro D. Medeiros

Webmaster and Systems Management

Jorge Custódio

Technical Support

Vı́tor Duarte, João Lourenço, Cećılia Gomes, Rui Marques, Miguel Mauŕıcio

Social Events

Carmen Morgado

Exhibits

Paulo Lopes

Secretariat and Registration

Filipa Reis
Madalena Almeida (Viagens Abreu)

Organization XI

Euro-Par 2005 Program Committee

Topic 1: Support Tools and Environments

Global Chair
Henryk Krawczyk Faculty of Electronics, Telecommunications

and Informatics, Technical University of
Gdansk, Gdansk, Poland

Local Chair
Tomàs Margalef Computer Architecture and Operating

Systems Dept., Univ. Autònoma de
Barcelona, Barcelona, Spain

Vice Chairs
Jacques Chassin

de Kergommeaux
INPG-ENSIMAG, LSR-IMAG, Grenoble,
France

Pierre Manneback Faculté Polytechnique de Mons, Belgium

Topic 2: Performance Prediction and Evaluation

Global Chair
Allen D. Malony Department of Computer and Information

Science, University of Oregon, Eugene, USA

Local Chair
Lúıs Silva Department of Informatics Engineering,

University of Coimbra, Portugal

Vice Chairs
Thomas Fahringer Institute for Computer Science, University of

Innsbruck, Austria
Allan Snavely San Diego Supercomputer Center, University

of California, USA

Topic 3: Scheduling and Load Balancing

Global Chair
Denis Trystram ID-IMAG, Grenoble, France

Local Chair
Lúıs P. Santos Dept. of Informatics, University of Minho,

Braga, Portugal

XII Organization

Vice Chairs
Uwe Schwiegelshohn Computer Engineering Institute, University

of Dortmund, Dortmund, Germany
Michael A. Bender Dept. of Computer Science, State Univ. of

New York at Stony Brook, USA

Topic 4: Compilers for High Performance

Global Chair
Albert Cohen INRIA Futurs, Parc Club Orsay Université,

Orsay, France

Local Chair
José Moreira IBM Systems and Technology Group,

Rochester, MN, USA

Vice Chairs
Martin Griebl University of Passau, Germany
Michael O’Boyle Institute for Computing Systems

Architecture, University of Edinburgh, UK

Topic 5: Parallel and Distributed Databases, Data Mining
and Knowledge Discovery

Global Chair
Domenico Talia DEIS, University of Calabria, Rende CS,

Italy

Local Chair
Rui Camacho Faculty of Engineering, University of Porto,

Portugal

Vice Chairs
Hillol Kargupta Dept. of Computer Science and Electrical

Engineering, University of Maryland
Baltimore County, USA

Patrick Valduriez INRIA and LINA–Université de Nantes,
France

Topic 6: Grid and Cluster Computing: Models, Middleware
and Architectures

Global Chair
Craig Lee The Aerospace Corporation, El Segundo,

California, USA

Organization XIII

Local Chair
João Gabriel Silva Dept. of Informatics Engineering, University

of Coimbra, Portugal

Vice Chairs
Thilo Kielmann Dept. of Computer Science, Vrije

Universiteit, Amsterdam, The Netherlands
Laurent Lefèvre INRIA RESO/LIP École Normale Supérieure

de Lyon, France

Topic 7: Parallel Computer Architecure
and Instruction-Level Parallelism

Global Chair
Theo Ungerer Institute of Informatics, University of

Augsburg, Germany

Local Chair
Pedro Trancoso Dept. of Computer Science, University of

Cyprus, Nicosia, Cyprus

Vice Chairs
Kevin Skadron Dept. of Computer Science, University of

Virginia, Charlottesville, USA
Josep-Lluis Larriba-Pey Dept. of Computer Architecture, Universitat

Politécnica de Catalunya, Barcelona, Spain

Topic 8: Distributed Systems and Algorithms

Global Chair
Marc Shapiro Microsoft Research Cambridge, UK

Local Chair
Lúıs Rodrigues Dept. of Informatics, University of Lisbon,

Portugal

Vice Chairs
Felix Gaertner Dept. for Computer Science, RWTH Aachen

University, Germany
Idit Keidar Dept. of Electrical Engineering, Technion –

Israel Institute of Technology, Haifa, Israel

XIV Organization

Topic 9: Parallel Programming: Models, Methods, and Languages

Global Chair
Marco Danelutto Dept. of Computer Science, University of

Pisa, Italy

Local Chair
Fernando Silva Dept. of Computer Science, University of

Porto, Portugal

Vice Chairs
Denis Caromel INRIA and Institut Universitaire de France,

Univ. de Nice Sophia Antipolis, France
Duane Szafron Dept. of Computing Science, University of

Alberta, Edmonton, Canada

Topic 10: Parallel Numerical Algorithms

Global Chair
Jacek Kitowski Institute of Computer Science, AGH

University of Science and Technology,
Krakow, Poland

Local Chair
Filomena d’Almeida Faculty of Engineering, University of Porto,

Portugal

Vice Chairs
Boleslaw K. Szymanski Rensselaer Polytechnic Institute, Troy, NY,

USA
Andrzej M. Goscinski School of Information Technology, Deakin

University, Victoria, Australia

Topic 11: Distributed and High-Performance Multimedia

Global Chair
Laszlo Boeszoermeny Institute for Information Technology,

University of Klagenfurt, Austria

Local Chair
Nuno Correia Dept. of Informatics, Universidade Nova de

Lisboa, Portugal

Organization XV

Vice Chairs
Max Mühlhäuser Technical University of Darmstadt, Germany

Geoff Coulson Computing Department, Lancaster
University, UK

Topic 12: Theory and Algorithms for Parallel Computation

Global Chair
Andrea Pietracaprina Dipartimento di Ingegneria

dell’Informazione, Università di Padova, Italy

Local Chair
Casiano Rodŕıguez-Leon Universidad de La Laguna, Tenerife, Spain

Vice Chairs
Kieran Herley Dept. of Computer Science, University

College Cork, Ireland
Christos Zaroliagis Dept. of Computer Engineering and

Informatics, CTI and University of Patras,
Greece

Topic 13: Routing and Communication in Interconnection Networks

Global Chair
Emilio Luque Computer Architecture and Operating

Systems Dept., Universitat Autònoma de
Barcelona, Spain

Local Chair
José Legatheaux Martins Dept. of Informatics, Universidade Nova de

Lisboa, Portugal

Vice Chairs
Cruz Izu Dept. of Computer Science, University of

Adelaide, Australia
Olav Lysne Simula Research Laboratory, Lysaker,

Norway

Topic 14: Mobile and Ubiquitous Computing

Global Chair
Evaggelia Pitoura Dept. of Computer Science, University of

Ioannina, Greece

XVI Organization

Local Chair
Nuno Preguiça Dept. of Informatics, Universidade Nova de

Lisboa, Portugal

Vice Chairs
Marios Dikaiakos Dept. of Computer Science, University of

Cyprus, Nicosia, Cyprus
Valérie Issarny INRIA-Rocquencourt, Domaine de Voluceau,

France

Topic 15: Peer-to-Peer and Web Computing

Global Chair
Anne-Marie Kermarrec INRIA/IRISA, Campus Universitaire de

Beaulieu, France

Local Chair
Henrique João Domingos Dept. of Informatics, Universidade Nova de

Lisboa, Portugal

Vice Chairs
Anthony Rowstron Microsoft Research Cambridge, UK
Márk Jelasity Dept. of Computer Science, University of

Bologna, Italy

Topic 16: Applications of High-Performance and Grid Computing

Global Chair
Raymond Bair Mathematics and Computer Science

Division, Argonne National Laboratory, USA

Local Chair
José Laginha Palma Faculty of Engineering, University of Porto,

Portugal

Vice Chairs
Ed Seidel Max-Plank Institute für Gravitationsphysik,

Germany and Louisiana State University,
Baton Rouge, USA

Michel Daydé IRIT-ENSEEIHT, Toulouse, France

Organization XVII

Euro-Par 2005 Referees

Not including members of the Programme and Steering Committees.

Ahmed Abdelkhalek
Tarek Abdelrahman
Jaume Abella
Adnan Agbaria
Kunal Agrawal
Kento Aida
Reza Akbarinia
Mohammad Mursalin Akon
Marco Aldinucci
Gabrielle Allen
Francisco Almeida
JP Moitinho de Almeida
Paulo Sérgio Almeida
Martin Alt
Albano Gomes Alves
Yair Amir
Maria Andreou
Cosimo Anglano
David Angulo
Filipe Araujo
Toni Arbona
Jean-Paul Arcangeli
Esther Arkin
Álvaro F.M. Azevedo

David A. Bader
Gal Badishi
Faruk Bagci
Iris Bahar
Mark Baker
Omar Bakr
Henri Bal
Subir Bandyopadhyay
Carlos Baquero
Ranieri Baraglia
Valmir C. Barbosa
Luiz A. Barroso
Sandro Bartolini
Alessandro Bassi
Michael Bauer
Jean-François Bauwens

Olivier Beaumont
Micah Beck
Zinaida Benenson
Anne Benoit
Amit Bhaya
Ricardo Bianchini
Ganesh Bikshandi
Angelos Bilas
Vicente Blanco
François Bodin
Sabine Böhm
Lars Ailo Bongo
Edward Bortnikov
K. Boryczko
Luc Bouganim
Anu Bourgeois
Hinde Lilia Bouziane
Tim Brecht
Uwe Brinkschulte
Y. D. Bromberg
Jim Browne
Piotr Brudlo
David Bunde
Mathijs den Burger
Yann Busnel
Javier Bustos
Rajkumar Buyya

Susana Cabaço
Massimo Cafaro
Wei Cai
Yvan Calas
Lasaro Jonas Camargos
Sonia Campa
Ramon Canal
Yves Caniou
Juan Carlos Cano
Massimo Canonico
Jiannong Cao
Franck Cappello
Manuel Carro

XVIII Organization

Antonio Carzaniga
Rafael Casado
Henri Casanova
António Casimiro
Jorge Castro
Christophe Cerin
Teresa Chambel
Agnès de La Chapelle
Ricardo Chaves
Ann Chervenak
Gregory Chockler
Marcelo Cintra
Walfredo Cirne
Antonio Cisternino
Rance Cleaveland
Andrea Clematis
Raphael Clifford
Murray Cole
Raphael Collet
Michele Co
Carmela Comito
Antonio Congiusta
Massimo Coppola
Julita Corbalan
Ricardo C. Correa
Lúıs Correia
Paulo Correia
Alexandre di Costanzo
Vı́tor Santos Costa
Cedric Coulon
Patrick Crowley
Maria Cutumisu
Czarnul

Pasqua D‘Ambra
Litaize Daniel
Abdelmadjid Dargham
Kei Davis
Kurt Debattista
Jérôme Décamps
Ewa Deelman
Chirag Dekate
Carole Delporte-Gallet
Camil Demetrescu
Yves Denneulin

Enrico Denti
Veerle Desmet
Frédéric Desprez
Robert Dew
Gerasimos Dimitriadis
Menno Dobber
Shlomi Dolev
Rion Dooley
Yon Doursiboure
Karel Driesen
Steven G. Dropsho
Rubing Duan
Ziyang Duan
Sérgio Duarte
Frederick Ducatelle
Jan Duennweber
Iain Duff
Franciszek A. Dul
Catalin L. Dumitrescu
Christopher Dutchyn
Pierre-Francois Dutot
Inês de Castro Dutra
Partha Dutta
Vaclav Dvorak
Sandhya Dwarkadas
W. Dzwinel

Jeff Edmonds
Lieven Eeckhout
Alexandre Eichenberger
Liane Eitan
M. Ellinas
Vincent Englebert
Dick Epema
Carsten Ernemann
Carl Esswein
Luis Angelo Estefanel

Josep Fàbrega
Carlo Fantozzi
Hugues Fauconnir
Dror Feitelson
Paolo Ferragina
Paulo Ferreira
Fabrice Le Fessant

Organization XIX

Amos Fiat
Ludger Fiege
Irene Finocchi
Stephen Fitzpatrick
Jose Flich
Pierfrancesco Foglia
Nuno Fonseca
Victor Francisco Fonte
Philippe Fortemps
José Fortes
Dimitris Fotakis
Geoffrey Fox
Pierre Fraigniaud
Felipe M. G. França
Daniel Franco
Antonio Frangioni
Hubertus Franke
Roy Friedman
Filippo Furfaro

Estelle Gabarron
Edgar Gabriel
Efstratios Gallopoulos
Ayalvadi Ganesh
Dennis Gannon
Xiaofeng Gao
Nuno Garcia
Maria Jesus Garzaran
Thierry Gautier
Georgi Gaydadjiev
Jean-Patrick Gelas
Arpad Gellert
Giorgio Ghelli
Seth Gilbert
Roberto Giorgi
L. Giraud
Olivier Gluck
Kevin Glynn
Alfredo Goldman
Michael Goldwasser
Maria Cećılia Gomes
Tom Goodale
José Gortes
Dhrubajyoti Goswami
Candelaria Hernandez Goya

Paul Grace
Maria Gradinariu
Jose Angel Gregorio
Armin Groesslinger
Roberto Grossi
Abdou Guermouche
Ronan Guivarch
Fei Guo
Jia Guo

Youssef Hamadi
Abdelkader Hameurlain
Lance Hammond
Sidath Handurukande
Audun Fosselie Hansen
Robert Harakaly
Andrew Harrison
Michael Hartle
William Hart
Akira Hatanaka
Yasushi Hayashi
Andreas Heinemann
Bruce Hendrickson
Ludovic Henrio
Andreas Herkersdorf
Porfidio Hernández
Germán Rodŕıguez Herrera
Elisa Heymann
Christian Hochberger
Juergen Hofer
P. Horan
Geir Horn
S.T. Huang
Kevin Huck
Daniel Hughes
Shiwen Hu
Andrei Hutanu
Zhigang Hu

Alexandru Iosup

Michael A. Jaeger
Samir Jafar
Mathieu Jan
Klaus Jansen

XX Organization

Detlef Jantz
Stephen Jarvis
Emmanuel Jeannot
Emmanuel Jeanvoine
Wojciech Jedruch
Jean-Pierre Jessel
Chris Jesshope
Arshad Jhumka
Gangyi Jiang
Daniel A. Jiménez
Daniel Jiménez-González
Ricardo Jimenez-Peris
Ackbar Joolia
Josep Jorba
Joaquim Jorge
Norman P. Jouppi
Alexandru Jugravu
Flavio Junqueira

Pawel Kaczmarek
Dave Kaeli
David Kaeli
Tim Kaiser
Christos Kaklamanis
Odej Kao
Helen Karatza
Wolfgang Karl
Nick Karonis
Irit Katriel
Krishna M. Kavi
Gabor Kecskemeti
Joerg Keller
Ian Kelley
Paul Kelly
Mazen Kharbutli
Artur Klauser
Gabriel Kliot
Can Emre Koksal
Georgios Koltsidas
Miriam Konkel
Spyros Kontogiannis
Alix Munier Kordon
Harald Kosch
Evangelos Kotsovinos
Andreas Krall

Dieter Kranzlmueller
Axel Krings
Mukkai Krishnamoorthy
Ajay Kshemkalyani
Archit Kulshrestha
Piyush Kumar
Pierre Kuonen
Klaus Kursawe
Shay Kutten
Georgi Kuzmanov
Amund Kvalbein
Costas Kyriacou

John Lach
Adrian Lahanas
Marco Lapegna
Gregor von Laszewski
Luciano Lavagno
Doug Lea
Ben Lee
Kevin Lee
P.A. Lee
Charles Lefurgy
Arnaud Legrand
Zhou Lei
Sebastien Leriche
Vincenzo Liberatore
Keqin Li
Alexandre A. B. Lima
Mikko Lipasti
Jinshan Liu
Xiaoming Li
Josep Llosa
Gabriel Loh
Lúıs Lopes
Paulo Afonso Lopes
Ricardo Lopes
Pedro Lopez
João Lourenço
Mikel Lujan
Frank Luk
Paul Lu

Jason Maassen
Steve MacDonald

Organization XXI

Cam Macdonell
Jon MacLaren
Erik Maehle
Kaoutar El Maghraoui
Nicolas Maillard
Andrew Maloney
Marco Mamei
D. Manivannan
Rajit Manohar
Daniel Marques
Osni Marques
José F. Mart́ınez
Xavier Martorell
Mike Marty
Carlo Mastroianni
Ivan Matosevic
Kiminori Matsuzaki
M. Matuszek
Marios Mavronicolas
Michael O. McCracken
Sally A. McKee
Pedro Medeiros
Nordine Melab
Roie Melamed
John Mellor-Crummey
Alex Mendiburu
Philippe Merle
Andre Merzky
Valentin Mesaros
Michael Messig
Norbert Meyer
Pierre Michaud
B. Scott Michel
Sam Midkiff
Jose Miguel-Alonso
Simon Miles
Mike Minkoff
Neeraj Mittal
Michael Mitzenmacher
Hashim H. Mohamed
Sonia Ben Mokhtar
Ossi Mokryn
Carlos Molina
Burkhard Monien
Sebastien Monnet

Paulo Monteiro
Alberto Montresor
Oveeyen Moonian
Anna Morajko
Luc Moreau
Jose A. Moreno
Luz Marina Moreno
Andreas Moshovos
Achour Mostefaoui
Grégory Mounié
Francisco Moura
Juan Carlos Moure
Rim Moussa
Trevor Mudge
Gero Mühl
Ioan Lucian Muntean
Amy L. Murphy
Peter Musial

Hidemoto Nakada
Jim Napolitano
Wahid Nasri
Mario Nemirovsky
Kyriacos Neocleous
Francesco Nerieri
Nuno Ferreira Neves
Tuan Anh Nguyen
Rob van Nieuwpoort
Christos Nomikos
Nils Agne Nordbotten
Mário Serafim Nunes

Rui Oliveira
Suely Oliveira
Salvatore Orlando
Pablo Montesinos Ortego
Djamila Ouelhadj
Emre Ozer
Can Ozturan

Mathias Pacher
Esther Pacitti
Gérard Padiou
Marc Pantel
Dimitris Papadias

XXII Organization

Evangelos Papapetrou
Marina Papatriantafilou
Koulla Papavasiliou
Michael Papka
Savas Parastatidis
Nikos Parlavantzas
G. Paschos
Sarantis Paskalis
Simon Patarin
Sanjay Patel
Yale Patt
Mathias Paulin
Johnatan Pecero-Sanchez
Fernando Pedone
João Pedro
Susanna Pelagatti
Liang Peng
Lucia Draque Penso
José Pereira
Paulo Rogério Pereira
Christian Perez
Juan Carlos Pérez
Fabrizio Petrini
Jan Petzold
Gert Pfeifer
C. Pham
Chris Phillips
Guillaume Pierre
Jean-Marc Pierson
António M. S. Pina
Eduardo Pinheiro
Alexandre Pinto
Stefan Pleisch
Sabri Pllana
Stefan Podlipnig
Eleftherios Polychronopoulos
Konstantin Popov
Peter Popov
Fernando Cores Prado
Pascale Primet
Thierry Priol
Radu Prodan
Alberto Proença
Kirk Pruhs
Valentin Puente

André Puga
Diego Puppin

Jun Qin
Francesco Quaglia
Francisco J. Quiles
Martin Quinson

Bruno Raffin
Sergio Rajsbaum
Pierre Ramet
Alex Ramirez
Ruy Ramos
Omer Rana
Andrew Rau-Chaplin
Pierre-Guillaume Raverdy
Kees van Reeuwijk
Alexander Reinefeld
Sven-Arne Reinemo
Steve Reinhardt
José Renau
Carlos Ribeiro
Olivier Richard
Stefan Richter
Ana Ripoll
Etienne Riviere
Thomas Robertazzi
Antonio Robles
Ricardo Rocha
Jean-Louis Roch
Rodrigo Rodrigues
Francisco Almeida Rodriguez
Jose E. Roman
Michiel Ronsse
Brian Ropers-Huilman
Alain Roy
Peter Van Roy
Krzysztof Rzadka

Daniele Sacchetti
Francoise Sailhan
Pascal Sainrat
J. César de Sá
Rizos Sakellariou
Francisco de Sande

Organization XXIII

Oliverio J. Santana
Jesus Jorge Santiso
Elizeu Santos-Neto
Nuno Santos
Alvaro Suarez Sarmiento
Yiannakis Sazeides
R. Schaefer
Jochen Schiller
Hartmut Schmeck
Alan Schmitt
Michael Schoettner
Peter Schulthess
Frank Olaf Sem-Jacobsen
Miquel A. Senar
Daniela di Serafino
Clovis Seragiotto
Jocelyn Srot
Jay Sethuraman
Keith Seymour
André Seznec
Xipeng Shen
Kazuyuki Shudo
Alex Shvartsman
Mumtaz Siddiqui
Volkmar Sieh
Dario Silva
Fabricio Da Silva
Fabrizio Silvestri
Jens Simon
Brett Sinclair
Ajit Singh
Mukesh Singhal
Gurdip Singh
Oliver Sinnen
Henk Sips
David Skillicorn
Martin Skutella
Dimitris Skyrianoglou
Yahya Slimani
Jim Smith
João Luis Sobral
Thomas Sødring
Anil Somayaji
Ioannis Sourdis
Leonel Augusto Sousa

Paulo Sousa
Francesco Spadini
Giandomenico Spezzano
Daniel Spooner
Srikanth T. Srinivasan
Yannis Stamatiou
Dylan Stark
Kyriakos Stavrou
L.J. Steggles
Benhur Stein
George Steiner
Per Stenstrom
David Stewart
Kirk Stewart
A. Striegel
Torsten Suel
Remo Suppi
Frederic Suter

Yoshio Tanaka
Yarong Tang
David Tarjan
Ferda Tartanoglu
Gadi Taubenfeld
Kenjiro Taura
Ian Taylor
Andrei Tchernykh
Shanghua Teng
Jim Teresco
Gabor Terstiansky
Oliver Theel
Ingebjorg Theiss
David Thompson
Fernando Tinetti
Nicola Tonelloto
Jesper Larsson Träff
Corentin Travers
Frederic Tronel
Wolfgang Trumler
Paolo Trunfio
Hong-Linh Truong
Eleni Tsiakkouri
Kostas Tsichlas
Kostas Tsichlas
Theodoros Tsiftsis

XXIV Organization

Philippas Tsigas
George Tsouloupas
Dean Tullsen
Georg Turban
Stefan Turek
Roland Tusch
Mayank Tyagi
Gary Tyson

Jo Ueyama
Sascha Uhrig
Augustus K. Uht
Brygg Ullmer
Gil Utard

Neil Vachharajani
Sathish S. Vadhiyar
Fernando Vallejo
Hans Vandierendonck
Paulo B. Vasconcelos
Jose Marcos Moreno Vega
Pierangelo Veltri
Kees Verstoep
Vincent Villain
Alex Villazon
Jean-Marc Vincent
Lucian Vintan
Frédéric Vivien
Berthold Vöcking
Michael Voss
Spyros Voulgaris
Jaksa Vuckovic

Jian Wang

Jinling Wang
Jon Weinberg
Zunce Wei
Michael Welzl
Matthias Werner
Matthias Westermann
Tony White
Philipp Wieder
Gerhard J. Wöginger
Nicole Wolter
Adam K. L. Wong
Patrick Worley
Joachim Worringen
Gosia Wrzesinska

Wei Xing

Ramin Yahyapour
Kun Yang
Eiko Yoneki
Eiko Yoneki
Ki Hwan Yum

Apostolos Zarras
Eberhard Zehendner
Chongjie Zhang
Hu Zhang
Mingmin Zhang
Dong Zhou
Wolfgang Ziegler
Craig Zilles
Corrado Zoccolo
Albert Zomaya

Table of Contents

Invited Talks

On the Use of Virtualization and Service Technologies
to Enable Grid-Computing . 1

Andréa Matsunaga, Mauŕıcio Tsugawa, Ming Zhao, Liping Zhu,
Vivekananthan Sanjeepan, Sumalatha Adabala, Renato Figueiredo,
Herman Lam, and José A.B. Fortes

The Evolution of the Blue Gene/L Supercomputer . 13
José Moreira

Agent Based Computational Grids: Research Issues and Challenges 14
Omer F. Rana

Science on a Large Scale . 15
Raymond Bair

Topic 1 – Support Tools and Environments 17
Henryk Krawczyk, Jacques Chassin de Kergommeaux,
Pierre Manneback, and Tomás Margalef (Topic Chairs)

Tolerating Message Latency Through the Early Release
of Blocked Receives . 19

Jian Ke, Martin Burtscher, and Evan Speight

Fast Convex Closure for Efficient Predicate Detection 30
Paul A.S. Ward and Dwight S. Bedassé

A Generic Language for Dynamic Adaptation . 40
Assia Hachichi, Gaël Thomas, Cyril Martin, Bertil Folliot,
and Simon Patarin

Soft Computing Approach to Performance Analysis of Parallel
and Distributed Programs . 50

Hong-Linh Truong and Thomas Fahringer

The Data Diffusion Space for Parallel Computing in Clusters 61
Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

Models for On-the-Fly Compensation of Measurement Overhead
in Parallel Performance Profiling . 72

Allen D. Malony and Sameer S. Shende

Modeling Pipeline Applications in POETRIES . 83
Eduardo César, Joan Sorribes, and Emilio Luque

XXVI Table of Contents

Topic 2 – Performance Prediction and Evaluation 93
Allen D. Malony, Thomas Fahringer, Allan Snavely,
and Lúıs Silva (Topic Chairs)

Automatic Tuning of Master/Worker Applications . 95
Anna Morajko, Eduardo César, Paola Caymes-Scutari,
Tomás Margalef, Joan Sorribes, and Emilio Luque

Performance Cockpit: An Extensible GUI Platform
for Performance Tools . 104

Tianchao Li and Michael Gerndt

Apex-Map: A Synthetic Scalable Benchmark Probe
to Explore Data Access Performance on Highly Parallel Systems 114

Erich Strohmaier and Hongzhang Shan

PerfMiner: Cluster-Wide Collection, Storage and Presentation
of Application Level Hardware Performance Data . 124

Philip J. Mucci, Daniel Ahlin, Johan Danielsson,
Per Ekman, and Lars Malinowski

Performance Evaluation of MM5 on Clusters with Modern Interconnects:
Scalability and Impact . 134

Ranjit Noronha and Dhabaleswar K. Panda

A Performance Measurement Infrastructure for Co-array Fortran 146
Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

Event-Based Measurement and Analysis of One-Sided Communication 156
Marc-André Hermanns, Bernd Mohr, and Felix Wolf

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 166
Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

Knowledge Based Automatic Scalability Analysis and Extrapolation
for MPI Programs . 176

Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel

Performance Modeling: Understanding the Past
and Predicting the Future . 185

David H. Bailey and Allan Snavely

An Approach to Performance Prediction for Parallel Applications 196
Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee

Table of Contents XXVII

Topic 3 – Scheduling and Load-Balancing 207
Denis Trystram, Michael Bender, Uwe Schwiegelshohn,
and Lúıs Paulo Santos (Topic Chairs)

Balancing Parallel Adaptive FEM Computations by Solving Systems
of Linear Equations . 209

Henning Meyerhenke and Stefan Schamberger

CISNE: A New Integral Approach for Scheduling Parallel Applications
on Non-dedicated Clusters . 220

Mauricio Hanzich, Francesc Giné, Porfidio Hernández,
Francesc Solsona, and Emilio Luque

On Optimum Multi-installment Divisible Load Processing
in Heterogeneous Distributed Systems . 231

Maciej Drozdowski and Marcin Lawenda

A Scalable Parallel Graph Coloring Algorithm
for Distributed Memory Computers . 241

Erik G. Boman, Doruk Bozdağ, Umit Catalyurek,
Assefaw H. Gebremedhin, and Fredrik Manne

Complexity and Approximation for the Precedence Constrained
Scheduling Problem with Large Communication Delays 252

R. Giroudeau, J.C. König, F.K. Mouläı, and J. Palaysi

Batch-Scheduling Dags for Internet-Based Computing 262
Grzegorz Malewicz and Arnold L. Rosenberg

Scheduling Workflow Distributed Applications in JavaSymphony 272
Alexandru Jugravu and Thomas Fahringer

Tasks Mapping with Quality of Service
for Coarse Grain Parallel Applications . 282

Patricia Pascal, Samuel Richard, Bernard Miegemolle,
and Thierry Monteil

Initiating Load Balancing Operations . 292
Marta Beltrán, Jose L. Bosque, and Antonio Guzmán

Hierarchical Scheduling for Moldable Tasks . 302
Pierre-François Dutot

On-Line Bicriteria Interval Scheduling . 312
Fabien Baille, Evripidis Bampis, Christian Laforest,
and Nicolas Thibault

XXVIII Table of Contents

Topic 4 – Compilers for High Performance 323
Albert Cohen, Michael F.P. O’Boyle, Martin Griebl,
and José Moreira (Topic Chairs)

The Periodic-Linear Model of Program Behavior Capture 325
Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

Deciding Where to Call Performance Libraries . 336
Christophe Alias and Denis Barthou

Topic 5 – Parallel and Distributed Databases,
Data Mining and Knowledge Discovery 347

Domenico Talia, Hillol Kargupta, Patrick Valduriez,
and Rui Camacho (Topic Chairs)

MADIS: A Slim Middleware for Database Replication 349
Luis Irún-Briz, Hendrik Decker, Rubén de Juan-Maŕın,
Francisco Castro-Company, Jose E. Armendáriz-Iñigo,
and Francesc D. Muñoz-Escóı

Hierarchical Aggregation in Networked Data Management 360
Pedro Furtado

Mining Global Association Rules on an Oracle Grid
by Scanning Once Distributed Databases . 370

Frank Wang and Na Helian

Topic 6 – Grid and Cluster Computing:
Models, Middleware and Architectures 379

Craig A. Lee, Thilo Kielmann, Laurent Lefèvre,
and João Gabriel Silva (Topic Chairs)

Combining Data Replication Algorithms and Job Scheduling Heuristics
in the Data Grid . 381

Ming Tang, Bu-Sung Lee, Xueyan Tang, and Chai-Kiat Yeo

Towards High-Level Grid Programming and Load-Balancing:
A Barnes-Hut Case Study . 391

Martin Alt, Jens Müller, and Sergei Gorlatch

An Adaptive Skeletal Task Farm for Grids . 401
Horacio González-Vélez

Developing Java Grid Applications with Ibis . 411
Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

Table of Contents XXIX

Virtual Workspaces in the Grid . 421
Katarzyna Keahey, Ian Foster, Timothy Freeman, Xuehai Zhang,
and Daniel Galron

Modeling Machine Availability in Enterprise
and Wide-Area Distributed Computing Environments 432

Daniel Nurmi, John Brevik, and Rich Wolski

Faults in Large Distributed Systems and What We Can Do About Them . 442
George Kola, Tevfik Kosar, and Miron Livny

A Grid Information Service Based on Peer-to-Peer . 454
Diego Puppin, Stefano Moncelli, Ranieri Baraglia, Nicola Tonellotto,
and Fabrizio Silvestri

GRUBER: A Grid Resource Usage SLA Broker . 465
Catalin L. Dumitrescu and Ian Foster

An Architecture for Distributed Grid Brokering . 475
John M. Brooke and Donal K. Fellows

Topic 7 – Parallel Computer Architecture and ILP 485
Theo Ungerer, Josep-Lluis Larriba-Pey, Kevin Skadron,
and Pedro Trancoso (Topic Chairs)

The Combined Perceptron Branch Predictor . 487
Matteo Monchiero and Gianluca Palermo

Target Encoding for Efficient Indirect Jump Prediction 497
Juan Carlos Moure, Domingo Benitez, Dolores Isabel Rexachs,
and Emilio Luque

Dynamic Partition of Memory Reference Instructions –
A Register Guided Approach . 508

Yixin Shi and Gyungho Lee

Value Compression for Efficient Computation . 519
Ramon Canal, Antonio González, and James E. Smith

Improving Instruction Delivery with a Block-Aware ISA 530
Ahmad Zmily, Earl Killian, and Christos Kozyrakis

Non-uniform Instruction Scheduling . 540
Joseph J. Sharkey and Dmitry V. Ponomarev

Instruction Recirculation: Eliminating Counting Logic
in Wakeup-Free Schedulers . 550

Joseph J. Sharkey and Dmitry V. Ponomarev

XXX Table of Contents

Early Experience with Scientific Applications
on the Blue Gene/L Supercomputer . 560

George Almasi, Gyan Bhanot, Dong Chen, Maria Eleftheriou,
Blake Fitch, Alan Gara, Robert Germain, John Gunnels,
Manish Gupta, Philip Heidelberg, Mike Pitman,
Aleksandr Rayshubskiy, James Sexton, Frank Suits, Pavlos Vranas,
Bob Walkup, Chris Ward, Yuriy Zhestkov, Alessandro Curioni,
Wanda Andreoni, Charles Archer, José Moreira, Richard Loft,
Henry Tufo, Theron Voran, and Katherine Riley

A Detailed Study on Phase Predictors . 571
Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

A Novel Lightweight Directory Architecture
for Scalable Shared-Memory Multiprocessors . 582

Alberto Ros, Manuel E. Acacio, and José M. Garćıa

Topic 8 – Distributed Systems and Algorithms 593
Marc Shapiro, Idit Keidar, Felix Freiling,
and Lúıs Rodrigues (Topic Chairs)

A Dynamic Distributed Algorithm for Multicast Path Setup 595
Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

Distributed Maintenance of a Spanning Tree
Using Labeled Tree Encoding . 606

Vijay K. Garg and Anurag Agarwal

Replication Predicates for Dependent-Failure Algorithms 617
Flavio Junqueira and Keith Marzullo

Consistent Data Replication: Is It Feasible in WANs? 633
Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez,
and Ricardo Jiménez-Peris

A Hybrid Message Logging-CIC Protocol
for Constrained Checkpointability . 644

Françoise Baude, Denis Caromel, Christian Delbé,
and Ludovic Henrio

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm
Using a Dynamic Tree . 654

Julien Sopena, Luciana Arantes, Marin Bertier, and Pierre Sens

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation . . . 664
Gero Mühl, Michael A. Jaeger, Klaus Herrmann, Torben Weis,
Andreas Ulbrich, and Ludger Fiege

Table of Contents XXXI

A Checkpoint/Recovery Model for Heterogeneous Dataflow Computations
Using Work-Stealing . 675

Samir Jafar, Thierry Gautier, Axel Krings, and Jean-Louis Roch

Topic 9 – Parallel Programming:
Models, Methods and Languages . 685

Marco Danelutto, Denis Caromel, Duane Szafron,
and Fernando Silva (Topic Chairs)

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky 687
David S. Wise, Craig Citro, Joshua Hursey, Fang Liu,
and Michael Rainey

An Exception Handling Mechanism
for the Concurrent Invocation Statement . 699

Hiu Ning (Angela) Chan, Esteban Pauli, Billy Yan-Kit Man,
Aaron W. Keen, and Ronald A. Olsson

smt-SPRINTS: Software Precomputation with Intelligent Streaming
for Resource-Constrained SMTs . 710

Tanping Wang, Christos D. Antonopoulos,
and Dimitrios S. Nikolopoulos

Symmetric Data Objects and Remote Memory Access Communication
for Fortran-95 Applications . 720

Jarek Nieplocha, Doug Baxter, Vinod Tipparaju, Craig Rasmunssen,
and Robert W. Numrich

Using Aspects for Supporting Procedural Modules in # Programming 730
Francisco Heron de Carvalho Junior and Rafael Dueire Lins

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 740
Shady Copty and Shmuel Ur

An Investigation of Sharing Strategies for Answer Set Solvers
and SAT Solvers . 750

Hung Viet Le and Enrico Pontelli

Flexible Skeletal Programming with eSkel . 761
Anne Benoit, Murray Cole, Stephen Gilmore, and Jane Hillston

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 771
Marco Aldinucci, Alessandro Petrocelli, Edoardo Pistoletti,
Massimo Torquati, Marco Vanneschi, Luca Veraldi,
and Corrado Zoccolo

SPC-XML: A Structured Representation
for Nested-Parallel Programming Languages . 782

Arturo González-Escribano, Arjan J.C. van Gemund,
and Valent́ın Cardeñoso-Payo

XXXII Table of Contents

Topic 10 – Parallel Numerical Algorithms 793
Jacek Kitowski, Andrzej M. Goscinski, Boleslaw K. Szymanski,
and Filomena d’Almeida (Topic Chairs)

Performance Measurements of the 3D FFT
on the Blue Gene/L Supercomputer . 795

Maria Eleftheriou, Blake Fitch, Aleksandr Rayshubskiy,
T.J. Christopher Ward, and Robert Germain

Parallel Solution of Sparse Linear Systems Arising
in Advection–Diffusion Problems . 804

Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Parallelization of Implicit-Explicit Runge-Kutta Methods
for Cluster of PCs . 815

José Miguel Mantas, Pedro González, and José A. Carrillo

Comparison of Different Parallel Modified Gram-Schmidt Algorithms 826
Gudula Rünger and Michael Schwind

Automatic Tuning of PDGEMM Towards Optimal Performance 837
Sascha Hunold and Thomas Rauber

Parallelization of Divide-and-Conquer Eigenvector Accumulation 847
Wilfried N. Gansterer and Joachim Zottl

Parallel Order Reduction via Balanced Truncation for Optimal Cooling
of Steel Profiles . 857

José M. Bad́ıa, Peter Benner, Rafael Mayo, Enrique S. Quintana-Ort́ı,
Gregorio Quintana-Ort́ı, and Jens Saak

Broadcast-Based Parallel LU Factorization . 867
Fernando G. Tinetti and Armando E. De Giusti

Topic 11 – Distributed and High-Performance
Multimedia . 877

Laszlo Böszörmenyi, Max Mühlhäuser, Geoff Coulson,
and Nuno Correia (Topic Chairs)

Dynamic Distributed Collaborative Merging Policy to Optimize
the Multicasting Delivery Scheme . 879

X.Y. Yang, Porfidio Hernández, F. Cores, A. Ripoll, R. Suppi,
and Emilio Luque

Dynamic Proxy-Cache Multiplication Inside LANs . 890
Claudiu Cobârzan

Perspectives for Lecture Videos . 901
Michael Hartle, Henning Bär, Christoph Trompler, and Guido Rößling

Table of Contents XXXIII

A Scene-Based Bandwidth Allocation Scheme
for Transferring VBR-Encoded Videos . 909

Dafu Deng and Hai Jin

DCT Block Conversion for H.264/AVC Video Transcoding 919
Joo-Kyong Lee and Ki-Dong Chung

Topic 12 – Theory and Algorithms
for Parallel Computation . 929

Andrea Pietracaprina, Kieran Herley, Christos Zaroliagis,
and Casiano Rodriguez-Leon (Topic Chairs)

Efficient Bufferless Routing on Leveled Networks . 931
Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

Efficient Truthful Mechanisms
for the Single-Source Shortest Paths Tree Problem . 941

Luciano Gualà and Guido Proietti

Optimal Embedding of the Hypercube
on Partitioned Optical Passive Stars Networks . 952

Christos Kaklamanis and Charalampos Konstantopoulos

Dynamic Page Migration Under Brownian Motion . 962
Marcin Bienkowski and Miroslaw Korzeniowski

Topic 13 – Routing and Communication
in Interconnection Networks . 973

Emilio Luque, Cruz Izu, Olav Lysne, and José Legatheaux
(Topic Chairs)

Transport Time Distribution for Deflection Routing on an Odd Torus 975
J.M. Fourneau and T. Czachórski

Routing and Scheduling
for a Novel Optical Multistage Interconnection Network 984

Siu-Cheung Chau, Tiehong Xiao, and Ada Wai-Chee Fu

Topology-Based Hypercube Structures for Global Communication
in Heterogeneous Networks . 994

Silvia M. Figueira and Vijay Janapa Reddi

Performance Effects of Node Mappings
on the IBM BlueGene/L Machine . 1005

Brian E. Smith and Brett Bode

INSEE: An Interconnection Network Simulation
and Evaluation Environment . 1014

Fco. Javier Ridruejo Perez and José Miguel-Alonso

XXXIV Table of Contents

Cost / Performance Trade-Offs and Fairness Evaluation
of Queue Mapping Policies . 1024

Teresa Nachiondo, José Flich, José Duato, and Mitchell Gusat

On the Correct Sizing on Meshes Through
an Effective Congestion Management Strategy . 1035

Pedro Javier Garćıa, José Flich, José Duato, Francisco José Quiles,
Ian Johnson, and F. Naven

A New Hardware Efficient Link Scheduling Algorithm
to Guarantee QoS on Clusters . 1046

José Manuel Claver, Maŕıa del Carmen Carrión, Manel Canseco,
Maŕıa Blanca Caminero, and Francisco José Quiles

Topic 14 – Mobile and Ubiquitous Computing 1057
Evaggelia Pitoura, Marios Dikaiakos, Valérie Issarny,
and Nuno Preguica (Topic Chairs)

An Efficient and Fault-Tolerant Update Commitment Protocol
for Weakly Connected Replicas . 1059

João Barreto and Paulo Ferreira

Controlling Concurrency in Mobile Computing Environments
with Broadcast-Based Data Dissemination . 1069

José Maria Monteiro and Ângelo Brayner

Integrating Mobile Devices into the Grid:
Design Considerations and Evaluation . 1080

Stavros Isaiadis and Vladimir Getov

New Bounds on the Competitiveness
of Randomized Online Call Control in Cellular Networks 1089

Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks 1100
Kil-Woong Jang

Personalized Access to Semantic Web Agents Using Smart Cards 1110
Riza Cenk Erdur and Geylani Kardas

Fast and Secure Communication Resume Protocol
for Wireless Networks . 1120

Kihong Kim, Jinkeun Hong, and Jongin Lim

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6 1130
Hoseong Jeon, Min Young Chung, and Hyunseung Choo

Table of Contents XXXV

Topic 15 – Peer-to-Peer and Web Computing 1141
Anne-Marie Kermarrec, Márk Jelasity, Antony Rowstron,
and Henrique Domingos (Topic Chairs)

Epidemic-Style Management of Semantic Overlays
for Content-Based Searching . 1143

Spyros Voulgaris and Maarten van Steen

Long Range Contacts in Overlay Networks . 1153
Filipe Araújo and Lúıs Rodrigues

Combining the Use of Clustering and Scale-Free Nature
of User Exchanges into a Simple and Efficient P2P System 1163

Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System 1173
Jean-Michel Busca, Fabio Picconi, and Pierre Sens

AGNO: An Adaptive Group Communication Scheme
for Unstructured P2P Networks . 1183

Dimitrios Tsoumakos and Nick Roussopoulos

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1194
Raphaël Chand and Pascal Felber

Topic 16 – Applications of High-Performance
and Grid Computing . 1205

Ray Bair, Ed Seidel, Michel Daydé, and José Laginha Palma
(Topic Chairs)

Parallel Linear Space Algorithm for Large-Scale Sequence Alignment 1207
Eric Li, Cheng Xu, Tao Wang, Li Jin, and Yimin Zhang

Parallel Multiple Sequence Alignment
with Decentralized Cache Support . 1217

Denis Trystram and Jaroslaw Zola

Parallel Construction of Large Suffix Trees on a PC Cluster 1227
Chunxi Chen and Bertil Schmidt

Parallel Edge-Based Inexact Newton Solution
of Steady Incompressible 3D Navier-Stokes Equations 1237

Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

High Performance Computing for a Financial Application
Using Fast Fourier Transform . 1246

Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

XXXVI Table of Contents

Parallel Simulation of the Propagation of Powdery Mildew
in a Vineyard . 1254

Agnès Calonnec, Guillaume Latu, Jean-Marc Naulin, Jean Roman,
and Gaël Tessier

Parallelism for Perturbation Management and Robust Plans 1265
Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

SPH2000: A Parallel Object-Oriented Framework
for Particle Simulations with SPH . 1275

Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System . . 1285
Jason Cope, Craig Hartsough, Peter Thornton, Henry Tufo,
Nathan Wilhelmi, and Matthew Woitaszek

Author Index . 1295

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1–12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On the Use of Virtualization and Service Technologies
to Enable Grid-Computing

Andréa Matsunaga, Maurício Tsugawa, Ming Zhao,
Liping Zhu, Vivekananthan Sanjeepan, Sumalatha Adabala,

Renato Figueiredo, Herman Lam, and José A.B. Fortes

Advanced Computing and Information Systems Laboratory (ACIS)
Dep. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

fortes@ufl.edu

Abstract. The In-VIGO approach to Grid-computing relies on the dynamic es-
tablishment of virtual grids on which application services are instantiated. In-
VIGO was conceived to enable computational science to take place In Virtual
Information Grid Organizations. Having its first version deployed on July of
2003, In-VIGO middleware is currently used by scientists from various disci-
plines, a noteworthy example being the computational nanoelectronics research
community (http://www.nanohub.org). All components of an In-VIGO-gener-
ated virtual grid – machines, networks, applications and data – are themselves
virtual and services are provided for their dynamic creation. This article reviews
the In-VIGO approach to Grid-computing and overviews the associated mid-
dleware techniques and architectures for virtualizing Grid components, using
services for creation of virtual grids and automatically Grid-enabling unmodi-
fied applications. The In-VIGO approach to the implementation of virtual net-
works and virtual application services are discussed as examples of Grid-
motivated approaches to resource virtualization and Web-service creation.

1 Introduction

The future envisioned by the concept of Grid-computing is one where users will be
able to securely and dependably access, use, “publish” and compose applications as
services anywhere and anytime. Transparently to users, Grids will have to aggregate
resources, possibly across different institutions, to provide application services. In
addition, Grid middleware will have to create in the aggregated resources the execu-
tion environments where services and users can securely run or create applications of
interest and access needed data. Unless properly designed, individual solutions for
each of these requirements can conflict with each other, as shared resources cannot be
easily reconfigured to simultaneously provide multiple execution environments se-
curely and on-demand for different users and applications. This article argues that
resource virtualization and service technologies provide ideal mechanisms to address
these and other key requirements of Grid-computing, and describes components of In-
VIGO, an evolving deployed system that successfully uses this approach [1], [2].

The remainder of this paper is organized as follows. The In-VIGO approach is
briefly reviewed in Section 2. Virtual machines and the corresponding services for
their creation and management are reviewed in Section 3. Virtual file systems and
associated services are overviewed in Section 4. Virtual networking techniques are
presented in Section 5. Virtual applications and virtual application services are dis-
cussed in Section 6. Section 7 describes how the different In-VIGO components are

2 Andréa Matsunaga et al.

securely integrated. Conclusions and the current status of In-VIGO middleware and
research are presented in Section 8.

2 The In-VIGO Approach

In-VIGO is unique in that it decouples user environments from physical resources by
using technologies that virtualize all resources needed for Grid-computing, including
machines, networks, applications and data (see Figure 1). Users will typically interact
with In-VIGO through a portal where they can invoke applications of interest. In-
VIGO delivers these applications through Web-enabled user interfaces that interact
with virtual application (VA) services. VA services interact with other application
services as well as other Grid-computing middleware services. VA services decouple
application interfaces from application implementations thus hiding the kinds of
codes and machines used to provide services. Transparently to users, VA services
engage with virtualization services to create the virtual machines, file systems, net-
works and possibly other applications needed to generate a virtual grid with the nec-
essary execution environment for the application delivered by the VA service. Virtu-
alization services decouple users and execution environments needed by applications
from the physical machines that provide them, thus allowing different instances of an
application service to transparently run on different physical hardware.

Fig. 1. High-level view of the In-VIGO approach

Ultimately, Grids will be useful only if they can provide application services for
users. In-VIGO provides each user with a persistent private virtual workspace that
enables him/her to both launch and develop applications, use and manage private
data, and carry out conventional operating system tasks through, for example, a Unix-
like shell. It is also very important that, in addition to the use of services, the process
of deploying applications as services be as simple as possible. Service creation should
not require application developers to know details of how Grid middleware works,
and should not require the involvement of administrators. In-VIGO provides auto-
mated procedures to create application services that only require developers to pro-
vide a description of how a tool works. This description is comparable in nature and
complexity to the “man pages” of an operating system command. It includes the
command-line grammar and some additional information on software dependencies
and other requirements of the application’s execution environment.

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 3

3 Virtual Machines and Virtual Machine Services

In-VIGO supports dynamic allocation of execution environments per user and per
distinct application by using virtual machine technologies (including language-based
Java VMs, as well as O/S-based VMs, such as VMware, User-mode Linux) and/or
“shadow” accounts. For efficiency and scalability purposes, mechanisms are provided
for multiplexing virtual machines and accounts among users and applications without
compromising security and customizability. Virtual machines can either be created
and destroyed for every In-VIGO session or be made persistent across sessions. Vir-
tual machines used to run applications can also be shared across several applications
by using “shadow accounts” [3], which are pre-created accounts on machines that In-
VIGO can use on behalf of arbitrary users.

In-VIGO manages virtual machines through a set of Grid service-based middle-
ware components – VMShop and VMPlant [4]. The key differentiators of this ap-
proach from related work reflect the design decisions of: (1) supporting different VM
technologies, such as VMware, User-Mode Linux; (2) allowing flexible, application-
centric VM environment configurations using direct acyclic graph (DAG) representa-
tions; and (3) supporting dynamic “cloning” of previously-built VM images. Virtual
machines managed using this middleware are highly customizable by the client, on a
per-application basis. In contrast, dynamic virtual environments [5] enable the crea-
tion of VMs from a master disk (e.g. a Linux distribution with pre-installed Globus
software) but do not provide mechanisms for the client to specify the desired ma-
chine’s configuration.

“Classic” VMs present the image of a dedicated operating system while enabling
multiple O/S configurations – completely isolated from each other – to share a single
machine. This is an effective mechanism for resource consolidation, and a key reason
for the renewed interest and popularity of VMs•. They also provide a flexible, power-
ful execution environment for Grid computing, offering isolation and security mecha-
nisms complementary to operating systems, customization and encapsulation of entire
application environments, and support for legacy applications [6], addressing a fun-
damental goal of Grid computing – flexible resource sharing.

VMShop provides a single logical point of contact for clients to request three core
services: create a VM instance, query information about an active VM instance, and
destroy (collect) an active VM instance. Requests for virtual machine creation re-
ceived by VMShop contain specifications of hardware, network and software configu-
rations. VMShop is then is responsible for selecting a VMPlant for the creation of a
virtual machine. This process is implemented through a communication API and a
binding protocol that allows VMShop to request and collect bids containing estimated
VM creation costs from VMPlants.

The VMPlant implements the process of VM instantiation, using the VM’s DAG
specification provided by a client through VMShop as its input. In addition to sup-
porting flexibility of VM configuration, the DAG aids the implementation of an effi-
cient VM creation process by supporting partial matches of cached VM images to find
a suitable match – a “golden” machine. Once a golden machine has been found,
VMPlant clones the machine, and then parses the DAG to perform a series of configu-
ration actions on the new machine. Once a machine is cloned, the configuration proc-
ess returns a descriptor of the machine, which can be used by the client to make future
references to the VM instance when issuing requests to VMShop.

4 Andréa Matsunaga et al.

4 Virtual File Systems and Virtual File System Services
In-VIGO uses a Grid Virtual File System (GVFS [7]) to support efficient and trans-
parent Grid-wide data provisioning [8]. GVFS presents a generic file system in-
terface to applications by building a virtualization layer upon the de-facto NFS [9]
distributed file system, and does so without changing the existing O/S clients/servers.
It achieves on-demand cross-domain data transfers via the use of middleware-
managed interchangeable logical user accounts [3] and file system proxy-based data
access authentication, forwarding and user-identity mapping [10]. The design sup-
ports deployment of one or more proxies between a native NFS client and server. A
multi-proxy setup is important to implement extensions to GVFS, provide additional
functionality and improve performance.

A unique aspect of In-VIGO is how it integrates virtual machine and file system
techniques to provide flexible execution environments and on-demand, transparent
data access for unmodified applications. Data management has a key role in realizing
the benefits of VM-based Grid computing because a VM computing session typi-
cally involves data distributed across three different logical entities: the “state server”,
which stores VM state; the “compute server”, which provides the capability of instan-
tiating VMs; and the “data server”, which stores user data. Without a virtual file sys-
tem, instantiating a VM requires the explicit movement of state files to a compute
server, and the explicit movement of user data to the VM once it is instantiated. In
contrast, through GVFS, In-VIGO middleware creates dynamic GVFS sessions be-
tween the state and compute servers to support access of VM states for VM instantia-
tion, and between the VM and data servers to support access to user data for applica-
tion execution within the VM [7].

GVFS supports secure Grid-wide data provisioning for both VM states and user
files by way of two mechanisms: private file system channels and session-key based
inter-proxy authentication.

Caching is especially important to exploit data locality and hide network latency in
Grid environments. In each GVFS session, the client-side proxy can dynamically
establish and manage a file system disk cache to complement the kernel memory
buffer with much greater capacity. The cache operates at the granularity of NFS RPC
calls and satisfies requests with cached file attributes and data blocks. For write re-
quests, it can employ write-back to hide write latencies and avoid transfers of tempo-
rary data. Furthermore, GVFS caches can be customized in many aspects (including
size, associativity, write policy and consistency semantics) and thus be tailored to the
needs of different applications. GVFS’ inherent on-demand block-based data access
manner allows for partial transfer of files and can benefit many applications, espe-
cially VM monitors, which typically access only a very small part of often Gigabyte-
size VM disk state. As an application, the middleware can schedule GVFS sessions
with VMM-specific coherence to allow for high-performance VM instantiations. For
example, a VM with non-persistent state can be read-only shared among multiple
users while each user has a “clone” of the VM and independent redo logs, so that
aggressive read caching for state files and write-back caching for redo logs can be
employed [7].

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 5

The data management middleware mentioned above has been implemented as
WSRF-compliant services to provide interoperable service interfaces and flexible
state management [11]. These services include: 1) file system service, which runs on
every server and controls the local file system proxies to establish and configure spe-
cific GVFS sessions; 2) data scheduler service, which provides central scheduling and
customization of GVFS sessions and interacts with individual file system services to
start the sessions; 3) data replication service, which creates and manages data replicas
for the purpose of fault tolerance and load balancing. To initiate a VM-based comput-
ing session in In-VIGO, the VMPlant service requests the data scheduler service to
prepare a GVFS session between the VM state server and the VM host to instantiate a
compute VM. Afterwards, the VAS service can request the scheduling of another
session between the VM and the data server, so the application can be started inside
the VM and access the user files via GVFS.

5 Virtual Networking

Network connectivity is an obvious necessity in Grid-computing, as it makes remote
job execution/submission possible and also allows communication between processes
for parallel and/or distributed applications. However, due to firewalls and NAT de-
vices, symmetric connectivity is often absent when resources are distributed across
wide-area networks and different administrative domains.

Hosts behind firewalls or NATs can only initiate communication, i.e., they cannot
receive communication initiation requests. This limits the hosts’ ability to receive
remote job execution requests and participate in distributed computations. Existing
solutions to the asymmetric connectivity problem still face one or more of the follow-
ing issues: (1) changes in firewalls or NAT configuration are required (e.g., to allow
traffic in some ports or to forward ports), possibly violating security policies; (2)
knowledge of network usage (e.g., transport port number) is necessary; (3) high ad-
ministration overheads are implicit, since actions are required every time a new re-
source is added or removed from the Grid; and (4) application-transparency is not
preserved. Solutions based on address/port translation require either the applications
to be aware of resource discovery protocols (e.g., SOCKS [12], DPF and GCB [13])
or changes to be done in OS kernel network stack and/or in the Internet infrastructure
(e.g., IPNL [14] and AVES [15]). When networking complexity is abstracted and a
new API is exposed, application-transparency is lost (e.g., peer-to-peer networks and
the Ibis programming environment [16]). Tunneling-based approaches have difficul-
ties with firewalls and high administrative overhead (e.g., VPN, VNET [17], VIOLIN
[18] and X-Bone [19]).

ViNe, the In-VIGO component responsible for network virtualization, has been de-
signed to address all the above issues. It also has additional features such as support
for on-demand creation, deployment and removal of isolated virtual networks that
specifically connect the necessary machines for execution of a Grid application. The
architecture of ViNe is based on IP-overlay on top of the Internet and resembles a
site-to-site VPN setup. In each participating network, a ViNe router (VR) is placed in
order to handle all ViNe traffic. VRs are responsible for intercepting IP packets des-
tined to ViNe private address space, encapsulate them with ViNe header and forward
them to the VR that can deliver the original IP packet. VRs make routing decisions
(i.e., to where a packet needs to be forwarded) based on a set of routing tables, which

6 Andréa Matsunaga et al.

can be updated by secure VR-to-VR communication. The secure update of the tables
is the key for the on-demand definition of new virtual networks.

When a VR is placed in a network environment behind a firewall or NAT device, it
is called a limited VR. Limited VRs cannot receive communication initiated by peer
VRs, so a VR without limitations needs to be allocated as an intermediate node,
which is called queue VR. Routing tables of all VRs are updated to forward to the
queue VR the packets that are destined to the limited VR subnet. Since a limited VR
can initiate communication, it is its responsibility to contact the queue VR and re-
trieve packets.

ViNe uses the private IP address space which is not routable in the Internet. Since
ViNe nodes cannot be reached directly from the Internet, network security can be
discussed with respect to external traffic and internal traffic. External traffic includes
VR-to-VR communication, including encapsulated IP packets and control messages.
Internal traffic includes the actual communication between hosts in ViNe space. VR-
to-VR communication is secured by cryptographically authenticating all messages,
and also by encrypting critical information exchange such as control messages. Inter-
nal traffic security is achieved by either implementing all security policies of an or-
ganization in the VR or delegating that function to the firewall that may be already
present in the site. The latter is possible because ViNe does not modify IP packets,
and the firewall can still inspect and filter ViNe internal traffic following original
rules.

The first prototype of VR has been implemented in Java, with low level network-
ing handled by C code. Hosts do not need the installation of additional software in
order to join ViNe, requiring only the operating systems be able to bind additional IP
addresses to a network interface and to define static routes. Those features are present
in most modern operating systems, making ViNe platform independent. Experiments
showed that ViNe can offer performance that is close to the physical network, both in
round-trip latency and throughput.

ViNe enables machines, even if they are connected to private networks, to easily
join the Grid, and also can minimize the reluctance of system administrators to share
resources by not requiring changes in security policies in the existing networks (a
minimal change may be necessary, i.e. allowing ViNe traffic through the shared re-
sources; however, the ViNe traffic will undergo the same packet inspection/filtering
as the regular network traffic).

6 Virtual Application Services

The In-VIGO Virtual Application (VA) framework enables developers to automati-
cally and transparently enable unmodified legacy applications “for the Grid” and
users to transparently access deployed applications using virtualized resources “on the
Grid”. This requires the creation of VA services capable of orchestrating the use of
previously discussed virtualization and other core Grid-middleware components.
GridLab’s Grid Application Toolkit (GAT) [20], Application Web Services (AWS)
[21] and GridPort [22] are examples of other frameworks that aggregate core Grid-
middleware to facilitate execution of applications and construction of Web-portals,
but that do not consider exposing each application as a Web/Grid-service.

A virtual application consists of a physical application (unmodified application bi-
naries and necessary execution environment) and additional software that (1) custom-

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 7

izes the interface of the physical application to appear as multiple different applica-
tions with different capabilities for different users, and (2) interacts with other mid-
dleware in order to enable multiple simultaneous non-conflicting application instances
on Grid resources. In particular, the virtual application makes use of the resource
virtualization techniques and services described in the previous sections (virtual ma-
chines, virtual file system and virtual networks) to create the execution environment
required by the application.

A virtual application service is a virtual application whose interfaces comply with
WSRF specifications. Grid-enabling is the process of turning command-line applica-
tions interfaces into services that can be integrated into Grid-portals and delivered
through Web-based interfaces. Unless automated, Grid-enabling demands consider-
able time and programmer effort, especially for legacy applications which do not use
programming technologies and practices that are well suited for Grid-computing and
are not interoperable with other applications. To overcome this issue, the VA ap-
proach provides automatic Grid-enabling of legacy applications for which the follow-
ing information needs to be provided: command-line syntax, description of the com-
mand line in natural language, application resource requirements, and execution
environment settings.

Generated virtual application services are: (1) Consumable: the VAS can be dis-
covered by, and made available to, other organizations in a technology-neutral man-
ner that hides heterogeneity and allows interoperability and composition; (2) Isolated:
simultaneous conflict-free execution of multiple unmodified applications is possible;
(3) Customizable: VAS functionality can be customized to be the same as the original
application, or it can be restricted, augmented, or composed with other applications,
per user or per user-group; (4) Scalable to create and deploy: application virtualiza-
tion is a one-time automated process that greatly reduces the overhead of creation and
deployment of multiple application services; (5) Dynamically enabled: VAS deploy-
ment can be done in a “plug-and-play” fashion without having to bring down any part
of the Grid infrastructure.

A distinct contribution of the VA approach is the VA language that allows the de-
scription of command-line applications interface with potentially complex set of pa-
rameters. The specifiable information about the command-line format includes the
following: parameter types, default values, number of occurrences of a parameter,
groupings of parameters, dependencies among parameters, multiple group choices,
and parameter sweeping information. This language allows an application enabler, a
special user who has knowledge of the application, but not necessarily of the underly-
ing Grid infrastructure, to describe the application in a more comprehensive manner
than solutions proposed by SoapLab [23] and Generic Application Factory Service
(GAFS) [24]; thus, allowing strong parameter-type validation.

The VA architecture supports three processes: virtual application enabling, virtual
application service customization and generation, and virtual application service utili-
zation. It is divided into three tiers: the Web-portal tier which automatically generates
web interfaces of the Grid-services, the virtual application tier discussed in this sec-
tion and the virtual-Grid tier composed of virtualization services described in the
previous sections (Fig. 2). Two solutions for the virtual application service customiza-
tion and generation process were implemented in In-VIGO: (1) Generic Application
Service (GAP) [25] in which a generic Grid-service dynamically configures itself
according to the application information, making the interface of the specific applica-
tion available to the service client using a description language developed in the In-

8 Andréa Matsunaga et al.

VIGO project, and (2) Virtual Application Service (VAS) which generates one spe-
cific Grid-service for each application so that the application interface is fully de-
scribed using the standard Web Services Description Language (WSDL). The VAS
framework transforms the application information into XMLSchemas fully using the
expressiveness of it, including it as part of the service description (WSDL), and then
it generates, compiles and deploys the service implementation. The solution makes
use of third party tools like XMLBeans to generate complex binding types expressed
in XMLSchemas, a modified WSDL2Java to generate the service implementation,
AdminClient to deploy the service, Apache Ant to coordinate this automated process,
and Apache Axis and Tomcat as containers of the generated services.

7 Building Virtual Grids: In-VIGO at Work

In order to enable sharing of geographically distributed computational and data re-
sources with different usage policies, In-VIGO middleware shares with other Grid
middleware, the requirement of interfacing with heterogeneous resource access and
authentication schemes. Using resources managed by cluster or other Grid middle-
ware, such as Globus or Condor-G, entails delegation of jobs to these middleware
components using the appropriate job management syntax, and authentication and
authorization scheme. This section describes the approaches used in current In-VIGO
deployments to interface with multi-institutional resources for managing tasks associ-
ated with In-VIGO middleware and users.

Fig. 2. VA Architecture. Components are separated into portal, virtual application and virtual
Grid tiers. From right to left, the diagram depicts paths for: (1) enabling an application by an
enabler, (2) customizing and generating the virtual application services VA 1, VA 2 and VA 3
by an administrator and (3) utilizing the virtual Grid (virtual machines, virtual file system, and
virtual networks) to deliver the VA 3 service to a user

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 9

In-VIGO users do not have direct access to, and are completely decoupled from,
user accounts on Grid resources where jobs are effectively run. In-VIGO middleware
has full control of all resources and is responsible for starting jobs as well as main-
taining them, with complete freedom on how to dynamically map Grid users to local
users, and possibly recycle local user accounts among Grid users. The approach
brings advantages for both Grid users and resource providers: Grid users are freed
from the need to manage several credentials; resource administrators are freed from
the task of reconfiguring the access control of resources every time a user joins or
leaves the Grid.

In-VIGO users authenticate themselves by presenting their username and password
to the Grid portal. After login, user actions resulting in access to a Grid resource are
handled by the In-VIGO middleware through the use of Role-Based Access Control
(RBAC) mechanisms, offering Single Sign-On (SSO) for users. Users are grouped
into roles (e.g., regular, Matlab licensed, administrator), while resources are config-
ured by their providers with a set of permission groups which define operations (e.g.,
a simulator in demo, full and configuration modes). Appropriate mappings between
user roles and permission groups are defined, and In-VIGO middleware enforces the
mappings when accessing resources on behalf of users. For example, only users in the
“Matlab licensed” role would be able to run a Matlab-based simulator in its full op-
eration mode.

Resources, especially local user accounts, need to be isolated from each other be-
cause they are recycled among Grid users. To address this need, local accounts are
either pre-created by resource providers, or created on-demand for a particular user in
VMs where In-VIGO middleware has administrative privileges. In the first case, In-
VIGO middleware makes sure that, at any point in time, only one user is mapped to a
given local user account, and also that the account is cleaned when the job finishes. In
the latter case, accounts are created and destroyed for one Grid user, without the need
for recycling. Since a local account does not run processes for two different users
simultaneously, user isolation at process level is guaranteed. However, local user
accounts also need to have their data access privileges limited to the current assigned
Grid user, as isolation is compromised if the local accounts have access to data of all
Grid users. GVFS provides the necessary data isolation between Grid users. GVFS
controls access at the granularity of directories so that In-VIGO middleware is able to
limit the shadow account’s access of data to the home directory of the Grid user allo-
cated to it. Further data isolation, among jobs running for the same Grid user, can be
achieved by limiting the access of the local user accounts running the jobs to the job
working directory, which are subdirectories under the Grid user’s home directory.

As the In-VIGO middleware has all the necessary credentials to access accounts
(i.e., to remotely submit a job, independently of the mechanism – Condor, GSI, PBS,
SSH, etc) to run jobs on behalf of the user, providing SSO access to Grid resources is
trivial. More complex SSO solutions are however required when providing users
access to interactive applications that require application level authentication from the
user. Examples of such applications currently supported by In-VIGO include VNC
sessions and a web-based file-manager. In the case of VNC, In-VIGO remotely starts
its server process with a random password in a shadow account. When the user re-
quests access to the VNC desktop, In-VIGO embeds the necessary credential into the
VNC client applet and transmits it securely (through SSL) to the user. When the VNC
client is run by the user, it authenticates automatically (on behalf of the user) to the
server. Adding RBAC to the above process, enables In-VIGO to allow sharing of

10 Andréa Matsunaga et al.

workspaces among users, i.e., it enables a group of users (belonging to a single user
role) to access a given VNC session without the need for users to share credentials
and/or passwords.

In-VIGO selects resources for running In-VIGO user or middleware related tasks
based on the job requirements specified by the In-VIGO application enabler, and
resource availability and usage policies. This resource matching is performed by In-
VIGO in the case of resources directly managed by it, or may be delegated to the
cluster or Grid software, such as Condor-G or PBS, managing the resources. In the
latter case, In-VIGO job requirements need to be mapped to job requirements in the
specification syntax of the cluster or Grid software. Allowing for direct specification
of job requirements based on the specification syntax of specific cluster/Grid software
requires that the application enabler be aware of the types of resources that the appli-
cation can use. This problem is typically overcome by introducing a uniform specifi-
cation syntax that subsumes the specification syntax of the varied cluster/Grid soft-
ware. Since existing cluster/Grid specification syntax used to describe resource/
request properties are based on symmetric flat attributes [26], the uniform specifica-
tion syntax inherits their shortcoming, namely the need for tight coordination between
resource providers and consumers to agree upon attribute names and values. To allow
for a flexible and extensible approach to resource matching in In-VIGO semantic
matching of resource descriptions is used [27]. The In-VIGO job specifications and
resource descriptions and usage policies are described using RDF [28] based ontolo-
gies, along with semantic entailments for matchmaking. Handlers specific to the type
Cluster/Grid software are then used to map job specification and job management
information to the software-specific syntax. The asymmetric description of resource
and request enables VA descriptions that are decoupled from the supported resources
and implementation of resource matching in In-VIGO.

8 Conclusions and In-VIGO Status

Many challenges faced in early versions of Grid middleware were due to the need to
support different applications and distinct users on heterogeneous resources under
separate administrative control. The use of virtualization effectively minimizes the
impact of hardware and system software dependencies on Grid middleware by gener-
ating on-demand the execution environments needed for each application and user.
The use of services enables customization of applications for each user while hiding
implementation details, thus removing the need for multiple variants of Grid middle-
ware. This “dual rail” decoupling greatly facilitates the management of Grid resources
without interfering with other users, and the creation and provision of services with-
out conflicts with other service implementations.

The In-VIGO research reported in this paper confirms the potential benefits of vir-
tualization and services by devising and deploying efficient services for the creation
of virtual resources and virtual grids, and providing techniques for the automatic
Grid-enabling of applications as services and their on-demand instantiation. The first
version of In-VIGO has been online since July of 2003; this and newer versions of In-
VIGO have been the subject of research and development since August of 2001. The
concepts discussed in this paper have been implemented in at least one of these ver-
sions. Extensive prototyping and experimental evaluation of these concepts have
demonstrated that the overheads of using virtualization and services are either mini-

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 11

mal or acceptable for most Grid-computing applications. In-VIGO middleware is
currently being used to deliver Grid-based computational services to users in several
domains of science and engineering, which include computational nanoelectronics,
coastal and ocean modeling, materials science, computer architecture and parallel
processing.

Acknowledgements
The In-VIGO project is supported in part by the National Science Foundation under
Grants No. EIA-9975275, EIA-0224442, ACI-0219925, EEC-0228390; NSF Mid-
dleware Initiative (NMI) collaborative grants ANI-0301108/ANI-0222828, SCI-
0438246; and by the Army Research Office Defense University Research Initiative in
Nanotechnology. The authors also acknowledge two SUR grants from IBM and a gift
from VMware Corporation. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation, Army Research Office, IBM, or
VMware.

References
1. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R.J., Fortes, J.A.B., Krsul, I., Matsunaga,

A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From Virtualized Resources to
Virtual Computing Grids: The In-VIGO System. Future Generation Computing Systems,
special issue on Complex Problem-Solving Environments for Grid Computing, Vol 21/6,
2005, 896–909.

2. Fortes, J.A.B., Figueiredo, R.J., Lundstrom, M.S.: Virtual Computing Infrastructures for
Nanoelectronics Simulation. IEEE Proceedings: Special Issue on Blue Sky Technologies
(in press), 2005.

3. Kapadia, N., Figueiredo, R.J., Fortes, J.A.B.: Enhancing the Scalability and Usability of
Computational Grids via Logical User Accounts and Virtual File Systems. In Proceedings
of Heterogeneous Computing Workshop at the International Parallel and Distributed
Processing Symposium, April 2001.

4. Krsul, I., Ganguly, A., Zhang, J., Fortes, J., Figueiredo, R.: VMPlants: Providing and Man-
aging Virtual Machine Execution Environments for Grid Computing. In Proceedings of
Supercomputing 2004.

5. Keahey, K., Doering, K., Foster, I.: From Sandbox to Playground: Dynamic Virtual
Environments in the Grid. In Proceedings of Fifth IEEE/ACM International Workshop on
Grid Computing (GRID'04).

6. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A Case for Grid Computing on Virtual Ma-
chines. In Proceedings of International Conference on Distributed Computing Systems,
May 2003.

7. Zhao, M., Figueiredo, R.J.: Distributed File System Support for Virtual Machines in Grid
Computing. In Proceedings of 13th IEEE International Symposium on High Performance
Distributed Computing, June 2004.

8. Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: The PUNCH Virtual File System: Seamless
Access to Decentralized Storage Services in a Computational Grid. In Proceedings of IEEE
International Symposium on High Performance Distributed Computing, August 2001.

9. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS Version 3
Design and Implementation. In Proceedings of USENIX Summer Technical Conference,
1994.

10. Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: Seamless Access to Decentralized Storage
Services in Computational Grids via a Virtual File System. In Cluster Computing, 2004.

12 Andréa Matsunaga et al.

11. Zhao, M., Chadha, V., Figueiredo, R.J.: Supporting Application-Tailored Grid File System
Sessions with WSRF-Based Services. In Proceedings of the 14th IEEE International Sym-
posium on High Performance Distributed Computing, July 2005, 202–211.

12. Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: SOCKS protocol version 5.
RFC1928, March 1996.

13. Son, S., Livny, M.: Recovering Internet Symmetry in Distributed Computing. In Proceed-
ings of the 3rd International Symposium on Cluster Computing and the Grid, May 2003.

14. Francis, P., Gummadi, R.: IPNL: A NAT-Extended Internet Architecture. In Proceedings of
the ACM SIGCOMM 2001, August 2001.

15. Eugene Ng, T.S., Stroica, I., Zhang, H.: A Waypoint Service Approach to Connect Hetero-
geneous Internet Address Spaces. In Proceedings of USENIX 2001, June 2001, 319–332.

16. Denis, A., Aumage, O., Hofman, R., Verstoep, K., Kielmann, T., Bal, H.: Wide-Area
Communication for Grids: An Integrated Solution to Connectivity, Performance and Secu-
rity Problems. In Proceedings of 13th IEEE International Symposium on High Performance
Distributed Computing, June 2004.

17. Sundararaj, A., Dinda, P.: Towards Virtual Networks for Virtual Machine Grid Computing.
In Proceedings of the 3rd USENIX Virtual Machine Research and Technology Symposium,
May 2004.

18. Jiang, X., Xu, D.: VIOLIN: Virtual Internetworking on Overlay Infrastructure. In Proceed-
ings of Parallel and Distributed Processing and Applications: Second International Sympo-
sium, ISPA 2004, Hong Kong, China, December 13-15, 2004.

19. Touch, J., Hotz, S.: The X-Bone. Proc. of Global Internet Mini-Conference at Globecom,
November 1998.

20. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., van
Nieuwpoort, R., Reinefeld, A., Schintke, F., Schott, T., Seidel, E., Ullmer, B.: The grid ap-
plication toolkit: toward generic and easy application programming interfaces for the grid.
In Proceedings of the IEEE, Vol.93, Iss.3, March 2005, 534–550.

21. Pierce, M., Fox, G., Youn, C., Mock, S., Mueller, K., Balsoy, O.: Interoperable Web ser-
vices for computational portals. In Proceedings of the 2002 ACM/IEEE conference on Su-
percomputing (Baltimore, MD, 2002), IEEE Computer Society Press, 2002, 1–12.

22. Thomas, M., Boisseau, J.: Building Grid Computing Portals: The NPACI Grid Portal Tool-
kit. Grid Computing: Making the Global Infrastructure a Reality, Ch 28. F. Berman, G. Fox
and T. Hey, eds. John Wiley and Sons, Ltd, Chichester (2003).

23. Senger, M., Rice, P., Oinn, T.: Soaplab - a unified Sesame door to analysis tools. In
Proceedings of UK e-Science All Hands Meeting September 2003, 509–513.

24. Gannon, D., Alameda, J., Chipara, O., Christie, M., Dukle, V., Fang, L., Farrellee, M., Kan-
daswamy, G., Kodeboyina, D., Krishnan, S., Moad, C., Pierce, M., Plale, B., Rossi, A.,
Simmhan, Y., Sarangi, A., Slominski, A., Shirasuna, S., Thomas, T.: Building grid portal
applications from a web service component architecture. In Proceedings of the IEEE,
Vol.93, Iss.3, March 2005, 551–563.

25. Sanjeepan, V., Matsunaga, A., Zhu, L., Lam, H., Fortes, J.A.B.: A Service-Oriented, Scal-
able Approach to Grid-Enabling of Legacy Scientific Applications. In Proceeding of
International Conference on Web Services (ICWS), Industry Track, July 2005.

26. Solomon, M., Raman, R. and Livny, M.: Matchmaking distributed resource management
for high throughput computing. In Proceedings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing, Chicago, IL, July 1998.

27. Tangmunarunkit, H., Decker, S. and Kesselman, C.: Ontology-Based Resource Matching in
the Grid - The Grid Meets the Semantic Web. The Semantic Web - ISWC 2003, Second In-
ternational Semantic Web Conference, Sanibel Island, FL, USA, October 20-23, 2003, Pro-
ceedings. Lecture Notes in Computer Science 2870 Springer 2003, ISBN 3-540-20362-1

28. Lassila, O., and Swick, R.R.: Resource description framework (rdf) model and syntax
specification. In W3C Recommendation, World Wide Web Consortium. February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

The Evolution
of the Blue Gene/L Supercomputer

José Moreira

IBM Systems and Technology Group, Rochester, USA

Abstract. The Blue Gene project started in the final months of 1999.
Five years later, during the final months of 2004, the first Blue Gene/L
machines were being installed at customers. By then, Blue Gene/L had
already established itself as the fastest computer in the planet, topping
the TOP500 list with the breathtaking speed of over 70 Teraflops. Since
the beginning of 2005, many other systems have been installed at cus-
tomers, the flagship machine at Lawrence Livermore National Laboratory
has greatly increased in size, and Blue Gene/L has established itself as
a machine capable of breakthrough science.
We here examine how Blue Gene/L came to be. We describe how some
key technical decisions were made that shaped the overall hardware and
software architecture of this machine. We also describe the nature of the
interactions between the teams inside and outside IBM that led to Blue
Gene/L being such a successful venture. Finally, we explain why this is
just the beginning, and why there is more excitement ahead of us than
behind us in the Blue Gene project.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Agent Based Computational Grids:
Research Issues and Challenges

Omer F. Rana

Cardiff University, UK

Abstract. As computer and computational scientists have to manage
access to increasingly complex computing and data resources, this be-
comes a time consuming task. This is especially true for Computational
Grids, which can involve the integration of resources distributed across
multiple administrative domains. Deciding which systems to use, where
the data resides for a particular application domain, how to migrate the
data to the point of computation (or vice versa), and data rates required
to maintain a particular application “behaviour” become significant. To
support these, it is important to develop brokering approaches based
on intelligent techniques – to support service discovery, manage perfor-
mance based on data from monitoring tools, and support data selection.
Although the use of broker-based techniques can be found in literature
today – very few of these fully utilise the potential of an agent-based sys-
tem. Intelligent agents provide a useful means to achieve the objectives
outlined above. An important and emerging area within Grid computing
is the role of service ontologies – especially domain specific ontologies,
which may be used to capture particular application needs. Using these,
scientists may be able to share and disseminate their data and software
more effectively. This has been recognised as being important by both
the computer and computational science community – and current ef-
forts towards establishing “Semantic Grids” is a useful first step in this
direction.
The role of agent standards and how they can be integrated with Grid
computing is explored. Specialist activities that can be undertaken by
agent-based computing are outlined, along with example implementation
of such systems. Research challenges that still need to be addressed are
highlighted, along with possible benefits that overcoming such challenges
will bring.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Science on a Large Scale

Raymond Bair

Mathematics and Computer Science Division, Argonne National Laboratory, USA

Abstract. The TeraGrid, the U.S. National Science Foundation’s multi-
year project to build a distributed national cyberinfrastructure, entered
full production mode in the fall of 2004, providing a coordinated set of
services for the science and engineering community. TeraGrid operates
a unified user support infrastructure and software environment across
its eight resource partner sites, which together provide more than 40
teraflops of computing capability and mass storage capability in the
petabytes, linked by networks operating at tens of Gigabit/sec. This
unified environment allows TeraGrid users to access storage and infor-
mation resources as well as over a dozen major computing systems via
a single allocation, either as stand-alone resources or as components of
a distributed application using Grid software capabilities. Many lessons
can be drawn from the dual pursuit of high performance and close inte-
gration.
The next phase will be even more exciting, with the roll out of a wide
range of science gateways and additional advanced applications. Science
gateway projects are aimed at supporting access to TeraGrid via web por-
tals, desktop applications or via other grids. An initial set of 10 gateways
will address new scientific opportunities in fields from bioinformatics to
nanotechnology as well as interoperation between TeraGrid and other
Grid infrastructures.
TeraGrid is also enabling an impressive array of large scale science appli-
cations, where researchers can perform complex simulations and manip-
ulate enormous data sets in novel ways to gain new insights into research
questions and societal problems, for example, finding the most efficient
and least expensive ways to clean up groundwater pollution.
Effort in these and other related areas will allow more researchers and
educators access to TeraGrid capabilities and advance compatibility be-
tween TeraGrid and other major Grid deployments such as Open Science
Grid, Network for Earthquake Engineering Simulation (NEES), and ma-
jor European and Asian Grid deployments.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Topic 1
Support Tools and Environments

Henryk Krawczyk, Jacques Chassin de Kergommeaux,
Pierre Manneback, and Tomás Margalef

Topic Chairs

Nowadays parallel distributed programmers use different tools and environments
that facilitate the design, programming, testing, debugging and performance
analysis and tuning of their applications. However, they do not satisfy all user
requirements, such as broad usability, high effectiveness and proper accuracy.
Therefore new propositions are still being developed and their properties tested
on modern environments, such as clusters and grids. Their main aim is to simplify
the understanding of what-and-why happens during execution of parallel and
distributed applications. An important step is to prepare semantic descriptions
of system behaviour and to make progress in high quality automatic analysis of
performance bottlenecks.

This year 23 papers were submitted to this topic. Overall, they address dif-
ferent usability aspects of parallel distributed environments and tools to improve
quality of program behaviour and performance analysis in such environments.
The broad scope of considerations includes efficient distributed compilation,
nested loop optimisation, checkpointing, system and software configuration man-
agement. Besides, monitoring, logging and tuning procedures design for different
environments as well as middleware improvements to create high quality services
are presented. Among the submissions, only seven papers (30%) were finally ac-
cepted. They concentrate on improvements to the effectiveness and accuracy of
the performance analysis of parallel and distributed programs. Novel approaches
to these problems based on soft computing are presented. In particular, a high
level query language is introduced to support performance analysis using lin-
guistic expressions. Moreover, the performance profiling model is described to
create a general algorithm for on-the-fly overhead assessment and compensa-
tion. The methods for improving performance of selected routine libraries are
also discussed, and usability of analytical models and corresponding tools is also
evaluated. New modelling techniques, based on occurrence and interrelationships
of events, to build a data structure of a partial order of events is also given. Mod-
ification of existing middleware environments towards specification and dynamic
adaptation of system services is also considered.

The qualified papers propose improvements in tools and parallel distributed
environments and are a good material for foresting a discussion during session
meetings.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 19–29, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tolerating Message Latency Through the Early Release
of Blocked Receives

Jian Ke1, Martin Burtscher1, and Evan Speight2

1 Computer Systems Laboratory, School of Electrical & Computer Engineering,
Cornell University, Ithaca, NY 14853, USA
{jke,burtscher}@csl.cornell.edu

2 Novel System Architectures, IBM Austin Research Lab, Austin, TX 78758, USA
speight@us.ibm.com

Abstract. Large message latencies often lead to poor performance of parallel
applications. In this paper, we investigate a latency-tolerating technique that
immediately releases all blocking receives, even when the message has not yet
(completely) arrived, and enforces execution correctness through page protec-
tion. This approach eliminates false message data dependencies on incoming
messages and allows the computation to proceed as early as possible. We im-
plement and evaluate our early-release technique in the context of an MPI run-
time library. The results show that the execution speed of MPI applications im-
proves by up to 60% when early release is enabled. Our approach also enables
faster and easier parallel programming as it frees programmers from adopting
more complex nonblocking receives and from tuning message sizes to explicitly
reduce false message data dependencies.

1 Introduction

Clusters of workstations can provide low-cost parallel computing platforms that
achieve reasonable performance on a wide range of applications reaching from data-
bases to scientific algorithms. To enable parallel application portability between vari-
ous cluster architectures, several message-passing libraries have been designed. The
Message Passing Interface (MPI) standard [10] is perhaps the most widely used of
these libraries. MPI provides a rich set of interfaces for operations such as point-to-
point communication, collective communication, and synchronization.

Sending and receiving messages is the basic MPI communication mechanism. The
simplest receive operation has the following syntax: MPI_Recv(buf, count, dtype,
source, tag, comm, status). It specifies that a message of count elements of data type
dtype with a tag of (tag, comm) should be received from the source process and stored
in the buffer buf. The status returns a success or error code as well as the source and
tag of the received message if the receiver specifies a wildcard source/tag. The
MPI_Recv call blocks until the message has been completely received. The MPI stan-
dard also defines a non-blocking receive operation, which basically splits MPI_Recv
into two calls, MPI_Irecv and MPI_Wait. The MPI_Irecv call returns right away
whether or not the message has been received, and the MPI_Wait call blocks until the
entire message is present. This allows application writers to insert useful computation
between the MPI_Irecv and MPI_Wait calls to hide part of the message latency by
overlapping the communication with necessary computation.

20 Jian Ke, Martin Burtscher, and Evan Speight

In both cases, the computation cannot proceed past the blocking call (MPI_Recv or
MPI_Wait). In our library, we immediately release (unblock) all blocked calls
(MPI_Recv and MPI_Wait) even when the corresponding message has not yet been
completely received, and prevent the application from reading the unfinished part of
the message data through page protection. Our early-release technique automatically
delays the blocking for as long as possible, i.e., until the message data is actually
used by the application, and eliminates the false message data dependency implied by
the blocking calls. As such, it provides the following benefits:

• It allows the computation to continue on the partially received message data in-
stead of waiting for the full message to complete, thus overlapping the communi-
cation with the computation.

• All blocking receives are automatically made non-blocking. The message blocking
is delayed as much as possible, benefiting even nonblocking receives with sub-
optimally placed MPI_Wait calls.

• Programmers no longer need to worry about when and how to use the nonblocking
MPI calls, nor do they need to intentionally dissect a large message into multiple
smaller messages. This reduces the development time of parallel applications. In
addition, the resulting code is more intuitive and easier to understand and main-
tain, while at the same time providing or exceeding the performance of more com-
plex code.

We implemented the early-release technique in our erMPI runtime library. Appli-
cations linked with our library instantly benefit from early release without any modi-
fication. erMPI currently supports the forty most commonly-used MPI functions,
which is enough to cover the vast majority of MPI applications.

There has been much work on improving the performance of MPI runtime librar-
ies. TMPI [12], TOMPI [1] and Tern [6] provide fast messaging between processes
co-located on the same node via shared memory semantics that are hidden from the
application writer. Tern [6] dynamically maps computation threads to processors
according to custom thread migration policies to improve load balancing and to
minimize inter-node communication for SMP clusters. Some implementations [9, 11]
take advantage of user-level networks such as VIA [2] or InfiniBand [4] to drastically
reduce the messaging overhead, thus reducing small-message latency. Other research-
ers have investigated ways to improve the performance of collective communication
operations in MPI [5, 13]. Prior work by the authors has explored using message
compression to increase the effective message bandwidth [7] and message prefetching
to hide the communication time [8].

This paper is organized as follows. Section 2 introduces our erMPI library and de-
scribes the early-release implementation of blocked receives. Section 3 presents the
experimental evaluation methodology. Section 4 discusses results obtained on two
supercomputers. Section 5 presents conclusions and avenues for future work.

2 Implementation

2.1 The erMPI Library

We have implemented a commonly used subset of forty MPI functions in our erMPI
library, covering most point-to-point communications, collective communications,
and communicator creation APIs in the MPI specification [10]. The library is written

Tolerating Message Latency Through the Early Release of Blocked Receives 21

in C and provides an interface for linking with FORTRAN applications. erMPI util-
izes TCP as the underlying network protocol and creates one TCP connection be-
tween every two communicating MPI processes. Each process has one application
thread as well as one message thread to handle sending to and receiving from all
communication channels.

2.2 Early-Release Mechanism

The messaging thread creates an alias page block for each message receive buffer
posted via an MPI_Recv or MPI_Irecv call and stores incoming message data via
these alias pages. The application thread making the call to MPI_Recv or MPI_Wait
never blocks when calling these routines, which is a slight departure from the spirit of
these calls. However, if the message has not arrived or is only partially complete, the
application thread protects the unfinished pages of the message receive buffer and
immediately returns from the MPI_Recv or MPI_Wait call that would otherwise have
blocked. Thus, computation can continue until the application thread touches a pro-
tected page, which causes an access exception, and the application is then blocked
until the data for that page is available.

Fig. 1. Receive page examples

Figure 1 (a) shows an example of a receive buffer consisting of three pages. The
virtual pages Pi and Pi

’ (i ∈ {1,2,3}) are mapped to the same physical page. The in-
coming message data is stored into the receive buffer through the alias pages Pi

’,
which are created from the original buffer pages passed to MPI_Recv and are never
protected. When the application thread calls MPI_Recv or MPI_Wait in this example,
it will notice that P1 is completely filled and therefore protects only P2 and P3, which
will be granted ReadWrite access again by the messaging thread as soon as those
pages are filled. The application thread returns from the MPI_Recv or MPI_Wait call
without waiting for the completion of P2 and P3.

2.3 Implementation Issues

Shared Receive Pages. Figure 1 (b) depicts three outstanding receives, R1, R2 and R3.
All three receive buffers include part of page P2. To handle such cases, we maintain a
page protection count for shared receive pages to enforce the correct protection ac-
tion. A page’s protection count is incremented for each early-release protection. Note
that a page only needs to actually be protected when the page protection count is in-
creased from zero to one. If all three receives are released early, P2’s page protection

22 Jian Ke, Martin Burtscher, and Evan Speight

count will be three. The count is decreased by one as soon as one of the receives
completes the page. Once the count reaches zero, the page is unprotected.

There are at most two shared pages for each receive operation, one at the head of
and the other at the tail of the receive buffer. For efficiency reasons, we log the page
protection counts of all head and tail pages in a hash table.

Alias Page Creation. Most modern operating systems allow multiple virtual pages to
be mapped to the same physical page and expose this function via system calls such
as mmap in Unix and MapViewOfFile in Windows NT.

Creating an alias page is an expensive operation. To facilitate alias page reuse, we
store the alias page description in a hash table. Each entry in the hash table records the
starting addresses of both the original and the alias page blocks and the page block
length. We hash the starting address of the original page block to index the hash table.
A new alias page block is created if there is no hit or if the existing alias block is too
small; otherwise a preexisting block is reused. Alias page blocks are allocated at a 16-
page granularity. The page size is 4 kB in our system.

Send Operation. It is important that the protected pages be accessed only by the
application thread running in user mode. If these pages are touched by a kernel or
subsystem thread or in kernel mode, it may be impossible to catch and handle the
access exceptions gracefully. This can happen when a send buffer shares a page with
a receive buffer and the send buffer is passed to the operating system. To prevent this
scenario, we also use alias page blocks for sends.

2.4 Portability and MPI Standard Relaxation

Even though we evaluate our early-release technique on Windows with TCP as the
underlying network protocol, it can be similarly implemented on other systems, as
long as the following requirements are met:

• The OS supports page protection calls and access violation handling.
• The network protocol can access the protected receive buffer. This is possible if

the network subsystem has direct access to the physical pages or if alias pages can
be used to interface with the communication protocol.

• The MPI library can be notified when a partial message arrives. This allows the
protected pages to be unprotected as early as possible.

MPI_Recv returns the receive completion status in the status structure. It usually
includes the matching send’s source and tag and indicates whether the receive is a
success. If a wild card source or tag is specified and the call is early released, the
matching send’s source or tag is typically not known. In such a case, we delay the
early release until this information is available. We always return a receive success in
the status field and force the program to terminate should an error occur.

2.5 Other Issues

Message Unpacking. In our sample applications, messages are received into the
destination buffers directly, allowing the computation to proceed past the receive
operation and to work on the partially received message data. For applications that
first receive messages into an intermediate buffer and then unpack the message data

Tolerating Message Latency Through the Early Release of Blocked Receives 23

once they have been fully received, the early-released application thread would cause
an access exception and halt the execution right away due to the message unpacking
step, limiting the potential of overlapping useful computation with communication.

Since unpacking adds an extra copy operation and increases the messaging latency,
it should be avoided whenever possible. More advanced scatter receive operations
provide better alternatives for advanced programmers and parallelizing compilers.
Another possible solution is to unpack the message as needed in the computation
phase instead of unpacking the whole message right after the message receive.

Correctness. To guarantee execution correctness, an early-released application thread
is not allowed to affect any other application thread before all early-released receives
are at least partially completed. This means that new messages are not allowed to
leave an MPI process if there exists unresolved early-released receives. Otherwise, a
causality loop could be formed where an early-released application thread sends a
message to another MPI process, which in turn sends a message that matches the
early-released receive.

3 Evaluation Methods

3.1 Systems

We performed all measurements on the Velocity + (Vplus) and the Velocity II (V2)
clusters at the Cornell Theory Center [3]. Both clusters run Microsoft Windows 2000
Advanced Server. The cluster configurations are listed below.

• Vplus consists of 64 dual-processor nodes with 733 MHz Intel Pentium III proces-
sors, 256 kB L2 cache per processor and 2 GB RAM per node. The network is
100Mbps Ethernet, interconnected by 3Com 3300 24-port switches.

• V2 consists of 128 dual-processor nodes with 2.4 GHz Intel Pentium 4 processors,
512 kB L2 cache per processor and 2 GB RAM per node. The network is Force10
Gigabit Ethernet interconnected by a Force10 E1200 switch.

3.2 Applications

We evaluate the performance of early release on three representative scientific appli-
cations: PES, N-body, and M3. In general, we see small performance improvements
on benchmark applications due to the message unpacking effects.

PES is an iterative 2-D Poisson solver. Each process is assigned an equal number
of contiguous rows. In each iteration, every process updates its assigned rows, sends
the first and last row to its top and bottom neighbors, respectively, and receives from
them two ghost rows that are needed for updating the first and last row in the next
iteration. We fix the two corner elements (0,0), (N-1, N-1) to 1.0 and the other two
corner elements (0, N-1), (N-1, 0) to 0.0 as boundary conditions.

N-Body simulates the movement of particles under pair-wise forces between them.
All particles are evenly distributed among the available processes for the force com-
putations and the position updates. After updating the states of all assigned particles,
each process sends its updated particle information to all other processes for the force
computation in the next time step.

24 Jian Ke, Martin Burtscher, and Evan Speight

M3 is a matrix-matrix-multiplication application. In each iteration, a master proc-
ess generates a random matrix Ai (emulating a data collection process), distributes
slices of the matrix to slave processes for computation, and then gathers the results
from all slave processes. Each slave process stores a transposed transform matrix B,
which is broadcast once from the master process to all slaves when the computation
starts. Each slave process first receives matrix Aip, which is part of matrix Ai, then
computes matrix Cip = Aip*B and sends Cip to the master. Note that this parallelization
scheme is by no means the most efficient algorithm for multiplying matrices.

Fig. 2. Communication patterns

The communication patterns of these three applications for four-process runs are
shown in Figure 2. The circles represent processes and the lines represent the com-
munication between processes; each PES process only communicates with at most
two neighboring processes; each N-Body process communicates with every other
process; and each M3 slave process communicates with the master process. The mes-
saging calls used are MPI_Send, MPI_Irecv, MPI_Wait and MPI_Waitall.

Table 1. Problem size and message size information

Table 1 lists the three problem sizes we used for each application. Size A is the
smallest and Size C is the largest. In the “Problem Size” columns, the number before
the comma is the matrix size for PES and M3 and the number of particles for N-Body;
the number after the comma is the number of iterations or simulation time steps. We
have adjusted the number of iterations so that the runtimes are reasonable. We run
these applications with 16, 32, 64 and 128 processes and two processes per node. The
resulting message sizes for 64-process runs are shown in the “Message Size” col-
umns. We obtained the runtimes with three MPI libraries. MPI-Pro is the default MPI
library on both clusters. The erMPI-B is the baseline version of our erMPI library, in
which the early release of receives is disabled. erMPI-ER is the same library but with
early release turned on.

4 Results

4.1 Scaling Comparison

Figure 3 (a–f) plots the scaling with problem size B of PES, N-Body and M3. Each
application has two subgraphs, the left one shows Vplus and the right one V2 results.
Each subgraph plots the execution speeds of the three MPI libraries against the num-

Tolerating Message Latency Through the Early Release of Blocked Receives 25

ber of processes used. The execution speeds are normalized to the 16-process run of
the erMPI baseline library.

For a fixed problem size, the communication-to-computation ratio increases as the
problem is partitioned among an increasing number of processors, which leads to
worsening of parallel efficiency and scalability.

(a) PES on Vplus (b) PES on V2

(c) N-Body on Vplus (d) N-Body on V2

(e) M3 on Vplus (f) M3 on V2

Fig. 3. Scaling comparisons

For PES (Figure 3 (a, b)), the erMPI early-release library scales the best among the
three MPI libraries. The erMPI baseline library also scales better than MPI-Pro. PES
scales better on the Vplus cluster than on V2. It appears that the higher processing

26 Jian Ke, Martin Burtscher, and Evan Speight

power of V2 leads to a higher communication-to-computation time ratio and hence
worse scalability.

N-Body is a communication intensive application. The communication dominates
the computation as the number of processes increases. Figure 3 (c, d) shows that the
MPI-Pro speedups start to saturate at around 32 processes and degrade at 128 proc-
esses. V2 has a higher network throughput and thus performs better than Vplus. Our
erMPI library scales, with and without early release, to 64 processes.

In Figure 3 (e, f), MPI-Pro performs better than the erMPI baseline for 32 and 64
processes on Vplus, but worse than the erMPI baseline for 128 processes on V2. The
speedups in the remaining cases are roughly equal. erMPI with early release performs
significantly better than both the baseline and MPI-Pro, especially for 64- and 128-
process runs.

4.2 Early-Release Speedup

The scaling results from the previous section show that our baseline is comparable
(superior in most cases) to MPI-Pro. In this section, we focus on the performance
improvement of the early-release technique over the baseline. The speedups over the
baseline erMPI library are plotted in Figure 4 (a - c) for the three applications. The
labels along the x-axis indicate both the cluster and the problem size. Each group of
bars shows results for runs with 16, 32, 64 and 128 processes. For the few non-
scalable runs that take longer than the runs with fewer processes, the performance
improvement over the baseline is meaningless and is left out of the figure.

We see that the speedups of a given problem size and cluster usually increase as
the number of processes increases, as is the case for Vplus.B and Vplus.C with PES;
for Vplus.C and V2.C with N-Body; and for Vplus.C, V2.A and V2.B with M3. The
same trend holds in the other cases except for the last one or two bars. This is due to
the increasing communication-to-computation ratio as the number of processes in-
creases. Early release has little potential for performance improvement in cases where
the communication time is minimal. On the other hand, when the communication-to-
computation ratio becomes too large, the speedup decreases in some cases. There are
two reasons for this behavior. First, when receives are released early, application
threads that proceed past the receive operations may send more data into the commu-
nication network, which worsens the network resource contention in communication-
intensive cases. Second, as the communication-to-computation ratios increase past a
certain level, the remaining computation is small enough that overlapping it with
communication provides little performance benefit.

The same reasoning explains the speedup trends for varying problem sizes and
clusters. As the problem size decreases, the communication-to-computation ratios
increase and lead to higher early-release speedups. This behavior can be seen in the
PES 16-process runs on Vplus, the N-Body 16- and 32-process runs on Vplus and 16-
process runs on V2, and the M3 16-, 32- and 64-process runs on both Vplus and V2.
The V2 cluster has a relative faster network (bandwidth) than Vplus and hence the
potential for speedups due to early release is smaller. Indeed, V2 demonstrates a
smaller performance improvement in most cases, except for N-Body sizes B and C,
where the two negative effects start to impact the early-release speedups.

Tolerating Message Latency Through the Early Release of Blocked Receives 27

(a) PES

(b) N-Body (c) M3

Fig. 4. Speedups due to early release

Four cases of PES show early-release speedups of over 10%. N-Body exhibits
speedups of up to 32%, with four cases being over 20%. M3 reaches over 30%
speedup in six cases, with a maximum speedup of 60%.

4.3 Early-Release Overhead and Benefit

The early-release overhead includes the creation of the alias page blocks and the page
protection for unfinished messages. Since the alias page blocks are reused in our im-
plementation, the overhead is amortized over multiple iterations and is negligible.
Table 2 compares the page protection plus unprotection time on V2 with the raw
transfer time over a 1 Gbps network. The cost of page protection is much smaller than
the message communication latency. Most importantly, there is little penalty to the
run time since the application thread would have been blocked waiting for the incom-
ing message to complete anyway.

Table 2. Page protection overhead

28 Jian Ke, Martin Burtscher, and Evan Speight

Parallel applications frequently consist of a loop with a communication phase and a
computation phase. When a process receives multiple messages from multiple senders
in the communication phase, often the computation following the communication
need not access some of the received messages for a while. For example, the PES
process receives two messages in the communication phase, one from the process
“above” and the other from the process “below” it. The message data from the lower
neighbor is accessed only at the end of computation phase, thus blocking for its com-
pletion at the end of the communication phase is not necessary. The same is true for
N-Body as each process receives messages from multiple processes in the communi-
cation phase. Our early-release technique eliminates this false message data depend-
ency and delays the blocking until the message data is indeed accessed. The reduced
blocking time is most pronounced in the presence of load imbalance or processes
running out of lock-step.

Each M3 slave process receives only one message in the communication phase, so
the above effect does not appear. Nevertheless a similar false data dependency is
eliminated by the early-release technique; the computation can start on the partially
finished message data, maximally overlapping the communication with computation.

5 Conclusions and Future Work

In this paper, we present and evaluate a technique to release blocked message receives
early. Our early-release approach automatically delays the blocking of message re-
ceives as long as possible to maximize the degree of overlapping of communication
with computation, effectively hiding a portion of the message latency. The perform-
ance improvement depends on the communication-to-computation ratio and the extent
of false message data dependencies of each application. Measurements with our
erMPI library show an average early-release speedup of 11% on two supercomputing
clusters for three applications with different communication patterns.

In future work, we plan to eliminate the message unpacking step for some bench-
mark applications and study the early-release performance on these highly tuned ap-
plications. Future research may also explore the usage of a finer early-release granu-
larity to further improve the performance.

Acknowledgements

This work was supported in part by the National Science Foundation under Grant No.
0125987. This research was conducted using the resources of the Cornell Theory
Center, which receives funding from Cornell University, New York State, federal
agencies, foundations, and corporate partners.

References
1. E. D. Demaine, “A Threads-Only MPI Implementation for the Development of Parallel

Programs,” Intl. Symp. on High Perf. Comp. Systems, 7/1997, pp. 153-163.
2. D. Dunning, G. Regnier, G. McApline, D. Cameron, B. Shubert, F. Berry, A. Merritt, E.

Gronke and C. Dodd, “The Virtual Interface Architecture,” IEEE Micro, 3/1998, pp. 66-76.
3. http://www.tc.cornell.edu/

Tolerating Message Latency Through the Early Release of Blocked Receives 29

4. Infiniband Trade Association, Infiniband Architecture Specification, Release 1.0, Oct.
2000.

5. A. Karwande, X. Yuan and D. K. Lowenthal, “CC-MPI: A Compiled Communication Ca-
pable MPI Prototype for Ethernet Switched Clusters,” The Ninth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, 6/2003, pp. 95-106.

6. J. Ke, “Adapting parallel program execution in cluster computers through thread migra-
tion,” M.S. Thesis, Cornell University, 2003.

7. J. Ke, M. Burtscher and E. Speight, “Runtime Compression of MPI Messages to Improve
the Performance and Scalability of Parallel Applications,” Supercomputing, 11/2004.

8. J. Ke, M. Burtscher and E. Speight, “Reducing Communication Time through Message
Prefetching,” Intl. Conf. on Parallel and Distributed Processing Techniques and Applica-
tions, 6/2005.

9. J. Liu, J. Wu, S. P. Kini, P. Wyckoff and D. K. Panda, “High Performance RDMA-Based
MPI Implementation over InfiniBand,” Intl. Conf. on Supercomputing, 6/2003, pp. 295-
304.

10. MPI Forum, “MPI: A Message-Passing Interface Standard,” The Intl. J. of Supercomputer
Applications and High Performance Computing, 8(3/4):165-414, 1994.

11. E. Speight, H. Abdel-Shafi, and J. K. Bennett, “Realizing the Performance Potential of the
Virtual Interface Architecture,” Intl. Conf. on Supercomputing, 6/1999, pp. 184-192.

12. H. Tang and T. Yang, “Optimizing Threaded MPI Execution on SMP Clusters,” Intl. Conf.
on Supercomputing, 6/2001, pp. 381-392.

13. R. Thakur and W. Gropp, “Improving the Performance of Collective Operations in
MPICH,” European PVM/MPI Users' Group Conference, 9/2003, pp. 257-267.

Fast Convex Closure for Efficient Predicate Detection

Paul A.S. Ward and Dwight S. Bedassé�

Shoshin Distributed Systems Group
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

{pasward,dsbedass}@shoshin.uwaterloo.ca

Abstract. The behaviour of parallel and distributed programs can be modeled as
the occurrence of events and their interrelationship. Event data collected accord-
ing to the event model is stored within a partial-order data structure, where it can
be reasoned about, enabling debugging, program steering, and autonomic feed-
back control of the application. Reasoning over event data, a critical requirement
for autonomic computing, is typically in the form of predicate detection, a search
mechanism able to detect and locate arbitrary predicates within the event data.
To enable hierarchical predicate detection, compound events are formed by com-
puting the convex closure of the matching primitive events. In particular, the Xie
and Taylor convex-closure algorithm forms the basis for such an approach to
predicate detection. Unfortunately, their algorithm can be quite slow, especially
for hierarchical compound events.
In this paper, we study the cause of the problems in the Xie and Taylor algo-
rithm. We then develop an efficient extension to their algorithm, based on a simple
caching scheme. We prove our algorithm correct. We also provide experimental
results that demonstrate that our approach reduces the execution time of the Xie
and Taylor algorithm by up to 98 percent.

Keywords: Autonomic computing, program steering, predicate detection tool.

1 Motivation

The architecture of tools for monitoring and debugging message-passing parallel pro-
grams, enabling parallel-program steering, and the autonomic observation and con-
trol of enterprise and distributed systems is broadly similar, and can be characterized
as shown in Fig.1. A variety of such tools have been built over the years, including
ATEMPT [16, 17], Object-Level Trace [13], POET [20], POTA [23], and Log and Trace
Analyzer [12]. The managed system is instrumented with monitoring code that captures
significant event data. Ideally, the information collected will include the event’s process
and thread identifiers, number, and type, as well as partner-event identification, if any.
This event data is forwarded from each process to a central monitoring entity which,
using this information, incrementally builds and maintains a data structure of the partial
order of events that form the computation [21]. That data structure may be queried by
a variety of systems, the most common being visualization engines for debugging and
steering and, more recently, control entities for autonomic computing [15].
� The authors would like to thank IBM for supporting this work.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 30–39, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Convex Closure for Efficient Predicate Detection 31

Entity
Control

Monitoring Entity

Control

Visualization
 System

Monitoring
Code

Code
Managed System

Fig. 1. Monitoring and Control Architecture

The querying of the partial-order data structure for predicate detection has the intent
of either displaying predicates of interest to the user, or feeding the information directly
into the controller. Rapid analysis of event data is critical for both of these uses. While
there have been several approaches to predicate detection (e.g., [4, 14, 22]), this paper
focuses on hierarchical predicate detection based on compound events [1]. The current-
best algorithm that employs this technique was developed by Xie and Taylor [24] and
is implemented within the eclipse system [5].

In using the Xie and Taylor system we discovered it to be very slow in a non-trivial
number of cases. Specifically, queries could take several hours to execute. In this paper,
we describe a series of experiments that we performed to determine the cause of the
slowness in the Xie and Taylor algorithm. As a result of our analysis, we developed a
novel incremental closure algorithm that improved the performance of the predicate-
detection algorithm by up to 98%.

The remainder of this paper is organized as follows. We first briefly review the op-
eration of the Xie and Taylor algorithm, describing the basics of hierarchical predicate
detection based on compound events. We discuss related work. In Sect.3 we detail in
three steps the problem with the Xie and Taylor algorithm, the theoretical basis for in-
cremental closure calculations, and finally our algorithm that solves the problem. We
then provide both a theoretical and experimental analysis of our approach in Sect.3.1.
We discuss related work in Sect.5, contrasting it with our approach. We conclude by
observing what we have achieved and what issues remain open.

2 Fundamentals

We now describe the basics of hierarchical predicate detection based on compound
events, and the Xie and Taylor approach specifically. We first briefly review the funda-
mentals of modeling systems as partial orders, which forms the basis of this work.

The event-based approach to modeling multi-threaded, parallel, and distributed sys-
tems abstracts computations into sequential processes1 each of which is a sequence of
four types of events: transmit, receive, unary, and synchronous. These events are con-
sidered to be atomic. Further, they form the primitive events of the computation.

The Lamport “happened before” relation [21] is then defined as the smallest transi-
tive relation satisfying

1 Throughout this paper we will use the term “process” to indicate any sequential entity. It might
be a single-threaded process, a thread, a semaphore, an EJB (in the case of Object-Level Trace),
a TCP stream, etc.

32 Paul A.S. Ward and Dwight S. Bedassé

1. ei
p1

� ej
p2

if ei
p1

occurs before ej
p2

on the same process (i.e. p1 = p2 and i ≤ j)
2. ei

p1
� ej

p2
if ei

p1
is a send event and ej

p2
is the corresponding receive event

This relation, together with the events, forms the partial order of the computation.
Events are concurrent if they are not in the “happened before” relation.

ei
p1

‖ ej
p2

⇐⇒ ei
p1

�� ej
p2

∧ ej
p2

�� ei
p1

(1)

Given a partial order of computation, there are two types of patterns that are typ-
ically sought. First we may seek patterns within the structure of the partial order. For
example, we may wish to look for the pattern:

ei
p1

� ej
p2

∧ ek
p3

� ej
p2

∧ ei
p1

‖ ek
p3

; p1 �= p2 �= p3 (2)

This particular pattern is a crude form of race detection. We are seeking events in pro-
cesses p1 and p3 that both precede an event in a third process p2 but that have no
synchronization between them. The events thus form a potential race condition.

This form of structural pattern searching is equivalent to directed-subgraph isomor-
phism. Specifically, it is equivalent to asking if the directed acyclic graph that represents
the partial order of the computation contains a subgraph isomorphic to the directed
graph that represents the pattern being sought. The directed graphs in this equivalence
can be either the transitive reductions or the transitive closures of the respective partial
orders. This problem is known to be NP-complete [8].

The second type of pattern that we may seek is a pattern within a consistent global
state. There are several varieties that may be sought, such as stable predicates (once
the predicate is true, it remains true), definite predicates (the predicate is true on all
possible paths in the lattice), possible predicates (the predicate is true on some paths
in the lattice), and so forth. From the perspective of a partial-order data structure, the
primary concern is the ability to determine what is, or is not, a consistent global state.
This in turn means we need the ability to determine structural patterns that are consistent
global states. It is, as with the first type, NP-complete in the general case. This paper
focuses solely on the problem of determining structural patterns within the partial order.

2.1 Hierarchical Predicate Detection Based on Compound Events

To alleviate the problem of NP-completeness, and to reduce the complexity of patterns,
the approach taken is to seek hierarchical predicates based on compound events. In this
approach, whenever a sub-pattern is matched, the events that form it are closed (accord-
ing to a criteria to be described below) into a compound event. The requirements of such
a compound event is that it must possess (most of) the properties of a primitive event.
Specifically, given a compound event and any other event (primitive or compound), it
must be possible to determine the precedence relationship between the two. The most
effective way currently known of ensuring these requirements is that the compound
event be convex closed [19], defined as follows:

Definition 1 (Convex Event). An compound event c is convex if and only if

∀ei,ej∈c ∃el
ei � el ∧ el � ej ⇒ el ∈ c

Fast Convex Closure for Efficient Predicate Detection 33

and extending the definition of precedence to compound events to:

ci � cj ⇐⇒ ∃ei∈ci;ej∈cjei � ej

Note that the definition does not result in cyclic precedence provided the compound
events are convex. Note also that a primitive event can be compared with a compound
event by considering it to be a compound event with a single constituent element.

We now motivate this approach with a simple example. Consider seeking four
events, e1, e2, e3, and e4 such that e1 � e2, e3 � e4, and yet ensuring that e1 and
e2 are each concurrent with both e3 and e4. Given this requirement, a non-compound-
event-based approach would require the pattern sought to be:

(e1 � e2) ∧ (e3 � e4) ∧ (e1 ‖ e3) ∧ (e1 ‖ e4) ∧ (e2 ‖ e3) ∧ (e2 ‖ e4)

By contrast, the compound-event-based approach seeks the pattern

(e1 � e2) ‖ (e3 � e4)

Note that while the compound-event-based approach does require two convex clo-
sure operations, it requires only four precedence tests, while the alternate approach
requires ten2. Further, observe that as predicate complexity increases, the advantage of
the compound-event-based approach increases. Finally, note that in this case the match-
ing events will be identical, regardless the method chosen. While this is not always true,
we have found that it is not difficult to prune unwanted matches from the system.

2.2 The Xie and Taylor Algorithm

Given the problem of structural predicate detection, Xie and Taylor developed a straight-
forward naive-backtracking algorithm. A parse tree is created of the pattern sought.
This tree is processed in prefix order. Whenever the parse-tree node that is matched is
a precedence-relationship node, the convex closure is computed, creating a compound
event at that point in the parse tree. This is treated as a matched event. This process con-
tinues until either the desired pattern is found, or there is no matching event, in which
case the algorithm backtracks, matching a different event.

The key features of their algorithm are their pruning rules, necessary to limit the
search space, and their convex-closure algorithm. We do not modify their pruning rules,
and thus will not comment on them further other than to note that our approach is
orthogonal to their pruning rules. Any revisions to the pruning rules may affect the
performance of the algorithm, but will not affect the correctness of the overall system.

The critical aspect of their approach, from the perspective of this paper, is their
convex-closure algorithm. This algorithm takes an input event set of primitive events,
and returns as output two sets, front and back, that represent the front and back of the

2 While it may seem that the precedence test cost is higher for compound events, this is not in
fact the case. It is possible to assign a vector timestamp to a convex event in much the same
manner as one is assigned to a primitive event, enabling precedence determination between
convex events to be as efficient as it is with primitive events [18].

34 Paul A.S. Ward and Dwight S. Bedassé

convex event set, respectively. For a given convex event C, e ∈ front(C) if-and-only-if
� ∃e′ e′ ≺p e, where e′ ≺p e if events e and e′ are in the same process p and event e′

precedes event e. Back is defined analogously:

e ∈ back(C) ⇐⇒�∃e′ e ≺p e′ (3)

Thus, in the worse case the convex event covers all processes in the computation, and
thus front and back will have size N , where N is the number of processes. In such
a case, the computational complexity of their algorithm is O(N3). The full technical
details of their algorithm are available in their paper [24]. From the perspective of our
work, it is a black box. The primary detail specifically required in our work is that in
their algorithm the input event set is composed of two (possibly compound) events.
The usage of the convex-closure algorithm by their predicate-detection mechanism is
such that one of the these input events is held constant, while the other is varied. The
significance of this will become apparent in Sect. 3.3.

3 Incremental Predicate Detection Algorithm

As we have already observed, when using the Xie and Taylor algorithm we found it
to be slow, to the point that in a non-trivial number of cases its execution time was
measured in hours. We therefore set about first determining the cause of the slowness
in their algorithm. Having done so, we developed a theoretically-sound solution to the
problem, and then created an algorithm based on it. We now describe these three steps
in detail.

3.1 Analysis of Existing Approach

To determine the cause of inefficiency in the Xie and Taylor algorithm we performed a
series of experiments using a variety of predicates and data sets. In these experiments,
we instrumented the Xie and Taylor code to determine how many convex closures were
performed, what the input and output sets were for the given closure, and the execution
time to perform the closure in question.

In analyzing the data from these experiments we discovered it was very rare for a
convex closure to consist of an entirely new set of input events. Rather, in more than
90% of cases, only one of the events changed. We further discovered that in cases where
one input event changes, it was typically a near successor of the input event of the prior
closure. However, the Xie and Taylor algorithm made no use of this fact. Rather, it
would simply recompute the closure from scratch.

This problem is best illustrated by example. Consider the set of events shown in
Fig.2. The pattern q � (a � d) is being sought, and events q and a have already been
matched. All that remains is to match d, compute a convex closure between that and the
matched a, and confirm that this is a successor to the matched q. If d is matched to d1

then the convex closure C1 of a and d1 is computed. Unfortunately, C1 is concurrent
to q. As a result, the search backtracks and matches d to d2. The compound event C2 is
then computed as the convex closure of events a and d2. This is found to be a successor
to q, and thus the desired predicate is found. Note that C2 is computed without regard

Fast Convex Closure for Efficient Predicate Detection 35

a

b1 b2

d1 d2

q

C1 C2

Fig. 2. Incremental Closure Computation

to the original computation of C1. By experimental analysis, this lack of incremental
computation was found to be the major cause of inefficiency in the Xie and Taylor
algorithm.

3.2 Theoretical Basis for Improvement

Having found the problem, it was necessary to determine if recomputing the closure
from scratch was an inherent requirement of convex events, or if it was possible to in-
crementally compute such closures. Thus, considering the example of Fig.2, we wished
to compute C2 given C1.

In this regard, we discovered the following theorems. To understand these theorems,
we first define the following functions.

Definition 2 (Convex Closure). CC(E) is the convex closure of event set E

Definition 3 (Location Set). lE is the set of processes in which the various events of
event set E occur.

Given these definitions, we were able to prove the following theorem.

Theorem 1 (Incrementality Theorem).

(lCC(E ∪ {e}) = lCC(E)) ∧ (CC(E) � e) =⇒
CC(E ∪ {e}) = CC(E) ∪ CC(back(CC(E)) ∪ {e})

Proof: See [2] �

This theorem states that, as long as the location set does not change, the convex
closure of an event set E together with a succeeding event e will be the union of the
convex closure of the original set, together with that of the closure of e and the back of
the convex closure of the original set. What this means in practice is that if the convex
closure of the event set E has already been computed, then only a small addition closure
needs to be computed. It is fairly trivial to show that the front set will remain the same as
that of the closure of E, while the back set will be that of the closure of back(CC(E))
together with e.

36 Paul A.S. Ward and Dwight S. Bedassé

3.3 Algorithm

Given Theorem 1, we devised the following algorithm for incremental closure. First, we
assume we have a small cache of closures that have already been computed. This cache
will contain the two input events, together with the convex closure that was computed.
Our incremental closure algorithm is then as follows:

CC(E1,E2) {
if (in_cache(E1,?E3,?CCcached) and E3 precedes E2) {
compute CC(back(CCcached), E3);
forall e (back(CCcached) precedes e precedes E2) {

verify e is an acceptable event;
}
if (no unacceptable event is found) {

update cache as appropriate;
return convex closure;

}
if (exists a non-acceptable event OR

no matching cached closure) {
apply Xie and Taylor;

}
}

We now describe the algorithm in detail. First, we check the cache to see if there is a
matching input event. In this matching, we will only check against the first of the two
input events, E1, in the closure computation. This is because that first event is stable,
while the second is varied in the backtracking search process. On finding a match in
the cache, we verify that the corresponding input event E3 that is cached precedes the
second input event, E2 to this convex-closure computation. If this condition is true, we
compute an incremental closure between back of the cached closure and the second
input event. This, however, is insufficient. Per the theorem, the locations sets must be
identical. To satisfy this condition, we must check all events between the cached convex
closure and the new input event, E2, to determine if any are receive or synchronous
events with a partner outside of the location set of the cached convex closure. If any
such event exists, and that event is a successor to the cached closure, then the event is
unacceptable. Specifically, such an event means that the location set of the closure will
exceed that of the location set of the cached closure. Note that only the events that are
part of the incremental closure need to be checked, and not those of the cached closure.
This is typically a small number of events.

If no unacceptable event is found, then the cache should be updated as appropriate,
and the closure returned. We have found that a suitable cache replacement policy is to
replace the closure that was just used. Specifically, this means that a small cache may
be used, while still rendering most closure operations into incremental operations. The
closure returned will be the front set of the cached closure and the back set of the
incremental closure computation.

If no matching cache element is found, or an unacceptable event is found (that is,
the location sets do not match), then we simply revert to the Xie and Taylor algorithm.

Fast Convex Closure for Efficient Predicate Detection 37

4 Analysis

We have implemented our algorithm as an eclipse plug-in, within the basic predicate-
detection system implemented by Xie and Taylor. This allows us to evaluate our algo-
rithm both experimentally and analytically.

From an analytical perspective, we can do no better than Xie and Taylor, since
we degenerate to their algorithm whenever we do not have a suitable basis for an
incremental-closure computation. Further, we can do worse than Xie and Taylor when
we consider the worst-case scenario. In this case, we will compute an incremental clo-
sure over all but a finite number of events in the computation. We then verify this, to
determine if their exist unacceptable events. In the worst case, the last event checked
fails the acceptability requirement, and thus we must compute the desired closure using
the Xie and Taylor algorithm. The acceptability check is thus executed O(n), where
n is the number of events in the computation. The cost of the acceptability check is
O(N), since all events in front must be verified for non-precedence against. In such
an instance, our algorithm would be O(nN + N3), while Xie and Taylor remains at
O(N3).

While analytically we are no better, and in the worst case, worse than Xie and Tay-
lor, in practice, our algorithm is substantially superior. We have evaluated our algorithm
over more than 50 different parallel and distributed computations covering a variety of
different environments, including Java [10], PVM [9], DCE [6], and μC++ [3] (a lan-
guage used for teaching concurrency). The PVM programs tended to be SPMD style
parallel computations. As such, they frequently exhibited close neighbour commu-
nication and scatter-gather patterns. The Java programs were web-like applications,
including various web-server executions. The DCE programs were sample business-
application code. The μC++ were sample concurrency problems used in an educational
environemnt, such as Dining Philosophers.

For each experiment we used a variety of predicates, appropriate to the computation
at hand. In the experiments we computed the number of convex closures, the number of
unique front sets, the number of successful incremental closures, and the total execution
time using our algorithm and the Xie and Taylor algorithm. The cache size employed
was one, while the hardware used was a Pentium III 2 GHz, with 512 MB of memory,
together with eclipse version 2.1.3.

For long-running queries, defined as those whose runtime exceeded 30 minutes
when using the Xie and Taylor algorithm, we have found that our algorithm reduced
the runtime by more than 90%. In one instance the runtime was reduced from over four
hours to less than one minute. The cause of the substantial improvement is easily com-
prehended when we observe that, for such queries, the cache-hit rate always exceeded
90%. Further, we observed that the number of closures per unique fronts averaged 15.
This means that, for a given front set, 15 closures were computed. In the Xie and Taylor
algorithm, each such closure would be recomputed from scratch. In our approach, even
with a cache size of one, we effectively only incur the cost of computing the largest
such closure.

While space limitations prevent the publication of the code used, it is available on
request from the first author. Further details of the algorithm, it’s analysis, and raw result
data is available in [2] and/or from the first author.

38 Paul A.S. Ward and Dwight S. Bedassé

5 Related Work

Before concluding, we first briefly review related approaches. Existing work can be
broken down into two main categories, corresponding to the two main types of pattern
sought, and a third, smaller, but more recent, strand. There exists a significant body
of work on seeking predicates in consistent global states (e.g., [4, 22]), as we have
alluded to in Sect.2. While such work is clearly critical in debugging, monitoring, and
controlling parallel and distributed systems, it is fundamentally different from that of
seeking patterns within the partial order itself.

Pattern seeking within the partial order has historically focused on a non-compound-
event-based approach. Such work includes the offline algorithm of Jaekel [14] and its
online version by Fox [7]. Neither method uses the compound-event-based approach
of Xie and Taylor. A variant of the pattern-seeking approach to predicate detection is
Han’s technique for comparing two execution histories [11]. It is unclear if our work
would be of relevance to her problem. The most recent work in this area is that of Xie
and Taylor, and has already been described.

A third strand of work, which is quite recent, is typified by the IBM Log and Trace
Analyzer [12]. This work takes the approach of using what event data is available, rather
than adding monitoring code to an application. This approach is based on the observa-
tion that most enterprise applications already possess substantial log data which repre-
sent events of significance. Further, such applications are unlikely to be instrumented
according to the desires of a third-party autonomic controller. The basic approach is that
the logs are gleaned for event data, which the analyzer then attempts to correlate. The
value of this approach is that it requires no change to existing systems. The success of
the approach is dependent on the degree to which the existing sources possess sufficient
information to provide correct correlation.

6 Conclusions

In this paper we have shown how to efficiently perform hierarchical predicate detection
based on compound events. Our algorithm performs incremental closure computations,
effectively reusing work already done. We have both proven our algorithm correct, and
have demonstrated its efficacy via experiment. While our approach applies only to struc-
tural predicate detection, we expect to study its applicability to the problem of seeking
patterns in consistent global states in the near future.

References

1. A. A. Basten. Hierarchical event-based behavioural abstraction in interactive distributed
debugging: A theoretical approach. Master’s thesis, Eindhoven University of Technology,
Eindhoven, 1993.

2. Dwight S. Bedassé. An efficient computation of convex closure on abstract events. Mas-
ter’s thesis, University of Waterloo, Waterloo, Ontario, 2005. Available at: http://etheses.-
uwaterloo.ca/display.cfm?ethesis id=498.

Fast Convex Closure for Efficient Predicate Detection 39

3. P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. μC++:
Concurrency in the Object-Oriented Language C++. Software — Practice and Experience,
22(2):137–172, February 1992.

4. Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11:191–201, 1998.

5. Eclipse Foundation. The eclipse platform. Online documentation available at: http://www.-
eclipse.org/.

6. Open Software Foundation. Introduction to OSF/DCE. Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

7. Mark Fox. Event-predicate detection in the monitoring of distributed applications. Master’s
thesis, University of Waterloo, Waterloo, Ontario, 1998.

8. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

9. Al Geist, Adam Begulin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sun-
deram. PVM: Parallel Virtual Machine. MIT Press, Cambridge, Massachusetts, 1994.

10. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley,
1996. Available at http://java.sun.com/docs/books/jls/.

11. Jessica Zhi Han. Automatic comparison of execution histories in the debugging of distributed
applications. Master’s thesis, University of Waterloo, Waterloo, Ontario, 1998.

12. IBM Corporation. Log and trace analyzer for autonomic computing. Online documentation
available at: http://www.alphaworks.ibm.com/tech/logandtrace.

13. IBM Corporation. Object level trace. Online documentation available at: http://www-106.-
ibm.com/developerworks/websphere/WASInfoCenter/infocenter/olt content/olt/index.htm.

14. Christian E. Jaekl. Event-predicate detection in the debugging of distributed applications.
Master’s thesis, University of Waterloo, Waterloo, Ontario, 1997.

15. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE Com-
puter, 36(1):41– 50, 2003.

16. Deiter Kranzlmüller, Siegfried Grabner, R. Schall, and Jens Volkert. ATEMPT — A Tool
for Event ManiPulaTion. Technical report, Institute for Computer Science, Johannes Kepler
University Linz, May 1995.

17. Dieter Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel Programs.
PhD thesis, GUP Linz, Linz, Austria, 2000.

18. Thomas Kunz. Abstract Behaviour of Distributed Executions with Applications to Visualiza-
tion. PhD thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1994.

19. Thomas Kunz. Automatic support for understanding complex behaviour. In Proceedings of
the International Workshop on Network and Systems Management, pages 125–132, August
1995.

20. Thomas Kunz, James P. Black, David J. Taylor, and Twan Basten. POET: Target-system
independent visualisations of complex distributed-application executions. The Computer
Journal, 40(8):499–512, 1997.

21. Leslie Lamport. Time, clocks and the ordering of events in distributed systems. Communi-
cations of the ACM, 21(7):558–565, 1978.

22. Alper Sen and Vijay K. Garg. On checking whether a predicate definitely holds. In 3rd
International Workshop on Formal Approaches to Testing of Software (FATES 2003), 2003.

23. Alper Sen and Vijay K. Garg. Partial order trace analyzer (POTA) for distributed programs.
In Proc. Workshop on Runtime Verification, 2003.

24. Ping Xie and David Taylor. Specifying and locating hierarchical patterns in event data. In
Proceedings of the 2004 CAS Conference, pages 66–80, October 2004.

A Generic Language for Dynamic Adaptation

Assia Hachichi1, Gaël Thomas1, Cyril Martin1,
Bertil Folliot1, and Simon Patarin2

1 LIP 6 - Université de Paris6
{Assia.Hachichi,Gael.Thomas,Cyril.Martin,Bertil.Folliot}@lip6.fr

2 DSI - Università di Bologna
patarin@cs.unibo.it

Abstract. Today, component oriented middlewares are used to design,
develop and deploy distributed applications easily. They ensure the het-
erogeneity, interoperability, and reuse of software modules.

Several standards address this issue: CCM (CORBA Component Model),
EJB (Enterprise Java Beans) and .Net. However they offer a limited and
fixed number of system services, and their deployment and configuration
mechanisms cannot be used by any language nor API dynamically.

As a solution, we present a generic high-level language to adapt system
services dynamically in existing middlewares. This solution is based on a
highly adaptable platform which enforces adaptive behaviours, and offers
a means to specify and adapt system services dynamically. A first proto-
type1 was achieved for the OpenCCM platform2, and good performances
were obtained.

1 Introduction

Computing systems are increasingly complex and difficult to maintain. More-
over, the various elements, that constitute an environment, are often physically
distributed on heterogeneous nodes. Middlewares were introduced to solve these
difficulties, by proposing common generic system mechanisms to the distributed
applications.

The last generation of component oriented middlewares introduces the com-
ponent and container concepts. A container manages system services, such as
persistence, transaction, security or naming, in a way that is transparent for
business code, which is encapsulated in components.

The adaptation of system services is often done statically, by stopping the
middleware execution, which induces a high cost for critical applications. For
this reason the dynamic adaptation is more efficient. Some platforms provide
mechanisms that can be used to adapt services dynamically. Nevertheless, these
mechanisms are specific to the targeted platforms: they are not reusable on

1 This work was partially financed by the European project IST-COACH (2001-
34445).

2 OpenCCM is an implementation of the CORBA Component Model specification [1].

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 40–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Generic Language for Dynamic Adaptation 41

other middleware platforms easily. Moreover, there is no standard nor model
that unifies adaptation mechanisms independently of platforms.

We propose to use a domain-specific language (DSL) [2] technique: a pro-
gramming language providing high-level abstractions related to a given domain.
The expertise captured in the language allows behaviours to be expressed in an
intuitive and high-level manner, permits verification, and allows generation of
efficient code that is automatically integrated in the target platform.

In this context, our work proposes the Container Virtual Machine (CVM)
approach, which defines a generic adaptation language. The CVM includes a
DSL for writing adaptation behaviours. Each adaptation need is described on
CVM language then is translated to different targeted platform language on the
fly, in an automatic way. This approach allows separation between the adaptation
logic and its implementation, by providing a high-level language.

A first translator has been implemented on the OpenCCM platform [3], an
open source implementation of the CORBA Component Model (CCM) specifi-
cation defined by the Object Management Group (OMG). This prototype allows
the adding and reconfiguring of new system services, and offers administrators
the possibility to specify and deploy system properties dynamically even if they
were not taken into consideration initially.

In the following, Section 2 presents other proposals allowing to make middle-
wares flexible. Then, our proposal for offering high level language for dynamic
adaptation is detailed in the Section 3. Section 4 describes the CVM and exam-
ples implementation, and Section 5 presents the conclusion of our work.

2 Related Work

Several component-based models exist such as: Microsoft .Net, Sun Microsystems
Enterprise Java Beans, or OMG CORBA Component Model. These models are
used to design and to deploy distributed applications. However, they do not allow
easy integration and adaptation of system services3 dynamically. Moreover, no
standard envisages describing the integration and adaptation of services after
initial deployment of the application.

The first middlewares were not designed to be flexible. However, adaptation
techniques have been proposed, such as interceptors, and Portable Object Adap-
tor (POA) in CORBA ([4]). The interceptors [3] allow inserting code before the
reception and after sending a request. The POA allows programmers to construct
object implementations that are portable between different ORB products.

Several projects aim at making CORBA more flexible. DynamicTAO [5]
(based on TAO), a reflexive CORBA environment, reifies the internal elements of
the ORB in the form of components called configuration components. Dynamic-
TAO keeps a compatibility with CORBA applications, by offering a high degree
of adaptability. One of the difficulties that this project raises is the problem of
coherence when a policy is replaced by another.

3 System services such as: transaction and replication service.

42 Assia Hachichi et al.

AspectIX [6] adopts a fragmented object model based middleware [7]. The
fragments can mask the replication of a distributed object, impose real-time con-
straints on the communication channel, put the object information in memory
cache, etc. These non-functional (system) aspects can be configured via a generic
interface of the object. Each global object can be configured by a profile that
specifies the aspects that the fragments must respect. Four profiles are planned,
in particular a CORBA profile that allows for these AspectIX objects to inter-
act with CORBA objects. This approach allows a clear separation between the
application and the middleware over which it is deployed.

JAC (Java Component Aspect) allows to weave an aspect dynamically: the
relation between the wrappers and the advice codes can be redefined on the fly.
However, the number of pointcuts is not extensible dynamically: if the class is
already charged in the virtual machine, there is no means to add a new pointcut.

An architecture of open containers is proposed in [8]. This architecture al-
lows dynamic adaptation and extension of the system functions, and it allows
exposing some number of container properties, using control , interception and
coordination mechanisms. OpenORB [9] is a flexible architecture of component
oriented middleware. OpenORB is based on the reflexion. Each Object of the
system is associated to a meta-space which offers structural representation. The
ORB is configured or reconfigured by using the Meta-Object protocol. Java-
POD [10], is a component model which allows attaching system properties to
the components. This attachment is achieved by means of open and extensible
containers. Comet [11] is an events based middleware. It can be adapted by
inserting pre/post hooks into the components. A language is associated to dy-
namic reconfiguration of the Comet middleware. However this language is not
extensible dynamically, and is not generic since it is applicable only for Comet.

These various projects increase the middleware adaptation possibilities by
re-coding it. Our work takes different direction, we propose a generic high-level
language to adapt the system services dynamically in existing middlewares. Each
adaptation behaviour is described on this high level language then is translated
on all targeted platform language, in an automatic way. This abstract description
allows separation between the adaptation logic and its implementation.

3 Container Virtual Machine Approach

Instead of providing adaptation behaviours that depend on the middleware plat-
form, the Container Virtual Machine approach defines a generic language, which
gives a high-level abstraction of system services adaptation behaviours, that is
independent on the middleware platform. The abstraction behaviours are trans-
lated on the targeted platform, in automatic and dynamic way.

This approach allows (i) the unification of adaptation behaviours, indepen-
dently on the targeted platform, (ii) the automatic generation of CVM scripts
can be achieved by a design tool, and (iii) the generation of platform independent
adaptation models (PIM - Platform Independent Model) and them translation
on the trageted platform (PSM - Platform Specific Model).

A Generic Language for Dynamic Adaptation 43

CVM

loaded

loaded translate

Middleware−dependent
Translator X

Middleware X

CVM Runtime

Reconfiguration
script (DSL)

Fig. 1. CVM Concept (Container Virtual Machine)

Fig. 2. CVM Processing (Container Virtual Machine)

3.1 CVM Design

The CVM approach aims to remain neutral with respect to the platform, and
to separate the adaptation language from its execution. Figure 1 presents the
CVM concept; its input is a configuration script, called a translator, which is
dependent on middleware. The translator enables to translate an adaptation
script written in CVM language for a specific middleware.

3.2 CVM Implementation

The main idea is to add an entry point to different platform middleware, at
the initial deployment and in a transparent way. This entry point enables the
interaction between the CVM platform and its targeted middleware platform,
and is called a Communication Interface (CI). It enables the translation of ab-
stractions to the targeted middleware language. The CVM is mainly based on a
highly adaptive platform to describe and to enforce the adaptation behaviours.
This platform is generic with respect to middleware platforms, and interacts
with each middleware platform through its associated Communication Inter-
face (fig 2). The CVM allows to define new adaptation operations on the fly.

Virtual Virtual Machine: The CVM design requires a highly adaptable lan-
guage to provide separation between the adaptation logic and its implementation,
and to extend the access operations in order to enforce what can be adapted. The
selected highly adaptable platform is the Virtual Virtual Machine (VVM) [12],
which is a dynamic code generator that provides both a complete, reflexive
language, and an execution environment. The VVM allows to modify the imple-
mented mechanisms, to reconfigure the environment, and to extend or modify
the associated language.

The main objectives of this environment are: (i) to maximize the amount of
reflective accesses and intercessions, at the lowest possible software level, while

44 Assia Hachichi et al.

preserving simplicity and efficiency; (ii) to use a common language substrate to
support multiple language and programming paradigms.

To achieve this, the VVM provides four basic services: (i) code generation: a
fast, platform- and language-independent dynamic compiler producing efficient
native code that adheres (by default) to the local platform’s C ABI (Applica-
tion Binary Interface); (ii) meta-data that are kept between compilations, thus
allowing higher-level software to reason about its implementation or that of the
environment, and modify them dynamically; (iii) introspection on dynamically-
compiled code, the application and the environment itself; (iv) input methods,
giving access to the compilation and configuration process at all levels.

The execution model is similar to C and the dynamically-compiled code has
the same performance as a statically compiled and optimized C program. In the
context of the CVM, we added a server which receives Abstract Syntax Tree
from another VVM, compiles and links them, and executes the generated code.

The use of the VVM allows the separation of the adaptation logic from its
implementation. This language must be both extensible to new adaptive needs
dynamically, and generic with respect to the targeted middleware in order to
ensure its reusability. It allows both to reduce the possibilities of reconfiguration
by limiting the language symbols, and/or to extend the language by providing
introspection of the environment and the creation of new symbols.

Remote Administration of the CVM: In order to ensure the adaptation of
several network nodes from a remote administration console, we built a remote
adaptation environment in the VVM platform; this environment must be loaded
on all VVMs. It parses/lexes scripts that reconfigure the target environment;
these scripts are transformed into abstract syntax trees. These trees are sent to
the VVM, which is able to receive them on a communication channel (example:
a TCP socket). These trees are then compiled and executed on the second entity.

In the adaptation context, a client opens a communication channel, and
parses/lexes VVM scripts that reconfigure the remote machine (server), then
sends the corresponding trees to the server. When a server receives the abstract
syntax trees, it compiles and executes them.

4 Qualitative Evaluation

The CVM is evaluated on a CORBA Component Model implementation written
in Java: the OpenCCM [3]. This section details the prototype implementation.

4.1 OpenCCM Translator Implementation

In the case of the OpenCCM platform, the translator is achieved by using a Java
native method, which launches the VVM. The communication Interface (CI) be-
tween the VVM and the standard JVM is provided by JNI (Java Native Inter-
face [13]). JNI is an interface between the native functions and the Java virtual
machine.

A Generic Language for Dynamic Adaptation 45

The VVM is executed by a Java thread in competition with those of the
application. The language of the VVM is then dynamically extended: the scripts
written for the VVM can then interact with the JVM directly, and the VVM is
able to handle the methods and the symbols of the Java application (Fig 2).

A reconfiguration comprises two important steps:

1. The first phase consists in building methods that allow dynamic adaptation
into the VVM; for example: methods that integrate or remove components.

2. The second consists in writing a CVM script that contains the adaptation
needs. This script is loaded remotely by the administration console and is ex-
ecuted by using a CI. Scripts can either extend the reconfiguration language,
or use the keywords already built in to modify the OpenCCM application.

To illustrate the use of the CVM, two examples of reconfigurations are pre-
sented in the rest of this section.

4.2 Integration of Service

We classify the system services in two classes: not-intrusive services, which do
not modify the treated data, and the intrusive services, which modify the data,
and requires synchronization

In this paper we present two examples for integrating services, one is a mon-
itoring service that is not-intrusive and the other one is an encryption service
that is intrusive. These integrations are based on the Portable Interceptors and
on System Oriented Component respectively.
Flexible Monitoring Service: The first example illustrates the dynamic inte-
gration of a flexible monitoring service based on interceptors.

This service was designed to collect statistics on the way components interact
with each other, and to make this information available to a “reconfiguration
service” that will use it to adapt the platform.

The monitoring service is composed of two concurrent processes. The first
one collects all available information concerning the called requests, and records
them in a log file. The second process scans the log generated by the first process
periodically, and calculates the statistics of the call number and the average
response time for given operations. The integration of this service is based on
CORBA portable interceptors.

The CORBA specification [14] defines the portable interceptor interface as
a way to insert hooks directly inside the ORB. These hooks are activated for
every operation performed by the broker: mainly method invocations and result
returning. Hooks may be located either on the client or on the server side. We
conclude that the integration of the monitoring service on the level of interceptor
hooks, allows to invoke the monitoring service code at every request by extract-
ing several metrics, such as the number of times a specific method is invoked, and
sums all the invocations of methods belonging to the same component. However,
no standard language or interface enable to use Portable Interceptors dynami-
cally to achieve an integration of System Services. For this reason the CVM is

46 Assia Hachichi et al.

used to integrate the monitoring service dynamically. This integration comprises
two phases: (i) to specify, in the VVM platform, the new adaptation operations
that allow adding code in the OpenCCM interceptor hooks dynamically. (ii) to
write and to execute a VVM script that integrates service code in hooks through
the Communication Interface.
Encryption Service: Considering an application, that contains two compo-
nents “A” and “B”, included in containers “CA” and “CB” respectively (see
figure 4). Component “A” sends messages to “B” in a regularly way. During
the execution, the administrator decides to send encrypted messages to “B”. In
order to achieve this, we use another mechanism to intercept requests: System
Oriented Components (SOC). This mechanism is used because it is generic; it
can be applied for any middleware, and shows that it is possible to define other
integration mechanisms on the fly.

The System Oriented Component mechanism consists in adding CCM com-
ponents which containing the service code to be added, and in establishing the
necessary connections with the components to which this service will apply.

In our example, the integration of an encryption service consists in inte-
grating an encryption SOC component in container “CA”, and a decryption
SOC component in container “CB”. Basically the integration consists in adding
the necessary operations to the VVM, such as the operations which enable SOC
component creation and handling the connections between any components. The
second step is to write and execute the VVM script which allows us to: (i) add
the encryption SOC in “CA” and another one in container “CB”, (ii) disconnect
“A” and “B”; (iii) establish the connections between “A”, “B” and their respec-
tive SOC (see figure 4 and 3), by ensuring the synchronization. Problems that
can occur are: encoded messages may be received before adding a decryption
SOC, or non-encrypted messages will be sent after adding the decryption SOC.

1. (On container CA
– (Deactivate Component A))

2. (On container CB
– (Deactivate Component B))

3. (On container CA
– (Disconnect components A B)
– (Insert SOC SocA)
– (Connect components A SocA))

4. (On container CB (Insert SOC SocB)
– (Connect components SocA SocB)
– (Connect components SocB B))

5. (On container CA
– (Activate Component A))

6. (On container CB
– (Activate Component B))

1. <programme>→<reconfiguration>*

2. <reconfiguration>→<SOC>*| <PI>*

3. <SOC>→ (On container<atomeCont>
<action>*)

4. <action>→ (<subaction><atome>)

5. <subaction>→Deactivate Component|
Disconnect components <atome> | In-
sert SOC | Connect components<atome>
|Activate Component

6. <atomeCont>→ Containerreference.

7. <atome>→ Compoenentreference

8.

Fig. 3. (A) An example of the reconfiguration script that integrates encryption SOC
(B) A part of the CVM grammaire.

A Generic Language for Dynamic Adaptation 47

Fig. 4. Integration of the encryption service.

To avoid these problems, the synchronization must be ensured dynamically.
A pseudo-algorithm that is proposed consists in deactivating “A” before “B”,
breaking the connections between “A” and “B”, and then adding the encryption
and decryption SOC in container “CA” and “CB” respectively, finally establish-
ing the necessary connections, and activating “B” before “A”.

In the case where the targeted middleware does not provide the possibility to
activate or deactivate a component, we propose to use a queue. Messages from
“A” will be redirected towards the queue, during integration of encryption and
decryption service. Synchronization is not yet implemented in our encryption
prototype.

4.3 Adaptation of the Encryption Service

To illustrate the adaptation of existing services, we adapt the encryption service
of the previous example, during the execution.

Component behaviour adaptation can be achieved by replacing a component
by a new one. However, it is simpler and less expensive to adapt a component
by replacing some of its methods.

In the case of the encryption SOC adaptation, it is enough to adapt the Java
method that contains the encryption service. The Java standard allows dynamic
loading of a class and overload of the serialization methods. By coupling the Sun
Java platform and CVM, we can adapt a Java method. Let us take the example of
method “metA” from class “A”, the adaptation of this class is done by charging
a new class “A1” which inherits from “A”, and which implements the new code
of “metA”, then redirecting all calls towards the new loaded method (Fig 5).

Fig. 5. Method adaptation.

48 Assia Hachichi et al.

4.4 Discussion

Two adaptation examples were presented; one is based on the SOC approach
which is generic in the sense that it can be applied for any component-oriented
middleware. However, the created SOC must have compatible ports with existing
components, and the SOC code is compared to service code that it contains.

The second example is based on the Portable Interceptors (PI) approach,
and is not generic, since the PI concept does not exist in all component-oriented
middlewares, with EJB. But this code size is smaller than the SOC code size.

A Set of ten performance evaluation measures of the dynamic integration
were performed, on a Pentium III 664MHz under Linux. These measures repre-
sent the duration between the old configuration and the new configuration after
the end of service integration. (i) The monitoring service integration average
duration, which is based on the portable interceptors, is 8.539 seconds. (ii) The
encryption SOC integration average duration is 2.054 seconds.

Another set of ten SOC adaptation duration measures were done. This du-
ration represents the time between the initial configuration and the end of the
encryption code replacement. The average of the ten measures is 94 ∗ 10−3 sec-
onds.

We note that the integration based on Portable Interceptors is slower than
service based on System Oriented Components. This can be explained by the
cost resulting from the flowing of all requests through the interceptor layer. In
[15], which studies three different ORB implementations, it is shown that the
activation of portable interceptors increases latency by a factor varying between
2% and 10% and decreases request throughput by a factor ranging from 1.5% to
16%, This cost is then limited.

We note that the adaptation duration average is slower than integration
service duration. However, these costs remain limited.

5 Conclusion

This paper presents the Container Virtual Machine, a platform which allows
dynamic adaptation of system services and provides a generic language specific
to adaptation domain (DSL) . This language offers a high-level abstraction of
adaptation behaviour and is itself extensible. Adaptation CVM scripts can be
translated for different target platforms during the execution automatically.

The CVM approach provides a separation between the adaptation logic and
its implementation. CVM language is generic in the sense that it is independent
from the middleware to be adapted. It language enables to describe any new
adaptation and the related operations. It allows an adaptation remote admin-
istration which provides interoperability and synchronisation between several
nodes; it can be aperated on different middleware platforms, such as EJB and
CCM. The provided high-level abstractions are translated automatically for the
targeted platform.

As future works, we aim to reuse the CVM language on the different plat-
forms, such as EJB, then to refine the grammar of our DSL. To provide means

A Generic Language for Dynamic Adaptation 49

that ensure the coherence, atomicity, and verification of the dynamic adaptations
and of there deployment. To achieve the automatic generation of CVM scripts
design tool such as Rationalrose, then to offer mechanisms that execute models
automatically.

References

1. Openccm user’s guide (2004)
http://openccm.objectweb.org/doc/0.8.1/user guide.html.

2. Lawall, J., Muller, G., L.P.Barreto: Caputing os expertise in an event type system:
the bossa experience. In: Tenth ACM SIGOPS European Workshop (EW 2002),
France, Springer-Verlag (2002) 154–61

3. OMG: Interceptors Published Draft with Corba 2.4+ Core Chapters. (2001) Doc-
ument Number ptc/2001-03-04.

4. Daniel, J.: Au coeur de Corba. (2001)
5. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., Campbell,

R.H.: Monitoring, Security, and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In: Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middleware’2000).
Number 1795 in LNCS, New York, Springer-Verlag (2000) 121–143

6. Hauck, F.J., Becker, U., Geier, M., Meier, E., Rastofer, U., Steckermeier, M.: As-
pectIX: An aspect-oriented and CORBA-compliant ORB architecture. Technical
Report TR-I4-98-08, Univ. of Erlangen-Nuernberg, IMMD IV (1998)

7. Makpangou, M., Gourhant, Y., Narzul, J.P.L., Shapiro, M. In: Fragmented objects
for distributed abstractions. IEEE Computer Society Press (1994) 170–186

8. Vadet, M., Merle, P.: Les conteneurs ouverts dans les plates-formes à composants.
Journées composants: flexibilité du système au langage (2001)

9. Blair, G.S., Costa, F.M., Coulson, G., Duran, H.A., Parlavantzas, N., Delpiano, F.,
Dumant, B., Horn, F., Stefani, J.B.: The Design of a Resource-Aware Reflective
Middleware Architecture. In: Proceedings of the Second International Conference
on Meta-Level Architectures and Reflection, France, Springer-Verlag (1999) 115–
134

10. Bruneton, E., Riveill, M.: Javapod: une plate-forme à composants adaptables et
extensibles. Rapport technique 3850, Inria Rhone-Alpes (2000)

11. Peschanski, F., Briot, J.P., Yonezawa, A.: Fine-grained dynamic adaptation of
distributed components. Middleware 2003 (2003) 132–142

12. Ogel, F., Thomas, G., Piumarta, I., Galland, A., Folliot, B., Baillarguet, C. In: To-
wards Active Applications: the Virtual Virtual Machine Approach. A92 Publishing
House, POLIROM Press (2003) 28–47

13. Liang, S.: The JavaTM Native Interface: Programmer’s Guide and Specification.
Addison Wesley Longman (1999)

14. OMG: Corba / iiop specification 3.0. formal/024206 (2002)
15. Marchetti, C., Verde, L., Baldoni, R.: Corba request portable interceptors: a perfor-

mance analysis. In: Proceedings of the 3rd International Symposium on Distributed
Objects and Applications, Rome, Italy (2001)

Soft Computing Approach to Performance Analysis
of Parallel and Distributed Programs�

Hong-Linh Truong and Thomas Fahringer

Institute for Computer Science, University of Innsbruck
Technikerstrasse 21A, A-6020 Innsbruck, Austria

{truong,tf}@dps.uibk.ac.at

Abstract. This paper describes a novel approach to performance analysis for
parallel and distributed systems that is based on soft computing. We introduce
the concept of performance score representing the performance of code regions
that is based on fuzzy logic. We propose techniques for fuzzy-based performance
classification. A novel high-level query language is designed to support the search
for performance problems by using linguistic expressions. We describe a fuzzy-
based bottleneck search, a performance similarity measure for code regions and
experiment factors, and performance similarity analysis. Our approach focuses
on the support of making soft decisions on evaluation, classification, search and
analysis of the performance of parallel and distributed programs.

1 Introduction

Recently, performance analysis community has focused on developing performance
tools for parallel and distributed programs that are capable of supporting semi-automatic
performance analysis, dealing with large performance data sets, and analyzing multi-
ple experiments. However the development of automatic and intelligent performance
analysis is still at an early stage. Current techniques in existing performance analy-
sis tools have mainly been used to process the performance data that are in the form
of precise numerical data. Firstly, these techniques always apply exact analysis meth-
ods that result in hard conclusions about performance characteristics of applications.
Secondly, existing performance tools interact with the user through complex numerical
values and visualizations which are not easily understood by the user. Thirdly, in the
real world we largely rely on domain expertise and user-provided inputs as parameters
to control the performance analysis and tuning. Such expertise and inputs may be inex-
act and uncertain. However, existing performance tools do not support the specification
and the control of approximate and inexact parameters in data analysis techniques, in
other words, these tools do not provide a mechanism to make soft decisions.

The recent emerging soft computing [1], however, presents another way for evalu-
ating and analyzing data that is based on the concept of soft, inexact, uncertainty. Soft
computing aims to support imprecision, uncertainty and approximate reasoning [1].

� The work described in this paper is supported in part by the Austrian Science Fund as part
of the Aurora Project under contract SFBF1104 and by the European Union through the IST-
2002-511385 project K-WfGrid.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 50–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Soft Computing Approach to Performance Analysis 51

In this paper we present a new approach to the performance analysis that we call
the soft performance analysis. In this approach, well known soft computing techniques
such as fuzzy logic (FL), machine learning (ML) concept, and the combination of FL
and ML are studied and developed for performance analysis of parallel and distributed
programs. We introduce the concepts of performance score and performance similarity
measure. Employing these concepts, we develop several soft techniques and methods
for performance analysis such as fuzzy-based performance classification, performance
search, similarity analysis, etc.

The rest of this paper is organized as follows. Section 2 outlines the so-called soft
performance analysis. Section 3 presents a few preliminaries. We introduce the con-
cept of performance score and performance similarity measure in Section 4 and Section
5, respectively. We describe soft techniques for performance analysis including fuzzy-
based performance classification, query language, fuzzy-based bottleneck search and
performance similarity analysis in Section 6. Section 7 discusses the related work. Sec-
tion 8 gives conclusions and the future work.

2 Soft Performance Analysis

Existing performance analysis tools are based on hard computing model that is based on
binary logic and crisp systems. For example, to classify the performance performance
analysis tools normally use a characteristic function. That is, given a performance met-
ric and a set of performance characteristic term, e.g., poor, medium and good, each
term represents a performance class and is associated with a data set, the performance
of a code region is classified according to characteristic terms by using a characteristic
function. However, such classification is in binary form, e.g., a performance of the code
region is either good or not, because the hard computing model does not accept impre-
cision and uncertainty. Since approximate search, classification and reasoning are not
possible, the cycle of finding performance patterns in a large set of performance data
has been lengthened because, in the real world, the boundaries between performance
classes, performance search constraints, etc., are not clearly seen, thus, exact methods
may not yield the expected results. Moreover, current tools focus on supporting the
performance analysis through statistical graphics which are not well suited for process-
ing large performance datasets. In practice, both performance data and expertise used in
performance analysis domain can be uncertain. For example, in the case of performance
classification, performance of code regions is classified into good, but depending on the
degree of good the performance of code regions can be considered as little good, fairly
good or very good. When we are not sure about performance data and expertise, we
may accept some degrees of uncertainty and approximate in our analysis techniques.

To address the above-mentioned issues, we investigate performance analysis tech-
niques that are based on soft computing. The soft performance analysis we propose aims
to develop techniques for performance tools that can (i) extract useful performance in-
formation from large, dynamic and multi-relational performance measurement sources,
(ii) support the specification and control of approximate and inexact parameters, com-
mands and requests in existing performance analysis tools, and (iii) interact with the
user through high level notions and concepts expressed in linguistic expressions.

52 Hong-Linh Truong and Thomas Fahringer

We outline the approach as follows. Firstly, fuzzy logic (FL) can help representing
and normalizing quantitative data. We can represent performance score of metric val-
ues by using fuzzy set (FS). By employing the concept of performance scores, we can
develop several techniques that support soft, inexact and uncertainty in performance
analysis. The application of FL theory also involves the concept of linguistic variables
and the use of linguistic variables is particular useful for the end-user because humans
employ mostly words in computing, as presented in the concept of computing with
words [2]. Therefore, by using FL, performance tools can provide a way to perform the
analysis and to interpret performance results with linguistic terms. Secondly, when pro-
cessing large and diverse performance data, information about performance summaries,
similarities and differences of data items in that data become more important as we can-
not examine each data items in detail. Similarity measure techniques can be exploited to
reveal the performance similarities and differences. ML techniques [3] can be utilized
to discover patterns in very large performance datasets. For example, machine learning
is combined with fuzzy computing to provide fuzzy clustering for performance data.
Due to the space limit, this paper presents only a few points of our approach, focusing
on FL and performance similarity techniques. More detail of soft performance analysis
can be found in [4].

3 Preliminaries

3.1 Performance Experiment Data

A program contains a set of instrumented code regions. Performance data collected in
each experiment of the program is organized into a performance experiment data. An
experiment is associated with a set of processing units. A processing unit pu is a triple
(n, p, t) where n, p and t are computational node, process identifier and thread identi-
fier, respectively. A region summary rs is used to store performance metric records of
executions of a code region cr in a processing unit pu. A performance metric record pm
is represented as a tuple (m, v) where m is the metric name and v is the metric value.
We denote rs(m) as the value of performance metric m stored in region summary rs.

We use performance data obtained from experiments of three Fortran applications
named 3DPIC (MPI program), LAPW0 (MPI program) and STOMMEL (mixed
OpenMP and MPI program). All experiments are conducted on a cluster of 4CPU SMP
nodes using MPICH library for Fast-Ethernet 100Mbps and Myrinet.

3.2 Representing Performance Characteristics Under Fuzzy Logic Theory

An FS is used to map metric values onto membership values in the range [0, 1]. An
FS is expressed as a set of ordered pairs FS = {(v, μ(v))|v ∈ U} where μ(v) is the
membership function determining the degree of membership of v, and U is the uni-
verse of discourse of v. Let v be a metric value with the universal of discourse U . U is
characterized by a given set of performance characteristic terms T = {t1, t2, · · · , tn};
performance characteristic terms are linguistic terms such as poor, medium and high.
Each ti is associated with a membership function μi(v) which determines the member-
ship of v in ti. v can be classified according to these terms. A modifier (e.g. slightly) is

Soft Computing Approach to Performance Analysis 53

an operation that modifies a performance characteristic term (e.g. bottleneck). The mod-
ification results in a new fuzzy set represented by a new phrase (e.g. slightly bottleneck).
In our experiments, we use the NRC-IIT FuzzyJ Toolkit [5] for fuzzy computing.

4 Performance Score

When evaluating and comparing performance of code regions most existing perfor-
mance tools are normally based on quantitative measurement values and do not employ
quantization or normalization techniques to evaluate multiple metrics. We present the
concept of performance score which is used to evaluate the performance of a code re-
gion within a base, e.g. the parent code region or the whole program. The concept is
based on (i) a set of selected performance metrics characterizing the performance of the
code region, and (ii) a weight set representing the significance of performance metrics.
Given a code region cr, let rs be the region summary of cr with a set of n performance
metrics {m1, m2, · · · , mn}. Suppose the number of performance metrics measured is
the same for every code regions. rs can be represented in n dimensional space. Let
vi = rs(mi) be the value of metric mi in rs and let si be a score that represents the
performance of rs with respect to metric mi. We compute si as follows

si = μi(vi), μi(v) : [0, Vmi] → [0, 1] (1)

where μi(v) is the membership function determining the performance score, and Vmi

is the maximum observed value of mi. Vmi is dependent on the level of code region
analysis. For example, if we analyze performance scores of rs with its parent rsparent

as the base, Vmi = rsparent(mi).
The value of si is in the range [0, 1]; 0 means the lowest score, 1 means the highest

score. A higher performance score might be used to imply a higher performance or to
indicate a lower significant impact. The exact semantics of the value of the performance
score is defined by the specific implementation. As a result, performance scores can be
used in various contexts such as to indicate (i) a significant impact level: the higher a
performance score is, the higher impact the code region has, or (ii) a severity, the higher
a performance score is, the more severe the core region is. There are several ways to
select μ(v), depending on the specific analysis and approximate model used. The most
simple way is to define the membership function μ as μ(vi) = vi

Vmi
which assumes that

the score is based on linear model. We can choose trapezoid, S-function, Z-function,
triangle, etc., and tool-defined function for μ(v).

Each rs is associated with a vector of performance scores �s. However, we may
only select a subset of �s as metrics to represent the performance of the code region.
Like quantitative measurement values, we can compare two performance scores of two
different metrics. However, because performance scores are normalized values, we can
aggregate performance scores �s of rs into a single score by using the overall weighted
average (OWA) operator. Let {s1, s2, · · · , sn} be performance scores of rs and W =
{w1, w2, · · · , wn} be the set of weights. wi is a weight factor associated with metric
mi. The aggregate performance score for �s may be computed as follows

OWA(�s) =
∑n

i=1 (|siwi|)∑n
i=1 wi

(2)

54 Hong-Linh Truong and Thomas Fahringer

For the sake of simplicity, normally wi ∈ (0, 1) and
∑n

i=1 wi = 1. OWA score is
particular useful for support of decision making in performance analysis and tuning
because very often we have to decide which are the focused metrics of the code regions
that should be tuned and optimized in order to achieve a better performance. Hence we
use the notation (mi,wi) to denote mi with its associated weight wi.

We use performance score in ranking analysis, fuzzy C-means clustering, fuzzy
rules, and similarity analysis. The former three analyses are covered in [4].

5 Performance Similarity Measure

Most existing performance tools employ numerous displays, e.g., process time-lines
and histograms, to compare performance measurements and visualize that measure-
ments. Those displays are crucial but the user has to observe the displays and perceive
the similarity and the difference among these values. Moreover, it is difficult to com-
pare multivariate data through visualization. We propose methods to compute the per-
formance similarity measure which can be used as a metric to indicate the performance
similarity among code regions and among experiment factors. Formally, let oi and oj be
objects, a similarity measure is a function sim(oi, oj) → [0, 1] that compares oi with oj

where 0 denotes complete dissimilarity and 1 denotes complete similarity. Performance
similarity measure can help uncovering similar/dissimilar performance patterns among
code regions, e.g., for making decisions in dynamic performance tuning [6].

5.1 Similarity Measure for Code Regions

Let rsi and rsj be region summaries of cr. Let sil and sjl be performance score of rsi

and rsj with respect to metric ml, respectively. We use Equation 1 to compute sil and
sjl. The performance similarity measure simij(rsi, rsj) is defined as follows

simij(rsi, rsj) = 1 − dij , dij =

√√√√ n∑
l=1

(|sil − sjl|2) (3)

where dij is the distance measure between rsi and rsj ; dij is computed based on Eu-
clidean distance. Note that we can use other distance functions, e.g., Minkowski, Man-
hattan, Correlation and Chi-square, and can use weight factors associated with metrics.

To determine the performance similarity among executions of code regions across
a set of experiments, we use Equation 3 to measure the performance similarity. Given a
code region cr and a set of experiments {e1, e2, · · · , en}. Let rsi be region summary of
cr in experiment ei. We compute similarity measure sim(rs1, rsi), i : 2 → n by using
various membership functions. Given metric mi, when determining performance score,
the maximum observed value Vmi is obtained from e1 which is the base experiment.

5.2 Similarity Measure for Experiment Factors

Experiment factors which can be controllable, e.g. problem size, the number of CPUs
and communication libraries, or uncontrollable such as CPU usage, have significant im-
pact on the performance of the applications. Without considering the similarity between

Soft Computing Approach to Performance Analysis 55

experiment factors, it is difficult to explain cases in which the performance of code re-
gions is not similar because the experiment factors can be different. Therefore, initially
we try to address this problem by measuring similarity between controllable factors.

Let simf(ei, ej) be similarity measure for factor f between experiments ei and ej .
Given a set of controllable factors F = {f1, f2, · · · , fn}, similarity measure is com-
puted for each factor fi ∈ F . There is no common way to compute simf as a control-
lable factor and its role depend on each experiment. The objective of our analysis is to
find out the relationship between the performance similarity of the code regions, simo

(e.g. sim(rsi, rsj)), and simfi . Naturally we expect that the similarity measures of the
controllable factors of two experiments and the similarity measures of the performance
of these experiments behave in a similar fashion, e.g. if the controllable factors are very
similar then the performance of experiments should be very similar.

6 Soft Techniques for Performance Analysis

6.1 Performance Classification

Performance classification classifies the performance of code regions according to per-
formance characteristic terms. Formally, given a metric value v and a set of performance
characteristic terms T = {t1, t2, · · · , tn}, v are classified according to that terms. In ex-
isting performance tools, the classification gives a binary result: v belongs to only one
ti ∈ T , with no degree of membership. Conversely, the fuzzy-based classification de-
termines the degree to which v fits into ti, for all ti ∈ T .

To classify performance of code regions, we firstly define a set of performance
metric terms for each performance metric m by partitioning the universal of discourse
of metric m into segments and each segment is described by a performance metric term
which is associated with a FS. Performance characteristic terms can be defined based
on training data. After membership functions are determined, the membership degree
of v is computed based on quantitative value v of m.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

D
eg

re
e

L2 cache miss ratio

medium
high
low

Fig. 1. Performance characteristic terms low, medium,
high with their associated fuzzy sets.

To demonstrate this analy-
sis, we classify code regions of
3DPIC application executed on
4 processors according to per-
formance characteristic terms
T = {low, medium, high}
representing the L2 cache miss
ratio. Three FSs Z-function,
trapezoid and S-function are
associated with low, medium,
and high term, respectively, as
shown in Figure 1. We then conduct the classification with a few selected code regions.
Figure 2 presents the result with five selected code regions. As shown in Figure 2, the
code region PARTICLE LOAD has high L2 cache miss ratio. However, code region
CAL POWER is member of both low and medium.

New performance characteristic terms can also be built by combining existing ones
with modifiers. For example, we can classify code regions according to very low L2

56 Hong-Linh Truong and Thomas Fahringer

Fig. 2. Membership in {low, medium, high} L2 cache miss ratio for selected code regions of
3DPIC.

cache miss ratio; the term very is a fuzzy modifier. The use of modifiers allows us to
extend and enhance the description of performance characteristic terms.

6.2 Fuzzy Query for Performance Search

The fuzzy-based approach offers the possibility of search of performance data with
words. Fuzzy-based search that uses linguistic expressions has been widely employed
in database systems, information retrieval, etc., but not in existing performance tools.

〈Statement〉::=〈Expr〉|〈Statement〉 OR 〈Expr〉
〈Expr〉 ::=〈Term〉 | 〈Expr〉 AND 〈Term〉
〈Term〉 ::=(METRIC is 〈F Expr〉)

Fig. 3. Top-level syntax of PERFQL.

We propose a fuzzy-based
query language for search of per-
formance data. Queries are con-
structed based on fuzzy modifiers,
AND and OR operators, and per-
formance characteristic terms. Figure 3 presents the top-level syntax of our PER-
FQL (Performance Query Language based on fuzzy logic). METRIC is a metric
name or a metric expression. A metric expression consists of operands and +, -, *,
/ arithmetic operators; operands are metric names. F Expr describes the syntax of
generic linguistic expressions (see [5] for the syntax). These expressions are con-
structed from performance characteristic terms and modifiers. For example, the fol-
lowing query can be used to find code regions which have high wallclock time and
poor L2 cache miss ratio: "(wtime is HIGH EXECUTION TIME) AND (L2 TCM

L2 TCA
is

POOR CACHE MISS)" , where HIGH EXECUTION TIME and POOR CACHE MISS
are performance characteristic terms.

PERFQL allows the user to easily define queries for search of performance data by
using words, not numerical expressions. Thus, it is easy to be understood and interpreted
by the user. Moreover, fuzzy-based queries enable approximate search thus interesting
performance data which is slightly less or greater than the crisp condition can be easily
obtained.

6.3 Fuzzy Approach to Bottleneck Search

There are several tools supporting bottleneck search, e.g., [7, 8]. These tools, however,
support crisp-based searching as the search is conducted by checking crisp threshold.
Given a performance metric, a threshold is pre-defined. During the search, the per-
formance metric is evaluated against the threshold, and when the performance metric

Soft Computing Approach to Performance Analysis 57

exceeds the threshold, a bottleneck is assumed to exist in the code region. There are two
drawbacks of current crisp search strategy. Firstly, the search does not give the degree
of severity of the bottleneck, e.g. extremely or slightly bottleneck. Secondly, there is no
support to specify inexact bottleneck search statements such as negligible bottleneck.
These statements are important as the threshold, by nature, is not an exact value.

Degree

1

0

Bottleneck
threshold

Metric ValueUpper bound

Crisp bottleneck membership function
 Fuzzy “severe bottleneck“ membership function

Fuzzy “negligible bottleneck“ membership function

Fig. 4. Fuzzy vs crisp bottleneck search.

We propose fuzzy-based bot-
tleneck search that addresses the
above-mentioned drawbacks. Figure
4 outlines the fuzzy-based bottle-
neck search. Given a threshold, we
can use FSs to represent the severity
of bottleneck and the negligible bot-
tleneck range besides the FS repre-
senting the bottleneck threshold. For
example, in Figure 4 we define a Pi-
function FS used to check the neg-
ligible (close to) bottleneck points and S-function FS used to check the severity of
bottleneck. When searching the bottleneck points, the value of metric used in bottle-
neck search is evaluated against these FSs. Not only we can locate bottleneck points as
usual but also we can provide the severity of bottleneck, and are able to find negligible
bottleneck points.

(a) Without negligible bottleneck search

(b) With negligible bottleneck search

Fig. 5. Example of fuzzy-based bottleneck search.

Very simply, to show advantage of fuzzy-based bottleneck search, we experience
with 3DPIC code to locate code regions that may have L2 cache access problems. Sup-
pose a code region whose L2 cache miss ratio exceeds 0.7 is a bottleneck. In the first
case we use a set of performance characteristic terms T = {low, medium, high} rep-
resenting the severity of the bottleneck. Three different fuzzy sets Z-function with range
[0.7, 0.8], Pi-function with range [0.75, 0.95] and S-function with range [0.9, 1] are asso-
ciated with low, medium, and high term, respectively. We apply this search with 3DPIC
code executed with 4 processes and we find that there is only one bottleneck as shown
in Figure 5(a). The bottleneck falls into both classes medium and high, as shown in Fig-
ure 5(a). Since we are not certain about the threshold we decided to use another triangle
FS with parameter (0.65, 0.7, 0.75) to describe close area of the pre-defined bottleneck
threshold. The result is that we find another code region as presented in Figure 5(b).

58 Hong-Linh Truong and Thomas Fahringer

6.4 Similarity Analysis

We have implemented similarity analysis for all region summaries of a given code re-
gion in one experiment, and for region summaries of a set of selected code regions in a
single or multiple experiment(s).

Fig. 6. Similarity analysis for LAWP0. We used (wtime, 1.0) to compute similarity mea-
sure. Experiment 2Nx4P,P4,36 is selected as the base. 1Nx4P means 1 SMP node with 4
processors. P4 and GM correspond to MPICH CH P4 and Myrinet, respectively. The problem
size is either 36 or 72 atoms. Distance measure is based on Euclidean function.

Figure 6 presents an example of using similarity analysis to examine selected code
regions in 6 experiments. The first observation is that the performance of code region
FFT REAN0 in the last 5 experiments is almost complete similar to the first experi-
ment. The performance of FFT REAN3, FFT REAN4 is almost similar in the first 4
experiments. This suggests that the performance of these code regions is not affected
by changes of number of processors, communication libraries, even problem sizes (in
case of FFT REAN0). All code regions have similar performance in the first two ex-
periments, suggesting the use of Myrinet does not increase much performance. This is
confirmed by many cases in which communication libraries are different but the perfor-
mance is very similar.

Table 1. Parameters for controllable factors.

Factor Fuzzy Set Range Factor Category
atoms linear [0,72] problem size
CPU S-function [0,64] machine
network S-function [0,158.20] communication

Table 1 shows an example of
parameters of controllable fac-
tors. Table 2 presents the result
of an example in which similar-
ity is measured for code region
CA MULTIPOLMENTS in 6 ex-
periments of LAPW0 by using parameters in Table 1. Performance score of the code
region is based on S-function and distance measure is based on Euclidean function. In
some cases, communication factor has very little impact on the performance, e.g., the

Table 2. Example of similarity analysis with experiment factors for CA MULTIPOLMENTS re-
gion in 6 experiments. The first experiment is selected as the base.

Experiments 2Nx4P, 2Nx4P, 3Nx4P, 3Nx4P, 3Nx4P, 3Nx4P,
P4,36 GM,36 P4,36 GM,36 P4,72 GM,72

simfatoms ({atoms,1}) 1 1 1 1 0.5 0.5
simfCPU ({(CPU,1)}) 1 1 0.9531 0.9531 0.9531 0.9531
simfnetwork

({(network,1)}) 1 0.1519 1 0.1519 1 0.1519
simo ({(wtime,1)}) 1 0.996 0.638 0.635 0.625 0.625

Soft Computing Approach to Performance Analysis 59

network between the first and the second experiment is quite dissimilar while other fac-
tors are very similar, but the performance is very similar. A similar result obtained if we
examine the fifth and sixth experiments. The CPU factor has significant impact on some
cases. E.g., factors of the third experiment are the same as those of the first experiment,
except that CPU factors are slightly different. However, the performance of the code
region is quite different.

7 Related Work

FL has been used in performance monitoring of parallel and distributed programs, e.g.
performance contracts [9], but has not been exploited in data analysis techniques, e.g.
performance classification, of existing performance tools.

APART introduces the concept of performance property [10] that characterizes a
specific negative performance behavior of code regions. However, performance prop-
erty is associated with a single performance metric. A performance property cannot rep-
resent a set of performance metrics. There is no concept of weight operator associated
with performance properties. Also, our performance score is based on FL that allows
the representation of fuzzy concepts such as near and very. Performance score can be
computed based on linear and non-linear model with various membership functions.

Toward high-level scalable and intelligent analysis, classification based on machine
learning has been used for classifying performance characteristics of communication in
parallel programs [11]. Ahl and Vetter used multivariate statistical techniques on hard-
ware performance metrics to characterize the system [12]. However, they do not deal
with cases of multiple variables with different scales and weight factors. In [13], statisti-
cal analysis is used to study different (controllable and uncontrollable) factors that affect
the mapping process of scientific computing algorithms to advanced architectures.

In [14] dispersion statistics is used to characterize the load imbalance by measuring
the dissimilarity of performance metrics; metrics are normalized by measuring devia-
tion from a mean value of a data set. Our similarity measure is based on fuzzy-based
performance scores and is applied to not only code regions but also experiment factors.

In [6], historical data is used to improved automatic tuning systems. Performance
score, similarity measure and fuzzy rules are fitted well for describing parameters and
for improving decision making in performance tuning.

8 Conclusion and Future Work

This paper proposes a new approach to performance analysis that is based on soft com-
puting. On the one hand, soft performance analysis techniques provide flexible, scal-
able and intelligent techniques for analyzing and comparing the performance of com-
plex parallel and distributed applications. On the other hand, they interact with the user
through high level notions. We complement existing work and contribute flexible and
convenient methods to deal with uncertainty in the performance analysis, e.g. fuzzy-
based bottleneck search, and to conduct the analysis in the form of high level notions,
e.g. fuzzy-based search query. Still the soft performance analysis approach is just at an

60 Hong-Linh Truong and Thomas Fahringer

early stage, we believe it is a promising solution to provide soft, scalable and intelligent
methods for automatic performance analysis.

Our future work is to study the application of soft performance analysis for dynamic
performance tuning. Our proposed techniques could be applied to the performance anal-
ysis of large-scale complex dynamic Grid environments on which resources and their
usage are unpredictable, performance data collected tends to be more imprecision and
uncertainty. Moreover, performance similarity can be used to analyze and compare di-
verse Grid resources. Linguistic variables and fuzzy rules can be used in specifying and
controlling service level agreements (SLAs) in the Grid.

References

1. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37 (1994)
77–84

2. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems
4 (1996) 103–111

3. Mitchell, T.M.: Machine Learning. McGraw Hill, New York, US (1997)
4. Truong, H.L.: Novel Techniques and Methods for Performance Measurement, Analysis

and Monitoring of Cluster and Grid Applications. PhD thesis, TU WIEN, Austria (2005)
http://dps.uibk.ac.at/t̃ruong/publications/linh-diss.pdf.

5. FuzzyJ Toolkit: http://ai.iit.nrc.ca/IR public/fuzzy/fuzzyJToolkit.html (2004)
6. Chung, I.H., Hollingsworth, J.K.: Using Information from Prior Runs to Improve Automated

Tuning Systems. In: ACM/IEEE SC2004, Pittsburgh, PA (2004)
7. Cain, H.W., Miller, B.P., Wylie, B.J.: A Callgraph-Based Search Strategy for Automated

Performance Diagnosis. In: Euro-Par 2000 Parallel Processing. (2000) 108–122
8. Fahringer, T., Seragiotto, C.: Aksum: A performance analysis tool for parallel and distributed

applications. Performance Analysis and Grid Computing (2003)
9. Vraalsen, F., Aydt, R.A., Mendes, C.L., Reed, D.A.: Performance contracts: Predicting and

monitoring grid application behavior. In: Proceedings of GRID 2001. Volume LNCS 2242.,
Denver, Colorado, Springer-Verlag (2001) 154–165

10. Fahringer, T., Gerndt, M., Mohr, B., Wolf, F., Riley, G., Träff, J.: Knowledge Specification
for Automatic Performance Analysis. Technical report, APART Working group (2001)

11. Vetter, J.: Performance analysis of distributed applications using automatic classification of
communication inefficiencies. In: Conference Proceedings of the 2000 International Confer-
ence on Supercomputing, Santa Fe, New Mexico, ACM SIGARCH (2000) 245–254

12. Ahn, D.H., Vetter, J.S.: Scalable Analysis Techniques for Microprocessor Performance
Counter Metrics. In: IEEE/ACM SC’2002, Baltimore, Maryland (2002)

13. Santiago, N.G., Rover, D.T., Rodriguez, D.: A Statistical Approach for the Analysis of
the Relation Between Low-Level Performance Information, the Code, and the Environ-
ment. In: Proceedings of 2002 International Conference on Parallel Processing Workshops
(ICPPW’02), Vancouver, B.C., Canada, IEEE Computer Society Press (2002) 282–

14. Calzarossa, M., Massari, L., Tessera, D.: A methodology towards automatic performance
analysis of parallel applications. Parallel Comput. 30 (2004) 211–223

The Data Diffusion Space
for Parallel Computing in Clusters

Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

Sección de Computación
Centro de Investigación y de Estudios Avanzados del IPN

Ap. Postal 14-740, D.F. 07360, México
{jbuenabad,sdguez}@cs.cinvestav.mx

Abstract. The data diffusion space (DDS) is an all-software shared
address space for parallel computing on distributed memory platforms.
It is an extra address space to that of each process running a parallel
application under the SPMD (Single Program Multiple Data) model.
The size of DDS can be up to 264 bytes, either on 32- or on 64-bit
architectures. Data laid on DDS diffuses, or migrates and replicates, in
the memory of each processor using the data. This data is used through
an interface similar to that used to access data in files.
We have implemented DDS for PC clusters with Linux. However, being
all-software, DDS should require little change to make it immediately
usable in other distributed memory platforms and operating systems.
We present experimental results on the performance of two applications
both under DDS and under MPI (Message Passing Interface). DDS tends
to perform better in larger processor counts, and is simpler to use than
MPI for both in-core and out-of-core computation.

1 Introduction

Today PC clusters are widely used as platforms for parallel computing. Both
message-passing and distributed shared memory environments are available for
developing parallel applications on these platforms. Except for relatively sim-
ple communication patterns, message-passing programming is complicated; the
programmer must specify when and which data to pass between which process-
ing nodes. It is still more complicated for out-of-core computation, since the
programmer must specify, or know, the data partitioning in disk space. How-
ever, message-passing libraries, such as MPI (Message Passing Interface) [12]
and PVM (Parallel Virtual Machine) [15], are widely used because they do not
require special hardware or operating system support.

A distributed shared memory (DSM) simplifies parallel programming be-
cause the location of data is not an issue. Shared data moves between processing
nodes automatically and according to the access pattern of each application.
Most DSM designs require either hardware or operating system support, which
is, nonetheless, readily available in most hardware platforms and operating sys-
tems. If a DSM supports mapping files onto the shared memory, out-of-core

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 61–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

62 Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

computation is as simple to program as in-core computation. This will be most
useful in 64-bit architectures, as in 32-bit architectures only 4 GB are available,
while out-of-core applications today range in the hundreds of GB.

In this paper we present the data diffusion space (DDS), an all-software
shared address space for parallel computing on clusters. It is an extra address
space to the virtual address space of each process running a parallel application.
DDS is for shared data only, which the programmer must explicitly specify as
such through simply declaring it within a C struct declaration. Shared data au-
tomatically diffuses, or migrates and replicates, in the memory of each processor
using the data, under a multiple-readers-single-writer protocol.

The size of DDS can be up to 264 bytes, either on 32- and on 64-bit archi-
tectures. Hence shared data may not all be resident in memory. Some data will
be in the disk space of processing nodes. However, the programmer uses the
same interface to gain access to shared data (without specifying any location for
data). This interface is similar to that used to access data in files. For a read,
the programmer first calls DDS Read(); for a write the programmer first calls
DDS Write(). The programmer then uses the data as it uses data in its local
address space. After using the data the programmer must call DDS UnRead()
or DDS UnWrite(), respectively.

Data diffusion takes place by dynamically mapping data onto the memory of
each processor using the data. Under out-of-core computation, DDS also maps
shared data onto disk space in each processing node. These applications are likely
to improve their performance under DDS, because DDS first tries to satisfy data
requests from the memory of other nodes, instead of remote disk space.

In Section 2 we present related work. In Section 3 we present the architecture
of DDS and its programming model. In Section 4 we show some empirical data
on the performance of DDS compared to that of MPI for in-core and out-of-core
applications. We offer some conclusions and describe future work in Section 5.

2 Related Work

A useful classification of DSM systems is that based on whether the implemen-
tation is all-hardware, mostly hardware, mostly software, or all-software [6]. All-
hardware DSM moves data between processing nodes by hardware only, and at
a fairly small granularity of typically 16 to 128 bytes. It includes cache-coherent
non-uniform memory access (CC-NUMA) architectures, such as DASH [7] and
Origin [9], and data diffusion architectures (also known as cache only memory
architectures, or COMAs), such as DDM [19] and COMA-F [5]. In CC-NUMAs,
data moves to the cache of each using processor, whether the data is local (res-
ident in the nearest main memory node to a processor) or remote. In COMAs,
the organisation of main memory is associative, and thus data moves to main
memory nodes, and from these into processor caches, if available.

Mostly hardware DSM also moves data by hardware at a fairly small granu-
larity, but little of its operation (e.g., gaining access to a memory region) is car-
ried out by system software. Examples include Alewife [1] and KSR-1 [4]. Mostly

The Data Diffusion Space for Parallel Computing in Clusters 63

software DSM is the well known virtual shared memory based on paging. Based
on commodity virtual memory hardware, it has been widely investigated and
improved. The first representative, IVY [8], adopted sequential consistency as
its memory consistency model, incurring in general a significant communication
overhead to keep data coherent. This overhead has since been reduced through
the adoption of more efficient consistency models [11], such as release consistency
and lazy release consistency, and optimisations relating to the implementation
of the DSM [17].

All-software DSM does not rely on any hardware support other than network
communication hardware. Access to shared data is controlled by software prim-
itives (linked to the application) whose invocation is instrumented/coded either
by a compiler or the application programmer. All-software, compiler assisted
DSM includes Orca [2] Shasta [16], Midway [3], and CAS-DSM [10]. The C Re-
gion Library (CRL) [6] is also all-software DSM but with no compiler support.
The programmer must call CRL procedures to map and gain access to shared
data, and also to relinquish access to, and unmap, shared data.

DDS is similar to CRL regarding the use of shared data. However, the map-
ping of shared data in DDS is made only once. Another difference is that DDS
manages a 264 byte shared address space, both in 32- or in 64-bit architectures.

3 The Data Diffusion Space

The data diffusion space (DDS) was designed to simplify the programming of
parallel applications under the SPMD (Single Program Multiple Data) model.
Under this model, a process is created on each processing node to run a parallel
application. With DDS, the DDSP process is also created, and runs, on each
processing node. DDS is organised into a library to which a parallel application
is linked.

3.1 Architecture

Figure 1 shows the DDS architecture. The data diffusion space is extra to that
of each process running a parallel application. Data in the diffusion space is
dynamically mapped onto the address space of whichever application process is
using the data. We will use the term shared data to refer to data in the diffusion
space from now on.

When an application process requests shared data, and this data is not res-
ident in its local memory, the DDSP process requests the data from a remote
memory node (as described in Section 3.2). When the data arrives, it is placed
somewhere in the address space of the application by DDSP. The address where
the data was placed is given back to the application through the DDS inter-
face (as described in Section 3.3). DDSP processes communicate through TCP
sockets, using blocks of up to 64 KB.

3.2 Protocol

Shared data diffuses under a multiple-readers-single-writer data coherency pro-
tocol. For a read request, a copy of the data is obtained; for a write request, an

64 Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

DATA DIFFUSION SPACE

Application

Application

2
64

0

NODE_0

NODE_n−1

MEM _BLK

MEM_BLK

DDSP

DDSP

LD

HD

LD

HD

Fig. 1. DDS Architecture.

exclusive copy is obtained invalidating all other copies, thus ensuring all proces-
sors have the same view of the shared data.

The DDS protocol is similar to that of COMA-F (Cache-only Memory Archi-
tecture-Flat), an all-hardware distributed shared memory architecture [5]. It
is homeless and directory-based. Data has no home location. It moves to the
memory of the accessing processors and resides there, either until it is invalidated
by a write by a processor or until it is evicted to give room to other data most
recently used.

COMA-F uses associative main memory. Hence data has no home location
therein. When a read or write misses in a memory node, a request is sent to the
home directory of the relevant data item. This directory holds the location (node)
and state information (exclusive, shared) of the item. If the home directory node
is that location, it services the request; otherwise it sends the request to a node
that currently has the item. A home directory is managed in each node, and
some bits of each item address are used to identify a home directory.

DDS uses two directories in each node (see Figure 1). The local directory
(LD) plays the role of an associative memory directory. A data item address is
looked up there to see if the corresponding data item is in the memory. However,
our local directory organisation keeps track of data not only in the memory of a
node, but in both the memory and the disk space of the node. When a memory
is needed to store recently used items, exclusive items less recently used are
swapped out onto disk space. Shared items are just discarded.

When a read or write misses in a node, the DDS protocol sends a request to
the relevant home directory, which is used and identified as described above for
the COMA-F protocol.

The Data Diffusion Space for Parallel Computing in Clusters 65

3.3 Programming Model

Figure 2 shows the use DDS in the addition of two matrices: C = A + B. The
programmer must define shared data within the DDS C structure. Before using
shared data, the programmer must call DDS Init as shown in that figure. In
each processing node, DDS Init maps the shared data to the diffusion space,
initialises the local directory and the home directory, and starts the DDSP pro-
cess.

In the matrix addition code, ROWS/nprocs rows are calculated by each
processor. Before accessing data, each processor must gain access to it, through
calling DDS Write or DDS Read. When these procedures return, the relevant
data is already in the processor memory, and will remain there until the corre-
sponding DDS UnWrite or DDS UnRead is issued.

struct DDS { /* declaring shared data */

unsigned int A[ROWS][COLUMNS];

unsigned int B[ROWS][COLUMNS];

unsigned int C[ROWS][COLUMNS];

};

:

main() {

:

DDS_Init(sizeof(struct DDS), &myid); /* initialising DDS */

:

rows = ROWS/nprocs;

offset = myid * (ROWS/nprocs);

for (r=0; r < rows; r++){

i = r + offset;

DDS_Write(DDS_C, i*COLUMNS, COLUMNS); /* gaining access */

DDS_Read(DDS_A, i*COLUMNS, COLUMNS); /* to shared data */

DDS_Read(DDS_B, i*COLUMNS, COLUMNS);

for (j=0; j<NCA; j++){ /* using shared data */

(dds_shmem[off_C+i])[j] = (dds_shmem[off_A+i])[j] +

(dds_shmem[off_B+i])[j];

}

DDS_UnWrite(DDS_C, i*COLUMNS, COLUMNS);

DDS_UnRead(DDS_A, i*COLUMNS, COLUMNS);

DDS_UnRead(DDS_B, i*COLUMNS, COLUMNS);

}

:

Fig. 2. DDS programming model example: matrix addition.

DDS A, DDS B and DDS C are enumeration constants 0, 1 and 2, respec-
tively. They refer to the order in which arrays A, B and C were declared within
the DDS structure. They are used at run time to index the array dds vars,
where, for each DDS variable/array, the size of each element, the total number

66 Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

of elements and the initial (DDS) shared address are found. This information is
used, along with the other two parameters sent to DDS Write/DDS Read, to
calculate the DDS address of the data being accessed. The data is actually ac-
cessed through pointers held in the array dds shmem, and the variables off A,
off B and off C, which are locally shared between the DDSP process and the
application process. The variables off A, ..., off C (or that related with other
defined shared data) are updated by DDSP according both to the address of
the data requested with DDS Read or DDS Write, and to the actual location
where that data is placed in the local memory, possibly after being requested
from a remote node.

4 Performance Evaluation

To evaluate the performance of DDS we ran two applications on a 16-node
PC cluster using different numbers of processors, both applications under DDS
and under MPI/MPI-IO [13]. The version of MPI-IO we used is also known as
ROMIO [18], and was used for our MPI version to be either in-core or out-of-
core. In the out-of-core version, PVFS [14] is used and data is partitioned round
robin into disk space along nodes by block (stripe in PVFS terminology). Each
block is the size of n/p rows, where n is the number of rows in each array, and
p is the number of processors used in each application run. Under DDS, out-of-
core applications are programmed as in-core applications are. There is no need
to specify a data partitioning into disk space.

It must be noted that, in programming out-of-core applications under MPI,
programmers partition, or know the partition of, data into disk space. Also,
programmers read data from, and write data to, disk space. That is, the pro-
grammer knows that data does not fit in memory in its entirety, and thus uses
some memory only as a temporary buffer. The number of I/O requests is thus
implicitly defined by the programmer. Under DDS, some reads and writes can be
satisfied from copies in other memory nodes; hence the number of I/O requests
can potentially be reduced.

The 16-node cluster configuration is as follows. Each node has 1 Intel Celeron
1.7 GHz processor, 512 MB RAM memory, and a hard disk drive. Hard disk
drives are, however, of different make, size (1 GB, 3 GB, 4 GB and 8 GB) and
speed. All nodes are interconnected by a 3COM Fast Ethernet switch with 48
ports. The operating system is Linux RedHat 9.0.

4.1 Matrix Multiplication

Our first application is a matrix multiplication (MM) algorithm: C = A ∗ B.
A and C are managed by rows (the C language default) and the matrix B by
columns (the elements of a column are stored in consecutive localities in memory
and/or in disk space). The matrices used were of size 16K × 16K × 8bytes (long
type), or 2 GB each, a total of 6 GB for the three matrices. The matrices are
partitioned into disk space such that each processor has �n

p � consecutive columns

The Data Diffusion Space for Parallel Computing in Clusters 67

P0 P0 P0 P0 P0

P0

P0

P0

P0 P0

P0 P0 P0 P0

P0 P0 P0 P0P0 P0

P1 P1 P1 P1

P1 P1 P1

P1

P1

P1

P1

P1

P1

P1

P1P1

B C

0

1

2

3 3

1

0

2

A

0

1

2

3

3 2 3100 1 2 0 1 2 3

11

0

0 1

0

1

Processor

Processor

Processor

Processing

Fig. 3. Matrix multiplication: thick lines indicate data partitioning among nodes;
dashed rectangles the elements in array C processed by each processor.

of B and �n
p � rows of A and C (but C is only written). The multiplication is as

follows. Each processor calculates the total value of each element in �n
p � rows in

matrix C. Each processor reads �n
p � rows of A into memory, but only �n

p �/f at
a time, where f = 1, 2 and 4 for p = 16, 8 and 4, respectively. Then reads all
columns of B, one at a time, f times, to calculate the value of all elements in
n/p rows of C. Fig. 3 shows the data partitioning and processing for n = 4 and
p = 2.

Table 1. MM: I/O requests under DDS and MPI-PVFS 16K ∗ 16K matrices of 8-byte
integers.

DDS MPI-PVFS

Processors Reads Writes

4 69632 4096
8 34816 2048
16 17408 1024

Processors Reads Writes

4 69632 4096
8 34816 2048
16 17408 1024

Table 1 shows the average (total/p) number of I/O requests under DDS and
under MPI-PVFS. Under both, the number of I/O requests is the same on 4,
8 and 16 processors. This is somewhat surprising because it means that, under
DDS, the columns of array B, which are the ones shared by all processors,
were not diffused at all. The reason is as follows. In 4, 8 and 16 processors,
each processor uses just above 256 MB of memory to store shared data. On the
other hand, the amount of memory required by the rows of A and C that each
processor holds in memory at any time is �n

p �/f = (16384/4)/4 = 1024 in all
processor-count configurations (recall that for p = 4, f = 4, ... and for p = 16,
f = 1). This is a total of 1024× 16384× 8 (bytes) = 128 MB for each A and C.
Since that many rows A and C are wired (with DDS Read), there is very little
memory for the columns of B to remain resident in main memory, and thus are
evicted from main memory just after being used.

However, each processor uses all the columns of B in the same order, and
thus once a column of B is resident in main memory, should it not be diffused

68 Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

to other processors (thus reducing the amount of read requests)? This did not
happen because disk drives in our platform are of different speed, and because we
did not synchronise MM (both under DDS and MPI-PVFS) periodically. Since
processors started reading their rows of A at different speed from different disks,
they did not access columns in B concurrently at all.

10000

15000

20000

25000

30000

35000

40000

45000

2 4 6 8 10 12 14 16 18

T
im

e
(s

ec
)

Processors

 Matrices 16k x 16k

MPI-PVFS-IND
MPI-PVFS-COL

DDS

Fig. 4. MM: response time under DDS and MPI-PVFS.

Figure 4 shows the execution time of MM under DDS and MPI-PVFS, the
latter both with independent I/O (MPI-PVFS-IND) and with collective I/O
(MPI-PVFS-COL). DDS and MPI-PVFS-IND show almost the same perfor-
mance in 4, 8 and 16 processors because they incur the same number of I/O
operations and because these operations are independent in both versions. MPI-
PVFS-COL also incurred the same number of I/O operations. However, syn-
chronisation of collective operations, coupled with different speed of disk drives,
increased response time.

4.2 Fast Fourier Transform

Our second application applies the Fast Fourier Transform (FFT) to restore de-
graded or defocused images. For an image of N × N pixels, a matrix of size
N × N × 8 (float type) bytes is used. From this matrix, another matrix is cre-
ated, which corresponds to an autocorrelation process of the original image that
contains M ×M images, where M = 2N (see Figure 5). The size in bytes of this
matrix is 2N × 2N × (N × N) × 8 = (N4) × 32 bytes.

The image matrix is physically partitioned among processors by rows. In
Figure 5, for p = 4, processor 0 (out of four) stores in disk space the images in
the first row, processor 1 stores the images in the second row and so on.

The Data Diffusion Space for Parallel Computing in Clusters 69

N

0

1

2

3rd FFT

4th FFT

2nd FFT

Ph
ys

ic
al

 d
is

tr
ib

ut
io

n

N

M

M

3

Processors

Original image N=2

M=2N

P=4

1st. FFT

Fig. 5. FFT: data partitioning and processing of the images matrix.

Each processor applies the FFT to M/p rows and to M/p columns four times,
as follows (see Figure 5): along entire rows (1st FFT), along entire columns (2nd
FFT), jumping through rows (3rd FFT), and jumping through columns (4th
FFT).

Table 2 shows the number of I/O requests per processor, both under MPI-
PVFS and DDS on 4, 8 and 16 processors, for an original matrix of size 64 ×
64 pixels. The total number of I/O requests is the same in all processor-count
configurations. The images matrix is of size ((64)4) × 32 = 512 MB, and could
held in memory in all processor-count configurations.

Table 2. FFT: I/O requests under DDS and MPI-PVFS.

DDS MPI-PVFS

Processors Reads Writes

4 4096 4096
8 2048 2048
16 1024 1024

Processors Reads Writes

4 12288 12288
8 6144 6144
16 3072 3072

For each processor-count configuration, the number of I/O requests is fewer
under DDS than under MPI-PVFS. Under DDS only the initial reads to load
data into memory and the final writes to store results in disk space are incurred.
Along the computation, other reads and writes are satisfied from copies in other
memory nodes. There are more I/O requests under MPI-PVFS because each
node manages only one memory buffer to hold an entire row of images at a time.
As mentioned earlier, the application was programmed to manage both in-core

70 Jorge Buenabad-Chávez and Santiago Domı́nguez-Domı́nguez

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18

T
im

e
(s

ec
)

Processors

 FFT

PVFS
DDS

Fig. 6. FFT: response time under DDS and MPI-PVFS.

and out-of-core conditions (managing more buffers complicates programming
even more).

Figure 6 shows execution of FFT under DDS and MPI-PVFS. In all processor-
count configurations, DDS performs better than MPI-PVFS because it incurs
fewer I/O overhead, reducing response time by half on average.

5 Conclusions and Future Work

We presented the data diffusion space (DDS), an extra shared address space for
parallel computing under the SPMD model on distributed memory platforms.
Compared with message passing, DDS is simpler to use and potentially offers
improved performance both for in-core and out-of-core applications. On appli-
cations tested, DDS shows good performance up to 16 processors.

Programming a parallel application under DDS requires that DDS Read and
DDS UnRead, or DDS Write and DDS UnWrite, functions be called to access
data. DDS brings the data to the memory of the accessing processor whichever
the current location of the data is, either other memory nodes or local or remote
disk space.

We are currently designing a parallel file system with support to mapping
files onto DDS. To support the shared memory programming model completely,
we are also designing an extension to the C language and its compiler to avoid
the use of the DDS interface entirely.

The Data Diffusion Space for Parallel Computing in Clusters 71

References

1. A. Agarwal et al. The MIT Alewife Machine: Architecture and Performance. In
Proceedings of the 22nd ISCA (1995) 943–952.

2. H.E. Bal, M.F. Kaashoek and A.S. Tanenbaum. ORCA: A Languaje for Parallel
Programming of Distributed Systems. IEEE Transactions on Software Engineering
(March 1992) 190 – 205.

3. B.N. Bershad, M.J. Zekauskas and W. A. Sawdon. The midway distributed shared
memory system. In Proceedings of COMPCON’93 (1993) 528–537.

4. J. Buenabad-Chávez, H.L. Muller, P.W.A. Stallard and D.H.D Warren. Virtual
memory on data diffusion architectures. Parallel Computing 29 (2003) 1021–1052.

5. T. Joe. COMA-F: A Non-hierarchical Cache Only Memory Architecture. Stanford
University Department of Electrical Engineering. PhD Thesis, 1995.

6. K.L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-Performance All-
Software Distributed Shared Memory. In Proceedings of the 5th SOSP (1995).

7. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In Pro-
ceedings of the 17th ISCA (1990) 148–159.

8. K. Li. Shared Virtual Memory Systems on Loosely Coupled Multiprocessors (IVY).
Yale University. PhD thesis,1986

9. J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.
In Proceedings of the 24th ISCA (1997) 241–251.

10. N. P. Manoj, K. V. Manjunath and R. Govindarajano. CAS-DSM: A compiler
assisted sofware distributed shared memory. International Journal of Parallel Pro-
gramming 32 (2004) 77–122.

11. M.D. Marino and G. Lino de Campos. A speedup comparative study: three third
generation DSM systems. In Proceedings of the 7th International Conference on
Parallel and Distributed Systems (2000) 153–158 (Workshops).

12. MPI: The Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/
13. MPI-2: Extensions to the Message-Passing Interface. http://www.mpi-

forum.org/docs/docs.html
14. PVFS: The Parallel Virtual File System. http://parlweb.parl.clemson.edu/pvfs/
15. PVM: Parallel Virtual Machine. http://www.epm.ornl.gov/pvm/pvm home.html
16. D.J. Scales, K. Gharachorloo and C.A. Thekkath. Shasta: A Low Overhead,

Software-Only Approach for Supporting Fine-Grain Shared Memory. In Proceed-
ings of the 7th ASPLOS (1996) 174–185.

17. M. Swanson, L. Stoller and J. Carter. Making distributed shared memory simple,
yet efficient. In proceedings of the Third International Workshop on High-Level
Parallel Programming Models and Supportive Environments (1998) 2–13.

18. R. Thakur, E. Lusk, and W. Gropp. Users Guide for ROMIO: A High-
Performance, Portable MPI-IO Implementation. Technical Report 234, Mathemat-
ics and Computer Science Division, Argonne National Laboratory, 1997.

19. D.H.D. Warren and S. Haridi. DATA DIFFUSION MACHINE: A Scalable Shared
Virtual Memory Multiprocessor. In Proceedings of the International Conference on
Fifth Generation Computer Systems (1988) 943–952.

Models for On-the-Fly Compensation
of Measurement Overhead

in Parallel Performance Profiling

Allen D. Malony and Sameer S. Shende

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
{malony,sameer}@cs.uoregon.edu

Abstract. Performance profiling generates measurement overhead dur-
ing parallel program execution. Measurement overhead, in turn, intro-
duces intrusion in a program’s runtime performance behavior. Intrusion
can be mitigated by controlling instrumentation degree, allowing a trade-
off of accuracy for detail. Alternatively, the accuracy in profile results
can be improved by reducing the intrusion error due to measurement
overhead. Models for compensation of measurement overhead in parallel
performance profiling are described. An approach based on rational re-
construction is used to understand properties of compensation solutions
for different parallel scenarios. From this analysis, a general algorithm
for on-the-fly overhead assessment and compensation is derived.

Keywords: Performance measurement and analysis, parallel computing,
profiling, intrusion, overhead compensation.

1 Introduction

In parallel profiling, performance measurements are made during program ex-
ecution. There is an overhead associated with performance measurement since
extra code is being executed and hardware resources (processor, memory, net-
work) consumed. When performance overhead affects the program execution, we
speak of performance (measurement) intrusion. Performance intrusion, no mat-
ter how small, can result in performance perturbation [7] where the program’s
measured performance behavior is “different” from its unmeasured performance.
Whereas performance perturbation is difficult to assess, performance intrusion
can be quantified by different metrics, the most important of which is dilation in
program execution time. This type of intrusion is often reported as a percentage
slowdown of total execution time, but the intrusion effects themselves will be
distributed throughout the profile results.

Any performance profiling technique, be it based on statistical profiling meth-
ods (e.g., see [4, 14]) or measured profiling methods (e.g., see [2, 9]), will encounter
measurement overhead and will also have limitations on what performance phe-
nomena can and cannot be observed [7]. Until there is a systematic basis for

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 72–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Models for On-the-Fly Compensation of Measurement Overhead 73

judging the validity of differing profiling techniques, it is more productive to
focus on those challenges that a profiling method faces to improve the accuracy
of its measurement. In this regard, we pose the question whether it is possible to
compensate for measurement overhead in performance profiling. What we mean
by this is to quantify measurement overhead and remove the overhead from pro-
file calculations. (It is important to note we are not suggesting that by doing
so we are “correcting” the effects of overhead on intrusion and perturbation.)
Because performance overhead occurs in both measured and statistical profiling,
overhead compensation is an important topic of study.

In our Euro-Par 2004 paper [8], we presented overhead compensation tech-
niques that were implemented in the TAU performance system [9] and demon-
strated with the NAS parallel benchmarks for both flat and callpath profile
analysis. While our results showed improvement in NAS profiling accuracy, as
measured by the error in total execution time compared to a non-instrumented
run, the compensation models were deficient for parallel execution due to their
inability to account for interprocess interactions and dependencies. The contri-
bution of this paper is the modeling of performance overhead compensation in
parallel profiling and the design of on-the-fly algorithms based on these models
that might be implemented in practical profiling tools.

Section §2 briefly describes the basic models from [8] and how they fail. We
discuss the issues that arise with overhead interdependency in parallel execution.
In Section §3, we follow a strategy to model parallel overhead compensation for
message-based parallel programs based on a rational reconstruction of compensa-
tion solutions for specific parallel case studies. From the rationally reconstructed
models, a general on-the-fly algorithm for overhead analysis and compensation
is derived. Conclusions and future work are given in Section §4.

2 Basic Models for Overhead Compensation

In our earlier work [8], we developed techniques for quantifying the overhead of
performance profile measurements and correcting the profiling results to com-
pensate for the measurement error introduced. This work was done for two types
of profiles: flat profiles and profiles of routine calling paths. The techniques were
implemented in the TAUprofiling system [9] and demonstrated on the NAS
parallel benchmarks. However, the models we developed were based on a local
perspective of how measurement overhead impacted the program’s execution.
Profiling measurements are, typically, performed for each program thread of ex-
ecution. (Here we use the term “thread” in a general sense. Shared memory
threads and distributed memory processes equally apply.) By a local perspective
we mean one that only regards the overhead impact on the process (thread)
where the profile measurement was made and overhead incurred.

Consider a message passing parallel program composed of multiple processes.
Most profiling tools would produce a separate profile for each process, showing
how time was spent in its measured events. Because the profile measurements
are made locally to a process, it is reasonable, as a first step, to compensate

74 Allen D. Malony and Sameer S. Shende

for measurement overhead in the process-local profiles only. Our original models
do just that. They accounted for the measurement overhead generated during
TAUprofiling for each program process (thread) and all its measured events,
and then removed the overhead from the inclusive and exclusive performance
results calculated during online profiling analysis. The compensation algorithm
“corrected” the measurement error in the process profiles in the sense that the
local overhead was not included in the local profile results.

The models we developed are necessary for compensating measurement in-
trusion in parallel computations, but they are not sufficient. Depending on the
application’s parallel execution behavior, it is possible, even likely, that intru-
sion effects due to measurement overhead seen on different processes will be
interdependent. We use the term “intrusion” specifically here to point out that
although measurement overhead occurs locally, its intrusion can have non-local
effects. As a result, parallel overhead compensation is more complex. In con-
trast with our past research on performance perturbation analysis [10–12], here
we do not want to resort to post-mortem parallel trace analysis. The problem of
overhead compensation in parallel profiling using only profile measurements (not
tracing) has not been addressed before. Certainly, we can learn from techniques
for trace-based perturbation analysis [13], but because we must perform over-
head compensation on-the-fly, the utility of these algorithms will be constrained
to deterministic parallel execution, for the same reasons discussed in [7, 13].

At a minimum, algorithms for on-the-fly overhead compensation in paral-
lel profiling must utilize a measurement infrastructure that conveys information
between processes at runtime. It is important to note this is not required for
trace-based perturbation analysis (since the analysis is offline) and it is what
makes compensation in profiling a unique problem. Techniques similar to those
used in PHOTON [15] and CCIFT [1] to embed overhead information in MPI
messages may aid in the development of such measurement infrastructure. How-
ever, we first need to understand how local measurement overhead affects global
performance intrusion so that we can construct compensation models and use
those models to develop online algorithms.

3 Models of Parallel Overhead Compensation

To address the problem of overhead compensation in parallel execution, we must
develop models that describe the effect of measurement overhead on execution
intrusion. From these models we can gain insight in how the profiling overheads
can then be compensated. However, unlike sequential computation, the models
must identify and describe aspects of parallel interaction that may cause differ-
ent intrusion behavior and, thus, lead to different methods for compensation.
We know that the methods will involve the communication of information be-
tween parallel threads of execution at the time of their interaction. To be more
specific, we will consider parallel compensation in message passing computation.
The parallel overhead compensation models we present below allow for infor-
mation about execution delay to be passed between processes during message

Models for On-the-Fly Compensation of Measurement Overhead 75

communication. The goal is to determine exactly what information needs to be
shared and how this information is to be used in compensation analysis. The
modeling methodology we develop extends to shared memory parallel comput-
ing, but the case for shared memory will not be presented here.

The approach we follow below constructs an understanding of the parallel
compensation problem from first principles. We first look at only two processes
and then three processes. From this in-depth study, our hope is to gain modeling
and analyses understanding that can extend to the general case. We will follow
a strategy of rational reconstruction where we take scenario measurement cases
and reconstruct an “actual” execution as if the measurement overhead were not
present. From what we learn, we then derive a model that works for that case and
look for consistent properties across the models to formulate a general algorithm
for overhead compensation.

The details of overhead removal in the profile calculation are described in our
earlier paper [8]. The focus below is on determining the actual overhead value to
be removed for each process. These two operations together constitute overhead
compensation.

3.1 Two Process Parallel Models

The simplest parallel computation involves only two processes which exchange
messages during execution. Measurement-based profiling will introduce overhead
and intrusion local to each process that carries between the processes as they
interact. To model the intrusion and determine what information must be shared
for overhead compensation, we consider the following two-process scenarios:

One send Process P1 sends one message to process P2
Two sends P1 sends two messages to P2
Handshake P1 sends one message to P2, then P2 sends one message to P1
General General message send and receive

For each scenario, we enumerate all possible cases for overhead relations between
the processes (what is called the “measured execution” model) and for each case
derive a representation of the execution with the overhead removed (what is
called the “approximated execution” model). We determine the overhead-free
approximation using a rational reconstruction of the “actual” event timings with
the measurement overhead removed.

Both models are presented in diagrammatic form. In additional, we present
expressions that relate the overhead, waiting, and timing parameters from the
measured execution to those “corrected” parameters in the approximated exe-
cution. It is important to keep in mind that the goal is to learn from the rational
reconstruction of the approximated execution how profile compensation is to be
done in the other scenarios, especially the general case. For space reasons, we
consider only the One Send and General scenarios in this paper.

Scenario: One Send. Consider a single message sent between two processes,
P1 and P2. Figure 1 shows the two possible cases, distinguishing which process

76 Allen D. Malony and Sameer S. Shende

o1

w

x1

P2

o1 (= x1)

P1

Approximated ExecutionMeasured Execution

Case 1

t

tt

t

x2

P1

P2
o2

o1 >= o2 + w
o2’ = o2 + w
w’ = 0
x2 = min(o1, o2+w) = o2+w

Rb
Re

S

Re

S

Rb

Case 2

Approximated Execution

P1

P2

P1

P2

o1

w
o2

w’

o1 (=x1)

x1

x2

t

t

t

t

Measured Execution

o2’ = o2 − (o1−o2 if o1>o2)
w’ = w + (o2 − o1)
x2 = min(o1, o2+w) = o1

o1 < o2 + w

Re Rb

S S

ReRb

Fig. 1. Two-Process, One-Send – Models and Analysis (Case: 1, 2).

has accumulated more overhead up until the time of the message communication.
Execution time advances from left to right and shown on the timelines are send
events (S) and receive events (Rb, receive begin; Re, receive end). The overhead
on P1 is o1 and the overhead on P2 is o2. The overhead is shown as a blocked
region immediately before the S or Rb events to easily see its size in the figure,
but it is actually spread out across the preceding timeline where profiled events
occur. Also designated is the waiting time (w) between Rb and Re, assuming
waiting time can be measured by the profiling system.

Case 1 occurs when P1’s overhead is greater than or equal to P2’s overhead
plus the waiting time (o1 ≥ o2 + w). A rational reconstruction of the approxi-
mated execution determines that P2 would not have waited for the message (i.e.,
S would occur earlier than Rb). Hence, the approximated waiting time (desig-
nated as w′) should be zero, as seen in the approximated execution timeline. Of
course, the problem is that P2 has already waited in the measured execution for
the message to be received. In order for P2 to know P1’s message would have
arrived earlier, P1 must communicate this information. Clearly, the information
is exactly the value o1, P1’s overhead. This is indicated in the figure by tagging
the message communication arrow with this value.

With P1’s overhead information, P2 can determine what to do about the
waiting time. The waiting time has already been measured and must be cor-
rectly accounted. If the approximated waiting is adjusted to zero, where should
the elapsed time represented by w go? If the profiling overhead is to be correctly
compensated, the measured waiting time must be attributed to P2’s approxi-
mated overhead (o2′ = o2 + w)! This is interesting because it shows how the
naive overhead compensation can lead to errors without conveyance of delay

Models for On-the-Fly Compensation of Measurement Overhead 77

information between sender and receiver. It is also important to note that Rb
cannot be moved back any further in the approximated execution. This suggests
that the only correction we can ever make in the receiver is in the waiting time.

The overhead value sent by P1 with the message conveys to P2 the infor-
mation “this message was delayed being sent by o1 amount of time” or “this
message would have been sent o1 time units earlier.” We contend that this is ex-
actly the information needed by P2 to correctly adjust its profiling metrics (i.e.,
compensate for overhead in parallel execution). We refer to the value sent by P1
as delay and will assign the designator x to represent its modeling and analysis
that follows. For instance, P1’s delay is given by x1. In both cases, x1 = o1,
but it is not always true that delay will be equal to accumulated overhead, as
we will see. Now an interesting question arises. How much earlier would future
events on process 2 occur in the approximated execution after the message from
P1 has been received? In general, each process will maintain a delay value (xi
for process Pi) for it to include in its next send message to tell the receiving pro-
cess how much earlier the message would have been sent. In the approximated
execution, for denotational purposes, we show the x1 and x2 values for P1 and
P2 as shaded regions after the last events, S and Re, respectively. We also show
an expression for the calculation of x2 for this case.

Moving on to the second case, the overhead and waiting time in P2 is greater
than what P1 reports (i.e., o1 < o2+w). Rationally, this means that S happens
after Rb in the approximated execution. What is the effect on w′, the approx-
imated waiting time? It is interesting to see that w′ can increase or decrease,
depending on the relation of o1 to o2. (Remember, o1 is the same as x1 in these
cases.) However, the occurrence of Re is certainly dependent on S and, thus, x2
will be entirely determined by (and, in fact, equal to) x1.

General Scenario. The goal of the two process models is to enumerate the pos-
sible cases arising from send/receive message communication. From these cases,
we can rationally reconstruct the approximated execution to determine how over-
head, waiting, and delay times are to be adjusted. From this reconstruction, we
can derive expressions for overhead analysis and correction. The similarity in
the case results leads us to propose a general scenario for two processes. This
scenario considers an arbitrary message send on one process and corresponding
message receive on the other process. Thus, this is a generalization of the One
Send scenario above. However, we now use the delay values x1 and x2 instead
of the o1 and o2 overheads in the analysis. The expressions for the two cases are
given below (refer to Figure 1):

Case 1 Case 2
x1 >= x2 + w x1 < x2 + w
o2’ = o2 + w o2’ = o2 - (x1-x2 if x1>x2)
w’ = 0 w’ = w + (x2-x1)
x1’ = x1 x1’ = x1
x2’ = min(x1, x2+w) = x2 + w x2’ = min(x1, x2+w) = x1

78 Allen D. Malony and Sameer S. Shende

The importance of the general scenario is the case analysis showing how the
delay values are updated and what information is shared between processes dur-
ing message communication. (Keep in mind that we are arbitrarily designating
P1 as the sender and P2 as the receiver. The analysis also applies when P1 is
the receiver and P2 the sender, with appropriate reversals of notation in the
expressions.) Notice that the overhead values o1 (not shown) and o2 are accu-
mulated overheads. The o2 value is updated here to account for waiting time
processing, but whenever any new measurement overhead occurs on P1 or P2,
the accumulated overheads o1 and o2 must be updated accordingly. Similarly,
any new measurement overhead must also be added to the delay values x1 or
x2.

Just to be clear, it is the overhead values that are being removed during
the profiling calculations. Thus, we want these overhead to be accurately ac-
counted. The conclusion of the two process modeling is that we can handle the
parallel overhead compensation for ALL two-process scenarios by applying the
general analysis described above on a message-by-message analysis, maintaining
the overhead and delay values as the online analysis proceeds.

3.2 Three Process Parallel Models

The question at this point is whether that conclusion applies to three or more
processes. That is, can the general two-process analysis be applied on a message-
by-message basis to all send/receive messages between any two processes in a
multi-process computation and, more importantly, give the desired overhead
compensation result? We look at two scenarios with three processes to get a
sense of the answer. These scenarios are:

Pipeline Process P1 sends a message to P2, then P2 sends to P3
Two Receive Process P1 and P3 sends a message each to process P2

We argue that these two scenarios are enough to elucidate all similar cases
regardless of the number of processes. Again, we follow a rational reconstruction
approach to determine approximated executions and then derive expressions for
updating overhead, waiting time, and delay variables to match the reconstructed
executions. Only the Two Receive scenarios is described in detail in this paper.

Scenario: Two Receive. When more than two processes are communicating,
it is not hard to find a scenario that raises unpleasant issues in our ability to
correct overhead intrusion under a different set of receive assumptions. These
issues are brought on by the effect of intrusion on message sequencing. The Two
Receive scenario exposes the problem. Here one process, P2, receives messages
from two other processes. There are four cases to consider depending on the
relatives sizes of overheads and waiting times. Figures 2 and 3 show two of the
cases. For simplicity, we return to looking only at the first messages being sent
and received on each process, and consider the initial overheads (not the delays
values) in the analysis.

Models for On-the-Fly Compensation of Measurement Overhead 79

o1

P2

P3

w

o3
o3

x2’ = min(o3, x2+o2a+y) = x2+o2a+y = o2’’

First message

Second message

x2 = min(o1, o2+w) = o2+w = o2’

o2ao2a

o2

o1

y y
x2

o3

Measured Execution Approximated Execution

t

t

t

x2’

P3

P2

P1

t

t

t

t

t

t

o3

P1

P2

P3

P1

o1 >= o2 + w (x1 = o1)
o2’ = o2 + w
w’ = 0

o3 >= x2 + o2a + y (x3 = o3)
o2’’ = o2’ + o2a + y
y’ = 0

Re
Rb

SS

Rb
Rb

Rb

SS

Re

Re

S

Re
Re

Re
Rb

Rb

S

Fig. 2. Three-Process, Two Receive – Models and Analysis (Case 1).

In Figure 2, a two-part approximated execution is shown, with part one
(top) giving the state after the first message is processed and part two (bottom)
showing the result after the second message is processed. The analysis follows the
approach we used before, with new waiting values (w′ and y′) being calculated
and P2’s delay value (x2) updated. In this case, no waiting time would have
occurred, and no adjustment to waiting time is necessary. Otherwise, nothing
particularly strange stands out in the approximated result.

What would be a surprising result? If the overhead analysis resulted in a re-
ordering of send events in time, between the measured execution and the approx-
imated execution, then there would be concerns of performance perturbation. In
Figure 3, we see the send events changing order in time in the approximated
execution, with P3’s send taking place before P1’s send. As with the other cases,
our analysis reflects a message-by-message processing algorithm. In the rational
reconstruction, we assume the message communication is explicit and pairs a
particular sender and receiver. Under this assumption, the order of messages
received by P2 must be maintained in the approximated execution. In this case,
is the time reordering of send messages in Figure 3 a problem? In fact, no. It is
certainly possible that a process (P2) will first receive a message from a process
(P1) sent after another process (P3) sends a message to the receiving process.
This just reflects the strict order of P2 receives. However, if we consider receive
operations that can match any send, the send reordering exposes a problem with
overhead compensation, since the message from P3 should have been received
first in the “real” execution.

The application of our overhead compensation models to programs using
receive operations that can match any send message results in profile analysis
constrained to message orderings as they are observed in the measured execution.
These message orderings are affected by intrusion and, thus, may not be the

80 Allen D. Malony and Sameer S. Shende

w

First message

Second message

o3

t

t t

t

t

t

t

t

P1

P2

P3

o1

P1

P2

P3

x2

o1

y y

P1

P2

P3

w’ x2’

Approximated Execution

x2’ = min(o3, x2+o2a+y) = x2+o2a+y

o2

o2a

w’

o2a
o3 o3

o3

Measured Execution

t

o1 < o2 + w (x1 = o1)
o2’ = o2
w’ = w + (o2 − o1)
x2 = min(o1, o2+w) = o1

o3 >= x2 + o2a + y (x3 = o3)
o2’’ = o2’ + o2a + y
y’ = 0

Re

S

Rb Re Rb Re

S

Rb Re

S S

Rb Re

Re

S

Rb
Rb

S

Fig. 3. Three-Process, Two Receive – Models and Analysis (Case: 2).

message orderings that occur in the absence of measurement. However, while
it is actually possible to detect reordering occurrences (i.e., measured versus
approximated orderings), it is not possible to correct for reordering during online
overhead analysis and compensation. Why? There are two reasons. First, our
analysis is unable to determine if it is correct to associate a receive event with
a different send event. That is, the performance analysis does not know what
type of receive is being performed, one that is for a specific sender or one that
can accept any sender. Second, even if we know the type of receive operation, it
is not possible to know whether changing receive order will affect future receive
events. Therefore, the models must, in general, enforce message receive ordering.

3.3 Modeling Summary and General Algorithm

Our above modeling and analysis of measurement overhead in parallel message
passing programs has produced three important outcomes. First, the rational
reconstructions of the measurement scenarios and the analysis of the approx-
imated executions has resulted in a robust procedure for message-by-message
overhead compensation analysis in parallel profiling. It updates correctly wait-
ing times associated with message processing and calculates per process values
that capture online the amount a process has been effectively delayed due to
measurement overhead and its effects. From this overhead compensation basis,
the parallel profiling operations used to update inclusive and exclusive perfor-
mance can be performed. Second, this analysis requires ALL send messages to
be augmented with the delay value of the sender process at the time the message
is sent. This information is necessary for the receiving process to apply the anal-
ysis procedures. Third, approximation models based on receive type can result
in more accurate overhead handling and profile results, but the accuracy gains
are anticipated to be minor compared to the processing complexity involved.

Models for On-the-Fly Compensation of Measurement Overhead 81

We argue that general overhead scenarios for message passing computations
can all be addressed from what we learned in the two- and three-process modeling
above. A general algorithm for overhead compensation effectively applies the
Two-Process, General modeling and analysis on a message-by-message basis.
The algorithm is composed of three parts:

• Updating of local overhead and delay as a result of local profile
measurements.

• Updating of local overhead and delay as a result of messages re-
ceived and their reported delay.

• Transmission of local delay when a process sends a message.

If the transmission of the delays values can be supported, it should be possible to
incorporate this overhead compensation algorithm in a parallel profiling system
such as TAU[9].

4 Conclusion and Future Work

Profiling is an important technique for the performance analysis of parallel ap-
plications. However, the measurement overhead incurred during profiling can
cause intrusions in the parallel performance behavior. Generally speaking, the
greater the measurement overhead, the greater the chance the measurement will
result in performance intrusion. Thus, there is fundamental tradeoff in profil-
ing methodology concerning the need for measurement detail (as determined
by number of events and frequency of occurrence) versus the desired accuracy
of profiling results. We argue that without an understanding of how intrusion
affects performance behavior and without a way to adjust for intrusion effects
in profiling calculations, the accuracy of the profiling results is uncertain. Most
parallel profiling tools quantify intrusion as a percentage slowdown in the whole
execution and regard this as an implicit measure of profiling goodness. This is
unsatisfactory since it assumes overhead is evenly distributed across all threads
of execution and all profiling results are uniformly affected.

Our early work in parallel perturbation analysis [11–13] demonstrated the
ability to track performance intrusion and remove its effects in performance
analysis results. However, there we had the luxury of a fully qualified event trace
which included synchronization events that exposed dependent operation. This
allowed us to recover execution sequences and derive performance results for an
approximated “uninstrumented” execution. While the same perturbation theory
applies, when profiling measurements are used, the analysis must be performed
online.

This paper contributes models for measurement overhead compensation de-
rived from a rational reconstruction of fundamental parallel profiling scenarios.
Using these models we described a general on-the-fly algorithm that can be used
for message passing parallel programs. The errors encountered in our earlier
work on the NAS parallel benchmarks, resulting from our simpler overhead and
compensation models, should now be reduced. However, implementing this al-
gorithms requires the ability to piggyback delay values on send messages and

82 Allen D. Malony and Sameer S. Shende

to process the delay values at the receiver. We are currently developing a MPI
wrapper library to support delay piggybacking that we can use to validate our
approach. Our implementation is intended to be portable to all MPI implemen-
tations and will not require transmission of multiple messages. This scheme will
be incorporated in the TAU performance system.

References

1. G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated
Application-level Checkpointing of MPI Programs,” Principles and Practice of
Parallel Programming (PPoPP), 2003.

2. L. De Rose, “The Hardware Performance Monitor Toolkit,” Euro-Par Conference,
2001.

3. A. Fagot and J. de Kergommeaux, “Systems Assessment of the Overhead of Tracing
Parallel Programs,” Euromicro Workshop on Parallel and Distributed Processing,
pp. 179–186, 1996.

4. S. Graham, P. Kessler, and M. McKusick, “gprof: A Call Graph Execution Pro-
filer,” SIGPLAN Symposium on Compiler Construction, pp. 120–126, June 1982.

5. R. Hall, “Call Path Profiling,” International Conference on Software Engineering,
pp. 296–306, 1992.

6. D. Kranzlmüller, R. Reussner, and C. Schaubschläger, “Monitor Overhead Mea-
surement with SKaMPI,” EuroPVM/MPI Conference, LNCS 1697, pp. 43–50,
1999.

7. A. Malony, “Performance Observability,” Ph.D. thesis, University of Illinois,
Urbana-Champaign, 1991.

8. A. Malony and S. Shende, “Overhead Compensation in Performance Profiling,”
Euro-Par Conference, LNCS 3149, Springer, pp. 119–132, 2004.

9. A. Malony, et al., “Advances in the TAU Performance System,” In V. Getov, M.
Gerndt, A. Hoisie, A. Malony, B. Miller (eds.), Performance Analysis and Grid
Computing, Kluwer, Norwell, MA, pp. 129–144, 2003.

10. A. Malony, D. Reed, and H. Wijshoff, “Performance Measurement Intrusion and
Perturbation Analysis,” IEEE Transactions on Parallel and Distributed Systems,
3(4):433–450, July 1992.

11. A. Malony and D. Reed, “Models for Performance Perturbation Analysis,”
ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 1–12, May 1991.

12. A. Malony, “Event Based Performance Perturbation: A Case Study,” Principles
and Practices of Parallel Programming (PPoPP), pp. 201–212, April 1991.

13. S. Sarukkai and A. Malony, “Perturbation Analysis of High-Level Instrumentation
for SPMD Programs,” Principles and Practices of Parallel Programming (PPoPP),
pp. 44–53, May 1993.

14. Unix Programmer’s Manual, “prof command,” Section 1, Bell Laboratories, Mur-
ray Hill, NJ, January 1979.

15. J. Vetter, “Dynamic Statistical Profiling of Communication Activity in Distributed
Applications,” ACM SIGMETRICS Joint International Conference on Measure-
ment and Modeling of Computer Systems, ACM, 2002.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 83–92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Modeling Pipeline Applications in POETRIES*

Eduardo César, Joan Sorribes, and Emilio Luque

Computer Science Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
{Eduardo.Cesar,Joan.Sorribes,Emilio.Luque}@uab.es

Abstract. Parallel/Distributed application development is an extremely difficult
task for non-expert programmers, and support tools are therefore needed for all
phases of the development cycle of these kinds of application. This study spe-
cifically presents the development of an analytical performance model for pipe-
lined applications. This model is intended to be used in the POETRIES distrib-
uted-program development environment, which is aimed at dynamic perfor-
mance tuning based on frameworks with an associated performance model.

1 Introduction

Parallel/distributed programming constitutes a highly promising approach to the im-
provement of the performance of many applications. However, in comparison to
sequential programming, several new problems have emerged in all phases of the
development cycle of these kinds of application. One of the best ways to solve these
problems would be to develop tools that support the design, coding, and analysis
and/or tuning of parallel/distributed applications.

In the particular case of performance analysis and/or tuning, it is important to note
that the best way for analyzing and tuning parallel/distributed applications depends on
some of their behavioral characteristics. If the application being tuned behaves in a
regular way, then a static analysis would be sufficient. However, if the application
changes its behavior from execution to execution, or even in a single execution, then
dynamic monitoring and tuning techniques should be used instead.

The key issue in dynamic monitoring and tuning is that decisions must be taken ef-
ficiently while minimizing intrusion on the application. We show that this is easier to
achieve when the tuning tool uses a performance model associated to the structure of
the application. Knowing the application’s structure is not a problem if a program-
ming tool, based on the use of skeletons or frameworks, is used for its development.

In this sense, we have designed a distributed-program development environment
(DPSE), called POETRIES [1][2], where knowledge of the application structure is
used for automatic detection and correction of its performance drawbacks at run-time.
Later we will summarize the main characteristics of this tool (section 3), but at this
point we can say that it consists of a programming tool based on frameworks or
skeletons, plus a performance model associated to them, and a dynamic tool, called

* This work was supported by MCyT-Spain under contract TIN 2004 – 03388 and partially

supported by the Generalitat de Catalunya – Grup de Recerca Consolidat 2001 SGR-00218.
The work developed at the University of Wisconsin has been supported by the research grant
2003/BE/00170 of the AGAUR

84 Eduardo César, Joan Sorribes, and Emilio Luque

MATE, where this model is used for dynamically improving the application’s per-
formance, in [3] we describe the implementation of this environment for M-W appli-
cations. This study represents a further step, and is focused on the development of the
performance model associated to the Pipeline framework

In aiming to develop these concepts, we have organized the rest of this paper in the
following way: In section 2, we present an overview of related studies. In section 3,
we describe general structure of POETRIES. In section 4, we present a global analy-
sis of the Pipeline framework. Based on it, in section 5 we present the development of
its associated performance model and in section 6 some experimental results for vali-
dating it. Finally, in section 7 we set out the conclusions of this study.

2 Related Studies

It is possible to classify the related studies into two main sets; firstly those that ad-
dress the problem of distributed application development in its different phases. Sec-
ondly, those related to performance issues, which in turn could be broadly divided
into those that propose a static approach and those that propose a dynamic one.

In the first set, we have found some studies, like the pattern language of [4],
CO2P3S [5], and eSkel[6], which address the whole problem, based on the fact that
there is a set of design patterns which could be applied to those problems suitable to
be solved in parallel. We have also found, in this set, studies, like Skil [7] or [8], that
take advantage of the high abstraction degree of functional languages, as well as other
important properties of these languages, such as separation of behavior and meaning,
and transformation possibilities. Other, studies such as [9] suggest taking advantage
of a popular modeling language (UML), adding to it extensions to model the most
important constructs of parallel/distributed paradigms, plus performance annotations.

In the set of studies related to performance monitoring, analysis and tuning we
have found tools that make a trace based analysis, such as Kappa-Pi [10] and
EXPERT [11]. The former makes a two-step analysis based on a source of ineffi-
ciency knowledge base and generates a set of recommendations concerning ineffi-
ciencies in the application source code. The latter, a tool included in the KOJAK
project, presents the complete performance behavior of the application in three di-
mensions: performance property, source code location and the execution phase where
it occurred, and process or thread location. In this set we have also found a tool called
P3T+ [12], which predicts application performance based on information gathered at
compiler time, plus sequential simulation and architecture parameters.

A tool with a dynamic approach is Paradyn [13] and its Performance Consultant,
which dynamically searches for performance bottlenecks using the W3 search model
(Why is there a performance bottleneck? Where is it? When did it happen?).

It is worth noting that, of the programming tools, few mention the possibility of
taking advantage of knowledge of the application structure to improve their perform-
ance, although the authors of eSkel [6] have recently published [14] a study of the use
of this information, along with process algebras, to evaluate parallel-applications
performance. Surprisingly, none of the performance analysis tools use the application
structure information, even when it is available, to perform their analysis.

Modeling Pipeline Applications in POETRIES 85

3 POETRIES General Structure

As mentioned in the introduction, we have designed a distributed-program develop-
ment environment (DPSE) with dynamic tuning, called POETRIES, which uses
knowledge of the high-level application structure to perform its task. The structure of
this tool is shown in figure 1.

Fig. 1. Structure of the POETRIES DPSE

The main idea is that it is possible to define a performance model associated to the
most common application frameworks (frameworks that are offered by many parallel
development tools [5][6][7]). This model includes a set of performance functions
(aimed at the detection of performance drawbacks), some parameters that have to be
monitored (measure points) to evaluate these functions, and some parameters (tuning
points) that could be modified to activate the actions that should be taken to over-
come the detected performance drawbacks.

These definitions make up the static part of the environment. Then, there is a dy-
namic tuning environment (Run-time) which, at application execution time, uses this
performance model to monitor the appropriate parameters to evaluate the perform-
ance functions (performance analyzer) and, takes the required actions to improve the
application performance (tuner). This phase, called MATE (Monitoring, Analysis and
Tuning Environment) [15], has been implemented as an independent tool.

To implement this DPSE we have created POETRIES [2] (Performance Oriented
Environment for Transparent Resource-management, Implementing End-user paral-
lel/distributed applications), which integrates a framework-based parallel/distributed
programming environment with the performance model needed to perform the dy-
namic analysis and tuning for these kinds of applications.

4 Pipeline Framework Analysis

The Pipeline framework is a well-known parallel programming structure used as the
most direct way to implement algorithms that consist of performing an orderly se-
quence of essentially identical calculations on a sequence of inputs. Each of these
calculations can be broken down into a certain number of different stages, and these
stages can be applied concurrently to different inputs.

For this study, we will assume that programmers use a linear pipeline framework,
being one with every stage, but first, receiving its input from the previous stage of the

86 Eduardo César, Joan Sorribes, and Emilio Luque

pipe and sending its output to the following one, but last. This is a simplification of
the more general multiple-branch pipelined structure. However, it won’t significantly
influence the fore coming performance analysis because analyzing a multiple-branch
pipe implies an individual analysis of each branch as being an independent pipe and,
in addition, being aware of performance unbalances among different branches.

The possible inefficiencies of pipelined applications are also well known. At first,
the concurrency is limited at the beginning of the computation as the pipe is filled,
and at the end of the computation as the pipe is drained. Programmers should deal
with this inefficiency at the design phase of the application because the way to avoid
it is to assure that the number of calculations the application will perform is substan-
tially higher than the number of stages of the pipe.

Secondly, it is important for there not to be any significant differences between the
computational efforts of the pipe stages because the application throughput of a pipe
is determined by its slowest stage. This is the most important inefficiency of this
structure, and the most difficult to overcome because it does not depend exclusively
on the application design, but also on run-time conditions. Consequently, this draw-
back is suitable for being solved dynamically. There are different approaches for
doing it depending on the target index to be optimized and the resource availability.

Therefore, we may want to improve the efficiency in the use of resources, or even
try to free some underused resources to increase their availability, in this case dy-
namic mapping of stages could be used to group faster stages; thus improving the use
of resources. On the other hand, we may want to improve the application throughput,
in this case, if there are available processors, to replicate slower stages will increase
its throughput, therefore decreasing the application execution time.

Furthermore, we may want to increase the application throughput but also to make
an adequate use of resources. Consequently, a mixed approach could be defined, as a
compromise between optimizing throughput and efficient resource management.

Fig. 2. Structure of a replicated stage. Stage i+1 has been replicated k times and a communica-
tion manager (CM) has been added to control the replicas’ state and distribute incoming tasks

Our aim is to implement a mixed strategy, with the main objective being to opti-
mize the application throughput but also to make reasonable use of resources. How-
ever, as a first step towards this objective we have concentrated on optimizing appli-
cation throughput and, as a consequence, the model presented in this study does not
include considerations about the efficiency of resource management.

Therefore, we assume that the programmer writes an application using a linear
pipeline framework, and then, at run-time, our tuning tool will dynamically decide
which stages should be replicated in order to improve the application’s performance.

Modeling Pipeline Applications in POETRIES 87

In figure 2, we show the structure of a replicated stage. It can be seen that there is a
new process called communication’s manager (CM). It is responsible for monitoring
the replica’s state and for distributing work, when available, to free replicas.

Finally, we should decide whether the CM should run in a separate processor or
should share one with a replica. The first approach is simpler to model but could lead
to a poorer use of resources. The second, in contrast, seems to lead to a better use of
resources, but is more difficult to implement with some communication libraries, and
is also difficult to model because the CM affects, and is affected by, the activity of the
replica that shares a processor with it. We have modeled both options, but in this
study we only present the model associated to the first.

5 Performance Model of the Pipeline Framework

Once the basic analysis of the framework has been performed and its structure has
been defined, it is time to use the POETRIES methodology outlined in section 3 to
develop the performance model associated to that framework.

Our objective is to increase the throughput of the slower stages in order to increase
the global application performance. The general strategy to reach this objective will
consist of calculating the best replication pattern for the current application’s behav-
iour and available number of processors.

Consequently, if we want to increase the throughput we must minimize the time
needed by each stage to process its inputs, including the time required to deliver the
results to the next stage. We call this production time. Thus, we need expressions to
find the production time each stage can reach (its independent production time), and
also expressions that explain its observed production time due to the influence of
other stages (its dependent production time). Moreover, we should find different
expressions to make these calculations for single (5.1), and replicated stages (5.2).

In our analysis, we assume that there is just one process per processor, and we use
the following terminology:

• tl, = fixed network overhead per message and communication cost.
• vi = data volume sent by stage i, in bytes.
• tci = computation time stage i needs to process an input, in ms.
• Trk

i = production time of k replica of stage i.
• Tri = independent production time of stage i, in ms.
• rTri = dependent production time of stage i, in ms.

5.1 Production Time of Single Stages

A single pipe stage is one which receives messages with data, except for the first,
makes its portion of calculation of this data, and sends the results to the next stage,
except for the last.

The independent production time (Tri) of such a stage will depend on its position
in the pipe, its computation time (tci), and the current communication conditions -
C(P,vi)- (communication protocol -P- and message size -vi-).

88 Eduardo César, Joan Sorribes, and Emilio Luque

This way, we can define the independent production time of a single stage as:

Tri = tci + C(P,vi) (1)

Where C(P,vi) is defined as:

0 if (i == n-1) (n = total number of pipe stages).

The last stage will be able to process its next message just after it finishes the cal-
culation of the previous one.

tl if (i < n-1) and (P is not synchronous)

If the communication protocol in use does not force synchronous sends, then the
stage will just have to wait to deliver the message to the library interface.

tl + vi if (i < n-1) and (P is synchronous)

Otherwise (synchronous sends), the stage will have to wait for the whole commu-
nication to finish before going to the next receive operation.

The dependent production time of the current stage also depends on the dependent
production times of the following and previous stages.

(2)

5.2 Production Time of Replicated Stages

A replicated pipe stage is one where data messages are received by a special process
called a communication manager (CM), which is responsible for deciding which
stage replica will process the data. Then the chosen replica makes the stage portion of
calculation of this data and sends the results to the next stage, unless it is the last. The
CM is executed on an independent processor.

To calculate the independent production time of such a stage, we should now con-
sider the managing time associated with the CM (tgi), and the waiting time for one
free replica (wci).

The term tgi depends on the communication protocol and possibly on the message
size. Basically, the CM looks at the communication channel and waits for messages
that could come from the previous stage or from one of the stage replicas (indicating
that the replica is free). As there could be many message sources it should look at the
channel without blocking. In consequence, the managing time will be the time needed
to make 1 or 2 probes of the channel with its corresponding receives plus the time
needed to send the requirements to the free replica.

Therefore, if the communication protocol is synchronous then the CM should wait
2*(3tl + vi) to be ready to process the next requirement message. It has to spend
twice the communication time because, except when filling the pipe, it has to syn-

Modeling Pipeline Applications in POETRIES 89

chronously receive the message from the previous stage (3tl + vi) and then synchro-
nously send it to a free replica (3tl + vi). On the other hand, if the communication
protocol is asynchronous then the CM will only have to wait for some network over-
head before seeing if there is a new requirement message, because in this case, library
buffers allow for overlapping communications.

The term wci depends on the processing capacity of the replicas and the managing
capacity of the CM. Given m replicas, if the CM spends more time managing m input
messages than the time spent by the set of replicas processing the same number of
messages then there will be always free replicas (wci = 0), which is an undesirable
situation because of the waste of resources.

If the CM has the capacity to feed the m replicas, then the term wci will less or
equal to the production time of the set of replicas, plus the time needed to send the
message to a replica. Except if the protocol is synchronous, because in such a case the
communication time is included in tgi. Furthermore, the production time of a given
set of replicas depends on the independent production time of each replica Trk

i, which
in turn is calculated in the same way as the independent production time of a single
stage plus the time needed to send the acknowledgement message to the CM.

Summarizing, the definition of independent production time of replicated stages is:

Tri = tgi + wci (3)

Where, tgi = tl + c if (protocol is asynchronous)
 2*(3tl + vi) + c if not

and wci = 0 if −

=

<= tgi

 λ+
−

=
] if not and protocol is asynchronous

 −

=
] if not and protocol is synchronous

Finally, knowing that the dependent production time of a stage just defines the ef-
fect of its neighbors on the stage, we can say that the dependent production time of a
replicated stage is defined in exactly the same way as for a single stage.

6 Experimental Validation of the Model

In this section, we first want to show the results of some relevant experiments that
have been designed to validate the proposed analytical model for calculating the pro-
duction time of a pipe stage. In order to get these results we have written a synthetic
parametrical pipeline application. This application uses the MPI communication li-
brary and all experiments have been executed on clusters of workstations in the com-
puter science department of the U. of Wisconsin at Madison.

Examples of figures 3 and 4 are included with the objective of showing that the
expressions described in section 5 closely match the behavior of real applications, and
the example of figure 5 is included with the objective of showing how the model can
be used to improve the application’s throughput.

90 Eduardo César, Joan Sorribes, and Emilio Luque

Table 1. Independent, dependent, and measured production times for figure 3 pipe stages

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
(1) Tr

i
 1.002 s. 1.202 s. 1.002 s. 2.002 s. 1 s.

(2) rTr
i
 2.002 s. 2.002 s. 2.002 s. 2.002 s. 2.002 s.

Measured 2.015 s. 2.015 s. 2.03 s. 2.03 s. 2.03 s

In figure 3 we can graphically see how the slower stage (3 in this case) affects all
other stages. It is clear that stage 4 has to wait for the output of stage 3, but we can
also see how stages 0, 1, and 2 synchronize with stage 3 due to communication syn-
chronization.

Fig. 3. Execution trace for a pipeline of five stages with message size of 200 Kb. and comput-
ing times of: 1 s. for stages 0, 2, and 4; 1.2 s. for stage 1; and 2 s. for stage 3

In table 1 we show the independent, dependent, and measured production times for
all stages of the pipeline in figure 3. We should first note that expression (2) for cal-
culating dependent production times tells us that stage 3 is the bottleneck of the ap-
plication, and secondly that the difference between the dependent production times
(rTr) and the measured ones is a result of the communication protocol change that
MPI performs when its buffers become full.

Fig. 4. Execution trace for a 5 stage pipeline, stage 3 with two replicas. Messages of 512 b. and
computing times of: 1 s. (stages 0, 2, & 4); 1.5 s. (stage 1); and 3 s. for each replica of stage 3

In figure 4 we can see how replication improves the throughput of a slow stage.
However, we can see that even with this replication, stage 3 does not match the inde-
pendent production time of stage 4 (the last) yet.

In table 2 we show the independent, dependent, and measured production times for
all stages of the pipeline in figure 4. It can be seen how replication improves the
throughput of the application, but also that the model captures its behavior.

Finally, in figure 5 we can see the result of applying the performance model to an
application (a) for optimizing its throughput by replication (b). In this example the
computation times associated to stages 1, 2, and 3 are four, three, and two times re-
spectively the one associated with stages 0 and 4 (the shortest). In addition, the com-

Modeling Pipeline Applications in POETRIES 91

munication protocol is asynchronous, except if forced by the communication library.
In this case, if there are 10 available processors the model tells us that to optimize
throughput we should replicate stage 1 four times, stage 2 three times, and stage 3
two times. However, if only 5 available processors were available the model would
have advised us to introduce 2 replicas of stage 1, and 1 replica of stage 2, thus im-
proving the throughput to that of stage 3 which is the second fastest stage.

Table 2. Independent, dependent, and measured production times for figure 4 pipe stages

 Stage 0 Stage 1 Stage 2 Stage 3 Replica 0 Replica 1 Stage 4
Tr

i
 1.001 s. (1) 1.501 s. (1) 1.001 s. (1) 1.502 s.(3) 3.001 s. 3.001 s 1 s. (1)

(2) rTr
i
 1.001 s. 1.501 s. 1.502 s. 1.502 s. -- -- 1.502 s.

Measured 1.0009 s. 1.5009 s. 1.5018 s. 1.5017 s. 3.0045 3.0018 1.503 s

Fig. 5. Execution traces of a pipeline application of 5 stages and message size of 10 Kb. Com-
puting time for stages 0 and 4 is 100 ms, for stage 1 is 400 ms, for stage 2 is 300 ms, and for
stage 3 is 200 ms. Without replicas (a), whit the replicas indicated by the model (b)

In this example, the application throughput is improved by 3.7 times from 2.48 to
9.15. If this application were able to produce outputs at the pace determined by its
fastest stage, it would have a throughput of 9.64, which is only 5% better than the one
we have obtained.

7 Conclusions and Future Work

The main goal of our study was to demonstrate that advance knowledge of the struc-
ture of the application is a good way to make appropriate global decisions to dynami-
cally improve its performance. To fulfill this goal we have designed POETRIES as a
distributed-program development environment that integrates a framework based
parallel/distributed programming tool with the performance model needed to perform
the dynamic analysis and tuning of the applications generated using this tool.

We have defined a performance model associated to the pipeline framework with
the aim being to improve the throughput of pipelined applications, and we have
shown experimental results that demonstrate that it is possible to define a realistic
analytical model that closely reflects the real behavior of an application developed
with this framework.

Completing this model to include efficient resource management considerations is
the next challenge. However, we believe that combining frameworks and model

92 Eduardo César, Joan Sorribes, and Emilio Luque

based dynamic performance tuning is a very promising approach for broadening and
encouraging the use of parallel/distributed applications.

References

1. E. Cesar, A. Morajko, T. Margalef, J. Sorribes, A. Espinosa, E. Luque: Dynamic Perform-
ance Tuning Supported by Program Specification. Scientific Programming, Vol. 10. IOS
Press (2002) 35-44

2. E. Cesar, J. G. Mesa, J. Sorribes, and E. Luque: POETRIES: Performance Oriented Envi-
ronment for Transparent Resource-management, Implementing End-user paral-
lel/distributed applications, Lecture Notes in Computer Science (LNCS), Vol. 2790 (Euro-
Par 2003). Springer-Verlag (2003) 141-146

3. E. Cesar, J. G. Mesa, J. Sorribes, E. Luque: Modeling Master-Worker Applications in
POETRIES. Proceedings of the 9th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS 2004). IEEE Computer Society.
Santa Fe, New Mexico (April 2004) 22–30

4. B. L. Massingill et al.: A Pattern Language for Parallel Application Programs. Lecture
Notes in Computer Science (LNCS), Vol. 1900 (Euro-Par 2000), Springer-Verlag (2000)
678-681

5. S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, K. Tan, “From Patterns to
Frameworks to Parallel Programs”, Parallel Computing, Vol. 28, n. 12, (2002) 1663-1683.

6. M. Cole: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing 30(3) (2004) 389-406

7. T. Richert: Skil: Programming with Algorithmic Skeletons – A Practical Point of View.
Proceedings of the 12th International Workshop on Implementation of Functional Lan-
guages, Germany (2002) 15-30

8. J. Darlington, H. W. To: Building Parallel Applications without Programming. Abstract
Machine Models for H. Parallel Computers, Oxford University Press (1995) 140-154

9. S. Pllana, T. Fahringer: On Customizing the UML for Modelling Performance-Oriented
Applications. UML 2002 “Model Engineering, Concepts and Tools”, Springer-Verlag,
Dresden, Germany (September 2002)

10. A. Espinosa, T. Margalef, E. Luque: Integrating Automatic Techniques in a Performance
Analysis Session. Lecture Notes in Computer Science (LNCS), Vol. 1900 (Euro-Par 2000),
Springer-Verlag (2000) 173-177

11. F. Wolf, B. Morh: Automatic Performance Analysis of SPM Cluster Applications. Techni-
cal Report IB-2001-05 (2001)

12. T. Fahringer, A. Požgaj: P3T+: A Performance Estimator for Distributed and Parallel Pro-
grams. Scientific Programming, IOS Press, Vol. 8, no. 2, the Netherlands (2000)

13. B. P. Miller et al.: The Paradyn Parallel Performance Measurement Tool. IEEE Computer
28, 11 (November 1995) 37-46

14. Anne Benoit, Murray Cole, Stephen Gilmore, Jane Hillston: Evaluating the Performance of
Skeleton-Based High Level Parallel Programs. Lecture Notes in Computer Science
(LNCS), Vol. 3038, Springer-Verlag (2004) 289-296

15. A. Morajko, O. Morajko, J. Jorba, T. Margalef and E. Luque: Automatic Performance
Analysis and Dynamic Tuning of Distributed Applications. Parallel Processing Letters,
Vol. 13 (2), World Scientific (2003) 169-187

Topic 2
Performance Prediction and Evaluation

Allen D. Malony, Thomas Fahringer, Allan Snavely, and Lúıs Silva

Topic Chairs

Performance is the reason for parallel computing. Achieving high performance
on parallel computer systems is the product of an intimate combination of hard-
ware architecture (processor, memory, interconnection network), system soft-
ware, runtime environment, algorithms, and application design. Performance
evaluation is the science of understanding these factors that contribute to the
overall expression of parallel performance on real machines and on systems yet
to be realized. Benchmarking and performance characterization methodologies
and tools provide an empirical foundation for performance evaluation. Perfor-
mance prediction techniques provide a means to model performance behaviors
and properties as system, algorithm, and software features change, particularly
in the context of large-scale parallelism. These two areas are closely related since
most prediction requires data to be gathered from measured runs of a program,
to identify application signatures or to understand the performance characteris-
tics of current machines.

A total of twenty-nine papers were submitted to the performance prediction
and evaluation topic area. The submissions covered a broad range of prediction
and evaluation topics, and reflect a high level of current interest in the parallel
computing community. The eleven papers accepted (38%) represent state-of-the-
art results from leading parallel performance researchers in the field today. The
papers cover four general themes in performance prediction and evaluation.

The first theme considers methods to explore performance properties from
different evaluation contexts: data access, processor, and interconnect. The un-
derstanding gained from looking at these different performance contexts is valu-
able to forming a more complete performance assessment. The second theme
concerns advances in measurement infrastructure for performance analysis at
the application level. In particular, the three tools reported illustrate techniques
for instrumenting events closely tied to parallel program operation and for cap-
turing performance data needed to correctly interpret performance behavior.
Techniques for performance prediction for large-scale parallel systems is the third
theme in the topic. The contributions here on performance extrapolation from
traces, performance modeling and sensitivity analysis, and performance predic-
tion using machine learning, are especially strong and are important contribu-
tions to the field. Lastly, we consider the connection of performance evaluation in
tools for performance tuning in the fourth theme. Graphical user interface sup-
port for integrated performance environments and automatic tuning for parallel
program archetypes are described.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 95–103, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Tuning of Master/Worker Applications*

Anna Morajko, Eduardo César, Paola Caymes-Scutari,
Tomás Margalef, Joan Sorribes, and Emilio Luque

Computer Science Department. Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
{ania,paola}@aomail.uab.es

{eduardo.cesar,tomas.margalef,joan.sorribes,emilio.luque}@uab.es

Abstract. The Master/Worker paradigm is one of the most commonly used by
parallel/distributed application developers. This paradigm is easy to understand
and is fairly close to the abstract concept of a wide range of applications. How-
ever, to obtain adequate performance indexes, such a paradigm must be man-
aged in a very precise way. There are certain features, such as data distribution
or the number of workers, that must be tuned properly in order to obtain such
performance indexes, and in most cases they cannot be tuned statically since
they depend on the particular conditions of each execution. In this context, dy-
namic tuning seems to be a highly promising approach since it provides the ca-
pability to change the parameters during the execution of the application to im-
prove performance. In this paper, we demonstrate the usage of a dynamic
tuning environment that allows for adaptation of the number of workers based
on a theoretical model of Master/Worker behavior. The results show that such
an approach significantly improves the execution time when the application
modifies its behavior during execution.

1 Introduction

The Master/Worker (M/W) paradigm is one of the most commonly used by paral-
lel/distributed application developers. In this paradigm, a master process distributes a
set of data to be processed among a set of worker processes that receives this data,
processes it and returns the results to the master. This structure fairly faithfully repre-
sents the developer abstract concept. It can be applied to a wide range of applications
and is therefore fairly easy to treat and manage. However, the actual behavior of this
structure depends on several features (target system, number of available processors,
computing capabilities, communication features, input data) that cannot be controlled
by the application developer and can only be found out during runtime. In order to
reach high performance indexes and eliminate performance bottlenecks, the behavior
of the particular application must be analyzed and problems that appear during the
execution must be determined.

One of the major performance bottlenecks in the Master/Worker paradigm is the
inadequate number of workers. When there are not enough worker processes, the
master process distributes the data and becomes idle as it waits for results. On the
other hand, if there are too many workers, the amount of data is divided into small
pieces and the communications saturate the system. Therefore, it is important to find
an optimal number of workers. This number depends on: the computing volume per

* This work has been supported by the MCyT (Spain) under contract TIC2001-2592 and has

been partially supported by the Generalitat de Catalunya – GRC 2001SGR-00218

96 Anna Morajko et al.

datum, the volume of data sent to and received from the worker processes, the com-
puting capabilities of each of the system’s processors and the latency and bandwidth
of the communication network.

In many cases, these features are not completely static and change dynamically
during the execution of the application (e.g., the computing requirements evolve dur-
ing execution of the application or the computing capabilities of the processors
change due to an additional load in the system). In these situations, the optimal num-
ber of workers is not fixed, but changes during the execution of the application and it
must be tuned dynamically.

In the following sections of this paper, we present a complete performance optimi-
zation scenario that considers the problem of the number of workers in a dynamic
approach. Section 2 presents example automatic analysis and tuning environments. In
Section 3, we describe the performance model used to calculate the optimal number
of workers. In Section 4, we analyze the tuning of the number of workers using the
MATE environment that supports the dynamic tuning of parallel applications. In
Section 5, we present the results of the experiments conducted in the MATE envi-
ronment to dynamically tune the number of workers using the presented performance
model. Finally, Section 6 shows the conclusions of this study.

2 Related Work

The optimization process requires a developer to go through the application perform-
ance analysis and the modification of critical application parameters. First, the per-
formance measurements must be taken in order to provide information about the ap-
plication. Then, the analysis of this information is carried out. It finds performance
bottlenecks, deduces their causes and determines the actions to be taken to eliminate
these bottlenecks. Finally, appropriate changes must be applied into the application.

To reduce developers efforts, an automatic analysis has been proposed. Tools using
this type of analysis are based on the knowledge of well-known performance prob-
lems. They are able to identify critical bottlenecks and help in optimizing applications
by giving suggestions to developers [1, 2, 3, 4].

Such tools require a certain degree of knowledge and experience of paral-
lel/distributed applications. To tackle these problems, it is necessary to provide tools
that automatically perform program optimizations during run time. Active Harmony
[5] is a framework that allows an application for dynamic adaptation to network and
resource capacities. The application must be Harmony-aware, that is, to use the API
provided by the system. The project focuses on the selection of the most appropriate
algorithm. Active Harmony automatically determines good values for tunable
parameters by searching the parameter value space using heuristic algorithm. MATE
uses a distinct approach in which performance models provide conditions and formu-
las that describe the application behavior and allow the system to find the optimal
values. The AppLeS [6] project has developed an application-level scheduling ap-
proach. It combines dynamic system performance information with application-
specific models and user specified parameters to provide better schedules. A pro-
grammer is supplied information about the computing environment and is given a
library to facilitate reactions to changes in available resources. Each application then
selects the resources and determines an efficient schedule, trying to improve its own
performance without considering other applications. MATE is similar to AppLeS in

Automatic Tuning of Master/Worker Applications 97

that it tries to maximize the performance of a single application. However, MATE
focuses on the efficiency of resource utilization rather than on resource scheduling.

3 Performance Model for the Number of Workers

In this section, we present the problem of determining a suitable number of workers
for a M/W application. We will only consider this problem for homogeneous M/W
applications, defining these as applications where all tasks (i.e. a set of data to be
processed by each worker) are approximately of the same size and require the same
processing time. In actual fact, these kinds of applications exhibit a similar perform-
ance to a balanced M/W application with the same total processing time and the same
global communication volume, as shown in [7]. This is an important observation,
because in homogeneous application it is easier to determine the appropriate number
of processors to be used.

For this analysis, we have assumed that the following conditions are met:

• There is just one process (master or worker) per processing element.
• The master process distributes all available data among workers, then waits for all

results and, eventually sends a new set of tasks to workers, which means that the
application could be iterative.

In addition, we will use the following terminology to identify the different parame-
ters that will form part of the performance model:

• tl = fixed network time overhead per message, in ms.
• = communication cost per byte (inverse bandwidth), in ms/byte.
• vi = size of tasks sent to worker i, in bytes.
• vm = size of results sent back to master from each worker, in bytes.
• V = total data volume ((vi + vm)), in bytes.
• n = current number of workers in the application.
• tci = time that worker i spends processing a task, in ms.
• Tc = total computing time (tci)
• Tt = total time spent on an application iteration (execution time). Our objective is

to estimate and minimize this magnitude.
• Nopt = number of workers needed to obtain the minimum Tt (best performance).

It can be seen that the parameters that must be monitored in order to apply the per-
formance model associated to a M/W application are:

• tl and which could be calculated at the beginning of the execution and should be
re-evaluated periodically to make allowances for the adaptation of the system to
the network load conditions.

• Task sizes (vi) have to be captured when the master sends tasks to workers.
• Result sizes (vm) have to be captured when the master receives results from work-

ers.
• The time the workers spend on each task (tci) has to be measured in order to calcu-

late the total computing time (Tc).

Now, we can describe the analysis performed in order to construct the performance
functions associated to this kind of application. We should point out that these func-

98 Anna Morajko et al.

tions are defined to enable the optimization of the execution time of the application
(Tt).

First, the master sends a set of tasks to each worker. If the communication protocol
is asynchronous then the network overhead (tl) for one message overlaps with the
communication time of the previous one (λ), otherwise both times should be

added.

The time spent on this operation is
−

=

+ λ if the communication protocol is

synchronous but, if the protocol is asynchronous then it depends on the relation be-
tween the network overhead (tl) and the communication time (λ).

If tl is greater than λ (communication time of the tasks sent to one worker) then

it is (network overhead) + λ . This is the overhead of sending messages to all

workers plus the communication time of the last message, otherwise, it is
−

=

+ λ .

This is the overhead of the first message plus the communication time of all mes-
sages.

Then, as every worker spends the same time processing its tasks, we just have to
add the processing time of one worker (the last one to receive a task); which is tci.

At this point, processing has finished and we must evaluate what happens to the re-
sults sent back to the master. We only need to add the communication time for the last
message, which is tl + *vm (communication time of one answer). This last statement
only holds if the master has completed the data distribution before there is an answer
from a worker, otherwise it will not be ready to receive messages when the last
worker sends its results back.

This never happens before the optimal number of workers if λ≥ , but may

not be true if λ< or when the communication protocol is synchronous. In the
latter case, the following condition must also hold: the time spent by the master to

distribute the tasks (
−

=

+ λ or
−

=

+ λ) must be greater than the response

time of the first worker (λλ +++).

The expressions to calculate the total iteration time are formed by adding these
quantities together, if the communication protocol is synchronous and

−

=

+++≥+ λλλ then we get:

−=

=

++++= λλ

But, if the communication protocol is asynchronous we get:

−

=

−

=

+++>+≤

+++=

λλλλ

λλ

Or

λλλ >∗++++∗=

Automatic Tuning of Master/Worker Applications 99

Considering that tci = Tc/n, vi = p*V/n (a portion p of the overall data volume
which is distributed among the workers), and vm = (1-p)*V/n (the remaining portion
of the overall data volume which are the results that workers return to the master) we
could rewrite these expressions as:

++>+

+−+++∗=

λλ

λ
 (1)

Or

−+≤
≤

−∗++∗∗+∗=

λλ
λ

λλ

 (2)

Or

λλ >+++∗= (3)

If we calculate Tt/ n = 0 for expression (1) then we will obtain an expression to
calculate the number of workers needed to minimize Tt when the communication
protocol is synchronous, which is:

+= λ (4)

And, if we calculate Tt/ n = 0 for expression (3) then we will obtain an expres-
sion to calculate the number of workers needed to minimize Tt when the communica-
tion protocol is asynchronous, which is:

+= λ

(5)

We cannot do the same with expression (2) because it can easily be demonstrated
that for this expression: =∞→ . But, if the number of workers (n) grows, then

the message size (vi) decreases and, consequently: tl > *p*V/n when n > *V/(2*tl).
This means that expression (5) can be also applied from the time this condition holds.
With expressions (1), (2) and (3), we have a model of the behavior of an application,
and we have expressions (4) and (5) to tune the number of workers of the application.

Figure 1 shows the expected execution time for an example M/W application con-
sidering expression (2) and compares the results of predicted values to the real execu-
tion times. This figure presents also the optimal number of workers provided by ex-
pression (4). It can be observed that the predicted behavior matches well the real
behavior.

4 Tuning Number of Workers with MATE

The performance model described in the previous section provides the optimal num-
ber of workers for a particular situation. However, in many cases the developer of an
M/W application cannot know all of the details needed to provide such an optimal
number. Moreover, in many cases the conditions change during the execution of the
application (for example, systems with shared load) and the optimal number of work-

100 Anna Morajko et al.

ers is not fixed, but evolves during the execution of the application. In these cases,
number must be adjusted on the fly during the execution of the application.

Fig. 1. Real vs. expected execution time, showing the use of expressions (2) and (4)

To provide dynamic automatic tuning of parallel/distributed applications we have
developed an environment called MATE (Monitoring, Analysis and Tuning Environ-
ment) [8, 9]. MATE performs dynamic tuning in three basic and continuous phases:
monitoring, performance analysis and modifications. This environment dynamically
and automatically instruments a running application to gather information about the
application’s behavior. The technique that fulfills these requirements is called dy-
namic instrumentation [10]. The analysis phase receives events, searches for bottle-
necks applying a performance model and determines solutions to overcome such
performance bottlenecks. Finally, the application is dynamically tuned by applying
the given solution. Moreover, while it is being tuned, the application does not need to
be re-compiled, re-linked or restarted. The knowledge to represent the performance
model of each particular performance problem is specified in a component called a
“tunlet”. Each tunlet includes the information about the measure points to insert in-
strumentation into the target application, the performance model to determine the
behavior of the application and the required modifications, and finally, the tuning
actions to improve the application’s performance.

We have defined two main approaches to tuning: automatic and cooperative. In the
automatic approach, an application is treated as a black-box, because no application-
specific knowledge is provided by the programmer. This approach attempts to tune
any application and does not require the developer to prepare it for tuning (the source
code does not need to be adapted). The cooperative approach assumes that the appli-
cation is tunable and adaptable. This means that developers must prepare the applica-
tion for the possible changes.

We have conducted a variety of practical experiments on parallel/distributed appli-
cations to check whether our approach really works. We have proven that it is effec-

Automatic Tuning of Master/Worker Applications 101

tive, profitable, and can be used for a real improvement in program performance.
Running applications under MATE control has allowed for adaptation of their behav-
ior to the existing conditions and improvements in their performance.

To dynamically tune the number of workers, we determined conditions that a M/W
application must fulfill (as this optimization belongs to the cooperative approach) and
implemented a specific tunlet. The application must be based on iterations where all
processes repeatedly perform all operations. During each iteration, the master distrib-
utes tasks to a specified number of workers and then waits for the results. It must
synchronize the results before the next iteration. Tasks being distributed must be in-
dependent of each other. In addition, the task processing time cannot depend on the
task content, but only on the task size. Finally, worker processes cannot exchange
tasks with each other in order to calculate and provide results. The condition of the
iteration-based application structure implies the existence of a significant number of
iterations. If there is a small number of repetitions, the tuning overhead might be high
and the improvement might not be seen.

The tunlet that optimizes the number of workers requires run-time monitoring of
the functions responsible for exchanging messages (send and receive), in particular:
send entry/exit, receive entry/exit events in the master process, and receive entry/exit
and send entry/exit in all worker processes. Instrumenting these functions we are able
to perform all measurements required by the performance model presented in Section
3 (expressions (4) and (5)).

The model is evaluated after each iteration when all measurements gathered from
that iteration are available. If the computed optimal number of workers differs from
the current value, the associated tuning procedure is invoked. In this case, we require
the application to be prepared by the developer for the potential changes. The applica-
tion must contain the specific variable that represents the number of workers. MATE
will change this variable automatically. During execution, the application should be
aware of the current number of workers and if it is different from the previous one,
the new number must be used. This can only be done between two iterations because
it is difficult to change the current work distribution that is already being processed.
Once the number of workers has been adjusted, the work can be distributed ade-
quately to all running workers.

If there are any new workers to be added, the new machines (processors) are re-
quired for them. There is no sense in running a new worker on the same machine
where another worker is already running. In such a situation we would not gain any-
thing since the CPU time is divided between both workers.

5 Experimental Results

In this section, the experimental results obtained by applying the tuning environment
to a real Master/Worker application are presented. To conduct the experiments, we
selected an intensive computing Forest Fire Propagation application called Xfire [11].
The Xfire application is a Master/Worker PVM based implementation of the simula-
tion of the fireline propagation. It calculates the next position of the fireline consider-
ing the current fireline position and different aspects such as weather, wind, vegeta-
tion, etc. Experiments were conducted on a cluster of homogenous Pentium 4, 1.8
Ghz, (SuSE Linux 8.0) connected by a 100Mb/sec network.

102 Anna Morajko et al.

Since we need to control the load in the system to reproduce the experiments sev-
eral times, we created certain load patterns, so that we can introduce and modify cer-
tain external loads to simulate the system’s time-sharing. We defined load patterns
and executed the application with several fixed number of workers (2, 4, 6, and suc-
cessively until 26) and also under the control of the MATE tuning environment where
the number of workers is adapted dynamically. In every scenario one worker was
executed in the same machine as master.

We have conducted our experiments in two scenarios:

• In the first scenario, Xfire was executed on different number of workers, without
any tuning.

• In the second scenario Xfire was executed under MATE applying the tuning of the
number of workers. The application started with one worker and then during the
execution the number is changed according to the model described in Section 3. In
this scenario one machine of the cluster was dedicated to run the analyzer, so that
the analysis does not introduce additional overhead in the application.

Table 1 summarizes the experimental results. These results are also presented in
Figure 2.

Table 1. Execution time of Xfire (in seconds) considering different number of workers, and
Xfire under MATE

#workers 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Execution

Time
1209 624 345 249 206 181 166 156 144 137 130 129 122 125

Xfire + MATE
Execution Time

Starting with 1 worker 141

Figure 2 shows the execution time of Xfire application considering different num-
ber of workers and in the last column the execution time of Xfire under MATE. As it
is indicated before, Xfire while executed under control of MATE starts with only one
worker. When MATE receives all data from the first iteration, it evaluates the per-
formance model and immediately detects the need of adding workers to reach the
optimal number related to the initial total work. Then during the execution of the
application the load is changed and the number of workers is adapted to the optimal
number provided by the performance model.

It can be observed that execution time of Xfire under MATE is close to the best
execution times obtained by different fixed number of workers. However, the re-

Fig. 2. Execution time of Xfire considering different number of workers and Xfire under
MATE

Automatic Tuning of Master/Worker Applications 103

sources devoted to the application using the MATE tuning environment are taken
considering the actual requirements of the application and are used when they are
really needed.

6 Conclusions

Parallel and distributed programming offer high computing capabilities to users in
many scientific research fields. The performance of applications written for such
environments is one of the crucial issues. Master/Worker is one of the most signifi-
cant paradigms in these environments. The number of workers is a key issue in con-
sidering the performance of the application.

A performance model to evaluate the optimal number of workers has been pre-
sented. This performance model has been incorporated into the MATE automatic
tuning environment by the corresponding “tunlet”. The presented optimization sce-
nario adapts the number of workers assigned to perform a specified amount of work
to changing environment conditions. It requires the application to be prepared for the
possible changes, i.e. adding or removing worker processes. MATE is able to estimate
the application’s performance by means of the analytical model, and to calculate and
apply the optimal number of workers. The tuning action changes the number of work-
ers by updating the variable value in the master process.

The experimental results show that the dynamic tuning approach significantly im-
proves the execution times without consuming unnecessary resources when the appli-
cation is executed under dynamic conditions (changes in the system load).

References
1. Espinosa, A., Margalef, T., Luque, E. “Automatic Performance Analysis of PVM applica-

tions”. EuroPVM/MPI 2000, LNCS 1908, pp. 47-55. 2000.
2. Wolf, F., Mohr, B., “Automatic Performance Analysis of MPI Applications Based on Event

Traces”. EuroPar 2000, LNCS 1900, pp. 123-132. 2000.
3. Truong, H.L., Fahringer, T. “Scalea: A Performance Analysis Tool for Distributed and Par-

allel Programs”. EuroPar 2002, LNCS 2400, pp. 75-85. 2002.
4. Miller, B.P., Callaghan, M.D., Cargille, J.M. Hollingswoth, J.K., Irvin, R.B., Karavanic,

K.L., Kunchithapadam K., Newhall, T. “The Paradyn Parallel Performance Measurement
Tool”. IEEE Computer vol. 28. pp. 37-46. November 1995.

5. Tapus, C., Chung, I-H., Hollingsworth, J.K. “Active Harmony: Towards Automated Per-
formance Tuning”. SC’02. November 2002.

6. Berman, F., Wolski, R. “Scheduling From the Perspective of the Application”. High Per-
formance Distributed Computing 1996. Syracuse, NY, USA, August 1996.

7. César, E., Mesa, J.G., Sorribes, J., Luque, E. “Modeling Master-Worker Applications in
POETRIES”. IEEE 9th International Workshop HIPS 2004, IPDPS, pp. 22-30. April, 2004.

8. Morajko, A., Morajko, O., Jorba, J., Margalef, T., Luque, E. “Dynamic Performance Tun-
ing of Distributed Programming Libraries”. LNCS, 2660, pp. 191-200. 2003.

9. Morajko, A., Morajko, O., Margalef, T., Luque, E.. “MATE: Dynamic Performance Tuning
Environment”. LNCS, 3149, pp. 98-107. 2004.

10. Buck, B., Hollingsworth, J.K. “An API for Runtime Code Patching”. University of Mary-
land, Computer Science Department, Journal of High Performance Computing Applica-
tions. 2000.

11. Jorba, J., Margalef, T., Luque, E., Andre, J, Viegas, D.X. "Application of Parallel Comput-
ing to the Simulation of Forest Fire Propagation", Proc. 3rd International Conference in
Forest Fire Propagation, Vol. 1, pp. 891-900. Portugal, November 1998.

Performance Cockpit:
An Extensible GUI Platform

for Performance Tools�

Tianchao Li and Michael Gerndt

Institut für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748 Garching bei Mun̈chen, Germany

{lit,gerndt}@in.tum.de

Abstract. Within the EP-Cache project, the Performance Cockpit has
been developed to provide a unified GUI for a series of performance tools.
This is achieved through the establishment of a general extensible archi-
tecture and the application of standardized intermediate representations
of program structures. This paper describes the design and implemen-
tation of this platform, and discusses the future evolvement into a uni-
versal GUI platform for performance tools independent of programming
language and programming paradigms.

1 Introduction

Performance tools are commonly used in high performance computing in order
to understand and correct the performance problems of sequential and parallel
codes. Such tools monitor a program’s execution and produce performance data
that can be analyzed to locate and understand areas of poor performance.

There are a number of performance tools, both research and commercial.
Many of these tools are language-dependent and can be applied to high perfor-
mance programs written in one or more of FORTRAN, C, C++ etc, while some
are language-independent. There are also different programming paradigms, typ-
ically shared memory (PThread, OpenMP) and message passing (MPI, PVM).
The support for those programming paradigms also varies.

The most prevalent approach taken by these tools is to collect performance
data during program execution and then provide post-mortem analysis and dis-
play of performance information. Some tools do both steps in an integrated man-
ner, while other tools or tool components provide just one of these functions. A
few tools also have the capability for run-time analysis, either in addition to or
instead of post-mortem analysis.

Typically, each performance tool provides a customized user interface for
showing the structure of the application, specifying the target of measurement,
controlling the measurement execution and displays the result of measurement.
The diversity of those user interfaces demands a lot of time for studying the
� The work presented in this paper is mainly performed in the context of the EP-

Cache Project, funded by the German Federal Ministry of Education and Research
(BMBF)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 104–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Performance Cockpit 105

usage of a new performance tool, and makes it hard to integrate and incorporate
different performance tools.

While the exact sequence can be different, performance measurement typ-
ically includes the common procedures: instrumenting the monitored program
(source or binary, static or dynamic), linking the instrumented program with
specific runtime libraries, program execution and result retrieval (online or post-
mortem), and result display and/or analysis. This provides us the possibility to
set up a general infrastructure to support different performance tools. In this
infrastructure, a performance tool independent platform serves as the basis that
can be extended by individual modules (plug-ins) to support different perfor-
mance tools.

In the German EP-Cache project, Performance Cockpit has been imple-
mented as an extensible GUI platform for a series of performance tools. Based on
the open source tooling platform Eclipse [4], this platform supports both post-
mortem (i.e. CPTE) and online monitoring (i.e. EPCM) environments, and is
intended to integrate other performance tools. The Performance Cockpit serves
as the starting point for the development of a universal GUI that is neutral to
both programming languages and programming paradigms.

The remainder of this paper is organized as follows. Section 2 introduces the
performance monitoring tools developed in the EP-Cache project, and discusses
the need for a common GUI platform. Section 3 discusses the major issues in-
volved in the design and development, including the establishment of a general
extensible architecture and the standardization of information representations.
Section 4 presents the defined architecture, and section 5 introduces the GUI and
its typical scenario of usage. Section 6 discussed activities related with our devel-
opment, and Section 7 looks forward to the development of a universal platform
for performance tools based on the efforts in Performance Cockpit. The paper
concludes with a short summary in Section 8.

2 The Need for a Common GUI Platform

The EP-Cache (Efficient Parallel Programming of Cache Architectures) project
is a three-year research project funded by the German Federal Ministry for
Education and Research. The goal of this project is to develop new performance
analysis tools and performance tuning techniques with which programs can be
improved to efficiently utilize the underlying cache architectures, especially on
SMPs. As a fundamental part of the EP-Cache project, existing performance
measurement tools are evaluated and new tools either using existing hardware
counters and/or based on a novel hardware monitor design [7] that reveals further
details on the access behaviors for individual data structures and code regions are
developed. These include the Counter-based Profiling and Tracing Environment
(CPTE) [2] and the EP-Cache Monitor (EPCM) [5].

CPTE is a performance monitoring tool based on hardware performance
counters. It provides profiling, tracing, and sampling for arbitrary program re-
gions. Performance measurement with CPTE is done with the following steps -

106 Tianchao Li and Michael Gerndt

instrumentation of the program, specification of measurements, program execu-
tion and generation of the measured values, and analysis of resulting performance
data. Measurement results are produced in the form of a trace file which may
contain measurements for individual instances of a region, and/or summaries of
all instances of a region. The results can also be transformed for visualization
with KCachegrind [6].

EPCM is a data-structure centric performance monitoring tool. It is based
on a novel hardware monitor [7] designed to be integrated into cache controllers
which provides counters that can be configured to measure events for certain
address ranges, and record the accesses in the form of event counts and access
histograms. As the hardware monitor is not available, EPCM is actually imple-
mented on top of a simulator that provides runtime instrumentation of applica-
tion binary, on-the-fly simulation of the cache access behavior and performance
monitoring for multi-processor shared memory systems [14]. EPCM provides
Monitoring Request Interface (MRI, ref. [8]), through which performance analy-
sis tools can specify monitoring requests and retrieve monitoring data in online
fashion. EPCM also generates trace records compatible with VAMPIR [16] that
is extended with OpenMP, data structure and histogram support.

CPTE and EPCM share some similarities in that both environments are tar-
geted to Fortran 95 OpenMP programs and extendable for other programming
languages and programming paradigms provided that the specific instrumenters
are available. Both require selective code-region instrumentation in user specified
source files and region types. The differences between these two environments
are even more evident. The post-mortem data analysis in CPTE and online mon-
itoring and analysis in EPCM requires different procedures in the measurement.
EPCM’s support for code-regions involves additional code region instrumenta-
tion and different specifications of measurement targets. The measurement re-
sults are also different for CPTE and EPCM in both content and format, and
are to be visualized with different visualization and analysis tools.

In order to ease the usage, graphical user interfaces (GUIs) are demanded for
both CPTE and EPCM. Taken into consideration of the vast differences between
those two environments, it might seem a natural choice to develop separate GUI
for each of those platforms. However, this leaves many problems like duplicate
work for the common features, low maintainability, inconsistent in the user in-
terface and low inter-operability. Instead, we have chosen another approach - to
implement a common GUI to support both these monitoring environments as
well as other existing and future monitoring environments through the establish-
ment of a common extensible infrastructure, namely the Performance Cockpit.

3 Key Issues in Design and Implementation

In the design and implementation of such an extensible GUI platform as the
Performance Cockpit, the major issues to be considered include the establish-
ment of a general extensible architecture and the standardization of information
representations.

Performance Cockpit 107

3.1 Define General Extensible Architecture

A general architecture should be constructed for integrating different perfor-
mance tools through extension. Generality and extensibility are the major con-
siderations of the defined architecture. While the powerful extension mechanism
from Eclipse provides extensibility, the GUI elements required by different tools
are to be studied and organized with respect to their nature for generality.

The generic GUI elements and the underlying supporting mechanisms form
the basic platform, and the tool-specific elements are to be grouped into indi-
vidual extension modules, i.e. plug-ins. Each plug-in extends the basic platform
through properly defined interfaces, i.e. extension points. The interface between
the basic platform and the extensions should be defined generic enough to allow
possible situations of extensions.

For more details of the established architecture, please refer to Section 4.

3.2 Define Standard Representation for Relevant Information

For the interaction between Performance Cockpit and the different performance
tools that are integrated, standardized representation should be defined for all
relevant information. The information includes program code region structure,
program instrumentation targets and/or monitoring requests, as well as the mea-
sured performance data.

For the program code region structure, we have participated in the devel-
opment of Standardized Intermediate Representation (SIR) [13], a standardized
abstract representation of program structure for Fortran 95, Java, C and C++
programs defined in the APART working group [1]. SIR is defined in the format
of XML document; each SIR is a XML document following the DTD or XML
schema definition for SIR. SIR is intended to be used by performance tools and
contains only high-level information about positions and types of statements
and directives (e.g. OpenMP) that represent the coarse structure of programs,
as opposed to more complicated intermediate languages like WHIRL used in the
Open64 compiler suite [9]. This simplicity helps keep SIR compact and applicable
for both procedural and object-oriented programs of various languages.

For the information of program instrumentation and monitoring, common
formats that are general enough for the performance tools of EP-Cache project
are also defined.

4 The General Extensible Architecture

A general architecture for integrating different performance tools has been con-
structed (see Figure 1). This architecture follows a layered design and is based
on the extension mechanism provided by Eclipse.

In this architecture, the generic functions including the management of mon-
itoring projects (new project or example project), configuration of common pref-
erence and project properties, and the management of platform extensions forms

108 Tianchao Li and Michael Gerndt

the performance platform. The support for code instrumentation is provided
with separate instrumentation plug-in, each for a different instrumenter. And
the concrete support for different underlying monitoring platforms, either based
on hardware counters (the CPTE platform), or software simulators (the EPCM
platform) are implemented as separate plug-ins.

Fig. 1. The General Extensible Architecture for Performance Cockpit

4.1 Eclipse, CDT and Fortran Plug-In

Eclipse [4] is a kind of universal tooling platform - an open-source extensible
IDE for the integration of various software development tools. Eclipse represents
a component-based approach for software development, which promotes a view
of software development in which applications are composed out of reusable,
relatively large-grained, and mostly pre-existing components.

The C/C++ Development Tools (CDT) [3] provides a full functional C and
C++ IDE for the Eclipse platform. It provides support for C/C++ edit, build,
launch, and debug. For project building, CDT incorporates a standard make
feature (a term used by Eclipse to represent a group of tightly related plug-ins)
that support standard makefiles.

By the time of implementation, Fortran support for Eclipse is not available,
and a self-developed plug-in has been developed for simple Fortran support. It
implements a Fortran 95 editor with simple syntax highlighting, and supports the
building of Fortran applications by reusing the incrementally build functionality
provided by the makefile support of CDT. This part can be replaced once an
advanced Fortran plug-in such as Photran [11] becomes mature.

4.2 The Performance Platform

The performance platform provides the basis for integration and extension for
different performance tools. It is based on Eclipse, Eclipse CDT and the self-
developed Fortran plug-in. The major function of this platform includes the
management of the performance projects, the management of common properties

Performance Cockpit 109

and preferences, and the management of performance tools extensions. For the
management of performance tools extensions, custom interfaces (i.e. extension
points), are defined by the performance platform, through which the individual
performance tools can be discovered and integrated.

4.3 Instrumentation Plug-Ins

Code instrumentation is a separate process from performance measurement, and
is often shared among tools. For each specific code instrumenter, a separate
instrumentation plug-in is to be implemented. Each of these plug-ins provides
GUI elements for the instrumentation of the whole project or selected files of
a certain type (e.g. Fortran programs), and directs the underlying instrumenter
upon user control. The instrumenter also generates information about the source
code structure, in the format of SIR, which will later be read by the GUI and
the individual tools plug-ins.

4.4 Tools Plug-Ins

Each performance tool requires the development of an individual plug-in to be
integrated into the performance platform. The responsibility of each plug-in
includes the translation of standard-based data representation to tool-specific
data formats, providing custom GUI elements, and the interaction with the
underlying tools.

The plug-in for each performance tool must implement certain interfaces to
be managed by the performance platform. User interactions with the common
GUI elements are processed by the performance platform and translated into
appropriate function calls as defined in the interfaces. User interactions with the
custom GUI elements are directly handled by the tool plug-in.

5 The Performance Cockpit GUI

5.1 GUI Elements

In terms of Eclipse, the common GUI elements for performance monitoring pro-
vided by the Performance Cockpit include:

Monitoring Perspective: This perspective organizes all relevant components
into a role-oriented GUI to the user of the monitoring environment.
Project Creation Wizards: These wizards help create projects that are either
empty or containing example programs. Projects created with these wizards are
marked with Monitoring Nature, which is identified later by other components
of the Performance Cockpit.
Monitoring Resource Explorer: As a resource explorer customized for our
measurement environment, it provides standard project and file manipulation
functions; however all unnecessary details are hidden from the user, such as the

110 Tianchao Li and Michael Gerndt

Fig. 2. Extensible GUI Platform for Performance Tools

files created during the process of instrumentation and internal configuration
files.

Monitoring Environment Preferences: This enables required configurations
for the monitoring environment, such as the path of instrumenter executable, the
path of result format converter etc.

Instrumentation Wizards: These wizards guide the user through the process
of instrumentation either for selected files or for the whole project.

Code Regions Outline View: This view provides an outline of code regions
for the active editor, according to the result of instrumentation. Context menu
items of this view also allow users to add/remove certain code region(s) into/from
target of measurement.

Code Region Properties View: This view displays available properties and
measurement results of individual code regions, in response to user selections in
the Code Regions Outline View.

In the current implementation of the Performance Cockpit, the following
performance tool specific GUI elements are defined by the plug-ins for CPTE
and EPCM environment:

Measurement Wizards: The measurement wizards guide the user through the
process of measurement. A separate wizard is defined for each of the performance
tools. For example, the measurement wizard for CPTE directs the user to specify
parameters and general requests for the measurement, generates configuration
file, and launches the program measurement.

Performance Cockpit 111

Measurement Result Views: These views display available properties and
measurement results. For example, the EPCM displays the result of each mea-
surement request as a single count or a histogram.
Visualization Wizards: These wizards guide the user to choose and invoke
appropriate external visualizers to display the measurement results.

The above GUI elements, either provided by the common performance plat-
form or contributed by the individual performance tools plug-ins, are seamlessly
integrated with the Eclipse platform. From the user’s perspective, those two
types of GUI elements are not distinguishable (see Figure 2).

All components described above are grouped into a Monitoring Feature,
which allows the whole platform to be installed and updated in a way that
coexists with other Eclipse based systems.

5.2 Usage Scenario

The process of measurement using Performance Cockpit can be summarized as
follows. The user creates a project with one of the Project Creation Wizards,
and then the user can manipulate the content of the project with the Monitor-
ing Resource Explorer. To do instrumentation, the user can right click on the
whole project or selected files and start Project Instrumentation Wizard or Files
Instrumentation Wizard from the context menu. After specifying the required
parameters like region types to be instrumented, the instrumenter is invoked by
the wizard. The user can then open the instrumented files in the Fortran Source
Editor, examine the code regions in the Code Regions Outline View, and specify
local measurement requests for specific code regions. After building the program,
the user invokes the Measurement Wizard for measurement that will guide the
user through out the measurement process, which varies from tool to tool. In
any case, the wizard will launch the program for execution. Once the execution
finishes, the user can choose appropriate Measurement Result Views to examine
the individual measurement, or invoke visualization tools that are integrated in
the platform through the help of Visualization Wizards.

6 Related Works

Previous attempts to construct general interfaces for instrumentation and visu-
alization also exist in other parallel tool groups. The Pablo project [10] at the
University of Illinois has implemented svPablo, a graphical interface for instru-
menting source code and browsing runtime performance data. The Tool Gear
project [15] at LLNL is a GUI tool and database for dynamic instrumentation
and display of the instrumentation results. However, the extensibility and flex-
ibility of such tools are not comparable to our Performance Cockpit. In fact,
taken the vast differences between instrumentation and measurement tools (e.g.
consider just profiling vs. tracing tools), opportunities for integration can be
only guaranteed by a general extensible platform like the Performance Cockpit.

112 Tianchao Li and Michael Gerndt

Existing Eclipse-based GUIs for performance tools include the Eclipse OPro-
file plug-in as a CDT contribution and the Intel VTune Performance Analyzer for
Linux [17]. Both are specific to the underlying tool (OProfile and VTune), and
none of them address the extensibility and coexistence with other performance
tools. The tight dependence with Eclipse CDT also makes Eclipse OProfile plug-
in restricted to C/C++. Intel VTune Performance Analyzer for Linux supports
multiple languages, including Intel Visual Fortran, Java and languages supported
by the Linux GNU Compiler Collection (GCC); however the proprietary nature
of this product and its closed internal data models makes integration with other
tools impractical.

The recently proposed PTP (Parallel Tools Platform) project [12] aims to
extend the Eclipse framework to support a rich set of parallel programming
languages and paradigms, and provide a core infrastructure for the integration
of a wide variety of parallel tools. Although the PTP is still in the initial status of
proposition, it casts new light on the construction of a generic platform including
performance monitoring. We have expressed our interest in this project and will
actively participate in the discussions to influence the design so that the work
in PTP and our work can be seamlessly integrated.

7 Towards a Universal Platform for Performance Tools

The Performance Cockpit provides the basis for the future development of a
universal integration platform for performance tools. Such a platform will be
beneficial to users and developers of all performance tools in that it provides a
consistent user experience and gentle learn curve, enables interoperability among
performance tools, reduces redundant work by reusing common functions, etc. It
is intended to be programming language neutral, programming paradigm neu-
tral, and performance tool neutral.

While the extension architecture and the standardized representation of in-
formation defined in its development generally enables the step-forward towards
universal platform, further efforts are required. In order to be performance tool
neutral, the currently defined architecture should be refined, and standardized
representation of more types of information (e.g. the trace record) should be
defined. This requires of course the examination of a large amount of existing
performance tools and identify the commonalities and specialties. This will also
involve a lot of compromise between generality and functionality.

For Eclipse, supports to programming languages and programming paradigms
are usually provided by extensions from different parties. The integration of
Performance Cockpit with those diverse programming extensions constitutes an-
other challenge, and will foreseenably result into changes to the general architec-
ture and implementation. For example, the PTP described above that provides
support for parallel programming will be integrated as part of the underlying
platform.

Performance Cockpit 113

8 Conclusions

Performance is a very important factor that drives the development of comput-
ing. Code optimization with the help of performance tools is one of the major
measures to achieve better performance. However, the existing performance tools
usually have different graphical user interfaces and results into difficulty in the
usage and poor interoperability.

In the EP-Cache project, the Performance Cockpit, a GUI platform that pro-
vides a unified user interface for a series of performance tools, has been devel-
oped. Compared to other GUIs for performance tools, the Performance Cockpit
excels in its easy learning and usage, its extensibility and interoperability. The
general extensible architecture and standard representations for related infor-
mation that are defined in the development of Performance Cockpit provide the
basis for the future development of a universal platform for performance tools.
The integration of performance tools with the Eclipse environment would also al-
low programmers of high-performance systems to exploit the general advantages
of the integrated interactive development environment.

References

1. APART Working Group. http://www.fz-juelich.de/apart/
2. M. Gerndt, T. Li: Automated Analysis of Memory Access Behavior, Proceedings

of HIPS-HPGC 2005, Denver Colorado, April, 2005
3. Eclipse C/C++ Development Tools. http://www.eclipse.org/cdt/
4. Eclipse. http://www.eclipse.org
5. E. Kereku, T. Li, M. Gerndt, and J. Weidendorfer: A Selective Data Structure

Monitoring Environment for Fortran OpenMP Programs, Proceedings of Euro-Par
2004, Pisa, Italy, Aug. 31th - Sept. 3rd, 2004

6. KCachegrind. http://kcachegrind.sourceforge.net
7. M. Schulz, J. Tao, J. Jeitner, W. Karl: A Proposal for a New Hardware Cache

Monitoring Architecture, Proceedings of MSP 2002, Berlin, Germany. June 2002
8. M. Gerndt, E. Kereku: Monitoring Request Interface Version 1.0,

http://wwwbode.in.tum.de/˜kereku/projects/epcache/pub/MRI.pdf
9. Open64 Compiler Tools. http://open64.sourceforge.net

10. Pablo Research Group. http://www.renci.unc.edu
11. Photran. http://www.photran.org
12. Eclipse Parallel Tools Platform. http://www.eclipse.org/ptp/
13. C. Seragiotto et. al.: Standardized Interfaces for Representing, Instrumenting, and

Monitoring Fortran, Java, C and C++ Programs, Concurrency and Computation:
Practice and Experience, submitted.

14. SMART: A Simulation Tool for Monitoring Cache Access Behavior on SMPs,
http://wwwbode.cs.tum.edu/˜lit/smart/

15. Tool Gear. http://www.llnl.gov/CASC/tool gear/
16. VAMPIR. http://www.pallas.com/pages/vampir.htm, www.tu-dresden.de/zhr/
17. VTune Performance Analyzer for Linux.

http://www.intel.com/software/products/vtune/vlin/index.htm

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 114–123, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Apex-Map: A Synthetic Scalable Benchmark Probe
to Explore Data Access Performance

on Highly Parallel Systems

Erich Strohmaier and Hongzhang Shan

Future Technology Group, CRD, Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720
{estrohmaier,hshan}@lbl.gov

Abstract. With the increasing gap between processor, memory, and intercon-
nect speed, the performances of scientific applications on high performance
computing systems have become dominated by the ability to move global data.
However, many benchmarks in the field of high performance computing focus
on measuring the achieved CPU speed in MFlop/s. In this paper, we introduced
a novel benchmark, Apex-Map, which focuses on global data movement and
measures how fast global data can be fed into computational units. Apex-Map is
a parameterized synthetic performance probe and integrates concepts for tempo-
ral and spatial locality into its design. By measuring the Apex-Map perform-
ance for a whole range of temporal and spatial localities performance surfaces
can be generated which can be used to study the characteristics of the computa-
tional platforms and which are useful for performance comparison. Results on a
vector platform and two superscalar platforms clearly reflect the design differ-
ences between these two types of systems.

1 Introduction
Benchmarking of high performance computing has often focused on floating point
performance. One prominent example of this is the Linpack benchmark, which is used
to rank systems in the TOP500 Project [1]. However, the performance of Linpack is in
general not a good performance indicator for real applications. On most platforms,
Linpack can achieve over 70% of peak performance while on the same systems many
real applications might only achieve substantially lower performances.

With the increasing gap between CPU speed and memory speed, the capability to
load and store data locally and globally has become the dominant performance factor
for many applications. System designers are spending enormous efforts to design
complex memory systems and interconnect networks to increase the data transfer
bandwidths and reduce latencies. However, we still lack a quantitative methodology
to relate changes in computer architectures to improvements in application perform-
ances. There even still is no standard or widely accepted way to measure progress in
our ability to access globally distributed data. STREAM [2] is often used to measure
memory bandwidth but its use is limited to at the most a single shared memory node.
Recently, the HPC Challenge benchmark [3] has included the RandomAccess bench-
mark, to measure the rate of integer random updates of memory. Unfortunately, this
benchmark cannot easily be related to scientific applications and thus does not help
much for applications performances.

In this paper, we introduced a novel synthetic memory access probe, called Apex-
Map [4], to measure global data access performance. Apex-Map has three main pa-
rameters, the global memory size M used, the temporal locality , and the spatial

Apex-Map: A Synthetic Scalable Benchmark Probe 115

locality L. Our basic assumption is that an application’s global memory access can be
approximated by multiple data access streams, each of which can be characterized
with the three parameters introduced above. The execution profile of Apex-Map can
then be tuned by its set of input parameters to match the data access characteristics of
a chosen scientific application. This allows us to use Apex-Map as a performance
proxy for the actual codes. An advantage of our synthetic benchmark probe is that due
to its simplicity it can easily be run by simulators. This allows its usage in the early
stages of architecture design.

Another feature that distinguishes Apex-Map from many other benchmarks is that
its input parameters can be varied independent of each other between extreme values.
This allows generating continuous performance surfaces to explore the performance
effects of all potential values of the characterizing parameters. By examining these
surfaces, we can understand how changes in spatial or temporal locality affect the
performances of applications and which factors are more important for performance.
Moreover, we can compare these performance surfaces across different platforms and
explore the advantages and disadvantages of each platform. Most current benchmark
suits (HPCC, NAS [5], and SPEC [6]) only contain several application codes or their
synthetic benchmarks have other features strongly limiting the scope of performance
behaviors they can explore. The results of these application benchmarks provide very
good indications how similar applications will perform on a specific platform. How-
ever, these benchmarks are not very helpful for other applications, as their perform-
ances cannot be related directly to them.

The design details of Apex-Map are described in Section 2. In Section 3, we ana-
lyze our results on our three test platforms, two superscalar platforms and one vector
platform. We find that the Apex-Map performance results clearly reflect the design
differences between the superscalar and the vector platforms. Finally, we analyze the
scalability of these three platforms based on the Apex-Map results. Section 4 summa-
rize our results and discusses our ongoing and future work.

2 Implementation

The parallel implementation of Apex-Map uses the same concept as the sequential
version [7]. It has the same three main parameters, the global memory size M, the
temporal locality , and the spatial locality L. These parameters are related to our
methodology to characterize application performances. Apex-Map assumes that the
performance of a data access pattern of an application can be approximated by com-
bining a blocked access to memory with length L with a non-uniform random address
determined by . In Apex-Map a global data-array of size M is evenly distributed
across all processes as illustrated in Fig. 1. Data will be accessed in block mode, i.e.,
L continuous memory addresses will be accessed in succession and the block length L
is used to characterize spatial locality. The starting addresses X of these data blocks
are computed by using a non-uniform random address generator driven by a power
function with the shape parameter . A power function was chosen as generating
function as a simple scale-invariant, one-parameter approximation for the behavior of
real applications.

116 Erich Strohmaier and Hongzhang Shan

Fig. 1. Apex-Map Data Distribution and Data Access

Table 1. The flowchart of the Apex-Map implementation

Basic Parallel MPI
Repeat N Times
 Generate Index Array
 CLOCK(start)
 For each Index i in the Array
 If (not local data)
 Get Remote Data
 End If
 Compute
 CLOCK(end)
 RunningTime += end – start;
End Repeat

Repeat N Times
 Generate Index Array
 CLOCK(start)
 For each Index i in the Array
 If (local data)
 Compute
 Else
 Generate Remote Request
 End If
 Serve Incoming Requests
 Process Replies
 CLOCK(end)
 RunningTime += end - start
End Repeat
CLOCK(start)
Wait For Finish
CLOCK(end)
RunningTime += end – start

The basic flowchart of the plain parallel version of Apex-Map is shown in the left
side of Table 1. The indices X are generated and stored in an index array first before
the measurement starts. Then, for each index it is tested, if the addressed data resides
in local memory in which case the computation proceeds immediately, or if it resides
in remote memory in which case it is fetched into local memory first. Apex-Map is
designed to measure the rate at which global data can be fed not only into the memory
or into cache but into the CPU itself. Therefore, it is essential that an actual computa-
tion is performed in the Compute module, which currently is a global sum of all ac-
cessed array elements.

The pre-computed indices X are stored in an array of size I. The indices are gener-
ated based on a power distribution based random function, which is controlled by the
parameters M, L, and . Generated addresses are shifted so that each process accesses
its own memory with the highest probability. The frequency with which remote data
access occurs is determined by the temporal locality parameter . For 256 processes
and = 1, the data accesses follow a uniform random distribution and the percentage
of remote access is 255/256 (=99.6%). With the increase of temporal locality, the
percentage reduces to 0.55% for = 0.001.

The main output of Apex-Map is the average cycles per data access for one process
and the aggregate bandwidth in MB/s for the given parameters. The results are di-
rectly comparable across different platforms. By running a set of parameters, such as

Apex-Map: A Synthetic Scalable Benchmark Probe 117

 = 0.001 to 1.0 and L = 1 to 16384 words, Apex-Map can generate a performance
surface to explore the performance effects of temporal locality and spatial locality.

2.1 MPI Implementation

One major non-trivial issue that has not been discussed until now is how the remote
access is carried out. The implementation could be highly affected by the available
parallel programming paradigm and different programming styles. We assume that
the operation for different indices is independent and multiple remote accesses can be
executed on the fly at the same time. Our first version was developed using two-sided
MPI since it is the most popular and portable parallel programming model available
today.

Even if we only consider MPI, there are many implementations thinkable. One
possibility is to aggregate the remote requests instead of sending them one by one. We
explored several different strategies to do this in depth, but had to conclude, that we
ended up only benchmarking our inventiveness for new algorithms to assemble and
exchange these messages and our skills to implement them. This approach not only
further complicates the code, but also conflicts with our locality concept. By exten-
sively rearranging the order of data-accesses, the actual executed address stream will
no longer show the intended features to achieve the given localities. In effect, such
rearranging would substantially change the actual localities from the intended locali-
ties and would go contrary against our design principles. We therefore decided not to
permit such message aggregation and to exchange messages for each remote access.

However, we permit multiple outstanding requests for data and out-of-order proc-
essing of the received data. Since in Apex-Map the process numbers for message
exchanges are generated based on a non-uniform random access, non-blocking, asyn-
chronous MPI functions are used to avoid blocking and deadlock. Given our non-
deterministic random message pattern it was not clear if a scalable implementation of
Apex-Map in MPI was possible. However, we succeeded with an efficient and scal-
able implementation, which shows increasing performance up to 1000s of processors.

Due to the unpredictable communication patterns, the flowchart becomes substan-
tially more complex (see the right side of Table 1) and several MPI related implemen-
tation parameters have to be introduced. The first parameter is B, the number of re-
ceive buffers allocated, which are needed for each call of MPI_Irecv. It defines the
maximum possible number of concurrent outstanding remote data requests per proc-
ess. Another parameter is SMSG, the maximum number of outstanding send handles
defined for MPI_Isend. The last parameter is NSER, with which we limit how many
remote requests can be served at one time by our Serving Incoming Requests module.
This parameter is especially useful when the remote request distribution is imbal-
anced. Without this parameter, a process may get completely stuck in serving remote
requests for a long time and might not make any progress on its own local computa-
tion, which would cause a severe load-imbalance at the end of the global execution.

In summary, there are three kinds of Apex-Map parameters. The first category of
parameters includes M, L and , which are the characteristic parameters of interest.
The second category includes general implementation related parameters, including
the index array size I and the number of times N the experiment is repeated. The third
category includes parameters related to the MPI implementation such as the number
of receive buffer B, the number of send handles SMSG, and the maximum number of

118 Erich Strohmaier and Hongzhang Shan

served requests in one iteration NSER. Fortunately, experiments on several systems
indicate that our default values for all implementation parameters work reasonably
well on all of them. The “Wait For Finish” module is needed for MPI because even if
a process has finished its own task, it may still need to provide data for other proc-
esses and hence cannot complete its execution.

3 Results and Analysis

In this section, we first introduce the three platforms we tested, two superscalar plat-
forms and one vector platform. Then, we analyze the relation of the results of Apex-
Map and the PingPong benchmark, as a traditional measure for global communication
performance. Finally, we compare the Apex-Map results between the three platforms
and examine how the Apex-Map results reflect their architectural differences.

Table 2. Some characteristics of the three platforms used

 CPU Memory Bandwidth Network
Seaborg IBM Power3, 375 MHz 16 GB/s /node

1 GB/s /processor
IBM Colony-II,
1 GB/s /node

Cheetah IBM Power4, 1.3 GHz 44 GB/s /node
1.375 GB/s /processor

IBM Federation,
4 GB/s /node

Phoenix Cray X1, 400 MHz,
(800 MHz for vector units)

25.6 GB/s/ MSP

Cray SeaStar
25 GB/s /node

3.1 Three Platforms: Seaborg, Cheetah, and Phoenix

Seaborg is currently the main computing platform of NERSC, a DOE Office of Sci-
ence user facility at Lawrence Berkeley National Laboratory. It is an IBM Power3
based distributed memory machine. Each node has 16 IBM Power3 processors run-
ning at the speed of 375 MHz. The peak performance of each processor is 1.5 Gflop/s.
Its network switch is the IBM Colony II, which is connected to two “GX Bus Colony”
network adapters per node.

Cheetah is a 27-node IBM p690 system with the IBM Federated switch, where
each node has 32 Power4 processors at 1.3 GHz. The peak performance of each proc-
essor is 5.2 Gflop/s. Phoenix is a Cray X1 platform consisting of 512 multi-streaming
vector processors. Each MSP has four single-stream vector processors and a 2 MB
cache. Four MSPs form a node with 16 GB of shared memory. The inter-connect
functions as an extension of the memory system, offering each node direct access to
memories on other nodes. These two machines are currently operated by the center for
Computational Sciences at Oak Ridge National Laboratory. Table 2 lists some main
characteristics of these three systems.

3.2 Relationship with PingPong Performance

The PingPong benchmark performance is a well-accepted performance number of
parallel systems. In this subsection, we are going to examine the relationships be-
tween Apex-Map and PingPong on the above three platforms. The inter-node Ping-
Pong performance is measured with one process sending data while the other process
is receiving them. The code used was obtained from the Pallas MPI benchmarks [8].

Apex-Map: A Synthetic Scalable Benchmark Probe 119

Fig. 2. The performance ratio between Apex-Map (=1.0) and PingPong

We plot the relative performance of Apex-Map to PingPong in Fig. 2. The inter-
node Apex-Map bandwidth per process is obtained with =1.0 (uniform random data
access) and M = 64 Mwords using two Apex-Map processes. Unlike PingPong, Apex-
Map measures the performance of non-uniform random access. The communication
pattern is unpredictable and the code overhead for it is substantially higher. These
factors contribute to the lower performance of Apex-Map when the message size is
small. With the increase of message size, the constant overhead becomes less and less
important and the Apex-Map performance gets closer to that of PingPong. On
Seaborg, Apex-Map performance becomes 60% better than PingPong when message
size reaches 1024 words. If we only count the number of exchanged messages and of
local memory accesses, Apex-Map should perform 200% better than PingPong since
only 50% of the accesses are remote access when = 1. However, beyond the mes-
sage size of 1024 words, the performance ratio begins to drop. The main reason here
is that Apex-Map measures how fast the data can be fed into the CPU. After remote
data arrive in local memory, they further have to be brought into cache and registers
for the global sum computation. The effect of this computation can be ignored for
smaller messages but is more substantial for large messages on superscalar platforms
such as Seaborg. The performance ratio on Cheetah is similar to Seaborg but the MPI-
overhead seems to be more severe.

On Phoenix, the performance ratio of Apex-Map to PingPong for smaller messages
is even smaller than on the IBM platforms. There also are further differences in the
MPI implementations on these two different systems. On Phoenix, using multiple
receive buffers in Apex-Map does not improve the performance at all while on
Seaborg and Cheetah, the performances benefit substantially from using multiple
buffers. Phoenix also does not exhibit the drop in the performance ratio for large mes-
sages. Experimental results indicate that the sum computation has only a minor effect
on Apex-Map performance on this vector platform.

3.3 Apex-Map Performance

Different from other benchmarks, which usually provide only several performance
points, Apex-Map can generate continuous performance surfaces over a whole range
of temporal and spatial locality values. These surfaces can be used to study the effects
of varying temporal and spatial locality and provide insight into architectural designs.
Fig. 3 and 4 show the surface space for = 0.001 to 1.0, L = 1 to 65536 words on 256

120 Erich Strohmaier and Hongzhang Shan

processors for M = 64 Mwords*256 on Seaborg and Phoenix. The Z-axis shows the
achieved bandwidth per processes in log-scale.

Fig. 3. The achieved bandwidth per process
on Seaborg for 256 Processes

Fig. 4. The achieved bandwidth per process
on Phoenix for 256 Processes

Fig. 3 shows that both temporal and spatial localities affect the bandwidth substan-
tially. The worst performance is observed when = 1 and L = 1, which are the lowest
values for temporal and spatial locality. By increasing either the temporal locality or
spatial locality, the performance improves. The best performance is obtained when
= 0.001 and L = 4096 Words. Further increasing L does not improve performance.
This is mainly because the sum computation on this platform is less efficient for very
large messages. Beyond L = 4096 spatial locality has only minor influence on per-
formance while temporal locality still has a large influence. If we look at an inter-
mediate performance level such as 1 MB/s, we see that the temporal locality and spa-
tial locality can be substituted by each other to some degree. To achieve 1 MB/s at
high temporal locality of = 0.005, a very low spatial locality of L = 1 is sufficient.
With decreasing temporal locality (increasing), a higher spatial locality of up to L =
85 is needed to maintain this performance. The performance characteristics of Chee-
tah are very similar to Seaborg.

Fig. 5 shows the performance ratio between Cheetah and Seaborg. From Table 2
we see that the ratio of processor speeds between these two systems is 3.47, the ratio
of local memory bandwidth is 1.375, and of network bandwidth is 4. For high tempo-
ral locality or high spatial locality the performance ratio of 2-4 seems to be dominated
by the ratio of the respective memory bandwidth. For low localities, the performance
ratio between these two systems is in the range of 6-8 and thus higher than any ratio
of simple architectural parameters. In this locality range, performance is dominated by
a large number of very short messages. The details of the MPI implementation as well
as the cross-section bandwidth of the interconnect can be expected to have a large
influence on performance in this corner of low localities where it will be notoriously
difficult to achieve high absolute performance.

Fig. 4 shows the performance surface for the Cray X1 for which the effects of in-
creasing spatial locality are significant even for values of L beyond 4096. Spatial
locality affects the performance in general much stronger. For example, on Cheetah,
in order to maintain the bandwidth around 10 MB/s, if we reducing the temporal lo-

Apex-Map: A Synthetic Scalable Benchmark Probe 121

cality from 0.001 to 1, the spatial locality needs to increase 128 times. On Phoenix,
it only needs to increase 16 times. We also notice that when L changes from 32 to 64,
the performance drops. This is an effect of the MPI implementation on the Cray X1.
When the message size becomes larger than 32 words or 256 bytes, communication in
MPI will switch from eager mode to rendezvous mode and the implementation over-
head increases.

Fig. 5. The bandwidth performance ratio
between Cheetah and Seaborg

Fig. 6. The performance ratio between
Phoenix and Cheetah

Fig. 7. Contour plots of the performance surfaces for Seaborg and Phoenix

To compare the performance surface for the superscalar IBM systems with the
Cray vector system we put contour-plots of Seaborg and Phoenix next to each other in
Fig 7. For the IBM systems, the area of highest performance is of rectangular shape
and clearly elongated parallel to the spatial locality axis while for the Cray system it is
elongated parallel to the temporal locality axis. The IBM system can tolerate a de-
crease in spatial locality more easily but is much more sensitive to a loss of temporal
locality. This reflects the elaborate cache and memory hierarchy on the individual
nodes as well as the global system hierarchy which also heavily relies on reuse of data
as the interconnect bandwidth is substantially lower than the local memory band-
width. The Cray system can tolerate a decrease in temporal locality much better but is
sensitive to a loss in spatial locality. This reflects an architecture which depends very
little on local caching of data and an interconnect bandwidth equal to local memory
bandwidth. To see such a clear signature of the Cray architecture is even more sur-
prising considering that we us an MPI based benchmark, which does not fully exploit
the capability of this system. The lines of equal performance on the Cray system are
in general more vertical than diagonal as with the IBM system, which further con-

122 Erich Strohmaier and Hongzhang Shan

firms our interpretation. These differences in our performance surfaces overall clearly
reflect the different design philosophies of these two different systems and demon-
strate the utility of our approach.

The performance ratio between Phoenix and Cheetah is shown in Fig. 6. Interest-
ingly, when the spatial locality is poor or temporal locality is high, the vector proces-
sor X1 delivers less performance than the super-scalar processor Power4. In these
cases, performance is dominated either by short MPI messages for which the Power 4
processor has the clear advantage of a much faster scalar processor or by very local-
ized memory accesses for which the Power4 can effectively use its cache hierarchy. In
this locality range, the Cray X1 can also not show its true potential with our current
MPI based benchmark implementation. A shmem or UPC implementation might
change this. The X1 shows the clearly better performance when spatial locality be-
comes high, especially in the area with poor temporal locality (the bottom-right cor-
ner). In the best case, it can deliver 12 times better performance than Power4 plat-
form. Performance in this corner is dominated by the exchange of many long
messages which requires an interconnect network with a large cross-section band-
width.

4 Conclusion and Future Work

In this paper, we describe a novel synthetic performance probe, Apex-Map. It focuses
on measuring the performance of global data movement and has three main parame-
ters, the global data size M, the temporal locality , and the spatial locality L. We
assume that the performance of the data accesses of an application can be approxi-
mated by a generic, non-uniform random, block-access to global data defined by the
parameters M, , and L. We have run multiple experiments with Apex-Map on two
superscalar platforms and one vector platform and have generated continuous per-
formance surfaces, which enable us to study the effects of spatial and temporal local-
ity on performance. The initial results on these platforms show that Apex-Map can be
used to compare efficiency and scalability across different platforms and the perform-
ance surfaces generated by Apex-Map clearly reflect the design differences between
these platforms.

Our first parallel implementation of Apex-Map is based on the most common par-
allel programming model, MPI. Currently we are implementing Apex-Map in other
popular or emerging programming models, such as SHMEM and UPC, to study the
effects of different programming paradigms and their relation to spatial and temporal
locality. More importantly, we are also investigating methods to characterize parallel
applications with the Apex-Map parameters. In our earlier work, we have successfully
characterized several sequential scientific kernels [7] this way. Such a characteriza-
tion allows us to use Apex-Map as a performance proxy for real scientific applica-
tions.

References

1. http://www.top500.org
2. STREAM: Sustainable Memory Bandwidth in High Performance Computers,

http://www.cs.virginia.edu/stream/

Apex-Map: A Synthetic Scalable Benchmark Probe 123

3. HPC Challenge Benchmark, http://icl.cs.utk.edu/hpcc/
4. Apex-Map: Application Characterization-Memory Access Probe, http://ftg.lbl.gov
5. NAS Parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB/
6. SPEC, http://www.spec.org/
7. E. Strohmaier, Hongzhang Shan, “Architecture Independent Performance Characterization

and Benchmarking for Scientific Applications”, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems. Volendam, The
Netherlands, Oct. 2004

8. Pallas MPI Benchmarks, http://www.pallas.com/e/products/pmb/

PerfMiner: Cluster-Wide Collection, Storage
and Presentation of Application Level Hardware

Performance Data

Philip J. Mucci1,2,�, Daniel Ahlin2, Johan Danielsson2,
Per Ekman2, and Lars Malinowski2

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 Center for Parallel Computers, Royal Institute of Technology, Stockholm, Sweden

Abstract. We present PerfMiner, a system for the transparent collec-
tion, storage and presentation of thread-level hardware performance data
across an entire cluster. Every sub-process/thread spawned by the user
through the batch system is measured with near zero overhead and no di-
lation of run-time. Performance metrics are collected at the thread level
using tool built on top of the Performance Application Programming
Interface (PAPI). As the hardware counters are virtualized by the OS,
the resulting counts are largely unaffected by other kernel or user pro-
cesses. PerfMiner correlates this performance data with metadata from
the batch system and places it in a database. Through a command line
and web interface, the user can make queries to the database to report
information on everything from overall workload characterization and
system utilization to the performance of a single thread in a specific ap-
plication. This is in contrast to other monitoring systems that report
aggregate system-wide metrics sampled over a period of time. In this
paper, we describe our implementation of PerfMiner as well as present
some results from the test deployment of PerfMiner across three different
clusters at the Center for Parallel Computers at The Royal Institute of
Technology in Stockholm, Sweden.

1 Introduction

Until unlimited compute power becomes pervasive, HPC systems must be care-
fully managed in order to maximize the users’ productivity and the operating
sites’ return on investment. In most supercomputer installations, the cost of the
machines and their maintenance is passed along to the user in terms of dollars
per CPU hour. The user then either directly purchases compute time from the
site or he applies for a grant from a central authority; often the same authority
that funds the purchase and operation of the machine. This process is designed
to balance a budget, equating an hour of CPU usage with an amortized cost of

� Work by this author has been partially supported by the Department of Energy Sci-
DAC program (grant DE-FC02-01ER25490) and the Los Alamos Computer Science
Institute (contract 86192-001-04 49).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 124–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PerfMiner 125

installation, operation and maintenance of a large machine. If we consider that
the lifetime of a supercomputer or large cluster is about four years before it’s
retired, the above process appears wasteful, as it makes no attempt to optimize
the use of either financial or computational resources. Compute time from user
to user and group to group is treated equally; even though the amount of work
that can be accomplished during each CPU hour can differ by many orders of
magnitude. For example, a user with a large allocation and an inefficient code
can easily ’steal’ otherwise available resources from less well-funded users. The
allocation is not based on computational work nor efficiency, rather it’s based
on a rough estimate of the number of CPU hours required to accomplish a given
problem. Given the same budget, it is certainly possible that this user could solve
much larger problems with an optimized code. The converse does not necessarily
hold, as a user with a small budget and a large problem must strive to achieve
some degree of efficiency in order to complete his work in the allotted time. If the
allocation policy was biased towards actual computational resource requirements
AND towards the efficient use of those resources, aggregate throughput of the
system would rise and more CPU hours would be available to the community as
a whole. Consider these other cases:

Purchase of a New Computing Resource. Procurements are often run in two
different modes; either the customer submits a set of benchmarks to be op-
timized by the vendor or the vendor provides access to hardware resources on
which the customer runs the benchmarks. These benchmarks run the gamut from
microbenchmarks that measure particular machine parameters to full-blown ap-
plications. Benchmarks by their very nature, attempt to represent a very large
code base with a very small code base. If hardware performance data could be
collected for every application and correllated with data from the batch system
and other sources, specific criteria that bound application performance could be
used to guide the procurement process. For example, answers to questions like
“Do the majority of our applications demonstrate high level 2 cache hit rates and
thus are sensitive to cache size and front side bus frequency?” provide specific
information about what kind of hardware should be purchased.

Improving the Software Development Cycle. While there are many excellent open
source performance analysis tools available[TAU][SvPablo][Paradyn][Mucci], vir-
tually all of them require the user to change his environment, Makefiles or source
code. While simple for computer scientists, this process is fraught with potential
error for scientists and engineers who are focused on their field of research. One
or two failed attempts at using a performance tool is enough to permanently
deter a scientist from making further efforts to characterize the behavior of his
application. If the monitoring system could itself provide a completely trans-
parent mechanism to measure important performance characteristics and the
user could access that information quickly and easily, the process of application
performane analysis could become an integral part of the software development
process.

126 Philip J. Mucci et al.

Performance Focused System Administration. As mentioned above, by having
access to detailed performance data about all applications, system administra-
tors could systematically address applications and their users that make ineffi-
cient use of compute resources. Centers with application specialist teams could
deploy staff on the basis of low performance and high CPU hour consumption.
This type of targeted optimization effort has the potential of optimizing a sites
heavy users and reap continued benefits through successive generations of ma-
chines as the big users’ applications receive the attention they deserve.

1.1 The Design of PerfMiner

A performance collection system must be carefully designed in order to meet
the above goals. Most importantly, it must be transparent, lightweight and very
efficient. Such a system can be split up into four components:

Integration into the User’s Environment. Changes to the user’s environment
should not be required by the system.
Collection of Hardware Performance Data. The data must be collected at a
sufficiently fine granularity to allow thread-level performance analysis.
Post-processing of the Data and Storage into a Scalable Database. The data-
base must be carefully designed to support queries that may span tables
with ten’s of millions of rows.
Presentation of the Data to the User Community. The interface must be as
simple as possible, yet should facilitate rapid “drill-down” investigation from
widest granularity down to the thread level.

In order to meet the above needs, a performance collection system must be care-
fully designed. First and foremost, it must be focused on the simplicity of it’s
user interface and the speed of which it operates. As the system could be run-
ning on many clusters across a site and measure every job through the system,
the amount of data could grow quite large. The system has four basic compo-
nents: Integration into the user’s environment and/or batch system. This must
be completely transparent to the user, but yet facilitate conditional execution
of monitoring for debugging and other purposes. Collection of the job and hard-
ware performance data. This must also be completely transparent to the user
with no modifications to the user’s job. Post-processing of the data and inser-
tion into a database. The database must be carefully designed to support queries
that may span tables with ten’s of millions of rows. Furthermore, the schema
should facilitate the rapid development of reasonably complex queries in order
to accommodate the demands of its user base. Presentation of the data to the
users, system-administrators and managers. This interface must be as simple as
possible to guarantee maximum acceptance into a daily usage cycle. Complex
functionality should be hidden from the main interface yet remain accessible to
those wishing to dig deeper. The interface should facilitate rapid “drill-down”
investigation from widest granularity down to the thread level.
PerfMiner is an perfomance monitoring system that attempts to meet the above
goals. To test our initial implementation, we deployed PerfMiner for a subset of

PerfMiner 127

users for three weeks across all three of PDC’s clusters, Roxette, a cluster of 16
dual Pentium III nodes, Lucidor, a cluster of 90 dual Itanium 2 systems, and
Beppe, a 100 processor Pentium IV cluster that is one of the six SweGrid clusters
spread across Sweden. All systems have gigabit ethernet as an interconnect, with
the exception of Lucidor which also contains Myrinet-D cards in every node.
In the next four sections, we describe each of the components of the PerfMiner
system, working our way from the integration into the batch system to the Web
interface presented to the user. Following that, we present the results discuss the
relevance of a few queries made to the PerfMiner database. We then conclude
with a review of related work and some comments about the future of PerfMiner.

2 Integration of PerfMiner into the Easy Batch System

One of the challenges of the implementation of PerfMiner at PDC was how to
manage the integration into the batch system. PDC runs a modified version of
the Easy[Easy] scheduler. At it’s core, Easy is a reservation system that works
by enabling the user’s shell in /etc/passwd on the compute nodes. The user is
free to login directly to any subset of the reserved nodes. There is no restriction
on using MPI as a means to access these nodes from the front end. In this
way, Easy serves the needs of PDC’s data processing community who frequently
submit ensembles of serial jobs, often written in Perl. Given this, we could not
count on mpirun as our single point of entry to the compute nodes. This left
us with only one means to guarantee the initiation of the collection process: the
installation of a shell wrapper as the user’s login shell, pdcsh.sh (PDC Shell).
The reader may wonder why we didn’t choose to use a system shell startup
script. Unfortunately, the Bourne shell does not execute the system scripts in
/etc when started as a non-login shell (C-Shell does). By the installation of a
wrapper script, every process, whether started via ssh, kerberized telnet/rsh or
MPI was guaranteed to be executed in our environment. Due to the design of the
Easy scheduler, this modification was rather trivial to perform. Easy maintains
two password files, password.complete and passwd. The former contains valid
shells for all users. The latter contains valid shells only for that user who has
reserved the node. This file is constructed on the fly by Easy when the job has
come to the top of the queue.
The steps for job execution and finalization occur as follows:
First, a preamble script is initiated by Easy: (pdcsh-pre.sh)

1. Check if the cluster, charge group, user and host were enabled for use with
PAPI Monitoring. If not, bail out.

2. Verify the existence of the output directory tree.
3. In the above directory, create two files:

– BUSY, which is a zero length file that indicates that this job is running and
that monitoring is taking place.
– METADATA, which contains job information that is cross referenced with
that from PapiEx. It contains the following fields: cluster name, job ID,

128 Philip J. Mucci et al.

username, number of nodes reserved, charge group (CAC), start time and
the finish time of the job. The finish time is filled in by the postamble script
described below.

Second, Easy conditionally modifies the user’s shell in the passwd files:
(adduser.py)

1. Check if the cluster, charge group, user and host were enabled for use with
PDCSH. If not, bail out.

2. Give the user PDC shell as his login shell on all reserved nodes.

When any job is started on any node, it will run under PDC shell and all
subprocesses and threads will be monitored. (pdcsh.sh)

1. Execute a common cluster wide setup script. (for other administrative pur-
poses)

2. Determine the following:
– Whether or not we are a login shell.
– The user’s actual shell from passwd.complete.

3. If the cluster, charge group, user and host are enabled for PAPI Monitoring,
execute the PAPI monitoring script.

4. Execute the user’s actual shell appropriately. (as a login shell or not)

The PAPI monitoring script performs the following: (papimon.sh)

1. Check for the file that contains the prepared arguments to PapiEx.
2. Check that these arguments are correct.
3. Verify the existence of the output directory tree.
4. Set the output environment variable to PapiEx.
5. Set up the library preload environment variables.

At this point, the user’s job runs to completion. The only processes not monitored
are those that are either statically linked or they access PAPI or the hardware
performance monitors directly. Upon completion of the job, a postamble runs on
the front end. This script does the following: (pdcsh-post.sh)

1. Check if the cluster, charge group, user and host were enabled for use with
PAPI Monitoring. If not, bail out.

2. Append the job finish time to the METADATA file.
3. Remove BUSY file .
4. Schedule the parsing and submission of collected data to the PerfMiner

database and remove/backup the original files.

3 Collecting Hardware Performance Data Transparently
with PapiEx

At the lowest level, PerfMiner can use any mechanism to collect application
performance data. However, other methods require the user to recompile his

PerfMiner 129

application or use customized batch scripts. For our setup, we wanted a system
that would be completely transparent to the user, requiring no modifications
to user’s environment, application code or run-time libraries. Existing binaries
would continue to run as they did prior to the deployment of the software. To
accomplish this, we decided to use PapiEx, a tool based on the PAPI[PAPI].
PapiEx can run unmodified dynamically linked binaries and monitor them with
PAPI. It follows all spawned subprocesses and threads and generates output for
each. In PerfMiner, the output of PapiEx is directed to a file, which is then later
parsed by a perl script upon job completion.

4 Scalable Database Design

We chose to use Postgres as the database back end for PerfMiner. The primary
reason for choosing Postgres was prior experience and its support for kerber-
ized authentication. Care has been taken to avoid the use of any nonstandard
SQL that could prevent the use of Mysql, Oracle or another SQL95 compliant
database. Access to the database has been abstracted through the use of both
Perl and PHP’s DBI interface, providing further portability. Much work has
been done to keep the PerfMiner database as robust as possible. In an early
implementation of PerfMiner, we rather hastily built a database schema around
a common set of queries we were hoping to run. We quickly realized that this
was neither general nor robust enough to support queries spanning millions of
rows. Thus a new database was designed, focusing on flexibility, extensibility
and easy of implementation of sophisticated queries. Our goal was to have as
much of the query processing be done by the database server itself instead of
the client. Thus queries processing vast quantities of data can be performed on
underpowered web servers.

4.1 Direct Measurements

There are only two truly static items of knowledge in the database. First, all
measurements have a target (or scope) that is one of cluster, job, node, process
or thread. Secondly, there is a hierarchy of these targets; a cluster contains jobs,
which contain nodes, which contain processes, which contain threads. These tar-
gets can can be regarded as one to many mappings and naturally produce keys for
addressing the collected data. For instance, a specific threads measurements are
accessed by specifying cluster, job, node, process identifier and possibly thread
identifier as the primary key. Since no assumptions of existence of any specific
measurement are made, it is not possible to minimize the tables by putting all
measurements of thread scope in the table that specifies which threads exist (un-
less you are prepared to accept null values and that the underlying database is
able to insert columns in preexisting tables). Instead, each measurement resides
in a separate table. The database also contains additional tables that describe
the scope, type and meaning of each of the collected measurements. This ensures
that no measurement is stored differently from any other. The primary advan-
tage of this approach is that it makes it possible to combine measurements and

130 Philip J. Mucci et al.

construct reports in a uniform way. In PerfMiner, this means that any change in
the data collected from PapiEx or from the batch system, results in the creation
of a table and associated metainformation. Thus, no changes need be made to
the database or to the query engine.

4.2 Derived Measurements

The measurement floating point operations per second (or FLOPS) is an ex-
ample of a derived measurement having thread scope. It combines the direct
measurement, floating point operations, with the derived measurement, dura-
tion, which in turn is derived from clockrate and total cycles. The database is
designed to store information about the derived measurements in the same way
that it stores the direct measurements. The query author does not have to know
if a derived or direct measurement is being referenced in his query.

4.3 Problems with the Current Approach

Putting the measurements in different tables can be perceived as discarding the
fact that they are collected simultaneously and belong to the same thread. When
the data is harvested, the application knows that a certain value of total cycles is
associated with a certain value of total floating point operations. The only way
to reconstruct this information is by joining the two tables, an O(n2) operation.
This can be mitigated by instructing the database to build indexes for the fields
of every metric table that serve as keys. This reduces the cost of the join to
O(nlogn) or less depending on the method used for indexing. However, adding
indexes aggravates another problem caused by the nature of the measurements.
Since the target of most measurements is threads, and the key for addressing a
certain thread is made up of cluster, job, node, process, thread (of which three
are TEXT-fields), the key component will strongly dominate the storage demand
for most tables. A solution to this is to create synthetic keys for tables where
this is a problem.

5 The PerfMiner User Interface

For the current implementation of PerfMiner, the front end runs on an Apache
web server with PHP and JpGraph[JpGraph] installed. JpGraph is an open
source graphing library built upon PHP and the GDGD library. The user is
presented with a simple interface through which he can construct queries to
be visualized. The resulting graph is dynamically generated with JpGraph along
with a corresponding image map, such that the user can click on a corresponding
portion to “drill-down” to more interesting data. As developers, we are presented
with the canonical problem of balancing functionality with interface complexity.
For our initial implementation, we chose a small subset of the available data as
targets of our queries. We chose to present a query interface that specified the
logical-AND of any four items present in the job’s METADATA file: four on which

PerfMiner 131

to scope the queries and one choice by which to group Cluster, Charge Group,
User and Job ID. Each column is updated from the selections to it’s left. Should
the user choose a combination that results in the availability of a single job ID,
an additional dialog is presented with the names of all the processes in that job.

6 Evaluation

PerfMiner aims to meet the needs of three different user bases (users, system
administrators and managers), through a common information collection infras-
tructure. For the user community, we provide a simple way of providing perfor-
mance information about recently submitted jobs without any changes to the
user’s application or environment. This information can contain the efficiency
of various components, the overall processing time of each component or more
details hardware performance metrics. The ultimate goal is to not only provide
performance information but to provide information as to why the components
of that job are performing a certain way. In Figure 1, we have used PerfMiner to
plot instructions per cycle (IPC) against the executable name. This particular
user has submitted a shell script to perform a run of Gamess, an ab-initio quan-
tum chemistry package. Here we find that Gamess was the fifth most inefficient
executable. This data was taken from our Xeon cluster.

Fig. 1. PerfMiner Graph of Instructions Per Cycle of a Serial Job

For the administrator and support staff community, we may not be so interested
in per-process performance, but rather the throughput of the system as a whole.
In Figure 2, we have asked the system to plot the average level 1 data cache
hit rate of all jobs and sort the results by user. We find that the user who
has consumed the most compute cycles has the second lowest miss rate of all
jobs. This kind of query is extremely powerful when aiming to maximize the
throughput of a particular system. It’s not hard to envision a scenario where
application specialists approach a user and offer help on code optimizaton.

Lastly, PerfMiner’s goal is to be able to facilitate a good understanding of ex-
actly how the systems are being used by the various user communities. By doing
so, they can plan appropriately for future procurements. The central idea here

132 Philip J. Mucci et al.

Fig. 2. PerfMiner Graphs of Level 1 Data Cache Miss Rates and Total Cycle Con-
sumption by User

being that they can focus their procurements on having the type of hardware ap-
propriate for the problems being solved. Should the user workload demonstrate
high cache hit-rates and counts of floating point instructions, perhaps a system
with a similar size cache but a higher core clock frequency and deeper floating
point pipeline would be an appropriate upgrade. Should the workload demon-
strate low processor utilization and low TLB-miss rates, perhaps an upgrade of
the I/O subsystem would be more appropriate than a processor upgrade. The
key here is to remove the guesswork involved in the procurement process. Instead
of focusing next generation purchases on either artificial benchmark suites or a
select group of applications, the procurement could be based on exactly what
the user community has demonstrated a need for.

7 Related Work

PerfMiner is most closely related to (and inspired by) the pioneering work done
by Rick Kufrin et al at the National Center for Supercomputing Applications
[Kufrin1]. In that work, a locally developed PAPI based tool PerfSuite[PerfSuite]
is used to collect information on jobs in the batch system. The primary dif-
ferences between our work are the collection mechanism, the design of the
database and the user interface. There are numerous systems in existence that
do cluster-wide performance monitoring. Many of them like Ganglia[Ganglia],
SuperMon[SuperMon], CluMon[CluMon], NWPerf[NWPerf] and SGI’s Perfor-
mance CoPilot[PCP] are extensible frameworks capable of presenting any met-
ric. All these systems gather their metrics only on a system wide basis through
a daemon process that scrapes the /proc filesystem.

References

[SvPablo] Reed, D. A., et al. Scalable Performance Analysis: The Pablo Performance
Analysis Environment. Proc. Scalable Parallel Libraries Conf. IEEE Computer
Society. (1993) 104–113

PerfMiner 133

[Easy] Lifka, D., Henderson, M., Rayl, K.: Users guide to the argonne sp scheduling
system. Technical Report ANL/MCS-TM-201 (1995)

[Paradyn] Miller, B. et al. The Paradyn Parallel Performance Measurement Tool. IEEE
Computer 28/11 (1995) 37–46

[TAU] Mohr, B., Malony, A., Cuny, J.: TAU Tuning and Analysis Utilities for Portable
Parallel Programming. Parallel Programming using C++, M.I.T. Press. (1996)

[PAPI] Mucci, P. et al. A Scalable Cross-Platform Infrastructure for Application Per-
formance Tuning Using Hardware Counters. Proceedings of Supercomputing
2000. (2000)

[GD] Boutell.Com, Inc. GD Graphics Library. http://www.boutell.com/gd
[JpGraph] Persson, J. JpGraph - OO Graph Library for PHP.

http://www.aditus.nu/jpgraph/index.php

[PerfSuite] Kufrin, R. The PerfSuite Collection of Performance Analysis Tools.
http://perfsuite.ncsa.uiuc.edu

[Ganglia] The Ganglia Scalable Distributed Monitoring System.
http://ganglia.sourceforge.net

[PCP] Performance Co-Pilot http://oss.sgi.com/projects/pcp

[SuperMon] SuperMon High Performance Cluster Monitoring.
http://supermon.sourceforge.net

[CluMon] Fullop, J. CluMon Cluster Monitoring System.
http://clumon.ncsa.uiuc.edu

[NWPerf] Mooney, R. et al. NWPerf: A System Wide Performance Monitoring Tool
Poster Session 31, Supercomputing 2004, Pittsburg, PA.

[Petrini] Petrini, F. et al. The Case of the Missing Supercomputer Perfor-
mance:Achieving Optimal Performance on the 8,192 Processors of ASCI Q Pro-
ceedings of Supercomputing 2003. (2003)

[Mucci] Mucci, P. et al. Application Performance Analysis Tools for Linux Clusters.
Linux Clusters: The HPC Revolution 2004, Austin, TX. (2004)

[Kufrin1] Kufrin, R. et al. Automating the Large-Scale Collection and Analysis of
Performance Data on Linux Clusters Linux Clusters: The HPC Revolution 2004,
Austin, TX. (2004)

[Kufrin2] Kufrin, R. et al. Performance Monitoring/Analysis of Overall Job Mix on
Large–Scale Pentium and Itanium Linux Clusters SIAM Parallel Processing,
San Francisco, CA. (2004)

[Monitor] Mucci, P., Tallent, N. Monitor - user callbacks for library, process and thread
initialization/creation/destruction. http://www.cs.utk.edu/∼mucci/monitor

Performance Evaluation of MM5 on Clusters
with Modern Interconnects:

Scalability and Impact�

Ranjit Noronha and Dhabaleswar K. Panda

Dept. of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210

Abstract. Clusters have become a crucial technology for providing low-
cost high performance computing to scientific applications like weather
prediction. In addition, networks like Myrinet, InfiniBand and Quadrics
have become popular as an interconnection technology for high perfor-
mance clusters. The high-bandwidth, low-latency characteristics of these
networks make them ideally suited to the demanding characteristics of
large scale weather simulations. Additionally, these networks have fea-
tures like efficient and scalable hardware broadcast, reduce and atomic
operations. Some of the features have been integrated into the MPI stack
for these networks, allowing the user to exploit them for improved per-
formance. In this paper, we evaluate the communication characteristics
of a popular weather simulation code MM5 using InfiniBand. We also
investigate how special features of InfiniBand like scalable broadcast can
benefit MM5 performance. For some workloads, we see that InfiniBand
performs up to 34% better than other interconnects. It also performs
better in general than other networks for all workloads.

Keywords: MM5, Myrinet, InfiniBand, Quadrics, System Area Net-
works, Clusters

1 Introduction

Clusters have been widely deployed for providing high-performance computing
for scientific applications. The lower cost of clusters means that several thousand
nodes may be deployed for running large scale applications. Achieving improved
performance from applications on large scale clusters is a challenging endeavor.
This is especially so, given the wide diversity of architectures and networking
technologies. Understanding the characteristics and trade-offs in different cluster
architectures is crucial for achieving the best performance from applications.

To exploit the benefits of parallel computers, several large scale applications
have been parallelized using implementations of the popular MPI standard [1].

� This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506; National Science Foundation’s grants #CCR-0204429 and #CCR-
0311542; and equipment donations from Intel and Mellanox

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 134–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Performance Evaluation of MM5 on Clusters with Modern Interconnects 135

MPI provides an interface to the application, abstracting out details of the under-
lying architecture and network. Computationally demanding applications such
as weather simulation, computational fluid dynamic codes and crash simulation
codes have MPI parallelizations [2–4]. Implementation of MPI such as MPICH
have been ported to a variety of architectures and networks. This allows the
application to be run on a wide-range of platforms. The application may poten-
tially exploit the characteristics of these architectures and networks for improved
performance.

Myrinet [5], InfiniBand [6] and Quadrics [7] are some of the popular net-
works used in high performance computing. These networks offer low latency of
a few microseconds and high-bandwidth communication. Additionally, they offer
several features which may be exploited by the application or MPI layers. Net-
works like Myrinet and Quadrics have a programmable network interface card
(NIC), which may be used to offload application or system level computation [8].
Scalable collectives may be used to enhance application performance. Exploiting
these features is possible not only at the MPI level, but also by the application
itself.

In this paper, we evaluate a widely used weather simulation code MM5. We
attempt to study its communication characteristics. This is done by analyzing the
MPI calls characteristics with increasing system size. Following that, we study
the impact of varying different network parameters like latency and bandwidth
on the performance of the MM5. The impact of special network features is also
evaluated.

The rest of the paper is organized as follows. Section 2 gives some background
on high performance networks, bus technologies and MM5. Following that in
section 3, the scalability of different workloads is evaluated. In section 4, the
performance of MM5 while varying various network parameters is evaluated.
Some related work is discussed in section 5. Finally, in section 6, conclusions
and future work is presented.

2 Background

In this section, we discuss some of the topics relating to networks and weather
simulation models. In particular, in section 2.1, we first discuss the networking
technology Myrinet, InfiniBand and Quadrics. Following that in section 2.2, we
discuss the weather simulation model MM5.

2.1 Overview of Cluster-Networking Technologies

In the high performance computing domain, Myrinet, InfiniBand and Quadrics
are three of the popular networking technologies. InfiniBand [6] uses a switched,
channel-based interconnection fabric, which allows for higher bandwidth, more
reliability and better QoS support. The Mellanox implementation of the Infini-
Band Verbs API (VAPI) supports the basic send-receive model and the RDMA

136 Ranjit Noronha and Dhabaleswar K. Panda

operations read and write. There is also support for atomic operations and mul-
ticast. MVAPICH [9] is an implementation of Argonne’s MPICH [1] over Infini-
Band. The design of MVAPICH is based on the InfiniBand RDMA primitives.
MVAPICH delivers small message latency of 5.0μs and large message bandwidth
of up to 900 MillionBytes/sec. MVAPICH is designed to take advantage of hard-
ware based multicast in InfiniBand [10].

Myrinet [5] is another low latency, high-bandwidth network which uses cut-
through switches. Myrinet E-cards [11] are programmable and allow up to two
ports for maximum bandwidth. MPICH-GM is an implementation of MPICH
over Myrinet delivering small message latency of up to 6.0 μs and large mes-
sage bandwidth up to 500 MillionBytes/sec. Quadrics [7] is another high-speed
network. The current generation of Quadrics is Elan 4. Quadrics has a pro-
grammable NIC which can be used to offload computation from the host. MPI/
Elan4 is an implementation of MPICH over Quadrics QsNet II. MPI/Elan4 can
send small messages with a latency of 2.4 μs and large messages with a band-
width of up to 900 MillionBytes/s. The latency and bandwidth of these different
networks is shown in Table 1. A basic comparison of these networks in terms of
micro-benchmarks is presented in [12].

Table 1. Latency and Bandwidth for some high performance networks

Network Latency(μs) Bandwidth (MegaBytes/sec)
Myrinet (MPICH-GM) 6.0 500
InfiniBand(MVAPICH) 5.0 890
Quadrics(MPI/Elan4) 2.4 900

2.2 Overview of MM5

MM5 [4] is a limited area, non-hydrostatic, terrain following sigma-coordinate
model designed to simulate or predict mesoscale atmospheric circulation. This
regional model may be used for prediction on domains ranging from several
thousand miles to a few hundred miles or less. Domains are uniform rectangular
three dimensional areas of the atmosphere. The atmospheric dynamics are non-
hydroscopic and use finite-difference approximations. The model is supported
by several pre- and post-processing programs, which are referred to collectively
as the MM5 modeling system. The MM5 modeling system software is mostly
written in Fortran, and has been developed at Penn State and NCAR as a
community mesoscale model with contributions from users worldwide.

The distributed-memory version of MM5 [13](MM5-MPP) has been imple-
mented using MPI message-passing provided by the parallel Runtime System
Library (RSL) [14]. RSL is a run-time system and library to support paralleliza-
tion of grid-based finite-difference weather models. RSL supports mesh refine-
ment. Mesh refinement allows the original domain to be divided into smaller
areas (which may be nested). By allowing these areas to be non-uniform, com-
putation may be focused on areas of more active interest in the domain. This

Performance Evaluation of MM5 on Clusters with Modern Interconnects 137

usually sacrifices resolution in some areas of the domain (which may not be of
interest), but reduces the computational requirements. RSL communicates re-
sults between sub-domains as shown in Figure 1. In the next section, we discuss
how different workloads scale with an increase in the number of nodes.

c computation on coarse domain
rsl_exchange_stencil(domain(1),stencil A)
rsl_compute_cell(domain(1),solve A)

rsl_compute_cell(domain(1), solve B)

enddo
c force c,d from nest

c computation on nested domain
do istep= 1,3

rsl_compute_cell(domain(1),solve A)
... etc ...

rsl_exchange_stencil(domain(1),stencil A)

Computation on a domain

Broadcast

Merge

c force nested boundaries
rsl_exchange_stencil(stencil_interp)
rsl_bcast(domain(1),domain(2))

rsl_exchange_stencil(domain(1), stencil B)

rsl_merge(domain(1),domain(2))

Fig. 1. Overall parallel driver for a MM5 timestep with nest interactions (courtesy J.
Michalakes, et al. [13])

3 Communication Characteristics of Parallel MM5
(MM5-MPP)

In this section, we take a look at the communication patterns in the parallel
version of MM5 (MM5-MPP) when using MPI over InfiniBand (MVAPICH).
This was done to help us understand what parameters of a network would help
us achieve better performance from this application. For example, if the appli-
cation sends a lot of small messages, low network latency might help. If it sends
large messages, it might be bandwidth sensitive. In addition, we would like to
understand whether the application employs special operations like collectives.
If it does, we would like to examine how efficient implementation of some collec-
tives by certain networks might impact the performance of MM5-MPP. In-order
to do this, we first evaluated how increasing the number of processors or system
size, impacted the performance of the application. Also with increasing system
size, we looked at how the distribution of MPI calls in the application changed.
Finally, we also looked at how the message sizes to different MPI calls changed
with increase in system size.

To evaluate these characteristics of MM5-MPP, we chose two different work-
loads and ran them on a 64-node, dual 2.4 GHz processor cluster with Mellanox

138 Ranjit Noronha and Dhabaleswar K. Panda

MT23108 InfiniBand adapters and a MVAPICH 0.9.4 installation (cluster A).
The first workload is the MM5 benchmark data set [15], which specifies a 3
hour run, TIMAX = 180, with an 81 second time-step (T3A). The second is the
large-domain run (LDOM) which may be obtained from [16]. MM5-MPP allows
the user to divide the workload among the different processors, so as to reduce
the memory usage. This is achieved by specifying two parameters; namely num-
ber of processors in the North-South directions (PROCNS) and processors in the
East-West directions (PROCEW) [13]. PROCNS and PROCEW were set so that
PROCNS >= PROCEW and PROCNS x PROCEW = number of processors.

In Section 3.1, we look at the impact of increasing the number of processors
on execution time. In Section 3.2, we look at the breakdown of time between ap-
plication computation and communication layers. Following that in Section 3.3,
the breakdown of time spent in the various calls in the MPI stack is presented.
Finally in Sections 3.4 and 3.5, the distribution of MPI calls and message sizes
with increasing system size is discussed.

3.1 Effect of System Size

In this section, we observe the effect of an increasing number of processors on
parallel execution time. The workloads T3A and LDOM were run on cluster
A. Since each node has a dual processor, the total number of processors in the
system is 128. This allows us to study the impact of system size up to 128
processors. The effect of increasing system size on execution time for T3A and
LDOM is shown in Figure 2. It can be observed that with increasing system size
for T3A, the execution time decreases up to 128 processors. For T3A, there is an
approximate decrease in execution time of up to 37% when doubling the number
of processors. Figure 2 also shows the scaling efficiency of the two workloads.
It can be seen that for the workload T3A, the scaling efficiency starts at above
90% and then gradually decreases to a little over 65%.

For LDOM, there is a maximum decrease in execution time of 32% when
doubling the number of processors. The scaling efficiency gradually decreases
from 74% to approximately 49%, as shown in Figure 2. For LDOM, the benefits
of an increasing system size plateaus after 64 processors. This can be attributed
to the smaller problem size of LDOM compared to T3A. This leads to an in-
creased load imbalance, which manifests itself as increased wait time. This effect
is discussed in further detail in Section 3.2.

3.2 Overall Application Timing Breakdown

We will now discuss the average per-process breakdown of execution time of the
workloads LDOM and T3A. For improved scalability, it is better to spend the
maximum amount of time in application level computation and as little time
as possible in the communication libraries or in MPI calls. How much time is
spent in the communication libraries is partly dependent on the design of the
application as well as the communication library. If the application uses non-
blocking MPI calls, this time can be minimized. Blocking calls on the other

Performance Evaluation of MM5 on Clusters with Modern Interconnects 139

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 2 4 8 16 32 64 128

T
im

e
(s

ec
)

Number of processors

LDOM

 0

 20

 40

 60

 80

 100

 4 8 16 32 64 128

P
er

ce
nt

ag
e

Number of processors

LDOM

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 8 16 32 64 128

T
im

e
(s

ec
)

Number of processors

T3A

 0

 20

 40

 60

 80

 100

 4 8 16 32 64 128

P
er

ce
nt

ag
e

Number of processors

T3A

Fig. 2. MM5-MPP execution time with increasing system size of two different work-
loads (left) and scaling efficiency (right)

hand increase the amount of time spent in the communication libraries. The
time spent in the communication library also depends partly on the nature of
the progress function employed by the MPI stack.

The breakdown of timing was obtained using the lightweight profiling tool
mpiP [17]. We find that for LDOM, the percentage of time spent in communi-
cation (time spent in MPI layers) increases from slightly less than 5% at two
processors, to approximately 37% at 128 processors. For T3A, the percentage
of communication increases from approximately 2% at two processors to 27%
at 128 processors. This difference can be mainly attributed to the difference in
sizes of the two workloads. LDOM is a smaller workload as compared to T3A.
As a result, the computation datum assigned to each processor is smaller. This
effect manifests itself as increased process skew. Overall, a large amount of time
is spent in MPI layers particularly blocking MPI Receive calls. This issue will
be discussed in more detail in Section 3.3.

3.3 MPI Timing Breakdown

In this section, we discuss the average per-processor distribution of time spent
in different MPI calls for LDOM and T3A. Understanding the distribution of
time spent in different calls, gives us insight into which network might poten-
tially enhance the performance of MM5-MPP. This is specially true in the case
of efficient implementation of collective operations in some of the stacks such as

140 Ranjit Noronha and Dhabaleswar K. Panda

MVAPICH [10]. The percentage of MPI time spent in different calls is shown in
Figure 3. MM5-MPP largely uses the calls for blocking receive, blocking send,
non-blocking receive, message wait, message broadcast and gather corresponding
to MPI Recv, MPI Send, MPI IRecv, MPI Wait, MPI Bcast and MPI Gather
respectively. Since the time spent in MPI IRecv is not significant, it is not shown
in the figure. For both datasets, the percentage of time spent in MPI Bcast in-
creases with increasing system size. For LDOM, time spent in MPI Bcast in-
creases from approximately 4% of total MPI time for a two processor run to
approximately 30% at 128 processors. For T3A, MPI Bcast time increases from
2% at two processors to about 20% at 128 processors. In Section 4.3, the impact
of hardware broadcast on MM5 performance is evaluated.

2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80

90

100

Number of processes

P
er

ce
nt

ag
e

LDOM

MPI_Recv
MPI_Send
MPI_Wait
MPI_Bcast
MPI_Gather

2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80

90

100

Number of processes

P
er

ce
nt

ag
e

T3A

Fig. 3. Breakdown of time spent in different MPI functions for two different workloads

A large percentage of time is spent in MPI Recv for both LDOM and T3A
and increases with increasing system size. At 128 processors for LDOM and
T3A, the time spent is about 30% and 44% of communication time respectively.
For both cases, time spent in MPI Wait decreases with increase in system size.
This decrease is more rapid in the case of T3A. Time spent in MPI Recv and
MPI Wait can be correlated to the amount of application wait time. This is
approximately 26% for LDOM and 21% for T3A. This would suggest that MM5-
MPP would benefit from dynamic load balancing, currently not implemented in
this version of MM5-MPP.

3.4 MPI Call Count Distribution

In this section, we look at the average per-processor distribution of MPI calls in
MM5-MPP. The distribution of MPI calls for LDOM and T3A with increasing
system size is shown in Figure 4. As discussed in section 3.3, implementation
of MM5-MPP makes calls to the MPI functions for blocking sends, blocking re-
ceives, non-blocking receives, broadcast and gather. These calls are MPI Send,
MPI Recv, MPI IRecv, MPI Bcast and MPI Gather respectively. Since the pro-
portion of calls to MPI IRecv is not significant, these calls are not shown in the
graphs. For both workloads, the number of calls increases with increasing system
size. For LDOM, MPI Send has the highest count, while for T3A MPI Bcast is
the highest. For both cases, the number of calls to MPI Send and MPI Bcast

Performance Evaluation of MM5 on Clusters with Modern Interconnects 141

2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of processes

lo
g1

0(
ca

ll
co

un
t)

LDOM

MPI_Send
MPI_Gather
MPI_Bcast

2 4 8 16 32 64 128
0

1

2

3

4

5

6

Number of processes

lo
g1

0(
ca

ll
co

un
t)

T3A

Fig. 4. Frequency of different MPI calls for the two different workloads

increases ten-fold, when the system size is increased from two processors to 128
processors.

From this we observe that MM5-MPP largely uses blocking MPI calls. MM5-
MPP might benefit from a design which uses more non-blocking calls. This might
be possible through the modification of the rsl exch stencil and rsl merge stencil
calls in Figure 1 to use non-blocking calls. In this case, it might issue a non-
blocking receive, to receive data from its adjacent neighbors. It might then con-
tinue computation on different sub-domains (assuming there is sufficient data
available). Between computations, it might check if there is any additional data
from its adjacent neighbors. If there is data available, it might use that to com-
plete some computations rather than blocking. This would help us with overlap
of computation and communication. This might also help reduce some of the
application wait time discussed in section 3.3. We plan on investigating this in
our future work.

3.5 Message Size Distribution

As discussed in Section 3.4, MM5-MPP largely makes blocking MPI calls. In this
section, we look at the average sizes of messages sent from these blocking calls
namely MPI Send, MPI Recv, MPI Bcast, and MPI Gather. These results are
shown in Figure 5. For both workloads LDOM and T3A, the size of the message

2 4 8 16 32 64 128
0

1

2

3

4

5

6

Number of processes

lo
g1

0(
si

ze
 in

 b
yt

es
)

LDOM

MPI_Send
MPI_Gather
MPI_Bcast

2 4 8 16 32 64 128
0

1

2

3

4

5

6

Number of processes

lo
g1

0(
si

ze
 in

 b
yt

es
)

T3A

Fig. 5. Sizes of messages sent through different MPI calls in two different workloads

142 Ranjit Noronha and Dhabaleswar K. Panda

passed to MPI Send starts at between 129 KiloBytes and 300 KiloBytes at two
processors and gradually decreases to about 40 KiloBytes at 128 processors. On
the other hand, the size of messages passed to MPI Bcast increases from about
50 bytes at two processors to approximately 300 bytes at 128 processors. It
is possible that MM5 might benefit from InfiniBand hardware based multicast
support integrated into MVAPICH. The impact of increase in unidirectional
bandwidth on MM5-MPP performance is examined in section 4.1, while the
impact of hardware multicast on MM5-MPP is examined in section 4.3. We will
now examine the impact of different network parameters on the performance of
MM5-MPP.

4 Impact of Network Technology

In this section, we look at how different network parameters affect the execution
time of MM5-MPP. In particular, the impact of latency, bandwidth and hardware
broadcast is examined. Experiments are conducted using the workloads LDOM
and T3A described in Section 3. These workloads were run on cluster B (8-
node, dual 3.0 GHz processor cluster with Myrinet E-cards, Quadrics Elan-4
and Mellanox MT23108 InfiniBand adapters). All experiments were run with
16 processes on eight nodes. In Section 4.1, the effect of network bandwidth
on applications is examined. Following that, we look at the impact of network
latency on MM5-MPP performance in 4.2.

Table 2. Explanation of notation used in this section

Notation Explanation

MPICHGM-1P MPICHGM 1.2.6..14a using E-cards,
with a single port activated (GM 2.0.21)

MPICHGM-2P MPICHGM 1.2.6..14a using E-cards,
with both ports activated (GM 2.1.21)

MVAPICH-1N MVAPICH 0.9.5 with a single NIC per node
MVAPICH-HB MVAPICH 0.9.5 with InfiniBand hardware broadcast enabled
MVAPICH-SB MVAPICH 0.9.5 without InfiniBand hardware broadcast
MPI/Elan4 Quadrics MPI

4.1 Effect of Network Bandwidth

In this section, we examine the impact of bandwidth on the performance of
MM5-MPP. This impact was measured using both different networking tech-
nologies, as well as multi-port support offered by different technologies. Myrinet
E-cards [11] has two ports, each capable of up to 250 MegaBytes/sec for a total
of up to 500 MegaBytes/sec. It is possible to activate either one or both ports
on these cards. We use notation as explained in Table 2. For large messages,

Performance Evaluation of MM5 on Clusters with Modern Interconnects 143

MVAPICH-1N delivers up to 900 MegaBytes/sec. MPI/ELAN4 delivers up to
900 MegaBytes/sec [9]. The two workloads were run on cluster B, described in
Section 4. The execution time across different networks for LDOM and T3A at 16
processes on 8 nodes is shown in Figure 6. For LDOM, execution time is reduced
by approximately 34% when MPICHGM-2P is replaced by MVAPICH-1N. The
reduction in execution time may be attributed mainly to to the reduction in time
spent in MPI Bcast (24.2%), followed by the reduction in MPI Recv (5%), along
with small reductions in MPI Wait, MPI Gather and MPI Send making up the
remaining 5%. Note that hardware broadcast was not enabled for MVAPICH-1N.
For T3A, on replacing MPICHGM-2P with MVAPICH-1N, there is a reduction
in execution time of up to 12%. Most of this reduction comes from reduced time
spent in MPI Bcast.

MPICHGM−1P MPICHGM−2P MVAPICH−1N MPI/Elan4
0

5

10

15

20

25

30

35

E
xe

cu
tio

n
tim

e
(s

ec
)

LDOM

MPICHGM−1P MPICHGM−2P MVAPICH−1N MPI/Elan4
0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e
(s

ec
)

T3A

Fig. 6. MM5-MPP execution time with different networks

4.2 Effect of Network Latency

We will now examine the effect of network latency on the performance of MM5-
MPP. For the different network MPI stacks, we use notation similar to that in
Table 2. On cluster B, the latency of a 0-byte message for MPI/Elan4 is approx-
imately 2μs while for MVAPICH-1N it is 5μs. The bandwidth for large messages
of these two networks is comparable as shown in Table 1. The execution time of
the two workloads LDOM and T3A at 16 processors, on eight nodes is shown
in Figure 6. At 16 processors, for LDOM MVAPICH-1N performs better than
MPI/Elan4 by approximately 20%. Most of this difference may be attributed to
time spent in MPI Recv and MPI Wait. For T3A, there is very little difference
in performance between MVAPICH-1N and MPI/Elan4.

4.3 Effect of Hardware Broadcast

In this section, we evaluate the impact of hardware based broadcast in InfiniBand
on the performance of MM5-MPP. As discussed in section 3.3, and shown in
Figure 3, a significant amount of time spent in the blocking call MPI Bcast. At
16 processors for LDOM, approximately 10% of time is spent in MPI Bcast. For

144 Ranjit Noronha and Dhabaleswar K. Panda

T3A at 16 processors, approximately 5% of time is spent in MPI Bcast. Also as
discussed in Section 3.5, at 16 processors, the message size passed to MPI Bcast
by both T3A and LDOM is approximately 100 bytes. At this size, hardware
based broadcast does better by up to 50% in terms of latency than the current
software based point-to-point algorithm [10]. It seems likely that MM5-MPP
could potentially benefit from InfiniBand hardware broadcast.

The workloads LDOM and T3A were evaluated with and without hardware
broadcast referred to as MVAPICH-SB and MVAPICH-HB respectively on clus-
ter B, as explained in Section 4. All runs were taken up to 16 processes on eight
nodes. For LDOM there is a reduction in execution time of approximately 2.14%.
For T3A, the reduction in execution time is approximately 5.1%.

5 Related Work

The parallel implementation of MM5, MM5-MPP, was described in [13]. Only
basic scalability in terms of execution time is discussed here. The performance
using different commodity cluster interconnects is not discussed in this paper.
Also the impact of efficient collective operations in modern interconnects on ap-
plication performance is not discussed. The evaluation of the MM5 benchmark
T3A on various architectures is carried out in [15]. Only the basic scalability
in terms of execution time with increasing number of processors is discussed
here. The impact of various network features like multicast is not evaluated
here. The performance and scalability of various networks is evaluated using
micro-benchmarks and NAS parallel benchmarks in [18]. This study focuses
on comparing Myrinet, Quadrics and InfiniBand. The relative performance of
Myrinet, InfiniBand and Quadrics in terms of micro-benchmarks is evaluated
in [12]. There is no application-level evaluation here.

6 Conclusions and Future Work

In this paper, we have looked at the scalability of the parallel distributed memory
version of the popular weather simulation code MM5. We have also looked at the
sensitivity of MM5 to network parameters like latency, bandwidth and efficient
collectives like hardware broadcast in InfiniBand. MM5 uses messages sizes of
the order of 100 to 300 KiloBytes for system sizes up to 16 processors. These
sizes decrease with increase in system size. A considerable amount of time is
spent in the collective call MPI Bcast which increases with increasing system.
We conclude that, at smaller system sizes, MM5 would benefit from increased
bandwidth. Experimentation with InfiniBand shows a reduction in execution
time up to 34% compared with Myrinet at 16 processors. For larger system sizes,
the improved latency of hardware based broadcast might be more beneficial
to the application. Experimentally on a 16 processor environment, we see an
improvement of up to 5% in overall execution time when using InfiniBand based
hardware broadcast. Additionally, MM5 spends substantial time waiting in the
MPI calls MPI Wait and MPI Recv as system size increases. We would like to

Performance Evaluation of MM5 on Clusters with Modern Interconnects 145

determine the impact of efficient communication progress functions available in
stacks like Myrinet MX and Quadrics on the performance of MM5, for large
scale systems. MM5 also packs and unpacks its own data structures. We would
like to investigate the effect of efficient zero-copy datatypes on the performance
of MM5.

References

1. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable Im-
plementation of the MPI, Message Passing Interface Standard. Technical report,
(Argonne National Laboratory and Mississippi State University)

2. Fluent CFD. (http://www.fluent.com)
3. LSDYNA. (http://www.lstc.com)
4. G.A. Grell, J. Dudhia, and D.R. Stauffer: A Description of the Fifth-Generation

Penn State/NCAR Mesoscale Model (MM5). Tech. Rep. NCAR/TN-398+STR,
National Center for Atmospheric Research, Boulder, Colarado (1994)

5. Boden, N.J., Cohen, D., et al.: Myrinet: A Gigabit-per-Second Local Area Network.
IEEE Micro (1995) 29–35

6. Infiniband Trade Association. (www.infinibandta.org)
7. Quadrics Ltd. (www.quadrics.com)
8. R. Noronha and N. B. Abu-Ghazaleh: Using Programmable NICs for Time Warp

Optimization. IPDPS (2002)
9. MPI over InfiniBand Project. (http://nowlab.cis.ohio-state.edu/projects/mpi-iba)

10. J. Liu, A. Mamidala and D.K. Panda: Fast and Scalable MPI-Level Broadcast
using InfiniBand’s Hardware Multicast Support. IPDPS (2004)

11. Myrinet E-cards. (http://www.myri.com/myrinet/PCIX/m3f2-pcixe.html)
12. J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P. Wyckoff and

D. K. Panda.: Micro-Benchmark Performance Comparison of High-Speed Cluster
Interconnects. IEEE Micro. (2004)

13. J. Michalakes, T. Canfield, R. Nanjundiah and S. Hammond: Parallel Implementa-
tion, Validation and Performance of MM5. Sixth Workshop on the Use of Parallel
Processors in Meteorology, European Center for Medium Range Weather Forecast-
ing, Reading, U.K. (1994)

14. Michalakes, J.: A Runtime System Library for Parallel Finite Difference Models
with Nesting. Technical Report ANL/MCS-TM-197 (1997)

15. Parallel MM5 benchmarks. http://www.mmm.ucar.edu/mm5/mpp/helpdesk/
20040304a.html (2004)

16. MM5 Community Model. (http://www.mmm.ucar.edu/mm5/)
17. mpiP MPI Profiling Tool. (http://www.llnl.gov/CASC/mpip)
18. R. Brightwell, D. Doerfler and K.D. Underwood: A Comparison of 4X InfiniBand

and Quadrics Elan-4 Technologies. IEEE Conference on Cluster Computing. (2004)

A Performance Measurement Infrastructure
for Co-array Fortran

Bernd Mohr1, Luiz DeRose2, and Jeffrey Vetter3

1 Forschungszentrum Jülich, ZAM,
Jülich, Germany

b.mohr@fz-juelich.de
2 Cray Inc.

Mendota Heights, MN, USA
ldr@cray.com

3 Oak Ridge National Laboratory
Oak Ridge, TN, USA

vetterjs@ornl.gov

Abstract. Co-Array Fortran is a parallel programming language for scientific
applications that provides a very intuitive mechanism for communication, and
especially, one-sided communication. Despite the benefits of this integration of
communication primitives with the language, analyzing the performance of CAF

applications is not straightforward, which is due, in part, to a lack of tools for
analysis of the communication behavior of Co-Array Fortran applications. In this
paper, we present an extension to the KOJAK toolkit based on a source-to-source
translator that supports performance instrumentation, data collection, trace gener-
ation, and performance visualization of Co-Array Fortran applications. We illus-
trate this approach with a performance visualization of a Co-Array Fortran version
of the Halo kernel benchmark using the VAMPIR event trace visualization tool.

1 Introduction

Co-Array Fortran (CAF) [12] extends Fortran 95 providing a simple, explicit notation
for data decomposition, communication, and synchronization, expressed in a natural
Fortran-like syntax. These extensions provide a straightforward and powerful paradigm
for parallel programming of scientific applications based on one-sided communication.
One of the problems that CAF users face is the lack of tools for analysis of the com-
munication and synchronization behavior of the application. One of the reasons for the
lack of tools is because communication operations in CAF programs are not expressed
through function calls, as in MPI, or via directives that are executed by a run-time li-
brary, as in OpenMP. In contrast, CAF communication operations are integrated into the
language, and, on certain platforms like the Cray X1, they are implemented via remote
memory access instructions provided by the hardware.

For MPI applications, performance data collection is, in general, facilitated by the
existence of the MPI profiling interface (PMPI), which is used by most MPI tools [2,
7, 14]. Similarly, performance measurement of OpenMP applications can be done by
instrumenting the calls to the runtime library [1, 4, 5]. However, with the challenge

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 146–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Performance Measurement Infrastructure for Co-array Fortran 147

of CAF communication primitives being integrated into the language, and potentially
implemented with special hardware instructions, the instrumentation of these commu-
nication primitives requires a different approach that is not straightforward.

In order to address this problem, we first defined PCAF, an interface specification of
a set of routines intended to monitor all important aspects of CAF applications. Then, we
extended the OPARI source-to-source instrumentation tool [10] to search for CAF con-
structs and to generate instrumented source code with the appropriate PCAF calls. Fi-
nally, we implemented the PCAF interface for the the KOJAK measurement system [13]
enabling it to trace CAF communication and synchronization instructions. With this ex-
tension, the KOJAK measurement system is able to support performance instrumentation
and performance data collection of CAF applications, generating trace files that can be
analyzed with the VAMPIR event trace visualization tool [11]. In this paper, we describe
our approach for performance measurement and analysis of CAF applications.

The remainder of this paper is organized as follows. In Section 2, we present an
overview of Co-Array Fortran. In Section 3, we briefly describe the KOJAK performance
measurement and analysis environment. In Section 4, we describe our approach for per-
formance instrumentation and measurement of Co-Array Fortran applications. In Sec-
tion 5, we discuss performance visualization with an example using the Halo kernel
benchmark code. Finally, we present our conclusions in Section 6.

2 An Overview of Co-array Fortran

Co-array Fortran [12] is a parallel programming language extension to Fortran 95. At
the highest level, CAF uses a Single Program Multiple Data (SPMD) model to allow
multiple copies (images) of a program to execute asynchronously. Each image contains
its own private set of data objects. When data objects are distributed across multiple
images, the array syntax of CAF uses an additional trailing subscript in square brackets
to allow explicit access to remote data (as shown in Figures 2 and 4), and it is referred
to as the co-dimension. Data references that do not use these square brackets are strictly
local accesses.The CAF compiler translates these remote data accesses into underlying
communication mechanisms for each target system. CAF also includes intrinsic routines
to synchronize images, to return the number of images, and to return the index of the
current image. Besides functions for delimiting a critical region, CAF provides four
different forms of a barrier synchronization:

SYNC ALL(): a global barrier where every image waits for every other image.
SYNC ALL(<wait list>): a global barrier where every image waits only for the listed

images.
SYNC TEAM(<team>): a barrier where a team of images wait for every other team

member.
SYNC TEAM(<team>, <wait list>): a barrier where a team of images wait for a

subgroup of the team members.

CAF was originally developed on the Cray-T3D, and, as such, it is very efficient
on platforms that support one-sided messaging and fast barrier operations. On systems
with globally addressable memory, such as the Cray X1 or the SGI Altix 3700, these

148 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

mechanisms may be as simple as load and store memory references. By contrast, on dis-
tributed memory systems that do not support efficient Remote Direct Memory Access
(RDMA), these mechanisms can be implemented in MPI.

3 The KOJAK Measurement System

The KOJAK performance-analysis tool environment provides a complete tracing-based
solution for automatic performance analysis of MPI, OpenMP, or hybrid applications
running on parallel computers. KOJAK describes performance problems using a high
level of abstraction in terms of execution patterns that result from an inefficient use
of the underlying programming model(s). KOJAK’s overall architecture is depicted in
Figure 1. Tasks and components are represented as rectangles and their inputs and out-
puts are represented as boxes with rounded corners. The arrows illustrate the whole
performance-analysis process from instrumentation to result presentation.

executable

user program instrumented
user program

EPILOG
library

PAPI
library

EPILOG
event trace analysis result

VTF3
event trace

compiler / linker

OPARI / TAU
instrumentation

run

EXPERT
pattern search

CUBE
visualizer

VAMPIR
trace visualizer

trace conversion

manual analysis

automatic analysis

 semi-automatic instrumentation

PMPI / POMP/ PCAF
libraries

Fig. 1. KOJAK overall architecture.

The KOJAK analysis process is composed of two parts: a semi-automatic multi-level
instrumentation of the user application followed by an automatic analysis of the gener-
ated performance data. The first part is considered semi-automatic because it requires
the user to slightly modify the makefile.

To begin the process, the user supplies the application’s source code, written in
either C, C++, or Fortran, to OPARI, which is a source-to-source translation tool. OPARI

performs automatic instrumentation of OpenMP constructs and redirection of OpenMP-
library calls to instrumented wrapper functions on the source-code level based on the
POMP OpenMP monitoring API [9]. In Section 4.2, we describe how we extended OPARI

for instrumentation of CAF programs with the appropriate PCAF calls.

A Performance Measurement Infrastructure for Co-array Fortran 149

Instrumentation of user functions is done either during compilation by a compiler-
supplied instrumentation interface or on the source-code level using TAU [2]. TAU is
able to automatically instrument the source code of C, C++, and Fortran programs using
a preprocessor based on the PDT toolkit [8].

Instrumentation for MPI events is accomplished with a wrapper library based on
the PMPI profiling interface. All MPI, OpenMP, CAF and user-function instrumentation
calls the EPILOG run-time library, which provides mechanisms for buffering and trace-
file creation. The application can also be linked to the PAPI library [3] for collection
of hardware counter metrics as part of the trace file. At the end of the instrumentation
process, the user has a fully instrumented executable.

Running this executable generates a trace file in the EPILOG format. After program
termination, the trace file is fed into the EXPERT analyzer. (See [13] for details of the au-
tomatic analysis, which is outside of the scope of this paper.) In addition, the automatic
analysis can be combined with a manual analysis using VAMPIR [11], which allows the
user to investigate the patterns identified by EXPERT in a time-line display via a utility
that converts the EPILOG trace file into the VAMPIR VTF3 format.

4 Performance Instrumentation and Measurement Approach

In this section, we describe the event model that we use to describe the behavior of CAF

applications, and the approach we take to instrument CAF programs and to collect the
necessary measurement data.

4.1 An Event Model of CAF

KOJAK uses an event-based approach to analyze parallel programs. A stream or trace
of events allow to describe the dynamic behavior of an application over time. If nec-
essary, execution statistics can be calculated from that trace. The events represent all
the important points in the execution of the program. Our CAF event model is based on
KOJAK’s basic model for one-sided communication [6]. We extended KOJAK’s existing
set of events, which cover describing the begin and end of user functions and MPI and
OpenMP related activities, with the following events for representing the execution of
CAF programs:

– Begin and end of CAF synchronization primitives
– Begin and end of remote read and write operations

For each of these events, we collect a time stamp and location. For CAF synchro-
nization functions, we also record which function was entered or exited. For the barrier
routines we also collect the group of images which participate in the barrier and the
group of images waited for, if applicable. Finally, for reads and writes, we collect the
amount of data which is transferred (i.e., the number of array elements) as well as the
source or destination of the transfer.

The event model is also the basis for the instrumentation and measurement. The
events and their attributes specify which elements of CAF programs need to be instru-
mented and which data has to be collected.

150 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

4.2 Performance Instrumentation

Instrumentation of CAF programs can be done on either of two levels depending on
how CAF is implemented on a specific computing platform. On systems where CAF

constructs and API calls are translated into calls to a run-time library, these calls could
easily be instrumented by traditional techniques (e.g., linking a pre-instrumented run-
time library or instrumenting the calls with a binary instrumentation tool). However,
for systems like the Cray X1, where the CAF communication is executed via hardware
instructions, this approach is not possible. Therefore, we extended OPARI, KOJAK’s
source-to-source translation tool, to also locate and instrument all CAF constructs of a
program.

As Fortran is line-oriented, it is possible for OPARI to read a program line by line.
Of course, it is also necessary to take continuation lines into account. Then, each line
is scanned for occurrences of CAF constructs and synchronization calls (but ignoring
comments and contents of strings). CAF constructs can be located by looking for pairs
of brackets ([...]). The first word of the statement determines whether it is a declaration
line or a statement containing a remote read or write operation. For CAF declarations,
OPARI collects attributes like array dimensions, and lower and upper bounds for later
use.

The handling of statements containing remote memory operations is more complex.
First, all operations are located in the line. If it is an assignment statement and the
operation appears before the assignment operator, it is a write operation. In all other
cases it is a read. OPARI determines which CAF array is referenced by the operation, the
number of elements transferred (by parsing the index specification), and the source or
destination of the transfer (determined by the expression inside the brackets). Simple
assignment statements containing a single remote memory operation are instrumented
by inserting calls to the corresponding PCAF monitoring functions before and after the
statement, which get passed in the attributes determined by OPARI. In case of more
complex statements where a remote memory operation cannot be easily separated out
and wrapped by the measurement calls, or when it is necessary to keep instrumentation
overhead low, OPARI uses the single call version of the PCAF remote memory access
monitoring functions (instead of separate begin and end calls) and inserts them either
before (for reads) or after (for writes) the statement for each identified remote memory
access operation.

Finally, OPARI scans the line for calls to CAF synchronization routines, and replaces
them by calls to PCAF wrapper functions that will execute the original call in addition
to collecting all important attributes.

Figure 2(b) shows the instrumented source code generated for the example in Fig-
ure 2(a). In this example, there is a two-dimensional array A, which is distributed on
all processors. In the CAF statement A(me,::2)[left] = me, each processor up-
dates the odd entries of the row corresponding to its image in the left neighbor array
with its index, and then waits on a barrier. OPARI identifies the CAF statement, and adds
a begin and end instrumentation event. The call to indicate the beginning of the event
contains the destination of the write (normalized to the range 0 to num images()-1)
and the number of array elements being transferred; the end call only gets passed the
destination. The barrier call (sync all) is translated into a call of the corresponding
wrapper function.

A Performance Measurement Infrastructure for Co-array Fortran 151

integer :: me, num, left integer :: me, num, left
integer :: A(1024,1024)[*] integer :: A(1024,1024)[*]
.
me = this image() me = this image()
num = num images() num = num images()
left = me - 1 left = me - 1
if (left < 1) left = num if (left < 1) left = num

call PCAF rma write begin(-1+left, &
1 * max((ubound(A,2)- &

lbound(A,2)+2)/2,0))
A(me,::2)[left] = me A(me,::2)[left] = me

call PCAF rma write end(-1+left)
call sync all() call PCAF sync all()

(a) (b)

Fig. 2. (a) Example of a CAF source code and (b) OPARI instrumented version.

4.3 Performance Measurement

Finally, the KOJAK measurement system was extended by implementing the necessary
PCAF monitoring functions and wrapper routines and adding support for the handling
of the new remote memory access event types. We chose to implement our approach
within the KOJAK framework, as KOJAK is very portable and supports all major HPC

computing platforms. Also, this way, we could re-use many of KOJAK’s features like
event trace buffer management, generation, and conversion. Finally, it allows us not
only to analyze plain CAF applications but also hybrid programs using any combination
of MPI, OpenMP, and CAF. A separate, new instrumentor just for CAF would probably
be problematic in this respect, as the modifications done by two independent source-to-
source preprocessors could conflict.

The PCAF interface is shown in Figure 3. Since this monitoring API is open, and
OPARI is a stand-alone tool, other performance analysis projects could use this infras-
tructure to also support CAF. For example, it would be very easy to implement a version
of the PCAF monitoring library which (instead of tracing) just collects basic statistics
(number of RMA transfers, amount of data transferred) for each participating image.
Ideally, in the future, CAF compilers could support this interface directly.

5 Performance Visualization

For illustration of our performance analysis approach, we ran the Halo kernel bench-
mark on the Cray X1 system at the Oak Ridge National Laboratory, using 16 and 64
processors. The Halo benchmark simulates a halo border exchange with the four differ-
ent synchronization methods CAF provides (see Section 2). The exchange procedure is
outlined in Figure 4. During each iteration, the following events from our event model
occur: S2 a synchronization call; S3 a remote read of n elements from the north neigh-
bor; S4 a remote read of 2n elements from the south neighbor; S5 a synchronization
call; S7 another synchronization call; S8 a remote read of n elements from the west

152 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

Remote Memory Access Monitoring Routines
SUBROUTINE PCAF rma write begin(dest, nelem)
SUBROUTINE PCAF rma write end(dest)
SUBROUTINE PCAF rma write(dest, nelem)
SUBROUTINE PCAF rma read begin(src, nelem)
SUBROUTINE PCAF rma read end(src)
SUBROUTINE PCAF rma read(src, nelem)

where INTEGER, INTENT(IN) :: dest, src, nelem

CAF Synchronization Wrapper Routines
SUBROUTINE PCAF sync all()
SUBROUTINE PCAF sync all(wait)
SUBROUTINE PCAF sync team(team)
SUBROUTINE PCAF sync team(team, wait)
SUBROUTINE PCAF sync file(unit)
SUBROUTINE PCAF sync memory()
SUBROUTINE PCAF start critical()
SUBROUTINE PCAF end critical()

where INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(IN) :: wait(:), team(:)

Fig. 3. PCAF Measurement Function Interface Specification.

S1 HINS(1:3*n) = HOEW(1:3*n)
S2 CALL synchronization method
S3 HONS(1:n) = HINS(1:n)[MYPEN]
S4 HONS(n+1:3*n) = HINS(n+1:3*n)[MYPES]
S5 CALL synchronization method
S6 HIEW(1:3*n) = HONS(1:3*n)
S7 CALL synchronization method
S8 HOEW(1:n) = HIEW(1:n)[MYPEW]
S9 HOEW(n+1:3*n) = HIEW(n+1:3*n)[MYPEE]
S10 CALL synchronization method

Fig. 4. Pseudo-code for the halo exchange procedure.

neighbor; S9 a remote read of 2n elements from the east neighbor; and finally S10
a synchronization call. For each synchronization method, this procedure is repeated 5
times per iteration, with 10 iterations being executed with n varying from 2 to 1024 in
powers of 2.

Figure 5 (a) shows the timeline view of the Halo benchmark running with 16 pro-
cessors. The four phases of the code (marked with white lines in the figure) can easily
be identified due to the different communication behavior of each of the synchroniza-
tion methods. The communication pattern between processors, as well as the amount
of data exchanged, can be observed with the pair-wise communication statistics view,
shown in Figure 6 (left).

Figure 5 (b) and Figure 5 (c) show a section of the timeline corresponding to a
full exchange (one call to the subroutine outlined in Figure 4) for sync all and
sync team(wait) synchronization methods respectively. We observe that the re-

A Performance Measurement Infrastructure for Co-array Fortran 153

sync all sync all(wait) sync team sync team(wait)

(a) Complete program

(b) One exchange using sync all

(c) One exchange using sync team(wait)

Fig. 5. Timeline views of the Halo benchmark using 16 processors.

154 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

gion corresponding to the sync team(wait) synchronization method is much more
irregular (unsynchronized) than the one for the sync all, where the waiting times are
longer, due to the global synchronization.

(16 processor run) (64 processor run)

Fig. 6. Message statistics view of the Halo benchmark using 16 processors (left) and Summary
Chart View of Function times running on 16 and 64 processors (right).

Finally, on Figure 6 (right), we observe the time spent on each synchronization
method for the 16 and 64 processors runs respectively. We notice that with the increase
of number of processors, the sync team(wait) method performs significantly bet-
ter than the sync all method, going from about 10% faster with 16 processors to
about 30% faster with 64 processors.

6 Conclusion

The CAF parallel programming language extends Fortran 95 providing a simple tech-
nique for accessing and managing distributed data objects. This language-level abstrac-
tion hides much of the complexity of managing communication, but, unfortunately, this
also makes diagnosing performance problems much more difficult. In this paper, we
have proposed one approach to solve this problem. Our solution uses a source-to-source
translator to allow performance instrumentation, data collection, trace generation, and
performance visualization of Co-Array Fortran applications implemented as an exten-
sion of the KOJAK performance analysis toolset. We illustrated this approach with per-
formance visualization of a Co-Array Fortran version of the Halo kernel benchmark
using the VAMPIR event trace visualization tool. Our initial results are promising; we
can obtain statistical quantification and graphical presentation of CAF communication
and synchronization characteristics. We will extend KOJAK’s automated analysis to also
cover CAF constructs and determine the benefits of this approach for real applications.

References

1. E. Ayguadé, M. Brorsson, H. Brunst, H.-C. Hoppe, S. Karlsson, X. Martorell, W. E. Nagel,
F. Schlimbach, G. Utrera, and M. Winkler. OpenMP Performance Analysis Approach in
the INTONE Project. In Proceedings of the Third European Workshop on OpenMP -
EWOMP’01, September 2001.

A Performance Measurement Infrastructure for Co-array Fortran 155

2. R. Bell, A. D. Malony, and S. Shende. A Portable, Extensible, and Scalable Tool for Parallel
Performance Profile Analysis. In Proceedings of Euro-Par 2003, pages 17–26, 2003.

3. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming Inter-
face for Performance Evaluation on Modern Processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, Fall 2000.

4. J. Caubet, J. Gimenez, J. Labarta, L. DeRose, and J. Vetter. A Dynamic Tracing Mechanism
for Performance Analysis of OpenMP Applications. In Proceedings of the Workshop on
OpenMP Applications and Tools - WOMPAT 2001, pages 53 – 67, July 2001.

5. L. DeRose, B. Mohr, and S. Seelam. Profiling and Tracing OpenMP Applications with
POMP Based Monitoring Libraries. In Proceedings of Euro-Par 2004, pages 39–46, Septem-
ber 2004.

6. Marc-André Hermanns, Bernd Mohr, and Felix Wolf. Event-based Measurement and Anal-
ysis of One-sided Communication. In Proceedings of Euro-Par 2005, September 2005.

7. S. Kim, B. Kuhn, M. Voss, H.-C. Hoppe, and W. Nagel. VGV: Supporting Performance
Analysis of Object-Oriented Mixed MPI/OpenMP Parallel Applications. In Proceedings of
the International Parallel and Distributed Processing Symposium, April 2002.

8. K. A. Lindlan, Janice Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, and C. Ras-
mussen. A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software
with Templates. In Proceedings of Supercomputing 2000, November 2000.

9. B. Mohr, A. Mallony, H.-C. Hoppe, F. Schlimbach, G. Haab, and S. Shah. A Performance
Monitoring Interface for OpenMP. In Proceedings of the fourth European Workshop on
OpenMP - EWOMP’02, September 2002.

10. Bernd Mohr, Allen Malony, Sameer Shende, and Felix Wolf. Design and Prototype of a Per-
formance Tool Interface for OpenMP. The Journal of Supercomputing, 23:105–128, 2002.

11. W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. Vampir: Visualization
and Analysis of MPI Resources. Supercomputer, 12:69–80, January 1996.

12. R. W. Numrich and J. K. Reid. Co-Array Fortran for Parallel Programming. ACM Fortran
Forum, 17(2), 1998.

13. Felix Wolf and Bernd Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Ap-
plications. Journal of Systems Architecture, Special Issue ’Evolutions in parallel distributed
and network-based processing’, 49(10–11):421–439, November 2003.

14. C. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk, and W. Gropp.
From trace generation to visualization: A performance framework for distributed parallel
systems. In Proceedings of Supercomputing 2000, November 2000.

Event-Based Measurement and Analysis
of One-Sided Communication

Marc-André Hermanns1, Bernd Mohr1, and Felix Wolf2

1 Forschungszentrum Jülich,
Zentralinstitut für Angewandte Mathematik,

52425 Jülich, Germany
{m.a.hermanns,b.mohr}@fz-juelich.de

2 University of Tennessee, ICL
1122 Volunteer Blvd Suite 413

Knoxville, TN 37996-3450, USA
fwolf@cs.utk.edu

Abstract. To analyze the correctness and the performance of a program, infor-
mation about the dynamic behavior of all participating processes is needed. The
dynamic behavior can be modeled as a stream of events required for a later anal-
ysis including appropriate attributes. Based on this idea, KOJAK, a trace-based
toolkit for performance analysis, records and analyzes the activities of MPI-1
point-to-point and collective communication.
To support remote-memory access (RMA) hardware in a portable way, MPI-2 in-
troduced a standardized interface for remote memory access. However, poten-
tial performance gains come at the expense of more complex semantics. From
a programmer’s point of view, an MPI-2 data transfer is only completed after a
sequence of communication and associated synchronization calls.
This paper describes the integration of performance measurement and analysis
methods for RMA communication into the KOJAK toolkit. Special emphasis is put
on the underlying event model used to represent the dynamic behavior of MPI-
2 RMA operations. We show that our model reflects the relationships between
communication and synchronization more accurately than existing models. In
addition, the model is general enough to also cover alternate but simpler RMA

interfaces, such as SHMEM and Co-Array Fortran.

1 Introduction

Remote memory access (RMA) describes the ability of a process to directly access a
part of the memory of a remote process, without explicit participation of the remote
process in the data transfer. As all parameters for the data transfer are determined by one
process, it is also called one-sided or single-sided communication. This distinguishes
the one-sided communication from point-to-point messages, where explicit send and
receive statements are required on both sides. Providing one-sided in addition to two-
sided communication significantly expands the flexibility to chose a communication
scheme most suitable for a given problem on a given hardware.

On platforms with special hardware providing efficient RMA support, one-sided
communication is often made available to the programmer in the form of libraries,

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 156–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Event-Based Measurement and Analysis of One-Sided Communication 157

for example SHMEM (Cray), LAPI (IBM), or ELAN (Quadrics). However, these libraries
are typically platform- or at least vendor-specific. The exception is SHMEM, which is
offered by a group of vendors. Since this restricts portable programming, many pro-
grammers do not utilize one-sided communication.

This is one of the reasons why the MPI forum decided to define a portable one-sided
communication interface as part of MPI-2. The Message Passing Interface (MPI) was
defined by a group of vendors, government laboratories and universities in 1994 as a
community standard [1]. This has become known as MPI-1. It is fully supported by all
freely-available and commercial MPI implementations and was quickly adopted by the
scientific computing community as a de-facto standard. As MPI also provides a stan-
dard monitoring interface (PMPI), there is a wide variety of tools for MPI performance
analysis and visualization. In 1997, a second version of the interface (MPI-2) was de-
fined, which added support for parallel I/O, dynamic process creation, and one-sided
communication [2]. However, only now, seven years after its definition, is support for
all MPI-2 features portably available for all major parallel computing platforms.

Until recently there was only rare usage of RMA features in scientific applications
and, therefore, the demand for performance tools in this area was limited. As more and
more programmers adopt the new features to improve the performance of their codes,
this is expected to change. For example, NASA researchers report a 39% improvement
in throughput after replacing MPI-1 non-blocking communication with MPI-2 one-sided
communication in a global atmospheric simulation program [3].

Currently, there are only very few tools which support the measurement and analy-
sis of one-sided communication and synchronization in a portable way on a wider range
of platforms. The well-known Paradyn tool which performs an automatic on-line bot-
tleneck search, was recently extended to support several major features of MPI-2 [4].
For RMA analysis, it collects basic, process-local, statistical data (i.e., transfer counts
and execution time spent in RMA functions). It does not take inter-process relationships
into account nor does it provide detailed trace data. Also, it does not support analysis of
SHMEM programs. The very portable TAU performance analysis tool environment [5]
supports profiling and tracing of MPI-2 and SHMEM one-sided communication. How-
ever, it only monitors the entry and exit of the RMA functions; it does not provide RMA

transfer statistics nor are the transfers recorded in tracing mode. The commercial Intel
Trace Collector tool (formerly known as VampirTrace) [6] records MPI execution traces.
When used with MPI-2, it records enter and exits of only a subset of the RMA functions.
It also traces the actual RMA transfers, but misrepresents their semantics, as defined
in MPI-2. Finally, it does not record the collective nature of MPI-2 window functions.
Besides these there are also some non-portable vendor tools with similar disadvantages.

KOJAK, our toolkit for automatic performance analysis [10], is jointly developed
by the Central Institute for Applied Mathematics of the Research Centre Jülich and by
the Innovative Computing Laboratory of the University of Tennessee. It is able to in-
strument and analyze OpenMP constructs and MPI-1 calls. In this paper we report on
the integration of performance analysis methods for one-sided communication into the
existing toolkit. We put special emphasis on the development of a new event model
that realistically represents the dynamic behavior of MPI-2 RMA operations in the event
stream. We show that our model reflects the relationships between communication and

158 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

synchronization more accurately than existing models. In addition, the model is general
enough to also cover alternate, but simpler RMA interfaces. In our new prototype imple-
mentation, we added support for measurement and analysis of parallel programs using
MPI-2 and SHMEM one-sided communication and synchronization. In addition, we are
also able to handle Co-Array Fortran programs [9], a small extension to Fortran 95 that
provides a simple, explicit notation for one-sided communication and synchronization,
expressed in a natural Fortran-like syntax. Details of this work can be found in [11].

The remainder of the paper is organized as follows: In Section 2 we give a short de-
scription of the MPI-2 RMA communication and synchronization functions. In Section 3,
we present our event model, which allows the realistic representation of the dynamic
behavior of vendor-specific and MPI-2 RMA operations. The extensions to KOJAK com-
ponents allowing the instrumentation, measurement, analysis, and visualization of par-
allel programs based on one-sided communication are described in Section 4. Finally,
we present conclusions and future work in Section 5.

2 MPI-2 One-Sided Communication

The interface for RMA operations defined by MPI-2 differs from the vendor-specific
APIs in many respects. This is to ensure that it can be efficiently implemented on a wide
variety of computing platforms even if a platform does not provide any direct hardware
support for RMA. The design behind the MPI-2 RMA API specification is similar to that
of weakly coherent memory systems: correct ordering of memory accesses has to be
specified by the user with explicit synchronization calls; for efficiency, the implemen-
tation can delay communication operations until the synchronization calls occur.

MPI does not allow access to arbitrary memory locations with RMA operations,
but only to designated parts of a process’s memory, the so-called windows. Windows
must be explicitly initialized (with a call to MPI Win create) and released (with
MPI Win free) by all processes that either provide memory or want to access this
memory. These calls are collective between all participating partners and include an in-
ternal barrier operation. MPI denotes by origin the process that performs an RMA read
or write operation, and by target the process in which the memory is accessed.

There are three RMA communication calls in MPI: MPI Put transfers data from
the caller’s memory to the target memory (remote write); MPI Get transfers data from
the target to the origin (remote read); and MPI Accumulate updates locations in the
target memory, for example, by replacing them with sums or products of the local and
remote data values (remote update). These operations are nonblocking: the call initiates
the transfer, but the transfer may continue after the call returns. The transfer is com-
pleted, both at the origin and the target, only when a subsequent synchronization call is
issued by the caller on the involved window object. Only then are the transferred values
(and the associated communication buffers) available to the user code. RMA communi-
cation falls in two categories: active target and passive target communication. In both
modes, the parameters of the data transfer are specified only at the origin, however in
active mode, both origin and target processes have to participate in the synchronization
of the RMA accesses. Only in passive mode is the communication and synchronization
completely one-sided.

Event-Based Measurement and Analysis of One-Sided Communication 159

RMA accesses to locations inside a specific window must occur only within an ac-
cess epoch for this window. Such an access epoch starts with an RMA synchronization
call, proceeds with any number of remote read, write, or update operations on this win-
dow, and finally completes with another (matching) synchronization call. Additionally,
in active target communication, a target window can only be accessed within an expo-
sure epoch. There is a one-to-one mapping between access epochs on origin processes
and exposure epochs on target processes. Distinct epochs for a window at the same pro-
cess must be disjoint. However, epochs pertaining to different windows may overlap.

MPI provides three RMA synchronization mechanisms:

Fences: The MPI Win fence collective synchronization call is used for active target
communication. An access epoch on an origin process or an exposure epoch on a
target process are started and completed by such a call. All processes who partic-
ipated in the creation of the window synchronize, which in most cases includes a
barrier. The data transfered is only accessible to user code after the fence.

General Active Target Synchronization: Here, synchronization is minimized: only
pairs of communicating processes synchronize, and they do so only when needed to
correctly order accesses to a window with respect to local accesses to that window.
An access epoch is started at an origin process by MPI Win start and is termi-
nated by a call to MPI Win complete. The start call specifies the group of targets
for that epoch. An exposure epoch is started at a target process by MPI Win post
and is completed by MPI Win wait or MPI Win test. Again, the post call
specifies the group of origin processes for that epoch. Data written is only accessi-
ble after the wait call, however data can only be read after the complete operation.

Locks: Finally, shared and exclusive locks are provided through the MPI Lock and
MPI Unlock calls. They are used for passive target communication. In addition,
they also define the access epoch for this window at the origin. Data read or written
is only accessible from user code after the unlock operation has completed.

It is implementation-defined whether some of the described calls are blocking or
nonblocking; for example, in contrast to other shared memory programming paradigms,
the lock call must not be blocking. For a complete description of MPI-2 RMA commu-
nication see [2].

3 An Event Model for One-Sided Communication

Many performance analysis tools use an event-based approach, that is, they instrument
user applications only at specific points to collect the performance data they need for
their analysis. These points, called events, are chosen in a way that they represent impor-
tant aspects in the dynamic behavior of the application on a level of abstraction suitable
for the tools’ task. Trace-based tools record the occurrence of events as a stream or trace
of event records for later analysis.

For the analysis of parallel scientific applications, events that capture the most im-
portant aspects of the parallel programming paradigm used (e.g., MPI or OpenMP) are
defined. Often, to provide a context for events representing specific actions related to
a parallel programming interface, the entering and leaving of surrounding user regions
(e.g., functions, loops or basic blocks) are also captured.

160 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

Table 1. KOJAK’s Event Types

Abstraction Event type Type specific Attributes
Entering / leaving a region (a function) ENTER region id

EXIT region id
Leaving a collective MPI MPICEXIT region id, comm id, root loc, sent, revd

or OpenMP region OMPCEXIT region id
Sending / receiving a message SEND dest loc, tag, comm id, length

RECV src loc, tag, comm id, length
Start / end of OpenMP parallel region FORK

JOIN

Acquiring / releasing an OpenMP lock ALOCK lock id
RLOCK lock id

Start / end / origin of RMA PUT 1TS window id, rma id, length, dest loc
one-sided transfers PUT 1TE window id, rma id, length, src loc

GET 1TO window id, rma id
GET 1TS window id, rma id, length, dest loc
GET 1TE window id, rma id, length, src loc

Leaving MPI GATS function MPIWEXIT window id, region id, group id
Leaving MPI collective RMA function MPIWCEXIT window id, region id, comm id
Locking / unlocking a MPI window WLOCK window id, lock loc, type

WUNLOCK window id, lock loc

Table 1 lists all event types used by the KOJAK performance analysis toolset. In the
upper half, the already existing events for modeling MPI-1 and OpenMP behavior are
shown. in addition to type-specific attributes for each event we also collect the times-
tamp and location which describe when and where the event occurred. For user regions,
MPI functions, and OpenMP constructs and runtime functions, we record which region
was entered or left. In the case of collective MPI functions and OpenMP constructs,
instead of “normal” EXIT events, special collective events are used to capture the at-
tributes of the collective operation. For MPI this is the communicator, the root process,
and the amounts of data sent and received during this operation. MPI-1 point-to-point
messages are modeled as pairs of SEND and RECV events with the source or destina-
tion of the message, the tag and communicator used, and the amount of data transferred
being attributes. In OpenMP applications, FORK and JOIN events mark the start and end
of parallel regions and ALOCK and RLOCK events the acquisition and release of locks.
For a complete, more detailed description of KOJAK’s event types and of its analysis
features see [7, 10]. A similar event model is also used by most other event-based tools
(e.g., by TAU).

In order to be able to also analyze RMA operations, we defined new event types
to realistically model the behavior of MPI-2 as well as Co-Array Fortran and vendor-
specific RMA operations. These new event types are shown in the bottom compartment
of Table 1. Start and end of RMA one-sided transfers are marked with PUT 1TS and
PUT 1TE (for remote writes and updates) or with GET 1TS and GET 1TE (for remote
reads). For these events, we collect the source and destination and the amount of data
transferred, as well as a unique RMA operation identifier which allows an easier map-

Event-Based Measurement and Analysis of One-Sided Communication 161

ping of # 1TE to the corresponding # 1TS events in the analysis stage later on. For all
MPI RMA communication and synchronization operations we also collect an identifica-
tion for the window on which the operation was performed. Exits of MPI-2 functions
related to general active target synchronization (GATS) are marked with a MPIWEXIT

event which also captures the groups of origin or target processors. For collective MPI-2
RMA functions we use a MPIWCEXIT event and record the communicator which de-
fines the group of processes which participate in the collective operation. Finally, MPI

window lock and unlock operations are marked with WLOCK and WUNLOCK events.
Based on these event types and their attributes, we now introduce two event models

for describing the dynamic behavior of RMA operations. For each model, we describe
its basic features and analyze its strengths and weaknesses. To illustrate the location of
events and relationships between them, we use simple time-line diagrams. In these dia-
grams, time progresses from left to right. Event instances are shown as colored circles
on different “time lines”, one for each process involved in the execution. Invocations of
functions are shown as gray boxes with the name of the function executed. Finally, re-
lationships between events are displayed as arrows with different line styles. Following
KOJAK conventions [7], relationships are always named with a suffix ptr (for pointer)
and always point from a later event back to an earlier event related to the later one. This
allows for an efficient analysis process with a single pass through the event trace.

3.1 Basic Model

In the first and simpler model, it is assumed that the RMA communication functions
have a blocking behavior, that is, the data transfer is completed before the function is
finished. Also, RMA synchronization functions are treated as if they were independent
of the communication functions.

The invocations of RMA communication and synchronization functions are mod-
eled with ENTER and EXIT events. To model the actual RMA transfer, the transfer-start
event is associated with the source process immediately after the begin of the corre-
sponding communication function. Accordingly, the end event is associated with the
destination process shortly before the exit of the function. Finally, we define a relation-
ship startptr which allows analysis tools to easily locate the matching start event from
the transfer end event. Figure 1 shows the model for typical usage patterns of one-sided
communication. A sequence of get and put operations is guarded by fences, barriers, or
lock/unlock operations. The message line shown in the picture is not part of the model
and only shown for clarity.

The advantage of this model is a straight-forward implementation because events
and their attributes can be recorded at exactly the place and time where they are sup-
posed to appear in the model. We use this model for analyzing SHMEM and Co-Array
Fortran programs. However, for MPI-2 this model is not sufficient because it ignores the
necessary synchronization, as described in Section 2. Since the end-of-transfer event is
placed before the end of the communication function, the transfers are recorded as com-
pleted even when, for example, in the case of a nonblocking implementation, this is not
true. Even if the implementation is blocking, it still does not reflect the user-visible be-
havior. Therefore, in case of MPI-2, we use an extended model, which is described in
the next subsection.

162 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

time

lo
ca

ti
o

n
s

Fence/Barrier
Enter

Exit

Get_1TS

enterptr

Fence/Barrier

Fence/Barrier

Fence/Barrier

Fence/Barrier

Fence/Barrier

Put

Get

startptr

Message

Put_1TS

Put_1TE

Get_1TE

(a) Get and Put Operations enclosed in Fences or Barriers

time

lo
ca

ti
o

n
s

Unlock

Enter

Exit

WLock

enterptr

Lock Put

Get

startptr

Put_1TS

Put_1TE

UnlockLock

Message

WUnlock

Get_1TS

Get_1TE

(b) Get and Put Operations with Locks

Fig. 1. Examples for Basic Event Model

3.2 Extended Model

The extended model observes the MPI-2 synchronization semantics and, therefore, better
reflects the user-visible behavior of MPI-2 RMA operations. Figure 2 shows the model
for the three different synchronization methods defined by MPI-2. The end of fences and
GATS calls is now modeled with MPIWEXIT or MPIWCEXIT respectively in order
to capture their collective nature. The transfer-start event is still located at the source
process immediately after the begin of the corresponding communication function (as it
is in the basic model). However, the transfer-end event is now placed at the destination
process shortly before the exit of the RMA synchronization function which completes
the transfer according to the MPI-2 standard rules. Unfortunately, this has an undesired
side effect. As one can see in the figure, this results in a separation of the data transfer
for remote reads from the corresponding MPI Get function. In order to rectify this
situation, we introduced a new event GET 1TO, which marks the origin’s location and
time, as well as a new relationship originptr associating this new event with the start of
the transfer (GET 1TS). This allows us in the analysis phase to locate all events related
to RMA transfers. The extended model removes all disadvantages of the basic model,
and for most MPI-2 implementations (which have a non-blocking behavior), it is even
closer to reality. However, the model is more complex and the events can no longer be
recorded at the location where they appear in the model. Therefore, a post-processing
of the collected event trace becomes necessary.

Event-Based Measurement and Analysis of One-Sided Communication 163

time

lo
ca

ti
o

n
s

MPI_Win_fence

Enter

Exit

MPIWCExit

enterptrMPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Put

MPI_Get

startptr

Message

Get_1TS

Get_1TE

Put_1TS

Put_1TE

Get_1TO

originptr

(a) MPI-2 Get and Put Operations enclosed in Fences

time

lo
ca

ti
o

n
s

MPI_Win_complete

MPI_Win_wait

MPI_Win_start

MPI_Win_post

MPI_Win_start

MPI_Put

MPI_Win_completeMPI_Get

Enter

Exit

MPIWExit

enterptr

startptr

Message

Get_1TS

Get_1TE

Put_1TS

Put_1TE

Get_1TO

originptr

(b) MPI-2 Get and Put Operations with General Active Target Synchronization

time

lo
ca

ti
o

n
s

MPI_Win_unlock

Enter

Exit

WLock

enterptr

MPI_Win_lock MPI_Put

MPI_Get

startptr

Put_1TS

Put_1TE

MPI_Win_unlockMPI_Win_lock

Message

WUnlock

Get_1TS

Get_1TE

Get_1TO

originptr

(c) MPI-2 Get and Put Operations with Locks

Fig. 2. Examples for Extended Event Model

4 Analysis and Visualization

In this section, we outline the changes to KOJAK components that were necessary to
implement support for the event models introduced in the last section. For a detailed
description of the implementation see [13].

To record the new RMA related events, we implemented a set of wrapper functions
for all SHMEM and MPI-2 communication and synchronization functions for C/C++ and
Fortran. As MPI uses opaque types for representing windows and groups, we also had
to add code for tracking these objects to the PMPI wrappers. Since the code for tracking
the communication is only executed by the origin process, but the events for marking
the start of a remote read (GET 1TS) and for the end of a remote write (PUT 1TE) are
associated with the target process in our model, we cannot directly place the events in
the correct trace buffer, which resides in the target process, during measurement. We
solve this problem by writing temporary REMOTE PUT 1TE and REMOTE GET 1TS

164 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

events to the local trace buffer and later, during the merge phase, which generates a
global trace, replace these with the correct events. This is done by manipulating their
location and destination/source attributes. For MPI-2 remote read operations, we also
generate the additional GET 1TO event. Moreover, we adjust the timestamp of transfer-
end events in compliance with the extended event model. To do this, the merge process
places # 1TE first into queues (which we keep for each location and window), then uses
the recorded attributes of MPI RMA operations to locate the positions in the event stream
when RMA transfers are complete, and finally at that point ejects the corresponding
queued events into the stream with corrected timestamps. Performing these operations
during the merge has also the advantage of lowering the measurement overhead.

Finally, we extended our tool which converts our internal EPILOG event trace format
to VTF3 to handle the new RMA event types. This allows us to use the well-known
VAMPIR tool [8] to analyze and visualize traces of RMA applications. RMA transfers
are mapped to message lines but with special unique MPI tag values which enables us
to get VAMPIR to use different visual attributes (color and/or line style) so they can be
distinguished from normal point-to-point messages.

As a result, Figure 3 presents two time-line displays of the same simple exam-
ple program, which uses MPI Put together with general active target synchronization.
The first one shows trace recorded with the Intel Trace Collector and the second one a
trace recorded with our new prototype measurement system. The Intel library does not
measure the routines of the general active target synchronization, creating the wrong
impression that useful user calculations are done instead. Also, the message lines show
the RMA transfer as completed by the end of the put operation which does not reflect
the user-visible behavior, as specified by the MPI-2 standard.

5 Conclusion and Future Work

We defined two event models describing the dynamic behavior of parallel applica-
tions involving RMA transfers. The basic model can be used for RMA implementations

(a) Recorded with Intel Trace Collector

(b) Recorded with KOJAK

Fig. 3. Time-line of MPI-2 Put Operation and General Active Target Synchronization

Event-Based Measurement and Analysis of One-Sided Communication 165

with blocking behavior, that is, vendor-specific one-sided communication libraries like
SHMEM or language extension like Co-Array Fortran and Unified Parallel C (UPC). For
MPI, we defined an extended event model that reflects the user-visible behavior as spec-
ified by the MPI-2 standard. We implemented an extension to the KOJAK performance
analysis toolset to instrument and trace applications based on one-sided communica-
tion and synchronization and to analyze the collected traces using the VAMPIR event
trace visualizer. The next step will be to extend EXPERT [12], the automatic trace anal-
ysis component of KOJAK, to handle one-sided communication. This will include the
definition of RMA-related performance properties (i.e., event patterns which represent
inefficient behavior of RMA communication and synchronization).

Acknowledgments

We would like to thank Rolf Rabenseifner for helping us better understand MPI-2 one-
sided communication and synchronization and for many helpful suggestions to improve
our event models.

References

1. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - the Complete Refer-
ence, Volume 1, The MPI Core. 2nd ed., MIT Press, 1998.

2. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.
MPI - the Complete Reference, Volume 2, The MPI Extensions. MIT Press, 1998.

3. A. Mirin and W. Sawyer. A scalable implementation of a finite volume dynamical core in
the Community Atmosphere Model. Accepted for publication in the International Journal of
High-Performance Computing Applications.

4. K. Mohror and K.L. Karavanic. Performance Tool Support for MPI-2 on Linux. In Proceed-
ings of SC’04, Pittsburgh, PA, November 2004.

5. S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin. Portable
Profiling and Tracing for Parallel Scientific Applications using C++. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools, pp. 134–145. ACM, August
1998.

6. Pallas/Intel. The Intel Trace Collector. 2004.
→ http://www.intel.com/software/products/cluster/tcollector/

7. F. Wolf. Automatic Performance Analysis on Parallel Computers with SMP Nodes. Disser-
tation, NIC Series, Vol. 17, Forschungszentrum Jülich, 2002.

8. W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. Vampir: Visualization
and Analysis of MPI Resources. Supercomputer, 12:69–80, January 1996.

9. R. W. Numrich and J. K. Reid. Co-Array Fortran for Parallel Programming. ACM Fortran
Forum, 17(2), 1998.

10. F. Wolf and B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applica-
tions. Journal of Systems Architecture, 49(10–11):421–439, November 2003.

11. B. Mohr, L. DeRose, and J. Vetter. A Performance Measurement Infrastructure for Co-Array
Fortran. In Proceddings of of Euro-Par 2005, Springer, Lisboa, Portugal, September 2005.

12. F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces
through Successive Refinement. In Proceddings of Euro-Par 2004, Springer, LNCS 3149,
pp. 47–54, Pisa, Italy, September 2004.

13. M. -A. Hermanns. Event-based Performance Analysis of Remote Memory Access Operations
(In German). Diploma Thesis, Forschungszentrum Jülich, 2004.

An Efficient Multi-level Trace Toolkit
for Multi-threaded Applications�

Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

LaBRI / INRIA-Futurs, Université Bordeaux 1
351, cours de la Libération

33405 Talence Cedex, France

Abstract. Nowadays, observing and understanding the behavior and
performance of a multi-threaded application is a nontrivial task, espe-
cially within a complex multi-threaded environment such as a multi-level
thread scheduler. In this paper, we present a trace toolkit that allows
programmers to precisely analyze the behavior of a multi-threaded ap-
plication. Running an application through this toolkit generates several
traces which are merged and analyzed offline. The resulting super-trace
contains not only classical information but also detailed informations
about thread scheduling at multiple levels.

1 Introduction

Bottleneck analysis, deadlock debugging, and performance understanding are
tasks which require a fine-grain analysis of the behavior of a parallel appli-
cation. The problem becomes even more tricky when dealing with multi-level
multi-threading applications. Let us recall that there are three main families of
threads: User-level threads are managed by the application, offer efficient basic
operations and, most importantly, can be tailored to the particular requirements
of the application; however as the operating system knows nothing about these
threads, they have the disadvantage of not being able to use all available sys-
tem resources, especially multi-processors resources. Lightweight processes (also
called LWPs or kernel-level threads) are managed by the kernel and have access
to kernel resources. For instance, several LWPs belonging to the same process
can be simultaneously active. The disadvantages are that they consume kernel
resources (the number of LWPs is usually limited) and tend to incur a bigger
overhead since all LWP scheduling and switching tasks require a kernel inter-
vention. Hybrid threads (multi-level threads) were introduced in order to take
advantage of the two previous techniques, the key idea is to map user-level
threads onto a pool of LWPs. This leads to a two-level scheduling: the kernel
manages LWPs which themselves manage user-level threads in a distributed fash-
ion. Although the implementation of this scheme within an operating system is
very complex [1], hybrid threads offer significant performance benefits with high
performance parallel applications involving only few I/O operations [2].
� This work has been supported by the ACI Masse de données & ACI Grid

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 166–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 167

Analyzing the scheduling of a multi-threaded application executed by an
hybrid-thread system, and observing the behavior of a such application in its
global context are difficult tasks which require support from the kernel, from the
(hybrid-)thread library and from the application. For this purpose, the code must
be instrumented in order to record selected events in one or several trace buffers.
This leads to multi-level instrumentation. In this framework, we may notice the
work of Shende [3] who has defined a strategy using multi-level instrumentation
in order to improve the coverage of performance measurement in layered soft-
ware. His approach, based on the node/process/thread model, was successfully
implemented in the TAU portable profiling and tracing toolkit. For instance, to
deal with Java’s multi-threaded environment [4], each thread creation is recorded
into a TAU’s performance database (this requiring mutual exclusion with other
threads) in order to create a per-thread performance data structure.

In [5], Xu et al use the dynamic environment Paradyn [6] to profile multi-
threaded applications through statistics. In their approach, each thread has its
own private copy of some performance counters or timers; locks are used to
access the minimal set of global book-keeping data structures.

However, in the framework of the parallel environment PM2 [2] which is
based on an hybrid-thread library, our goal is to debug and to optimize low-
level middlewares, such as a reactive communication library [7, 8], and tricky
mechanisms like scheduler activations [9, 10]. To that effect, it is important
to consider aspects such as lock mechanisms and interruption handler routines.
When dealing with such low-level middlewares and parallel processes, there is no
secret: the instrumentation must be as less intrusive as possible. Especially, we
do not want to introduce new synchronization points within the kernel or within
the thread scheduler in order to minimize interdependent intrusion effects1. In
that respect, we have defined a lightweight multi-level instrumentation toolkit
which aims to precisely trace the behavior of a multi-threaded program. In order
to be efficient, this toolkit has to meet the following requirements:

To be the less intrusive as possible. The tracing overhead must be very small
not only to allow an accurate performance analysis but also to minimize the
intrusive effect on the global scheduling of the application (which would be the
result e.g of an excessive increasing of the execution time of a critical section,
some new synchronization points or some new context switch points). Therefore,
system calls and high-level synchronization mechanisms must be avoided.

To deal with multi-level instrumentation. Since our goal is to study multi-level
schedulers and/or high performance communication libraries, we need to record
both kernel- and user-level events. For instance, we need to record all the kernel’s
scheduler decisions and all the thread library’s scheduler decisions in order to
get a complete knowledge of the scheduling of a multi-threaded application.

To deal with a huge amount of data. The toolkit may need to record a lot of
events such as scheduler decisions, starting and termination points of functions

1 Note that, Malony et al [11] have shown that while it is possible to compensate
overhead due to the intrusion in a single process application, parallel overhead com-
pensation is a more complex problem because of interdependent intrusion effects.

168 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

executed by a thread or by the kernel. This may generate several mega bytes of
data per second.

In this paper, we propose a solution based on two independent buffer traces:
the first one containing kernel-level events, the second one containing user-level
events. We will first present the Fast Kernel Trace toolkit which is the basis
of our work. Then we will justify our approach and give some technical details.
Finally, we will analyze the introduced overhead on two applications.

2 From Kernel Tracing to Multi-level Tracing

2.1 The Fast Kernel Traces (FKT) Toolkit

Kernel instrumentation may be done at compilation time [12, 13] or dynamically
at run-time like in KernInst [14]. It is worth noting that operating systems
such as Linux 2.6.10 and Solaris 10 (DTrace) already provide a dynamic
instrumentation toolkit which allows to instrument the running operating system
kernel. For our purpose, we chose to use the FKT toolkit [13] which is a simple and
efficient SMP Linux kernel-dedicated trace toolkit. It is based on a source-level
instrumentation, which is achieved thanks to a set of macro-functions. Therefore,
the modification of a tracing call requires to recompile the source code and
to restart the kernel. Nevertheless, basic operations such as tracing start,
tracing stop or tracing store can be executed from the user-level space.
It is worth knowing that FKT uses a well-optimized storage mechanism [15]
which allows to use TLB mechanisms to directly write buffer’s pages on the
disk, avoiding useless memory copy and limiting memory consumption.

#define FKT_PROBE2(KEYMASK,CODE,P1,P2) \

do { \

if(KEYMASK & fkt_active) \

fkt_header(((unsigned int)(CODE)), \

(unsigned int)(P1), (unsigned int)(P2));\

} while(0)

Fig. 1. A definition of a FKT macro for an event with two parameters.

Figure 1 shows the details of an FKT macro. The KEYMASK argument and the
kernel variable fkt_active allows to enable/disable the tracing. A new system
call is defined to set the variable fkt_active from the user-space. The CODE
argument denotes the recorded event. P1 and P2 are two integer arguments left
to the programmer (it is possible to record up to five integer arguments).

2.2 Meeting Hybrid Scheduling’s Requirements

In order to precisely rebuild the behavior of multi-threaded programs, it is nec-
essary to be able to determine at any time the current running user-level threads

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 169

on the SMPs. Note that a kernel view is insufficient: indeed, the kernel has no
knowledge about user-level threads which are scheduled by the LWP pool. On
the other side, an user-space’s view is also insufficient: LWPs are usually un-
aware of kernel’s context switches, so it is difficult, from the user-space point
of view, to get the identifiers of the running LWPs at a given date and to get
the processor identifier on which the user code is running. To solve these prob-
lems, new system calls might be created to request the identifier of the processor
which is recording an event, for instance, or to notify the kernel scheduler about
the user-level scheduler’s context switches. However, such a solution is too in-
trusive: system calls are expensive (see micro benchmarks given in Section 3.3)
and, moreover, this solution would introduce a higher number of context-switch
points than the uninstrumented execution would encounter. Another solution
would be to define a mechanism based on up-calls: in order to transmit the ker-
nel view to the user-space level, the kernel forces the application to call a given
function, like the POSIX signal’s mechanism does. However this solution is also
expensive since the thread state must be saved at each up-call.

Our proposition is to generate a trace from both point of views. The ker-
nel’s trace will be generated by FKT and the user-level trace will be generated
by Fast User Trace (FUT), a tool similar to FKT. The key-points of this
solution are: (1) Dealing with hybrid scheduling, Kernel- and user-level traces
are both necessary to get a full description of a multi-threaded application run.
Both traces use the cycle counter register to stamp the events since this clock is
very accurate. (2) Dealing with SMP, the cycle counter register of each processor
is perfectly synchronized with each other registers at the hardware level. (3) All
context switches (user’s and kernel’s) are recorded, so that we will be able to
deduce what happens from a scheduling point of view within the system.

After the execution of the application, both traces are merged into a so-called
super-trace which contains the following event data: the event code, time-stamp,
size and parameters; the identifiers of the user-level thread, the LWP and the
processor which executed the recording. By reconciling the kernel- and the user-
level sides, this toolkit allows to trace multi-threaded applications and, moreover,
it allows to put the application run back into its execution context, as any kernel
event may be recorded. Hence it is possible to get an accurate analysis of low-
level middlewares such as a multi-threaded communication library.

2.3 Description of the Tracing Toolkit

The multi-level tracing toolkit FUT has been implemented on top of the Mar-
cel/Linux/x86 system which is the hybrid-thread library of the portable par-
allel environment PM2 [2].

In order to instrument the kernel, users need to apply a given patch against
the Linux kernel. This patch introduces instrumented points in the kernel code
allowing to record events such as context switches, starting/termination points
of hardware interruption (IRQ) and software interruptions (system calls). The
thread library Marcel is instrumented in order to record user-thread scheduling
decisions; for instance, events such as user-level context switches, creation and

170 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

termination of LWPs are recorded. Moreover, this instrumentation allows to
trace any function call of the library Marcel. This way, one may accurately
trace the performances of the library and determine the cause of the preemption
of a user-level thread (elapsed time-slice, unacquired lock,...).

The API of FUT is similar to the FKT’s one. Event recording is done
by FUT PROBEx() macros and some event types are already defined. A basic
code instrumentation tool is also implemented in order to automatically add at-
tributes to the starting/termination points of each function. The PROF IN() and
PROF OUT() macros may be used to trace the call and the termination of a func-
tion. The code instrumentation may either be called directly by programmers or
be inserted automatically by compilers, like gcc does.

Once both traces have been recorded, they are merged in a super-trace in
which events are ordered with respect to the time-stamps. During the merge, the
relationship between user-level events, user-level threads, LWPs and processors
is established. However, some kernel events, such as those which are recorded
during interruption routines, are not to be associated with any user-level thread.

We have developed a tool (called sigmund) which allows to apply filters to
the super-trace in order to extract a sub-trace from it. One may filter events
matching some criteria (a given kind of event, a given user-thread, a time-slice).
Some basic measures may also be computed like, for instance, the (active) exe-
cution time of a given thread or the reactivity of the communication library to
a given communication event (the elapsed time between the detection of a given
event by the kernel and its treatment by the application). Moreover, a specific
filter has been developed to translate the super-trace format into the file format
of Pajé [16], a generic graphic trace viewer.

Figure 2 shows two requests getting information about the user-level thread
15 from a given super-trace. The instrumented program was executed on a SMT
bi-processors machine (thus 4 logical processors, numbered from 0). For this
execution, 4 LWPs were defined by the 2-level thread library to execute the
user-level threads. Figure 3 shows how one may observe thread’s reactivity.

3 Implementation Details and Performance Analysis

We are addressing in this section some technical issues we encountered in order
to limit the intrusion of the tracing mechanisms. We will first detail the time-
stamping, the trace format and the concurrent recording mechanism. Then we
will discuss about the overhead introduced by the instrumentation.

3.1 About the Time-Stamping and the Trace Format

FKT and FUT use the cycle counter register as a time reference; this register
stores the number of elapsed cycles since the last time the machine was started
up. It is directly readable from the user-space. It is as accurate as possible and
it is 64 bit wide. This leads to a 136 years period (232 s) on a 4 GHz (232 Hz)
machine, moreover cycle counter registers of a SMP machine are synchronized.

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 171

$> sigmund --trace-file supertrace.log --thread 15 \

--event CONTEXT_SWITCH --list-events

type date_tick pid cpu thr code name param(s)

[...]

USER 97615576 7137 1 7 23014 USER_CONTEXT_SWITCH 15

USER 97757052 7137 1 15 23014 USER_CONTEXT_SWITCH 8

USER 98006248 7136 0 6 23014 USER_CONTEXT_SWITCH 15

KERN 98139183 7136 0 15 23014 KERN_CONTEXT_SWITCH 6152

KERN 98638163 2352 2 ? 23014 KERN_CONTEXT_SWITCH 7136

USER 99060185 7136 2 15 23014 USER_CONTEXT_SWITCH 7

[...]

$> sigmund --trace-file supertrace.log --thread 15 --active-time

130193845 cycles

type: event level – date tick: event date – pid: LWP identifier
cpu: processor identifier – thr: user-thread level identifier
code: event code – name: event name – param(s): associated parameter values

In this example, we can see that the user-level thread 15 was firstly scheduled on LWP
7137 on CPU 1; then it was scheduled on LWP 7136 on CPU 0. Then following the
preemption of LWP 7176 by the kernel (in order to schedule another application), it was
scheduled on CPU 2. Then the user-level scheduler preempted the thread 15 in order to
run the thread 7. Here we can see that this 2-level scheduler does not take into account
the affinity of the threads.

Fig. 2. Super-trace analysis using sigmund.

Note that only 32 bits are required to stamp the kernel events. Indeed, from the
first recording of the cycle register, there is enough kernel events (such as kernel
scheduling decisions or clock interruptions) that are recorded during a defined
period (232 cycles) to infer the 32 higher bits. However, this argument does not
hold for user-level threads which may not produce any event for several seconds.

In order to limit the intrusiveness, event buffers are created and initialized
before the real launching of the application. An initial section containing context
information (function names, running LWPs) is also recorded in both buffers.
The size of the initial section is about several hundred of kilobytes.

3.2 Mutual Exclusion Mechanism

Dealing with threads and SMP machines, we have to take care of concurrent
accesses to the trace buffers. Actually this problem of concurrency appears as
soon as we want to record asynchronous events such as hardware interrupts or
signals, even on a single processor machine. Indeed, asynchronous events may
be raised at any time and we do not want to try to block them in order to
avoid interferences with the scheduler. Therefore the instrumentation code must
be fully reentrant. The basic idea of our approach is to atomically increment
the buffer length variable. However, high-level mutual exclusion mechanisms
are forbidden. We have solved this problem using the atomic CPU instruction

172 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

type date_tick pid cpu thr event param(s)

USER 5150163706 2732 2 8(work/6) USER_CONTEXT_SWITCH 1(daemon)

KERN 5150169922 2732 2 1(daemon) SYSTEM_CALL 142(select)

USER 5150182646 2732 2 1(daemon) USER_CONTEXT_SWITCH 11(work/9)

USER 5152816866 2733 3 9(work/7) USER_CONTEXT_SWITCH 12

KERN 5170071750 1630 0 ? IRQ 24(eth0)

USER 5176768370 2731 1 10(work/8) USER_CONTEXT_SWITCH 5(work/3)

USER 5179394810 2732 2 11(work/9) USER_CONTEXT_SWITCH 13(work/11)

USER 5182046038 2733 3 12(work/10)USER_CONTEXT_SWITCH 14(work/12)

USER 5205964954 2731 1 5(work/3) USER_CONTEXT_SWITCH 15(work/13)

USER 5208624942 2732 2 13(work/11)USER_CONTEXT_SWITCH 17(work/15)

USER 5211315302 2733 3 14(work/12)USER_CONTEXT_SWITCH 18(work/16)

USER 5235191514 2731 1 15(work/13)USER_CONTEXT_SWITCH 19(work/17)

USER 5237854634 2732 2 17(work/15)USER_CONTEXT_SWITCH 20(work/18)

USER 5240544282 2733 3 18(work/16)USER_CONTEXT_SWITCH 21(work/19)

USER 5264421734 2731 1 19(work/17)USER_CONTEXT_SWITCH 4(work/2)

USER 5267084698 2732 2 20(work/18)USER_CONTEXT_SWITCH 2(work/0)

USER 5269736086 2733 3 21(work/19)USER_CONTEXT_SWITCH 3(work/1)

USER 5293652362 2731 1 4(work/2) USER_CONTEXT_SWITCH 6(work/4)

USER 5296353186 2732 2 2(work/0) USER_CONTEXT_SWITCH 7(work/5)

USER 5298968062 2733 3 3(work/1) USER_CONTEXT_SWITCH 8(work/6)

USER 5322881710 2731 1 6(work/4) USER_CONTEXT_SWITCH 1(daemon)

KERN 5322893274 2731 1 1(daemon) SYSTEM_CALL 142(select)

USER 5322907374 2731 1 1(daemon) USER_EVENT received_msg

Our tracing toolkit allows to emphasis the reactivity of multi-threaded applications. One
can compute the elapsed time between the network message arrival (a hardware interrupt
is raised by the network card) and the processing of this message by the appropriate
user-level thread in the application.
This figure shows the relevant parts of a trace of a run where 20 threads are devoted
to some computation (denoted work/0 to work/19) and one special thread (denoted
daemon) is listening to the network in order to process the incoming messages as soon
as possible. In this program, the daemon thread executes a non-blocking system calla

select() and calls pthread yield() to yield its execution in favor of another thread
when no message is available.
Here the considered algorithm leads to very bad latencies, as the daemon thread has to
wait for all the other threads to use their quantum before getting active even though
messages could have already been received by the OS. However, most of thread libraries
do not provide any mechanism to deal efficiently with this kind of problem. A description
of an adequate support within thread libraries to improve thread reactivity to external
asynchronous events can be found in [17].

a blocking system call must be avoided when using user-level thread library.

Fig. 3. Using our mechanisms to observe thread’s reactivity.

cmpxchgl. The idea is to store the buffer’s length value in a register, then to
store the new buffer’s length in a second register and finally to call cmpxchgl

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 173

Fig. 4. Kernel and user-level trace entry layout.

in order to set the new buffer’s length. This subroutine is repetitively called
until the cmpxchgl call is successful. As a result, the event trace may be not
time-stamp ordered, thus the merging tool may have to reorder the trace.

3.3 Analysis of the Tracing Overhead

In table 1, we compare the cost of recording a single trace sample with the cost of
a few other operations. Let us note that according to [11], the TAU measurement
overhead per (flat) event is about 1400 cycles on a Xeon processor.

Table 1. Micro benchmarks (Linux 2.6.4 bi-Xeon SMT 2.8 GHz).

Function/Macro cycles

Macro PROF IN 260

System call getpid() 1900

buffered io printf(‘‘test’’) 672

We also measured the overhead and the size of generated traces. These two
values depend on the instrumentation level and on the application. Here we have
considered three instrumentation levels: no instrumentation, scheduling instru-
mentation and complete instrumentation (where system calls and all the func-
tions of the application and of the hybrid-thread library Marcel are traced). It
is worth noting that there is no need to recompile the source code: the degree of
instrumentation is defined through the use of the global variable fkt_active.

The Sumtime program can be seen as a torture test for the hybrid-thread
library: it recursively builds a complete binary tree of threads for a given height.
As a matter of fact, this program spends most of its execution time in creating,
synchronizing and destructing user-level threads. Hence highly frequent schedul-
ing events have to be recorded. This leads to a 23% overhead for the scheduler-
level instrumentation and a 80% overhead for a complete instrumentation. This
is the worst case, clearly this is not the best way to analyze the performances of
our toolkit, however the gathered information may prove to be useful for debug-
ging purposes. The second program is a multi-threaded direct solver for sparse

174 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

Table 2. Overhead measures (Linux 2.6.4 bi-Xeon SMT 2.8 GHz).

execution time # recorded events (size) Rate (MB/s)

Sumtime program

without any profiling 230 ms - -

profiled (context switches) 288 ms (+23%) 161 484 (3.72 MB) 13
profiled (all events) 430 ms (+80%) 821 844 (13.4 MB) 31

SuperLU MT program

without any profiling 7.17 s - -

profiled (context switches) 7.30 s (+1.8%) 374 (0.007 MB) 0.001
profiled (all events) 7.50 s (+4.6%) 836054 (8.39 MB) 1.1

systems of linear equations based on the library SuperLU [18]. As there is a
lot of computation within threads, the overhead of the instrumentation becomes
quite reasonable.

4 Conclusion

Hybrid-thread scheduling’s approach allows to efficiently exploit SMP architec-
ture, as basic operations on threads are efficient and several user-level threads
of a given application can run in a true parallel way. However, analyzing the
performance of such programs is delicate, mainly because some events occur
within the kernel and some others in user space. Thus, instrumentation of these
programs has to be carried out at both levels. Our toolkit allows to instrument
a multi-threaded program in order to conduct a precise analysis of executions
of this program. It avoids the introduction of synchronization points or system
calls during the execution, including basic thread operations such as creation,
destruction and synchronization.

Our toolkit is available on SMP x86 / Itanium architectures, Linux and
the hybrid-thread library Marcel. The required modifications of the Linux
kernel and of the library sources are localized. Therefore thread libraries such
as NGPT, NPTL or LinuxThread can easily be adapted to our toolkit. The
implementation of our toolkit onto other CPU architectures relies on the avail-
ability of an instruction similar to the instruction cmpxchgl (which usually exists
on modern processors) and on an accurate and CPU synchronized clock (such
as cycle counter registers).

We are currently implementing our toolkit on NUMA machines where cycle
counter registers are nearly synchronized. To deal with this problem, we have
to introduce calibration steps. Some other interesting improvements include the
recording of the performance of the counter registers and the translation of our
trace format into other trace format such as Vampir.

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 175

References

1. Sun microsystems: Multithreading in the solaris operating environment. http:

//www.sun.com/software/whitepapers/solaris9/multithread.pdf (2002)
2. Namyst, R., Méhaut, J.F.: PM2: Parallel Multithreaded Machine. A computing

environment for distributed architectures. In: Parallel Computing (ParCo ’95),
Elsevier Science Publishers (1995) 279–285

3. Shende, S.: The Role of Instrumentation and Mapping in Performance Measure-
ment. PhD thesis, University of Oregon (2001)

4. Malony, A.D., Shende, S.: Performance Technology for Complex Parallel and Dis-
tributed Systems. In: Distributed and parallel systems: from instruction parallelism
to cluster computing, Kluwer Academic Publishers (2000) 37–46

5. Xu, Z., Miller, B.P., Naim, O.: Dynamic instrumentation of threaded applica-
tions. In: PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, ACM Press (1999) 49–59

6. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Kar-
avanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance
measurement tool. Computer 28 (1995) 37–46

7. Aumage, O., Bougé, L., Méhaut, J.F., Namyst, R.: Madeleine II: A portable and
efficient communication library for high-performance cluster computing. Parallel
Computing 28 (2002) 607–626

8. Danjean, V., Namyst, R.: Controling Kernel Scheduling from User Space: an Ap-
proach to Enhancing Applications’ Reactivity to I/O Events. In: HiPC ’03. Volume
2913 of LNCS., Hyderabad, India, Springer-Verlag (2003) 490–499

9. Anderson, T., Bershad, B., Lazowska, E., Levy, H.: Scheduler Activations: Efficient
kernel support for the user-level managment of parallelism. In: Proc. 13th ACM
Symp. on Operating Systems Principles (SOSP 91). (1991) 95–105

10. Danjean, V., Namyst, R., Russell, R.: Integrating Kernel Activations in a Mul-
tithreaded Runtime System on Linux. In: (RTSPP ’00. Lect. Notes in Comp.
Science, Cancun, Mexico, Springer-Verlag (2000)

11. Malony, A.D., Shende, S.S.: Overhead Compensation in Performance Profiling. In:
Proc. Europar 2004 Conference, LNCS (2004)

12. Yaghmour, K., Dagenais, M.R.: Measuring and Characterizing System Behavior
Using Kernel-Level Event Logging. In: Proceeding of the 2000 USENIX Annual
Technical Conference. (2000)

13. Russell, R.D., Chavan, M.: Fast Kernel Tracing: a Performance Evaluation Tool
for Linux. In: Proc. 19th IASTED International Conference on Applied Informatics
(AI 2001), IASTED (2001)

14. Tamches, A., Miller, B.P.: Using dynamic kernel instrumentation for kernel and
application tuning. The International Journal of High Performance Computing
Applications 13 (1999) 263–276

15. Thibault, S.: Developping a software tool for precise kernel measurements. Master’s
thesis, University of New Hampshire (2003)

16. de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: an extensible environment for
visualizing multi-threaded programs executions, EuroPar2000 (2000)

17. Bougé, L., Danjean, V., Namyst, R.: Improving Reactivity to I/O Events in Mul-
tithreaded Environments Using a Uniform, Scheduler-Centric API. In: Euro-Par
2002. Volume 2400 of LNCS., Paderborn, Germany (2002) 605–614

18. Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal al-
gorithm for sparse gaussian elimination. SIAM J. Matrix Anal. Appl. 20 (1999)
915–952

Knowledge Based Automatic Scalability Analysis
and Extrapolation for MPI Programs

Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel

Technische Universität Dresden, Dresden, Germany
{kluge,knuepfer,nagel}@zhr.tu-dresden.de

Abstract. The question how well a MPI program is scaling with an
increasing number of processors becomes more and more interesting, es-
pecially when these number grows to 10.000 or even 100.000 with IBM’s
’Blue Gene’ this year. The approach presented with this paper is able
to identify locations within the source code of an application where the
communication effort does not scale well with the growing number of
processors. We show how traces for the same program generated with
different numbers of processors can be inspected and compared auto-
matically. An analytical approach will then identify the points within
the source that do not scale as expected. At the end of this article, the
benefits from this method are demonstrated on an ASCI benchmark.

1 Introduction

The number of processors available for a single application will break through
the mark of 100.000 this year with IBM’s supercomputer ’Blue Gene’. Parallel
programs today are usually developed by using either OpenMP [1] or MPI [2]
or both together. Both will generate some overhead during the program exe-
cution. Some of this additional time (compared to a serial execution) can be
considered as necessary, some can be described as overhead and maybe avoid-
able. A necessary part for MPI communication is involved when there is no extra
communication processor within the system so that the processor itself has to
do execute the MPI protocol. We will show how traces obtained with Vampir-
trace [3] for different numbers of processors can automatically be compared. We
also demonstrate how it is possible to identify MPI scalability problems. A poly-
nomial will be used to compare statistical data generated for each source code
location (either a function name or a source file/line number combination) that
calls a MPI function.

The first section gives an overview of approaches to detect MPI communi-
cation inefficiencies. The second section is dedicated to our analytical approach
that is able to find those source code locations where the time needed for MPI
communication does not scale as expected (with the numbers of processors).
Within the third section we give an overview of the architecture of a tool that
implements the ideas mentioned before. The final part of this article shows re-
sults of the new tool applied to a benchmark taken from the ASCI benchmark
collection.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 176–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Knowledge Based Automatic Scalability Analysis 177

2 Detection of MPI Communication Inefficiencies

The usual way to do MPI program analysis is the post-mortem analysis. All pro-
gram activities are recorded during runtime and the data generated are inspected
afterwards. On one hand, this allows to keep the overhead for analysis during
runtime low. On the other hand, it generates usually a large amount of data. An
automatic analysis should be able to provide hints for source code optimization
and should guide the user to points that are worth a manual inspection. One tool
that is able to identify MPI and OpenMP performance bottlenecks is KOJAK [4].
It is based on automatic analysis of program execution patterns (implemented
as C++ classes) that describe inefficient behavior of parallel programs.

The approach presented with this article will use a different way to identify
MPI performance problems. By assuming a concrete hard- and software stack
it can be further assumed that the execution time for a MPI function call is
roughly constant when the number of processors involved and the message size is
constant. Our approach derives from a repeated execution of a MPI function the
’usual’ execution time for ideal circumstances for that function. The time tmax

calculated this way is the maximum execution time we accept for this specific
function call for a given number of processors and a message size. The time tmax

is calculated for some base points, all other points are interpolated from these.
The approach has been described in [5] and [6]. An other way to define this time
is shown by the DIMEMAS [7] tool. It uses a latency/bandwidth and a point-
to-point communication model to predict the execution time for MPI functions
that transmit data.

Execution times t above tmax can be considered as overhead. Each source
code location that calls a MPI function will be labeled with an index l =
{0, 1, 2, . . .}. Each function call recorded for this source code location will be
indexed with an index i = {0, 1, 2, . . .}. For a single program execution it is
possible to calculate the total time T spent within this MPI function

Tl =
∑

i

t (1)

and the overhead O wasted at this source code location with

Ol =
∑

i

max(0, t − tmax). (2)

When the Ol are sorted backwardly, the first positions in the list generated
denotes the source code locations that generate most of the overhead and should
give the user some clues about the MPI communication events that are worth
to be optimized.

3 Comparing Multiple Trace Files

The metrics defined within the previous section help the user by automatically
finding problems of MPI communication within a single program trace. Scalabi-
lity investigations can only be made by comparing multiple trace files obtained
with different numbers of processors.

178 Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel

The first thing we assume is that the MPI communication time TP and/or
the MPI communication overhead OP is a function of the numbers of processors
P used. We will use a polynomial

f(P) =
∑

i

aiP
i (3)

that fits best to the communication time (or overhead). The ai can be determined
by an optimization and will be calculated for each source code location as well
as for the whole application. For an application that is scaling well the time
each process spent within MPI has to remain constant. From this follows that
the time spent within MPI for the whole application should be at maximum a
linear function of the numbers of processors. If this assumption is violated the
scalability of the application is bound because the MPI communication time
will grow rapidly and take most of the runtime of the application. First of all
the ai are calculated for the MPI communication time as well as the overhead
for the whole application. Large values for ai for i > 1 will indicate that the
application may have a scalability problem. Because we are interested in if there
is a scalability problem and not which degree greater than 1 of the polynomial
is substantial greater than 0 we set

ai = 0 for all i > 2. (4)

That results in a quadratic polynomial f(P) = a0 +a1P +a2P
2 which describes

the progression of the communication time (or the overhead). The ai will also
be ascertained for each source code location Ol. Large a2 at the source code
locations will give hints for those locations that causes the scalability problem.

The optimization process mentioned above will finish with a set of parameters
{a0, a1, a2} and a set of errors eP , one for each used numbers of processors P.
The accuracy of the optimization can be described by the maximum of the ration
between the error eP and the values TP (or OP) as

emax = max
P

[
abs

(
eP

TP

)]
or max

P

[
abs

(
eP

OP

)]
. (5)

4 MPI Communication Time Extrapolation

The next step to reach the target of predicting the MPI communication perfor-
mance is to use the data extracted in the sections before for an extrapolation.
The goal here is to replace a program execution with a large number of processors
by some executions of the same program with smaller numbers of processors. The
advantage gained out of this is that the communication performance of a MPI
application running on large numbers of processors can be determined without
actually doing the program execution.

Knowledge Based Automatic Scalability Analysis 179

The setup we are using is the following:

1. A MPI application is executed with five or more different numbers of pro-
cessors. The used numbers of processors are labeled as p = {P1, P2, . . . , PN}

2. N − 3 different subsets pS of p are built, containing {P1, P2, . . . , PS} with
S = {4, . . . , N − 3}. To start with the first four points and try to extra-
polate the fifth one is due to the following experience we made during the
experiments. If a program is executed with the same number of processors
multiple times all trace files generated this way will differ. Some of them will
represent a minimal total runtime and have almost the same characteristics
(total time spent within MPI etc.) but even they will still differ. The best
trace file for this number of processors will be used for the extrapolation
process. To balance the errors introduced this way we use as much trace files
with different numbers of processors as possible. Due to an usual limited time
and the costs associated with program executions on a parallel machine we
recommend to start with at least four or five different numbers of processors.

3. The ai for the MPI communication time and the MPI communication over-
head for each subset are evaluated.

After extrapolating the fifth point from the first four points we will use the
first five measured points for an extrapolation of the sixth point and so on. The
sum of all this extrapolation and the stability of the parameters ai give hints if
the extrapolation itself makes sense.

The evaluation that has been done is based on the following criteria:

1. How big is the maximum error emax of the optimization process?
2. Can the next point PS+1 be extrapolated from the subset pS? This question

can be answered by comparing the difference d between the value of f(P) at
the point PS+1 and the real value TP (or OP) with emax.

3. Are the parameters ai stable?

5 Proposing a Tool Architecture

To actually implement the ideas mentioned in the sections before a tool has been
implemented. The first requirement that has driven the development of the tool
is the adaptation of the models for the MPI communication. The parameters
for the models have to be found and the maximum execution times for the MPI
functions have to be evaluated (see [5]). The next point is that the tool should
be independent from a specific trace library. Instead of that, Vampirtrace or
PARAVER [8] or even proprietary libraries should be usable. An other point
is the comparison and the analysis of multiple trace files which should be done
automatically. Results from this evaluation should be available to the user for
his own purposes, e.g. for graphical representations, for export (to Gnuplot) or
for calculation of his own derived metrics.

An overview of the architecture of the tool is given in figure 1. Basically three
different parts can be distinguished.

180 Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel

Fig. 1. The tool architecture

First of all, the paramters for the models for all MPI functions has to be
computed. This step has to be done just once for a given hardware and soft-
ware stack. The model will be stored permanently and can be reused as long as

Knowledge Based Automatic Scalability Analysis 181

the machine configuration with respect to the communication layer(s) does not
change.

The second part uses as input trace files of an application running using
different numbers of processors. The models created within the first part are used
to investigate each communication event, to divide the necessary communication
time from the overhead and to assign all results to their associated source code
locations.

The result is a list of source code locations and associated data that can
now be analyzed in the third part of the program. The data collected for the
same source code location but for program executions with different numbers
of processors are used to compute the parameters ai, the extrapolation and to
evaluate the quality of the fitting of f(P). Beside these results a report for the
user will be generated.

To be able to generate data with some expressiveness it is recommended to
use the same trace library to adapt the models and to trace the program execu-
tion. Usually trace libraries differ in the overhead generated. Only when using
the same library for model adaptation and trace file generation this overhead
keeps transparent.

6 Application to the Sweep3D Benchmark

We have chosen the Sweep3D benchmark [9] to demonstrate the usefulness of
the extrapolation process. This benchmark has often been used to test new tools
because its characteristics are well researched [4]. We have used a fixed global
problem size of 168× 168× 168 for all program executions. By cutting this cube
along the first dimension into slices of equal size and assigning each slice to a
single processor (and MPI task) we are able to execute the benchmark with
numbers of processors of 4, 8, 12, 14, 21, 24 and 28. The system we used for the
benchmark is the IBM eServer pSeries 690 running at 1.7 GHz installed at the
Forschungszentrum Jülich in Germany. One SMP node consists of 32 processors
and delivers a heterogeneous environment which also can easily be used exclu-
sively. Within this environment we can expect that the time the benchmark
spends within MPI scales linearly with the number of processors. The use of
more that one SMP node would introduce more influence parameters due to the
necessary external network.

Figure 2 shows the total execution time (over all processors) including and
excluding the communication time of the original program version. As is can
be seen the time used for calculation remains almost constant during all used
numbers of processors and the increasing part is only due to the communication.

Table 1 (and figure 3) shows the calculated parameters for the extrapolation
of the overhead generated with MPI when using the first four measurements, then
the first five, and so on. The remaining error emax for the fitting of the quadratic
polynomial is plotted as well as the errors for an extrapolation of those points
that have not been used for the fitting of the polynomial. These parameters as
well as emax and d indicates that the benchmark does not scale linearly with the

182 Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel

 0

 100

 200

 300

 400

 500

 28 24 21 14 12 8 4

T
im

e
in

 S
ec

on
ds

Number of Processors

Sweep3D Benchmark

Sum Execution Time (incl.)
Sum Execution Time (excl.)

Fig. 2. Sweep3D execution time including and excluding time for MPI communication,
original program version

Table 1. Sweep3D: Scalability parameters for the original source code

used executions a0 a1 a2 emax(%) d

4 (4,8,12,14) 21.43 -0.00 0.41 12.58 60.93

5 (4,8,12,14,21) -11.02 9.34 -0.13 15.14 15.61

6 (4,8,12,14,21,24) -18.79 11.20 -0.22 17.80 23.22

7 (4,8,12,14,21,24,28) -2.15 7.72 -0.08 15.35 -

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 28 24 21 14 12 8 4

T
im

e
in

 S
ec

on
ds

Number of Processors

Global Extrapolation

Global MPI Time
Global MPI Overhead

Time Interpolation
Overhead Interpolation

Fig. 3. Sweep3D MPI communication time, original program version

Knowledge Based Automatic Scalability Analysis 183

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 28 24 21 14 12 8 4

T
im

e
in

 S
ec

on
ds

Number of Processors

Global Extrapolation

Global MPI Time
Global MPI Overhead

Time Interpolation
Overhead Interpolation

Fig. 4. Sweep3D MPI communication time, optimized program version

Table 2. Sweep3D: Scalability parameters for the optimized source code

used executions a0 a1 a2 emax(%) d

4 (4,8,12,14) 3.68 4.16 0.10 2.02 6.62

5 (4,8,12,14,21) 0.15 5.17 0.04 2.32 23.35

6 (4,8,12,14,21,24) -11.48 7.96 -0.09 12.63 10.87

7 (4,8,12,14,21,24,28) -3.91 6.38 -0.03 10.89 -

numbers of processors. Anyhow, it is also clear that those numbers can considered
to be stable (when using five different numbers of processors or more) because
the approximation error emax is acceptable and the communication time for
the next used number of processors can be predicted using all previous (lower)
numbers.

The extrapolations done at the source code level have shown that the non
linear part of the growth of the MPI communication time results from two source
code locations within the source code file sweep.f. Within the most inner loop
of the algorithm two vectors are sent to/received from the (virtually) adjacent
processors. To erase this non linear part we have replaced the blocking calls to
MPI Send and MPI Recv with their non blocking equivalents and a following
MPI Waitall.

As it can be seen in figure 4 the MPI communication time as well as the MPI
overhead scales now linearly with the number of used processors, a table 2 shows
that the parameter a2 is now almost 0. Even the quality of the fitting (emax)
has been improved as like as the quality of the prediction for the next step (d).

184 Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel

7 Conclusion

This article describes an approach to detect scalability bottlenecks within the
MPI communication for parallel programs. It is able to investigate the MPI
communication time as well as the overhead generated by MPI on the source
code level. To be able to divide the time spent within a single MPI function
call into a necessary part and overhead the maximum execution time for this
function call has to be evaluated. This is done by looking at the execution times
for a repeated execution for this function under ideal circumstances.

By using a polynomial the extracted data can automatically be analyzed
for scalability problems. We have shown that one problem within the Sweep3D
benchmark has been identified and tracked back to the source code level. An
alteration of the source code has erased this scalability problem.

References

1. OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 2.5. http://www.openmp.org/drupal/mp-documents/draft\ spec25.pdf,
November 2004.

2. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical report, University of Tennessee, 1995.

3. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl
Solchenbach. VAMPIR: Visualization and Analysis of MPI Resources. In Supercom-
puter 63, Volume XII, Number 1, pages 69–80, 1996.

4. S. Moore, F. Wolf, J. Dongarra, and B. Mohr. Second workshop on productivity
and performance in high-end computing (p-phec) at 11th international symposium
on high performance computer architecture (hpca-2005) (submitted). 2005.

5. Michael Kluge. Statistische Analyse von Programmspuren für MPI-Programme.
Diploma thesis, November 2004.

6. Michael Kluge, Andreas Knüpfer and Wolfgang E. Nagel. Statistical Methods for
Automatic Performance Bottleneck Detection in MPI Based Programs In Proceed-
ings of 5th International Conference on Computational Science, pages 330–337,
2005.

7. European Center for Parallelism of Barcelona. Dimemas.
http://www.cepba.upc.es/dimemas/.

8. European Center for Parallelism of Barcelona. Paraver.
http://www.cepba.upc.es/paraver/.

9. Lawrence Livermore National Laboratory. The ASCI Sweep3D Benchmark Code.
http://www.llnl.gov/asci\ benchmarks/asci/limited/sweep3d/asci\
sweep3d.html, 1995.

Performance Modeling: Understanding the Past
and Predicting the Future

David H. Bailey1,� and Allan Snavely2

1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
dhbailey@lbl.gov

2 University of California, San Diego, 9500 Gilman Drive, La Jolla, CA
asnavely@cs.ucsd.edu

Abstract. We present an overview of current research in performance
modeling, focusing on efforts underway in the Performance Evaluation
Research Center (PERC). Using some new techniques, we are able to
construct performance models that can be used to project the sustained
performance of large-scale scientific programs on different systems, over
a range of job and system sizes. Such models can be used by vendors
in system designs, by computing centers in system acquisitions, and by
application scientists to improve the performance of their codes.

1 Introduction

The goal of performance modeling is to gain understanding of a computer sys-
tem’s performance on various applications, by means of measurement and anal-
ysis, and then to encapsulate these characteristics in a compact formula. The
resulting model can be used to gain greater understanding of the performance
phenomena involved and to project performance to other system/application
combinations.

We will focus here on large-scale scientific computation, although many of the
techniques we describe below apply equally well to single-processor systems and
to business-type applications. Also, this paper focuses on some work being done
within the Performance Evaluation Research Center (PERC) [1], a research col-
laboration funded through the U.S. Department of Energy’s Scientific Discovery
through Advanced Computation (SciDAC) program [10]. A number of impor-
tant performance modeling activities are also being done by other groups, for
example at Los Alamos National Laboratory [6].

The performance profile of a given system/application combination depends
on numerous factors, including: (1) system size; (2) system architecture; (3)
processor speed; (4) multi-level cache latency and bandwidth; (5) interprocessor
network latency and bandwidth; (6) system software efficiency; (7) type of appli-
cation; (8) algorithms used; (9) programming language used; (10) problem size;

� This work was supported by the Director, Office of Computational and Technology
Research, Division of Mathematical, Information, and Computational Sciences of
the US DOE, under contract DE-AC03-76SF00098.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 185–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 David H. Bailey and Allan Snavely

(11) amount of I/O; and others. Indeed, a comprehensive model must incorporate
most if not all of the above factors. Because of the difficulty in producing a truly
comprehensive model, present-day performance modeling researchers generally
limit the scope of their models to a single system and application, allowing only
the system size and job size to vary. Nonetheless, as we shall see below, some
recent efforts appear to be effective over a broader range of system/application
choices.

Performance models can be used to improve architecture design, inform pro-
curement, and guide application tuning. Unfortunately, the process of produc-
ing performance models historically has been rather expensive, requiring large
amounts of computer time and highly expert human effort. This has severely
limited the number of high-end applications that can be modeled and studied.
Someone has observed that, due to the difficulty of developing performance mod-
els for new applications, as well as the in-creasing complexity of new systems, our
supercomputers have become better at predicting and explaining natural phe-
nomena (such as the weather) than at predicting and explaining the performance
of themselves or other computers.

2 Applications of Performance Modeling

Performance modeling can be used in numerous ways. Here is a brief summary
of these usages, both present-day and future possibilities:
Runtime estimation. The most common application for a performance model is
to enable a scientist to estimate the runtime of a job when the input parameters
for the job are changed, or when a different number of processors is used in a
parallel computer system. One can also estimate the largest size of system that
can be used to run a given problem before the parallel efficiency drops to an
unacceptable area.
System design. Performance models are frequently employed by computer ven-
dors in their design of future systems. Typically engineers construct a perfor-
mance model for one or two key applications, and then compare future technol-
ogy options based on performance model projections. Once performance mod-
eling techniques are better developed, it may be possible to target many more
applications and technology options in the design process. As an example of
such “what-if” investigations, application parameters can be used to predict
how performance rates would change with a larger or more highly associative
cache. In a similar way, the performance impact of various network designs can
be explored. We can even imagine that vendors could provide a variety of system
customizations, depending on the nature of the user’s anticipated applications.
System tuning. One example of using performance modeling for system tuning
is given in [4]. Here a performance model was used to diagnose and rectify a
misconfigured MPI channel buffer, which yielded a doubling of network perfor-
mance for programs sending short messages. Along this line, Adolfy Hoisie of
LANL recalls that when a recent system was installed, its performance fell below
model predictions by almost a factor of two. However, further analysis uncovered

Performance Modeling 187

some system difficulties, which, when rectified, improved performance to almost
the same level the model predicted [6]. When observed performance of a system
falls short of that predicted by a performance model, it may be the system that
is wrong not the model!

Application tuning. If a memory performance model is combined with application
parameters, one can predict how cache hit-rates would change if a different cache-
blocking factor were used in the application. Once the optimal cache blocking has
been identified, then the code can be permanently changed. Simple performance
models can even be incorporated into an application code, permitting on-the-fly
selection of different program options.

Performance models, by providing performance expectations based on the
fundamental computational characteristics of algorithms, can also enable algo-
rithmic choice before going to the trouble to implement all the possible choices.
For example, in some recent work one of the present authors employed a per-
formance model to estimate the benefit of employing an “inspector” scheme to
reorder data-structures before being accessed by a sparse-matrix solver, as part
of software being developed by the SciDAC Terascale Optimal PDE Simula-
tions (TOPS) project [13]. It turned out that the overhead of these “inspector”
schemes is more than repaid provided the sparse-matrices are large and/or highly
randomized.

System procurement. Arguably the most compelling application of performance
modeling, but one that heretofore has not been used much, is to simplify the
selection process of a new computing facility for a university or laboratory. At
the present time, most large system procurements involve a comparative test of
several systems, using a set of application benchmarks chosen to be typical of the
expected usage. In one case that the authors are aware of, 25 separate application
benchmarks were specified, and numerous other system-level benchmark tests
were required as well. Preparing a set of performance benchmarks for a large
laboratory acquisition is a labor-intensive process, typically involving several
highly skilled staff members. Analyzing and comparing the benchmark results
also requires additional effort. These steps involved are summarized in the recent
HECRTF report [7].

What is often overlooked in this regard is that each of the prospective ven-
dors must also expend a comparable (or even greater) effort to implement and
tune the benchmarks on their systems. Partly due to the high personnel costs of
benchmark work, computer vendors often can afford only a minimal effort to im-
plement the bench-marks, leaving little or no resources to tune or customize the
implementations for a given system, even though such tuning and/or customiza-
tion would greatly benefit the customer. In any event, vendors must factor the
cost of implementing and/or tuning benchmarks into the price that they must
charge to the customer if successful. These costs are further multiplied because
for every successful proposal, they must prepare several unsuccessful proposals.

Once a reasonably easy-to-use performance modeling facility is available, it
may be possible to greatly reduce, if not eliminate, the benchmark tests that
are specified in a procurement, replacing them by a measurement of certain

188 David H. Bailey and Allan Snavely

performance model parameters for the target systems and applications. These
parameters can then be used by the computer center staff to project performance
rates for numerous system options. It may well be that a given center will decide
not to rely completely on performance model results. But if even part of the
normal application suite can be replaced, this will save considerable resources
on both sides.

3 Basic Methodology

Our framework is based upon application signatures, machine profiles and con-
volutions. An application signature is a detailed but compact representation of
the fundamental operations performed an application, independent of the target
system. A machine profile is a representation of the capability of a system to
carry out fundamental operations, independent of the particular application. A
convolution is a means to rapidly combine application signatures with machine
profiles in order to predict performance. In a nutshell, our methodology is to

1. Summarize the requirements of applications in ways that are not too ex-
pensive in terms of time/space required to gather them but still contain
sufficient detail to enable modeling.

2. Obtain the application signatures automatically.
3. Generalize the signatures to represent how the application would stress ar-

bitrary (including future) machines.
4. Extrapolate the signatures to larger problem sizes than what can be actually

run at the present time.

With regards to application signatures, note that the source code of an ap-
plication can be considered a high-level description, or application signature, of
its computational resource requirements. However, depending on the language
it may not be very compact (Matlab is compact, while Fortran is not). Also, de-
termining the resource requirements the application from the source code may
not be very easy (especially if the target machine does not exist!). Hence we
need cheaper, faster, more flexible ways to obtain representations suitable for
performance modeling work. A minimal goal is to combine the results of sev-
eral compilation, execution, performance data analysis cycles into a signature,
so these steps do not have to be repeated each time a new performance question
is asked.

A dynamic instruction trace, such as a record of each memory address ac-
cessed (us-ing a tool such as Dynist [3], of the Alpha processor tool ATOM) can
also be considered to be an application signature. But it is not compact-address
traces alone can run to several Gbytes even for short-running applications—and
it is not machine independent.

A general approach that we have developed to analyze applications, which
has resulted in considerable space reduction and a measure of machine inde-
pendence, is the following: (1) statically analyze, then instrument and trace an

Performance Modeling 189

application on some set of existing machines; (2) summarize, on-the-fly, the op-
erations performed by the application; (3) tally operations indexed to the source
code structures that generated them; and (4) perform a merge operation on
the summaries from each machine [4][11][12][5]. From this data, one can obtain
information on memory access patterns (namely, summaries of the stride and
range of memory accesses generated by individual memory operations) and com-
munications patterns (namely, summaries of sizes and type of communications
performed).

The specific scheme to acquire an application signature is as follows: (1) con-
duct a series of experiments tracing a program, using the techniques described
above; (2) analyze the trace by pattern detection to identify recurring sequences
of messages and loads/store operations; and (3) select the most important se-
quences of patterns. With regards to (3), infrequent paths through the program
are ignored, and sequences that map to insignificant performance contributions
are dropped.

As a simple example, the performance behavior of CG (the Conjugate Gradi-
ent benchmark from the NAS Parallel Benchmarks [2]), which is more 1000 lines
long, can be represented from a performance standpoint by one random memory
access pattern. This is because 99% of execution is spent in the following loop:

do k = rowstr(j), rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))

enddo

This loop has two floating-point operations, two stride-1 memory access pat-
terns, and one random memory access pattern (the indirect index of p). On
almost all of today’s deep memory hierarchy machines the performance cost
of the random memory access pattern dominates the other patterns and the
floating-point work. As a practical matter, all that is required to predict the
performance of CG on a machine is the size of the problem (which level of the
memory hierarchy it fits in) and the rate at which the machine can do random
loads from that level of the memory. Thus a random memory access pattern suc-
cinctly represents the most important demand that CG puts on any machine.

Obviously, many full applications spend a significant amount of time in more
than one loop or function, and so the several patterns must be combined and
weighted. Simple addition is often not the right combining operator for these
patterns, because different types of work may be involved (say memory accesses
and communication). Also, our framework considers the impact of different com-
pilers or different compiler flags in producing better code (so trace results are
not machine independent). Finally, we develop models that include scaling and
not just ones that work with a single problem size. For this, we use statistical
methods applied to series of traces of different input sizes and/or CPU counts
to derive a scaling model.

The second component of this performance modeling approach is to represent
the resource capabilities of current and proposed machines, with emphasis on
memory and communications capabilities, in an application-independent form
suitable for parameterized modeling. In particular, we use low-level benchmarks

190 David H. Bailey and Allan Snavely

to gather ma-chine profiles, which are high-level representations of the rates at
which machines can carry out basic operations (such as memory loads and stores
and message passing), including the capabilities of memory units at each level of
the memory hierarchy and the ability of machines to overlap memory operations
with other kinds of operations (e.g., floating-point or communications opera-
tions). We then extend machine profiles to account for reduction in capability
due to sharing (for example, to express how much the memory subsystem’s or
communication fabric’s capability is diminished by sharing these with compet-
ing processors). Finally, we extrapolate to larger systems from validated machine
profiles of similar but smaller systems.

To enable time tractable modeling we employ a range of simulation techniques
[4][9] to combine applications signatures with machine profiles:

1. Convolution methods for mapping application signatures to machine profiles
to enable time tractable statistical simulation.

2. Techniques for modeling interactions between different memory access pat-
terns within the same loop. For example, if a loop is 50% stride-1 and 50%
random stride, we determine whether the performance is some composable
function of the these two separate performance rates.

3. Techniques for modeling the effect of competition between different appli-
cations (or task parallel programs) for shared resources. For example, if
program A is thrashing L3 cache with a large working set and a random
memory access pattern, we determine how that impacts the performance of
program B with a stride-1 access pattern and a small working set that would
otherwise fits in L3.

4. Techniques for defining “performance similarity” in a meaningful way. For
example, we determine whether loops that “look” the same in terms of ap-
plication signatures and memory access patterns actually perform the same.
If so, we define a set of loops that span the performance space.

In one sense, cycle-accurate simulation is the performance modeling base-
line. Given enough time, and enough details about a machine, we can always
explain and predict performance by stepping through the code instruction by
instruction. However, simulation at this detail is exceedingly expensive. So we
have developed fast-to-evaluate machine models for current and proposed ma-
chines, which closely approximate cycle-accurate predictions by accounting for
fewer details.

Our convolution method allows for relatively rapid development of perfor-
mance models (full application models take 1 or 2 months now). Performance
predictions are very fast to evaluate once the models are constructed (few min-
utes per prediction). The results are fairly accurate. Figure 1 show qualitatively
the accuracy results across a set of machines and problem sizes and CPU counts
for POP, the Parallel Ocean Program.

We have carried out similar exercise for several sizes and inputs of POP
problems. And we have also modeled several applications from the DOD HPCMO
[8] work-load, including AVUS a CFD code, GAMESS a computational chemistry

Performance Modeling 191

Fig. 1. Results for Parallel Ocean Program (POP). (R) is real runtime (M) is modeled
(predicted) runtime

code, HYCOM a weather code, and OOCORE an out-of-core solver. In a stern
test of the methods we were allowed access to DOD machines only to gather
machine profiles via low-level benchmarks. We then modeled these large parallel
applications at several CPU counts ranging from 16 to 384, on Power3, Power4 in
two different flavors, Alpha, Xeon, and R16000 processor based supercomputers.
We then predicated application performance on these machines; an d only after
the predictions were issued were the application true runtimes independently
ascertained by DOD personnel.

Table 1. Results of “blind” predictions of DoD HPCMO Workload Category

Category Average Absolute Error Standard Deviation

Overall 20.5% 18.2%
AVUS std. input 15.0% 14.2%
AVUS large input 16.5% 16.2%
GAMESS std. input 45.1% 24.2%
HYCOM std. input 21.8% 16.7%
HYCOM large input 21.4% 16.9%
OOCORE std. input 32.1% 27.5%
Power3 17.4% 17.0%
Power4 p690 12.9% 9.6%
Power4 p655 15.7% 19.9%
Alpha 29.0% 17.6%
R16000 41.0% 18.5%
Xeon 28.2% 12.3%

Table 1 above gives the overall average absolute error and standard devia-
tion of absolute average error as well as breakdowns by application/input and
architecture. We conducted this ’blind’ test (without knowing the performance

192 David H. Bailey and Allan Snavely

of the applications in advance) in order to subject our modeling methods to the
sternest possible test and because we think it is important to report successes
and failures in modeling in order to advance the science. The conditions of in-
dependent application runtime assessment led to some of the error above. For
example, we modeled the MPI version of GAMESS but in several cases it was
the shmem version that was run (a case of predicting an apple and getting an
orange). In the case of the Power 3, the predictions were consistently too high
which was later traced to a misconfigured system parameter that allowed pag-
ing (another case of the machine being broken rather than the model). However
some weaknesses in the models were also identified; the models do not do a good
job of modeling I/O at present, which contributed to high application error for
OOCORE (an I/O intensive code) and high machine error in the case of the
Alpha system (which has a weak I/O subsystem). Xeons were consistently over
predicted for reasons that appear to have to do with weak architectural support
for floating-point (few, shallow, pipelines). Augmentation of the models to ad-
dress systematic errors and add additional terms for I/O and enhanced accuracy
of floating-point scheduling is work in progress.

4 Performance Sensitivity Studies

Reporting the accuracy of performance models in terms of model-predicted time
vs. observed time (as in the previous section) is mostly just a validating step
for obtaining confidence in the model. A more interesting and useful exercise is
to explain and quantify performance differences and to play ”what if” using the
model. For example, it is clear from Figure 1 above that Lemeiux, the Alpha-
based system, is faster across-the-board on POP x1 than is Blue Horizon, the
Power3 system. The question is why? Lemeuix has faster processors (1GHz vs.
375 MHz), and a lower-latency network (a measured ping-pong latency of about
5 ms vs. about 19 ms), but Blue Horizon’s net-work has the higher bandwidth
(a measured ping-pong bandwidth of about 350 MB/s vs. 269 MB/s). Without
a model, one is left to conjecture “I guess POP performance is more sensitive
to processor performance and network latency than network bandwidth,” but
without solid evidence.

With a model that can accurately predict application performance based
on proper-ties of the code and the machine, we can carry out precise modeling
experiments such as that represented in Figure 2. Here we model perturbing
the Blue Horizon (BH) system (withPower3 processors and a Colony switch)
into the TCS system (with Alpha ES640 processors and the Quadrics switch) by
replacing components one by one. Figure 2 represents a series of cases modeling
the perturbing from BH to TCS, going from left to right. The four bars for
each case represent the performance of POP x1 on 16 processors, the processor
and memory subsystem performance, the network band-width, and the network
latency, all normalized to that of BH.

In Case 1, we model the effect of reducing the bandwidth of BH’s network to
that of a single rail of the Quadrics switch. There is no observable performance
effect, as the POP x1 problem at this size is not sensitive to a change in peak

Performance Modeling 193

Fig. 2. Performance sensitivity study of POP applied to proposed Lemieux upgrade

network band-width from 350 MB/s to 269 MB/s. In Case 2, we model the
effect of replacing the Colony switch with the Quadrics switch. Here there is a
significant performance improvement, due to the 5 ms latency of the Quadrics
switch versus the 20 ms latency of the Colony switch. This is evidence that the
barotropic calculations in POP x1 at this size are latency sensitive. In Case 3,
we use Quadrics latency but the Colony band-width just for completeness. In
Case 4, we model keeping the Colony switch latency and bandwidth figures, but
replacing the Power3 processors and local memory subsystem with Alpha ES640
processors and their memory subsystem. There is a substantial improvement in
performance, due mainly to the faster memory subsystem of the Alpha. The
Alpha can load stride-1 data from its L2 cache at about twice the rate of the
Power3, and this benefits POP x1 significantly. The last set of bars show the
TCS values of performance, processor and memory subsystem speed, network
bandwidth and latency, as a ratio of the BH values.

The principal observation from the above exercise is that the model can
quantify the performance impact of each machine hardware component.

In these studies we find that larger CPU count POP x1 problems become
more network latency sensitive and remain not-very bandwidth sensitive.

We can generalize a specific architecture comparison study such as the above,
by using the model to generate a machine-independent performance sensitiv-
ity study. As an example, Figure 3 indicates the performance impact on the
128-CPU POP x1 pro-gram of quadrupling the speed of the CPU-memory sub-
system (lumped together we call this the processor), quadrupling the network
bandwidth, reducing network latency by four, and various combinations of these
four-fold hardware improvements. The data values are plotted in a logarithmic
scale and normalized to one, so that the solid black quadrilateral represents the
execution time, network bandwidth, network latency, CPU and memory subsys-

194 David H. Bailey and Allan Snavely

Fig. 3. A generalized performance sensitivity study

tem speed of Blue Horizon. At this size, POP x1 is quite sensitive to processor
speed (a faster CPU and memory subsystem), somewhat sensitive to latency
(because of the barotropic portion of the code is communications-bound, with
small-messages), and fairly insensitive to bandwidth. In a similar way we can
“zoom in” on the processor performance factor. In the above results for POP, the
processor axis shows modeled execution time decreasing from a four-times faster
CPU with respect to clock rate (implying a 4X floating-point issue rate), but also
quadruple bandwidth and one-quarter latency to all levels of the memory hier-
archy (unfortunately this may be hard or expensive to achieve architecturally!).

5 Conclusion

We have seen that performance models enable “what-if” analyses of the impli-
cations of improving the target machine in various dimensions. Such analyses
obviously are useful to system designers, helping them optimize system architec-
tures for the highest sustained performance on a target set of applications. They
are potentially quite useful in helping computing centers select the best system
in an acquisition. But these methods can also be used by application scientists
to improve performance in their codes, by better understanding which tuning
measures yield the most improvement in sustained performance.

Performance Modeling 195

With further improvements in this methodology, we can envision a future
wherein these techniques are embedded in application code, or even in system
software, thus enabling self-tuning applications for user codes. For example, we
can conceive of an application that performs the first of many iterations using
numerous cache blocking parameters, a separate combination on each processor,
and then uses a simple performance model to select the most favorable combi-
nation. This combination would then be used for all remaining iterations.

Our methods have reduced the time required for performance modeling, but
much work needs to be done here. Also, running an application to obtain the
necessary trace information multiplies the run time by a large factor (roughly
1000). The future work in this arena will need to focus on further reducing the
both the human and computer costs.

References

1. The Performance Evaluation Research Center (PERC),
see http://www.perc.nersc.gov.

2. Bailey, D., et. al, “The NAS Parallel Benchmarks,” International Journal of Super-
computer Applications, vol. 5 (1991), no. 3, pg. 66–73.

3. Buck, B. and J. K. Hollingsworth, “An API for Runtime Code Patching,” Journal
of Supercomputing Applications, 14(4), 2000, pg. 317–329.

4. Carrington, L., A. Snavely, X. Gao, and N. Wolter, “A Performance Prediction
Framework for Scientific Applications,” ICCS Workshop on Performance Modeling
and Analysis (PMA03), June 2003, Melbourne, Australia.

5. Carrington, L., N. Wolter, A. Snavely, and C. B. Lee, “Applying an Automated
Framework to Produce Accurate Blind Performance Predictions of Full-Scale HPC
Applications,” UGC 2004, Williamsburgh, June 2004.

6. Hoisie, A., O. Lubeck, H. Wasserman, “Performance and Scalability Analysis of
Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applica-
tions,” The International Journal of High Performance Computing Applications,
vol. 14 (2000), no. 4, pg. 330–346.

7. Report of the High-End Computing Revitalization Task Force (HECRTF), see
http://www.sc.doe.gov/ascr/hecrtfrpt.pdf.

8. Department of Defense High Performance Computing Modernization Office
(HPCMO), see http://www.hpcmo.hpc.mil.

9. Perelman, E., G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder, “Using
SimPoint for accurate and efficient simulation,” ACM SIGMETRICS Performance
Evaluation Review, vol. 31 (2003), no. 1, pg. 318–319.

10. Scientific Discovery through Advanced Computing (SciDAC),
see http://www.science.doe.gov/scidac.

11. Snavely, A., L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha,
“A Framework for Application Performance Modeling and Prediction,” Proceed-
ings of SC2002, Nov. 2002, Baltimore, MD.

12. Snavely, A., X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gimenez, and P. Jones, “Per-
formance Modeling of HPC Applications,” Proceedings of the Parallel Computing
Conference 2003, Oct. 2003, Dresden, Germany.

13. Terascale Optimal PDE Simulations (TOPS) project,
see http://www-unix.mcs.anl.gov/scidac-tops.

An Approach to Performance Prediction
for Parallel Applications

Engin Ipek1, Bronis R. de Supinski2, Martin Schulz2, and Sally A. McKee1

1 Computer Systems Lab
School of Electrical and Computer Engineering

Cornell University
{engin,sam}@csl.cornell.edu

2 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{bronis,schulzm}@llnl.gov

Abstract. Accurately modeling and predicting performance for large-
scale applications becomes increasingly difficult as system complexity
scales dramatically. Analytic predictive models are useful, but are dif-
ficult to construct, usually limited in scope, and often fail to capture
subtle interactions between architecture and software. In contrast, we
employ multilayer neural networks trained on input data from execu-
tions on the target platform. This approach is useful for predicting many
aspects of performance, and it captures full system complexity. Our mod-
els are developed automatically from the training input set, avoiding the
difficult and potentially error-prone process required to develop analytic
models. This study focuses on the high-performance, parallel applica-
tion SMG2000, a much studied code whose variations in execution times
are still not well understood. Our model predicts performance on two
large-scale parallel platforms within 5%-7% error across a large, multi-
dimensional parameter space.

1 Introduction

With rising architecture and software complexity, it becomes increasingly diffi-
cult to accurately model and predict performance for large-scale applications.
Analytic models often fail to capture subtle interactions between architecture
and software. Furthermore, they usually must be constructed manually in a long
and often error-prone process. In this paper, we address these problems with the
help of machine learning techniques. We gather performance samples from mul-
tiple executions of an application, and use this data to automatically construct
performance models by training multilayer neural networks. Since we take input
data from executions on the target platform, we capture full system complexity,
without having to manually model architectural details. Our approach is useful
for a wide range of application performance prediction problems. Our techniques
are particularly well suited to mining performance databases or to extend fast,
parameter-specific models.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 196–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Approach to Performance Prediction for Parallel Applications 197

0

10

20

30

40

50

60

70

80

0 100000 200000 300000

E
xe

cu
tio

n
tim

e
[s

]

Working Set Size (Nx*Ny*Nz)

Fig. 1. Execution times for SMG2000 for varying processor workloads (Nx,Ny,Nz) and
processor topologies (Px,Py,Pz) running on 512 nodes on BlueGene/L

Here we focus on SMG2000, a semicoarsening multigrid solver based on the
hypre library [4]. We develop application-specific performance models for par-
allel architectures, enabling prediction of runtime or other important charac-
teristics across a large input parameter space with high dimension. SMG’s six-
dimensional parameter space describes both shape of the workload per processor
and logical processor topology. These parameters have substantial impact on run-
time, as shown in Figure 1. For a fixed working set size—a fixed subvolume size
per CPU—runtime varies by up to 5×. Although SMG has been studied exten-
sively and an analytic model describing communication requirements exists [1],
the code’s variations in execution time are not well understood (partly due to
SMG’s complex, recursive algorithm). The analytic model is restricted to cu-
bic workloads and only describes communication complexity; it is not designed
to represent architectural details. Extending it for arbitrarily shaped workloads
is possible, but would be extremely complex, and the result would likely be
intractable. Worse, adding architectural features is infeasible. Our automatic,
empirical modeling approach overcomes these limitations without knowledge of
the application or algorithms.

We demonstrate how we use neural networks to construct our models, and we
identify the two major challenges of this approach: avoiding noise in the dataset,
and choosing an appropriate sampling technique for the training phase of the
neural network. The latter is necessary to avoid a bias toward short runtimes,
since those exhibit a higher relative error. To correct this skew, we develop new
functions that scale error by the runtime of the training samples. The resulting
model can predict SMG2000’s performance on two large-scale parallel platforms
within 5%-7% error across a large, multi-dimensional parameter space.

2 Approach

We use machine learning models to predict application performance across a
large, multidimensional parameter space defined by program inputs. We first

198 Engin Ipek et al.

collect a sample dataset by choosing a collection of points spread regularly across
the parameter space; we obtain performance results for these on actual hardware.
We reserve a portion of this dataset as a test to report the final performance
of our models, and never train on this data. Next, we randomly separate the
remainder of the data into training and validation sets, where the former is used
to adjust model parameters through a learning algorithm, and the latter is used
to assess the performance of the current model at each step during training.
After training, we query the final model to obtain predictions for points in the
full parameter space, and report the accuracy of our model on points not included
in our training or validation sets.

2.1 Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning models that
map a set of input parameters to a set of target values. Figure 2 shows an exam-
ple neural network architecture. The network is composed of a set of units that
process the value at their inputs and produce a single scalar value. These values
are then multiplied by a set of weights and communicated to other units within
the network. Each edge in Figure 2 represents a weight, and each node represents
a unit. The set of incoming edges at each unit indicates the set of values com-
municated to it. In this specific network architecture, the input parameters are
placed at the first (lowest) layer, and information flows from bottom to top. The
units that produce the final predictions are output units, and those that receive
input parameters are input units (input units simply pass incoming values to
all of their outgoing edges). In addition, one or more layers of hidden units may
be part of the network architecture. Hidden units process the outputs of other
units, and, in turn pass their own outputs to another set of (hidden or output)
units. The representational power of a neural network (the set of functions it
can represent) can be increased by adding hidden units and layers. Every unit
in a given layer receives values from all units in the layer below it, and hence
this type of ANN architecture is called a multilayer fully connected feedforward
neural network. Figure 2 shows a feedforward neural network with three input
units, one output unit, and a single layer of four hidden units.

At each step during training, a new example is presented at the network’s
input layer. At each layer, every unit forms a weighted sum of the incoming values
and associated weights. This sum is then processed by an activation function
that produces the output of that unit. In this study, we use fully connected
feedforward neural networks with the sigmoid function as the activation function.
Figure 3 shows the operation of the sigmoid activation function on the weighted
sum of inputs (depicted immediately right of the summation in Figure 3) to form
the unit’s result output. After a prediction on the current example, the weights
in the network are updated in proportion to their contribution to the error.

Other types of predictive models may be applied to performance (see Sec-
tion 4). Here we limit our scope to ANNs for three reasons. First, ANNs permit
target values and inputs/outputs to be discrete, continuous, or a mix, allowing
them to perform well in both regression and classification problems and to learn

An Approach to Performance Prediction for Parallel Applications 199

Output

Input 3Input 1 Input 2

Fig. 2. A feedforward neural network with a single hidden layer

net = Sum(wi * xi)
0 <= i <= n 1 + e−net

 1 o = ...

x1

x2

x3

x4

x0 = 1

w3
w2
w1

w4

w0

Fig. 3. A network unit with sigmoid threshold activation function (reproduced from
Mitchell [8])

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 R
un

tim
es

Experiment Number

Actual and Predicted Runtimes

Predicted Runtime
Actual Runtime

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500

P
er

ce
nt

ag
e

E
rr

or

Training Set Size

Percentage Error Across Parameter Space

Percentage Error

(a) (b)

Fig. 4. Comparison of (a) predicted vs. actual performance and (b) percentage error

from various types of attributes describing performance prediction problems.
Second, ANNs need not know the form of the target function in advance. Third,
ANNs tend to work well with possibly noisy data, making them ideal for training
on performance results collected in the presence of system noise.

2.2 Application to Performance Prediction

Figure 4 shows results of an initial performance prediction study consisting of
13.2K data points. A standard, fully connected feedforward neural network with
16 hidden units is trained on 10K points, and predictions are made on the re-

200 Engin Ipek et al.

maining 3.2K. Despite training on a large portion of the parameter space, in
most cases model accuracy is low. Average test error is 13.8% with a standard
deviation of 14.8%—excessively high for performance prediction purposes.

Poor accuracy of standard feedforward neural networks on this dataset re-
sults from two factors. First, system activities sharing resources with application
threads create nondeterministic variations in performance, yielding significant
noise in the dataset. Accuracy on future runs can never exceed this noise level.
This imposes a fundamental limit on model accuracy for future datasets. Second,
the training algorithm that adjusts network weights is unsuitable for reducing
percentage error. By default, the backpropagation training algorithm tries to
reduce absolute mean-squared-error. During training, examples on which the
model makes higher absolute error are given greater weight, even though this
error may be small in relative terms as a percentage of the target value. Given
two test cases t1 and t2, where runtime of t1 is 100 seconds and of t2 is 1 second,
an error of 0.5 seconds is given equal weight for both, even though the percentage
error varies drastically between the two examples (0.5% vs. 50%).

2.3 Required Network Refinements

Applying ANNs to application performance prediction requires both a mech-
anism for reducing noise during data collection and a technique to train the
networks for percentage error. Reducing the noise level dictates that the differ-
ence between performance results from two different runs with the same input
parameters be kept as small as possible. On certain computing platforms where
operating system activity is minimal (e.g, BlueGene/L), this problem is either
nonexistent or negligible. On other platforms, we find that reserving at least one
processor per node for system processing greatly alleviates noise.

Once noise levels are acceptably diminished, a mechanism for training the
neural network to reduce percentage error is needed. We combine a sampling
technique called stratification, and an ensemble learning mechanism called bag-
ging (bootstrap aggregation). Stratification replicates each point in the dataset
by a factor proportional to the inverse of its target value such that, during train-
ing, the network sees points with small target values many more times than it
sees those with large absolute values. As a result, the training algorithm puts
varying amounts of emphasis on different regions of the search space, making
the right tradeoffs when setting weights to minimize percentage error. We apply
bagging to train an ensemble of models from the dataset, averaging predictions
from the ensemble to reduce model variance.

3 Experiments

We present results of applying our technique to performance prediction of SMG
on the Thunder and BlueGene/L systems at Lawrence Livermore National Labo-
ratory. Architectural features of these systems on which data is taken are detailed
in Table 1. Table 2 shows program parameters. For the BlueGene/L dataset, we

An Approach to Performance Prediction for Parallel Applications 201

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 R
un

tim
e

Experiment Number

Actual and Predicted Runtime (Low Noise / Stratification)

Predicted Runtime
Actual Runtime

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

E
rr

or

Experiment Number

Percentage Error Across Test Set

Percentage Error

(a) (b)

Fig. 5. Comparison of (a) predicted and actual performance and (b) percentage error

Table 1. Platform parameters

BlueGene/L Thunder

Processor IBM BlueGene Intel Itanium 2
Frequency 700MHz 1.4GHz

L1 ICache 32KB 32KB

L1 DCache 32KB 32KB
L2 Cache 2KB (Prefetch Buffer) 256KB

L3 Cache 4MB 4MB

SDRAM 512MB 8GB DDR266
3D Torus + Fat Tree

Network Global Combine/Broadcast Tree Network (Quadrics QsNet)
Processors Used/Node 1/2 3/4

Number of Nodes Used 512 64

Table 2. Application parameters

Parameter BlueGene/L Thunder

Nx 10-510 in steps of 20 10-250 in steps of 30
Ny 10-510 in steps of 20 10-250 in steps of 30
Nz 10-510 in steps of 20 10-250 in steps of 30
Px 1,8,64,512 1,3,4,12,16,48,64,192
Py 1,8,64,512 1,3,4,12,16,48,64,192
Pz 1,8,64,512 1,3,4,12,16,48,64,192

Px*Py*Pz 512 192
Nx*Ny*Nz 1000>Nx*Ny*Nz>343000 216000>Nx*Ny*Nz>9261000

keep 1K random samples for final testing only (we do not train on these points)
and report the accuracy of our model on this data. Similarly, we separate 1.3K
data points for testing in the Thunder dataset.

Figure 6(a) shows a learning curve that indicates how the accuracy of the
neural network changes as the size of the training set is increased for the Blue-
Gene/L dataset. At a training set size of 250 points, the average error on the

202 Engin Ipek et al.

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 E
rr

or
 a

nd
 S

ta
nd

ar
d

D
ev

ia
tio

n
(%

)

Training Set Size

Learning Curves for BG/L

Average Error
Standard Deviation

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
rr

or
 a

nd
 S

ta
nd

ar
d

D
ev

ia
tio

n
(%

)

Training Set Size

Learning Curves for Thunder

Average Error
Standard Deviation

(a) (b)

Fig. 6. Learning curves showing how average error and standard deviation improve
with training set size for (a) BlueGene/L and (b) Thunder

test set is nearly 12.3%, and the standard deviation of error across the test set
is 8.7%. At this point, the training set is too small and contains too little in-
formation to build a highly accurate model. As training set size increases, error
decreases sharply, showing that the model benefits significantly from the addi-
tional information included in the dataset at each point. Eventually, the curves
begin to flatten, as any additional data presented to the network contains only
incremental new information. When 2.25K of the 3.25K total points are used
for training, the error rate of the of the network falls to 6.7%. Similarly, the
standard deviation of the error decreases with increasing training set size.

Thunder’s learning curves (Figure 6(b)) follow the same trends. With 500
data points, the error rate on the test set is 12.28%. The error falls sharply as
more data points are added, reaching 5.4% at a training set size of 3K. Fur-
ther increases in training set size result in diminishing improvements, and at a
training set size of 5K points, the network achieves 4.9% error. Similarly, the
standard deviation ranges from 8.4%-4.4% between 500-5K points.

The results indicate that the accuracy of our approach can be quite high given
enough training points. The size of the parameter space is much, much larger
than the total number of points we have collected. We sparsely step through
the SMG2000 parameters to obtain our dataset. Therefore, our approach is eas-
ily applicable to learning from performance databases that contain results for a
sparse sampling of parameters. In addition,the amount of time required to train
a model ranges between 1-15 minutes on a typical workstation with a 3.0GHz
Pentium 4 processor and 1GB of main memory, making it easy to build parame-
terized performance models much more efficiently than most analytical models.

4 Related Work

Other approaches to performance prediction include analytic models. Space pre-
vents our providing a full treatment of related work, but Karkhanis and Smith [5]
give an excellent review of prior work in architectural performance prediction.

An Approach to Performance Prediction for Parallel Applications 203

Marin and Mellor-Crummey [7] semi-automatically measure and model pro-
gram characteristics, predicting application behavior based on properties of the
architecture, properties of the binary, and application inputs. Their toolkit pro-
vides a set of predefined functions, and the user may add customized functions
to this library if the set of existing functions is too restrictive. In contrast to
our work, they vary the input size in only one dimension, and they cannot ac-
count for some important architectural parameters, such as cache associativity
in their memory reuse modeling. Our six-dimensional space would make use of
their approach much more difficult, significantly increasing the number of re-
quired samples as well as the search space for the best analytic function (as a
weighted sum of given base functions along each parameter dimension).

Carrington et al. [2] develop a framework for predicting performance of sci-
entific applications, demonstrating its effectiveness on LINPACK and an ocean
modeling application. The approach is built on a convolution method that repre-
sents a computational mapping of an application signature onto a machine pro-
file. Simple benchmark probes create the machine profiles, and a separate tool
generates the application signatures. Extending the convolution method allows
them to go from modeling kernels to whole benchmarks to full-scale HPC appli-
cations [3]. This automated approach relies on the generation of several traces,
delivering predictions with accuracies of between 4.6 and 8.4%, depending on the
sampling rates of those traces. Using full traces obviously gives the best perfor-
mance, but such trace generation can slow application execution by almost three
orders of magnitude. Some applications demonstrate better predictability than
others, and for these trace reduction techniques work well: prediction accuracies
range from 0.1 to 8.7% on different platforms. This work is complementary to
our own, and the two approaches may work well in combination. The analytic
models could provide the bootstrap data, and our models could give them full
application input parameter generality.

Kerbyson et al. [6] present a highly accurate, predictive analytical model
that encompasses the performance and scaling characteristics of SAGE, a mul-
tidimensional hydrodynamics code with adaptive mesh refinement. As with the
model presented here, inputs to their parametric model come from machine per-
formance information, such as latency and bandwidth, along with application
characteristics, such as problem size and decomposition. They validate the pre-
diction accuracy of the model against measurements on two large-scale ASCI
systems. In addition to predicting performance, their model can yield insight
into performance bottlenecks. Their application-centric modeling approach re-
quires static analysis of the code: a detailed model must be developed for each
application of interest.

Karkhanis and Smith [5] construct a first-order model of superscalar mi-
croprocessors. Their approach is intuitive, provides insight, and is reasonably
accurate, finding that their performance estimates are between five and 13% ac-
curate with respect to detailed simulations of the applications they study. The
model’s analytic core incorporates cache and branch predictor statistics gath-
ered from functional-level trace driven simulation. They target uniprocessors,

204 Engin Ipek et al.

and while intuitive, the approach is largely ad hoc and currently limited in the
architectural features it models. Their model is more appropriate for studying
proposed architectures, whereas we predict performance on existing platforms.

5 Conclusions and Future Work

We have presented a machine learning approach to application performance
prediction—multilayer neural networks—and have refined and adapted this ap-
proach to yield highly accurate results for SMG2000 on two different high-
performance platforms. Our approach is especially attractive for its ease of use
and its obliviousness to details of application internals. This makes it ideal for
mining performance databases to make performance predictions. While promis-
ing, this approach still presents some challenges in making it generally useful
in the absence of an existing database. The time required to gather each data
point in the training set is larger than we would like, for instance. Reducing the
number of points required in our training datasets is one promising direction of
current research.

Acknowledgments

Part of this work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48 (LLNL Document Number UCRL-
CONF-212365) and by by the National Science Foundation under award ST-
HEC 0444413. Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation, the Lawrence Livermore National
Laboratory, or the Department of Energy. The authors thank Rich Caruana and
the anonymous referees for their valuable feedback on this work.

References

1. P. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening multigrid on distributed
memory machines. SIAM J. Sci. Computing, 21:1823–1834, 2000.

2. L. Carrington, A. Snavely, X.Gao, and N. Wolter. A performance prediction frame-
work for scientific applications. In International Conference on Computational Sci-
ence Workshop on Performance Modeling and Analysis (PMA03), pages 926–935,
June 2003.

3. L. Carrington, N. Wolter, A. Snavely, and C.B. Lee. Applying an automatic frame-
work to produce accurate blind performance predictions of full-scale HPC applica-
tions. In Department of Defense Users Group Conference, June 2004.

4. R.D. Falgout and U.M. Yang. hypre: a Library of High Performance Preconditioners.
In Proceedings of the International Conference on Computational Science (ICCS),
Part III, LNCS vol. 2331, pages 632–641, April 2002.

An Approach to Performance Prediction for Parallel Applications 205

5. T.S. Karkhanis and J.E. Smith. A first-order superscalar processor model. In
Proceedings of the 31st Annual International Symposium on Computer Architecture,
pages 338–349, June 2004.

6. D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, A.J. Wasserman, and M. Gittings.
Predictive performance and scalability modeling of a large-scale application. In
Proceedings of IEEE/ACM Supercomputing ’01, November 2001.

7. G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions for
scientific applications using parameterized models. In Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computer Systems (Sigmetrics
’04), pages 2–13, June 2004.

8. T.M. Mitchell. Machine Learning. WCB/McGraw Hill, Boston, MA, 1997.

Topic 3
Scheduling and Load-Balancing

Denis Trystram, Michael Bender, Uwe Schwiegelshohn, and Lúıs Paulo Santos

Topic Chairs

More and more parallel and distributed systems (clusters, grid and global com-
puting) are available all over the world, opening new perspectives for devel-
opers of a large range of applications including data mining, multi-media, and
bio-computing. However, this very large potential of computing power remains
unexploited to a large degree, mainly due to the lack of adequate and efficient
software tools for managing the resources. Scheduling problems address the al-
location of those resources over time to perform tasks being parts of processes
and are the key components in resource management.

As processors are the source of computing power of parallelism, it is cru-
cial to carefully managing them in order to achieve a high efficiency of parallel
systems. In most new parallel architectures and distributed platforms, the pro-
cessors or machines are spatially distributed and communicate via various kinds
of interconnections. Therefore, the communication medium is another important
resource that must be considered during scheduling. New parameters like hetero-
geneity, the hierarchical character of memory, versatility of the context, and large
scale computing should be taken into account as well. As conventional models
and techniques cannot always be used, it is necessary to propose, implement and
validate new approaches.

Therefore, the classical topic of Scheduling and Load Balancing remains very
active in the perspective of new parallel and distributed systems. The subjects
presented in Topic 3 cover all aspects related to scheduling and load-balancing
including applications, system level techniques, theoretical foundations and prac-
tical tools. Some new trends and emerging models are also presented and dis-
cussed.

There were 31 papers submitted to this topic. Each submitted paper has been
reviewed by 4 reviewers, and finally 11 papers were chosen to be included into
the final program. They reflect the good and necessary synergy between theo-
retical approaches (models, analysis of algorithms, complexity, approximability
results, multi-criteria analysis) and practical realizations and tools (new meth-
ods, simulation results, actual experiments, specific tuning for an application).

Finally, we would like to express our thanks to our colleagues, experts in the
fields, who helped in the reviewing process.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 207, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Balancing Parallel Adaptive FEM Computations
by Solving Systems of Linear Equations�

Henning Meyerhenke and Stefan Schamberger

Universität Paderborn,
Fakultät für Elektrotechnik, Informatik und Mathematik

Fürstenallee 11, D-33102 Paderborn
{henningm,schaum}@uni-paderborn.de

Abstract. Load balancing plays an important role in parallel numer-
ical simulations. State-of-the-art libraries addressing this problem base
on vertex exchange heuristics that are embedded in a multilevel scheme.
However, these are hard to parallelize due to their sequential nature. Fur-
thermore, libraries like Metis and Jostle focus on a small edge-cut and
cannot obey constraints like connectivity and straight partition bound-
aries, which are important for some numerical solvers.
In this paper we present an alternative approach to balance the load in
parallel adaptive finite element simulations. We compute a distribution
that is based on solutions of linear equations. Integrated into a learning
framework, we obtain a heuristic that contains a high degree of paral-
lelism and computes well shaped connected partitions. Furthermore, our
experiments indicate that we can find solutions that are comparable to
those of the two state-of-the-art libraries Metis and Jostle also regarding
the classic metrics like edge-cut and boundary length.

Keywords: Parallel adaptive FEM computations, load balancing, graph
partitioning.

1 Introduction

Finite Element Methods (FEM) are used extensively by engineers to analyze a
variety of physical processes which can be expressed via Partial Differential Equa-
tions (PDE). The domain on which the PDEs have to be solved is discretized
into a mesh, and the PDEs are transformed into a set of equations defined on
the mesh’s elements (see e. g. [1]). These can then be solved by iterative methods
such as Conjugate Gradient (CG) and Multigrid. Due to the very large amount
of elements needed to obtain an accurate approximation of the original problem,
this method has become a classical application for parallel computers. The paral-
lelization of numerical simulation algorithms usually follows the Single-Program
Multiple-Data (SPMD) paradigm: Each processor executes the same code on
a different part of the data. This means that the mesh has to be split into P
sub-domains and each sub-domain is then assigned to one of the P processors.
To minimize the overall computation time, all processors should thereby roughly
� This work is supported by the German Science Foundation (DFG) project SFB-376

and by DFG Research Training Group GK-693.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 209–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 Henning Meyerhenke and Stefan Schamberger

contain the same amount of elements. Since iterative solution algorithms per-
form mainly local operations, i. e. data dependencies are defined by the mesh,
the parallel algorithm mainly requires communication at the partition bound-
aries. Hence, these should be as small as possible. Depending on the application,
some areas of the simulation space require a higher resolution and therefore
more elements. Since the location of these areas is not known beforehand or can
even vary over time, the mesh is refined and coarsened during the computation.
However, this can cause imbalance between the processors’ load and therefore
delay the simulation. Hence, the element distribution needs to be rebalanced.
The application is interrupted and the at this point static repartitioning prob-
lem is solved. Though this interruption should be as short as possible, it is also
important to find a new balanced partitioning with small boundaries that does
not cause too many elements to change their processor. Migrating elements can
be an extremely costly operation since large amounts of data have to be sent
over communication links and stored in complex data structures.

The described problem can be expressed as a graph (re-)partitioning problem.
The mesh is transformed into a graph where the vertices represent the compu-
tational work and the edges their interdependencies. Due to the complexity of
the problem, the large input sizes and the given time constraints, existing li-
braries that address the graph (re-)partitioning problem are based on heuristics.
State-of-the-art implementations like Metis [2], Jostle [3] or Party [4] follow the
multilevel scheme [5]. Vertices of the graph are contracted according to a match-
ing and a new level consisting of a smaller graph with a similar structure is
generated. This is repeated, until in the lowest level only a small graph remains.
The (re-)partitioning problem is then solved for this small graph and vertices in
higher levels are assigned to partitions according to their representatives in the
next lower level. Additionally, a local improvement heuristic is applied in every
level. By exchanging vertices between partitions, it reduces the number of cut
edges or the boundary size as well as balances the partition sizes. Hence, the final
solution quality mainly depends on this heuristic. Implementations are usually
based on the Kerninghan-Lin (KL) heuristic [6], while the local refinement in
Party is derived from theoretical analysis with Helpful-Sets (HS) [7].

To address the load balancing problem during parallel computations, dis-
tributed versions of the libraries Metis and Jostle have been developed. Both of
them apply about the same multilevel techniques as their single processor ver-
sion, but special attention must be paid to the local improvement heuristic due
to its sequential nature. As an example, a coloring of the graph’s vertices assures
in the parallel library ParMetis [8] that during the KL refinement no two neigh-
boring vertices change their partition simultaneously and therefore destroy the
consistency of the data structures. In contrast to Metis, where vertices stay on
their partition until a new distribution has been computed, the parallel version
of Jostle [9] maps each sub-domain to a single processor and vertices which mi-
grate do so already during the computation of the repartitioning. Usually, Metis
is very fast while Jostle takes longer but often computes better solutions. The
HS heuristic in Party exchanges sets between partitions that sometimes contain

Balancing Parallel Adaptive FEM Computations 211

a large number of vertices. Hence, even more overhead would be necessary to
ensure data consistency in a parallel implementation.

While the global edge-cut is the classical metric that most graph partition-
ers optimize, it is not necessarily the best metric to follow because it does not
model the real communication and runtime costs of FEM computations as de-
scribed in [10]. Hence, different metrics have been implemented inside the local
refinement process modeling the real objectives more closely. In [11], the costs
emerging from vertex transfers is taken into consideration while Metis is also
capable of minimizing the number of boundary vertices.

A completely different approach is undertaken in [12]. Since the convergence
rate of the CGBI domain decomposition solver in the PadFEM environment
depends on the geometric shape of a partition, the integrated load balancer iter-
atively decreases the aspect ratios by applying a bubble like algorithm. Although
different to the multilevel-schemes, this approach also contains a strictly sequen-
tial section and suffers from some other difficulties that are described in [13].
However, the latter paper introduces an implementation that eliminates most
of these problems by replacing the sequential growing mechanism of the bubble
framework by a few iterations of the first order diffusion scheme (FOS) [14].
This leads to a graph partitioning algorithm that contains a high degree of par-
allelism and produces well shaped partitions. Unfortunately, it is unclear how
many FOS iterations must be performed. This question is overcome in [15] intro-
ducing FOS/A. This diffusion scheme does not balance the load but converges
to a state with a load distribution similar to the situation after a few FOS iter-
ations. Its drawback is the long execution time, and its fine-grain parallelism is
hard to exploit on today’s processors.

In this paper we present the (re-)partitioning heuristic MF(φ), which is based
on the same framework as the implementations from [13] and [15]. However, in
contrast to the latter that distribute the vertices of a graph according to their
load, our approach is based on the flow over the edges. The main advantage
is that the computation of a ‖ · ‖2-minimal balancing flow, which is equivalent
to solving a system of linear equations, has been studied very well and that a
variety of methods addressing it exist. Among them are faster diffusion schemes
like the second order scheme (SOS) [14] as well as algorithms that require more
global knowledge like CG solvers. Thus, one can choose the most appropriate
implementation according to the underlying hardware. The remaining part of
the paper is organized as follows. The next section briefly recaptures the bubble
framework from [12] and explains the main idea. In Sec. 3 we propose a new
growing mechanism which we integrate into this framework in Sec. 4. Afterwards,
we present our experiments in Sec. 5 before we give a short conclusion.

2 The Bubble Framework

The idea of the bubble framework is to start with an initial, often randomly
chosen vertex (seed) per partition, and all sub-domains are then grown simulta-
neously in a breadth-first manner. Colliding parts form a common border and

212 Henning Meyerhenke and Stefan Schamberger

Fig. 1. The three operations of the learning bubble framework: Init: Determination of
initial seeds for each partition (left). Grow: Growing around the seeds (middle). Move:
Movement of the seeds to the partition centers (right).

keep on growing along this border – “just like soap bubbles”. After the whole
mesh has been covered and all vertices of the graph have been assigned this
way, each component computes its new center that acts as the seed in the next
iteration. This is usually repeated until a stable state, where the movement of
all seeds is small enough, is reached. This procedure is based on the observation
that within “perfect” bubbles, the center and the seed vertex coincide. Figure 1
illustrates the three main operations.

The growing mechanisms from [13] and [15] are based on diffusion. The main
idea behind applying it in a graph partitioning heuristic is the fact that load
primarily diffuses into densely connected regions of the graph rather than into
sparsely connected ones. Following this observation one can expect to identify
seeds inside such regions and therefore small partition boundaries in less dense
areas. Additionally, since the load spreads around a seed vertex, the partitions
should be connected and well shaped.

The remaining part of this paper is based on the following thought: If load
diffuses faster into dedicated regions, then the flow over the edges directing
there must be higher than the flow over edges pointing elsewhere. Hence, a
‖ · ‖2-minimal flow should provide similar information as a load distribution
computed by the FOS/A scheme from [15], with the advantage that a variety of
faster methods are known to compute it.

3 A Growing Mechanism Based on Linear Equations

In this section we propose a new growing mechanism that is based on a ‖ · ‖2-
minimal flow in a network. This network Gφ is composed of the dual graph G
corresponding to the mesh, and an extra vertex x that is connected with every
other vertex of G. All edges e ∈ E of G are assigned a weight of we = 1 while
the weight of the edges incident to x are set to some constant φ > 0. Now,
independently for each partition p, we place a total of |V | load equally on p’s
vertices and compute a ‖ · ‖2-minimal flow fp over the edges that transports
all load to the extra vertex x. Since we minimize fp according to the ‖ · ‖2-
norm, the load will not be sent directly to x, but also makes some ‘detours’ via
other vertices in G. According to the idea mentioned in the last section, the flow
thereby prefers densely connected regions of the graph. The weight constant φ

Balancing Parallel Adaptive FEM Computations 213

determines the spreading of the flow. If φ is large, it is cheaper to send most
load directly to x, while if φ is small, the costs of the ‘detour’ into the graph
are compensated by less utilized edges incident to x that can be chosen. In the
extreme cases, if φ → ∞, all load is sent directly to x, while if φ → 0, the ‖ · ‖2-
minimal flow will converge towards the balancing flow that distributes the load
equally in the original graph G.

The assignment of the vertices to the partitions is based on the amount of
flow over the edges incident to x. We define a height function hp : V ∪ {x} → R
for each partition p, such that hp(v) = hp(u) + fp(u,v) · w(u,v) ∀u ∈ adj(v). Since
fp is the ‖ · ‖2-minimal flow, this function is well defined and unique except for
a constant, which we determine by setting the height of x to hp(x) = 0. Now,
we assign each vertex to that partition with the maximal height, meaning that
the new partitioning π is defined by π(v) = p : hp(v) ≥ hq(v)∀q ∈ {1, . . . , P}. If
the maximum is not unique, we choose one of the eligible partitions arbitrarily.

Formally, let G = (V, E) be an undirected, connected graph and A ∈ {−1, 0,
+1}|V |×|E| its unweighted vertex-edge incidence matrix. A contains in each col-
umn corresponding to edge e = (u, v) the entries −1 and +1 in the rows u and v,
and 0 elsewhere. The unweighted Laplacian L ∈ Z|V |×|V | is defined as L = AAT.
If we extend G by an additional vertex x and connect it to every other vertex with
an edge of weight φ, we obtain the graph Gφ = (V ∪ {x}, E ∪ {{v, x} : v ∈ V })
with edge weights we = 1 ∀e ∈ E and w{v,x} = φ ∀v ∈ V . The weighted Lapla-
cian matrix Lφ ∈ R|V |+1×|V |+1 of Gφ is defined as Lφ = AφWAφ

T, where Aφ

denotes the unweighted vertex-edge incidence matrix of Gφ, and the entries of
the diagonal matrix W ∈ R|E|+|V |×|E|+|V | are set to (wee) = we. Hence, with I
being the identity, Lφ can be written as:

Lφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝ L + φI

⎞
⎟⎟⎟⎟⎠

−φ

...

−φ
−φ · · · −φ |V | · φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Our goal is to compute a ‖ · ‖2-minimal flow fp from the vertices of the
partition p to the additional vertex x. By setting the vectors sp, t ∈ R|V |+1 to

(spv) =
{ |V |/|{v : πp(v) = p}| : π(v) = p

0 : otherwise (tv) =
{ |V | : v = x

0 : otherwise

we place |V | load equally on p’s vertices and the corresponding ‘negative’ load
on x. Then, we have to solve the quadratic minimization problem

min!
1
2
fp

TW−1fp with respect toAφfp = sp − t . (2)

Due to [16], we know that we can find the optimal fp for (2) by first solving the
linear equation

Lφλp = sp − t . (3)

214 Henning Meyerhenke and Stefan Schamberger

00 Algorithm MF(G, π, φ, l, i)
01 in each loop l
02 if π is undefined
03 π = determine-seeds(G) /* initial seeds */
04 else
05 parallel for each partition p /* contraction */
06 solve Lφλp = sp − t and compute hp

08 π(v) =

{
p : hp(v) ≥ hp(u)∀u ∈ V

−1 : otherwise
09 parallel for each partition p /* consolidation */
10 solve Lφλp = sp − t and compute hp

12 π(v) = p : hp(v) ≥ hq(v)∀q ∈ {1, . . . , P}
13 in each iteration i
14 parallel for each partition p /* consolidation with ... */
15 solve Lφλp = sp − t and compute hp

17 π(v) = p : hp(v) ≥ hq(v) ∀q ∈ {1, . . . , P}
18 scale-balance(π) /* ... scale balancing */
19 greedy-balance(π) /* greedy balancing */
20 return smooth(π) /* smoothing */

Fig. 2. Sketch of the MF(φ) heuristic.

Lφ is sparse and symmetric positive semidefinite. Since 〈sp − t, 1l〉 = 0 and the
rank of Lφ is |V |, the solution of (3) is unique except for a constant. Neverthe-
less, we now can determine the unique ‖ · ‖2-minimal flow from the computed
potential λp as

fp(u,v) = w{u,v} · (λpu − λpv) . (4)

Since we are interested in the height function hp(v), we can skip the flow com-
putation (4) and assign hp(v) = λpv − λpx. The new partitioning π can then be
determined as described above, while the new partition seed is the vertex with
the highest load according to hp.

4 The MF(φ) Heuristic

In this section we describe the integration of the proposed growing mechanism
into the bubble framework. The resulting algorithm is sketched in Fig. 2. It
can either be invoked with or without a valid partitioning π. In the latter case,
we determine initial seeds randomly (line 3). Otherwise, we contract the given
partitions (lines 5-8) applying the mechanism proposed in Sec. 3. Note that in ei-
ther case π only contains a single vertex for each partition when entering line 9.
Following the bubble framework, we then grow the partitions from the seeds.
However, if we determined single seeds right after the last contraction, these
would be the same ones as before and no movement would occur. Hence, it is
necessary to apply at least one consolidation (lines 9-12) between two contrac-
tions. In contrast to a contraction that determines a single vertex per partition

Balancing Parallel Adaptive FEM Computations 215

(line 8), a consolidation results in a partitioning (lines 12/17). In the following
step, the load is placed equally on the vertices of the whole partition, which
causes it to move into denser regions of the graph as mentioned before.

To further enhance the solution quality, additional consolidations can be
performed (lines 13-18). Furthermore, these are used for balancing by scaling
the height functions hp. If a partition is too small, hp is multiplied by a constant
bp > 1, while if it is too large, a constant bp < 1 is chosen. Although the choice
of b is limited because no partition must become empty, this approach can find
almost balanced solutions in most cases. To ensure a certain size, we perform a
greedy balancing operation (line 19), where we compute a ‖ · ‖2-minimal flow in
the partition graph and move the vertices that cause the least error according to
the height functions. The whole learning process is then repeated several times.
Before returning the partitioning π, we migrate vertices if the number of their
adjacent vertices in another partition is larger than the number in the current
partition. This compensates numerical imprecisions that occur during the flow
computation and further smoothes the partition boundaries. However, if the
number of vertices in a partition is small compared to its boundary length, it
might also lead to a higher imbalance.

An interesting point is the lack of an explicit objective function. Except for
the balancing, the MF(φ) heuristic does not contain any directives what metric
to minimize. This is also the case for the algorithms from [13, 15].

The run-time of MF(φ) greatly depends on the linear equation solver. Cur-
rently, we apply a basic CG implementation. However, due to the special struc-
ture of Lφ, several optimizations are possible. As indicated in lines 5, 9 and 14,
all P linear systems can be solved independently. Hence, even if we apply solvers
other than diffusive ones which require more global knowledge, a large amount
of parallelism remains.

5 Experiments

In this section we describe our experiments with the new heuristic MF(φ) and
compare its solutions to those of the parallel versions of the state-of-the-art
graph (re-)partitioning libraries Metis and Jostle. Furthermore, we include the
results of the Party/DB library from [15]. The benchmark instances are created
as described in [17] and are available via [18]. Each benchmark consists of 101
frames, each containing a graph of around 15000 vertices. Though the instances
are quite small, important observations can already be made. Due to space lim-
itations we only present the data of a single benchmark here. The results of the
omitted experiments are similar, however.

The libraries Metis (version 3.1) and Jostle (version 3.0) both offer a large
number of options. For the presented evaluation, we chose the recommended
values from their manual, respectively, and left the remaining parameters at
their default. This means that Metis operates with an itr value of 1000.0 and
Jostle uses the options threshold = 20, matching = local, imbalance = 3. Note
that Jostle seems to ignore the imbalance setting and computes totally balanced

216 Henning Meyerhenke and Stefan Schamberger

Fig. 3. Partitionings in frame 50 of the ‘ring’ benchmark computed by Metis (left),
Jostle (middle) and the MF(φ) heuristic (right).

partitions, except for the initial solution where the sequential versions of the
libraries are applied. The MF(φ) heuristic is invoked with φ = 0.01 and performs
2 loops with 4 iterations, respectively.

We measure the partitioning quality according to a number of metrics, be-
cause it is known that the edge-cut does not necessarily model the real costs [10].
Depending on the application, some of the metrics described in the following
might be more important than others. External edges: Number of edges that
are incident to exactly one vertex of partition p. Boundary vertices: Number of
vertices of partition p that are adjacent to at least one vertex from a different
partition. Send volume: The amount of outgoing information is the sum of the
adjacent partitions different to p that each vertex residing inside partition p has.
Receive volume: The amount of incoming information is the number of vertices of
partitions different to p adjacent to at least one vertex of partition p. Diameter:
The longest shortest path between two vertices of the same partition. Infinity,
if the partition is not connected. Outgoing migration: Number of vertices that
have to be migrated to a different partition. Incoming migration: Number of
vertices that have to be migrated from a different partition. Furthermore, the
quality of a partitioning depends on its balance. A less balanced solution allows
other metrics to improve further and makes comparisons less meaningful. Please
note that we have omitted the run-times since our prototypic implementation is
some magnitudes slower than its competitors.

In addition, for the listed metrics we consider three different norms. Given
the values x1, . . . , xP , the norms are defined as follows: ‖X‖1 := x1 + . . . + xP ,
‖X‖2 := (x2

1 + · · ·+x2
P)1/2 and ‖X‖∞ := maxi=1..P xi. The ‖ · ‖1-norm (summa-

tion norm) is a global norm. The global edge-cut belongs into this category (it
equals half the external edges in this norm). In contrast to the ‖ · ‖1-norm, the
‖ · ‖∞-norm (maximum norm) is a local norm only considering the worst value.
This norm is favorable if synchronized processes are involved. The ‖ · ‖2-norm
(Euclidean norm) lays in between the ‖ · ‖1 and the ‖ · ‖∞-norm and reflects the
global situation as well as local peaks, but is omitted here.

Figure 3 displays a single frame from the ‘ring’ benchmark. In this bench-
mark, a circle and the refined area around it rotate through a narrow ring. One

Balancing Parallel Adaptive FEM Computations 217

 1

 1.02

 1.04

 1.06

 1.08

 1.1

ba
la

nc
e

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

ex
. e

dg
es

 (
m

ax
)

 400

 450

 500

 550

 600

 650

 700

ex
. e

dg
es

 (
su

m
)

 50

 55

 60

 65

 70

 75

 80

 85

 90

bo
un

da
ry

 (
m

ax
)

 400

 450

 500

 550

 600

 650

bo
un

da
ry

 (
su

m
)

 100

 110

 120

 130

 140

 150

 160

 170

 180

co
m

m
un

ic
at

io
n

(m
ax

)

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

co
m

m
un

ic
at

io
n

(s
um

)

 100

 105

 110

 115

 120

 125

 130

 135

 140

 145

di
am

et
er

 (
m

ax
)

 800

 820

 840

 860

 880

 900

 920

 940

 960

di
am

et
er

 (
su

m
)

 600

 800

 1000

 1200

 1400

 1600

 1800

m
ig

ra
tio

n
(m

ax
)

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

m
ig

ra
tio

n
(s

um
)

Fig. 4. Numerical results of the ‘ring’ benchmark for Metis (blue triangles), Jostle (red
squares), Party/DB (green pentagons) and MF(φ) (black circles).

can see that the partitions computed by Metis have quite large fringes, while
Jostle and especially MF(φ) find smoother partition boundaries. Though the
visual display of the mesh provides a first impression of the solution quality,
the numerical data of all 101 frames listed in Fig. 4 reveals many more details.
Looking at the first row, we can see that Metis usually allows up to 3% imbal-
ance, while Jostle ignores this parameter and totally equalizes the partition sizes.
The solutions of the MF(φ) heuristic usually have an imbalance of less than 3%,
while the Party/DB library has some difficulties to maintain an equal distribu-
tion. The next three rows contain the metrics ‘external edges’, ‘boundary length’
and ‘communication volume’. Their values are similar. The right column, dis-
playing the sum for all partitions, reveals that Metis computes the worst results.

218 Henning Meyerhenke and Stefan Schamberger

The three other libraries find comparable solutions, while MF(φ) and Party/DB
show a slight advantage. This advantage is larger in the maximum norm given in
the right column. One can see that the boundaries are more equally distributed
between all partitions when using the latter heuristics. Row 5 displays the par-
tition ‘diameter’. Missing values indicate unconnected partitions, what can be
observed several times for Metis and Jostle. MF(φ) cannot reach the results from
Part/DB in the ‖ · ‖1-norm, but this might result from the different imbalance
values. Concerning the maximum norm, there is no difference between all li-
braries in this benchmark. The last row shows the ‘migration’. Metis migrates
most, and from other experiments we know that it either transfers very few or
very many vertices. The values for the other libraries are smaller, and MF(φ)
and Party/DB behave more constant than Jostle, what we could also confirm in
other benchmarks. Concerning the parameters of MF(φ), our experiments show
that the number of loops/iterations is a trade-off between the first four met-
rics ‘external edges’, ‘boundary length’, ‘communication’ and ‘diameter’, and
the ‘migration’. A good choice of φ depends on the amount of vertices and the
number of partitions, but more theoretical analysis is needed to determine the
optimal value, which is beyond the scope of this paper.

6 Conclusion

We have presented the new graph (re-)partitioning heuristic MF(φ), which is
based on solutions of linear equations inside a learning framework. Our experi-
ments with FEM like graphs indicate that it can find comparable or even better
partitionings than state-of-the-art libraries concerning a variety of metrics, while
important additional constraints like connectivity can be fulfilled.

However, due to its longer run-time, the current implementation of MF(φ)
cannot compete with Metis or Jostle. Nevertheless, we think that further inves-
tigations are justified since a variety of techniques like the multilevel approach,
faster diffusion schemes, optimized CG preconditioners or multigrid solvers are
known to speed up the computations.

References

1. G. Fox, R. Williams, and P. Messina. Parallel Computing Works! Morgan Kauf-
mann, 1994.

2. G. Karypis and V. Kumar. MeTis: A Software Package for Partitioning Unstrc-
tured Graphs, Partitioning Meshes, [...], Version 4.0, 1998.

3. C. Walshaw. The parallel JOSTLE library user guide: Version 3.0, 2002.

4. S. Schamberger. Graph partitioning with the Party library: Helpful-sets in practice.
In Comp. Arch. and High Perf. Comp., SBAC-PAD’04, pages 198–205, 2004.

5. B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs. In
Supercomputing’95, 1995.

6. B. W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. Bell
Systems Technical Journal, 49:291–308, 1970.

Balancing Parallel Adaptive FEM Computations 219

7. J. Hromkovic and B. Monien. The bisection problem for graphs of degree 4. In
Math. Found. Comp. Sci. (MFCS ’91), volume 520 of LNCS, pages 211–220, 1991.

8. Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes
for repartitioning of adaptive meshes. J. Par. Dist. Comp., 47(2):109–124, 1997.

9. C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh
partitioning. J. Parallel Computing, 26(12):1635–1660, 2000.

10. B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no
clothes? In Irregular’98, number 1457 in LNCS, pages 218–225, 1998.

11. L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured
meshes. J. Par. Dist. Comp., 52(2):150–177, 1998.

12. R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-opt. mesh part.
and load bal. for par. adap. FEM. J. Parallel Computing, 26:1555–1581, 2000.

13. S. Schamberger. On partitioning FEM graphs using diffusion. In HPGC, Intern.
Parallel and Distributed Processing Symposium, IPDPS’04, page 277 (CD), 2004.

14. R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems, 35:305–320, 2002.

15. S. Schamberger. A shape optimizing load distribution heuristic for parallel adaptive
FEM computations. Accepted at PACT’05.

16. Y. F. Hu and R. F. Blake. An improved diffusion algorithm for dynamic load
balancing. Parallel Computing, 25(4):417–444, 1999.

17. O. Marquardt and S. Schamberger. Open benchmarks for load balancing heuristics
in parallel adaptive finite element computations. Accepted at PDPTA’05.

18. S. Schamberger. http://www.upb.de/cs/schaum/benchmark.html.

CISNE: A New Integral Approach for Scheduling
Parallel Applications on Non-dedicated Clusters�

Mauricio Hanzich2, Francesc Giné1, Porfidio Hernández2,
Francesc Solsona1, and Emilio Luque2

1 Departamento de Informática e Ingeniería Industrial, Universitat de Lleida, Spain
{sisco,francesc}@eup.udl.es

2 Departamento de Informática, Universitat Autònoma de Barcelona, Spain
mauricio@aows10.uab.es, {porfidio.hernandez,emilio.luque}@uab.es

Abstract. Our main interest is oriented towards keeping both local and
parallel jobs together in a non-dedicated cluster. In order to obtain some
profits from the parallel applications, it is important to consider time
and space sharing as a mean to enhance the scheduling decisions. In this
work, we introduce an integral scheduling system for non-dedicated clus-
ters, termed CISNE. It includes both a previously developed dynamic
coscheduling system and a space-sharing job scheduler to make better
scheduling decisions than can be made separately. CISNE allows multi-
ple parallel applications to be executed concurrently in a non dedicated
Linux cluster with a good performance, as much from the point of view
of the local user as that of the parallel application user. This is possible
without disturbing the local user and obtaining profits for the parallel
user. The good performance of CISNE has been evaluated in a Linux
cluster.

1 Introduction

There are several studies in the literature whose main aim is to determine the
interaction and effects of space-sharing (S.S.) and time-sharing (T.S.) policies.
Nevertheless, most of them are focused on dedicated environments. Furthermore,
many of these studies center on Gang Scheduling [1, 2], combined with some kind
of backfilling [1] policy for doing the job distribution.

In this work, we want to show a new scheduling approach focused on non-
dedicated cluster systems. The use of non-dedicated systems for parallel compu-
tation is based on various studies [3] that prove the effectiveness of making good
use of the idle CPU cycles by executing distributed applications.

In this article, we present a new system named CISNE. Our system com-
bines S.S. and T.S. scheduling techniques, in order to take advantage of the idle
computer resources available across the cluster. CISNE is set up basically of a
dynamic coscheduling technique and a job scheduler.
� This work was supported by the MCyT under contract TIC 2001-2592 and partially

supported by the Generalitat de Catalunya -Grup de Recerca Consolidat 2001SGR-
00218.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 220–230, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CISNE 221

The dynamic coscheduling system, termed CCS, is the T.S. scheduling com-
ponent. Traditional dynamic coscheduling techniques [4] rely on the commu-
nication behavior of an application, to simultaneously schedule the communi-
cating processes of a job. Unlike those techniques, CCS takes its scheduling
decisions from the occurrence of local events, such as communication, mem-
ory, Input/Output and CPU, together with foreign events received from remote
nodes. This allows CCS to assure the progress of parallel jobs without disturb-
ing local users, and even using an MultiProgramming Level (MPL) greater than
one. In addition it is possible to re-balance the resources assigned to parallel
tasks throughout the cluster. CCS was previously developed [5], and now we
present the modifications that allows it to be incorporated into an integral clus-
ter scheduling system, such as CISNE.

The job scheduler, named LoRaS, is the S.S. scheduling component of CISNE.
It is responsible for distributing the parallel workload among the cluster nodes.
This is performed by taking into account the state of the cluster system, the char-
acteristics of applications already running and those of the waiting jobs. Based
on those considerations and the coscheduling restrictions, different techniques
for assigning jobs to processors are proposed and evaluated in this article.

CISNE was implemented in a non-dedicated Linux cluster. In this framework,
we evaluated the interaction between T.S. and S.S. techniques. This experimen-
tation shows that our proposal obtains better performance than the rest of the
evaluated techniques, as much from the point of view of the local user as that
of the parallel applications user and the system administrator.

The remainder of this paper is as follows: in section 2 we explain the main
problems to solve and our goals for this article. In section 3 the CISNE system
is presented. The efficiency measurements of CISNE are performed in Section 4.
Finally, the main conclusions and future work are explained in Section 5.

2 T.S. and S.S. Interaction Problems

The choice of a dynamic coscheduler as a T.S. system is based on the fact that
this kind of system is better suited to a non-dedicated environment than an
explicit (or gang) T.S. coscheduling schema [6]. However, this choice has some
implications for the S.S. schema, that force us to develop our own system.

The main effect could be found in the lack of an Ousterhout matrix [7],
present in every explicit coscheduling system. In such a system, the parallel
machine could be seen as a set of n parallel virtual machines (VM). The matrix
provides information about the parallel jobs and their forming tasks, as well as
the mapping onto the VMs. Every VM is synchronized to each other by means
of a global context switch. Thus, there is no interaction among the VMs, which
also means none between the parallel tasks.

On the other hand, in a T.S. system based on dynamic coscheduling tech-
niques, there is no such matrix. Thus, it is not possible to apply the S.S. tech-
niques to each row. As a consequence, and in order to improve the global per-
formance of the system, the (now existing) interaction among the running ap-

222 Mauricio Hanzich et al.

plications has to be considered [8]. Therefore, one of the main goals of this work
is to find the kind and degree of interaction between the system management
components (T.S. and S.S. schemes) to achieve the maximum performance in
distributed tasks without damaging the local ones.

The studies carried out by Choi et al. revealed the sensitivity of the implicit
coscheduling techniques in relation to the mapping and the execution order of
the parallel applications over the cluster (if the MPL is greater than one). In
addition, the type of applications (CPU or communication bound) running con-
currently over the cluster, and the global system state, can have a great influ-
ence on the coscheduling performance. Another factor to take into account in a
non-dedicated cluster is the local user activity, which has to be monitorized pe-
riodically. The control of those factors allows the S.S. system to schedule better,
while it helps the T.S. system to avoid intrusions into the local tasks.

In such a scenario, the best S.S. scheduling of a parallel workload is not
obvious and hence some questions arise including how the distribution of the
parallel applications over the cluster affects the coscheduler performance, how
the inter-arrival time affects the turnaround time of the parallel applications,
and finally, whether it is worth applying a complex scheduling policy and, if so,
which. Our main goal in this work is to shed some light on those questions.

3 CISNE: Cooperative and Integrated Scheduler
for Non-dedicated Environments

In order to provide a system that merges space and time sharing scheduling, we
propose a new integral system called CISNE. The time sharing scheduling is done
by a dynamic coscheduling technique, named CCS (Cooperating CoScheduling)
[5], developed previously by our group. Concerning about the space scheduling
problem, we present a system called LoRaS. This system is responsible for dis-
tributing parallel applications throughout the cluster using information about
the system state, the applications to be launched and the CCS characteristics.

Fig. 1 shows the integration of CCS and LoRaS into CISNE. It shows the
main components making up the virtual machine. As we can see in the fig-
ure, the interaction between the nodes follows a master-slave paradigm. There
is one server node (master with the most important control and management
functions), and the remaining ones interact with the server in a client (slave)
mode.

In the following sections, the CCS and LoRaS systems are explained sepa-
rately.

3.1 CCS (Cooperating CoScheduling) System

Our T.S. system provides an execution environment where the parallel applica-
tions could be dynamically coscheduled. Besides, the given resources are balanced
and the interactive responsiveness of the local applications is totally preserved.
In order to reach this situation, CCS uses the architecture shown in fig. 1, where
each module goal is:

CISNE 223

Fig. 1. LoRaS-CCS Architecture

– Dynamic Coscheduling: no processes should wait for a non-scheduled pro-
cess for synchronization/communication. This is achieved by means of in-
creasing the communicating task priority, even causing CPU preemption.
(implemented inside the Linux kernel).

– Job Interaction Mechanism (JIM): preserves the local user tasks responsive-
ness. In order to reach its goal, this module manages the amount of resources
(CPU and memory) given to the parallel tasks in the node. This is done by
means of a social contract [9], which establish the amount of resources that
could be given to the parallel and local loads, when the node is not idle
(implemented inside the Linux kernel).

– Cooperating Scheme: this module collaborates with the JIM module in order
to balance the resources (memory & CPU) given to the parallel applications
throughout the cluster. It is responsible for the exchange of several events,
such as the login or logout of a local user into a specific node, or the stop-
ping (restarting) event generated by the JIM module for a specific parallel
application. This happen whenever it has to preserve the local responsiveness
(implemented in user space).

3.2 LoRaS (Long Range Scheduler) System
LoRaS implements a Job Scheduler in the user space, which provides a Space-
Sharing scheduling mechanism. The following is the description of the LoRaS
modules shown in fig.1:

– Client : sends a job execution request (JER) to the server module on behalf
of a parallel user.

– Server : the admittance of new JERs to be executed in the system is per-
formed by the server module. This JER is then forwarded to the Job Sched-
uler module.

224 Mauricio Hanzich et al.

– Job Scheduler : executes every received JER using the configured policy. It
is important to mention that JER execution is conditioned by the cluster
state. If there is no possibility of executing the job on its arrival, then the
petition has to wait in a queue for the requested resources.

– Policy (submodule): establishes the possibility of executing a JER for a given
cluster state and the JER resources request. This module is designed in
such a way that it is easy to change its functionality and hence the LoRaS
scheduling system.

– Job Dispatcher : considering that every job can have its own characteristics
(e.g. a PVM or MPI job), it is necessary to configure the job before launching
it. Hence, this module is responsible for doing these previously required tasks.

– Node Control : this module has two different functions. On one hand it
launches and controls the job execution. On the other hand, it gathers infor-
mation from the node state and informs the Job scheduler (and hence, the
policy submodule) so that it can take better scheduling decisions.

3.3 Implemented and Evaluated Policies

In this section, we propose several S.S. techniques oriented towards non-dedicated
clusters. Unlike traditional techniques oriented to dedicated cluster, all our pro-
posals are characterized by the fact of taking the cluster state into account.

The first proposed policy, named Uniform, is characterized by the following:
(a) it merges differently oriented applications (i.e. communication or compu-
tation) in the same node and (b) it runs applications one over another in an
ordered manner, whenever possible. By doing this, we expect to increase the
coscheduling probability of the CCS system. By ordering the applications we
mean to launch parallel applications in such a way that each task of a couple of
parallel applications runs in the same set of nodes. This situation is depicted in
fig. 2.a and we call it a Uniform situation.

Fig. 2. Difference between a uniform (a) and a normal (b) policy

However, the Uniform policy executes the applications in any free place if
there is no space for them in a uniform place. Besides, it is important to mention
that in every case the policy must try to help to preserve the local user activity by
not overloading nodes with some local tasks. This is done by limiting the amount
of usable memory and the MPL, respecting the established social contract.

CISNE 225

The problem of arranging different size (number of needed nodes) applica-
tions in a uniform way, was dealt with by always arranging smaller applications
over bigger ones. Therefore, little applications can start sooner, while bigger
applications do not notice to much effect from the coscheduling point of view.

The second proposed policy, termed Normal, considers the state of the system
nodes, but does not consider the running job distributions as the uniform does.
Thus, the resulting scheduling can reach a situation like the one depicted in fig.
2.b. where an application like J3 shares its nodes with a couple of applications.
This situation tends to diminish the coscheduling system performance and hence
the application execution time is increased.

In addition, both normal and uniform policies are compared against a Basic
policy where we execute the parallel workload with an MPL = 1, which means
at most one parallel task per node. Finally, and in order to compare with a well
known S.S. policy, we introduce an EASY backfilling [10] policy in our evaluation.
The EASY policy executes a job not-at-the-head of the jobs queue, whenever
this does not delay the start of the job at the head. By including this policy,
we can show the effect of incrementing the MPL compared with the use of an
EASY policy with an MPL = 1.

It is important to note that for every evaluated policy, we use a FCFS policy
for queuing each arriving job. Doing this, we ensure the absence of starvation in
the system and a fair treatment for every job.

4 Experimentation

This experimentation is divided into two sections. The first section compares
our coscheduling system in relation to traditional coscheduling systems based
exclusively on communication events. The second set of results shows how CISNE
performs under our defined S.S. policies.

In order to simulate a non-dedicated cluster, we need two different kinds of
workloads. On one hand, we need to simulate local user activity and, on the
other hand, we need some parallel applications that arrive at some interval.

The local workload was carried out by running a synthetic benchmark. This
allowed the CPU load, memory requirements and network traffic used by the
local user to be fixed. In order to assign these values in a realistic way, we
monitored the average resources used by real users. According to this monitoring,
we defined two local user profiles. The first profile identifies 65% of the users with
high needs on inter-activeness (called XWindows user: 15% CPU, 35% Mem.,
0,5KB/sec LAN), while the other profile distinguishes 35% of the users with
web navigation needs (called Internet user: 20% CPU, 60% Mem., 3KB/sec.
LAN). This benchmark alternate CPU activity with interactivity by means of
running several system calls and different data transfers to memory. In order
to measure the level of intrusion into the local load, our benchmark provide
us with the system call latency. Besides, and according to the values observed
in the monitoring, we loaded the 25% of the nodes with local workload in our
experiments.

226 Mauricio Hanzich et al.

The parallel workload was a list of 90 NAS parallel applications with a size of
2, 4 or 8 tasks that reached the system following a Poisson distribution [2]. The
chosen NAS applications were: CG (mem: 55-120MB / CPU: 65-70% / time:
37-51 sec.), IS (mem: 70-260MB / CPU: 58-69% / time: 40-205 sec.), MG (mem:
60-220MB / CPU: 82-89% / time: 26-240 sec.) and BT (mem: 7-60MB / CPU:
85-93% / time: 90-180 sec.). The parallel jobs were merged so that the entire
workload had a balanced requirement of computation and communication (25%
of the workload composed by each application). It is important to note that the
MPL reached for the workload depended on the system state at each moment,
but in no case it surpassed an MPL = 4. This was established in order to respect
the social contract, which was set to 50% of the resources available for each kind
of load (local/parallel) [5].

Both workloads were executed in an Linux cluster composed of 16 P-IV
(1,8GHz) nodes with 512MB of memory and a fast ethernet interconnection
network.

4.1 Evaluating the Time-Sharing Systems

In this section we have compared the CCS policy in relation to the plain Linux
scheduler and two well known communication-driven coscheduling strategies: im-
plicit and (isolated) dynamic coscheduling. In implicit coscheduling, a process
waiting for messages spins for a determined time before blocking. In contrast,
dynamic coscheduling deals with all messages arrivals (like CCS, but without re-
source balancing). It works by increasing the receiving task priority, even causing
CPU preemption of the task being executed inside.

They were evaluated by running the parallel workload for several values of
MPL (1 to 4). The parallel workload was executed applying a Normal S.S. policy.
Its performance was measured by means of the slowdown. This is the response-
time ratio of a job in a non-dedicated system in relation to the time needed in
a system dedicated to this job.

From fig. 3.a, we can see that the slowdown of the parallel applications is
always better for our CCS coscheduling system. In fact, this difference increases
with the value of the MPL. This good CCS behavior is due to the interaction
of the coscheduling scheme with the adaptive and balanced resource allocation
carried out by CCS. In addition, the social contract implemented by CCS main-
tains the response time (measured by the mean of the local benchmark system
call latency in fig. 3.b) always under 400ms. This limit for the Response Time,
established by [11], is an acceptable threshold before the user can notice a lack
of inter-activeness.

These results encouraged us to use CCS to integrate a coscheduler into the
CISNE system.

4.2 Evaluating the CISNE Integrated System

In this subsection, we want to show the performance of CISNE, by applying
the described space-sharing policies to the CCS system. This interaction will be

CISNE 227

Fig. 3. Parallel applications slowdown (a) and system call latency (b) under the eval-
uated policies

quantified by measuring the turnaround time of the parallel applications com-
paring the Uniform, Normal, Basic and EASY policies. In addition, we measure
the makespan of the workloads (i.e. the executing time of the whole workload).
Doing this it is possible to evaluate CISNE from a system administrator’s point
of view.

Fig. 4.a shows the turnaround, wait and execution time for every evaluated
policy. Here we can see that the normal and backfilling policies give us almost
the same behavior, while the uniform policy performs better by reducing the
execution time and hence the waiting time of the workload. From this figure, it
is also clear that the turnaround time is dictated by the waiting time. On the
other hand, it would be desirable to evaluate the effect of the execution time
as the predominant turnaround factor. With this aim, we executed the parallel
workload doubling the inter-arrival time between applications. Fig. 4.b shows
the results obtained for the same policies.

Fig. 4. Turnaround, Wait and Execution time for the exercised workloads

From those figures, it is clear that the job distribution policy has a great
impact on the underlying coscheduling system performance, considering the re-
duction in the execution time. This effect arises for two different reasons: on

228 Mauricio Hanzich et al.

one hand, the applications compete for different kinds of resource, letting them
evolve without disturbing each other. On the other hand, the fact of merging
applications with different communication patterns (under the Uniform policy),
improves the performance of the coscheduler. This is due to a CCS enhance-
ment in recognizing the communication needs. It is important to note that the
execution time for the backfilling and basic policies are better due to the MPL
restriction.

Another effect that it is important to mention is how the waiting time is
noticeably reduced when we apply a Uniform policy. This effect is not only due
to a decrease in the execution time, but due to a better resource distribution that
enhances the scheduling opportunities. Actually, this effect is not just a benefit
of the Uniform policy, but a problem of the Normal one. The main problem
is that the Normal policy tends to distribute the resources in such a way that
the total available memory throughout the cluster could be enough to execute
an application, but there are not enough nodes with enough free memory for
launching it. However the Uniform policy tends to localize the available resources
and then the scheduling possibility is enhanced in the average case. This is due
to the elevated percentage of small applications in the workloads tested. That
fact was verified in [2] to be representative of the reality.

In order to take a closer look at the enhancement of the coscheduling per-
formance, fig. 5.a shows how the selected policy affects the jobs slowdown. This
graphic is calculated by comparing the Normal and Uniform policies with the
Basic policy (Slowdown = 1), where every job is executed in isolation (except
for some local activity). The figure shows how a uniform policy could reduce
the slowdown from 40% (1,40) to less than 15% (1,15). This demonstrates the
good performance of our coscheduling system as the close interaction with the
S.S technique and, once again, that the level of resources is enough to increase
the MPL with almost no detriment to the (parallel) application execution time.

Fig. 5. (a) Applications slowdown for the Normal and Uniform policies compared with
the Basic policy. (b) Workloads Makespan for the evaluated workloads and policies

Another aspect we want to analyze is the CISNE behavior from the system
point of view (makespan). The results for both workloads (i.e. single and double
arrival time), can be observed in fig. 5.b for the policies evaluated.

A couple of effects can be extracted from the figure. First of all, a backfilling
policy behaves better with a shorter workload arrival time than with a longer

CISNE 229

one. This is due to a longer (waiting) jobs queue that enhances the backfilling
opportunities. Considering the Normal and Uniform policies, it is clear that the
last one has some advantages. In this case, the effect is directly related to a
better resource usage and the enhancement in the application turnaround time.

5 Conclusions and Future Work

This work presents a new integral system, named CISNE, that considers both
S.S and T.S. concerns, which is applied on a non-dedicated cluster. Using this
framework, the paper analyzes how the performance of a dynamic coscheduling
system could be affected by the distribution policy over a non-dedicated clus-
ter. With this aim, we evaluated four policies oriented to non-dedicated clusters:
Uniform, Normal, Backfilling and Basic. We found that a Uniform policy (i.e. a
set of applications running on the same set of nodes), can dramatically diminish
the turnaround time of the applications (up to 76%) compared with other ap-
proaches. In addition, the performance of a uniform distribution was evaluated
considering a turnaround time limited, on one hand, by the waiting time (single
arrival time workload), and on the other hand by the execution time (double ar-
rival time workload). In both scenarios a Uniform policy was shown to perform
well, even from the system point of view (makespan). It is important to note
that those gains were obtained without disturbing the system responsiveness.

Considering our future work and taking into account that the Uniform and
EASY policies attack the scheduling problem from different points of view, they
could be combined in a schema where the MPL is greater than one and we also
apply a backfilling policy. To do this, we have to define a prediction model to
establish the execution time of a parallel application considering the cluster state
and the interaction between the running applications.

References

1. Y. Zhang, H. Franke, J. Moreira and A. Sivasubramaniam. “An Integrated Ap-
proach to Parallel Scheduling Using Gang-Scheduling, Backfilling and Migration”.
IEEE Transactions on Parallel and Distributed Systems, 14(3):236-247, March
2003.

2. D. G. Feitelson. Packing schemes for gang scheduling. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag,
1996, Lect. Notes Comput. Sci. vol. 1162, pp. 89-110.

3. T. Anderson, D. Culler, D. Patterson and the NOW team. “A case for NOW
(Network of Workstations)”. IEEE Micro, Vol. 15, pp. 54-64. 1995.

4. C. Anglano. “A Comparative Evaluation of Implicit Coscheduling Strategies for
Networks of Workstations”. In 9th International Symposium on High Performance
Distributed Computing (HPDC’2000), pp.221-228, 2000.

5. M. Hanzich, F. Giné, P. Hernández, F. Solsona and E. Luque. "Coscheduling and
Multiprogramming Level in a Non-dedicated Cluster". EuroPVM’2004, LNCS, vol.
3241, pp. 327-336, 2004.

230 Mauricio Hanzich et al.

6. F. Solsona, F. Giné, P. Hernández, E. Luque. "Implementing Explicit and Implicit
Coscheduling in a PVM Environment". EuroPar 2000, LNCS, Vol 1900, pp 1164-
1170. 2000.

7. Ousterhout, J. . “Scheduling techniques for concurrent systems”. Proceedings of the
Conference on Distributed Computing Systems. 1982.

8. G. Choi, S. Agarwal, J. Kim, A. Yoo and C. Das. “Impact of Allocation Strategies
on Communication-Driven Coscheduling in Clusters”. EuroPar 2003: 160-168.

9. R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson and D.A.
Patterson. “The Interaction of Parallel and Sequential Workloads on a Network of
Workstations”. ACM SIGMETRICS’95, pp.267-277, 1995.

10. A. W. Mu’alem and D. G. Feitelson. "Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling ". IEEE Trans.
Parallel & Distributed Syst. 12(6), pp. 529-543, Jun 2001.

11. Nielsen. “Advances in Human-Computer Interaction”. J. Nielsen, J. (ed.), Intellect
Publishers, 1995.

On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems

Maciej Drozdowski1,� and Marcin Lawenda2

1 Institute of Computing Science, Poznań University of Technology,
ul.Piotrowo 3A, 60-965 Poznań, Poland
Maciej.Drozdowski@cs.put.poznan.pl

2 Poznań Supercomputing and Networking Center,
ul.Noskowskiego 10, 61-704 Poznań, Poland

Marcin.Lawenda@man.poznan.pl

Abstract. In this paper we study multi-installment divisible load pro-
cessing in heterogeneous distributed systems. Divisible loads are com-
putations which can be divided into parts of arbitrary sizes, and these
parts can be processed independently in parallel. In order to reduce the
waiting time during the parallel computation initialization phase, load is
sent to the processors in multiple small installments. In a heterogeneous
system the sizes of the installments should be adjusted to the communi-
cation, and computation capabilities of the processors. We propose two
algorithms that gear the load chunk sizes to different communication and
computation speeds. The first one is an optimization branch and bound
algorithm. The second algorithm is based on genetic search. The running
times of both methods and the quality of the genetic algorithm solutions
are compared. Then, we use these algorithms to analyze features of the
scheduling problem solutions.

Keywords: scheduling and load balancing, divisible load, multi-install-
ment processing, heterogeneous systems, optimization algorithms.

1 Introduction

Divisible loads are computations which can be divided into parts of arbitrary
sizes, and these parts can be processed independently in parallel. This means
that the grain of parallelism is small, and there are no data dependencies. The
sizes of the load parts should be adjusted to the speeds of communication and
computation such that processing finishes in the shortest possible time. Examples
of real divisible applications include, among others, distributed searching for
patterns in text, audio, graphic files, database and measurement processing,
data retrieval systems, some linear algebra algorithms, and simulation. Surveys
of the divisible load theory can be found in [4, 6, 11].

� This research has been partially supported by the Polish State Committee for Sci-
entific Research.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 231–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

232 Maciej Drozdowski and Marcin Lawenda

Communication delays constitute an important part of the processing time in
all distributed algorithms. To reduce the initial waiting for the data, and for ini-
tialization of the computations, load is sent in multiple small chunks rather than
in a single long message. This way of divisible load distribution and execution is
called multi-installment processing [3, 6, 8, 12]. In the earlier publications certain
assumptions were usually made on the structure of the schedule. For example,
messages of equal size were sent to processors in a round-robin fashion [6, 8, 12].
It has been shown [12] that this way of multi-installment processing reduces the
length of the schedule in a homogeneous system at most e−1

e times. Unequal
load chunk size partitioning has been also proposed [3, 6, 13], but with a tacit
assumption that the set of used processors, and their activation sequence are
given and fixed. Furthermore, it was assumed that there are no idle times, nei-
ther in the communication nor in the computations [3, 4, 6, 13]. However, to our
best knowledge, the problem of multi-installment divisible load processing with
unequal chunk sizes adjusted to the communication and computation speeds,
with selection of the set of exploited processors, and selection of their activation
sequence is open. The goals of this paper are twofold: to propose algorithms for
the multi-installment divisible load processing including selection of the set and
sequence of processors, and to study influence of the system parameters on the
quality of the scheduling problem solutions.

The rest of this paper is organized as follows. In Section 2 we formulate the
multi-installment divisible load scheduling problem for heterogeneous systems.
In Section 3 two algorithms are proposed: an optimization branch-and-bound
algorithm, and a heuristic genetic algorithm. The results of computational ex-
periments are presented and discussed in Section 4.

2 Problem Formulation

We will use the word processor to denote a processing element with CPU, mem-
ory, and communication link. In divisible load model it is classically assumed that
initially some volume of load V (e.g. a file with data to be processed) resides on
a processor P0 called originator. The originator sends the load to its neighbors
for remote processing. Each of the neighbors intercepts some part of the received
load, and immediately starts computations related with the received load. The
rest of the load is retransmitted to the still inactive neighbors. In this work we
assume a star interconnection (a.k.a. a single level tree). In the star network
the originator is located in the star center (or the root of the single level tree),
and is connected to a set P1, . . . , Pm of processors which perform computations.
All communications involve the originator, and there are no direct communica-
tions between processors P1, . . . , Pm. For simplicity of presentation we assume
that originator is communicating only. Otherwise, the computing ability of the
originator can be represented as an additional processor. Each processor Pi is de-
fined by the following parameters: Ai - computing rate (reciprocal of computing
speed), Ci - communication rate (reciprocal of bandwidth), Si - communication
startup time. Ai, Ci can be expressed, e.g., in seconds per byte, and Si can be

On Optimum Multi-installment Divisible Load Processing 233

expressed in seconds. Computing x units (e.g. bytes) of load on processor Pi

takes xAi units of time. Sending the same amount of load to Pi lasts Si + xCi.
We assume that memory sizes of the processors are sufficiently big and do not
influence the construction of the schedule. To simplify the mathematical model
we assume that the results returning time is negligible. This simplification is not
limiting generality of our considerations because result gathering can be included
in the model (see e.g. applications [2, 5, 7, 12]). The computations start only
after receiving the whole message with load. We assume that processors have
independent communication hardware which allows for simultaneous communi-
cation and computations on the previously received load.

To reduce the initial waiting for the load, and for the start of the computa-
tions, load is sent to processors in multiple small chunks rather than in a single
long message. Let n denote the number of chunks. If the sequence of processors
receiving the load chunks is known then our problem can be reduced to a linear
program. Let αi denote size of chunk i. Let di ∈ {1, . . . , m} be the number of the
processor receiving chunk i. We will denote by Hi ⊆ {i, . . . , n} the set of chunks
sent to processor di, starting from chunk i. Cmax denotes schedule length. Fig. 1
depicts an example schedule with multiple installments. The linear program can
be formulated as follows:

minimize Cmax

on condition that:

i∑
j=1

(Sdj + αjCdj) + Adi

∑
j∈Hi

αj ≤ Cmax i = 1, . . . , n (1)

n∑
i=1

αi = V (2)

In constraint (1) sum
∑i

j=1(Sdj + αjCdj) expresses communication time for
chunks 1, . . . , i. Adi

∑
j∈Hi

αj is computation time on processor di starting from
chunk i. Thus, (1) guarantees that all processors stop computations before the
end of the schedule. All work is done by equation (2). Thus, it is possible to
find optimum distribution of the load using formulation (1)-(2) if we know the
sequence of the processor activation (i.e. values di for i = 1, . . . , n).

S + Cd d1 1 1
� S + Cd d2 2 2

�

P1

P0

P2

P3

S + Cd d3 3 3
� S + Cd d4 4 4

�

Cmax

�1 1
Ad

�2 2
Ad �4 2

Ad

�3 3
Ad

�5 3
Ad

communications

computations

Fig. 1. Example of load distribution pattern.

234 Maciej Drozdowski and Marcin Lawenda

P1

P0

P0

P0 communications

communications

computations
computations

computations

computations

computations

computationscomputations

w
o

rs
t

ca
se

w
o

rs
t

ca
se

o
p

ti
m

u
m

o
p

ti
m

u
m

a) b) c)

computations computationscomputations

communications

communicationsP0

P0 P0

P1 P1

P1 P1 P1

P2 P2 P2

P2 P2 P2

BV___
2 B+ V__4

3
B+1

2V 2 2_____
+1.5
B+

B
0 0

00

0 BV___
B+1

V__
2

Fig. 2. The worst case examples. a) ignoring heterogeneity, b) ignoring processor set
selection, c) ignoring sequencing of the processor activation.

Before proceeding to the further details let us consider worst cases that may
appear if scheduling decisions ignore certain information. Suppose that we ig-
nore the heterogeneity of the system, and send load parts of equal size to the
processors. For instance (Fig. 2a), consider two processors P1 with parameters
S1 = 0, C1 = 0, A1 = B, and P2 with parameters S2 = 0, C2 = 0, A2 = 1. We di-
vide the load into two equal chunks of size V

2 . Resulting schedule has length BV
2

but processor P2 is idle in interval [V
2 , BV

2]. If we use sizes α1 = V
B+1 , α2 = BV

B+1 ,
then both processors stop computing simultaneously, and schedule length is BV

B+1 .
The ratio of the two schedule lengths is B+1

2 which can be arbitrarily big. Hence,
in the worst case solutions based on load equipartitioning can be arbitrarily bad
in heterogeneous systems.

Suppose that we adjust chunk sizes to the parameters Ai, Ci, but all proces-
sors are always used. Let us present another example (Fig. 2b). There are two
processors with parameters: S1 = B, A1 = 1, C1 = 1, S2 = 0, A2 = 1, C2 = 1.
If V < B

2 then there is no point in using processor P1 because load of this size
may be processed in a shorter time than the communication activating P1. If we
use P1 then the schedule has length at least B. If we don’t, then schedule has
length V (A2 + C2) = 2V . The ratio of the two lengths is at least B

2V which can
be arbitrarily big. Thus, if the set of processors is always the same, the resulting
schedule can be arbitrarily bad.

Suppose that we adjust chunk sizes, and select the processors wisely, but
we always use the same sequence (P1, . . . , Pm) of processor activation. Let us
analyze one more instance (Fig. 2c), m = 2, V = 2, S1 = 0, C1 = B, A1 = 1, S2 =
0, C2 = A2 = 0.5. If we use sequence (P1, P2) of processor activation, then the
optimum load distribution is α1 = α2 = 1, and schedule length is B + 1. For
sequence (P2, P1) the optimum distribution is α1 = 1

B+1.5 , α2 = 2B+2
B+1.5 , and

schedule length is 2B+2
B+1.5 . The ratio of the two lengths is B+1

2− 1
B+1.5

which can be
arbitrarily big.

On Optimum Multi-installment Divisible Load Processing 235

Thus, the subset of processors P1, . . . , Pm exploited in the computations and
the targets of the communications are unknown, and must be determined. This
task has combinatorial nature. In Section 3 we propose algorithms that deter-
mine destinations for the load chunks. If one ignores proper selection of the
chunk destinations, the problem becomes easier to solve because only linear pro-
gram (1)-(2) has to be solved for some assumed chunk destinations d1, d2, . . . , dn.
Then, the resulting schedules can be arbitrarily bad in the worst case, as demon-
strated in the preceding paragraph. How bad the solutions can be on average,
if we skip the combinatorial part of the problem, is unknown. We attempt an-
swering this question in Section 4.

3 Optimization Algorithms

3.1 Branch and Bound Algorithm

Two elements constitute a branch-and-bound algorithm. The first is branching
procedure which divides the solution space into disjoint subsets. These subsets
are either eliminated if they do not include the optimum solution, or are further
divided until selecting a unique solution. Partition of the solution space can be
represented as a tree. Each node is a representative of a set of solutions. Dividing
such a set is equivalent to generating successors of a node. In our problem we
have to select the sequence of the targets for n load chunks. In the root of the
tree the sequence is empty. The first chunk may be sent to one of processors
Pi, for i = 1, . . . , m. Therefore, the root has m successors each representing
sequences starting with a message sent to processor Pi. The second level of the
tree includes two-processor sequences (Pi, Pj). Branching a node representing a
leading sequence of l chunk targets consists in appending one more processor
to which chunk l + 1 will be sent. The branching procedure is continued until
constructing a sequence of the assumed length n.

The maximum number of the search tree leaves is mn. As this number grows
exponentially with n, it is necessary to prune the search tree by eliminating nodes
representing solutions certainly not better than some already known solution.
This procedure is the bound element of the algorithm. To determine if a node
should be eliminated its lower bound of the schedule length is calculated. Suppose
the node represents a sequence of l chunks. Thus values d1, . . . , dl are already
determined. The remaining n − l chunks still need to be selected. We assume
that these n − l chunks are sent to n − l ideal target processors. The ideal
target processor has parameters Aid = minm

i=1{Ai}, Cid = minm
i=1{Ci}, Sid =

minm
i=1{Si}, and processes only one load chunk. For such a sequence of l real

processors, and n−l ideal ones, a linear program (1)-(2) is solved for Cmax which
is the lower bound.

The best known solution used in comparisons with the lower bound is found
by the algorithm itself. It is the best solution found in any leaf of the search tree.
The tree is searched in the depth-first least lower bound order.

236 Maciej Drozdowski and Marcin Lawenda

3.2 Genetic Algorithm

Genetic algorithms imitate evolution of genome. Solutions are encoded as strings
of symbols analogously to the encoding of the chromosomes. Some initial popu-
lation of solutions is generated randomly. Genetic operators transform popula-
tions in a direction improving quality of the solutions. Selection, crossover, and
mutation are typical genetic operators. Selection elects better solutions for the
next population. Crossover operation generates offspring solutions by randomly
combining pieces of the parent strings. Though the offspring is constructed in
a random manner, the fragments of a string encoding an optimum solution are
indirectly discovered and combined due to the selection and crossover. Mutation
changes randomly some solutions to diversify the search, and to escape local
optima. Genetic search is a classic technique for solving combinatorial optimiza-
tion problems, including scheduling problems. We direct interested readers to
monographs [9, 10] for detailed presentation of the genetic search method.

In our implementation a chromosome is a string (d1, . . . , dn) of chunk des-
tinations. The measure of a chromosome fitness is the value of schedule length
Cmax obtained from the linear program (1)-(2) formulated for the sequence of
chunk targets given in the chromosome. In the crossover operation two chro-
mosomes are randomly selected, and combined using one point crossover. For
example, let (a1, a2, . . . , an), (b1, b2, . . . , bn) be two parent solutions, and let
k denote a randomly selected crossover point. The two offspring solutions are
(b1, . . . , bk−1, ak, . . . , an) and (a1, . . . , ak−1, bk, . . . , bn). The total number of new
chromosomes constructed in crossover is GpC , where G is the size of the popu-
lation, and pC is a tunable algorithm parameter which will be called crossover
probability. Mutation changes GnpM random genes (i.e. dis) to different values.
Gn is the total number of genes, pM is a tunable algorithm parameter which
we will call mutation probability. The selection of the chromosomes for the new
population is done by a combination of elitist and roulette wheel method. The
best half of the old population is always preserved. A string is passed to the
second half of the new population with probability 1

Cj
max

/
∑G

j=1
1

Cj
max

, where
Cj

max is the schedule length for chromosome j. The algorithm stops after a fixed
number of iterations without an improvement in the quality of the best solution
ever found. There is also a limit on the total number of iterations.

4 Computational Experiments

4.1 Experiment Setting

All the experiments were performed on a PC computer with Pentium IV 1.8GHz,
512MB RAM memory, and Microsoft Windows XP. The executable code was
generated by Borland C++ Builder 6.0. All LP formulations were solved by a
code derived from lp_solve [1]. Unless stated otherwise, the test instances of the
scheduling problem were generated in the following way: Processor parameters
A, C, S, were generated with uniform distribution from the range [0,1]. Problem
size was V = 1E6. The processor number was m = 4, and the number of chunks

On Optimum Multi-installment Divisible Load Processing 237

1.00
0 100 200 300 400 500

1.04

1.08

1.12

1.16

G=50

G=40

G=30

G=20

G=10

G=5

1.20

iteration number

C _
_

_
C

*m
ax

m
ax

Fig. 3. Average distance from optimum
vs. iteration (population) number and G.

1.0000
10/100 25/250 50/500 80/800 100/1E3 200/2E3 300/3E3 500/5E3400/4E3

1.0015

1.0010

1.0005

1.0020

1.0025

1.0030

C _
_

_
C

*m
ax

m
ax

Fig. 4. Average distance from optimum
vs. iteration limits.

was n = 8. Each point on the following charts is an average of at least 10
instances.

In the genetic algorithm genes of the initial population were generated with
uniform distribution from set {1, . . . , m}. The following procedure has been ap-
plied to tune the genetic algorithm. A set of 100 random instances were generated
as a reference benchmark. An indicator of algorithm performance was the average
quality of the best solutions obtained for these benchmark instances. Population
size G = 50 has been selected as the convergence improvement stops at this size
(cf. Fig. 3). For the fixed G crossover probability pC = 80%, and then mutation
probability pM = 3% were selected. We used a limit of 10 iterations without
solution improvement, and an upper limit of 100 iterations in total, which give
acceptable solution quality on average (cf. Fig. 4), but still result in a shorter
running time than other iteration limits combinations.

4.2 Performance of the Algorithms

Running Times. The execution times of the algorithms are collected in Fig. 5,
and 6. The running time of the branch and bound is denoted by B&B, and of the
genetic algorithm by GA. It can be seen that the branch and bound algorithm
has exponential running time in n for fixed m (cf.Fig. 5). The execution time
grows slower as a function of m for fixed n (cf.Fig. 6) because the maximum
number of the search tree leaves is mn. Nevertheless, execution time of the
branch and bound algorithm allows only for solving instances with small m,
and n. Execution time of the genetic algorithm grows with n (Fig. 5) because
the length of the string encoding solution is n. For m = 3, . . . , 20 execution
time grows less than twice (Fig. 6). We also tested dependence of the execution
times on size V of the problem. For small V execution time of the branch and
bound was shorter than for big sizes because less processors had to be activated,

238 Maciej Drozdowski and Marcin Lawenda

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

GA

B&B

t
[s

]

10 30 40 500 20

n

Fig. 5. Running time vs. n.

1E+00

1E+01

1E+02

1E+03

1E+04

t
[s

]

2 4 6 8 10 12 14 16 18 20

m

GA

B&B

Fig. 6. Running time vs. m.

and therefore the search trees were smaller. The execution time of the genetic
algorithm was independent of V .

Quality of the Solutions. The results of our study on the quality of solutions
are collected in Fig. 7-8. The instances in Fig. 7 had A parameter equal to a
given value on all processors. The remaining C, S parameters were generated as
described previously. Analogously, for Fig. 8 parameter C was fixed on all pro-
cessors, and A, S were randomly generated. Each figure represents quality of the
solutions, i.e. the relative distance from the optimum, in three cases: the average
solution of a genetic algorithm (denoted GA), the average random solution (de-
noted RND), and the worst selection of the chunk targets ever observed (denoted
Worst). Note that the worst case (Worst) has its own ’y’ axis different than RND,
and GA cases. The random solutions (RND) have random chunk destinations.
In all cases load chunk sizes were calculated by linear program (1)-(2).

These three cases demonstrate weaknesses and strengths of the two parts in
the solution of our problem: the combinatorial part which finds targets for the
chunks (dis), and the linear programming part which calculates optimum chunk
sizes (αis) for the given destinations. It can be seen that genetic algorithm con-
structs solutions that are very close to the optimum. On average its solutions
were not further 0.2% from the optimum. The worst solution obtained by the ge-
netic algorithm was 1.1% away from the optimum. Thus, the genetic algorithm is
a practical replacement for the optimization branch and bound algorithm which
has exponential running time. The random solutions (RND) are also good on
average because their distance from the optimum is not greater than approxi-
mately 30%. This is good news because solving a complex combinatorial problem
of determining chunk targets (be it by a branch and bound or by a genetic algo-
rithm) may be too time consuming and unprofitable on average. A random, or
reasonable selection of processors and their activation sequence, supplemented
by a linear program (1)-(2) gives solutions of acceptable quality on average. This

On Optimum Multi-installment Divisible Load Processing 239

1.00
1E-3 1E-2 1E-1 1E0 A 1E1 1E2 1E3

1

2

3

4

5

6

7

8

9

10

1.15

1.20

1.25

1.30

1.35

1.10

1.05 R
N

D
,

G
A

W
O

R
S
T

O
B

S
E

R
V

E
D

RND

GA

WORST

Fig. 7. Relative distance from the opti-
mum vs. A.

1.00

1.15

1.20

1.25

1.30

1.35

1.10

1.05

0

5

10

15

20

25

30

35

W
O

R
S
T

O
B

S
E

R
V

E
D

1E-3 1E-2 1E-1 1E0 C 1E1 1E2 1E3

RND

GA

WORST

R
N

D
,

G
A

Fig. 8. Relative distance from the opti-
mum vs. C.

tells us also about the nature of the problem we are solving. Since relatively good
results can be obtained only by adjusting chunk sizes (even for random chunk
destinations), the chunk size selection is an important element in the solution
of our problem. In other words, linear programming can compensate for some
bad decisions in combinatorial part of the algorithms. It can be said that on
average the combinatorial part of our problem (i.e. target selection) improves a
random solution by approximately 30%. Finally, the worst case really exists. In
the worst observed case of the chunk target selection a schedule 35 times worse
than optimum was constructed (cf. Fig. 8).

It is possible to infer from Fig. 7-8 on the features of the solutions and per-
formance of the algorithms. With growing A, C the quality of the random and
the worst case is improving. When A is very big, the schedule length becomes
dominated by the computation time. The selection of the chunk destinations
is nearly meaningless because the schedule length is determined by the compu-
tation time which is approximately AV

m . Similar conclusions can be drawn for
parameter C. When C is very big, chunk target selection tends to be immaterial
because the schedule length is determined by the communication time which
is approximately V C. We also tested dependence on S in range [1E-3,1E3]. It
turned out that S constitutes at most ≈ 2% of the communication time, and
hence this dependence was not strong.

5 Conclusions

In this paper we studied multi-installment divisible load processing in hetero-
geneous distributed system. The problem we analyzed consists in determining
optimum destinations for the load chunks and adjusting their sizes to the speeds
of processors and communication links. Hence, we divided solution methods into
two parts: combinatorial one which finds destinations for the load chunks, and

240 Maciej Drozdowski and Marcin Lawenda

linear programming part which finds optimum chunk sizes for the given targets.
We have shown that in the worst case solutions can be arbitrarily bad if any of
the two parts is ignored. In a set of computational experiments we demonstrated
that on average the combinatorial part improves the solution quality by approx-
imately 30 %. The linear part is a very important element in the construction of
the schedule, and to some extent it is able to compensate bad decisions in the
combinatorial part.

References

1. Berkelaar, M.: lp_solve - Mixed Integer Linear Program solver.
ftp://ftp.es.ele.tue.nl/pub/lp_solve (1995)

2. Bharadwaj, V., Barlas, G.: Access time minimization for distributed multimedia
applications. Multimedia Tools and Applications 12 (2000) 235-256

3. Bharadwaj, V., Ghose, D., Mani, V.: Multi-installment Load Distribution in Tree
Networks With Delays. IEEE Transactions on Aerospace and Electronic Systems
31 (1995) 555-567

4. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads in
parallel and distributed systems. IEEE Computer Society Press, Los Alamitos CA
(1996)

5. Błażewicz, J., Drozdowski, M., Markiewicz, M.: Divisible task scheduling - concept
and verification. Parallel Computing 25 (1999) 87–98

6. Drozdowski, M.: Selected problems of scheduling tasks in multiprocessor computer
systems. Series: Monographs, No 321, Poznań University of Technology Press, Poz-
nań (1997). Downloadable from
http://www.cs.put.poznan.pl/mdrozdowski/txt/h.ps

7. Drozdowski, M., Wolniewicz, P.: Experiments with Scheduling Divisible Tasks
in Clusters of Workstations. In: A.Bode, T.Ludwig, W.Karl, R.Wismüller (eds.),
Euro-Par 2000. Lecture Notes in Computer Science, Vol. 1900. Springer-Verlag,
Berlin Heidelberg New York (2000) 311-319

8. Drozdowski, M., Wolniewicz, P.: Out-of-Core Divisible Load Processing, IEEE
Trans. on Parallel and Distributed Systems 14 (2003) 1048-1056.

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, Reading, Massachusetts (1989)

10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin Heidelberg New York (1996)

11. Robertazzi, T.: Ten reasons to use divisible load theory. IEEE Computer 36 (2003)
63-68

12. Wolniewicz, P.: Divisible Job Scheduling in Systems with Limited Memory. PhD
Thesis, Poznań Univ. of Technology (2003). Downloadable from
http://www.man.poznan.pl/˜pawelw/phd.pdf

13. Yang, Y., Casanova, H.: Multi-Round Algorithm for Scheduling Divisible Work-
load Applications: Analysis and Experimental Evaluation. Univ. of California, San
Diego, Dept. of Computer Science and Engineering, Tech. Rep. CS2002-0721 (2002)

A Scalable Parallel Graph Coloring Algorithm
for Distributed Memory Computers

Erik G. Boman1, Doruk Bozdağ2, Umit Catalyurek2,�, Assefaw H. Gebremedhin3,��,
and Fredrik Manne4

1 Sandia��� National Laboratories, USA
egboman@sandia.gov

2 Ohio State University, USA
bozdagd@ece.osu.edu, umit@bmi.osu.edu

3 Old Dominion University, USA
assefaw@cs.odu.edu

4 University of Bergen, Norway
Fredrik.Manne@ii.uib.no

Abstract. In large-scale parallel applications a graph coloring is often carried
out to schedule computational tasks. In this paper, we describe a new distributed-
memory algorithm for doing the coloring itself in parallel. The algorithm operates
in an iterative fashion; in each round vertices are speculatively colored based on
limited information, and then a set of incorrectly colored vertices, to be recolored
in the next round, is identified. Parallel speedup is achieved in part by reducing
the frequency of communication among processors. Experimental results on a PC
cluster using up to 16 processors show that the algorithm is scalable.

1 Introduction

In many parallel scientific computing applications computational dependencies are mod-
eled using a graph, and a coloring of the vertices of the graph is used as a subroutine
to identify independent tasks that can be performed concurrently. See [8] and the refer-
ences therein for examples. In such cases, the computational graph is often distributed
among the processors, and hence the coloring itself needs to be performed in parallel.
For these applications, fast greedy coloring algorithms that work well in practice are
often preferred over slower local improvement heuristics that might use fewer colors.

This paper deals with the parallelization of such fast greedy coloring algorithms
and presents an efficient parallel coloring algorithmic scheme designed for distributed
memory parallel computers. Several variations of the basic scheme are discussed. Our
algorithms are implemented using MPI and experiments conducted on a 16-node PC
cluster using several large graphs indicate that our approach is scalable.

� This research was supported in part by Sandia National Laboratories under Doc.No:
283793, Ohio Supercomputing Center #PAS0052.

�� Supported by the U.S. National Science Foundation grant ACI 0203722.
��� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

company, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 241–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

242 Erik G. Boman et al.

The basic idea in the algorithm is to partition the graph among the available proces-
sors and let each processor be responsible for the coloring of the vertices assigned to it.
Every processor colors its local vertices in steps of s vertices at a time in a sequential
fashion. Between each step the processors exchange recent color information. Since
a processor colors its local vertices with incomplete color information, conflicts may
arise, and these are detected in a separate phase. The algorithm proceeds iteratively by
recoloring vertices involved in conflicts. With an appropriate choice of a value for s,
the number of ensuing conflicts can be kept low while at the same time preventing the
runtime from being dominated by the sending of a large number of small messages.

2 Previous Work

A coloring of a graph is an assignment of positive integers (called colors) to its vertices
such that no two adjacent vertices receive the same color. Finding a coloring of a general
graph that minimizes the number of colors used is an NP-hard problem [6]. Moreover,
the problem is difficult to approximate [4]. In practice, however, greedy sequential col-
oring heuristics have been found to be quite effective [3]. These greedy heuristics are
inherently sequential and hence difficult to parallelize.

A number of previously suggested parallel graph coloring algorithms rely on var-
ious ways of computing an independent set in parallel. A characteristic feature of in-
dependent set based parallel coloring algorithms is that a vertex is assigned a color
that is never changed at a later point in the algorithm. In such algorithms, while color-
ing a vertex v, the colors of already colored neighbors of v must be known, and none
of the uncolored neighbors of v can be colored at the same time as v. The works of
Jones and Plassmann [11], Gjertsen et al. [9], and Allwright et al. [1] are examples of
such approaches. All of these algorithms are designed for distributed memory parallel
computers and rely on partitioning a graph into the same number of components as
there are processors. Each component, including information about its inter- and intra-
component edges, is assigned to and colored by one processor.

To overcome the restriction that two adjacent vertices on different processors can-
not be colored at the same time, Johansson [10] proposed a distributed algorithm where
each processor is assigned exactly one vertex. The vertices are then colored simulta-
neously by randomly choosing a color from the interval [1, Δ + 1], where Δ is the
maximum vertex degree in the graph. This may lead to an inconsistent coloring, and
hence the process needs to be repeated recursively for the vertices that did not receive
permissible colors. Finocchi et al. [5] performed extensive sequential simulations of a
variant of Johansson’s algorithm where the upper-bound on the range of permissible
colors is initially set to be smaller than Δ + 1 and then increases only when needed.

Gebremedhin and Manne [8] developed a parallel graph coloring algorithm suitable
for shared memory computers. In this algorithm, each processor is assigned equally
many vertices to color. A processor colors its vertices in a sequential fashion, at each
step assigning a vertex the smallest color not used by any of its neighbors (both on-
or off-processor). An inconsistent coloring arises only when a pair of adjacent vertices
that reside on different processors is colored simultaneously. Inconsistencies are then
detected in a subsequent phase and resolved in a final sequential phase.

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 243

3 A New Algorithm

Here we describe a new distributed-memory parallel graph coloring algorithm. In the
spirit of the BSP model [2], the algorithm is organized as a sequence of supersteps.
A superstep has distinct, rather than intermingled, computation and communication
phases.

A partitioning of the graph among the processors classifies the vertices into interior
and boundary vertices. An interior vertex is a vertex all of whose neighbors are located
on the same processor as itself. A boundary vertex has at least one neighbor located on a
different processor. Clearly, the subgraphs induced by interior vertices are independent
of each other and hence can be colored concurrently trivially. Coloring the remainder
of the graph in parallel requires communication and coordination among the processors
and this is the main issue in the algorithm being described.

3.1 The Basic Scheme

At the highest level, our algorithm is iterative—it operates in rounds. In each round
there are two phases, a tentative coloring and a conflict detection phase. The former is
organized into supersteps while the latter is not, since no communication is required.
In every superstep each processor colors s vertices in a sequential manner, where s is
an input parameter to the algorithm, using color information available at the beginning
of the superstep, and then exchanges recent color information with other processors.
In particular, in the communication phase of a superstep, a processor sends the colors
of its boundary vertices to other processors and receives relevant color information
from other processors. In this scenario, if two adjacent vertices located on two different
processors are colored during the same superstep, they may receive the same color and
hence cause a conflict. The purpose of the second phase of a round is to detect such
conflicts and accumulate a list of vertices on each processor to be recolored in the next
round. Since it is not necessary to recolor both endpoints of a conflict edge only one
of the involved processors will add a vertex to its list. The processor that will do the
recoloring is determined in a random fashion in order to achieve an even distribution of
the vertices to be colored in the next round.

The conflict detection phase does not require communication since every processor
has acquired a complete knowledge of the colors of the neighbors of its vertices at the
end of the tentative coloring phase. The algorithm terminates when there is no more
processor with a nonempty list of vertices to be recolored. Algorithm 1 outlines this
scheme in more detail.

The rationale for dividing the coloring phase of a round in supersteps, rather than
communicating after a single vertex is colored, is to reduce communication frequency
and thereby reduce communication time. However the number of supersteps used (equiv-
alently, the number of vertices colored in a superstep) is also closely related to the like-
lihood of conflicts and consequently the number of rounds. The lower the number of
supersteps (the higher the number of vertices colored per superstep) the higher the like-
lihood of conflicts and hence the higher the number of rounds required. Choosing a
value for s that minimizes the overall runtime is therefore a compromise between these
two contradicting requirements. An optimal value of s would depend on such factors

244 Erik G. Boman et al.

Algorithm 1 An iterative parallel graph coloring algorithm

1: procedure PARALLELCOLORING(G = (V, E), s)
2: Initial data distribution: V is partitioned into p subsets V1, . . . , Vp; processor Pi

owns Vi, stores edges Ei incident on Vi, and stores the identity of processors
hosting the other endpoints of Ei.

3: on each processor Pi, i ∈ P = {1, . . . , p}
4: Ui ← Vi � Ui is the current set of vertices to be colored
5: while ∃j ∈ P, Uj �= ∅ do
6: if Ui �= ∅ then
7: Partition Ui into 	i subsets Ui,1, Ui,2, . . . , Ui,�i , each of size s
8: for k ← 1 to 	i do � each k corresponds to a superstep
9: for each v ∈ Ui,k do

10: assign v a permissible color
11: Send colors of boundary vertices in Ui,k to relevant processors
12: Receive color information from other processors
13: Wait until all incoming messages are successfully received
14: Ri ← ∅ � Ri is a set of vertices to be recolored
15: for each boundary vertex v ∈ Ui do
16: if ∃(v, w) ∈ E s.t. color(v) = color(w) and r(v) ≤ r(w) then
17: Ri ← Ri ∪ {v} � r(v) is a random number
18: Ui ← Ri

19:

as the size and density of the input graph, the number of processors available, and the
machine architecture and network.

Note that the formulation of Algorithm 1 is general enough to encompass the algo-
rithms of Johannsson [10], Finocchi et al. [5], and Gebremedhin and Manne [8]. Setting
p = n (and s = 1) and choosing the color of a vertex in Line 10 appropriately, gives
the algorithms of Johannsson and Finocchi et al. Setting s = 1, restricting Algorithm 1
to one round, and resolving conflicts sequentially gives the algorithm of Gebremedhin
and Manne.

3.2 Variations

For the sake of generality, Algorithm 1 leaves several issues unspecified. In the sequel,
we discuss such issues, in each case pointing out available alternatives.

(i) Initial partitioning. In a parallel application, the graph is usually already distributed
among the processors in a reasonable way. However, if this is not the case, a “good” data
distribution needs to be computed. The number of conflicts in the algorithm depends on
several factors including the number of boundary vertices and the number of edges
between these. Thus using a graph partitioner such as Metis [12] should help reduce the
number of conflicts as well as the amount of communication.

(ii) Distinguishing between interior and boundary vertices. As mentioned earlier, the
subgraphs induced by interior vertices are independent of each other and can therefore

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 245

be colored concurrently without any communication. Hence, in the context of Algo-
rithm 1, the interior vertices can be colored before, after, or interleaved with boundary
vertices. Algorithm 1 is presented assuming the last option. Coloring the interior ver-
tices first may produce fewer conflicts when using a regular First-Fit coloring scheme,
since the subsequent coloring of boundary vertices is performed with a larger spectrum
of available colors. Coloring boundary vertices first may be advantageous with color
selection variants such as Staggered First-Fit (see the discussion later in this section).

(iii) Synchronous vs. asynchronous supersteps. In Algorithm 1, the supersteps can be
made to run in a synchronous fashion by introducing explicit synchronization barriers
at the end of each superstep. An advantage of this mode is that in the conflict detection
phase, the color of a boundary vertex needs to be checked only against its neighbors
colored at the same superstep. The obvious disadvantage is that the barriers, in addition
to the associated overhead, cause some processors to be idle while others complete their
supersteps. Alternatively, the supersteps can be made to run asynchronously, without
explicit barriers at the end of each superstep. Each processor would then only process
and use the color information that has been completely received when it is checking
for incoming messages. Any color information that has not reached a processor at this
stage would thus be delayed from being used until a later superstep. Due to this, in the
conflict detection phase, the color of a boundary vertex needs to be checked against all
of its off-processor neighbors. Also, it is possible that the asynchronous version results
in more conflicts than the synchronous one since a superstep on one processor now can
overlap with more than one superstep on another processor.

(iv) Choice of color. The choice of a permissible color in Line 10 of Algorithm 1 can be
made in different ways. The strategy employed affects (1) the number of colors used by
the algorithm, and (2) the likelihood of conflicts, and thus the number of rounds required
by the algorithm. Both of these quantities are desired to be as small as possible, and
a coloring strategy typically reduces one of the quantities at the expense of the other.
Here, we present two strategies: First-Fit (FF) and Staggered First-Fit (SFF). In FF each
processor chooses the smallest permissible color from the interval [1, C], where C is the
current largest color used. If no such color exists, the new color C + 1 is chosen. SFF
uses an initial estimate K of the number of colors needed for the input graph. Processor
Pi chooses the smallest permissible color from the interval [� iK

p �, K]. If no such color

exists, then the smallest permissible color in [1, � iK
p �] is chosen. If there is still no such

color, the smallest permissible color greater than K is chosen. Unlike FF, the search for
a color in SFF starts from different “base colors” for each processor. Hence the latter is
likely to result in fewer conflicts than the former. Other color selection strategies that
have been suggested include the randomized techniques of Gebremedhin et al. [7] and
Finocchi et al. [5].

4 Experiments

In this section, we present results from experiments carried out on a 16-node PC cluster
equipped with dual 900 MHz Intel Itanium 2 CPUs and 4 GB memory. The nodes of

246 Erik G. Boman et al.

the cluster are interconnected via switched Myrinet 2000 network. Our test set consists
of 19 graphs obtained from molecular dynamics and finite element applications [8, 13].
Table 1 displays the structural properties of the test graphs, including maximum, mini-
mum, and average degree. The table also displays the number of colors and the runtime
in seconds used by a sequential FF algorithm when run on a single node of our test plat-
form. All of the results presented in this section are average performance results over
all of the graphs presented in Table 1. Each individual test is an average of 5 runs. In the
timing of the parallel coloring code, we assume the graph to be initially partitioned and
distributed among the nodes of the parallel machine. Hence, the times reported concern
only coloring.

Table 1. Properties of the test graphs

name |V | |E| Degree Seq. First-Fit
max min avg #colors time

HIV-2 11,414 15,270 8 1 2.68 5 0.007
HIV-4 11,414 130,332 39 6 22.84 17 0.034
HIV-6 11,414 412,623 116 13 72.30 45 0.099
HIV-10 11,414 1,655,383 454 35 290.06 176 0.387
popc-br-2 24,916 31,449 7 1 2.52 5 0.032
popc-br-4 24,916 255,047 43 2 20.47 21 0.067
popc-br-6 24,916 850,043 125 2 68.23 49 0.206
popc-br-10 24,916 3,587,724 514 2 287.98 173 0.84
er-gre-2 36,573 53,046 8 0 2.90 5 0.022
er-gre-4 36,573 451,355 42 3 24.68 19 0.116
er-gre-6 36,573 1,482,904 116 11 81.09 47 0.357
er-gre-10 36,573 6,511,122 460 79 356.06 174 1.515
apoa1-2 92,224 139,351 8 1 3.02 5 0.057
apoa1-4 92,224 1,131,436 43 2 24.54 20 0.293
apoa1-6 92,224 3,864,429 123 13 83.81 49 0.928
apoa1-10 92,224 17,100,850 503 54 370.85 182 3.993
598a 110,971 741,934 26 5 13.37 12 0.310
144 144,649 1,074,393 26 4 14.86 11 0.219
auto 448,695 3,314,611 37 4 14.77 13 0.984

In our experiments, we considered two ways of partitioning the vertices of a graph.
In the first case, the vertex set, with the vertices in their natural order (i.e. the order
in which the graphs were supplied), is partitioned into p contiguous blocks of (almost)
equal size. Such a block partitioning does not attempt to minimize cross-edges, though
the structure of the natural order is exploited. In the second case, the vertex set is par-
titioned into p disjoint subsets of nearly equal size such that the number of cross-edges
is small. For this we used the graph partitioning software Metis [12], with an option
known as VMetis that also attempts to minimize the communication volume and the
number of boundary vertices.

The first set of experiments, shown in Figures 1 and 2, are conducted to assess
the effects of the following three issues: block partitioning using the natural order (N)

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 247

vs. partitioning using VMetis (V); coloring interior vertices first (I), boundary vertices
first (B), or interleaved (U); and using synchronous (S) vs. asynchronous supersteps
(A). In all of these experiments we use FF for selecting the color of a vertex. A 3-letter
acronym reflecting the options discussed above is used in Figures 1 and 2.

Figure 1 displays the number of conflicts (normalized with respect to the total num-
ber of vertices) for the parallel coloring algorithm for different combinations of these
options while varying the superstep size and the number of processors. In Figure 1(a),
we show results for the case where the number of processors is 8. Similar trends were
observed for other number of processors. When varying the number of processors, the
superstep size is set to 100. In the interleaved mode the superstep size gives the number
of boundary vertices colored in each superstep.

100 200 300 400 500 600 700 800
0

0.02

0.04

0.06

0.08

0.1

0.12

Superstep size

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|

VBA
VUA
VIA
NIS
VIS

(a)

2 4 6 8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of processors

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|
VBA
VUA
VIA
NIS
VIS

(b)

Fig. 1. Number of conflicts while varying (a) superstep size s for p = 8, and (b) number of
processors for s = 100

Figure 1(a) and 1(b) shows that for all configurations the number of conflicts in-
creases as the superstep size and the number of processors, respectively, increases. The
two figures also show that asynchronous supersteps result in more conflicts than syn-
chronous supersteps, and that graph partitioning using Metis results in fewer conflicts
than block partitioning. In the case where block partitioning is used, only the combina-
tion of options (NIS) that gave the fewest conflicts is shown. When using Metis with
synchronous supersteps we also only show the configuration (VIS) that gave the least
number of conflicts. Using the boundary first and unordered options gave only slightly
worse results than the presented ones. In terms of the number of conflicts, the results in
Figures 1(a) and 1(b) suggest that the best result is obtained by partitioning the graph
using Metis and using a small superstep size while running supersteps synchronously.

As can be observed from the figure in the asynchronous case, the order in which
the boundary and interior vertices are colored has no major impact on the number of
conflicts.

In all of our experiments, the number of rounds the algorithm has to iterate was
observed to be consistently low, varying between two and five, for every configuration
we tried. This is a consequence of the fact that the number of initial conflicts is small and

248 Erik G. Boman et al.

then drops rapidly between successive rounds. As long as Metis is used the total number
of conflicts is within 10% of the total number of vertices in all of the configurations
considered. Thus more than 90% of the sequential work is performed in the first round.
This indicates that the increase in the number of vertices that need to be colored when
going from a sequential to a parallel algorithm is fairly low for the test set we use. We
also note that the number of colors used stays fairly low in all of our experiments and
on the average, it does not increase by more than 4% of that used by the (sequential) FF
coloring scheme.

100 200 300 400 500 600 700 800
2

2.5

3

3.5

4

4.5

5

5.5

6

Superstep size

S
p

ee
d

u
p

VIA
VUA
VBA
VIS
NIA

(a)

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

9

Number of processors

S
p

ee
d

u
p

VIA
VUA
VBA
VIS
NIA

(b)

Fig. 2. Speedup while varying (a) superstep size s for p = 8, and (b) number of processors for
s = 100

Figure 2(a) displays speedup values for the several variations of the parallel coloring
algorithm while varying the superstep size s for a fixed number of processors p = 8.
We show the NIA configuration (as opposed to NIS in Figure 1) as it gave the best
speedup when not using Metis to partition the graph. As can be seen from the figure,
the optimum value for s is close to 100 for all variants. Thus using s = 100 seems to be a
good compromise between balancing the conflicting issues of increased message startup
costs versus the number of conflicts. However, the manner in which the algorithm is
configured seems to be more important than the superstep size. It is always better to use
asynchronous communication than synchronous. Also, as can be seen from the figure
coloring interior vertices first is slightly better than coloring the vertices interleaved
which again is better than coloring the boundary vertices first.

In Figure 2(b) the speedup obtained as the number of processors is varied while
using a superstep size of 100 is shown. The trends observed in Figure 2(b) are sim-
ilar to those in Figure 2(a). The best average speedup, over all test cases, was about
8.5 while using 16 processors. However, for particular test cases, we have observed a
speedup value as high as 12.5 while using 16 processors. The worst result observed was
a speedup of 3.2 on 16 processors although this was a clear outlier. “Medium” dense
graphs tend to give better speedup values than very sparse or very dense graphs.

Our next set of experiments concerns the different coloring schemes as discussed in
Section 3. The results are shown in Figure 3(a) (conflicts), and Figure 3(b) (speedup).

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 249

2 4 6 8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of processors

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|
IF
BF
IS
BS

(a)

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

9

Number of processors

S
p

ee
d

u
p

IS
IF
BS
BF

(b)

Fig. 3. Effect of the color selection algorithm on (a) the number of conflicts, and (b) speedup
while using a superstep length of s = 100

In the figures the labels I and B show whether the interior vertices or the boundary
vertices are colored first, while the second letter correspond to the FF (F) and the SFF
(S) color selection scheme. In all of these experiments Metis is used for partitioning and
the communication is done asynchronously. For SFF we use the number of colors found
by sequential FF as our initial estimate of the number of colors. Coloring the vertices
in an interleaved fashion gave similar results as those in the figures and are not shown
here.

As expected, the SFF scheme gives fewer conflicts than the FF scheme. But as can
be seen from Figure 3(b) in terms of speedup this is offset by the higher overhead
associated with determining the correct color in the SFF scheme. Also, the SFF scheme
has the disadvantage of requiring an a priori estimate on the expected number of colors.

The speedup achieved by our approach stems from two sources: partitioning and
the “core” algorithm. Partitioning using Metis makes a trivial parallelization of the col-
oring of interior vertices possible. The “core” algorithm is a nontrivial way of coloring
the boundary vertices in parallel. Figure 4(a) shows the percentage of boundary vertices
for the graphs in Table 1 when using block partitioning with the natural vertex order-
ing, and when using Metis. As one can see the number of boundary vertices increases
with the number of processors being used. Thus it is difficult to measure the particular
speedup from coloring just the boundary vertices since the amount of work performed
changes with the number of processors. In order to give some indication of the perfor-
mance of the algorithm on the boundary vertices we present Figure 4(b). This shows
the speedup when coloring three random graphs each containing 32000 vertices and
with average vertex degrees 3, 20, and 70 respectively. For these experiments we used
the NIA configuration with the vertices colored according to the SFF scheme. Since
the vertices are ordered according to their natural order almost all the vertices become
boundary vertices (see the topmost curve in Figure 4(a)). Thus this can be viewed as
applying more processors while keeping the number of boundary vertices fixed. Since
we are in effect traversing the graph at least twice (for coloring and verification) we
cannot expect to get a speedup of more than p/2. Based on this the observed maximum
speedup of more than 6 when using 16 processors is quite good.

250 Erik G. Boman et al.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Number of processors

%
 B

o
u

n
d

ar
y

ve
rt

ic
es

N on Random
N on Table 1
V on Table 1

(a)

2 4 6 8 10 12 14 16

1

2

3

4

5

6

Number of processors

S
p

ee
d

u
p

d=70
d=20
d=3

(b)

Fig. 4. (a) Percentage of boundary vertices for graphs in Table 1 (N = natural ordering, V =
ordering given by Metis), and random graphs. (b) Speedup for random graphs of various average
degrees

5 Conclusion

We have developed an efficient and truly scalable parallel graph coloring algorithm
suitable for a distributed memory computer. The algorithm is flexible and can easily
be tuned to suit the nature of the graph to be colored and the specifics of the hardware
being used. The scalability of the algorithm has been experimentally demonstrated. This
should be seen in light of the fact that previous distributed-memory parallel coloring
algorithms, such as the algorithm of Jones and Plassmann [11], did not give any speedup
when coloring the boundary vertices as more processors are applied.

Even though our main objective has been to achieve parallel speedup, being able to
perform coloring in a distributed setting where the graph is already partitioned among
the processors is an important functionality in itself.

In the future we plan to experiment with more sophisticated color selection schemes
that may further reduce the number of conflicts. We are also considering how to gen-
eralize the algorithm to other coloring problems such as distance-2 graph coloring and
hypergraph coloring, both of which have important applications in scientific computing.

References

1. J.R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C.L. Martin. A comparison
of parallel graph coloring algorithms. Technical Report NPAC technical report SCCS-666,
Northeast Parallel Architectures Center at Syracuse University, 1994.

2. Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP and
MPI. Oxford, 2004.

3. T. F. Coleman and J. J More. Estimation of sparse jacobian matrices and graph coloring
problems. SIAM J. Numer. Anal., 1(20):187–209, 1983.

4. Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization problems.
http://www.nada.kth.se/˜viggo/wwwcompendium/.

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 251

5. Irene Finocchi, Alessandro Panconesi, and Riccardo Silvestri. Experimental analysis of sim-
ple, distributed vertex coloring algorithms. In Proc. 13th ACM-SIAM symposium on Discrete
Algorithms (SODA 02), 2002.

6. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
7. Assefaw Gebremedhin, Fredrik Manne, and Alex Pothen. Parallel distance-k coloring algo-

rithms for numerical optimization. In proceedings of Euro-Par 2002, volume 2400, pages
912–921. Lecture Notes in Computer Science, Springer, 2002.

8. Assefaw Hadish Gebremedhin and Fredrik Manne. Scalable parallel graph coloring algo-
rithms. Concurrency: Practice and Experience, 12:1131–1146, 2000.

9. Robert K. Gjertsen Jr., Mark T. Jones, and Paul Plassmann. Parallel heuristics for improved,
balanced graph colorings. J. Par. and Dist. Comput., 37:171–186, 1996.

10. Öjvind Johansson. Simple distributed δ + 1-coloring of graphs. Information Processing
Letters, 70:229–232, 1999.

11. Mark T. Jones and Paul Plassmann. A parallel graph coloring heuristic. SIAM J. Sci. Comput.,
14(3):654–669, 1993.

12. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1), 1999.

13. Michelle Mills Strout and Paul D. Hovland. Metrics and models for reordering transfor-
mations. In Proceedings of the The Second ACM SIGPLAN Workshop on Memory System
Performance (MSP), pages 23–34, June 8 2004.

Complexity and Approximation for the
Precedence Constrained Scheduling Problem

with Large Communication Delays

R. Giroudeau, J.C. König, F.K. Mouläı, and J. Palaysi

LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, UMR 5056

Abstract. We investigate the problem of minimizing the makespan for
the multiprocessor scheduling problem. We show that there is no hope
of finding a ρ-approximation with ρ < 1+1/(c+4) (unless P = NP) for
the case where all the tasks of the precedence graph have unit execution
times, where the multiprocessor is composed of an unrestricted number
of machines, and where c denotes the communication delay between two
tasks i and j submitted to a precedence constraint and to be processed
by two different machines. The problem becomes polynomial whenever
the makespan is at the most (c + 1). The (c + 2) case is still partially
opened.

1 Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources
to activities over time. The theory of the design of algorithms for scheduling is
younger, but still has a significiant history.

In this article we adopt the classical scheduling delay model or homogeneous
model in which an instance of a scheduling problem is specified by a set J =
{j1, . . . , jn} of n nonpreemptive tasks, a set of U of q precedence constraints
(ji, jk) such that G = (J, U) is a directed acyclic graphs (dag), the processing
times pi,∀ji ∈ J , and the communication times cik, ∀(ji, jk) ∈ U .

If the task ji starts its execution at time t on processor π, and if task jk is
a successor of ji in the dag, then either jk starts its execution after the time
t + pji

on processor π, or after time t + pjk
+ cjijk

on some other processor. In
the following we consider the case of ∀jk ∈ J, pjk

= 1 and ∀(ji, jk) ∈ E, cjijk
=

c ≥ 2.
This model was first introduced by Rayward-Smith [13]. In this model we

have a set of identical processors that are able to communicate in a uniform
way. We want to use these processors in order to process a set of tasks that are
subject to precedence constraints. The problem is to find a trade-off between
the two extreme solutions, namely, execute all the tasks sequentially without
communication, or try to use all the potential parallelism but at the cost of
an increased communication overhead. This model has been extensively studies
these last years both from the complexity and the (non)-approximability points
of view [2].

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 252–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complexity and Approximation 253

Using the three fields notation scheme proposed by Graham et al. [6], the
problem is denoted as P̄ |prec, cij = c ≥ 2; pi = 1|Cmax i.e. we have an un-
bounded number of identical processors in order to schedule a dag such that
each task has the same execution time and each pair of tasks have the same
communication time. The aim is to minimize the length of the schedule.

1.1 Complexity Results

The problems with unitary communication delay. If we consider the
problem of scheduling a precedence graph with unitary communication de-
lays and unit execution time (UET-UCT) on an unbounded number of pro-
cessors, Hoogeveen et al. [7] proved that the decision problem associated to
P̄ |prec; cij = 1; pi = 1|Cmax becomes NP-complete even for Cmax ≥ 6, and that
it is polynomial for Cmax ≤ 5. Their proof is based on a reduction from the NP-
complete problem 3SAT [3]. The NP-completeness result for Cmax = 6 implies
that there is no polynomial time approximation algorithm with ratio guarantee
better than 7/6, unless P = NP.

Moreover, in the presence of a bounded number of processors, Hoogeveen et
al. [7] establish that whether an instance of P |prec; cij = 1; pi = 1|Cmax has a
schedule of length of at the most 4 is NP-complete (they use a reduction from the
NP-complete problem Clique), whereas Picouleau [11] develops a polynomial
time algorithm for the Cmax = 3. In the same way, the NP-completeness result
for Cmax = 4 implies that there is no polynomial time approximation algorithm
with ratio guarantee better than 5/4, unless P = NP.

The problems with large communication delay. If we consider the prob-
lem of scheduling a precedence graph with large communication delays and
unit execution time (UET-LCT), on bounded number of processors, Bampis
et al. in [1] proved that the decision problem denoted by P |prec; cij = c ≥
2; pi = 1|Cmax for Cmax = c + 3 is NP-complete problem, and for Cmax =
c + 2 (for the special case c = 2), they develop a polynomial time algo-
rithm. Their proof is based on a reduction from the NP-complete problem
Balanced Bipartite Complete Graph, BBCG [3]. Thus, Bampis et al. [1] proved
that the P |prec; cij = c ≥ 2; pi = 1|Cmax problem does not possess a polynomial
time approximation algorithm with ratio guarantee better than (1+ 1

c+3), unless
P = NP.
Remark: Notice that in the case of an unbounded number of processors
(P̄ |prec; cij = c ≥ 2; pi = 1|Cmax), the complexity to an associated decision
problem is unknown.

1.2 Approximation Results

The problems with unitary communication delay. The best known ap-
proximation algorithm for P̄ |prec; cij = 1; pi = 1|Cmax is due to Munier and
König [10]. They presented a (4/3)-approximation algorithm for this problem,

254 R. Giroudeau et al.

which is based on an integer linear programming formulation. The algorithm is
based on the following procedure: an integrity constraint is relaxed, and feasible
schedule is produced by rounding.

Munier and Hanen [9] proposed a (7
3 − 4

3m)-approximation algorithm for the
problem P |prec; cij = 1; pi = 1|Cmax. They define and study a new list schedul-
ing approximation algorithm based on the solution given on an unrestricted
number of processors. They introduce the notion of favourite successor in order
to define priorities between conflicting successors of a task. Note that, if we con-
sider large communication delays, there is no ρ-polynomial time approximation
algorithm known, except the trivial bound (c + 1), one whose first step consists
in executing the tasks and second step in initiating communication phasis and
so on . . .

Concerning the case of a restricted number of processors, an only (as known)
constant 2-approximation algorithm is given by Munier [8], for the special case
where the precedence graph is tree in presence of large communication delays.

The problems with large communication delay. Contrary to the complex-
ity results, as we know, an unique approximation algorithm is given by Rapine
[12]. The author gives the lower bound O(c) for the list scheduling in presence
of large communication delays.

1.3 Presentation of the Paper

The challenge is to determinate a threshold for approximation algorithm for the
problem P̄ |prec; cij = c ≥ 2; pi = 1|Cmax, to develop a non trivial approximation
algorithm, and to improve, in the presence of a restricted number of processors,
the bound given by Rapine [12].

This article is organized as follows: in the second section, we give a prelimi-
nary result. In the third section, we give the non-approximability result for the
scheduling problem with the objective function of minimizing the length of the
schedule. In the last section, we develop a 2(c+1)

3 -approximation algorithm based
on the notion of expansion of the makespan of a good feasible schedule.

2 Preliminary Result

In this part, we will define a variant of SAT problem [3], denoted in the following
by Π1. The NP-completeness of the scheduling problem P̄ |prec; cij = c ≥ 2; pi =
1|Cmax (see section 3), is based on a reduction from this problem.

The problem Π1 is a variant of the well known SAT problem [3]. We will
call this variant the One-in-(2, 3)SAT (2, 1̄) problem.We denote by V, the set of
variables. Let n be a multiple of 3 and let C be a set of clauses of cardinality 2 or
3. There are n clauses of cardinality 2 and n/3 clauses of cardinality 3 so that:

– each clause of cardinality 2 is equal to (x∨ ȳ) for some x, y ∈ V with x �= y.
– each of the n literals x (resp. of the literals x̄) for x ∈ V belongs to one of

the n clauses of cardinality 2, thus to only one of them.

Complexity and Approximation 255

– each of the n literals x belongs to one of the n/3 clauses of cardinality 3,
thus to only one of them.

– whenever (x ∨ ȳ) is a clause of cardinality 2 for some x, y ∈ V, then x and
y belong to different clauses of cardinality 3.

Question: Is there a truth assignment I : V → {0, 1} such that every clause in
C has exactly a true literal?
Example The following logic formula is a valid instance of Π1:

(x0 ∨ x1 ∨ x2) ∧ (x3 ∨ x4 ∨ x5) ∧ (x̄0 ∨ x3) ∧ (x̄3 ∨ x0) ∧ (x̄4 ∨ x2) ∧ (x̄1 ∨ x4) ∧
(x̄5 ∨ x1) ∧ (x̄2 ∨ x5).

The answer to Π1 is yes. It suffices to choose x0 = 1, x3 = 1 and xi = 0 for
i = {1, 2, 4, 5}. This yields a truth assignment satisfying the formula, and there
is exactly one true literal in every clause. For the proof of the NP-completeness
see [4].

3 Non-approximability Results

In this section, we show in the first part, that the problem denoted by
P̄ |prec; cij = c ≥ 3; pi = 1|Cmax cannot be approximated by a polynomial
time approximation algorithm with ratio guarantee better than 1 + 1

c+4 for the
minimization of the length of the schedule.

3.1 The Minimization of Length of the Schedule

Theorem 1. The problem of deciding whether an instance of P̄ |prec; cij =
c; pi = 1|Cmax has a schedule of length at most (c + 4) is NP-complete with
c ≥ 3.

Proof. It is easy to see that P̄ |prec; cij = c; pi = 1|Cmax = c + 4 ∈ NP.
Our proof is based on a reduction from Π1. Given an instance π∗ of Π1, we

construct an instance π of the problem P̄ |prec; cij = c; pi = 1|Cmax = c + 4, in
the following way:
Remark: n designs the number of variables of π∗.

1. For all x ∈ V, we introduce (c + 6) variables-tasks: αx′x̄′ , x′, x̄′, x̂′, βx
j

with j ∈ {1, 2, . . . , c + 2}. We add the precedence constraints: αx′x̄′ → x′,
αx′x̄′ → x̄′, βx

1 → x̂′, βx
1 → x̄′, βx

j → βx
j+1 with j ∈ {1, 2, . . . , c + 1}.

2. For all clauses of length three denoted by Ci = (y ∨ z ∨ t), we introduce
2 × (2 + c) clauses-tasks Ci

j and Ai
j , j ∈ {1, 2, . . . c + 2}, with precedence

constraints: Ci
j → Ci

j+1 and Ai
j → Ai

j+1, j ∈ {1, 2, . . . , c + 1}. We add the
constraints Ci

1 → l with l ∈ {y′, z′, t′} and l → Ai
c+2 with l ∈ {ŷ′, ẑ′, t̂′}.

3. For all clauses of length two denoted by Ci = (x ∨ ȳ), we introduce 2(c + 3)
clauses-tasks Di

j (resp. D′i
j), j ∈ {1, 2, . . . , c+3} with precedence constraints:

Di
j → Di

j+1 (resp. D′i
j → D′i

j+1) with j ∈ {1, 2, . . . , c + 2} and x′ → Di
c+3

(resp. ȳ′ → D′i
c+3).

256 R. Giroudeau et al.

Fig. 1. A partial precedence graph for the NP-completeness of the scheduling problem
P̄ |prec; cij = c ≥ 3; pi = 1|Cmax. Remark: l̄′ is in the clause of length two associated
to D′i

1 → D′i
2 → . . . D′i

c+2 → D′i
c+3

The above construction is illustrated in Figure 1. This transformation can
be clearly computed in polynomial time.

• Let us first assume that there is a schedule of length at most (c+ 4). In the
following, we will prove that there is a truth assignment I : V → {0, 1} such
that each clause in C has exactly one true literal.
First we can remark that if c ≥ 3 then 2c + 2 > c + 4 and so, each path
Ai

j , βx
j , Ci

j or Di
j′ with j ∈ {1, 2, . . . , c + 2} and j′ ∈ {1, 2, . . . , c + 3} must

be executed on the same processor. What’s more, two of these paths cannot
be executed on the same processor.
Notation: In the following we denote by PA (resp. PC) the set of the n

3
processors which execute a path Ai

j (resp. a path Ci
j). Notice that we know

by the definition of the problem Π1, that in an instance admits n
3 clauses of

length three where n denotes the number of variables. In the same way, we
denote by Pβ (resp. PD) the set of the n processors which execute a path βx

j

(resp. a path Di
j).

Lemma 1. For Cmax = c + 4: the decision to assign the true value to the
variable x iff the variable-task x′ is executed on a processor of the path PC

leads to a correct solution.

Proof. In order to respect the feasible schedule of length (c + 4), in the
first time, we can stem from the polynomial time transformation, that the
starting time of the variables-tasks l′, l̄′ and l̂′, and that the processors on
which these tasks must be executed, are given by the following remarks:
∀l ∈ V:

Complexity and Approximation 257

• Each variable-task l′ is executed on a processor of PC at slot 3 or on a
processor of PD at slot (c + 2) or (c + 3),

• Each variable-task l̄′ is executed on a processor of Pβ at slot 3 or on a
processor of PD at slot (c + 2) or (c + 3),

• Each variable-task l̂′ is executed on a processor of Pβ at slot 2 or 3 or
on a processor of PA at slot (c + 2) or (c + 3),

• The variables-tasks l̄′ and l̂′ cannot be executed together on a processor
of Pβ (they have a common predecessor).

Notation and property: For each l ∈ V, we can associate the three tasks
l′, l̄′, l̂′. We denote by X = {l′|l ∈ V}, X̄ = {l̄′|l ∈ V} and X̂ = {l̂′|l ∈ V}
three sets of tasks. For each subset A of X̄ (resp. X̂), we can associate a
subset B of X in the following way: l′ ∈ B if and only if l̄′ ∈ A (resp.
l̂′ ∈ A).
Let be the following sets: X1 = {l′\π(l′) = π(PC)} where π(l′) (resp.
π(PC)) designs the processor on which the task l′ is scheduled, X2 =
{l′\π(l′) = π(PD)}, X3 = {l′\π(l̄′) = π(Pβ)}, X4 = {l′\π(l̄′) = π(PD)},
X5 = {l′\π(l̂′) = π(Pβ)}, X6 = {l′\π(l̂′) = π(PA)}.
Let be xi = |Xi| for i ∈ {1, . . . , 6}.
We can stem from the construction of an instance of the scheduling problem
the following table,

PC Pβ PA PD

x′ X1 X2

x̄′ X3 X4

x̂′ X5 X6

From the previous table, using the variable xi, we obtain the following in-
equations system: x1 + x2 = n(1), x3 + x4 = n(2), x5 + x6 = n(3), x1 ≤
n
3 (4), x6 ≤ 2n

3 (5), x3 + x5 ≤ n(6), x2 + x4 ≤ n(7).
We will give some details about the previous system:

• For the equations(1), (2) and (3): We must execute all the tasks of the
sets X, X̄ and X̂.

• For the equation (4), on the processor which executes the path Ci
j of

the clause Ci = (y ∨ z ∨ t), we can execute at most one of the three
variables-tasks y′, z′, t′. Indeed, all variables-tasks l′ as a successor
which is executed on a processor of PD. If it is executed on the processor
which scheduled the tasks from the path PC it cannot be executed before
the slot 3 and so, the variable-task αl′ l̄′ must be executed on the same
processor which becomes saturated. So, we have |X3| < |PC |.

• For the equation (5), each processor of the paths PA has two free slots
and |PA| = n

3 .
• For the equation (6), all the variables-tasks l̄′ or l̂′ which are executed

on a processor of the path Pβ must be finished before slot 3 (it has a
successor executed on another processor). So the variable-task αl′ l̄′ must
be executed on the same processor which becomes saturated. Therefore,
at the most one task between the variables-tasks l̄′ and l̂′ can be executed
on a processor of the path Pβ and so, |X3| + |X5| ≤ |Pβ |.

258 R. Giroudeau et al.

• For the equation (7), it is clear that, |PD| = n and there is at the most
one free slot on each processor of PD.

On the one hand, we have x3+x5 = n (indeed, we have x3+x4+x5+x6 = 2n
and x6 ≤ 2n

3 , x4 ≤ n
3 , so x3 + x5 ≥ n) and on the other hand, ∀l′ only

one variable-task between the variables-tasks l̄′ and l̂′ can be executed on
a processor of Pβ , thus we obtain X3 ∩ X5 = ∅. Consequently, we have
X3 ∪ X5 = X. As the set X4 (resp. X6) is the complementary of the set
X3 (resp. X5) we have X4 ∪ X6 = X. Moreover, if the variable-task l′ is
executed on a processor of PC then the variable-task αl′ l̄′ is executed on
the same processor. Thus, the variable-task x̄′ cannot be executed before
the slot (c + 2), thus it is executed on a processor of PD. We can deduce
that X1 = X4 (the two sets are the same cardinality). Finally, we have
X1 ∪ X2 = X, X3 ∪ X4 = X, X5 ∪ X6 = X, X4 ∪ X6 = X, X3 ∪ X5 = X,
X1 = X4 and therefore X1 = X4 = X5 and X2 = X3 = X6.
We can deduce from the previous equations that x1 = x4 = x5 = n

3 and
x2 = x3 = x6 = 2n

3 .
So, if we affect the value “true” to the variable l iff the variable-task l′ is
executed on a processor of PC it is trivial to see that in the clause of length
3 we have one and only one literal equal to “true”.
Let be c = (x ∨ ȳ), a clause of length 2.

• If x′ ∈ X1 =⇒ y′ ∈ X4 =⇒ y′ ∈ X1. The first implication (resp. the
second) is due to the fact that each processor of the path PD must be
saturated (x2 + x4 = n) (resp. X1 = X4). Only the literal x is “true”
between the variables x and ȳ.

• If x′ ∈ X2 =⇒ y′ ∈ X3 =⇒ y′ ∈ X2. The first (resp. the second)
implication is due to the fact that there is only one free slot on each
processor executing the path PD (resp. X3 = X2). Only the literal ȳ is
“true” between the variables x and ȳ.

In conclusion, there is only one true literal per clause.This concludes the
proof of Lemma 1.

• Conversely, we suppose that there is a truth assignment I : V → {0, 1}, such
that each clause in C has exactly one true literal.
Suppose that the true literal in the clause Ci = (y∨z∨ t) is t. Therefore, the
variable-task t′ (resp. y′ and z′) is processed at the slot 2 (resp. at the slot
(c+2)) on the same processor as the path PCi

(resp. as the path PD and PD′ ,
where D and D′ indicates a clause of length two where the variables y and z
occurred). The 2n

3 other variables-tasks y′ not yet scheduled are executed at
slot 3 on processor Pβ as the variable-task αy′ȳ′ . The variable-task t̂′ (resp.
ŷ′ and ẑ′) is executed at the slot 2 (resp. c + 2 and c + 3) on a processor of
the path Pβ (resp. PA).This concludes the proof of Theorem 1.

In the full version of this paper [5], we proved the following results:

Corollary 1. There is no polynomial-time algorithm for the problem
P̄ |prec; cij = c ≥ 2; pi = 1|Cmax with performance bound smaller than 1 + 1

c+4
unless P �= NP.

Complexity and Approximation 259

Theorem 2. There is no polynomial-time algorithm for the problem
P̄ |prec; cij = c ≥ 2; pi = 1|∑j Cj with performance bound smaller than 1+ 1

2c+5
unless P �= NP.

Theorem 3. The problem of deciding whether an instance of P̄ |prec; cij =
c; pi = 1|Cmax with c ∈ {2, 3} has a schedule of length at most (c+2) is solvable
in polynomial time.

4 Approximation by Expansion

4.1 Introduction, Notation and Description of the Method

Notation: We denote by σ∞, the UET-UCT schedule, and by σ∞
c the UET-

LCT schedule. Moreover, we denote by ti (resp. tci) the starting time of the task
i in the schedule σ∞ (resp. in the schedule σ∞

c).
Principle: We keep an assignment for the tasks given by a “good” feasible
schedule on an unbounded number of processors σ∞. We proceed to an expansion
of the makespan, while preserving communication delays (tcj ≥ tci + 1 + c) for
two tasks, i and j with (i, j) ∈ E, processing on two different processors.

Let be a precedence graph G = (V,E), we determinate a feasible schedule σ∞,
for the model UET-UCT, using an (4/3)−approximation algorithm proposed by
Munier and König [10]. This algorithm gives a couple ∀i ∈ V, (ti, π) on the
schedule σ∞ corresponding to: ti the starting time of the task i for the schedule
σ∞ and π the processor on which the task i is processed at ti.

Now, we determinate a couple ∀i ∈ V, (tci , π
′) on the schedule σ∞

c in the
following ways: The starting time tci = d × t − i = (c+1)

2 ti and, π = π′. The
justification of the expansion coefficient is given below. An illustration of the
expansion is given by Figure 2.

Fig. 2. Illustration of notion of an expansion

4.2 Analysis of the Method

Lemma 2. The coefficient of an expansion is d = (c+1)
2 .

Proof. Let be two tasks i and j such that (i, j) ∈ E, which are processed on two
different processors in the feasible schedule σ∞. We are interested in having a
coefficient d such that tci = d× ti and tcj = d× tj . After an expansion, in order to

260 R. Giroudeau et al.

respect the precedence constraints and the communication delays we must have
tcj ≥ tci + 1 + c, and so d× ti − d× tj ≥ c+ 1, d ≥ c+1

ti−tj
, d ≥ c+1

2 . It is sufficient

to choose d = (c+1)
2 .

Lemma 3. An expansion algorithm gives a feasible schedule for the problem
denoted by P̄ |prec; cij = c ≥ 2; pi = 1|Cmax.

Proof. It sufficient to check that the solution given by an expansion algorithm
produces a feasible schedule for the model UET-LCT. Let be two tasks i and j
such that (i, j) ∈ E. We denote by πi (resp. πj) the processor on which the task
i (resp. the task j) is executed in the schedule σ∞. Moreover, we denote by π′

i

(resp. π′
j) the processor on which the task i (resp. the task j) is executed in the

schedule σ∞
c . Thus,

– If πi = πj then π′
i = π′

j . Since the solution given by Munier and König [10]
gives a feasible schedule on the model UET-UCT, then we have ti + 1 ≤
tj ,

2
c+1 t

c
i + 1 ≤ 2

c+1 t
c
j ; t

c
i + 1 ≤ tci + c+1

2 ≤ tcj .
– If πi �= πj then π′

i �= π′
j . We have ti+1+1 ≤ tj ,

2
c+1 t

c
i+2 ≤ 2

c+1 t
c
j ; t

c
i+(c+1) ≤

tcj .

Theorem 4. An expansion algorithm gives a 2(c+1)
3 −approximation algorithm

for the problem P̄ |prec; cij = c ≥ 2; pi = 1|Cmax.

Proof. We denote by Ch
max (resp. Copt

max) the makespan of the schedule computed
by the Munier and König (resp. the optimal value of a schedule σ∞). In the same
way we denote by Ch∗

max (resp. Copt,c
max) the makespan of the schedule computed

by our algorithm (resp. the optimal value of a schedule σ∞
c).

We know that Ch
max ≤ 4

3C
opt
max. Thus, we obtain Ch∗

max

Copt,c
max

=
(c+1)

2 Ch
max

Copt,c
max

≤
(c+1)

2 Ch
max

Copt
max

≤
(c+1)

2
4
3 Copt

max

Copt
max

≤ 2(c+1)
3 .

Remark: this expansion method can be used for another problems.

5 Conclusion

In this paper, we first proved the problem of deciding whether an instance of
P̄ |prec; cij = c ≥ 3; pi = 1|Cmax has a schedule of length at most (c + 4) is
NP-complete. This result is to be compared with the result of [7] (resp. [1]),
which states that P̄ |prec; cij = 1; pi = 1|Cmax = 6 (resp. P |prec; cij = c ≥
3; pi = 1|Cmax = c + 3) is NP-complete. Our result implies that there is no
ρ−approximation algorithm with ρ < 1+ 1

c+4 , unless P = NP. Secondly, we also

propose a 2(c+1)
3 −approximation algorithm based on the notion of expansion. In

the full version [5], we show that there is no hope of finding a ρ-approximation
algorithm with ρ strictly less than ρ < 1 + 1

2c+5 for the problem of the mini-
mization of the sum of the completion time. We established that the problem of

Complexity and Approximation 261

deciding whether an instance of P̄ |prec; cij = c; pi = 1|Cmax with c ∈ {2, 3} has
a schedule of length at most (c + 2) is solvable in polynomial time.
Remark: We conjecture that the problem of deciding whether an instance of
P̄ |prec; cij = c; pi = 1|Cmax with c ≥ 2 has a schedule of length at most (c + 3)
is solvable in polynomial time.

References

1. E. Bampis, A. Giannakos, and J.C. König. On the complexity of scheduling with
large communication delays. European Journal of Operation Research, 94:252–260,
1996.

2. B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling: com-
plexity, algorithms and approximability. Technical Report Woe-29, TU Graz, 1998.

3. M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. Freeman, 1979.

4. R. Giroudeau. L’impact des délais de communications hiérarchiques sur la com-
plexité et l’approximation des problèmes d’ordonnancement. PhD thesis, Université
d’ Évry Val d’Essonne, 2000.

5. R. Giroudeau, J.C. König, F.K. Mouläi, and J. Palaysi. Complexity and approxi-
mation for the precedence constrained scheduling problem with large communica-
tions delays. Technical Report 11903, Laboratoire d’Informatique, de Robotique
et Microélectronique de Montpellier, 2005.

6. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministics sequencing and scheduling theory: a survey.
Ann. Discrete Math., 5:287–326, 1979.

7. J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the com-
plexity of scheduling with communication delays. O. R. Lett., 16(3):129–137, 1994.

8. A. Munier. Approximation algorithms for scheduling trees with general communi-
cation delays. Parallel Computing, 25(1):41–48, January 1999.

9. A. Munier and C. Hanen. An approximation algorithm for scheduling unitary tasks
on m processors with communication delays. Non publié, 1996.

10. A. Munier and J.C. König. A heuristic for a scheduling problem with communica-
tion delays. Operations Research, 45(1):145–148, 1997.

11. C. Picouleau. New complexity results on scheduling with small communication
delays. Discrete Applied Mathematics, 60:331–342, 1995.

12. C. Rapine. Algorithmes d’approximation garantie pour l’ordonnancement de tâches,
Application au domaine du calcul parallèle. PhD thesis, Institut National Polytech-
nique de Grenoble, 1999.

13. V.J. Rayward-Smith. UET scheduling with unit interprocessor communication
delays. Discr. App. Math., 18:55–71, 1987.

Batch-Scheduling Dags for Internet-Based Computing�

(Extended Abstract)

Grzegorz Malewicz1,3 and Arnold L. Rosenberg2

1 Dept. of Computer Science, Univ. of Alabama, Tuscaloosa, AL 35487, USA
2 Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA 01003, USA

3 Div. of Mathematics and Computer Science, Argonne National Lab, Argonne, IL 60439, USA

Abstract. The process of scheduling computations for Internet-based computing
presents challenges not encountered with more traditional computing platforms.
The looser coupling among participating computers makes it harder to utilize
remote clients well, and raises the specter of a kind of “gridlock” that ensues
when a computation stalls because no new tasks are eligible for execution. This
paper studies the problem of scheduling computation-dags in a manner that ren-
ders tasks eligible for execution at the maximum possible rate. Earlier work has
developed a framework for such scheduling when a new task is allocated to a
remote client as soon as it returns the results from an earlier task. The proof in
that work that many dags cannot be scheduled optimally within this paradigm
signaled the need for a companion theory that addresses the scheduling problem
for all computation-dags. A new, batched, scheduling paradigm for Internet-based
computing is developed in this work. Although optimal batched schedules always
exist, computing such a schedule is NP-Hard, even for bipartite dags. In response,
a polynomial-time algorithm is developed for producing optimal batched sched-
ules for a rich family of dags obtained by “composing” tree-structured building-
block dags. Finally, a fast heuristic schedule is developed for “expansive” dags.

1 Introduction

Earlier work [11, 13, 15] has developed the Internet-Computing (IC, for short) Pebble
Game that abstracts the problem of scheduling computations having intertask dependen-
cies for the several modalities of Internet-based computing, including Grid computing
(cf. [1, 4, 5]), global computing (cf. [2]), and Web computing (cf. [8]). This Game was
developed with the goal of formalizing the process of scheduling computations with
intertask dependencies for IC. The scheduling paradigm studied in [11, 13, 15] is that
a server allocates a task of the dag being computed to a remote client as soon as the
task becomes eligible for allocation and the client becomes available for computation.
The quality metric for schedules is to maximize the rate at which tasks are rendered
eligible for allocation to remote clients, with the dual aim of maximizing the utilization
of remote clients and minimizing the likelihood of the “gridlock” that can arise when
a computation stalls pending completion of already-allocated tasks. These sources de-
velop the framework for a theory of IC scheduling based on this paradigm.

� A portion of the research of G. Malewicz was done while visiting the Univ. of Massachusetts
Amherst. The research of A. Rosenberg was supported in part by NSF Grant CCF-0342417.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 262–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Batch-Scheduling Dags for Internet-Based Computing 263

The present study is motivated by the demonstration in [11] that there are simple
computation-dags that do not admit any optimal IC schedule. (Intuitively, any sequence
of tasks that optimizes the number of eligible tasks after the first t steps of the compu-
tation is incompatible with every sequence that optimizes that number after the first t′

steps.) We respond here by developing a companion scheduling theory in which every
computation-dag admits an optimal schedule. This new theory is based on a batched
scheduling paradigm, which relieves the Server from the chore of selecting a new task
for allocation whenever a remote client becomes available for computation. Instead,
we now assume that the Server collects requests for new tasks and then (either peri-
odically or based on some trigger) allocates tasks for the collected requests in a batch.
(This mode of operation may be inevitable if, say, tasks take extremely long to compute
and enable many other tasks once completed.) The goal for the Server is to satisfy this
batch of requests with a set of tasks whose execution will produce a maximal number
of new eligible tasks. In contrast to the quality metric of [11, 13, 15], this new step-
by-step metric can always be satisfied optimally. Moderating the news that optimality
can always be achieved in the batched paradigm is our demonstration that finding such
a schedule for an arbitrary computation-dag—even a bipartite one—is NP-Hard, hence
likely computationally intractable (Section 3). We respond to this probable computa-
tional intractability with a polynomial-time optimal algorithm for a rich family of dags
that are constructed by “composing” certain tree-structured building-block dags (Sec-
tion 5). Since the preceding timing polynomial has high degree, we also develop a fast
heuristic schedule for a more restricted family of “expansive” dags, whose eligible-task
production rate is within a factor of 4 of optimal (Section 6).

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

3,0 2,1 1,2 0,3

0,21,12,0

1,0 0,1

0,0

1,0

2,0

3,0

4,0

2,1

3,1

0,0

1,1

2,2

0,1

1,2

0,2

0,3

1,3 0,4

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

Fig. 1. Clockwise from top left: an evolving (2-dimensional) mesh, the 5-level (2-dimensional)
reduction-mesh, a (binary) reduction-tree dag.

Related work. The IC Pebble Game is introduced in [13, 15], and optimal schedules
are identified for the dags of Fig. 1. A framework for a theory of scheduling for IC is de-
veloped in [11], building on the principles that enable the optimal schedules of [13, 15].
Central to the framework are a formal method for composing simple dags into complex
ones, together with a relation that allows one to prioritize the execution order of the con-

264 Grzegorz Malewicz and Arnold L. Rosenberg

stituent building-block dags of a composite dag. A probabilistic pebble game is used in
[6, 9, 10] to study the problem of executing tasks on unreliable clients; our proof of
the NP-hardness of batch-scheduling builds on tools from [6]. Although our goals and
methodology differ significantly from those of [3, 12, 14], we owe an intellectual debt to
those pioneering studies of pebbling-based scheduling models. Finally, the impetus for
our study derives from the many exciting systems- and/or application-oriented studies
of Internet-based computing, in sources such as [1, 2, 4, 5, 7, 8, 16].

2 A Model for Executing Dags on the Internet

2.1 Computation-Dags

Basic definitions. A directed graph G is given by a set of nodes NG and a set of arcs
(or, directed edges) AG , each having the form (u → v), where u, v ∈ NG . A path in G
is a sequence of arcs that share adjacent endpoints, as in the following path from node
u1 to node un: (u1 → u2), (u2 → u3), . . . , (un−2 → un−1), (un−1 → un). A dag
(directed acyclic graph) G is a directed graph that has no cycles; i.e., in a dag, no path
of the preceding form has u1 = un. When a dag G is used to model a computation, i.e.,
is a computation-dag:

– each node v ∈ NG represents a task in the computation;
– an arc (u → v) ∈ AG represents the dependence of task v on task u: v cannot be

executed until u is.

Given an arc (u → v) ∈ AG , we call u a parent of v and v a child of u in G. Each
parentless node of G is called a source (node), and each childless node is called a sink
(node); all other nodes are internal. A dag G is bipartite if:

1. NG can be partitioned into subsets X and Y such that, for every arc (u→ v) ∈ AG ,
u ∈ X and v ∈ Y ;

2. each node of G is incident to some arc of G, i.e., is either the node u or the node v
of some arc (u→ v) ∈ AG . (For convenience, we prohibit “isolated” nodes.)

Sums of bipartite dags play a major role in our study. Let G1, . . . ,Gm be bipartite dags
that are pairwise disjoint, in that NGi

∩ NGj
= ∅ for all distinct i and j. The sum of

G1, . . . ,Gm, denoted G1 + · · ·+Gm, is the bipartite dag whose node-set and arc-set are,
respectively, the unions of the corresponding sets of G1, . . . ,Gm. A dag is connected if,
ignoring the orientation of its arcs, there is an undirected path between any two distinct
nodes. Every bipartite dag is a sum of connected bipartite dags.

Some basic building blocks. Our study focuses on dags that are built out of bipar-
tite building blocks by the operation of composition. We present a sampler of building
blocks that will illustrate the theory we begin to develop here; see Fig. 2.

A bipartite tree-dag T is a bipartite dag such that, if one ignores the orientations
of T ’s arcs, then the resulting graph is a tree. The following two special classes of
tree-dags generate important families of complex dags.

For each d > 1, the (1, d)-W-dagW1,d has one source node and d sink nodes; its d
arcs connect the source to each sink. Inductively, for positive integers a, b, the (a+b, d)-
W-dag Wa+b,d is obtained from the (a, d)-W-dag Wa,d and the (b, d)-W-dagWb,d by

Batch-Scheduling Dags for Internet-Based Computing 265

A Bipartite Expansive−Dag:

(1,3)−M: (2,3)−M:(2,4)−W:(1,4)−W:

A Bipartite Tree−Dag:

Fig. 2. Some bipartite building-block-dags.

identifying (or, merging) the rightmost sink of the former dag with the leftmost sink of
the latter. W-dags epitomize “expansive” computations.

For each d > 1, the (1, d)-M-dag M1,d has d source nodes and 1 sink node; its d
arcs connect each source to the sink. Inductively, for positive integers a, b, the (a+b, d)-
M-dagMa+b,d is obtained from the (a, d)-M-dagMa,d and the (b, d)-M-dagMb,d by
merging the rightmost source of the former dag with the leftmost source of the latter.
M-dags epitomize “contractive” (or, “reductive”) computations.

A large variety of significant computation-dags are “compositions” of W-dags and
M-dags, including the dags in Fig. 1: The evolving mesh is constructed from its source
outward by “composing” a (1, 2)-W-dag with a (2, 2)-W-dag, then a (3, 2)-W-dag, and
so on; the reduction-mesh is similarly constructed using (k, 2)-M-dags for successively
decreasing values of k; the reduction-tree is constructed by “composing” independent
collections of (1, 2)-M-dags.

The following additional building blocks are highlighted in Section 6.
A bipartite expansive-dags E is a bipartite dag wherein each source v has an asso-

ciated number ϕv ≥ 2 such that: v has ϕv children that have no parent other than v and
≤ ϕv other children. Easily, expansive dags need not be tree-dags (cf. Fig. 2).

Compositions of bipartite dags. The following mechanism for composing a collection
of connected bipartite dags to build complex dags is introduced in [11].

– Start with a base set B of connected bipartite dags.
– Given dags G1,G2 ∈ B—which could be copies of the same dag with nodes re-

named to achieve disjointness—one obtains a composite dag G as follows.
• Let the composite dag G begin as the sum, G1+G2, of the dags G1,G2. Rename

nodes to ensure that NG is disjoint from NG1 and NG2 .
• Select some set S1 of sinks from the copy of G1 in the sum G1 + G2, and an

equal-size set S2 of sources from the copy of G2 in the sum. (If S1 = ∅, then
the composition operation degenerates to the operation of forming a sum dag.)

• Pairwise identify (i.e., merge) the nodes in the sets S1 and S2 in some way. The
resulting set of nodes is G’s node-set; the induced set of arcs is G’s arc-set.

– Add the dag G thus obtained to the base set B.

266 Grzegorz Malewicz and Arnold L. Rosenberg

Note the asymmetry of composition: G1 contributes some of its sinks, while G2 con-
tributes some of its sources. The reader should note the natural correspondence between
the node-set of G and the node-sets of G1 and G2.

We denote the composition operation by ⇑ and refer to the resulting dag G as a
composite dag of type [G1 ⇑ G2]. The following lemma is of algorithmic importance, in
that it allows one to ignore the order in which compositions are performed.

Lemma 1 ([11]). The composition operation on dags is associative; i.e., a dag is com-
posite of type [[G1 ⇑ G2] ⇑ G3] if, and only if, it is composite of type [G1 ⇑ [G2 ⇑ G3]].

2.2 The Batched Idealized Internet-Computing Pebble Game

A number of so-called pebble games on dags have been shown, over the course of
several decades, to yield elegant formal analogues of a variety of problems related to
scheduling dags. Such games use tokens called pebbles to model the progress of a com-
putation on a dag: the placement or removal of the various available types of pebbles—
which is constrained by the dependencies modeled by the dag’s arcs—represents the
changing (computational) status of the dag’s task-nodes.

Our study is based on the Internet-Computing (IC, for short) Pebble Game of [13].
Based on studies of Internet-based computing in, for instance, [1, 7, 16], arguments are
presented in [13, 15] that justify studying an idealized, simplified form of the Game.
We refer the reader to these sources for both the original IC Pebble Game and for the
arguments justifying its simplification. We study an idealized form of the Game here,
adapted to a batched mode of computing.

The rules of the game. The Batched IC Pebble Game on a dag G involves one player
S, the Server, who has access to unlimited supplies of two types of pebbles: ELIGIBLE

pebbles, whose presence indicates a task’s eligibility for execution, and EXECUTED

pebbles, whose presence indicates a task’s having been executed. The following rules
of the Game simplify those of the original IC Pebble Game of [13, 15].

The Rules of the Batch-IC Pebble Game

– S begins by placing an ELIGIBLE pebble on each unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents
whose prior execution they depend on.*/

– At each step t—when there is some number, say et, of ELIGIBLE pebbles on G’s
nodes—S is approached by some number, say rt, of Clients, requesting tasks. In
response, S:
• selects min{et, rt} tasks that contain ELIGIBLE pebbles,
• replaces those pebbles by EXECUTED pebbles,
• places ELIGIBLE pebbles on each unpebbled node of G all of whose parents

contain EXECUTED pebbles.
– S’s goal is to allocate nodes in such a way that every node v of G eventually contains

an EXECUTED pebble.
/*This modest goal is necessitated by the possibility that G may be infinite.*/

Batch-Scheduling Dags for Internet-Based Computing 267

For brevity, we henceforth call a node ELIGIBLE (resp., EXECUTED) when it con-
tains an ELIGIBLE (resp., an EXECUTED) pebble. For uniformity, we henceforth talk
about executing nodes rather than tasks.

The Batch-IC Scheduling (BICSO) Problem. Our goal is to play the Game in a way
that maximizes the number of ELIGIBLE pebbles on G after every move by the Server
S. In other words: for each step t of a play of the Game on a dag G under a schedule
Σ, if there are currently et ELIGIBLE nodes, and if rt Clients request tasks, then we
want the Server to select a set of min{et, rt} ELIGIBLE nodes to execute that will result
in the largest possible number of ELIGIBLE nodes at step t + 1. We thus arrive at the
following optimization problem.

Batched IC-Scheduling (Optimization version) (BICSO)
Instance: ı = 〈G, X,E; r〉, where:

• G is a computation-dag;
• X and E are disjoint subsets of NG that satisfy the following;

There is a step of some play of the Batched IC Pebble Game on G in which
X is the set of EXECUTED nodes and E the set of ELIGIBLE nodes on G.

• r is in the set1 [1, |E|].
Problem: Find a set R ⊆ E of r nodes whose execution maximizes the number of

ELIGIBLE nodes on G, given that the nodes in X are already EXECUTED.

Note that solving BICSO automatically carries with it a guarantee of optimality.
The significance of BICSO—as with the IC-Scheduling Problem of [11, 13, 15]—

stems from the following intuitive scenarios. (1) Schedules that produce ELIGIBLE tasks
fast may reduce the chance of the “gridlock” that could occur when remote clients are
slow in returning the results of their allocated tasks—so that new tasks cannot be allo-
cated pending the return of already assigned ones. (2) If the IC Server receives a batch
of requests for tasks at (roughly) the same time, then a Batched IC-optimal schedule
ensures that there are maximally many tasks that are ELIGIBLE at that time, hence
maximally many requests can be satisfied. This enhances the exploitation of clients’
available resources. See [13, 15] for more elaborate discussions of these scheduling
criteria.

3 The Intractability of BICSO Optimality

Viewed via its related decision problem, BICSO is NP-hard, even for bipartite dags. The
reduction is from the problem of selecting m sets whose union has cardinality at most
b from among nonempty sets S1, . . . , Sn whose union is [1, n], which is known [6] to
be NP-Complete. Our reduction also uses a result that allows us to focus on a restricted
class of schedules.

Lemma 2 ([11]). Let Σ be a schedule for a dag G. If Σ is altered to execute all of G’s
non-sinks before any of its sinks, then it produces no fewer ELIGIBLE nodes than Σ.

Theorem 1. BICSO is NP-hard, even when restricted to bipartite dags.

1 [a, b] = {a, a + 1, . . . , b}.

268 Grzegorz Malewicz and Arnold L. Rosenberg

4 Scheduling Composite Dags via Bipartite Dags

The computational intractability of BICSO (assuming that P �= NP) is a mandate for
seeking significant classes of dags for which one can solve BICSO efficiently. Our
experience is that this goal is achievable for many classes of bipartite dags (such as the
building blocks of Section 2). While this structural restriction is not of inherent interest,
we show in this section that we can sometimes use the operation of composition to
construct significant complex dags from bipartite building blocks. And, we can often
solve BICSO for a composite dag G by solving a restricted version of BICSO for certain
connected induced bipartite subdags of the bipartite dags that G is composed from. In
the restricted version of BICSO—call it RBISCO—the bipartite subdags are connected,
and all of their sources are ELIGIBLE, so the set E (of the instance of BICSO) comprises
all sources of the subdag, and the set X is empty. The goal is to find an r-element
subset of sources that maximizes the number of ELIGIBLE sinks—which is equivalent
to solving BICSO for the restricted problem.

Theorem 2. Let the dag G be a composition of bipartite dags G1, . . . ,Gm. There is a
polynomial-time algorithm that solves BICSO for G, using as subprocedures polynomial-
time algorithms for solving RBICSO for induced connected bipartite subdags of the Gi.

Proof Sketch. Consider instance ı = 〈G, X,E; r〉 of BICSO, where G is as in the the-
orem. We can focus on the modified goal of finding R among G’s non-sinks. Using a
result of [11], we can relate the number of ELIGIBLE nodes of G to the number of sinks
of the Gi that are ELIGIBLE when the only EXECUTED nodes of Gi are the sources of Gi

that correspond (in the natural manner emerging from the definition of composition) to
EXECUTED nodes of G. The latter number, however, can be calculated by focusing on
a certain induced subdag of Gi. This subdag is obtained by taking all sources of Gi that
correspond to nodes ELIGIBLE in G, and all sinks of Gi all whose parents correspond to
either ELIGIBLE or EXECUTED nodes in G and at least one whose parent corresponds
to ELIGIBLE node (These sinks are not ELIGIBLE but they may become so when we ex-
ecute nodes of the G that we choose). The subdag is a sum of (≥ 0) isolated nodes and
(≥ 0) connected bipartite dags. Let S1, . . . ,Sk be the connected bipartite dags obtained
from the m subdags. We maximize the number of ELIGIBLE nodes by executing the r
nodes of G that correspond to the r sources of the connected bipartite dags that maxi-
mize the number of ELIGIBLE sinks on the dags. That latter maximum can be found by
first computing a maximum individually for each connected bipartite dag Si and each
ri at most r, and then combining the maxima using a dynamic programming algorithm
resulting from an observation that the ri must sum up to r.

Now the goal of solving BICSO for G reduces to the goal of solving BICSO for the
connected bipartite dags.

5 Tractable BICSO Optimality for Composite Trees

We develop a polynomial-time algorithm that solves BICSO for the family T of dags
that are obtained from bipartite tree-dags via composition.

Batch-Scheduling Dags for Internet-Based Computing 269

Theorem 3. There is a polynomial-time algorithm Σtree that solves BICSO for any
composite tree-dag T ∈ T.

Proof. We develop a dynamic program ΣDP that solves RBICSO for any bipartite tree-
dag; Theorem 2 will extend ΣDP to Σtree.

Lemma 3. There is a polynomial-time algorithm ΣDP that solves RBICSO for any
bipartite tree-dag.

Proof Sketch. Any bipartite tree-dag T arises from “folding” a (undirected, unrooted)
tree T and orienting its edges. We label T ’s nodes “sources” and “sinks” according to
their roles in T . The key idea of ΣDP is that we can find the maximum number of
ELIGIBLE sinks for a “deep” tree inductively from shallow trees.

We recursively decompose T into subtrees by choosing some source w and letting it
act as a root, thereby producing Tw. We traverse Tw breadth first, starting from w. Each
time we descend from a sink v to a source u during the traversal, we produce a subtree,
Tu, which is a copy of the subtree of Tw rooted at u. We use the natural correspondence
between the node-sets of Tw and Tu to refer to corresponding nodes by the same name.
We thus produce a sequence of subtrees (beginning with Tw), each including shorter
ones that occur later in the sequence. ΣDP processes the subtrees in the reverse order
of this sequence, computing certain values for a subtree from analogous values for
shorter ones. ΣDP chooses the nodes to execute by recursively calculating the following
functions. Pick any subtree Tu with, say, s sources.

– For any r ∈ [1, s], let E1(Tu, r) be the maximum number of ELIGIBLE sinks on Tu

when the root u and some other r − 1 of its sources are EXECUTED.

E1(Tu, r) is trivial to calculate when Tu has height 0 or 1.

– For any r ∈ [0, s − 1], let E0(Tu, r) be the maximum number of ELIGIBLE sinks
on Tu when the root u is not EXECUTED but some r other of its sources are.

E0(Tu, r) = 0 when Tu has height 0 or 1. For r ∈ [0, s], the maximum number of ELI-
GIBLE sinks in Tu when r of its sources are EXECUTED is calculated from E0 and E1.
ΣDP computes E0(Tw, r) and E1(Tw, r) for any r ∈ [0, (the number of sources in T)],
as follows. We may consider only subtrees of heights ≥ 2. We decompose trees as
depicted in Fig. 3. Focus on a subtree Tu of height ≥ 2, with s sources. Consider all
sinks of Tu that are linked to u. Some of these sinks—say, v1, . . . , vk—are also linked
to some other source, while some h of the sinks are not. Since Tu has height ≥ 2, we
have k ≥ 1; it is possible that h = 0. For any i ∈ [1, k], sink vi is connected to some
gi ≥ 1 sources other than u—call them ui,1, . . . , ui,gi . Consider the subtrees Tui,j , for
i ∈ [1, k], j ∈ [1, gi]; each has height strictly smaller than Tu’s. Let si,j be the number
of sources in Tui,j , so that s = 1 +

∑k
i=1

∑gi

j=1 si,j . We can calculate E0 and E1 for
Tu from E0 and E1 for each Tui,j , because we can control which of the vi become
ELIGIBLE.

We now apply Lemma 3 in Theorem 2, to complete the proof of Theorem 3.

270 Grzegorz Malewicz and Arnold L. Rosenberg

Fig. 3. Decomposing Tu: shaded nodes are sources; blank nodes are sinks.

6 Solving BICSO Efficiently for Expansive Dags

Because the timing polynomial of Σtree has high degree, we have sought nontrivial
classes of dags for which we could solve BICSO approximately optimally, but much
faster than Σtree. The initial result of our quest is Σexp, which approximates an optimal
solution to BICSO for the family E of composite expansive dags. Σexp implements the
following natural, fast heuristic. For each source v of any E ∈ E, say that ϕv nodes
have v as their sole parent, and ψv nodes have other parents also. Say that E has |E|
ELIGIBLE nodes and that we must execute the best r of these. Σexp selects the r nodes
that have the largest associated ϕv . This ploy solves BICSO to within a factor of 4 of
optimally for the family E.

Theorem 4. For any instance ı = 〈E , X,E; r〉 of BICSO, where E ∈ E, Σexp will, in
time O(|E|), find solution to BICSO, whose increase in the number of ELIGIBLE nodes
is at least one-fourth the optimal increase.

Proof Sketch. We implement Σexp by using a linear-time selection algorithm. One
notes that each node v selected by an optimal algorithm adds at most 2ϕv distinct ELI-
GIBLE nodes, while each node w selected by the heuristic adds at least 1

2ϕw such nodes.

References

1. R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for service
oriented Grid computing. 10th Heterogeneous Computing Wkshp.

2. W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters into a meta-
computer. 13th Intl. Parallel Processing Symp., 160–166.

3. S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst. Scis. 9, 308–316.
4. I. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing Infras-

tructure (2nd edition), Morgan-Kaufmann, San Francisco.
5. I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable virtual

organizations. Intl. J. Supercomputer Applications.
6. L. Gao and G. Malewicz (2004): Internet computing of tasks with dependencies using unre-

liable workers. 8th Intl. Conf. on Principles of Distributed Systems, 315–325.

Batch-Scheduling Dags for Internet-Based Computing 271

7. D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling guidelines for
global computing applications. Intl. Parallel and Distr. Processing Symp.

8. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI@home: mas-
sively distributed computing for SETI. In Computing in Sci. and Engr. (P.F. Dubois, Ed.)
IEEE Computer Soc. Press, Los Alamitos, CA.

9. G. Malewicz (2005): Parallel Scheduling of Complex Dags under Uncertainty. 17th ACM
Symposium on Parallelism in Algorithms and Architectures, to appear.

10. G. Malewicz (2005): Implementation and Experiments with an Algorithm for Parallel
Scheduling of Complex Dags under Uncertainty. Submitted for publication.

11. G. Malewicz, A.L. Rosenberg, M. Yurkewych (2005): On Scheduling Complex Dags for
Internet-Based Computing. IEEE Intl. Parallel and Distr. Processing Symp., 66.

12. M.S. Paterson, C.E. Hewitt (1970): Comparative schematology. Project MAC Conf. on Con-
current Systems and Parallel Computation, ACM Press, 119–127.

13. A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-based
computing. IEEE Trans. Comput. 53, 1176–1186.

14. A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing 31, 115–
139.

15. A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some common
computation-dags for Internet-based computing. IEEE Trans. Comput. 54, 428–438.

16. X.-H. Sun and M. Wu (2003): GHS: A performance prediction and task scheduling system
for Grid computing. IEEE Intl. Parallel and Distributed Processing Symp.

Scheduling Workflow Distributed Applications
in JavaSymphony�

Alexandru Jugravu1 and Thomas Fahringer2

1 University of Vienna, Institute for Software Science, Liechtensteinstr. 22,
A-1090 Wien, Austria

2 University of Innsbruck, Institute for Software Science, Technikerstr. 25/7,
A-6020 Innsbruck, Austria

Abstract. JavaSymphony is a high-level programming model for performance-
oriented distributed and parallel Java applications, which allows the programmer
to control parallelism, load balancing, and locality at a high level of abstrac-
tion. Recently, we have introduced new features to support the development and
the deployment of workflow distributed applications for JavaSymphony. We have
built a formal model of a workflow, which allows a graphical representation of
the associated workflow. In this paper, we give further details about the workflow
model and introduce a new theoretical framework for scheduling JavaSymphony
workflow applications.

1 Introduction

Distributed heterogeneous computing has emerged as a cost-effective solution to high-
performance computing on expensive parallel machines. In addition, Grid computing
has been recently introduced as a worldwide generalization of distributed heteroge-
neous computing, which has undergone a number of significant changes in a brief time.
Supporting grid middleware has expanded significantly from simple batch-processing
front-ends to complex tools that provide advanced features like scheduling, reservation
and information sharing.

Many complex distributed applications are today structured as workflows that con-
sist of off-the-shelf software components, which are usually applications to be run on
individual sequential or parallel machines. The specification and management of work-
flows is complex and currently the subject of many research projects. Typically, much
of the existing work focuses on workflow languages which describe component inter-
connection features, on the architecture of the enactment engine which coordinates the
workflow execution, or on the optimization of the execution by using complex mapping
and scheduling techniques.

JavaSymphony is a programming paradigm for wide classes of heterogeneous sys-
tems that allows the programmer to control the locality, parallelism, and load balancing
at a high level of abstraction without dealing with error-prone and low-level middleware

� This research is partially supported by the Austrian Science Fund as part of Aurora Project
under contract SFBF1104.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 272–281, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Scheduling Workflow Distributed Applications in JavaSymphony 273

details, like creating and handling remote proxies for Java/RMI or socket communica-
tion. The JavaSymphony middleware consists of distributed objects and remote method
invocations that run on distributed computing resources like workstation networks and
SMP clusters. Moreover, JavaSymphony offers high level features [1] like migration, a
distributed event mechanism, and distributed synchronization mechanisms, which are
highly useful for developing distributed applications.

Recently, we have built new features on top of the JavaSymphony programming
paradigm and runtime system, to support the widely popular workflow paradigm, which
include a high-level tool that allows the graphical composition of a workflow, an ex-
pressive, yet simple workflow specification language, and an automatic scheduler and
enactment engine for workflow applications. In previous work [2], we have presented
a formal workflow model consisting of basic elements like activities, control and data
flow links, loops, and branches. In this paper, we introduce a theoretical framework for
scheduling and propose a scheduling technique for dynamic workflow applications with
loops and conditional branches.

The paper is organized as follows. The next section discusses the elements of the
workflow model used in JavaSymphony. Section 3 describes the framework for schedul-
ing JavaSymphony workflow applications. Section 4 discusses related work. Finally,
some concluding remarks are made and the future work is outlined in Section 5.

2 Workflow Model

A workflow consists of several interconnected computing activities. Between two com-
puting activities there may be: (1) a control flow dependency, which means that one
activity cannot start before its predecessors finished or (2) a data dependency, which
means that one activity needs input data that is produced by the other. We use the ter-
minology and specifications proposed by the Workflow Management Coalition[3] to
define the workflow model and its elements. A graphical representation based on the
UML Activity diagram ([4]) is associated with each workflow. In JavaSymphony work-
flow model, each workflow application is associated with a workflow graph defined by:
WF = (Nodes, CEdges,DEdges, Loops, PLoops, istate, fstate).

Nodes = Act ∪DAct ∪ Init ∪ Final ∪ Branches comprises the vertices of the
graph associated with 5 types of workflow basic elements: activities, dummy activities,
initial states, final states and branches. There are 4 types of edges for the workflow
graph:CEdges, DEdges, Loops, respectivelyPLoops are the sets of the control links,
data links, respectively loops and parallel loops of the graph. These basic workflow
elements are shortly explained below.

Activities are represented as elements of the Act set. The workflow activities are
placed onto computing resources and perform specific computation.

Dummy activities are represented as elements of the DAct set. As a special type of
activities, they evaluate complex conditional expressions that may influence the work-
flow schedule. On the other hand, they require only minimal computing power and
therefore they run locally within the scheduler, instead of being placed onto distributed
computing resources.

Control links correspond to the elements of the CEdges set. A control-link be-
tween two activities means that the second activity cannot start before the first one

274 Alexandru Jugravu and Thomas Fahringer

finishes. The control-precedence relation, denoted by <, is defined over the elements
of the Nodes set, as the transitive closure of CEdges.

Data links define the data-precedence relation (denoted by <d) over the set of
the activities of a workflow. A data-link between two activities means that the second
activity requires output data from the first one.

Initial and final states correspond to the elements in the sets Init, respectively
Final. Each workflow has one entry and one exit point, which we call initial state,
respectively final state. These are used for synchronization of activities and to mark the
body of the so-called sub-workflows. They are not associated with computation.

A sub-workflow unit is delimited by a unique pair of an initial state (entry point)
and a final state (exit point): (i, f) ∈ Init× Final.

Conditional branches are represented as elements of the Branches set. Due to
the conditional branches, the execution plan of a workflow changes dynamically. The
successors of the conditional branch correspond to the entry points (i.e. initial states) of
sub-workflows. Each conditional branch exit (control link) is associated with a Boolean
expression. When the execution reaches the conditional branch, the Boolean expres-
sions are evaluated and the successors for which this expression evaluates to false will
not be executed.

(Sequential) Loops are represented as the elements of Loops ⊂ Final × Init
and may be attached only to entire (sub) workflow units. The body of a (sub)workflow
which has a loop associated with it, is executed repeatedly for a fixed number of times
(for-loops), or until an associated condition is satisfied (until-loops).

Parallel Loops are represented as the elements of PLoops ⊂ Final× Init . They
are similar with the regular loops, but model a different behaviour of the associated
sub-workflow: For each parallel loop, the number of iterations n is specified, and n
identical copies of the associated sub-workflow will be created and executed in parallel.
A parallel loop can be replaced with n identical copies of the associated sub-workflow,
but in this case a significantly more complex workflow graph is necessary.

3 Scheduling Workflow Applications

To build a JavaSymphony workflow application, one has to first design the workflow
graph, by using the specialized graphical user interface. The developer puts together
workflow activities, dummy activities, initial and final states, and connects them using
control links, data links, loops and parallel loops, according to the model described in
the Section 2. The result is an easy-to-understand workflow graphical representation,
based on the UML Activity Diagram, which can be stored in a file by using the specific
XML-based specification language. Behind the graphical representation, each element
(vertices and edges of the graph) is associated with relevant workflow information.
Within the same scheduling process, the workflow specification is analyzed, a resource
broker determines which resources are suitable for each workflow activity, a scheduler
computes the workflow execution plan, and a enactment engine manages the execution
of the activities according to the execution plan. In this section, we present a theoretical
framework to describe the scheduling process, and propose a scheduling technique for
workflows with branches and loops.

Scheduling Workflow Distributed Applications in JavaSymphony 275

3.1 Scheduling Workflows Without Branches and Loops

We consider first the case of scheduling workflows with no loops and branches. The
graph associated with a workflow with no loops and branches becomes a static DAG.
Therefore, we call such workflows DAG-based workflows. Scheduling DAGs of tasks
is a problem that has been intensively studied, and consequently we can easily use one
of the many already existing algorithms [5–8] for scheduling DAG-based workflows. In
this section, we introduce several basic definitions and notations related to the schedul-
ing of DAG-based workflows.

If WF is a workflow with Loops = PLoops = ∅ and Branches = ∅, then a
schedule for WF would be a function sched : Act ∪DAct→M × R+, where M is
the set of computing resources and R+ is the set of positive real numbers. sched(T) =
(mT , startT) means that the activity T is started on machine mT at the time startT .

The execution time of an activity T on machine m is denoted by exec(T/m).
We assume that the task runs exclusively on that machine. The communication time
to send data from activity T1 running on m1 to activity T2 running on m2 is denoted
by comm(T1/m1,T2/m2). Note that if T ∈ DAct, we may assume mT is always
a dedicated or local machine m0 (where the scheduler is running) and we consider
exec(T/mT) to be 0. We also assume that communication time for two activities run-
ning on the same machine is 0: comm(T1/m, T2/m) = 0

For a DAG-based workflow WF , a schedule sched is constrained by the workflow
control- and data-dependencies:

T1 < T2 implies startT1 + exec(T1/mT1) ≤ startT2

T1 <d T2 implies startT1 +exec(T1/mT1)+comm(T1/mT1 , T2/mT2) ≤ startT2

The goal of the scheduler is to find a schedule for each workflow application, which
optimize a specific performance function, under certain constraints. Such functions
are: makespan (execution time of the whole workflow application), total cost of the
resources (when the resources are associated with computation/communication cost) or
the throughput of the entire system.

3.2 Scheduling Workflows with Branches and Loops

The conditional branches and the loops in the workflow model enforce dynamic changes
in the structure of the execution task graph associated with the application. Subsets of
the activities which make up the application may be executed repeatedly several times or
may not be executed at all, based on data that is available only at runtime. Consequently,
scheduling techniques for static DAG-based workflows cannot be applied in this case.

Our strategy is to transform the workflow associated with the application into one
with no conditional branches and loops and recursively find a schedule in the conditions
of Section 3.1.

We first define two types of activities: Unsettled activities are the activities for
which the scheduling/execution decision is taken based on data that is not (yet) avail-
able. Such activities are, for example, the activities subsequent to a conditional branch,
for which the associated condition cannot be evaluated, because the parameters in the
Boolean expression have not been calculated yet. Therefore, it is not sure at this point
that these activities will ever be scheduled for execution. The rest of the activities are

276 Alexandru Jugravu and Thomas Fahringer

called settled activities. These are the activities that are planned for execution or have
been executed at a specific time of the scheduling/execution process. All the activities
for which it is sure that they will be scheduled for execution are considered settled.
The two sets of activities of a workflow application are dynamically changing during
execution, according to the following transformations:

Parallel loop elimination is performed before the scheduling actually starts if the
number of the iterations is determined at design time. Otherwise, if the number of it-
erations depends on the value of workflow relevant data (e.g. variables values), the
transformation is applied upon reaching the loop entry (i.e. associated initial state). The
body of the parallel loop construct (i.e. the associated sub-workflow) is simply replaced
with n identical copies (see Fig. 4(c)).

Fig. 1. Branch elimination

Branch elimination is applied when the conditions for the conditional branches are
evaluated. This transformation takes place at runtime and is illustrated in Fig. 1. Note
that the successors of a conditional branch are unsettled activities (uncoloured in the
picture) before the evaluation of the condition, and become settled activities (coloured
in the picture) after that. The branches for which the associated condition evaluates to
false are not executed. They are replaced by dummy activities (marked as X in the
figure), which do not perform any computation.

Transformation of for-loops. The for-loops have a fixed number of iterations. This
transformation may take place anytime during the scheduling process. For each itera-
tions of the loop, clones of the activities (i.e. new activities with the same properties as
the original ones) in the body of the loop and associated control/data links are added
to the graph. The new activity clones preserve the settled state, if the original activities
have been settled activities before the transformation.

Transformation of until-loops. The until-loops terminate when a specific condi-
tion is fulfilled. The evaluation of the condition can be performed only at runtime. This
transformation is illustrated in Fig. 2. For each iteration of the loop, clones of the activi-
ties in the body of the loop and associated control/data links are added to the graph. The
activities in the first iteration remain settled after the transformation if they have been
settled, but the clone activities in the consequent iterations are unsettled. Any activity
subsequent to an until-loop preserves its unsettled state until all the iterations of the
loop are executed.

Elimination of initial and final states. The initial and final states are simply re-
placed by dummy activities, not associated with computation. If all their (direct) prede-
cessors are settled activities, these become settled dummy activities.

Scheduling Workflow Distributed Applications in JavaSymphony 277

Fig. 2. Until-loops transformation

We use the notation WF �−→ WFt to express that WFt is obtained from WF ap-
plying the above-mentioned transformations. We iteratively build a transformed work-
flow as follows: Initially (pre-scheduling), all possible transformations, except branch
elimination, are applied. The workflow application is scheduled/executed until a con-
ditional branch is reached (i.e. all predecessors of a conditional branch finished their
execution). Upon this event the branch elimination is applied, followed by all the other
possible transformations. The sets of settled, respectively unsettled activities are recal-
culated after each transformation step as following.

For B ∈ Branches a branch node, we denote by Next(B) the set of direct suc-
cessors of B, which comprises all activities directly dependent via control edges on
B and all the activities of the sub-workflows directly dependent via control edges on
B. According to this definition, Next(B) comprises all the activities that may be can-
celled after reaching the conditional branch B. Note that the decision to cancel or not
an activity from Next(B) set can be taken only when the execution reaches B and all
conditions associated with the subsequent branches are evaluated.

Consequently, the set of unsettled activities is U(WFt) = U1 ∪ U2, where U1 =⋃
B∈Branches Next(B) and U2 = {N ∈ Act ∪DAct|∃M ∈ U1,M < N}. The set

of settled activities is therefore S(WFt) = Act ∪ DAct − U(WFt). We denote by
DAG(WFt) = (S(WFt), (Edges(WFt) ∪ Loops(WFt)) ∩ S(WFt) × S(WFt)),
the graph which has S(WFt) as vertices, and all the control links, and loops from WFt

that have both the targets and sources in S(WFt) as edges.
For a workflowWF , we define a control path as a series of activities A1, A2, ...Ak,

where each pair (Ai, Ai+1) is either a control link or a sequential loop. Using the
above-mentioned notations and definitions, we demonstrate the following property of
DAG(WFt):

Lemma 1. DAG(WFt) is a DAG which preserves the control paths of the initial work-
flow WF .

Proof:
DAG(WFt) has no loops. According to the transformation of while loops, the

body of a loop in WFt has only unsettled activities. Therefore, the final state associated
with a loop is not in DAG(WFt) and accordingly, the loop is not edge in DAG(WFt).

DAG(WFt) preserves the control paths of WF means that for each control path
A1, A2, ...Ak of WF , with all Ai in S(WFt), there is a corresponding control path in
DAG(WFt). First, the control edges of the initial workflow are preserved by all trans-
formations, so if Ai,Ai+1 ∈ S(WFt) and (Ai, Ai+1) ∈ CEdges, implies (Ai, Ai+1)

278 Alexandru Jugravu and Thomas Fahringer

is also edge in DAG(WFt). On the other hand, if (Ai, Ai+1) is a for-loop, this means
that a for-loop transformation has been applied, followed by an elimination of initial
and final states. In this case the loop is transformed into a control link between Ai and a
clone of Ai+1, both dummy activities in WFt. If (Ai, Ai+1) is an until-loop, this means
that a until-loop transformation has been applied, followed by a branch elimination and
then by an elimination of initial and final states. In this case the loop is transformed into
2 control links: (Ai, B) and B,A′

i+1, where B is a new branch and A′
i+1 is a clone of

Ai+1 in WFt and all of them are (newly created) dummy activities.

1. Apply all possible transformations to the initial workflow WF �−→ WFt, and compute
U(WFt), S(WFt) and DAG(WFt).

2. A scheduling algorithm for DAG-based workflows (no conditional branches and loops) is
applied to DAG(WFt).

3. At each scheduling event, U(WFt), S(WFt) and DAG(WFt) are recalculated. Note
that termination of activities may imply adding their successors to S(WFt). Changes in
DAG(WFt) automatically imply scheduling/rescheduling of unfinished activities.

4. When the execution reaches a conditional branch a branch elimination transformation is
applied, followed by all the other possible transformations.

5. The result is a new WFt, and new U(WFt), S(WFt) and DAG(WFt) are calculated.
The scheduling algorithm is now applied to the new DAG(WFt).

6. The iterative scheduling/execution process finishes when all activities (in all iterations of
all loops) are processed. At this point U(WFt) = ∅, and S(WFt) comprises all the activ-
ities of WF , including the new created clones of activities (for each additional iteration of
a loop) and all new created dummy activities.

Fig. 3. Strategy for scheduling workflows with loops and branches

Consequently, the dynamic scheduling strategy in Fig. 3 is adopted for workflows
with conditional branches and loops.

3.3 A Sample Workflow Application

We have tested our dynamic scheduling strategy with a real-life application. WIEN2k
[9] is a program package for performing structure calculations of solids using den-
sity functional theory, based on the full-potential (linearised) augmented plane-wave
((L)APW) and local orbitals (lo) method.

The components of the WIEN2k package can be organized as a workflow (Fig. 4).
The lapw1 and lapw2 TOT tasks can be solved in parallel by a fixed number of so-called
k-points. This is modelled by two parallel loops in the workflow graph. Without the
parallel loops, the workflow graph becomes quite complex (Fig. 4(c)). Various files are
sent from one workflow activity to another, which determine complex data dependen-
cies between the activities (Fig. 4(b)). At the end of the main sequence of the activities,
a dummy activity testconv performs a convergence test to determine if the calculation
needs to be repeated. This is modelled by the main sequential loop.

Scheduling Workflow Distributed Applications in JavaSymphony 279

(a) Control flow (b) Data dependecies (c) Parallel loop elimination

Fig. 4. Wien2k workflow

We have successfully built a JavaSymphony workflow application on top of the
WIEN2k package. We have used HEFT (Heterogeneous Earliest Finish Time) [5] list
scheduling algorithm combined with the dynamic scheduling strategy described in
Fig. 3, to schedule and run this application onto a set of workstations. Due to space
limitations, in this paper we do not investigate the workflow scheduling performance.
We intend to implement several other real-life distributed applications and to investigate
several other scheduling algorithms in future work.

4 Related Work

Workflow applications have become very popular in Grid community and many re-
search and industry groups have proposed language standards to model and develop
workflow applications [10–13]. We do not intend to compete with highly complex
workflow definition languages [10, 13]. Instead, the JavaSymphony specific XML-
based specification language for workflow applications is simple, in order to allow
an easy manipulation of the workflow structure by a scheduler. The same is valid for
the workflow graphical representation. Activity Diagrams or Petri Nets have been ex-
tensively studied as alternatives for the representation of the workflows ([14, 15]). In
[15] diverse workflow patterns are analyzed. However complex workflow specification
languages or complex workflow patters are not commonly associated with advanced
scheduling techniques for distributed workflow applications. We prefer to use a simpli-
fied graphical workflow application representation (a reduced set of workflow patterns),
in order to be able to investigate such advanced scheduling techniques.

280 Alexandru Jugravu and Thomas Fahringer

On the other hand, most systems for allocating tasks on grids, (e.g. DAGMan [12],
Pegasus [16]), currently allocate each task individually at the time it is ready to run,
without aiming to globally optimise the workflow schedule. In addition, they assume
that workflow applications have a static DAG-based graph, which may be seen as a too
restrictive constraint.

The DAG scheduling problem has been intensively studied in the past, mostly in
connection with parallel application compiling techniques. A parallel application is
represented by a DAG in which nodes represent application tasks (computation) and
edges represent inter-task data dependencies (communication). Numerous scheduling
techniques and scheduling heuristics have been developed for both homogeneous and
heterogeneous systems [5–8]. However, these heuristics assume a static application
graph and they statically compute the schedule before the execution is started. Static
scheduling of static DAG structures is, however, too restrictive for the new generation
of Grid workflow applications. We, therefore, propose a new approach that includes
loops and conditional branches to the workflow model and extends the static schedul-
ing with novel dynamic scheduling techniques to accommodate these new constructs.

5 Conclusions and Future Work

JavaSymphony is a system designed to simplify the development of parallel and dis-
tributed Java applications on heterogeneous computing resources ranging from small-
scale clusters to large scale Grid systems.

In this paper, we have presented a formal model to describe workflow applications,
which allows a user-friendly graphical workflow representation based on the UML Ac-
tivity Diagram, and a novel framework for scheduling workflow applications.

JavaSymphony introduces a mechanism to control loops and conditional branches
in workflow applications, which is not supported by many other workflow frameworks.
Furthermore, we describe a new scheduling technique for workflows which have loops
and conditional branches.

We plan to evaluate this technique with several DAG-scheduling heuristics [5–8],
and compare their performance with several workflow applications. We also plan to
further investigate new scheduling techniques for various types of distributed applica-
tions and programming paradigms (e.g. meta-tasks, master/slave applications, etc..) and
support them in JavaSymphony.

References

1. Jugravu, A., Fahringer, T.: JavaSymphony: A new programming paradigm to control and to
synchronize locality,parallelism, and load balancing for parallel and distributed computing.
Concurency and Computation, Practice and Experience (2003)

2. Jugravu, A., Fahringer, T.: JavaSymphony, A Programming Model for the Grid. Future
Generation Computer Systems (FGCS) 21 (2005) 239–246

3. WfMC: Workflow Management Coalition: http://www.wfmc.org/ (2003)
4. Dumas, M., Hofstede, A.: UML Activity Diagrams as a Workflow Specification Language.

In: 4th International Conference on UML, LNCS 2185, Toronto, Canada, Springer Verlag
(2001)

Scheduling Workflow Distributed Applications in JavaSymphony 281

5. Topcuoglu, H., Hariri, S., Wu, M.Y.: Task scheduling algorithms for heterogeneous proces-
sors. In: Eighth Heterogeneous Computing Workshop, IEEE C.S. Press (1999) 3–14

6. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling algo-
rithms. Journal of Parallel and Distributed Computing 59 (1999) 381–422

7. Baskiyar, S., SaiRanga, P.C.: Scheduling directed a-cyclic task graphs on heterogeneous
network of workstations to minimize schedule length. In: Proc. of International Conference
on Parallel Processing Workshops,Kaohsiung, Taiwan. (2003)

8. Radulescu, A., van Gemund, A.J.C.: Fast and effective task scheduling in heterogeneous
systems. In: Heterogeneous Computing Workshop. (2000) 229–238

9. P.Blaha, K.Schwarz, G.Madsen, D.Kvasnicka, J.Luitz: WIEN2k: An Augmented Plane Wave
plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Tech-
nology (2001)

10. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Systems, S., Thatte, S., Trickovic, I., Weerawarana, S.: Business process
execution language for web services (bpel4ws). Specification version 1.1, Microsoft, BEA,
and IBM (2003)

11. Erwin, D.W., Snelling, D.F.: UNICORE: A Grid computing environment. Lecture Notes in
Computer Science 2150 (2001) 825–??

12. The Condor Team: Dagman (directed acyclic graph manager) (2003)
http://www.cs.wisc.edu/condor/dagman/.

13. Krishnan, S., Wagstrom, P., von Laszewski, G.: GSFL : A Workflow Framework for Grid
Services. Technical Report, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne,
IL 60439, U.S.A. (2002)

14. Eshuis, R., Wieringa, R.: Comparing Petri Net and Activity Diagram Variants for Workflow
Modelling - A Quest for Reactive Petri Nets. Lecture Notes in Computer Science 2472
(2003) 321–351

15. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Dis-
tributed and Parallel Databases 14(3) (2003) 5–51

16. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Laz-
zarini, A., Arbree, A., Koranda, S.: Mapping abstract complex workflows onto grid environ-
ments. Journal of Grid Computing 1 (2003) 25–39

Tasks Mapping with Quality of Service
for Coarse Grain Parallel Applications

Patricia Pascal, Samuel Richard, Bernard Miegemolle, and Thierry Monteil

LAAS-CNRS, 7 Avenue du Colonel Roche 31077 Toulouse France
{ppascal,srichard,bmiegemo,monteil}@laas.fr

Abstract. Clusters and computational grids are opened environments
on which a great number of different users can submit computational
requests. Some privileged users may have strong Quality of Service re-
quirements whereas others may be less demanding. Common mapping
algorithms are not well suited to guarantee a defined quality of service,
they propose at best priority systems in order to favour some appli-
cations without any guaranty. We propose a new mapping algorithm,
dealing with the notion of quality of service for scheduling applications
over clusters and grids over different classes of service.
This algorithm uses information on the application to map, all the un-
finished applications previously mapped, the state of the execution sup-
port, and the processor access model (round robin model) to suggest a
mapping which guarantees all the expressed constraints. The mapping
decision is taken on-line based on the release date of all applications
and the memory space used. To finish, the validation of the algorithm is
performed with real log files entries simulated with Simgrid.

Keywords: scheduling, quality of service, resource manager, grid, clus-
ters

1 Introduction

In distributed environments, resource management is very important in order
to take advantage of multiple hosts and to optimize resource use. The shedul-
ing policy commonly used on distributed systems is best effort with priorities.
Different queues are created: short jobs, long jobs, high parallel jobs, etc with
FIFO or more elaborated policies. This system of queues can be used to allow the
differentiation of users by assigning a priority to each queue but does not guar-
antee any quality of service. This limitation is due to historical reasons because
batch schedulers have been created for parallel computers which are generally
used by few users. Clusters are more opened and also complicated environments.
Due to their low cost, they can be accessed by a lot of different users that have
different needs and expectations; they are also connected with network on which
different policies of quality of service can be used. For this reason, batch sched-
ulers are not well suited to ensure different qualities of service to many users
using the same execution environment. In this article, a scheduling algorithm,
used in distributed systems like clusters or aggregation of clusters (grid), and

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 282–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tasks Mapping with Quality of Service 283

which implements different classes of service, is presented. This algorithm is im-
plemented in a tool called AROMA (scAlable ResOurces Manager and wAtcher)
[4]. AROMA integrates a resource management system, an application launcher,
a scheduler, a statistic module and an accounting system.

In the first section, a state of the art is presented; then the context of the
study, the notion of quality of service and AROMA are detailed. After that, the
optimization problem that has been solved is explained. To conclude, first results
validating the proposed algorithm are given. The originality of this work is to
mix different processes from different classes of service on the same processor at
the same time.

2 Related Work

Batch and dynamic schedulings are difficult problems to solve because resources
needed by an application may not be known. Resources are heterogeneous and
their availability is not completely known. Moreover, the mapping algorithm
must run quickly, therefore heuristics with good properties are used. Henri
Casanova in [5] studies deadline scheduling on computational grid. His goal is to
minimize the overall occurrences of deadline misses as well as their magnitude.

Rajkumar Buyya in [6] proposes a deadline and budget constrained cost-
time optimization algorithm for scheduling on grids. The algorithm is called
DBC (Deadline and Budget Constrained).

Mechanisms have been created to improve the mapping. The first one con-
cerns resource reservation. Different types of resource reservation algorithms are
studied in [1]. They evaluate the performance with or without preemption. The
reservation insures that all the resources necessary to run the applications will
be free. A second mechanism is the gang-scheduling. It creates time slices, that is
to say parts of time that are allocated to the parallel and sequential applications
[2]. With this solution, all applications progress simultaneously. Nevertheless, it
could create a problem of overload and memory saturation. Finally, the backfill-
ing [3] allows the insertion of jobs into scheduler queue. The insertion is possible
if it does not perturb the other jobs. It is a way to remove the holes in resources
utilization.

This article proposes a way to mix jobs requirements with different qualities of
service (deadline, immediate execution, dedicated resources).

3 Mapping Algorithm

As the context of the study is ASP (Application Service Provider), the hypoth-
esis that all the applications consuming resources are known is made : that is to
say, hosts are considered dedicated to computation. All the jobs are submitted
through AROMA and system tasks influence is neglected. AROMA daemons
are also able to monitor running applications; this information is used to re-
fresh estimated completion date of running jobs. The second hypothesis made

284 Patricia Pascal et al.

is that applications are regular coarse grain parallel applications for which the
time spent in communication is small and the execution time can be roughly
predicted. The problem is to find the mapping of a new application knowing all
the previously mapped applications that are still consumming resources in the
system. The proposed mapping has to guarantee that the quality of service is
respected for all applications (running and currently scheduled applications).

3.1 Quality of Service and Mapping Problem

Applications are grouped into four application classes (in order of importance):

– Deadline applications (class 1): this class of service guarantees that
the execution will end before the deadline. Execution can be immediate or
deferred.

– High priority applications (class 2): this class of service guarantees that
the execution will be immediate.

– Applications with dedicated resources (class 3): this class of service
guarantees that each application will be the only one to use resources during
its execution. Execution can be immediate or deferred.

– Applications without constraint (class 4): this class of service cor-
responds to applications which will be executed as soon as possible with
available resources. This class is also named “Best Effort”.

D
ec

re
as

in
g

pr
io

ri
ty

Deadline
applications

High priority
applications

applications

Dedicated
resources

Best effort
applications

Resources
access model

Mapping

PredictionObservation

Application
model

Computers

Application classes

Fig. 1. The mapping problem

The mapping problem inputs are (figure 1):

– Application model:
Some information describing the application needs and requirements has to
be supplied to the scheduler in order to take a good mapping decision. Some
elements are inputs of the algorithm while others express constraints for the
mapping. Inputs are an estimation of the cpu time required by each task,
the number of tasks and the size of exchanged data between the different
tasks of the application. Those values can be given by the user or retrieve

Tasks Mapping with Quality of Service 285

from a database containing information on previous runs for the same type
of application. The application model can express additional constraints like
the fact that all the tasks must begin at the same date or temporal relations
between the tasks (classical description in graph theory).
Software or specific hardware requirements add constraints on the execution
hosts. Class 1 induces a constraint on the ending date of the application,
class 2 induces a constraint on the starting date of the application and class
3 induces a constraint on the execution hosts.
All the constraints are verified by the algorithm.

– Resources access model:
According to the resources access policy, equations are deduced and used to
predict the utilization time of the resources and the end of execution. Models
developed in this article are deterministic, nevertheless models which take
care of random perturbation (arrival of uncontrolled jobs, for example a
direct login on the host) have been developed in [12]. The difficulty is to mix
different applications from different classes of service on the same host while
respecting all the constraints: several tasks may share the same host during
the same period of time.

– Observations:
The processors and network load (percentage of processors utilization, band-
width used), idle memory space and number of processes are monitored.
They are used to refresh information used for mapping.

– Mapping:
Different queues exist, each corresponding to a priority level (figure 1). When
several applications have to be mapped, the jobs of the highest priority queue
will be treated first. If no mapping respecting the constraints is found, three
cases are studied:
• the algorithm try to move a job with a weaker priority : it looks for an

application in a lower priority queue which has been planned to be run
in the future, then it removes it and try to map it again after the current
mapping.

• if the previous case is impossible, the algorithm can stop a running ap-
plication and try to find a new mapping for this application. In this case,
a new constraint is created to express that this application must go on
later on the same host. There is no migration.

• if the two previous cases are impossible, the mapping request is rejected.

3.2 Mathematical Expression of the Problem

The Variables

– t0: initial date of the mapping research.
– tb(a, p,m) : execution starting date of the task p of the application a on the

host m.
– tfwn(a, p,m) : end of execution of the task p of the application a on the host

m when the network is neglected.

286 Patricia Pascal et al.

– tf (a, p,m) : end of execution of the task p of the application a on the host
m when an estimation of time spent on communication is done.

– tc(a, p,m) : processor time requested by the task p of the application a on the
host m. Coarse grain applications are considered, so “small” communication
time is taken into account and the synchronization time is neglected.

– tk
c (a, p,m) : remaining processor time for the task p of the application a after

the event number k on the host m (events are a beginning or the end of a
task).

– Dr(a, p) estimation of the size of data sent and received by the task p of the
application a.

– C(m) : coefficient to take care of heterogeneous processors.
– tc(a, p,m) = tc(a, p) * C(m) : equivalence of processor time requested by the

task p of the application a for the host m.
– B(i,j) : estimation of bandwidth of the network between host i and host j.
– M : number of hosts. A : number of applications to map.
– Na : number of tasks of application a.
– Xm(t) : number of processes on the host m at time t.
– tk

m : a beginning event or an ending event of a process on the host m. It is
the date of the event number k.

– P(a) : set of possible mapping for application a.
– tf (m, s): the end of all the tasks mapped on the machine m after the mapping

s of application a with s ∈ P(a).
– M(a, p): the machine on which the task p of the application a is executed.
– U(m): number of processors available on host m.
– Mu(m): total memory used on host m. Mt(m): total memory on host m.
– Mf : constant to modify the weight of the memory criteria.

The Optimization Criteria: The mapping problem is an optimization prob-
lem, criterion has to be chosen. Several criteria are well known ([7][8][9][10]) :
makespan (minimizing the termination date of an application), sum-flow (min-
imizing the quantity of resources used), max-stretch (it expresses that a task
has been slowed compared to what its execution would have been on an idle
server). The objective here is to optimize the use of the providers resources and
to guarantee the level of quality of service required. So it has been chosen to
liberate all the resources as soon as possible. Applications already mapped may
be influenced by the mapping found. By consequence, all the applications (the
currently mapped and the previously mapped) must finish as soon as possible.

The date of the end of resources utilization is optimized. Moreover a sec-
ond criteria consists in moderating with memory space used: hosts which have
the most free memory space are privileged first. The choice has been made to
introduce memory in criteria because the exact amount of memory requested
by an application is often unknown by users. The problem is multi-criteria by
using a linear combination of different criteria (1). The first part of the addi-
tion (tf (m, s)) refers to the release date of the machine. The second part of the
addition tf (m, s) ∗Mu(m) ∗Mf/Mt(m) penalizes machines which have less free

Tasks Mapping with Quality of Service 287

memory. Mu(m)/Mt(m) gives an idea of memory utilization on this host. The
coefficient Mf influences the weight of this part of criterion. The multiplication
with tf (m, s) puts the value into the same order of value as the first part of the
criterion.

min
s∈P (a)

(max
m

(tf (m, s) + tf (m, s) ∗Mu(m) ∗Mf/Mt(m))) (1)

The Mapping Algorithm: A list algorithm for applications, tasks and ma-
chines is used to reduce the combinatorial. The mapping of an already studied
task of an application a is revised only if it is impossible to find a mapping for
this application. Moreover, in order to reduce the time used by the algorithm,
for each host, release date is saved and hosts are ordered to study which of them
will give the best mapping first.

The quality of service is already respected, all the constraints induced are
verified by the algorithm. If it is impossible to find a mapping corresponding to
the demand, the request is refused.

The computation of tb(a, p,m) and tf (a, p,m) will now be explained. The
equations are found considering that the processor access follows a round robin
policy.

The Starting Date of a Task: tb(a, p,m) is computed with an iterative
algorithm (at the beginning it is t0). If, at this date, no mapping can be found,
another date is searched.

t0b(a, p,m) = t0
tk+1
b (a, p,m) = min tf (i, j,m)

with i ∈ [1, a− 1], j ∈ [1, N i
]

and tf (i, j,m) > tk
b (a, p,m) (only the tasks that

can end after the last tb studied, are considered). The idea is to search a new
starting date when the system is less loaded: when a job finishes.

The End of a Task: tf (a, p,m) is computed with an iterative algorithm. Each
date is studied when there is a creation or a termination of a job. t0m corresponds
to the arrival of the first process on the host.

for all tasks (a goes from 1 to A and p from 1 to Na, on m)
if Xm(tkm) > U(m) (is there more processes than processors ?)

tk+1
m = mina,p (tb(a, p,m), tk

c (a,p,m)*Xm(tkm)/U(m)+ tk
m) (next

event corresponds to a creation or a death of a process)
else

tk+1
m = mina,p (tb(a, p,m), tk

c (a,p,m)+ tk
m) (next event corresponds

to a creation or a death of a process)
if tb(a, p,m) > tkm and if Xm(tkm) > U(m)

tk+1
c (a, p,m) =tk

c (a, p,m) - U(m)*(tk+1
m - tk

m)/Xm(tkm) (estimation
of the new requested time of processor for this task after this short execution on
processor: it is the time sharing policy)

288 Patricia Pascal et al.

if tb(a, p,m) = tim
ti
c(a, p,m) =tc(a, p,m)

(it is case of an insertion of a new process in the recurrence)

Estimation of the finished date of process without the network:
if tk+1

c (a, p,m) =0, tfwn(a, p,m) = tk+1
m

Time spent in communication are put inside the estimation of the end of
process to advantage location of tasks on the same cluster or on the same site
because the bandwidth will be better. The unmapped tasks are ignored in the
estimation of the worst bandwidth used for the application a.

tf (a, p,m) = tfwn(a, p,m) + Dr(a, p)/mini∈[1,Na[B(M(a, i),m)
The iterations continue until all the tasks of the host finish. In fact, the

mapping algorithm quickly simulates the execution of jobs and can mix the
different classes of service.

4 Validation

To validate the algorithm, Simgrid ([11]) simulator has been used. Real jobs
submission log files have been used to estimate the behavior of the algorithm
with Simgrid. Nevertheless, it is difficult to compare the algorithm to others
because algorithms found do not define classes of service and do not execute
processes of the different classes at the same time on the same processors.

4.1 Comparison with NQS

Feitelson logs (real logs) have been used. These logs give : the submission date
of jobs, the required cpu time, the number of tasks. The log file l sdsc sp2.swf
[13] is used. This Job Trace Repository is brought by the HPC Systems group of
the San Diego Supercomputer Center (SDSC), which is the leading-edge site of
the National Partnership for Advanced Computational Infrastructure (NPACI)
[14], [15]. The real system has 128 nodes and is scheduled with NQS [16]. Jobs
submissions are reproduced, the mapping research is done with the algorithms
on 128 nodes and their execution is simulated with Simgrid. The mean waiting
times given by the logs are compared to the mean waiting times of the algo-
rithms with quality of service. So, 10000 and 35000 jobs are simulated. Each job
was synchronized, this means that all the tasks of the same parallel application
must begin at the same date and belong to the dedicated resources class. This
class seems to be the nearest from NQS policy. The simulation of 10000 jobs is
equivalent to an activity on the supercomputer during 112 days. The simulation
of 35000 jobs is equivalent to an activity on the supercomputer during 249 days.
There is no information about the communications, so they are neglected. The
results show that, with the proposed algorithm, a better waiting time than NQS
is obtained. In fact, with the proposed algorithm, an application can be mapped
between two others because the processor time required is known and the pre-
diction of the end of each task mapped can be done. This reduces significantly

Tasks Mapping with Quality of Service 289

the waiting times. NQS sorts the applications into queues (based on required
cpu time) and mixes the applications when a mapping is researched. This can
increase the waiting time of short jobs which can be slowed by long ones. This
problem is avoided with the proposed algorithm because the applications are
considered in the order of submission and classes. The second reason is that the
proposed algorithm uses more precise values for the requested time of cpu than
NQS; by consequence, the mapping is more accurate. The comparison would be
more fair if NQS had as much queues than the different times of processor re-
quested. The results are presented in the table 1. The times are given in seconds
(s).

Table 1. Comparison of the waiting time between NQS and the proposed algorithm

10000 events 35000 events
mean waiting time with NQS(s) 10796 8979

mean waiting time with the algorithm(s) 4008 4202

4.2 Influence of Quality of Service

The same log file as previously has been used. In this log file, it is specified
that there are four queues (low, normal, high, express), and for each job the
queue of submission is known. So this information is used to make an arbitrary
correspondence with the proposed classes of applications. The logs are used
only to have an approximation of a realistic incoming rate of applications and
a good sample of applications requested cpu time. So queue low corresponds to
best effort class (class 4), queue normal corresponds to deadline class (class 1),
queue high corresponds to dedicated resources class (class 3) and queue express
corresponds to high priority class (class 2). For deadline applications (class 1),
the deadline is : submission date + 5*cpu time required. For high priority
applications (class 2), the starting date that must be respected is : submission
date + 5 seconds. Four cases have been simulated:

– case 1 (10000 events using the four classes) : the waiting time for each class,
the global waiting time, the mapping time for each class and the global
mapping time are computed.

– case 2 (10000 events in the best effort class) : the global waiting time and
the global mapping time are computed.

– case 3 (35000 events using the four classes) : the waiting time for each class,
the global waiting time, the mapping time for each class and the global
mapping time are given.

– case 4 (35000 events in the best effort class) : the global waiting time and
the global mapping time are evaluated.

Doing so, case 1 can be compared with case 2 and then case 3 can be com-
pared with case 4 to see the influence of the quality of service on the mapping

290 Patricia Pascal et al.

Table 2. Influence of the quality of service on the performance of the algorithm

Case 1 Case 2 Case 3 Case 4

waiting time class 1 (s) 30.51 30.7
waiting time class 2 (s) 0.0036 0.003
waiting time class 3 (s) 4845 5182
waiting time class 4 (s) 4.55 30.5
global waiting time (s) 710.5 64.68 396 70.3

mapping time class 1 (ms) 20.22 21.1
mapping time class 2 (ms) 3.6 3

mapping time class 3 (ms) 269.3 334.4
mapping time class 4 (ms) 7.2 28.6
global mapping time (ms) 50.3 13 49.1 76.4

performances. The results are presented in the table 2. The waiting times are
given in seconds (s) and the mapping times in milliseconds (ms).

The introduction of the quality of service increases the mapping times and
waiting times but the algorithm still has good performances (mapping time is
inferior to 80 ms). The mapping time increases because there are more con-
straints to verify. It takes many iterations before finding the good tb. Globally
the increase of waiting time is due to class 3 applications (dedicated resources
applications) which have to wait a long time before being alone on the ma-
chines. The economical or political criteria, which define important jobs, could
depreciate the global utilization of resources. In case 1, there are 21 rejects of
applications belonging to class 1 (deadline). In case 3, there are 154 rejects of
applications belonging to class 1 (deadline). In those cases the machines are full.
Because of the constraints of deadline, the tasks can not start later like in clas-
sical batch schedulers. Applications of class 2 can be refused but a mapping has
always been found. Applications of class 3 and 4 can never be refused, they will
only be slowed down.

5 Conclusion

This article presents a scheduling algorithm with quality of service usable in
distributed systems like clusters or grids. It is implemented in AROMA : a
resource management system used in ASP model. The validation shows that the
proposed algorithm is better than NQS, nevertheless, the comparison is difficult
because NQS does not implement classes of service and has not access to the
same information.

The algorithm always respects the quality of service required for accepted
applications. When different applications are mixed, the mapping and the wait-
ing times are more important than when there are only best effort applications.
The performances of the algorithm are still very good (mapping time inferior to
80 ms). The communication weight are introduced to favour the execution of an
application in the same network area.

Tasks Mapping with Quality of Service 291

Future work will be to improve the notion of communication model and
its use into the application model. The theoretical complexity of the mapping
algorithm will be studied. The main difficulty will be to explore the complexity
of the estimation of the end of a task. More comparisons with other mapping
algorithms will be done. Real execution of a set of jobs during many weeks will
be done on a small grid over 3 different sites.

References

1. Warren Smith, Ian Foster and Valerie Taylor. Scheduling with advanced reserva-
tions. Proceeding of the IPDPS Conference, May 2000.

2. Dror G. Feitelson and Morris A. Jette. Improved utilization and responsiveness
with gang scheduling. Proceeding JSSPP 1997 : 238-261. Job scheduling strategies
for parallel processing, IPPS’97 workshop, Geneva, Switerlang.

3. Dmitry Zotkin and Peter J. Keleher. Job-length estimation and performance in
backfilling schedulers. 8th Intl Symp. High Performance Distributed Comput.,
august 1999.

4. P.Bacquet, O.Brun, J.M.Garcia, T.Monteil, P.Pascal, S.Richard. Telecommuni-
cation network modeling and planning tool on ASP clusters. Proceedings of the
International Conference on Computational Science (ICCS’2003) Melbourne, Aus-
tralia, June 2-4, 2003.

5. Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, Francine Berman. A study of
deadline scheduling for client-server systems on the computational grid. Proceed-
ings of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10) San Francisco, California, August 7-9, 2001.

6. Rajkumar Buyya. Economic-based distributed resource management and scheduling
for grid computing. Thesis, April 2002.

7. T.L. Casavant and J.G. Kuhl. Effects of Response and Stability on scheduling in
distributed computing systems. IEEE Transactions on software engineering, vol.
14, No 11, pp. 1578-1588, november 1988.

8. Y.C. Chow, W.H. Kohler. Models for dynamic load balancing in a heterogeneous
multiple processor system. IEEE Transactions on computers, vol. c-28, No 5, pp.
354-361, 1979

9. C.Y. Lee. Parallel machines scheduling with non simultaneous machine available
time. Discrete Applied Mathematic North-Holland 30, pp 53-61, 1991.

10. F. Bonomi and A. Kumar. Adaptative optimal load balancing in a non homogeneous
multiserver system with a central job scheduler. IEEE Transactions on computers,
vol. 39, No 10, pp. 1232-1250, october 1990.

11. Henri Casanova, Arnaud Legrand and Loris Marchal Scheduling Distributed Ap-
plications: the SimGrid Simulation Framework. Proceedings of the third IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’03).

12. Patricia Pascal and Thierry Monteil. Influence of Deterministic Customers in
Time Sharing Scheduler. ACM Operating Systems Review, 37(1):34-45, January
2003.

13. http://www.cs.huji.ac.il/labs/parallel/workload/logs.htmlsdscsp2
14. http://joblog.npaci.edu/
15. http://www.cs.huji.ac.il/labs/parallel/workload/
16. B. Kingsbury. The network queuing system. 16 May 1998. http://pom.ucsf.edu/

srp/batch/sterling/READMEFIRST.txt.

Initiating Load Balancing Operations

Marta Beltrán, Jose L. Bosque, and Antonio Guzmán

DIET, ESCET, Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain
{mbeltran,jbosque,aguzman}@escet.urjc.es

Abstract. The initiation rule of a load balancing algorithm determines when to
begin a new load balancing operation. Therefore, it is critical to achieve the de-
sired system performance. This paper proposes a generalized procedure for de-
riving initiation mechanisms or rules based on different objectives for the load
balancing algorithm. A new metric, the initiation efficiency, is defined in order to
evaluate the initiation performance and to compare the different alternatives.

1 Introduction

Load balancing is critical for achieving high performance in clusters and Grid systems
because it enables an effective and efficient utilization of all the available resources
([1],[2]). Dynamic load balancing algorithms can be decomposed in different rules or
policies ([3], [4], [5]). But all these decompositions have something in common: it is
necessary an initiation mechanism to decide on each system node when to begin a load
balancing operation. This mechanism must be efficient, scalable, low overheading, and
must be capable of deciding about load balancing operations taking into consideration
the available system and workload information.

Different solutions have been proposed for the initiation rule. There are sender-
initiated ([5], [6], [7]), receiver-initiated ([8]), symmetric ([9]) and periodic ([10]) rules.
On the other hand, some of these solutions are completely local ([5], [7], [11]), i.e, each
node evaluates only its own state to determine if a load balancing operations is necessary
or not, while other are global ([12]), taking into consideration the global system state.

An exhaustive analysis of all these alternatives allows to conclude that they are de-
signed for a particular load balancing algorithm. The main contributions of this paper
are a procedure for deriving initiation mechanisms from general objectives for load
balancing algorithms and a performance metric for the initiation rule, the initiation ef-
ficiency (ε). It has been defined in order to evaluate the initiation mechanisms perfor-
mance and to compare the different solutions. For illustration, three example objectives
have been proposed to derive their correspondent initiation mechanisms and to compare
their performance using the new defined metric.

The rest of this paper is organized as follows. Section 2 proposes the general method-
ology for obtaining initiation policies from the objectives of the load balancing algo-
rithms. Section 3 illustrates this methodology with three different examples of load bal-
ancing objectives. Section 4 defines the initiation efficiency necessary to evaluate these
initiation mechanisms performance and to establish comparisons. Section 5 presents
some experimental results for the example cases and finally, Section 6 with conclu-
sions.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 292–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Initiating Load Balancing Operations 293

2 Generalized Procedure for Deriving Initiation Rules

To implement the initiation mechanism for a load balancing algorithm, it is necessary to
decide when a load balancing operation should be requested, considering both its pos-
sible benefits, and on the other hand, the overhead it will cause. This section proposes
a general procedure for designing initiation mechanisms for load balancing algorithms
taking into account their general objectives. The steps of this procedure are the follow-
ing:

1. Describe quantitatively the requirements for the load balancing algorithm. Let ω
be the objective that should be achieved with the algorithm to ensure that these
requirements are met.

2. Identify an objective function to quantify the achievement of this objective. Let
φω be the objective function for ω. This objective function must depend on the
available information about the local and the global state. Mathematically, it should
be expressed as φω(I) where I is a vector composed of the system nodes load
indexes (these load indexes quantify the system nodes computing capabilities and
must be updated in all the system nodes with some kind of information policy).

3. Incorporate this objective function to the initiation mechanism in the load balancing
algorithm. For this last step two kind of objective functions can be distinguished:

– Boundary functions: In this case the objective function defines an upper or
lower bound to a certain magnitude. This condition can be directly transferred
to the initiation mechanism.

– Optimization functions: The objective function requires the optimization of a
certain magnitude. Even though this kind of functions can be sometimes easily
incorporated to the initiation rule, they usually introduce too much overhead in
the algorithm. To evaluate the load balancing operation it is necessary to solve
an optimization problem and such computation may be very expensive for a
dynamic load balancing algorithm. In such cases the optimization objective
should be transformed to a boundary one, defining an upper or lower bound for
the magnitude that was initially supposed to be optimized.

3 Some Initiation Rule Examples

3.1 Objective 1: Maximize System Load Balance

In this first example the aim of the algorithm is to maximize the balance among the
system nodes. This is usually the main objective of any load balancing algorithm but it
is not the only one as it will be seen later. Once this objective is identified (step 1 of the
proposed procedure), an objective function can be defined for the step 2. Let b denote
the system balance, therefore, the objective function is:

φ1 : max(b) (1)

The larger the b value, the more balanced is the load of the system. This balance can
be quantified at a given instant as the ratio of the minimum load index to the maximum.

294 Marta Beltrán, Jose L. Bosque, and Antonio Guzmán

That is, it can vary from 0 to 1. With this definition, the objective function can be
denoted:

φ1(I) : max

(
Imin

Imax

)
(2)

But this is an optimization function, so every time a new task arrives to a system
node, its initiation mechanism must evaluate the b value for each possible allocation for
this task, searching in each case the minimum and the maximum load indexes in the
system. This process can suppose a great overhead for the load balancing algorithm,
specially in systems with a large number of nodes. To overcome this scalability limita-
tion, the objective function is transformed to a boundary one. This function is:

φ1(I) :
Imin

Imax
> τ (3)

Where τ is the algorithm tolerance value, which defines the threshold desired for
the system balance. With this objective function, the step 3 of the general procedure
is immediate. The initiation rule must try to allocate all the new tasks achieving this
objective: the system balance must be always above the τ value after the allocation.
This boundary condition can be directly transferred to the load balancing algorithm
with a very simple evaluation, without solving the maximization problem.

3.2 Objective 2: Maximize System Throughput

Here the aim of the algorithm is to maximize the system throughput, that is, to minimize
the individual processes elapsed time to finish as many tasks per time unit as possible.
This objective is typically identified during the step 1 in systems executing independent
tasks for high performance computing. It must be achieved using a load balancing algo-
rithm, therefore, assigning each task to the system node in which its elapsed time will
be the shortest. Let ti be the elapsed time of th ith task, therefore the objective function
proposed in the step 2 is:

φ2 : min(ti) ∀i (4)

But againφ2 is an optimization function that implies evaluating the new task elapsed
time for each possible allocation before assigning it to the best system node in terms of
this time requirement. Therefore, this objective function is transformed to a boundary
one. In this case the bound is referred to the elapsed time of the new task in its home
node, that is, the node to which this task is initially assigned. The objective function is:

φ2 : ti < τ · t̂i ∀i (5)

Where t̂i is the elapsed time of the ith task in its home node and τ is the algorithm
tolerance to define the threshold desired for this objective. For the step 3, this objective
function implies that the initiation rule tries to allocate new tasks to nodes where their
elapsed time will not be more than τ times greater than in their home nodes. In this
paper the DYPAP monitor ([13]) is used to provide local and global state information to
the load balancing algorithm, so the objective function can be based on the load indexes
values provided by this tool. The load index provided by the DYPAP monitor is based

Initiating Load Balancing Operations 295

on the CPU assignment, defined as the percentage of CPU time that would be available
for a new task on a system node, and on the nodes computational powers.

In the home node the objective function is achieved if the CPU assignment for the
new task is:

α =
1
τ

(6)

This CPU assignment is the minimum necessary to accomplish the elapsed time
requirements for the new task on this node, but due to system heterogeneity, this may
not be the minimum in another node (for example, on a node with more computational
power). Therefore, the objective function is based on the load indexes values, which
take into account the nodes computational powers. The minimum index necessary to
achieve the objective is :

Imin = αmin · Phome

Pmax
=

1
τ
· Phome

Pmax
(7)

Where Phome is the computational power of the home node and Pmax is the com-
putational power of the most powerful system node. That is:

φ2(I) : I >
1
τ
· Phome

Pmax
(8)

The initiation mechanism of the load balancing algorithm must look for a node
which fulfill this bound to allocate the new task.

3.3 Objective 3: Minimize the Application Elapsed Time

In this last example the aim of the algorithm is to obtain the best elapsed time for the
application executing on the system. Once the objective is identified in the step 1, the
objective function must be proposed in the step 2. Let T denote this elapsed time:

φ3 : min(T) (9)

Again this objective must be accomplished using a load balancing algorithm, i.e.,
allocating new tasks in the best way for this objective function. In this case, this function
can be easily implemented in the initiation mechanism despite it is an optimization
function:

φ3(I) : max(I) or min(I) (10)

That is, in the step 3, new tasks are always assigned to the system node with the
lowest or greatest load index, depending on this index meaning. For example, assuming
again the utilization of the DYPAP monitoring tool, the index maximization should be
used because the system node with the greatest load index is the one which offers the
best compromise between computational power and CPU assignment and can be easily
found by the initiation mechanism without evaluating any expression or predicting the
system behavior. In this example the optimization only implies the search of the system
node with the greatest index value and this does not introduce too much overhead in the
algorithm. Therefore, it may not be necessary to transform it into a boundary function.

296 Marta Beltrán, Jose L. Bosque, and Antonio Guzmán

4 Initiation Efficiency

In order to evaluate the different initiation rules performance and to compare the differ-
ent alternatives, an initiation performance metric is needed. In this paper, the initiation
efficiency (ε) is defined considering two important issues: the ratio of accepted load
balancing operations to the requested operations (R) and the degree of achievement for
the load balancing algorithm objective (A). Therefore, the efficiency definition is:

ε = R ·A (11)

The first factor must be taken into account because a good initiation mechanism
should begin load balancing operations only when they are going to be accepted. The
rejected operations imply an unnecessary overhead to the system, specially to the net-
work. If the mechanism is not efficient or if it is, but it does not have updated informa-
tion to decide about load balancing operations, some load balancing operations might
be rejected in the target node. The ratio of the accepted operations to the requested
operations quantifies the efficiency of the initiation rule in this sense (the largest value
being 1 in the best case):

R =
Oacep

Oreq
(12)

Where Oacep is the number of accepted load balancing operations and Oreq the
number of requested operations.

On the other hand, an efficient initiation rule should comply with the objective of
the load balancing algorithm. Due to inaccuracies in the state information, to wrong
initiation mechanisms or to very demanding requirements this objective might not be
achieved. The degree of achievement of the load balancing algorithm objective is quan-
tified in a different way for the boundary and optimization functions:

– Boundary objective function: The degree of achievement of the objective can be
measured with the ratio of tasks which are assigned accomplishing the proposed
objective to the total number of assigned tasks:

A =
tasks accomplishing the objective

N
(13)

Where N denotes the total number of tasks composing the executed application.
– Optimization objective function: In this case, the magnitude or attribute that has

to be optimized (M) gives the degree of achievement of the objective. Its value can
be referred to its optimal value (Mop) to quantify how near is the system to the
optimal situation:

A =
Mop

M
or A =

M

Mop
(14)

Depending on the kind of optimization the first equation (for a minimization) or the
second equation (for a maximization) must be used.

Initiating Load Balancing Operations 297

Anyway, the A value is always normalized, varying from 0 in the worst case to 1
in the best case. With these definitions, for the initiation rules proposed in the previous
section, the initiation efficiency can be measured as:

– Objective 1:

ε =
Oacep

Oreq
· tasks assigned with b > τ

N
(15)

– Objective 2:

ε =
Oacep

Oreq
· tasks assigned with t < τ · t̂

N
(16)

– Objective 3:

ε =
Oacep

Oreq
· Top

T
(17)

To evaluate the application elapsed time in the optimum or perfect situation, when
all the system load is perfectly balanced, only some information must be known
([14]): the number of tasks that compose the executed application (N), the number
of system nodes (q) and their computational powers (Pi with i = 1, ..., q). The
optimum time value can be obtained supposing that all the workload is sequentially
executed on a system with computational power equal to the total computational
power of the system (PT), therefore:

Top =
N∑q

i=1 Pi
=

N

PT
(18)

With the given definition, a perfect initiation rule would obtain ε = 1. It would
request load balancing operations only when they are necessary and can be performed,
that is, when they are going to be accepted. And in addition, it would completely achieve
the load balancing objective, assigning all the tasks to accomplish this objective or
obtaining the desired optimum situation.

5 Experimental Results

This section presents some experimental results to show the influence of the initiation
mechanism on the load balancing algorithm performance and to establish the utility of
the initiation efficiency in selecting the best initiation rule. These experiments have been
performed on a 32 nodes heterogeneous cluster called Medusa. In all the experiments
an application composed by 320 tasks is executed on this system. For simplicity, these
tasks are independent, i.e. there are no communications between them. In addition it is
assumed that they arrive periodically to the cluster, and that they are initially assigned
to system nodes between n17 and n31. These assumptions have been made only to
simplify the experiments but they are not part of the general formulation presented in
previous sections. The computational power (P) for the different system nodes has been
computed as the inverse of the elapsed time for this application tasks on each kind of
node, being PT =2.47 the global system computational power.

298 Marta Beltrán, Jose L. Bosque, and Antonio Guzmán

The elapsed time for the selected application is 436 s without the load balancing
algorithm, and with equation 18, the elapsed time with an optimum balance would be
Top=129.38 s. In this context, the implemented load balancing algorithm must dynami-
cally balance the system workload. This load balancing is based on the DYPAP model
([13]), therefore, it includes the DYPAP monitoring tool to periodically characterize the
system nodes state. An event-driven information policy has been used to exchange this
state information between the system nodes. And to evaluate the three proposed initia-
tion mechanisms, different implementations of the load balancing algorithms have been
used. But the only difference between all these implementations is the initiation rule, in
order to establish fair comparisons and to draw general conclusions from the obtained
results.

The implemented load balancing algorithm is based on non-preemptive tasks as-
signment, thus, the objective functions proposed in equations 3, 8 and 10 have been
directly translated to the initiation mechanism:

– Objective 1: When a new task arrives to a cluster node, it must be assigned to
obtain a balance greater than the algorithm tolerance (τ) after its allocation.

– Objective 2: In this case, it is required that the new task allocation achieves an
elapsed time for this task no more than τ times its elapsed time in its home node
(the node to which it was initially assigned when it arrived to the cluster).

– Objective 3: For this last objective function, the new task is always allocated to the
node with the largest I value in order to minimize the application elapsed time: it
is assumed that this kind of allocation always obtains the best elapsed time for the
individual tasks and, thereby, for the global application.

In these three implementations, after checking the local and remote execution of
the task, if the achievement of the initial objective is not possible, this requirement is
relaxed to avoid blocking a task execution, for example, if it is impossible to comply
with this objective in some environment. That is why the algorithm objective achieve-
ment not always equals 1. For the objectives 1 and 2, boundary functions have been
used, thus, the algorithm tolerance is in both cases an implementation parameter. Ta-
bles 1, 2 and 3 show the results obtained for the three proposed initiation mechanisms,
and for the two first objectives, different tolerance values have been considered. Each
table shows the number of accepted (Oacep), requested (Oreq) and rejected operations
(Orej), the application elapsed time (T), the A and R values, and finally, the initiation
efficiency (ε) for the different algorithm implementations.

In table 1, results for the first objective are shown. The larger the value of the al-
gorithm tolerance, the more restrictive is the initiation mechanism: more load balance
is required in the system. This is why for the largest τ values, more load balancing op-
erations are requested, because they are needed to achieve these exigent load balance
requirements. But it can be seen that the increase of τ leads to a decrease of both A and
R, due to the difficulty in finding a proper allocation to achieve the algorithm objective.
Therefore, the initiation efficiency decreases when the τ value increases. The intuitive
explanation for this behavior is that the more difficult is to find a good allocation the
less efficient becomes the initiation mechanism. The best elapsed time for the applica-
tion is obtained with the medium tolerance values. With low τ values, the load balance

Initiating Load Balancing Operations 299

Table 1. Experimental results with the objective 1

τ Oacep Oreq Orej T (s) R A ε

0.20 291 328 37 304 0.89 0.96 0.85
0.30 286 335 49 289 0.85 0.86 0.74
0.40 313 395 82 276 0.79 0.82 0.65
0.45 318 403 85 272 0.79 0.80 0.63
0.50 325 402 77 269 0.81 0.74 0.60
0.60 318 410 92 286 0.78 0.63 0.49
0.70 315 419 104 297 0.75 0.55 0.41

Table 2. Experimental results with the objective 2

τ Oacep Oreq Orej T (s) R A ε

1 315 423 108 372 0.74 0.92 0.68
2 313 420 107 311 0.75 0.98 0.73
3 240 332 92 259 0.72 1 0.72
4 197 286 89 292 0.69 1 0.69
5 184 263 79 316 0.70 1 0.70
6 163 234 71 329 0.70 1 0.70
10 142 210 68 359 0.68 1 0.68
15 121 177 56 388 0.68 1 0.68

Table 3. Experimental results with the objective 3

Version Oacep Oreq Orej T (s) R A ε

Simple 300 340 40 323 0.88 0.40 0.35
Modified,F =1.2 288 318 30 320 0.91 0.40 0.37
Modified,F =1.8 258 315 57 280 0.82 0.46 0.38

required in the system is too low to give good elapsed times, but with the largest values,
the tasks assignment becomes too complicated and this has a negative influence on the
elapsed times.

For the second objective (table 2), similar conclusions can be derived. But in this
case low tolerance values imply more restrictive requirements, therefore, more requested
load balancing operations. The main difference with the first objective is that in this case
the influence of the τ value on the A, R and ε values is not so significant. Similar effi-
ciency values can be obtained with all the considered algorithm tolerances. This is due
to the specific features of the performed experiment, that is, with this system-application
combination, it is easier to achieve the objective 2 than the objective 1 even with the
more restrictive requirements.

Finally, in table 3 the results for the objective 3 are shown . The ’simple’ implemen-
tation is based on the objective function proposed in equation 10. But this optimization
function leads to a poor system performance, in terms of elapsed time and initiation
efficiency. So, an easy modification is proposed (the ’modified’ version), to assign new
tasks to the system node with the largest load index only when this index is F times
greater than in the local node. The utilization of this threshold does not affect the objec-

300 Marta Beltrán, Jose L. Bosque, and Antonio Guzmán

tive achievement and allows to avoid unnecessary load balancing operations, improving
the algorithm performance specially for F values significantly different from 1.

In the proposed context, the three implementations can obtain similar elapsed time
values: 269, 259 and 280 s respectively. But the third objective must be rejected due
to its efficiency value, only 0.38 for this best elapsed time. For the first and second
objectives, similar initiation efficiencies can be obtained, 0.60 and 0.72, therefore both
objective functions could be used for this algorithm, being a little best the second ob-
jective performance for this experiment.

6 Conclusions

This paper proposes a general procedure to methodically obtain initiation mechanisms
for load balancing algorithms. This methodology implies choosing a general objective
for the load balancing algorithm. This objective is mathematically expressed with an
objective function, which can be an optimization or a boundary one, depending on the
available system state information. And finally, this function is directly translated into
an initiation mechanism for the load balancing algorithm. In addition, a performance
metric for this mechanism, the initiation efficiency, has been defined.

For illustration, three example objectives have been presented to derive their initi-
ation mechanisms using the proposed methodology and to evaluate their performance
with the defined metric. The presented experiments for these three objectives show the
utility of the proposed procedure in implementing initiation policies and of the initiation
efficiency in selecting the best alternative.

All these results highlight the fact that it is possible to find different tasks allo-
cations with similar elapsed times values but very different values for the initiation
efficiency. And in this situation, the implementation with the best initiation efficiency
must be always selected because it implies a better resources utilization (less rejected
load balancing operations) and a better degree of the algorithm objective achievement.
And of course, it can be seen with the different examples that the best elapsed time
does not necessary imply the best initiation efficiency for the algorithm, because for
this performance metric the important issue is the degree of achievement for the algo-
rithm objective and the resources utilization efficiency to obtain this degree, and not the
elapsed time.

Furthermore, a general observation can be made based on all the performed experi-
ments: the boundary objectives are the best solution for load balancing algorithms, their
performance always improve the obtained with optimization objectives. The explana-
tion for this behavior is that the optimization objectives always introduce more over-
head in the initiation mechanism and are not scalable, while a good selected boundary
objective can obtain better results without causing this overhead due to its simplicity.
An example of this behavior is that the mechanism 3 achieves a worse elapsed time
for the global application although it is its main objective, due to the utilization of an
optimization function.

On the other hand, for these boundary objective functions the algorithm tolerance
must be tuned, taking into account that too demanding requirements can have a negative
influence on the system performance.

Initiating Load Balancing Operations 301

References

1. Rajkumar Buyya. High Performance Cluster Computing: Architecture and Systems, Volume
I. 1999. Prentice-Hall.

2. Gregory Pfister. In search of clusters: The Ongoing Battle in Lowly Parallel Computing.
1998. Prentice-Hall.

3. Jerrell Watts; Mark Rieffel and Stephen Taylor. Dynamic management of heterogeneous
resources. In High Performance Computing: Grand Challenges in Computer Simulation,
pages 151–156, 1998.

4. Chengzhong Xu and Francis C. M. Lau. Load Balancing in Parallel Computers: Theory and
Practice. 1997. Kluwer Academic Publishers.

5. Ashok Rajagolapan and Salim Hariri. An agent based dynamic load balancing system. In
Proceedings of the International Workshop on Autonomous Decentralized Systems, pages
164–171, 2000.

6. Manish Arora; Sajal K. Das and Rupak Biswas. A de-dentralized scheduling and load bal-
ancing algorithm for heterogeneous grid environments. In Proceedings of the International
Conference on Parallel Processing Workshops, 2002.

7. Ron Lavi and Ammon Barak. The home model and competitive algorithms for load bal-
ancing in a computing cluster. In Proceedings of the 21st International Conference on Dis-
tributed Computing Systems, pages 127–134, 2001.

8. L.M. Ni; C. Xu and T.B. Gendreau. A distributed drafting algorithm for load balancing.
IEEE Transactions on Software Engineering, 11(10):1153–1161, 1985.

9. Raymond Chowkwanyun and Kai Hwang. Multicomputer load balancing for LISP execu-
tion. In Parallel Processing for Supercomputers and Artificial Intelligence, pages 325–366,
1989. McGraw-Hill.

10. Rami G. Melhem; Kirk R. Pruhs and Taieb F. Znati. Using spanning-trees for balancing dy-
namic load on a multiprocessor. In Proceedings of the Sixth Distributed Memory Computing
Conference, pages 233–237, 1991.

11. M. Beltrán; A. Guzmán and J.L. Bosque. Dynamic tasks assignment for real heterogeneous
clusters. Parallel Processing and Applied Mathematics:5th International Conference, Lec-
ture Notes in Computer Science, 3019/2004:888–895. Springer Verlag.

12. Michael Mitzenmacher; Balaji Prabhakar and Devavrat Shah. Load balancing with memory.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
2002.

13. M. Beltrán and J.L. Bosque. Estimating a workstation CPU assignment with the DYPAP
monitor. In Proceedings of the 3rd IEEE International Symposium on Parallel and Dis-
tributed Computing, 2004.

14. Luis Pastor and Jose L. Bosque. Efficiency and scalability models for heterogeneous clusters.
In Proceedings of the 3rd IEEE International Conference on Cluster Computing,, pages 427–
434. IEEE Computer Society Press, 2001.

Hierarchical Scheduling for Moldable Tasks

Pierre-François Dutot

Laboratoire ID-IMAG
38330 Montbonnot St-Martin, France

Pierre-Francois.Dutot@imag.fr

Abstract. The model of moldable task (MT) was introduced some years ago and
has been proven to be an efficient way for implementing parallel applications. It
considers a target application at a larger level of granularity than in other models
(typically corresponding to numerical routines) where the tasks can themselves be
executed in parallel on any number of processors. Clusters of SMPs (symmetric
Multi-Processors) are a cost effective alternative to parallel supercomputers. Such
hierarchical clusters are parallel systems made from m identical SMPs composed
each by k identical processors. These architectures are more and more popular,
however designing efficient software that take full advantage of such systems
remains difficult. This work describes approximation algorithms for scheduling
a set of tree precedence constrained moldable tasks for the minimization of the
parallel execution time, with a scheme which is first used for two multi-processors
and several bi-processors and then extended to the general case of any number of
multi-processors. The best known approximations of competitive ratios for trees
in the homogeneous case is 2.62, and although the hierarchical problem is harder
our results are close as we obtain a ratio of 3.41 for two multi-processors, 3.73 for
several bi-processors and 5.61 for the general case of several SMPs with a large
number of processors. To our knowledge, this is the first work on precedence
constrained moldable tasks on hierarchical platforms.

1 Introduction

In recent years computer hardware became increasingly affordable. This trends led to
a greater number of parallel computers. However, a fast interconnection network is
still very expensive. A solution to this problem is to use several processors on each
motherboard connected by the network. This introduces a large difference in the time
needed for on-board communications and for communications between two different
motherboards.

In the case of Parallel Tasks (PT), where a task has to be processed by a fixed number
of processors, the execution time of a task cannot be easily predicted on such hierarchi-
cal architectures unless some very restrictive hypothesis are made such as tasks have
to be executed on one board only, or all communications are considered as long com-
munications. We consider in this paper the related Moldable Task (MT) model, where
the execution time of a task depends on the number of processors used to compute the
task. However, in a hierarchical system knowing the number of processors used is not
enough to predict the execution time, as communications can be local or distant. In [1],
we provided a new hypothesis to deal with this problem. This placement hypothesis is

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 302–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Scheduling for Moldable Tasks 303

recalled in Section 2. With this additional rule, the MT model is well suited to hierar-
chical systems.

Scheduling precedence constrained MT tasks is a NP-hard problem [2], and there-
fore approximation algorithms were developed to provide efficient schedules in poly-
nomial time. The first approximation algorithm for the homogeneous case has been
introduced by Lepère et al [3] with a ratio of 2.62 for tree based precedence constraints
and a ratio of 5.24 for general graphs. This scheme has been recently improved by
Hu Zhang in his PhD thesis [4–6] (under supervision of Pr. Jansen) achieving a 4.73
approximation ratio. In this paper, we adapted this scheduling technique of Lepère et
al. in the case of tree precedence constrained moldable tasks, as a first step towards
scheduling general graphs. To obtain ratios for general graphs without the improve-
ments designed by Hu Zhang, the results presented here can be simply multiplied by a
factor of 2. The recent improvements were not taken into consideration here due to the
length limitation.

In the next section, we will recall the definitions of the Moldable Task model and its
adaptation to hierarchical platforms. We will then briefly recall the scheduling scheme
used for the homogeneous case. This scheme (and improvements by Zhang) will then be
adapted for the two extremal cases of scheduling on two multi-processors and schedul-
ing for several bi-processors. Finally a general scheme for scheduling on several multi-
processors is proposed in Section 6.

2 The Moldable Tasks Model on Hierarchical Platforms

In the MT model a processor can compute only one task at a time, and the number of
processors allocated to a task is constant during its whole execution. The execution time
of a task depends on the number of processors allotted to it.

We consider an instance composed of n moldable tasks {T1, . . . , Tn} to be sched-
uled on a cluster of m identical SMPs composed each of k identical processors. The
tasks are linked with precedence constraints, in the form of trees (each node has at most
one predecessor). The execution time of the moldable task Ti when allotted to p pro-
cessors will be denoted by ti(p). Its computational area (or work) is defined as usually
as the time space product Wi(p) = pti(p). For a given allocation, we call critical path
the maximum sum of execution times over a chain of the graph, and work of the graph,
the sum of all the work of the tasks. The total work W =

∑
Wi(1) divided by mk, and

the critical path Lmax are straightforward lower bounds of the optimal makespan.
Using more than one processor to compute a task will cost some penalty for manag-

ing the communications and synchronizations. According to the usual behavior of the
execution of parallel programs, we assume that the tasks are monotonic. This means
that allocating more processors to a task will decrease its execution time and increase
its computational area.

There exists a difficulty inherent to hierarchical systems due to the fact that commu-
nications inside the same SMP are faster than between processors belonging to different
SMPs. In this case, the number of processors allotted to a task does not give all the in-
formations needed to determine the execution time of a task: a task will be scheduled
faster using processors inside the same SMP than using processors of different SMPs.
In order to avoid this problem, we introduce below a dominant rule:

304 Pierre-François Dutot

Definition (Best placement rule). For a given number of processors, we say that a
task is in its best placement if the penalty with this number of processors is the lowest
possible.

This definition is not very useful in the sense where many placements may verify
the best placement condition, and from the definition we cannot decide where it is best
to schedule the task. However, we can usually make the assumption that a task which
runs on less than k processors will be in its best placement if all the processors allotted
to the task are into the same SMP.

For tasks allotted to more than k processors, we need an additional hypothesis which
is the following:

Hypothesis (Minimal penalty). We assume in the rest of the paper that a task Ti allot-
ted to aik+bi processors (with ai ∈ [0;m] and bi ∈ [0; k−1]) is in its best placement if
exactly ai SMPs are dedicated to it during its execution and the remaining bi processors
are within the same SMP.

This hypothesis is clearly verified for clusters of bi-processors, as it avoids the cases
where a task is sharing more than one bi-processor with other tasks. For larger values of
k, this placement minimizes the number of clusters used by a task for a given allocation,
therefore it is probably not far from the optimal placement.

Remark that we do not ask the processors to be contiguous. For instance, Figure 1
represents two tasks verifying the minimal penalty hypothesis. The third one does not.

time

1 mk
processors

Task 3

Task 2

Task 1k

Fig. 1. Tasks 1 and 2 are in their best placement, whereas task 3 is not (m = 4).

In the rest of the paper, we will build algorithms whose output verify this best place-
ment rule. However, the competitive ratios given are with respect to an optimal schedule
which can use any kind of placement as long as the minimal penalty hypothesis holds,
as the proof is based on the total workload.

3 Previous Results with Precedence Constraints

The schemes used in this paper are mainly inspired from the scheduling algorithm for
the homogeneous case [3] (in this case m = 1). In this section, we will recall the basics
of this algorithm.

In the homogeneous case, there is no placement problem (k = 1). The algorithm
is composed of two phases. The first phase is a search for a good allocation for the

Hierarchical Scheduling for Moldable Tasks 305

moldable tasks, i.e. an allocation which realizes a trade-off between the workload and
the length of the critical path in the precedence graph. This problem is related to the
general class of time-cost problems where the time needed to perform a task depends
on the budget allotted to it. This problem has been solved by Skutella [7] very efficiently
in the case of tree precedence constraints leading to an optimal trade-off, and also has
good solutions for general graphs (leading to a 2 approximation on both the work and
the critical path).

Once this allocation is known, all allocations greater than a parameter μ (i.e. all
tasks using more than μ processors) are reduced to μ and then the second phase is a
classic list scheduling algorithm. The analysis of the algorithm is similar to the classic
proof of Graham’s list scheduling algorithm, and for the best possible μ the performance
ratio is (3 +

√
5)/2 � 2.62 for trees and 3 +

√
5 � 5.24 for general graphs [3].

4 Scheduling with Two Multi-processors (m = 2, k > 1)

Schedules produced by the homogeneous algorithm are usually inadequate in a multi-
processor setting, because of the placement rule. For a first view of the problem, we
will consider in this section the restricted case of scheduling on two multi-processors.

To keep the same construction scheme as in the homogeneous case, we have to
consider how the placement rule interferes in the list scheduling. As the parameter μ is
less or equal to mk/2 in the homogeneous case, a task in its best placement cannot use
processors in both multi-processors. We now distinguish two cases depending on the
value of μ.

In the first case, for 2k+1
3 < μ ≤ k, the schedule produced by the list algorithm can

be split into two kinds of time intervals. The first kind (of total length I1) is composed
of all the time intervals during which at most 2(k− μ) + 1 processors are used. During
these intervals, there are enough idle processors on at least one of the multi-processor to
schedule a task. If those processors are idle there is no available tasks, which means that
as in the original proof from Graham, a precedence constrained chain of tasks which
covers all these intervals can be found. As 2(k− μ) + 1 < μ, the tasks in this chain did
not have their allocation reduced to μ processors. The other kind of interval (of total
length I2) is composed of all the other time intervals. We denote by ω the length of the
schedule.

With these two kinds of intervals defined, we can write the following (in)equalities:

ω = I1 + I2 (1)

ω∗ ≥ L∗
max ≥ I1 (2)

2kω∗ ≥W ∗ ≥ I1 + 2(k − μ + 1)I2 (3)

where ω∗ is the optimal makespan. The first one states that the total schedule length is
the sum of all the time intervals, the second states that the critical path (and therefore
the optimal schedule length) is greater than the length of the first kind of interval, and
the third one is a lower bound on the workload in the optimal schedule.

A straightforward calculation proves that the ratio ω
ω∗ is at most equal to 4k−2μ+1

2(k−μ+1)

which takes its minimum when μ is smallest, i.e. μ ≤ 2k+4
3 . The ratio is therefore

bounded by 4 + 3
2(k−1) .

306 Pierre-François Dutot

In the second case, for μ ≤ 2k+1
3 , the schedule can be split into three different kinds

of time intervals. The first kind (of total length I1) is when less than μ processors are
used, the second kind (of length I2) when between μ and 2(k − μ) + 1 processors are
used, and the third when at least 2(k − μ + 1) processors are used.

In the first and second kind of intervals, there is enough idle processors to schedule
any tasks, therefore a chain of tasks covering all these intervals is again constructible.
However this time, the tasks executed during intervals of the second kind may have
been reduced from their original allocation to an allocation of size μ.

The previous (in)equalities are now:

ω = I1 + I2 + I3 (4)

ω∗ ≥ L∗
max ≥ I1 +

μ

2k
I2 (5)

2kω∗ ≥W ∗ ≥ I1 + μI2 + 2(k − μ + 1)I3 (6)

To find the best upper bound for the performance ratio ω
ω∗ , we can consider these

inequalities as a set of linear programming constraints, where ω has to be maximized,
and I1, I2 and I3 are the variables. The dual problem is easier to solve, as there are only
two variables. It is composed of the following (in)equalities:

z = ω∗y1 + 2kω∗y2 (7)

1 ≤ y1 + y2 (8)

1 ≤ μ

2k
y1 + μy2 (9)

1 ≤ 2(k − μ + 1)y2 (10)

With the new objective of minimizing z. Combining equality 7 and inequality 9 we have
z

ω∗ ≥ 2k
μ , and adding 2(k−μ+1) times inequality 8 to 2k−1 time inequality 10, we get

z
ω∗ ≥ 1 + 2k−1

2(k−μ+1) . To minimize z we have to minimize the maximum of 2k
μ and 1 +

2k−1
2(k−μ+1) . The first quantity decreases when μ increases while the second quantity has
the opposite behavior. The real minimum is therefore achieved when the two are equal,
and the best μ is one of the two integers closest to the solution of 2k

μ = 1 + 2k−1
2(k−μ+1) ,

which is
8k+1−

√
(8k+1)2−32k(k+1)

4 � (2−√2)k+ 2+
√

2
4
√

2
. As k grows without bounds,

this minimum gets close to 2
2−√

2
� 3.41. The value of the performance ratio for small

values of k is given in Figure 2. With the exception of k = 2 where the ratio is 4, all
the obtained performance ratio are less than 2

2−√
2

, the minimum being 2.75 for k equal
to four. Therefore it is always better to choose μ lower or equal to (2k + 1)/3 for two
multiprocessors.

Remark that if 2k
μ ≥ 1 + 2k−1

2(k−μ+1) , the ratio is reached by a schedule of a single

task. Let T1 be a highly parallel task such as t1(p) = t1(1)
p , its optimal execution time

would be t1(1)
2k , and the schedule produced with our algorithm has an execution time of

t1(1)
μ , leading to the ratio 2k

μ .

Hierarchical Scheduling for Moldable Tasks 307

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 5 10 15 20 25 30 35 40

Fig. 2. Best performance ratio for two multi-
processors of sizes up to 40 processors each.

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 5 10 15 20 25 30 35 40

Fig. 3. Best performance ratio for up to 40
bi-processors. The dotted line is for μ ≤
2m+1

3
, and the solid line for 2m+1

3
< μ.

5 Scheduling on Bi-processors (m ≥ 2, k = 2)

The second restricted case which is interesting to consider before addressing the gen-
eral case, is scheduling on a large number of bi-processors. In this case, restricting the
allocation to a portion of a bi-processor as we did previously makes no sense. The solu-
tion we considered is to directly use the homogeneous algorithm, with a different value
for μ, and try to prove that the placement constraint with bi-processors is generally
satisfiable.

Let m be the number of available bi-processors. As previously, we restrict the al-
locations of the first phase which are greater than μ to μ. The placement rule states
that to place a task of allocation a, we need to have at least

⌊
a
2

⌋
idle bi-processors plus

eventually a processor if a is odd. As we did in the previous section, we will consider
two cases depending on the value of μ.

For 2m+1
3 < μ ≤ m, the schedule can be split into two kinds of time intervals of

respective length I1 and I2. The first kind of time intervals is when at most m − ⌊μ
2

⌋
processors are used. In these intervals, there is enough idle processors to schedule a
task using μ processors. All other time intervals are counted in the other kind of time
interval.

As previously, we can write some inequalities on the length ω of the schedule pro-
duced by the algorithm:

ω = I1 + I2 (11)

ω∗ ≥ L∗
max ≥ I1 (12)

2mω∗ ≥W ∗ ≥ I1 +
(
m−

⌊μ
2

⌋
+ 1
)
I2 (13)

From these (in)equalities, it is straightforward to prove that:

ω

ω∗ ≤
3m− ⌊μ

2

⌋
m− ⌊μ

2

⌋
+ 1

(14)

which means that the best ratio is obtained for the smallest possible value of μ, which
is
⌊

2m+1
3

⌋
+ 1. This ratio is lower than 4 and tends to 4 for large values of m.

308 Pierre-François Dutot

For smaller values of μ, i.e. μ ≤ 2m+1
3 , we again have to distinguish three kinds of

time intervals, of respective length I1, I2 and I3, depending on the number of processors
used. The first kind is made of intervals where less then μ processors are used, the
second kind is composed of intervals with a number of processors between μ and m−⌊

μ
2

⌋
and the third of time intervals with more than m− ⌊μ

2

⌋
busy processors.

Again, there is a set of (in)equalities describing the length of the schedule:

ω = I1 + I2 + I3 (15)

ω∗ ≥ L∗
max ≥ I1 +

μ

2m
I2 (16)

2mω∗ ≥W ∗ ≥ I1 + μI2 +
(
m−

⌊μ
2

⌋
+ 1
)
I3 (17)

Which can be seen as a linear programming set of equations, and the dual is this
time:

z = ω∗y1 + 2mω∗y2 (18)

1 ≤ y1 + y2 (19)

1 ≤ μ

2m
y1 + μy2 (20)

1 ≤
(
m−

⌊μ
2

⌋
+ 1
)
y2 (21)

As before, some straightforward rewriting yields to:

z

ω∗ ≥
2m
μ

(22)

z

ω∗ ≥ 1 +
2m− 1

m− ⌊μ
2

⌋
+ 1

(23)

Again, we have to find the μ which will minimize the maximum of the two lower
bounds. This time, the best μ can be bounded between two functions of m:⌈

4m− 1−
√

12m2 + 4m + 1
⌉
− 1 ≤ μ (24)

μ ≤
⌊
4m−

√
12m2 − 8m

⌋
+ 1 (25)

The obtained performance ratio is presented in Figure 3, with a dotted line for small
values of μ and a solid line for large values of μ. When the number of bi-processors
is lower than ten, the best solution is achieved with a large μ, whereas for more bi-
processors, μ has to be smaller. As m grows without bounds, μ

m gets close to (4−2
√

3)
and the performance ratio of the algorithm tends to 1

2−√
3
� 3.73.

6 A General Framework (m > 2, k > 2)

The algorithms of the two previous sections cannot easily be extended to an arbitrary
number of multi-processors with a large number of processors. The number of multi-
processors m is a lower bound on the ratio of the first algorithm, as μ is always lower
than k, while k is a lower bound of the ratio of the second one as m sequential tasks

Hierarchical Scheduling for Moldable Tasks 309

can prevent the execution of tasks allotted to at least k processors. A closer look shows
that the first algorithm corresponds to μ < k, and the second one to μ ≥ k.

To design efficient schedules for the general case, we have to take the best of the
two previous algorithms, considering both the tasks with a large allocation and the tasks
with a small allocation. The main idea is to use different values μ for small and large
tasks, and then restrict the execution of the small tasks on a specific part of the platform.

For the rest of the paper, we consider m multi-processors, having k processors each.
Let γ be an integer between 1 and m, γ sets the threshold between “small” and “large”
tasks. Tasks allotted to less than γk processors are “small”, while other tasks are “large”.
As we will need two different values of μ for small and large tasks, we will keep the μ
notation for small tasks, and denote by δk the largest allotment allowed (hence δk plays
the same role for large task as μ does for small tasks).

After the first allotment phase, the allotment of the tasks is reduced in the following
way:

– Tasks allotted to a processors, with a ≤ μ are kept in their original allotment.
– Tasks allotted to a processors, with μ < a < γk are reduced to μ processors.
– Tasks allotted to a processors, with γk ≤ a < δk are reduced to

⌊
a
k

⌋
k processors.

– Tasks allotted to a processors, with δk ≤ a are reduced to δk processors.

Once this allotment is determined, the schedule is produced by a list scheduling al-
gorithm, with always at most θ multi-processors1 filled with small tasks. However, the
large tasks can fill more than (m−θ) multi-processors if there is not enough small tasks.
As previously, we can split the resulting schedule in several kind of time intervals, de-
pending on occsmall and occlarge which are the number of processors used respectively
by small and large tasks:

– S1 is the set of intervals such as 1 ≤ occsmall < μ and occlarge = 0. In all the time
intervals of this set, there is always a task which is part of the constructed critical
path, and whose allocation has not been reduced.

– S2 is the set of intervals such as μ ≤ occsmall < θ(k − μ + 1) and occlarge =
0. In all the time intervals of this set, there is always a task which is part of the
constructed critical path, and whose allocation may have been reduced to μ.

– S3 is the set of intervals such as γk ≤ occlarge < δk and occsmall = 0. In all
the time intervals of this set, there is always a task which is part of the constructed
critical path, and whose allocation has been reduced to the nearest multiple of k.

– S4 is the set of intervals such as δk ≤ occlarge < (m − δ + 1)k and occsmall =
0. In all the time intervals of this set, there is always a task which is part of the
constructed critical path, and whose allocation may have been reduced to δk.

– Scritical is the set of intervals which are not in the previous sets, and where you
can still schedule a task, either small or large. Mathematically, the occupations are
either occlarge < (m − θ − δ + 1 + a)k and occsmall ≤ θ − a for a between 1
and θ, or occlarge < (m − θ − δ + 1)k and occsmall < θ(k − μ + 1). We can
redistribute all the time intervals from this set to sets S1 to S4, depending on the
task of the interval which is considered for building the critical path.

1 Please note that these θ SMPs are not fixed. If a small task is ready and less than θ SMPs are
used by small tasks, any available SMP can be partially used by the small task.

310 Pierre-François Dutot

– S5 is the set of intervals such as θ(k − μ + 1) ≤ occsmall. In these time intervals,
if a task of size μ is available, it may be impossible to schedule it.

– S6 is the set of intervals such as (m − δ − θ + 1)k ≤ occlarge and m + 1 − δ −
occlarge

k ≤ occsmall. In these time intervals, if there is an available task of size δk,
it may be impossible to schedule it.

Remark that some of these intervals may be empty, and some are overlapping. De-
pending on the values of θ, k and μ, S2 can be empty. If this is the case, the upper
bound on occsmall of S1 is reduced to meet the upper bound of S2. In the same way,
depending on the values of m and δ, S4 may be empty. Again, if this is the case, the
upper bound of S3 must be reduced to the upper bound of S4. Time intervals which can
be in S5 and S6 are put in the set S5 if θ(k − μ + 1) > (m − δ − θ + 1)k + θ and in
set S6 otherwise.

As previously, denoting Ix the total length of the intervals in set Sx, we can bound
the length of the intervals with the total workload and the critical path:

ω = I1 + I2 + I3 + I4 + I5 + I6 (26)

ω∗ ≥ I1 +
μ

γk − 1
I2 +

γk

(γ + 1)k − 1
I3 +

δ

m
I4 (27)

mkω∗ ≥ I1 + μI2 + γkI3 + δkI4 + θ(k − μ + 1)I5
+ ((m− δ − θ + 1)k + θ) I6 (28)

And from these equations, we can write the dual problem:

z = ω∗y1 + mkω∗y2 (29)

1 ≤ y1 + y2 (30)

1 ≤ μ

γk − 1
y1 + μy2 (31)

1 ≤ γk

(γ + 1)k − 1
y1 + γky2 (32)

1 ≤ δ

m
y1 + δky2 (33)

1 ≤ θ(k − μ + 1)y2 (34)

1 ≤ ((m− δ − θ + 1)k + θ) y2 (35)

Although it may seem much more complicated, this problem is still two dimensional
and the extremal point of the polytope can be found. Due to the restrictions on the
paper length the case analysis will not be presented here, but is instead provided in an
extended version of this paper [8]. Unsurprisingly the guarantees for the general case
are not as good as in the two special cases studied in the previous sections. These results
are summarized in Figure 4 and Figure 5.

We can see in these figures that the performance ratio is quickly worse than 4, and
does not get bigger than 5.5 for small values of k and m. For very large values of k and
m, this ratio tends to 5.61.

Hierarchical Scheduling for Moldable Tasks 311

 5
 4

 0 5 10 15 20 25 30 35 40
m 0 5 10 15 20 25 30 35 40

k

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

Fig. 4. Performance ratios for up to 40 SMPs
having each up to 40 processors.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

m

k

4
5

Fig. 5. Projections of the iso-levels 4 and 5
of Figure 4.

7 Conclusion

The algorithms presented in this paper are (to our knowledge) the first to address the
problem of scheduling moldable tasks on hierarchical platforms. The next step is to add
the improvements from Hu Zhang. In the longer run, we should implement the resulting
algorithms in operational resource management systems. This implementation has to be
preceded by a simulation phase, as the behavior of the algorithms on real workloads can
be quite different from expected.

References

1. Dutot, P.F., Trystram, D.: Scheduling on hierarchical clusters using malleable tasks. In: Pro-
ceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures,
ACM Press (2001) 199–208

2. Du, J., Leung, J.T.: Complexity of scheduling parallel tasks systems. SIAM Journal on
Discrete Mathematics 2 (1989) 473–487

3. Lepere, R., Trystram, D., Woeginger, G.: Approximation algorithms for scheduling malleable
tasks under precedence constraints. In Springer-Verlag, ed.: 9th Annual European Symposium
on Algorithms - ESA 2001. Number 2161 in LNCS (2001) 146–157

4. Zhang, H.: Approximation Algorithms for Min-Max Resource Sharing and Malleable Tasks
Scheduling. PhD thesis, University of Kiel, Germany (2004)

5. Jansen, K., Zhang, H.: Scheduling malleable tasks with precedence constraints. In: 17th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2005), Las Vegas (2005)

6. Jansen, K., Zhang, H.: An approximation algorithm for scheduling malleable tasks under
general precedence constraints (2005) submitted.

7. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem. Mathe-
matics of Operations Research 23 (1998) 909–929

8. Dutot, P.F.: Hierarchical scheduling for moldable tasks – extended version. Technical report,
Laboratory ID-IMAG (2005) www-id.imag.fr/∼pfdutot/perso.html.

On-Line Bicriteria Interval Scheduling

Fabien Baille, Evripidis Bampis, Christian Laforest, and Nicolas Thibault

LaMI, CNRS UMR 8042, Université d’Evry,
Tour Evry 2, 523, Place des Terrasses 91000 Evry, France

{fbaille,bampis,laforest,nthibaul}@lami.univ-evry.fr

Abstract. We consider the problem of scheduling a sequence of intervals
revealed on-line one by one in the order of their release dates on a set of k
identical machines. Each interval i is associated with a processing time pi

and a pair of arbitrary weights (wA
i , wB

i) and may be scheduled on one of
the k identical machines or rejected. The objective is to determine a valid
schedule maximizing the sum of the weights of the scheduled intervals
for each coordinate. We first propose a generic on-line algorithm based
on the combination of two monocriteria on-line algorithms and we prove
that it gives rise to a pair of competitive ratios that are function of the
competitive ratios of the monocriteria algorithms in the input. We apply
this technique to the special case where wA

i = 1 and wB
i = pi for every

interval and as a corollary we obtain a pair of constant competitive ratios.

We consider the problem of scheduling in an on-line context a set of n intervals
on k identical machines. An interval i is defined as a tuple of five positive real
numbers (ri, pi, di, w

A
i , wB

i), where ri denotes the release date, pi the processing
time, di = ri + pi the deadline and wA

i and wB
i two arbitrary weights. We

consider the following on-line context: Intervals arrive (are revealed) one by one
in increasing order of their release dates, i.e. r1 ≤ r2 ≤ · · · ≤ ri ≤ · · · , and
they are not known before they are revealed. A revealed interval must either be
served or rejected. An interval i is said to be served or accepted if it is alloted
exclusively and without interruption (preemption is not allowed) to one of the
k machines from date ri to date di. Note that the acceptance of an interval
may lead to the interruption of already scheduled intervals. A schedule O is
valid if every served interval is scheduled at most once and if at each date every
machine schedules at most one interval. There are two objective functions that
we call the weight WA(O), defined as the sum of the first-coordinate-weights wA

i

of the accepted intervals, and the weight WB(O), corresponding to the sum of
the second-coordinate-weights wB

i of the accepted intervals in O. Note that if
an interval is rejected or scheduled and interrupted later before its deadline, it
is definitely lost and no gain is obtained from it for none of the metrics. In this
model, we search for a solution/schedule that simultaneously maximizes the two
objectives WA and WB. The particular weight function wA

i = 1 (resp. wB
i = pi)

corresponds to the well known size (resp. proportional weight) problems.
Competitive ratio. In order to analyze the performance of an on-line algorithm,
we use the notion of competitive ratio [4, 7]. Let σ1, · · · , σn be any on-line se-
quence. For every i, 1 ≤ i ≤ n, let A(σ1, · · · , σi) be the schedule returned by the

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 312–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On-Line Bicriteria Interval Scheduling 313

algorithm A at step i, i.e. when the first i intervals are revealed, and let O∗
i be

an optimal schedule of the set {σ1, · · · , σi} for some metric C. Then A is said to
be ρ-competitive for the metric C if, for all i, 1 ≤ i ≤ n, this inequality holds:

ρC(A(σ1, · · · , σi)) ≥ C(O∗
i)

For our bicriteria problem, an algorithm A is said to be (ρ, μ)-competitive if it
is simultaneously ρ-competitive for WA and μ-competitive for WB .
Previous works. To the best of our knowledge, this is the first work considering
the simultaneous maximization of two different weight functions in an on-line
context. Nevertheless, the off-line version of the bicriteria problem has been
treated in [2] where a (k

r ,
k

k−r)-approximation algorithm (1 ≤ r < k) has been
proposed. On the contrary, the monocriteria problems have been extensively
studied for both the off-line and the on-line versions. In particular, the off-line
versions are polynomial (see Faigle and Nawijn [6] for the size and Carlisle
and Lloyd [5] or Arkin and Silverberg [1] for the weight problems). In the
on-line context, the algorithm GOL of Faigle and Nawijn [6] is optimal for the
size problem. For the weight problem, there is a series of works going from
the paper of Woeginger, in [8], who proposed a 4-competitive algorithm for the
proportional weights problem in a single machine system, to the paper of
Bar-Noy et al. [3] who proposed the LR algorithm which is 2

1−2δ -competitive for
the proportional weight problem in a different model than ours (instead of
k machines, they consider a continuous channel where an interval requires less
than a portion δ of the total channel).
Outline of the paper. In Section 1, we describe a generic on-line algorithm for the
simultaneous maximization of two weight functions WA and WB. We prove that
it is a (k

r ρ,
k

k−rμ)-competitive algorithm, for 1 ≤ r ≤ k, where ρ and μ are the
competitive ratios of the corresponding monocriteria algorithms. However, up to
our knowledge, no on-line algorithm is available for the general weight problem.
So, we focus, in Section 2, on the special case of the size and proportional weights
metrics. We combine the algorithms GOL of [6] for the size criterion and of LR of
[3] for the proportional weights criterion in our generic method. We thus propose
a bicriteria on-line algorithm and we prove that it induces a pair of constant
competitive ratios for this bicriteria case. Finally, we prove in the appendix the
competitiveness of LR.

1 Our Generic Bicriteria Algorithm

In this section, we describe our generic bicriteria on-line algorithm. It uses as
subroutines two on-line monocriteria algorithms having the following structure.
Structure of the monocriteria algorithms. At the release date ri of a new interval
σi, any on-line monocriterion algorithm can be split into two main stages. In the
first one, called the interrupting stage, a set of already scheduled intervals are
selected to be interrupted at time ri. This set can potentially be empty meaning
that no interval is interrupted when the algorithm considers σi. The second stage

314 Fabien Baille et al.

is the scheduling stage. Here, the algorithm can either reject the interval σi or
schedule it on one of the available machines.

The rough idea of our generic algorithm is the following: it simulates the
execution of two algorithms, say A for the maximization of the weight WA and
B for the maximization of the weight WB on r and k− r machines, respectively.
By doing this, it builds its own interrupting (resp. scheduling) stage from the
corresponding interrupting (resp. scheduling) stage of the input algorithms.

1.1 The Algorithm ABk

We consider the i-th step of an arbitrary algorithm for the weight problem,
i.e. the step at which interval σi is released. For any algorithm ALG and for
every execution step i of this algorithm, let Oi1 (ALG) (resp. Oi2(ALG)) be the
schedule given by ALG after the execution of its interrupting (resp. scheduling)
stage of step i.

Given two algorithms A for the maximization of the weight WA and B for
the weight WB , our generic algorithm ABk is constructed as follows: ABk builds
the final schedule by combining the schedules returned by algorithms A and B
when applied on r machines and k − r machines, respectively. For the ease of
presentation, we denote by Ar (resp. Bk−r) the algorithm A (resp. B) when
applied on r (resp. k− r) machines. We also call real (resp. virtual) the machines
involved in the algorithm ABk (resp. Ar and Bk−r).

For every execution step i of ABk, let Ri1 (ABk) (resp. Ri2 (ABk)) be the
set of scheduled intervals after the interrupting (resp. scheduling) stage of step
i on the real machines associated to ABk.

For every step i of the algorithmAr (resp. Bk−r), let Vi1(Ar) (resp. Vi1(Bk−r))
be the set of scheduled intervals after the interrupting stage of step i on the r
(resp. k − r) virtual machines associated to Ar (resp. Bk−r), and let Vi2(Ar)
(resp. Vi2(Bk−r)) be the set of scheduled intervals after the scheduling stage of
step i on the r (resp. the k− r) virtual machines associated to Ar (resp. Bk−r).

Algorithm ABk

Input: k identical machines and an on-line sequence of intervals σ1, . . . , σn.
Output: After each step i (1 ≤ i ≤ n), a valid schedule Oi2(ABk) involving a

subset of σ1, . . . , σi on k real machines.
Step 0: V02(Ar) = V02(Bk−r) = R02(ABk) = ∅.
Step i (date ri):

1. The interrupting stage of ABk:
(a) Execute the interrupting stage of Ar (resp. Bk−r) on the r (resp.

k− r) virtual machines associated to Ar (resp. Bk−r) by submitting
the new interval σi to Ar (resp. Bk−r). Note that the set of intervals
scheduled and not interrupted by Ar (resp. Bk−r) is now Vi1(Ar)
(resp. Vi1(Bk−r)).

(b) On the k real machines associated to ABk, interrupt the intervals of
R(i−1)2(ABk) such that after this interruption we get:

Ri1(ABk) = Vi1(Ar) ∪ Vi1(Bk−r).

On-Line Bicriteria Interval Scheduling 315

2. The scheduling stage of ABk:
(a) Execute the scheduling stage of Ar (resp. Bk−r) on the r (resp. k−r)

virtual machines associated to Ar (resp. Bk−r) by serving or rejecting
the new interval σi.

(b) On the k real machines associated to ABk, switch to the appropriate
case:
i. If Ar and Bk−r reject σi, then ABk does not schedule (rejects)

σi. Thus, we have:
Ri2(ABk) = Ri1(ABk).

ii. If Ar or Bk−r serves σi (including the case in which both Ar and
Bk−r serve σi), then ABk schedules σi on any free real machine
at time ri. Thus, we have:

Ri2(ABk) = Ri1(ABk) ∪ {σi}.

1.2 Competitiveness of ABk

Here, we analyze the competitiveness of ABk. We start with the following lemma
which states that ABk returns a valid schedule and executes the same set of
intervals as the union of Ar and Bk−r .

Lemma 1 For every step i of the algorithm ABk, the schedule Oi2(ABk) is
valid and we have:

Ri2(ABk) = Vi2(Ar) ∪ Vi2(Bk−r)

Proof. We prove this lemma by induction on the execution steps i of ABk.
The basic case (step 0): By definition V02(A

r) = V02(B
k−r) = R02(ABk) = ∅

and thus, Oi2(ABk) is valid and of course R02(ABk) = V02(Ar) ∪ V02(Bk−r).
The main case (step i): Let us assume that O(i−1)2(ABk) is valid and that
R(i−1)2(ABk) = V(i−1)2(A

r) ∪ V(i−1)2(B
k−r) (assumption of induction).

1. The interrupting stage: We first need to prove that:
Ri1 (ABk) = Vi1(Ar) ∪ Vi1(Bk−r) and that Oi1(ABk) is valid.
(a) By definition ABk interrupts a subset of intervals of R(i−1)2(ABk) in

such a way that:

Ri1(ABk) = Vi1(A
r) ∪ Vi1(B

k−r) (1)

We have to show that there is always a subset of R(i−1)2 (ABk) that can
be removed such that the above equality is possible.
Since Vi1(Ar) ⊆ V(i−1)2(A

r), Vi1(Bk−r) ⊆ V(i−1)2(B
k−r) and given that

R(i−1)2 (ABk) = V(i−1)2(A
r) ∪ V(i−1)2(B

k−r) (by the assumption of in-
duction), we have Vi1(Ar) ∪ Vi1(Bk−r) ⊆ R(i−1)2(ABk).

(b) By definition, ABk interrupts only intervals scheduled in O(i−1)2(ABk),
and by the induction hypothesis, O(i−1)2(ABk) is valid. Thus, Oi1(ABk)
is clearly valid.

316 Fabien Baille et al.

2. The scheduling stage: Now, we have to prove that:
Ri2 (ABk) = Vi2(A

r) ∪ Vi2(B
k−r) and that Oi2(ABk) is valid. By the defi-

nition of ABk, several cases may occur:
(a) If Ar and Bk−r reject σi, then ABk does not schedule σi and we have:

i. Ri2(ABk) = Ri1 (ABk) (by the definition of ABk)
= Vi1(Ar) ∪ Vi1(Bk−r) (by (1))
= Vi2(Ar) ∪ Vi2(Bk−r)

(since Ar and Bk−r reject σi, we have:
Vi1(Ar) = Vi2(Ar) and Vi1(Bk−r) = Vi2(Bk−r))

ii. Oi2(ABk) = Oi1(ABk). Thus Oi2(ABk) is valid (because in item 1b
of this proof, we have already seen that Oi1(ABk) is valid).

(b) If Ar (resp. Bk−r) serves σi and Bk−r (resp. Ar) rejects σi, then ABk

schedules σi on any free real machine at time ri. We have:
i. Ri2(ABk) = Ri1 (ABk) ∪ {σi} (by the definition of ABk)

= Vi1(A
r) ∪ Vi1(B

k−r) ∪ {σi} (by (1))
= Vi2(Ar) ∪ Vi2(Bk−r)

(since Ar (resp. Bk−r) serves σi and Bk−r (resp. Ar) rejects σi, we
have: Vi2(Ar) = Vi1(Ar)∪{σi} (resp. Vi2(Bk−r) = Vi1(Bk−r)∪{σi})
and Vi2(Bk−r) = Vi1(Bk−r) (resp. Vi2(Ar) = Vi1(Ar))).

ii. Since Oi1(ABk) is a valid schedule (by the item 1b of this proof)
and Oi2(ABk) is built by adding σi to Oi1(ABk) only once, the only
reason for which Oi2(ABk) could not be valid would be because σi

is scheduled by ABk at time ri whereas there is no free machine at
time ri, i.e. because there is at least k + 1 intervals of Ri2(ABk)
scheduled at time ri by ABk. Let us prove that this is impossible.
Indeed, since Ar and Bk−r build at each time valid schedules, there
are at most r + k− r = k intervals of Vi2(Ar)∪Vi2(Bk−r) scheduled
at time ri by Ar and Bk−r , and thus, there are at most k intervals of
Ri2(ABk) scheduled at time ri by ABk (because we have just proved
above that Ri2 (ABk) = Vi2(Ar) ∪ Vi2(Bk−r)). Thus, Oi2(ABk) is a
valid schedule.

(c) If Ar and Bk−r serve σi, then ABk schedules σi on any idle machine at
time ri and we get:
i. Ri2(ABk) = Ri1 (ABk) ∪ {σi} (by the definition of ABk)

= Vi1(Ar) ∪ Vi1(Bk−r) ∪ {σi} (by (1))
= Vi2(A

r) ∪ Vi2(B
k−r)

(since Ar and Bk−r serve σi, we have Vi2(Ar) = Vi1(Ar) ∪ {σi} and
Vi2(Bk−r) = Vi1(Bk−r) ∪ {σi})

ii. We prove that Oi2(ABk) is valid in the same way as before. ��

A direct consequence of Lemma 1 is that ABk is better than Ar (resp. Bk−r)
for the weight function that Ar (resp. Bk−r) maximizes.

Corollary 1 Let WA and WB be two arbitrary weight functions. For every input
sequence σ1, . . . , σn and for each step i (1 ≤ i ≤ n) of ABk, we have:

WA(Vi2(Ar)) ≤WA(Ri2 (ABk)) and WB(Vi2 (Bk−r)) ≤WB(Ri2 (ABk))

On-Line Bicriteria Interval Scheduling 317

Proof. By Lemma 1, for every step i of the algorithm ABk, we have
Ri2 (ABk) = Vi2(A

r) ∪ Vi2(B
k−r) and thus Corollary 1 is valid. ��

In the following lemma, we analyze, for any type of weight function W ,
the competitive ratio of the algorithm A applied on r (r ≤ k) machines when
compared to the optimal schedule on a system of k machines.

Lemma 2 Let σ1, · · · , σn be any on-line sequence of intervals. Let A be an on-
line algorithm with competitiveness ρ on r machines (r ≤ k) and O∗

k (resp. O∗
r)

be an optimal schedule of σ1, · · · , σn for the weight function W on k (resp. r)
machines and Or be the schedule returned by Ar on σ1, · · · , σn on r machines.
Then,

W (O∗
k) ≤ k

r ρW (Or)

Proof. Since A is ρ-competitive, we have by definition W (O∗
r) ≤ ρW (Or). If we

multiply both sides of this inequality by k
r , we get k

rW (O∗
r) ≤ k

r ρW (Or).
Let O1 be the schedule composed of the first r machines of O∗

k in the de-
creasing order of their weights. Since O1 is an r-machine schedule, its weight is
at most W (O∗

r). We thus have:

k

r
W (O1) ≤ k

r
W (O∗

r) ≤ k

r
ρW (Or) (2)

Since O1 is an r-machine-schedule executing the intervals scheduled on the r
machines generating the maximum weight in O∗

k, the average weight per machine
in O1 is greater than the average weight per machine in O∗

k. So, we have: W (O∗
k)

k ≤
W (O1)

r . Combining this result with (2), we get: W (O∗
k) ≤ k

r ρW (Or). ��
Theorem 1 Let σ1, · · · , σn be any on-line sequence of intervals. If Ar is a ρ-
competitive algorithm for the weight function WA on r machines and Bk−r is a
μ-competitive algorithm for the weight function WB on k− r machines, then the
algorithm ABk using Ar and Bk−r as subroutines is (k

r ρ,
k

k−rμ)-competitive.

Proof. Let O∗
k(A) be an optimal schedule of σ1, . . . , σn on k machines for the

weight function WA and O∗
k(B) be an optimal schedule of σ1, . . . , σn on k ma-

chines for the weight function WB . By Lemma 2, we have:
WA(O∗

k(A)) ≤ k
r ρWA(Vi2 (Ar)) and WB(O∗

k(B)) ≤ k
k−rμWB(Vi2(Bk−r))

Moreover, using Corollary 1, we have:
WA(O∗

k(A)) ≤ k
r ρWA(Ri2 (ABk)) and WB(O∗

k(B)) ≤ k
k−rμWB(Ri2(ABk))

Thus ABk is (k
r ρ,

k
k−rμ)-competitive. ��

2 Application to the SIZE and the PROPORTIONAL WEIGHT

Given that, to the best of our knowledge, we do not know on-line algorithm with
constant competitive ratio for general weight functions, we focus in this section
on the particular case where wA

i = 1 and wB
i = pi for every i = 1, . . . , n, i.e. for

the size and proportional weights metrics. We first show that the optimal on-line

318 Fabien Baille et al.

algorithm GOL of Faigle and Nawijn [6] can be described following the two-
stages structure presented in the previous section. We also present in this form
the on-line algorithm LRk of Bar-Noy et al. [3]. Recall that GOLk is optimal for
the size problem while LR deals with proportional weights (but for a different
model than the one adopted here). Then, we use these algorithms as input of
our generic method.

Here is a description of the algorithm GOLk. It is the original algorithm
GOL of [6] (using k machines) except that it is split into an interrupting stage
and a scheduling stage.

Algorithm GOLk[6]

At the arrival of interval σi do:
Interrupting stage: If there are k served intervals intersecting the date ri,
let σmax be the one with the maximum deadline.
If σmax does not exist (there is a free machine), do not interrupt any interval.
If dmax ≥ di then interrupt σmax.
If dmax < di then do not interrupt any interval.
Scheduling stage: If an interval has been interrupted (a machine became
idle) or if there is a free machine, then schedule σi on any free machine. Else,
reject σi.

We now adapt the algorithm LR. In [3], LR is described as an algorithm running
on a continuous channel, where each interval requires a portion (not necessarily
contiguous) of this channel. In our model we consider k machines (instead of a
continuous channel), and each interval requires exactly one (discrete) machine.
That is why we give the description of LRk (the adaptation of LR on a discrete
model of k ≥ 3 machines). The proof of its 2

1− 2
k

-competitiveness is given in
the appendix because Lemma 3 and Theorem 2 are adaptations of the proof of
competitiveness of LR coming from [3] to our model.

Algorithm LRk(adaptation of [3])

We define Ft as the set of scheduled intervals containing date t.
When σi is revealed do:
Interrupting stage:
• If |Fri | < k, then do not interrupt any interval
• If |Fri | = k, then:

1. Sort the k + 1 intervals of Fri ∪ {σi} by increasing order of release
dates, if several intervals have the same release date, order them in
the decreasing order of their deadlines and let L be the set of the⌈

k
2

⌉
first intervals.

2. Sort the k+1 intervals of Fri ∪{σi} by decreasing order of deadlines
(ties are broken arbitrarily) and let R be the set of the

⌊
k
2

⌋
first

intervals.
If σi ∈ L ∪R then interrupt any interval σj of Fri − L ∪R.
Else do not interrupt any interval.

On-Line Bicriteria Interval Scheduling 319

Scheduling stage:
• If |Fri | < k then schedule σi on any free machine.
• If |Fri | = k, then:

∗ If σi ∈ L ∪ R then schedule σi on the machine where σj was inter-
rupted.

∗ If σi /∈ L ∪R then reject σi.

Theorem 2 For proportional weights (wi = pi) and for k ≥ 3, LRk is 2
1− 2

k

-
competitive.

Recall that GOLr is an optimal on-line algorithm (i.e. 1-competitive) for the size
and LRk−r is an on-line 2

1− 2
k−r

-competitive algorithm for the proportional

weights problem. So, applying Theorem 1, we have:

Corollary 2 For k ≥ 4 and for all 1 ≤ r ≤ k−3, ABk applied with Ar = GOLr

and Bk−r = LRk−r is (k
r ,

2k
k−r−2)-competitive for the size and proportional

weights criteria.

Note that the parameter r can be tuned in order to make ABk more precise
for one of the objectives. For example, if we set r = k−2

3 , we obtain a pair of
competitive ratios of (3

1− 2
k

, 3
1− 2

k

) ≤ (6, 6) and which tends to (3, 3) for large k.
In figure 1, we show all the couples of approximation ratios that our algorithm
applied with GOL and LR with k = 20 can reach by variations of r.

1284 16

40

35

30

25

20

15

10

5

20

Fig. 1. Competitive ratios for the Weight (Y-axis) and the Size (X-axis) when k = 20.

320 Fabien Baille et al.

References

1. E. Arkin and B. Silverberg, Scheduling jobs with fixed start and end times,
Discrete Applied Mathematics, 18 (1987), pp. 1–8.

2. F. Baille, E. Bampis, and C. Laforest, A note on bicriteria schedules with
optimal approximation ratios, Parallel Processing Letters, 14 (2004), pp. 315–323.

3. A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Band-
width allocation with preemption, SIAM J. Comput., 28 (1999), pp. 1806–1828.

4. A. Borodin and R. El-Yaniv, Online computation and competitive analysis,
Cambridge University press, 1998.

5. M. C. Carlisle and E. L. Lloyd, On the k-coloring of intervals, Discrete Applied
Mathemetics, 59 (1995), pp. 225–235.

6. U. Faigle and M. Nawijn, Note on scheduling intervals on-line, Discrete Applied
Mathematics, 58 (1995), pp. 13–17.

7. A. Fiat and G. J. Woeginger, Online algorithms: The state of the art, LNCS
no. 1442, Springer, 1998.

8. G. J. Woeginger, On-line scheduling of jobs with fixed start and end times, Theor.
Comput. Sci., 130 (1994), pp. 5–16.

Appendix: Proof of Theorem 2

Let O = LRk(σ1, · · · , σi) be the schedule on k machines returned by LRk on
σ1, · · · , σi. Let T t

i be the number of intervals of O containing the date t. Let F t
i

be the number of intervals of {σ1, · · · , σi} containing the date t. For the proof
of the Theorem, we need the following result:

Lemma 3 Using the above notations, the schedule returned by LRk satisfies:
∀i, ∀t, T t

i ≥ min{F t
i ,

k
2 − 1}

Proof. We proceed by induction on i. For i = 1, ∀t ∈ [r1, d1), we have: T t
1 =

F t
1 = 1 and ∀t /∈ [r1, d1), T t

1 = F t
1 = 0.

Suppose i > 1. According to the algorithm, two cases may occur:
First case: |Fri | < k. In this case, σi is scheduled by LRk and no interval is
interrupted. If t /∈ [ri, di), then the number of scheduled intervals which contain
the date t at step i is the same as at step i − 1. Thus, we have T t

i = T t
i−1.

Moreover, since t /∈ [ri, di), we have also F t
i = F t

i−1. So, by replacing T t
i−1 by

T t
i and F t

i−1 by F t
i in the induction hypothesis, this particular case is checked.

If t ∈ [ri, di), then since σi has been scheduled, we have: T t
i = T t

i−1 + 1. By the
induction hypothesis, we can rewrite this equation:

T t
i ≥ 1 + min{F t

i−1,
k

2
− 1} (3)

If min{F t
i−1,

k
2 − 1} = k

2 − 1, then (3) becomes: T t
i ≥ 1 + k

2 − 1 = k
2 >

k
2 − 1 ≥ min{F t

i ,
k
2 − 1}. If min{F t

i−1,
k
2 − 1} = F t

i−1, then (3) becomes:
T t

i ≥ 1 + F t
i−1. But since t ∈ [ri, di), we have F t

i = F t
i−1 + 1. Thus, we have:

T t
i ≥ F t

i − 1 + 1 = F t
i ≥ min{F t

i ,
k
2 − 1}.

On-Line Bicriteria Interval Scheduling 321

Second case: |Fri | = k. In this case, three sub-cases may occur: If σi /∈ L and
σi /∈ R. This means that σi is rejected by LRk. If t /∈ [ri, di) then T t

i = T t
i−1 and

F t
i = F t

i−1. By replacing T t
i−1 by T t

i and F t
i−1 by F t

i in the induction hypothesis,
this particular case is checked. If t ∈ [ri, di), since σi /∈ L ∪ R, there are always
at least

⌊
k
2

⌋
intervals containing t in O. Thus, T t

i ≥
⌊

k
2

⌋ ≥ min{F t
i ,

k
2 − 1}.

If σi ∈ R (including the case where σi is also in L). This means that σi is
accepted by LRk and σj is rejected. Then, since σj is revealed before σi, we
have rj ≤ ri. Furthermore, we have dj ≤ di otherwise, we would have σj ∈ R,
contradicting the fact that σj is interrupted. We have then these cases: For all
t /∈ [rj , di), we have F t

i = F t
i−1 and T t

i = T t
i−1. Thus, by replacing T t

i−1 by
T t

i and F t
i−1 by F t

i in the induction hypothesis, this particular case is checked.
For all t ∈ [rj , ri), since σj /∈ L, there are at least

⌈
k
2

⌉
intervals containing the

date t. Thus, we have: T t
i ≥

⌈
k
2

⌉
> min{F t

i ,
k
2 − 1}. For all t ∈ [ri, dj), we have

T t
i = T t

i−1 because σj is deleted but σi is added. Since σj /∈ R, there are at least⌊
k
2

⌋
intervals containing date t. Thus, we have T t

i ≥
⌊

k
2

⌋ ≥ min{F t
i ,

k
2 − 1}. For

all t ∈ [dj , di), since σi occupies a machine that was free at step i − 1 of the
algorithm, we have: T t

i = T t
i−1 + 1. By the induction hypothesis, we can rewrite

this equation:

T t
i ≥ 1 + min{F t

i−1,
k

2
− 1} (4)

If min{F t
i−1,

k
2 − 1} = k

2 − 1, then (4) becomes: T t
i ≥ 1 + k

2 − 1 = k
2 >

k
2 − 1 ≥ min{F t

i ,
k
2 − 1}. If min{F t

i−1,
k
2 − 1} = F t

i−1, then (4) becomes:
T t

i ≥ 1 + F t
i−1. But since t ∈ [ri, di), we have F t

i = F t
i−1 + 1. Thus, we have:

T t
i ≥ F t

i − 1 + 1 = F t
i ≥ min{F t

i ,
k
2 − 1}.

If σi ∈ L and σi /∈ R. This means that σi is accepted by LRk and σj is
rejected. By the on-line context, since the last revealed interval is σi, all the
intervals which do not belong to L have a release date equal to ri (otherwise
they would belong to L). In particular, σj /∈ L because it is interrupted and
thus it satisfies rj = ri. Moreover, by the manner the algorithm builds L, σi

has also a greater deadline than σj (otherwise, σj ∈ L and thus it would not
be interrupted): dj ≤ di. We have 3 cases to consider: For all t /∈ [ri, di), we
have F t

i = F t
i−1 and T t

i = T t
i−1. Thus, by replacing T t

i−1 by T t
i and F t

i−1 by F t
i

in the induction hypothesis, this particular case is checked. For all t ∈ [ri, dj),
we have T t

i = T t
i−1 because σj is deleted but σi is added. Since σi /∈ R, there

are at least
⌊

k
2

⌋
intervals containing date t having a deadline at least di. Thus,

we have: T t
i ≥

⌊
k
2

⌋ ≥ min{F t
i ,

k
2 − 1}. For all t ∈ [dj , di), since σi occupies a

machine that was free at step i− 1 of the algorithm, we have: T t
i = T t

i−1 + 1. By
the induction hypothesis, we can rewrite this equation:

T t
i ≥ 1 + min{F t

i−1,
k

2
− 1} (5)

If min{F t
i−1,

k
2 − 1} = k

2 − 1, then (5) becomes: T t
i ≥ 1 + k

2 − 1 = k
2 >

k
2 − 1 ≥ min{F t

i ,
k
2 − 1}. If min{F t

i−1,
k
2 − 1} = F t

i−1, then (5) becomes:
T t

i ≥ 1 + F t
i−1. But since t ∈ [ri, di), we have F t

i = F t
i−1 + 1. Thus, we have:

T t
i ≥ F t

i − 1 + 1 = F t
i ≥ min{F t

i ,
k
2 − 1}. We have checked the induction step

and thus the lemma. ��

322 Fabien Baille et al.

proof of Theorem 2: Let O∗
i be the optimal (off-line) weight schedule of σ1, . . . , σi.

Let T ∗t
i be the number of intervals of the schedule O∗

i containing date t. Let t be
a date of the schedule O returned by LRk on the input sequence σ1, · · · , σi and
i be a step of the algorithm. If min{F t

i ,
k
2 − 1} = F t

i then by Lemma 3, we have
T t

i ≥ F t
i ≥ T ∗t

i . Now, let us consider the case in which min{F t
i ,

k
2 − 1} = k

2 − 1.

Since O∗
i is valid, we have T ∗t

i ≤ k. Multiplying both sides by 1− 2
k

2 , by remarking
that k

2

(
1− 2

k

)
= k

2 − 1 and by Lemma 3, we obtain:
T∗t

i

2

(
1− 2

k

) ≤ k
2

(
1− 2

k

)
= k

2 − 1 ≤ T t
i .

Thus, we have for all dates t and for all steps i: 2
1− 2

k

T t
i ≥ T ∗t

i . If we sum this

inequality for all dates t, we obtain that LRk is 2
1− 2

k

-competitive. ��

Topic 4
Compilers for High Performance

Albert Cohen, Michael F.P. O’Boyle, Martin Griebl, and José Moreira

Topic Chairs

This topic deals with a range of subjects concerning the compilation of programs
for high performance architectures, from general-purpose machines to specific
hardware designs. It includes language aspects, program analysis and trans-
formation to optimize resource utilization or to support parallelization. Most
papers study the interactions between the programming language, the compiler
framework, the hardware, operating system or runtime environment.

Out of the 6 papers submitted to this topic, 2 were accepted for presentation
at the conference (as regular papers). We provide a short outline of the topics
addressed in these contributions.

Feedback-directed and adaptive compilation, as well as domain-specific pro-
gram generation and optimization are the hot research areas for topic 4 this
year.

The paper Deciding Where to Call Performance Libraries by Christophe
Alias and Denis Barthou propose a framework to recognize library function tem-
plates from the high-level semantical analysis of scientific codes. This ambitious
work demonstrates the effectiveness of the approach, replacing hot program parts
in standard benchmarks by highly tuned implementations in parallel or sequen-
tial libraries.

The paper The Periodic-Linear Model of Program Behavior Capture by
Philippe Clauss, Bénedicte Kenmei and Jean-Christophe Beyler introduces a
formal model and algorithms to analyze and predict the runtime phase behavior
of programs; this model can be used for adaptive and dynamic optimization.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Periodic-Linear Model
of Program Behavior Capture

Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

ICPS/LSIIT, Université Louis Pasteur, Strasbourg
Pôle API, Bd Sébastien Brant

67400 Illkirch, France
{clauss,kenmei,beyler}@icps.u-strasbg.fr

Abstract. Understanding and controlling program behavior is a chal-
lenging objective for the design of advanced compilers and critical system
development. In this paper, we propose an analysis and modeling strategy
of program behavior characteristics by considering traces generated from
opportune code instrumentation. The proposed models consist in peri-
odic and linear interpolations separated into adjacent program phases.
It is shown that these models exhibit apparent and useful information
on program behavior. Moreover they can directly be used to guide static
optimizations or to build dynamic optimization processes as it is shown
for the implementation of efficient dynamic data prefetching processes
for some benchmark programs.

1 Introduction

Many works have shown that software controlled policy of hardware mechanisms
can significantly improve their efficiency. A compiler can be able from a static
analysis of the source code to generate some instruction hints [1]. However,
such an approach is only exploitable for static control and data structures as
for-loops accessing multi-dimensional arrays through affine reference functions.
When considering more general control structures accessing data through point-
ers, static optimizations generally can not be applied since essential information
is not known at compile-time and can only be observed during execution. Hence
dynamic analysis and optimization have become an important area of research.

In this paper, we propose an off-line analysis and modeling strategy for traces
generated from opportune code instrumentation. We consider Input Indepen-
dent Programs (IIPs) as programs whose execution behaviors are not influenced
qualitatively by their input data. IIPs are interesting candidates for trace driven
analysis and profile feedback optimizations, since information common to any
of their runs and input data can be extracted. IIPs, or input independent pro-
gram sub-parts, can be identified through several approaches: input-dependency
analysis by abstract interpretation [2]; static code analysis of control structures
and conditionals by variable propagation; comparisons of traces resulting from a
sufficient number of executions and showing the same execution behavior. Notice

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 325–335, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

326 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

that this last approach can never be as reliable as the previous ones, but can
give useful information relevant to the most frequent case.

Traces resulting from IIPs are candidates for standard data-mining methods
based on statistical and machine learning algorithms. Although some relevant
information can be found from their use, programs should take advantage of more
dedicated approaches. Interesting observations are necessarily related to software
and/or hardware mechanisms involving some specificities: many traces can be
reduced to binary data or at least integers, repetitive and/or periodic behaviors
can be often expected from program executions, observations can hopefully lead
to simulation models implemented as programs, ...

With this purpose of a dedicated approach, we propose a model based on
periodic interpolation by intervals of the trace values. Periodic interpolation
consists in interpolating a sequence of values by a periodic polynomial function.
A periodic polynomial is a polynomial whose coefficients are periodic numbers,
i.e., a sequence of values indexed by the modulo of the variable relatively to
the number of these values. For example, the periodic polynomial [1, 2, 3]x2 +
[3, 4]x + 5 is equal to x2 + 3x + 5 if x mod 3 = 0 and x mod 2 = 0.

Periodic interpolation allows to extract periodic behavior information of the
observed program as well as reduce the complexity of the interpolation function.
For example, the sequence [3, 3, 7, 13, 11, 23, 15, 33, 19, 43, 23] where each element
is respectively indexed by 0, 1, 2, ... is interpolated classically by the polynomial:

−4

2835
x
10 +

197

2835
x
9 −

277

189
x
8 +

16348

945
x
7 −

16912

135
x
6 +

77408

135
x
5 −

932752

567
x
4 +

7998976

2835
x
3 −

814336

315
x
2 +

59518

63
x+3

which is a quite high degree polynomial exhibiting no apparent information
about periodicity. Instead, periodic interpolation would give the following inter-
polation function: [2, 5]x + [3,−2], showing a periodic behavior of period 2 and
a linear relation between 2-spaced elements.

The elements inside a large program trace generally represent several differ-
ent behaviors associated to several different program phases. Hence, a unique
periodic interpolation function with a low degree can rarely be found on the
whole trace, but on some contiguous values in separated intervals. These succes-
sive intervals covering the whole trace are then associated to successive program
phases. We target originally linear functions, i.e., polynomials of degree 1, but
construct a non-linear model by recursive compositions of the linear functions.

Since each periodic coefficient of the periodic interpolation function can itself
be interpreted as a trace, we recursively apply the model to the coefficients.
This approach yields the definition of a multi-dimensional time space and a
granularity hierarchy of the program behavior.

Our phase definition criteria are different than those of other works based
either on hardware or software metrics. A phase is classically defined as intervals
characterized by values staying near a given average [4, 5]. Such an approach
ables the extraction of some specific hardware behavior of a program. Our ap-
proach is closer to the program semantic since it can be seen as a way trying
to re-write the original program from the unique knowledge of some observation
traces, but in a more “behavior-expressive” way.

The Periodic-Linear Model of Program Behavior Capture 327

Our representation model is detailed in next section where periodic-linear
functions are defined, as well as periodic-linear interpolation and our notion
of program phases. Model construction algorithms are presented in section 3
where important considerations related to the nature of the extracted models are
discussed. Applications and experiments are presented in section 4. Conclusions
and perspectives are given in section 5.

2 Formal Definition of the Periodic-Linear Model

2.1 Periodic-Linear Function

A periodic-linear function f is a function of the form f(x) = ax+ b where a and
b are periodic numbers. A periodic number is a finite list of n numerical values
[a1, a2, ..., an] where the rank of the selected value at a given time to evaluate f
is given by y mod n, y ∈ Z:

f(x) = ax + b = [a1, a2, ..., an]x + b =

⎧⎪⎪⎨⎪⎪⎩
a1x + b, if y mod n = 0
a2x + b, if y mod n = 1
... ...
anx + b, if y mod n = n− 1

Notice that since b is also a periodic number of m values [b1, b2, ..., bm], f is also
defined depending on y mod m. The number of values of a periodic number is
called the period. Two periodic numbers can be reduced to the same period equal
to the lowest common multiple (lcm) of their respective periods.

2.2 Periodic-Linear Interpolation

A periodic-linear interpolation of a time-serie links non-overlapping successive
intervals (slices of the trace) such that any element in interval i at position
j, eij , is linearly dependent of ei−1,j : eij = ei−1,j + aj , where aj is constant.
The number of elements in each interval is the lowest common multiple of both
periods of the periodic coefficients a and b in the interpolation function f .

We distinguish 4 possible cases:

1. all intervals are adjacent and their size p is constant;
2. all intervals are adjacent and their respective sizes p(t) can vary depending

on the interval occurrence t;
3. intervals are not necessarily adjacent and their size is constant;
4. intervals are not necessarily adjacent and their respective sizes can vary (see

figure 1).

Adjacent intervals correspond to a unique behavior model while non adjacent
intervals represent several interleaved behaviors: the dots in figure 1 are other
intervals interpolated by some other periodic linear functions. A model with
constant size intervals considers the duration as being a criterion characterizing
a behavior, saying that two behaviors are identical if their durations are equal.

328 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

Fig. 1. an illustration of the case with non adjacent intervals of different sizes

On the other hand, with intervals of different sizes, the model does not consider
the duration as being discriminant.

Consider two successive interpolated intervals i and i − 1. If both intervals
have the same size then the definition of periodic-linear interpolation given pre-
viously holds. Otherwise, we redefine periodic-linear interpolation in the follow-
ing way. Let imax be the largest interval of size max over all the interpolated
intervals. Then for all successive elements eij in another interval i of size s,
0 ≤ j ≤ s − 1, there exist α ∈ Z and s successive elements eimaxk in interval
imax, 0 ≤ k ≤ max−1, such that eij = eimaxk +αak. Moreover, the value of α is
uniquely associated to interval i. In other words, any interval i can be mapped
onto the interval imax such that the difference between each inter-mapped ele-
ments is equal to αak, and no other mapping onto the interval imax yields the
same value of α.

With each of the n intervals is associated a time instant t, 0 ≤ t ≤ n − 1,
defining the time space of the model. All n intervals are modeled by a periodic
linear function f(t) = at+ b where a and b are periodic numbers. Their periods
are equal to either p in cases (1) and (3), or the maximum of the p(t)’s in
cases (2) and (4). These periodic numbers can have a large period and therefore
constitute by themselves new time-serie. Hence we recursively apply our periodic-
linear model to these new traces, i.e., to both periodic numbers, yielding an
additional time dimension. Finally the whole application of the model yields a
multi-dimensional time space (t1, t2, ...).

Application of the model on both time-serie, or periodic numbers, a and b
can result in two different periodic linear functions fa and fb. If their periods
are different, we need to reduce them to the same period which is the lcm of
their initial respective periods.

The whole recursive process yields a binary tree where each node is either
a fa or a fb function and at each depth level is associated a time dimension.
All functions of a same depth level have the same period and model simultane-
ously occurring traces. Finally, this multi-dimensional time model can be fully
represented as a loop nest of depth d of the following general form, where the
instruction of the innermost loop serves to output the element value associated
to a time instant (t1, t2, ..., td):

for t1 = 0 to n
for t2 = l(t1) to u(t1)

for t3 = l(t1, t2) to u(t1, t2)
...

for td = l(t1, t2, ..., td−1) to u(t1, t2, ..., td−1)
f(t1, t2, ..., td);

The Periodic-Linear Model of Program Behavior Capture 329

where f(t1, t2, ..., td) is the final multi-variable function resulting from the d-
depth recursive application of the model. This function is linear relatively to each
variable ti and globally non-linear. Moreover if d is maximum, i.e., the model
has been applied as far as possible, then the function is no longer periodic, since
any period associated to a time dimension ti is now expressed as a loop index.

The recursive application of the model terminates as soon as the computed
coefficients a and b are no more periodic numbers, i.e., are reduced to one single
value. In the case where no more interpolation of any coefficients a or b is possible,
with a or b consisting in at least three values, coefficients are decomposed into
phases as explained in the next subsection. However the application depth can
be fixed according to a chosen analysis granularity. All time dimensions can be
seen as different granularity levels of the behavior model.

Functions l(t1, t2, ..., ti) and u(t1, t2, ..., ti) give the sizes of the interpolated
intervals at depth i+1. When the model consists in constant size intervals, these
functions are constants: l = 0 and u+1 is equal to the period of the interpolation
function at depth i+1. When the model consists in non-constant sized intervals,
functions l(t1, t2, ..., ti) and u(t1, t2, ..., ti) are functions interpolating the posi-
tions of the first, respectively the last, elements in all the intervals. Although
these functions are generally not linear functions we limit ourselves to the cases
where they are affine.

Example 1. Consider again the time-serie [3, 3, 7, 13, 11, 23, 15, 33, 19, 43, 23]. Fol-
lowing the model of adjacent intervals of constant sizes, at the first time dimen-
sion, it can be interpolated by f1(t1) = [4, 10]t1+[3, 3], 0 ≤ t1 ≤ 5. At the second
dimension, serie [4, 10] and [3, 3] are interpolated respectively by the functions
fa(t2) = 6t2 + 4 and fb(t2) = 0t2 + 3, 0 ≤ t2 ≤ 1. Hence the recursive process
stops and the following loop nest can be generated:
for t1 = 0 to 5

for t2 = 0 to 1

(6t2 + 4)t1 + 3;

2.3 Program Phase Intervals

In our model, we define phases as the largest adjacent slices of the trace allow-
ing periodic-linear interpolations of their elements. Hence successive phases can
occur at different granularity levels yielding a hierarchy of phases. This can be
represented as successive loops whose loop indices range from the first to the
last element of each phase, and where each loop contains itself successive loops
associated to inner level phases and so on.

The size of the generated program can be seen as a complexity measure of
the modeled input trace, in the same way as it is stated in the Kolmogorov
complexity theory [6].

3 Model Construction Algorithms

Our algorithms have been implemented and can obviously represent a high com-
putation cost for large and highly irregular input traces. However modeling a

330 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

very regular behavior with a few number of phases is fast. For example, each
memory access information considered in [3] in several benchmarks are instanta-
neously modeled by our tool while giving similar results. Anyway it is generally
worth the time to model critical systems behavior.

In the following and due to space limitation, only the algorithm dedicated to
adjacent intervals of constant size is presented.

3.1 Quality Criteria of the Model

Since our model is hierarchically organized as a multi-dimensional time-space,
the deeper we go into the hierarchy, the more accurate is the model. Interpo-
lations involving a minimum number of phases per level is preferred since it
corresponds to a minimum number of general behaviors associated to each cur-
rent levels. Hence between the four model alternatives presented in subsection
2.2, a preference order related to the regular layout of the model and the number
of phases is applied: (1),(2),(3) and (4).

A convenient number of phases is related to their different sizes and the size
of the input trace. Each phase must include a sufficient number of elements.
However since phases are related between each other through the whole interpo-
lation model, some interesting and large phases can be coupled with some small
phases. Hence an opportune quality criterion can just consider the large phases.

On the other hand, some solutions with only a few phases have to be evicted.
For example, the solution consisting in modeling the whole input trace as two half
traces interpolated by one periodic-linear function is obviously not interesting
and does not represent any behavior specificity, since the same can be done for
any sequence of numbers. Hence we constraint each phase to contain at least
three interpolated intervals. Moreover, between several possible solution phases
of the same size modeling the same elements, the phase containing the maximum
number of interpolated intervals is selected, since it involves a lower periodicity
of the interpolation function, each period corresponding to a larger number of
interpolated elements.

From these observations, we can define an heuristic criterion consisting in a
lower bound for the covering range of the phases. For example, we can state that
at least 80% of the input trace has to be covered by all the phases whose sizes
are greater than 5% of the input trace.

3.2 Phase Detection

Our model construction algorithms have the following general scheme:

1. find a periodic linear interpolation function covering the largest possible slice
of the trace with at least three interpolated intervals. Define this slice as a
program phase.

2. for all the remaining elements not belonging to the previously defined phases,
repeat the previous step in order to define more program phases.

3. at this step, a hierarchical level has been fully modeled.

The Periodic-Linear Model of Program Behavior Capture 331

4. for each of the previously defined phases and their associated periodic-linear
interpolation functions, repeat all steps with each of the periodic coefficients
a and b considered themselves as traces, thus defining a deeper hierarchical
level.

3.3 Adjacent Intervals of Constant Size

The frequency of linear relations between p-spaced elements in a trace can be
detected by computing the autocorrelation coefficients for several values of p. The
highest obtained coefficients, i.e., the closest to 1, associated to given values
of p, give some good indications on the best possible sizes, or periods, of the
interpolated intervals. Hence our algorithm tries successively all interval sizes
from their highest to their lowest associated autocorrelation coefficients in order
to find the largest phase of interpolated intervals. Since at least three intervals
have to take part in a phase, autocorrelation coefficients for all values of p less
than n/3 are computed, n being the number of elements in the input trace.

The general algorithm is shown in figure 2. It is defined as a recursive function
devoted to finding the largest phase of interpolated intervals from a given input
trace. As it has been found, the function is recalled to find some previous or
next phases necessarily smaller and covering the remaining parts of the trace.
Some added comments in the figure explains some further details. When phases
have been found covering the whole trace, the first time dimension has been
defined and the next step consists in applying the function find phase for each
phase and their periodic-linear interpolation function to the periodic coefficients
a and b. This will define the second time dimension. The same process is applied
recursively until there is no remaining phase interpolated by a periodic function,
i.e., the interpolation function has constant coefficients a and b.

4 Application Examples and Data Prefetching

In these experiments, we model memory addresses accessed by some time-consu-
ming program instructions. We initially profile the execution using the gnu gprof
tool in order to exhibit the most time consuming functions. We then instrument
the code in order to store the accessed virtual memory addresses in output files.
Those files are then used as input in our model construction algorithms.

4.1 Building an Hybrid Model

Hybrid models can be constructed from the observation of some input depen-
dent events mixed with input independent events. Through abstraction of the
input dependent events that cannot be modeled, a model characterizing some
linear and periodic behavior of these non-deterministic occurring events can be
constructed.

We consider the program ks from the pointer intensive benchmarks, and
model memory addresses accessed through the pointer mrB in the most time-
consuming function FindMaxGpAndSwap. We observe the following in the trace

332 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

function find phase(T : input trace) {n is the trace size}
phasemax = NULL
for all p such that 1 ≤ p ≤ n/3 do

compute the autocorrelation coefficient rp of order p
for the highest to the lowest coefficient rp and its associated period p, rp ≥ 0.1 do

for i=1 to p do
find the lowest integer value α ≤ n−3p

p
such that at least the 3 elements T [i+αp],

T [i + (α + 1)p] and T [i + (α + 2)p] are linearly dependent
while a value α has been found do

for all q such that 1 ≤ q ≤ p − 1 do
check if elements T [i + αp + q], T [i + (α + 1)p + q] and T [i + (α + 2)p + q]
are also linearly dependent

if so then
extend this sequence of intervals to the right to the maximum possible size
if size(phasecurrent) > size(phasemax) {the last found phase is the largest
at the moment}
OR (size(phasecurrent) = size(phasemax) AND pcurrent < pmax) {the last
found phase has smaller interpolated intervals} then

phasemax = phasecurrent;pmax = pcurrent

find the next greater value for α ≤ n−3p
p

{the following is useful to find the last phases from a few remaining elements:}
if phasemax = NULL {no phase with at least 3 intervals has been found} then

allow to select phases with less than 3 elements
build the periodic-linear interpolation function fphasemax of coefficients a and b and
of period pmax

let Tleft be the left part of T −phasemax;let Tright be the right part of T −phasemax

{recursive calls}
find phase(Tleft);find phase(Tright)

Fig. 2. The general algorithm to find phases of adjacent interpolated intervals of con-
stant sizes

of memory addresses: same sequences of addresses are accessed successively sev-
eral times; after a sequence has been accessed, a new sequence, being the same
as before but with one element less, is accessed again successively several times;
after the last sequence of one element has been accessed, a completely differ-
ent sequence of numModules/2 elements is accessed successively several times,
numModules being the second value in the input file; then the same process goes
on with the same sequence having one element less; the number of times a se-
quence is accessed successively is equal to its number of elements; values into a
sequence cannot be interpolated linearly and periodically; elements evicted from
a sequence cannot be determined and depend on the considered input.

In conclusion, non-predictable sequence of known sizes are accessed in a pre-
dictable manner. Hence an hybrid model can be constructed consisting in a
learning phase storing occurring address sequences, and a following prediction
phase that outputs in a exact way occurring addresses. This model can be rep-
resented as the loop nest shown in figure 3.

The Periodic-Linear Model of Program Behavior Capture 333

M = numModules/2 − 1
for t1 = 0 to N
for t2 = 0 to M
for t3 = 0 to 0 // * Learning phase *
for t4 = 0 to M − t2

T [t4] = accessed address ;// store values in an array of size M
for t3 = 1 to M − t2 // * Prediction phase *
for t4 = 0 to M − t2

T [t4] ;

Fig. 3. Hybrid model capturing program ks memory behavior

4.2 Using Models for Data Prefetching

Let us consider the program mcf from the Spec2000 benchmarks: 31% of the
whole running time is spent in function price out impl. By looking at the
source code of this function, we can see that two main instructions access some
data structures defined as chained lists. We then instrument the code in order
to store the accessed virtual memory addresses in two output files and run the
program using the test.in input file provided in the SPEC2000 benchmarks.

For both memory accesses, an hybrid model of adjacent intervals of differ-
ent sizes, enclosed in adjacent intervals of constant size is constructed. In the
first dimension t1, the constant size intervals are identical. In the second di-
mension, successive intervals sizes grow from one element at each interval, and
corresponding elements between successive intervals are spaced by 120 for the
first instruction, and by 192 for the second instruction.

In a given interval, values are decreasing by 120, or 192, until 0. Hence, a
3-dimensional model represents entirely the whole trace. It is stated by the loop
nest shown in table 1.

Table 1. Nested loop models, execution times and speedups

Program:
opt. function Model Orig. time Opt. time Speedup

mcf:
price out impl

for t1 = 0 to M
for t2 = 0 to nb timetable trips−2

for t3 = 0 to t2
120t2 − 120t3 + offset ;

512 sec. 405 sec. 20%

equake:
smvp

for t1 = 0 to timesteps− 1
for t2 = 0 to N − 1
for t3 = 0 to 2
128t2 + 32t3 + offset ;

350 sec. 262 sec. 25%

Values M and N vary depending on the program input file. Value M + 1
denotes the number of constant size intervals in the first dimension and N +
1 denotes their size. We use the three input files provided in the SPEC2000
benchmarks, test.in, train.in and ref.in, and analyze the generated traces

334 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

to extract the associated values of M and N , by checking the model adequacy.
We notice that interval sizes are directly given by the first input parameter of
the input files. In the mcf program documentation, this parameter is defined
as being the number of timetabled trips. It is equal to N + 2. The number of
intervals cannot be linked directly to an input parameter, since it rather depends
qualitatively on the convergence speed of the implemented optimisation process
for the considered problem. Nevertheless, a generic model can still be described,
since values in dimensions t2 and t3 do not depend at all on t1. Moreover, the
use of the model for some dynamic optimization is not constrained at all by the
ignorance of M , since the optimization process runs until the end of the whole
program run.

We use both generated models to implement a dynamic prefetching mecha-
nism for improving the program performance on an Itanium-2 processor. This
mechanism is simply built as two functions prefetching data three accesses in
advance from the address computed due to our model. They are called before
each memory access in function price out impl. Significant speedups are ob-
tained for reference input runs of the whole program as it is shown in table 1.
Original and optimized programs have been compiled at O3 optimization level.

In the same way, we model the program equake from the SPEC2000 bench-
marks as shown in table 1.

Notice that other optimizations could have been constructed from these mod-
els as for example the generation of cache hints from the knowledge of data-reuse
distances due to our models, as it is done from static analysis in [1].

5 Conclusion

The presented dynamic analysis and modeling approach constitutes a rich frame-
work to formalize behavior capture of programs. The representation model fa-
cilitates program behavior understanding and analysis, and also allows the con-
struction of efficient static or dynamic optimizations. It is for example pleasant
to notice that array-like memory accesses are identified through our model, as
it generates an access function of the same form as an access function resulting
from a linearized multi-dimensional array accessed through affine functions in-
dices. We argue that a lot of important behavior characteristics can be handled
through our approach: as we were working on the experiments of the previous
section, we observed that a lot of memory instructions can be nicely modeled.
Moreover, even non-deterministic events can be considered as they are enclosed
in a behavior that can be represented.

Our immediate objective is to improve performance of our algorithms in
order to build a global profiling and modeling system. Such a system could then
advantageously be used for applications whose performance or behavior control
are critical.

The Periodic-Linear Model of Program Behavior Capture 335

References

1. K. Beyls and E. H. D’Hollander. Reuse distance-based cache hint selection. In
Euro-Par ’02: Proceedings of the 8th International Euro-Par Conference on Parallel
Processing, pages 265–274. Springer-Verlag, 2002.

2. J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner. Input-dependency analysis
for hard real-time software. In Proc. 9th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, Oct. 2003.

3. I. Issenin and N. D. Dutt. Foray-gen: Automatic generation of affine functions for
memory optimizations. In DATE, pages 808–813, 2005.

4. J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification. In
IEEE International Symposium on Performance Analysis of Systems and Software,
March 2004.

5. J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification and predic-
tion. In 11th International Symposium on High Performance Computer Architecture,
February 2005.

6. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, New York, 1993.

Deciding Where to Call Performance Libraries

Christophe Alias and Denis Barthou

Laboratoire PRiSM, Université de Versailles, France
{Christophe.Alias,Denis.Barthou}@prism.uvsq.fr

Abstract. As both programs and machines are becoming more com-
plex, writing high performance codes is an increasingly difficult task.
In order to bridge the gap between the compiled-code and peak perfor-
mance, resorting to domain or architecture-specific libraries has become
compulsory. However, deciding when and where to use a library function
must be specified by the programmer. This partition between library and
user code is not questioned by the compiler although it has a great im-
pact on performance. We propose in this paper a new method that helps
the user find in its application all code fragments that can be replaced by
library calls. The same technique can be used to change or fusion multi-
ple calls into more efficient ones. The results of the alternative detection
of BLAS 1 and 2 in SPEC are presented.

1 Introduction

The recent generation of microprocessors can deliver high performance thanks
to a large number of mechanisms: cache hierarchies, branch prediction, specific
instructions such as fused multiply add, speculative execution, predicated in-
structions, prefetches, etc. One way to obtain high performance code is to rely
on compiler optimizations. However the complex optimizations that tap these
hardware features come at the expense of performance stability. For instance,
multiversioning is an optimization generating several versions for the same code
fragment, these versions are selected dynamically depending on parameters such
as loop iteration count or data alignment. But a bad choice for the strategy select-
ing the different versions can introduce important latencies. Another approach
has focused on library tuning as a more reliable way to deliver performance. The
assembly code is either generated by hand, using architecture specific instruc-
tions, or by adaptative code generation (e.g. ATLAS [14], FFTW [10] or STAPL
[12]). The important compilation time is then balanced by the reusability of
the libraries. In all cases, library functions can be considered as the building
blocks, essential to get high performance on real codes. In general programming
languages, code tuning is performed in the last stage of the development pro-
cess. The selection of the library functions and the rewriting of the code falls
under the responsibility of the user. The usual steps of this process are: find out
code fragments and library functions that are semantically equivalent, replace
these fragments by function calls with correct parameters, debug the application
and finally evaluate performance. In the case of non-portable libraries, this time

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 336–345, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Deciding Where to Call Performance Libraries 337

consuming process has to be reconducted for each target architecture. It is sur-
prising how little the compiler helps the user in this tedious task. Compile-time
optimizations neither change the partition between library and user code, nor
cross library boundaries.

This paper presents an efficient method to find in a program all code frag-
ments that match library functions. Programs under study are any C or Fortran
codes, and libraries can be template libraries (with the meaning of C++ tem-
plates). In general, deciding whether two codes are semantically equivalent is
undecidable. The equivalence considered in our approach does not take into ac-
count any special operator semantics, such as associativity or commutativity.
Within this framework, the method presented is conservative: some of the frag-
ments found are not semantically equivalent to the library codes, but none of the
truly equivalent fragments is missed. The analysis produces “may” information:
between lines 537 and 541, it may be a matrix-vector product. Combined with an
exact but more expensive method [2] applied only on fragments, both analyses
would produce “must” information, also providing the effective parameters for
the library call and its instantiation if this is a template. Finally, we describe in
this paper the conditions for which code substitution by function calls is safe.
Note that as a prerequisite for the detection step, each library function has to be
described by a program. We do not assume that the analysis has access to the
source of the library. Instead we assume the library designer provides a public
version for each function. This program must have the same semantics than the
optimized, private version but the algorithm used can be completely different.

Section 2 presents some related work. Section 3 describes the new detection
technique. In Section 4, we sum up, out of completion, the method used to
prove the equivalence and to find the parameters of the call. We then give the
conditions for a safe substitution in Section 5 and conclude in Section 6 with the
results of our experiments on SPEC benchmarks.

2 Related Work

The detection of code matching library functions is related to the detection of
slices, which consists of identifying all the statements contributing to a given
computation. Cimetile et al. [1] propose a semi-automatic approach to extract
program parts (slices) verifying pre- and post-conditions. They rely on a theorem
prover which requires user interaction to assert some invariants, and has a high
complexity, which makes it unrelevant to large applications.

Another approach proposed by Paul and Prakash [16] describes an extension
of grep in order to find program patterns in source code. They use a pattern
language with wild-cards on syntactic entities e.g. declaration, type, variable,
function, expression, statement,. . . allowing to search for specific sequences and
nested control structures. Their algorithm has a O(n2) complexity with n the
code size. This detection method has the same goal as ours; one of its draw-
backs is that the same pattern cannot handle variations in control (loop unroll,
tiling) or in data structures (array expansion, scalar promotion) whereas this is
addressed in our framework.

338 Christophe Alias and Denis Barthou

Finally, several approaches encode the knowledge of the functions to be iden-
tified in the form of programming plans. Top-down methods [15] use the knowl-
edge of the goals the program is assumed to achieve and some heuristics to
detect both the program slice and the library functions that can achieve these
goals. Bottom-up methods [9] start from statements and try to find the cor-
responding plans. Wills [9] represents programs by a flow-graph, and patterns
by grammar rules. The recognition is performed by parsing the program graph
according to the grammar rules and has an exponential cost at worst. Metzger
and Wen [13] have built a complete environment to recognize and replace al-
gorithms. They first normalize both program and pattern abstract syntax tree
by applying usual program transformations (if-conversion, loop-splitting, scalar
expansion...). Then they consider all strongly connected components in the de-
pendence graph, containing at least one for statement as candidate slices. Their
method provides therefore a large number of candidate slices with many false
detections, which is balanced by the low complexity of their equivalence test.
Compared to the combination of the detection with the instantiation test we re-
call in this paper, they can handle fewer program variations (reuse of temporaries
across loop iterations for instance is not handled) for a lower cost.

3 Detection of Library Templates

The detection of library templates consists in localizing in a code the lines that
possibly correspond to a given library function or template. In the case of a
template, the code detected is a possible instance of the template. We propose
an efficient method based on a symbolic execution of both program and template,
following the def-use chains. The method symbolically executes both program
and template slices simultaneously and compares the sequence of operators along
these slices, abstracting away the number of iterations of the loops.

3.1 Principle

The template and the program are assumed to be given in SSA-form, and nor-
malized with one operator by statement. Each edge of the program SSA-graph
is labeled with its operator. Loops create cycles in this graph but we abstract
away the number of iterations. The sequence of operators along a path is con-
sidered as a word and the graph can be considered as a finite automaton. The
idea of the algorithm is to check whether the language of operators generated
by some code fragment is included in the language of operators generated by a
library function. Intuitively, this ensures that the same sequence of operations
can happen in the code and in the library function.

Figure 1 provides a very simple example of matching problem between a
template and a program. The template and the program are assumed to be
given in SSA-form, which means that the variables are assigned one time at
most in the program text. In addition, each reference to a variable is substituted
by a φ-function providing the set of its potential values. For example, the φ-
function used in the assignment P4 means that z2 = 1/z1 or z2 = 1/z3. Since

Deciding Where to Call Performance Libraries 339

statements assigning a constant such as T1, P1 or P2 have no predecessors in the
graph of def-use chains, they can be taken as a starting point for the inspection.

Fig. 1. A template (left) and a program (right)

Starting from P1, a stepping among def-use chains would follow the sequence:

1−−→ P1
1/.−−−→ P4

1+.−−−−→ P5
exp−−−−→ P6

Likewise for the template a possible sequence of operators is:

1−−→ T1
X(.)−−−−→ T2

1+.−−−−→ T3
exp−−−−→ TSTOP .

Walking through both program and template, with the condition that for each
transition, the operator must be the same, we obtain the sequence:

1−−→ (T1, P1)
1/.,X(.)=1/.−−−−−−−−−−→ (T2, P4)

1+.−−−−→ (T3, P5)
exp−−−−→ (TSTOP , P6).

This provides the candidate slice {P1, P4, P5, P6}, that possibly corresponds to
the template provided that X(.) = 1/. (this condition appears on the transition).
This condition is necessary for the sequence to be the same for both template and
program. Note however that the method will not check the coherence between
the values of template variables. Likewise, the number of iterations in loops or
the branches chosen in conditionals are ignored. These important points will be
checked during the exact instantiation test (see Section 4).

3.2 Detailed Algorithm

Following the idea described above, we build an automaton recognizing the se-
quences of operators executed by all possible instances of the template, and an
automaton recognizing the sequences of operators executed by the program. The
simultaneous stepping of he template and the program is then achieve by com-
puting the Cartesian product of the template’s and the program’s automaton,
which provides the candidate slices.

Figure 2 shows the automata built from the template and the program of
the above example. The states represent the assignments, and the transitions

340 Christophe Alias and Denis Barthou

are driven by the flow-dependences given by the φ-functions, and labeled by
the operator used in the destination state. Template variable X can match any
composition of program operators, that is why the state involving X has a loop
for each program operator. Since most operators have an arity greater than 2,

Fig. 2. Automata build associated to the template (left), and the program (right)

word automata are not expressive enough in general. Instead we build a tree-
automaton, using the algorithm described in figure 3. There is no major differ-

Algorithm Build_Automaton

Input: The template or the program.
Output: The corresponding tree automaton.

1. Associate a new state to each assignment statement.
2. For each state:

q = r = f(φ(Q1) . . . φ(Qn))

Add the transitions: f(q1 . . . qn) −→ q, for each qi ∈ Qi.
3. For each state:

q = r = X(φ(Q1) . . . φ(Qn))

Add the transitions: qi −→ q, for each qi ∈ Qi.
And: f(q . . . q) −→ q, for each operator f used in the template and the program,
including constants (0-ary operators).

Fig. 3. Build_Automaton

ence with the word automata: we associate a state to each assignment then we
add transitions according to the dependences given by the φ-functions (step 2).

Deciding Where to Call Performance Libraries 341

Remark that when n = 1, we obtain a word automaton since f(q1) −→ q can be
interpreted as q1

f−−→ q. X is handled as a wild-card, which leads to add looping
transitions with the operators used in the program (step 3).

The detection is achieved by stepping simultaneously both automata as soon
as the operators are the same. Each stepping leading to the final state of the
template will provide a candidate slice in the program, built of all reached pro-
gram’s statements. These steppings can be performed in an exhaustive manner
by computing the Cartesian product AT ×AP of both automata. It remains to
mark the states (qT , qP) with a final state qT of AT , and to emit the states of
AP on a path from the initial state as a potential instance.

Our method is able to detect any template variation which does not involve
the semantic properties of operators such as associativity, or commutativity. Par-
ticularly we can handle any loop transformation and most control restructuring
transformations. Moreover, our method is completely independent of data struc-
ture used, which allows the detection of a large amount of template variations
in the program. Whether a slice detected is a real instantiation of the template
is determined during the exact instantiation test.

In the worst case, the construction of the Cartesian product of the template
and the program automata is computed in O(T × P) where T is the number
of template statements and P is the number of program statements, i.e. the
complexity is linear in the size of the program analyzed.

4 Exact Instantiation Test

Once the candidate slices are found, we have only detected a code that “may”
match the library template. Either the user decides from this information to
substitute or not, or another procedure decides if both program and template
are indeed equivalent and finds the instantiations. We recall the main steps of
this procedure eliminating false detections, described in [2].

The instantiation test follows the steps of the detection method described
in Section 3. An exact instance-wise reaching definition analysis is performed.
As reaching definitions may depend on the values of iteration counters, these
conditions are put on the transitions of the tree-automata. Deciding if the code
fragment under study is an instantiation of the template boils down to compute
the loop counter values that can reach final states of the Cartesian-product
automaton. Efficient heuristics [17] perform this computation.

The power of this instantiation test is assessed according to its capacity to
prove the equivalence between two codes, one a variation of the other. The test
handles variations coming from loop transformations (splitting, fusion, skewing,
tiling, unroll,...), from data structures (scalar expansion, scalar promotion, use
of temporaries), from common subexpression elimination or other factorization
of computation. However, the test does not handle the semantic properties of
the operators, such as commutativity or associativity.

342 Christophe Alias and Denis Barthou

5 Substitution

Once candidate slices are found, it remains to substitute them by a call to
an optimized library. We describe thereafter an algorithm to decide whether a
substitution preserves the program semantics, and to perform the substitution
in case of success.

Detected slices are often interleaved with other program statements. We have
first to separate them from these statements. Consider an algorithm A consisting
in the set of operations {(A1, I1) . . . (Aa, Ia)}, where Ai is a statement, and Ii a
set of iteration vectors. Let (A1, i1) be its first operation, and (Aa, ia) its last
operation. Its complementary is the set of program operations executed between
the first and the last operations of A:

A = {(S, i) | (A1, i1) ≺ (S, i) ≺ (An, in) and S is not an Ai} (1)

Consider the following example (left):

where the recognized algorithm is constituted of operations:

A = {(A1, {9, 10}), (A2, {.}), (A3, {1, 2, 3, 4})}
Its complementary is thus: A = {(P2, {10}), (P3, {.}), (P4, {1, 2, 3, 4})}. For each
statement P in the program, we compute the set of corresponding operations
between the first and last operations of A by giving relation (1) to a solver [5].
If it is not empty, we emit it.

Once A is computed, it remains to separate it from A in order to replace A
by a call to an optimized library. A is separable if all dependences go exclusively
from A to A, or exclusively from A to A. In the first case, A can be substituted
by a call to A before A. In the other case, the call has to be insert after A.

Deciding Where to Call Performance Libraries 343

Otherwise, we do not perform substitution. In the example given above, A is
separable and can be replaced by a call after A because of a dependence from
(P2, 10) to (A1, 10). In addition, if an intermediate variable is alive outside the
slice, we do not perform the substitution.

The substitution can now be performed by deleting operations of A, and
placing the relevant call before, or after A. Consider the above example (right).
Relevant operations of statements A1 and A3 are disabled using a condition.
Because A2 have no nesting loops, it is just removed from the program text
(step 2). As said above, the optimized call is inserted after the last operation
of A (P4, 4), using a condition. A more efficient code can be produced by first
reschedule operations of A, and then generating efficiently the code with an
appropriate method [6].

6 Experimental Results

We have implemented the detection method and the instantiation test for for-
tran, C and C++ applications. The C/C++ front-end is based on the LLVM
compiler infrastructure [3]. We have applied our slicing algorithm to detect po-
tential calls to the BLAS library [4] in LINPACK [7] and four programs involved
in the SPEC benchmarking suite [8]. Our pattern base is constituted of direct
implementations of BLAS functions from the mathematical description. After
having applied our algorithm to each pair of pattern and program, we have
checked by hand whether the slices are equivalent to the pattern, and if the
substitution by a call to BLAS is possible. Figure 4 shows the results.

It appears that 1/2 of candidates do not match, 1/4 are instances of patterns
for vectors of size 1, and 1/4 of candidates are correct and can be replaced by a
call to BLAS. We present different candidates involved in these categories.

Most of the incorrect detections are due to the approximation of the depen-
dences with φ-functions. Neither loop iteration count, nor if conditions, nor
complex dependences due to array index functions are handled. In addition, our
method handles arrays as scalar variables, which can lead to detect a BLAS 1
xaxpy y(i) = y(i) + a*x(i) when there is a reduction s = s + a(i)*a(i).
Likewise, the method detects the same number of matrix-matrix multiplication
than of matrix-vector multiplication. Note that a vector is a particular case of
matrix but the code should not be substituted by a BLAS 3.

For 1/4 of the slices, the substitution can potentially increase the program
performance. Our algorithm seems to have discovered all of them, and particu-
larly hidden candidates. Indeed, most slices found are interleaved with the source
code, and deeply destructured. Our method has been able to detect a dot product
in presence of a splitting and a loop unroll, which constitute important program
variations that a grep method would not catch. The same remark applies on
equake program. Two versions of matrix-vector product appear, one hand opti-
mized and the other not. Both are detected whereas a method based on regular
expressions fits only the second. In addition, execution times confirm that our

344 Christophe Alias and Denis Barthou

LINPACK 171.swim 172.mgrid 177.mesa 183.equake
43.85 s 11.99 s 20.12 s 16.96 s 644 s

A ixamax C xaxpy E xnrm2 G xxdot I xger K xsyr
B xasum D xdot F xscal H xgemv J xspr2 L xtrmv

Fig. 4. For each kernel, we provide each BLAS function recognized, the number of
wrong slices (# Wrong), the number of trivial detections (# Trivial), and the number
of candidates interesting to replace (# Substituted). The experimentation was done on
a Pentium 4 1,8 GHz with 256 MB RAM

algorithm is linear in the program size. Thus, our slicing method is scalable and
can be applied to real-life applications.

7 Conclusion

The method presented shows that the compiler can help the user write or rewrite
a code with high performance libraries. Combined with an instantiation test,
this process can be fully automatic. The advantages are a better portability and
higher productivity of the programmer. The detection only requires that each
library function has a public version, in C or Fortran, semantically equivalent
to the real code. The experiments on the SPEC benchmarks are encouraging:
the method detects a significant number of linear algebra functions with linear
complexity. The evaluation of the performance gain expected when using library
calls is still however an ongoing work.

More generally, this approach can change the abstraction level of the pro-
gram, replacing C code by algorithms or formulae. From this higher level of
abstraction, it enables a change of algorithm [11] or simply improves code com-
prehension. For large scale applications, high performance cannot be at the ex-

Deciding Where to Call Performance Libraries 345

pense of portability. The method described could be a solution to combine both
and this will be the subject of future work.

References

1. A.Cimetile, A.De Lucia, and M.Munro. A Specification-driven Slicing Process
for Identifying Reusable Functions. J. of Software Maintenance: Research and
Practice, 8(3):145–178, 1996.

2. C.Alias and D.Barthou. Algorithm Recognition based on Demand-driven Data-
flow Analysis. In Working Conf. on Reverse Engineering. IEEE, 2003.

3. C.Lattner and V.Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of CGO’2004, Palo Alto, 2004.

4. C.Lawson, R.Hanson, D.Kincaid, and F.Krogh. Basic Linear Algebra Subprograms
for Fortran usage. Trans. on Mathematical Software, 5(3):308–323, 1979.

5. D.Wilde. A Library for Doing Polyhedral Operations. INRIA TR 2157, 1993.
6. F.Quilleré, S.Rajopadhye, and D.Wilde. Generation of Efficient Nested Loops from

Polyhedra. Int. J. of Parallel Programming, 28(5):469–498, 2000.
7. J.Dongarra. The LINPACK Benchmark: An Explanation. In Supercomputing,

pages 456–474. Springer-Verlag, 1988.
8. J.Henning. SPEC CPU2000: Measuring CPU Performance in the New Millennium.

Computer, 33(7):28–35, 2000.
9. L.Wills. Automated Program Recognition by Graph Parsing. PhD thesis, MIT,

1992.
10. M.Frigo and S.Johnson. FFTW: An Adaptive Software Architecture for the FFT.

In Proc. Intl. Conf. Acoustics Speech and Signal Processing, volume 3, pages 1381–
1384. IEEE, 1998.

11. M.Püschel, B.Singer, J.Xiong, J.Moura, J.Johnson, D.Padua, M.Veloso, and
R.Johnson. SPIRAL: A Generator for Platform-Adapted Libraries of Signal Pro-
cessing Algorithms. J. of High Perf. Comp. and Applications, 1(18):21–45, 2004.

12. N.Thomas, G.Tanase, O.Tkachyshyn, J.Perdue, N.Amato, and L.Rauchwerger. A
Framework for Adaptive Algorithm Selection in STAPL. In Proc. ACM PPoPP’05,
Chicago, 2005.

13. R.Metzger and Z.Wen. Automatic Algorithm Recognition: A New Approach to
Program Optimization. MIT Press, 2000.

14. R.Whaley and J.Dongarra. Automatically Tuned Linear Algebra Software. In
SuperComputing. Springer-Verlag, 1998.

15. S.Kim and J.Kim. An Hybrid Approach for Program Understanding based on
Graph-Parsing and Expectation-driven Analysis. J. of Applied A.I., 12(6):521–
546, 1998.

16. S.Paul and A.Prakash. A Framework for Source Code Search using Program Pat-
terns. IEEE Trans. on S.E., 20(6):463–475, 1994.

17. W.Kelly, W.Pugh, E.Rosser, and T.Shpeisman. Transitive Closure of Infinite
Graphs and its Applications. Int. J. of Parallel Programming, 24(6):579–598, 1996.

Topic 5
Parallel and Distributed Databases,

Data Mining and Knowledge Discovery

Domenico Talia, Hillol Kargupta, Patrick Valduriez, and Rui Camacho

Topic Chairs

To manage the very large amount of data available today, computer scientists are
working on efficient systems, algorithms and applications that can handle and
analyze very large databases. Intensive data consuming applications are running
on very large databases (on data warehouses, on multimedia databases) with
the task to extract information diamonds. Data mining is one of the key appli-
cations here. However, these intensive data consuming applications suffer from
performance problems and single database sources. Introducing data distribu-
tion and parallel processing help to overcome resource bottlenecks and to achieve
guaranteed throughput, quality of service, and system scalability. Distributed ar-
chitectures, cluster systems and P2P systems, supported by high performance
networks and intelligent middleware offer parallel and distributed databases a
great opportunity to support cost-effective everyday applications.

Data processing and knowledge discovery on large data sources can bene-
fit from parallel and distributed computing both to improve performance and
quality of results. Development of data mining tools on high-performance par-
allel computers allows for analyzing massive databases in a reasonable time.
Faster processing also means that users can experiment with more models to
understand complex data. Furthermore, high performance makes it practical for
users to analyze greater quantities of data. Distribution of data sources and data
mining tasks is another key issue that the increasing decentralization of human
activities and large availability of connection facilities are making more and more
critical.

This year, 9 papers discussing some the those issues were submitted to this
topic. Each paper was reviewed by at least three reviewers and, finally, we were
able to select 3 regular papers. The accepted papers discuss very interesting
issues such as middleware for database replication, mining global association
rules on Grids, and hierarchical aggregation in networked aata management.

We would like to take the opportunity of thanking the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee, and the referees
with there highly useful comments, whose efforts have made this conference, and
Topic 5 possible.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

MADIS: A Slim Middleware for Database Replication�

Luis Irún-Briz1, Hendrik Decker1,
Rubén de Juan-Marı́n1, Francisco Castro-Company1,

Jose E. Armendáriz-Iñigo2, and Francesc D. Muñoz-Escoı́1

1 Instituto Tecnológico de Informática
Universidad Politécnica de Valencia – 46071 Valencia, Spain

{lirun,hendrik,rjuan,fcastro,fmunyoz}@iti.upv.es
2 Dpto. de Matemática e Informática

Universidad Pública de Navarra – Campus Arrosadı́a s/n, 31006 Pamplona, Spain
enrique.armendariz@unavarra.es

Abstract. Data replication serves to improve the availability and performance of
distributed systems. The price to be paid consists of costs caused by protocols by
which a sufficient degree of consistency of replicated data is maintained. Differ-
ent kinds of targeted applications require different kinds of replication protocols,
each one requiring a different set of metadata. We discuss the middleware archi-
tecture used in the MADIS project for maintaining the consistency of replicated
databases. Instead of reinventing wheels, MADIS makes use of basic resources
provided by conventional database systems (e.g. triggers, views, etc) to achieve
its purpose, to a large extent. So, the underlying databases can perform more
efficiently many of the routines needed to support any consistency protocol, the
implementation of which thus becomes much simpler and easier. MADIS enables
the databases to simultaneously maintain different metadata needed for different
replication protocols, so that the latter can be chosen, plugged in and exchanged
on the fly as online-configurable modules, in order to fit the shifting needs of
given applications best, at each moment.

1 Introduction

Providing distributed access to their databases is key for banks, warehouse chains and
large enterprises with geographically widespread branches. Computer applications and
services for such companies must cater for shared accesses to and transactions of local
and global enterprise data, which may be distributed or replicated over several sites.
With databases that are fully replicated in several nodes of the network, read accesses
can be local if a ROWAA [1] policy is used, so that the availability of the data and
the performance of the applications is improved. Employing replication techniques also
benefits the fault-tolerance of the system, improving the ability of the database to be
transparent with regard to local failures and to recover seamlessly.

However, replication has some important drawbacks. The system must introduce a
potential overhead for maintaining the consistency of replicated data [2]. In addition,
applications making use of replication necessitate additional pieces of software in order

� This work has been partially supported by the Spanish grant TIC2003-09420-C02-01.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 349–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

350 Luis Irún-Briz et al.

to manage the access to distributed resources, thus incrementing the complexity of their
development.

In this paper, we describe a new middleware architecture, called MADIS[3], for
supporting the distributed replication and hence the high availability, high perfomance
and high fault tolerance of databases. It is designed as a two-layered architecture, with
the aim to isolate the consistency manager (CM) as a module which is independent of
any underlying DBMS particularities. Additionally, MADIS takes advantadge of ex-
isting database resources for efficiently achieving its tasks, so that the implementation
and execution of protocols is not overburdened by the overhead usually entailed by the
consistency management in replicated databases.

The upper layer consists of the middleware providing the protocol functionalities
for replication and consistency management. The lower layer is an automatically pro-
ducible extension of the original schema of a given database, using exclusively standard
SQL features such as triggers and stored procedures, so as to provide to the upper layer
the information needed to carry out its tasks efficiently. For instance, the set of records
read, written, created or deleted in a transaction is automatically stored in a particular
table of the extended database schema. The consistency protocol thus is able to retrieve
that information, avoiding the use of otherwise necessary additional routines, which
usually tend to be complex and error-prone. As a result, the mechanisms of the middle-
ware to manage the collection, retrieval and removal of such meta-data have become
much simpler, when compared to those needed in other middleware-based systems for
replicated databases, such as COPLA [4]. Of course, the performance of a middleware-
based replicated database will be worse than that of a core-based one, such as Postgres-
R [5], but its advantage is to be independent of, and thus much more easily portable
to other DBMSs. Moreover, the upper layer can be implemented in any programming
language, since the support it needs is fully in the DBMS using SQL.

MADIS supports the pluggability of protocols, such that different kinds of protocols
(ranging over various paradigms, from eager [6, 7] to lazy update propagation [8], from
optimistic to pessimistic concurrency control, etc) can be modularly chosen, plugged
in and exchanged, according to the shifting needs of given applications. An important
feature is that protocol switching is seamless and fast, since it can be performed without
having to recompute the required metadata for a newly plugged-in protocol. In general,
the modularity of the system and the pluggability of protocols provide an unprecedented
openness of the replication middleware.

The rest of the paper is structured as follows. Section 2 describes the structure and
functionality of MADIS. Section 3 describes the schema modification that MADIS pro-
poses to aid a local consistency manager (CM). Section 4 outlines an implementation
of the CM, in the form of a standard JDBC driver. In section 5, a performance analysis
studies the overhead of MADIS over an unmodified PostgreSQL schema. Sections 6
and 7 compare our approach with other systems and summarize the paper.

2 The MADIS Architecture

The architecture proposed by MADIS consists of two main layers, each one providing
a number of functionalities. In essence, the lower of these layers consists of a modi-

MADIS: A Slim Middleware for Database Replication 351

fication in the schema of the underlying database repository, in order to provide and
manage additional tables. We call these tables “report-tables”. The upper layer inter-
cepts requests from the user application, and makes use of the information stored in the
report-tables to perform the consistency management.

The report-tables are automatically maintained in the lower layer. They contain in-
formation accounting the execution of various transactions in the local node. The mo-
difications done in the report-tables are managed inside the same transactional context
as the transaction which these modifications refer to. As the modification of the schema
only uses SQL-99 features, a high degree of portability is ensured. A set of database
procedures is also provided in the schema modification, in order to hide to the upper
layer the details of the schema extension.

The upper layer of the MADIS architecture is positioned between the client ap-
plications and the database. It acts as a database mediator. Common accesses to the
database as well as the commit/rollback requests are intercepted, allowing the consis-
tency protocol to take part in the process. The consistency protocol can gain access to
the incremented schema of the underlying database to obtain information about exe-
cuting transactions, thus performing the actions needed to provide the required consis-
tency guarantees. Finally, the consistency protocol can also manipulate the incremented
schema, making use of the provided database procedures when needed.

The implementation of the upper layer (i.e. the Consistency Manager) can be done
regardless of the underlying database. In this paper, we describe a Java implementation,
designed to be used by the client applications as a common JDBC driver. The function-
ality this driver introduces regarding consistency control over a distributed database is
provided in a transparent way to the user applications. The Consistency Manager is the
core of MADIS. It manages database connections (which may include multiple sequen-
tial transactions, working in different JDBC consistency modes) and controls a set of
database replicas. Moreover, it provides the plug-in for a consistency protocol agent,
which can be chosen according to the requirements of the given application. The sup-
ported protocols share some common characteristics. All the communication performed
between the networked databases is controlled by the local consistency manager.

3 Schema Modification

The lower layer of the MADIS architecture consists of a modification in the schema of
the existing database. The process for distributing an existing centralized database starts
with the execution of a program that performs a schema migration at each replicated
node. This migration consists of the inclusion of tables, views, triggers and database
procedures designed to maintain, automatically, a number of reports about the activ-
ity performed during the lifetime of a transaction. That way, the schema modifica-
tion allows the database to automatically perform the collection and maintenance of
transactions writesets, as well as the metadata pertaining to the different records in the
database1. Optionally, it also collects and manages transaction readsets (possibly in-
cluding the information read to perform queries). If this information is not generated, a

1 As different metadata are needed by different consistency protocols, the extension caters for
all of them.

352 Luis Irún-Briz et al.

consistency protocol requiring such information should perform some additional work
from the upper layer.

The operations needed by the consistency protocols can be performed through a
number of added database procedures, thus enabling an ad-hoc management (not al-
ways required) of the information automatically maintained in the database.

3.1 Modified and Added Tables

For each existing table Ti in the original schema, MADIS defines a number of mo-
difications, relating field additions, view definitions, and others. Therefore, a new field
is added for metadata purposes so as to identify a record on Ti, this new field is called
local Ti oid. To this end, a field is added, defining a link to the metadata associated
with each record in the table Ti

The attribute holds the local object identifier for the record. This identifier is local to
a particular node in the system. Thus, it is possible for an object (identified by a unique
global oid) to have different local Ti oid’s within the system. A global oid is required
for the different nodes in the system, to agree in the identity of each record, regardless
the local identification (sensible to local information).

In addition, MADIS creates for each table in the original schema (Tj) an extra table
(named MADIS Meta Tj), containing the metadata needed for any protocol pluggable
in the consistency manager. When a protocol is activated, MADIS executes a start-up
process, to initialize each “Meta” table in the database. The primary key of the table
consists of a unique object identifier. A typical “Meta” table is described as a tuple:
(local oid (pr.key), global oid, version, transaction id, timestamp).

The MADIS Meta Tj tables contain all the information needed by any replication
protocol pluggable in the system. Hence, as all the fields are automatically maintained
by the database manager, any of such protocols is suitable to be activated at will.

In addition to meta-tables, MADIS defines a table MADIS TrReport containing a
log including the activity of each transaction of the database. The table is as follows:
(trid, global oid, field id (optionally), mode). Where the primary key is composed by:
(trid, global oid, field id). For each transaction, only one record per field-of-object is
maintained, recording the access mode (mode) is recorded for each accessing trans-
action (trid), the global object identifier (global oid) corresponding to the accessed
record, and -maybe- the identifier for the accessed field within the record (field id). In
addition, once the transaction is terminated, the consistency manager eliminates from
this table any record relating the concluded transaction. Note that several MVCC-based
DBMSs (this is not the case of Postgress) do not use locks with record granularity, but
locks that block access to entire pages or even tables. Such systems must use multiple
“per transaction” temporary TrReport tables, including the transaction in the table name
(i.e., these tables have a <trid> TrReport name).

3.2 Triggers

As mentioned, MADIS introduces a set of new triggers in the database schema defini-
tion. These triggers can be classified in three main groups:

MADIS: A Slim Middleware for Database Replication 353

– Writeset managers. They are responsible for the collection of the information relat-
ing the objects written by the executing transactions.

– Readset managers. Collect the information related to the objects read by executing
transactions. Their inclusion in the schema is optional, and when included, it is
requested to be implemented by creating views.

– Metadata automation. These triggers are executed when the metadata stored in the
MADIS extension tables must be updated. The collection and maintenance of such
information is performed automatically by the triggers.

The writeset collection (WSC) is performed defining three triggers for each table Ti

in the original schema. They insert in the TrReport table the information related to
any write-access to the table performed by the executing transactions. These triggers are
named WSC I Ti, WSC D Ti, and WSC U Ti, and its definition allows to intercept any
write access (insert, delete or update respectively) to the Ti table, recording the event in
the transaction report table (TrReport). The following example shows the definition of
a basic WSC trigger, related to the insertion of a new object2 into the table MYTABLE.

CREATE TRIGGER WSC_I_mytable
BEFORE INSERT ON mytable FOR EACH ROW EXECUTE
PROCEDURE tr_insert(mytable, getTrid(), NEW.l_mytable_oid);

Deletions and updates must also be intercepted by means of analogous triggers.
However, as described above, the accessed fields can be optionally included in the
transaction report (depending on the configuration of the MADIS middleware). To
this end, a WSC trigger managing the updates should be split into a number of trig-
gers, one for each field contained in the managed table (WSC U mytable field1,
...WSC U mytable fieldN).

The second group of triggers is responsible for the transactions’ readset collection.
As already mentioned, this collection is optional, due to its high cost, and the fact that
some consistency protocols can be accomplished without using readsets. To implement
this collection, a view must be included for each table in order to compensate the lack
of TRIGGER ...BEFORE SELECT in the SQL-99 standard. The original table must
be renamed, and replaced by the new trigger. As views cannot be updated in several
DBMSs, it becomes also necessary for the WSC triggers to be modified, in order to redi-
rect the write accesses to the renamed original table. This can be done by implementing
the WSC triggers as ’INSTEAD OF event’ triggers, (in contrast to the basic BEFORE
event detailed above). Finally, the tr insert, tr update and tr delete pro-
cedures should be modified, in order to include the required redirection.

The last group of triggers added by MADIS is those responsible for the metadata
management. In fact, this management can be disseminated in the WSC triggers detailed
in this section. However, we describe here the metadata management implementation
as independent triggers, in order to simplify the discussion. Whenever a new record is
inserted, the DBMS must automatically insert the corresponding row in the metadata
table. To this end, MADIS includes, for each table Ti, a trigger that inserts a row in
the corresponding MADIS Meta Ti table. As the global oid is established based
on the creator node identifier (i.e. the node where the object was created), and the lo-

2 Note that the trigger executes the procedure getTrid() to obtain the transaction identifier.

354 Luis Irún-Briz et al.

cal object identifier in the creator node (managed in the MADIS Global table), all
fields contained in the MADIS Meta Ti table can be filled without intervention of
any consistency protocol.

Following the life-cycle of a row, when a row is accessed in write mode, the DBMS
must intercept the access, and the metadata (e.g. version, timestamp, etc) of such ob-
ject must be updated. To this end, a specialized metadata maintainer (MM) trigger is
included for each table. The MM trigger updates the version, the transaction
identifier, and timestamp of the record in the given metadata table. Finally,
when an object is deleted, the corresponding metadata row must be also deleted. To this
end, an additional trigger is also included for each table in the original schema.

Summarizing the tasks performed by the described triggers, it is easy to see that,
for each table, only three triggers must be included: BEFORE INSERT, BEFORE UP-
DATE, BEFORE DELETE. Their implementation include both the transaction report
management, and the metadata maintenance. If the readset management is a require-
ment, it is necessary to replace the definition of the triggers, implementing INSTEAD
OF triggers, in contrast to BEFORE triggers. This allows the DBMS to redirect any write
access to the adequate table, as well as to perform the metadata maintenance and the
transaction management.

4 Consistency Manager

The architecture proposed by MADIS makes use of the database as the manager for
most information related to consistency management. Moreover, the DBMS also pro-
vides the collected information to the consistency manager (CM) (situated on top of the
database) with standardized structures.

Thus, the consistency management can be ported from a platform to another with a
minimal effort. The rest of this section shows a Java implementation of a CM making
use of the described schema modification.

Our Java implementation of the CM allows a pluggable consistency protocol to
intercept any access to the underlying database, in order to coordinate both local ac-
cesses, and update propagation of committed local transactions (and, consequently, the
local application of remotely committed transactions).

In our basic implementation of MADIS, we implement a JDBC driver that encap-
sulates an existing PostgreSQL driver, intercepting the requests performed by the user
applications. The requests are transformed, and a new request is elaborated in order to
obtain additional information (as metadata). The user perception of the result produced
by the requests is also manipulated, in order to hide to the user applications the addi-
tionally recovered information. This mechanism allows the plugged replication protocol
to be notified about any access performed by the application to the database, including
query execution, row recovery, transaction termination requests (i.e. commit/rollback),
etc. Thefore, the protocol has a chance to take specific actions during the transaction
execution so as to accomplish its tasks.

Java user applications request a MADIS Connection, specifying the JDBC Driver
to be used by the middleware to access the database. Query executions are also inter-
cepted by MADIS encapsulating the Statement class. As response of user invocation

MADIS: A Slim Middleware for Database Replication 355

madis.Statement

mS

postgressql.
Statement

pS

madis.Coremadis.
ResultSet

postgresql.
ResultSet

executeQuery(sql)

parseQuery(trid, sql)

pR

madis.Protocol

processQuery(sql_tree)

sql_tree’

sql’
executeQuery(sql’)

pR

<<create>>(pR) mR

mR

next()
next()

next(oid) toRead(oid)

(NODE 2)
madis.Protocol

REPLICA

INTERACTION
(not always needed)

REPLICA

INTERACTION
(not always needed)

Fig. 1. Query Execution

to createStatement or prepareStatement the MADIS Connection gen-
erates Statements that manage user queries execution. When the user application
requests a query execution, the request is sent to the MADIS Core class, which calls
the processStatement() operation of the plugged consistency protocol.

Once this is done, the consistency protocol may modify the statement, adding to it
the patches needed to retrieve some metadata, or collect additional information3 into
the transaction report. However, this statement modification is only needed by a few
consistency protocols, which also have the opportunity to retrieve these metadata using
additional sentences (on the “report-tables”) once the original query has been com-
pleted. Optimistic consistency protocols do not need such metadata (like current object
versions, or the latest update timestamps for each accessed object) until the transaction
has requested its commit operation. So, they do not need these statement modifications
on each query. The process for queries is depicted in figure 1.

Either if the application requests a commit as well as when a rollback is invoked,
MADIS must intercept the invocation, and take additional actions. When the user ap-
plication requests a commit operation, the MADIS Connection redirects the request
to the MADIS Core instance. Then, the plugged protocol is notified, having then the
chance to perform any action involving other nodes, access to the local database, etc.
If the protocol concludes this activity with a positive result, then the transaction is suit-
able to commit in the local database, and the MADIS Core responds affirmatively to the
Connection request. Finally, the MADIS Connection completes locally the com-
mit, returning the completion to the user application after the notification to the MADIS
Core. On the other hand, a negative result obtained from the protocol activity will be
notified directly to the application, after the abortion of the local transaction. Finally,
rollback() requests received from the user application must be also intercepted,
redirected to the MADIS Core statement, and notified to the plugged protocol.

3 The ResultSet should be also encapsulated in order to hide such included metadata.

356 Luis Irún-Briz et al.

5 Experimental Results

As presented above, the proposed architecture is based on the modification of the
database schema of an existing information system. With this technique, the database
manager is the main responsible of generating and maintaining the information needed
by any pluggable replication protocol to accomplish the tasks of consistency mainte-
nance, concurrency control, and update propagation.

However, an important question to be discussed is the cost to be paid by the system
from obtaining such benefits. This question, for our architecture, corresponds with the
degree of performance degradation of the underlying database manager. Due to the
overload introduced by the schema modification (i.e. triggers, procedures, added tables,
etc) in the database, the database manager must deal with additional queries and this
will redound in overheads from the common database functionality.

In spatial terms, the overhead introduced by the schema modification is easy to be
determined, and leads out of the scope of this paper. Regarding computational overhead,
our architecture introduces a number of additional SQL sentences and calculations for
each access to the database when comparing with accesses to the original schema. Sum-
marizing, Insertion, Update and Deletion operations need additional insertions on the
TrReport table, and other operations with the corresponding MADIS Meta Tj table.
In contrast Selection overhead varies depending on the plugged protocol. The readset
collection may be performed in most of the cases by the middleware, just including the
local Ti oid in the SQL sentences executed in the database. Thus, this inexpensive oid
inclusion is often the overhead introduced in Selection operations. In this section, we
discuss the overhead introduced in Insertion, Update and Deletion operations, due to
the relevance of the overhead in these operations. We are using a dummy consistency
protocol, in order to calculate just the overhead introduced by the architecture.

The experiments consisted of the execution of a Java program, performing database
accesses via JDBC. The schema used by the program contains four tables (CUSTOMER,
SUPPLIER, ARTICLE, and ORDER). Each article references a row in the SUPPLIER
table, and each ORDER references a CUSTOMER row, as well as an ARTICLE row. Each
table contains additional fields as item description (a varchar[30]).

overhead (in ms)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 20
 40
 60
 80

 100
 120
 140

ms

(a) Absolute (ms) Overhead

overhead (in %)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5 2

 2.5 3
 3.5

 4
 4.5

 5

numrows

 100
 200
 300
 400
 500
 600
 700

%

(b) Relative (%) Cost

Fig. 2. Mean Overhead

MADIS: A Slim Middleware for Database Replication 357

For each measurement, the experiment provides three values: the total cost of the
numtr transactions of type I, U and D respectively, each one acting with numrows rows
per table. We observed that deletions are the most overheaded operations in our core
implementation. For a more accurate description of the overhead we calculated the time
cost per transaction (figures 2 and 2(b)).

The results stabilized with a few number of transactions, which indicates that the
system does not suffer appreciable performance degradation along the time. In addition,
it is shown in figure 2 that the overhead per transaction is always lower than 80 ms in
our experiments. Besides, figure 2(b) shows that the sensitivity for numrows is unap-
preciable (the system scales well in relation to managed rows) for any of the transaction
types (I,U, and D). We concluded that our implementation of the MADIS database core
introduces bounded overheads for Insertion and Update operations. However, Delete
operations cause the schema modification to produce a dangerous, although bounded
relative degradation of the performance (600% for 6000 rows deleted).

In GlobData, a middleware was developed to be used as a research tool in the field
of replication protocols. In fact, several protocols were designed, developed, and imple-
mented using this middleware. However, the architecture used in Globdata (COPLA)
did not be conceived to provide low overheads in order to provide the required metadata
to the plugged protocols. We include a comparison with COPLA. In the same condi-
tions as the ones depicted in the previous subsections, we executed an equivalent test
using COPLA. The conclusions (fig.3(a)) were that COPLA has a poor scalability for
Update and Delete operations (50 and 200 times more costly than the standard schema).

overhead (in %)

COPLA I
COPLA U
COPLA D

 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 5000

 10000

 15000

 20000

 25000

 30000

%

(a) COPLA

overhead (in %)

RJDBC I
RJDBC U
RJDBC D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 50

 100
 150
 200
 250
 300
 350
 400
 450

%

(b) RJDBC

Fig. 3. Relative Overhead

Finally, the MADIS architecture was compared with RJDBC. We consider RJDBC
a lower bound of the achievable results in respect of metadata collection, although such
approach doesn’t scale well with regard to the number of connected nodes, due to the
replication technique used (eager, pessimistic, and linear interaction). In RJDBC, there
is no metadata maintained in the system. In contrast, all the requests to the database
are just broadcast to any node in the system. When there is a unique node (as in our
experiments), the system introduces a minimal overhead, consisting in the management
of the requests. The experiments showed (figure 3(b)) that the system overhead remains

358 Luis Irún-Briz et al.

stable proportionally to the number of rows processed. However, it is also shown that the
overhead introduced for I and U operations is comparable to the introduced by MADIS.

6 Related Work

Considering the way the metadata collection is implemented, replication approaches
can be classified as Middleware-based (where all the work is performed by a middle-
ware external to the database), Trigger-based (where the collection is performed by
triggers and callbacks to external procedures), Shadow-Table-based (using the shadow
copies in order to build the update messages needed by other replicas), and Control-
Table-based (based on timestamping of each row of the database). Each technique has
its own benefits and drawbacks, as described in [9, 10]. There have been many imple-
mentations of middleware software providing database replication services.

In Postgres-R and Dragon [7], a DBMS core is modified in order to include dis-
tributed support to the database engine. This approach has a strong dependency on the
database engine for which the system is developed, and it must be reviewed each time
the original DBMS software release is updated. On the other hand, its performance is
generally better than the one achievable using a middleware-based architecture.

In Globdata [4, 11], a middleware providing a standard API for Java applications
was presented as a general solution for distributed database access. The system also
included a heavy Relational-Objectual transformation. This allows the applications to
make use of an object-oriented database schema, and the system translates this schema
to a relational database. The system, although allows multiple consistency protocols
to be plugged into, provides a propietary API for the applications to gain access to
distributed databases, reducing the generality of the solution.

Also specific solutions for Java, implemented as a JDBC driver can be found in
C-JDBC [12] and RJDBC [13]. The former emphasizes load balance issues, whilst the
latter puts special attention to reliability. The implementation of these approaches are
centered in Java, and porting the solution to other platforms has a high complexity, due
to the characteristics of the specific techniques.

Finally, PeerDirect [9] uses a technique based on triggers and procedures to repli-
cate a database. However, the system only includes one consistency protocol, providing
particular guarantees, well fitted for a limited kind of applications.

7 Conclusions

Different applications require different kinds of managing replicated information.
Hence, an adequate choice of appropriate replication protocols is due. Hence, a mid-
dleware which provides flexibile support for choosing, plugging in, operating and ex-
changing suitable protocols, including a homogeneous access to replicated databases,
is desirable for many applications.

MADIS is a platform designed to provide such functionality. It supports an am-
ple spectrum of diferent kinds of replication protocols. It is conceived as a two layers
architecture. Most of the actual work is accomplished by the lower layer, which is im-
plemented as part of an extension of the database schema. Its implementation makes

MADIS: A Slim Middleware for Database Replication 359

use of standard SQL-99 database resources such as tables, views, triggers, constraints
and stored procedures. Being independent of the underlying DBMS, its portability is
easy and smooth. The lower layer consists of the collection of all information related to
the accesses performed by the database transactions of a given application.

The upper layer makes use of this automatically collected information, by notify-
ing the transactions’ accesses to the currently plugged-in replication protocol. MADIS
provides and allows to choose, plug in, run and perform on-the-fly exchanges of a wide
range of different protocols, each one offering a particular choice of guarantees and
behaviours to the user transactions. The implementation of this upper layer is simple
enough to be ported from one platform to another with a minimal cost.

In this paper, we have described the MADIS lower layer, which is implemented as a
set of SQL statements that modify the original database schema. As for the upper layer,
we have exemplified the outlines of an implementation providing a Java JDBC standard
API. This implementation enables a transparent, standard-conform access to replicated
databases, without the need to make changes to the applications’ code.

References

1. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley (1987)

2. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution.
In: Proc. of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Canada (1996) 173–182

3. Instituto Tecnológico de Informática: MADIS web site. http://www.iti.es/madis (2004)
4. L.Irún, F.Muñoz, H.Decker, J.M.Bernabéu: COPLA: A platform for eager and lazy replica-

tion in networked databases. In: 5th Int.Conf. Enterprise Information Systems. Volume 1.
(2003) 273–278

5. Kemme, B.: Database Replication for Clusters of Workstations. PhD thesis, Swiss Federal
Institute of Technology, Zurich, Switzerland (2000)

6. Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast in replicated
databases. LNCS 1300 (1997) 496–503

7. Kemme, B., Alonso, G.: A suite of database replication protocols based on group communi-
cation primitives. In: Intl.Conference on Distributed Computing Systems. (1998) 156–163

8. Ferrandina, F., Meyer, T., Zicari, R.: Implementing lazy database updates for an object
database system. In: Proceedings of the Twentieth International Conference on Very Large
Databases, Santiago, Chile (1994) 261–272

9. PeerDirect.: Overview & comparison of data replication architectures (white paper) (2002)
10. Sybase, Inc.: Replication strategies: Data migration, distribution and synchronization. White

paper (2003) 30 pages.
11. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The GlobData fault-tolerant

replicated distributed object database. In: Proceedings of the First Eurasian Conference on
Advances in Information and Communication Technology, Teheran, Iran (2002)

12. ObjectWeb: C-JDBC web site. Accessible in URL: http://c-jdbc.objectweb.org (2004)
13. Esparza-Peidro, J., Muñoz-Escoı́, F.D., Irún-Briz, L., Bernabéu-Aubán, J.M.: RJDBC: A

simple database replication engine. In: 6th Int.Conf.Enterprise Information Systems. (2004)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 360–369, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Aggregation
in Networked Data Management

Pedro Furtado

DEI /CISUC, Universidade de Coimbra, Portugal
pnf@dei.uc.pt

Abstract. The recent trend towards peer-to-peer and networked data manage-
ment raises some challenging issues regarding data placement and processing.
Additionally, as data management environments change from a machine into a
local area network and from there into a global inter-network, the context of
application of parallel query processing changes. In this paper we analyze paral-
lel processing of aggregation queries in different networked contexts. First we
describe briefly the Node-Partitioned Data Manager architecture and the aggre-
gation processing in that architecture. We identify a performance bottleneck in
the basic typical parallel aggregation strategy and discuss the use of hierarchical
aggregation to overcome the problem. We analyze and compare the strategies
both analytically and experimentally by means of a model and a simulator ca-
pable of generating different networked settings. This allowed us to compare
the influence of different parameters on the performance. We were able to show
the increased efficiency of the strategy and also to analyze and obtain interest-
ing results of its behavior in varied settings.

1 Introduction

Processing and performance issues in parallel and distributed databases have received
lots of attention in the past. One of the interesting issues was the advantage of using
clusters of lower-cost nodes to process efficiently against databases in general, typi-
cally under generic online transaction processing (OLTP) workloads and sometimes
more complex analysis query workloads. The main issues in such environments in-
clude data allocation, query processing and load balancing. Not all database access
patterns benefit linearly (linear speedup) from parallel architectures and some can
have much less than linear speedup unless expensive massively parallel hardware is
used. Extra overheads such as data exchange costs and resource access contention are
reasons for this. To minimize query response time of a node-partitioned data man-
agement system in a LAN or global inter-networked environment, it is important to
consider placement and processing strategies that promote simultaneous parallel
processing of most of the query by component processing nodes. This is the objective
of our architecture – the Node-Partitioned Data Management architecture (NPDM). In
this paper we review the main features of the NPDM system and then concentrate on
the processing of aggregation queries over NPDM. We identify a performance bottle-
neck in the basic parallel aggregation algorithm and describe an alternative solution
based on hierarchical aggregation. We analyze the strategies both analytically and by
means of simulation experiments to test over different networked contexts.

Hierarchical Aggregation in Networked Data Management 361

The paper is organized as follows: section 2 discusses related work. Section 3
overviews the Node Partitioned Data Management system. Section 4 discusses the
aggregation processing alternatives and a simplified model for comparative purposes.
In section 5 we describe our simulation experiments and analyze experimental results
for varied scenarios. Section 6 concludes the paper.

2 Related Work

A large body of work exists in applying parallel processing techniques to relational
database systems. The objective is to apply either inter-query or intra-query parallel-
ism to improve performance. In [4] the authors review parallel processing in data-
bases, speedup and scalability issues in parallel database systems, including shared-
nothing environments, as the basis for the future of high-performance database com-
puting. Query processing in parallel and distributed databases has been the focus of
much research on the database field [1, 2, 3, 11, 13]. Parallel processing of most op-
erators, including aggregation, is typically based on parallel processing by nodes,
followed by merging the results (e.g. [4]). Although standardized relational algebra
operators used in databases lend themselves well to parallelization, issues are raised
concerning mainly communication and merging overheads in not so fast communica-
tion mediums. These overheads can be especially relevant during the processing of
distributed join and aggregation operations. Parallel Hash Join algorithms are de-
scribed in [5, 8, 7, 11]. In [12] the authors discuss parallel aggregation but in the
context of fast parallel machines. In contrast, we analyze aggregation in a generic
networked environment, study the merging performance bottleneck, propose hierar-
chical aggregation and compare the alternatives in networked settings.

Data placement, although not the main focus in this paper, is another important is-
sue in parallel and distributed database architectures [14, 15], due to the large data
exchange overhead required to repartition relations for join and aggregation process-
ing in a parallel setting (e.g. see [11]). Workload-based partitioning [9, 17, 6] aims at
minimizing these overheads.

We consider that the nodes holding the schema can be in a fast local LAN, com-
pletely distributed in the global inter-network or in an intermediate layout. Using
strategies such as the one in [10], it is possible to select overlay servers to hold a
schema based on cost locality.

3 The Node-Partitioned Data Manager

We assume either a non-dedicated local area network (LAN) or a more generic net-
worked environment. Given the data to be processed, a number of nodes will hold
and process the schema to answer queries to submitting clients. Figure 1 provides an
overview of the NPDM modules. The node manager (NM) is responsible for adding
and removing nodes from the system (including data reorganization in such advents),
managing addressing information at each node and overseeing replicas and node
replacement in case of node failures. The Storage Manager (SM) is responsible for
the administration of object persistence. This includes storage, retrieval, replication

362 Pedro Furtado

and migration of objects in response to requests. Each node holding schema data has
a local database engine (DBE) which is part of the storage manager. The Data Man-
ager (DM) offers data management typical of a DBMS on a different networked con-
text.

Fig. 1. NPDM Modules

Tuple Management: the NPDM implements parallel processing of tuples over the
network. Nodes participating in the storage and processing of complex queries are
expected to have a simple database-like engine (DBE) as part of their storage man-
ager (SM) to handle local data management. As in relational databases, schemas
comprise relations (tables) made of sets of tuples and the SM maintains the relation
metadata at each node. Given a relation R with tuples of the form T(attr1,…,attrn),
the relation can either be fully replicated or fully partitioned using a hash table func-
tionality. In the last case one attribute must be chosen as the tuple identifier (tid) by
the partitioning and placement algorithm [9, 17, 6]. Like in a distributed hash table
(DHT) environment, nodes receive tuples (objects) determined by the hash-value and
the object to be inserted is the tuple with oid=tid. This strategy enables a tuple to be
looked up directly in the node holding it using its tuple identifier. Consider for in-
stance the relation PART(partkey, name, mfgr, brand, type, size). If oid=partkey, the
relation will either be fully replicated into all nodes or fully partitioned by partkey.

Partitioning and placement in this environment should be tailored to the workload
and objectives of the schemas. As in typical parallel and distributed databases, a
workload-based partitioning and placement approach can be used [9, 17, 6]. In dis-
tributed systems with slow interconnects (e.g. global internetworking environments)
data exchange requirements should be minimized. To that end, small infrequently-
modified relations can be replicated to minimize data exchange requirements for
processing joins. Large data sets can instead be fully partitioned to take advantage of
the parallel environment.

4 Processing of Aggregation in NPDM

Consider a generic NPDM setting with several nodes in which any node can submit a
query. The typical query processing cycle of NPDM is shown in Figure 2.

The query is first rewritten in step 1. Step 2 “Send Query” forwards the query into
all nodes. Step 3 computes partial results and step 4 forwards those results into a
merging node. Step 5 applies the merge query. Step 6 may be necessary in some que-
ries containing subqueries, to redistribute results into processing nodes for another
processing cycle. Aggregation is a very common operation. For instance, the follow-

Hierarchical Aggregation in Networked Data Management 363

ing SQL query in Figure 3 (from the TPC-H performance benchmark [18]) computes
the sales of each brand per month:

SELECT p_brand, year_month, sum(l_quantity), count(*)
FROM JOIN lineitem LI, part P, time T, supplier S
WHERE year_month>= '1997' AND supplier = ‘X’
GROUP BY to_char(l_shipdate,'yyyy-mm'), p_brand, year_month;

Another example of aggregation is the number and duration of accesses to sites or
pages grouped by day, week or month and by country or region. These queries typi-
cally contain group-by attributes that allow the aggregation to be determined for each
group. Our objective is to process these queries efficiently. Aggregation produces
some statistical results (sum, count, average, deviation, etc) for each group and
groups are determined by grouping attributes. In a parallel or distributed setting with
possibly slow interconnects, this aggregation can best be handled using the following
scheme, which adheres to the diagram of Figure 2: each node needs to apply an only
slightly modified query on its partial data (steps 1, 2 and 3) and the results are merged
by applying the same query again at the merging node with the partial results coming
from the processing nodes (steps 4 and 5). Figure 3 illustrates this process for a sim-
ple sum query:

Fig. 3. Typical SUM Query over NPDM

While the sum operation was unchanged in the query rewrite step of Figure 3,
other aggregation operators need slight modifications. In practice simple additive
aggregation primitives are computed in each node, from which the final aggregation
function is derived. The most common primitives are: (LS, SS, N, MAX, MIN - lin-
ear sum LS = sum(x); sum of squares SS = sum(x2); number of elements N, extremes
MAX and MIN).Examples of final aggregation functions are:

== (1)

Fig. 2. Query Processing Steps in NPDM

364 Pedro Furtado

== (2)

= (3)

−
= (4)

This means that the query transformation step needs to replace each AVERAGE
and STDDEV (or variance) expression in the SQL query by a SUM and a COUNT in
the first case and by a SUM, a COUNT and a SUM_OF_SQUARES in the second
case to determine the local query for each node and by the expressions (1) to (4) in
the final merging query. Figure 4 shows an example of aggregation query processing
steps with those steps numbered according to Figure 2.

0. Query submission:
Select sum(a), count(a), average(a), max(a),
min(a),
stddev(a), group_attributes
From data set
Group by group_attributes;

1. Query rewriting and distribution to each
node:
Select sum(a), count(a), sum(a x a), max(a),
min(a), group_attributes
From data set
Group by group_attributes;

4. Results sending/collecting:
Create cached table
PRqueryX(node, suma, counta, ssuma, maxa,
mina,
group_attributes)
as <insert received results>;

5. Results merging:
Select sum(suma), sum(counta),
sum(suma)/ sum(counta), max(maxa),
min(mina)
(sum(ssuma)-sum(suma)2)/sum(counta), ga
From UNION_ALL(PRqueryX)
Group by group_attributes;

Fig. 4. Basic Aggregation Query Steps

When aggregation results are a few set of tuples, steps 4 and 5 are not expensive.
However, this is not always the case, as the number of nodes and/or groups can be
very large. In such cases, while the processing was done in parallel by all nodes, the
partial results collection (step 4), buffering and merging into a single node (step 5)
may become a serious bottleneck. Depending on the environment, the submit-
ter/merging node may even be an under-performant node in a peer-to-peer computing
environment. Hierarchical aggregation can be used to reduce the overhead in such
cases. Instead of concentrating the results collection and final aggregation in a single
node (Figure 5a), aggregation is divided into several smaller aggregation steps along
the way (Figure 5b). Intermediate merging nodes receive and merge the partial result
sets from incoming nodes, then propagate the merged partial results into the next
merging step until the final merging node.

The hierarchy can be configured on-the-fly, by the submitter node sending to each
other node, together with the query, the identifier of the node to route the answer into.
Next we derive a simplified cost model for comparison purposes. We consider a unit
processing cost P. This processing cost accounts for buffering, reading partial results,
applying the aggregation merge queries and writing the results. For simplicity, we
assume that the processing cost is monotonically increasing with the size of the data
set to be processed.

Hierarchical Aggregation in Networked Data Management 365

 (a) Centralized Aggreg. Merge (CA) (b) Hierarchical Aggregation (HA)

Fig. 5. Hierarchical Aggregation in NPDM

As it is hard to model precisely the cost involved in sending and queuing the data
from origin nodes to a destination node, we simplify by assuming the communication
cost C – the communication cost accounting for the cost of sending the data through
the network medium if there were no delays - and a queueing cost resulting from
many incoming fluxes going into a single node, with unitary value Q. We also as-
sume the queuing cost to be monotonically increasing with data size. Consider also
partial result sizes S and a number of nodes n.

With this simplified model the cost of the centralized aggregation scheme (CA) in
Figure 6a is:

−××+−××+ (5)

In this expression the no-delay communication cost (C) depends only on the largest
route latency. The queuing or delay cost (unit Q) is modeled as increasing linearly
with the size of the data set (S) and the number of incoming streams into a single
node (n-1). The processing cost P is also modeled as increasing linearly with S and n.
Hierarchical aggregation (HA) offers the potential to reduce the overhead by essen-
tially decreasing the queuing and processing costs, as shown in equation (6):

[]××+××+×− (6)

In this expression f is the fanout of each node at each level (for simplicity we consider

equal fanouts); − accounts for the number of levels in the hierarchy (mi-

nus 1). The number of hierarchical steps and both queuing and processing are as-
sumed to be done in parallel by the decentralized merger nodes, each one with the
load of f x S. We assume that the worst communication cost C in each level in Figure
5b is the same as the worst cost in Figure 5a.

The comparison between expressions (5) and (6) shows that, due to increased par-
allelism, hierarchical aggregation decreases both queuing and processing costs each

by a factor F1= []×−−− . On the other hand, it increases com-

munication costs by a factor F2= −− , so that (5)-(6) is:

−+××=Δ (7)

For instance, if f=2 and n=16, F1=9 (9 times faster) and F2=2 (two times slower). Ex-
pression (7) shows that, with this cost model, HA is expected to improve the per-
formance of aggregation in most cases, but if C becomes large, this effect can vanish.

366 Pedro Furtado

5 Experimental Results

Our objective in this section is to compare the performance of the alternative aggrega-
tion algorithms. In order to compare those algorithms, we have built a network simu-
lation environment. We devised an inter-network (Figure 6) with three subnet catego-
ries, based mainly on link latency/bandwidth considerations. The objective was to test
the algorithms considering nodes with varied inter-node “costs”: LOCAL - high-
speed local network (LAN-like with inter-node latencies of 0.1ms);
INTERMEDIATE HUBS - intermediate latency interconnects (inter-node latencies of
1ms); GLOBAL – larger latency interconnections (inter-node latencies of 4ms). This
is similar to a transit-stub (TS) topology [16] but considering 3 network categories.
Inter-node links were generated following a strategy similar to [16] as well.

Fig. 6. Network Topology

The experimental setup was based on the generation of four 100 node hubs linked
through the transit network. Each hub harbored five 200 node LANs. From these
nodes we generated three node sets by picking nodes randomly: a LOCAL set based
on picking nodes from a LAN; a HUB set, by picking nodes from all LANs within a
single HUB; a GLOBAL set, by picking nodes randomly from all LANs, therefore
going through all hubs. This setup was used to measure the time taken to exchange
data (C + Q costs in the analytical expressions of (7) and (8)). The processing cost
was measured by submitting the merge aggregation query against the number of par-
tial result data sets for each case, over an Oracle database and measuring the time
taken to process them and obtain the results (P). We tested “overlays” configured
with 10, 25, 100 and 200 nodes for each case. The basic parallel aggregation strategy
was setup by centralizing result sets into a single merge node (CA). For hierarchical
aggregation (HA) we considered alternatives with different number of levels, but in
this paper we discuss a single alternative with three levels (HAggreg) for lack of
space. The node fanout was configured approximately equal for all nodes (with small
adjustments to yield the desired number of nodes). We show and analyze only the
most relevant selected results from a large pool of results we were able to obtain.

5.1 Comparing Aggreg to HAggreg

The results of Figure 7 compare the performance of Aggreg to HAggreg by measur-
ing the response time (data exchange + merge) to aggregate a data set from 25 nodes
(similar results were obtained when aggregating over 10, 100 or 200 nodes). We
considered partial result set sizes of 50MB, 100MB, 200MB and 400MB, meaning

Hierarchical Aggregation in Networked Data Management 367

that each node produces such a partial result set. The three cases shown correspond to
LAN (a), HUB (b) and GLOBAL (c) environments.

As expected, these results show that HAggreg improves the response time consid-
erably when compared with Aggreg. The comparison between the cases (a, b and c)
also shows that the advantage of using HAggreg measured relative to Aggreg is lar-
ger in a LAN environment and decreases as we move from there to Hub and from
Hub to Global context - HAggreg took about 40%, 75% and 85% of the time that
Aggreg took, respectively (although in absolute terms the response time difference
increases from LAN to GLOBAL). This effect is due to a significant increase in
communication and queuing delays, as the data needs to travel the much larger HUB
or GLOBAL network paths. In section 4 we also predicted this possibility using the
analytical model expressed in (7) and (8). In the next subsection we detail the contri-
bution of data exchange and merge components to the response time.

5.2 Detailing Data Exchange and Merge Costs

Figure 8 compares the data exchange cost to the total data exchange plus merge cost
in the LAN, HUB and GLOBAL contexts considering Aggreg (similar comparative
results were obtained for HAggreg). From these Figures it is clear that the data ex-
change overhead is a small component in a LAN environment (a), but gradually be-
comes more relevant as the environment moves into the GLOBAL case (c), which

(a) LAN (b) HUB

(c) GLOBAL

Fig. 7. Response Time Aggreg VS HAggreg (25 nodes)

368 Pedro Furtado

also supports the analysis done in 5.1. Again, similar results were obtained for 10,
100 and 200 nodes.

These experiments have shown that HAggreg is a viable alternative to Aggreg
when partial result sets that must be merged are large. We have also been able to
compare different scenarios (local, hub and global) to conclude that the advantage of
HAggreg deteriorates as we move to more data exchange costly environments. Fi-
nally, the experiments also allowed us to detail the contribution of data exchange
costs (C+Q in the simplified model of (7) and (8)) and aggregation merge costs ((P)
in (7) and 8). The results shown were selected from an extensive set of experiments.
We have also tested other issues such as the influence of the number of levels in the
hierarchical aggregation strategy, but do not include it here for lack of space.

(a) LAN (b) HUB

(c) GLOBAL

Fig. 8. Comparison Data Exchange / Merge Costs

6 Conclusions

In this paper we have studied aggregation processing in a networked data manage-
ment system. We have analyzed and compared the use of two parallel aggregation
alternatives: simple and hierarchical aggregation, with the objective of reducing the
bottleneck related to centralized merging and therefore optimizing response time. Our
experimental objectives were to compare the approaches and alternatives considering
different networked environments, from a local LAN to a global inter-network. The
results have allowed us to compare different settings, number of nodes and result
sizes and also to analyze the contribution of data exchange and data merging opera-
tions. We conclude that the hierarchical aggregation is a useful strategy but its results
are dependent on the characteristics of the networked environment. Future work on

Hierarchical Aggregation in Networked Data Management 369

this subject includes a cost-based approach to determine the most appropriate strategy
and configuration to process aggregations in such an environment.

References

1. M. Akinde, M. Bohlen et al., “Efficient OLAP Query Processing in Distributed Data Ware-
houses”. EDBT'02, Czech Republic March 2002.

2. P.A. Bernstein et al. “Query Processing in a System for Distributed Databases (SDD-l)”,
ACM Trans. Database Systems, vol. 6, no. 4, pp. 602-625, Dec. 1981.

3. Chen, Hao, C. Liu: “An Efficient Algorithm for Processing Distributed Queries Using Par-
tition Dependency”, International Conference on Parallel and Distributed Systems,
ICPADS 2000: 339-346.

4. David J. DeWitt, Jim Gray, “Parallel Database Systems: The Future of High Performance
Database Processing”, Communications of the ACM, 1992.

5. David J. DeWitt, Robert Gerber, Multiprocessor Hash-Based Join Algorithms, Procs. 11th
VLDB Conference.

6. P. Furtado: “Hash-based Placement and Processing for Efficient Node Partitioned Query-
Intensive Databases”, International Conference on Parallel and Distributed Systems,
ICPADS 2004.

7. M. Kitsuregawa, H. Tanaka, and T. Motooka. Application of hash to database machine and
its architecture. New Generation Computing, 1(1):66-74, 1983.

8. Liu, Chengwen and Hao Chen, “A Hash Partition Strategy for Distributed Query Process-
ing”, EDBT 1996.

9. J. Rao et al. “Automating physical database design in a parallel database”. SIGMOD
Conference 2002: 558-569.

10. Ratnasamy et al., “Topologically-Aware Overlay Construction and Server Selection”,
INFOCOMM02.

11. Shasha, Dennis et al.: “Optimizing Equijoin Queries In Distributed Databases Where Rela-
tions Are Hash Partitioned”. ACM Trans. on Database Systems, V 16, N. 2, June 1991.

12. Shatdal, A., Naughton, J. F.: “Adaptive Parallel Aggregation Algorithms”. In Proceedings
of the 1995 ACM SIGMOD Int’l Conference on Management of Data, San Jose, Califor-
nia, May 22-25, 1995.

13. Teradata Corporation. Database Computer System Concepts and Facilities. Document C02-
0001-01, Teradata Corporation, Los Angeles, Oct. 1984.

14. Yu, C. T., Guh, K. C., Brill, D. and Chen, A. L. P.: Partition strategy for distributed query
processing in fast local networks. IEEE Transactions on Software Engineering, Vol. 15,
No. 6, pp. 780-793, June 1989.

15. Zhou S., M.H. Williams, “Data placement in parallel database systems,” Parallel Database
Techniques, IEEE Computer Society Press, 1997.

16. E. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an Internetwork,” in Proceed-
ings IEEE Infocom ’96, CA, May 1996.

17. Zilio, Daniel C et al., “Partitioning Key Selection for a Shared-Nothing Parallel Database
System”. IBM Research Report RC 19820 (87739) 11/10/94.

18. TPC-H, Transaction Processing Council Benchmark TPC-H, www.tpc.org.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 370–378, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mining Global Association Rules on an Oracle Grid
by Scanning Once Distributed Databases

Frank Wang1 and Na Helian2
1 Centre for Grid Computing

Cambridge-Cranfield High-Performance Computing Facilities, UK
frankwang@ieee.org

http://www.hpcf.cam.ac.uk/research.html
2 Department of Computing, Communication Technology and Mathematics

London Metropolitan University, UK
n.helian@londonmet.ac.uk

Abstract. Oracle 10g is a commercial infrastructure specifically designed for
enterprise grid computing. On an Oracle Grid, we implement a ScanOnce algo-
rithm to mine global association rules in support of the third generation of data
mining systems on distributed and massive data. The ScanOnce algorithm does
not need to ship all of local data to one site thereby not causing excessive net-
work communication cost. The power of generating ad hoc queries in SQL en-
sures fast access to any desired counter.

1 Introduction

Grid computing offers an opportunity to improve the existing IT infrastructure while
lowering costs. Oracle's grid infrastructure virtualizes and provisions IT resources,
making them available to applications and users on demand [Shimp, 2005]. Oracle
10g (“g” stands for “grid computing”) is a commercial infrastructure specifically
designed for enterprise grid computing, delivering higher quality of service at a lower
cost.

Knowledge discovery and data mining deal with the problem of extracting interest-
ing associations, classifiers, clusters, and other patterns from data. Among the best
known algorithms is the Apriori algorithm. An ever increasing number of organiza-
tions are installing large data warehouse using relational database technology. With
the explosion of the commodity internet and the emergence of wide area high per-
formance networks, mining distributed data is becoming recognized as a fundamental
scientific challenge. The Internet, corporate intranets, sensor networks, and even
scientific computing domains support this observation [Bailey, 1999].

In support of the current practice that restricts the communication cost but, if pos-
sible, without missing important rules, we proposed an efficient distributed and mo-
bile algorithm for global association rule mining while leaving the data in place. This
provides a fundamentally new technology, since, in fact, most data is distributed.

2 Data Transformation and Distributed Management
of the Itemset Counter Sets

PL/SQL is Oracle’s procedural extension to SQL. SQL is good in defining the struc-
ture of the database and generating ad hoc queries. However to build applications, the

Mining Global Association Rules on an Oracle Grid 371

power of a full-fledged high-level programming language is needed. PL/SQL pro-
vides such an environment to develop application programs. It supplements SQL with
several high-level programming language features such as object-oriented features
[Sunderraman, 2000]. Thus, PL/SQL can be used to build sophisticated database
applications, like the implementation of our proposed algorithm in this article.

2.1 Data Transformation

Since we are implementing our Distributed ScanOnce algorithm in PL/SQL, a Boo-
lean database D needs to be transformed to relational representation. Each transaction
and each item is uniquely identified by an integer (for ease of demonstration, we use
alphabetic letters to identify different items in the article). The two column represen-
tation is implied by the set characteristic of the transactions. That is, the number of
items typically contained in a transaction may vary largely. Moreover, a maximal
transaction size may not be determined in advance.

2.2 Local Database Access Using Cursors and Records

PL/SQL provides cursors for processing a query resulting in more than one row. A
PL/SQL cursor allows the program to fetch and process information from the data-
base into the PL/SQL program. The relational transaction table should be loaded into
a predefined cursor, as shown in Figure 1, one transaction (consisting of a number of
rows) at a time. Cursor variables provide a pointer to the cursor work area and
thereby increase the flexibil-
ity of the use of cursors.
Once a cursor has been
declared, it can be processed
using the open, fetch, and
close statements. PL/SQL
provides for loop to be used
with cursors. This loop is
very useful in our situation
where all rows of the cursor
(one transaction) are to be
processed.

A PL/SQL record is a
composite data structure,
similar to a structure in a
high –level programming language. A record is used, whose structure is based on the
select-list of a cursor. The record into which the cursor rows are to be fetched must be
compatible with the cursor row type. The below coding list declares a cursor-based
record and then processes the cursor using the record. Within the body of the loop,
the individual fields of the record can be accessed. The loop terminates automatically
when all rows of the cursor, i.e., the current transaction, have been scanned.

Fig. 1. A PL/SQL cursor allows the program to fetch and
process transactions from the local database into the
PL/SQL program. A PL/SQL record is also used, whose
structure is based on the select-list of a cursor

372 Frank Wang and Na Helian

declare
cursor ta_line is //cursor definition
 select item
 from transaction ta
 where tid=i; //i is a loop variable for scanning
 //the entire transaction database
ta_rec ta_line%rowtype; //record definition
begin
 open ta_line;
 loop
 fetch ta_line into ta_rec;
 exit when ta_line%notfound;
 Distributed ScanOnce Algorithm in PL/SQL
 end loop;
 close ta_line;
end;

Declaration of a cursor-based record and then processing of the cursor using the record.

2.3 Distributed Management of the Itemset Counter Sets

After the whole local database is scanned, the counters for the all enumerated item-
sets, organized in a group of itemset counter sets, is obtained, as shown in the left part
of Figure 2, which is the contribution from an exemplified transaction ‘abde’ consist-
ing of four singleton items ‘a’, ‘b’, ‘d’ and ‘e’. Each entry in the set is in the form (IS,
f), where IS represents an itemset and f represents the exact frequency count of IS.
Organizing the counters in such sets not only allows us to store them efficiently (us-
ing little memory), but also supports generating the rules. The infrequent itemsets will
be eventually pruned after summing up the support across all sites since they do not
have minimum support.

How to store these sets efficiently? Different from traditional linked-list tree repre-
sentation [Shaffer, 2001], we use very simple relational tables to store these sets. As
shown in Figure 2, we push the counter set into a relational table “Counter”, which
records the composition of each itemset counter. Each counter is uniquely identified
by an integer C_no. Such a relational representation of an itemset counter is flexible
as the number of item identifiers in a counter may vary largely. Moreover, a maximal
number of the counters may not be determined in advance. Another relational table
“Support_Count” is also locally maintained for storing support count for each
counter. The counter identifier (C_no) links “Counter” and “Support_Count” tables.

To locate a desired counter becomes another important issue. Not only in the first
step of itemset appearance counting in each local site, but also in the second step of
generating association rules from globally frequent itemsets, there are frequent ac-
cesses to those counters. The power of generating ad hoc queries in PL/SQL ensures
fast access to any desired counter. The below coding list shows an example of locat-
ing a desired counter corresponding to 3-itemset ‘abd’. An intermediate variable
“pass”, declared as support.count%type, is used to transfer the previous count number
from the “Support_Count” table, which will be updated by a new count number.

Mining Global Association Rules on an Oracle Grid 373

Fig. 2. The relational representation of the sets of the itemset counters

Declaration
…

select s.count
into pass //pass is a predefined intermediate variable
from support s
where s.c_no=(
 select c1.c_no
 from counter c1, counter c2, counter c3
 where c1.c_sub='a' and c2.c_sub='b' and c3.c_sub='d'
 and c1.c_no=c2.c_no and c2.c_no=c3.c_no
 and c1.c_no in
 (select distinct c.c_no
 from counter c
 group by c.c_no
 having count(*)=3)); //assume 3 is minimum

support

An example of locating a desired counter corresponding to 3-itemset ‘abd’.

3 Distributed ScanOnce Algorithm in PL/SQL

The distributed data mining algorithms are encapsulated into SQL Server stored pro-
cedures. The algorithm is outlined as below. In each site, the local absolute support

374 Frank Wang and Na Helian

count for each enumerated itemset is found. These intermediate results are stored
back into the local relational database and then transferred to one site for final proc-
essing. The global absolute support count for each itemset in the union CF of all of
the local itemsets across all the distributed sites can be determined by summing up,
for each enumerated itemset, the local support of that itemset in all the distributed
sites (Move Result via network). Doing this for each itemset in CF will give us their
global supports. Itemsets whose global supports pass the support threshold are glob-
ally frequent itemsets. Finally, strong association rules are derived from the globally
frequent itemsets.

In each site, the Distributed ScanOnce algorithm is a purely sequential (rather than
recursive like Apriori) counting procedure which is well compatible with the rela-
tional representation. To count a certain transaction (represented by a PL/SQL cur-
sor), we merely start at the first row (item) in the cursor and then sequentially traverse
the cursor by following the pointer as indicated in Figure 1. Our algorithm is de-
scribed in the pseudo-code, where N denotes the number of transactions in the data-
base and T the transaction being currently scanned. Our data structure A is a set of
entries of the form (IS, f), where IS is an itemset enumerated from the current trans-
action and f is an integer representing its frequency. Initially, A is empty. The contri-
bution from each transaction is comprehensively taken into account by growing a
prefix tree for each transaction and enumerating all subsets of the transaction itemset.

In order to find the frequent itemsets, we have to count the transactions they are
contained in. Our implementation is based on the idea to organize the counters for the
itemsets in a special kind of prefix tree for enumeration. Each IS denotes a counter
for an itemset IS. A node in the tree represents an itemset consisting of Item-IDs in
that node and all its ancestors. The itemsets enclosed in a dashed rectangle share the
same ancestor. For ease of illustration, symbolic letters are used here to represent the
items. In practice they should be 4-byte integers. Since the common part would be a
prefix if we were dealing with sequences instead of sets, such a data structure is com-
monly called a prefix tree. That we are dealing with sets, not sequences, is the reason,
why this tree structure is unbalanced: ‘abd’, for instance, is the same as ‘bda’ and
therefore only one of these counters is needed. This full prefix tree is created level by
level. That is, the root node is created first. Then the second tree level is created—the
children of the root and so on. Of course, in doing so, some branches of the tree can
be pruned eventually after the whole database has been scanned, because by simply
applying a user-specified threshold we can find out whether a branch can contain
frequent itemsets or not.

Whenever a new itemset IS arrives, we first lookup A, to see whether an entry for
IS already exists or not. If the lookup succeeds, we update the entry by incrementing
its frequency f by one. Otherwise, we create a new entry of the form (IS, f). For an
entry (IS, f), f represents the exact frequency count of IS ever since this entry was
inserted into A.

The enumerated k-itemsets will be written into their corresponding k-itemset
counter set, together with their support count in the form (IS, f). As mentioned in
Section 4, we push the counter set into a relational table “Counter”, which records the
composition of each itemset counter. Another relational table “Support_Count” is

Mining Global Association Rules on an Oracle Grid 375

also locally maintained for storing support count for each counter. The power of gen-
erating ad hoc queries in PL/SQL ensures fast access to any desired counter.

…
1. A Ø //A: The set of all counters
2. T next transaction //T: Transaction

 //(item-IDs)
3. Grow subset tree for T and enumerate all subsets of the

current transaction T
4. IS each subset
5. if (IS, f) exists in A do //f: frequency
6. f f+1
7. else do
8. insert (IS, 1) to A
9. endif

10. Goto 2
11.
12. scan A and prune infrequent itemsets
13. if f min_sup x N //min_sup: minimum //support, N:

Number of transactions
14. output (IS, f)
15. endif
16.
17. Generate rules from frequent itemsets IS satisfying

minimum confidence c specified by the user
…

Pseudo-code for our Distributed ScanOnce algorithm described in this article.

In summary, we process the input data stream transaction by transaction in each
local site. This is 100% sequential counting procedure and therefore there is no need
at all to store and re-scan the previously-scanned transactions, which will be dis-
carded after a single pass. In [Manku, 2002], they try to fill available main memory
with as many transactions as possible, and then process recursively such a batch of
transactions together. This is where our algorithm differs from that one. The amount
of main memory available can be devoted to itemset counters. Their compact data
structure ensures fast access to any counter in the set.

The above is so-called first step of association rule mining, in which the frequent
itemsets are determined in each local site. The second step of generating global asso-
ciation rules from the frequent itemsets from the globally frequent itemsets after sum-
ming up the support across all sites is straightforward. Note that there is no need to
re-scan the original transaction database (re-connect the network) any longer as the
counters organized in relational tables have retained sufficient information for rule
generating. In other words these tables are equivalent to the provided transaction
database in terms of finding the frequent itemsets. In contrast, the classic Apriori
algorithm requires repeated scans of the databases[Agrawal, 1993] [Agrawal, 1996]
[Han, 2000] thereby resulting in unrealistically heavy network accesses particularly
when considering large candidate sets.

376 Frank Wang and Na Helian

4 Experiment Results and Further Analysis

The distributed ScanOnce association rule mining algorithm in PL/SQL described in
this article is designed to economize mining efficiency and communication overhead,
and we must show that this overriding concern for speed is compatible with a reason-
able utilization of computer network. Our experiment with association rule mining
algorithm is based on a simulation program coded in Oracle PL/SQL. The program
runs on a variety of platforms.

Three desktop computers, one laptop computer and one pocket computer were
used for the experiments. The desktop computers were Intel Pentium machine with
Windows 2000 Advanced Server operating system and Oracle10g enterprise edition.
The CPU frequency was 1.7 GHz. The desktop computers were connected by the 10
Mbps MAN Network. The laptop computer and pocket computer were used as mo-
bile database platforms. Both of these computers were equipped with Wireless LAN
cards (11 Mbps). The laptop (1.1 MHz CPU, 512MB RAM) was loaded with Ora-
cle10g enterprise edition and Microsoft Access XP whereas the pocket computer
(HP-Compaq iPAQ Pocket PC H3970, Windows CE 2.0, 400 MHz CPU, 64 MB
RAM, 288MB Flash ROM) was loaded with Wireless Database 4.0 (KelBran Soft-
ware) [kelbran, 2005]. Wireless Database supports a subset of the standard database
SQL language. This feature allows us to access large databases (up to 1GB data)
remotely and create our own query for distributed data mining with the SQL query
wizard.

The experiments were conducted on a synthetic database, generated using the pro-
cedure described in [Agrawal, 1993] [Agrawal, 1996]. In this data set, the maximum
transaction size and average transaction size are set to 15 and 10, respectively. The
number of transactions in a single site ranges from 200,000 to 5 millions, which oc-
cupies up to 450 MB space. The experiments compared total mining time of distrib-
uted mining (Move Result) versus centralized mining (Move Data). For completeness
we included the mining time on the mobile platform. The total mining time is the time
it takes to transfer any data (communication), build/transfer models, and score the
validation set back at the control workstation. Our preliminary results indicate that
our PL/SQL implementation of our distributed ScanOnce algorithm is much faster
than Apriori mining. Furthermore, distributed ScanOnce scales much better than
Apriori. This is mainly because the wasteful operations of unnecessarily rescanning
those previously-scanned subsets have been avoided by this new algorithm. It must
be cautioned that error rates for distributed mining might be highly dependant on the
organization of the data set and/or other factors. More extensive tests are currently
under way.

An objective of a distributed data mining systems is to minimize both the volume
of data transmitted over the network and the number of network transmissions. The
time taken to send a message depends upon the length of the message and the type of
network being used. It can be estimated using the formula:

Communication Time = C0 + (no_of_bits_in_message / transmission_rate).

where C0 is a fixed cost of initiating a message from one site to another, known as the
access delay. In our instance, using an access delay of 1 second and a transmission

Mining Global Association Rules on an Oracle Grid 377

rate of 10Mbps, we can calculate the time to send 1,000,000 transactions, each con-
sisting of 720 bits (in average) if stored in a relational table (Table 2), as: Communi-
cation Time = 1 + (106 x 720/107) = 73 seconds.

Consider a simplified schema consisting of the following three transaction rela-
tions: 5,000,000 transactions stored in Site 1, 5,000,000 transactions stored in Site 2,
5,000,000 transactions stored in Site 3. Assume that the data mining computation
time is negligible compared with the communication time. We give two possible
strategies for association rule mining: the classic Apriori algorithm and the distributed
ScanOnce algorithm proposed in this article. We calculate the response times for
these two strategies as follows:

Apriori: As mentioned early, Apriori algorithm requires repeated scans of the da-
tabases and so the realistic way to handle the situation is to ship all of the data to one
site. Move the transaction relation from Site 2 and Site 3 to Site 1, respectively, and
then process mining there:

Time = 1+2x(5x106 x 720/107) = 721 seconds (1)

Distributed ScanOnce: The local absolute support count for each itemset is found
in each site respectively. These intermediate results are stored back into the sup-
port_count table (Figure 2) in local relational database and then transferred to Site 1
for final processing to obtain global frequent itemsets.

Time = 1 + 2x(1x106x112/107) = 23.4 seconds (2)

where each counter record in support_count table occupies 112 bits.
The estimated response times vary across a wide range, in agreement with the ex-

perimental results considering the actual mining time, yet each strategy is a legitimate
way to mine the data. Clearly, the communication time is significantly longer trans-
ferring the transaction databases themselves because of their big size. If the wrong
strategy is chosen, then the effect can be devastating on system performance.

5 Conclusions

Most of the popular data mining algorithms are designed to work for centralized data
[Agrawal, 1996] [Zheng, 2001] [Fayyad, 1996] [Kohavi, 2001][Webb, 1999]. In
support of the third generation of data mining systems on distributed and massive
data [Schuster, 2003][Kargupta, 2004], we proposed an efficient distributed and mo-
bile algorithm for global association rule mining, which does not need to ship all of
data to one site thereby not causing excessive network communication cost. Our pre-
liminary results indicate that our PL/SQL implementation of our distributed
ScanOnce algorithm is much faster than Apriori mining.

However it is based on a commercial product (Oracle 10g) that can limit the use of
the proposed approach. A major limitation of using simple relationships is that only
simple mining rules could be discovered. More information would be needed in the
intermediate tables to do more complex mining. In the first step of finding frequent
itemsets, we even count those itemset which are not globally frequent although they
will be pruned eventually. Based on the observation that if any given set of attributes

 is not adequately supported, any superset of will also not be adequately supported

378 Frank Wang and Na Helian

and consequently any effort to calculate the support for such supersets is wasted.
However, considering the advantage of performance improvement brought by avoid-
ing shipping all of the data to one site, this new algorithm presents us with a broad
range of trade-offs based on speed requirement and storage requirement, particularly
in dealing with a huge distributed database of short transactions. It is worth mention-
ing that fewer items will be purchased at the same time in real life [Lin, 2002]. The
experiments show that this Distributed ScanOnce algorithm in PL/SQL beats classic
Apriori algorithm, which requires repeated scans of the databases thereby shipping all
of the data to one site and consequently causing excessive network communication
overhead, for large problem sizes, by factors ranging from 2 to more than 20. As the
volume of transactions (preferably the depth rather than the width) grows up further,
the difference between the two methods becomes larger and larger.

References

[Agrawal, 1996] Agrawal, A., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.
(1996).Fast Discovery of Association Rules. In: Fayyad et al. (1996), 307–328

[Bailey, 1999] S. Bailey, R. Grossman, H. Sivakumar, A. Turinsky, Papyrus: a system for data
mining over local and wide area clusters and super-clusters, Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), p.63-es, November 14-19, 1999,
Portland, Oregon, United States

[Cheung, 1996] Cheung, D.W. Ng, V.T.Fu, A.W.Yongjian Fu; Efficient mining of association
rules in distributed databases, IEEE Transactions on Knowledge and Data Engineering,
Volume 8, Issue 6, Dec. 1996 Page(s):911 - 922

[Kargupta, 2004] H. Kargupta and H. Dutta (2004). Orthogonal Decision Trees. The Fourth
IEEE International Conference on Data Mining. Brighton, UK

[Manku, 2002] Manku, G., Motwani, R., 2002. Approximate Frequency Counts over Data
Streams, Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002

[Schuster, 2003] Assaf Schuster, Ran Wolff, and Dan Trock, A high performance distributed
algorithm for mining association rules, Proceedings of ICDM 2003, Melbourne, Florida

[Zheng, 2001] Zheng, Z., Kohavi, R., and Mason, L. (2001). Real World Performance of Asso-
ciation Rule Algorithms. In: Proc. 7th Int. Conf. on Knowledge Discovery and Data Min-
ing (SIGKDD’01). New York: ACM Press

Topic 6
Grid and Cluster Computing:

Models, Middleware and Architectures

Craig A. Lee, Thilo Kielmann, Laurent Lefèvre, and João Gabriel Silva

Topic Chairs

Grid computing represents the common vision of truly general distributed com-
puting across a ubiquitous, open-ended infrastructure supporting a wide range
of different application areas. Realizing this vision will require a long-term col-
laboration of fundamental and applied computer science, industry, commercial
infrastructure providers, and many, many application domains. Each meeting
like Euro-Par is an important contribution to this long-term effort.

Grid computing has already made significant progress in the design, deploy-
ment and use of grids, but many challenges still remain before the vision can be
realized. Many large scientific and engineering projects are adopting grids to sup-
port their project goals. Examples include the EU Data Grid project, NEESGrid,
GriPhyN, and the NaReGI project, to name just a few. It is also possible to set-
up small-scale grids to accomplish flexible scheduling and workflow management.
Industrial organizations, such as Sun Microsystems, IBM, Microsoft, and Oracle
already have or are starting to develop grid products and solutions. Standards
bodies are pushing to bring stability to the marketplace with the development
of standards such as the WS-* set of specifications.

Even with this degree of progress, grids still suffer from issues of ease of
deployment and use, fault tolerance and reliability, and the need for a true
dominant best practice to emerge. Even though Globus is considered the de facto
standard (and rightly so), there is still a wide “definition” of what constitutes
a grid. Infrastructure developers, application domain experts and industry are
all truly looking at an elephant. This is hampering the emergence of commonly
accepted tools and best practices that can be codified in standards.

To help address these issues, we present these papers at Euro-Par that doc-
ument the best work on many aspects of grid computing. This year 40 papers
were submitted to Topic 6. The chairs assembled a team of 78 reviewers that
produced 158 reviews. All accepted papers had at least four reviews. Many of
the papers “in the middle” in effect received more than four reviews as the chairs
read, reread and debated their merits. In the end, ten papers were accepted –
an acceptance rate of 10%. These papers represent work in the areas of peer-
to-peer, grid brokering, grid scheduling, load balancing in grids, processor farms
for grids, virtual grid workspaces, grid information services, grid modeling, data
replication, fault tolerance, and grid applications. We invite you now to browse
these papers and closely study the ones that spark your interest and will help
you in your work as much as possible.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Combining Data Replication Algorithms
and Job Scheduling Heuristics in the Data Grid

Ming Tang, Bu-Sung Lee, Xueyan Tang, and Chai-Kiat Yeo

School of Computer Engineering, Nanyang Technological University, Singapore 639798
mtang@pmail.ntu.edu.sg, {ebslee,asxytang,asckyeo}@ntu.edu.sg

Abstract. In the Data Grid environment, the primary goal of data replication is
to shorten the data access time that is experienced by the job and reduce the job
turnaround time as a consequence. After introducing a Data Grid architecture that
supports efficient data access for the Grid job, two dynamic data replication al-
gorithms are put forward. Combined with different Grid scheduling heuristics,
the performances of the data replication algorithms are evaluated with various
simulations. The simulation results demonstrate that the dynamic replication al-
gorithms can reduce the job turnaround time remarkably. Especially the combi-
nation of Shortest Turnaround Time (STT) scheduling heuristic and Centralized
Dynamic Replication (CDR) algorithm exhibits prominent performance in di-
verse conditions of workload and system environment.

1 Introduction

The Grid resources, including computing facility, data storage and network bandwidth,
are consumed by the jobs. For each incoming job, the Grid scheduler decides where
to run the job based on the job requirements and the system status. In data-intensive
computing, the locations of the data required by the job impact the Grid scheduling
decision and performance greatly. Creating data replicas can reroute the data requests
to certain replica servers and offer remarkably higher access speed than a single server.
At the same time, the replicas provide more choices for the Grid scheduler to achieve
better performance from the perspective of the job.

In this paper, a Data Grid architecture supporting efficient data replication and job
scheduling is introduced. Both a centralized and a distributed dynamic data replication
algorithms are put forward. The dynamic replication algorithms take into consideration
the changes of the Grid environments and automatically creates new replicas for the
popular data files. Three Grid scheduling heuristics are proposed and they work in an
online scenario where the job submission is unknown in advance. In order to evaluate
the performance of the scheduling heuristics combined with different replication algo-
rithms, a Data Grid simulator called XDRepSim is developed. Various simulations are
carried out with different system configurations and job workloads.

2 Related Work

Several recent studies have taken into account both job scheduling and data replication
in the Data Grid. Ranganathan and Foster [1] modelled the External Scheduler that

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 381–390, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

382 Ming Tang et al.

assigns the job to a specific computing site, and the Data Scheduler that runs at each
site and dynamically creates replicas for popular data files. Various combinations of
scheduling and replication strategies are evaluated with simulations. Their results show
that data locality is an important factor when scheduling jobs. The simple scheduling
policy of always assigning jobs to the sites that contain the required data works very
well if the popular datasets are replicated dynamically. Takefusa et al. [2] also report
similar conclusions using the Grid Datafarm architecture and the Bricks Grid simulator.

Another closely related work of [3] uses the Data Grid simulator OptorSim for
studying scheduling and replication strategies. The simulated Grid architecture is simi-
lar to [1] in that a global Resource Broker schedules the jobs to the computing site and
a Replica Optimiser in each site performs local replica optimization. For every data ac-
cess required by the locally running job, the Replica Optimiser will determine whether
the data should be replicated to local storage and which old replicas should be removed
if there is not enough space. Their studied dynamic replication strategies are evolved
from traditional cache replacement methods. The economic replication strategies are
put forward and they attempt to improve the profits brought by the replicas and de-
crease the cost of data management at the same time. The simulation results show that
the scheduling strategy considering both the file access cost of the job and the work-
load of computing resources produces the shortest mean job execution time, and the
economic replication strategies can improve the Grid performance greatly.

3 System Model

The Data Grid architecture supporting data replication and job scheduling is shown in
Fig. 1. The Data Grid consists of a set of domains, and each domain contains a replica
server and many computing sites. The replica server provides storages for the replicas,
and the computing site offers computational resources for the jobs. A computing site
or a replica server is generally called a node. All nodes in a domain are served by
a LAN, and the domains are interconnected by WAN. Some isolated replica servers
might exist in the Data Grid to improve remote data access performance, and each of
them constructs a domain by itself.

If a computing site and a replica server are in the same domain, then the replica
server is defined as the computing site’s Primary Replica Server (PRS) and all other
replica servers are the computing site’s Secondary Replica Servers (SRS). In the system,
there are one or more Grid schedulers that assign jobs to the computing sites based on
particular strategies. Before the job runs in a computing site, the required input data
should be loaded into the local storage in advance. If the required data is not in the
computing site’s data cache, the site will send the data access request to its PRS, which
will search the data replicas in the system and select the one that provides the highest
available bandwidth to the computing site. The selected replica will be transferred to
the computing site.

In the real world, if there is no replica server in a domain, above architecture can
still be applied by placing a dummy replica server in the domain. The storage size of
the dummy replica server is zero so that no replicas will be created in the server. All
data requests from the computing site in the domain will be forwarded to the suitable

Combining Data Replication Algorithms and Job Scheduling Heuristics 383

Grid Scheduler

Jobs

Job submission

Data access

Computing Site

Replica Server

Fig. 1. System architecture.

SRS. On the other hand, if a domain contains multiple replica servers physically, we
can regard them together acting as a single PRS, which aggregates the capabilities of
these replica servers.

Let W be the set of domains in the Data Grid. For each domain w ∈ W , the set
of computing sites located in w is denoted by CS(w) and the replica server in w is
denoted by RS(w). For a computing site i, its computing capability is Ci.

In distributed and parallel systems, the widely used performance metrics for the
job scheduling include turnaround time, throughput and utilization. Feitelson et al. [4]
claim that turnaround time is the main metric for the open online system with end-
less arrival of jobs. However, system utilization and throughput are only suitable for
closed systems, in which every job is re-submitted to the system when it terminates.
Turnaround time measures how long a job takes from its submission to completion. The
geometric mean of turnaround time is defined as GMTT = (

∏
k∈K TTk)

1
|K| , where

K is the set of jobs in the concerned scenario and |K| is the number of jobs, and it is
chosen by this research as the performance metric. The geometric mean equally con-
siders the performance improvement of any job [5], so it can evaluate the scheduling
performance more objectively than the arithmetic mean.

4 Dynamic Data Replication

The replication mechanism determines which file should be replicated, when to create
new replicas, and where the new replicas should be placed. The dynamic replication
algorithm breaks the time into sessions. At the beginning of each session, the replication
algorithm is invoked to adjust the replica placement based on the placement in the
previous session. The replica servers will be filled with replicas in long run and some
replicas must be evicted to make room for new ones. In this research, LRU is applied
for replica replacement with the constraint that only the replicas created in previous
sessions can be evicted from the replica servers.

It is believed that the popular data in the past phase will remain popular in the short
future. Thus, the dynamic data replication algorithms discussed in the paper find out

384 Ming Tang et al.

the popular data by analyzing the data access history. Let FID be the abbreviation
for File ID, and NOA for Number Of Accesses. The history table is in the format of
〈FID,NOA〉, which indicates that the file of FID has been accessed for NOA times.
The field ofFID is the primary key for the history table. For each record h in history H ,
let FID(h) denote its corresponding file ID, and NOA(h) be the number of accesses.

According to the replication infrastructure, the algorithms are classified into the
centralized and distributed ones. In addition to looking for popular data files, the cen-
tralized replication algorithm needs to determine the replica placement.

4.1 Centralized Algorithm

In the centralized dynamic data replication infrastructure, there is a replication master
running in the system. Every PRS collects the records of data accesses that are initiated
by the computing sites in its domain. When it is time to replicate data, all PRSs send
collected histories to the replication master. The master aggregates the histories and
summarizes the values of NOA for the same FID. The aggregation results are stored
in the history table H , which is maintained by the master. Each record h in H indicates
that data file FID(h) has been access for NOA(h) times for the whole system since
last replication session.

The centralized dynamic data replication algorithm is invoked by the replication
master, which will command the replica servers to carry out the replication. The algo-
rithm is shown as follows:

1. Compute the average number of accesses NOA = 1
|H|

∑
h∈H NOA(h), where |H | is the

number of of records in H (also the number of data files that has been requested).
2. Remove the history records whose NOA values are less than NOA. Sort the rest history

records based on the field of NOA in descending order. Let l be the last record in H , and
denote MNOA = NOA(l).

3. While H is not empty, do:
(a) Pop the first record h off H .
(b) Invoke the replica placement method to create a replica for FID(h).
(c) Update record h and let NOA(h) ← NOA(h) − MNOA. If NOA(h) > MNOA,

then re-insert record h into H according to the descending order of NOA field.

The average number of accesses NOA is used as the threshold to distinguish the popu-
lar data files, and only the files that have been accessed more than NOA times will be
replicated. The replica placement method is introduced in following.

Replica Placement. The computing sites with higher CPU speed can finish more jobs
in a given duration. Meanwhile, they access data files more frequently. The computing
capability of domain w can be defined as Cw =

∑
i∈CS(w) Ci, and the computing

capability of all domains is CW =
∑

w∈W Cw. We can assume that the data request
rate from domain w is proportional to its computing capability. Let θ be the factor that
measures the proportional relationship between the computing capability and the data
request rate for any domain, then the data request rate from domain w can be denoted
by Q(w) = θ · Cw. Let Probf be the request probability for data f , then the request
rate from domain w for data f can be denoted by Q(w, f) = Probf ·Q(w).

Combining Data Replication Algorithms and Job Scheduling Heuristics 385

In the system, every computing site always accesses the replica that offers the high-
est bandwidth. All computing sites in the same domain should have the equivalent band-
width to a specified replica server. Let Bw,j be the bandwidth capacity from any node
in domain w to replica server j. Let Rf be the set of replica servers that contain the
replicas or the original copy of data f . The bandwidth capacity for any node in domain
w to access data f can be defined as AB(w, f) = maxj∈Rf

Bw,j . The size of data f
is denoted by Sizef . The average response time of all requests for data f in the system
can be defined as:

AvgRespT ime(f) =

∑
w∈W

Q(w,f)·Sizef

AB(w,f)∑
w∈W Q(w, f)

=
Sizef

CW
·
∑

w∈W

Cw

maxj∈Rf
Bw,j

.

As Sizef

CW
is constant, we only need to consider

∑
w∈W

Cw

maxj∈Rf
Bw,j

to get the mini-

mum average response time for data f .
Let Rf be the set of servers that contain the replicas created in the current replica-

tion session or the original copy of data f . To create one more replica for data file f ,
the replica placement method will evaluate every candidate replica server x, which has
enough storages and x /∈ Rf . Attempt to let x be the choice of replica server and calcu-
late the value of Y (f, x) =

∑
w∈W

Cw

maxj∈Rf ∪x Bw,j
. Pick replica server x̂ that achieves

the minimum of function Y to be the location of the new replica for data f . If server x̂
has stored replica f that is created in a previous session, just stamp the replica’s creation
time as the current replication session, so that it will be treated as a newly created one.
Otherwise, transfer data f to server x̂ from a replica server that stores f and offers the
highest available bandwidth. LetRf ←Rf ∪ x̂.

4.2 Distributed Algorithm

In the distributed dynamic data replication infrastructure, for every data access request
from a computing site, the PRS records the request into its history. The histories will
be exchanged among all replica servers. Every replica server aggregates NOA over all
domains for the same data file and creates the overall data access history of the system.
At intervals, each replica server will use the replication algorithm to analyze the history
and determine data replications. The distributed dynamic data replication algorithm is
shown as follows:

1. Compute the average number of data accesses NOA and let threshold = NOA+δ, where
δ ≥ 0. Remove the history records whose NOA is less than threshold. Sort the rest of the
history records based on the field of NOA in descending order.

2. For each record h in the history according to the order, try to create a replica of FID(h) to
local replica server till the storages are used up.

3. Clean the history of data access.

The increment δ is used for avoiding excessive data replications that will cause
heavy network contention, and it can be chosen depending on how much we are willing
to compromise on the quality of replication.

Hereafter the centralized and distributed dynamic replication algorithms are referred
as CDR and DDR respectively for short.

386 Ming Tang et al.

5 Grid Scheduling

For any incoming job, the Grid scheduler analyzes the system situations, communi-
cates with the low-level local schedulers and decides which resources should be used
for the job. On behalf of the end-users, the Grid scheduler submits the jobs to the local
schedulers. The policy of First-Come-First-Serve (FCFS) is adopted by the local sched-
ulers in this research. To optimize the local scheduling, jobs are allowed to move ahead
provided they do not delay the first job in the queue.

We assume that the jobs are of moldable, i.e. jobs can run with multiple partition
sizes. Each job is scheduled to a single computing site, and it runs on all processors in
the site. The jobs are independent and every job requires a single input data file to pro-
cess. For each job submission, the user needs to estimate the computational cost. The
job’s computational cost is the execution time when it runs on a benchmark computer,
and it is also called the benchmark execution time. Let BTk be the user estimated com-
putational cost and f(k) be the input data file for job k. The Grid scheduling heuristics
studied in this paper are of online mode.

5.1 Shortest Turnaround Time

For each incoming job, the Shortest Turnaround Time (STT) heuristic estimates the
job’s turnaround time on every computing site, and it chooses the site that provides the
shortest turnaround time. The estimated turnaround time of job k running in computing
site i is denoted by TTk,i = max{QT (i), DT (f(k), i)}+ ETk,i, where QT (i) is the
queuing time, DT (f(k), i) is the data transfer time, and ETk,i is the job execution time.

Assume that every job in the queue executes immediately when the prior one ter-
minates, then the new job queuing time in site i can be approximated as QT (i) =∑

job∈Queue(i) BTjob

Ci
, where Queue(i) is the set of jobs already in the queue of site i.

If job k’s input data file f(k) is in computing site i’s data cache, then DT (f(k), i) =
0. Otherwise, let Rf(k) be the set of replica servers that have data file f(k), and BW (i, j)
be the available bandwidth between computing site i and replica server j. The data file
downloading time can be estimated as DT (f(k), i) = Sizef(k)

maxj∈Rf(k) BW (i,j) .

Let the benchmark computer’s computing capability be normalized as one, then
the execution time for job k running in computing site i can be estimated as ETk,i =
BTk/Ci. Hence, TTk,i is figured out.

5.2 Least Relative Load

The relative load of computing site i is defined as RLi = NumOfJobs(i)+1
Ci

, where
NumOfJobs(i) is the number of jobs in computing site i at the moment, including
the running and queuing jobs. The Least Relative Load (LRL) heuristic assigns the new
job to the computing site that has the least relative load.

5.3 Data Present

The Data Present (DP) heuristic is an extension of JobDataPresent in [1], and it takes
the data location as the major factor when assigning the job. According to different
situations of the data file required by the job, DP works in following approaches:

Combining Data Replication Algorithms and Job Scheduling Heuristics 387

1. If there are a number of computing sites having the data in their caches, then assign the job
to the one with the least relative load among these sites.

2. Else if there are non-isolated replica servers having the data replicas, then assign the job to
the computing site that is in the same domain as one of these replica servers and has the least
relative load.

3. Else, all replicas of the data file must be in the isolated replica servers. Assign the job to the
least relative load computing site in the system. In this situation, DP works the same as LRL.

6 Performance Result

In order to evaluate the performances of the dynamic replication algorithms and the
Grid scheduling heuristics, a Data Grid simulator named XDRepSim is developed. With
XDRepSim, users can easily create a Data Grid with the desired parameters of system
environment and job workload. Under the same conditions of the Data Grid, various
dynamic replication algorithms and Grid scheduling heuristics can be chosen and com-
bined for performance evaluation.

There are 25 domains in the simulated Data Grid and each domain has a replica
server. 200 computing sites are scattered randomly to 20 domains. Thus, there are five
isolated replica servers. Let U(x, y,Δ) be a number sampled from the uniform distri-
bution with a range from x to y, and the sampling granularity is Δ. The computing ca-
pability of each computing site is U(1, 20, 1). There are 10,000 data files in the system,
and each file is in the size U(500MB, 5GB, 100MB). The primary copy of each data
file is randomly stored in a replica server. The data file popularity changes in epochs
and it follows Zipf-like distribution [6] with α = 1.0 in each epoch. Network band-
width sharing behaviors are modelled. The bandwidth capacity between any two nodes
is U(10, 100, 10)Mbps if they are in the same domain. Otherwise, the bandwidth ca-
pacity is U(1, 10, 1)Mbps. The outbound bandwidth limitation of every replica server
is 200Mbps. The relative capacity of all replica servers is defined as r = S/D, where S
is the sum of storage sizes of all replica servers and D is the sum of sizes of all data files
in the Data Grid. In each simulation, the relative capacity of all replica servers is given.
Then, each replica server is assigned with a specific size of storage in accordance with
the computing capability of the domain in which the replica server is located. There are
100,000 jobs in the workload for every simulation. Job arrivals follow Poisson distribu-
tion, and a new job arrives every 10 seconds on average. The actual computational cost
ta of each job is U(30sec, 10hour, 1sec). The estimated computational cost te of the job
may be different from ta [7]. The estimation error of the job computational cost is de-
fined as e = |te−ta|

ta
, and the average estimation error for a workload is the mean value

of estimation errors for all jobs. Appendix A presents the detailed simulation methods.
In order to demonstrate the advantages of the system architecture in which every

domain has a replica server, the method without any data replication is studied. We
refer this method as NoR shortly. To illustrate the performances of the dynamic replica-
tion algorithms, the static replication method is also studied. As the data file popularity
changes with time, it is impossible to deduce an optimal static replication method with-
out knowing the data access pattern in advance. Therefore, the Random Static Replica-
tion (RSR) policy is applied. Before each simulation is started, the data files are repli-
cated to the servers randomly till all available storages are used up. We then evaluate

388 Ming Tang et al.

the performances of RSR, CDR and DDR under the same environment. For RSR, all
replicas created in the initialization step will not be changed and no new replicas will
be created during the whole simulation term. On the contrary, the dynamic replica-
tion algorithms will alter the replication status with different strategies after the unified
placement.

With four replication methods of NoR, RSR, CDR and DDR, and three scheduling
heuristics of STT, LRL and DP, there are a total of twelve method combinations to
evaluate. For each combination, we call it policy. The performance results of geometric
mean of turnaround time (GMTT) for different policies are shown in Fig. 2(a), where
the relative capacity of all replica servers is 50% and the average estimation error of the
workload is 2.0.

STT LRL DP
0

0.5

1

1.5

2

2.5

3

x 10
4

G
eo

m
et

ric
 M

ea
n

of
 T

ur
na

ro
un

d
T

im
e

(s
ec

)

Grid scheduling heuristic

NoR
RSR
DDR
CDR

(a) Average estimation error is 2.0.

STT LRL DP
0

0.5

1

1.5

2

2.5

3

x 10
4

G
eo

m
et

ric
 M

ea
n

of
 T

ur
na

ro
un

d
T

im
e

(s
ec

)

Grid scheduling heuristic

NoR
RSR
DDR
CDR

(b) Average estimation error is 0.

Fig. 2. Performance of different policies.

With the same scheduling heuristic, the performance of NoR is always the worst
and its GMTT is evidently larger than any static and dynamic replication algorithm,
which proves that data replication can shorten the job turnaround time. The performance
of RSR is better than NoR but worse than both dynamic replication algorithms. The
centralized dynamic replication algorithm CDR outperforms the distributed algorithm
DDR. Generally, DP scheduling heuristic works better than STT and LRL under the
simulated environment. The performance differences among the static and dynamic
replication algorithms are not distinct for DP scheduling heuristic. As a whole, policy
STT+CDR and DP+CDR produce the shortest GMTT.

Among the three scheduling heuristics, only STT takes the job computational cost
into consideration. The inaccurate estimation of job execution time will lead to im-
proper scheduling decision for STT. Consequently the performance of STT will be di-
minished. To study the properties of the policies comprehensively, we evaluate them
with the workload that is same as the previous one except that the estimated job com-
putational costs are accurate, namely the average estimation error is 0.

Figure 2(b) shows the performance results when the user estimations are accurate.
It can be noted that the performance of STT with any replication method is improved
prominently compared with Fig. 2(a). The GMTT values of LRL and DP also reduce
when the user estimation is accurate, but the changes are slim. Overall, the performance

Combining Data Replication Algorithms and Job Scheduling Heuristics 389

of STT scheduling heuristics is far better than LRL and DP, and particularly STT+CDR
works best among all policies.

To study the impact of the replica server storage size on the job turnaround time, the
relative capacity of all replica servers r is varied from 10% to 100% in ten simulation
cases. The used workload is the previous one whose average estimation error is 2.0.
We only show the performance results of STT scheduling heuristic combined with each
data replication method in Fig. 3.

10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

3

x 10
4

Relative capacity of all replica servers (% of total size of all files)

G
eo

m
et

ric
 M

ea
n

of
 T

ur
na

ro
un

d
T

im
e

(s
ec

)

NoR
RSR
DDR
CDR

Fig. 3. Geometric mean of turnaround time vs. replica server capacity for STT.

As NoR does not create replicas, its performance remains constant irrespective of
the sizes of the replica servers. The horizontal line of NoR indicates the benefit gain of
data replication in reducing the job turnaround time clearly. For any storage capacity,
both dynamic replication algorithms work better than RSR, and CDR performs best.
By increasing the replica server capacity, the performances of the RSR and all dynamic
replication algorithms are improved with different degrees.

From the simulation results we know that for the same Grid scheduling heuristic,
the data replication methods of CDR, DDR and RSR can reduce the job turnaround
time significantly compared with the method without any data replication (NoR). The
dynamic replication algorithms perform better than the static replication algorithm be-
cause the dynamic algorithms can detect the changes of file popularity and update the
data replication status in real-time.

The centralized data replication algorithm CDR outperforms the distributed data
replication algorithm DDR for the same scheduling heuristic and same system configu-
ration. The reason is that CDR makes replication decision based on the global view of
the entire Data Grid environment, so the redundant replications are avoided and the stor-
age resources are utilized efficiently. On the contrary, by applying DDR, every replica
server tries to replicate the most popular data files to local storages, so the contents
of every replica servers are similar. Consequently, the top hot data files are replicated
in too many servers, while many medium hot data files do not have the chances to be
replicated due to the storage limitation. DDR does not use the replica server capacity
efficiently, and the performance differences between DDR and CDR are more distinct
when the replica server capacity is small. On the other hand, the distributed replication
infrastructure is more scalable than the centralized one especially when the system is in
tremendous size.

390 Ming Tang et al.

When the execution time estimation is very inaccurate, the polices of DP schedul-
ing heuristic combined with any data replication algorithm and STT+CDR outperform
the others. However, when the user estimation is accurate, the performance of STT
scheduling heuristic with any data replication algorithm is far better than any other pol-
icy. Overall, the policy of STT+CDR is a sound choice as it works well under various
situations of the estimation accuracy and replica server capacity.

7 Conclusions

In this paper, the centralized dynamic replication algorithm CDR and distributed algo-
rithm DDR are put forward. At intervals, the dynamic replication algorithms exploit
the data access history for the popular data files and determine the replications in or-
der to improve data access performance from the perspective of the Grid job. The Grid
scheduling heuristics of STT, LRL and DP are proposed, and they are combined with
different data replication methods.

The simulator XDRepSim is developed to study the performances of the dynamic
replication algorithms and Grid scheduling heuristics. A simulated Data Grid is built
with XDRepSim and diverse simulations are carried out by varying the settings of
the job execution time estimation accuracy and the replica server capacity. The results
demonstrate that the dynamic replication algorithms can shorten the job turnaround
time effectively. Especially the policy of STT+CDR exhibits prominent performance
under various conditions of the job workload and system environment.

References

1. Ranganathan, K., Foster, I.: Simulation studies of computation and data scheduling algorithms
for data grids. Journal of Grid Computing 1 (2003) 53–62

2. Takefusa, A., Tatebe, O., Matsuoka, S., Morita, Y.: Performance analysis of scheduling and
replication algorithms on grid datafarm architecture for high-energy physics applications. In:
Proceedings of 12th IEEE International Symposium on High Performance Distributed Com-
puting (HPDC’03). (2003)

3. Cameron, D.G., Millar, A.P., Nicholson, C., Carvajal-Schiaffino, R., Zini, F., Stockinger, K.:
Analysis of scheduling and replica optimisation strategies for data grids using optorsim. Jour-
nal of Grid Computing (to appear)

4. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling. In:
Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing. (1998)
1–24

5. Cirne, W., Berman, F.: When the herd is smart: aggregate behavior in the selection of job
request. IEEE Transactions on Parallel and Distributed Systems 14 (2003) 181–192

6. Zipf, G.K.: Human Behavior and the Principles of Least Effort. Addison-Wesley (1949)
7. Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates inherently

inaccurate? In: Proceedings of 10th Job Scheduling Strategies for Parallel Processing. (2004)
8. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T., Schwiegelshohn, U.,

Smith, W., Talby, D.: Benchmarks and standards for the evaluation of parallel job schedulers.
In: Proceedings of 5th Job Scheduling Strategies for Parallel Processing. (1999)

9. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic mapping of a
class of independent tasks onto heterogeneous computing systems. Journal of Parallel and
Distributed Computing 59 (1999) 107–131

Towards High-Level Grid Programming
and Load-Balancing: A Barnes-Hut Case Study

Martin Alt, Jens Müller, and Sergei Gorlatch

Westfälische Wilhelms-Universität Münster, Germany
{mnalt,jmueller,gorlatch}@uni-muenster.de

Abstract. We propose a high-level approach to grid application pro-
gramming, based on generic components (skeletons) with prepackaged
parallel and distributed implementations and integrated load-balancing
mechanisms. We present an experimental Java-based programming sys-
tem with skeletons and use it on a non-trivial, dynamic application – the
Barnes-Hut algorithm for N-body simulation. The proposed approach
hides from the application programmer many complex details of grid
programming and load-balancing, and demonstrates good performance
on an experimental grid testbed.

1 Introduction

Grid programmers are faced with the challenge of developing applications that
can run distributed across several heterogeneous hosts. Programs must use grid
resources efficiently and incorporate flexible load-balancing strategies in order to
distribute tasks among hosts that are not known at compile time. The success
of grid technology will depend on creating suitable programming models and
middleware to liberate application programmers from the complex and low-level
details that have to be taken into account during grid software development.

In this paper, we argue for a high-level approach to programming grids, which
combines application program development and load-balancing strategies. We
present an implementation of the approach as an experimental Java-based pro-
gramming system that provides application programmers with a set of high-level,
reusable components, called skeletons, which are customisable for particular ap-
plications by means of data and code parameters. We demonstrate the use of
our system on a non-trivial case study with a complex, dynamic behaviour –
the Barnes-Hut (BH) algorithm for N-body simulation. We show how the use of
high-level components hides from the application programmer most of the com-
plexity of distributing computations over the grid and how the load-balancing
mechanisms incorporated in our system can evenly balance work between hetero-
geneous grid servers. We conclude the paper by reporting experimental results
for the BH algorithm on a grid-like testbed and by discussing related work.

2 Programing and Load-Balancing with Skeletons

In our programming model, each grid server provides a set of generic algorithmic
components called skeletons. When a program is executed on a client, calls to

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 391–400, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

392 Martin Alt, Jens Müller, and Sergei Gorlatch

WAN
Shared Network Links

Application

local balancing

local balancing

balancing
meta load−

balancing
meta load−

Server 2

meta−
skeleton1

meta−
skeleton2

Server 1

Server 3

Client

skeleton2 impl.

skeleton3 impl.

local balancing

local balancing local balancing

skeleton1 impl.

impl.skeleton2skeleton1 impl.

1

2

2

Fig. 1. Application using three skeletons executed in the Grid.

resource intensive skeletons are delegated to the servers as shown in Fig. 1. The
client program either calls skeletons directly (➀) or uses meta-skeletons which
combine several skeletons of the same type running on different servers and
present themselves as a single skeleton to the client (➁). While each skeleton
comes with a prepackaged efficient implementation on a server, meta-skeletons
are implemented locally on the client; they distribute computations and perform
load-balancing, coordination and monitoring of the distributed execution.

Due to space constraints, we limit our discussion to programming and load-
balancing issues, and omit details about resource management in our system.

2.1 The Skeleton-Based System and Its Implementation

We present here a basic repository of skeletons, which will be used for imple-
menting the Barnes-Hut case study, using a functional notation:

Map: Apply a unary function f to all elements of a list:
map(f, [x1, . . . , xn]) = [f(x1), . . . , f(xn)]

Sort: Sort all elements of an input list according to a given order ≺:
sort(≺, [x1, . . . , xn]) = [xi1 , . . . , xin] where xij ≺ xik

for all j < k
Reduce: Compute the “sum” of a list using a binary associative operator ⊕:

reduce(⊕, [x1, . . . , xn]) = [x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn]
Apply: Applies a unary function f to a parameter x: apply(f, x) = f(x). The

apply skeleton is used to remotely execute a function f on a server.

In addition to these data-parallel skeletons, the system also provides personalised
all-to-all communication facilities to transfer data directly between servers.

Our skeleton-based grid programming system shown in Fig. 1 is implemented
on top of Java and RMI, mostly for reasons of portability (see [1] for “10 rea-
sons to use Java in Grid computing”). Skeletons are offered as Java (remote)
interfaces, implemented in an architecture-specific way on different servers. All
skeletons operate on single objects or arrays which can be distributed blockwise

Towards High-Level Grid Programming and Load-Balancing 393

over several servers. For each skeleton, the system provides an interface which is
implemented both by client-based meta-skeletons and on the servers.

To avoid unnecessary remote communication, we developed a special mecha-
nism, “future-based RMI” [2]: instead of sending the actual data, skeletons work
as much as possible with remote references, which are small pointers to the ac-
tual data on the servers. Skeletons are executed asynchronously, returning such a
remote reference immediately when called. This remote reference can be passed
to the next server, while the first server is still executing. Upon completion of
the first skeleton, the actual data is sent directly to the second server.

2.2 Integrating Load-Balancing into Skeletons

On the grid, it is critical to distribute data and computations efficiently across
the potentially heterogeneous hosts. In our approach, we integrate load-balancing
policies into skeleton and meta-skeleton implementations, thereby hiding the
complexity of load-balancing from the application programmer. Load-balancing
is realised on two levels in the system: (1) each skeleton running on a single
parallel server balances the load between the processors of the server, and (2) the
meta-skeleton is responsible for distributing data and balancing work between
different servers. On both levels, skeleton-specific load-balancing strategies are
used, which distribute data based on the skeleton structure. On the server level,
implementation and architectural aspects can also be taken into account.

3 Case Study: The Barnes-Hut Algorithm

The Barnes-Hut (BH) algorithm [3] is a widely used approach to computing
force interactions of bodies (particles) based on their mass and position in space,
e.g. in astrophysical simulations. At each timestep, the pairwise interactions of
all bodies have to be calculated, which implies a computational complexity of
O(n2) for n bodies. The BH algorithm reduces the complexity to O(n · logn),
by grouping distant particles: for a single particle in the BH algorithm, distant
groups of particles are considered as a single object if the ratio boxsize/distance
is smaller than a simulation-specific coefficient θ chosen by the user (see Fig. 2).

For an efficient access to the huge amount of possible groups in a simula-
tion space with a large number of objects, the BH algorithm subdivides the 3D
simulation space using a hierarchical octree with eight child cubes for each node

p1

p2
p3

boxsize

m

m

aggregated mass
particle group with

distance

Fig. 2. When calculating forces for p1, particles p2 and p3 have to be considered
individually. For a distant particle group, aggregated calculation using m is performed.

394 Martin Alt, Jens Müller, and Sergei Gorlatch

(a) Space partitioning (b) Quadtree (c) Peano-Hilbert order

Fig. 3. Barnes-Hut octree partition of the simulation space.

(or quadtree for the 2D case). The tree’s leaves contain single particles, parental
nodes represent the particle group of all child nodes and contain the group’s
centre and aggregated mass. The force calculation of a single particle then is
performed by a depth-first traversal of the tree. Fig. 3(a) and 3(b) depict an
example partition and the resulting quadtree for the 2D case (see [3] for further
details and cost considerations).

For computing the force interactions in parallel, the particles are distributed
among participating hosts. Our implementation uses the Peano-Hilbert order
(Fig. 3(c)), providing a total linearisation of a two- or three-dimensional space
[4]. In the resulting vector of particles, adjacent objects are placed close together.
Thus, a blockwise distribution of the particles vector among hosts results in a
contiguous particle space assigned to each host. This leads to a reduced amount
of communication between hosts, because particles that are close together (and
thus need to exchange information often) are likely to be on the same host.

3.1 Barnes-Hut Using Skeletons

The first step in our high-level programming approach is to express the desired
application using the skeletons contained in the repository of Section 2.1. First,
the particle vector is partitioned into p segments which are distributed among
the p servers taking part in the computation. Then, the following five steps are
performed iteratively:

1 bb = reduce(boundaries, particles); //bounding box

2 map(PHIndex, particles); //Peano-Hilber index

3 sort(LessEqual, particles) //sorting

4 tree = reduce(treebuild(bb), particles); //treebuild

5 map(interact(tree), particles); //interaction

6 map(particles, update); //update

1. Calculation of the total boundary of the simulation space: In order to build
the tree, the size of the simulation universe is calculated by the reduce operation
in line 1. The function boundaries compares two particles or a particle and a
bounding box, and returns the new bounding box.

Towards High-Level Grid Programming and Load-Balancing 395

2. Sorting: Sorting involves two steps: (1) computing an index for each particle
according to the Peano-Hilbert order (using the map skeleton in line 2), and (2)
sorting the particles vector in ascending order using this index (sort in line 3).
3. Building the octrees: For each remote Grid host, the local octree is built in a
bottom-up fashion by combining neighbouring particles into trees of depth one.
Neighbouring trees are combined into larger trees until a single tree is formed,
using a merging algorithm similar to the one described in [6]. Line 4 of the code
expresses this process as a reduction skeleton, using the tree merging operation
as a parameter, where bb is the bounding box computed in the first step.
4. Force computation: The particle interactions are computed using the map-
skeleton as depicted in line 5. For each particle in particles, the operation
interact traverses the octree tree and adds the force effects of the current node
to the velocity vector of the particle if boxsize/distance < θ. If this criterion is
not yet met, the eight child nodes are processed recursively.
5. Particle update: Line 6 uses a map invocation to update the current particle
position according to the new velocity vector. For each particle, the unary func-
tion update adds the velocity, multiplied by the length of time for each iteration,
to the current particle’s position.
The six-line skeleton code of the BH algorithm has a clear structure, where the
details of the parallelisation are hidden in the skeleton implementations. The
application programmer is, therefore, liberated from low-level considerations.

3.2 Barnes-Hut on the Grid

The critical problem when bringing the BH algorithm on the grid is that it is
infeasible to make the entire particle tree available on every host by replication:
this would require each host to send the updated values for its own particles to all
other hosts after each iteration, thus increasing communication time. Therefore,
a distribution among several hosts requires a more elaborate algorithm.

We adopt a solution similar to [4]: Each host constructs a locally essential
tree by requesting all tree nodes from other hosts that are relevant to the force
computations for its own local particles. The goal is to minimise information
exchange between nodes during the interaction phase, by sending all necessary
particles between nodes once in advance. Each host executes three steps:

1. Send a description of the sub-space with local particles to all other hosts.
2. For each sub-space received from another host, traverse the local tree recur-

sively and add all nodes matching the boxsize/distance < θ criterion to the
result vector. Send the result vectors to all other hosts.

3. Build the locally essential tree by incorporating the particles and tree nodes
received from other hosts.

396 Martin Alt, Jens Müller, and Sergei Gorlatch

The skeleton pseudocode for building the locally essential tree is as follows:

for each host:
host.localtree = host.reduce(treebuild, host.particles);
host.subspace = host.exec(constructSubspace, host.particles);

otherSubspaces = allToAll(subspaces);
for each host:
relevantParticles = host.map(selectParticles(host.localtree),

host.otherSubspaces);
alltrees=personalisedAllToAll(relevantParticles);
tree = reduce(treebuild, alltrees);

For the amount of data communicated between hosts in the essential tree build-
ing phase, there is a trade-off between the accuracy of space approximation
sent to other servers and the remote tree-nodes received in reply. Our approach
(whose details we omit due to the lack of space) is to describe local sub-spaces by
several boxes of varying sizes, where the number of boxes used for the sub-space
approximation can be adjusted before the start of a simulation run.

4 Load-Balancing

Our approach is to aid the application programmer in the task of load-balancing
by providing generic load-balancing strategies for skeletons, which can be adapted
to the application. In our grid programming system, each single-server skeleton
implementation is responsible for distributing work equally among all processors
of the server, and meta-skeletons distribute work among all participating servers.
Load-balancing within a server depends on the server’s hardware and is consid-
ered a black-box from the viewpoint of the application and the meta-skeleton.

Load-balancing at the meta-skeleton level can either be done dynamically
(e.g., using load-stealing), or statically, i.e., before the skeleton execution is
started. For our BH case study, dynamical load-balancing is not feasible be-
cause redistributing a particle would also require to redistribute parts of the
particle tree. Therefore, we will focus on statical load-balancing throughout the
remainder of the paper. Load-Balancing for meta-skeletons is done in two steps:
(1) a skeleton specific load-balancing function computes an optimal distribu-
tion of data according to a predefined load-balancing strategy, and (2) a generic
redistribution method is responsible for the actual communication required to
distribute the input data according to the new distribution.

In general, load-balancing for grids considers two factors: (1) the amount of
work required for an input element (application-specific), and (2) the amount
of work that a host can process per second (host-specific). Therefore, our load-
balancing functions have both application- and hardware-specific parameters.

As an example, we will discuss the load-balancing strategies implemented
for the map skeleton (both single-server and meta-skeleton), using a static load-
balancing approach, where the load generated by each particle is known in ad-
vance.

Towards High-Level Grid Programming and Load-Balancing 397

4.1 Example: Load-Balancing for the Map Skeleton

In order to statically balance the work among processors, it is necessary to assess
the load generated by each element of the input list in advance, i.e. we need a
load-prediction function. For our BH implementation we use the work necessary
for the previous iteration as an estimate for the work of the next iteration.

Single-Server Map Skeleton. On a single server with homogeneous processors,
the map skeleton implementation has to distribute the load equally among all
processors. This is done in two steps: in the first step, for each element, the partial
sum of the work required for all elements up to the current one is computed
(accumulated load). The total work (i.e., the value computed for the last element)
is divided by the number of processors to obtain the amount of work to be
assigned to each processor (processor share). Then, the elements of the input
list are assigned to processors in a blockwise fashion, assigning elements to one
processor until the total work required for completing the share assigned to the
processor equals the processor share computed in the first step. Thus the first
data element assigned to processor p is the first element for which the partial
sum of work exceeds the share that should be assigned to processor p− 1.

Map Meta-skeleton. For computing an efficient load distribution between several
grid hosts, we take into account the heterogeneity of the hosts. We introduce a
performance factor cp for each host p, which is proportional to the number of
“load-units” that host p can process per second. The amount of work for server
p, wp, is proportional to the performance factor of that server and computed as
follows: wp = cp/

∑
i ci. The load is then distributed according to the computed

distribution [wp] using the same method as for the single-server case.

4.2 Load-Balancing for Barnes-Hut

The particle interaction phase which computes force interactions for each particle
is the most time consuming phase of the BH algorithm: it accounts for well over
90% of the overall runtime. Compared to the interaction phase, all other phases
account for only very little time, so that the overhead for balancing load for these
phases can be expected to outweigh the gain in performance. Additionally, the
locally essential particle-trees constructed for a particular host in the tree-build
phase are specific to the particles on that host. Thus, the particles assigned to a
particular host need to be the same in the tree-build and the particle interaction
phase, impeding load balancing for the tree-build phase. Therefore we only do
load-balancing for this phase, which is expressed as a map skeleton (line 5 in
the code in Sect. 394). Because the distribution of the particles must not be
changed between the tree building and the interaction phase, redistribution of
the particles is inserted between lines 3 and 4 in the code.

We use map skeleton’s load-balancing function presented in the previous
sections, which requires two parameters: a load predictor which estimates the
amount of work necessary for each particle, and a performance factor for each

398 Martin Alt, Jens Müller, and Sergei Gorlatch

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

Total Number of Processors

warp fire conde (Berlin)

Fig. 4. Relative speedup for three shared-memory servers with a total of 22 processors
and 2 · 105 particles (θ = 0.25).

grid host (amount of work per second). For the performance factors, we use the
factors obtained a-posteriori from the previous skeleton iteration. For the first
iteration, the performance factor of each host is set to the number of processors
available on that host. The load predictor for the BH algorithm returns for each
particle the number of interactions recorded for that particle during the last
interaction phase. For the first iteration, the load predictor returns ’1’ for each
particle, assuming the same amount of work for all particles.

Note that the initial performance factors and load predictions are not very
accurate and may lead to a considerable load imbalance. However, load is quickly
balanced for later iterations, as demonstrated in our experiments.

5 Experimental Results

We measured the performance of our skeletal Barnes-Hut implementation using
three shared-memory servers, two at the University of Muenster (“warp” and
“fire”), and one at the Technical University of Berlin (“conde”). Server “warp”
has two 2.8GHz Pentium4 processors and “fire” has eight UltraSparc III+ pro-
cessors running at 1.2GHz, the server in Berlin has 12 900MHz UltraSparc III+
processors. The client is a workstation with a P4, 2.6GHz processor in Muenster.
All experiments were done using SUN’s JDK 1.5.0. Client and servers are con-
nected by two LANs and the german academic internet backbone (WiN). The
measured bandwidth within the LAN at Muenster was approx. 3.2MB/s, the
bandwidth between Muenster and Berlin (450km) was measured at 1.1MB/s.

Figure 4 shows the relative speedup obtained for an input size of 2 ·105 parti-
cles and θ = 0.25, for varying numbers of processors on different hosts (compared
to the performance on one processor of “warp”). The absolute runtimes ranged
between 315 s on one processor of “warp” and 26 s on all 22 processors of all
hosts for one iteration. Our high-level Barnes-Hut implementation shows very
good speedups, also across host-boundaries. Note that the decrease in speedup
at 4 and 12 processors is at least partly a result of the slower processors on hosts

Towards High-Level Grid Programming and Load-Balancing 399

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

R
un

tim
e

[s
ec

]

Iteration

artificial performance
decrease on proc. 2

(a) Performance over time.

100%

66%

33%

 0 2 4 6 8 10 12 14

Lo
ad

Iteration

Processor 1

Processor 2

Processor 3

(b) Work distribution for (a).

Fig. 5. Load-balancing on three processors with varying load.

“fire” and “conde”. Additionally, the speedup decreases between 10 and 12 pro-
cessors due to the increased communication costs when adding a remote host.
However, this cost is amortised for higher numbers of processors. Also note that
the particle shares allocated to the two servers in Muenster are neighbouring
blocks (according to the Peano-Hilbert ordering), thus reducing the amount of
communication between Berlin and Muenster.

To evaluate the load-balancing strategy used for map, we measured the per-
formance for 104 particles on three Pentium 4, 1.7GHz PCs connected by LAN
(θ = 0.25). The runtimes for each of 15 iterations are shown in Fig. 5(a), and
the partition of the particles between the hosts is shown in 5(b). For iterations 5
through 8, we have artificially decreased the performance of processor 2 (start-
ing other time-consuming applications on that host). The figure shows that the
work is rebalanced in iteration 6, due to the decreased performance of processor
2. The performance decrease seen in Fig. 5(a) at iteration 5 is thus compensated
in the following iterations. After processor 2 is fully available again in iteration
9, work is rebalanced for iteration 10, obtaining the same performance as in the
first iterations. This shows that the implemented load-balancing mechanisms are
able to adapt to varying performance on different hosts.

6 Related Work and Conclusion

Our work is a step towards designing efficient applications for grids by providing
high-level components (skeletons), which hide the complexity of parallelisation
and distribution from the application programmer. We have demonstrated how
pre-defined generic load-balancing strategies can be integrated with skeletons
and then specialised for a particular application.

Our approach differs from other Java-based programming frameworks for
grids, such as ProActive [7] and Ibis [8], because it provides predefined compu-
tation patterns with built-in load-balancing strategies. Satin [9] also provides
load-balancing, but it is limited to divide-and-conquer applications. Another
skeleton-based approach, Lithium [10], focused mainly on task-parallel skeletons
rather than our data-parallel skeletons.

400 Martin Alt, Jens Müller, and Sergei Gorlatch

We have shown that high-level components allow to implement relatively
complex applications, such as the Barnes-Hut algorithm, hiding the complexity
of parallelisation and distribution from the application programmer. The nu-
merous previous BH implementations (e. g. [4–6, 11]), mostly targeted parallel
or homogeneous distributed architectures, while our implementation aims to be
executed in heterogeneous (grid) systems. Our experiments demonstrated good
performance both on one server and across several servers.

Static load-balancing strategies for heterogeneous clusters have been widely
studied, and the strategy we used for the map skeleton is similar to [12] and
[13]. We have shown how static load-balancing strategies can be integrated into
skeletons, achieving good performance in a dynamic grid setting.

References

1. Getov, V., von Laszewski, G., Philippsen, M., Foster, I.: Multiparadigm commu-
nications in Java for Grid computing. Comm. of the ACM 44 (2001) 118–125

2. Alt, M., Gorlatch, S.: Future-Based RMI: Optimizing compositions of remote
method calls on the Grid. Euro-Par 2003. LNCS 2790, Springer (2003) 682–693

3. Barnes, J.E., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324 (1986) 446–449

4. Grama, A.Y., Kumar, V., Sameh, A.: Scalable parallel formulations of the barnes-
hut method for n-body simulations. Supercomputing ’94, IEEE (1994) 439–448

5. Blelloch, G.E., Narlikar, G.: A practical comparison of N-body algorithms. In:
Parallel Algorithms. American Mathmatical Society (1997)

6. Singh, J.P., Holt, C., Totsuka, T., Gupta, A., Hennessy, J.: Load balancing and
data locality in adaptive hierarchical N-body methods: Barnes-Hut, fast multipole,
and radiosity. Journal of Parallel and Distributed Computing 27 (1995) 118–141

7. ProActive: INRIA (1999) http://www-sop.inria.fr/oasis/ProActive.
8. van Nieuwpoort, R.V., Maassen, J., Hofman, R., Kielmann, T., Bal, H.E.: Ibis:

an efficient Java-based Grid programming environment. Proc. of the 2002 joint
ACM-ISCOPE conference on Java Grande, ACM Press (2002) 18–27

9. van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient load balancing for
wide-area divide-and-conquer applications. Proc. Eighth ACM SIGPLAN Symp.
PPoPP’01, Snowbird, UT (2001) 34–43

10. Danelutto, M., Teti, P.: Lithium: A structured parallel programming enviroment
in Java. Proc. ICCS’02. LNCS 2330, Springer (2002) 844–853

11. Sun, Y., Liang, Z., Wang, C.: Distributed particle simulation method on adaptive
collective system. Future Generation Computer Systems 18 (2001) 79–87

12. Crandall, P., Quinn, M.J.: Block data decomposition for data-parallel program-
ming on a heterogeneous workstation network. HPDC. (1993) 42–49

13. Kaddoura, M., Ranka, S., Wang, A.: Array decompositions for nonuniform com-
putational environments. Journal of Parallel and Dist. Comp. 36 (1996) 91–105

An Adaptive Skeletal Task Farm for Grids

Horacio González-Vélez�

University of Edinburgh
School of Informatics

Edinburgh, UK
h.gv@ed.ac.uk

Abstract. Algorithmic skeletons abstract commonly used patterns of
parallel computation, communication, and interaction. By demonstrat-
ing a predictable communication and computation structure, they pro-
vide a foundation for performance modelling and estimation. Grids pose
a challenge to known distributed systems techniques as a result of their
dynamism. One of the most prominent research areas concerns the avail-
ability of proved programming paradigms with special emphasis on the
performance side. Thus, adaptable performance improvement techniques
have been the subject of intense scrutiny. Scant research has been con-
ducted on using the skeletal predicting information to enhance perfor-
mance in heterogeneous environments. We propose the use of these pre-
dicting properties to adaptively enhance the performance of skeletons,
in particular of a task farm, within a computational grid.
Hence, the problem addressed in this paper is: given a skeletal task farm,
find an effective way to improve its performance on a heterogeneous
distributed environment by incorporating information at compile time
that helps it to adapt at execution time. This work provides a grid-
enabled, adaptive task farm model, using the NWS statistical predictions
on bandwidth, latency and processor availability. The central case study
implements an ad-hoc task farm based on C/MPI and employs PACX-
MPI for inter-node communication. We present initial promising results
of parallel executions of an artificially-generated numerical code in a grid.

1 Introduction

With the advent of grid computing, the availability of proved programming
paradigms has become an issue in computational science. It is widely acknowl-
edged that one of the major challenges in programming support for these en-
vironments is the prediction and improvement of performance, due to the vast
aggregation of heterogeneous resources and policies. Indeed, holistic projects em-
phasise the need not only for reliable programming environments, but also for
improved performance capabilities [1, 2].

Performance enhancement is a multidimensional activity. One of the most
powerful of these dimensions relates to optimisation techniques which work adap-
tively on an application-specific basis. Grid adaptability is quite broad, and often
� Work partly supported by the EC-funded project HPC-Europa, contract number

506079. Special thanks are owed to Murray Cole for his suggestions and review. The
comments of anonymous referees have also helped to improve this paper considerably.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 401–410, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

402 Horacio González-Vélez

relates to flexibility, ability to transform and evolve, re-usability, and extensibil-
ity. It encompasses several layers in the architecture, involves a multiplicity of
parameterised values, and is typically performed in a custom-built fashion either
at compile-time or during execution. There have been substantial examples of
the applicability of adaptable models in computational grids [3, 4]. Moreover,
AppLeS [5] builds on these efforts and provides a comprehensive approach in-
cluding resource discovery, selection, and scheduling . Nevertheless, one of the
most fascinating open-ended questions in computational science still concerns
the self-adaptation of programming structures to grids [6].

The separation of software and hardware has long been considered critical
to the success of any parallel programming endeavour, as it is vital to foster the
reuse of algorithms and software. Furthermore, we consider that the division of
the structure from the application itself to be crucial to the goal of delivering
adaptability.

Algorithmic skeletons (AS) abstract commonly used patterns of parallel com-
putation, communication, and interaction [7]. They present a top-down struc-
tured approach where parallel programs are formed from the parametrisation
of skeleton nest, also known as Structured Parallelism (SP). AS provide a clear
and consistent structure across platforms by distinctly decoupling the appli-
cation from the structure in a parallel program [8]. They do not rely on any
specific hardware and benefit entirely from any performance improvements in
the systems infrastructure.

SP is not universally applicable to the production of parallel and distributed
programs, but there is an important growing number of applications to consider
them an interesting research area [9]. Furthermore, skeletal methodologies in-
herently posses a predictable communication and computation structure, since
they capture the structure of the program. They provide, by construction, a
foundation for performance modelling and estimation of parallel applications.

This work is concerned with the feasibility of using this predicting capabilities
of SP. In particular we propose a model to enhance the performance of skeletal
task farms in grids. First, we consider related work and provide motivation,
moving on to some scalability results using the farm of the Cole’s eSkel [10]
library. These figures are collected using a computational grid with nodes in
Edinburgh and Stuttgart. This part helps us to reinforce the feasibility of the
skeletal programming model for grids. Then, we have constructed our main case
study using an utilitarian skeletal task farm implemented using C, MPI and the
PACX-MPI [11] library for the inter-cluster communication. It also employs the
Network Weather Service (NWS) [12] to monitor the grid environment, forecast
processor and network availability, and adapt to the load conditions on the
nodes and interconnections. While the model is embedded in the code, the NWS
forecasts drive the behaviour adaptation of the task farm at execution time.
Finally, future directions for this work are supplied.

2 Motivation

We would like to formulate the problem covered in this paper as: given a skeletal
task farm, find an effective way to improve its performance on a heterogeneous

An Adaptive Skeletal Task Farm for Grids 403

distributed environment by incorporating information at compile time that helps
it to adapt at execution time.

Compile-time optimisers formulate static decisions about the expected be-
haviour of an application. On the other hand, run-time optimisers do not gen-
erally possess direct knowledge of the structure (meaning) of the application.
They lack specific information on its data and control flows and their opera-
tion is normally driven by load-balancing criteria. Indeed, the development of
effective compilers and optimisers remains an active area in computer science.

In addition to this, there is no equivalent to a compiler or to an universal
run-time optimiser for grids. Due to the complexity involved, grid optimisation
techniques have usually been custom-made. They require the modification of
the source code to enable its operation [5], the use of capacity characterisation
methods [13], or even the creation of special-purpose languages [14] .

From a grid perspective, although different parallel solutions have tradi-
tionally exhibited skeletal constructs, their associated optimisations have not
employed the structural information of the skeletons but rather modified the
scheduler [15], or have not decoupled entirely the structure from the behaviour
keeping the actual application interlaced [16]. On the AS side, the emerging
approaches to performance optimisation in computational grids have employed
process algebra methods [17] and future-based RMI mechanisms with Java [18].

AS possess a crucial property which favours performance optimisation: their
structured and predictable behaviour for a given meaning (program). Neverthe-
less, scant research has been conducted on improving the skeletal performance
by actively using this information from a systems infrastructure perspective.

Thus we would like to bring all these factors together and use the structural,
forecasting capabilities of skeletons to optimise pragmatically their performance
in grids. As opposed to standard optimisation at compile time, in this case
the behaviour of the application is known prior to the execution. In contrast
to standard run-time optimisation, the meaning is clearly defined as well. In
principle, therefore, this skeletal optimiser could forecast and enhance the actual
behaviour of the application by exploiting the knowledge of its structure.

The open question must be: how much can the structural forecasting infor-
mation of AS help to improve the performance of parallel applications whilst
executing in heterogeneous clusters and eventually in computational grids?

Hence, we argue that the AS need to evolve to include adaptive capabilities
to improve its performance in the Grid. In this work, we present a pragmatic
approach using an optimised ad hoc task farm skeleton, NWS, and a realistic
grid environment. It is important to note that we do not intend to develop a
scheduler nor to solve the general optimisation case for every structured paral-
lel program. We concentrate on empirically finding optimisation techniques for
solutions based on skeletal task farms.

This work is the first step in the development of a framework which incorpo-
rates different SP programs and its associated optimisation techniques, similar
to the way a compiler incorporates optimisation techniques, to be deployed in
computational grids as illustrated in Fig. 1. The ultimate objective of this ongo-

404 Horacio González-Vélez

Fig. 1. Methodology to Introduce Adaptiveness into Structured Parallelism Programs

ing endeavour is to build upon theoretical performance models and design a set
of adaptive techniques. The main difference to other performance approaches
is that it intends to be SP-oriented, adaptable by construct, and focused on
empirical, system-infrastructure methodologies.

3 The Task Farm

We have selected a task farm for this initial approach due to its applicability
to the solution of a great number of problems in parallel programming and its
simple structure.

A Task Farm (TF) can be roughly described as a “farmer” process which
spawns N independent “worker” processes to execute a parallel workload. The
TF is composed by a input I, an output O and a function F , or TF = 〈I,O, F 〉.
A worker executes a task by mapping F into a subset of I (task size), computing
a subset of O, and then reporting back to the farmer for the next unit of work
or termination. This is shown schematically in Fig. 2.

The TF construct has traditionally dealt with fine-grained data parallelism.
In its canonical form, the communication times between the farmer and the
workers can be adjusted to be constant and much less than the computation
times [19]. All workers are allocated to dedicated processor in a parallel machine
and the computation of each element O is independent and characterised by
the fact that the F does not generate the same amount of work for different
elements. The TF needs to keep distributing the elements in I to avoid worker
starvation while minimising communication. This TF feature aims at providing
the best load-balancing. Under this scenario, the number of elements of I sent
to a given worker at once (task size) can be statically calculated to minimise idle
times and require minimal scheduling from the farmer side [19].

An Adaptive Skeletal Task Farm for Grids 405

Fig. 2. A Task Farm

However, in more realistic scenarios, the farmer requires to assign different
tasks sizes to workers because:

– The underlying architecture can have multiple communication links between
the farmer and workers with different bandwidths and latencies

– The workers and the farmer run in non-dedicated nodes with distinct work-
loads in a distributed environment

Furthermore, in a computational grid, communication and computation times
vary greatly, an undersized farmer, a saturated communication channel, or the
sudden termination of a worker can produce unpredictable situations. Thus our
particular objective is to adaptively determine the optimal task size for each
worker in a task farm in order to minimise the total execution time for a given
application.

4 Implementation

We have initially employed the first version of the Cole’s eSkel library and an arti-
ficial integer application. The overall system is configured by evenly distributing
the processes between two 16-node Beowulf clusters located at the High Perfor-
mance Computing Centre (HLRS) in the University of Stuttgart and the School
of Informatics in the University of Edinburgh respectively.

The farmer node has been positioned at HLRS. We have used the PACX-MPI
library for interconnection with the allocation of two pairs of communication
nodes to interconnect both installations. This is the standard requirement for
soundly executing PACX-MPI. The MPI versions are MPICH and LAM/MPI
and the nodes and communication channels are in non-dedicated mode.

Figure 3 shows the channel utilisation from the worker standpoint on the
eSkel Task Farm version 1.0 and PACX-MPI 5 for a simplistic application. It
presents different values of I ranging from 160B or I = 200 to 1.6MB or I =
200, 000. It is important to mention that half of the workers are located in
Edinburgh while the other are in Stuttgart.

Although the communication channel at 270KB/s is not saturated while
working with 8 processes and 1.6 MB and 160KB vectors, equivalent to an I

406 Horacio González-Vélez

Fig. 3. Worker Channel Utilisation for different values of I , ranging from 160B or
I = 200 to 1.6MB or I = 200, 000, using the eSkel Task Farm version 1.0 and PACX-
MPI 5. Half of the workers are located in Edinburgh and the other half in Stuttgart

of 200,000 and 20,000 8-byte data elements respectively (α in Fig. 3), the in-
crease to 16 processes with the same amount of data implies a 50% decrement
in the ability to transmit (β in Fig. 3). This is unexpected since there are more
processes transmitting than the decrease in channel utilisation.

After the analysis of the communication patterns when increasing the number
of processes, the performance degradation in the communications was attributed
to the use of MPI collective communication operations under PACX-MPI, since
the synchronisation mechanisms in PACX-MPI are not optimised for collectives
across sites.

In order to address this issue, we have implemented a new skeletal TF using
MPI send-receive operations only. Furthermore, this new TF incorporates the
ability to adapt the task size using the NWS forecasting capabilities of the task
farm.

NWS provides utilitarian forecasting figures based on the statistical time-
series analysis of the processing and networking load and configuration. It
presents fault-resilient capabilities to support adaptive applications, and its ac-
curacy has been successfully tested in major grids [20].

This case study features two distinct approaches to define the task size: static
and adaptive. In the former, the task size assigned to a worker is defined by the
full input data size and the number of workers. Although each worker operates
on the same task size, except possibly for the last one, even processing is not
guaranteed due to the different node workload and network conditions.

In the adaptive strategy, the central part of this work, the task size is defined
by taking into account four factors:

An Adaptive Skeletal Task Farm for Grids 407

– Available CPU: CPU fraction allocatable to a new process
– Bandwidth: Speed to transmit data to/from the farmer and a worker
– Current CPU: CPU fraction usable by a running process
– Latency: Time (in msec) to send a TCP message from the farmer to a worker

The forecasts of the above system indicators, supplied by NWS, are com-
posed into a fitness index FI as shown in (1). FI defines the adaptive task size
assuming a certain system behaviour based on historic measurements. It is also
important to mention that the heuristic to calculate the index coefficients is ap-
plication dependant, and in this initial approach, based on an artificially-created
application, we have employed A = 0.4, B = 0.1, C = 0.4, and L = 0.1. The
intention is to have an even task processing by allocating larger tasks to the
fitter nodes in terms of its processing and communications.

FIi = A ∗ availi +
B ∗ bandwidthi

max(bandwidth)
+ C ∗ currenti +

L ∗min(latency)
latencyi

(1)

The algorithm provides default values which assume an unfit node, since
unexpected surges in workload and latencies may affect the operation of the
NWS sensor and memory processes returning no readings at execution.

5 Empirical Results

We have deployed the initial implementation employing a configuration including
32 processors distributed into two 16-node Beowulf clusters (bw240 and bw530)
located at the School of Informatics in the University of Edinburgh. A summary
of the hardware and software configuration of a typical node in each cluster is
presented in Table 1.

Table 1. Hardware/Software Configuration of the bw240 & bw530 Beowulf Clusters
located at the School of Informatics in the University of Edinburgh

CONFIGURATION bw240 bw530

CPU Intel Pentium 4 1.80GHz Intel Xeon 1.70GHz
Memory 1 GB 2 GB
Linux kernel 2.4.20-24.7 1.public.1 2.4.20-31.9 v1 dice 1
gcc gcc-2.96-112.7.1 gcc-3.2.2-5
LAM/MPI lam-6.5.6-tcp.1 lam-6.5.8-4
PACX PACX-5.0-beta 9/8/04 PACX-5.0-beta 9/8/04
NWS 2.10.1 2.10.1

All nodes were on non-dedicated mode during all the experiments, and their
interconnection channels did not have any bandwidth reservation. We observed
that the workloads, latency and bandwidth varied greatly during the experimen-
tation periods.

There were NWS sensors running in all nodes, and there was a clique encom-
passing all nodes. The NWS name and memory server daemons were running in

408 Horacio González-Vélez

the farmer node. We allocated four nodes (two per cluster) to run the PACX-
MPI communication processes. All execution time measurements were obtained
using the MPI Wtime function for the TF skeleton only.

The farmer, the workers and the two-pair communications hosted concur-
rently the series of jobs for the static and adaptive runs for each I (and therefore
under similar external load and competing for the same resources). All farmer
and worker had a system priority of 10.

Figure 4 graphs the execution times for I = 512, 1024, 2048, 4096, 16384. All
entries in the graph perform O(1012) daxpy operations, and present 8 different
lines corresponding to 4, 8, 16, and 32 workers for the static and dynamic models.
The thicker lines average the series of executions for both models.

Fig. 4. Task Farm execution times (in seconds) for a series of concurrent executions.
The application performs O(1012) daxpy operations. Key: [numb][model], e.g., 4S
means 4 workers and Static model. The thick lines are the average of all executions

In an homogeneous dedicated system, one would expect a smooth line. That
is to say, the peaks in the execution times in both models are chiefly defined by
the non-deterministic nature of this grid, e.g. the noticeable peak in the static
case with 8 workers and I = 8192. Hence, it is clear that the adaptive model
surpasses the static one, as reflected by the fact that its averaged graph is flatter
and with lower time measurements for every entry of I.

6 Future Directions

Although the nodes involved in this experiment demonstrated a certain degree of
homogeneity within the same Beowulf cluster, their extremely different workload

An Adaptive Skeletal Task Farm for Grids 409

and interconnections made them distinct enough to become a representative
environment for this initial case study. Even more, the uncontrolled workloads
present at the execution time comprised a non-deterministic scenario. On the
other hand, the model still has room for improvement on its interaction with the
NWS API.

The skeletal approach has helped us to discretise and bound the parameters
involved, reducing the number of combinations. The use of AS allowed us to
make assumptions on the input and output sets that permit a more effective
allocation of computation and communication resources.

These results may seem to be intuitive. However, we consider them significant
since they provide a common ground to further tweak our model under the
dynamic environment of a computational grid. We intend to keep improving it
by:

– Devising a more accurate adaptiveness strategy through more comprehensive
experimentation. A biomedical code is being tinkered with [21].

– Deploying a faster distribution and execution of tasks by analysing the scal-
ability, buffering, and resource monitoring issues.

– Improving the model by incorporating new indicators such as task termina-
tion time and CPU capacity. This in turn will provide foundations to develop
a methodology for the creation of the index heuristics.

References

1. Foster, I., Kesselman, C., eds.: The Grid: Blueprint for a new computing infras-
tructure. Second edn. Morgan Kaufmann, San Francisco, USA (2003)

2. Laforenza, D.: Grid programming: some indications where we are headed. Parallel
Comput. 28 (2002) 1733–1752

3. Vetter, J.S., Reed, D.A.: Real-time performance monitoring, adaptive control, and
interactive steering of computational grids. Int. J. High Perf. Comput. Appl. 14
(2000) 357–366

4. Cheng, S.W., Garlan, D., Schmerl, B., Steenkiste, P., Hu, N.: Software architecture-
based adaptation for grid computing. In: HPDC-02: 11th IEEE Int Symp on High
Performance Distributed Computing, Edinburgh, UK, IEEE CS (2002) 389–398

5. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,
S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A.,
Zagorodnov, D.: Adaptive computing on the grid using AppLeS. IEEE Trans. Par-
all. Distrib. Sys. 14 (2003) 369–382

6. Vadhiyar, S.S., Dongarra, J.J.: Self adaptivity in grid computing. Concurrency
Computat. Pract. Exper. 17 (2005) 235–257

7. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, London, UK (1989)

8. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Comput. 30 (2004) 389–406

9. Rabhi, F.A., Gorlatch, S., eds.: Patterns and skeletons for parallel and distributed
computing. Springer-Verlag, London, UK (2003)

410 Horacio González-Vélez

10. Cole, M.: eSkel: The Edinburgh Skeleton library API reference manual. University
of Edinburgh, UK. First edn. (2002)
Available on-line at: http://homepages.inf.ed.ac.uk/mic/eSkel.

11. Keller, R., Gabriel, E., Krammer, B., Muller, M.S., Resch, M.M.: Towards efficient
execution of MPI applications on the Grid: Porting and optimization issues. J.
Grid Comput. 1 (2003) 133–149

12. Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A distributed re-
source performance forecasting service for metacomputing. Future Gener. Comput.
Syst. 15 (1999) 757–768

13. Hey, A.J.G., Papay, J., Surridge, M.: The role of performance engineering tech-
niques in the context of the grid. Concurrency Computat. Pract. Exper. 17 (2005)
297–316

14. Lian, C.C., Tang, F., Isaac, P., Krishnan, A.: GEL: Grid execution language. J.
Parallel Distrib. Comput. 65 (2005) 857–869

15. Casanova, H., Kim, M.H., Plank, J.S., Dongarra, J.J.: Adaptive scheduling for task
farming with grid middleware. Int. J. High Perf. Comput. Appl. 13 (1999) 231–240

16. Shao, G., Berman, F., Wolski, R.: Master/slave computing on the grid. In
Raghavendra, C., ed.: HCW’00: 9th Heterogeneous Computing Wksp, Cancun,
Mexico, IEEE CS (2000) 3–16

17. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Scheduling skeleton-based grid ap-
plications using PEPA and NWS. Comput. J. 48 (2005) 369–378

18. Aldinucci, M., Danelutto, M., Dünnweber, J., Gorlatch, S.: Optimization tech-
niques for skeletons on grid. In Grandinetti, L., ed.: Grid Computing and New
Frontiers of High Performance Processing. Elsevier Science (2005) To appear.

19. Hey, A.J.G.: Experiments in MIMD parallelism. Future Gener. Comput. Syst. 6
(1990) 185–196

20. Wolski, R.: Experiences with predicting resource performance on-line in computa-
tional grid settings. Sigmetrics Perform. Eval. Rev. 30 (2003) 41–49

21. Gonzalez-Velez, V., Gonzalez-Velez, H.: A grid-based stochastic simulation of uni-
tary and membrane Ca2+ currents in spherical cells. In: 18th IEEE Int Symp on
Computer-Based Medical Syst., Dublin, Ireland, IEEE CS (2005) To appear.

Developing Java Grid Applications with Ibis

Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

Vrije Universiteit Amsterdam
{reeuwijk,rob,bal}@cs.vu.nl

Abstract. Ibis1 is a programming environment for the development of grid ap-
plications in Java. We aim to support a wide range of applications and parallel
platforms, so our example programs should also go beyond small benchmarks.
In this paper we describe a number of larger applications we have developed to
evaluate Ibis’ suitability for writing grid applications: a cellular automata simula-
tor, a solver for the Satisfiability problem, and grammar-based text analysis. We
give an overview of the applications, we describe their implementation, and we
show performance results on a number of parallel platforms, ranging from a large
supercomputer cluster to a real global grid testbed.
Since all of these applications require communication between the processors
during execution, it is not surprising that a supercomputer cluster proved to be
the most effective platform. However, all of our applications were also efficient
on a wide-area cluster system, and some of them even on a grid testbed. Since grid
systems are usually only used for trivially parallel systems, we consider these re-
sults an encouraging sign that Ibis is indeed an effective environment for grid
computing. In particular because for two of the three of the applications the par-
allelisation required very little additional program code.

1 Introduction

Traditional supercomputing offers large amounts of computational power, but requires
tightly controlled homogeneous systems at a single location. For grid computing these
restrictions are lifted, and it is assumed that effective computation is still possible on
heterogeneous, widely distributed, and independently managed computer systems. The
additional flexibility of such a configuration is attractive, but writing efficient software
for grid computing is challenging: Differences in processor architecture and power,
external loads on the processors, differences in network performance, geographical dis-
tance, security measures such as firewalls and proxies, and the possibility of faults in
processors and networks, all complicate software development.

For grid computing it is also desirable that processors can join a running compu-
tation. This is called open-world computation, in contrast to traditional closed-world
computation. However, the open-world requirement complicates the program, and re-
stricts the way a program can be parallelised.

The complications of grid computing require a solid programming environment to
hide these complexities. Ibis provides such an environment. It not only allows programs
to be written in Java, but is also itself written in Java. Choosing Java already solves many

1 Ibis is available under an open source licence, and can be downloaded from www.cs.vu.nl/ibis.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 411–420, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

412 Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

software portability issues (very important in such a heterogeneous environment!), and
allows the programmer to use a modern high-level language.

Standard Java has some support for distributed computing through the Remote
Method Invocation (RMI) library. Ibis provides a very efficient [1] implementation,
but RMI only allows client-server style parallel programming, which is not suitable
for many parallel problems. Ibis therefore offers a wide range of communication mod-
els, including replicated objects, group/collective communication, and a divide-and-
conquer programming model. Also, the Ibis implementation layer, primarily designed
to support the higher-level models, has proved to be an effective programming model
for some problems.

To provide this functionality, other systems typically compromise portability, for
example by interfacing to a native MPI library. In Ibis, all parallel programming mod-
els are cleanly integrated into Java. However, behind this friendly facade a lot of work
is done for the sake of efficiency: native implementations are dynamically selected for
high-performance networks such as Myrinet [2], bytecode is rewritten to generate effi-
cient communication and parallel code [3], and when possible the improved functional-
ity of modern JVM implementations is exploited. However, portable implementations
are always available as fallback.

We aim to support a wide range of programs, so it is important to go beyond small
benchmarks, and try larger applications. In this paper we describe a number of larger
applications we have developed to evaluate Ibis’ suitability for writing grid applications:
a Cellular Automata simulator (§4), a solver for the Satisfiability problem (§5), and
grammar-based text analysis (§6). §2 describes our measurement setup and the way we
evaluate the measurements. §3 describes the Satin divide-and-conquer framework. In
§7 and §8 we show some results for wide-area systems.

2 Measurement Setup and Evaluation

As part of our application descriptions, we will show performance results on a single
site of the DAS2 supercomputer cluster system [4]. Each node of this cluster is a dual
1GHz Intel Pentium III system. Unless specified otherwise, we use the IBM 1.4.1 JVM.

On homogeneous systems like the DAS2 cluster, the efficiency of a computation is
easily determined. Ideally, a cluster of N processors has a speedup of N : it is N times
faster than an individual processor. However, for computations with non-identical pro-
cessors the notion of speedup is meaningless. Instead, we express the efficiency as a
fraction of the ideal speed of the system. Given a system with N nodes, and execu-
tion times on individual nodes t1 . . . tN , each processor ideally contributes to a cluster
computation inversely proportional to its individual computation time. Thus, the ideal
execution time is tideal = 1/

∑N
i=1 1/ti. Given a real cluster computation time tp, the

efficiency of the cluster computation is η = tideal/tp. For a homogeneous system, the
execution time t on each processor is the same, so tideal = t/N .

3 Satin

Satin [5, 6] is a divide-and-conquer framework similar to Cilk [7], but built on top of
Ibis. In Satin, the user must annotate methods that can be executed in parallel, and

Developing Java Grid Applications with Ibis 413

provide an explicit demarcation point where the results of these methods should be
available. For example, the following method recursively creates tasks, waits for them
to complete (the sync() call), and uses the results to compute its own result:

// List all parallel methods in a subinterface of Spawnable
interface I extends ibis.satin.Spawnable {

int f(int n);
}

class F extends ibis.satin.SatinObject implements I {
int f(int n) {

if(n<2) return n;
int x = f(n-1); // these two methods
int y = f(n-2); // are executed in parallel
sync(); // Satin method: wait for the f() methods

// to finish before using their results.
return x+y;

}
}

This implicitly parallel code is rewritten by Ibis to explicitly parallel code, but that is
done on the bytecode, and is invisible to the programmer. This parallel code implements
a cluster-aware work-stealing algorithm that usually is very efficient, even on a grid
system.

4 A Cellular Automata Simulator

Many simulations can be described as interactions between cells, with each cell in one
of a finite number of states. Typically the cells are arranged in a 2- or 3-dimensional
rectangular matrix. The state of the system progresses in a sequence of discrete steps,
where the next state of each cell is determined by the state of the cell itself and that
of its immediate neighbours, according to a homogeneous, fixed set of rules. Such a
problem is called a cellular automata (CA) problem. Such problems occur for example
in biology [8] and urban planning [9].

In our example program we implement a simple ecological model where each cell
represents a patch of land that can be seeded from one of the eight neighbouring patches
with grass or trees, and where woodlands regularly suffer from forest fires. The structure
and behaviour of the program is largely independent of the exact update rules, so our
findings are applicable to a larger set of problems.

We parallelise the computation by distributing the matrix over multiple processors.
Since a cell update requires the state of the neighbours, cell states must be communi-
cated between processors. Since the computation of the new generation on a processor
can only be started when its neighbours have completed the previous generation, there
is a fairly close synchronisation between the processors.

In our implementation, we organise the processors in a one-dimensional array, and
distribute the cells column-wise over the processors. This is simple to implement, but
not optimal: a two-dimensional distribution of the cells may require less communica-
tion. However, since the gains are often small or non-existent, support is complex, and

414 Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

20002 50002 100002

50000 it. 10000 it. 2000 it.
1 7833.27 9766.39 7825.75
2 4061.70 5051.58 4040.28
4 2120.79 2560.48 2031.04
8 1148.90 1295.72 1023.70

16 607.50 665.54 522.02
32 374.37 360.61 268.04
48 273.67 251.73 188.58
64 247.25 211.94 154.74
72 238.60 198.80 142.71

Number of processors
322 4 488 6416 72

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1

closed 2000x2000 50000 it.

closed 5000x5000 10000 it.

closed 10000x10000 2000 it.

Fig. 1. Parallel execution times in seconds and efficiency of our closed-world CA simulator.

since we want to allow open-world computation, we accept the potential inefficiencies
of column-wise distribution.

Our closed-world implementation requires a fixed number of processors that is
known at the start of the program. All processors have an equal share of the matrix,
and initialise their part of the matrix.

We also implemented an open-world version. Since the number of participating
processors is not known in advance, the first processor to join the computation must
initialise the entire grid; when other processors join the computation, they are sent a
fair share of the matrix. This requires a significant amount of communication.

The open-world version also dynamically redistributes the computational load.
When a processor has completed a generation, it sends work requests to its neighbours.
A neighbour that has not completed its own computation sends some columns of the
matrix to its faster neighbour. To dampen temporary disturbances, sporadic requests are
only honoured by small redistributions, and repeated requests by larger redistributions.

The program was implemented using the Ibis communication layer. This layer was
mainly designed to support the higher levels of Ibis, but it was also a good choice for
the CA simulator. We estimate that a sequential simulator would require 200 lines of
code. The closed-world version is about 400 lines of code, and the open-world version
is about 1200 lines of code, mainly because of the load-balancing mechanism.

We do our simulations on a square matrix, denoted as a squaring expression, e.g.
202. In Fig. 1 we show execution times of the closed-world simulator for various prob-
lem sizes. As the results indicate, the program can achieve good speedups, especially
for large grid sizes.

In Fig. 2 we show the results of open-world simulation on a 50002 matrix. For com-
parison we repeat the results of the closed-world simulation. As expected, the fact that
one processor starts with the entire matrix, and then sends most of it to other processors,
has a significant impact, particularly for larger numbers of processors. To evaluate this
effect we also show the results for the last 75% of the iterations. The results indicate
that after the initial redistribution, open-world simulation is as efficient as closed-world
simulation.

Our measurements indicate that the dynamic redistribution system is very effective
in systems with moderate imbalances. However, in extreme cases a slow processor or
a high-latency communication link can determine the pace of the computation or can

Developing Java Grid Applications with Ibis 415

closed open started
1 9766.39 10628.54 7969.99
2 5051.58 5326.20 3988.71
4 2560.48 2785.53 2085.54
8 1295.72 1386.68 1028.97

16 665.54 774.53 560.16
32 360.61 460.86 313.36
48 251.73 376.60 222.29
64 211.94 344.05 178.47
72 198.80 324.44 136.17

Number of processors
322 4 488 6416 72

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1

closed 5000x5000 10000 it.

open 5000x5000 10000 it.

started

Fig. 2. Parallel execution times in seconds and efficiency for 10000 iterations of our open- and
closed-world CA simulators on a 50002 matrix. Also, the parallel execution times and efficiency
for the last 7500 iterations of our open world simulator.

render the balancing mechanism ineffective. In such cases it would be more effective to
withdraw a processor from the computation, but this is currently not supported.

5 Solving the Satisfiability Problem

Given a symbolic Boolean expression, the Satisfiability (SAT) problem requires that a
set of assignments to the variables of the expression is found for which the expression
evaluates to true, or that it is established that no such set of assignments exists2.

The SAT problem plays a pivotal role in theoretical computer science as a repre-
sentative example of an NP-complete problem. It also occurs in a number of practical
applications. Since the problem is NP-complete, no algorithm is known that is guar-
anteed to solve this problem in polynomial time. Nevertheless, a number of heuristics
allow the development of practical SAT solvers.

A brute-force SAT solver could try all possible combinations of assignments, and
see if one of them yields true. However, since an expression with n variables has 2n

combinations, this is rarely practical. A better strategy is to try to eliminate large parts
of the solution space at once by evaluating partial assignments. For example, the expres-
sion (a∨¬b)∧(b∨c∨¬d) can never be satisfied with the assignments a = false, b =
true, since the first clause cannot be satisfied for any assignment to c and d. Yet the
assignments a = true, c = true satisfy the entire Boolean expression for all assign-
ments to b and d. Modern SAT solvers use a backtracking search that speculatively
assigns values to variables until the problem is either satisfied, or until there is a con-
flict. Upon a conflict, the solver backtracks. The efficiency of the search process is
strongly influenced by the order in which the variables are assigned [10]. A common
and effective heuristic is to select variables that satisfy as many unsatisfied clauses as
possible. More refined variable selection heuristics tend to require more sophisticated
bookkeeping, and are often not deemed to be worth the extra trouble.

The backtracking search maps naturally to a divide-and-conquer implementation:
our SAT solver, using a recursive backtracking search as described above, is imple-
mented in 2500 lines of code. Only 25 of these are required by the Satin framework.

2 For a more detailed overview of the Satisfiability problem and its solvers see for example [10].

416 Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

uuf200 FPGA12 FPGA13
1 205.01 4322.26 12635.36
2 108.18 2767.59 8349.74
4 47.42 1335.31 3903.39
8 25.00 631.83 1902.20

16 14.58 313.91 901.26
32 10.45 147.15 437.58
48 9.05 99.00 282.81
64 8.68 76.55 210.07
72 8.07 70.54 186.48

Number of processors
322 4 488 6416 72

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1

uuf200 FPGA12 FPGA13

Fig. 3. Parallel execution times in seconds and efficiency for the SAT solver.

Figure 3 shows results for our solver for a number of SAT problems. The uuf200
problem is from the SATLIB collection [11]. It is a set of 860 random clauses with 3
variables each, and 200 variables in total. Random problems are known to be difficult
for many SAT solvers, since there is no structure to guide them, and problems with the
chosen proportion of clauses and variables are known to be the most difficult [12]. The
FPGA12 and FPGA13 problems are described in [13]. They represent routing problems
through FPGA switchboxes. FPGA12 has 240 variables and 1344 clauses; FPGA13 has
260 and 1586. All problems are known to be unsatisfiable.

As results of Fig. 3 indicates, for the large problems parallel efficiency is very good,
even for large numbers of processors. The uuf200 problem is too small to scale well.

6 Grammar-Based Text Analysis

As a final application we show Grammy, a program that analyses text by constructing
a grammar that produces the original sentence. For example, for the sentence ‘a long
long time ago’ we could construct the grammar

start → ‘a�� time ago’
� → ‘ long’

Constructing a compact grammar is useful for text analysis, since it infers hierarchical
structure [14]. The analysis is also useful for compression. In fact, the classical com-
pression algorithm LZ78 [15], can be viewed as constructing a grammar.

Choosing the most effective grammar rules is often difficult, since a text usually has
many repeated sequences to choose from. The most obvious strategy is to repeatedly
select the longest repeat, or the repeat resulting in the largest gain. However, that is
not optimal, since each choice may preclude subsequent choices. We approximate opti-
mal compression by considering a number of efficient choices at each step and looking
ahead a number of steps. Since each of the possibilities can be evaluated independently,
this can be implemented as a recursive parallel process. Our implementation was par-
allelised very effectively by using Satin: only about 20 of the 1850 lines of code of the
program are required by the Satin framework.

To evaluate our program, we use the following texts: William Shakespeare, A Mid-
summer Night’s Dream (96508 Bytes, text 1), Sir Arthur Conan Doyle, The Adventure

Developing Java Grid Applications with Ibis 417

text 1 text 2 text 3 text 4
1 173737.98 61247.16 6812.21 6111.66
2 32684.88 3704.80 3334.36
4 46890.91 16287.13 1894.03 1672.51
8 23538.16 8290.08 1004.83 905.42

16 12023.00 4398.25 593.16 537.00
32 6647.05 2539.03 394.94 360.50
48 4862.56 1954.54 335.84 306.44
64 3992.91 1647.83 308.76 282.70
72 3694.21 1547.16 296.34 275.70

Number of processors
322 4 488 6416 72

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1

text 1 text 2 text 3 text 4

Fig. 4. Parallel execution times in seconds and efficiency for grammar construction.

of the Red Circle (53394 Bytes, text 2), the grep man page of a recent Debian system
(20047 Bytes, text 3), and the file SuffixArray.java from the Grammy source
code (28572 Bytes, text 4).

Figure 4 shows the execution times and efficiency for these texts. All runs were
done with a lookahead of 5 steps and with at most 7 candidates at each step. These
results show that for large texts the computation scales quite well to larger numbers of
processors. This is because large texts tend to have many repeats, resulting in sufficient
parallelism to keep all processors busy.

7 Results on Wide-Area Clusters

In §4, §5, and §6 we showed results for clusters of processors on a single DAS2 site.
Figure 5 shows results for the same programs on clusters of processors on two and four
DAS sites in the Netherlands. In all cases we use an equal number of processors on the
participating sites, so if we run a program on 64 processors on four sites, each site has
16 processors. As for computation on a single site, we compute the efficiency of the
parallel computation relative to computation on a single node.

Since the CA computation requires information exchange after each iteration, the
processors run in tight lockstep. The larger latency of the wide-area links therefore has a
noticeable influence on the efficiency of the computation. Nevertheless, the computation
is efficient enough to be useful.

The SAT solver and the text analysis also require communication for work stealing,
but the Satin framework was able to hide the higher latencies of the wide-area links. In
fact, in a few cases wide-area execution was more efficient than execution on a single
site, presumably due to reduced contention on shared resources such as local commu-
nication channels.

8 Results on a Global Grid

Finally, we have executed a number of runs on a grid testbed. Efficient computation on
such a system requires a careful choice of communication structure. Often communica-
tion between grid nodes is avoided entirely, but this obviously restricts the use of grid
systems to trivially parallel systems, and all of our example programs require more.

418 Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

CA closed world

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites
CA open world

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites

SAT solver, FPGA12

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites
SAT solver, FPGA13

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites

Text analysis, text 1

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites
Text analysis, text 2

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites

Text analysis, text 3

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites
Text analysis, text 4

Number of processors
4 8 16 32 64 128

E
ffi

ci
en

cy

0

0.25

0.5

0.75

1 1 site 2 sites 4 sites

Fig. 5. Efficiency of computations on two and four DAS sites, compared to a single site.

Our closed-world CA simulator is clearly unsuitable, since it divides the computa-
tion equally over the processors. The other programs were run using the following set
of systems and JVM implementations (site 1 is a DAS2 site):

site CPUs Architecture JVM Location
1 16 Intel Pentium III 1GHz IBM 1.4.1 32 bit the Netherlands
2 4 Intel Xeon 3GHz SUN 1.4.2 32 bit server VM Czech Republic
3 2 Intel IA64 (Itanium) 1.4 GHz SUN 1.4.2 64 bit server VM Poland
4 4 Intel Xeon 2GHz SUN 1.4.2 32 bit server VM Louisiana, USA
5 2 Intel Xeon CPU 2.4 GHz SUN 1.4.2 32 bit server VM Germany

28 total

Table 1 shows the results for these runs. The SAT solver performs very well on a world-
wide grid. The other two applications performed almost as well as on the wide-area
DAS-2 system after we removed two sites. We removed site 3 because the (64 bit) JVM
on that site performs very poorly on the CA and text analysis applications, and did not

Developing Java Grid Applications with Ibis 419

Table 1. Execution times in seconds on individual grid sites, on the combined set of processors
(tp), and efficiency of the various programs on a global grid.

Benchmark system 1 2 3 4 5 tideal tp η
SAT solver, FPGA12 318.88 615.41 1263.70 727.50 1294.16 129.88 146.85 0.88
SAT solver, FPGA12 318.88 615.41 - - 1294.16 180.71 217.99 0.83
Text analysis, text 4 532.68 1052.97 - - 2350.49 307.46 459.82 0.67
CA open 5000x5000, 2500 it 284.40 652.44 - - 1652.83 176.87 266.39 0.66

contribute anything. Site 4 is located in the USA and has a high latency link to Europe.
This interferes with the load balancing algorithm of the CA application: due to the high
latency, steal requests arrive after the victim has finished the iteration. The text analysis
application does not perform well if site 4 is used due to the limited amount of paral-
lelism that is generated. Jobs are relatively small, and the transfer of jobs over the slow
WAN link does not outweigh the cost. For comparison we also show the results for the
SAT solver without these sites.

9 Conclusions and Future Work

In this paper we have shown the use of Ibis for a number of larger applications. Ibis
proved to be very effective. Both the SAT solver and the text analyser could be devel-
oped as mainly sequential programs, with only a few additional lines of code to interface
to the Satin framework. Parallelisation doesn’t get much simpler than this. Although the
Cellular automata simulator required more explicitly parallel code, the amount of par-
allel code was still limited, even for the load-balancing mechanism in the open-world
version.

All programs performed well on a traditional supercomputer cluster, and a wide-
area cluster system. Since all of the programs require communication between the pro-
cessors, execution on a grid system was not always efficient, but even there very cred-
itable results could be achieved, in particular for the SAT solver.

We are currently extending Ibis with support for fault tolerance, more elaborate
automatic configuration, and peer-to-peer computing. Other areas of study are perfor-
mance debugging and additional high-level parallel programming models.

Acknowledgements

This work was partially supported by the Dutch Organisation for Scientific research
(NWO). This work was part of the Virtual Laboratory for e-Science project (www.vl-
e.nl). This project is supported by a BSIK grant from the Dutch Ministry of Education,
Culture and Science (OC&W) and is part of the ICT innovation program of the Ministry
of Economic Affairs (EZ).

420 Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

References

1. Nieuwpoort, R.V.v., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kielmann, T., Bal,
H.E.: Ibis: a flexible and efficient Java-based grid programming environment. Concurrency
and Computation: Practice and Experience 16 (2003) 1–29 Published online in Wiley Inter-
Science (www.interscience.wiley.com). DOI 10.1002/cpe.860.

2. Aumage, O., Hofman, R., Bal, H.: Netibis: An efficient and dynamic communication system
for heterogeneous grids. In: Proc. of CCGrid. (2005) (accepted for publication)

3. Nieuwpoort, R.V.v., Maassen, J., Hofman, R., Kielmann, T., Bal, H.E.: Ibis: an efficient
Java-based grid programming environment. In: Joint ACM Java Grande - ISCOPE 2002
Conference, Seattle, Washington, USA (2002) 18–27

4. Bal, H., et al.: The distributed ASCI supercomputer project. ACM SIG, Operating System
Review 34 (2000) 76–96

5. Nieuwpoort, R.V.v., Maassen, J., Hofman, R., Kielmann, T., Bal, H.E.: Satin: Simple and
efficient Java-based grid programming. In: AGridM 2003 Workshop on Adaptive Grid Mid-
dleware, New Orleans (2003)

6. Nieuwpoort, R.V.v., Kielmann, T., Bal, H.E.: Efficient load balancing for wide-area divide-
and-conquer applications. In: Proc. Eight ACM SIGPLAN Symp. on Princ. and Practice of
Par. Progr. (PPoPP), Snowbird, UT, USA (2001)

7. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. J. of Par. and Distr. Computing 37 (1996) 55–69

8. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological model-
ing. J. theor. Biol. 160 (1993) 97–133

9. Colonna, A., Stefano, V.d., Lombardo, S., Papini, L., Rabino, G.A.: Learning cellular au-
tomata: Modelling urban modelling. In: Proc. 3rd Intl Conf. on GeoComputation, University
of Bristol, UK (1998) 388–395

10. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proc. of the
18th Intl Conf. on Automated Deduction, Copenhagen, ACM (2002) 295–313

11. Hoos, H.H., Stützle, T.: Satlib - the satisfiability library. webpage (2000) www.satlib.org.
12. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems Are. In:

Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, IJCAI-
91, Sidney, Australia (1991) 331–337

13. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances in the pres-
ence of symmetry. In: Proc. of the Design Automation Conf. (DAC), New Orleans (2002)

14. Nevill-Manning, C.G., Witten, I.H.: Compression and explanation using hierarchical gram-
mars. The Computer Journal 40 (1997) 103–116

15. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory 24 (1978) 530–536

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 421–431, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Virtual Workspaces in the Grid

Katarzyna Keahey1, Ian Foster1,2, Timothy Freeman2,
Xuehai Zhang2, and Daniel Galron3

1 Argonne National Laboratory
{Keahey,foster}@mcs.anl.gov

2 The University of Chicago
{tfreeman,hai}@cs.uchicago.edu

3 The Ohio State University
galron@cis.ohio-state.edu

Abstract. Despite significant progress in the development of Grid infrastruc-
ture, the provisioning of a customized and controllable remote execution envi-
ronment remains an open issue. This paper introduces the concept of a virtual
workspace, a configurable execution environment that can be created and man-
aged as a first-class entity to reflect client requirements. Such workspaces can
be dynamically deployed on a variety of resources decoupling the notion of en-
vironment and resource. We show how virtual workspaces fit into the Grid ar-
chitecture, present an example implementation using virtual machines, and dis-
cuss our initial experiences using this system in practice and with applications.

1 Introduction

While significant progress has been achieved with the deployment of Grid-based
applications, the preparation of a remote execution environment remains an issue.
One of the reasons is that while Grids offer access to diverse software environments,
an application typically requires a very specific, customized environment. As a con-
sequence of variations in operating system, middleware versions, library environ-
ments, and file system layouts a user’s application may in practice be able to use only
a small fraction of the resources potentially available on the Grid. The second issue is
the need to provide reliable isolation and dynamic, fine-grain control of shared re-
sources to ensure enforcement of policies and thus provide incentive for wider shar-
ing. The development of Grid protocols [1, 2] provides uniform ways to manage Grid
entities that could represent such environments. It now remains to find ways to de-
scribe represent and implement them.

In this paper, we present the concept of a virtual workspace, which allows a Grid
client to define an environment in terms of its requirements (such as resource re-
quirements or software configuration), manage it, and then deploy the environment in
the Grid. Workspaces defined in this way can be implemented in a variety of ways
such as for example dynamically creating Unix accounts and using system as well as
software configuration tools to enforce the required properties. Here, we focus on a
particularly promising implementation of virtual workspaces: virtual machines
(VMs). The use of virtual machines in Grid computing has been proposed before [3,
4]. In addition to outstanding isolation properties, VMs can provide fine-grained
enforcement; and by their very nature—virtualization of the underlying hardware—

422 Katarzyna Keahey et al.

they enable instantiation of a new, independently configured guest environment on a
host resource. They can be rapidly suspended and their state serialized, and thus eas-
ily migrated to remote resources. Moreover, as a result of recent progress in virtual
machine technology, these advantages no longer come at a performance cost to either
the application or the hosting resource: systems such as Xen [5] demonstrate that they
can be used with little or no performance degradation.

In the rest of the paper, we describe how virtual workspaces fit into the Grid archi-
tecture, present a prototype of this architecture based on the Globus Toolkit (GT) and
experiment with two workspace implementations using Xen [5] and the VMware
Workstation [6]. We describe our initial experiences with integrating VMs into the
Grid infrastructure, and we present preliminary results of testing our prototype system
with a bioinformatics application suite.

2 Virtual Workspaces

Interactions in present-day Grids focus on mapping jobs to resources, often with the
assumption that an execution environment with suitable configuration and enforce-
ment characteristics will be provided by means independent of the Grid infrastruc-
ture. Although such an assumption is true for closely knit groups of Grid users, it is
not justified when applications or users with drastically different requirements and
rights are trying to use the same resources. Recognizing this fact, we define the con-
cept of a virtual workspace that can be automatically deployed on resources and pro-
vide a required execution environment. Thus, jobs can be mapped to workspaces, and
workspaces can be mapped to actual resources in the Grid.

A virtual workspace (VW) is a definition of an execution environment in terms of
its hardware requirements, software configuration, isolation properties, and other
salient characteristics. The intent of defining a workspace is to capture the require-
ments for an execution environment in the Grid and then use automated tools in order
to find, configure, and provide an environment best matching those requirements. We
could, for example, use agreement-based tools to negotiate contracts defining work-
spaces and the use of actual resources and then negotiate a binding between them
following the models described in [2, 7, 8]. Depending on the requirements, such
contracts could be fulfilled by simply dynamically creating and configuring user
accounts as in [9], by using pre-configured virtual machines or other sandboxing and
virtualization technologies.

2.1 Virtual Workspace Descriptions

To describe workspaces, we use an XML Schema, which captures generic properties
of every workspace, as well as properties subject to specific workspace definition or
workspace implementation-specific properties.

The XML example below shows a description of a workspace. It contains the
workspace category type that describes what mechanisms are used to create the work-
space: we currently support implementations based on different types of virtual ma-
chines and dynamic accounts [10]. Currently, the implementation type is used to
define the isolation model as well as provide a clue to services processing the work-
spaces to provide implementation-specific processing. Workspace state can be one of
running (a workspace deployed on a resource), shutdown (for example, a “cold” VM

Virtual Workspaces in the Grid 423

image containing no running processes), paused (for example, a “hot” VM image),
and corrupted (a workspace that cannot be deployed because of internal inconsisten-
cies). In addition, the generic part of workspace description contains a reference that
can be used to check the status of the workspace. The reference embeds information
about the workspace owner’s distinguished name. Other properties contained in the
generic part of the schema include three time-related elements: creationTime, lifeCy-
cle, and lastModified. CreationTime records the time when the workspace was first
instantiated. LifeCycle indicates how long the workspace is available for use. Last-
Modified keeps the information about when the properties of the workspace were
modified last.

Further definition contains a description of different workspace aspects, such as
required hardware, networking configuration, required software installations and
workspace capability. Description of the “virtual resource” that represents the hard-
ware requirements of the execution environment contains elements such as the RAM
size, disk size, disk type, and accessing mode, as well as devices such as virtual CD-
ROM drives. A network specification contains the description of a network connec-
tion and how to establish it (such as the method to obtain an IP address). Software
descriptions contain information about the operating system (e.g., kernel version,
distribution type), library signature, and programs installed. Workspace capability
describes what can be done with the workspace: for example, a workspace may be
configured to run a program on startup or have some programs (in particular, hosting
programs) already running and be able to service requests on specific ports.

<xs:simpleType name="categoryType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="dynamic account"/>
 <xs:enumeration value="vm"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="stateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="shutdown"/>
 <xs:enumeration value="paused"/>
 <xs:enumeration value="running"/>
 <xs:enumeration value="corrupted"/>
 </xs:restriction>
</xs:simpleType>

<xs:element name="virtualWorkspace">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="category" type="categoryType" default="vm"/>
 <xs:element name="state" type="stateType" default="shutdown"/>
 <xs:element name="EPR" type="wsa:EndpointReferenceType"/>
 <xs:element name="creationTime" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="lifeCycle" type="xs:integer" minOccurs="0"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="0"/>

 <xs:element ref="hw:hardware" minOccurs="0"/>
 <xs:element ref="net:network" minOccurs="0"/>
 <xs:element ref="sw:software" minOccurs="0"/>
 <xs:element ref="cap:capability" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

424 Katarzyna Keahey et al.

Wherever applicable, workspace properties are described as a set of possible val-
ues (e.g., RAM size with min and max requirements) rather than one value. The in-
tent is to leave open the largest possible set of mappings of workspaces to real re-
sources. The schemas are extensible to reflect the capabilities of different
implementations. For example, we use a VM-based workspace category type, ex-
tended from the generic category type, to describe the category information of a
workspace implemented with virtual machines. Besides the inherited category name,
it contains extra properties such as the type of virtual machine monitor (VMM),
which are specific for VM-based workspaces only.

Based on the descriptions defined in the schema, workspaces can be selected,
cloned, or refined. Cloning a workspace, for example, involves creating a new name
(as encoded within the reference element), a new resource and copying the descrip-
tion metadata.

2.2 Virtual Workspaces as Virtual Machines

We have surveyed candidate technologies for workspace implementations [4] and
identified two especially promising ones: configurable dynamic accounts [10, 11] and
virtual machines. Although dynamic accounts present an interesting implementation
option (especially when used with enforcement tools such as quota and software
configuration tools such as Pacman [12]), we pursue this work elsewhere [9]. Our
focus in this paper is on a virtual machine implementation of workspaces in view of
their outstanding isolation and serialization properties.

A virtual machine [13] provides a virtualization of the underlying physical host
machine. Software running on the host, called virtual machine monitor (VMM) or
hypervisor, is responsible for supporting the perception of multiple isolated machines
by intercepting and emulating privileged instructions issued by the guest machines. A
VMM typically also provides an interface allowing a client to start, pause or stop
multiple guests. A VM representation contains a full image of a VM’s RAM, disk,
and other devices, allowing its state to be fully serialized, preserved, and restored at a
later date. Recent exploration of paravirtualization techniques [5] has led to substan-
tial performance improvements in virtualization technologies, making virtual ma-
chines an attractive option for Grid computing.

The serialization properties of VMs create the potential for effortless configuration
of execution environments (for example, allowing a user to configure VMs with soft-
ware required by a given community and clone them). Their isolation from the host
machine provides a way of running a different configuration from that of the VM
host and allows guest VMs and resource owners to take advantage of enhanced
security properties of VMs. Further, those abilities combined provide potential for
migration. For these reasons, VMs provide an excellent implementation option for
workspaces: the configuration of a VM image can reflect a workspace’s software
requirements while the VMM can ensure the enforcement of hardware properties.

3 Integrating Virtual Workspaces into the Grid Architecture

Virtual workspaces refine the execution environment layer in Grid architecture: rather
than mapping jobs directly onto hardware resources as in [14], we map jobs to pre-
configured workspaces which can then be mapped to Grid resources. Since a work-

Virtual Workspaces in the Grid 425

space may exist beyond its deployment, and may in fact may be deployed many times
on different resources during its lifetime, we introduce two new services: VW Re-
pository which provides a management interface to workspaces, and VW Manager
which orchestrates their deployment. The figure below illustrates how workspaces
work within the Grid infrastructure:

Fig. 1. Grid Interactions with Virtual Workspaces

3.1 Grid Interactions

In order to create a workspace instance, a Grid client contacts the VW Factory with a
workspace description presented in Section 2.1. A negotiation process may take place
to ensure that the workspace is created in a policy controlled way. The newly created
workspace is registered with a VW Repository, which provides a Grid service inter-
face allowing for inspection and management of workspaces and keeps track of re-
sources implementing workspaces such as virtual machine images. As a result of
creation the client is returned a WSRF end-point reference (EPR) to the workspace.
We leverage the abstraction of a Grid service resource [1] to enable inspection and
management of properties such as termination time.

To deploy a VW on a specific resource, a client contacts a VW Manager Grid ser-
vice on that resource and presents it the workspace’s EPR. The VW Manager allows
a client to deploy/undeploy, start/stop, and (in our VM-based implementation) also
pause/unpause workspaces. Deploying a workspace simply means staging all compo-
nents of the workspace (such as a VM image) to the resource so that they are avail-
able to the VW Manager on that resource. Currently, “checking out” workspaces
from the repository puts a lock on them, since their state might change during use.
Similarly, “undeploy” releases the hold on workspace resources and the correspond-
ing lock. After the workspaces are staged, they can be started (i.e., become available
for computation). Once a VW becomes ready for execution, a program can be started
by using Grid infrastructure mechanisms (e.g., Globus Resource Allocation Manager,
or GRAM) or by using other methods such as preconfigured program startup or a
continuation of a previous execution. The VW Manager can also stop, pause
(“freeze” an ongoing computation), or undeploy a stopped or paused workspace
(stage it back to the repository for example).

426 Katarzyna Keahey et al.

In a complete picture of interactions, a community broker would negotiate reserva-
tions or agreements for the use of specific resource allocations on a resource. The
workspace agreements would be matched against those allocations and create binding
agreements allowing the deployment of a specific workspace on a selected resource
much as described in SNAP [7]. Such agreements could then be renegotiated and the
workspaces migrated, as need arises.

3.2 Implementation

Our current prototype uses both Xen (version 2.01) and VMware (Workstation, ver-
sion 4.5) VMs to implement virtual workspaces. The workspaces use IP addresses
from a pre-reserved pool for networking. The Grid services and infrastructure de-
scribed above were implemented by using GT4 (alpha version 3.9.4). In order to be
capable of deploying workspaces of a specific type, a host machine has to run a vir-
tual machine monitor of that type as well as the VW Manager service. At this point
we assume that no VM image will leave the trusted environment of a specific site;
that is, we do not yet introduce mechanisms to protect integrity and privacy of images
themselves, and we assume one repository per site.

New workspaces are created by cloning existing images configured with the same
requirements and stored in the repository image pool, as in [15]. Each workspace is
configured with a certificate and a private key to authenticate itself to clients. At this
stage, we do not support negotiation for workspace creation; a workspace request is
either accepted or rejected based on existing policies.

The VW Manager interfaces with VMM running on a particular resource to im-
plement to stage/unstage, start/stop, and pause/unpause operations: in Xen via an
HTTP control interface and on VMware Workstation via GUI scripting. To stage a
workspace, the VW Manager transfers the workspace data (including description
metadata and the implementation-specific image) from the VM Repository to the host
node by using GridFTP [16]. Once the workspace data transfer is complete, the VW
Manager waits for the client to start the workspace, which includes creating a work-
space resource, loading the VM image into memory, and booting the VM. At boot
time the VM may initiate preconfigured operations such as obtaining its network
address and starting programs (including the GT hosting environment). Once this step
is completed, a VM can advertise the hosted Grid services such as GRAM for clients
to invoke.

Although in the current prototype we do not address the issue of ensuring privacy
and integrity of workspace representations (VM images), we do support standard
Grid authentication and authorization mechanisms. Running workspaces and Grid
clients mutually authenticate by using the Grid Security Infrastructure GSI [17]. Our
infrastructure also accepts VOMS certificates [18] and is capable of extracting
VOMS attributes for authorization. Authorization of workspace creation, deployment,
and management is configured via access control lists based on the distinguished
name and attributes of Grid entities.

4 Experiences with Virtual Workspaces

The performance impact of virtual machines on applications has been shown to be
small (typically under 5% of slowdown) for different application classes [5, 19, 20].

Virtual Workspaces in the Grid 427

In our preliminary evaluation, we explored the performance impact of different ways
of using VMs as part of Grid infrastructure. We also conducted a preliminary evalua-
tion of VM usage with applications.

To explore the best ways of using VMs within the Grid infrastructure, we timed
the process of starting up a workspace and running a program in it on a remote node
in different startup configurations. We repeated those experiments for both of our
workspace implementations (Xen and VMware Workstation) and compared them
with the time of job startup through a call to GT4 GRAM. In all the experiments we
assume that the necessary data had already been staged to the node (i.e., the executa-
ble and input data for GRAM and a VM image in the case of workspace deployment).

All experiments were run on a dual 2.2 GHz Xeon server configured to run single-
CPU guest VMs. The same VM image configuration (Debian Sarge) was used for
both Xen and VMware, and the same test application was used for all experiments.
Time was measured on the server side only, by using wall clock time.

Fig. 2. Xen-based VWs versus job invocation using GRAM

Figure 2(a) shows time elapsed from the moment GRAM received a job startup re-
quest till the end of the job: as per GRAM default the job is run in a user account.
Figures 2(b-c) show the combined time of deploying a workspace implemented as a
Xen VM and starting a job in it under two different scenarios. In 2(b) we take advan-
tage of the serialization property of VMs: we prepare a “hot image” (a paused image)
with a hosting environment already started up. A call to GRAM is placed as soon as
the environment is available. In 2(c), instead of configuring the workspace to start up
a GT4 hosting environment, we start the job directly. Unless the VM is partially con-
figured at boot time, this scenario could also be optimized by pausing a booted VM.

For comparison, we also ran a similar test on VMware Workstation, which is hard
to time given its non-programmatic, opaque interface (VMware ESX/GSX tools pro-
vide more efficient and direct interfaces). The results are summarized in Figure 3; a
significant amount of time is spent in a controller adapter to the Workstation version.

Fig. 3. VM deployment time using VMware workstation

428 Katarzyna Keahey et al.

Our preliminary experiments show that a Xen VM could be effective for a range of
configurations with addition to job deployment time that can easily be absorbed by
latency in the Grid environment. Startup costs of deploying a VM image are compa-
rable to starting a job; the trade-off is that while GRAM implements a flexible job
deployment strategy the VM is already pre-configured with the job to be started. On
the other hand, the advantages gained by using VMs are significant. Deploying hot
images ready to process requests offers the fastest solution (note that this method
could be used to eliminate application initialization time as well). However, this may
not always be possible; in such cases using a VM preconfigured to start a specific job
is also an efficient alternative (currently no credential is delegated to such a job; the
startup is based on authorization of the client that submits the VM).

To obtain a preliminary assessment of the usefulness of this infrastructure to Grid
applications, we experimented with the EMBOSS [21] suite for bioinformatics appli-
cations. The most important effect was facilitating deployment: while the EMBOSS
installation took roughly 45 minutes, starting a preconfigured VMware Workstation
workspace took on average 6 minutes and 23 seconds (including staging), and the
process itself eliminated installation errors (as per our results above, Xen could be
used for even better results). Another noticeable consequence was a more flexible use
of resources, especially in a heterogeneous resource environment: we no longer had
to require a homogenous resource base.

While the determination is application specific, our results suggest there are situa-
tions where using virtual machine workspace implementations would not be useful.
Jobs that require 100% resource utilization, do not require specific environments, or
that each run for less time than the time required to stage, boot or unpause a virtual
machine would not be good candidates for the infrastructure.

5 Related Work

Due to its potential, the use of virtual machines in Grid computing is attracting in-
creasing attention [3]. The In-Vigo project [15, 22] made substantial progress in this
direction while the Virtuoso [23] and VIOLIN [24] projects explored networking
issues arising from use of VMs in this setting. Our approach differs in that it focuses
on technology-neutral virtual workspaces, using virtual machines as only one of their
potential implementations. Further, recognizing that a workspace may be deployed
many times we distinguish between workspace creation and its deployment introduc-
ing a different architecture for its support.

Attempts to capture requirements of an execution environment to some extent and
automate their deployment have also been made before: for example, the virtual ap-
pliance project [25] uses virtual machines configured based on descriptions in a con-
figuration language to ease administrative burden, and the Cluster on Demand (COD)
project [26] allows a user to choose from a database of configurations to configure a
partition of a cluster. We differ from these projects by our focus on Grid computing
and technology-independent approach.

Finally, the Xenoserver project [27] is building an infrastructure for wide-area dis-
tributed computing based on virtual machines similar to our long-term goals. Here,
we differ by building within the established framework of Grid computing rather than
providing new infrastructure.

Virtual Workspaces in the Grid 429

6 Conclusions and Future Work

We have described the abstraction of a virtual workspace, a customizable execution
environment capable of being deployed on a variety of platforms in the Grid. Work-
spaces are defined in terms of client requirements, such as software and hardware
requirements, and are implemented in terms of technologies providing an isolated
execution environment, quality of service at the granularity of a workspace (as op-
posed to a single process), customized software installation, and, in the case of VMs,
execution serialization and migration.

We showed how workspaces can be integrated into the existing Grid infrastruc-
ture. The integration entails relatively small changes, but introduces substantial flexi-
bility of use. The use of Grid protocols allows us to fully leverage this flexibility and
create, deploy, and shut down workspaces dynamically based on policy-driven provi-
sioning decisions. By virtue of their properties, workspaces are a promising vehicle
for implementing policy-driven Grid usage.

To evaluate the feasibility of our workspace implementations, we compared the
performance of GT4 GRAM, a widely used job startup service for Grid applications,
to the process of starting up workspaces implemented as virtual machines in a variety
of scenarios. In conjunction with the small performance impact on applications [5],
our results show workspaces to be a promising abstraction for Grid computing. In
addition, our experiments identified a number of job startup scenarios relevant in the
workspace context, showing how they may be used in practice. Preliminary applica-
tion evaluation of workspaces also proved satisfactory and fully realized our expecta-
tions for more flexible resource usage.

More work is needed in order to fully assess the usefulness of these ideas. In the
short term, we will focus on the privacy and integrity of migrating workspaces.
Workspace distribution (delivery to host) can require transferring images of a few
gigabytes; this task can be handled by using the presence of an image on a node as a
matching criterion as proposed in [15] or by transferring only partial images as in
[28]. In addition to performance impact on individual applications, we are consider-
ing scalability issues that can be addressed by either using a lighter-weight workspace
implementation such as [29] or mapping groups of jobs to one workspace.

Acknowledgments

This work was supported in part by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, SciDAC Program, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38.

References

1. Czajkowski, K., D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.
Tuecke, and W. Vambenepe, The WS-Resource Framework. 2004: www.globus.org/wsrf.

2. Andrieux, A., K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S.
Tuecke, and M. Xu, Web Services Agreement Specification (WS-Agreement) Draft 20.
2004: https://forge.gridforum.org/projects/graap-wg/.

430 Katarzyna Keahey et al.

3. Figueiredo, R., P. Dinda, and J. Fortes. A Case for Grid Computing on Virtual Machines. in
23rd International Conference on Distributed Computing Systems. 2003.

4. Keahey, K., K. Doering, and I. Foster. From Sandbox to Playground: Dynamic Virtual En-
vironments in the Grid. in 5th International Workshop in Grid Computing. 2004.

5. Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and A.
Warfield. Xen and the Art of Virtualization. in ACM Symposium on Operating Systems
Principles (SOSP).

6. VMware: http://www.vmware.com.
7. Czajkowski, K., I. Foster, V. Sander, C. Kesselman, and S. Tuecke. SNAP: A Protocol for

Negotiating Service Level Agreements and Coordinating Resource Management in Distrib-
uted Systems. in 8th Workshop on Job Scheduling Strategies for Parallel Processing. 2002.
Edinburgh, Scotland.

8. Raman, R., M. Livny, and M. Solomon, Matchmaking: An Extensible Framework for Dis-
tributed Resource Management. Cluster Computing: The Journal of Networks, Software
Tools and Applications, 1999. 2: p. 129-138.

9. Workspace Management Service: http://www.mcs.anl.gov/workspace/.
10. Keahey, K., M. Ripeanu, and K. Doering. Dynamic Creation and Management of Runtime

Environments in the Grid. in Workshop on Designing and Building Web Services. 2003.
Chicago, IL.

11. McNab, A., Grid-Based Access Control for Unix Environments, Filesystems and Web Sites.
Proceeings of the CHEP 2003 conference, 2003.

12. Youssef, S., Pacman: A Package Manager. 2004: http://physics.bu.edu/~youssef/pacman/.
13. Goldberg, R., Survey of Virtual Machine Research. IEEE Computer, 1974. 7(6): p. 34-45.
14. Czajkowski, K., I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke, A

Resource Management Architecture for Metacomputing Systems, in 4th Workshop on Job
Scheduling Strategies for Parallel Processing. 1998, Springer-Verlag. p. 62-82.

15. Krsul, I., A. Ganguly, J. Zhang, J. Fortes, and R. Figueiredo. VMPlants: Providing and
Managing Virtual Machine Execution Environments for Grid Computing. in SC04. 2004.
Pittsburgh, PA.

16. Allcock, W., GridFTP: Protocol Extensions to FTP for the Grid. 2003, Global Grid Forum.
17. Butler, R., D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch, Design

and Deployment of a National-Scale Authentication Infrastructure. IEEE Computer, 2000.
33(12): p. 60-66.

18. EU DataGrid, VOMS Architecture v1.1. 2003.
19. Fraser, K., S. Hand, R. Neugebar, I. Pratt, A. Warfield, and M. Williamson. Safe Hardware

Access with the Xen Virtual Machine Monitor. in OASIS ASPLOS 2004 workshop. 2004.
20. Keahey, K. and K. Doering, From Sandbox to Playground: Dynamic Virtual Environments

in the Grid. ANL/MCS-P1141-0304, 2003.
21. Rice, P., I. Longde, and A. Bleasby, EMBOSS: The European Molecular Biology Open

Software Suite Trends in Genetics. 16, 2000. 6: p. 276-277.
22. Adabala, S., V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M.

Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu, From Virtualized Resources to Virtual
Computing Grids: The In-VIGO System. Future Generation Computer Systems, 2004.

23. Sundararaj, A. and P. Dinda. Towards Virtual Networks for Virtual Machine Grid Comput-
ing. in 3rd USENIX Conference on Virtual Machine Technology. 2004.

24. Jiang, X. and D. Xu, VIOLIN: Virtual Internetworking on OverLay INfrastructure. Depart-
ment of Computer Sciences Technical Report CSD TR 03-027, Purdue University, 2003.

25. Sapuntzakis, C., D. Brumley, R. Chandra, N. Zeldovich, J. Chow, M.S. Lam, and M.
Rosenblum. Virtual Appliances for Deploying and Maintaining Software. in Proceedings of
the 17th Large Installation Systems Administration Conference (LISA '03). 2003.

26. Chase, J., L. Grit, D. Irwin, J. Moore, and S. Sprenkle, Dynamic Virtual Clusters in a Grid
Site Manager. accepted to the 12th International Symposium on High Performance Distrib-
uted Computing (HPDC-12), 2003.

Virtual Workspaces in the Grid 431

27. Reed, D., I. Pratt, P. Menage, S. Early, and N. Stratford. Xenoservers: Accountable Execu-
tion of Untrusted Programs. in 7th Workshop on Hot Topics in Operating Systems. 1999.
Rio Rico, AZ: IEEE Computer Society Press.

28. Sapuntzakis, C., R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and M. Rosenblum. Optimizing
the Migration of Virtual Computers. in 5th Symposium on Operating Systems Design and
Implementation. 2002.

29. Whitaker, A., M. Shaw, and S.D. Gribble. Denali: Lightweight Virtual Machines for Dis-
tributed and Networked Applications. in In Proceedings of the USENIX Annual Technical
Conference. 2002. Monterey, CA.

Modeling Machine Availability in Enterprise and
Wide-Area Distributed Computing Environments

Daniel Nurmi, John Brevik, and Rich Wolski

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106

Abstract. In this paper, we consider the problem of modeling machine
availability in enterprise-area and wide-area distributed computing set-
tings. Using availability data gathered from three different environments,
we detail the suitability of four potential statistical distributions for each
data set: exponential, Pareto, Weibull, and hyperexponential. In each
case, we use software we have developed to determine the necessary pa-
rameters automatically from each data collection.
To gauge suitability, we present both graphical and statistical evaluations
of the accuracy with each distribution fits each data set. For all three data
sets, we find that a hyperexponential model fits slightly more accurately
than a Weibull, but that both are substantially better choices than either
an exponential or Pareto.
These results indicate that either a hyperexponential or Weibull model
effectively represents machine availability in enterprise and Internet com-
puting environments.

1 Introduction

As performance-oriented distributed computing (often heralded under the
moniker “Computational Grid” computing [13]) becomes more prevalent, the
need to characterize accurately resource reliability emerges as a critical prob-
lem. Today’s successful Grid applications uniformly rely on run-time schedul-
ing [1, 6, 9, 10, 27, 29] to identify and acquire the fastest, least loaded re-
sources at the time an application is executed. While these applications and
systems have been able to achieve new performance heights, they all rely on
the assumption that resources, once acquired, will not fail during application
execution. In many resource environments such an assumption is valid, but in
order to employ nationally or globally distributed resource pools (e.g. in the
way SETI@Home [30] does) or enterprise-wide desktop resources (as many com-
mercial endeavors do [3, 12, 36]), performance-oriented distributed applications
must be able either to avoid or to tolerate resource failures.

Designing the next generation of Grid applications requires an accurate model
of resource failure behavior. There has been a great deal of work [14, 18, 20, 21,
25] on the problem of modeling resource failure (or, equivalently, resource avail-
ability) statistically. More recently, peer-to-peer systems have used statistical

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 432–441, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling Machine Availability in Enterprise 433

distributions as the basis of their availability assumptions [32, 39]. As Plank
and Elwasif point out in their landmark paper [28], however, most of these ap-
proaches assume that the underlying statistical behavior can be described by
some form of exponential distribution or hyperexponential distribution [21]. In
addition, they go on to note that, despite the popularity of these models, they of-
ten fail to reflect empirical observation of machine availability. In other contexts,
such as process lifetime estimation [16] and network performance [22, 26, 37],
researchers often advocate the use of “heavy-tailed” distributions, especially the
Pareto. Other work has been done showing that a Weibull distribution is an
appropriate model for various resource availability data [17, 38], but this work
lacks a detailed analysis of model fitting and verification.

Our goal with this work is to develop an automatic method for modeling
the availability of enterprise-wide and globally distributed resources. Automatic
model determination has several important engineering applications. We plan
to incorporate such models into Grid programming systems, such as the Grid
Application Development Software [5] system, NetSolve [9], and APST [6], in or-
der to enable effective resource allocation and scheduling. Commercial-enterprise
computing systems such as Entropia [12], United Devices [36], and Avaki [3] will
also be able to take advantage of automatically determined models as they tune
themselves to the characteristics of a particular site. We believe this work will
be particularly important to the development of credible and effective Grid and
Autonomic Computing [19] simulations. Because Grid architectures are driven
by the dynamic resource sharing of competing users, repeatable “en vivo” ex-
periments are difficult or impossible. Several effective emulation [31] and simula-
tion [7, 8, 33] systems have been developed for Grid environments. These systems
will benefit immediately from the more accurate models our method produces.

We propose an approach to modeling machine availability based on fitting
statistical distributions to observed data, which is outlined in the following man-
ner. In Section 2 we define the statistical distributions used throughout this work
and describe our method for estimating the necessary parameters from a given
set of availability measurements. We also outline the three data sets used in this
study in Section 2. To gauge the effectiveness of our modeling methodology, we
detail and analyze the degree to which an automatically generated model fits
three diverse sets of empirical observations in Section 3, in which we compare
the generated models for all three data sets both visually and through the use of
two Goodness of Fit (GOF) tests to complement our visual analysis. In Section 4
we discuss the conclusions we draw from this work and point to future research
directions it enables.

2 Fitting a Distribution to Availability Data

In this study, the two distribution families that consistently fit the data we
have gathered most accurately are the Weibull and the hyperexponential. The
Weibull distribution is often used to model the lifetimes of objects, including
physical system components [4] and also to model computer resource availabil-
ity distributions [17, 38]. Hyperexponentials have been used to model machine

434 Daniel Nurmi, John Brevik, and Rich Wolski

availability previously [25] especially when observed data requires a model which
can approximate a wide variety of shapes. In order to fit most of the statistical
distributions used in this paper to observed data, we implemented Matlab [24]
scripts which found the MLE (Maximum Likelihood Estimation) parameters.
The problem of finding MLE parameters for the hyperexponential, however,
tends to be numerically intractable for large data sets, so instead we use EM-
pht software [2]. Following are the equations for the models we compare in this
work, along with a description of how we estimate the model parameters given
a sample data set.

2.1 Statistical Distributions

Throughout this paper, we will use small f for density functions and capital F
for distribution functions, subscripted to differentiate among the various types of
distribution. These functions, fW and FW respectively, for a Weibull distribution
are given by

fW (x) = αβ−αxα−1e−(x/β)α

(1)

FW (x) = 1− e−(x/β)α

(2)

The parameter α is called the shape parameter, and β is called the scale param-
eter1. Note that the Weibull distribution reduces to an exponential distribution
when α = 1.

Hyperexponentials are distributions formed as the weighted sum of exponen-
tials, each having a different parameter. The density function is given by

fH(x) =
k∑

i=1

[pi · fEi(x)] (3)

where
fEi(x) = λie

−λix (4)

defines the density function for an exponential having parameter λi. In the defi-
nition of fH(x), all λi �= λj for i �= j, and

∑k
i=1 pi = 1. The distribution function

is defined as

FH(x) = 1−
k∑

i=1

pi · e−λix (5)

for the same definition of fei(x).
The probability density and distribution functions for the exponential and

Pareto distributions, respectively, are as follows:

fE(x) = λe−λx (6)

FE(x) = 1− e−λx (7)
1 The general Weibull density function has a third parameter for location, which we

can eliminate from the density simply by subtracting the minimum lifetime from all
measurements. In this paper, we will work with the two-parameter formulation.

Modeling Machine Availability in Enterprise 435

fP (x) =
αβα

xα+1
(8)

FP (x) = 1−
(
β

x

)α

(9)

2.2 Data Sets

In this work, we use three data sets which we believe exhibit availability behavior
typical of hosts currently residing on the Internet. The first data set is from
UCSB’s CSIL computer science student lab. Each measurement records the time
from when a workstation is able to run a user process to when it no longer can
do so. The second data set is drawn from the Condor [34] pool running at the
University of Wisconsin. Each condor availability measurement is the time from
when the Condor scheduler starts one of our monitoring processes to when the
allocated workstation evicts our monitor process. Finally, we have obtained the
dataset from a work by Long, Muir, and Golding [23] in which they remotely
measured Internet host availability. We measured 83 machines in the CSIL lab
for 8 weeks. The Condor dataset comes from 210 during a 6-week period, and
Long, Muir and Golding gathered data from 1170 machines over a 3-month
experimental period.

Before attempting to capture the distribution behavior of our data sets, we
wanted to explore the data characteristcs of independence and identical distri-
bution. We assume data independence since we intuitively believe, for instance,
that one uptime interval on some machine has no effect on the length of the
next uptime interval. To inspect the identical distribution characteristics of the
data, we performed a Kruskal-Wallis test for identical location between individ-
ual machines for each data set. The test strongly rejected the null hypothesis that
the data is i.d. This is not, however, entirely surprising as the machines we are
monitoring have a wide range of usage models which impact their availability.
This does imply, however, that although we can use models which fit combined
machine availability data, we cannot infer from these models any information
about the individual machines that make up the combined data set.

3 Analysis

The goal of our study is to determine the value of using Weibull and hyperexpo-
nential distributions to model resource availability. Our method is to compare
the MLE-determined Weibull and EMpht-determined hyperexponential to the
MLE exponential and Pareto for each of the data sets discussed in the previ-
ous section. For reference, we have included the MLE-determined and EMpht-
determined model parameters that were used for all fitted distributions discussed
and shown in this work (Table 1). As we noted in the introduction, both expo-
nential and the Pareto models have been used extensively to model resource and
process lifetime. Thus the value we perceive is the degree to which the Weibull
and hyperexponential models more accurately fit each data set.

In each case, we use three different techniques to evaluate model fit: graphical;
the Kolmogorov-Smirnov [11] (KS) test; and the Anderson-Darling [11] (AD)

436 Daniel Nurmi, John Brevik, and Rich Wolski

Table 1. Table of fitted model parameters

Data Set Weibull Hyperexponential Exp. Pareto
α β p1 p2 p3 λ1 λ2 λ3 λ α β

CSIL .545 275599 .197 .389 .464 2 ∗ 10−4 8 ∗ 10−6 1 ∗ 10−6 2 ∗ 106 .087 1

Condor .49 2403 .592 .408 NA 3 ∗ 10−3 7 ∗ 10−5 NA .00018 .149 1.005
Long .61 834571 .271 .474 .282 1 ∗ 10−5 1 ∗ 10−6 3 ∗ 10−7 7 ∗ 107 .079 1

test. Graphical evaluation is often the most compelling method [35] but it does
not provide the security of a quantified result. The other two tests come under
the general heading of “goodness-of-fit” tests2.

3.1 Graphical Analysis of the Availability Measurements

To gauge the fit of a specific model distribution to a particular data set, we
plot the cumulative distribution function (CDF) for the distribution and the
empirical cumulative distribution for the data set. The form of the CDF for the
Weibull, hyperexponential, exponential and Pareto are given by equations 2, 5,
7, and 9 respectively (cf. Section 2). The empirical distribution function (EDF)
is the CDF of the actual data; it is calculated by ordering the observed values
as X1 < X2 < · · · < Xn and defining

Fe(x) = j/n,Xj ≤ x < X(j+1) (10)

We start by comparing the empirical observations from the CSIL data set
(as an EDF) to the CDF determined by the EMpht-estimated hyperexponential,
and the MLE-estimated Weibull, exponential, and Pareto distributions (shown
in Figures 1, 2, and 3). In all of the figures depicting distributions in this pa-
per, the units associated with the x-axis are seconds of machine availability. We

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
weibull

Fig. 1. CSIL data with
Weibull fit

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
hyperexponential

Fig. 2. CSIL data with hy-
perexponential fit

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
exponential

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
exponential

pareto

Fig. 3. CSIL data with ex-
ponential and Pareto fits

2 The best known goodness-of-fit test is the Chi-squared test. Both the Kolmogorov-
Smirnov and the Anderson-Darling tests are considered more appropriate for contin-
uous distributions than the Chi-squared test, which is designed for categorical data
and would thus require artifical “binning” of data. We therefore use these methods
in place of the more familiar one.

Modeling Machine Availability in Enterprise 437

use a log scale for the x-axis to better expose the nature of each fit. Both the
hyperexponential and the Weibull fit the data substantially better than either
an exponential or Pareto; the hyperexponential is also able to capture the slight
inflection around 10,000 seconds. Since automatic selection of the number of
phases to use when fitting a hyperexponential is not part of the EMpht soft-
ware, we have devised our own method. To determine the number of phases, we
begin with a 2-phase hyperexponential, test the resulting fit with a Kolmogorov-
Smirnov test, and then repeat with an increased number of phases until the KS
test result shows no improvement. In this case, for the CSIL data, the algorithm
terminated using three phases.

For the Condor data set, the comparison (shown in Figures 4, 5, and 6) is
more striking. Again, the hyperexponential (a 2-phase, in this case) appears to fit
the shape of the curve most closely, and the Weibull appears a better choice than
either exponential or Pareto. Note in particular how again the hyperexponential
is able to capture the inflection points of the Condor EDF around 1000 seconds,
while the Weibull is unable to do so.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000

empirical
weibull

Fig. 4. Condor data with
Wiebull fit

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000

empirical
hyperexponential

Fig. 5. Condor data with
hyperexponential fit

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000

empirical
exponential

pareto

Fig. 6. Condor data with
exponential and Pareto fits

Finally, the fits (3-phase hyperexponential in this case) for the Long, Muir,
and Golding data are shown in Figures 7, 8, and 9.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
weibull

Fig. 7. Long data with
Weibull fit

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
hyperexponential

Fig. 8. Long data with hy-
perexponential fit

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 100 10000 1e+06

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000 1e+06

empirical
exponential

pareto

Fig. 9. Long data with ex-
ponential and Pareto fits

The comparison is similar to that for the CSIL data. The multi-phase hyper-
exponential fits slightly better than a Weibull, and both are substantially better
than an exponential or Pareto.

438 Daniel Nurmi, John Brevik, and Rich Wolski

Of particular interest are the way in which each hypthetical distribution ap-
pears to match the tail of an EDF. In many application contexts, “tail behavior”
can be important, especially if the presence or absence of rare occurrences must
be modeled accurately. For example, previous research [15, 16] reveals Unix pro-
cess lifetimes to be “heavy-tailed” and well-modeled by a Pareto distribution.
Thus schedulers and process management systems must be designed for infre-
quently occurring processes that have very long execution times.

According to Figures 3, 6, and 9, however, a Pareto distribution would over-
estimate the probability of very long-lived resources by a considerable amount.
Indeed, it may be that while Unix process lifetime distributions are heavy tailed,
if they are executed in distributed or global computing environments, many of
them will be terminated by resource failure since the resource lifetime distribu-
tions (both EDFs and their matching Weibull and hyperexponential fits) have
considerably less tail weight.

Even beyond the differences in the tails, however, we can clearly see that the
general shape of the exponential and Pareto distributions do not seem to fit the
sample CDFs well.

3.2 Goodness-of-Fit Analysis

For this analysis we use both KS and AD goodness-of-fit tests with randomly
chosen subsamples from our data sets each having size 100. We then repeat the
tests, with different random subsamples, 1000 times to get a range of test results
and then we use the average test statistic value to compute the p-value. Rejection
at size 100 indicates that with as few as 100 data points it is evident that the
tested distribution is inappropriate. The addition of more data points to the test
will only confirm this inappropriateness further.

Table 2 shows the GOF test results which are the average p-values from the
1000 iterations of the experiment.

Table 2. Table of p-value results from GOF tests

Data Set Weibull Exponential Pareto Hyperexponential
AD KS AD KS AD KS AD KS

CSIL 0.071 0.36 0 0.0002 0 0.0005 0.59280 0.47
Condor 0 0.07 0 0 0 0 0.68291 0.42
Long 0.132 0.41 0 0.001 0 0.0005 0.77247 0.48

From the table, it is clear that both the exponential and Pareto perform
poorly on these tests for all three data sets. This is not entirely surprising, since
the visual fit was clearly inferior for all three data sets. The hyperexponential
performs substantially better than all of the other models for all of the data
sets; again this is not surprising since the hyperexponential model can increase its
number of phases as needed. For the Weibull, we fail to reject the null hypothesis

Modeling Machine Availability in Enterprise 439

at α = 0.05 significance level on average for subsamples of size 100 using the
KS test for all three data sets. We fail to reject the null hypothesis at α =
0.05 significance using the AD test for the CSIL and Long data sets, but reject
for the Condor data set, supporting the graphical evidence that the Condor
data set is less-well modeled by a Weibull than the CSIL or Long-Muir-Golding
data. Although GOF tests cannot provide a positive result, note that if we were
taking a random sample directly from a continous distribution, the GOF test
would on average result in a p-value of 0.5. This being the case, we consider an
empirical data set p-value result close to 0.5 to be essentially indistinguishable,
with respect to the GOF test being used, from data actually drawn from a
statistical distribution. p-values of this magnitude were clearly obtained for all
three data sets and both tests when performed against a hyperexponential null
hypothesis, and to a lesser degree for the CSIL and Long data sets from the KS
test against the Weibull null hypothesis.

4 Conclusions

From the results presented in this paper, we feel that there is a compelling case
for the superiority of Weibull or hyperexponential distributions in the modeling
of resource availability data.

The need to model resource availability and to characterize groups of re-
sources in terms of their availability is critical to desktop Grid, peer-to-peer,
and global computing paradigms. Previous related work has used exponential
(memoryless) or Pareto distributions, but our work shows that Weibull and
hyperexponential distributions are more accurate choices. Visual evidence and
GOF results (when applied repeatedly to subsamples) make a compelling case
for the use of either a Weibull or hyperexponential distribution to approximate
the behavior of resources in our three environments. The choice of which to use
depends on the application for which the model is needed, and how complex
a model can be handled under application constraints. The hyperexponential,
although it generally shows a better fit for the data, is significantly more com-
plex than the Weibull models due to its larger number of estimated parameters,
the fact that the phase parameter is free and must be decided iteratively, and
its resistance to the MLE methods used for the other distributions presented.
The Weibull distribution, with its two MLE-computable parameters and relative
mathematical simplicity, seems a better choice if speed and complexity are of
interest. Regardless, the methods we use in this paper can be used to automat-
ically decide which model is best at any given moment based on GOF analysis.
Both the Weibull and hyperexponential are significantly better at capturing the
distribution of availability time than the exponential or Pareto, and both can be
computed automatically from availability measurement data.

From these results, we hope to generate individual resource models and to
improve the quality of simulation and modeling for volatile distributed systems.

440 Daniel Nurmi, John Brevik, and Rich Wolski

References

1. D. Abramson, J. Giddy, I. Foster, and L. Kotler. High Performance Parametric
Modeling with Nimrod/G: Killer Application for Global Grid? In The 14th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2000), 2000.

2. S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distributions via the
em algorithm. Scandinavian Journal of Statistics, 23:419–441, 1996.

3. The Avaki Home Page. http://www.avaki.com, January 2001.
4. C. E. Beldica, H. H. Hilton, and R. L. Hinrichsen. Viscoelastic beam damping and

piezoelectric control of deformations, probabalistic failures and survival times.
5. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis Gannon,

K. Kennedy, C. Kesselman, D. Reed, L. Torczon, , and R. Wolski. The GrADS
project: Software support for high-level grid application development. International
Journal of High-performance Computing Applications, 15(4):327–344, Winter 2001.

6. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and
D. Zagorodnov. Adaptive computing on the grid using apples. IEEE Transactions
on Parallel and Distributed Systems, 14(4):369–382, April 2003.

7. R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Comcurrency
Practice and Experience, 14(14-15), Nov-Dec 2002.

8. H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In
Proceedings of the First IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2001), 2001.

9. H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computa-
tional Science Problems. The International Journal of Supercomputer Applications
and High Performance Computing, 1997.

10. W. Chrabakh and R. Wolski. GrADSAT: A Parallel SAT Solver for the Grid. In
Proceedings of IEEE SC03, November 2003.

11. R. B. D’Agostino and M. A. Stephens. Goodness-Of-Fit Techniques. Marcel Dekker
Inc., 1986.

12. The Entropia Home Page. http://www.entropia.com.
13. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann Publishers, Inc., 1998.
14. A. L. Goel. Software reliability models: Assumptions, limitations, and applicability.

In IEEE Trans. Software Engineering, vol SE-11, pp 1411-1423, Dec 1985.
15. M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for

dynamic load balancing. In Proceedings of the 1996 ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, 1996.

16. M. Harcol-Balter and A. Downey. Exploiting process lifetime distributions for
dynamic load balancing. ACM Transactions on Computer Systems, 15(3):253–285,
1997.

17. T. Heath, P. M. Martin, and T. D. Nguyen. The shape of failure.
18. R. K. Iyer and D. J. Rossetti. Effect of system workload on operating system

reliabilty: A study on ibm 3081. In IEEE Trans. Software Engineering, vol SE-11,
pp 1438-1448, Dec 1985.

19. J. Kephart and D. Chess. The vision of autonomic computing. IEEE Computer,
January 2003.

20. J.-C. Laprie. Dependability evaluation of software systems in operation. In IEEE
Trans. Software Engineering, vol SE-10, pp 701-714, Nov 1984.

Modeling Machine Availability in Enterprise 441

21. I. Lee, D. Tang, R. K. Iyer, and M. C. Hsueh. Measurement-based evaluation of
operating system fault tolerance. In IEEE Trans. on Reliability, Volume 42, Issue
2, pp 238-249, June 1993.

22. W. Leland and T. Ott. Load-balancing heuristics and process behavior. In Proceed-
ings of Joint International Conference on Measurement and Modeling of Computer
Systems (ACM SIGMETRICS ’86), pages 54–69, May 1986.

23. D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host reliability.
In 14th Symposium on Reliable Distributed Systems, pages 2–9, September 1995.

24. Matlab by Mathworks. http://www.matlab.com.
25. M. Mutka and M. Livny. Profiling workstations’ available capacity for remote ex-

ecution. In Proceedings of Performance ’87: Computer Performance Modelling,
Measurement, and Evaluation, 12th IFIP WG 7.3 International Symposium, De-
cember 1987.

26. V. Paxon and S. Floyd. Why we don’t know how to simulate the internet. In
Proceedings of the Winder Communication Conference also http: // citeseer.

nj. nec. com/ paxon97why. html , December 1997.
27. A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vadhiyar.

Numerical libraries and the grid. In Proceedings of IEEE SC’01 Conference on
High-performance Computing, November 2001.

28. J. Plank and W. Elwasif. Experimental assessment of workstation failures and
their impact on checkpointing systems. In 28th International Symposium on Fault-
Tolerant Computing, pages 48–57, June 1998.

29. M. Ripeanu, A. Iamnitchi, and I. Foster. Cactus application: Performance predic-
tions in a grid environment. In proceedings of European Conference on Parallel
Computing (EuroPar) 2001, August 2001.

30. SETI@home. http://setiathome.ssl.berkeley.edu, March 2001.
31. H. Song, J. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien. The

MicroGrid: a Scientific Tool for Modeling Computational Grids. In Proceedings of
SuperComputing 2000 (SC’00), Nov. 2000.

32. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and K. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In In Proc. SIG-
COMM (2001), 2001.

33. A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita. Performance analysis of
scheduling and replication algorithms on grid datafarm architecture for high-energy
physics applications. In Proceedings 12th IEEE Symp. on High Performance Dis-
tributed Computing, June 2003.

34. T. Tannenbaum and M. Litzkow. The condor distributed processing system. Dr.
Dobbs Journal, February 1995.

35. E. Tufte. The Visual Display of Quantitative Information, 2nd Ed. Graphics Press,
May 2001.

36. The United Devices Home Page. http://www.ud.com/home.htm, January 1999.
37. W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through

high-variability: statistical analysis of ethernet lan traffic at the source level. In
SIGCOMM’95 Conference on Communication Architectures, Protocols, and Appli-
cations, pages 110–113, 1995.

38. J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked windows nt system field failure
data analysis.

39. B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. A resilient
global-scale overlay for service deployment. (to appear) IEEE Journal on Selected
Areas in Communications.

Faults in Large Distributed Systems
and What We Can Do About Them

George Kola, Tevfik Kosar, and Miron Livny

Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison WI 53706
{kola,kosart,miron}@cs.wisc.edu

Abstract. Scientists are increasingly using large distributed systems built from
commodity off-the-shelf components to perform scientific computation. Grid com-
puting has expanded the scale of such systems by spanning them across orga-
nizations. While such systems are cost-effective, the usage of large number of
commodity components causes high fault and failure rates. Some of these faults
result in silent data corruption leaving users with possibly incorrect results. In
this work, we analyzed the faults and failures that occurred in Condor pools at
UW-Madison having a few thousand CPUs and in two large distributed applica-
tions: US-CMS and BMRB BLAST, each of which used hundreds of thousands
of CPU hours. We propose ‘silent-fail-stutter’ fault-model to correctly model the
silent failures and detail how to handle them. Based on the model, we have de-
signed mechanisms that automatically detect and handle silent failures and ensure
that users get correct results. Our mechanisms perform automated fault location
and can transparently adapt applications to avoid faulty machines. We also de-
signed a data provenance mechanism that tracks the origin of the results, enabling
scientists to selectively purge results from faulty components.

1 Introduction

Scientists are increasingly using distributed systems built from commodity components
for their computing needs. Grid computing [1] has increased the scale by sharing these
computing resources across organizations. While this approach is cost-effective, hard-
ware errors may create havoc if the system software and applications do not handle them
appropriately. For instance, most of the several thousand UW-Madison Condor pool
compute nodes have non-parity memory. A stray alpha particle may corrupt the mem-
ory leaving the scientists with incorrect results. Further, just failure of certain memory
chips may corrupt parts of the computation and this failure may go unnoticed for a long
period.

Hard-drives, RAID-controllers [2] and processors may also exhibit such faulty be-
havior. While detecting such faulty components is itself difficult, detecting all the cor-
rupted results and recomputing them is even more difficult. This leaves the users with
results that may be incorrect. This is particularly troublesome for large-scale computa-
tion performed on these distributed systems. While system-administrators may detect
these faults at some point and replace the faulty components, purging the results that
touched these components is non-trivial.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 442–453, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Faults in Large Distributed Systems and What We Can Do About Them 443

We analyzed the faults in large distributed systems by looking at the faults and fail-
ures that occurred in the Condor pools at UW-Madison campus, and in two large dis-
tributed applications: US-CMS and BMRB BLAST, each of which processed terabytes
of data and used hundreds of thousands of CPU hours.

In this work, we present a summary of our experience and propose ‘silent-fail-
stutter‘ fault model that correctly models components that exhibit silent failures. We
highlight the implications of this model and detail what a system incorporating such
components should do.

Using the insights from the model, we have designed mechanisms that can automat-
ically detect and handle silent failures taking into account user specified policies. Our
mechanisms also provide fault location and can dynamically adapt applications to avoid
faulty machines. They keep track of the origin of the result, including the components
that interacted with the source component to generate this result. This enables users at
any point to selectively purge results that interacted with faulty components. Finally,
we evaluate our new model and the mechanisms on a real-life distributed workload and
highlight its effectiveness.

2 Faults in Distributed Systems

In this section, we give a widely accepted definition of faults, and present different types
of faults experienced by real distributed applications.

2.1 Definition of Faults

The widely accepted definition, given by Avizienis and Laprie [3] is as follows. A fault
is a violation of a system’s underlying assumptions. An error is an internal data state
that reflects a fault. A failure is an externally visible deviation from specifications. A
fault need not result in an error, nor an error in a failure. An alpha particle corrupting a
memory location is a fault. If that memory location contains data, that corrupted data is
an error. If a program crashes because of using that data, it is a failure.

2.2 Experienced Faults in Distributed Systems

We analyzed the faults in large distributed systems by looking at the faults and failures
that occurred in two large distributed applications: US-CMS and BMRB BLAST, each
of which was processing terabytes of data and using hundreds of thousands of CPU
hours. We also analyzed several other small applications running in the Condor pool at
UW-Madison campus having a couple of thousand compute nodes. The most common
failures we have observed are:

Data Corruption. Faulty hardware in data storage, staging and compute nodes cor-
rupted several data bits occasionally. The faults causing this problem included a bug
in the raid controller firmware on the storage server, a defective PCI riser card, and
a memory corruption. The main problem here was that the problem developed over a
course of time, so initial hardware testing was not effecting in finding the problems.
The raid controller firmware bug corrupted data only after a certain amount of data was

444 George Kola, Tevfik Kosar, and Miron Livny

stored on the storage server and hence was not detected immediately after installation.
In almost all of these cases, the data corruption happened silently without any indication
from hardware/operating system that something was wrong. Tracking down the faulty
component took weeks of system administrator’s time on average.

Hanging Processes. Some of the processes hang indefinitely and never return. From the
submitters point of view there was no easy way of determining whether the process was
making any progress or was hung for good. The most common cause of hanging data
transfers was the loss of acknowledgment during third party file transfers. In BMRB
BLAST, a small fraction of the processing hung and after spending a large amount of
time, the operator tracked it down to an unknown problem involving the NFS server
where an NFS operation would hang.

Misleading Return Values. An application returning erroneous return values is a very
troublesome bug that we encountered. We found that even though an operation failed,
the application returned success. This happened during some wide area transfers using
a widely used data transfer protocol. We found that if the destination disk ran out of
space during a transfer, a bug in the data transfer protocol caused the file transfer server
to return success even though the transfer failed. This in turn resulted in failure of
computational tasks dependent on these files.

Misbehaving Machines. Due to misconfigured hardware or buggy software, some ma-
chines occasionally behaved unexpectedly and acted as ‘black holes’. We observed
some computational nodes accepting jobs but never completing them and some com-
pleting the job but not returning the completion status. Some nodes successfully pro-
cessed certain job classes but experienced failures with other classes. As a particu-
lar case, in WCER video processing pipeline [4], we found that a machine that had a
corrupted FPU was failing MPEG-4 encoding whereas it was successfully completed
MPEG-1 and MPEG-2 encodings.

Hardware/Software/Network Outages. Intermittent wide area network outages, out-
ages caused by server/client machine crashes and downtime for hardware/software up-
grades and bug fixes caused failure of the jobs that happened to use that feature during
that time.

Over Commitment of Resources. We encountered cases where the storage server
crashed because of too many concurrent write transfers. We also encountered data trans-
fer time-outs that that were caused by storage server trashing due to too many concur-
rent read data transfers.

Insufficient Disk Space. Running out of disk space during data stage-in and writing
output data to disk caused temporary failures of all involved computational jobs.

3 Why Do Current Fault Models Not Work Well?

Byzantine [5] and fail-stop [6] are two widely used fault models. In Byzantine model,
a component can exhibit arbitrary and malicious behavior, perhaps involving collusion
with other faulty components. In fail-stop model, in response to a failure, the component
changes to a state that permits other components to detect a failure has occurred and
then stops.

Faults in Large Distributed Systems and What We Can Do About Them 445

Byzantine model is too general in nature and reasoning out the different scenarios
is difficult. Normal systems may not encounter such malicious behavior. However, it
is useful in security where such adversarial behavior may occur. Fail-stop model is at
other end of the spectrum and it is extremely simple and tractable. For this reason, most
systems are built using the fail-stop model.

Unfortunately, the fail-stop model is too simple to model the behavior of many
components. Arpaci-Dusseau [7] found that similar components differ widely in per-
formance, enough to be called a performance failure. To model the behavior of such
components, they introduced the fail-stutter model where a component may operate at
reduced performance level in addition to failing and stopping. Fail stutter behavior is
commonly seen in disks where the controller may transparently remap bad sectors and
such a disk may have lower performance compared to a bad-sector free disks because of
extra seeks. Fail-stutter separates failures into correctness and performance failures and
correctly models components that have performance failures but are correct. Fail-stutter
expects the components to behave like fail-stop when a correctness failure occurs.

Even fail-stutter does not correctly model behavior of many components. Many
components on encountering a correctness failure do not immediately change to a state
that allows other components to detect the failure. For instance, if a memory chip is cor-
rupted, it does not give that information to other components. A memory tester program
can detect the corruption by writing data to it and reading the written data and verifying
it. Parity and error correcting does not fully address this issue. For instance, a chip with
a fault that prevents data from being written to it cannot be detected by parity because
the parity bits are correct for the incorrect old data.

In a distributed system, significant fractions of the applications involve a pipeline
of processing [8]. If a particular component in the pipeline generates incorrect data
because of a fault, other components cannot detect immediately that this component
has failed.

4 Silent-Fail-Stutter: A More Accurate Fault Model

Fail-stop expects components that encounter a failure to immediately change state and
let other components detect that failure. As shown in the previous section, many com-
ponents do not indicate a failure immediately. To address this, we propose a new fault-
model called ’silent-fail-stutter’. In this model, on failure a component may not imme-
diately change state and convey its failure to other components. However, other com-
ponents can at anytime detect if a component has failed by testing it, incurring a certain
cost. Further, the stutter behavior may be an indicator of impending failure and other
components can use that as a heuristic to test that component for failure. Figure 1 shows
the different fault models and how they relate to each other.

We believe that silent-fail-stutter models real life behavior of components better
than fail-stutter while maintaining tractability. Below, we give a few examples of real-
life cases where silent-fail-stutter is more appropriate than fail-stutter.

System Memory. Most of today’s system memory chips are non-parity. In non-parity
memory, memory corruption cannot be detected immediately and hence fail-stop and
fail-stutter are not suitable models. Silent-fail-stutter is a suitable model because a mem-

446 George Kola, Tevfik Kosar, and Miron Livny

Byzantine

Fail-Stop

Fail-Stutter

Silent Fail-Stutter

Fig. 1. Different fault models and their relation

ory tester program can detect a corrupt memory chip and doing this test incurs a cost.
With parity and error-correcting memory, a chip that is faulty with respect to mem-
ory writes exhibits silent-fail-stutter. Even though most but not all read errors may be
detected by parity, a corrupt chip is detected only when some earlier written data is
accessed, making fail-stop inappropriate. A fail-stop component would have detected
failure earlier, say during DRAM refresh cycle, and informed other components. Thus
for all types of system memory, silent-fail-stutter is a suitable model.

Processor Cache. Processor caches are SRAMs and typically starting from Level 2
have error correcting code. Register [9] reports cases where Solaris operating system
crashed and rebooted because the UltraSparc II had E-cache(level2 cache) parity errors.
Sun’s best practices guide [10] advised system administrators to log such failures and
replace the processor on second such failure.

The behavior is not fail-stop, because a processor with the faulty cache does not
retain information about a cache block failure across reboots even if the failure is per-
manent. In addition, a cache block failure is detected only when some data is written to
it and fails parity test when read back.

Silent-fail-stutter is a more accurate model because even though a cache block may
fail at any time, it may not be detected immediately. A program can test if any cache
block is faulty by writing data to all cache blocks and reading it to verify that there is
no corruption. Doing this involves a cost that silent-fail-stutter models making it a good
fit.

Faults in Distributed Systems. If a system is built from silent-fail-stutter components,
then silent-fail-stutter is the correct model for that system. The faults we mentioned in
the section 2, were all silent-fail-stutter. The problem was that applications expected
fail-stop behavior whereas the components exhibited silent-fail-stutter.

5 Implications of Silent-Fail-Stutter

Since components may fail and not convey the failure to other components, some com-
ponent should periodically or on certain events determine the state of each component
and if a failure is detected, report it to other components. If a single component makes
the checks, designers should ensure that this component is more reliable than the ones

Faults in Large Distributed Systems and What We Can Do About Them 447

Frequency of Testing

C
os

t

Cost of possibly incorrect results

Cost of testing

Optimal frequency

Time

P
er

fo
rm

an
ce

Component with sudden
drop in performance

Component with
gradual drop in
performance

Acceptable performance

a) Types of failures b) Cost Curves

Fig. 2. a) Two types of components b) Cost Curves

it checks. All the components can co-operate to perform this check in a distributed
manner.

These ways of handling silent-fail-stutter have been known informally for a while.
For instance, processors during startup have the ability to test the memory for errors and
in case of error report that to the user and stop. Here the processor is assumed to be more
reliable than the memory and the whole system behaves like fail-stop even though the
underlying component, memory, is silent-fail-stutter. However, with always-on systems,
memory test during startup may not be sufficient.

Figure 2a shows how the performance changes with respect to time for two types
of components. For one type, the performance drops gradually and for the other, the
performance drop is minimal at first and then a sudden drastic drop. The figure also
shows an acceptable performance limit. Below the acceptable performance, correctness
failures may occur. Many components exhibit such gradual performance drop making
it easy to predict their failure ahead of time.

Fault masking at times results in the drastic fall in performance. For example, con-
sider a failing disk where the sectors are failing because the magnetic media is loosing
its ability to retain stored data. If the hard disk employs sector remapping, it may be
able to hide the bad sectors for a while by which time the media may have degraded to
a point where suddenly most sectors fail causing a drastic drop in performance. A good
solution to this is to expose this information about faults, so that a smarter higher-level
system can use this information to take some action.

Since, components may fail silently, how often to test them is of importance. Doing
the test occasionally runs the risk of not detecting the failure for a longer duration.
Running the test often may result in considerable overhead.

Figure 2b shows the cost curve for component testing and using possibly incorrect
results for a hypothetical system. The cost curves would depend on failure probability
of the component, cost of testing and the cost of incorrect results. Here, we use the term
cost loosely. In practice, we can normalize the cost to a meaningful common form like
time, computation that can be performed in that time, etc. For mission critical systems,
the cost of possibly incorrect result would be infinity. Similarly, for some computation
that generates hints for heuristics, the cost of possibly incorrect result would be low.

448 George Kola, Tevfik Kosar, and Miron Livny

If the silent-fail-stutter component belongs to gradual performance decline category,
then the tester can predict when it is going to fail by testing the current performance and
co-relating it with an existing model of the component behavior. Conversely, if the drop
in performance is less than a threshold, an interacting component can trigger the tester
to test that component.

In distributed systems, the cost can be amortized over all the interacting compo-
nents. For instance, if there are ‘n’ components that use the result from a single compo-
nent, the single component can be tested at 1/n of the frequency that would be needed
if there were only one interacting component. This is because, the tester can inform
other components of the result of the tests and in most cases getting the result of pre-
vious test is much cheaper than performing a new test. Therefore, as a good system
design principle, distributed system designers should implement mechanisms to test
silent-fail-stutter components and report them to interested components.

6 Failure Detection in Distributed System

Complexity of distributed systems makes failure detection difficult. There are multiple
layers from the hardware to the application. Since we did not want to impose an undue
burden on application developers to handle failure detection and handling, we imple-
mented the error/failure detection on top of the application, by verifying that results
generated are correct. To do this, the applications should allow multiple executions and
they should produce reproducible results.

Grid applications are expected to have the ability to be run multiple times because
they could be pre-empted from a resource. Further, to enable checking of outputs, they
need to generate reproducible results. Most applications already do that. We need to
clarify that applications produce both an output and a log of the processing. The log
of the processing may include start time, information about execute machine, etc and
would not be reproducible across multiple executions. However, the output, say a pro-
cessed image would be the same across executions.

In addition to detecting erroneous results, we also need to detect the cause of the
fault and possibly replace that faulty component. Identifying the source of the erroneous
result has so far been a ’black art’ in the realm of select few system administrators and
operators. This process takes considerable amount of time, usually weeks, expending
considerable amount of human resources.

We classify silent failures into two types as shown in figure 3. Type I silent failures
are silent failures that give incorrect results without any error status indication. Type II
silent failures are silent failures in which the process or transfer just hangs. Type I gives
a successful return code and shows that the process is completed but the results are
incorrect. This normally happens because of interface mismatch where a component
expects underlying components to be fail-stop, but they are in fact silent-fail-stutter.
Type II never returns, so user cannot find out if the process will complete. This could
be caused by bugs. In addition to silent failure, jobs may fail with an error status and
they are easier to detect. We will first discuss about handling Type I.

We want to detect if a failure has occurred and if we need to track down the cause
of that failure. A silent failure of lower level component may result in a failure higher

Faults in Large Distributed Systems and What We Can Do About Them 449

Fig. 3. Type I and Type II silent failures

up the chain and to track down the fault, we may need to go down the hierarchy. For
instance, the cause of a computation failure may be because of data corruption in the
intermediate storage server and this in turn may be caused by a faulty RAID controller
in the storage server. We feel that automatically isolating the fault to whole system
boundary is easier and this would aid the system administrator in locating the exact
problem.

Consider a simple case where the user has to be 100% certain that the result is
correct. A simple way of doing that is to compute the result twice and verify that they
match. While doing this we need to be careful to ensure that the two computations
do not overwrite the same data. Name space mapping can address this. Suppose if we
find that a result is incorrect, we can pick up all the incorrect results in a given time
period and all systems interacted with most of the results is the likely culprit. A simple
mechanism that detects this can notify it to the system administrator who can then
test that system. At the same time, the component can give feedback to higher-level
planners like Pegasus [11] and/or distributed schedulers to ensure that they do not use
this resource until the fault has been resolved. Verification of data transfers involves
checksum generation and verifying that source and destination checksums match.

Components belonging to silent-fail-stutter allow testing to determine a failure. The
methodology for testing can be inferred from “THE“ multiprogramming system [12],
where they had a layered structure to test that reduced the number of test cases. We
believed that a conscientious distributed system designer should design such a test in-
frastructure. If such a test infrastructure exists, the mechanism on detecting a failure can
trigger a test of the whole system to isolate the faulty component. As an alternative, to
isolate machine faults at a coarse grain, a tester can periodically execute a test program
that generates a known result and takes a certain deterministic amount of time on each
machine. If any machine gives a wrong result or the run time deviates considerably, the
system administrator can be informed of the problem.

450 George Kola, Tevfik Kosar, and Miron Livny

If the user does not want to pay a 100% overhead by performing each computation
twice and if testing system exists, he can specify the fraction of extra computation that
he is willing to perform. The failure detector will inject that fraction of extra computa-
tion into the distributed system in a statistically unbiased manner. The results of these
extra computations are compared with results of the previous execution and verified
to be same. In case of difference, the failure detector can tag those machines and per-
form the computation again on a different machine to identify the faulty one. When the
failure detector identifies a faulty machine, it can report the time from the successful
machine test to current time as time when the machine was in a possibly faulty state.
Results generated using that machine during that time may have to be recomputed.

Handling Type II silent failures requires some more effort. The issue is whether it is
possible to detect such a failure. In practice, most of the hung processes have a way of
detecting that they have failed to make forward progress. A simple case is that of data
transfer, we can find out how the file size varies over time and if the file size does not
change for a long period, we can know that the file transfer has hung. Another way is
to come up with reasonable time-outs for operations. We can find out that a transfer or
computation has hung if it does not complete in a certain period.

Most of the present day distributed workloads consist of a large number of in-
stances of the same application. Typically, the standard deviation of execution time
is of the same order of magnitude as mean if not lesser. This lends a very effective
way to detecting Type II failure. Using this, mechanisms can set the threshold to be
mean+ 3× StandardDeviation or some similar threshold. Users can specify policy
on what fraction of the processing they are willing to re-do. If users want responsive-
ness, they may trade some extra processing and set a lower threshold. If they want to
minimize the overhead, they would use a higher threshold.

7 Evaluation

To evaluate the effectiveness of silent-fail-stutter model and our discussion on failure
detection, we implemented a prototype of the mechanism mentioned in the previous
section.

We looked at how components should convey the results of test and we decided
to use a database to log the results of tests and timestamp of tests. We also log the
results of application execution into the database. To get this information, we parse
the distributed batch scheduling system (Condor) user-job log-files and store them in a
relational database. We developed the schema for doing it from our previous work [13].
Since we wanted to track down the origin of the results, we store the job description
also in the database. Figure 4 shows the process.

We found that users typically submit job bundles specified as a directed acyclic
graph(DAG). We categorize a job bundle as an application-class. Users normally tag
application class and we can use that as well if the same application class spans across
multiple job bundles.

For verification of results, we store the md5 checksum of the results in the database.
To validate, we can run a simple query that checks if the checksums of results of iden-
tical jobs are the same. In case of error, we have a query that can extract out all the

Faults in Large Distributed Systems and What We Can Do About Them 451

JOB
LOGS

LOG
DATABASE

JOB
DESCRIPTIONS

USER BATCH

SCHEDULER

BATCH
JOB QUEUE

FAULT

DETECTOR

FEEDBACK MECHANISM

Data Flow

Control Flow

Fig. 4. Stages in performing some processing on a distributed system

Table 1. Coefficient of Variation of Execution Time

Application Coefficient of Variation

BLAST BMRB (1MB Database) 0.19
BLAST PDB (69MB Database) 0.34
BLAST NR (2GB Database) 0.49
NCSA Sextractor Processing 2.00
NCSA Data Transfer 1.00

machines that generated suspect results and tag the machine appearing multiple times
as faulty.

To evaluate our ability to identify silent Type II failures, we looked at the co-efficient
of variation of executing time of some applications. Table 1 shows the co-efficient of
variation of a few well-known applications. We found that the coefficient of variation
of all classes we encountered were less than four.

The UW Madison condor pool consists of multiple clusters with different processor
speeds, and user desktops. We did not separate the performance according to machine
class as the job may be assigned to any machine depending on availability unless the
jobs explicitly request certain configuration. Taking into account machine class, brought
down the coefficient of variation considerably but we do not report that, as we may not
be able to do so well in a general environment.

Figure 5 shows the cumulative distribution function of BLAST processing using 2
GB NR database and wide-area data transfers between NCSA and UW. Each wide-area
data transfer transferred a 1.1 GB astronomy image file from NCSA to UW-Madison
and that file was subsequently processed in UW condor pool.

For the blast run, a few jobs hung and took a very long time to complete, around
4 hours. The user had a hard limit of 4 hours and the jobs that exceeded 4 hours were
killed and restarted. Using our mechanism, we find that we can come up with tighter
bounds. In this case, Mean + 3 × StandardDeviation =80 minutes and does not
require operators to magically come up with thresholds and are better than the rough
guess of the user. The data transfers had a 20-minute time-out for the data transfers.
There were hung transfers that succeeded second time around.

452 George Kola, Tevfik Kosar, and Miron Livny

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 16 32 64 128 256

F(
x)

=P
(X

<=
x)

Execute Time (minutes)

Cumulative Distribution Function
 of BLAST NR

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 16

F(
x)

=P
(X

<=
x)

Execute Time (minutes)

Cumulative Distribution Function
 of NCSA UW wide area data transfers

Fig. 5. Shows the cumulative distribution function of BLAST execution against the 2 GB NR
database and NCSA UW wide-area data transfers

8 Future Work

We intend to develop a more rigorous theoretical analysis of our silent-fail-stutter model.
We also want to deploy our mechanisms in real systems over a long period and evaluate
them. The mechanism assumes that the failed fraction is significantly less than the suc-
cessful fraction, which we believe would be true in practice. We would like to determine
if there are limits on failure fraction that will cause the mechanisms to not work.

9 Conclusions

We have successfully analyzed the faults in large distributed systems and proposed
silent-fail-stutter fault model to accurately model component behavior while maintain-
ing tractability. Using insights from the model, we have developed mechanisms to au-
tomatically detect silent failures in distributed systems. We have evaluated the mecha-
nisms and shown their effectiveness.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputing Applications (2001)

2. Patterson, D.A., Gibson, G.A., Katz, R.H.: A case for redundant arrays of inexpensive disks
(raid). In Boral, H., Larson, P.Å., eds.: Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, June 1-3, 1988, ACM Press (1988)
109–116

3. Avizienis, A., Laprie, J.: Dependable computing: From concepts to design diversity. In: Pro-
ceeding of the IEEE. Volume 74. (1986) 629–638

4. Kola, G., Kosar, T., Livny, M.: A fully automated fault-tolerant system for distributed video
processing and off-site replication. In: Proceeding of the 14th ACM International Workshop
on Network and Operating Systems Support for Digital Audio and Video (Nossdav 2004),
Kinsale, Ireland (2004)

5. Lamport, Shostak, Pease: The byzantine generals problem. In: Advances in Ultra-
Dependable Distributed Systems, N. Suri, C. J. Walter, and M. M. Hugue (Eds.), IEEE Com-
puter Society Press. (1995)

Faults in Large Distributed Systems and What We Can Do About Them 453

6. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys 22 (1990) 299–319

7. Arpaci-Dusseau, R.H., Arpaci-Dusseau, A.C.: Fail-Stutter Fault Tolerance. In: The Eighth
Workshop on Hot Topics in Operating Systems (HotOS VIII), Schloss Elmau, Germany
(2001) 33–38

8. Thain, D., Bent, J., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Livny, M.: Pipeline and batch
sharing in grid workloads. In: Proceedings of the Twelfth IEEE Symposium on High Perfor-
mance Distributed Computing, Seattle, WA (2003)

9. The Register: Sun suffers UltraSparc ii cache crash headache.
http://www.theregister.co.uk/2001/03/07/sun suffers ultra sparc ii cache/ (2001)

10. Sun Microsystems Inc: Best practices guide: Addressing e-cache parity errors.
http://www.filibeto.org/sun/lib/hardware/enterprise 4500/ BP Ecache 10-16-01.pdf (2001)

11. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Pegasus: Planning for execution in grids.
Technical Report 20, GriPhyN (2002)

12. Dijkstra, E.W.: The structure of the THE-multiprogramming system. Communications of the
ACM 11 (1967)

13. Kola, G., Kosar, T., Livny, M.: A client-centric grid knowledgebase. In: Proceedings of Clus-
ter 2004, San Diego, CA (2004)

A Grid Information Service
Based on Peer-to-Peer�

Diego Puppin, Stefano Moncelli, Ranieri Baraglia,
Nicola Tonellotto, and Fabrizio Silvestri

Institute for Information Science and Technologies
ISTI – CNR, Pisa, Italy

via Moruzzi, 56100 Pisa, Italy
Diego.Puppin@isti.cnr.it, stefano7625@libero.it,

{Ranieri.Baraglia,Nicola.Tonellotto,Fabrizio.Silvestri}@isti.cnr.it

Abstract. Information Services are fundamental blocks of the Grid in-
frastructure. They are responsible for collecting and distributing infor-
mation about resource availability and status to users: the quality of
these data may have a strong impact on scheduling algorithms and over-
all performance.
Many popular information services have a centralized structure. This
clearly introduces problems related to information updating and fault
tolerance. Also, in very large configurations, scalability may be an issue.
In this work, we present a Grid Information Service based on the peer-
to-peer technology. Our system offers a fast propagation of information
and has high scalability and reliability. We implemented our system com-
plying to the OGSA standard using the Globus Toolkit 3. Our system
can run on Linux and Windows systems, with different network config-
urations, so to trade off between redundancy (reliability) and cost.

Keywords: Grid information service, Grid middleware, Peer-to-peer.

1 Introduction

The Grid is an emerging computing framework where resources are shared and
inter-operate across the boundaries of independent organizations. In such an
environment, it is very important to be able to discover efficiently which resources
are available, what their status and cost are. A system where this information
is outdated, approximate or difficult to access and browse may negatively affect
the performance of scheduling algorithms and of final-user code.

The Grid Information Service (GIS) is the infrastructure component respon-
sible for collecting and distributing information about the Grid. It offers some

� We thank Antonio Manglaviti, who contributed to develop the first experimental
prototype. Also, we thank IIT-CNR, IMATI-CNR, University of Pisa, and University
of California at San Diego, which let us use their resources for our experiments. This
work has been partially supported by the MIUR GRID.it project (RBNE01KNFP)
and the MIUR CNR Strategic Project L 499/97-2000.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 454–464, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Grid Information Service Based on Peer-to-Peer 455

tools to register resources, to query the data base, to remove lost nodes. The
first implementations of a GIS used techniques based on directories, which are
still used by Globus MDS-GT2 (LDAP). Directory-based systems suffer from
a series of problems [1], including the fact that updated information does not
propagate very quickly and that centralized servers may become bottle-necks or
points of failure.

In this work, we introduce a Grid Information Service (GIS) based on peer-
to-peer (P2P) technologies and Routing Indices (RI) [2]. There is a growing
interest to the interaction of the Grid computing paradigm and the peer-to-peer
technology: both work within a very dynamic and heterogeneous environment,
where the role and availability of resources may quickly change; both create a
virtual working environment by collecting the resources available from a series
of distributed, individual entities. Even if nowadays some Grid-related tasks are
performed by central servers, many authors believe that in the future many of
them could be implemented as P2P services, to improve scalability, performance
and fault-tolerance.

This paper, which updates the results presented in [3], is structured as fol-
lows. In Section 2, we give an overview of some existing information services,
which represent the background of our work. Our infrastructure is presented in
Section 3. In Section 4, we show the results of our preliminary tests. Finally, we
conclude and we give an overview of future work.

2 Related Work

The importance of Information Services within the Grid infrastructure has stim-
ulated a rich research. Due to limited space, we can cite only the works that are
closer to ours. Our starting point is clearly the Information Service model of the
Globus Toolkit 3 [4]. In Globus, each entity is represented by a Grid Service,
which is an extended Web Service following the new conventions introduced
with OGSA. These Grid Services expose their status as a collection of Service
Data (SD), composed of Service Data Elements (SDEs). Service Data replace
the mechanisms offered by GRIS in MDS-GT2: they replace the GIS-enabled
mechanisms present in LDAP with the OGSA mechanisms for binding. The In-
dex Service (IS) is composed of two main parts: the Providers are responsible
for generating SDEs; the Aggregator is responsible for aggregating and indexing
the SDEs coming from the hosts in the VO. Typically, there is one Index Ser-
vice per Virtual Organization, which is used to build a hierarchy when several
institutions are connected. Every Index Service works as a cache for all the ISs
below it.

In our opinion, this hierarchical structure is cause of two main limitations:
(1) when a new SDE becomes available, the new information does not propagate
automatically up in the hierarchy; (2) at the top levels, each IS is required to
store a very large number of SDEs.

Talia et al. [5] propose a P2P-based architecture for resource discovery that
extends the GT3 information service model. It is broken into two layers: the

456 Diego Puppin et al.

lower one is a hierarchy of information services, which publish information owned
by each virtual organization; the upper one is a P2P layer, which collects and
distributes this information. Queries about non-local resource are managed by
the P2P nodes. The protocol used to exchange messages extends the Gnutella
protocol. It uses extensive caching and merging of queries and Grid Service
invocations instead of raw TCP messages. Our work differs in that we use a
more advanced query forwarding strategy based on Routing Indices, and in the
fact that our system never returns cached, potentially out-dated, information.

Carmen [6], developed at the HP Labs, has a structure similar to our pro-
posal. It offers a discovery service based on P2P networks, structured in peers
and super-peers. Unfortunately, we could not find in literature any results about
its effectiveness. The system is apparently very complex, and no comparisons
are given with other system. At the moment, we cannot know if there is an
advantage, in terms of performance, with respect to centralized systems.

Another approach to data distribution on P2P environments is based on
Distributed Hash Tables (DHTs). This is particularly efficient for some types
of resources, e.g. data files that are searched by exact name1. Several systems
implement this solution including Tapestry [7] and Pastry [8]. They deal very
well with scalability issues, but they often limit the query language to exact
matches. We are verifying if our query language can be mapped to DHT or some
extension thereof. Approaches based on space-filling curves, such as Squid [9],
seem to offer an initial answer to this problem.

3 P2P GIS: Description of the Architecture

In this section, we present our implementation of a Grid Information Service
(GIS) based on the peer-to-peer technology. Its main features are:

– peer-to-peer technologies for propagating data and elaborating queries;
– routing indices to reduce network flooding and to optimize message forward-

ing;
– node clustering and the use of super-peers;
– redundant configurations, when high reliability is needed.

The system is made up of two main entities (see Figure 1):

– the Agent is responsible for publishing information about a node to the
super-peer;

– the Aggregator runs on the super-peer; it collects data, replies to queries and
forwards them to the other super-peers; it also keeps an index about the
information stored in each neighbor super-peer.

Super-peer and redundant networks are described in the next section. Then,
we outline the structure of Agents and Aggregators. Routing indices and our
search technique are discussed in Sections 3.3 and 3.4.
1 To be more precise, DHT offers an effective way to find the hash keys obtained by

manipulating the query string.

A Grid Information Service Based on Peer-to-Peer 457

Fig. 1. Overview of our system.

Fig. 2. Examples of super-peer networks:
(a) with no redundancy, (b) with 2-
redundancy. Black nodes represent super-
peers. White nodes are clients. Clusters are
limited by circular lines (from [10]).

3.1 Super-peer Redundant Networks

It is well known that unstructured P2P networks spend useful bandwidth in
functions that can be performed by local caches [11]. This is why super-peer
networks emerged as a trade-off between totally distributed systems and cache-
based services [10].

Our system is set up as a super-peer network: some nodes, called super-peers,
work as servers for a cluster of nodes — which usually corresponds to a virtual
organization or a subset thereof — but they work as peers in a network of super-
peers. Moreover, this network can be built as a redundant network, where super-
peers are replicated within each cluster (see Figure 2). This solution introduces
two main benefits. (1) Replicas hold a copy of the same data. In the case of
failure of one replica, the system will not stop working. (2) The workload can be
shared among replicas. Queries can be alternately sent (or forwarded) to each
of them in turn. Also, the aggregate bandwidth for forwarded queries can be
higher.

On the other side, communication costs may increase, for two reasons. First,
when a new node joins a cluster or its data are updated, it has to send a message
to K super-peers in a K-redundant network. Second, there are O(K2) connections
between two K-replicated super-peers. The choice of K is a trade-off between
reliability and cost.

3.2 Agents, Aggregators and Information Providers

The Agent works as a Grid Service available on each machine in the network. It
publishes all relevant information, as is made available by Information Provider
tools (IP).

The Information Providers, scheduled by the Agent, periodically query the
resources and store the gathered information as Service Data Elements (SDE),
according to the OGSA standard. Each SDE is tagged with a list of keywords,
used for subsequent queries. In our system, there is an Information Provider for
each resource. When users choose to publish information about a given resource,
they will describe the type of information using our simple taxonomy. In partic-

458 Diego Puppin et al.

ular, they will specify a Refresh Rate, which describes how often the information
is to be refreshed. Static data have a Refresh Rate equal to 0.

When a resource is published, the name of its Service Data is broadcast to
all the Aggregators in the cluster2, so that they can subscribe to it. Aggregators
work as servers within their cluster, and as peers in the network created by
all the Aggregators. In particular, they are responsible for forwarding queries
coming from other Aggregators to the most likely destination.

To prevent Aggregators from polling Agents at the end of each refresh inter-
val, our implementation uses a push approach: the Agents periodically send the
updated information to the subscribed Aggregators. We implemented a basic set
of Information Providers (memory, processor, processorLoad, operatingSystem,
and diskSpace). A configuration file will list a set of SDEs to be published by the
Agent at launch time, but resources can be published or removed at any time
by users.

A client can explicitly choose to remove its data from the super-peer data-
base. Also, the Aggregators will scan the stored information and remove all the
resources that failed to send updated information before the expiration of its
validity. This way, the super-peer will always have timely information about the
clients connected to it.

3.3 Routing Index

The Routing Index (RI) is used to improve the performance of our peer-to-peer
routing, and to prevent the network from being flooded. The RI is a technique
to choose the node to which a query should be forwarded: the RI represents
the availability of data of a specific type in the neighbor’s information base.
We implemented a version of RI called Hop-Count Routing Index (HRI), which
considers the number of hops needed to reach a datum. The HRI counts the
number of data elements within a given number of hops. Data are then divided
in classes by their keyword.

We used HRI as described in [2]: in each super-peer, the HRI is represented
as a M × N table, where M is the number of neighbors and N is the horizon
(maximum number of hops) of our Index: the n-th position in the m-th row is
the number of data elements that can be reached going through neighbor m,
within n hops.

Suppose that, from node B, we are looking for data about memory (see
Figure 3). Our goodness function (see [2]), will give a higher value to A, because
within short distance (2 hops) we can reach 6 resources. On the contrary, D
could give us back information about only 3 of them.

When a new super-peer joins the network, it sends information about the data
it controls to all its neighbors. They will update their table, adding the new data
to those available within distance 1. Then, they will send the aggregate counts
(excluding the new node) back to the new node itself. We use the techniques
shown in [2] to deal with cycles in the network.

2 There may be more than one Aggregator in a redundant network.

A Grid Information Service Based on Peer-to-Peer 459

Fig. 3. HRI table for node B.

3.4 Search Technique

In literature, several techniques are used for searches in P2P networks, includ-
ing flooding (e.g. Gnutella), centralized servers (e.g. Napster). More effective
searches are performed by systems based on distributed indices. In these config-
urations, each node holds a part of the index. The index optimizes the probability
of finding quickly the requested information, by keeping track of the availability
of data to each neighbor.

In our system, each query is submitted, by each node, only to its cluster’s
super-peer, which will pass it to other super-peers if needed. To this purpose,
the super-peer keeps information about all the nodes in its cluster, in the form of
a Hop-Count Routing Index. An outline of our algorithm is shown in Figure 4.

Each query is tagged with an expiration time. At each step, the expiration is
checked. If the query is still valid, it is stored in a local hash table (QueryStatus),
with some key information. In particular, we store what is the next neighbor to
try.

The HRI is used to determine which the best neighbor aggregator is for
the given query. The query is forwarded to it, while it is elaborated locally,
by matching the local SDEs. This way, communication and computation are
partially overlapped. The matching SDEs are sent back directly to the original
requester as XML data.

If there are no available neighbors, as for C in Figure 5, the query is returned
to the sender (B), which will choose the second best neighbor (D), i.e. the neigh-
bor which has the second largest number of matching resources in the HRI. The
algorithm will continue with the next best neighbor every time the query returns
back (QueryStatus, and so ToTry, are increased each time).

Please note that the algorithm tries, within the given time, to find as many
resources as possible. This choice is due to our goal of mimicking the behavior of
the Globus Information Service. From the found resources, the user will choose
those that best match his/her needs.

The current strategy suffers from two major limitations: first, under certain
conditions, our algorithm may fail to find existing resources (if the query ex-
pires too early); second, it may query more Aggregators than strictly needed.
Nonetheless, it offers a series of interesting features: very quick response (the

460 Diego Puppin et al.

For each incoming query
// check if query is still alive
If ExpirationTime(query) < CurrentTime

Discard

If QueryStatus(query)=not present
// store query in the hash table
QueryStatus(query) := 1
QuerySeenFirstTime := true

ToTry := QueryStatus(query)
// find in the Hop-Count R. Index the next
// best neighbor of rank ToTry
NextBestNeighbor := HRI(query, ToTry)

If not exists NextBestNeighbor
//the query is bounced back
Recipient := Sender(query)

Else
Recipient := NextBestNeighbor
QueryStatus(query) += 1

Forward query to Recipient
If QuerySeenFirstTime

Find local matching to query
Send local results to Requester(query)

End for

Fig. 4. Our search algorithm.

A

B
Q

Q

Q

Q

C

D

Fig. 5. A query (Q) is forwarded
from A to the best neighbors (B,
C, and D).

first results arrive as they are available); overlapping computation and com-
munication; freshness of the retrieved data (which are stored very close to the
resource they describe). We are investigating other algorithms, including DHT,
to overcome these limitations.

4 Experimental Results

Our system was developed using Globus Toolkit 3.0.2 and Java 1.4.1. The system
runs under Linux Red Hat 8 and 9, Linux Debian, and Microsoft Windows 2000.
It is compliant to the OGSA standard, and uses libraries and tools from the
Globus Toolkit 3. We run two tests: the first, to compare it with Globus, and
the second to verify in detail its scalability.

4.1 Comparison with Globus MDS-GT3

We compared our system with Globus MDS-GT3. The results shown in Table 1
come from our preliminary tests. All the data are taken at the client side, by
measuring the time passed from the beginning of the query, to the arrival of

A Grid Information Service Based on Peer-to-Peer 461

OrioneRubentinoNovelloCavitBarbera

Univ. PisaISTI (Pisa)

Fig. 6. Configuration for our comparison with Globus MDS. Clients are not shown.

results. Time was measured within the code, using the Java time API, for both
Globus MDS and our system.

Due to problems with firewalls and Globus connection ports, we could not
utilize many machines in this test. Anyway, with these limited resources, we set
up a configuration that was optimal for Globus, and very hard for our system:
we created a linear chain of five Aggregators (see Figure 6), and, starting from
Orione (locate at the University of Pisa), we launched queries about data down
the chain (located at ISTI - Pisa). Clients connected to each Aggregator are
not shown. This is the worst case for our system, because clients connected to
Barbera are separated by many hops from Orione.

We configured Globus Index Service (IS) with the same linear hierarchy:
Cavit is subscribed to Barbera’s SDEs, Novello to Cavit’s and so on. In any
case, all SDEs are cached by the Index Service, so the topology of ISs should
not affect its performance.

We can see some interesting results. As said, our system forwards incoming
queries to the best neighbors before elaborating them. This way, a query can
reach the Aggregator holding the desired data very fast. Then, results are sent
back directly to the requester. This is the reason of the slow growth of response
time with distance in our system.

For Globus, the response time is irrespective of the distance of the resources
relevant to the query, as expected (all data are cached in our experiments).

Table 1. Comparison between our sys-
tem (P2P) and Globus-MDS. Average re-
sponse time (client-side) for subsequent re-
sults, about resources located at increasing
distances (in milliseconds).

P2P GIS Globus
Hop # 1st 2nd
1 743.5 801.4 3612
2 737.4 820.2 3588
3 775.5 831 3601
4 806.1 861.6 3640

Our system, under these ex-
perimental conditions, outperforms
Globus. We have to consider that,
at the moment, our system is ex-
tremely light-weight, while the Globus
infrastructure can support a variety of
tasks. Nonetheless, we can say that
our system seems to scale effectively
and respond very quickly, even if data
are not cached: our queries read the
datum — freshly updated — available
to the Aggregator closest to the re-
sources, not a potentially stale copy.

4.2 System Scalability

We tested the scalability of our system by running on a Grid involving five
organizations: ISTI-CNR, located in Pisa; University of Pisa; IIT-CNR, in Pisa;

462 Diego Puppin et al.

Rubentino

Cavit

Sangiovese

Soave

Barolo

Orione
Barbera

Andromeda

MoripNovello

IIT (Pisa)

Univ. Pisa

Martinellif

ISTI (Pisa)

IMATI (Genoa)

Cluster15

Cycletron04

Cycletron06

Cycletron11
UC San Diego

Cycletron01
Cluster16

Fig. 7. Our configuration for testing scalability. An Agent is running on each machine
(boxes). An Aggregator is running on thicker boxes. Arrows represent connections. The
dashed line are the borders among participating institutions.

IMATI-CNR, located in Genoa; and the University of California at San Diego.
The test configuration is shown in Figure 7. We artificially split ISTI-CNR into
two virtual organizations by using different broadcast masks for the two subsets.
This way, the Agents will connect to exactly one Aggregator.

In our tests, we verified the performance when working within the organiza-
tion’s borders. Queries were sent from Rubentino about the status of resources
monitored by Novello. On Novello, matching SDEs are sent back to Rubentino
very fast: the first result is generated within 10 ms. The results arrive regularly,
within few hundred milliseconds (see Table 2(a)).

When we cross the institutions’ borders, delays related to the network are
more evident. We launched several queries from Orione about the status of re-
sources within the ISTI-CNR and the IIT-CNR organizations. Queries were elab-
orated by Rubentino, Novello and Morip. Again, we measured that less than
10 ms are needed to generate the first matching SDE, but results take much
longer to cross institutions and return to Orione. We believe that the firewall
configuration, and other network effects may contribute to this large delay (see
Table 2(b-c)).

For queries from distant institutions (IMATI in Genoa and UCSD), response
time grows slowly with distance, and may be greater than 1 second (see Ta-
ble 2(d-e)). This is a result to be expected, if we consider that the ping time
may be 1000 times greater than among institutions in Pisa.

Our system can also be used with a redundant configuration for improved
reliability. We run some initial tests, which showed the effectiveness of this so-
lution: when one of the replica failed, the system continued running seamlessly.

A Grid Information Service Based on Peer-to-Peer 463

Table 2. Average time (in milliseconds) to generate (server-side) and receive (client-
side) subsequent results of a given query.

(a) Queries from Rubentino about Novello

Server side 9.1 31.9 40.0 48.3
Client side 212.2 229.2 345.4 436.4

(b) Queries from Orione about Novello

Server side 7 34.6 49.8 65.8
Client side 767.4 826.4 935.3 981.3

(c) Queries from Orione about Morip

Server side 9.6 57.8 72.6 87.4
Client side 788.0 850.9 946 999

(d) Queries from Cluster15 about Orione

Server side 10.1 40.3 52.3 64.5
Client side 890.1 905.3 958.1 1001

(e) Queries from Cycletron01 about Orione

Server side 34.2 260.8 300.2 310.1
Client side 950.4 1104.8 1187.7 1211.7

Response time did not change significantly. We expect that, in a very large
configuration, redundant peers may offer a lower response time, when they are
queried alternately. We are testing this hypothesis, and results will be available
in the next future.

5 Conclusion

The Grid is a vast, dynamic, heterogeneous environments, where information
about the status, configuration and cost of resources is extremely valuable: if
users are able to find the best match to their needs, their applications will reach
the best performance within the desired cost and time.

To monitor a Grid, a versatile system is needed, able to update very quickly,
to satisfy a potentially very large number of users and queries, to tolerate delays
and faults. Peer-to-peer systems, born out of the first file-sharing applications,
evolved into very flexible frameworks, which are now gaining interest within the
scientific community. The interaction between Grids and peer-to-peer systems is
growing stronger, because P2P seems to be a very promising approach to some
problems related to the Grid.

In this work, we presented a P2P Information System for the Grid. It is
built as a network of super-peers, which aggregate the data about resources
within a virtual organization. Queries performed by any client are passed among
the super-peers, using optimization algorithms such as the Hop-Count Routing
Index. Our system is based on Globus Toolkit 3 and complies to the OGSA stan-
dard: it can be easily integrated with any Globus-based Grid. In this first round
of experiments, we used it for resource monitoring and discovery, but the same
infrastructure could be used for file-sharing or other distributed applications,
this way offering a P2P layer to Grid applications.

Our system was tested using a small network, split across five different in-
stitutions. In these preliminary tests, the system scaled effectively. We could

464 Diego Puppin et al.

not measure big delays in queries for remote resources, which are constantly
monitored by their Aggregators. This way, we always have updated informa-
tion available to queries. Our system also outperformed Globus MDS under our
experimental conditions.

References

1. Plale, B., Jacobs, C., Jensen, S., Liu, Y., Moad, C., Parab, R., Vaidya, P.: Un-
derstanding grid resource information management through a synthetic database
benchmark/workload. In: Proceedings of the 4th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CCGrid2004), Chicago, IL, USA
(2004)

2. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Pro-
ceedings of ICDCS-02. (2002)

3. Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., Silvestri, F.: A peer-to-peer
information service for the grid. In: Proceedings of the GridNets 2004 Workshop,
San José, CA (2004)

4. The Globus Alliance: Globus toolkit 3, globus information services documentation
(2004) Available at http://www.globus.org/mds/.

5. Talia, D., Trunfio, P.: Web services for peer-to-peer resource discovery on the grid.
In: DELOS Workshop Digital Library Architectures. (2004) 73–84

6. Marti, S., Krishnan, V.: ”carmen: A dynamic service discovery architecture”.
Technical Report HPL-2002-257, HP Laboratories Palo Alto (2002) Available at
http://www.hpl.hp.com/techreports/2002/HPL-2002-257.pdf.

7. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22 (2004)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001) 329–
350

9. Schmidt, C., Parashar, M.: Enabling flexible queries with guarantees in p2p sys-
tems. IEEE Internet Computing (2004) 19–26

10. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of
the IEEE International Conference on Data Engineering. (2003)

11. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. Techni-
cal Report TR-2001-26, University of Chicago, Department of Computer Science
(2001)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 465–474, 2005.
© Springer-Verlag Berlin Heidelberg 2005

GRUBER: A Grid Resource Usage SLA Broker

Catalin L. Dumitrescu1 and Ian Foster1,2

1 Computer Science Department, The University of Chicago,
5801 S. Ellis Ave., Chicago, IL, 60637
cldumitr@cs.uchicago.edu

2 Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Ave., MCS/221, Argonne, IL, 60439

foster@mcs.anl.gov

Abstract. Resource sharing within grid collaborations usually implies specific
sharing mechanisms at participating sites. Challenging policy issues can arise in
such scenarios that integrate participants and resources spanning multiple
physical institutions. Resource owners may wish to grant to one or more virtual
organizations (VOs) the right to use certain resources subject to local usage
policies and service level agreements, and each VO may then wish to use those
resources subject to its usage policies. This paper describes GRUBER, an archi-
tecture and toolkit for resource usage service level agreement (SLA) specifica-
tion and enforcement in a grid environment, and a series of experiments on a
real grid, Grid3. The proposed mechanism allows resources at individual sites
to be shared among multiple user communities.

1 Introduction

Resource sharing issues arise at multiple levels when sharing resources. Resource
owners may want to grant to VOs the right to use certain amounts of their resources,
and thus want to express and enforce the usage policies under which these resources
are made available. We measure the impact of their introduction by means of average
resource utilization, average response time, average job completion, average job re-
planning, and workload completion time [1]. We distinguish here between “resource
usage policies” (or SLAs) and “resource access policies.” Resource access policies
typically enforce authorization rules. They specify the privileges of a specific user to
access a specific resource or resource class, such as submitting a job to a specific site,
running a particular application, or accessing a specific file. Resource access policies
are typically binary: they either grant or deny access. In contrast, resource usage
SLAs govern the sharing of specific resources among multiple groups of users. Once
a user is permitted to access a resource via an access policy, then the resource usage
service level agreement (SLA) steps in to govern how much of the resource the user is
permitted to consume.

GRUBER is an architecture and toolkit for resource usage SLA specification and
enforcement in a grid environment. The novelty of GRUBER consists in its capability
to provide a means for automated agents to select available resources from VO level
on down. It focuses on computing resources such as computers, storage, and net-
works; owners may be either individual scientists or sites; and VOs are collaborative
groups, such as scientific collaborations. A VO [2] is a group of participants who seek

466 Catalin L. Dumitrescu and Ian Foster

to share resources for some common purpose. From the perspective of a single site in
an environment such as Grid3 [3], a VO corresponds to either one or several users,
depending on local access policies. However, the problem is more complex than a
cluster fair-share allocation problem, because each VO has different allocations under
different scheduling policies at different sites and, in parallel, each VO might have
different task assignment policies. This heterogeneity makes the analogy untenable
when there are many sites and VOs.

We focus in this paper on the following questions: “How usage SLAs are handled
in grid environments?”, and “What is the gain for taking in account such usage
SLAs?”. We build on much previous work concerning the specification and enforce-
ment of local scheduling policies [1],[4],[5],[17], for negotiating SLAs with remote
resource sites [6],[7], and for expressing and managing VO policy [8]. We describe in
detail the usage SLA problem at several levels, introduce an infrastructure that allows
the management of such usage SLAs for virtual and real resources, and compare vari-
ous approaches for real scenarios encountered in the Grid3 context [3].

2 Motivating Scenario

In the context of grids comprising numerous participants from different administrative
domains, controlled resource sharing is important because each participant wants to
ensure that its goals are achieved. We have previously defined [1] three dimensions in
the usage policy space: resource providers (sites, VOs, groups), resource consumers
(VOs, groups, users), and time. Provider policies make resources available to con-
sumers for specified time periods. Policy makers who participate in such collabora-
tions define resource usage policies involving various levels in this space. We extend
here the work proposed in [1],[4] with usage policies at the level of virtual organiza-
tions and beyond.

Usage SLA specification, enforcement, negotiation, and verification mechanisms
are required at multiple levels within such environments. Owners want convenient
and flexible mechanisms for expressing the policies that determine how many re-
sources are allocated to different purposes, for enforcing those policies, and for gath-
ering information concerning resource usage. VOs want to monitor SLAs under which
resources are made available.

User and group jobs are the main interested parties in resources provided by sites
and resources. They use resources in accordance with allocations specified at different
level, in a hierarchic fashion and similar to LSF approach at a cluster level. Run-to-
completion is a usual mode of operation, because jobs tend to be large, making swap-
ping expensive. Also, workload preemption on several nodes is difficult in a coordi-
nated fashion and even more difficult when a distributed file system is used for data
management. Thus, we assume that jobs are preempted only when they violate certain
usage rules specified by each individual provider. We note also that site resource
managers such as LSF, PBS, and NQS typically only support run-to-completion poli-
cies [9].

Algorithms and policies capture how jobs are assigned to host machines [1],[4].
The question “Which is the best approach for different environment models?” is an
old-age question conditioned by many parameters that vary from case to case. Usually
what just appears to be an SLA “parameter” can have greater effect on the perform-

GRUBER: A Grid Resource Usage SLA Broker 467

ance users get from their computing resources than various metrics reported through a
monitoring system about resource availabilities.

The problem domain is expressed as follows: a grid consists of a set of resource
provider sites and a set of submit hosts; each site contains a number of processors and
some amount of disk space; a three-level hierarchy of users, groups, and VOs is de-
fined, such that each user is a member of exactly one group, and each group is mem-
ber to exactly one VO; users submit jobs for execution at submit hosts. A job is speci-
fied by four attributes: VO, Group, Required-Processor-Time, Required-Disk-space; a
site policy statement defines site usage SLAs by specifying the number of processors
and amount of disk space that sites make available to different VOs; and a VO policy
statement defines VO usage SLAs by specifying the fraction of the VO’s total proces-
sor and disk resources (i.e., the aggregate of contributions to that VO from all sites)
that the VO makes available to different groups.

Within this environment, the usage SLA-based resource sharing problem involves
deciding, at each submit host, which jobs to route to which sites, and at what time, for
execution, to both (a) satisfy site and VO usage SLAs and (b) optimize metrics such
as resource utilization and overall job and workload execution time. We note that this
model is one of resource sub-allocation: resources are owned by sites, which appor-
tion them to VOs. VOs in turn apportion their “virtual” resources to groups. Groups
could, conceptually, apportion their sub-allocation further, among specific users.
Without loss of generality, we simplify both this discussion and our implementation
by sub-allocating no further than from VOs to groups.

3 GRUBER Architecture

GRUBER is composed of four principal components, as we describe. The (a)
GRUBER engine implements various algorithms for detecting available resources and
maintains a generic view of resource utilization in the grid. Our implementation is an
OGSI service capable of serving multiple requests and based on all the features pro-
vided by the GT3 container (authentication, authorization, state or state-less interac-
tion, etc). The (b) GRUBER site monitoring component is one of the data providers
for the GRUBER engine. It is composed of a set of UNIX and Globus tools for col-
lecting grid status elements. (c) GRUBER site selectors are tools that communicate
with the GRUBER engine and provide answers to the question: “which is the best site
at which I can run this job?”. Site selectors can implement various task assignment
policies, such as round robin, least used, or last recently used task assignment poli-
cies. Finally, the (d) GRUBER queue manager is a complex GRUBER client that
must reside on a submitting host. It monitors VO policies and decides how many jobs
to start and when. The overall GRUBER architecture is presented in Fig. 1.

Planners, work-runners, or application infrastructures invoke GRUBER site selec-
tors to get site recommendation, while the GRUBER queue manager is responsible for
controlling job starting time. If the queue manager is not enabled, GRUBER becomes
only a site recommender, without the capacity to enforce any usage SLA expressed at
the VO level. The site level usage SLA is still enforced by limiting the choices a job
can have and by means of removing a site for an already over-quota VO user from the
list of available sites.

468 Catalin L. Dumitrescu and Ian Foster

Fig. 1. GRUBER Architecture

3.1 GRUBER Engine

GRUBER decides which sites are best for a job by implementing the following logic:

• If there are fewer waiting jobs at a site than available CPUs, then GRUBER
assumes the job will start right away if an extensible usage policy is in place [1].

• If there are more waiting jobs than available CPUs or if an extensible usage policy
is not in place, then GRUBER determines the VO’s allocation, the number of jobs
already scheduled, and the resource manager type. Based on this information:
o if the VO is under its allocation, GRUBER assumes that a new job can be

started (in a time that depends on the local resource manager type).
o if the VO is over its allocation, GRUBER assumes that a new job cannot be

started (the running time is unknown for the jobs already running).

More precisely, for any job placement CPU-based decision a list of available sites
is built and provided under the following algorithm

fn get-avail-sites(sites G, VO i, job J)
1. for each site s in G do
2. # Case 1: site over-used by VOi
3. if EAi > EPi for VO I at site s
4. next
5. # Case 2: un-allocated site
6. else if k(BAk)at s < s.TOTAL - J &&

 (BAi + J < BPi || extensible BPi) then
7. add (s, S)
8. return S

with the following definitions:

S = Site Set ; k = index for any VO != VOi
EPi = Epoch Usage SLA for VOi ; BPi = Burst SLA for VOi
BAi = Burst Utilization for VOi ; EAi = Epoch Utilization
TOTAL = upper limit allocation on the site

The list of possible solutions is further provided as input to a task assignment pol-
icy algorithm that makes the actual submission decisions (e.g., round robin).

GRUBER: A Grid Resource Usage SLA Broker 469

3.2 GRUBER Queue Manager / Site Selectors

GRUBER queue manager is responsible for determining how many jobs per VO or
VO group can be scheduled at a certain moment in time and when to release them.
Usually a VO planner is composed of a job queue, a scheduler, and job assignment
and enforcement components. Here, the last two components are part of GRUBER
and have multiple functionalities. The site selector component answers: “Where is
best to run next?”, while the queue manager answers: “How many jobs should group
Gm of VOn V be allowed to run?” and “When to start these jobs?”

The queue manager is important for SLA enforcement at the VO level and beyond.
This mechanism also avoids site and resource overloading due to un-controlled sub-
missions. The GRUBER queue manager implements the following algorithm (with
the assumption that all jobs are held initially at the submission host):

1. while (true) do
2. if Q != empty
3. get j from Q
4. else
5. next
6. S = get-avail-sites(G, Vo(j), j)
7. if S != empty
8. s = schedule(j, S)
9. run(j,s)

with the following definitions:

j = Job Id ; Q = Job Queue ; S = Site Set ;
G = All Site Set ; Vo = Mapping Function jobId -> VO

3.3 Disk Space Considerations

Disk space management introduces additional complexities in comparison to job
management. If an entitled-to-resources job becomes available, it is usually possible
to delay scheduling other jobs, or to preempt them if they are already running. In
contrast, a file that has been staged to a site cannot be “delayed,” it can only be de-
leted. Yet deleting a file that has been staged for a job can result in livelock, if a job’s
files are repeatedly deleted before the job runs. As a consequence, a different ap-
proach has been devised. As a concrete example, a site can become heavily loaded
with a one VO jobs and because of which other jobs are either in the local queue in an
idle state waiting for their turn. But this does not stop the submission of more jobs.

So far, we have considered a UNIX quota-like approach. Usually, quotas just pre-
vent one user on a static basis from using more than his limit. There is no adaptation
to make efficient use of disk in the way a site CPU resource manager adapts to make
efficient use of CPU (by implementing more advanced disk space management tech-
niques). The set of disk-available site candidates is combined with the set of CPU-
available site candidates and the intersection of the two sets is used for further sched-
uling decisions.

470 Catalin L. Dumitrescu and Ian Foster

3.4 GRUBER Usage SLA Language

In the experiments described in this paper we use a usage SLA representation based
on Maui semantics and WS-Agreement syntax [4],[7],[11]. Allocations are made for
processor time, permanent storage, or network bandwidth resources, and there are at
least two-levels of resource assignments: to a VO, by a resource owner, and to a VO
user or group, by a VO. We started from the Maui’s semantics in providing support
for fair-share rule specification [12]. Each entity has a fair share type and fair share
percentage value, e.g., VO0 15.5, VO1 10.0+, VO2 5.0-. The sign after the percentage
indicates if the value is a target (no sign), upper limit (+), or lower limit (-).

We extend the semantics slightly by associating both a consumer and a provider
with each entry; extending the specification in a recursive way to VOs, groups; and
users, and allowing more complex sharing rules. In our approach, Site1 makes its CPU
resources available to consumer VO0 subject to two constraints: VO0 is entitled to
10% of the CPU power over one month; and with any burst usage up to 40% of the
CPU power for intervals smaller than one day. Not all parameters are required and in a
recursive fashion, a similar usage SLA is specified for VO entities.

4 Experimental Studies

We now present our experimental results. We first describe the metrics that we use to
evaluate alternative strategies, afterwards introduce our experimental environment,
and finally present and discuss our results.

4.1 Metrics

We use five metrics to evaluate the effectiveness of the different site selector strate-
gies implemented in GRUBER. Comp is the percentage of jobs that complete suc-
cessfully. Replan is the number of replanning operations performed. Time is the total
execution time for the workload. Util is average resource utilization, the ratio of the
per-job CPU resources consumed (ETi) to the total CPU resources available, ex-
pressed as a percentage:

Delay is average time per job (DTi) that elapses from when the job arrives in a re-
source provider queue until it starts:

4.2 Experiment Settings

We used a single job type in all our experiments, the sequence analysis program
BLAST. A single BLAST job has an execution time of about an hour (the exact dura-
tion depends on the CPU), reads about 10-33 kilobytes of input, and generates about
0.7-1.5 megabytes of output: i.e., an insignificant amount of I/O. We used this
BLAST job in two workload different configurations. In 1x1K, we have a single
workload of 1000 independent BLAST jobs, with no inter-job dependencies. This
workload is submitted once. Finally, in the 4x1K case, the 1x1K workload is run in

GRUBER: A Grid Resource Usage SLA Broker 471

parallel from four different hosts and under different VO groups. Also, each job can
be re-planed at most four times through the submission infrastructure.

We performed all experiments on Grid3 (December 2004), which comprises
around 30 sites across the U.S., of which we used 15. Each site is autonomous and
managed by different local resource managers, such as Condor, PBS, and LSF. Each
site enforces different usage policies which are collected by our site SLA observation
point and used in scheduling workloads. We submit all jobs within the iVDGL VO,
under a VO usage policy that allows a maximum of 600 CPUs. Furthermore, we sub-
mitted each individual workload under a separate iVDGL group, with the constraint
than any group can not get more than 25% of iVDGL CPUs, i.e., 150.

4.3 Results

Table 1 and Table 2 give results for the 1x1K and 4x1K cases, respectively. We see
considerable variation in the performance of the various site selectors.

Table 1. Performance of Four GRUBER Strategies for 1x1K

 G-RA G-RR G-LRU G-LU
Comp (%) 97 96.7 85.6 99.3

Replan 1396 1679 1440 1326
Util (%) 12.85 12.28 10.63 14.56

Delay (s) 49.07 53.75 54.69 50.50
Time (hr) 8.19 10.45 22.23 9.25

In the 1x1K case, G-LU does significantly better than the others in terms of jobs
completed and G-RA does significantly better than the others in execution time. G-
LRU is clearly inferior to the others in both respects. Note that as a single job runs for
about one hour, the minimum possible completion time is ~1000/150 6.66 hours.
Thus the best execution time achieved is ~22% worse than the minimum, which is an
acceptable result. Note also the relatively high number of replanning events in each
case (a mean of ~1.5 per job), another factor that requires further investigation.

Table 2. Performance of Four GRUBER Strategies for 4x1K

 G-RA G-RR G-LRU G-LU
Comp (%) 98.2 98.7 87.9 91.7

Replan 1815 1789 1421 2409
Util (%) 13.51 14.02 11.05 11.52

Delay (s) 66.62 64.41 68.97 63.96
Time (hr) 11.21 10.5 13.51 13.49

In the 4x1K case, results are somewhat different. Each submitter is allocated a
limit of 25% of the VO’s total resource allocation of 600 CPUs. Thus, in principle, all
four submitters can run concurrently, but in practice we can expect greater contention
in site queues and when sites are overloaded with non-GRUBER work.

The results in Table 4 are the means across the four submitters. We see some inter-
esting differences from Table 3. G-LU’s completion rate drops precipitously, pre-
sumably for some reason relating to greater contention. Replanning events increase

472 Catalin L. Dumitrescu and Ian Foster

somewhat, as does scheduling delay. The total execution times for G-RA and G-LU
increase, although more runs will be performed to determine whether these results are
significant. Fig. 2 provides a more detailed picture of the job completion rates for the
experiments of Table 4. We see that the inferior performance of G-LRU and G-LU is
accentuated by the long time spent on a few final jobs.

Fig. 2. Job Completion Percentage vs. Time

4.4 Results Variance

In practice, we may expect to see considerable variation in results over different runs,
due to our lack of full control over the Grid3 environment. As a first step towards
quantifying this variation, we ran ten identical 1x1K runs with the random assignment
strategy (G-RA). Our results, in Table 3, show considerable variation for some quanti-
ties (Replan, Util, and Delay) and little variation for other quantities (Comp and
Time). However, the small variance in completion time and later studies not reported
here confirm our observations.

Table 3. 10 1x1K Runs with G-RA

Metric Average Std. Deviation Std. Dev. As %
Comp (%) 95.11 1.23 1.3

Replan 2000 308 15.4
Util (%) 18.77 3.10 16.5

Delay (s) 78.05 15.39 19.7
Time (hr) 7.97 0.33 4.1

4.5 Site Selector Variations and Comparisons

We compare GRUBER performance with that of two other methods. In the first of the
two methods, “GRUBER observant” or G-Obs, a site selector associates a further job
to a site each time a job previously submitted to that site has started. In effect, the site
selector fills up what a site provides by associating jobs until site’s limit is reached.
The second alternative, S-RA, associates each job to a site selected at random.

Table 4 shows the results obtained on Grid3 for the 1x1K workload. We find that
the best standard GRUBER site selector achieves a performance comparable to that of
the GRUBER observant (G-Obs) selector.

GRUBER: A Grid Resource Usage SLA Broker 473

Table 4. G-LU, G-Obs and S-RA Strategies: Performance for 1x1K

 G-LU G-Obs. S-RA
Comp (%) 99.3 97.3 60.2

Replan 1326 284 1501
Util (%) 14.56 12.59 0.57

Delay (s) 50.50 62.01 121.0
Time (h) 9.25 11.2 22.3

The results indicate that GRUBER’s automated mechanism for SLAs tuning (as
described in Section 3.2) makes its site selectors comparable in terms of job schedul-
ing performance. On the other hand, compared with GRUBER site selectors, the naive
random assignment site selector policy performs two to three times worse in terms of
our metrics. An important metric to observe is the number of re-planning operations.
While the observant site selector had around 300 operations, GRUBER performed
around 1300 re-scheduling operations and the naive site selector around 1500. The
difference comes from the fact that the simple round robin algorithm selects from all
the sites and not only from the candidates identified as available.

5 Related Work

Fair share scheduling strategies seek to control the distribution of resources to proc-
esses so as to allow greater predictability in process execution. These strategies were
first introduced in the early 1980s in the context of mainframe batch and timeshared
systems and were subsequently applied to Unix systems [13],[14].

Irwin et al. investigate the question of scheduling tasks according to a user-centric
value metric – called utility [6]. Sites sell the service of executing tasks instead of raw
resources. The entire framework is centered on selling and buying services, with users
paying more for better services and sites paying penalties when they fail to honor the
agreed commitments. The site policies are focused on finding winning bids and
schedule resource accordingly. This approach is different from our work here, as a
more abstract form of resources is committed under different SLAs.

In et al. describe a novel framework for policy based scheduling of grid-enabled
resource allocations [15]. The framework has several features. First, the scheduling
strategy can control the request assignment to grid resources by adjusting resource
usage accounts or request priorities. Second, efficient resource usage management is
achieved by assigning usage quotas to intended users. Third, the scheduling method
supports reservation based grid resource allocation. Fourth, Quality of Service (QoS)
feature allows special privileges to various classes of requests, users, groups, etc. The
difference with our approach consists in the fact that we do not assume a centralized
point of usage policy specification, but a more distributed approach of specification
and enforcements at the site level.

6 Conclusions

We have presented and evaluated an approach to representing and managing resource
allocation policies in a multi-site, multi-VO environment. We also introduced a grid
resource broker, called GRUBER, and the experiments we performed with several
approaches in task assignment policies. GRUBER is an architecture and toolkit for

474 Catalin L. Dumitrescu and Ian Foster

resource usage SLAs specification and enforcement in a grid-like environment. It is
the prototype of a VO policy enforcement point as described by Dumitrescu et al. [1].
While the results presented here are preliminary, they are encouraging and some of
the methods described here are pursued further in the Grid3 and OSG contexts.

There are still problems not fully explored in this article. For example, our analysis
did not consider the case of cluster administrators that over-subscribe local resources,
in the sense of a local policy that states that 40% of the local CPU power is available
to VO1 and 80% is available to VO2. A second issue not discussed in this report is the
hierarchic grouping and allocation of resources based on policy. Generally, VOs will
group their users under different schemes. While this is an important problem for our
context, we leave it as an open problem at the current stage.

References
1. Dumitrescu, C. and I. Foster. "Usage Policy-based CPU Sharing in Virtual Organizations".

in 5th International Workshop in Grid Computing. 2004.
2. Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations", in International Journal of Supercomputer Applications, 2001. 15(3):
p. 200-222.

3. Foster, I., et al., "The Grid2003 Production Grid: Principles and Practice", in 13th Interna-
tional Symposium on High Performance Distributed Computing. 2004.

4. Dan, A., C. Dumitrescu, and M. Ripeanu. "Connecting Client Objectives with Resource
Capabilities: An Essential Component for Grid Service Management Infrastructures", in
ACM International Conference on Service Oriented Computing (ICSOC'04). 2004. NY.

5. Altair Grid Technologies, LLC, A Batching Queuing System, Software Project, 2003.
6. Irwin, D., L. Grit, and J. Chase., "Balancing Risk and Reward in a Market-based Task Ser-

vice", in 13th International Symposium on High Performance Distributed Computing.
7. IBM, WSLA Language Specification, Version 1.0. 2003.
8. Pearlman, L., et al. "A Community Authorization Service for Group Collaboration", in

IEEE 3rd International Workshop on Policies for Distributed Systems and Networks. '02.
9. Schroeder, B. and M. Harchol-Balter. "Evaluation of Task Assignment Policies for Super

Computing Servers: The Case for Load Unbalancing and Fairness", in Cluster Computing.
10. Legrand, I.C., et al. "MonALISA: A Distributed Monitoring Service Architecture", in Com-

puting in High Energy Physics. 2003. La Jolla, CA.
11. Ludwig, H., A. Dan, and B. Kearney. "Cremona: An Architecture and Library for Creation

and Monitoring WS-Agreements", in ACM International Conference on Service Oriented
Computing (ICSOC'04). 2004. New York.

12. Cluster Resources, Inc., Maui Scheduler, Software Project, 2001-2005.
13. Henry, G.J., A Fair Share Scheduler. AT&T Bell Laboratory Technical Journal, 1984.
14. Kay, J. and P. Lauder, "A Fair Share Scheduler", University of Sydney, AT&T Bell Labs.
15. In, J., P. Avery, R. Cavanaugh, and S. Ranka, "Policy Based Scheduling for Simple Quality

of Service in Grid Computing", in International Parallel & Distributed Processing Sympo-
sium (IPDPS). April '04. Santa Fe, New Mexico.

16. Buyya, R., "GridBus: A Economy-based Grid Resource Broker", 2004, The University of
Melbourne: Melbourne.

17. Dumitrescu, C. and I. Foster, "GangSim: A Simulator for Grid Scheduling Studies", in
Cluster Computing and Grid (CCGrid), 2005, Cardiff, UK.

An Architecture for Distributed Grid Brokering

John M. Brooke and Donal K. Fellows

University of Manchester, Manchester, UK
j.m.brooke@manchester.ac.uk

http://www.unigrids.org/

Abstract. Computational resource brokering on the Grid is the pro-
cess of discovering what systems are capable of running a job, obtaining
estimates for when that job may run and how much it will cost, and sub-
mitting the job to the system that best meets the users’ requirements.
This paper identifies how resource brokers differ from superschedulers,
and describes a resource brokering architecture which is adapted to the
emergent structure of the large-scale Grid. We outline the architecture
of the UNICORE resource broker which is the basis of our prototype
implementation, and discusses both how the existing UNICORE archi-
tecture is relevant to the wider brokering picture and what will be done
in the future to bring them into closer alignment.

1 Introduction

If one examines currently accepted informal definitions of Grid computing (e.g.
[1]) it is clear that the Grid approach to distributed computing does not allow
us to make any assumptions about uniform policies for the management of and
access to the resources provided by participation in the Grid. This potentially
makes Grids very hard to use and a great deal of effort has been devoted to
developing “middleware” that can hide this complexity from the users of the
Grid. One important task of this middleware is to locate resources on the Grid
for the purposes of performing some computational task. This is usually referred
to as resource brokering and it usually also includes obtaining some form of
quality-of-service (QoS) offer from those resources, so that different offers from
providers may be distinguished.

This is a separate problem from the management and scheduling of tasks on
Grid resources, which is referred to as “super-scheduling” since the Grid-wide
scheduler may need to coordinate local scheduling systems given the potential
existence of different management regimes controlling the resources of the Grid.
Note that this condition makes Grid scheduling a different problem to scheduling
on hierarchical clusters controlled by a uniform resource management system.

In some current resource broker implementations, e.g. in the EU DataGrid[2]
and in NorduGrid[3], these two operations are merged so that the process of
finding where a job can run is also the process of reserving some resources for
that job. It is known that the super-scheduling problem is hard to scale especially
when the local schedulers may be running different scheduling systems. The few

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 475–484, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

476 John M. Brooke and Donal K. Fellows

super-schedulers that do exist (e.g. [4]) only work with certain batch or resource
management systems, thus the problem is not generally solved in practice. Thus
if a new site wishes to join in a larger Grid, it may have to consider changing
its scheduling system and software, this breaks the autonomy of local site policy
that is regarded as a key distinguishing feature of the Grid.

In this paper we argue that the resource broker problem is inherently easier
to scale and present an architecture for brokering that follows natural hierarchies
created when different sites or organisations which have a uniform inter-site pol-
icy join to form a Virtual Organisation (VO) by pooling their resources. We
distinguish two types of scaling; scaling in magnitude allowing very large num-
bers of sites and resources to be organised as a Grid, and scaling in complexity
allowing complex applications to federate across sites deploying different mid-
dleware and differing site policy configurations. We present preliminary results
showing how our brokering architecture enables scaling in complexity and gener-
alise from this to a proposed architecture that can support both types of scaling.

The paper is structured as follows: in Sect. 2 we examine in more detail cur-
rent approaches to the scheduling and brokering problems. In Sect. 3 we present
our VO-based approach to brokering and in Sect. 4 we present our reasons for
choosing the UNICORE middleware as the basis for implementation. In Sect. 5
we present the detail of a prototype implementation and how this allows interop-
erability with other middleware systems such as Globus Toolkit versions 2 and
3 (GT2 and GT3). We also discuss how the lessons learnt have enabled a gen-
eralisation of the prototype implementation to meet the full requirements of a
VO-based architecture. In Sect. 6 we present preliminary conclusions and discuss
how the development of standards based around the Open Grid Services Archi-
tecture will enable the brokering architecture to be developed for a much wider
range of middleware systems compliant with the emerging Open Grid Services
Architecture (OGSA).

2 Existing Resource Brokers and Superschedulers

There are currently several different approaches to Grid resource brokering. Two
major but similar approaches are used by the brokers developed in the DataGrid
project and the NorduGrid project cited above, which are both arranged as
front-ends to the job-submission system through which all jobs are required to
go. In the DataGrid broker, there is a single central broker through which all
submissions are made; this allows it to carry out not just brokering but also
scheduling across the Grid which it controls, but it pays for this by being not
scalable. The NorduGrid broker by contrast puts the brokering directly in the
client toolkit; this solution is more scalable, but requires revealing large amounts
of information to every client, which not something that commercial resource
providers may wish to do (the precise status of a site might be commercially
sensitive.) The problem with both of these approaches is that they both require
collecting of large amounts of information about the state of the Grid in some
centralized location, necessitating an extensive Grid monitoring architecture.

An Architecture for Distributed Grid Brokering 477

This approach does not scale well because of the amount of information that
needs to be transferred and processed since a centralized broker must know the
state of the system with a fair degree of accuracy or all estimates will be wrong,
and a distributed broker needs to collect a large amount of information on each
client request.

While both of the above two brokers are also scheduling agents, neither are
as far advanced as the NaReGI[5] super-scheduler. That works through the in-
troduction of a privileged module that can rewrite jobs into a form that can be
scheduled more efficiently at individual resources. However, this approach also
does not scale administratively because it requires the exposure of substantial
amounts of information (much of which might be commercially sensitive) about
resources on the Grid to the scheduler potentially within a different administra-
tive domain. This approach can be extended with the use of an inter-scheduler
negotiation protocol (e.g. based on ContractNet[6] or WS-Agreement[7]) but this
is still difficult to scale as the system granularity changes.

The other approach in use is based on the UNICORE[8] resource brokering
framework[9]). This assumes that the underlying systems used by the sites or
organisations in the VO are each in control of local scheduling (e.g. through the
use of a batch queue) and is oriented towards discovery of resources and the
presentation of offers for a particular level of quality-of-service made by those
resources. In particular, the resources may make multiple offers for a particular
job and those offers do not have to precisely satisfy the requirements of the job
in order to be considered; the resource making the offer may use knowledge of
the application’s problem-domain to create an offer based on application-specific
scaling factors. The other key feature of the existing UNICORE broker is that
the architecture is composable, with brokering agents being able to ask other
brokering agents to work on their behalf.

3 Conceptual Basis for VO-Based Brokering

In [1] Grids are envisaged as deriving from resource sharing in Virtual Orga-
nizations. This term has no meaning unless the VO has some common policy
on resource sharing, however this may be at a general level and scheduling, for
example, may be a task carried out differently in different parts of the VO. If we
define the VO concept recursively, i.e. VOs can be composed of sub-VOs, then
we get a policy hierarchy. If we go sufficiently far down such VO trees we will
eventually come to groupings of resource that can be considered to have uniform
systems with respect to resource allocation and management (in the worst case
this might be individual machines but economies of scale generally call for some
grouping).

An actual physical computing site or organisation may have multiple sets of
resources managed in substantially different ways, it can be easier to represent
the site as multiple VOs, each with its own policy domain (though perhaps with
a separate VO on top of them representing the federation of those resources
within the overall site). Sites come together in organisations and organisations

478 John M. Brooke and Donal K. Fellows

in multi-institutional collaborations but in our abstraction this is all within the
recursive definition of VOs. Note that resources are not necessarily machines, but
are instead a virtualization of machines. This means that a resource may also be
a cluster of machines, or that a single machine may host multiple resources (much
as websites may be hosted by pools of webservers, or single HTTP daemons may
host multiple websites; combinations of both are also possible).

Because we have defined the structure of VOs recursively, we also define the
structure of the brokering system for the Grid recursively. By arranging for the
broker for a VO to operate through delegation of requests sent to it to the brokers
in the sub-VOs, there is already a much substantial degree of natural scalability.
Another degree of scalability can be added by loosening up the binding between
a VO and its broker, so that the brokering service for a VO is actually chosen
from a pool of suitable brokers.

Superschedulers are integrated into this picture by placing them at (or near)
the leaves of the VO tree. This allows them to operate in highly homogeneous
environment and avoid the inter-domain coupling problems found in higher-level
superschedulers. It is easier to scale brokers hierarchically across administrative
domain boundaries, since they do not undertake any management of resources
but only make enquiries about such availability. Thus the abstract function ge-
tResourceInformation can be implemented without any inter-site cooperation
but scheduleTask cannot. This is not the case, however, in the hierarchical de-
sign of the Meta Directory System v2 (MDS-2) used by Globus middleware[10]
since the indexing process requires that information publishing outside the sub-
domains of the VO and combined at the higher levels.

4 Choice of Middleware to Build a Hierarchical Broker

To build a Grid resource broker based on VO boundaries we need support for
the hierarchical structure of VOs in the middleware which provides access to the
resources of the Grid. We found support for such abstractions in the UNICORE
middleware. The Globus MDS-2 information provision has a hierarchical struc-
ture but this abstraction is not maintained throughout the middleware (in job
submission language for example). This means that when UNICORE is installed
we simultaneously gain information about resources that covers all possible task
submission requests (since the middleware cannot function without this). With
Globus the information provision is done separately and although the adoption
of a common information schema such as the GLUE schema[11] goes some way
towards providing a more information-rich Grid, it still lacks the link between
resource information gathering and task submission[12].

The UNICORE[8] architecture is based around the concepts of Usites, Vsites
and Abstract Job Objects (AJOs). Usites are virtualizations of resource provider
sites that will normally have a shared set of policies (originally focusing on fire-
wall and certificate authority management), Vsites are virtualizations of services
providing computational resources, and AJOs are document-oriented abstrac-
tions of computational jobs that are converted by Vsites into concrete forms
(through a process termed “Incarnation”) before execution (see Fig. 1). The

An Architecture for Distributed Grid Brokering 479

U
si

te
Vsite

Vsite

Vsite

U
si

te

Vsite

Vsite

VsiteClient

Client

Client

Firewall Firewall

R
es

ou
rc

e
R

es
ou

rc
e

Fig. 1. The architecture of a UNICORE grid

UNICORE brokering model (developed in the EUROGRID project[9]) builds
on top of the general architecture by allowing each Vsite to host a brokering ser-
vice for that Vsite. This works by taking an AJO stripped of large components
(like attached files) and testing to see if the resources it requests are available at
the Vsite. When the resources are available, the broker then obtains an estimate
for what level of quality-of-service is available for the job (obtained from the
low-level job system, e.g. from a batch queue length estimator or by examin-
ing the load of the machine to get an estimate for likely processor and memory
contention1) and then attaches it to a ticket that is handed back to the calling
agent along with the QoS offer. The calling agent can then claim the offered QoS
by attaching the ticket to the real job submission. Another key feature of the
EUROGRID broker was support for delegation of a brokering request from one
broker to another, which allowed for the deployment of a dummy Vsite which
could provide brokering for a whole group of resources by delegating incoming
requests to the leaf-Vsite brokers (see Fig. 2). Finally, it supports a plug-in in-
terface which allows the broker to be enhanced with knowledge of a particular

Client

Client

Client

Firewall Firewall

T
S

I

G
at

ew
ay

NJS

NJS

NJS

G
at

ew
ay

NJS

NJS

NJS T
S

I

T
S

I

Broker Broker

Broker

BrokerBroker

Broker

Fig. 2. The architecture of the EUROGRID broker

1 Note that different kinds of systems require different kinds of QoS estimators. Batch
processing systems give total control of processors to their jobs and hence the loading
is irrelevant on such resources, whereas direct execution clusters will start running
every job virtually immediately but will suffer from any resource contention present.

480 John M. Brooke and Donal K. Fellows

application domain. This allows for the expression of job requirements in terms
of domain-specific measures (e.g. the size of Grid used in a weather simulation)
and the application of performance models based on a detailed study of the ac-
tual applications in use, it being far easier to provide the user with an interface
that generates such input metadata than it is to arrange for all agents on the
Grid to make accurate physical resource requirement estimates.

The GRIP project[13] extended this model by allowing a Vsite to be im-
plemented not just using the basic UNICORE mechanisms, but also on top of
Globus[14]. This leveraged the fact that the AJO is abstract to allow the com-
plete replacement of the job running system with another one with an entirely
different job description language. The resource broker was also extended in
GRIP to work by using Globus information services (in GT2 and GT3).

The key features of the UNICORE architecture that supported the EURO-
GRID/GRIP broker were that the conceptual models of both the computational
resources and the jobs running on them were abstract. By brokering jobs before
they are incarnated, it is much easier to find more resources capable of running
the job on a heterogeneous Grid, and the abstract resource model allows the
broker to work with offers from a much wider range of resources.

5 Design and Implementation

5.1 Prototype Implementation

The EUROGRID/GRIP resource broker is implemented as a plug-in module to
the UNICORE NJS2 and consists internally of a multi-layered architecture (see
Fig. 3). The outermost layer handles the communication, security and delegation
model as well as providing utility and configuration services. Inside this is is the
main logic module — which uses a runtime-pluggable architecture to support
application-specific brokering — and the local basic brokering engine, which acts
as an interface to the underlying concrete system. The GRIP broker extends the
EUROGRID broker in having additional local basic brokering implementations,

Globus2ResChk Globus3ResChkUnicoreResChk

LocalResourceChecker ResourceBroker

AbstractBroker

ExpertBroker

MDSTranslator OntologicalTranslator

Translator

GLUE Ontology

delegates to

usesuses

loads

uses

Fig. 3. The internal architecture of the EUROGRID/GRIP broker

2 Network Job Supervisor, a hosting environment for UNICORE Vsites.

An Architecture for Distributed Grid Brokering 481

one that integrates with a GT2-based low-level Grid, and one that integrates with
a GT3-based Grid. These local broker interfaces handle the task of brokering on
a Globus-based Grid by translating from resources as requested by a UNICORE
AJO to an MDS-2 or Index Service query. Each translation is performed by a
pluggable translation engine; the translation to MDS-2 queries is ad-hoc but the
translation to an Index Service query is described using an ontology developed
using PCPACK[15], an ontology capture tool, which allows for much simpler
maintenance of the ontology going forward in time.

To demonstrate the viability of the EUROGRID/GRIP resource broker, it
has been used to broker the Deutcher Wetterdienst coupled weather simulation
model across a heterogeneous grid consisting of a mixture of UNICORE-based
and Globus-based nodes. The global part of the weather model was hosted on
a UNICORE-based grid system, and the relocatable local weather model was
transparently brokered across a Globus-based grid, with the results being re-
flected back to a UNICORE-based front end client for display to the user. This
demonstrated both complexity of application (the primary resources over which
the application was brokered were described in terms of the weather model,
with translation to suitable underlying resource terms done transparently by
the application-specific broker) and complexity of underlying infrastructure.

5.2 Lessons Learnt and Generalisation of the Architecture

Work on the prototype has identified three requirements to lift this infrastructure
to the ideal of VO-based brokering architecture described in Sect. 3:

– The resource broker must be extended so that it can broker for more than one
Vsite simultaneously without having to delegate to individual leaf brokers.
This significantly reduces the degree of fan-out in a brokering request. This
means that the tickets issued by the broker must be capable of inspection by
services other than the issuer, though there is no need for anything outside
the site that hosts such a broker to be able to carry out such an inspection.

– It must be possible to place two or more brokers in parallel and get sensible
answers out of each even with simultaneous requests. This means that where
a broker reserves resources for the use of a job, it must be able to make sure
that the other brokers in parallel do not collide with it. This might be done
by using a database to provide serialization and locking. Note that this is
not necessary if no actual reservation is made for the job, such as might be
the case if the brokers are just reporting estimates of how long it will take
for the job to reach the head of the batch queue.

– It must be possible for an agent (whether a client or another broker) to find
out an instance of a resource broker for a site or other VO. This should be
done by associating a registry of some kind with the VO and placing the
references to all the VO’s broker instances within it. VOs that have more
than one broker may wish to split the load between the brokers by arranging
for different requests to the registry to return different instances (or in a
different order).

482 John M. Brooke and Donal K. Fellows

B

Broker

Resource

B
B

R R

R R R R R

R R R R R

B
VO

VO

VO

VO

VO

Fig. 4. An overview of the multi-VO resource broker architecture

These three architectural changes, together with the delegation model de-
veloped in the EUROGRID broker (formalized by an Explicit Trust Delegation
model[16]), allow the development of a brokering infrastructure along VO lines
(see Fig. 4). This work is being undertaken in the UniGrids project[17]. Note
that the VO closest to the user should also be supplied with a policy description
(based on Condor ClassAds[18]) that allows it to choose between the offers col-
lected on behalf of the user. By combining that policy with any such VO-based
policy, it is possible to choose a suitable offer without any further intervention
from the user or instigating agent.

There are additional benefits to doing this. By moving the broker the higher
level, it becomes much more efficient to use systems like R-GMA[19] or NWS[20]
to estimate likely performance. The Usite level (i.e. the lowest level of VO) is
a good point to introduce superschedulers like that developed by NaReGI[5]
without sacrificing the simplicity of the wider brokering architecture outlined
above.

The final component of the UniGrids brokering architecture is a mechanism
for monitoring of submitted jobs and generation of Usage Records[21]. These
usage records would then be both stored in a resource usage service (such as the
one developed in the MCS project[22]) for future reference (e.g. invoicing the VO
at the end of the month). The usage records are also to be fed back at periodic
intervals at times when the brokers are likely to be otherwise lightly loaded.

Preliminary results indicate that the new architecture greatly increases both
the throughput scalability and the management scalability of the brokering sys-
tem. The key source of improvement in throughput is the reduction in the num-
ber of inter-service messages achieved through a broker being able to issue offers
on behalf of an entire site at once, and the improvement in managability comes
through the reduction of the number of different systems that need to be con-
figured to bring a brokered site into service and keep it operating.

6 Conclusion and Future Work

Two major changes will be required to bring the brokering architecture within
the OGSA framework. The first major change is the switch to using web-services

An Architecture for Distributed Grid Brokering 483

based on WSRF[23] for the implementation and SOAP[24] for the transport
protocol. This will make comparatively little difference to the brokering system
because that is already highly service-oriented. We expect it to simplify the com-
munication model between the components significantly as the resource broker
does not require the transfer of large amounts of data, even for usage record
reconciliation. The advantage of going to a service-oriented model will be that
it will become much easier to integrate UNICORE with a more traditional web-
services workflow engine like BPEL[25] and so allowing more complex workflows
with multiple brokering stages (e.g. a long running job that is migrated between
available platforms at regular intervals, with the broker being used to select lo-
cation for job migration). It will also allow a wider range of clients written in
arbitrary programming languages to make use of the brokering facilities.

The second major change will be the adoption of JSDL[26] as a job descrip-
tion language instead of the AJO. Resource requests expressed in AJOs or JSDL
documents are largely compatible, both being abstract languages that can be ren-
dered more complete through incarnation, and both stating what resources will
be required for the job being run. JSDL is a standard language for job submis-
sion (reducing the complexity of the code to map onto non-UNICORE Grids)
which supports not just simple job running but also web-services invocations
and database queries. This allows the broker to be used in wider settings such
as load-balancing of a pool of SOAP engines or distribution of queries across a
federated database.

In the future, it will be possible to create a scheduler on top of the brokering
architecture outlined in this paper. This will take advantage of the fact that
the VO-based broker architecture will be able to offer both a good selection
of QoS offers and, through usage record monitoring, estimates of how accurate
those offers are and the likelihood of those offers being honoured. In this way,
the ultimate structure of the brokered scheduled Grid will probably consist of
schedulers that are very close to the top (where they take advantage of the way
that the brokering architecture smooths the appearance of the Grid) and the
bottom (where they can take advantage of the fine information available when
deciding how to match up jobs and particular resources) of the structure3 and
a brokering network in between the schedulers.

References

1. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabl;ing Scal-
able Virtual Organizations. International J. Supercomputer Applications, 15(3),
2001.

2. The DataGrid resource broker. http://server11.infn.it/workload-grid/.
3. The NorduGrid resource broker. http://www.nordugrid.org/papers.html.
4. Maui Scheduler. http://mauischeduler.sourceforge.net/.

3 There may also be schedulers at intermediate levels if there are organizations re-
selling the QoS offers, acting as a clearing house for interactions. This would parallel
economic activity in many other fields within and outside the computer industry.

484 John M. Brooke and Donal K. Fellows

5. NaReGI (National Research Grid Initiative) project.
http://www.naregi.org/index e.html.

6. Contract Net specification.
http://www.fipa.org/specs/fipa00029/SC00029H.html.

7. WS-Agreement specification.
http://www.ggf.org/Public Comment Docs/Documents/

WS-AgreementSpecification v2.pdf.
8. Uniform Interface to Computing Resources. http://www.unicore.org/.
9. The EUROGRID project. http://www.eurogrid.org/.

10. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-
vices for Distributed Resource Sharing. In Proceedings of the Tenth IEEE Interna-
tional Symposium on High-Performance Distributed Computing (HPDC-10). IEEE
Press, 2001.

11. The GLUE Compute Element schema.
http://www.cnaf.infn.it/∼sergio/datatag/glue/v11/CE/.

12. J. Brooke, D. Fellows, K. Garwood, and C. Goble. Semantic Matching of Grid
Resource Descriptions. In Proceedings of Second European Cross-Grids Conference,
Cyprus 2004. LNCS, 2004.

13. The GRid Interoperability Project. http://www.grid-interoperability.org/.
14. The Globus project. http://www.globus.org/.
15. PCPACK. http://www.epistemics.co.uk/Notes/55-0-0.htm.
16. D. Snelling, S. van den Berghe, and V. Li. Explicit Trust Delegation: Security for

Dynamic Grids. Fujitsu Scientific & Technical Journal, 40(2), 2004.
17. The UniGrids project. http://www.unigrids.org/.
18. Condor ClassAds. http://www.cs.wisc.edu/condor/classad/.
19. Relational Grid Monitoring Architecture. http://www.r-gma.org/.
20. Network Weather Service. http://nws.cs.ucsb.edu/.
21. Usage Record Working Group. http://forge.gridforum.org/projects/ur-wg/.
22. Markets for Computational Science project. http://www.cs.man.ac.uk/cnc-bin/

cnc mcs.pl.
23. WS-Resource Framework.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf.
24. Simple Object Access Protocol. http://www.w3.org/TR/soap12/.
25. Business Process Execution Language.

http://www-128.ibm.com/developerworks/library/ws-bpel/.
26. Job Submission Description Language.

http://forge.gridforum.org/projects/jsdl-wg/.

Topic 7
Parallel Computer Architecture and ILP

Theo Ungerer, Josep-Lluis Larriba-Pey, Kevin Skadron, and Pedro Trancoso

Topic Chairs

We welcome you to the Parallel Computer Architecture and Instruction Level
Parallelism sessions of Euro-Par 2005 conference being held in Lisboa, Portugal.

Instruction Level Parallelism (ILP) and parallel processing techniques are
present in most contemporary computing systems as they are very important
and growing research fields. ILP research aims to extract fine-grained parallelism
as well as thread-level parallelism not only from scientific code, but also from
irregular, general code.

The scope of this topic includes parallel computer architectures, processor
architecture and microarchitecture, the impact of emerging microprocessor ar-
chitectures on parallel computer architectures, innovative memory designs to
hide and reduce the access latency, multi-threading, and the impact of emerging
applications on parallel computer architecture design.

This year 39 papers were submitted to this topic area. The majority of the
papers came from the area of processor architecture and relatively few came
from parallel systems. Among the submissions, 10 papers were accepted as full
papers for the conference (26% acceptance rate). We are grateful to our refer-
ees for lending us their expertise and providing rigorous reviews. The accepted
papers are grouped in three sessions according to the topic covered: Branch Pre-
diction and Memory Hierarchy, Instruction Level Parallelism, and Parallel and
Reconfigurable Architectures.

In the first session Monchiero and Palermo present the Combined Percep-
tron Branch Predictor, which consists of two concurrent perceptron-like neural
networks. Moure et al. propose a mechanism, Target Encoding, that achieves a
better ratio between the predictor accuracy and its size. Shi and Lee propose an
efficient solution to scale the L1 cache based on the register-guided dynamic par-
tition of memory reference instructions for partitioned L1 data cache. And Canal
et al. present a scheme that compresses all values passing through a processor
in order to reduce the energy consumption.

In the second session Zmily et al. introduce a block-aware ISA that helps
accurate instruction delivery improving the energy consumption over traditional
and decoupled front-ends. Sharky and Ponomarev propose a non-uniform in-
struction scheduler that achieves smaller scheduling delays. The same author
also present an efficient wakeup-free instruction scheduler - instruction recircu-
lation.

Finally, the third session starts with a work by Almasi et al. describing the
early experiments on a 16384 node BlueGene/L. Vandeputte et al. analyze and
improve the performance of state-of-the-art phase predictors, which are useful for
hardware adaptation. Bardisa et al. present a lightweight directory architecture.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 485, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Combined Perceptron Branch Predictor

Matteo Monchiero and Gianluca Palermo

Politecnico di Milano
Dipartimento di Elettronica e Informazione, Via Ponzio 34/5, 20133 Milano, Italy

{monchier,gpalermo}@elet.polimi.it

Abstract. Previous works have shown that neural branch prediction
techniques achieve far lower misprediction rate than traditional
approaches. We propose a neural predictor based on two perceptron net-
works: the Combined Perceptron Branch Predictor. The predictor con-
sists of two concurrent perceptron-like neural networks, one using as
inputs branch history information, the other one using program counter
bits. We carried out experiments proving that this approach provides
lower misprediction rate than state-of-the-art conventional and neural
predictors. In particular, when compared with an advanced path-based
perceptron predictor, it features 12% improvement of the prediction ac-
curacy.

1 Introduction

Modern high-performance microprocessors rely on sophisticated and accurate
branch predictors to efficiently exploit Instruction Level Parallelism (ILP). Com-
plex front-ends, capable of filling large instruction windows, are required to sus-
tain high operating frequency and aggressive parallelism. Branch prediction is a
key element of such a system, providing correct fetch beyond branch boundary
and, therefore, large throughput instruction delivery.

Several advanced branch predictors have been suggested so far in the lit-
erature. Most of them are 2-bit counters table based predictors [1], organized
in order to minimize interference which may occur in the counter tables. For
example, the 2Bc-gskew predictor [2] is composed of four 2-bit counter tables:
a bimodal table (BIM), two gshare-like tables (G0 and G1) and a metapredic-
tor table (META). Depending on the outcome of the META table, the final
prediction is given either by the BIM table or by the majority vote of the pre-
dictions from the BIM, G0 and G1 tables. Other complex schemes have been
recently proposed, e.g. the Prophet/Critic hybrid branch predictor [3], based on
the combination of two components: the prophet and the critic. The critic uses
both branch history and future to give a critique of the prophet prediction, which
is used to make the final prediction for the current branch.

In this paper, we present an innovative branch predictor architecture, based
on a neural approach, first proposed by Jimenez et al. in [4] (the Perceptron
predictor). Our proposal features a novel mechanism, based on an additional
address-based perceptron, using some PC bits as inputs, to achieve superior ac-
curacy with respect to a single perceptron approach. Using PC bits as input

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 487–496, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

488 Matteo Monchiero and Gianluca Palermo

of the neural network, the proposed predictor can separate branches otherwise
collapsing in the same perceptron. We prove that this approach improves sig-
nificantly prediction accuracy with respect to state-of-the-art conventional and
neural predictors.

The paper is organized as follows: Section 2 introduces some background
about neural branch prediction. In Section 3, our proposal is presented. Section
4 shows obtained experimental results. Finally, Section 5 concludes the paper.

2 Neural Branch Prediction

Branch predictors based on neural methods have been recently studied [4–7],
showing that they are the most accurate predictors in the literature. In fact,
neural networks can exploit much longer histories than conventional branch pre-
diction algorithms, resulting in better performance.

The simplest neural network is the perceptron. For this network, the output
signal, pred, is a non-linear function (activation function) of y, which is a linear
combination of the network inputs, as stated by following equations:

pred = step(y) (1)

y = w • [1 x]T = w0 +
i=N∑
i=1

wixi (2)

where wi are N + 1 weights and xi are N inputs; w0 is called bias weight.
The activation function can assume various shapes for a generic neural network.
Perceptron uses the step function, which is a natural choice, when dealing with
branch prediction patterns. The step function means taken when it is 1 and not-
taken when 0. Vector w = [w0, w1, · · · , wN] is said weight vector and specifies the
perceptron. Vector x = [x1, · · · , xN] is the input vector, whose elements are the
inputs of the network. Weights can be dynamically trained, so that prediction
run-time adapts to the real taken/not-taken branch pattern.

The Perceptron predictor, presented in [4], uses perceptrons to predict branch
outcome. It is a history-based predictor, since it maintains a Global Branch
History Register (GBHR) and a set of local Branch History Registers (BHR),
collected in a Branch History Table (BHT). A history register, obtained con-
catenating local and global history, is used as input of a perceptron network
to perform the prediction. The perceptron to use is chosen by using the PC
bits of the current branch. Weights are 8-bit integers and they are selected in
a n × (h + 1) matrix, called Weight Table (WT). n and h are design parame-
ters: n has the meaning of number of entries of the WT, while h is the size of
the history register, which is the network input. Each row of the matrix is a
(h + 1)-length weight vector, which determines the perceptron. When the pre-
diction is performed, the least significant bits of the PC are used to select the
row corresponding to the weight vector to use. A fast adder provides to generate
the summation of the weights, according to applied inputs (see Equation 2), and
a comparator makes the prediction (see Equation 1). Every time the effective

The Combined Perceptron Branch Predictor 489

PC

PT

BHT

GBHR

PC

WT_hist

P_hist P_addr

Prediction

y

Outcome

Update
logic

WT_addr

Fig. 1. Block diagram of the Combined Perceptron Branch Predictor

branch target is computed, the corresponding weight vector is updated, training
the weights values with the outcome pattern.

An improvement to the Perceptron predictor is the Path-Based Perceptron
predictor. Branch path information is used when selecting neurons to get superior
accuracy. The path of a branch is composed of the past branch PCs. In a path-
based perceptron, the i-th weight of the weight vector to use for the prediction, is
the element of the i-th column of the Weight Table, indexed by the i-th element
of the Path Table, that is wi = WT [PT [i]]. This idea has been presented in [7],
where is proposed the Fast Path-Based Perceptron predictor. The predictor is
based on enhanced microarchitecture to minimize prediction latency. It staggers
computations in time, predicting a branch using a neuron selected dynamically
along the path to the branch, rather than selecting the neuron all at once.

In [8], Seznec proposes pseudo-tagging, a technique to reduce aliasing in the
perceptron table. Pseudo-tagging consists in using a few bits of the address of a
branch in the vector of weights. The author reports that this technique achieves
only a slight performance improvement with respect to the conventional per-
ceptron predictor (2.52 % on average, with a 16KB predictor, on 10 SPEC2000
integer benchmark).

3 Proposed Predictor Architecture

The Combined Perceptron Branch Predictor, proposed in the paper, combines
two different kinds of Perceptron: a history-based one and an address-based one.
The address-based Perceptron has as inputs some bits of the PC. Its output is
sensitive to the branch address and, if combined with the output of the history-
based Perceptron, which is sensitive to branch history, adds a contribution which

490 Matteo Monchiero and Gianluca Palermo

Algorithm 1 Prediction algorithm
/* Calculate the output of the

history-based perceptron */

y_hist=W_hist[PC][0];
for (j = 1; j <= HISTORY_LENGTH; j++)

{
k = PT[j-1];
if (history_reg[j-1])

y_hist += W_hist[k][j];
else

y_hist -= W_hist[k][j];
}

/* Calculate the output of the
address-based perceptron */

y_addr=W_addr[PC][0];
for (j=1; j <= N_ADDR_BITS; j++)

{
k = PT[j-1];
if (PC[j-1])

y_addr += W_addr[k][j];
else

y_addr -= W_addr[k][j];
}

y = y_hist + y_addr;

if (y >= 0) prediction = true;

else prediction = false;

the current branch itself. We designed the update pol-
icy of this component to make that a weight is decre-

Algorithm 2 Update algorithm
if (last_prediction!=outcome ||

(last_y <= THETA && last_y >= -THETA))

{
/*update the history-based perceptron*/

if (outcome) weight_inc(W_hist[PC][0]);
else weight_dec(W_hist[PC][0]);

for (j = 1; j <= HISTORY_LENGTH ; j++)
{

k = PT[j-1];
if (outcome == hist[j-1])

weight_inc(W_hist[k][j]);
else

weight_dec(W_hist[k][j]);

}

/*update the address-based perceptron*/
if (outcome) weight_inc(W_addr[PC][0]);
else weight_dec(W_addr[PC][0]);

for (j = 1; j <= N_ADDR_BITS; j++)

{
k = PT[j-1];

if (outcome == PC[j-1])
weight_inc(W_addr[k][j]);

else

weight_dec(W_addr[k][j]);
}

}
update_ghist();
update_lhist();

update_path();

Fig. 2. Algorithms for the prediction and update phase for the Combined Perceptron
Branch Predictor

significantly improves the prediction accuracy. The basic idea of our proposal is
to add to the final prediction a contribution to take into account branch address
related information, dealiasing branch which collapsed in a single entry of the
other component of the predictor.

Both subpredictors (history-based and address-based), which compose the
whole predictor, are Perceptron predictors which exploit branch path informa-
tion in the selection of the weight vector. The history-based predictor has the
same structure of the Path-Based predictor described in the previous section.
The address-based predictor uses a perceptron selected by the branch path, but
the input of the perceptron are the least significant bits of the address of the
current branch itself. We designed the update policy of this component to make
that a weight is decremented/incremented if the corresponding input (that is, an
address bit) has given a negative/positive contribution to the final prediction.

Furthermore, the activation function application is moved from the output
of the two single subpredictors to the output of the whole predictor. In this
way, each component cooperates in calculating the input value of the activation
function, which is subsequently applied.

The whole predictor output is ruled by following equations, which replace
Equation 1 and Equation 2.

pred = step(y) (3)

y = whist • [1 h]T + waddr • [1 x]T (4)

where whist is the the weight vector of the history-based perceptron, while waddr

is the weight vector of the address-based perceptron. h and x are, respectively,

The Combined Perceptron Branch Predictor 491

the vectors of the input history and address bits. The activation function is the
step function and applies the summation of the two components of the predictor.

Figure 1 shows the block diagram of the proposed predictor. We indicated as
WT hist and P hist the Weight Table and the perceptron logic of the history-
based subpredictor, while WT addr and P addr are related to the address-based
one. Perceptron logic is substantially composed of an adder which sums selected
weights depending on the inputs. The Path Table (PT) holds the branch path,
that is, last branch PCs, and it is used to index into the Weight Tables. GBHR
and a BHT store information related to branch outcome history and supply the
history register which is the input of the history-based subpredictor. The update
logic is the circuitry needed to update the predictor Weight Tables. Dashed lines
represent data transfers needed by the update phase.

The prediction algorithm is shown, as C-like pseudocode, in Algorithm 1
(Figure 2).Weight Tables of both predictors are concurrently accessed to get
weight vectors. The outputs of the perceptrons are calculated and summed to-
gether. Finally, a comparator decides the prediction whether the obtained value
is greater or less than zero.

Update algorithm details are shown in Algorithm 2.The weights of the two
subpredictors tables are modified on mispredictions or when the value of y is
too small. A threshold is established for this purpose. Its value has been set, so
that weight vectors are updated if y falls into a value range which is half of the
weight range (that is, THETA = 64). The update is performed following the
rule: Δw = outcome ⊕ input, which means that a weight is incremented if the
corresponding input has given positive contribution, otherwise it is decremented.
The GBHR, the BHT and the PT are also updated in this phase.

3.1 Implementation Issues

Implementation of perceptron-based branch predictors has been studied in [4,
7]. The most critical component, heavily impacting on prediction latency, is
the weights summation, which can be effectively implemented using a Wallace
compressor. A pipelined implementation has been proposed for the Path-Based
Perceptron [7], but it is feasible only considering global history. Local-global
Perceptron predictors, if pipelined, would need too large hardware budget, since
one pipeline per local history table (i.e. BHT) entry would be needed.

The architecture of the Combined Perceptron Branch Predictor can be im-
plemented as shown in Figure 3. Since each column of the WTs is independently
accessed by the program counter or by an element of the Path Table, WTs can
be sliced and organized in banks, each of them containing as many ways as the
Weight Tables (WTs) columns accessed by using the same addressing logic. The
summation relative to the history-based and address-based perceptrons are im-
plemented by a single block which generates the final value of the activation
function, composed by a Selective Inverter, a Wallace tree and a parallel adder.
The Selective Inverter, is a circuit to selectively invert fetched weights, according
to the predictor inputs, i.e. the history register and a portion of the program
counter bits. The Wallace tree is used to reduce the number of the operands to

492 Matteo Monchiero and Gianluca Palermo

PC

{hist, PC}

Parallel Adder

PT[1]

...

...
Wallace Tree

Selective Inverter

output

column 0 column 1

WT_histWT_addrWT_hist

column 0
WT_addr

column 1

PT[N−1]

column HL

WT_hist...

Fig. 3. Implementation of the Combined Perceptron Branch Predictor

2 operands, which are added by the final adder. The most significant bit of the
output is the prediction.

The proposed implementation results only slightly more complex than the
implementation of the Perceptron Predictor [4]. In fact, the same design can be
adopted also for a Perceptron. The main difference is the width of the summation,
and therefore of the Wallace tree. For example, regarding 8KB predictor as shown
in Table 1, the Combined Perceptron requires 42 weights, while the Perceptron
27, resulting in 2 gate levels of the Wallace tree saving. Considering 90 nm CMOS
process estimated latency for a prediction is 905 ps for the Combined Perceptron
and 770 ps for the the Perceptron (-15%).

4 Experimental Results

In order to evaluate the proposed architecture, in terms of prediction accuracy,
we measured misprediction rate for the proposed predictor and several differ-
ent predictors. Reported results have been obtained using the Championship
Branch Prediction (CBP) [9] framework, which is a trace-driven μop-based Intel
IA32 simulation environment. Branch predictors were simulated on conditional
branches of the given input trace. The Combined Perceptron predictor source
code is available on the web [10, 11].

We used the instructions traces provided within the CBP framework. The
benchmark set is composed of 20 traces, 30M instructions per trace, Each trace
belongs to a specific class: INT (integer), FP (floating point), MM (multimedia),
SERV (server). The INT/FP workloads are components of SPEC; the multime-
dia has some video/speech recognition; for the most part the server is tpcc/web
server stuff.

In this paper, we compare the proposed predictor to well known state-of-the-
art predictors:

The Combined Perceptron Branch Predictor 493

Table 1. Simulated predictor configurations

Total hardware budget
8KB 16KB 32KB

GShare history length 15 16 17
2Bc-gskew # entries (per table) 8K 16K 32K

history length 13 14 15
Perceptron WT # entries 304 443 630

history length 26 36 51
WT # entries 325 639 644

Path-Based global history length 17 19 40
Perceptron BHT # entries 2048 2048 2048

local history length 4 4 7
WT hist # entries 137 214 493
global history length 25 32 32

Combined BHT # entries 2048 2048 2048
Perceptron local history length 4 5 11

WT addr # entries 254 462 457
address bits 11 14 17

– GShare. It is a global two-level adaptive predictor, which uses the XOR
between the global history and the branch address to minimize aliasing in
the 2-bit counter table [1].

– 2Bc-gskew. We simulated the predictor proposed by Seznec [2].
– Perceptron. This is the Jimenez’s Perceptron predictor proposed in [12].

Only a global history information is used to compute the perceptron output.
– Path-Based Perceptron. It is an improved version of the Perceptron pre-

dictor. Weights are selected exploiting path information and a mixed lo-
cal/global history is used.

Parameters space of the simulated predictors, including the proposed pre-
dictor, has been explored. More than 10,000 random generated configurations
have been simulated and best predictors have been selected. Table 1 reports the
parameters values of the optimal configurations for each predictor.

Figure 4 shows the average misprediction rate of the different branch pre-
dictors, when the size is varied. We simulated 8KB, 16KB and 32KB predic-
tors. It can be observed that the Combined Perceptron Branch Predictor fea-
tures the smallest misprediction rate for every size ranging from 3.5 to 2.8
mispredictions/K-instruction. The overall behavior of the proposed predictor
is 12.5% better than the optimized configuration of the Path-Based predictor
and 34% better than the GShare predictor.

In Figure 5, the plot of the misprediction rate of the simulated predictors
for each benchmark, for the size of 8KB, is reported. It can be observed that
the Combined Perceptron predictor achieves better performance over the other
predictors for every benchmark (except for INT-4 and MM-1). A large decrease
of the mispredictions is evident on integer and server benchmarks. All the simu-
lated predictors behave homogeneously across all the benchmarks. On the other
hand, the 2Bc-gskew predictor clearly results in fewer misprediction on integer
programs than on server ones.

Results about exploration of different addressing modes into the Weight Ta-
bles are reported in Figure 6, for both the Perceptron Predictor and the Com-

494 Matteo Monchiero and Gianluca Palermo

8KB 16KB 32KB
2.5

3

3.5

4

4.5

5

5.5

Predictor size

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

GShare
2Bc−gskew
Perceptron
Path−Based Perceptron
Combined Perceptron

Fig. 4. Average misprediction rate of different branch predictors and sizes

0

2

4

6

8

10

12

14

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

IN
T

−
1

IN
T

−
2

IN
T

−
3

IN
T

−
4

IN
T

−
5

F
P

−
1

F
P

−
2

F
P

−
3

F
P

−
4

F
P

−
5

M
M

−
1

M
M

−
2

M
M

−
3

M
M

−
4

M
M

−
5

S
E

R
V

−
1

S
E

R
V

−
2

S
E

R
V

−
3

S
E

R
V

−
4

S
E

R
V

−
5

GShare
2Bc−gskew
Perceptron
Path−Based Perceptron
Combined Perceptron

Fig. 5. Misprediction rate of the simulated branch predictors for different benchmarks
and resource budget of 8KB

bined Perceptron Predictor. We consider pure addressing mode, which means
that Weight Tables are accessed only by global history bits, and the local-global
one, which mixes local and global history. Furthermore, the path-based and local-
global path-based addressing modes, which use also path information. Observing
Figure 6(a), it is evident that path-based solutions feature good accuracy for
a relatively small history length (up to 24–26), while for longer history perfor-
mance decreases rapidly. This is mainly due to path interference, which occurs in
the path-based predictors, since weights ideally belonging to different path may
collapse into the same weight, because some weights of the paths may physically
overlap. This does not happen for the others two configurations, because a weight
vector is maintained for each branch. Local-global history significantly impact on
predictor performance. In fact, 10% accuracy improvement is achieved by using
local-global addressing. Although local-global predictors feature more complex
implementation, since pipelining is not possible, they represent a worthwhile
choice.

Figure 6(b) shows addressing mode analysis for the Combined Perceptron
Branch Predictor. While path interference makes that path information is not

The Combined Perceptron Branch Predictor 495

20 25 30 35 40 45 50 55 60

4

4.5

5

5.5

6

6.5

History length

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

pure
path−based
local−global
local−global and path−based

(a) Perceptron

20 25 30 35 40 45 50 55 60

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

History length

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

pure
path−based
local−global
local−global and path−based

(b) Combined Perceptron

Fig. 6. Misprediction rate versus history length, considering different addressing modes
into the Weight Tables (8KB predictor size)

0 0.2 0.4 0.6 0.8 1 1.2
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Address bits − History length Ratio

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

(a) 8 KB

0 0.2 0.4 0.6 0.8 1 1.2
3

3.1

3.2

3.3

3.4

Address bits − History length Ratio

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

(b) 16 KB

0 0.2 0.4 0.6 0.8 1 1.2

2.8

3

3.2

3.4

Address bits − History length Ratio

M
is

pr
ed

ic
tio

ns
/K

−
in

st
ru

ct
io

n

(c) 32KB

Fig. 7. Address bits – History length Ratio versus misprediction rate for the simulated
configurations and different predictor size

effectively exploited in the Perceptron Predictor, the Combined Predictor suc-
ceeds in getting far lower misprediction rate by de-interfering paths. In fact, for
history length shorter than 40 bits, up to 8% performance gain is obtained by
path-based predictor, both for the local-global and the global one. In addition
to this it is evident that the local-global path-based predictor reaches a mispre-
diction rate minimum, since effectively exploit information related to both path
and local-global history.

Figure 7 shows scatter plots of the misprediction rate versus the Address
bits – History length Ratio (defined as the ratio of the number of address bits
used as input of the address-based predictor and length of the history used as
input of the history-based predictor) for the simulated configurations and pre-
dictor size of 8KB, 16KB, 32KB. These results show that the contribution of the
address-based component significantly improves perceptron predictor accuracy.
The phenomenon is evident for each predictor size: if the points on the Pareto
curve of each plot are observed, a minimum for the misprediction rate can be
found, when the value of the Address bits – History length Ratio is approxi-
mately 0.4.

496 Matteo Monchiero and Gianluca Palermo

5 Concluding Remarks

An innovative branch predictor architecture, based on a neural approach, has
been presented. We show that combining a history-based perceptron with an
address-based perceptron significantly improves prediction accuracy. We car-
ried out experiments on a set of the benchmark traces. The proposed predictor
achieves 34% lower misprediction rate than the baseline GShare predictor and
12% lower misprediction than a state-of-the-art Perceptron predictor. Results
prove that the branch predictor architecture we propose succeeds in exploiting
information related to branch path, unlike conventional path-based architecture
which suffers from path interference in the Weight Table.

Acknowledgments

We wish to thank the CBP committee, in particular Chris Wilkerson and Jared
Stark, for providing the simulation framework. We thank Mariagiovanna Sami
and Cristina Silvano for helpful discussions. Finally, we thank μ-Lab IPECAs.

References

1. Evers, M., Yeh, T.Y.: Understanding branches and designing branch predictors for
high performance microprocessors. Proceedings of the IEEE 89 (2001) 1610–1620

2. Seznec, A., Felix, S., Krishnan, V., Sazeides, Y.: Design tradeoffs for the Alpha
EV8 conditional branch predictor. In: Proceedings of ISCA’02. (2002)

3. Falcon, A., Stark, J., Ramirez, A., Lai, K., Valero, M.: Prophet/critic hybrid
btanch prediction. In: Proceedings of ISCA’04. (2004)

4. Jimenez, D.A., Lin, C.: Neural methods for dynamic branch prediction. ACM
Transactions on Computer Systems 20 (2002) 369–397

5. Vintan, L.N., Iridon, M.: Towards a high performance neural branch predictor. In:
Proceedings of the International Joint Conference on Neural Networks. (1999)

6. Egan, C., Steven, G., Quick, P., Anguera, R., Vintan, L.: Two-level branch pre-
diction using neural networks. Journal of Systems Architecture 49 (2003) 557–570

7. Jimenez, D.: Fast path-based neural branch prediction. In: Proceedings of MICRO-
36. (2003)

8. Seznec, A.: Redundant history skewed perceptron predictors: Pushing limits on
global history branch predictors. Technical Report 1554, IRISA (2003)

9. CBP URL: (www.jilp.org/cbp/)
10. Monchiero, M., Palermo, G.: The combined perceptron branch predictor. Technical

Report 2004.35, Politecnico di Milano (2004)
11. URL: (www.elet.polimi.it/upload/monchier/high-performance-bp.htm)
12. Jimenez, D., Lin, C.: Dynamic branch prediction with perceptrons. In: Proceedings

of HPCA-7. (2001)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 497–507, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Target Encoding for Efficient Indirect Jump Prediction*

Juan Carlos Moure1, Domingo Benitez2, Dolores Isabel Rexachs1, and Emilio Luque1

1 Computer Architecture and Operating Systems Department,
Universidad Autónoma de Barcelona, 08193 Barcelona, Spain

{JuanCarlos.Moure,Dolores.Rexachs,Emilio.Luque}@uab.es
2 University of Las Palmas G.C., 35017 Las Palmas, Spain

dbenitez@dis.ulpgc.es

Abstract. Accurate indirect jump prediction is critical for some applications.
Proposed methods are not efficient in terms of chip area. Our proposal evalu-
ates a mechanism called target encoding that provides a better ratio between
prediction accuracy and the amount of bits devoted to the predictor. The idea is
to encode full target addresses into shorter target identifiers, so that more en-
tries can be stored with a fixed memory budget, and longer branch histories can
be used to increase prediction accuracy. With a fixed area budget, the increase
in accuracy for the proposed scheme ranges from 10% to up to 90%. On the
other hand, the new scheme provides the same accuracy while reducing predic-
tor size by between 35% and 70%.

1 Introduction

Dynamic control-flow prediction is a key task on current processors. This work pro-
poses an efficient mechanism for predicting indirect jumps. Although they are less
frequent than conditional branches, for some applications the lack of a specialized
indirect jump predictor may degrade performance significantly [7], [8].

Common sources of indirect jumps are case statements and virtual function calls
used in object-oriented languages. While some indirect branches jump to a unique
target address during the program’s execution (monomorphic jumps), and are easy to
predict, many of them (called polymorphic) jump to several target addresses, depend-
ing on input data, and their prediction is complex. Accurate prediction for those
jumps requires a multiple-choice predictor, rather than a mere binary (taken/not-
taken) predictor, and storing several target addresses per jump.

Indirect jump predictors proposed in the literature match the scheme depicted in
Fig. 1. One or more tables are indexed using the jump’s address and branch history,
which codifies the outcomes of recently executed branches (indirect or not) leading
up to the jump. Tables contain full target addresses and additional data that is used to
select the final predicted address. Tables are trained using the outcome of indirect
jumps once they are retired from the processor pipeline.

* This work was supported by the MCyT-Spain under contract TIN 2004-03388, the Generali-

tat de Catalunya - Grup Recerca Consolidat 2001 SGR-00218, and the HiPEAC European
Network of Excellence

498 Juan Carlos Moure et al.

The predictor’s accuracy is mostly limited by its memory size and by the length
and quality of the branch history. A separate entry is allocated into the predictor’s
tables for each combination of jump address and branch history. As the history gets
larger, the probability of containing a previous branch that correlates with the pre-
dicted branch also gets larger, increasing prediction accuracy [5]. However, more
entries are required in the predictor’s tables or otherwise many prediction cases will
map into the same entry and create aliasing. The indexing and selection methods try
to reduce the effect of aliasing, making efficient use of the available predictor’s
memory.

Although larger tables provide higher accuracy, they do not handle information ef-
ficiently, since the same long target addresses are replicated several times. We present
and evaluate a method to encode full target addresses into shorter target identifiers.
The proposed two-stage mechanism consists of (1) predicting a short target identifier
using the scheme shown in Fig. 1, and then (2) translating it into a full target address.
Since encoded targets are shorter, more entries can be stored with a fixed memory
budget, and then longer histories can be used to increase prediction accuracy. The
table used in the second stage holds full target addresses and still requires large en-
tries, but since each address is stored only once, it requires considerably fewer en-
tries.

Results obtained in simulation indicate that the design achieves a better ratio be-
tween prediction accuracy and predictor size. This increase of storage efficiency may
be used to increase performance or to lower area requirements and the predictor’s
power consumption. The proposed two-stage scheme increases the indirect predic-
tor’s average response latency, but this increase is shown to have very little effect on
performance. On a 4-way superscalar processor with a realistic memory hierarchy,
with a penalty of 2 cycles for using the two-level jump predictor, the performance
improvement due to target encoding ranges from 0.1% to 2.5%, depending on the
benchmark.

Section 2 reviews some related work. Sections 3 and 4 describe the baseline and
the proposed indirect jump predictors. Section 5 presents the experimental methodol-
ogy and some preliminary results. Full results are presented and discussed in section
6. The final section outlines the conclusions and introduces future lines of research.

Fig. 1. General scheme of an indirect jump predictor

2 Related Work

A Branch Target Buffer (BTB) [13] provides a simple method for accurately predict-
ing monomorphic indirect jumps or jumps whose target changes infrequently, but
provides weak results for polymorphic jumps. Adding a hysteresis bit to limit the
update of the target address only after two consecutive mispredictions [3] provides

Target Encoding for Efficient Indirect Jump Prediction 499

small gains [5, 6]. A better method for dealing with polymorphic jumps is the Target
Cache (TC) [5]. It adapts the two-level prediction methods previously proposed for
conditional branches [14], to indirect jumps. [5] analyzes several methods to track
branch history, several indexing methods, and the use of tags on the TC.

A variation on the TC is the Cascaded Indirect Jump Predictor [6], which signifi-
cantly reduces the table size needed to achieve a given accuracy. It dynamically iden-
tifies easily predicted jumps and devotes them a simple and low cost predictor, pre-
venting insertion of these jumps into a more powerful second stage predictor. The
result is that easily predicted jumps avoid most cold start misses and do not waste
entries in the second stage predictor, which is better exploited by the remaining indi-
rect jumps. Using a BTB as the first-stage filter, as in the Intel Pentium M and Pen-
tium 4 processors [7, 8], provides good results with a simple and efficient design. We
evaluate our proposal using this scheme as the baseline design (described in the next
section).

Prediction by Partial Matching (PPM) [12] exploits variable-length path correla-
tion to improve prediction accuracy. Several tables are accessed in parallel, each one
addressed by an index containing a branch history of a different length. The table
using the longest history and having a valid prediction provides the final target. The
potential of varying the history length for each specific branch is not analyzed in this
paper.

Control-flow prediction performance is improved by either increasing accuracy,
width (instructions retired per prediction), or rate (predictions per cycle). We have
previously proposed a two-level hierarchy [14], but aimed to increase prediction rate
and not to improve the ratio between prediction accuracy and predictor size.

A method to increase prediction width is path-based next trace prediction [9]. It
uses a cascaded, two-level scheme to predict instruction traces, rather than jumps or
branches. Our baseline design uses the exclusive-or-fold method proposed there.

3 Baseline: A BTB-Based Cascaded Predictor

The baseline design used to evaluate our proposal is a cascaded indirect jump predic-
tor [6, 7] using two tables (see Fig. 2). The first table is a Branch Target Buffer
(BTB) [13], which identifies branches in the instruction fetch stream and provides a
target address for each branch. Since the BTB always correctly predicts monomor-
phic jumps, a specialized Indirect Jump Predictor (IJPred) exploiting branch correla-
tion is only required for polymorphic indirect jumps. We assume that an extra 32-
entry return address stack (RAS) [11] (not shown) is used to predict indirect return
jumps.

Fig. 2. Cascaded, two-level indirect jump predictor. At prediction time, a Branch Target Buffer
(BTB) identifies branches and filters the use of a specialized Indirect Jump Predictor (IJPred)

500 Juan Carlos Moure et al.

Extensive simulation has been performed to obtain a realistic, highly tuned base-
line design. We have simulated IJPred sizes from 256 to 16K entries, IJPred tag sizes
from 0 to 16 bits, history lengths from 1 to 61, hysteresis counters from 0 to 3 bits,
different ways of building and codifying branch history, and several indexing and
selection algorithms. The most important results are explained in the following de-
scription.

Updating the BTB and IJPred at Retire Time (Not Speculatively)
We assumed a BTB with 4K entries and 16-bit tags, which suffers a low miss rate. At
retire time, a BTB entry is allocated for each branch that misses in the BTB, and ini-
tialized with the branch type and target address. If the branch is an indirect jump (not
a return), the type field is set as monomorphic. If the same indirect jump is later re-
tired and its target address does not match the address stored in the BTB, then the
type field is set as polymorphic but the target address prediction is not modified.

The IJPred is direct-mapped and 4-bit tagged. It is updated at retire time only for
indirect jumps identified as polymorphic by the BTB, and only when their target
address differs from the BTB prediction. This filtering scheme prevents prediction
cases that are well-handled by the BTB from wasting IJPred memory space.

A hysteresis bit is used to avoid replacing IJPred entries that frequently provide
correct predictions. The bit is cleared when the entry is first allocated, and is set on
correct target predictions, and cleared on wrong predictions. On an IJPred miss, the
previous entry contents are replaced by the new ones only when the hysteresis bit is
found to be cleared. If the bit is found set, then it is cleared.

Using Two Types of Global Path History
Two separate 61-bit history registers are used: cghr is updated for each conditional
branch taken, and ighr is updated for each indirect jump (including returns). As was
noted in [12], maintaining two history registers of different types and dynamically
choosing one of these for each static jump provides improved accuracy compared to
using a unique history register. Our approach merges the contents of cghr and ighr
using an exclusive-or operation before using history to generate the IJPred index (Fig.
4 on next page). It provides a similar improvement in accuracy (from 2% to 30%,
depending on the benchmark) with a simpler implementation.

Both history registers, cghr and ighr, are speculatively updated using the outcome
of the current prediction, and are corrected on branch mispredictions using a very
small amount of recovery data. The update consists of shifting the contents s bits to
the left and adding the exclusive-or of the s lower bits of the branch address and the
branch target address, as shown in Fig. 3. The history length, l, is the number of
branches whose histories are held in the history register, (l = 61 / s).

Fig. 3. Speculative update of branch history registers (corrected on branch mispredictions)

Target Encoding for Efficient Indirect Jump Prediction 501

As other authors [10],[12], we have found that l highly influences accuracy. Also,
for each IJPred table size, using the optimal l for each single benchmark (BestHist)
instead of using the optimal l for all the benchmarks (BestHistALL) increases accu-
racy between 15% and 45%. In our experiments, we have used BestHistALL most of
the time but has also validated that results do not significantly vary if using BestHist.

Indexing and Selection Algorithms at Prediction Time
The goal of an indexing scheme is to map the whole input data into n output bits so
that the resulting index is evenly distributed, and aliasing is reduced. Fig. 4.a shows
an scheme to fold a value, v, into an n-bit value using an exclusive-or-fold method
[9].

The index for the BTB (Fig. 4.b) is the result of xor-folding the address of the
branch to be predicted into chunks of different size (sizes are prime numbers) and the
combination of these chunks into a large value that is again xor-folded into a final n-
bit index. The best results are obtained with a skewed-associative scheme [1], which
generates a different BTB set index for each possible BTB way.

The index for the IJPred uses the address of the jump to be predicted and the his-
tory registers (Fig. 4.c). These complex indexing methods increase accuracy slightly
with respect to simpler ones but, most importantly, provide highly homogeneous
results for all the configurations evaluated. The scheme is not intended to be an im-
plementation proposal, but a reference for exploring cheaper and faster methods that
merge fewer bits in this latency-critical step.

On a BTB miss, the fall-through address is predicted as the jump’s target. On a hit,
the BTB provides the target prediction, unless the indirect jump is identified as poly-
morphic or as a return. For polymorphic jumps, the IJPred is accessed and provides
the prediction only if the IJPred access hits. Return jumps are handled by the RAS.

Fig. 4. Index generation scheme for BTB and IJPred using an xor-fold scheme

4 Indirect Target Encoding

The IJPred contains two types of data: (1) which of the possible paths a jump will
take, and (2) at which address this path begins. Separating these two types of data on
two different tables provides more efficient memory usage. If a jump can take k dif-
ferent paths, then log2 k bits are required to codify a path identifier (pathID). Then, if
the IJPred holds pathID’s instead of full addresses, it may contain more entries, use
longer histories, and then increase prediction accuracy.

A second table, the Indirect Target Table (ITT), is required to provide the full tar-
get address (see Fig. 5). Using both the pathID and the jump’s address to index the

502 Juan Carlos Moure et al.

ITT provides the best results. The ITT should ideally be able to hold all the target
addresses taken by all jumps, but in practice only useful targets need to be stored,
since storing those targets that rarely involve a correct prediction only marginally
improves performance.

Fig. 5. Indirect Target Encoding. A short path identifier (pathID) replaces target addresses in
the IJPred. A second-level Indirect Target Table (ITT), indexed by the jump address and the
pathID, provides the full indirect target address

ITT Access at Prediction Time
Exploiting freedom in the target-encoding algorithm allows implementing a k-way
set-associative ITT with the small access delay and power consumption of a direct-
mapped tag-less table. The scheme is similar to the next cache line and set predictor
[4]. The low order bits of the pathID codify the ITT way in which the target address
is located. The target address is hashed (like in Fig. 4) to provide the pathID’s high-
order bits. With this mechanism, the complexity of the associative indexing scheme is
avoided at prediction time (where may affect performance), and is suffered at retire
time, but only on IJPred mispredictions.

The ITT way is obtained from the pathID read from the IJPred. The ITT set is ob-
tained by hashing the pathID’s high-order bits and the jump’s address (like in Fig. 4).
A filter tests the IJPred prediction validity by comparing the pathID read from the
IJPred with the pathID computed from the target address read from the ITT.

Target Search and ITT Update at Retire Time
When a mispredicted indirect jump is retired, its final target address is searched for in
the ITT. Since these cases are unfrequent and we will show that the ITT update la-
tency does not affect performance, the search operation on ITT ways may be done
serially to reduce H/W complexity. The pathID’s high-order bits are generated from
the correct target address and combined with the jump’s address to index each one of
the ITT ways. As for the BTB, a skewed-associative scheme provided the lowest miss
rate [1].

Each ITT entry contains a 4-bit saturating counter that is increased with each cor-
rect target use. When a new target address must be allocated, the counter of all the
entries that are a potential placement are decremented, and only a zero counter en-
ables the replacement. This policy prioritizes useful target addresses and reduces the
number of ITT replacements, which also reduces the occurrence of ITT misses.

Target Encoding for Efficient Indirect Jump Prediction 503

5 Experimental Methodology, Results, and Discussion

We use a trace-based simulation to measure prediction accuracy and tune the main
design parameters. Accurate cycle-by-cycle simulation is used to measure the effect
on prediction accuracy of the delayed update of prediction tables (BTB, IJPred, ITT),
and the effect of prediction latency and accuracy on the processor’s performance.

First, we analyze the design space of the Indirect Target Table (ITT) and select an
optimal configuration. Then, we explore the best size for the IJPred tags and pathID
field. We compare the baseline design and the proposed target encoding design with
respect to prediction accuracy and predictor size. Then we verify that the effect on
prediction accuracy of the delayed update of prediction tables is insignificant, and
that increasing the indirect predictor’s latency reduces performance slightly.

Metrics, Simulator, and Benchmarks
Prediction accuracy is measured as the average number of instructions between jump
mispredictions (Kilo-instructions per misprediction). Predictor size is measured in
KBytes (KB). Processor performance is measured in instructions per cycle (IPC).

We have used the Simplescalar-Alpha tool set [2] to generate the dynamic instruc-
tion trace of the first 20 billion instructions for some programs of the SPEC bench-
mark suites. Table 1 shows the selected benchmarks and their inputs (Alpha ISA, cc
DEC 5.9, –O4). They have been selected because they have the lowest accuracy when
a simple BTB is used for indirect jump prediction (6th column of Table 1), and then
may benefit more from using a specialized predictor (col. 7-8 for an IJPred of 512
and 4K entries). Table 1, columns 4-5, shows the number of static polymorphic indi-
rect jumps and targets.

Table 1. Simulation data and simulation results for selected SPEC benchmarks

ITT Configuration
Results have shown that only a small subset of all the target addresses of polymorphic
jumps needs to be held in the ITT for near-optimal performance. Although some
benchmarks have more than 500 targets (see Table 1), a 64-entry ITT is enough to
achieve a miss rate lower than 0.1%, except for benchmark perl, which requires 128
entries. For such sizes, an 8-way set-associative ITT provides the best performance.

504 Juan Carlos Moure et al.

A 4-bit pathID is enough to maintain the ITT miss rate below 0.1% for all bench-
marks except for gcc and perl, which require a 5-bit and a 6-bit pathID, respectively.

IJPred Configuration
The baseline IJPred configuration, with entries containing full addresses, may afford
a large tag and a large hysteresis counter to try to reduce IJPred misses. Results have
shown that a tag larger than 4 bits, or a hysteresis counter larger than 1 bit improves
performance very slightly on a direct-mapped IJPred organization.

When target encoding is used to improve chip area utilization, it is more effective
to reduce the tag size to 3 bits and devote 5 bits to codify the pathID. The filter
method described in section 4 detects a significant part (20-70%) of the misses not
detected by the shortened tag. It also also detects (but does not correct) cases where
ITT replacements have made the pathID in the IJPred indicate a wrong ITT way.

Accuracy Versus Storage Size
Figure 6 displays accuracy versus storage size for some representative benchmarks
and for different predictor designs with an IJPred of 512-4K entries. The storage size
of the baseline design accounts for the target address’ size (32 bits), the tag’s size (3
bits), and the hysteresis counter’s size (1 bit). Target encoding replaces the target
address by the pathID (5 bits instead of 32 bits) and must account for the ITT size (64
entries, each containing a full target address and a 4-bit replacement counter).

Results in Fig. 6 show that the ratio of accuracy versus predictor size is always bet-
ter for the encoded design. Benchmarks li and sixtrack are depicted together because
they have very similar results. For these benchmarks, correlation is highly effective in
increasing accuracy. Given a fixed predictor size, the encoded scheme exploits corre-
lation better than the baseline (the line depicting accuracy versus size separates for
larger predictors). For example, with a 5-KB predictor, accuracy improves by 90%.

Fig. 6. Accuracy versus storage size on selected benchmarks for the baseline and encoded
predictors, with IJPred sizes from 512 to 4K. 64 ITT entries, pathID length is 5 bits, IJPred tag
length is 3 bits, history length (l) is BestHistALL, which depends on IJPred size: 512 (l=4), 1K
(l=8), 2K (l=14), 4K (l=20))

Target Encoding for Efficient Indirect Jump Prediction 505

The encoded scheme achieves accuracy improvements of around 50% for a fixed
predictor size for benchmarks gcc and perl. With a large working set of indirect target
addresses, the small ITT and short pathID provokes a moderate amount of ITT misses
(<2%) that reduces the potential accuracy improvement by only around 10%.

For a relatively large area budget for the indirect predictor, two kind of bench-
marks cannot benefit from the encoded scheme to improve processor performance.
The first example is crafty, which benefits little from history correlation, and in-
creases accuracy very slowly with higher storage. The other example are the bench-
marks not shown in Fig. 4, which provide near-perfect prediction with a relatively
small IJPred of around 1K entries. The encoded scheme, however, is still very useful
in reducing storage (and power) requirements. For example, averaging for all bench-
marks, a 3-KB encoded predictor provides the same accuracy as a 10-KB baseline
predictor.

Table 2. Microarchitecture parameters for the cycle-accurate simulations

Performance Measures
Cycle-level simulations have been performed by modeling a 4-way processor back-
end and a realistic memory system (see Table 2). The simulated front-end is decoup-
led and predicts one full basic-block per cycle. Our first result was that prediction
accuracy is not degraded by the delayed update of prediction tables. Accuracy varies
very slightly when increasing the pipeline depth (and then the predictor update delay)
from 12 to 30 cycles. As argued in other papers, a higher update delay increases the
predictor’s hysteresis, which does not necessarily causes a worse behavior.

Figure 7 shows the effect on performance of varying IJPred size and varying the
indirect predictor’s latency. On the one hand, doubling IJPred size, and therefore
increasing indirect jump prediction accuracy, provides an average IPC increase of
around 0.5% for the benchmarks considered in this paper (Fig. 7.a). Benchmark perl
(Fig. 7.b) is the one that benefits most from a larger IJPred (average IPC increase of
1.2% when doubling IJPred size). The average penalty of indirect jumps has been
experimentally found to be around 21 cycles, which explains why avoiding mispre-
dictions results in a significant gain in performance.

On the other hand, a two-cycle delay penalty for using the IJPred table reduces
IPC by less than 0.05% of the average. There are two main reasons for this result.
First, jump mispredictions are not too frequent (less than 1 every 100 instructions),
since many of the indirect jumps (30-70%) are predicted by the BTB. Second, a sub-

506 Juan Carlos Moure et al.

stantial part (more than 95%) of the delay due to using the IJPred and ITT tables
instead of the BTB, is overlapped by other stalls occurring later in the pipeline. More
than 60% of the overlap is due to the decoupled front-end scheme, which compen-
sates IJPred-use stall cycles with cycles where a branch prediction provides several
instructions (full basic blocks) to the front-end. However, as predicted by Amdhal’s
law, the indirect prediction latency becomes more critical for values larger than 3
cycles or if the execution width of the processor is scaled to 8 instructions per cycle.

Given that prediction latency is not critical, power consumption is afforded by de-
laying the IJPred access until the BTB access has been completed and a polymorphic
jump has been identified. Similarly, power is saved by delaying the ITT access until a
valid pathID from the IJPred table is read.

Fig. 7. IPC for varying IJPred sizes and IJPred latencies

6 Conclusions and Future Lines
We have presented and evaluated target encoding as a method for improving the
indirect jump prediction accuracy to cost ratio. This improvement can be used to
increase processor performance for benchmarks that execute a moderate amount of
polymorphic indirect jumps. On a realistic 4-way superscalar processor with a realis-
tic memory hierarchy, the additional latency of the proposed two-level predictor has
very slight effects on performance. Assuming a two-cycle increase in latency, the
performance increase ranges from 0.1% to 2.5%. For benchmarks that benefit little
from larger IJPred tables, the scheme may be used to reduce chip area and power
consumption. For example, a 3-KB encoded predictor (with direct-mapped access)
provides the same accuracy as a 10-KB baseline predictor (with set-associative ac-
cess).

The target-encoding scheme works well because indirect jumps have a small work-
ing set of target addresses, which can be effectively cached in a table with 64 entries.
The careful design of the table achieves several conflictive issues: high logical asso-
ciativity to reduce conflict misses, and a small latency and low power consumption
due to its direct mapped access. Basically, the freedom of the target-encoding algo-
rithm allows for the implementation of a way prediction mechanism for free. Also,
the replacement policy is designed to prioritize useful targets instead of frequent tar-
gets.

Target Encoding for Efficient Indirect Jump Prediction 507

The relatively small effect on performance of the enhanced indirect predictor is
very related to the low frequency of indirect branches in the SPECint2000 workload.
A future extension to this work is analyzing more object-oriented workloads such as
SPECjvm98.

Static and profile analysis may improve indirect jump prediction in several ways.
First, if the most frequent target for each indirect jump is identified, it may be used to
initialize the BTB and then reduce the storage requirements of the IJPred and its us-
age rate. This option requires an ISA extension to allow access to the BTB. Second,
embedded systems tuned at design time can use the static analysis to select the best
configuration for the indirect predictor (IJPred and ITT size, pathID/tag length, his-
tory length, …). In particular, we have found that tuning history length for an specific
benchmark may yield an accuracy improvement between 15% and 45%. Adapting
history length dynamically, either for a full application, like in [10], or for each spe-
cific branch, like in [12], is another future line for improving accuracy.

References

1. Bodin, F., Seznec, A.: Skewed associativity improves program performance and enhances
predictability. IEEE Trans. on Computers, vol. 46(5) (1997) 530–544

2. Burger, D., Austin, T.M.: The SimpleScalar tool set. Univ. Wisconsin-Madison Computer
Science Department, Tech. Report TR-1342 (1997)

3. Calder, B., Grunwald, D.: Reducing Indirect Function Call Overhead in C+ Programs. Proc.
21th Int. Symp. on Principles of Programming Languages (1994) 397–408

4. Calder, B., Grunwald, D.: Next Cache Line and Set Prediction. Proc. 22nd Int. Symp. on
Computer Architecture (1995) 287–296

5. Chang, P.-Y., Hao E., Patt, Y. N.: Target Prediction for Indirect Jumps. Proc. 24th Int.
Symp. on Computer Architecture (1997) 274–283

6. Driesen, K., Hölzle, U.: The cascaded predictor: economical and adaptive branch target
prediction. Proc. 31st Intl. Symp. on Microarchitecture (1998) 249–258

7. Gochman, S., et. al.: The Intel Pentium M processor: Microarchitecture and Performance.
Intel Technology Journal, vol. 7(2), (2003) 21–36

8. Hinton, G., et. al.: The microarchitecture of the Pentium 4 processor. Intel Technology
Journal, Q1 (2001)

9. Jacobson, Q., Rotenberg, E., Smith, J. E.: Path-based next trace prediction. Proc. 30th Int.
Symp. on Microarchitecture (1997) 14–23

10. Juan, T., Sanjeevan, S., Navarro, J.J.: A third level of adaptivity for branch prediction.
Proc. 25th Int. Symp. on Computer Architecture (1998) 155–166

11. Kaeli, D.R., Emma, P.G.,: Branch History Table Prediction of Moving Target Branches due
Subroutine Returns. Proc. 18th Int. Symp. on Computer Architecture (1991) 34–41

12. Kalamatianos, J., Kaeli, D.R.: Predicting indirect branches via data compression. Proc. 31st
Int. Symp. on Microarchitecture (1998) 272–281

13. Lee, J. K. F., Smith, A. J.: Branch Prediction Strategies and Branch Target Buffer Design.
IEEE Computer Vol. 17(2) (1984) 6–22

14. Moure, J. C., Rexachs, D. I., Luque, E.: Optimizing a decoupled front-end architecture: the
Indexed Fetch Target Buffer (iFTB). Lecture Notes in Computer Science, Vol. 2790. Euro-
Par’03. Springer-Verlag, (2003) 566–575

15. Yeh, T.-Y., Patt, Y.: Two-Level Adaptive Branch Prediction. Proc. 24th Int. Symp. on Mi-
croarchitecture (1991) 51–61

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 508–518, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dynamic Partition of Memory Reference Instructions –
A Register Guided Approach*

Yixin Shi and Gyungho Lee

ECE Department, University of Illinois at Chicago
yshi7@uic.edu, ghlee@ece.uic.edu

Abstract. A high bandwidth L-1 data cache is essential for achieving high per-
formance in wide-issue processors. Previous studies have shown that using mul-
tiple small single-ported caches instead of a monolithic large multi-ported one
for L-1 data cache can be a scalable and inexpensive way to provide higher
bandwidth. Many schemes have been proposed on how to direct the memory
references to these multiple caches in order to achieve a close match to the per-
formance of an ideal multi-ported cache. However, most previous designs sel-
dom take dynamic data access patterns into consideration and thus suffer from
access conflicts within one cache and unbalanced loads between the caches. We
observe that if one can group data references defined in a program into several
regions (access regions) to allow parallel accesses, then providing separate
small caches (access region cache) for these regions may prove to have better
performance than previous multi-cache schemes. The register-guided memory
reference partition approach proposed in this paper effectively identifies these
semantic regions and organizes them in multiple caches in an adaptive way to
maximize concurrent accesses without incurring too much overhead. In our de-
sign, the base register number, not its content, in the memory reference instruc-
tion is used as a basic guide for instruction steering. A reassignment mechanism
is applied to capture the pattern when program is moving across its access re-
gions. In addition, a distribution mechanism is introduced to further reduce re-
sidual conflicts, which adaptively enables access regions to extend or shrink
among the physical caches. Our simulations of SPEC CPU2000 benchmarks
have shown that the register-guided approach can reduce the conflicts effec-
tively, distribute memory reference instructions properly, and yield consider-
able performance improvement in terms of IPC.

1 Introduction

Modern superscalar processors select and execute multiple independent instructions at
a very high clock rate assisted by control speculation, register renaming, and data-
flow execution. With ample on-chip hardware resources available, researchers have
been actively proposing aggressive micro-architectures that can issue more instruc-
tions including memory reference instructions in a single clock cycle[3]. Traditional
efforts were mainly focused on decreasing the cache access latency and increasing the
cache capacity. However, previous studies [4][11] suggest that the capability to pro-
vide enough memory bandwidth (or cache ports) be also important to explore more
instruction level parallelism[9].

* This work was supported in part by NSF CCR0225561

Dynamic Partition of Memory Reference Instructions – A Register Guided Approach 509

Essentially the ways to achieve high memory bandwidth can be categorized into
three classes. The most straightforward approach is to build an ideal multi-ported
cache. This circuitry level solution often comes at the cost of complexity in memory
cell and bit/word line design and possibly incurs longer cache access latency[7]. Fig.1
shows the various performance trends of a 32 KB cache modeled by CACTI 3.0 in
.18um[13]. The three metrics, access time, cache area and the power consumption,
increase quickly as more cache ports are introduced. Alternatively, there have been
many proposals to approximate the ideal multi-ported cache including time-division
multiplexing and cache replicating. These designs often suffer from either poor re-
source utilization or longer access latency.

Fig. 1. Access time, area, and power consumption of a 32 KB, 32B block size, 2-way set-
associative cache with different cache port number[5]

The interleaved multi-banking scheme is another way to increase the memory
bandwidth with less hardware complexity. Instead of using one big ideal multi-ported
cache, multiple smaller banks or caches serve as L-1 data cache. The data are simply
interleaved based on word addresses or cache lines so that two or more simultaneous
accesses to different banks can be supported in one clock cycle. This design typically
employs an interconnection network (crossbar) to distribute memory references
among the different cache banks (see Fig.3). One problem is the bank conflicts among
the simultaneous accesses caused by the “random interleaving” property. Another
potential problem is that the area of a crossbar in the critical path increases super-
linearly when the number of banks increases. This will cause further delay when ac-
cesses are passing through the crossbar.

Other than the multi-banking solution, many schemes have been proposed to in-
crease the bandwidth in a more scalable manner. Similar to multi-banking, multiple
caches are used as L-1 data cache. However, these designs use more intelligent meth-
ods in data placement and memory reference steering rather than simply interleaving
the addresses. The proposed register-guided memory partition scheme belongs to this
category. It tries to exploit the semantic meaning in the program when assigning
memory instructions to different caches. The key insight is that the base register
number, not its content, can serve as the basis for instruction steering, because the
register number usually reflects the data “region” on which the instruction is operat-
ing. By adaptively interpreting different registers for different regions, the data re-
gions can be distinguished from each other and memory access parallelism can be
captured from the program level. In addition, a reassignment mechanism and a distri-
bution mechanism are applied to capture the changes in the memory reference pattern
and alleviate the conflicts. Simulations show this scheme outperforms other solutions
for most benchmark programs.

510 Yixin Shi and Gyungho Lee

The remainder of this paper is organized as follows: Section 2 summarizes related
works on multi-cache design; Section 3 discusses the details about the register-guided
memory instructions partition scheme; Section 4 describes the scheme-specific archi-
tectural parameters, the simulation approaches, and the benchmarks used; Section 5
presents our experimental results and analysis; Section 6 provides the concluding
remarks.

2 Related Work

Sohi and Franklin [5] first predicted that the L1 cache bandwidth would eventually
become a performance bottleneck for a multiple-issue processor. Wilson [19] also
argued that adding more ports to the L1 cache could become costly and inefficient in
terms of area and access time. Neefs [10] reported potential benefit of bank prediction
to remove the crossbar from critical path. Yoaz [20] also proposed bank prediction
that increased the cache port utilization through a balanced scheduling of loads to-
ward multiple cache banks. The data-decoupled architecture (DDA) proposed by Cho
[4][5] splits the data cache according to the program space types (i.e. stack, heap, and
data). It simply treats each area as an access region and divides the data references
into two independent streams (stack and non-stack). Thakar [17] tries to further split
data cache within stack cache and non-stack cache. This scheme assigns the access
regions to the access region caches initially based on offline profiling and then pre-
dicted by a PC-indexed table. Redirection is used to maintain the data consistence and
only one copy for a datum is allowed in the L-1 cache. The Parallel Cachelets scheme
proposed by Limaye[8] also employs a PC-indexed table to determine the bank (or
cachelet) number either in decode stage or execution stage. It tries to minimize con-
tentions by reassigning the destination for memory access once a conflict occurs. To
maintain consistency, a write through policy and value broadcasting are used. Racu-
nas [11] also studied the performance impact on a partitioned L-1 data cache. They
proposed a two-bit saturating instruction hysteresis counter in the prediction table to
partition memory reference streams.

3 Register-Guided Memory Partition with Distribution Scheme

3.1 Motivation

The register-guided memory partition scheme is based on the concepts of Access
Region and Access Region Cache first proposed in [4][17]. A key observation is that
typically, there exist one or more data structures with variable sizes in a program
either statically defined or generated at run-time. They can be data arrays found in
FORTRAN programs or structures/unions or objects common in C/C++ programs.
These data structures are called access regions. Our partitioning scheme tries to cap-
ture these semantically defined and logically independent access regions as atomic
units in memory. Ideally, by navigating the partitioned memory reference stream, data
from the different access regions are placed into physically separate caches. These
multiple quasi-independent small caches working as L-1 cache are named Access
Region Caches (ARC)[17].

Dynamic Partition of Memory Reference Instructions – A Register Guided Approach 511

We extend our previous work [4][16] by proposing a novel and more effective
method to predict the destination access region cache for each memory access. Unlike
some “software” solutions such as load instruction annotation [18] or static marking
by compiler, our architectural level approach tries to utilize run-time information
without changing the existing binaries. After investigating the prediction resources
(e.g. program counter, previous branch history behavior, register number, and proba-
bly the content and offset) and their available time, we found that the base register
number in the memory reference instruction can serve as a good hint.

In a typical MIPS-like architecture, the memory reference instructions, i.e. load
and store, generally have the following format:

LOAD destination-register, offset(base-register)
STORE source-register, offset(base-register)

Compiler typically groups the data members belonging to one data structure by as-
signing a common register as their base registers. Memory reference instructions then
use this register together with variable offsets to access different fields within that
data structure. We also expect the memory reference instructions accessing different
data regions in a short time window to have different base registers. Therefore, the
base registers reflect the access regions and can be utilized to identify the data struc-
tures in the program. The partitioning based on the base register is motivated by the
fact that simultaneous accesses on different data structure are usually relatively inde-
pendent and can be performed concurrently. This approach ideally provides the sepa-
rate spaces for the access regions that may have different access patterns. This ex-
plores opportunities to improve performance similar to separate instruction cache and
data cache found in most processors today. Although some data regions might have to
share one ARC due to the limited number of physical ARCs, our round-robin ARC
assignment and reassignment mechanisms to be presented later can minimize this
effect. Using register number to determine the ARC number in this scheme is the
major difference from previously proposed schemes. Using the base register number,
we can capture more program semantic meaning than just blindly using the PC or
addresses. In addition, the register number is known in an early pipeline stage so that
after partitioning dedicated and small hardware structures can be used to process these
instructions efficiently in later pipeline stages[1].

3.2 Proposed Scheme

3.2.1 Scheme Framework
Fig.2 shows the framework of our Register Guided memory partition with Distribu-
tion scheme (RGD). A register-indexed prediction table, called ARC prediction table
(ARCP) is deployed to predict the ARC numbers in the fetch stage for memory in-
structions. Therefore, no crossbar is needed. The instructions are steered into multiple
pipelines and Load/Store (L/S) units. Each entry in ARCP table is mapped to a ran-
dom ARC cache initially and will be trained at run-time later by the prediction updat-
ing policy. The verification logic, which is activated when the effective address is
known, resides in the Load/Store unit. If the ARC number is correctly predicted, the
instruction goes to the cache and performs an access. Otherwise, a redirection net-
work is used to redirect the instruction to the correct ARC with some cycles of redi-
rection penalties. We assume a select and re-issue mechanism is employed on mispre-

512 Yixin Shi and Gyungho Lee

diction. Some run-time information, such as conflicts and redirection events (will be
described later), is fed back from the Load/Store unit to the prediction unit to update
the prediction table and adjust the steering policy.

Fig. 2. The frame work of the proposed RGD scheme

We also show a typical cache-interleaving (multi-banking) scheme in Fig.3 for
comparison purpose. In this scheme, the cache bank is determined after the effective
address is calculated. Then the memory reference instruction is steered into the bank
through the crossbar. Consequently the crossbar is in the critical path here while the
redirection network in RGD scheme is not, provided that the ARC prediction accu-
racy is reasonably high.

Fig. 3. Cache bank-interleaving scheme

3.2.2 Prediction Verification
In RGD scheme, every memory access must be verified against the correct access
region information when the actual address is produced. The effective address is cal-
culated during the first step of the memory-access stage. Meanwhile, access region
verification is completed by comparing the tags in the cache or in a separate tag table.
Unlike other schemes such as parallel cachelet[8], the RDG scheme does not allow
multiple copies of a datum to exist in L-1 caches. Therefore, if the tag comparison
turns out to be a mismatch, the verification unit checks other caches. This can be done
by broadcasting current datum's tag to other ARCs using a bus or by maintaining a
"super" tag, i.e. aggregate of all the ARC tags, in a way similar to duplicate tagging
for multiple cache coherencies. If the checking results mismatch on the rest of ARCs
either, a true cache miss occurs and L-2 cache access is then invoked. If the datum is
found in another ARC, the instruction is redirected and reinserted into the correct
memory pipeline connecting to that ARC through a redirection network as shown in
Fig.2. We call such an event as ARC misprediction. In this study, as a select and re-
issued approach is used, the effects of mispredictions are evaluated by imposing a
penalty of a certain number of clock cycle delays for that instruction.

Dynamic Partition of Memory Reference Instructions – A Register Guided Approach 513

3.2.3 Prediction Updating
In the context of prediction on memory references, last value predictor and 2-bit satu-
rated predictor have been studied in literature[8][11][17]. In our design, a threshold-
triggered updating method is used to provide a kind of hysteresis effect to smooth the
transient deviations. Rather than update the prediction table immediately when a mis-
prediction is detected as in[8], we periodically check some interested events (includ-
ing mispredictions) that are accumulated in counters during a sampling period. If any
counter exceeds a pre-defined threshold, prediction updating is triggered. Following
two mechanisms are implemented as updating policies.

Reassignment Mechanism: The reassignment mechanism can be used in two scenar-
ios to improve the prediction accuracy, as shown in Fig.4. One register in a program
can be utilized as the base register for different data regions at various stages of exe-
cution. This changing may cause cache misses and ARC misses (redirection events),
which implies that the interested register may have been reused or spilled and it may
now represent a new data region. To capture this change, a threshold, Rt (Reassign-
ment threshold) is established for updating the ARCP table on ARC mispredictions.
That is, the entry for a register in the ARCP table is reassigned to a new destination of
ARC only after more than Rt redirection events have been detected in a sampling
period as shown in Fig.4(a). By choosing a proper value for Rt, we can capture the
moving behavior and adaptively adjust the prediction value.

Fig. 4. Two scenarios when the reassignment mechanism is invoked

The reassignment mechanism can be also applied to reduce ARC conflicts. Similar
to bank conflicts, ARC conflicts occur when two or more data regions are assigned
into one physical ARC and the program happens to access these regions simultane-
ously as shown in Fig.4(b). In this case, one of these regions needs to migrate to an-
other ARC to reduce the conflicts. Again, a conflict counter and a predefined thresh-
old Ct (Conflict Threshold) are used to determine whether to update the prediction
table. We direct the memory accesses of a region to the one that has the least conflicts
observed. This mechanism forces one access region to leave its current ARC to avoid
further conflicts.

Distribution Mechanism: We also observed that programs might reference one ac-
cess region based on a same register intensively. For instance, a program is likely to
make intensive operations on its local variables during a function call where the
memory reference instructions have stack pointer or frame pointer as their base regis-
ters. In this case, the redirection mechanism will not help because all the instructions
with the same base register are driven into the same ARC. To handle this, we intro-
duce a distribution mechanism to scatter these accesses. First conflicts are classified

514 Yixin Shi and Gyungho Lee

into two types. The conflicts caused by the instructions with the same base register are
named as self-conflicts and all other conflicts as interference-conflicts. The ratio of
the self-conflicts over all conflicts for each base register is monitored for each regis-
ter. When this ratio for one particular register reaches a pre-defined threshold, the
program is identified as operating on one data region and the distribution flag is set
for that entry in ARCP. The memory reference instructions based on the register are
then distributed to all of the ARCs in a round-robin manner.

Two counters are employed to accumulate the number of the two types of conflicts.
A parameter SIt (Self-conflicts & Interference-conflicts threshold) is used to represent
the distribution threshold. Rather than calculating the ratio, the following condition,
Self-conflict number - Interference-conflict number > SIt, is checked periodically to
determine if we should distribute one data region in our simulation.

3.2.4 Hardware Cost
The hardware cost for implementing the RGD scheme is moderate. It basically con-
sists of four counters, a small ARCP table, and some lookup and control logic. In our
simulation, each entry in ARCP contains 10 fields (each of one byte). Assuming up to
32 registers can be used as base registers, the size of the ARCP table is only 32 x 10 =
320 bytes with some glue logic. In other PC-based prediction schemes, however, a
modest prediction table would have 2K-4K entries totaling 10KB. Hence, the speed of
accessing and updating the ARCP table in RGD scheme can be much faster. Further-
more, a smaller ARCP table is generally preferred because the ARCP table itself
should be ideally multi-ported to support multiple lookups in a single clock cycle.
This fact is largely ignored in most previous PC-indexed schemes.

4 Simulation Methodology and Architectural Parameters

4.1 Simulation Parameters and Scheme-Specific Architectural Parameters

In our simulation, a cycle-accurate execution driven simulator derived from the Sim-
plescalar Tool Set 3.0[2] is modified to incorporate our design of multiple memory
pipelines and ARCs. To evaluate our proposed approach as emerging trend towards
aggressive ILP exploitation, an out-of-order processor model issuing up to 16 instruc-
tions per cycle is used. An ideal front-end for the processor model is assumed in order
to assert a maximum data bandwidth demand on the memory system.

The L-1 Data cache are direct-mapped caches with a fixed total size of 64KB
across all of the different ARC configuration and memory partitioning schemes. In
order to investigate the scalability, we studied the cases of 4-ARC and 8-ARC con-
figurations. For the 4-ARC configuration, four separate single-ported caches (ARCs)
are used as the L-1 Data cache, each of 16KB; while in the 8-ARC configuration,
eight ARCs are provided, each of 8KB. All caches are assumed to be lock-up free.
We tested the pre-compiled Alpha binaries of both integer and floating-point bench-
marks from SPECCPU2000[15] benchmark suite with reference inputs. To warm up
the architecture, we fast-forwarded the first 500 million instructions and collected
data for the next 500 million committed instructions. The parameters we assumed are
summarized in Table-1.

Dynamic Partition of Memory Reference Instructions – A Register Guided Approach 515

Table 1. Architectural Parameters in our simulation model

Fetch/decode/issue/
commit width

16

Function unit size Int ALU:16, FP ALU: 16, Int Mult: 4, FP Mult: 4
L1 I-cache Blk size:32B; set: 512; assoc:2; access time:1 cycle;

L1 D-cache Blk size: 32B, set: 512(4ARC), 256(8ARC); per ARC size: 16KB(4ARC),
8KB(8ARC); Total size: 64KB, access time 2 cycle;

Unified L-2 cache Blk size:64B, set: 2048; assoc.: 4; total size: 512KB. access time: 8 cycles;
Others Perfect branch predictor; LSQ size: 128; RUU size: 256; memory latency: 50 cycles;

Table-2 shows the scheme-specific architectural parameters in the simulation.
Here, the event counters are checked when every ten memory reference instructions
have been committed (SP=10). This corresponds to approximately three basic blocks.
If redirection events occur roughly half the time, then reassignment is triggered (Rt =
5). Similarly, five or more conflicts also lead to migration of a data region to another
ARC (Ct=5). The value for SIt is assumed to be three to determine whether to trigger
distribution mechanism. These parameters, currently having fixed values, are ex-
pected to be tunable responding to different applications at run-time in the future.

Table 2. Scheme-specific Architectural Parameters in the simulation model

Parameter Name Value Parameter Name Value
Sampling Period (Sp) 10 Self conflicts & Interference

conflicts Threshold (SIt)
3

Redirection Threshold (Rt) 5 ARC/L-1 cache hit Time 2 cycles
Conflict Threshold (Ct) 5 Redirection Penalty 2 cycles

4.2 Schemes for Comparison

The baseline model in this study is the multi-banking schemes where data are placed
in an interleave manner and the memory reference instruction is steered through a
crossbar. One baseline model is the BI-2 scheme (Bank Interleaving) where 2 cycles
are charged for the crossbar delay, the same as the redirection penalty in RGD scheme
(see Table-2). Another one is a more aggressive multi-banking scheme, the BI-1
scheme, which charges only 1 cycle for the crossbar delay. The third scheme, the PC
prediction (PCP), similar to the Parallel Cachelets[8] and Tharker's[17] design, is a
general PC-based prediction scheme. It accommodates a 2KB prediction table in-
dexed by the PC to predict the destinations for memory reference instructions. Redi-
rection mechanism with a penalty of 2 cycles is used to maintain data consistency. A
fourth scheme, called the register-guided scheme (RG), is also simulated to under-
stand how much the distribution mechanism in RGD scheme contributes to the final
performance. It is similar to the RGD scheme except that no distribution mechanism
is applied. Note that the same size L-1 data caches (64KB) are used in the above four
schemes as that of ARCs in RGD scheme.

5 Simulation Result and Analysis

5.1 Busy-Waiting Cycle

Fig.5 shows the busy-waiting cycles for memory reference instructions for the 4-ARC
and the 8-ARC configuration. They are defined as the latencies between the time
when the operands of a load or store instruction are available to the time when this

516 Yixin Shi and Gyungho Lee

instruction gets an idle port. The busy-waiting cycles include the waiting time in LSQ,
redirection penalty, and the crossbar delays. It reflects the degree of bank conflicts
and how well memory ports are utilized. As can been seen in Fig.5, for 4ARC-integer
benchmarks, the average busy-waiting time for RGD is 0.6 to 1.5 cycles fewer than
other schemes, which mainly contributes to a higher IPC. Similar results can be ob-
served for 4ARC-INT and 8ARC-FP benchmarks. For FP programs in 8-ARC con-
figuration, the busy-waiting cycle of RGD scheme is on average lower by about 0.5
cycle than that of BI-2, but 0.35 cycles higher than BI-1. This indicates in this case
the conflict reduction by RGD scheme is not sufficient to beat the benefit obtained
from a shorter crossbar delay (one cycle) we assumed in BI-1.

Fig. 5. Average Busy waiting cycles

5.2 ARC Prediction Accuracy and Data Cache Hit Rate

Fig.6(a) presents the ARC prediction accuracy. The RGD, RG, and PCP have similar
ARC prediction accuracy of 81%, 82%, and 83.7%, respectively. Considering PCP
scheme has much bigger PC-indexed prediction table, the register-guided prediction is
a fair tradeoff in efficiency and accuracy. In addition, with an 81% ARC prediction
accuracy on average, we can also conclude that the redirection network shown in
Fig.2 is not in the critical path.

Fig. 6. Average ARC prediction accuracy and L-1 Data Cache hit rate

The overall data cache hit rate for the ARC is illustrated in Fig.6(b). The RGD
scheme has about 10%-14% lower cache hit rate than that of RG, PCP, and BI
scheme. This is due to the redirection and distribution mechanisms incurring consid-
erable invalidations and thus causing extra cache misses while reducing the total
number of conflicts. Note that a higher cache hit rate here does not necessarily mean
higher performance, because memory reference instructions would experience redi-
rection and conflict penalties before the final cache access occurs.

5.3 Overall IPC

Fig.7 shows the overall IPC for all of the schemes discussed so far. The simulation
results indicate that with the same size of the L-1 cache and the same redirection pen-
alty, our scheme works best for most of the benchmark programs under different ARC

Dynamic Partition of Memory Reference Instructions – A Register Guided Approach 517

configurations. For the integer benchmarks in the 4-ARC configuration in Fig.7a,
many benchmarks in RGD have considerable IPC improvements, 9%, 18%, 8%, and
35% over RG, PCP, BI-1, and BI-2, respectively. The results also indicate that the
conflict reduction by reassignment and distribution mechanisms does compensate for
the lower cache hit rate incurred for most benchmarks. In this configuration, the only
two exceptions are perlmk and twolf. Similar results of performance improvement are
obtained for the FP benchmarks in the 4ARC configuration in Fig.7b and integer
benchmarks in the 8ARC configuration in Fig.7c. The result for FP in the 8ARC con-
figuration is not so impressive in Fig.7d where the IPC of the RGD is nearly the same
as that in RG and PCP schemes. It is worse (-3.1%) than that in BI-1 scheme. This is
probably due to the fact that architectural level solutions have a smaller gain with
fairly regular access patterns in FP programs and RGD scheme cannot capture more
parallelism to cover the reduced cache hit rate.

Fig. 7. Overall IPC

We can also observe that the RG scheme outperforms PCP and BI-2 in most cases.
RGD having a further 6% higher IPC than that for RG on average implies that the
distribution mechanism does reduce the total number of conflicts and attain an overall
gain. Moreover, we can see that the IPC from both the RG and PCP schemes are
slightly lower than the aggressive bank interleaving scheme (BI-1) while IPC for the
RGD scheme is higher in most cases. This suggests that combining the register-
guided partitioning and a prediction updating policy with reassignment and distribu-
tion mechanisms makes RGD scheme effective.

6 Conclusions

This paper proposes a register-guided memory reference partitioning approach by
taking the dynamic behavior of memory references into consideration. We first ob-
serve that there are relatively independent groups of data structures in the program,
called "access regions" in this paper. Parallel accesses for higher bandwidth can be
achieved if these access regions are identified at run-time. We also explore a notion
that the base register in memory reference instructions can be a guide to track these
regions. By taking into account the base register information for memory reference
instruction for predicting and steering, the register-guide dynamic memory partition
scheme demonstrates the ability to adaptively trace the individual access regions. The

518 Yixin Shi and Gyungho Lee

threshold-based reassignment and distribution mechanisms are employed to track the
changing of access region the base registers represent and alleviate conflicts at run-
time. The simulation shows that this register-guided (RGD) scheme outperforms other
existing schemes in most benchmark programs. Therefore, we consider it a promising
technique to support high bandwidth memory accesses with a good scalability.

References
1. V.Agarwal, M.Hrishikesh, S.Keckler, and D. Burger, “Clock rate versus IPC: The end of

the road for conventional microarchitectures”, ISCA-27, May 2000.
2. T.M.Austin and D.Burger, “The SimpleScalar Tool Set,” Univ. of Wisconsin Computer

Science Dept. Technical Report, No. 1342, June 1997.
3. T.M.Austin and D.Burger, “Billion Transistor Architectures,” IEEE Computer, Vol.30, No

9, June 1997.
4. S.Cho, P.C.Yew and G.Lee, “Access Region Locality for High-bandwidth Processor mem-

ory System Design,” Proceedings of 32nd Int’l Symposium on Microarchitecture, November
1999.

5. S.Cho, “A High-bandwidth Memory Pipeline for Wide Issue Processors”, University of
Minnesota Computer Science and Engineering Dept. Ph.D. Thesis, Dec. 2002

6. A.Gonzalez, M.Valero, N.Topham and J.M.Parcerisa, “Eliminating Cache Conflict Misses
through XOR-Based Placement Functions”, Proceedings of the 1997 Int’l Conference on
Supercomputing, July 1997.

7. IDT. Introduction to Multi-Port Memories, Application Note AN-253, 2000.
8. D.Limaye, R.Rakvic and J.P.Shen, “Parallel Cachelets,” 2001 Int’l Conference on Com-

puter Design, September 2001.
9. M.H. Lipasti and J.P. Shen, “Supperspeculative Microarchitecture for Beyond AD 2000,”

IEEE Computer, Sept. 1997
10. H.Neefs, H.Vandierendonck, K.de Bosschere, “A Technique for High-bandwidth and De-

terministic Low Latency Load/Store Accesses to Multiple Cache Banks,” Int’l Symposium
on High-Performance Computer Architecture, January 2000.

11. P. Racunas, Y. Patt, “Partitioned first-level cache design for clustered microarchitectures”
Proceedings of the 26th Annual International Conference on Supercomputing, June 2003.

12. J.A.Rivers, G.S.Tyson, E.S.Davidson, T.M.Austin, “On High-Bandwidth Data Cache De-
sign for Multi-issue Processors”, Proceedings of Micro-30, December 1997.

13. P. Shivakumar and N.P.Jouppi, “CACTI 3.0: An Integrated Cache Timing, Power, and
Area Model,” COMPAQ WRL Research Report 2001/2, August 2000.

14. G.S.Sohi, M.Franklin, “High-Bandwidth Data Memory Systems for Superscalar Proces-
sors”, ASPLOS-IV, April 1991.

15. SPEC2000, The tandard Performance Evaluation Corporation, http://www.specbench.org.
16. B.S.Thakar, G.Lee, “Access Region Cache: A Multi-porting Solution for Future Wide-

Issue Processors”, Proceedings of 2001 Int’l Conference on Computer Design, Sept. 2001.
17. B.S.Thakar, S.K. Park and G. Lee, “A scalable multi-porting solution for future wide-issue

processors,” Microprocessors and Microsystems, 2003.
18. Z. Wang, D. Burger, K.S.McKinley, and C. C. Weems, “Guided Region Prefetch: A

Cooperative hardware/Software Approach”, Proceedings of 30th ISCA, June 2003.
19. K.M.Wilson, K.Olukotun, M.Rosenblum, “Increasing Cache Port Efficiency for Dynamic

Superscalar Microprocessors”, Proceedings of 23th ISCA, May 1996.
20. A.Yoaz, E.Mattan, R.Ronen, S.Jourden, “Speculation Techniques for improving Load Re-

lated Instruction Scheduling”, Proceedings of 26th ISCA, May 1999.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 519–529, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Value Compression for Efficient Computation

Ramon Canal1, Antonio González1,2, and James E. Smith3

1 Dept of Computer Architecture, Universitat Politècnica de Catalunya
Cr. Jordi Girona, 1-3, 08034 Barcelona, Spain
{rcanal,antonio}@ac.upc.edu

2 Intel Barcelona Research Center, Intel Labs-Universitat Politècnica de Catalunya
Cr. Jordi Girona, 27-29, 08034 Barcelona, Spain

antonio.gonzalez@intel.com
3 Dept. of Electrical & Computing. Engineering, University of Wisconsin-Madison

1415 Engineering Drive, 53706 Madison-WI, USA
jes@ece.wisc.edu

Abstract. A processor’s energy consumption can be reduced by compressing
values (data and addresses) that flow through a processor pipeline and gating
off portions of data path elements that would otherwise be used for computing
non-significant bits. An approach for compressing all values running through a
processor is proposed and evaluated. For the SpecInt2000 benchmarks the best
compression method achieves energy savings of more than 20 percent and a
peak power reduction of 18 percent.

1 Introduction

In recent years, energy consumption has become a critical design constraint in micro-
processor design and will likely remain so well into the future. Energy is important
not only because of battery-life related issues, but also because of heat dissipation and
thermal constraints. In current CMOS technology, most energy consumption occurs
during state transitions in the underlying circuits [3]. This dynamic energy consump-
tion is proportional to switching activity, as well as load capacitance and the square of
the supply voltage. Thus, an important energy conservation technique is to reduce
switching activity by “gating off” or inhibiting switching in portions of logic and
memory during clock cycles when they are not being used.

In addition, the importance of static energy consumption is rapidly increasing with
each microprocessor generation and will soon become as important as dynamic en-
ergy consumption. To reduce static energy consumption important techniques include
minimizing circuit complexity and powering-down components that are not in use.

Value compression is a mechanism that is in a sense orthogonal to the more com-
monly used schemes that gate off or power off entire subsystems. With value com-
pression the effective width of a subsystem is narrowed by turning off only certain bit
(or byte) positions –usually higher order bytes, while leaving logic corresponding to
the other bit (or byte) positions turned on. Value compression works because many
values do not require the full precision supported by the data path. For example, the
integer value one commonly occurs, but clearly does not require 32 (or 64) bits to
encode it. Consequently, some value can be stored or manipulated in compressed
form. For storage, value compression can be applied to individual data items, and for
arithmetic and logical operations it is typically applied to both input operands. In

520 Ramon Canal, Antonio González, and James E. Smith

either case, only a portion of storage or logic is required and energy is saved by turn-
ing off the unused portion(s).

In this paper we analyze several value compression mechanisms that are applied to
the entire datapath. The paper is organized as follows. Section 2 describes the general
principles and implications behind value compression. Section 3 lists related work. In
Section 4, a comparison of several value compression schemes is performed. Finally,
the main conclusions are presented in Section 5.

2 General Principles

As the name suggests, value compression reduces the number of bits used for repre-
senting a given value. When using value compression, data is typically represented
with a number of data bits, plus some extra format bits that indicate the specifics of
the compression method used. To date, most work has focused on compression of
non-floating point data; extensions to floating point awaits further research.

Value compression can be used in several structures that make up a processor’s
datapath. These include data and instruction caches, integer functional units, register
files, and branch predictors. Fig 1 contains data that indicates the compressibility of
data values read/written in registers as SpecInt 2000 benchmarks are run on a 64-bit
Alpha processor. This distribution shows a large potential for the value compression
mechanisms because a large percentage of the values are narrow. For example, 40%
can be represented in one byte (are between -128 and 127). The peak at 5 bytes is due
to the memory addresses which are typically 5 bytes long in the Alpha architecture.

Fig. 1. Data size distribution for the SpecInt2000

A good value compression method must take advantage of this data distribution,
and, at the same time, incur a low overhead when compressing and decompressing.
Although value compression can help reduce the energy consumption for performing
certain functions, it is important that the overhead of compressing and decompressing
does not affect the overall performance and the energy consumption. Thus, a good
compression scheme should strike a good balance between the compressibility of the
values and the extra performance and energy costs of the mechanism.

Researchers have proposed three basic methods for value compression. The first,
size compression, was suggested in the preceding paragraph and compresses values

Value Compression for Efficient Computation 521

according to their size (i.e., the minimum number of bytes in 2’s complement nota-
tion) [1][8][9][10][11]. With size compression, one or more format bit(s) indicate the
number of significant bytes. The second mechanism uses one format bit per byte to
indicate whether the byte is zero or not [12]. This method, zero compression, can take
advantage of zero bytes in any position, not just in high order positions as with size
compression. The last mechanism, significance compression, uses one format bit per
byte to indicate whether a byte is a sign-extension of the previous one [4], and the
least significant byte is always uncompressed.

The following table includes several value configuration formats that we consider
in this paper. Other configurations have been analyzed and give significant smaller
performance.

 Value compression method Classification of the values Extra bits

Size 8-64 8 bits or 64 bits 1

Size 16-64 16 bits or 64 bits 1

Size 32-64 32 bits or 64 bits 1

Size 40-64 40 bits or 64 bits 1

Size 8-16-32-64 8 bits, 16 bits, 32 bits or 64 bits 2
Size 8-16-40-64 8 bits, 16 bits, 40 bits or 64 bits 2
Significance 8-16-24-32-40-64 Bytes 2,3,4,5 sign extended one byte, or

byte 6 extended by two bytes.
5

Significance 8-16-24-32-40-48-56-64 Bytes 2,3,4,5,6,7,8 sign extended one byte 7

Zero 8-16-24-32-40-64 Bytes 2,3,4,5 can be zero or bytes 6
through 8.

6

Zero 8-16-24-32-40-48-56-64 Any byte can be a zero 8

Fig. 2. Average Data Size for the SpecInt2000

An initial study of the average compressed value size using the schemes listed
above is shown in Fig 2. The average size was computed as the average of the number
of bytes for each access to the register file, data cache, functional units, and the re-
name buffers. The first column shows the average data size without the format bits,

522 Ramon Canal, Antonio González, and James E. Smith

and the second column shows the average size with the format bits. On average, ig-
noring the format bits, the zero compression mechanism achieves the best compres-
sion (23 bits for the configuration where every byte can be compressed). However,
when the format bits are included, the best scheme is the size compression mechanism
with an average of 30 bits per value (for the configuration in which the values are
compressed to 8, 16, 40 or 64 bits).

This initial data indicates that any of the three proposed schemes can perform well
(they reduce the effective data-width from 64 bits to 30 bits). In the next section we
describe several methods for using value compression for subsystems belonging to a
processor’s datapath. Then we analyze the energy consumption for the three value
compression mechanisms when used as processor-wide compression techniques.

3 Related Work
Most of the work on value compression has targeted just one structure of the pipeline.
In earlier work, [4] we proposed ways of using significance compression across all
pipeline stages of an in-order, single-issue processor. Significance compression is also
performed in main memory, and as compressed values flow through the pipeline the
format bits control the gating off of unused storage and functional unit bytes. Never-
theless, that work is for a 32-bit ultra low power machine (i.e. performance is not a
concern). The work in [4] is extended to 64-bits and uses compile-time mechanisms
in [5]. Other work in value compression tends to focus on specific processor blocks or
pipeline stages, as described below.

3.1 Processor Front-End

The primary functions performed in a processor’s front end are instruction caching
and branch prediction. Simple zero compression was proposed for the instruction
cache [12], resulting in a 10% reduction in the energy consumption of the cache.

To the best of our knowledge there have been no published results on value com-
pression to reduce energy requirements of branch prediction. However, in Section 4,
we show performance figures of applying the zero compression mechanism of Villa et
al. [13] and the significance compression method of Canal et al. [4] to branch predic-
tors. The power savings during branch prediction comes from compressing values
held in the branch target buffer (BTB).

There has also been a proposal for value compression while performing value pre-
diction. Sato and Arita [11] split the structure that keeps the predicted values into two
similar structures, where one holds byte-wide data and the other holds 64-bit data.
This structure is shown to be beneficial for energy saving because most of the instruc-
tions’ output-value widths do not change and a large portion of them (as shown in the
data width distribution in Fig 1) are narrow.

3.2 Processor Back-End

In the processor back-end, we begin with the register file where Fig 3 depicts a simple
value compression mechanism. For simplicity, the compression bits have been de-
picted in a separate structure. Before accessing the register file, the compression bits
are read so that the access to the register file can be reduced to the specified bytes.

Value Compression for Efficient Computation 523

Canal et al. [4][5] propose dynamically compressing values so they are stored and
retrieved along with their compression bits as shown in Fig 3. Brooks et al.[1], Loh
[8] and Nakra et al. [9] propose similar techniques for exploiting narrow width oper-
ands to reduce functional unit energy requirements and, at the same time, to increase
performance. Their techniques pack instructions that use narrow operands so that they
can be executed in a single ALU (i.e. one 64-bit adder can compute four 16-bit addi-
tions). The differences between the various approaches lie in the ways the narrow
widths are obtained. Brooks [1] introduces hardware that dynamically detects the
widths of operand values. Loh [8] extracts the data-width from a data-width predictor
and thus a recovery mechanism is needed in case the prediction is wrong. Finally,
Nakra et al. [9] set the width at compile-time. In this research [1][8][9], the register
file is modified in two possible ways: either by incrementing the number of read and
write ports to the banks of the register file holding the low-order bytes; or by replicat-
ing the lower part of the register file.

Fig. 3. A register file with value compression capabilities

Fig. 4. (a) ALU with packing capabilities, (b) ALU with value compression capabilities

The implications for the functional units (FUs) result in two alternatives: Brooks
[1], Loh [8] and Nakra [9] extend the FUs with the capability of executing multiple
narrow-width instructions (see Fig 4a). On the other hand, Canal et al. [4][5] extend
the functional units so that the FUs can operate with compressed values and generate
the compression bits (see Fig 4b). In terms of implementation of these alternatives,
Choi et al. [6] present several FU implementations that turn off the portions of the FU

524 Ramon Canal, Antonio González, and James E. Smith

that compute the high-order bits when these are just a sign-extension of the least sig-
nificant ones (the boundary between the high-order and low-order bits is analyzed and
set in their work).

3.3 Data Cache

Several value compression methods have been proposed for reducing energy con-
sumption in the memory subsystem. Most of methods are focused on on-chip caches.
The data-cache has been shown to be one of the more power-hungry structures in a
microarchitecture [7][12]. Fig 5 shows a data cache enhanced with value compression
capabilities.

Typical implementations compress and decompress data when it is moved between
the first and the second level caches. The same compression mechanisms can be used
in all the memory hierarchy [13], and more sophisticated schemes [12] can be used in
lower levels of the memory hierarchy for achieving higher compression ratios at the
expense of some increase in latency -- not critical in lower memory levels. Several
compression mechanisms have been proposed: zero compression [13] eliminates the
bytes that are set to zero; active data-width [10] compresses the values to certain
ranges (6,14,24 or 32 bit); a frequent value cache [15] has a list of most frequent
values for the high-order bits (32 bits); and the last scheme analyzed is the signifi-
cance compression [4] which eliminates the bytes that are a sign-extension of the
previous one.

Fig. 5. Data Cache with value compression capabilities

Villa et al. [13] propose an encoding where one bit per byte indicates whether the
byte is null (zero). When the data is accessed, the compression bits are read first in
order to just perform the activation of the parts that have a value different from zero.
Okuma et al. [10] propose dividing the cache into several sub-banks where each sub-
bank keeps a portion of the value (32-bit wide in their case). For each memory access,
just the sub-banks with significant data are accessed. In their case, one sub-bank holds
the lowest significant six bits, the next sub-bank holds the following 8 bits, the third
sub-bank keeps the next 10 and the last bank holds the last (most-significant) 12 bits.
This compression scheme needs two bits per word and is very similar to the more
general one analyzed in this paper under the name of size compression.

Value Compression for Efficient Computation 525

4 Value Compression Comparison

In this section, we analyze the three value compression mechanisms (size compres-
sion, zero compression and significance compression) in terms of power. Starting
from the overall processor energy reduction, we analyze some of the more interesting
structures: data caches, instruction caches, register file, functional units and branch
predictor. At the end, we consider the behavior in terms of peak power of the value
compression mechanisms. Note that there are no performance (IPC) results because
the compression mechanisms have no effect on performance. Thus, the results pre-
sented on energy reduction can be directly translated to Energy-Delay and Energy-
Delay square metrics.

4.1 Experimental Framework

The Wattch [2] toolset is used to conduct our evaluation. The main architectural pa-
rameters of the assumed out-of-order processor are given in Table 1. We use the pro-
grams from the SpecInt2000 suite with their reference inputs. All benchmarks are
compiled with the Compaq-Alpha C compiler with the maximum optimization level.
Each benchmark was run to completion.

Table 1. Machine parameters

 Parameter Configuration
Fetch Width 4 instructions
I-cache 64KB, 2-way set-associative. 32-byte lines, 1-cycle

hit time, 6-cycle miss penalty.

Branch Predictor
Combined predictor of 1K entries with a Gshare
with 64K 2-bit counters, 16 bit global history, and a
bimodal predictor of 2K entries with 2-bit counters.

Decode/Rename width 4 instructions
Max. in-flight instructions 64
Retire width 4 instructions
Functional units 3 intALU + 1 int mul/div3 fpALU + 1 fp mul/div
Issue mechanism 4 instructions Out-of-order
D-cache L1 64KB, 2-way set-associative. 32-byte lines, 1-cycle

hit time, 6-cycle miss penalty

I/D-cache L2
256 KB, 4-way set associative, 64-byte lines, 10-
cycle hit time.16 bytes bus bandwidth to main
memory, 100 cycles first chunk, 2 cycles interchunk

Physical registers 96

4.2 Energy Savings

In addition to the average data size (shown in Fig 2), several other factors such as
switching activity are important when computing dynamic energy reduction. Al-
though storing more compression bits results in wider structures, the activity of these
wider structures is what determines energy consumption, not the size. Thus, it can be
the case that a wider structure has less activity than a narrower one. In this section, we
give results for the best performing schemes.

The energy savings of the mechanisms analyzed in this work are given in Fig 6.
Significance compression achieves higher energy savings (more than 20%) despite the
use of 7 extra bits per word. The best size compression scheme (around 10% energy
savings) is the one that compresses values to 8, 16, 40 and 64 bits. The fact that the

526 Ramon Canal, Antonio González, and James E. Smith

scheme includes the memory addresses (typically 5 bytes long) allows it to perform
better than the other size compression mechanisms. The zero compression mechanism
achieves a maximum of 11% overall energy reduction.

Fig. 6. Processor Energy Savings

In the following figures, we analyze behavior of value compression schemes for
several structures (instruction-cache, data-cache, register file and ALU). Fig 7a)
shows the energy benefits in the data cache (both addresses sent to the cache and the
data stored/loaded). The distribution of the energy savings in the data cache is similar
to that of the whole processor. In this case, the significance compression energy sav-
ings are close to 14% and the version of significance compression that compresses all
the bytes (not just up to the 5th byte) performs better than the other configurations of
significance compression.

Fig 7b shows the reduction in activity in the instruction cache. Since the instruction
word is 32-bit wide (in the Alpha ISA used in this study) just three mechanisms are
evaluated. The first (labeled size) compresses the data to 8, 16, 24 or 32-bits in the
same way as size compression presented earlier. The second method (labeled signifi-
cance) compresses the instructions using significance compression to 8, 16, 24, and
32-bits. Finally, the third column (labeled zero) compresses the instructions using
zero compression where each byte of the 32-bit word can be tagged as being zero. All
the schemes perform very well and they achieve a 30% energy reduction minimum in
the instruction cache indicating that Alpha instructions are compressible in a way that
the schemes are able to find and exploit.

Fig 7c shows the percentage of reduction of the energy consumed by the ALU. The
difference between significance compression and the other schemes is larger in this
case (almost 50% vs 25%). Fig 7d shows the energy savings for the register file. The
savings scale up to 50% for significance compression while size compression reaches
a 33% reduction in energy and zero compression is a little bit behind.

Finally, Fig 7e shows the energy reduction of the branch predictor (just the BTB).
In this case the savings are smaller since the compressibility of addresses shows to be
minimal.

Value Compression for Efficient Computation 527

a) b)

c) d)

e)

Fig. 7. Energy Savings for: (a) Data Cache (b) Instruction Cache (c) ALU (d) Register File (e)
Branch Predictor

4.3 Peak Power Reduction

Peak power is an important metric because it determines the maximum possible burst
of power that a processor might consume. This translates directly to hot spots and to
the temperature-thermal limits of the processor. Although one may think that com-
pressing the data may not have a direct impact on peak power because there may be
cycles where every computation will need 64 bits, our experiments show that peak
power is significantly reduced with the proposed compression mechanisms. The peak
power shown in Fig 8 corresponds to the execution of the SpecInt2000 suite.

As in the case of the energy consumption, the significance compression mechanism
achieves an 18% peak power reduction. It is interesting to see that the configuration
of significance compression that achieves the highest energy reduction (see Fig 6) is
not the best in terms of peak power reduction (see Fig 8) where the scheme that com-
presses all the bytes (significance 8,16,24,32,40,56,64) performs a little bit better. The
fact that it can compress bytes within large words makes it perform better in terms of
peak power. The size compression mechanism achieves, in its best configuration, an
8% peak power reduction while the zero compression mechanism stays above the 8%
line.

528 Ramon Canal, Antonio González, and James E. Smith

Fig. 8. Peak power reduction.

Benchmarks aside, one can conceive of (or contrive) a program with uncompress-
ible data. In this case, the peak power would not be reduced. In fact, the extra bits
needed by the data compression could even increase the worst case peak power. Nev-
ertheless, we argue that the small complexity of the required hardware mechanisms
does not add a significant overhead in this worst case peak power because there are
more power hungry units such as the clock network and the caches.

5 Conclusions

We have focused on the value compression paradigm and the proposals around this
topic. The compression of data values for different microarchitecture components has
been shown to be an effective way of reducing the overall power consumption of
processors. By reducing the activity levels, value compression achieves a significant
reduction in dynamic energy consumption. At the same time, value compression can
be used to make the different components of the pipeline simpler (or smaller) and thus
further reducing the energy –in this case, the static energy consumption. Furthermore,
we have shown that value compression can reduce the run-time peak power consump-
tion and thus it can be a good approach for temperature-aware computing. Several
studies have used different kinds of value compression mechanisms to achieve these
goals. In this work, we have extended, analyzed and compared them.

References

1. D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width Operands to Im-
prove Processor Power and Performance”, in Proc. of 5th. International Symposium on
High-Performance Computer Architecture (HPCA-5), 1999.

2. D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for Architectural-Level
Power Analysis and Optimization”, in Proc. of the 27th Annual International Symposium
on Computer Architecture, June 2000.

3. G. Cai and C.H. Lim, “Architectural Level Power/Performance Optimization and Dynamic
Power Estimation”, Cool Chips tutorial of the 32nd Int. Symp. On Microarchitecture 1999.

4. R. Canal, A. González and J.E. Smith, “Very Low Power Pipelines using Significance
Compression”, in Proc. of the 33rd Int. Symposium on Microarchitecture, Dec. 2000.

5. R. Canal, A. González and J.E. Smith, “Software-Controlled Operand Gating”, in Proc. of
2nd International Symposium on Code Generation and Optimization, March 2004

Value Compression for Efficient Computation 529

6. J. Choi, J. Jeon and K. Choi, “Power Minimization of Functional Units by Partially
Guarded Computation”, in Proc. of the 2000 International Symposium On Low Power
Electronics and Design (ISLPED’00), pp. 131-136, Rapallo (Italy), August 2002.

7. R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose processors”, IEEE
Journal of Solid State Circuits, v. 31, n. 9, pp. 1277-1284, September 1996.

8. G. Loh, “Exploiting Data-Width Locality to Increase Superscalar Execution Bandwidth”, in
Proc. of the 35th International Symposium on Microarchitecture (MICRO-35), pp. 395-
405, Istanbul (Turkey) November 2002.

9. T. Nakra, B. Childers, and M.L.Soffa, “Width Sensitive Scheduling for Resource Con-
tained VLIW processors”, FDDO Workshop (MICRO33), Dec. 2001.

10. T. Okuma, Y. Cao, M. Muroyama and H. Yasuura, “Reducing Access Energy of On-Chip
Data Memory Considering Active Data Width”, in Proc. of the 2002 Int. Symp. On Low
Power Electronics and Design, pp. 88-91, Monterey (CA-USA), August 2002.

11. T.Sato and I. Arita, “Table Size Reduction for Data Value Predictors by Exploiting Narrow
Width Values”, in Proc. of the 2000 Int. Conf. on Supercomputing, May 2000, pp.196-205.

12. J. Turley, “PowerPC Adopts Code Compression”, Microprocessor Report, October 1998.
13. R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith, M. E.

Wazlowski, and P. M. Bland, “IBM Memory Expansion Technology (MXT)”, IBM Journal
of Research and Development, Volume 45, Number 2, 2001, pp. 271-286.

14. L. Villa, M. Zhang, and K. Asanovic, “Dynamic Zero Compression for Cache Energy Re-
duction”, in Proc. of the 33rd International Symposium on Microarchitecture, Dec.2000.

15. J. Yang and R. Gupta, “Energy Efficient Frequent Value Data Cache Design”, in Proc. of
the 35th International Symposium on Microarchitecture (MICRO-35), pp. 197-207, Istan-
bul (Turkey), November 2002.

Improving Instruction Delivery with a Block-Aware ISA

Ahmad Zmily, Earl Killian, and Christos Kozyrakis

Electrical Engineering Department
Stanford University

{zmily,killian,kozyraki}@stanford.edu

Abstract. Instruction delivery is a critical component for wide-issue processors
since its bandwidth and accuracy place an upper limit on performance. The pro-
cessor front-end accuracy and bandwidth are limited by instruction cache misses,
multi-cycle instruction cache accesses, and target or direction mispredictions for
control-flow operations. This paper introduces a block-aware ISA (BLISS) that
helps accurate instruction delivery by defining basic block descriptors in addition
to and separate from the actual instructions in a program. We show that BLISS al-
lows for a decoupled front-end that tolerates cache latency and allows for higher
speculation accuracy. This translates to a 20% IPC and 14% energy improvements
over conventional front-ends. We also demonstrate that a BLISS-based front-end
outperforms by 13% decoupled front-ends that detect fetched blocks dynamically
in hardware, without any information from the ISA.

1 Introduction

Effective instruction delivery is vital for superscalar processors [1]. The rate and accu-
racy at which instructions enter the pipeline set an upper limit to sustained performance.
Consequently, wide-issue designs place increased demands on the processor front-end,
the engine responsible for control-flow prediction and instruction fetching. The front-
end must handle three basic detractors: instruction cache misses that cause instruction
delivery stalls; target and direction mispredictions for branches that send erroneous in-
structions to the execution core; and multi-cycle instruction cache accesses that cause
additional uncertainty about the existence and direction of branches within the instruc-
tion stream.

To overcome these problems in high performance yet energy efficient way, we pro-
pose a block-aware instruction set architecture (BLISS). BLISS defines basic block
descriptors in addition to and separately from the actual instructions in each program.
A descriptor provides sufficient information for fast and accurate control-flow predic-
tion without accessing or parsing the instruction stream. It describes the type of the
control-flow operation that terminates the block, its potential target, and the number
of instructions in the basic block. BLISS allows the processor front-end to access the
software defined block descriptors through a small cache that replaces the block target
buffer (BTB). The descriptors’ cache decouples control-flow speculation from instruc-
tion cache accesses. Hence, the instruction cache latency is no longer in the critical
path of accurate prediction. The fetched descriptors can be used to prefetch instructions
and eliminate the impact of instruction cache misses. Furthermore, the control-flow in-
formation available in descriptors allows for judicious use of branch predictors, which

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 530–539, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improving Instruction Delivery with a Block-Aware ISA 531

Hints

2

Length

4

Offset

9

Type

4

Instruction Pointer

13

Type : basic block type (type of terminating branch)
- fall-through (FT)
- backward conditional branch (BR_B)
- forward conditional branch (BR_F)
- jump (J)
- jump-and-link (JAL)
- jump register (JR)
- jump-and-link register (JALR)
- call return (RET)
- zero overhead loop (LOOP)

Offset : displacement for PC-relative branches and jumps

Length : number of instruction in the basic block (0..15)

Instruction pointer :
 address of the 1st instruction in the block (bits [14:2])
 bits [31:15] are stored in the TLB

Hints : optional compiler-generated hints
used for static branch hints in this study

Fig. 1. The 32-bit basic block descriptor format in BLISS.

reduces interference and training time and improves overall prediction accuracy. We
demonstrate that for an 8-way superscalar processor, a BLISS-based front-end allows
for 20% performance improvement and 14% overall energy savings over a conventional
front-end engine.

Moreover, BLISS compares favorably to advanced, hardware-based schemes for
decoupled front-end engines such as the fetch-block-buffer (FTB) design [2, 3]. The
FTB performs aggressive block coalescing to increase the number of instructions per
control-flow prediction and increase the utilization of the BTB. The BLISS-based front-
end provides higher control-flow accuracy than the FTB by removing over-speculation
with block fetching and coalescing. Our experiments show that a BLISS-based 8-way
processor provides 13% higher performance and 7% overall energy savings over the
FTB design.

Overall, we demonstrate the potential of delegating portions of instruction delivery
(accurate fetch block formation) to software using an expressive ISA.

2 Block-Aware Instruction Set Architecture

Our proposal for addressing front-end performance is based on a block-aware instruc-
tion set (BLISS) that explicitly describes basic blocks. A basic block (BB) is a sequence
of instructions starting at the target or fall-through of a control-flow instruction and
ending with the next control-flow instruction or before the next potential branch target.

BLISS stores the definitions for basic blocks in addition to and separately from the
ordinary instructions they include. The code segment for a program is divided in two
distinct sections. The first section contains descriptors that define the type and bound-
aries of blocks, while the second section lists the actual instructions in each block. Fig-
ure 1 presents the format of a basic block descriptor (BBD). Each BBD defines the type
of the control-flow operation that terminates the block. The BBD also includes an offset
field to be used for blocks ending with a branch or a jump with PC-relative addressing.
The actual instructions in the basic block are identified by the pointer to the first in-
struction and the length field. The last BBD field contains optional compiler-generated
hints. In this study, we make limited use of this field to convey branch prediction hints
generated through profiling [4]. The overall BBD length is 32 bits.

532 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

BB descriptors

BBD1 : FT, __, 1,

BBD2 : BR_F, BBD4, 2,

BBD3 : J, BBD5, 1,

BBD4 : JALR, __, 1,

BBD5 : BR_B, BBD2, 2,

Instructions

addu r4, r0, r0

lw r6, 0(r1)

bneqz r6

addui r4, r4, 1

jalr r3

addui r1, r1, 4

bneq r1, r2

C code

numeqz=0;
for (i=0; i<N; i++)
 if (a[i]==0)
 numeqz++;
 else
 foo();

MIPS code

 addu r4, r0, r0

L1: lw r6, 0(r1)

 bneqz r6, L2

 addui r4, r4, 1

 j L3

L2: jalr r3

L3: addui r1, r1, 4

 bneq r1, r2, L1

BLISS code

(b) (c)(a)

Fig. 2. Example program in (a) C source code, (b) MIPS assembly, and (c) BLISS assembly. In
(b) and (c), the instructions in each basic block are identified with dotted-line boxes. Register r3
contains the address for the first instruction (b) or first basic block descriptor (c) of function foo.
For illustration purposes, the instruction pointers in basic block descriptors are represented with
arrows.

BLISS treats each basic block as an atomic unit of execution. There is a single
program counter and it only points within the code segment for BBDs. The execution
of all instructions associated with each descriptor updates the PC so that it points to the
descriptor for the next basic block in the program order (PC+4 or PC+offset). Precise
exceptions are supported similar to [5].

The BBDs provide the processor front-end with architectural information about the
program control-flow in a compressed and accurate manner. Since BBDs are stored
separately from instructions, their information is available for front-end tasks before
instructions are fetched and decoded. The sequential block target is always at PC+4,
regardless of the number of instructions in the block. The non-sequential block target
(PC+offset) is also available through the offset field for all blocks terminating with a
PC-relative control-flow instructions (branches – BR B and BR F, jumps – J and JAL,
loop – LOOP). For the remaining cases (jump register – JR and JALR, return – RET),
the non-sequential target is provided by the last instruction in the block through a reg-
ister. BBDs provide the branch condition when it is statically determined (all jumps,
return, fall-through blocks). For conditional branches, the BBD provides type infor-
mation (forward, backward, loop) and hints which can assist with dynamic prediction.
The actual branch condition is provided by the last instruction in the block. Finally,
instruction pointer and length fields can be used for instruction (pre)fetching.

Figure 2 presents an example program that counts the number of zeros in array a
and calls foo() for each non-zero element. With a RISC ISA like MIPS, the program
requires 8 instructions (Figure 2.b). The 4 control-flow operations define 5 basic blocks.
All branch conditions and targets are defined by the branch and jump instructions. With
the BLISS equivalent of MIPS (Figure 2.c), the program requires 5 basic block de-
scriptors and 7 instructions. All PC-relative offsets for branch and jump operations are
available in BBDs. Compared to the original code, we have eliminated the j instruc-
tion. The corresponding descriptor (BBD3) defines both the control-flow type (J) and
the offset, hence the jump instruction itself is redundant. However, we cannot eliminate

Improving Instruction Delivery with a Block-Aware ISA 533

Schedule
&

Execute

I-Cache
Pipelined

D
e

co
d

e

BB-Cache

RAS

Hybrid
Predictor

P
C

call return target

basic block target

branch type

<basic block>

mipredicted branch target

L2 Cache

i-
ca

ch
e

m
is

s

BBQ IQ

D-Cache

BB-cache Entry Format: tag length
(4b)

type
(4b)

target
(30b)

hints
(2b)

I-
ca

ch
e

pr
ef

e
tc

h

BB-cache misses

instr. pointer
(13b)

bimod
(2b)

Fig. 3. A decoupled front-end for a superscalar processor based on the BLISS ISA

either of the two conditional branches (bneqz, bne). The corresponding BBDs pro-
vide the offsets but not the branch conditions, which are still specified by the regular
instructions. However, the regular branch instructions no longer need an offset field,
which frees a large number of instruction bits. Similarly, we have preserved the jalr
instruction because it allows reading the jump target from register r3 and writing the
return address in register r31.

Note that function pointers, virtual methods, jump tables, and dynamic linking are
implemented in BLISS using jump-register BBDs and instructions in an identical man-
ner to how they are implemented with conventional ISAs. For example, the target regis-
ter (r3) for the jr instruction in Figure 2 could be the destination register of a previous
load instruction.

3 Decoupled Front-End for the Block-Aware ISA

The BLISS ISA suggests a superscalar front-end that fetches BBDs and the associated
instructions in a decoupled manner. Figure 3 presents a BLISS-based front-end that re-
places branch target buffer (BTB) with a BB-cache that caches the block descriptors
in programs. The offset field in each descriptor is stored in the BB-cache in an ex-
panded form that identifies the full target of the terminating branch. For PC-relative
branches and jumps, the expansion takes place on BB-cache refills from lower levels of
the memory hierarchy, which eliminates target mispredictions even for the first time the
branch is executed. For the register-based jumps, the offset field is available after the
first execution of the basic block. The BB-cache stores eight sequential BBDs per cache
line. Long BB-cache lines exploit spatial locality in descriptor accesses and reduce the
storage overhead for tags.

The BLISS front-end operation is simple. On every cycle, the BB-cache is accessed
using the PC. On a miss, the front-end stalls until the missing descriptor is retrieved
from the memory hierarchy (L2 cache). On a hit, the BBD and its predicted direc-
tion/target are pushed in the basic block queue (BBQ). The direction is also verified

534 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

by a tag-less, hybrid predictor. The predicted PC is used to access the BB-cache in the
following cycle. Instruction cache accesses use the instruction pointer and length fields
in the descriptors available in the BBQ.

The BLISS front-end alleviates all shortcomings of a conventional front-end. The
BBQ decouples control-flow prediction from instruction fetching. Multi-cycle latency
for large instruction cache no longer affects prediction accuracy, as the vital information
for speculation is included in basic-block descriptors available through the BB-cache
(block length, target offset). Since the PC in the BLISS ISA always points to basic
block descriptors (i.e. a control-flow instruction), the hybrid predictor is only used and
trained for PCs that correspond to branches. With a conventional front-end, on the other
hand, the PC may often point to non control-flow instructions which causes additional
interference and slower training for the hybrid predictor. The contents of the BLISS
BBQ also provide an early view into the instruction address stream and can be used for
instruction prefetching and hide instruction cache misses [6].

A decoupled front-end similar to the one in Figure 3 can be implemented without
the ISA support provided by BLISS. The FTB design [2, 3] describes the latest of such
design. The FTB detects basic block boundaries and targets dynamically in hardware
and stores them in an advanced BTB called the fetch target buffer (FTB). Block bound-
aries are discovered by introducing large instruction sequential blocks which are later
shortened when jumps are decoded (misfetch) or branches are taken (mispredict) within
the block. The FTB allows for instruction fetch decoupling and prefetching as described
above. Furthermore, the FTB coalesces multiple continuous basic blocks into a single
long fetch block in order to improve control-flow rate and better utilize the FTB capac-
ity. Nevertheless, the simpler BLISS front-end outperforms the aggressive FTB design
by providing a better balance between over- and under-speculation. With BLISS, block
formation is statically done in software and it never introduces misfetches. In addition,
the PC used to access the hybrid predictor for each block (branch) is the same. With
FTB, as fetch blocks shrink dynamically when branches switch behavior, the PC used
to index in the predictor and FTB for each branch changes dynamically, causing slower
predictor training and additional interference.

4 Methodology

We simulate an 8-way superscalar processor in order to compare the BLISS-based
front-end to conventional (base) and FTB-based front-ends. Table 1 summarizes the
key architectural parameters. Note that the target prediction buffers in the three front-
ends (BTB, FTB, and BB-cache) have exactly the same capacity for fairness. All other
parameters are identical across the three models. We have also performed detailed ex-
periments varying several of these parameters and the results are consistent (4-way
processor, BTB size, I-cache latency, etc.). For BLISS, we fully model contention for
the L2-cache bandwidth between BB-cache misses and I-cache or D-cache misses. Our
graphs present two sets of results for BLISS: without (BLISS) and with (BLISS-hints)
using the prediction hints in the BBDs. We do not discuss BLISS-hints in details due to
space limitations.

We study 12 SPEC CPU2000 benchmarks using their reference datasets [7]. The
benchmarks are compiled at the -O3 optimization level. In all cases, we skip the first

Improving Instruction Delivery with a Block-Aware ISA 535

Table 1. The microarchitecture parameters for the simulations. The common parameters apply to
all three models (base, FTB, BLISS).

Base FTB BLISS
Fetch Width 8 instructions/cycle 1 fetch block/cycle 1 basic block/cycle
Target BTB: 2K entries FTB: 2K entries BB-cache: 2K entries
Predictor 4-way, 1-cycle access 4-way, 1-cycle access 4-way, 1-cycle access

8 entries per cache line
Decoupling Queue – FTQ: 4 entries BBQ: 4 entries

Common Processor Parameters
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters

selector: 4K counters
RAS 32 entries with shadow copy
I-cache 32 KBytes, 4-way, 64B blocks, 1 port, 2-cycle access pipelined
Issue/Commit Width 8 instructions/cycle
IQ/RUU/LSQ Size 64/128/128 entries
FUs 8 INT & 6 FP
D-cache 64 KBytes, 4-way, 64B blocks, 2 ports, 2-cycle access pipelined
L2 cache 1 MByte, 8-way, 128B blocks, 1 port, 12-cycle access, 4-cycle repeat rate
Main memory 100-cycle access

billion instructions and simulate another billion instructions for detailed analysis. We
generate BLISS executables using a static binary translator, which can handle arbitrary
programs written in any language. The generation of BLISS executable could also be
done using a transparent, dynamic compilation framework [8]. Despite introducing the
block descriptors, BLISS executables are actually up to 16% smaller than the original
binaries, as BLISS allows aggressive code size optimizations such as branch removal
and common block elimination. The evaluation of code size optimizations is omitted
due to space limitations.

Our simulation framework is based on the Simplescalar/PISA 3.0 toolset [9], which
we modified to add the FTB and BLISS front-end models. For energy measurements,
we use the Wattch framework with the cc3 power model [10]. Energy consumption was
calculated for a 0.10μm process with a 1.1V power supply. The reported Total Energy
includes all the processor components (front-end, execution core, and all caches).

5 Evaluation

Figure 4 presents IPC and IPC improvement for the BLISS front-end over the base
and FTB front-ends for the 8-way superscalar processor. BLISS outperforms the base
front-end for all benchmarks with an average IPC improvement of 20%. The hardware-
based FTB front-end outperforms the base for only half of the benchmarks and most
of the 7% average IPC improvement is due to vortex. BLISS outperforms FTB for
all benchmarks but vortex, with an average IPC advantage of 13% (up to 18% with
BLISS-hints).

Figure 4 also presents total energy savings. BLISS provides a 14% total energy
improvement over the base design. The advantage is mostly due to the elimination of a

536 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

0.5
1.0

1.5
2.0
2.5

3.0
3.5

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

IP
C

Base FTB BLISS BLISS-Hints

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

%
 IP

C
 Im

pr
ov

em
en

t o
ve

r B
as

e FTB BLISS BLISS-Hints
39% 46% 34% 48%51% 54%52%

0%

5%

10%

15%

20%

gzip gcc crafty gap vortex twolf wupwise applu mesa art equake apsi AVG%
 E

n
er

g
y

Im
p

ro
ve

m
en

t
o

ve
r

B
as

e

FTB BLISS BLISS-Hints27% 21% 36%33%30%

Fig. 4. IPC, percentage of IPC improvement, and percentage of total energy improvement for the
FTB and BLISS front-ends over the base fornt-end design.

significant number of pipeline flushes due to control-flow misprediction. BLISS offers a
7% energy advantage over FTB which allows similar energy optimizations in the front-
end but suffers from higher number of control-flow mispredictions. It is important to
note from Figure 4 that BLISS provides both performance and energy advantages over
the base and FTB.

Figure 5 explains the basic performance advantage of BLISS over the base and
FTB design. Compared to the base, BLISS reduces by 36% the number of pipeline
flushes due to target and direction mispredictions. These flushes have a severe perfor-
mance impact as they empty the full processor pipeline. Flushes in BLISS are slightly
more expensive than in the base design due to the longer pipeline, but they are less
frequent. The BLISS advantage is due to the availability of control-flow information
from the BB-cache regardless of I-cache latency and the accurate indexing and judi-
cious use of the hybrid predictor. The FTB front-end has a significantly higher number
of pipeline flushes compared to the BLISS front-end as block recreation affects the pre-
diction accuracy of the hybrid predictor due to longer training and increased interfer-
ence. Both BLISS and FTB allow for a decoupled front-end with instruction prefetch-
ing. BLISS enables I-cache prefetching though the BBQ which reduces the number of
I-cache misses by 24% on average for the benchmarks studied. Although the BLISS
L2-cache serves an additional type of misses from the BB-cache, BLISS number of

Improving Instruction Delivery with a Block-Aware ISA 537

0.0
0.2
0.4
0.6
0.8
1.0
1.2

gcc crafty vortex mesa equake AVGN
o
rm

a
liz

e
d
 n

u
m

b
e
r

o
f

p
ip

e
lin

e
 f
lu

s
h
e
s

Base FTB BLISS BLISS-Hints
1.24

Fig. 5. Normalized number of pipeline flushes for the base, FTB, BLISS for representative bench-
marks. The average is across all 12 benchmarks.

0.94

0.96

0.98

1.00

gcc crafty vortex mesa equake AVG

FT
B

 a
nd

 B
as

ic
-B

lo
ck

 c
ac

he
 h

it
ra

te
s

FTB BLISS BLISS-Hints

Fig. 6. Normalized FTB and BB-cache hit rates for representative benchmarks. The average is
across all 12 benchmarks.

L2-cache accesses and misses are slightly better than the numbers for the FTB design.
BLISS has a 10% higher number of L2-cache accesses, and 2% lower number of L2-
cache misses compared to the base design for the benchmarks studied. The increased
number of L2-cache accesses for BLISS and FTB designs is mainly due to instruction
prefetching.

Figure 6 shows the BB-cache and FTB hit rates to evaluate the effectiveness of the
FTB in forming fetch-blocks and the BB-cache in delivering BBDs. Since the FTB
returns a fall-through block address even when it misses in order to avoid storing the
fall-through blocks, we define its miss rate as the number of misfetches divided over
the number of FTB accesses. A misfetch occurs when the decoder detects that the block
fetched from the FTB is wrong and needs to be updated and a new block to be fetched.
At the same storage capacity, the BLISS BB-cache achieves a 2% to 3% higher hit rate
than the FTB as the BB-cache avoids block splitting and recreation that occur when
branches change behavior or when the cache capacity cannot capture the working set
of the benchmark. The FTB has an advantage for programs like vortex that stress
the capacity of the target cache and include large fetch blocks. For vortex, the FTB
packs 9.5 instructions per entry (multiple basic blocks), while the BB-cache packs 5.5
instructions per entry (single basic block).

6 Related Work

Certain ISAs allow for basic blocks descriptors, interleaved with regular operations in
the instruction stream (e.g. prepare-to-branch instructions in [11, 12]). They allow for

538 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

target address calculation and instruction prefetching a few cycles before the branch
instruction is decoded. The block-structured ISA (BSA) by Patt et al. [5] defines basic
blocks of reversed ordered instructions as atomic execution units in order to simplify in-
struction renaming and scheduling. BLISS goes a step further by separating basic block
descriptors from regular instructions which allows for instruction fetch bandwidth im-
provements. The benefits from BSA and BLISS are complimentary. The decoupled
control-execute architectures use a separate ISA with distinct architectural state for
control-flow calculation [13, 14]. The BBDs in BLISS are not a stand-alone ISA and do
not define any state, eliminating the deadlock scenarios with decoupled control-execute
ISAs.

Block-based front-end architectures were introduced by Yeh and Patt [15], with ba-
sic block descriptors formed by hardware without any additional architectural support.
Decoupled front-end techniques have been explored by Calder and Grunwald [16] and
Stark et al. [17]. Reinman et al. combined the two techniques in a comprehensive front-
end with prefetching capabilities [2, 3]. Our work improves their design using explicit
ISA support for basic block formation. Significant amount of front-end research has
also focused on trace caches [18–20]. Trace caches have been shown to work well with
basic blocks defined by hardware [21]. One can form streams or traces on top of the
basic blocks in the BLISS ISA. BLISS provides two degrees of freedom for code lay-
out optimizations (blocks and instructions), which could be useful for stream or trace
formation. Exploring such approaches is an interesting area for future work.

7 Conclusions

We present a block-aware ISA that addresses basic challenges in the front-end of wide
superscalar processors. The ISA defines basic block descriptors in addition to and sep-
arately from the actual instructions. Software-defined basic blocks allow a decoupled
front-end with highly accurate control-flow speculation, which leads to 20% IPC and
14% energy advantages over conventional designs. The ISA-supported front-end also
outperforms (13% IPC and 7% energy) advanced decouple front-ends that dynamically
build fetch blocks in hardware. Overall, this work establishes the potential of using
expressive ISAs to address difficult hardware problems in modern processors.

Acknowledgements

This work was supported by a Stanford OTL grant.

References

1. R. Ronen, A. Mendelson, et al. Coming Challenges in Microarchitecture and Architecture.
Proceedings of the IEEE, 89(3), March 2001.

2. G. Reinman, B. Calder, and T. Austin. Fetch Directed Instruction Prefetching. In Intl. Sym-
posium on Microarchitecture, Haifa, Israel, November 1999.

3. G. Reinman, C. Calder, and T. Austin. Optimizations Enabled by a Decoupled Front-End
Architecture. IEEE TC, 50(40), April 2001.

Improving Instruction Delivery with a Block-Aware ISA 539

4. A. Ramirez, J. Larriba-Pey, and M. Valero. Branch Prediction Using Profile Data. In EuroPar
Conference, Manchester, UK, August 2001.

5. S. Melvin and Y. Patt. Enhancing Instruction Scheduling with a Block-structured ISA. Intl.
Journal on Parallel Processing, 23(3), June 1995.

6. T. Chen and J.L. Baer. A Performance Study of Software and Hardware Data Prefetching
Schemes. In Intl. Symposium on Computer Architecture, Chicago, IL, April 1994.

7. J. Henning. SPEC CPU2000: Measuring Performance in the New Millennium. IEEE Com-
puter, 33(7), July 2000.

8. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Optimization
System. In the Proceedings of the Conference on Programming Language Design and Im-
plementation, Vancouver, Canada, June 2000.

9. D. Burger and M. Austin. Simplescalar Tool Set, Version 2.0. Technical Report CS-TR-97-
1342, University of Wisconsin, Madison, June 1997.

10. D. Brooks, V. Tiwari, , and M. Martonosi. Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations. In Intl. Symposium on Computer Architecture, Vancou-
ver, BC, Canada, June 2000.

11. R. Wedig and M. Rose. The Reduction of Branch Instruction Execution Overhead Using
Structured Control Flow. In Intl. Symposium on Computer Architecture, Ann Arbor, MI,
June 1984.

12. V. Kathail, M. Schlansker, and B. Rau. HPL PlayDoh Architecture Specification. Technical
Report HPL-93-80, HP Labs, 1994.

13. N. Topham and K. McDougall. Performance of the Decoupled ACRI-1 Architecture: the
Perfect Club. In Intl. Conference on High-Performance Computing and Networking, Milan,
Italy, May 1995.

14. R. Manohar and M. Heinrich. The Branch Processor Architecture. Technical Report CSL-
TR-1999-1000, Cornell Computer Systems Laboratory, November 1999.

15. T. Yeh and Y. Patt. A Comprehensive Instruction Fetch Mechanism for a Processor Support-
ing Speculative Execution. In Intl. Symposium on Microarchitecture, Portland, OR, Decem-
ber 1992.

16. B. Calder and D. Grunwald. Fast and Accurate Instruction Fetch and Branch Prediction. In
Intl. Symposium on Computer Architecture, Chicago, IL, April 1994.

17. J. Stark, P. Racunas, and Y. Patt. Reducing the Performance Impact of Instruction Cache
Misses by Writing Instructions into the Reservation Stations Out-of-Order. In Intl. Sympo-
sium on Microarchitecture, Research Triangle Park, NC, December 1997.

18. D. Friendly, S. Patel, and Y. Patt. Alternative Fetch and Issue Techniques from the Trace
Cache Mechanism. In Intl. Symposium on Microarchitecture, Research Triangle Park, NC,
December 1997.

19. Q. Jacobson, E. Rotenberg, and J. Smith. Path-based Next Trace Prediction. In Intl. Sympo-
sium on Microarchitecture, Research Triangle Park, NC, December 1997.

20. S. Patel, M. Evers, and Y. Patt. Improving Trace Cache Effectiveness with Branch Promotion
and Trace Packing. In Intl. Symposium on Computer Architecture, Barcelona, Spain, June
1998.

21. S. Jourdan et al. Extended Block Cache. In Intl. Symposium on High-Performance Computer
Architecture, Toulouse, France, January 2000.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 540–549, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Non-uniform Instruction Scheduling

Joseph J. Sharkey and Dmitry V. Ponomarev

Department of Computer Science, State University of New York
Binghamton, NY 13902 USA

{jsharke,dima}@cs.binghamton.edu

Abstract. Dynamic instruction scheduling logic is one of the most critical and
cycle-limiting structures in modern superscalar processors, and it is not easily
pipelined without significant losses in performance. However, these perform-
ance losses are incurred only due to a small fraction of instructions, which are
intolerant to the non-atomic scheduling. We first perform an empirical analysis
of the instruction streams to determine which instructions actually require sin-
gle cycle scheduling. We then propose a Non-Uniform Scheduler – a design that
partitions the scheduling logic into two queues, each with dedicated wakeup
and selection logic: a small Fast Issue Queue (FIQ) to issue critical instructions
in the back-to-back cycles and a large Slow Issue Queue (SIQ) to issue the re-
maining instructions over two cycles with a one cycle bubble between depend-
ent instructions. Finally, we propose and evaluate several steering mechanisms
to effectively distribute instructions between the queues.

1 Introduction

It has been well documented in the recent literature that instruction wakeup and selec-
tion logic form one of the most critical loops in modern superscalar processors
[17,20]. Unless wakeup and selection activities are performed within a single cycle,
dependent instructions can not execute in consecutive cycles, which seriously de-
grades the number of instructions committed per cycle (IPC), by as much as 30% in a
4-way machine, according to our simulations. At the same time, both wakeup and
selection logic have substantial delays [17], so if these activities are performed atomi-
cally within a single cycle, then the designers may be forced to use lower clock fre-
quency or limit the size of the instruction issue queue.

Several schemes have been recently proposed to relax the scheduling loop without
seri-ously compromising the processor’s performance [3,4,14,20]. Most of these
designs do somewhat mitigate the problem of IPC loss due to the inability to execute
dependent in-structions in consecutive cycles with pipelined schedulers. However, all
of these techniques result in significant additional complexities (as we detail later)
and are not easy to retrofit into existing datapaths. In this paper, we investigate a
much simpler solution. The idea is based on a distributed implementation of the issue
queue in the form of two separate queues: a fast, small issue queue (FIQ) to perform a
1-cycle scheduling (with atomic wakeup/select) of some instructions, and a large,
slow issue queue (SIQ) to perform pipelined 2-cycle scheduling of all other instruc-
tions. Each of these queues has a dedicated wakeup and selection logic, and only the
dependent instructions from the FIQ are guaranteed to execute in the back-to-back
cycles. In the rest of the paper, we refer to this design as the Non-Uniform Scheduler

Non-uniform Instruction Scheduling 541

(NUS). The important feature of our design, and also the major difference from the
previous proposals, is that at the time of dispatch, an instruction is steered to one of
the queues and is eventually issued out of that queue. In this paper, we propose and
evaluate several such steering heuristics.

2 Problem Characterization

Figure 1 presents the performance difference between the pipeline configurations
with atomic (wakeup and select operations are performed within a single cycle) and
pipelined (wakeup and select are pipelined over two cycles) schedulers. In general,
the IPC degradation is as high as 30% for a 32-entry issue queue as seen from the
graph. As the size of the issue queue is increased, this performance loss becomes
smaller. For example, for a 64-entry issue queue, the performance degradation is
reduced to 15% on the average. In any case, the performance impact due to the inabil-
ity to execute instructions back to back is significant. Similar results were also pre-
sented by other researchers [4,20].

Fig. 1. IPC of 32-entry traditional queue and a 32-entry pipelined queue

Notice that it is only the dependency on a single-cycle latency operation that cre-
ates the pipeline bubble with pipelined schedulers. Moreover, it is the last arriving
operand that truly awakens an instruction in the issue queue. Consequently, only the
instructions with the last arriving operand produced by a single cycle latency instruc-
tion lose the ability to execute back-to-back with their parents in the presence of pipe-
lined schedulers. In all other cases, the multi-cycle scheduling latency is completely
hidden by the execution latency of the parent instructions (provided that the schedul-
ing latency of a child does not exceed the execution latency of a parent).

To gauge the magnitude of this problem, we performed a study on the number of
instructions whose last arriving operand is produced by a single-cycle latency instruc-
tion. Details of our simulation methodology are presented in Section 5. The results
are shown in Figure 2. One can observe that on the average, about 60% of all instruc-
tions have a last arriving operand that is produced by a single-cycle latency instruc-
tion. These results show that there is a potential for optimizing traditional dynamic
schedulers, as about half of all the instructions can tolerate 2-cycle scheduling la-
tency.

542 Joseph J. Sharkey and Dmitry V. Ponomarev

3 Non-uniform Scheduling Logic

Non-Uniform Scheduling (NUS) logic is different from the traditional scheduling
logic in that a traditional monolithic issue queue (IQ) and its associated selection
logic are divided into two parts. The first is a small, fast issue queue (FIQ) and the
second is a large, slow issue queue (SIQ). Instructions are steered to one of these
queues at the time of dispatch according to certain heuristics. Once dispatched to a
queue, the instruction waits in that queue until it is ready to execute. The steering
logic is activated in parallel with the rename stage and has negligible additional over-
head, as the steering heuristics that we consider are very simple. The queues have
separate wakeup and selection logic, and they share functional units. During selec-
tion, priority is given to the instructions in the FIQ. The FIQ’s wakeup/select loop is
atomic (takes one cycle) while the SIQ’s wakeup/select loop is pipelined over two
cycles. The datapath incurporating the NUS scheduler is shown in Figure 3.

Fig. 2. Percentage of instructions, which have their last arriving operand produced by
an instruction with single-cycle execution latency

Fig. 3. Datapath Incorporating NUS Scheduling Logic

At the end of the selection cycle, combined W instructions are selected from both
the FIQ and the SIQ. Then, the destination tags of all of the selected instructions are
broadcast across both queues. Dependent instructions in the FIQ wakeup and get
selected in the next cycle, thus allowing for the back-to-back execution. Instructions
in the SIQ wakeup in the next cycle and get selected one cycle after that. Mechanisms
similar to the ones described in [20] are used to ensure that an instruction does not
issue prematurely, if the execution latency of its last arriving parent is higher than 2
cycles.

The selection logic in the NUS design needs to perform some arbitration between
the instructions selected from both queues. For example, if N instructions are selected
from the FIQ, then at most (W-N) instructions can be selected from the SIQ in the
same cycle. This logic is part of the SIQ. There is enough slack in the SIQ’s selection

Non-uniform Instruction Scheduling 543

cycle (the entire cycle is still used for selection, but the SIQ’s size is smaller than the
size of the baseline issue queue) to perform this simple check and limit the number of
instructions selected from the SIQ. The FIQ selection logic is unmodified, as all in-
structions selected from the FIQ are issued.

4 Steering Mechanisms for NUS

An important aspect of the NUS design is the set of heuristics used to steer the in-
structions between the two queues at the time of instruction dispatch. Optimally, a
heuristic would be simple and easy to implement, but also be effective and schedule
the key pairs of instructions back-to-back. In this paper, we examine several different
steering heuristics. In all cases, if the destination queue is full, the instruction is
placed into the other queue if such a possibility exists (i.e., the other queue is not
full). The process of instruction dispatching blocks only when both queues saturate.
The steering heuristics examined in this paper are as follows:
(1) FIQ Utilization (UTIL). Here, instructions are only steered to the SIQ if the FIQ

is full. Otherwise, each instruction is steered to the FIQ. Notice that this is a
greedy steering heuristic which, at first sight, may seem to be an optimal solution.
However, this is not necessarily the case because the FIQ may become full with
instructions that are in fact tolerant to the pipelined scheduling, forcing other in-
structions which are not tolerant of the pipelined scheduling to end up in the SIQ.
Even in the presence of a free space in the FIQ, it could be more beneficial to
steer some instruction into the SIQ so that instructions that cannot tolerate pipe-
lined scheduling can later be placed in the FIQ. All subsequent heuristics attempt
to do exactly that.

(2) Single Cycle Dependency (SCD). Here, all instructions dependent on a not-yet
executed single cycle instruction are steered to the FIQ and all other instructions
are steered to the SIQ.

(3) Multiple Non-ready Sources (MNR). Here, instructions with one or zero non-
ready sources are steered to the SIQ and only instructions with 2 or more non-
ready operands are steered to the FIQ. This heuristic is based on several observa-
tions. First, several researchers have shown that most instructions enter the sched-
uling window with at least one of their input operands already available
[10,11,19], thus there are fewer instructions with two non-ready operands. Sec-
ondly, instructions waiting on two operands are likely to be waiting for a longer
duration, and thus it could be advantageous to give these instructions scheduling
priority when they do become ready to execute.

(4) Single Cycle Dependency with Multiple Non-ready Sources (SCD/MNR). This
heuristic combines the previous two. An instruction is steered to the FIQ only if it
is dependent on multiple not-yet-executed instructions (i.e. both source operands
are not ready) and one of those instructions is a single-cycle latency operation. All
other instructions are steered to the SIQ.

(5) Single Non-ready Source with a Single Cycle Dependency (SNR/SCD). Here, an
instruction is steered to the FIQ only if it has exactly one non-ready source at the
time of dispatch and that source will be produced by an instruction with a single-
cycle execution latency. All other instructions are steered to the SIQ.

544 Joseph J. Sharkey and Dmitry V. Ponomarev

5 Simulation Methodology

Our simulation environment includes a detailed cycle accurate simulator of the mi-
croarchitecture and cache hierarchy. We used a modified version of the Simplescalar
simulator [5] that implements separate structures for the issue queue, re-order buffer,
load-store queue, register files, and the rename tables in order to more accurately
model the operation of modern processors. All benchmarks were compiled with gcc
2.6.3 (compiler options: -O2) and linked with glibc 1.09, compiled with the same
options, to generate the code in the portable ISA (PISA) format. All simulations were
run on a subset of the SPEC 2000 benchmarks consisting of 7 integer and 7 floating-
point benchmarks using their reference inputs. In all cases, predictors and caches
were warmed up for 1 billion committed instructions and statistics were gathered for
the next 500 million instructions. Table 1 presents the configuration of the baseline 4-
way processor.

Table 1. Configuration of a simulated processor

Parameter
Machine width 4-wide fetch, 4-wide issue, 4 wide commit
Window size

issue queue – as specified, 128 entry LSQ, 256–entry ROB

Function Units and
Latency (total/issue)

4 Int Add (1/1), 2 Int Mult (3/1) / Div (20/19), 2 Load/Store (2/1), 2 FP
Add (2), 2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

Physical Registers 256 combined integer + floating-point physical registers
L1 I–cache

64 KB, 1–way set–associative, 128 byte line, 1 cycles hit time

L1 D–cache

64 KB, 4–way set–associative, 64 byte line, 2 cycles hit time

L2 Cache unified

2 MB, 8–way set–associative, 128 byte line, 6 cycles hit time

BTB 2048 entry, 2–way set–associative

Branch Predictor
Combined with 1K entry Gshare, 10 bit global history, 4K entry bimodal,
1K entry selector

Memory 128 bit wide, 140 cycles first chunk, 2 cycles interchunk
TLB 32 entry (I), 128 entry (D), fully associative

For estimating the delay requirements, we designed the actual VLSI layouts of the
issue queue and simulated them using SPICE. The layouts were designed in a 0.18
micron 6 metal layer CMOS process (TSMC) using Cadence design tools. A Vdd of
1.8 volts was assumed for all the measurements.

6 Experimental Results

The analyses in this section are focused on comparing the appropriate NUS configu-
rations against a 32-entry traditional atomic issue queue. We first explain how we
selected the appropriate sizes of the FIQ and the SIQ in the NUS design. In order to
balance the delays of both queues, we performed circuit-level simulations of com-
plete, hand-crafted issue queue layouts in 0.18-micron TSMC technology. We meas-
ured the delays of both the wakeup and selection logic for the schedulers of various
sizes. Results are summarized in Table 2.

Non-uniform Instruction Scheduling 545

Table 2. Delays of the scheduling logic

The delays of the wakeup logic comprise of three components: the delay to drive
the destination tags across the issue queue, the delays in performing tag comparisons,
and the delays in setting the ready bit of the entry. We assumed that traditional pull-
down comparators (whose outputs are precharged every cycle and are discharged on a
mismatch) are used within the issue queue to perform tag matching. The delay of the
tree-structured selection logic depends on the number of levels that must be traversed
in the tree, both on the way to the arbiter and on the way back plus the additional wire
delays on the way [17]. According to our estimations, the delay within a single level
of the selection tree is about 60ps.

To understand how we selected the sizes of the queues in the NUS scheduler, as-
sume that the SIQ of 32-entries is used, which is equal in size to the baseline sched-
uler. The SIQ operates in a pipelined fashion over two cycles where the cycle time is
constrained by the delay of the wakeup phase (569ps). To complement such a SIQ in
the NUS design, the size of the FIQ should be chosen in such a way that the com-
bined delays of the wakeup and selection logic in the FIQ are comparable to the
wakeup delay of the SIQ. For this reason, as seen from the results presented in Table
2, an 8-entry FIQ is an appropriate match for a 32-entry SIQ. Likewise, a 16-entry
FIQ is an appropriate match for a 64-entry SIQ. To summarize, the appropriate com-
binations of the FIQ and the SIQ sizes are such that the size of the FIQ is about one
quarter of the size of the SIQ. Similar observations about the relationship of the FIQ
and the SIQ sizes can be made by examining the delays presented in [17].

Fig. 4. Per-benchmark commit IPCs of the 8/32 NUS

We then examined the performance of various steering heuristics to be used in
conjunction with the NUS scheduler, as described in Section 5. The per-benchmark
results for the 8/32 NUS (8-entry FIQ and 32-entry SIQ) for each steering heuristic
are presented in Figure 4. As seen from the graph, the SCD steering provides the best
results - it outperforms the simple UTIL steering (which tries to fill the FIQ first) by

546 Joseph J. Sharkey and Dmitry V. Ponomarev

1% on the average. The UTIL heuristic performs reasonably well on the average, but
it represents a suboptimal choice for 8 of the 14 benchmarks. For example, for bzip2,
the MNR steering provides 10.9% better performance than simple UTIL steering. For
mcf, SCD and SNR/SCD provide a 1.2% and 2.7% performance benefit, respectively.
For twolf, SCD and SCD/MNR also provide a performance benefit by 1.6% and
0.5%, respectively. For wupwise, SCD, SCD/MNR, and SNR/SCD steering all pro-
vide better performance than the UTIL steering by 36.8%, 34.7%, and 38.2%, respec-
tively. For mgrid, MNR provides 1.7% better performance than the UTIL steering.
For mesa, SCD, SCD/MNR, and SNR/SCD perform better than the UITL steering by
6.6%, 4.6% and 6.8%, respectively. For art, the SCD and SNR/SCD heuristics pro-
vide better performance by 3.2% and 3.0%. Finally, the SCD/MNR steering provides
10.1% better performance for equake.

We now compare the performance results for the 8/32 NUS with SCD steering
against traditional schedulers, both atomic and pipelined. Figure 5 compares four
different scheduler architectures: the leftmost bar shows the performance of a ma-
chine with a 32-entry atomic scheduler, the next bar shows the performance of a ma-
chine with a 32-entry scheduler such that wakeup and selection are pipelined over
two cycles, the third bar shows the performance of a traditional, atomic 8-entry
scheduler, and finally, the rightmost bar shows the performance of a 8/32 NUS with
SCD steering, as described in section 5. As expected, the combination of the two
queues outperforms either queue used in isolation. On the average, the NUS sched-
uler outperforms the 32-entry pipelined scheduler by 37.5% and the 8-entry atomic
scheduler by 10.7%. Most importantly, the performance of the NUS comes within 9%
of the performance of a 32-entry atomic queue, but the NUS achieves significant
cycle time reduction, potentially by as much as 40% according to the figures pre-
sented in Table 2 (569ps for the NUS vs. 939ps for the traditional 32-entry issue
queue). Compared to the atomic scheduler with 40 entries (which in this case is the
combined size of the FIQ and the SIQ), the performance of the NUS is only 9.5%
lower. This is somewhat surprising because 80% of the NUS entries are implemented
in the SIQ, which uses slow pipelined scheduling.

Fig. 5. Commit IPCs of the 8/32 NUS using the UTIL steering heuristic

Notice that the performance benefit of the 8/32 NUS compared to the 8-entry
atomic queue is significantly higher for floating point benchmarks than it is for inte-
ger programs. This is because the floating point benchmarks significantly benefit
from the presence of the larger queue and are generally more tolerant to the relaxation

Non-uniform Instruction Scheduling 547

of the scheduling loop. Furthermore, the branch prediction accuracy is high for float-
ing point benchmarks, which puts more pressure on the scheduler. The integer
benchmarks, on the other hand, perform reasonably well even with the smaller sched-
ulers and are significantly impacted by hindering the ability to execute instructions
back to back. This is because these benchmarks are dominated by the long, serial
dependency chains of mostly single-cycle latency instructions. Therefore, in many
cases it may be beneficial to delay the dispatch of an instruction for a few cycles
rather than dispatching it immediately to the slow queue. For example, gcc, parser,
and bzip2 show better performance with simply having the 8-entry issue queue com-
pared to the NUS.

7 Related Work

Stark et.al. [20] pipelined the scheduling logic into wakeup and select stages and used
the status of instruction’s grandparents to wakeup the instruction earlier in a specula-
tive manner. In [3], Brekelbaum et.al. introduced hierarchical scheduling windows
(HSW) to support large number of in-flight instructions. The HSW design also relies
on the use of fast and slow queues, but has a fairly complex logic for moving instruc-
tions from the slow queue (where all instructions are initially placed) to the fast
queue. Our technique differs from HSW in that instructions are steered to the two
queues upon dispatch. Lebeck et.al. [15] introduced a large waiting instruction buffer
(WIB) to temporarily hold the load instructions that missed into the L2 cache as well
as their dependents outside of the small issue queue (IQ). A somewhat similar tech-
nique, albeit implemented in a different manner, is also described in [8], where the
instructions which are expected to wait for a large number of cycles before getting
issued are moved to the secondary queue, called Slow Lane Instruction Queue.
Brown et.al. [4] proposed to remove the selection logic from the critical path by
exploiting the fact that the number of ready instructions in a given cycle is typically
smaller than the processor’s issue width. Kim and Lipasti [14] proposed to group two
(or more) dependent single-cycle operations into so-called Macro-OP (MOP), which
represents an atomic scheduling entity with multi-cycle execution latency.

Scheduling techniques based on predicting the issue cycle of an instruction
[1,6,7,10,13,16] remove the wakeup delay from the critical path, but need to keep
track of the cycle when each physical register will become ready. In [9], the wakeup
time prediction occurs in parallel with the instruction fetching. Additional mecha-
nisms are needed in these schemes for handling issue latency mispredictions, as the
instructions executed too early need to be replayed. In [18], the use of segmented
issue queues is proposed, where the broadcast and selection are limited to a smaller
segment.

8 Concluding Remarks

The capability to execute the dependent instructions in the back-to-back cycles is
important for sustaining high instruction throughput in modern out-of-order micro-

548 Joseph J. Sharkey and Dmitry V. Ponomarev

processors. If the dependent instructions cannot execute in consecutive cycles, then
the IPC impact can be very significant. We described a non-uniform scheduler design
which significantly reduces the IPC penalties by using a pair of issues queues, one
implementing single-cycle scheduling and the other implementing 2-cycle scheduling
with pipelined wakeup and select. We evaluated several mechanisms for intelligent
instruction placement between the two queues.

For a 4-way machine, the performance our design comes within 9% of an idealized
atomic scheduler with potentially as much as 40% reduction in cycle time. To com-
pare, if the idealized scheduler is simply pipelined into separate stages for wakeup
and selection, then the performance loss compared to the idealized atomic situation is
30% for a 32-entry scheduler. Consequently, the NUS reduces this performance deg-
radation by almost 70%. We evaluated several steering heuristics for the NUS and
found out that, for a 32-entry queue, the single cycle dependency steering performs
the best. We also found out that the simple greedy steering based on the utilization of
the queues is not the optimal solution for the majority of the simulated benchmarks.
Finally, we found out that most of the benefits of the NUS scheduler are achieved for
floating-point benchmarks. For the majority of integer benchmarks, it is more benefi-
cial to delay the dispatch of instructions rather than processing them through a slow
queue.

Acknowledgements

We would like to thank Oguz Ergin for assistance with the VLSI layouts and Matt
Yourst for help with the microarchitectural simulation environment. We would also
like to thank Kanad Ghose and Deniz Balkan for useful comments on earlier drafts of
this paper.

References

1. J. Abella, A.Gonzalez, “Low-Complexity Distributed Issue Queue”, in Proc. of HPCA,
2004.

2. H. Akkary, R. Rajwar, S. Srinivasan, “Checkpoint Processing and Recovery: Towards Scal-
able Large Instruction Window Processors”, in Proc. of MICRO 2003.

3. E. Brekelbaum et. al., “Hierarchical Scheduling Windows”, in 35th Int’l. Symp. on Mi-
croarchitecture, 2002.

4. M. Brown, J. Stark, Y. Patt. “Select-Free Instruction Scheduling Logic”, in the 34th Inter-
national Symposium on Microarchitecture, 2001.

5. D. Burger and T. Austin, "The SimpleScalar tool set: Version 2.0", Tech. Report, Dept. of
CS, Univ. of Wisconsin-Madison, June 1997 and documentation for all Simplescalar re-
leases.

6. R.Canal, A. Gonzalez, “A Low-Complexity Issue Logic”, in Proc. of the International Con-
ference on Supercomputing (ICS), 2000.

7. R.Canal, A.Gonzalez, “Reducing the Complexity of the Issue Logic”, in Proc, of the Int’l.
Conf. on Supercomputing (ICS), 2001.

Non-uniform Instruction Scheduling 549

8. A. Cristal, et.al., “Out-of-Order Commit Processors”, in the International Symposium on
High-Perf. Comp. Arch. (HPCA), 2004.

9. T. Ehrhart, S. Patel, “Reducing the Scheduling Critical Cycle using Wakeup Prediction”, in
HPCA 2004.

10. D. Ernst, A. Hamel, T.Austin, “Cyclone: a Broadcast-free Dynamic Instruction Scheduler
with Selective Replay”, in Proc. of Int’l. Symp. On Computer Architecture (ISCA), 2003.

11. D. Ernst, T. Austin, “Efficient Dynamic Scheduling Through Tag Elimination”, in the 29th
Int’l. Symp. on Comp. Architecture, 2002.

12. B. Fields, R. Bodik, M. Hill. “Slack: Maximizing Performance Under Technological Con-
straints”, in the 29th International Symposium on Computer Architecture, 2002.

13. J. Hu, N. Vijaykrishnan, M. Irwin, “Exploring Wakeup-Free Instruction Scheduling”, in
Proc. of the Int’l. Symp. on High Perf. Computer Architecture (HPCA), 2004.

14. I. Kim and M. Lipasti, “Macro-Op Scheduling: Relaxing Scheduling Loop Constraints”, in
the 36th International Symposium on Microarchitecture, 2003.

15. A. Lebeck et. al. A Large, “Fast Instruction Window for Tolerating Cache Misses”, in the
29th Intl. Symp. on Comp. Arch. (ISCA), 2002.

16. P. Michaud, A. Seznec, “Data-Flow Prescheduling for Large Instruction Windows in Out-
of-Order Processors”, HPCA 2001.

17. S. Palacharla, N. Jouppi, J. Smith, “Complexity-Effective Superscalar Processors”, in 24th
Intl. Symposium on Computer Architecture, 1997.

18. S. Raasch, N.Binkert, S.Reinhardt, “A Scalable Instruction Queue Design Using Depend-
ence Chains”, in Proc. of ISCA, 2002.

19. J. Sharkey et.al., “Instruction Packing: Reducing Power and Delay of the Dynamic Sched-
uling Logic”, in Proc. of ISLPED 2005.

20. J. Stark, M Brown, Y Patt, “On Pipelining Dynamic Instruction Scheduling Logic”, in 33rd
Int’l. Symp. on Microarchitecture, 2000.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 550–559, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Instruction Recirculation:
Eliminating Counting Logic in Wakeup-Free Schedulers

Joseph J. Sharkey and Dmitry V. Ponomarev

Department of Computer Science, State University of New York
Binghamton, NY 13902 USA

{jsharke,dima}@cs.binghamton.edu

Abstract. The dynamic instruction scheduling logic (the issue queue and the
associated control logic) forms the core of an out-of-order microprocessor. Tra-
ditional scheduling mechanisms, based on tag broadcasts and associative tag
matching logic within the issue queue are limited by high power consumption,
large access delay and poor scalability. To address these inefficiencies, re-
searchers have proposed various flavors of so-called wakeup-free scheduling
logic. Such wakeup-free scheduling techniques remove the wakeup delay from
the critical path, but incur other forms of complexity, essentially stemming
from the need to keep track of the cycle when each physical register will be-
come ready and when each instruction can be (speculatively) issued. We pro-
pose instruction recirculation – a wakeup-free instruction scheduler design that
completely eliminates all counting and issue time estimation logic inherent in
all previously proposed wakeup-free schedulers. This complexity reduction is
also accompanied by 3.6% IPC improvement over the state-of-the-art wakeup-
free scheduler.

1 Introduction

High-performance superscalar microprocessors rely on dynamic scheduling mecha-
nisms to maximize instruction throughput across a wide variety of applications. The
traditional scheduling logic operates in two phases: instruction wakeup and instruc-
tion selection. During instruction wakeup, the instructions stored within the issue
queue (IQ) are associatively awakened by matching their source register addresses
(called tags) against the destination tags of the instructions already selected for the
execution. The selection logic, then, selects W out of N awakened instructions and
issues them for execution. It has been well documented in the recent literature that the
wakeup and selection logic form one of the most critical loops in modern superscalar
processors [18,22]. Unless wakeup and selection activities are performed atomically
(i.e. within a single cycle), dependent instructions cannot execute in consecutive cy-
cles, which seriously degrades performance. At the same time, both wakeup and se-
lection logic have significant delays [18], so if these activities are performed atomi-
cally, then the designers may be forced to either use the lower clock frequency or
limit the size of the IQ, neither of which is desirable. In addition, traditional broad-
cast-oriented schedulers suffer from high power consumption, which is mainly due to
broadcasting the destination tags across long, highly capacitive wakeup buses. For

Instruction Recirculation: Eliminating Counting Logic in Wakeup-Free Schedulers 551

example, the scheduling logic of the Alpha 21264 dissipates about 18% of the total
chip power [11].

To address the aforementioned deficiencies, researchers have proposed wakeup-
free scheduling schemes, where the traditional tag broadcast and associative tag
matching mechanisms are replaced with the capability to predict the issue cycle of an
instruction based on the availability information about the source registers. Such
wakeup-free scheduling techniques [5,6,8,12,17,19] remove the wakeup delay from
the critical path, but need to keep track of the cycle when each physical register be-
comes ready so that the instructions can be issued just in time to access the value as
soon as it becomes available. This is typically accomplished with the use of counters
that track the availability of physical registers and also control when instructions can
be issued (we describe a generic wakeup-free scheduler in more detail in Section 3).
Due to the presence of a large number of these multi-bit counters and the issue time
estimation logic, wakeup-free schedulers still incur substantial design complexity.

In this paper, we attempt to improve the performance/complexity trade-offs in the
design of wakeup-free schedulers by exploiting the observation that most instructions
that are selected for issue are typically among the few oldest in the IQ. Specifically,
we introduce a technique called Instruction Recirculation, which uses a compacting
IQ, where only N instructions at the head of the queue are considered for execution
each cycle. Instead of relying on the traditional tag matching mechanisms, these N
instructions determine their readiness to issue by checking the status bits associated
with their source registers. Instructions at the head of the queue are recirculated back
to the tail of the queue if they were not able to issue for specified number of cycles.
This allows the younger instructions to be considered for scheduling in the presence
of the long-latency events, such as the cache misses. Our results show that instruction
recirculation achieves 3.6% better performance on the average than a state-of-the-art
wakeup-free scheduler, and at the same time avoids the need to implement the count-
ing logic for predicting the instruction issue time.

2 Simulation Methodology

Our simulation environment includes a detailed cycle-accurate simulator of the mi-
croarchitecture and cache hierarchy. We used a modified version of the Simplescalar
simulator [4] that implements separate structures for the IQ, re-order buffer, load-
store queue, register files, and the rename tables in order to more accurately model
the operation of modern processors. All benchmarks were compiled with gcc 2.6.3
(compiler options: -O2) and linked with glibc 1.09, compiled with the same options,
to generate the code in the portable ISA (PISA) format. All simulations were run on a
subset of the SPEC 2000 benchmarks consisting of 8 integer and 7 floating-point
benchmarks using their reference inputs. In all cases, predictors and caches were
warmed up for 1 billion committed instructions and statistics were gathered for the
next 500 million instructions. Table 1 presents the configuration of the baseline 4-
way processor.

552 Joseph J. Sharkey and Dmitry V. Ponomarev

3 Wakeup-Free Schedulers

Wakeup-free instruction scheduling schemes have recently emerged as a viable alter-
native to traditional broadcast-oriented scheduling logic in complexity-aware micro-
processor designs. Several variations of wakeup-free (a.k.a. broadcast-free) schedul-
ers have been proposed in the recent literature [1,5,6,9,12,16,17]. Instead of using
slow, complex and power-hungry CAM-based wakeup logic, these solutions rely on
the ability to predict the cycle in which all of an instruction’s input operands will
become ready and

. In all wakeup-free designs proposed until now, the counters
are used to count down the delay between dispatch and issue for each instruction and
also to keep track of the register availability information. Although the various
wakeup-free scheduling schemes differ in their implementation details, they are all
based on the common concept that the latencies of most instructions are deterministic
and that the instruction’s issue time can be fairly accurately predicted at the time of
instruction dispatching.

For the analysis in this paper, we implemented a generic wakeup-free scheduling
scheme, loosely based on the Cyclone scheduler [9]. At the time of instruction dis-
patching, a pre-scheduler is used to predict the number of cycles until each instruc-
tion will become ready for issue. We consider the pre-scheduler which is similar to
that of [9], with the addition of a bimodal load hit/miss predictor and a load/store
dependence predictor as proposed in [12] to improve the accuracy in scheduling load-
dependent instructions. Instructions passing through the pre-scheduling stage check
the availability of their source operands (by reading the availability counters) and use
the maximum of these values to determine the number of cycles that will elapse be-
fore the instruction is ready for issue. This result becomes the delay counter of the
instruction and is placed, along with the instruction itself, into the allocated IQ entry.
We assume that the delay counter calculation can be performed in parallel with regis-
ter renaming and thus it does not add an extra stage to the front end of the pipeline. If

Table 1. Configuration of a simulated processor

Parameter
Machine width 4-wide fetch, 4-wide issue, 4 wide commit
Window size issue queue – as specified, 128 entry LSQ, 256–entry ROB
Function Units and
Latency (total/issue)

4 Int Add (1/1), 2 Int Mult (3/1) / Div (20/19), 2 Load/Store (2/1), 2 FP
Add (2), 2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

Physical Registers 256 combined integer + floating-point physical registers
L1 I–cache 64 KB, 1–way set–associative, 128 byte line, 1 cycles hit time
L1 D–cache 64 KB, 4–way set–associative, 64 byte line, 2 cycles hit time
L2 Cache unified 2 MB, 8–way set–associative, 128 byte line, 6 cycles hit time
BTB 2048 entry, 2–way set–associative

Branch Predictor
Combined with 1K entry Gshare, 10 bit global history, 4K entry bimodal,
1K entry selector

Memory 128 bit wide, 140 cycles first chunk, 2 cycles interchunk
TLB 32 entry (I), 128 entry (D), fully associative

Instruction Recirculation: Eliminating Counting Logic in Wakeup-Free Schedulers 553

this extra stage is accounted for, the performance of the generic wakeup-free sched-
uler will be slightly worse than what is reported here.

Every cycle, the delay counters associated with each instruction in the IQ are dec-
remented by one. When the delay counter falls to zero, the instruction becomes
speculatively ready to execute, but must check the register ready bits of its source
operands to be certain before it can be selected for execution. The hardware support
for such checks is in the form of a bit-vector with one bit for each physical register. If
the check succeeds, indicating that all source operands are indeed ready, the instruc-
tion is selected. We limit the number of instructions that can check their ready bits in
a single cycle to only 8, requiring a register ready bit-vector with 16 read ports. Sim-
ple logic is assumed to arbitrate for these ports, using positional priority.

The IPC results for the generic wakeup-free scheduler with a 64-entry IQ are pre-
sented in Figure 1, along with the results for a 64-entry traditional atomic IQ where
wakeup and select activities are implemented as an atomic operation within a single
cycle. The wakeup-free scheme, as described above, exhibits 16.5% performance
degradation on the average as compared to the 64-entry atomic IQ. This is consistent
with the results presented in both [9] and [12], where the performance losses com-
pared to the baseline are 17% and 14% respectively (although each of those schemes
is presented for a machine configuration slightly different from ours). This perform-
ance loss can be attributed mainly to the inaccuracy in the instruction issue time esti-
mation due to variable latency operations such as memory accesses and possible de-
lays during instruction selection. As a result of mispredictions, non-ready instructions
may deny the issue bandwidth to the ready instructions, causing a delay in the issue
of those and leading to further mispedictions for the instructions dependent on the
delayed ones, leading to a so-called “snowball effect”. In the extreme case, all of the
instructions in the queue can compete for issue in the same cycle, rendering the issue
time estimation useless. In fact, we have observed such situation in our simulations
on numerous occasions.

Fig. 1. IPCs of wakeup-free and traditional broadcast-based schedulers

Although the wakeup-free scheme eliminates the tag broadcast and tag matching
logic in the scheduler, it does not come without a cost. Additional circuitry must be
added in the front end of the pipeline to make the delay predictions. This delay pre-
diction logic can become quite complex when multiple instructions are co-dispatched.
To take dependencies into account, adders with multiple inputs (K-1 inputs in the

554 Joseph J. Sharkey and Dmitry V. Ponomarev

case of a K-way machine) or an adder tree have to be used to get the initial counter
values of the co-dispatched instructions in the worst case. Such adder structures may
well form a critical path with the increase of the issue width.

Another source of complexity in the wakeup-free schedulers is the inherent count-
ing logic. Two sets of counters have to be maintained– the ones that track the register
availability information (one counter per physical register) and the ones that control
the number of cycles that each instruction waits in the IQ before attempting to issue
(one per instruction in the queue). The hardware structure that maintains the register
availability counters must be multi-ported and all of these counters need to be decre-
mented every cycle.

In the next section, we propose Instruction Recirculation - a wakeup-free sched-
uler design which achieves a better performance and completely eliminates all count-
ing and issue time estimation logic inherent in all previously proposed wakeup-free
schedulers.

4 Instruction Recirculation

The motivation for instruction recirculation stems from the observation that even in
an out-or-order machine, a large percentage of issued instructions are among the few
oldest instructions in the IQ. As demonstrated by Figure 2, more than 60% of all
dynamic instructions that are selected for execution in a processor with a 64-entry IQ
are among the 8 oldest in the scheduling window. Simply reducing the IQ size, how-
ever, is not a sufficient solution to the problem of complexity reduction because a
small queue quickly saturates under a long latency event, such as a cache miss, caus-
ing performance degradation.

Fig. 2. Percentage of dynamic instructions issued that are among the 8 oldest in a traditional
64-entry atomic scheduler

The solution that we propose instead is to have a scheduler that examines only a
small group of instructions in the window for execution, but is also capable of detect-
ing long latency events (such as cache misses) and quickly move dependent instruc-
tions out of the front-end of the queue (if they cannot issue for a predetermined num-
ber of cycles) to allow possibly independent instructions down the stream the chance
to execute. The older instructions can then be recirculated back into the tail end of the

Instruction Recirculation: Eliminating Counting Logic in Wakeup-Free Schedulers 555

queue at a later time. We call this technique instruction recirculation. In the rest of
this section we describe the details of our design.

The block diagram of instruction recirculation is shown in Figure 3. This design
relies on the use of a compacting IQ, somewhat similar to the Cyclone scheduler [9],
where instructions are dispatched to the tail block of the queue and work their way to
the head block, from where they eventually get issued. The IQ is organized into sev-
eral n-instruction blocks. Each row can compact independently of the other rows and
each instruction can compact forward only one block at a time within its row. Only N
instructions at the head of the queue participate in checking the register ready bit
(RRB) vector and selection each cycle. Finally, an N-entry recirculation buffer is
used. Its purpose is explained below. Conceptually, the instruction recirculation
scheduler can be viewed as a wakeup-free scheduler in which the instructions present
in the head block in any given cycle are predicted as “ready” and thus check the reg-
ister ready bit vector.

The scheduler of Figure 3 operates in the following manner. Every cycle, N in-
structions within the head block of the queue check the ready bits of their correspond-
ing source physical registers. If both sources are ready, and the instruction succeeds
in acquiring the issue slot, the instruction is issued and the corresponding row within
the IQ is compacted. Note that the issue rate from the head block is still limited by the
issue width of the processor, which is 4 in our experiments (same as in the baseline
machine). The recirculation scheduler (just as any other wakeup-free scheme), thus,
still requires the selection logic to arbitrate among the instructions in the head block.
However, this selection logic is much simpler than similar logic in the traditional
scheduler.

Fig. 3. Instruction Recirculation

When the instruction issue rate falls below a certain number, called the recircula-
tion threshold, N instructions in the head block are moved into the recirculation
buffer and the queue is compacted forward (for all rows). Such a compaction gives
the next N instructions in the queue the opportunity to execute if they are ready. The
scheduler remains in this state (issuing from the head block and compacting the indi-
vidual rows as needed) until the recirculation threshold is reached again. At this point,
the instructions in the head block are again moved, as before, into the recirculation
buffer and the instructions sitting in the recirculation buffer are moved into the tail

556 Joseph J. Sharkey and Dmitry V. Ponomarev

end of the queue. As instructions are circulated through the queue, they are each
given a chance to execute if they are ready.

Notice that it takes a different number of recirculations for each instruction to re-
turn to its original position at the head of the queue. In the worst case, an instruction
returns to the head block after K recirculations, where K is determined as the size of
the IQ divided by n. Some of the original instructions from the head block can return
there early if the compaction within certain rows progresses at a faster rate, i.e. the
rows are compacted individually in-between block recirculations. The normal instruc-
tion dispatching continues during instruction recirculation, but the instructions that
are already in the queue (i.e. recirculating) are always given higher priority over the
newly dispatched instructions for the access to the tail block of the queue.

The goal of this mechanism is to quickly respond to the falling issue rates from the
block of oldest instructions and consider other instructions for issue. This is useful if,
for example, the instructions at the head block depend on a load that missed in the
cache, but subsequent instructions are independent.

The selection of the recirculation threshold is critical to the performance of this
scheme. In some cases, it may be more beneficial to wait rather than recirculate the
entire block and encounter the full latency of multiple recirculations to bring these
instructions back into the head block of the queue. We evaluated many configurations
and present the results (Figure 4) for a few configurations that were representative of
the rest. All of the presented configurations have a 56-entry IQ with an 8-entry recir-
culation buffer for a total of 64-entries in the scheduler to match that of the baseline
case. Notice that in the interests of space we only present the averages across all
benchmarks in this figure. The configurations presented are marked as x/y and can be
interpreted as follows: the recirculation cycle occurs if, for x consecutive cycles, the
issue rate is y instructions or less. Recirculation can sometimes degrade performance
because it moves the oldest instructions out of the head of the queue for several cy-
cles and thus does not allow them to be considered for execution. Presumably, many
instructions deeper in the instruction window will be dependent on the oldest instruc-
tions, either directly or indirectly. Thus, it is important that the recirculation parame-
ters be chosen carefully to allow independent instructions the opportunity to execute,
but at the same time bring the oldest instructions back to the head of the queue
quickly. In the graph of Figure 4 we only show the configurations with y=0, experi-
ments with y=1 showed similar trends.

Fig. 4. IPC results of various configurations of the instruction recirculation scheduler. The
configurations presented are marked as x/y and can be interpreted as follows: the recirculation
cycle occurs if, for x consecutive cycles, the issue rate is y instructions or less

Instruction Recirculation: Eliminating Counting Logic in Wakeup-Free Schedulers 557

The best performance is achieved with the use of a 16/0 configuration, as shown
by the graph, which degrades performance by 12.9% compared to a 64-entry tradi-
tional broadcast-based scheduler. The larger thresholds (20/0 for example) suffer
because recirculations occur less often, and thus opportunities for independent in-
structions to execute are lost. The configurations with smaller threshold values (2/0,
4/0, 8/0) exhibit lower performance because instructions are recirculated too eagerly
and may take several cycles (depending on compaction patterns, as discussed above)
to return to the head block of the queue.

As a further comparison, the generic wakeup-free scheduler (as described in the
previous section) degrades performance by 16.5% as compared to the same baseline,
indicating that recirculation can perform 3.6% better than an aggressive state-of-the-
art wakeup-free scheduler.

Figure 5 presents the per-benchmark IPC values for the 64-entry atomic queue, the
generic wakeup-free scheduler from Section 3, and the best configuration for instruc-
tion recirculation. Instruction Recirculation outperforms the generic wakeup free
scheduler for 10 of the examined benchmarks. The largest differences are seen on art
and mcf, where recirculation shows a 149.6% and 21.3% improvement over the ge-
neric wakeup-free scheduler, respectively. This is because the poor memory behavior
of these two benchmarks significantly impacts the wakeup-free scheduler’s ability to
predict wakeup times. Instruction Recirculation, however, does not rely on predic-
tions and can dynamically adapt to the memory behavior of individual benchmarks.
The generic wakeup-free scheduler provides higher IPC than instruction recirculation
for five of the benchmarks (vpr, vortex, wupwise, swim, mesa), with the largest dif-
ference (8.5%) observed for the mesa benchmark.

Fig. 5. Per-benchmark IPC of the best configuration of Instruction Recirculation

5 Related Work

Scheduling techniques based on predicting the issue cycle of an instruction
[5,6,8,9,12,16,17] remove the wakeup delay from the critical path, but need to keep
track of the cycle when each physical register will become ready. [5] proposed the
“distance scheme issue logic” that reorders instructions during dispatch time based on
predicted wakeup times. In [8], the wakeup time prediction occurs in parallel with the
instruction fetching. [9,12] remove the counters from the IQ and instead use pre-

558 Joseph J. Sharkey and Dmitry V. Ponomarev

scheduling predictions to determine the placement of instructions in the IQ which, in
turn, determines the number of cycles until the instruction is considered for execu-
tion. [16] also removes the counters from the IQ and uses pre-scheduling predictions
to distribute instructions amongst the variable sized FIFOs.

Alternative mechanisms have also been proposed to reduce the complexity and ac-
cess delay of the dynamic scheduling logic. To pipeline the scheduling logic without
hindering the ability to execute dependent instructions back-to-back, Stark et.al. [22]
proposed to use the status of an instruction’s grandparents to wakeup the instruction
earlier in a speculative manner. Kim and Lipasti [14] proposed grouping of two (or
more) dependent single-cycle operations into so-called Macro-OP (MOP), which
represents an atomic scheduling entity with multi-cycle execution latency. As a result,
the scheduling logic can be pipelined with much smaller impact on the IPC. Other
proposals have introduced new scheduling techniques with the goal of designing
scalable dynamic schedulers [2,15,7,19,21]. Brown et.al. [3] proposed to remove the
selection logic from the critical path by exploiting the fact that the number of ready
instructions in a given cycle is typically smaller than the processor’s issue width.
Ernst et.al. [10] introduced specialized IQ entries for instructions with various num-
bers of non-ready operands. In [20], instruction packing was proposed to dynamically
assign instructions to either a full IQ entry or a half IQ entry, depending on the num-
ber of ready sources. In [13], half of the tag comparators are offloaded from the fast
wakeup bus and are connected to the slow wakeup bus, where the tags are broadcast
one cycle later. In [1], instructions are issued from multiple FIFO buffers such that
multiple dependency chains may be intermixed within a single FIFO.

6 Concluding Remarks

The wakeup logic of dynamic instruction schedulers has significant delay and power
consumption. To address this scalability of the schedulers, and/or support higher
clock frequencies, researchers have proposed wakeup-free scheduling solutions
where the traditional wakeup logic is replaced by the capability to estimate instruction
issue time through the use of counters. In this works, we extended these proposals
and introduced instruction recirculation – a wakeup-free instruction scheduler design,
which completely eliminates all counting and issue time estimation logic inherent in
all previously proposed wakeup-free schedulers. This complexity reduction is accom-
panied by a 3.6% IPC gain over the state-of-the-art wakeup-free scheduler.

Acknowledgements

We would like to thank Matt Yourst for help with the microarchitectural simulation
environment. We would also like to thank Kanad Ghose and Deniz Balkan for useful
comments on earlier drafts of this paper.

Instruction Recirculation: Eliminating Counting Logic in Wakeup-Free Schedulers 559

References

1. J. Abella, A.Gonzalez, “Low-Complexity Distributed Issue Queue”, HPCA, 2004.
2. E. Brekelbaum et. al., “Hierarchical Scheduling Windows”, in Proc. of MICRO, 2002.
3. M. Brown, J. Stark, Y. Patt. “Select-Free Instruction Scheduling Logic”, in the 34th Inter-

national Symposium on Microarchitecture, 2001.
4. D. Burger and T. Austin, "The SimpleScalar tool set: V. 2.0", Tech. Report, Dept. of CS,

Univ. of Wisconsin-Madison, June 1997 and documentation for all Simplescalar releases.
5. R.Canal, A. Gonzalez, “A Low-Complexity Issue Logic”, in Proc. of the International Con-

ference on Supercomputing (ICS), 2000.
6. R.Canal, A.Gonzalez, “Reducing the Complexity of the Issue Logic”, in Proc, of the Int’l.

Conf. on Supercomputing (ICS), 2001.
7. A. Cristal, et.al., “Out-of-Order Commit Processors”, in Proc. of HPCA, 2004.
8. T. Ehrhart, S. Patel, “Reducing the Scheduling Critical Cycle using Wakeup Prediction”, in

HPCA 2004.
9. D. Ernst, A. Hamel, T.Austin, “Cyclone: a Broadcast-free Dynamic Instruction Scheduler

with Selective Replay”, in Proc. of Int’l. Symp. On Computer Architecture (ISCA), 2003.
10. D. Ernst, T. Austin, “Efficient Dynamic Scheduling Through Tag Elimination”, in the 29th

Int’l. Symp. on Comp. Architecture, 2002.
11. M.K. Gowan, L.L. Biro, D.B. Jackson, “Power considerations in the Design of the Alpha

21264 microprocessor”, in the Proceedings of the 35th ACM/IEEE Design Automation
Conference (DAC 98), 1998.

12. J. Hu, N. Vijaykrishnan, M. Irwin, “Exploring Wakeup-Free Instruction Scheduling”, in
Proc. of the Int’l. Symp. on High Perf. Computer Architecture (HPCA), 2004.

13. I.Kim, M.Lipasti, “Half-Price Architecture”, in Proceedings of ISCA 2002.
14. I. Kim and M. Lipasti, “Macro-Op Scheduling: Relaxing Scheduling Loop Constraints”, in

the 36th International Symposium on Microarchitecture, 2003.
15. A. Lebeck et. al. "A Large, Fast Instruction Window for Tolerating Cache Misses”, in the

29th Intl. Symp. on Comp. Arch. (ISCA), 2002.
16. Y.Liu, et. al.,“Scaling the Issue Window with Look-Ahead Latency Prediction” ICS 2004.
17. P. Michaud, A. Seznec, “Data-Flow Prescheduling for Large Instruction Windows in Out-

of-Order Processors”, HPCA 2001.
18. S. Palacharla, et.al. “Complexity-Effective Superscalar Processors”, in ISCA 1997.
19. S. Raasch, N.Binkert, S.Reinhardt, “A Scalable Instruction Queue Design Using Depend-

ence Chains”, in Proc. of ISCA, 2002.
20. J. Sharkey, et. al. “Instruction Packing: Reducing Power and Delay of the Dynamic Sched-

uling Logic”, in Proc. ISLPED 2005.
21. J. Sharkey, D. Ponomarev, “Non-Uniform Instruction Scheduling”, in Proc. Euro-Par,

2005.
22. J. Stark, M Brown, Y Patt, “On Pipelining Dynamic Instruction Scheduling Logic”, in 33rd

Int’l. Symp. on Microarchitecture, 2000.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 560–570, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Early Experience with Scientific Applications
on the Blue Gene/L Supercomputer

George Almasi1, Gyan Bhanot1, Dong Chen1, Maria Eleftheriou1,
Blake Fitch1, Alan Gara1, Robert Germain1, John Gunnels1, Manish Gupta1,
Philip Heidelberg1, Mike Pitman1, Aleksandr Rayshubskiy1, James Sexton1,
Frank Suits1, Pavlos Vranas1, Bob Walkup1, Chris Ward1, Yuriy Zhestkov1,

Alessandro Curioni2, Wanda Andreoni2, Charles Archer3, José Moreira3,
Richard Loft4, Henry Tufo4,5, Theron Voran5, and Katherine Riley6

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
{gheorghe,gyan,chendong,mariae,bgf,alangara,rgermain,

gunnels,mgupta,philiph,pitman,arayshu,sextonjc,
suits,vranasp,walkup,tjcw,yuriyz}@us.ibm.com

2 IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
{cur,and}@zurich.ibm.com

3 IBM Systems and Technology Group, Rochester, MN, USA
{archerc,jmoreira}@us.ibm.com

4 National Center for Atmospheric Research, Boulder, CO, USA
loft@ucar.edu

5 University of Colorado at Boulder, Boulder, CO, USA
{tufo,theron.voran}@cs.colorado.edu
6 Argonne National Laboratory, Argonne, IL, USA

riley@mcs.anl.gov

Abstract. Blue Gene/L uses a large number of low power processors, together
with multiple integrated interconnection networks, to build a supercomputer
with low cost, space and power consumption. It uses a novel system software
architecture designed with application scalability in mind. However, whether
real applications will scale to tens of thousands of processors has been an open
question. In this paper, we describe early experience with several applications
on a 16,384 node Blue Gene/L system. This study establishes that applications
from a broad variety of scientific disciplines can effectively scale to thousands
of processors. The results reported in this study represent the highest perform-
ance ever demonstrated for most of these applications, and in fact, show effec-
tive scaling for the first time ever on thousands of processors.

1 Introduction

A popular approach to building supercomputers has been to build clusters of high
performance nodes (based on symmetric multiprocessors or vector processors) with
high performance interconnection networks. Examples of systems that have been
built, or are being built, using this approach include the Earth Simulator [1], ASC
Purple [2], and the Columbia [3] systems. At the highest scales, these machines con-
sume a great deal of power and require a lot of floor space. For example, the Earth
Simulator, which delivers a peak performance of 41 Teraflop/s, consumes about 7
MW of power, and occupies an area of about 70,000 square feet.

Early Experience with Scientific Applications on the Blue Gene/L Supercomputer 561

The IBM Blue Gene/L (BG/L) [4] represents a different way of building super-
computers. It uses low power processors, which allows a large number of processors
to be packed in a given volume (2048 processors in a rack), with aggregate heat dis-
sipation staying within air cooling limits. Furthermore, it uses system-on-a-chip tech-
nology to integrate powerful torus and collective networks, and uses a novel software
architecture [5] to support high levels of scalability. While BG/L offers the promise
of making massively parallel systems accessible, and promising results have been
reported on a 512 node prototype [6], how far the applications can scale has been an
open question. Previous results on scaling of MPI applications on any platform have
necessarily been limited (by hardware existence) to fewer than ten thousand proces-
sors. Many previous studies have shown problems with the scaling of applications to
thousands of processors due to factors like computational noise [7].

This paper, together with a companion paper [8] on physics and material science
applications developed by researchers at Lawrence Livermore National Laboratory,
explores the scaling of applications to thousands of processors. It describes early
experience with several scientific applications on a 16,384 node BG/L system. This
system, which occupies less than 400 square feet of floor space, and consumes about
400 KW in power, was recently rated as the fastest supercomputer in the world (#1 on
the TOP500 list), with a sustained LINPACK performance of 70.72 Teraflop/s [9].
We show that the scientific applications targeted in this study scale well on the BG/L
system, thus validating the design of BG/L and establishing the ability to scale MPI
applications to several thousand processors. This study also uncovers several oppor-
tunities for performance improvements through software optimizations.

2 Overview of BG/L

This section reviews some architectural features of BG/L that have a significant im-
pact on performance.

2.1 BG/L Hardware

Each BG/L node [1] has two 32-bit embedded PowerPC (PPC) 440 processors, which
have 32 KB each of L1 data and instruction caches. The BG/L nodes support pre-
fetching in hardware, based on detection of sequential data access. The prefetch
buffer for each processor holds 64 L1 cache lines (16 128byte L2/L3 cache lines) and
is referred to as the L2 cache. Each chip also has a 4 MB L3 cache built from embed-
ded DRAM, and an integrated DDR memory controller. A single BG/L node supports
512 MB memory. The PPC 440 processor does not support hardware cache coher-
ence at the L1 level. However, there are instructions to invalidate a cache line or flush
the cache, which can be used to manage coherence in software.

BG/L employs a SIMD-like extension of the PPC floating-point unit, which we re-
fer to as the double floating point unit or DFPU [10]. The DFPU adds a secondary
FPU to the primary FPU as a duplicate copy with its own register file. BG/L supports
a comprehensive set of parallel instructions on double-precision floating-point data.

562 George Almasi et al.

The BG/L ASIC supports five different networks: torus, collective, global inter-
rupts, Ethernet, and JTAG. The main communication network for point-to-point mes-
sages is a three-dimensional torus. Each node contains six bi-directional links for
direct connection with nearest neighbors. The raw hardware bandwidth for each torus
link is 2 bits/cycle (175 MB/s at 700 MHz) in each direction. The torus network pro-
vides both adaptive and deterministic minimal path routing in a deadlock-free man-
ner. The collective network implements broadcasts and reductions with a target
hardware latency of 1.5 microseconds for a 64K node system. The global interrupts
network supports a fast barrier operation, also with a target latency of 1.5 microsec-
onds for a 64K node system. On BG/L, I/O is supported via special I/O nodes, which
are architecturally identical to compute nodes, but are attached to the Gbit/s Ethernet
network, which connects the BG/L core to external file servers and host systems. The
booting, control and monitoring of the BG/L system is done over the JTAG network.

2.2 BG/L Software

The programming model supported in BG/L is single program multiple data
(SPMD), with message passing supported via an implementation of the Message
Passing Interface (MPI). A BG/L job can be submitted in one of two modes. In co-
processor mode (CPM), which is the default mode, a single application (MPI) process
runs on each compute node – one of the processors of the compute node is used for
computation, and the other is used for offloading part of the communication opera-
tions. In virtual processor mode (VNM), two application processes are run on each
compute node, one on each of the two processors.

BG/L uses a hierarchical organization of software, described in further details in
[5]. User applications run exclusively on compute nodes under the supervision of a
simple, minimalist compute node kernel (CNK). The I/O nodes run a customized
version of Linux. Many system calls (such as read and write) are not directly exe-
cuted in the compute node, but are function shipped through the collective network to
the “parent” I/O node. The control system is implemented as a collection of processes
running in an external computer, called the service node for the machine. All of the
visible state of BG/L is maintained in a commercial database on the service node.

BG/L provides an operating environment with a very low level of “computational
noise” (interference from operating system activity), about two orders of magnitude
lower than traditional clusters and the ASCI Q system [11]. It also supports low la-
tency communication (latency to nearest neighbor is about 3.3 microseconds, or 2350
processor cycles), with a low half-bandwidth point (half of asymptotic bandwidth is
achieved at a message size smaller than 1 KB for several MPI bandwidth tests, such
as point-to-point sends to all nearest neighbors and alltoall collective operation).

3 Applications Performance Results

This section describes the applications we used in this study and the performance of
these applications on the BG/L system at IBM Rochester.

Early Experience with Scientific Applications on the Blue Gene/L Supercomputer 563

3.1 Blue Matter

The Blue Matter application framework has been developed at IBM Research to ad-
vance our understanding of biologically important phenomena such as protein folding
through large scale simulation [12]. In addition to molecular dynamic simulations, the
Blue Gene science team also aims to run using the “replica exchange” method in
which a large number (32-128) of simulations are run at different temperatures and
are coupled via periodic exchanges using a Metropolis Monte Carlo type criterion.
This yields an application with a hierarchy of communication—tight coupling within
individual trajectories and loose coupling between them. The loose coupling comes
about because carrying out the exchange attempts only requires an “all gather” of a
single double precision number from each replica once every few hundred to few
thousand time steps. Using this technique one can use thousands of nodes with a
parallel efficiency determined by that of the component molecular dynamics simula-
tions.

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Node Count

Total Time Step
Reciprocal Space

Real Space (from single core run)
Local Force Reduction

Local Position Broadcast
Bonded Forces

Fig. 1. Performance of Blue Matter on BG/L

Figure 1 shows the total time for a single iteration on a 43,222 atom system as a
function of node count, and also the major contributions to the total time. We are now
using a parallel decomposition that maps the simulation volume directly onto the 3D
torus topology of BG/L and have removed our dependence on the fixed and floating
point Allreduce collectives used in our previous work [13]. The current decomposi-
tion employs a neighborhood broadcast and reduction that is implemented using the
Alltoallv collective. We carry out the reciprocal space operations requiring the com-
putation of a 3D-FFT on CPU 0 while off-loading the real space non-bond computa-
tions (which require no communication) on to CPU 1. The scalability plot of the real
space non-bond computation was taken from a separate run that used only one CPU
because our tracing utility only functions on the first CPU.

Overall, as Figure 1 shows, we observe nearly ideal speedup up to 512 nodes and a
drop in parallel efficiency to about 32% at 4096 nodes. This is scalability to a node
count and value of atoms/node in a biomolecular simulation with proper treatment of

564 George Almasi et al.

electrostatics that is unique—for reference, the NAMD package scaled to 2250 nodes
(on a 92K atom system) on the PSC Lemieux system before losing performance [14].
From the data plotted in Figure 1, we can extrapolate the parallel efficiency of the
replica exchange technique, which uses multiple trajectories, for a 128 replica simula-
tion of the 43K atom system using 512 nodes/replica to be over 90% on 64K nodes
(normalizing the parallel efficiency to be 100% at 32 nodes for a single replica).

3.2 Car-Parrinello Molecular Dynamics (CPMD)

The Car-Parrinello Molecular Dynamics code (CPMD) originated in IBM’s Zurich
Research Laboratory in the early 1990s [15]. It is an implementation of density func-
tional theory using plane waves and pseudopotentials, and is particularly designed for
ab-initio molecular dynamics. The CPMD code is widely used for research in compu-
tational chemistry, materials science, and biology. It has been licensed to several
thousand research groups in over 50 countries.

The application is mainly written in Fortran, parallelized for distributed-memory
with MPI, with an option to add an additional level of parallelism using OpenMP for
multi-processor nodes. CPMD makes extensive use of three-dimensional FFTs, which
require efficient all-to-all communication [16]. The scalability was improved using a
task-group implementation of the FFT with a special mapping to the BG/L torus [17].
Moreover, overlap matrices, which were replicated in the standard CPMD code, have
been distributed on a subset of the nodes – to be able to handle large systems (more
than 3000 electronic states). The single processor performance of CPMD was opti-
mized for BG/L using SIMD-enabled routines for the most common calls such as
DGEMM, DCOPY, AZZERO, and FFT [6].

Figure 2 shows strong-scaling tests on two systems. The first is a small test case of
about 100 atoms – a 32 molecule model of liquid water, with a 70 Rydberg cutoff,
while the second is a 1000 atom model of the liquid/vapour interface of methanol,
with a cutoff of 140 Rydberg. In both cases a gradient corrected form (PBE) of the
exchange-correlation functional was used.

For the first system (Figure 2a), a good scaling up to 512 processors is obtained
(with a parallel efficiency greater than 40%). This corresponds to the limit of the data
granularity of the model. Using more processors would have meant that some proces-
sors remain idle for a significant portion of the time. Low latency in the MPI layer
and a total lack of system daemons contribute to very good scalability on BG/L. The
execution time on 512 BG/L processors was less then 0.35 seconds per step; which is
much better than the 1.5 seconds per step that we obtained on IBM p690 SMP servers
(1.3 GHz) clustered via double colony switches, where scalability was limited to 128
processors (the Federation switch would enhance this performance by ~30%, but
would not enhance scalability). The result on BG/L represents the highest perform-
ance obtained for ab-initio molecular dynamics simulation for a system with about
100 atoms [17]. This allows one to simulate a system of this size with fully ab-initio
methods with throughput of 175 seconds per day using a fraction of a BG/L rack.

The second test case (Figure 2b) has better data granularity because it is 100 times
larger in terms of the amount of data storage required. For this reason, this test case is

Early Experience with Scientific Applications on the Blue Gene/L Supercomputer 565

not latency bound and good scaling up to 4096 processors was observed. The parallel
efficiency is more than 90% up to 1024 processors and more than 50% up to 4096
processors. This was obtained by using a taskgroup parallelization scheme and an
optimized mapping to the BG/L hardware [17].

The third test case is a prototypical case in which the linear algebra involved in the
orthogonalization of the electronic states starts to dominate the computation (here we
have more than 5000 electronic states) and a newly implemented distributed orthogo-
nalization algorithm becomes essential in order to fit the problem into the available
memory per node (512MB). Figure 3 shows the sustained performance (considering
the number of measured floating point operations and not pseudo operations) for a
path-integral ab-initio molecular dynamics simulation, where an additional paralleli-
zation layer (over the replicas) is available. We obtain a performance close to 46% of
peak at 16K processors and 38% at 32K processors; this value is quite good, espe-
cially considering the application, which has memory-intensive and network-
intensive algorithms like the 3D-FFT.

 (a) (b)

Fig. 2. Strong scaling of CPMD on BG/L: (a) ~100 atom simulation (speedup normalized to 16
procs), (b) ~1000 atom simulation (speedup normalized to 256 procs)

Fig. 3. Strong scaling of CPMD to 32K processors (in virtual node mode)

566 George Almasi et al.

3.3 FLASH

FLASH is a parallel adaptive-mesh multi-physics simulation code designed to solve
nuclear astrophysical problems related to exploding stars [18]. It has been developed
as part of an ASC, DOE project at the University of Chicago, and won a Gordon Bell
prize in 2000. The FLASH code solves the Euler equations for compressible flow and
the Poisson equation for self-gravity.

The test run on BG/L was a highly resolved two-dimensional weak scaling sod
(Sod, G. 1978, JCP, 27, 1) problem. The simulation exercises the core piece-wise
parabolic hydrodynamics of FLASH and aggressively exercises the adaptive grid.
The FLASH sod problem has been a standard benchmark for FLASH developers
evaluating the scalability of a system’s inter-connect. For most FLASH science runs,
total memory and communication between nodes are the most important limiting
factors; users need lots of memory and a scalable interconnect between it all. There-
fore, weak scaling is the primary FLASH benchmark target.

Currently, simulations based on FLASH are often run on hundreds to thousands of
processors on systems like IBM SP Seaborg (NERSC), QSC (LANL) and MCR
Linux cluster (LLNL). It has been run up to 16,384 nodes on BG/L and the total times
for various platforms for a weak scaling study (fixed problem size per processor) are
presented below. The three different BG/L systems listed are evolutions of the system
at IBM Watson. The figure shows that on the QSC and MCR systems, FLASH scales
poorly beyond 256 processors. On the Seaborg system, FLASH scales well below
1024 processors, but runs into problems beyond that level. On BG/L, FLASH scales
almost perfectly up to 16K processors (on a 16K node system in coprocessor mode).
Experience on other systems has demonstrated explicit sensitivity to the inter-connect
during the re-gridding phase of the multigrid algorithm. We believe that the excellent
scaling on BG/L is due to a combination of good message passing performance and
low level of computational noise ensured by BG/L software. We suspect that the
synchronization maintained by low noise eliminates overhead in global operations
normally lost to barriers.

Fig. 4. Weak scaling of FLASH on different architectures

Early Experience with Scientific Applications on the Blue Gene/L Supercomputer 567

3.4 HOMME

NCAR researchers have built a scalable and efficient spectral-element-based atmos-
pheric dynamical core using the Computational Science Section's High Order Method
Modeling Environment (HOMME) [19]. Atmospheric moist processes involving
phase changes of water are a fundamental component of atmospheric dynamics and
are the most uncertain aspect of climate change research. Simulation of moist proc-
esses is challenging because the presence of moisture leads to a new class of fluid
motions (moist convection), which is a small-scale phenomenon requiring both very
high horizontal and vertical resolution (on the order of a kilometer). The moist Held-
Suarez test case extends the standard (dry) Held-Suarez test of the hydrostatic primi-
tive equations by introducing a moisture tracer and simplified physics. It is the next
logical test for a dynamical core beyond dry dynamics.

HOMME is written using flexible and efficient F90 modules. The parallel imple-
mentation is hybrid MPI/OpenMP. Contiguous groups of elements are distributed to
processors and computation is loosely synchronous. The spectral element kernels are
similar to level 3 basic linear algebra subroutines such as matrix-matrix multiply.
These operations have an O(n) flops to memory access ratio and perform well on
modern cache-based microprocessor architectures where CPU-main memory band-
width increases have significantly lagged processor speed. The physics modules rely
heavily on (vector) intrinsic functions. Communication routines are built on top of the
MPI message-passing library.

Fig. 5. Strong scaling of HOMME on BG/L: moist Held-Suarez test case, 6 x 1282 elements, 96
vertical levels, and explicit integration with Δt = 4 seconds

To assess performance on BG/L, a moist Held-Suarez test case configured to
match the resolution of the 2002 Gordon Bell AFES run which achieved 26.58 Tera-
flops on the Earth Simulator was used. This required a grid with 98,304 horizontal

568 George Almasi et al.

elements and 96 vertical levels. Performance results are plotted for a 32,768 node
BG/L system at Rochester using both CPM and VNM mode (we were able to run
HOMME on the recently installed 32K node system). The total amount of work (total
flop count to solve the system) was held constant while increasing the processor
count (strong scaling), until, in the 32,768 processor runs there were only three ele-
ments per processor. The data is displayed as sustained MFLOPs per processor and
ideally should have a flat profile. To show the importance of properly mapping into
the torus we show data for both the grouped and snake mapping strategies. In the
grouped mapping elements are assigned to the torus in lexicographical order with
both processors on a node filled in sequence. The snake mapping places tasks in 2 x 2
node rectangles through the torus, again filling both processors on a node in se-
quence. At large processor counts the snake mapping is clearly superior as the
grouped mapping performance degrades sharply beyond approximately 12,000 proc-
essors.

3.5 QCD

The QCD code used in this study does a first-principles numerical simulation of
Quantum Chromo Dynamics, the theory of the strong nuclear interactions, using
Lattice Gauge Theory. In most full QCD calculations, more than 90% of the cycles
are spent in a small kernel that is called the Wilson D-slash operator. It is therefore
necessary to optimize this kernel. The kernel was optimized based on specific BG/L
hardware features in several ways: FPU operations were grouped to use the DFPU
instructions and FPU computations were arranged to avoid pipeline conflicts and to
overlap with the load/store pipeline where possible. Memory storage ordering was
chosen so that minimal pointer arithmetic was needed. Floating point load/store op-
erations were carefully arranged to take advantage of the cache hierarchy and the
CPU’s ability to issue up to three outstanding loads before stalling. A thin and effec-
tive nearest-neighbor communication layer that interacted directly with the torus
network hardware was used to do the data transfers.

Fig. 6. Weak scaling of QCD on BG/L

Figure 6 shows weak scaling of QCD on up to 4096 processors: in June 2004,
BG/L became the first system ever to sustain >1 Teraflop/s performance on QCD.

Early Experience with Scientific Applications on the Blue Gene/L Supercomputer 569

The computation was done using 1024 processors. Furthermore, the code scaled well
to 4096 processors. The computational capacity of BG/L can help scientists perform-
ing QCD computations avoid approximations that make the results unreliable, and
produce more reliable results to this problem.

4 Conclusions

In this paper, we have presented our experience with several applications on a 16,384
node BG/L system. Our study shows that these applications, which have been tar-
geted to smaller systems so far, can effectively scale to the large BG/L system with a
modest level of additional effort. This study represents the first time these applica-
tions have been scaled effectively to thousands of processors. These results clearly
validate the scalability of the hardware and the software architecture of Blue Gene/L.
We hope to improve these results further via software enhancements, and pursue
scaling of these applications to levels of a hundred thousand processors in the coming
year.

References

1. S. Habata, M. Yokokawa, S. Kitawaki. The Earth Simulator. In NEC Research and Devel-
opment, 44(1), January 2003.

2. ASC Purple: Fifth Generation ASC Platform. http://www.llnl.gov/asci/platforms/purple/.
3. NASA Unveils its Newest, Most Powerful Supercomputer.

http://www.nasa.gov/centers/ames/research/lifeonearth/lifeonearth-projectColumbia.html
4. N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In SC2002 – High Per-

formance Networking and Computing, Baltimore, MD, November 2002.
5. G. Almasi, R. Bellofatto, J. Brunheroto, C. Cascaval, J. Castaños, L. Ceze, P. Crumley, C.

Erway, J. Gagliano, D. Lieber, X. Martorell, J. Moreira, A. Sanomiya, and K. Strauss. An
Overview of the BlueGene/L System Software Organization (Distinguished Paper). Pro-
ceedings of the 2003 International Conference on Parallel and Distributed Computing
(Euro-Par 2003). August 26-29, 2003. Klagenfurt, Austria. pp. 543-555.

6. G. Almasi, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta, A. Henning, J. Moreira, B.
Walkup, A. Curioni, C. Archer, L. Bachega, B. Chan, B. Curtis, S. Brunett, G. Chukkapalli,
R. Harkness, W. Pfeiffer. Unlocking the Performance of the BlueGene/L Supercomputer.
SC 2004: High Performance Computing, Networking and Storage Conference, Pittsburgh,
PA, November 2004.

7. F. Petrini, D. Kerbyson and S. Pakin. The Case of the Missing Supercomputer Perform-
ance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In IEEE/ACM
SC2003, Phoenix, AZ, November 2003.

8. G. Almasi et al. Scaling physics and material science applications on a massively parallel
Blue Gene/L system. International Conference on Supercomputing, Cambridge, MA, June
2005.

9. TOP500 Supercomputer Sites, http://www.top500.org.
10. L. Bachega, S. Chatterjee, K. Dockser, J. Gunnels, M. Gupta, F. Gustavson, C. Lapkowski,

G. Liu, M. Mendell, C. Wait, T.J.C. Ward. A High-Performance SIMD Floating Point Unit
Design for BlueGene/L: Architecture, Compilation, and Algorithm Design. Parallel Archi-
tecture and Compilation Techniques (PACT 2004), Antibes Juan-les-Pins, France, Sept-Oct
2004.

570 George Almasi et al.

11. K. Davis, A. Hoisie, G. Johnson, D. Kerbyson, M. Lang, S. Pakin and F. Petrini. A Per-
formance and Scalability Analysis of the BlueGene/L Architecture. In IEEE/ACM SC2004,
Pittsburgh, PA, November 2004.

12. B.G. Fitch, R.S. Germain, M. Mendell, J. Pitera, M. Pitman, A. Rayshubskiy, Y. Sham, F.
Suits, W. Swope, T.J.C. Ward, Y. Zhestkov, R. Zhou. Blue Matter, an application frame-
work for molecular simulation on Blue Gene, Journal of Parallel and Distributed Comput-
ing, 2003, pp. 759-773.

13. R.S. Germain, et al. Early performance data on the Blue Matter molecular simulation
framework. IBM Journal of Research and Development, 49(2/3):447–456, 2005.

14. J.C. Phillips, G. Zheng, S. Kumar, and L.V. Kale. NAMD: biomolecular simulation on
thousands of processors. Supercomputing 2002 Proceedings, 2002.

15. CPMD home page. http://www.cpmd.org.
16. J. Hutter and A. Curioni. Dual-level parallelism for ab initio molecular dynamics: Reaching

teraflop performance with the CPMD code, Parallel Computing, (31), 2005, pp. 1-17.
17. J. Hutter and A. Curioni. Car-Parrinello Molecular Dynamics on Massively Parallel Com-

puters, ChemPhysChem, 2005, in press.
18. FLASH code. www.flash.uchicago.edu/
19. HOMME code. http://www.homme.ucar.edu/

A Detailed Study on Phase Predictors

Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{fgvdeput,leeckhou,kdb}@elis.UGent.be

Abstract. Most programs are repetitive, meaning that some parts of a
program are executed more than once. As a result, a number of phases
can be extracted in which each phase exhibits similar behavior. These
phases can then be exploited for various purposes such as hardware adap-
tation for energy efficiency. Temporal phase classification schemes divide
the execution of a program into consecutive (fixed-length) intervals. In-
tervals showing similar behavior are grouped into a phase. When a tem-
poral scheme is used in an on-line system, phase predictors are necessary
to predict when the next phase transition will occur and what the next
phase will be. In this paper, we analyze and compare a number of existing
state-of-the-art phase predictors using the SPEC CPU2000 benchmarks.
The design space we explore is huge. We conclude that the 2-level burst
predictor with confidence and conditional update is today’s most accu-
rate phase predictor within reasonable hardware budgets.

1 Introduction

A computer program execution typically consists of several phases of execution
where each phase exhibits its own behavior. Being aware of this large-scale time-
varying behavior is key to understanding the behavior of the program as a whole.
Phase behavior can be exploited for various purposes, ranging from performance
modeling [1], compiler optimizations [2], hardware adaptation [3][4][5][6][7], etc.
For example in phase-based hardware adaptation, if we know that particular
parts of the processor are unused during some program phase, we can turn off
those parts during that phase resulting in a reduced energy consumption without
affecting overall performance.

One way of identifying phases is to divide the complete program execution
into fixed-length instruction intervals and to group instruction intervals based
on the code that is being executed during those intervals—this is often referred
to as the temporal approach [1]. This means that intervals that execute the
same code will be grouped together in what will be called a phase. When this
phase classification scheme is used in a phase-based optimization system, it is
important to be able to predict when the next phase transition will occur and
what the next phase will be. In other words, the phase predictor needs to predict
what the phase ID of the next execution interval will be. This way, the system
can proactively respond to predicted phase changes.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 571–581, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

572 Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

The first contribution of this paper is to study today’s state-of-the-art phase
predictors in detail. The design space we explore is huge as we explore a large
number of possible design parameters: the phase predictor’s type, its size, its
associativity, its confidence mechanism, its update mechanism, etc. We do this
for two fixed-length intervals lengths, namely 1M and 8M intervals, using the
complete SPEC CPU2000 benchmark suite. Our second contribution is that we
improve the performance of existing phase predictor schemes by up to 14% by
adding conditional update. We conclude that the 2-level burst predictor with
confidence and conditional update is today’s most accurate phase predictor for
reasonable hardware budgets.

2 Previous Work

Duesterwald et al. [8] identify program execution phases based on hardware
metrics such as CPI, miss rates, etc. They also evaluate a collection of (statistical
and table-based) predictors to predict the behavior of the next phase. There is a
subtle but important difference between the predictors studied by Duesterwald
et al. and the phase predictors studied in this paper. Phase predictors predict the
next phase ID; the predictors studied by Duesterwald et al. predict the hardware
characteristics of the next phase.

Sherwood et al. [6] propose a dynamic phase classification method that is
based on the code that is being executed during a fixed-length interval of execu-
tion. Per interval of execution they compute a code signature which is a hashed
bitvector that keeps track of the basic blocks that are being executed. Sherwood
et al. also present and evaluate several phase predictors, namely the last phase
predictor, the RLE predictor and the Markov predictor.

In a follow-on study, Lau et al. [9] added confidence counters to the phase
predictors to improve their accuracy. Confidence counters are n-bit saturating
counters which are incremented or decremented on a correct or wrong prediction,
respectively. When the confidence counter exceeds a given threshold the phase
predictor is followed; if not, the default last phase prediction is taken. In their
study, they also made a distinction between phase change prediction – predicting
the next phase ID – and phase length prediction – predicting the length of the
next phase using run length classes.

In [7], Vandeputte et al. propose an offline phase analysis methode that is
capable of efficiently dealing with multi-configuration hardware where a large
number of hardware units can be configured adaptively. This offline phase anal-
ysis technique determines the phases based on a fused metric that incorporates
both phase predictability and phase homogeneity.

3 Methodology

We performed our analyses using the complete SPEC CPU2000 benchmark
suite. The binaries were taken from the SimpleScalar website. For all our re-
sults, phase classification is done offline by profiling the program using a train

A Detailed Study on Phase Predictors 573

Table 1. The number of phases extracted for the SPEC2000 benchmark suite using
1M and 8M instruction intervals.

Phases # Phases # Phases
Benchmark 1M 8M Benchmark 1M 8M Benchmark 1M 8M

bzip2 16 16 twolf 6 4 fma3d 2 2
crafty 2 2 vortex 2 2 galgel 9 11
eon 2 3 vpr 6 6 lucas 2 2
gap 25 10 ammp 12 13 mesa 6 13
gcc 31 27 applu 32 32 mgrid 4 18
gzip 19 13 apsi 7 2 sixtrack 6 4
mcf 10 10 art 6 3 swim 26 11
parser 10 4 equake 11 10 wupwise 9 8
perlbmk 2 2 facerec 28 16

input—we refer to [7] how this is done. All our profiles were collected with
SimpleScalar/Alpha [10]. For the phase classification, 1 million and 8 million
instruction intervals are used1. Once the phases of the program using this train-
ing input are determined, we determine the phase sequence of each benchmark
while executing the reference input; this is done by assigning a phase ID to each
execution interval based on the code that is being executed. The various phase
prediction schemes are then evaluated on these reference phase sequences. Ta-
ble 1 shows the number of phases for the 1M and the 8M instruction intervals for
all the SPEC CPU2000 benchmarks. Note that the number of unique phase IDs
is fairly small here compared to [1][9]. The reason is that our offline phase anal-
ysis approach [7] balances phase predictability and phase homogeneity, whereas
in [1][9], the main objective is phase homogeneity.

4 Phase Prediction

In this section, we will discuss a number of existing phase predictors. As men-
tioned before, the purpose of a phase predictor is to predict when the phase
change will happen and to what phase the program will shift. In fact, a phase
predictor predicts the phase ID of the next execution interval based on the his-
tory of phase IDs seen in recent history. The conception of these phase predictors
is based on the observation that many phases tend to be stable for several con-
secutive execution intervals and that there exist both regular and irregular phase
behavior. The predictors presented here exploit this notion. Before detailing the
various phase predictors that we explore in this paper, we first want to define a
phase burst to be a number of consecutive intervals belonging to the same phase,
i.e. all intervals in a phase burst have the same phase ID.

4.1 Basic Phase Predictors

In this subsection we describe a number of basic phase predictors. In subsec-
tion 4.2, we will add extra features to these predictors to further increase the
prediction accuracy.
1 Actually, each interval consists of 220 and 223 instructions, respectively.

574 Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

Last Value Predictor. The simplest predictor is the last value predictor which
predicts that the phase ID of the next interval will be the same as the phase ID
of the current interval. This predictor assumes that a phase burst is infinite; the
predictor thus never predicts a phase change. As a result, if the average burst
length is �, the misprediction rate using the last value predictor is 1/�. For many
benchmarks this predictor performs very well. This is because these benchmarks
have a rather large average burst length. For example, if the average burst length
is 20, the misprediction rate for the last value predictor is only 5%.

N-Level Burst Predictor. The last value predictor gives good results in case
the average burst length is large. However, if there are frequent phase changes,
the misprediction rate will become very high. For example, if the average burst
length is only 2, the misprediction rate of the last value predictor increases to
50%, meaning that there is a misprediction every other interval. For frequently
changing phase behavior, we thus need more advanced phase predictors.

The N-level burst predictor as proposed in [6][9] uses the phase IDs of the
last N phase bursts (including the current phase ID) as the history information
for indexing the prediction table. This history information is hashed and the
table is accessed using the lower order bits of the hash. The higher order bits
are used as tag in the prediction table.

Each entry in the prediction table stores a burst length � and the next phase
burst ID k. This means that the current phase burst will last for � execution
intervals and that the following phase burst will be of phase k. In other words,
the burst predictor will predict a phase change to phase k after being � intervals
in the current phase.

On a phase change, the entry in the prediction table is updated by writing the
effective burst length and the next phase ID after the phase change. Obviously,
the burst history is also updated.

N-Level RLE Predictor. Another predictor, similar to the N-level Burst Pre-
dictor is the N-level RLE Predictor [6]. The N-level RLE predictor uses the N
most recent (Phase ID, burst length) pairs as history information for indexing
the table. Notice the difference with the burst predictor—the N-level burst pre-
dictor only uses the phase IDs of the N most recent phase bursts, not their
corresponding burst lengths. This RLE history information is hashed together
of which the lower order bits are used to index the prediction table. The higher
order bits are used as a tag to determine if there is a tag match. If there is a
match, the phase ID stored in the table is used as phase ID for the next interval,
i.e. we predict a phase change. If there is no match, the current phase ID is used
as a prediction, i.e. we predict no phase change. The predictor table is updated
if the actual next phase ID differs from the next phase ID stored in the phase
table. A new entry is inserted if there was a phase change but no tag match. An
existing entry in the phase table is removed in case it predicted a phase change
when there was none.

A possible disadvantage of this scheme over the N-level burst prediction
scheme might be that there is now too many history information to be hashed

A Detailed Study on Phase Predictors 575

together for indexing the prediction table. Also, if the pattern of the burst lengths
is not very regular, the learning time of all the different combinations of phase
IDs with different burst lengths might increase drastically. This will be further
discussed when evaluating the different phase predictors.

4.2 Phase Predictor Improvements

The N-level burst and RLE predictor are beneficial in case the phase change
pattern is regular. However, if the pattern is rather irregular, predicting phase
changes might be difficult using the standard burst and RLE phase predictors.
Indeed, in order for a phase change prediction to be correct, both the burst
length as well as the next phase ID must be predicted correctly. Mispredicting
one of these can result in significant performance degradation or missed opti-
mization opportunities. In some cases, the total number of mispredictions for
the burst and RLE predictor might even end up to be larger than the last value
predictor. Therefore, a number of improvements have been proposed to enhance
the accuracy of these phase predictors.

Confidence. One way to reduce this amount of incorrectly predicted phase
changes is to add confidence counters to each entry in the phase table [9], and to
only make a phase change prediction in cases we are confident that the prediction
will be correct. In all other cases, we predict no phase change. The idea is to
verify a number of predictions before accepting them. In other words, only when
the confidence counter exceeds a given threshold, a phase change prediction is
made. When the confidence counter is lower than the given threshold, the last
value prediction is taken. The rationale behind this approach is that it is better
not to predict a phase change than to predict an incorrect phase change, since
an incorrect phase change may initiate an expensive hardware optimization.

Conditional Update. Until now, we described phase predictors in which the
information in the prediction table is updated immediately in case of a phase
change misprediction. However, for phase bursts with a regular pattern, it might
be useful not to change the prediction information immediately, but to wait and
see if the irregularity was not just caused by noise.

This can be accomplished by implementing conditional update. This is done
by adding saturating counters, which are updated in the same way as the con-
fidence counters (i.e. plus one on a correct prediction and minus one on an
incorrect prediction), and only update the phase table information when the
corresponding saturating counter is zero. This way, stable phase information is
not changed until we are sure that the misprediction was not caused by noise.

Confidence Combined with Conditional Update. Of course, confidence
and conditional update can also be used together to take into account both the
irregular patterns as well as the noise within the regular patterns. In this case,
a common saturating counter is used that is incremented and decremented in

576 Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

the same manner as described above. With this scheme, a phase change predic-
tion is only accepted if the counter is above some threshold, and the prediction
information is only updated if the saturating counter is zero. As will be shown
in the next section, this scheme gives the best results on average, both for the
N-level burst predictor as well as for the N-level RLE predictor.

5 Evaluation

In the last section, we described the basic design of a number of existing phase
predictors and their improvements. For each of these predictors, there remain
however many parameters that can be varied and optimized. A list of these pa-
rameters and their range is shown in Table 2: the number of levels that can be
used for the history information, the total number of entries in the prediction
table, the associativity of the table, the number of saturating bits in case con-
ditional update and/or confidence is used, the confidence threshold, the number
of tag bits stored in each entry to identify the information that is stored in that
entry, and the number of run-length bits to store the predicted burst length in
case of the burst predictors2. This results in a very large design space that must
be explored to obtain the best phase predictor for a given hardware budget.
For example, in case of the N-level burst predictor, when all the parameters are
varied according to Table 2, about 250,000 different configurations have to be
evaluated on the complete SPEC2000 benchmark suite.

Table 2. The range of each parameter we varied for the different predictors.

Predictor Type Levels Entries Assoc. Sat. Bits Confid. Thresh. Tag Bits Run-length Bits
N-Level Burst 1–4 1–4096 1–8 0–3 0–2 0–10 1–12
N-Level RLE 1–4 1–4096 1–8 0–3 0–2 0–10 0

Fig. 1 shows the average phase misprediction rates as a function of the hard-
ware cost for the N-level burst predictor with conditional update and confidence3

for a varying number of levels of history for 1M and 8M instruction intervals. To
make a fair comparison between the predictors, we calculated the pareto-optimal
predictor configurations by varying the parameters in Table 2. As can be seen
in Fig. 1, adding more levels of history has an influence on the overall predic-
tion accuracy. For small hardware budgets, using too much history information
leads to higher misprediction rates because of increased aliasing as more patterns
must be stored in the table. However, once the table becomes large enough, the
effect of aliasing reduces and using more history becomes beneficial. Of course,
using more history information also increases the learning time of the predictor.
This is why the 4-level predictor does not perform much better than the 3-level
predictor.
2 In case the last burst length appears to be larger than the maximum burst length

that can be stored, zero is used to represent ∞.
3 We used this type of predictor because this turns out to be the best type of predictor.

A Detailed Study on Phase Predictors 577

Fig. 1. The average phase misprediction rate of the N-Level burst predictor with con-
ditional update and confidence for different values of N for different hardware budgets.
The left graph shows the results for 1M instruction intervals; the right graph for 8M
instruction intervals.

Taking into account the misprediction rates and the total hardware costs, one
can conclude that an interesting range for the phase predictors is 29 . . . 212 bits
(i.e. 64 to 512 bytes); smaller predictors result in reduced accuracy and larger
predictors result in a larger hardware cost without much gain in predictability.
Within this range, the 2-level predictor appears to be the best choice, so we will
continue our evaluation with this type of predictor.

Fig. 2 shows the phase misprediction rates of the last value predictor, the
2-level RLE and the 2-level burst predictor (each with conditional update and
confidence) for each benchmark for a reasonable hardware budget of 256 bytes.
The upper and lower graph show the results for 1M and 8M instruction intervals,
respectively. As can be seen, there is a large difference in misprediction rate
between the benchmarks and between both interval sizes. For some benchmarks,
the misprediction rate is almost zero. This is because these benchmarks have a
large average burst length. Fig. 2 also shows that the burst predictor and the RLE
predictor do not perform much better than the simple last value predictor for
many SPECint benchmarks. For the SPECfp benchmarks however, the reduction
of the misprediction rate is quite substantial. The reason for this is that the phase
behavior of SPECfp programs is more regular. On average, the 2-level burst
predictor and the 2-level RLE predictor can reduce the number of mispredictions
by more than 40%. In other words, instead of having a phase misprediction every
7.5 intervals, we now only have a phase misprediction every 14 intervals.

Fig. 3 evaluates the impact of confidence counters and conditional update
on the average phase prediction accuracy. For reasonable and large hardware
budgets, adding confidence, conditional update or both improves the standard
predictor by about 3%, 9% and 17% in case of the burst predictor and 2%, 7%
and 13% in case of the RLE predictor. Notice that for large hardware budgets

578 Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

Fig. 2. The phase misprediction rate of the last value predictor, the 2-level RLE and the
2-level burst predictor (each with conditional update and confidence) for a hardware
budget of 256 bytes. The upper graph shows the results for 1M instruction intervals;
the lower graph for 8M instruction intervals.

Fig. 3. The effect of applying the different versions of the 2-level burst (left graph) and
the 2-level RLE predictor (right graph) on the phase misprediction rate for different
hardware budgets. The results shown are for 8M instruction intervals.

the burst predictor and the RLE predictor perform equally well, whereas for
smaller hardware budgets the burst predictor performs better. This is because
of increased aliasing in case of the RLE predictor, as more history information is
used. From these data, we conclude that adding conditional update outperforms
the previously proposed predictor schemes by up to 14%.

In Fig. 4, the effect of the number of saturation bits used and the confidence
threshold is shown. From this graph, some interesting conclusions can be drawn.

A Detailed Study on Phase Predictors 579

Fig. 4. The effect of the number of saturation bits (s) and the confidence threshold
level (t) on the phase misprediction rate for different hardware budgets using a 2-level
burst predictor with conditional update and confidence. The results shown are for 8M
instruction intervals.

As can be seen, combining conditional update and confidence is only effective
when using more than one saturation bit. Also, using a confidence threshold of
more than 1 has a negative impact on the prediction accuracy. Using 3 saturation
bits (not shown in this graph for clarity) only gives a minor increase in prediction
accuracy compared to 2 saturation bits.

Another important aspect is the number of bits b used to encode the history
information of the N-level burst and RLE predictor. Using more bits increases
the number of bits needed to store the tag for a given table size and associativity.

In case of the N-level burst predictor, the total amount of history information
is p×N , where p stands for the number of bits needed for storing the phase ID
and N the history depth. These p×N bits must be mapped onto the available b
bits. One way to do this is by using random projection. Another way (which we
used in this paper) is to partially overlap the phase IDs by shifting the i-th most
recent phase ID over �i b−p

N−1� bits (i = 0 . . .N − 1), and xor-ing them together.
In case of the N-level RLE predictor, the total amount of history information

is (p+r)×N , where r stands for the number of bits used to represent the length
of each burst. Mapping this information onto the available b bits is similar to
the burst predictor.

In Fig. 5, the effect of varying the number of hashing bits b is depicted. As
can be seen, the RLE predictor requires much more bits to be effective than the
burst predictor, which is logical, because the former needs to encode much more
information. The results shown are only for 2-level predictors; for higher level
predictors, the difference is even bigger.

6 Conclusions

Most programs consist of a number of phases in which each phase exhibits similar
behavior. These phases can be exploited for various purposes such as performance

580 Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

Fig. 5. The effect of the number of bits used to hash the history information used by
the 2-level burst (left) and RLE predictor (right) on the phase misprediction rate for
different hardware budgets. The results shown are for 8M instruction intervals.

modeling, compiler optimizations, hardware adaptation, etc. When phases are
identified by dividing the program execution into fixed-length instruction in-
tervals, and these phases are used in a phase-based optimization system, it is
important to be able to predict when the next phase transition will occur and
what the next phase will be.

In this paper, we studied a number of today’s state-of-the-art phase predic-
tors in detail. The design space we explore is huge as we explored a large number
of possible design parameters: the phase predictor’s type, its size, its associativ-
ity, its confidence mechanism, its update mechanism, etc. We did this for two
fixed-length intervals lengths, namely 1M and 8M intervals, using the complete
SPEC CPU2000 benchmark suite and concluded that on average the phase pre-
dictors show a consistent behavior in terms of phase misprediction reduction.
Besides this, we also improved existing phase predictor schemes by 14% using
conditional update. We conclude that the 2-level burst predictor with confidence
and conditional update is today’s most accurate phase predictor for reasonable
hardware budgets, reducing the misprediction rate over the last value predictor
by more than 40%.

Acknowledgements

This research was funded by Ghent University and by the Fund for Scientific
Research-Flanders (FWO-Flanders).

References

1. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing
large scale program behavior. In: Proc. of the Internat. Conference on Archit.
support for program. languages and operating systems. (2002) 45–57

A Detailed Study on Phase Predictors 581

2. Barnes, R., Nystrom, E., Merten, M., Hwu, W.: Vacuum packing: Extracting
hardware-detected program phases for post-link optimization. In: Proc. of the
Internat. Symp. on Microarchitecture. (2002)

3. Balasubramonian, R., et al.: Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures. In: Proc. of the Internat.
Symposium on Microarchitecture. (2000) 245–257

4. Dhodapkar, A.S., Smith, J.E.: Managing multi-configuration hardware via dynamic
working set analysis. In: Proc. of the Internat. Symp. on Computer Arch. (2002)

5. Huang, M.C., Renau, J., Torrellas, J.: Positional adaptation of processors: appli-
cation to energy reduction. In: Proc. of the Internat. Symposium on Computer
Architecture. (2003) 157–168

6. Sherwood, T., Sair, S., Calder, B.: Phase tracking and prediction. In: Proc. of the
Internat. Symposium on Computer architecture. (2003) 336–349

7. Vandeputte, F., Eeckhout, L., De Bosschere, K.: Offline phase analysis and opti-
mization for multi-configuration processors. In: Proc. of the 5th SAMOS workshop.
(2005)

8. Duesterwald, E., Cascaval, C., Dwarkadas, S.: Characterizing and predicting pro-
gram behavior and its variability. In: Proc. of the Internat. Conf. on Parallel
Architectures and Compilation Techniques. (2003)

9. Lau, J., Schoenmackers, S., Calder, B.: Transition phase classification and pre-
diction. In: Proc. of the Internat. Symp. on High Performance Computer Arch.
(2005)

10. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. SIGARCH Com-
put. Archit. News 25 (1997) 13–25

A Novel Lightweight Directory Architecture
for Scalable Shared-Memory Multiprocessors

Alberto Ros, Manuel E. Acacio, and José M. Garćıa

Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30071 Murcia, Spain
{a.ros,meacacio,jmgarcia}@ditec.um.es

Abstract. There are two important hurdles that restrict the scalability
of directory-based shared-memory multiprocessors: the directory mem-
ory overhead and the long L2 miss latencies due to the indirection intro-
duced by the accesses to directory information, usually stored in main
memory. This work presents a lightweight directory architecture aimed
at facing these two important problems. Our proposal takes advantage
of the temporal locality exhibited by the accesses to the directory in-
formation and on-chip integration to design a directory protocol with
the best characteristics of snoopy protocols. The lightweight directory
architecture removes the directory structure from main memory and it
stores directory information in the L2 cache avoiding in most cases the
access to main memory. The proposed architecture is evaluated based on
extensive execution-driven simulations of a 32-node cc-NUMA multipro-
cessor. Results demonstrate that the lightweight directory architecture
achieves better performance than a non-scalable full-map directory, with
a very significant reduction on directory memory overhead.

1 Introduction

Particular implementations of cache coherence protocols are quite different de-
pending on the total number of processors of a shared-memory multiprocessor.
In systems with few processors, an interconnection network with a completely
ordered message delivery (such as a bus) can be used. Cache coherence in these
cases is ensured by making all processors snoop the bus to obtain information re-
garding the blocks that are being accessed (read or written) by the other proces-
sors. This implementation of the coherence protocol is known as snooping-based
protocol whereas the term Symmetric Multiprocessors (SMP) is frequently used
to designate the architecture of the multiprocessor [1].

On the other hand, systems with greater number of processors are organized
around a scalable point-to-point interconnection network; besides, main mem-
ory in these machines is physically distributed to ensure that memory bandwidth
also scales with the number of processors. Now a directory-based cache coher-
ence protocol is used to ensure coherence [1]. Each node of the machine (which
includes the processor and a fraction of the total main memory) has a directory
structure which stores coherence information for the memory blocks that are

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 582–591, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Novel Lightweight Directory Architecture 583

Fig. 1. Worst-case overhead introduced by the lightweight directory architecture.

allocated on it (the home node). In this way, L2 cache misses are sent to the cor-
responding home node, which acts as an ordering point and performs the actions
needed to ensure coherence. Unfortunately, the accesses to the directory cause
long L2 miss latencies since this structure is usually stored in main memory [2].
Additionally, the amount of extra memory required for storing directory infor-
mation (directory memory overhead) could become prohibitive for a large-scale
configuration of the multiprocessor if care is not taken [3]. In general, these mul-
tiprocessors have been called cc-NUMA (cache-coherent Non-Uniform Memory
Access) and the best known example is the SGI Origin 2000/3000 [4].

In this paper, we propose the lightweight directory architecture, a novel ar-
chitecture that takes advantage of on-chip integration to design a large scale cc-
NUMA architecture with the best characteristics of SMP multiprocessors. Unlike
conventional directories, which associate directory entries to memory blocks, our
proposal moves directory information to the cache level where the coherence of
the memory block is managed (the L2 cache in our particular case). In this way,
directory information is removed from main memory. Our proposal is motivated
by the observation that only a small fraction of the memory blocks are stored in
the L2 caches at a particular time (temporal locality), and that in most cases,
when a request for a memory block from a remote node arrives at the corre-
sponding home node either the home node has recently accessed the block and
it resides in the L2 cache, or the home node will request the block in a near
future.

As in a conventional directory protocol, L2 cache misses are sent to the
corresponding home node which is in charge of satisfying the miss (for example,
by providing the memory block in case of a load miss). On the first reference to
a memory block, however, the home node books an entry in the local L2 cache
which is used to store directory information for the block and occasionally the
own block. Subsequent L2 cache misses to the same block will find directory
information and in some cases data in the L2 cache of the home node.

However, storing directory information in the L2 cache for each block re-
quested by any remote node could result in a significant increase in the number
of blocks being stored in the L2 cache of the corresponding home directory, and
consequently, in its total number of replacements. Fortunately, the observation
that motivates our proposal points out that it is not the case. We performed a
preliminary study about the extra number of memory blocks in the worst case

584 Alberto Ros, Manuel E. Acacio, and José M. Garćıa

that would be stored in the L2 cache when lightweight directories are used. This
study has been carried out running several applications on top of the RSIM
simulator assuming infinite caches. Figure 1 shows that in the worst case the in-
crease in the number of blocks that are brought to the L2 cache does not exceed
34% and that in general good results could be expected.

Our proposal, therefore, brings two important benefits. First of all, since the
total number of memory blocks is much larger than the total number of L2 cache
entries, directory memory overhead is drastically reduced by a ratio of 1024 (or
more) compared to conventional directory architectures. Second, since directory
entries are stored in the L2 cache of the home node, and both the L2 cache and
the directory controller are integrated into the processor chip (which is common
in recent processors [5] [6]), the time needed to access the directory is significantly
reduced, which translates into important reductions in the latency of L2 cache
misses, and therefore, improvements of up to 26% in total execution time are
obtained. Moreover, we develop a coherence protocol suited to the particularities
of the new directory architecture.

The rest of the paper is organized as follows. In section 2 we present a review
of the related work. In sections 3 and 4 we describe the lightweight directory
architecture and the coherence protocol required by it, respectively. Section 5
introduces the methodology employed in the evaluation. In section 6 we show
some performance results for our proposal. And finally, section 7 concludes the
paper and points out some future work.

2 Related Work

In SMP multiprocessors a shared bus is typically employed to interconnect all
the processors. In this way, every processor snoops all requests to memory in
the order in which they appear on the bus. Unfortunately, the bus becomes
a bottleneck when the number of processors increases. Martin et al. proposes
timestamp snooping to avoid this bottleneck [7]. Timestamp snooping allows that
a snoopy protocol is implemented on top of a scalable point-to-point interconnect
network by using timestamp and reordering requests at the interconnect end
points.

Bandwidth Adaptive Snooping Hybrid (BASH) [8] is a hybrid coherence pro-
tocol that dynamically decides whether to act like snooping protocols (broadcast)
or directory protocols (unicast) depending on the available bandwidth.

Token coherence protocols [9] avoid both the need of a totally ordered net-
work and the indirection caused by the directory by using N tokens per memory
block. In this way, a node can read a block if it has at least one token and can
update the block if it has all the tokens of that block.

On the other hand, cc-NUMA multiprocessors use a scalable point-to-point
interconnection network and need a directory structure to guarantee ordered
memory accesses. However, directory implies memory overhead and long L2 miss
latencies. Directory caches can be used to reduce the latency of L2 misses by
obtaining directory information from a much faster structure than main memory
[2]. Finally, several techniques have been proposed to reduce directory memory

A Novel Lightweight Directory Architecture 585

NI

Memory Memory

NI

...MC/DC MC/DC
MainMain

Processor’s Core

Processor’s chip Processor’s chip

Processor’s Core

Node 0 Node N−1

Scalable point−to−point interconnection network

L2 cache L2 cacheDir Dir

Fig. 2. The lightweight directory architecture.

overhead. Usually, they are based on compressed sharing codes, such as coarse
vector [10], which is currently employed in the SGI Origin 2000/3000 multipro-
cessor, gray-tristate [11] or binary tree with subtrees [3].

3 The Lightweight Directory Architecture

The lightweight directory architecture proposed in this paper removes directory
information from main memory and stores it in the L2 caches to reduce its
access time. Of course, this reduction would not be so effective if the directory
controller were outside the processor chip. Fortunately, current integration scale
allows the inclusion of some key components of the system such as the memory
controller, the coherence hardware and the network interface and router inside
the processor chip (see Compaq Alpha 21364 EV7 [5] or AMD Hammer [6]).
Hence, we assume in this work that the directory controller and the L2 cache
with directory information are on-chip.

Figure 2 shows the proposed architecture for a N -node multiprocessor. The
nodes are connected using a scalable point-to-point interconnection network
through the network interface (NI). The memory and directory controller (MC/
DC) handles all inter-node memory references going into or out of the node. In
this way, the L2 cache misses are sent to the memory controller of the corre-
sponding home node, which looks for the block’s directory information stored in
the L2 cache tags structure speculatively in parallel with the access to the L2’s
structure where data is stored1. If the block is found in the L2 cache, directory
information is obtained without going to main memory. On the other hand, if
the block is not present at cache, the block is not cached by any node and it is
necessary to accede to main memory.

Each cache block contains four main fields aside from the data of the block:
the tag itself, used to identify the block, the cache state, the directory state, and
the sharing code. The latter two fields are added by the lightweight directory
structure proposed in this paper. The cache state field can take one of the four
values (2 bits) used by the MESI protocol. Nevertheless, the invalid state has

1 In this paper, we assume that the L2 cache is split into tags and data structures, as
is commonly found in current designs.

586 Alberto Ros, Manuel E. Acacio, and José M. Garćıa

two meanings: one of them is the same that in MESI protocol, and the other one
means that this block has a valid directory information, and it takes place when
there is some presence bit in the directory information. The directory state field
can take two values (one bit):

– S (Shared): The memory block is shared in several caches, each one of them
with a up-to-date copy. When needed, the L2 cache of the home node will
provide the block to the requesters, since this cache has always a valid copy
even if it has not used it.

– O (Owned): The memory block is in just one cache and could have been
modified. The single valid copy of the block is held in the L2 cache of the
home node, when its cache state is modified or exclusive, or alternatively, in
one of the L2 cache of the remote nodes. In the latter case, the cache state
for the memory block in the L2 cache of the home is invalid, and the identity
of the owner is stored in the sharing code field.

Note that an additional directory state is implicit. The U state (Uncached)
takes place when the memory block is not held by any cache and its only copy
resides in main memory. This is the case of those memory blocks that have not
been accessed by any node yet, or those that were evicted in all the caches.

The sharing code field keeps the identity of the L2 caches that hold a copy
of the corresponding block. Although our lightweight directory architecture is
compatible with any of the sharing codes proposed in the literature, for simplicity
we have used the full-map sharing code in this paper. The election for this
paper of the full-map sharing code instead of a compressed sharing code is to
concentrate on the impact that lightweight directories have on performance,
removing any interference caused by unnecessary coherence messages.

4 Coherence Protocol for Lightweight Directory

The proposed architecture requires a cache coherence protocol similar to MESI
[1] with some minor modifications. These modifications are performed to ensure
that for all memory blocks held in one or more L2 caches, directory information
is present in the L2 cache of the home node. Moreover, when a memory block
is evicted from the home cache, all the copies of this block must be previously
invalidated. Next, we detail the modifications that are required.

We use the term local misses to refer to the L2 cache misses that take place
in the home node. On the other hand, remote misses imply that the home node
is not where the miss occurs. For local misses, the directory controller obtains
directory information stored in cache tags, and then, the miss proceeds as usual.

On the other hand, remote misses are sent to the home node, where the
directory controller checks the tags part of the L2 cache. If directory information
is not in the home cache, the memory block is not cached by any node (the
implicit uncached state mentioned above). Hence, the memory controller brings
the block from main memory and stores an entry for it at the home cache in
invalid state, just to hold directory information. Moreover, the directory state

A Novel Lightweight Directory Architecture 587

Table 1. Where directory information and data are found when a L2 miss takes place
in both conventional and lightweight directory protocols.

Directory States
Uncached Shared Owned

Conventional
Dir. Inf. Memory Memory Memory

Data Memory Memory Owner Cache

Lightweight
Dir. Inf. - Home Cache Home Cache

Data Memory Home Cache Owner Cache

is set to owned because only one node will hold the copy of the block. Finally,
the home node sends the block to the requester. If the directory information is
in the home cache is not necessary to access to main memory. Moreover, if the
directory state is shared, the home node has a valid copy and it can provide the
block immediately if the request is a read one.

When a particular block in shared state is evicted from the L2 cache of its
home node, the rest of the copies must first be invalidated to maintain coher-
ence. In this way, the directory controller sends multiple invalidation requests to
the sharers. Finally, the replacement proceeds once the home node has all the
confirmations of the invalidations. If the evicted block has its directory state as
owned, and the home node is not the owner, another node has the only valid
copy of the block. Then, the directory controller requests the block to the owner.
When the home node receives the block, it updates main memory.

The rest of cases are handled as in a conventional directory coherence proto-
col. Table 1 summarizes the advantages of our proposal. The lightweight direc-
tory avoids going to main memory when the directory state is shared, since the
home node provides the block. Moreover, directory accesses in cache-to-cache
transfers (owned state) are faster than in conventional architectures since the
corresponding directory entry is stored in the L2 cache of the home node. Fi-
nally, we do not need directory information for uncached blocks, reducing the
amount of extra memory that is required.

5 Simulation Environment

We have used a modified version of RSIM [12], a detailed execution-driven simu-
lator, that our group has ported to the x86 architecture [13]. We have simulated
a cc-NUMA system with 32 uniprocessor nodes that implements the lightweight
directory protocol. Table 2 shows the parameters used to evaluate the lightweight
directory architecture. We model the contention on tags and data cache accesses
for the remote requests. In this way, those remote requests that try to access
the tags at the same time that another request (local or remote) is in progress,
will be delayed. Simulations have been performed using an optimized version of
the sequential consistency model with speculative load execution following the
guidelines given by Hill [14].

The benchmarks used in our simulations cover a variety of computation and
communication patterns. Barnes (8192 bodies, 4 time steps), FFT (256K complex

588 Alberto Ros, Manuel E. Acacio, and José M. Garćıa

Table 2. Base system parameters.

32-Node System - Lightweight Directory Protocol
ILP Processor Parameters Memory Parameters

Max. fetch/retire rate 4 Memory access time 80 cycles
Instruction window 128 Memory interleaving 4-way
Branch predictor 2 bit agree, 2048 count Internal Bus Parameters

Cache Parameters Bus width 8 bytes
Cache block size 64 bytes Bus cycles 1 cycle
Split L1 I & D caches 16 KB, direct mapped Network Parameters

2 hit cycles Topology 2-dimensional mesh
Unified L2 cache 64 KB, 4-way Flit size 8 bytes

15 hit cycles (6 + 9) Non-data message size 2 flits
Directory Parameters Router speed 250 MHz

Directory controller cycle 1 cycle (on-chip) Router’s internal bus width 64 bits
Directory access time 6 cycles (L2 cache tag) Arbitration delay 4 router cycles
Message creation time 4 cycles first, 2 next Channel bandwidth 2 GB/s

doubles), Ocean (258x258 ocean), Radix (1M keys, 1024 radix), and Water-NSQ
(512 molecules, 4 time steps) are from the SPLASH-2 benchmark suite [15] and
Unstructured (Mesh.2K, 5 time steps) [16] is a computational fluid dynamics
application. All experimental results reported in this work correspond to the
parallel phase of these benchmarks. Input sizes have been also chosen commen-
surate to the total number of processors that are used, and cache sizes have been
chosen so that the working set of the applications is greater than their capacity.

6 Simulation Results and Analysis

In this section, we evaluate the performance of lightweight directories in terms
of total execution time as well as we analyze the effect that they have on the
L2 caches, particularly whether the total number of replacements is increased or
instead kept unchanged. We compare our proposal with a conventional directory
based cache coherent multiprocessor, similar to the SGI Origin 2000/3000 [4],
that uses full-map as the sharing code. Moreover, it is important to know the
performance that can offer our proposal in ideal conditions. We called ideal case
when the blocks used by a node are not affected by the allocation of remote
blocks. That it is, we suppose an infinite cache size for those blocks allocated in
the home node due to a request of a remote node, and a normal cache size for
its local blocks2.

Figure 3 shows the execution time for a conventional directory architecture
and the ideal and realistic implementation of the lightweight directory archi-
tecture. As it can be observed, improvements in performance with the ideal
implementation range from 6% to 29%. On the other hand, with the realistic
64KB L2 caches for all the blocks, reductions in terms of execution time are ob-
tained for all the benchmarks except for Radix. Particularly, Ocean and Barnes
obtain the most important reductions (20% and 19% respectively) whereas for
the other benchmarks the reduction ranges from 4% to 11%. Only for Radix
application execution time is increased and a degradation of 14% is observed.

2 The size of the L2 cache for this paper is 64KB

A Novel Lightweight Directory Architecture 589

Fig. 3. Normalized execution time for conventional, ideal lightweight and real
lightweight architectures.

Table 3 helps to understand the differences between the ideal and the realistic
implementation. Overall, our proposal do not affect cache misses, since due to
the temporal locality exhibited by the references to memory it does not cause a
significant increment in the L2 cache replacements.

Unstructured is the nearest benchmark to the ideal case. This is because
it solves almost all the cache misses without accessing to main memory. FFT
has a small number of replacements in conventional case, so the ideal case only
has an improvement of 6% respect to conventional case. Moreover, FFT solves
half of the misses in home cache and, therefore, the real case is 2% worse that
the ideal one. Barnes solves almost all the L2 misses in home cache and also
obtains a good performance very near to the ideal case. On the other hand, the
performance of Ocean is a 7% worse than the ideal case because most misses
are solved in main memory (75%). In addition, Ocean maintains constant the
L2 miss rate and, therefore, the number of replacements, which is translated in
a considerable improvement in performance (20%) respect to the conventional
case. Water-NSQ cannot get a very high performance improvement because this
benchmark spends just a short time to solve cache misses. Finally, the bench-
mark Radix increases its L2 miss rate and most the misses must often go to
main memory to obtain the directory information. This causes that the real case
obtains much worse performance than the ideal case. Moreover, the accesses for
the directory information to main memory in lightweight directory architecture
are greater than in the conventional architecture. Hence, the performance is a
14% worse than conventional case. In the section 1, we demonstrate that the to-

Table 3. L2 cache miss rate and replacement for conventional and lightweight ar-
chitecture. In a lightweight architecture miss rate is separated into misses that found
directory information in home cache or in home main memory.

L2 Miss rate L2 Replacements
Conv. Lightweight Conv. Lightweight Ratio

Benchmark Total Total Cache Memory Repl / Node Repl / Node %
Barnes 0.16 0.17 0.15 0.02 26579 29471 1.11
FFT 0.04 0.04 0.02 0.02 6956 7514 1.08
Ocean 0.16 0.16 0.04 0.12 115957 116911 1.01
Radix 0.11 0.13 0.01 0.12 38575 56190 1.46
Unstruct 0.38 0.39 0.38 0.01 42116 43851 1.04
Water-NSQ 0.20 0.20 0.08 0.12 13348 13509 1.01

590 Alberto Ros, Manuel E. Acacio, and José M. Garćıa

tal number of memory blocks that are brought to the L2 cache for a lightweight
directory architecture is the same as for the conventional one (figure 1). The
only difference is in the order in which the blocks are allocated in L2 caches, so
this case can be improved using other cache allocation policies.

Regarding the directory memory overhead, our proposal improves the scal-
ability of the directory size by reducing the number of directory entries in a R
ratio, where R is defined as the quotient between the main memory size and L2
cache size. According to current multiprocessors such as SGI Origin 2000/3000
[4] and AlphaServer GS320 [17], R can take a typical value of 1024, hence the
memory reduction is very considerable.

7 Conclusions and Future Work

In this paper we have introduced the lightweight directory architecture, a scal-
able directory protocol that tries to achieve the best characteristics both of the
snooping and of the directory-based protocols. Our proposal is based on current
technology improvements to put the directory controller and directory informa-
tion inside the processor chip. In this way, we remove the directory structure
from main memory and we associate directory information to the L2 cache.
Then, cache misses are satisfied by home node cache without accessing main
memory, ever when some node has a valid copy of the block.

We have described the resulting architecture and a coherence protocol suited
to the particularities of the architecture. In order to demonstrate the bene-
fits derived from our proposal in terms of execution time, we have run several
scientific parallel applications on top of a RSIM version that implements the
lightweight directory protocol. The lightweight directory architecture presented
in this paper obtains improvements of up to 20% in execution time compared to
conventional architectures. Moreover, directory memory overhead is reduced by
a R ratio respect to conventional directory architectures, where R is computed
as the quotient between main memory size and L2 cache size. This means that
our proposal drastically reduces the directory memory overhead, and in most
cases improves performance.

As part of our future work, we plan to design a cache allocation algorithm,
which only stores in cache some remote blocks for reducing the memory overhead
caused by these blocks. Another area of interest is to study the impact of a victim
cache for blocks whose replacements cause coherence actions. These blocks are
those that maintain directory information in the home node cache and they
have a copy in some remote node. In this way, it would not be necessary to
performance coherence actions. Finally, in order to reduce even more directory
memory overhead, we would like to evaluate the effect of limited pointers or
compressed sharing codes.

Acknowledgments

This work has been supported by the Spanish Ministry of Ciencia y Tecnoloǵıa
and the European Union (Feder Funds) under grant TIC2003-08154-C06-03.

A Novel Lightweight Directory Architecture 591

References

1. Culler, D., Singh, J., Gupta, A.: “Parallel Computer Architecture: A Hard-
ware/Software Approach”. Morgan Kaufmann Publishers, Inc. (1999)

2. Acacio, M., González, J., Garćıa, J., Duato, J.: “An Architecture for High-
Performance Scalable Shared-Memory Multiprocessors Exploiting On-chip Inte-
gration”. IEEE Transactions on Parallel and Distributed Systems 15 (2004) 755–
768

3. Acacio, M., González, J., Garćıa, J., Duato, J.: “A Two-Level Directory Archi-
tecture for Highly Scalable cc-NUMA Multiprocessors”. IEEE Transactions on
Parallel and Distributed Systems 16 (2005) 67–79

4. Laudon, J., Lenosky, D.: “The SGI Origin: A cc-NUMA Highly Scalable Server”.
Proc. of the 24th Int’l Symposium on Computer Architecture (ISCA’97) (1997)
241–251

5. Gwennap, L.: “Alpha 21364 to Ease Memory Bottleneck”. Microprocessor Report
12 (1998) 12–15

6. Ahmed, A., Conway, P., Hughes, B., Weber, F.: “AMD OpteronTM Shared Memory
MP Systems”. Proc. 14th HotChips Symposium (2002)

7. Martin, M., Sorin, D., Ailamaki, A., Alameldeen, A., Dickson, R., Mauer, C.,
Moore, K., Plakal, M., Hill, M., Wood, D.: “Timestamp Snooping: An Approach
for Extending SMPS”. Proc. of the 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IX) (2000) 25–36

8. Martin, M., Sorin, D., Hill, M., Wood, D.: “Bandwidth Adaptive Snooping”. Proc.
of the 8th Int’l Symposium on High Performance Computer Architecture (HPCA-
8) (2002) 251–262

9. Martin, M., Hill, M., Wood, D.: “Token Coherence: Decoupling Performance
and Correctness”. Proc. of the 30th Int’l Symposium on Computer Architecture
(ISCA’03) (2003) 182–193

10. Gupta, A., Weber, W., Mowry, T.: “Reducing Memory Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes”. Proc. Int’l Conference on
Parallel Processing (ICPP’90) (1990) 312–321

11. Mukherjee, S., Hill, M.: “An Evaluation of Directory Protocols for Medium-Scale
Shared-Memory Multiprocessors”. Proc. of the 8th Int’l Conference on Supercom-
puting (ICS’94) (1994) 64–74

12. Hughes, C., Pai, V., Ranganathan, P., Adve, S.: “RSIM: Simulating Shared-
Memory Multiprocessors with ILP Processors”. IEEE Computer 35 (2002)

13. Fernández, R., Garćıa, J.: “RSIMx86: A Cost Effective Performance Simulator”.
Proc. of the High Performance Computing & Simulation (HPC&S) Conference
(2005)

14. Hill, M.: “Multiprocessors Should Support Simple Memory-Consistency Models”.
IEEE Computer 31 (1998) 28–34

15. Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: “The SPLASH-2 Programs:
Characterization and Methodological Considerations”. Proc. of the 22nd Int’l Sym-
posium on Computer Architecture (ISCA’95) (1995) 24–36

16. Mukherjee, S., Sharma, S., Hill, M., Larus, J., Rogers, A., Saltz, J.: “Efficient Sup-
port for Irregular Applications on Distributed-Memory Machines”. Proc. of the 5th
Int’l Symposium on Principles & Practice of Parallel Programming (PPOPP’95)
(1995) 68–79

17. Gharachorloo, K., Sharma, M., Steely, S., Doren, S.V.: “Architecture and Design
of AlphaServer GS320”. Proc. of the 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IX) (2000) 13–24

Topic 8
Distributed Systems and Algorithms

Marc Shapiro, Idit Keidar, Felix Freiling geb. Gärtner, and Lúıs Rodrigues

Topic Chairs

Parallel computing is increasingly exposed to the challenges of distributed sys-
tems, such as asynchrony, long latencies, network partition, failures, disconnected
operation, and protocol standardization. Witness the growth of peer-to-peer
computing, the Grid and Web services. This topic provides a forum for research
and practice, of interest to both academia and industry, about distributed com-
puting and distributed algorithms. Submission was encouraged in all areas of
distributed systems and algorithms relevant to parallel computing, with empha-
sis on design and practice of distributed algorithms, analysis of the behaviour
of distributed systems and algorithms, distributed fault-tolerance, distributed
operating systems and databases, scalability, concurrency and performance in
distributed systems, resource sharing and load balancing in distributed systems,
distributed algorithms in telecommunications, distributed mobile computing, re-
source and service discovery, security in distributed systems, and standards and
middleware for the distribution of parallel computations.

Twenty-seven papers were submitted in this topic. The subjects were varied,
but a common theme to many is self-organisation and fault tolerance. Other
themes include mobile networks and routing, mutual exclusion and consensus
algorithms, publish-subscribe networks, data replication and the dissemination
of information, checkpointing, garbage collection, real time, etc. Eight papers
were accepted and the paper ”Replication predicates for dependent-failure al-
gorithms”, by Flavio Junqueira and Keith Marzullo, was proposed as a distin-
guished paper.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 593, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Dynamic Distributed Algorithm
for Multicast Path Setup

Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

Dip. di Ingegneria Informatica, Università di Palermo
Viale delle Scienze, 90128 Palermo, Italy

{gatani,lore,gaglio}@unipa.it

Abstract. In the past few years, there has been a considerable work
on multicast route selection techniques, with the aim to design scal-
able protocols which can guarantee an efficient use of network resources.
Steiner tree-based multicast algorithms produce optimal trees, but they
are prohibitively expensive. For this reason, heuristic methods are gen-
erally employed. Conventional centralized Steiner heuristics provide ef-
fective solutions, but they are unpractical for large networks, since they
require a complete knowledge of the network topology. In this paper, we
propose a new distributed approach that is efficient and suitable for real
network adoption. Performance evaluation indicates that it outperforms
the state-of-the-art distributed algorithms for multicast tree setup, pro-
viding good levels of competitiveness, convergence time, and communica-
tion complexity. Furthermore, we propose a novel distributed technique
for dynamically updating the multicast tree.

1 Introduction

Several multimedia networking applications, such as distance education, remote
collaboration, video-on-demand, and videoconferencing, are quickly growing in
popularity. These applications place high demands on the underlying communi-
cation network and they can become more widespread, relying on the ability of
the network to provide multicast services effectively and efficiently. Trees isolated
over the network topology are typically adopted by multicast routing protocols
for data transmission, in order to achieve a resource usage minimization by the
simultaneous sharing of links. In this context, an underlying specific multicast
routing algorithm should determine, with respect to certain optimization objec-
tives, an efficient multicast tree, singling out the communication routes for the
participants based on the underlying network topology. Data belonging to the
source flow will reach their destinations, traversing tree edges only once and be-
ing replicated at branching points. One of the main goals of multicast routing is
to minimize the overall tree cost. Determining the optimal (i.e., minimum cost)
multicast tree connecting all the members of a group is a difficult problem: it can
be modeled as the Steiner Tree Problem in Networks (SPN) [1], which has been
proved to be NP-complete in its decisional version [2]. A number of good, inex-
pensive centralized heuristics for approximate Steiner trees have been proposed

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 595–605, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

596 Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

and extensively reviewed [3–5]. Heuristic algorithms for generating the multicast
tree typically balance quality of the generated tree, execution time, and storage
requirements. Most of them produce solutions whose cost has been analytically
demonstrated to be less than twice the cost of the optimal solution. An important
distinguishing characteristic for tree generation algorithms is centralized versus
distributed control. Most of the heuristics proposed are intrinsically centralized.
In the centralized approach, a central node, that is aware of the state of the whole
network, computes the tree. The computation is generally easy and fast. How-
ever, the overhead of maintaining, in a single node, coherent information about
the state of the entire network can be prohibitive. As a consequence, centralized
algorithms are not practical for large networks where complete state information
is difficult to collect. In a distributed approach, on the other hand, each node
of the network actively contributes to the algorithm computation. A multicast
routing distributed algorithm establishes multicast connections in a decentralized
manner, by exchanging messages among the nodes involved, which in turn carry
out specified portions of the algorithm. These algorithms can be slower and more
complex than the centralized ones, but they are more suitable for large networks,
with highly dynamic multicast sessions. The development of efficient, distributed
Steiner-based algorithms is of great interest at the moment, altough they have
received very little attention over the last few years. Most of the versions pro-
posed in the literature [6], [7] are based on reducing the SPN to the Minimum
Spanning Tree (MST) problem, on using a distributed MST algorithm, and on
pruning unnecessary leaves and branches from the resulting tree. However, these
algorithms present severe shortcomings, determining trees with poor properties.
Bauer and Varma [8] presented two interesting distributed algorithms for the
Steiner Problem in Networks based on the centralized heuristics SPH and K-
SPH. Singh and Vellanky [9] proposed a modified version of distributed K-SPH
that adopts some improvements to make the fragment combination mechanism
more efficient. Novak et al. [10] presented a distributed table-passing algorithm
for SPN which is based on the centralized heuristic SPH. It is important to un-
derline that all existing distributed algorithms suffer drawbacks such as heavy
communication costs, long connection setup times, or poorer quality of the solu-
tions produced as compared with centralized heuristics. A further classification
of the Steiner Tree Problem in Networks consists of the following two categories:
a) Static Steiner Tree Problem, in which the destination subset is fixed, and
the optimal tree can be determined once only and used for the entire multicast
transmission; b) Dynamic Steiner Tree Problem, in which the destination subset
can dynamically change because of join or delete requests, and the multicast
problem consists of finding a sequence of optimal trees. The dynamic Steiner
Tree Problem can be solved exploiting any heuristic used for the static case, if
we allow the multicast tree to be completely rebuilt after each change. This is,
however, an unrealistic approach since it requires a lot of coordination among the
network nodes [11], and it is very likely that a new request will come up before
the new tree is ready. Several algorithms [8, 12, 13] have been proposed in order
to accomplish both add, and remove requests while restricting the number of

A Dynamic Distributed Algorithm for Multicast Path Setup 597

rearrangements required in order to derive a new efficient tree from the old one.
In this paper, we firstly deal with the static case, presenting a distributed algo-
rithm that is very attractive in terms of quality of computed solution, running
time, and number of messages exchanged. Furthermore, we introduce a heuristic
for the dynamic case, that minimizes the multicast tree cost during the overall
session, while retaining light computational requirements.

The remainder of the paper is structured as follows. Section 2 presents the
network model and deals with the Steiner Tree Problem. The distributed al-
gorithm for constructing a multicast tree and a technique for its updating are
presented, respectively, in Sections 3 and 4. Section 5 discusses experimental
results. We conclude the paper in Section 6.

2 The Steiner Tree Problem

The Steiner Tree Problem in Network can be informally defined as the one of
finding a minimum cost tree which spans the nodes belonging to a given subset
of all the network nodes (the so-called destination nodes, or multicast member).
The formal definition of the Static SPN can be stated as follows. Let G = (V,E)
be an undirected connected graph of the communication network, where V is the
vertices (node) set, and E the edge (link) set, with positive weights associated
with the edges. In this graph we consider a set Z ⊆ V of destination nodes.
The Static (minimum) Steiner Tree Problem in Networks is defined as finding a
minimum cost sub-graph of G, G′, such that there exists a path in G′ between
every pair of destination nodes. It is worth noticing that since the edge weights
are positive, a solution involves isolating a subset S′, disjoint of Z, of so-called
Steiner nodes, which provides an optimal tree connecting all nodes in Z. We also
introduce the following notations. Let n = | V |, z = | Z |, and s = | S |, with
S = V −Z the set of non-destination nodes. The minimum cost between a node
i and a tree T , c(i, T) is the cost of the cheapest among all paths between the
node i and any node in T . We assume that each node i has a routing table that,
for each destination j, provides the minimum cost c(i, j) and the next hop in the
path from i to j. Using this information, as provided by an underlying network
layer protocol, a node is able to send messages via the minimum cost path to
any destination. Since the computation of an optimal solution of the Steiner
Tree Problem is NP-complete and thus not practical for real-time applications,
multicast routing algorithms are based on heuristic methods, some of which have
been found to perform very well [3]. However, only a subset of Steiner tree heuris-
tics have the properties that make them suitable for distributed implementation
in real networks, where nodes have limited routing information. That is, they
should satisfy four criteria: a) use the existing routing information available at
each node in the network, as provided by underlying unicast protocols; b) use
minimal computational and network resources; c) require minimum coordination
between nodes in the network; d) require a limited amount of computation by
the non-member nodes. An exhaustive overview of SPN centralized heuristics
can be found in [3]. Among the classical centralized path-distance heuristics, the

598 Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

following heuristics, in our view, seem to represent the best candidates for dis-
tributed implementation: the Shortest Path Heuristic (SPH), the Kruskal-based
Shortest Path Heuristic (K-SPH), and the Average Distance Heuristic (ADH).
Bauer and Varma [8] proposed a distributed implementation of SPH and K-SPH.
The ADH heuristic, on the other hand, looks very attractive because of its good
competitiveness values. Our distributed algorithm is based on the ADH heuristic
with Full connection (ADHF).

The dynamic version of the SPN consists of finding a sequence of optimal
trees, after the execution of a sequence of operations that change the multi-
cast session membership by means of node insertions (join or add operations) or
deletions (leave or remove operations). In particular, the problem of updating
a Steiner tree after each insertion or deletion during the same session is known
as the On-line Steiner Problem. As in the static case, the problem remains NP-
complete. It can be formally defined as follows. Let G = (V,E) be an undirected
connected graph of the communication network, where V is the vertices set,
Z ⊆ V is the set of destination nodes, and E the edge set, with positive weights
being associated with the edges. A vector of requests (each specifying the node
and the kind of operation, join or leave) and an initial multicast tree T (V ′, E′)
are also given (where V ′ ⊆ V , and E′ ⊆ E). The On-line Steiner Tree Problem in
Networks is defined as finding a sequence of trees such that each tree is obtained
from nodes in T modified by all the requests so far received, and is minimum
among all the possible choices.

3 A Heuristic for the Static SPN

In [14] we proposed a distributed version of the ADH (D-ADH) algorithm. Here,
we describe a variant of D-ADH which exploits a full connection approach. Both
algorithms are fully distributed, being designed as a set of cooperative, asyn-
chronous, independent processes running one for each node in the network. We
assume that: a) the network is connected; b) each node in the network is a router;
c) each node has a unique identifier (UID); d) each node knows its minimum cost
path (i.e., cost and first hop) to all other nodes in the network, via the routing
table computed by an underlying unicast protocol; e) no topology changes occur
during the execution of the algorithm; f) no node or link failures occur during
the execution of the algorithm; g) the network delivers messages in order, in
finite time, and it does not drop or corrupt messages. We note that the two
last hypotheses are consistent with previous works, which have not addressed
fault tolerance. A fault tolerant solution is a subject of on-going work. As in its
centralized version [15], distributed ADHF (D-ADHF) starts with the forest of
multicast nodes and connects them into successively larger trees until a single
multicast tree has been set. We refer to the trees in the forest, which will be
sub-trees of the final tree, as fragments. During algorithm execution, each node
in the network is either part of a fragment, or has not yet been included in
the multicast tree. It should be noticed that every Z-node is always a fragment
node and every non-destination node is initially a non-fragment node. When

A Dynamic Distributed Algorithm for Multicast Path Setup 599

two or more fragments merge, the nodes in these fragments, and those lying on
the interconnecting paths, become the new merged fragment nodes. In order to
uniquely identify fragments, each has a fragment leader and is identified by the
same index (UID) as the leader. Initially each multicast member is the leader of
its own one-node fragment. When two fragments merge, the node which starts
the merging process assumes the leadership. Distributed ADHF processes run-
ning on the network nodes exploit the minimum cost path information, which
is available on local nodes, as well as information about the multicast forest ex-
changed via messages. The algorithm is structured in rounds and its main steps
can be detailed as follows.

1. Initialization
A node receives the list of multicast member UIDs from an external user. It
becomes the root node for the first round and builds a data structure repre-
senting the multicast forest, initially formed only by the Z-nodes.
2. Construction of a spanning tree
The root node starts the construction (via a distributed algorithm) of a net-
work spanning tree. Each node stores a reference to every node directly at-
tached in the tree.
3. Broadcasting along the spanning tree
Using the spanning tree previously set, the root node sends in broadcast in-
formation about the multicast forest.
4. Computing function f Using the information received from the root node
and the locally available unicast routing table, each node v calculates the f
function according to equations (see also [16])

μ(v, r) :=

r∑
j=1

c(v, Tj)

r − 1
, 2 ≤ r ≤ k (1)

f(v) := min{μ(v, r) | 2 ≤ r ≤ k}, (2)

where Tj is the ith fragment, and k is the number of current fragments. This
step is achieved as follows:

a. a node which already belongs to a fragment, determines the information
about the closest external fragment;

b. a node external to any fragment, takes into account candidate fragments
in a non-descending order and determines its own f value, as well as the
necessary information about the selected fragments.

The information about a fragment consists of its identifier and of the node
representing the tail of the minimum cost path in the fragment.
5. Convergecasting of the minimum value of f
Using a converge-cast process along the spanning tree, the information about
the computed minimum value of f is reported toward the root node. Ties are
opportunely resolved.
6. Election of the most central node
When the root node receives the information from all its children on the span-
ning tree, it determines the best value of f , and sends a notification message
to the node v∗ that computed this value.

600 Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

Fig. 1. The finite state automaton for the dynamic case algorithm

7. Merging of target fragments (with full connection)
After notification, the node v∗ becomes the most central node for the current
round and starts the merging process. This is carried out as follows:
a. if v∗ belongs to a fragment, it connects to itself the closest external frag-

ment, via the minimum cost path;
b. if v∗ does not belong to any fragment, it connects the r∗ closest fragments,

via the minimum cost paths; r∗ is the index which minimizes μ(v∗, r),
according to equation 1.

During the merging process, the state of the nodes along the connecting paths
and the information about the multicast forest are opportunely updated.
8. Election of the new root node

If all Z-nodes are in the same fragment (i.e., the forest is already connected),
the algorithm terminates; if not, the node v∗ becomes the new root node and

starts a new round (go to step 3).

4 A Heuristic for the Dynamic SPN

In this section we present a simple heuristic for the Dynamic STP, which com-
bines the light computational requirements of a “greedy” approach, with the
ability to force a rearrangement when the competitiveness of the solution tree
has degraded beyond a certain threshold. The simple, but effective dynamic
heuristic Greedy [13] perturbs the existing tree as little as possible. For each
add request, it connects the new member to the nearest tree node using the
minimum cost path. For each remove request, Greedy deletes only leaf nodes. If
this deletion creates a non-member leaf, Greedy also deletes the new leaf. This
continues until no non-member leaves remain. The idea underlying our approach
is that alternative and lower cost paths connecting nodes to the multicast tree
can be detected after some operations executed according to Greedy. The pro-
posed approach monitors, in a fully distributed way, the “damage” to the multi-
cast tree. When the “damage” accumulated in a tree portion is judged too high,
then a rearrangement process is started, improving the quality of the distribu-
tion tree in that area. The “damage” represents the degradation experienced by

A Dynamic Distributed Algorithm for Multicast Path Setup 601

(a) 10% membership (b) 20% membership

Fig. 2. Competitiveness distributions for different heuristics (200-node networks)

the tree when the membership dynamically changes. It can be simply measured
by means of counters deployed on the nodes, which locally register the number
of changes (join and leave operations) that affected the neighborhood. When a
multicast node leaves, or a new node joins, the node sends a message to all its
neighbors in the multicast tree. Propagations of this kind of messages is bounded
in a limited region, by the adoption of a maximum hop-count field. Each node
in the multicast tree, when reached by the message, increases its counter. When
the counter value in a node exceeds a given threshold, the node triggers a tree
re-arrangement in the local region. In this way, the effort required to maintain
a low-cost tree is performed only when necessary, and only on the region that
has been most affected by membership changes. The tree rearrangement process
starts from the multicast tree and it iteratively improves the global cost of the
tree by means of a node “stirring” technique [17]. At each step it considers the
possibility of rearranging some nodes and connecting paths, according to their
topological role in the tree. We point out that the distributed tree construction
process of D-ADHF involves the generation of a series of partial sub-trees toward
the final solution. Moreover, the Greedy approach exploited to manage dynamic
membership changes applies a few rules to the current tree Ti to obtain the
successive sub-tree Ti+1. The choices adopted in this transition are suggested
by the features of Ti. When several join and leave operations occur, previous
choices could reveal their limits. For this reason, we consider the possibility of
recalculating the position of some nodes in the tree after some greedy changes
to the multicast tree. In order to better explain the Stirring technique, we first
introduce some further definitions. We define “grafting point” a node in a mul-
ticast tree which is a target node, or has a degree greater than 2 (the degree of
a node is defined by the number of its links). Furthermore, we define “ancestor”
of a node v in a multicast tree the node av which is the nearest grafting point
to v, but not a descendant of v in the tree. The re-positioning process in the
Stirring technique is executed for each grafting point, and it is repeated until no
further improvements occur. Given the current tree, all grafting points, gi are
sequentially considered. For each node gi, we check in a distributed way the ex-
istence of a node ag in the tree, with c(gi, ag) < c(gi, ac) where ac is the current

602 Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

(a) within a given number of messages (b) within a given time

Fig. 3. Cumulative percentage of networks solved

ancestor, ag does not belong to the path < gi, ac >, and it is not a descendant
of gi. If such a node ag is found in the tree, the path < gi, ac > is replaced by
the path < gi, ag >. It is worth noticing that path replacement may cause the
insertion of new nodes into the tree. Increasing the subset of nodes, the solution
space explored is extended: this can led to single out better solutions. Fig. 1
shows the finite state automaton executed by each multicast tree node, in order
to trigger the stirring process execution.

5 Performance Evaluation

5.1 Evaluation Methodology

The experimental evaluation of our approach is performed both in simulation
,and on topologies deployed on a cluster of real nodes. On the one hand, simu-
lations allow the analysis of performance on a huge set of randomly generated
test networks, characterized by a large number of nodes and different topological
models. On the other hand, tests on networks deployed on a cluster of real nodes
allow a deeper validation of the proposed approach, by taking into account some
important characteristics of real networks. In order to perform large-scale simu-
lations, we extended the network simulator ns-2 platform [18], implementing a
new multicast agent that runs on network nodes. The micro-benchmark experi-
ments are executed on a cluster testbed consisting of 40 nodes, under constant
load, that can approximate rather well the performances in real deployment con-
ditions. In this paper we only discuss simulation results. The measurement on
topologies deployed on real nodes yields similar results which are not shown due
to space limitations (some results are reported in [14]).

We compare Steiner heuristics on both randomly constructed test networks,
and sub-networks extracted from a complete Internet topology. For the first
group of experiments we adopt the BRITE network generator [19], and for the
latter we use a simple extraction method applied to the map of Internet obtained
by the project Mercator [20]. We consider several test groups, each containing
100 sparse networks, that is, networks where the number of edges is less than
twice the number of nodes. On these networks multicast groups are typically

A Dynamic Distributed Algorithm for Multicast Path Setup 603

constituted by 10% or 20% of the nodes. We believe that these choices describe
reasonably well multicast applications in wide area networks. In [14], we inves-
tigate the scaling capability of our distributed approach. The metrics we use
for comparison are cost competitiveness, convergence time, and number of mes-
sages transmitted. Competitiveness is the ratio between the heuristic tree cost
and that of an optimal solution. For large networks, where explicit algorithms
capable of finding optimal solutions are prohibitively expensive, we use a particu-
lar heuristic solution (or the best solution obtained by any heuristic considered),
rather than an optimal solution. Convergence time is the time elapsed from the
beginning of the execution to the time at which the last message reaches its
destination. The number of messages is the total number of messages exchanged
between nodes before convergence.

5.2 Experimental Results

Static Case. We carry out simulations on several different groups of networks,
each containing 100 randomly generated or extracted topologies. On these net-
works, we first compare the D-ADHF cost competitiveness with that of the
D-ADH algorithm we proposed in [14], of the distributed K-SPH heuristic (D-
KSPH) in [8], and of some classical centralized heuristics (ADH, K-SPH, SPH,
and DNH) [3]. Here we report results obtained considering 200-node networks
with 20% and 40% membership sizes: simulations with different network sizes
and with different membership percentages reveal similar results, which are not
shown only for the sake of brevity. Fig. 2 shows that our distributed approach
provides solutions that have the same level of competitiveness when compared
to the centralized approach. The same charts show (according to [8]) that the
distributed version of K-SPH heuristics may provide worse solutions compared
to its centralized version. The second result demonstrated by Fig. 2 is that,
when comparing competitiveness, both D-ADH, and D-ADHF consistently out-
perform both the centralized heuristics DNH, SPH, K-SPH, and the distributed
algorithm proposed in [8]. Finally, we point out that, when comparing D-ADH
and D-ADHF, the latter provides both lower convergence time, and fewer mes-
sages, still maintaining the competitiveness results. This result is clearly demon-
strated by some charts reported in [14], and here omitted due to space limita-
tions. Moreover, we study the communication complexity and the convergence
time on several groups of large simulated networks, comparing our approach
with the D-KSPH algorithm. For the sake of brevity, here we only report the
results obtained in 200-node networks with 10%. Fig. 3 shows the cumulative
percentage of networks with 10% membership solved within a given number
of messages and within a given convergence time, respectively. The equivalent
charts obtained with different network sizes and membership percentages mir-
ror the results shown in Fig. 3. All the results indicate that both the number
of messages, and the convergence time for D-ADHF fall within a more limited
range as compared to the results produced by D-ADH. Moreover, we note that
D-ADHF uses a number of messages that is consistently smaller when compared
to the large amount of messages exchanged by the distributed K-SPH algorithm,

604 Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

(a) Competitiveness distributions for dif-
ferent heuristics

(b) Cumulative percentage of networks
solved within a given time

Fig. 4. Dynamic case analysis results

with a time to converge that is close to that of D-KSPH. The main reason is
that the heuristic in [8] adopts a heavily parallelized approach, that can connect
several fragments at the same time. Nevertheless, this approach requires a very
complex algorithm, that shows severe inefficiencies in practical usage.

Dynamic Case. In order to analyze the performance of our approach for dy-
namically updating multicast trees, we consider a group of 200-node networks
with 40 initial multicast nodes, and, for each of them, we randomly generate 60
requests to add or delete a multicast member. The kind of request is generated
satisfying the following probabilistic model:

Pc(z) =
γ(n− z)

γ(n− z)(1− γ)z
(3)

where γ is a real number in the range [0, 1] and Pc(z) is the probability that
the node’s request is to join the multicast group. The parameter γ determines
the size of the multicast group at the equilibrium. Each request is presented
to the network only when the previous one is completely accomplished. We
compare the algorithm Greedy with our approach, using 3 and 6 as threshold
values (Stirring-3, Stirring-6). Fig. 4(a) shows the cumulative distribution for the
competitiveness (defined comparing results to the heuristic ADHF), while Fig.
4(b) presents the cumulative percentage of networks whose membership changes
are managed within a given execution time. Heuristic Greedy has the lightest
computation requirement, but, when the number of changes increase, the tree
quality heavily degrades. On the contrary, our technique strikes a good balance
between frequent rearrangement and tree degradation.

6 Conclusion

In this paper, we proposed a new distributed algorithm which is capable of de-
termining very good approximating solutions for the Steiner Tree Problem in

A Dynamic Distributed Algorithm for Multicast Path Setup 605

Networks. Our algorithm exploits the ADH tree building criterion. The exper-
imental results showed that our algorithm consistently outperforms the state-
of-the-art distributed heuristics, although it still maintains comparable perfor-
mance in terms of execution time. Moreover, we introduced and evaluated a
simple approach that supports dynamic multicast membership, by means of pe-
riodic improvement of locally inefficient subtrees.

References

1. Ivanov, A.O., Tuzhilin, A.A.: Minimal Networks: The Steiner Problem and Its
Generalizations. CRC Press, Cleveland, OH (1994)

2. Karp, R.M.: Reducibility among combinatorial problems. In Miller, Thatcher, eds.:
Complexity of Computer Computations. Plenum Prest, New York (1972) 85–103

3. Winter, P.: Steiner problem in networks: A survey. Networks 17 (1987) 129–167
4. Hwang, F., Richards, D.: Steiner tree problems. Networks 22 (1992) 55–89
5. Ramanathan, S.: Multicast tree generation in networks with asymmetric links.

IEEE/ACM Transactions on Networking 4 (1996) 558–568
6. Kompella, V., Pasquale, J., Polyzos, G.: Two distributed algorithms for the con-

strained Steiner tree problem. In: Proc. Comput. Commun. and Netw., San Diego,
CA (1993)

7. Chen, G., Houle, M., Kuo, M.: The Steiner problem in distributed computing
systems. Information Sciences 74 (1993) 73–96

8. Bauer, F., Varma, A.: Distributed algorithms for multicast path setup in data
networks. IEEE/ACM Transactions on Networking 4 (1996) 181–191

9. Singh, G., Vellanki, K.: A distributed protocol for constructing multicast tree. In:
Proc. IEEE Int’l Conf. on Principles of Distributed Systems. (1998) 41–48

10. Novak, R., Rugelj, J., Kandus, G.: A note on distributed multicast routing in
point-to-point networks. Computers & Operations Research 28 (2001) 1149–1164

11. Bauer, F., Varma, A.: Distributed algorithms for multicast path setup in data
networks. In: Proc. IEEE GLOBECOM, Singapore (1995)

12. Kadirire, J., Knight, G.: Comparison of dynamic multicast routing algorithms
for wide-area packet switched networks. In: Proc. IEEE INFOCOM, Boston, MA
(1995)

13. Imase, M., Waxman, B.: Steiner tree problems. SIAM J. Discrete Math. 4 (1991)
369–384

14. Gatani, L., G. Lo Re, Urso, A.: Distributed algorithms for multicast tree construc-
tion. In: Proc. IEEE ISCCSP’04, Hammamet, Tunisia (2004)

15. Plesnik, J.: Worst-case relative performances of heuristics for the Steiner problem
in graphs. Acta Mathematica Universitatis Comenianae 60 (1991) 269–284

16. Rayward-Smith, V.J., Clare, A.: On finding Steiner vertices. Networks 16 (1986)
283–294

17. G. Di Fatta, G. Lo Re: Efficient tree construction for the multicast problem. In:
Proc. IEEE ITS ’98, Sao Paolo, Brazil (1998)

18. Fall, K., Varadhan, K.: The ns Manual.
http://www.isi.edu/nsnam/ns/doc/index.html (2003)

19. Medin, A., Lakhina, A., Matta, I., Byers, J.: BRITE Universal Topology Genera-
tion from a User’s Perspective.
http://www.cs.bu.edu/brite/user manual/BritePaper.html (2001)

20. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: Proc.
IEEE INFOCOM’00, Tel Aviv, Israel (2000) 1371–1380

Distributed Maintenance of a Spanning Tree
Using Labeled Tree Encoding

Vijay K. Garg and Anurag Agarwal

University of Texas at Austin
Austin, TX 78712-1084

Abstract. Maintaining spanning trees in a distributed fashion is cen-
tral to many networking applications. In this paper, we propose a self-
stabilizing algorithm for maintaining a spanning tree in a distributed
fashion for a completely connected topology. Our algorithm requires a
node to process O(1) messages of size O(log n) on average in one cycle as
compared to previous algorithms which need to process messages from
every neighbor, resulting in O(n) work in a completely connected topol-
ogy. Our algorithm also stabilizes faster than the previous approaches.

1 Introduction

Fault tolerance is a major concern in distributed systems. The self-stabilization
paradigm, introduced by Dijkstra [8], is an elegant and a powerful mechanism
for fault tolerance. Self-stabilizing systems tolerate transient data faults that can
corrupt the state of the system. They ensure that a system starting from any
state converges to a legal state provided the faults cease to occur.

Self-stabilizing algorithms for spanning tree construction have been exten-
sively studied. Spanning trees have many uses in computer networks. Once a
spanning tree is established in a network, it may be used in broadcast of a mes-
sage, convergecast, β synchronizer, and many other algorithms. As a result, it
is desirable to have an efficient self-stabilizing algorithm for spanning trees. The
first algorithm in this area was given in [10, 11] which deals with building BFS
tree for a graph. Other algorithms were also proposed for self-stabilizing BFS
trees which dealt with different system models and assumptions [1, 2, 4, 15, 16].
Algorithms have also been proposed for other types of trees — such as DFS
tree [6] and minimum spanning tree [3]. A survey of the existing self-stabilizing
spanning trees can be found in [13].

In this paper, we use an extension of the well-known strategy of detection
and reset [4, 5]. In this strategy, the nodes periodically test if the system is in
a legal state and on detection of a fault, carry out the reset strategy. Many
self-stabilizing algorithms have local detection, i.e., detection by each node cor-
responds to evaluation of a boolean predicate only on its variables and its neigh-
bors’ variables. The reset procedure may be complicated depending upon the
application.

Our method is an extension of the above strategy. We view the set of global
states as the cross-product of the core states and the non-core states. The core

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 606–616, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 607

states satisfy the property: There exists a legal state for every core state. The
non-core component of a global state is maintained only for performance reason.
Given the core component, one could always recreate the non-core component.
In our algorithm for maintaining a spanning tree, we use Neville’s code [18]
of the tree as the core component and the parent structure as the non-core
component. Given any Neville’s code, there exists a unique labeled spanning
tree in a completely connected graph. Now assume that our program suffers
from a data fault. The data fault could be in the core component or the non-
core component. However, every value of the core component results in a valid
code. Therefore, in either case, we assume that it is the non-core component that
has changed. Upon detecting that the non-core component does not correspond
to the core component, we simply reset the non-core component to a value
corresponding to the core component. The challenge lies in identifying suitable
core and non-core components and efficient detection and reset of the state when
information is distributed across the network.

We assume that our system is a completely connected graph on n nodes with
ids 1 . . . n. Such a system could be a network overlaid on a real network. Given
proper routing, Internet could also be considered a fully connected topology.
In such an overlaid topology, spanning trees can be used for distributing load
among participants involved in the computation of a global function. For such
applications, the nodes higher in the tree have to perform more computation.
As a result, it is important to change the spanning tree over time so that nodes
can function at different levels in the tree and every node shares the workload
equally in the long run. This requirement rules out maintaining a single tree
which is hardcoded in the algorithm. Our algorithm allows the application to
maintain any arbitrary tree and facilitates systematically changing of the tree.

Our algorithm is designed for asynchronous message-passing systems, and
does not require a central daemon [8] for scheduling decisions. Although some of
our assumptions are stronger than the previous work, our algorithm has some
significant advantages. In the popular shared memory model [9] for communica-
tion used by self-stabilizing spanning tree algorithms, it is assumed that a process
can read/write all its shared variables including communication registers. In a
completely connected topology, this means that a node can perform operations
on O(n) variables in O(1) time which is very unreasonable especially for a mes-
sage passing system. On the other hand, we assume that every communication
step takes one unit of time and in this model, our algorithm stabilizes in O(d)
time, where d is an upper bound on the number of times a node appears in the
Neville’s code. It turns out that d is O((log n)/ log logn) with high probability
for a randomly chosen code. This leads to a small stabilization time and to our
knowledge, it is the best stabilization time achieved by any algorithm in our
model.

2 System Model

We assume that the network is a completely connected graph with n processes
with ids from 1 to n. The processes in the system are referred to as P1 . . . Pn.

608 Vijay K. Garg and Anurag Agarwal

x[1] = least node with degree 1
for i from 1 to n − 1

y[i] = parent of x[i]
delete edge between x[i] and y[i]
if (degree[y[i]] = 1 ∧ y[i] �= n)

x[i + 1] = y[i]
else

x[i + 1] = least node with degree 1
Output y as the Neville’s code

Fig. 1. Algorithm to compute Neville’s
code (y) of a labeled tree

j = least node with degree 1
for i from 1 to n − 1

parent[j] = code[i]
degree[j] −−
degree[code[i]]−−
if (degree[code[i]] = 1) then

j = code[i]
else

j = least degree node with degree 1

Fig. 2. Algorithm to compute labeled tree
from Neville’s code

Each process maintains some local variables. The processes are connected to each
other through point to point channels and communicate by passing messages to
each other. The channels are assumed to be reliable and asynchronous. The
configuration c of the system is described by the values of the local variables
for the processes and the messages present in the channels. A computation step
consists of internal computation and a single communication operation: a send
or receive. From now on, we use the term step to refer to a computation step. A
step a is said to be applicable to a configuration c iff there exists a configuration
c′ such that c′ can be reached from c by a single step a. An execution E =
(c1, a1, c2, a2, . . .) is an alternating sequence of configurations and steps such
that ci is obtained from ci−1 by the execution of the step ai−1.

Our algorithm does not require any assumptions on the message transit time
for correctness but for measuring the time complexity of our algorithm, we as-
sume that a message can be received at the destination in the step next to the
one in which it was sent. A process executes one step in one unit of time. The
stabilization time of the algorithm is then given in terms of the number of time
units required by the algorithm to stabilize. The reason for choosing such a
model is explained later.

3 Neville’s Third Encoding

To maintain a spanning tree, it is sufficient for each process to maintain a pointer
to the parent but this method is not self-stabilizing as a fault in one of the parent
pointers may result in an invalid structure. In this section, we present a core data
structure which can be used to maintain the spanning tree in a self-stabilizing
way.

For simplicity we assume that all spanning trees rooted at Pn constitute the
set of legal structures. Later we explain how this assumption can be relaxed to
allow any node to become the root. We represent a tree through an encoding for
labeled trees called the Neville’s third encoding [7, 18]. In this paper, we refer
to Neville’s third code simply as Neville’s code. Each labeled spanning tree has
a one-to-one correspondence with a Neville’s code. This code is a sequence of
n−2 numbers from the set {1 . . . n}. For completeness sake, derivation of Neville’s
code from a labeled spanning tree is discussed. Given a labeled spanning tree
with n nodes, the Neville’s code can be obtained by deleting n− 1 edges in the

Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 609

7

5

1

2

4 6 3

Fig. 3. A spanning tree
with Neville’s code (5,2,7,
5,5,7)

i 1 2 3 4 5 6 7

parent 2 7 5 5 7 5 0
code 5 2 7 5 5 7 0

f 2 3 1 4 6 5 7

z 0 2 0 0 5 0 6

Fig. 4. Structures parent,
code, f and z satisfying
(R1)-(R5)

7

5

3

2

4 6 1

Fig. 5. Tree for parent
structure given in Fig. 4

tree as shown in Figure 1. The sequence {y[i]|1 ≤ i ≤ n − 2} generated at the
end of the procedure is called Neville’s code.

As an example, consider the labeled tree given in Figure 3. To compute the
Neville’s code for the tree, we start by deleting the least leaf node, 1. Since the
parent of 1 is 5, at this point the code is (5). Now 5 is still not a leaf, so we again
choose the least leaf node in the remaining tree, 3. We proceed by deleting 3 and
adding its parent 2 to the code. Continuing in a similar fashion, after n− 1 = 6
iterations of the algorithm, the code (5, 2, 7, 5, 5, 7) is obtained.

Given Neville’s code, the labeled spanning tree can also be computed easily.
We first calculate the degree of each node v as one more than the number of
times v appears in the code. For the root node n, this gives a value which is one
higher than the actual degree of the root but this is intentional. Once the degree
of each node is known, the procedure given in Figure 2 can be used to compute
the code.

Let Neville’s code of the tree be denoted by code[i] for i ∈ {1 . . . n− 2}. We
require Pi to maintain code[i] as the core data structure and parent[i] as the
non-core data structure. If efficiency were not an issue, this would be sufficient
for a self-stabilizing algorithm. Periodically, all nodes send their code to Pn, Pn

calculates parent[i] for each node Pi and sends it back. Then Pi resets parent[i]
to the value received from Pn. If parent[i] was corrupted, it gets reset to agree
with the spanning tree given by Neville’s code. Even if the variable code[i] gets
changed, it still results in a valid spanning tree. The parent pointers are then
reset to agree with the new code.

4 Non-core Data Structures for Spanning Trees

Our strategy is to introduce new data structures in the system so that by im-
posing a set of constraints on these data structures, we can efficiently detect and
correct data faults. For this purpose, the following data structures are used:

– parent: The variable parent[i] gives the parent of node Pi in the spanning
tree.

– f : The variable f [i] gives us the iteration in which the node Pi is deleted
in the Neville’s code generation algorithm. Therefore, code[f [i]] gives us
parent[i]. Since Pn is not deleted in first n − 1 iterations, we assume that
f [n] = n.

610 Vijay K. Garg and Anurag Agarwal

– z: The variable z[i] gives the largest value of j such that code[j] = i. If there
is no such j, then z[i] = 0.

Based on the properties of Neville’s code, it can be verified that the variables
— code, parent, f and z — satisfy the following constraints:

(R1) ∀i : code[f [i]] = parent[i]
Follows from the property of function f relating it to the parent.

(R2) (∀i : 1 ≤ i ≤ n− 2⇒ 1 ≤ code[i] ≤ n) ∧ (code[n− 1] = n) ∧ (code[n] = 0)
Definition of code extended to all the nodes.

(R3) (1) ∀i : 1 ≤ i < n⇒ 1 ≤ f [i] ≤ n− 1
Restricts the f values for nodes other than the root node.

(2) f is a permutation on [1 . . . n]
In each iteration exactly one node is deleted and hence f values are
distinct and range from 1 . . . n.

(R4) ∀i : z[i] = max{{j|code[j] = i} ∪ {0}}
Definition of z.

(R5) ∀i : z[i] �= 0 ⇒ (f [i] = z[i] + 1)
If node i was not a leaf node at the starting of the algorithm, then it is
deleted immediately after all its children have been deleted.

Theorems 1 and 2 show that constraints are strong enough to characterize
a spanning tree, i.e., given a set of data structures code, parent, f and z which
satisfy these constraints, the parent structure results in a valid spanning tree
regardless of the definitions of these data structures. From now on, when we
consider the data structures code, parent, f and z, we just think of them as
obeying a certain set of constraints and not necessarily corresponding to the
original definitions that were given for them.

We deal with two sets of constraints — R = {R1, R2, R3(1), R4, R5} and
C = {R1, R2, R3, R4, R5}. It is evident that any algorithm which satisfies the
constraint set C also satisfies the constraint set R. The trees resulting from
obeying these constraint sets possess different guarantees and are characterized
by the following theorems.

Theorem 1. If code, parent, f and z satisfy constraint set R then parent data
structure forms a valid spanning tree rooted at Pn.

Proof. Let the directed graph formed by the parent relation satisfying con-
straints R be Tparent. The edges of Tparent are directed from the child to the
parent. We first show that Tparent is acyclic.
Let i = parent[j] in Tparent for some nodes i and j. Then,
code[f [j]] = i (Using (R1))
⇒ (z[i] �= 0) ∧ (f [j] ≤ z[i]) (Using (R4))
⇒ f [j] < f [i] (Using (R5) for i)
Applying this argument repeatedly shows that the ancestor of a node has a
higher f value than the f value for the node itself. This implies that no node is
an ancestor of itself and hence Tparent is acyclic.

Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 611

Every node in Tparent has outdegree either 0 or 1 depending upon the validity
of the parent variable. We now show that every node except Pn has a valid parent
and Pn forms the root of the tree. For a node Pi, i �= n,
f [i] �= n (Using (R3)(1))
⇒ 1 ≤ parent[i] = code[f [i]] ≤ n (Using (R2),(R1))

Since the graph Tparent is acyclic and every node except Pn has a valid parent,
Pn is root of the tree.

The above theorem just ensures that the parent pointers form a spanning
tree. It does not enforce any relationship between the structure of the tree formed
by the parent pointers and the tree corresponding to code. The next theorem
establishes this relationship. The proof for the theorem can be found in the
technical report [14].

Theorem 2. If code, parent, f and z satisfy constraint set C, then parent forms
a rooted spanning tree isomorphic to the tree generated by code.

The above theorem suggests that there is a possibility that the tree formed
by parent is not same as the tree generated by code. For example, consider
the value of the variables given in Table 4. It can be easily verified that these
values satisfy the constraint set C. The tree corresponding to code is the one we
considered earlier in Figure 3. The tree generated by parent is shown in Figure
5. The two trees are not the same but they are isomorphic.

5 Maintaining Constraints

Each node i maintains parent[i], code[i], f [i] and z[i] and cooperates to ensure
that the required constraints are satisfied, resulting in a valid rooted spanning
tree. We present a strategy for efficient detection and correction of faults for each
of the constraints. We will first discuss (R3) as it turns out to be most difficult
to detect and correct.

5.1 Constraint (R3)

Constraint (R3)(1) is a local constraint which can be checked easily. Violation
of this constraint can be fixed by simply setting f to a random number between
1 and n− 1. Constraint (R3)(2) requires f to be a permutation on 1 . . . n. This
can, in turn, be modeled in terms of the following constraints:
(C1) ∀i : 1 ≤ f [i] ≤ n (C2) ∀i, j : f [i] �= f [j]

The violation of (C1) is easy to detect. Every node i checks the value f [i]
periodically. If it is not between 1 and n, then a fault has occurred. The constraint
(C2) is more interesting. At first glance it seems counter-intuitive that we can
detect violation of (C2) in O(1) messages. However, by adding auxiliary variables,
the above task can indeed be accomplished. We maintain g[i] at each process
Pi such that, in a legal global state f [i] = j ≡ g[j] = i. Thus, g represents the

612 Vijay K. Garg and Anurag Agarwal

inverse of the array f . Note that the inverse of a function exists iff it is one-one
and onto which is true in this case. If each process Pi maintains f [i] and g[i],
then it is sufficient for a node to check periodically the following constraints:
(D1) ∀i : 1 ≤ f [i] ≤ n (D2) ∀i : 1 ≤ g[i] ≤ n (D3) g[f [i]] = i

It is easy to show that (C2) is implied by (D1)-(D3). If for some distinct i
and j, f [i] is equal to f [j], then g[f [i]] and g[f [j]] are also equal. This means
that (g[f [i]] = i) and (g[f [j]] = j) cannot be true simultaneously. (D3) can
be checked by Pi by sending a message to Pf [i] periodically, prompting Pf [i] to
check whether g[f [i]] = i is true. Note that by introducing additional variables
we have also introduced additional sources of data faults. It may happen that
requirements (C1)-(C2) are met, but due to faults in g, constraints (D1)-(D3)
are not met. We believe that the advantage of local detection of a fault outweighs
this disadvantage.

The above scheme has an additional attractive property: If we assume that
there is a single fault in f or g, then it can also be automatically corrected. The
details for this scheme are given in the technical report [14].

5.2 Other Constraints

Constraints (R1), (R2) and (R5). Constraint (R1) is trivial to check locally.
Each node i inquires node j = f [i] for code[j]. If this value does not match
parent[i], then the constraint (R1) is violated. On violation, (R1) can be ensured
by setting parent[i] to code[j]. Constraint (R2) is also trivial to check and correct
locally. Similarly, violation of (R5) can be detected easily and on a fault, f [i]
can be set to z[i] + 1.

Constraint (R4): This constraint can be modeled in terms of the following
constraints:
(E1) ∀i : (z[i] �= 0)⇒ (code[z[i]] = i) (E2) ∀i, j : (code[j] = i)⇒ (z[i] ≥ j)

For checking (E1), node i prompts the node z[i] to verify that code[z[i]] = i.
If the check fails, then z[i] can be set to 0, which may not be the correct value
for z[i]. If z[i] is set incorrectly to 0, then constraint (E2) is also violated. As a
result, while checking for (E2), z[i] is set appropriately. For checking (E2), every
node j sends a message to node code[j] to verify that z[code[j]] ≥ j. If (E2) is
found to be violated upon receiving a message from node j, then z[code[j]] is set
to j.

5.3 Complete Algorithm

Depending upon the set of constraints (R or C) that a process obeys, we have
two versions of the algorithm. They differ in the guarantees about the resulting
tree and their time complexities.

Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 613

Pi::
var

code, parent, f, z: integer;

Periodically do
// Check (R2)
if (i = n − 1) ∧ (code �= n)

code = n
if (i = n) ∧ (code �= 0)

code = 0
if (i �= n) ∧ ((code ≤ 0) ∨ (code > n))

code = random number between 1 and n

// Check (R3)(1)
if (i �= n) ∧ ((f ≤ 0) ∨ (f ≥ n))

f = random number between 1 and n − 1
// First check for (R4)
if ((z < 0) ∨ (z > n))

z = 0

if (z �= 0)
get code from node Pz
if Pz .code �= i

z = 0
if (code �= 0)

send (“Check z”, i) to node code
// Check (R5)
if ((z �= 0) ∧ (f �= z + 1))

f = z + 1
if ((z = 0) ∧ (f ≤ z))

f = random number between 1 and n − 1

// Check (R1)
get code from node Pf
if (Pf .code �= parent)

parent = Pf .code

// Second check for (R4)
Upon receiving (“Check z”,j)

if z < j
z = j

Fig. 6. Algorithm SSR for maintaining the constraint set R

Maintaining R. As we proved in Theorem 1, the set of constraints R is suf-
ficient to maintain a spanning tree. The complete algorithm for process i to
maintain the constraint set R is given in the Figure 6. We refer to this algo-
rithm as SSR. In the algorithm, instead of denoting variables like code[i], we
have used Pi.code to emphasize that the variables are local to the processes and
are not shared. The algorithm checks the constraints one by one and on the vio-
lation of a constraint, it takes corrective action. For checking constraints which
involve obtaining the value of another process’s variable, we have used a primi-
tive get. This involves the sender sending a request for the required variable and
the receiver then replying with the appropriate value. A separate thread would
be used by a process to respond to the get requests from other processes. Another
point to notice in the algorithm is the asynchronous receive of the “Check z”
messages. These messages would be received by a third thread which is woken
up whenever a message arrives. Our system model takes this into account by
assuming that a process alternates between the three threads of execution. The
formal proof of correctness of the algorithm is given in the technical report [14].

At this point, we also give our reasons for choosing a different model for
evaluation of our strategy. In the previous works, the asynchronous rounds [9, 12]
model was used. The first asynchronous round in an execution E is the shortest
prefix E′ of E such that each process executes at least one step in E′. Let E′′

be the suffix of E that follows E′. The second round of E is the first round of
E′′, and so on. The stabilization time of an algorithm is the maximum number
of rounds it executes before the system reaches a legal state. In this model, a
process waiting for a message receives the message in one round whereas if the
message receive is asynchronous, it fails to provide any guarantees. In practice,
running time of both the algorithms depends upon the message delivery time in
a similar way and hence their time complexities should be comparable. We try
to achieve this by putting a bound on the message delivery time. Our algorithm,
like most other self-stabilizing algorithms, is structured as a loop that is executed
periodically. We refer to this loop as a cycle.

614 Vijay K. Garg and Anurag Agarwal

The following theorems give the time and message complexity of this algo-
rithm averaged over all the nodes.

Theorem 3. The algorithm SSR requires O(1) time per node and O(1) mes-
sages per node on average in one asynchronous cycle with each message of size
O(log n).

Proof. In the algorithm SSR, every process sends a constant number of get re-
quests and one “Check z” request. This results in a total of O(n) messages.
Corresponding to the get requests, there would be a total of O(n) replies. The
number of “Check z” messages received by a process i depends upon the num-
ber of times i appears in code. Assuming a random code, every node processes
O(1) messages on average. Since each node takes constant number of steps in an
asynchronous cycle, every process requires O(1) time on average to complete one
asynchronous cycle. Moreover, since each message sends an id between 1 and n,
each message is of size at most O(log n).

The following theorem gives the stabilization time of the algorithm in terms of
our model. The proof for the theorem is given in the full version of the paper [14].

Theorem 4. [14] The algorithm SSR stabilizes in O(d) time, where d is the
upper bound on the number of times a node appears in code.

The problem of choosing the first n − 2 numbers of code at random can be
considered as the problem of randomly assigning n − 2 balls to n bins. The
following theorem is a standard result in probability theory [17][Theorem 3.1]:

Theorem 5. If n balls are thrown randomly in n bins, then with the probability
at least 1− 1

n , no bin has more than e log n
log log n balls.

For a randomly chosen code, this theorem provides an upper bound for d and
hence an upper bound on the stabilization time with very high probability.

These results show that the set R of constraints can be maintained effi-
ciently. The algorithm for maintaining the constraint set C, called SSC, is given
in the technical report [14]. The SSC algorithm can take upto O(n) time for
stabilization.

5.4 Changing the Root Node

The algorithms SSR and SSC can be easily modified to allow the root node to
change dynamically i.e. any node (not necessarily n) can become the root of the
tree and the root can be changed during the operation of the algorithm. This
can be achieved by changing the constraints (R2) and (R3)(1) in the following
way:
(R2) (∀i : 1 ≤ i ≤ n− 1 ⇒ 1 ≤ code[i] ≤ n) ∧ (code[n] = 0)
(R3)(1) ∀i : i �= code[n− 1]⇒ 1 ≤ f [i] < n

The modified constraints are also easy to check and maintain. In the next
section we present an application which utilizes this feature.

Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 615

5.5 Systematically Changing the Tree

The SSR algorithm ensures that if the code is changed, then the spanning tree
stabilizes to reflect that change. This property of the algorithm could be used by
an application to purposefully change the spanning tree. If we are maintaining
the set of constraints R, then changing the code value at a node may not always
result in a change in the tree. To get around this problem, whenever a node i
wishes to change the tree, it changes the value of code[f [i]] by requesting node
f [i]. This changes parent[i] = code[f [i]] and hence the spanning tree changes.
Additionally, this may result in some more changes in the spanning tree as the
parent of some other nodes may also get modified. This technique could be useful
for load balancing purposes.

6 Conclusion and Future Work

In this paper we presented a new technique for maintaining spanning trees using
labeled tree encoding. Our method requires O(1) messages per node on average
in one cycle and provides fast stabilization. It also offers a method for changing
the root of the tree dynamically and systematically changing the tree for load
balancing purposes. This work also demonstrates the use of the concept of core
and non-core states for designing self-stabilizing algorithms.

It would be interesting to extend this work for general topology. Another
research direction would be to modify the algorithm so that it does not require
the nodes to have labels from 1 to n.

References

1. Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for
general networks. In Proc. of the 4th Int’l Workshop on Distributed Algorithms,
pages 15–28. Springer-Verlag, 1991.

2. S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithm.
In Proc. of the 13th Conference on Foundations of Software Technology and The-
oretical Computer Science, pages 400–410, 1993.

3. G. Antonoiu and P. Srimani. Distributed self-stabilizing algorithm for minimum
spanning tree construction. In European Conference on Parallel Processing, pages
480–487, 1997.

4. A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43(9):1026–1038, 1994.

5. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local check-
ing and correction (extended abstract). In IEEE Symposium on Foundations of
Computer Science, pages 268–277, 1991.

6. Z. Collin and S. Dolev. Self-stabilizing depth-first search. Information Processing
Letters, 49(6):297–301, 1994.

7. N. Deo and P. Micikevicius. Prufer-like codes for labeled trees. Congressus Nu-
merantium, 151:65–73, 2001.

8. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17:643–644, 1974.

616 Vijay K. Garg and Anurag Agarwal

9. S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.
10. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems. In MCC

Workshop on Self-Stabilizing Systems, 1989.
11. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assum-

ing only read/write atomicity. In Proc. of the ninth annual ACM symposium on
Principles of Distributed Computing, pages 103–117. ACM Press, 1990.

12. S. Dolev, A. Israeli, and S. Moran. Uniform self-stabilizing leader election. In Proc.
of the 5th Workshop on Distributed Algorithms, pages 167–180, 1991.

13. F. C. Gaertner. A survey of self-stabilizing spanning-tree construction algorithms.
Technical report, EPFL, Oct 2003.

14. V. K. Garg and A. Agarwal. Self-stabilizing spanning tree algorithm with a new de-
sign methodology. Technical report, University of Texas at Austin, 2004. Available
as "http://maple.ece.utexas.edu/TechReports/2004/TR-PDS-2004-001.ps".

15. S. Huang and N. Chen. A self stabilizing algorithm for constructing breadth first
trees. Information Processing Letters, 41:109–117, 1992.

16. C. Johnen. Memory efficient, self-stabilizing algorithm to construct bfs spanning
trees. In Proc. of the sixteenth annual ACM symposium on Principles of Distributed
Computing, page 288. ACM Press, 1997.

17. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

18. E. H. Neville. The codifying of tree-structure. Proceedings of Cambridge Philo-
sophical Society, 49:381–385, 1953.

Replication Predicates
for Dependent-Failure Algorithms

Flavio Junqueira and Keith Marzullo

Department of Computer Science and Engineering
University of California, San Diego
{flavio,marzullo}@cs.ucsd.edu

Abstract. To establish lower bounds on the amount of replication, there
is a common partition argument used to construct indistinguishable ex-
ecutions such that one violates some property of interest. This violation
leads to the conclusion that the lower bound on process replication is of
the form n > �kt/b�, where t is the maximum number of process failures
in any of these executions and k, b are positive integers. In this paper,
we show how this argument can be extended to give bounds on repli-
cation when failures are dependent. We express these bounds in terms
of our model of cores and survivors sets using set properties instead of
predicates of the form n > �kt/b�. We give two different properties that
express the same requirement for k > 1 and b = 1. One property comes
directly from the argument, and the other is more useful when designing
an algorithm that takes advantage of dependent failures. We also con-
sider a somewhat unusual replication bound of n > �3t/2� that arises in
the Leader Election problem for synchronous receive-omission failures.
We generalize the replication bound for dependent failures, and develop
an algorithm that shows that this generalized replication bound is tight.

1 Introduction

Lower bounds for the amount of process replication are often arrived at by an
argument of the following flavor:

1. Partition the n processes into k blocks, where each block has at most !t/b"
processes, t ≥ !nb/k", and k, b are positive integers such that k > b ≥ 1.

2. Construct a set of executions. For each block A, there is at least one of the
executions in which all the processes in A are faulty.

3. Given the set of executions, show that some property of interest is violated.
Conclude that if the maximum number of faulty processes in an execution
is never larger than t, then t < !nb/k" and n > �kt/b� 1.

Examples of such proofs include Consensus with arbitrary process failures and
no digital signatures requiring n > 3t (k = 3, b = 1) [16], Primary Backup with
general omission failures requiring n > 2t (k = 2, b = 1) [19], and Consensus with
the eventually strong failure detector �S requiring n > 2t (k = 2, b = 1) [5, 6].
1 Some authors have used different symbols, such as f , to indicate an upper bound on

the number of faulty processes.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 617–632, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

618 Flavio Junqueira and Keith Marzullo

We call a predicate like n > �kt/b� a replication predicate: it gives a lower
bound on the number of processes that are required given all possible sets of
faulty processes. Expressing bounds in terms of t is often referred to as a thresh-
old model. Using t to express the number of faulty processes is convenient, but
the bounds can lead to mistaken conclusions when processes do not fail inde-
pendently or do not have identical probabilities of failure. This is because one
is assuming that any subset of t or fewer processes can be faulty, which implies
that failures are independent and identically distributed (IID). To use an algo-
rithm developed under the threshold model on a system that does not have IID
failures, one can compute the maximum number of processes that can fail in any
execution, and then use that number as t. On the other hand one may be able
to use fewer processes if an algorithm based on non-IID failures is used instead.

In an earlier paper we introduced a method for modeling non-IID failures [13]
and studied Consensus under this model. We derived replication requirements
in our new model and presented protocols that showed these bounds to be tight.
This paper generalizes the results of our earlier paper to protocols other than
Consensus. We show how the lower bound argument given above can be easily
generalized to accommodate our model of non-IID failures. This argument leads
to a replication predicate that we call k–Partition, which generalizes the repli-
cation predicate n > kt (b = 1) for when failures are not IID. The k–Partition
property, however, may not prove to be very useful when designing an algorithm.
An equivalent property, which we call k–Intersection, is often more useful for this
purpose. It is more useful for designing algorithms because algorithms often refer
to minimal sets of correct processes (n − t processes when process failures are
IID). These properties generalize the two properties we developed for Consensus
in our earlier paper.

In this paper, after reviewing our failure model, we define the replication
predicate k–Partition for k > 1. We then define k–Intersection and show that
it is equivalent to k–Partition. We illustrate the utility of k–Intersection by
showing that the M-Availability property [17] for Byzantine Quorum Systems is
equivalent to 4–Intersection. Thus, a system that requires M-Availability has a
replication predicate of 4–Partition. Finally, we examine one point in the space
of replication predicates for b > 1. We do so by considering a weak version of
the Leader Election problem for synchronous systems that can suffer receive-
omission failures. We review a previously-given lower bound proof that argues
n > �3t/2� (k = 3, b = 2) for IID failures. This proof yields a definition that
we call (3,2)–Partition. We derive an equivalent (3,2)–Intersection property and
use it to develop an optimal protocol for Weak Leader Election. An immediate
consequence is that the lower bound n > �3t/2� for IID failures is tight. We
believe that this is the first time this has been shown.

2 System Model

We assume a system that is amenable to the lower bound proof described in the
previous section. Such systems are often comprised of processes that communi-
cate with messages. We consider systems in which processes can be faulty (as

Replication Predicates for Dependent-Failure Algorithms 619

compared, for example, to systems in which the failure of messages to be deliv-
ered are attributed to faulty links rather than omission failures of processes).

Our work is based on a model of non-independent, non-identically distributed
failures. We characterize failure scenarios with cores and survivor sets [13]. A
core is a minimal subset of processes such that, in every execution, there is at
least one process in the core that is not faulty. A core generalizes the idea of
a subset of processes of size t + 1 in the threshold model. A survivor set is a
minimal set of processes such that there is an execution in which none of the
processes in the set are faulty. A survivor set generalizes the idea of a subset of
processes of size n − t in the threshold model, where n is the total number of
processes. Cores and survivor sets are duals of each other: from the set of cores
one can obtain the set of survivor sets by finding all minimal subsets of processes
that intersect every core.

More formally, we define cores and survivor sets as follows. Consider a system
with a set Π = {p1, p2, . . . , pn} of processes. Let Φ be all of the executions of a
distributed algorithm alg run by the processes in Π , and let Correct(φ) be the
set of processes that are not faulty in an execution φ ∈ Φ.

Definition 1. A subset C ⊆ Π is a core if and only if: 1) ∀φ ∈ Φ, Correct(φ)∩
C �= ∅; 2) ∀pi ∈ C, ∃φ ∈ Φ such that C \ {pi} ∩Correct(φ) = ∅.
Definition 2. A subset S ⊆ Π is a survivor set if and only if: 1) ∃φ ∈ Φ,
Correct(φ) = S; 2) ∀φ ∈ Φ, pi ∈ S, Correct(φ) �⊆ S \ {pi}.

In [13], we defined cores and survivor sets using probabilities. In this paper,
we use an alternative definition, based on executions, that is more convenient
when discussing algorithms. In practice, one can use failure probabilities and a
target reliability (or availability) to compute the sets of faulty processes that
can be tolerated, and these sets determine the possible failures of an execution.
However, one does not have to determine tolerated sets of faulty processes on
probabilities. As our example below show, it can be based on a combination of
quantitative and qualitative information.

We use the term system profile to denote a description of the tolerated failure
scenarios. In the threshold model, a system profile is a pair 〈Π, t〉, which means
that any subset of t processes in Π can be faulty. In our dependent failure model,
the system profile is a triple 〈Π, CΠ ,SΠ〉, where CΠ is the set of cores and SΠ is
the set of survivor sets2. We assume that each process is a member of at least one
survivor set (otherwise, that process can be faulty in each execution, and ignored
by the other processes), and that no process is a member of every survivor set
(otherwise, that process is never faulty). The threshold system profile 〈Π, t〉 is
equivalent to the profile 〈Π, CΠ ,SΠ〉 where CΠ is all subsets of Π of size t + 1
and SΠ is all subsets of Π of size |Π | − t.

We treat the kind of failure—crash, omission, arbitrary, etc.—as a separate
part of the failure model. The kind of failure is important both in the design
of algorithms and in the derivation of lower bounds. In some situations, such
2 Since CΠ and SΠ can be computed from each other, in fact the system profile could

contain only one of these two sets. We include both for convenience.

620 Flavio Junqueira and Keith Marzullo

as with hybrid failure models (for example, [7]), separating the kind of failures
from the system profile would be complex. In general, we do not assume any
particular kind of failure, but we do so when discussing specific problems.

Determining the system profile requires one to consider the possible causes
of process failures. For example, a process running on a particular processor
fails if the processor hardware fails (crash failure). As another example, if one
is concerned about software faults (bugs), then a process can fail if there is an
error in one of the software packages it depends upon, and the system executes
the erroneous instructions (which can result in an arbitrary failure) [9].

2.1 Determining a System Profile

We now give an example of a system profile that uses qualitative information.
In the work by Castro et al. [4], the authors observe that independent software
development ideally produces disjoint sets of software faults. This observation
is the basic idea of n-version programming, whose goal is to render software
failures independent. Of course, there is still a marginal probability that two or
more replicas fail in the same execution, but this probability is assumed to be
small enough so that it can be ignored.

Suppose we want to implement a fault-tolerant service using the State Ma-
chine approach [3, 21], and we are concerned about arbitrary failures arising from
software faults. Moreover, we want to leverage the existence of multiple stan-
dalone implementations of this service we are interested in, as in BASE [4]. Thus,
each replica has two components: a standalone implementation and a replica-
coordination component that implements a distributed Consensus algorithm.

For this particular service, suppose

Fig. 1. Ei is the set of executions that
have at least one faulty replica running ver-
sion vi

that there are five standalone versions
available: v1 through v5. Looking more
carefully at the history of these ver-
sions, we discover that two of them
reuse code from previous versions. In
more detail, v2 reuses a set X of mod-
ules from v1, and v3 reuses modules
Y from v1 and Z from v2

3. We also
assume that X , Y , and Z are disjoint
sets, and that v4 and v5 were devel-
oped independently.

Assuming that every software mod-
ule potentially has software faults, we

have: 1) faults in the modules in X can affect both v1 and v2; 2) faults in the
modules in Y can affect both v1 and v3; 3) faults in the modules in Z can affect
both v2 and v3.

Consider a system in which there is at least one replica running each of the
five versions. Let Ei be the set of executions in which at least one replica is
faulty because of a fault in the version vi. These sets of executions are related
to each other as shown in Figure 1.
3 A module is a collection of functions and data structures.

Replication Predicates for Dependent-Failure Algorithms 621

Assuming one replica for each version, and assuming that at most one soft-
ware fault can be exercised in an execution, we have the profile of Example 1.
This system has sufficient replication to implement Consensus in a synchronous
system with arbitrarily faulty processes and no digital signatures [13]. The
amount of replication is also sufficient to implement a fault-tolerant state ma-
chine for arbitrarily faulty processes using PBFT [3].

PBFT is an attractive proto-
Example 1.

Π = {p1, p2, p3, p4, p5}
CΠ ={{p1, p2, p3}, {p4, p5}}

∪{{pi, pj} : i ∈ {1, 2, 3} ∧ j ∈ {4, 5}}
SΠ ={{pi, p4, p5} : i ∈ {1, 2, 3}}

∪{{p1, p2, p3, pi} : i ∈ {4, 5}}

col because it assumes a weak fail-
ure model. It was designed, how-
ever, assuming a threshold failure
model. In the system profile given
above, the smallest survivor set has
three processes, which means that
there are executions in which two
processes are faulty. Hence, there is not enough replication to run PBFT: seven
processes are required to tolerate two faulty processes. PBFT can be used by
having one process execute v1, one process execute v2, one process executes v3,
two processes execute v4, and two processes execute v5. It is easy to check that
there is no more than two failures in any execution of this configuration. Alter-
natively, we can implement a replica coordination component with a modified
version of PBFT that can be run in the five process system of the example. In
this case, the PBFT implementation needs to know the system profile in the
same way that an unmodified PBFT (one assuming a threshold) needs to know
the maximum number of faulty processes in an execution4.

This example illustrates an important point about dependent failures. Since
IID failures can be represented as a particular system profile, lower bound proofs
that hold for IID failures also hold in our model. But, if one has a system in
which failures are not IID, then one should use an algorithm that explicitly
uses a system profile. By using such an algorithm, it is often possible to use
less replication than it requires when using an algorithm developed using the
threshold model.

2.2 Survivor Sets, Fail-Prone Systems, and Adversary Structures

We are not the first to consider non-IID behaviors: quorum systems have ad-
dressed the issues of non-IID behavior for some time. In [17], the idea of fail-
prone systems was introduced. This paper gives the following definition for a set
of servers U :

A fail-prone system B ⊆ 2U is a non-empty set of subsets of U , none of
which is contained in another, such that some B ∈ B contains all the
faulty servers.

This paper then observes that a fail-prone system can be used to generalize to
less uniform assumptions than a typical threshold assumption. Their definition
4 Although the original PBFT algorithm assumes a threshold on the number of fail-

ures, it is possible to modify it to work with cores and survivor sets. A discussion of
these modifications, however, is outside of the scope of this paper.

622 Flavio Junqueira and Keith Marzullo

does not give a name to the elements of B; we call each one a fail-prone set.
As fail-prone sets are maximal, a fail-prone set is the complement of a survivor
set and B = {Π \ S : S ∈ SΠ}. Although both survivor sets and fail-prone sets
characterize failure scenarios, survivor sets have a fundamental use: if a process
is collecting messages from the other processes, it can be fruitless to wait for
messages from a set larger than a survivor set. Of course, there are times when
fail-prone sets are more useful. For example, if Bmax is the largest fail-prone set,
then |Bmax| is the value of t to use if one wishes to use a threshold-based protocol.

Non-threshold protocols were also considered in the context of secure multi-
party computation with adversary structures [1, 11, 15]. Adversary structures
are similar to fail-prone systems. They differ in two ways. First, adversary struc-
tures can represent more than one failure mode, e.g., crash failures and arbitrary
failures. Each failure mode is described with sets of possibly faulty processes
(processes are referred to as players in this literature). Second, the sets of pos-
sibly faulty players given in an adversary structure are not necessarily maximal;
all sets of possibly faulty players are given. Using all possible sets of players
that can deviate from the correct protocol behavior as opposed to only maximal
sets (or minimal sets of correct processes, as with survivor sets) gives one more
expressiveness in modeling system failures. Using fail-prone systems or survivor
sets, however, is sufficient for establishing the bounds on process replication we
show in this paper. Moreover, these bounds hold even for a more expressive
model such as adversary structures. This is because we use properties about the
intersections of sets of correct processes. If the intersection property holds for
some sets of processes A1, A2, ..., Am then it holds for the sets of processes
A′

1 ⊃ A1, A′
2 ⊃ A2, ..., A′

m ⊃ Am. Hence, one only has to consider the minimal
sets of correct processes in these intersection properties.

3 k Properties

In the generic lower bound proof described in Section 1, one first partitions the
set of processes into k blocks, and then constructs a set of executions. For each
block A, there is some execution in which all the processes in A are faulty. Being
able to fail all the processes of a particular block then enables the construction
of an execution in which some property is violated. For example, for Consensus,
the property violated is agreement. For Primary-Backup algorithms, the property
violated is the one that says that at any time there is at most one primary.

Having derived a contradiction, the proof concludes by stating that one can-
not partition the processes in the manner that was done. With the threshold
model and b = 1, this implies that not all processes of any subset of size !n/k"
can be faulty, and consequently t < !n/k". In our dependent failure model, this
implies that in any partition of the processes into k blocks, there is at least one
block A that does not contain only faulty processes: A contains a core. More
formally, let Pk(Π) be the set of partitions of Π into k blocks. We then have
the following property for a system profile 〈Π, CΠ ,SΠ〉:
Property 1. k–Partition, k > 1, |Π | > k: ∀A ∈ Pk(Π) : ∃Ai ∈ A : ∃C ∈ CΠ :
C ⊆ Ai

Replication Predicates for Dependent-Failure Algorithms 623

Although k–Partition is useful for lower bound proofs, it is often not very
useful for the design of algorithms. Survivor sets are often more convenient to
refer to than cores. For example, the algorithm for Consensus by Chandra and
Toueg for crash failures in asynchronous systems with failure detectors of the
class �S assumes at least 2t + 1 processes. For this number of processes, any
pair of subsets of size n − t has a non-empty intersection, and this property is
crucial to avoid the violation of agreement. This is equivalent to stating that any
two survivor sets intersect, or equivalently that SΠ is a coterie [8].

3.1 k–Intersection

We now state the property that we show to be equivalent to k–Partition and that
references survivor sets instead of cores. We call it k–Intersection. k–Intersection
states that for a system profile 〈Π, CΠ ,SΠ〉, for every set T ⊂ SΠ of size k, there
is some process that is in every element of T . Let Gx(A) be the set of all the
subsets of A of size x; if |A| < x, then Gx(A) = ∅. We have the following property
for a system profile 〈Π, CΠ ,SΠ〉:
Property 2. k–Intersection, k > 1, |Π | > k, |SΠ | > k: ∀T ∈ Gk(SΠ) :
(∩S∈TS) �= ∅

As an illustration, the set SΠ in Example 1 satisfies 3–Intersection. We now
show the equivalence between k–Partition and k–Intersection.

Theorem 1. k–Partition ≡ k–Intersection

Proof. ⇒: Proof by contrapositive. Suppose a system profile 〈Π, CΠ ,SΠ〉 such
that there is a subset S = {S1, . . . , Sk} ⊂ SΠ such that

⋂S = ∅. We then build
a partition A = {A1, . . . , Ak} as in Figure 2.

Suppose without loss of generality that A1 = Π \ S1

A2 = Π \ (S2 ∪A1)
...

Ai = Π \ (Si ∪A1 ∪A2 . . . ∪Ai−1)
...

Ak = Π \ (Sk ∪A1 . . . ∪Ak−1)

Fig. 2. Partition

no Ai is empty. It is clear from the con-
struction that no two distinct blocks Ai, Aj

intersect. It remains to show that: 1)
⋃A =

Π ; 2) ∀i ∈ {1, . . . , k} : Ai does not contain
a core. To show 1), consider the derivation
in Figure 3. Explaining the derivation:

– Line 1 to Line 2 follows from the ob-
servation that for any subsets A,B of
Π , we have that (Π \ A) ∪ (Π \B) =
Π \ (A ∩B);

– Line 2 to Line 3: the intersection between S1 and A1 has to be empty, since
S1 contains exactly the elements we removed from Π to form A1;

– Line 3 to Line 4: by repeating inductively the process used to derive Line 3,
we remove every term Ai present in the equation;

– Line 4 to Line 5: By assumption, the intersection of S1 through Sk is empty.

624 Flavio Junqueira and Keith Marzullo

To show 2), we just need to observe that any Ai is such that we removed all

⋃
A = (Π \ S1) ∪ (Π \ (S2 ∪A1)) ∪ . . .

∪(Π \ (Sk ∪A1 ∪A2 . . .

∪Ak−1)) (1)
= Π \ ((S1 ∩ (S2 ∪A1)) ∩ . . .

∩(Sk ∪A1 ∪A2 . . . ∪Ak−1)) (2)
= Π \ (S1 ∩ S2 ∩ . . .

∩(Sk ∪A1 ∪A2 . . . ∪Ak−1)) (3)
...
= Π \ (∩iSi) (4)
= Π (5)

Fig. 3. Derivation

the elements of Si. By the definitions of a core and of a survivor set, a subset
that does not contain elements from
some survivor set does not contain a
core.

⇐: Proof also by contrapositive.
Let 〈Π, CΠ ,SΠ〉 be a system profile
such that there is a partition
{A1, . . . , Ak} of Π in which no Ai

contains a core. Because no block con-
tains elements from every survivor
set (no block contains a core), we
have that for every Ai, there is a sur-
vivor set Si such that Si ∩ Ai = ∅.
Consequently, we have that ∩iSi is
empty, otherwise either some Ai con-
tains an element that is in

⋂
i Si or

{A1, . . . , Ak} is not a partition, ei-
ther way contradicting our previous
assumptions.

In the remainder of this section, we discuss the utility of these proper-
ties. In particular, we show the equivalence between 4–Intersection and M-
Consistency [17].

3.2 4-Intersection and M-Consistency

In [17], the following M-Consistency property was defined. It was stated that
this property was necessary for one to implement a Masking Byzantine Quorum
System. This property allows a process to identify a result from a non-faulty
server. The set Q used in this definition is the set of quorums, and B is the
fail-prone system.

Property 3. M-Consistency: ∀Q1, Q2 ∈ Q : ∀B1, B2 ∈ B : (Q1∩Q2)\B1 �⊆ B2

The paper then shows that if all sets in B have the same size t, then M-
Consistency implies n > 4t.

We show that M-Consistency is equivalent to 4–Intersection. Since a faulty
process can stop sending messages, we can use SΠ as the set of quorums: waiting
to receive messages from more than a survivor set could prove fruitless. A fail-
prone set is the complement of a survivor set, and for any two sets X and Y ,
(X \ Y) ≡ (X ∩ Ȳ), where Ȳ is the complement of Y . Hence, we can rewrite
M-Consistency as:

∀Q1, Q2 ∈ SΠ : ∀B1, B2 ∈ B : (Q1 ∩Q2) ∩ B̄1 �⊆ B2

Then, for any two sets X and Y , (X �⊆ Y) ≡ (X ∩ Ȳ �= ∅), and so:

∀Q1, Q2 ∈ SΠ : ∀B1, B2 ∈ B : Q1 ∩Q2 ∩ B̄1 ∩ B̄2 �= ∅.

Replication Predicates for Dependent-Failure Algorithms 625

Since B̄i is a survivor set, Bi ∈ B, this can be more compactly written as:

∀Q1, Q2, S1, S2 ∈ SΠ : Q1 ∩Q2 ∩ S1 ∩ S2 �= ∅.
which is 4–Intersection. Hence, another way to write the replication requirement
stated in M-Consistency is 4–Intersection, or equivalently 4–Partition.

4 An Example of Fractional k

The results of the previous section are perhaps not surprising to those who have
designed Consensus or quorum algorithms. For example, 2–Intersection states
that the survivor sets are a coterie, and 3–Intersection states that the intersection
of any two survivor sets contains a non-faulty process. It takes some effort to show
that 4–Intersection is equivalent to M–availability, and we expect that it will not
be difficult to show that the n > 5t requirement of Fast Byzantine Paxos [18] can
be understood from 5–Intersection. We conjecture that it is possible to define
classes of algorithms that, as for Consensus [10, 12], are built on top of quorums of
various strengths, and whose communication requirements are easily understood
in terms of k–Intersection. Such algorithms developed for the threshold model
should be easily translatable into our model of non-IID failures.

Less well understood are algorithms that have fractional replication predi-
cates. To further motivate the utility of intersection properties, we consider a
problem that we call Weak Leader Election. Given a synchronous system and
assuming receive-omission failures (that is, a faulty process can crash or fail to
receive messages), this problem requires n > �3t/2�. This lower bound is not
new, but to the best of our knowledge, it has not been shown that the lower
bound is tight. We show here that the bound is tight, which is a result of some
theoretical value. Our primary reason for choosing this algorithm, however, is
the insight we used from the intersection property to arrive at the solution.

We first specify the problem. Our specification allows for faulty (but non-
crashed) processes to become elected. Such a feature is necessary because it
requires more replication to detect receive-omission failures [19], and the original
lower bound proof allowed such behaviors. We then discuss the lower bound
on process replication for this problem using our model of dependent failures.
Finally, we provide an algorithm showing that the lower bound is actually tight.

4.1 Weak Leader Election

Each process pi has a local boolean variable pi.elected (pi.elected is false for a
crashed process). We then describe Weak Leader Election with two safety and
two liveness properties.

Safety: �(|{pi ∈ Π : pi.elected}| < 2).
LE-Liveness : ��(|{pi ∈ Π : pi.elected}| > 0).
FF-Stability: In a failure-free execution, only one process ever has elected set

to true.
E-Stability: ∃pi ∈ Π : ��(∀pj ∈ Π : pj .elected ⇒ (j = i)).

626 Flavio Junqueira and Keith Marzullo

These properties state that infinitely often some process elects itself (LE-Live-
ness), and no more than one process elects itself at any time (Safety). The third
property states that, in a failure-free execution, a single process is ever elected.
This property, however, does not rule out executions with failures in which two
or more processes are elected infinitely often. We hence define E-Stability.

4.2 Lower Bound on Process Replication

In [2], the following lower bound was shown. The proof was given in the context
of showing a lower bound on replication for Primary-Backup protocols.

Claim. Weak Leader Election for receive-omission failures requires n > �3t/2�.
Proof. Assume that Weak Leader Election for receive-omission failures can be
solved with n = �3t/2�. Partition the processes into three blocks A, B and C,
where |A| = |B| = �t/2� and |C| = !t/2". Consider an execution φA in which
the processes in B and C initially crash. From LE-Liveness and E-Stability,
eventually a process in A will be elected infinitely often. Similarly, let φB be
an execution in which the processes in A and C crash. From LE-Liveness and
E-Stability, eventually a process in B will be elected infinitely often.

Finally, consider an execution φ in which the processes in A fail to receive
all messages except those sent by processes in A, and the processes in B fail
to receive all messages except those sent by processes in B. This execution is
indistinguishable from φA to the processes in A and is indistinguishable from
φB to the processes in B. Hence, there will eventually be two processes, one in
A and one in B, elected infinitely often, violating either Safety or E-Stability.

To develop the algorithm, we first generalize the replication predicate for
this problem using cores and survivor sets. From the lower bound proof, we
consider any partition of the processes into three blocks. Then, one constructs
three executions, where in each execution all of the processes in two of the three
subsets are faulty. The conclusion of the proof is the following property for k = 3:

Property 4. (k, k − 1)–Partition, k > 1, |Π | > 2: ∃k′ ∈ {2, . . . ,min(k, |Π |)} :
∀A ∈ Pk′(Π) : ∃A′ ∈ Gk′−1(A) : ∃C ∈ CΠ : C ⊆ ⋃A′

The equivalent intersection property is then:

Property 5. (k, k − 1)–Intersection, k > 1, |Π | > 2, |SΠ | > 2: ∃k′ ∈ {2,
. . . ,min(k, |Π |)} : ∀T ∈ Gk′ (SΠ) : ∃T ∈ G2(T) : (∩S∈TS) �= ∅

Stated more simply, (k, k − 1)–Intersection says that for any set of k′ sur-
vivor sets, k′ ∈ {2, . . . ,min(k, |Π |)}, at least two of them have a non-empty in-
tersection. (k, k − 1)–Intersection and (k, k− 1)–Partition generalize replication
predicates in the threshold model of the form n > �kt/(k − 1)�. Thus, a pro-
file that satisfies (k + 1, k)–Intersection must also satisfy (k, k− 1)–Intersection.
To illustrate, a system profile satisfies (3, 2)–Intersection if either it satisfies
(2, 1)–Intersection or for every three survivor sets, two intersect. Also, note that
(2, 1)–Intersection is 2–Intersection.

Replication Predicates for Dependent-Failure Algorithms 627

Consider now an example of Example 2.

Π = {pa1 , pa2 , pa3 , pb1 , pb2 , pb3}
CΠ = {{pi1 , pi2 , pi3 , pi4} : (i1, i2 ∈ {a1, a2, a3})

∧(i3, i4 ∈ {b1, b2, b3} ∧ i1 �= i2 ∧ i3 �= i4)}
SΠ = {{pi1 , pi2} : ((i1, i2 ∈ {a1, a2, a3})

∨(i1, i2 ∈ {b1, b2, b3})) ∧ i1 �= i2}

a system that satisfies (3, 2)–In-
tersection. It is based on a sim-
ple two-cluster system. A process
can fail by crashing, and there is
a threshold t on the number of
crash failures that can occur in
a cluster. A cluster can suffer a
total failure, which causes all of the processes in that cluster to crash. A total
failure results from the failure of a shared resource such as storage, for exam-
ple. We assume that total failures are rare enough that the probability of both
clusters suffering total failures is negligible. However, processes can crash in one
cluster at the same time that the other cluster suffers a total failure. Assuming
that each cluster has three processes and t = 1, we have the system profile of
Example 2, where processes with identifier ai are in one cluster and processes
with identifier bi are in the other cluster. Note that this profile satisfies (3, 2)–
Intersection because out of any three survivor sets, at least two intersect.

The equivalence of (k, k − 1)–Partition and (k, k − 1)–Intersection can be
shown with a proof similar to the one of Theorem 1, and it appears in [14]. We
state the theorem here for reference purposes.

Theorem 2. (k, k − 1)–Partition ≡ (k, k − 1)–Intersection

4.3 A Weak Leader Election Algorithm

We now develop a synchronous algorithm WLE for Weak Leader Election. For
this algorithm, we assume a system profile 〈Π, CΠ ,SΠ〉 that satisfies (3, 2)–
Intersection. WLE is round based: in each round a process receives messages
sent in the previous round and then send messages to all processes. We use
pi.M(r) to denote the set of messages that pi receives in round r, and pi.s(r) to
denote the set of processes from which process pi receives messages in round r.

We developed this algorithm by first observing what (3, 2)–Intersection means.
Given three survivor sets, at least two of them intersect. Put another way, if two
survivor sets S1 and S2 are disjoint, then any survivor set S3 intersects S1 ∪ S2.
Since a core is a minimal set that intersects every survivor set, the above implies
that S1 ∪ S2 contains a core. Thus, given any two disjoint survivor sets, at least
one of them contains a correct process.

Our algorithm uses as a building block a weak version of Uniform Consensus
that we call RO Consensus. We call it RO Consensus because of its resemblance
to Uniform Consensus. RO Consensus, however, is tailored to suit the require-
ments of WLE and therefore is fundamentally different.

In RO Consensus, each process pi has an initial value pi.a ∈ V ∪ {⊥}, where
V is the set of initial values, and a decision value pi.d [1 . . . n], where pi.d is a list
and pi.d[j] ∈ V ∪{⊥}. We use v ∈ pi.d to denote that there is some p	 ∈ Π such
that pi.d[�] = v. If a process pi crashes, then we assume that its decision value
pi.d is N , where N stands for the n element list [⊥, . . . ,⊥]. To avoid repetition

628 Flavio Junqueira and Keith Marzullo

throughout the discussion of our algorithm, we say that a process pi decides in
an execution φ if pi.d �= N .

As we describe later, we execute our algorithm for RO Consensus, called ROC,
multiple times in electing a leader. We then have that processes may crash before
starting an execution φ of ROC. Such processes hence have initial value undefined
in φ. We therefore use ⊥ to denote the initial value of crashed processes. That
is, if pi.a =⊥, then pi has crashed. We also use the relation x ⊆ y for x and y
lists of n elements to denote that: ∀i, 1 ≤ i ≤ n : (x[i] �=⊥)⇒ (x[i] = y[i]).

The specification of RO Consensus is composed of four properties as follows:

Termination: Every process that does not crash eventually decides on some
value;

Agreement If pi.d[�] �=⊥, pi, p	 ∈ Π , then for every non-faulty pc, pi.d[�] =
pc.d[�];

RO Uniformity: Let vals be the following set: {d : ∃pi ∈ Π s.t. (pi.d = d)} \
N . Then:

∧
1 ≤ |vals| ≤ 2∧ ∀d, d′ ∈ vals : d ⊆ d′ ∨ d′ ⊆ d∧ ∀df , dc ∈ vals , df ⊆ dc : ∃Sf , Sc ∈ SΠ :
∧ ∀p ∈ Sf : (p crashes) ∨ (p.d = df)
∧ ∀p ∈ Sc : (p.d = dc) ∧ (p is not faulty)

That is, there can be no more than two non-N decision values, and if there are
two then one is a subset of the other. Furthermore, if there are two different
decision values, then these are the values that processes in two disjoint survivor
sets decide upon, one for the processes of each survivor set.

Validity:
∧

If pj ∈ Π does not crash, then for all non-faulty pi, pi.d[j] = pj .a∧
If pj ∈ Π does crash, then exists v ∈ {⊥, pj.a} such that for all

non-faulty pi, pi.d[j] = v∧
If there are survivor sets Sc, Sf ∈ SΠ and values vc, vf ∈ V,

vc �= vf , such that: ∧ ∀p ∈ Sf : p.a ∈ {vf ,⊥}
∧ ∀p ∈ Sc : ((p.a = vc) ∧ (p is not faulty))
∧ ∃pi, p	 ∈ Π : pi.d[�] = vf

then for all pj that does not crash, vf ∈ pj .d

That is, if a process pi is not faulty and pi.d[j] �=⊥, then the value of pi.d[j] must
be pj .a. The value of pi.d[j], however, can be ⊥ only if pj crashes. The third case
exists because we use the decision values of an execution as the initial values
for another execution. From RO Uniformity, there can be two different non-N
values df and dc. If this is the case, then there is a survivor set Sc containing
only correct processes such that all processes in Sc decide upon dc, and another
survivor set Sf containing only faulty processes such that all the processes in Sf

either crash or decide upon df . Let vf be df and vc be dc. By the third case, if
some process that decides includes vf in its decision value, then every process
that does not crash also includes vf in its decision value.

Figure 4 shows our algorithm ROC. In each round r, a process pi collects
messages and updates its list of initial values pi.A. Once it updates pi.A, pi

Replication Predicates for Dependent-Failure Algorithms 629

sends a message containing pi.A to all processes. A process pi also assigns pi.A
to pi.Ap(r) once it updates pi.A at round r. This enables pi to verify in round
r + 2 if a process pj has received the message pi sent in round r. As we describe
below, pi uses pi.Ap(r) to determine if it is faulty.

ROC is an adaptation of a clas-
Algorithm ROC on input pi.a, pi.Procs
round 0:

pi.s(0) ← pi.Procs ; pi.sr(0) ← pi.s(0)
pi.A [i] ← pi.a
for all pk ∈ Π , pk �= pi : pi.A [i] ← ⊥
pi.Ap(0) ← pi.A
send pi.A to all

round 1:
pi.sr(1) ← pi.s(1)
if ∨ pi.s(1) �⊆ pi.s(0)
∨ � ∃S ∈ SΠ : S ⊆ pi.sr(1)

then decide N
else for each m ∈ pi.M(1), pk ∈ Π :

if (pi.A [k] = ⊥) pi.A [k] ← m.A [k]
pi.Ap(1) ← pi.A
send pi.A to all

round r: 2 ≤ r ≤ t:
pi.sr(r) ← pi.s(r) \ {pj : ∃m ∈ pi.M(r) :

pi.Ap(r − 2) �⊆ m.A ∧ m.from = pj}
if ∨ pi.s(r) �⊆ pi.s(r − 1)
∨ � ∃S ∈ SΠ : S ⊆ pi.sr(r)

then decide N
else for each m ∈ pi.M(r), pk ∈ Π :

if (pi.A [k] = ⊥) pi.A [k] ← m.A [k]
pi.Ap(r) ← pi.A
send pi.A to all

round t + 1:
pi.sr(t + 1) ← pi.s(t + 1)\

{pj : ∃m ∈ pi.M(t + 1) :
pi.Ap(t − 1) �⊆ m.A ∧ m.from = pj}

if ∨ pi.s(t + 1) �⊆ pi.s(t)
∨ � ∃S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide N
else for each m ∈ pi.M(t + 1), pk ∈ Π :

if (pi.A [k] = ⊥) pi.A[k] ← m.A[k]
pi.Ap(t + 1) ← pi.A
decide pi.A

Fig. 4. ROC - Algorithm run by process pi

sic round-based synchronous Con-
sensus algorithm for crash fail-
ures. There are two main differ-
ences. First, it uses survivor sets
rather than a threshold scheme.
It does use a constant t to bound
the number of rounds; t is the
number of processes subtracted
the size of the smallest survivor
set. Second, it has each process
verify if it has committed receive-
omission failures.

There are two ways that a pro-
cess can notice that it has com-
mitted an omission failure. First,
processes that have not decided
or crashed send messages to all
processes. We then have that for
all non-faulty pi that receives mes-
sages in rounds r and r+1: pi.s(r+
1) ⊆ pi.s(r). If this does not hold,
then pi must have failed to re-
ceive some message. The second
way uses the content of the mes-
sages that pi receives in each
round. Consider a message m that
pi receives from pj in round r >
1. Unless it crashes or discovers
that it is faulty, a process sends a
message to all processes in each
round except the last. Let m′ be
the message that pi sent to pj in
round r − 2. If m indicates that
pj has not received m′ (pi.Ap(r−
2) �⊆ m′.A), then pi knows that
pj is faulty. Let pi.sr(r) be the
processes in pi.s(r) with all pro-
cesses that pi knows to be faulty
removed. By definition, we know that there is some survivor set that contains
only correct processes. If pi.sr(r) does not contain a survivor set, then there is

630 Flavio Junqueira and Keith Marzullo

some correct process from which pi did not receive a message. Hence, pi can
conclude that it has failed to receive a message.

Note that RO Consensus differs from the definition of Uniform Consensus in
that faulty processes may decide upon different values, although these values are
not arbitrary and must be such as described by the RO Uniformity property. In
the algorithm by Parvèdy and Raynal, for example, every process that decides
must decide upon the same value [20].

Informally, ROC satisfies RO Uniformity because (3, 2)–Intersection holds. To
decide on a value other than N , a process must receive in each round messages
from a set of processes that contains a survivor set. (3, 2)–Intersection implies a
low enough replication that there can be a set S of non-crashed faulty processes
that communicate only among themselves. But, there cannot be two such sets
S and S′: if S and S′ do not intersect, then (3, 2)–Intersection implies that their
union contains a core, and there must be a correct process either in S or in S′.

A set S of faulty processes
Algorithm WLE
P ← Π
repeat {
pi.elected ← FALSE
Phase 1:

Run ROC with
pi.a ← i; pi.Procs ← P

P ← pi.s(t + 1)
if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:
Run ROC with

pi.a ← pi.d from Phase 1; pi.Procs ← P
P ← pi.s(t + 1)
if (pi.d = N) then stop
let x ∈ pi.d be a value such that∧

pi.d [x] �= N∧
pi.d has the least number of non-⊥ values

if (pi is the first index of x such that x[i] �= ⊥)
then pi.elected ← TRUE

}

Fig. 5. WLE - Algorithm run by process pi

that communicate only among
themselves will decide on a value
d where d[i] = ⊥ for pi �∈ S and
d[i] = pi.a for pi ∈ S. In addi-
tion, a correct process will also
decide d[i] = pi.a for pi ∈ S.
Of course, a non-crashed faulty
process can read from different
sets of processes in each round,
but by using the two rules given
above, such a process can de-
termine that it is faulty. Hence,
at worst some faulty processes
will decide on a value df and
the correct processes will decide
on a value dc such that df ⊆ dc.

The algorithm in Figure 5
uses ROC to implement Weak
Leader Election. Algorithm WLE
proceeds in iterations of an in-
finite repeat loop, where each iteration consists of two phases. In Phase 1, pro-
cesses use ROC to distribute their process identifiers. In Phase 2, they use ROC
to distribute what they decided on in Phase 1.

A formal proof of WLE appears in [14]. Informally, this algorithm satisfies
Safety because of the following: it is possible for a set of faulty processes S to
decide on the smaller value df in Phase 1, but by the end of Phase 2 the correct
processes will know this. By Validity and RO Uniformity, every process that
finishes Phase 2 uses the same list df to determine whether it is the current leader
or not. Having the processes decide based on the smaller list df forces the receive-
omission faulty processes to elect the same process as the correct processes. Note
though, as mentioned above, that in this case the correct processes know that

Replication Predicates for Dependent-Failure Algorithms 631

the elected process is faulty (although the elected process does not know). LE-
Liveness is obtained by repeatedly running the algorithm without resorting to a
failure detector (which would require higher replication). If there are no faulty
processes, each election will always elect the process with the lowest identifier,
which implies FF-Stability. To guarantee that there is no alternating behavior
in which two processes are leaders infinitely often, non-crashed processes move
forward the set of processes they believe are not crashed or have not stopped.
That is, the input pi.Procs in ROC takes the value pi.s(t+ 1) from the previous
execution of ROC (Π if it is the first execution of ROC). This implies E-Stability.

5 Conclusions

In this paper we generalized a common argument used in proofs of lower bounds
on process replication. The argument is based on the threshold model: it makes
the assumption that, given n processes, any subset of !nb/k" processes can be
faulty. Then, after deriving a contradiction, the proof concludes that n > �kt/b�.
In our generalization of the proof for b = 1, we conclude that k–Partition holds:
if one partitions the processes into k subsets, then at least one of the subsets con-
tains a core. Thus, lower bounds for many protocols can be trivially generalized
for when process failures are not IID. We then gave an equivalent property, k–
Intersection, that is often useful when designing a protocol that takes advantage
of non-IID process failures.

We considered a problem for which the lower bound has b = 2. The lower
bound on process replication for Weak Leader Election in a synchronous system
with receive-omission failures was known to be n > �3t/2�, but this bound was
not known to be tight. We showed that this bound is tight by first determining
the intersection property for this replication predicate ((k, k − 1)–Intersection,
equivalent to (k, k− 1)–Partition, k = 3) and using it to guide our development
of a protocol.

As part of future work, we intend to study further replication predicates that
use cores and survivor sets. In particular, we are interested in predicates that
generalize n > �kt/b� for other values of b.

Acknowledgements

We would like to express our gratitude to Geoff Voelker and Marcos Aguilera for
useful discussions and to the anonymous reviewers for comments that improved
significantly this paper. Support for this work was provided by AFOSR MURI
Contract F49620-02-1-0233.

References

1. B. Altmann, M. Fitzi, and U. Maurer. Byzantine Agreement secure against general
adversaries in the dual failure model. In Proceedings of the 13th DISC, volume
1693/1999 of LNCS, pages 123–139. Springer-Verlag, Sep 1999.

632 Flavio Junqueira and Keith Marzullo

2. N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. Optimal Primary-Backup
protocols. In Proceedings of the 6th WDAG, pages 362–378, Nov 1992.

3. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recov-
ery. ACM Transactions on Computer Systems, 20(4):398–461, Nov 2002.

4. M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems, 21(3):236–269, Aug 2003.

5. T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
Consensus. Journal of the ACM, 43(4):685–722, Jul 1996.

6. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, Mar 1996.

7. F. Christian. Synchronous Atomic Broadcast for redundant broadcast channels.
Journal of Real-Time Systems, 2:195–212, Sep 1990.

8. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system.
Journal of the ACM, 32(4):841–860, Oct 1985.

9. J. Gray and D. Siewiorek. High-availability computer systems. IEEE Computer,
24(9):39–48, Sep 1991.

10. R. Guerraoui and M. Raynal. A generic framework for indulgent Consensus. In
Proceedings of 23rd IEEE ICDCS, pages 88–95, 2003.

11. M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in
secure multi-party computation. In Proceedings of the 16th ACM PODC, pages
25–34, Aug 1997.

12. F. Junqueira and K. Marzullo. Consensus for dependent process failures. Technical
Report CS2003-0737, UC San Diego, USA, Sep 2002.

13. F. Junqueira and K. Marzullo. Synchronous Consensus for dependent process
failures. In Proceedings of the 23rd IEEE ICDCS, pages 274–283, May 2003.

14. F. Junqueira and K. Marzullo. Weak Leader Election in the receive-omission failure
model. Technical Report CS2005-0829, UC San Diego, USA, Jun 2005.

15. K. Kursawe and F. Freiling. Byzantine fault tolerance on general hybrid adversary
structures. Technical Report AIB-2005-09, Aachen University, Germany, Jan 2005.

16. L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, Jul 1982.

17. D. Malkhi and M. Reiter. Byzantine Quorum Systems. In Proceedings of the 29th
ACM STOC, pages 569–578, May 1997.

18. J.-P. Martin and L. Alvisi. Fast Byzantine Consensus. In Proceedings of DSN, Jun
2005.

19. S. Mullender, editor. Distributed Systems, chapter 8. Addison-Wesley, 2nd edition,
1995.

20. P. R. Parvèdy and M. Raynal. Optimal early stopping Uniform Consensus in
synchronous systems with process omission failures. In Proceedings of the 16th
ACM SPAA, pages 302–310, Jun 2004.

21. F. B. Schneider. Implementing fault-tolerant services using the State-Machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, Dec 1990.

Consistent Data Replication: Is It Feasible in WANs?

Yi Lin1,�, Bettina Kemme1,�,
Marta Patiño-Martı́nez2,��, and Ricardo Jiménez-Peris2,��

1 McGill University, School of Computer Science, Montreal, Quebec, Canada
2 Facultad de Informatica, Universidad Politecnica de Madrid, Spain

Abstract. Recent proposals have shown that database replication providing 1-
copy-serializability can have excellent performance in LAN environments by us-
ing powerful multicast primitives. In this paper, we evaluate whether a similar ap-
proach is feasible in WAN environments. We identify the most crucial bottlenecks
of the existing protocols, and propose optimizations that alleviate the identified
problems. Our experiments show that performance remains acceptable even for
medium sized systems, and data replication guaranteeing 1-copy-serializability is
a serious alternative to weaker approaches in WAN environments.

1 Introduction and Motivation

With the wide use of online transaction processing systems (e.g., online stores), comes
the need for fault-tolerance, scalability, and fast response times. Replication is the most
common approach to achieve these properties. For instance, if a retailer replicates its
data at the different store locations, each store has fast local access, and the system
can survive site crashes. For such applications, data consistency despite high update
loads, and the flexibility to submit any transaction to any database replica are more
important than unlimited scalability. That is, having two to ten replicas is probably a
typical system configuration.

A big challenge is to keep the data replicas consistent. There is a trade-off to pay
between providing full data consistency (e.g., 1-copy-serializability and atomicity) and
fast response times [13]. In recent years, many replication protocols have emerged [2–4,
6, 10, 11, 14, 16, 17, 21–23] providing both data consistency and excellent performance
in LANs. Many of these protocols determine the serialization order at the begin of
transaction, and then serialize transactions according to this order. This is faster than
traditional distributed locking and avoids an expensive 2-phase commit protocol.

However, little research has been done whether these solutions can also be applied
to WANs. [1] analyzes one particular protocol. [23] uses multicast protocols that have
been developed for WANs. Other solutions usually execute and commit transactions
at one site, and propagate changes to other sites only some time after commit [24]
allowing for faster response times. This is also referred to as lazy replication. However,

� Research partially funded by MDER-Programme PSIIRI: Projet PSIIRI-016/ADAPT, by
NSERC Rgpin 23910601, and by FQRNT 2003-NC-80398.

�� Research partially funded by the European Commision under project Adapt IST-37126 and by
the Spanish Research Council (MEC) under project TIN- 2004-07474-C02-01.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 633–643, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

634 Yi Lin et al.

remote sites might have stale data, and committed transactions might be lost in case of
crashes. Lazy approaches also often restrict updates to be executed at a single primary
site. This, however requires a client to send its update transactions over the WAN if it
is not located close to the primary, again increasing response times. Other approaches
allow inconsistencies between replicas [12, 24] which are difficult to resolve.

Considering these shortcomings of existing WAN solutions, this paper revisits the
successful solutions developed for LANs, and evaluates how they perform in WANs.
We have detected several shortcomings of these protocols when executed in WANs,
and suggest improvements that help to alleviate the major bottlenecks. They show how
the message overhead within the response time can be reduced through various means.
Our performance results show that data consistency can be obtained with acceptable
performance. In many of our experiments, response times remain below 1 second,
and throughput increases over a centralized system. Furthermore, query (read-only)
response times are excellent and not affected by update transactions.

2 Database Replication Strategies Developed for LANs

One common approach to provide 1-copy-serializability is to submit all SQL requests to
a central middleware [3, 6] which performs concurrency control (usually on a table ba-
sis), and forwards reads to one, and updates to all replicas. This leads to communication
between middleware and database replicas for each operation within a transaction.

Alternative approaches assume a replicated middleware, where a middleware in-
stance is installed in front of each database replica. Clients contact the closest mid-
dleware instance. A client request triggers the execution of a transaction which might
contain several database statements. The transaction programs either reside within the
middleware or can be called from the middleware. This is an advantage for WAN repli-
cation, since client/middleware and middleware/database communication is always lo-
cal – only middleware/middleware communication is across the WAN.

Most proposals following this decentralized approach ([1, 2, 10, 11, 14, 16, 21, 23])
use group communication systems [8] (GCS). All middleware replicas build a group and
multicast messages which are received by all members (including the sender). Different
multicast primitives provide different ordering and delivery semantics. The ordering
semantics of interest for this paper are unordered, and total order (for each two mem-
bers receiving m and m′, both receive them in the same order). The delivery semantics
are reliable (whenever a member receives a message m and does not fail, then all other
group members will receivem unless they fail), and uniform reliable (whenever a mem-
ber p receives a message, all other members will receive the message unless they fail
–even if p fails shortly after message reception). Uniform reliable delivery provides all-
or-nothing even in failure cases, while reliable delivery allows failed members to have
received messages that are not received by others. Some systems (e.g., Spread [26]),
call a combination of reliable and total order agreed delivery, and a combination of uni-
form reliable and total order safe delivery. We adopt this notation. Note that the GCS
probably needs to send more than one physical message per multicast message submit-
ted by the application, e.g., in order to determine the total order. In general, the higher
the degree of ordering and/or reliability, the more internal messages will be necessary

Consistent Data Replication: Is It Feasible in WANs? 635

and the higher the message delay for a multicast message. In the following analysis,
we only consider the number of multicast messages submitted by the database system
and not the actual messages sent by the GCS since the latter depends on the particular
algorithms implemented within the GCS.

We will now present a simple replication protocol using group communication.
Most existing protocols are extensions of this basic protocol. The middleware distin-
guishes between read-only transactions (also called queries) and update transactions,
e.g., by analyzing the SQL statements. It handles update transactions as follows.

I. Upon receiving a request for the execution of an update transaction from the client: multi-
cast the request to all sites with safe delivery.

II. Upon receiving an update request in safe delivery: add the request to a FIFO queue.
III. Once a request is the first in the queue: submit the transaction for execution.
IV. Upon finishing execution: remove the request from the queue, and respond to client.

This protocol executes update transactions serially according to the total order multi-
cast, and guarantees atomicity by relying on uniform reliable delivery. In order to allow
transactions to execute concurrently, many approaches do concurrency control at the
middleware. They often assume that the objects to be accessed are known in advance
(e.g. by parsing the SQL statements to determine the tables to be accessed). The mid-
dleware can then, e.g., atomically request locks for all tables the transaction is going
to access upon safe delivery. When all locks are granted, the transaction can start exe-
cuting. In this case, non-conflicting transactions can execute concurrently. [10, 14, 16]
follow this or similar approaches. We call this the symmetric approach. An example is
shown in Fig. 1(a). Update transactions T1 and T2 are submitted concurrently to sites
A and B respectively, which then multicast the request in total order. Both sites execute
T1 and T2 according to the total order if they conflict otherwise in any order.

Queries only need to be executed at one replica. In a WAN this is probably the local
replica to avoid messages. Since many database systems (e.g., Oracle and PostgreSQL)
provide a special snapshot mode, in which queries read from a committed snapshot of
the data, the middleware can immediately submit queries to the database replica without
any further actions, and still provide 1-copy-serializabilty.

3 Replication Strategies in WANs

There exist many optimizations over the protocol above. They have been either analyzed
only for LANs, or not at all. In this section, we look at several optimizations and their
potential effect in WANs. We only look at update transactions since queries are local.

3.1 Communication Choices

Agreed vs. Safe Delivery. Safe delivery leads to long delays since it requires acknowl-
edgements (acks) from all sites before messages can be delivered. Therefore, it is im-
portant to understand in which case agreed delivery violates transaction atomicity: a
site must receive a client request, multicast it, receive it in agreed order, execute and
commit the transaction, return the ok to the client and then fail while none of the sur-
viving sites receives the request and hence, commits the transaction. Only in this case
a committed transaction is “lost”. This might not happen often, even in a WAN. It is up
to the application to decide whether it can accept such cases or not.

636 Yi Lin et al.

Optimisitic Delivery. The idea is to deliver a message once optimistically (e.g., when
it is physically received) and once final (e.g., when safe) [18]. The transaction starts
executing upon the optimistic delivery but may only commit at the final delivery. This
allows overlapping transaction execution and message delay. If the optimistic and final
delivery orders are not the same, some transactions might have to abort. [25] delays
optimistic delivery until chances are high that it has the same order as the final deliv-
ery. [19] considers uniform reliable delivery. Since out-of-order delivery is likely in a
WAN, we look at a variation where the optimistic delivery is agreed (i.e., total order is
established), and the final delivery is safe (i.e., uniform reliability is established).
Early Execution Variation. However, existing middleware based replication ap-
proaches based on optimistic delivery [20] do not always overlap transaction execution
with the delay for final delivery. As an example, in Fig. 2(a) transaction T1 is delivered
optimistically. It is executed but has to wait to commit until final delivery. T2 is deliv-
ered optimistically before T1’s final delivery. If it conflicts with T1 the middleware will
not start T2’s execution until T1 has committed despite its optimistic delivery. Con-
flicts are likely if the middleware uses table level locking. However, on a tuple-basis,
T2 might not conflict with T1. In LANs, this unnecessary waiting might not have a big
impact because the delay between T1’s optimistic and final delivery, and hence, T2’s
commit, is small. But in a WAN, we should take full advantage of any possible concur-
rency. Hence, it would be desirable to execute T2 as soon as possible We suggest as an
optimization to take advantage of the concurrency control of the underlying database
system if it uses tuple-based strict 2-phase locking. For example, in Figure 2(b), T2 can
start execution once T1 has finished its execution. At this time, T1 has already acquired
all necessary tuple locks at the database. If T2 does not conflict with T1 on any tuple,
T2 can acquire all its tuple locks and execute while T1 is waiting for the final delivery
of its message. If T2 and T1 conflict, T2 will block on some tuple until T1 commits and
releases its locks which is the correct behavior. Hence, we will execute T1 and T2 in
the correct serialization order according to the total order.
Total Order. There exist many algorithms to determine a total order (for a survey see
[5, 9]). However, little has been done to evaluate them in combination with an applica-
tion or in WANs. We analyze some well known algorithms. In token a token circulates
among the sites, and only the token holder may multicast messages. Increasing se-
quence numbers indicate the order of these messages. In sequencer a sender requests a
sequence number from a sequencer and then multicasts the message with this number.
The Lamport algorithm delivers a message m at a site once this site has received mes-
sages from all other sites piggybacking acks for m. Two concurrent messages (from
different senders and neither contains an ack for the other message) are delivered in
predefined order, e.g., site priority. Finally, a special case of the ATOP approach [7]
delivers in a round-robin fashion one message from each site.

3.2 Write Set Options

Alternatively to executing the entire transaction at all replicas as in the symmetric ap-
proach, execution can take place only at one replica. The resulting changes are propa-
gated in form of a write set (i.e., set of update tuples) at the end of execution to the other
sites which apply the write set. Applying writesets is usually faster than executing all

Consistent Data Replication: Is It Feasible in WANs? 637

T1 T2

 A B

T1
Resp

T1 exe

T2 exe

T1

 A B

Resp
T2

T2 exe

T1 exe

T2

T1
Resp

T2 exe

T1 exeT1 exe

T2
Resp

apply WS1

apply WS2

apply WS1

apply WS2
T2
Resp

T1
Resp

T2 exe

T1 T2

B A(primary)

(a) symmetric (b) primary copy (c) local copy

Fig. 1. With or without write set

T2−OPTT1−OPT T1−F

T2 exe

Time

OPT: optimistic delivery, F:final delivery
exe: Execution, C: commit.

(a) Optimitic execution

(b) Early execution

T1−OPT T2−OPT T1−F

C1 C2

Time

T1 exe

T1 exe T2 exe

C1

T2−F

T2−F

C2

Fig. 2. Optimitic v.s. early execution

read and update SQL statements [16]. Additionally, write sets might be the only feasible
solution if there exists non-determinism (e.g., set an attribute to the current local time)
which leads to data divergence if SQL statements are executed at all replicas.

Primary Copy Approach. [16] uses write sets with a primary copy approach. Each
table has a primary copy, and a transaction updating this table must execute on the site
holding the primary copy. If a transaction T wants to access tables that have different
primaries, it is executed at the primary of one of these tables. We refer to this as the
primary site of T . As before, a request for transaction T is multicast in total order to all
sites and the locks requested according to its total order delivery. But only the primary
site executes T and multicasts the write set using unordered reliable delivery (if the site
crashes, another site can simply reexecute). The primary can commit immediately. The
other sites apply the write set once the locks are granted locally. Conflicting transactions
might have different primary sites, but all sites will execute or apply the write sets
according to the total order since all request locks in this order. Hence, serializability is
guaranteed. This approach sends two multicast messages (1 total order and 1 unordered
reliable) per transaction. Fig. 1(b) depicts an example. T1 and T2 are submitted to A
and B, respectively, and multicast in total order. A is primary site for both transactions.
If they conflict, A executes them serially, otherwise concurrently. At the end of the
execution of a transaction, A multicasts the write set to the other sites in unordered
reliable order. Since T1 was submitted to A, A also returns a confirmation to the client.
B, upon receiving T1 and T2, requests the locks in the correct order but does not execute
the transactions. Instead it waits for the write sets from A and then applies them (serially
if they conflict). It also returns the confirmation for T2 to the client. For T1 the primary
is the local site, hence the response time only includes the delay of the request message.
For T2 the response time also includes the delay of the write set.

Adjusting to WANs. Since two messages within transaction boundaries can increase
response times significantly, we propose an optimization which provides more “local-
ity”. In the local copy approach depicted in Fig. 1(c), a request for an update transaction
is still multicast in total order, but the transaction is executed at the local site it is sub-
mitted to. In the figure, T1 executes at A, and T2 at B. Since T1’s request is received
before T2’s request according to the total order, A first executes T1, then multicasts the
write set using unordered reliable delivery, commits and returns the confirmation to the
user. If T1 and T2 conflict, B waits to receive and apply T1’s write set, then executes

638 Yi Lin et al.

T2, multicasts its write set and returns the confirmation to the user. There are still two
multicast messages per transaction as in the primary copy approach. If two conflicting
transactions are submitted concurrently at different sites as in the figure, the first one
to be delivered (T1) has only the request message within the respone time, the second
one must also wait for the write set of the first to arrive before it can execute locally.
This overhead is similar to the primary copy approach. However, if transactions do not
conflict, only the request message is delivered within the response time.

4 Experimental Results

4.1 System Description

We have developed a modular Java based middleware that allows for easy plug-in of
different replication strategies. Our middleware supports the symmetric (Sym), the pri-
mary copy (PC), the local copy (LC) approach, and the early execution variation of the
symmetric approach (ESym). The middleware uses table based locking. We use Post-
greSQL 7.2 as database backend. We extended PostgreSQL to provide a function to get
the changes performed by a transaction (write set), and a second one that takes these
changes and applies them. We used two open-source group communication systems:
Spread and JavaGroups. Spread [26] uses a token protocol providing agreed and safe
delivery. We integrated an optimistic delivery into Spread that basically delivers a mes-
sage optimistically upon agreed delivery, and finally at safe delivery. We refer to this as
optsafe delivery. JavaGroups [15] implements token based and sequencer based agreed
delivery. We have further implemented the Lamport (safe delivery) and the round-robin
variation of ATOP (agreed delivery) on top of JavaGroups. The last two algorithms
guarantee that all sites send messages regularly by sending null messages if necessary.

4.2 Experiment Setup

The experiments were conducted across the Internet on eight machines with similiar
strength (e.g. AMD 1666MHZ / 512MB memory / Red Hat Linux or Solaris), each
located in a different city (four in Canada, one in Spain, one in Switzerland and two
in Italy). The round trip times between machines in the same continent and between
different continents are around 40 ms and 150 ms respectively.

Since all standard benchmarks have at least 50% read workload, we use our own
synthetic application to stress-test the system. Our database consists of 10 tables with
10000 tuples each and most experiments use only update transactions to understand the
limitations of our approach. Each update transaction modifies 10 randomly selected tu-
ples in a randomly selected table. Since the middleware uses table-based locking, the
chance that two concurrent update transactions conflict is 10%. Our scalability analy-
sis also uses queries each of which scans a whole table performing some aggregation
(select avg(attr3), sum(attr3) from tablei). Execution time of this query is three times
longer than for an update transaction (as typically encountered in real applications).

In each test run, clients are equally distributed among all replicas and submit trans-
actions concurrently and with the same rate to achieve the desired system-wide load.

Consistent Data Replication: Is It Feasible in WANs? 639

Fig. 3. Write Sets in LAN Fig. 4. Write Sets in WAN Fig. 5. Response Times WAN

Within each single machine, results were with a 95% confidence within +/- 2.5% of the
results taken for our figures. However, response times for different machines varied de-
pending on their setups, and we show the average over all machines. Most figures show
the response times up to 1.5 seconds with increasing load submitted to the system. We
set 1.5 seconds as an upper limit of what we consider acceptable. Often, the load could
be further increased without saturation.

For baseline comparison, we conducted experiments with LAN and WAN clients
that directly connect to a single database. With 100% updates, response times of LAN
clients never exceed 20 ms up to the saturation point of 120 transactions per second
(tps). For WAN clients, response time was over 1.5 seconds at a maximum throughput
of 5 tps. This is probably due to message overhead and connection handling.

4.3 Write Set Options

We evaluated the PC, LC and Sym write set options in a LAN and a WAN with 100%
updates and 5 sites. We use Spread, and safe delivery for transaction request messages.
Message delivery takes a few ms in LAN but up to hundreds of ms in WAN.

Fig. 3 presents the results for the LAN. PC and LC have lower response times and
achieve higher throughput than Sym. This is due to the fact that only one site executes
the transactions while the others only apply the changes which requires less CPU re-
sources. In a LAN the GCS can easily handle the high message load of LC and PC with-
out becoming a bottleneck. LC has slightly better response time than PC at lower loads
since at low loads there are few concurrent transactions, hence in LC nearly all trans-
actions have only one message delay within their response times while for PC trans-
actions with a remote primary always have two message delays within their response
time. However, PC outperforms LC at high loads, since more concurrent transactions
lead to more conflicts and hence, longer blocking times for LC.

Fig. 4 shows the results for the WAN. For PC, we have one graph showing the
response time for a transaction T that was submitted to the primary of T (local writes
LW), hence only the delay of the request message is within the response time, and one
graph for a transaction T submitted by a client that is not connected to the primary of
T (remote writes RW), hence both the delay of request and writeset message are within
the response time. Contrary to the LAN environment, Sym has much better response
time than the approaches using write sets. Additionally, Sym can handle up to 45 tps
while PC and LC can only handle up to 20 tps with acceptable response times. PC-LW
has lower response times than LC, PC-RW has the worst response time.

640 Yi Lin et al.

The reasons for this behavior can be explained by Fig. 5 which shows a detailed
response time analysis at loads of 10 and 20 tps in a WAN. The response time is divided
into the time needed to deliver the transaction request message (grey), the transaction
execution time within PostgreSQL (black), and the remaining time (white). The latter
includes the time for transactions waiting in the middleware for their turn to execute
and commit. This includes, e.g., the time for a lock to be granted, or in the PC and LC
approaches the time the transaction might need to wait for a write set to be delivered.
The figure shows that transaction execution (black) only takes a small percentage of
total response time for all approaches. That is, the PostgreSQL databases were never
the bottleneck. In all cases the time for safe delivery of the request message (grey)
has the biggest impact on the response time. Furthermore, PC and LC have generally
longer delays for the safe delivery and resulting longer response times than Sym because
Spread had to handle double as many multicast messages than with Sym, and hence, was
higher loaded. This became especially significant at 20 tps. Using Sym, barely any time
is spent in the middleware (white) waiting for locks or similar. In regard to PC, PC-LW
transactions do not have any delays in the middleware. PC-RW Transactions have to
wait in the middleware for their writesets before they can return to the user, and hence,
perform worse than PC-LW transactions. In a 5-site system with evenly distributed
workload, we can expect 20% of transactions to have PC-LW response times, and 80%
to have PC-RW times. For LC only if there are two concurrent transactions that conflict,
one has to wait for the writeset of the other to arrive, otherwise no wait is needed. Hence,
the average response time is between PC-LW (do not wait for a writeset) and PC-RW
(always wait for the writeset). At low load (10 tps) LC’s response time is very close to
PC-LW because there are barely any concurrent transactions in the system. Hence very
few transactions have to wait in the middleware (very thin white stripe in the figure). At
higher load (20 tps), more transactions reside concurrently in the system, hence, more
conflicts occur and more transaction have to wait (larger white stripe in the figure).

As a summary, while the write set approach boosts performance in a LAN it does
not in a WAN due to the additional message which leads to more contention in the
GCS and additional waiting times for transactions to commit. If it is needed due to
non-determinism, the local approach seems favorable over the primary copy approach.

4.4 Communication Choices

Delivery Alternatives. Fig. 6 shows the response times when using agreed, safe, or
optsafe delivery in Spread. We use 5 sites, Sym, and 100% updates. For optsafe delivery,
we also show the early execution variant Esym. Results for PC and LC are not shown
since their relative behavior to Sym is similar as above for all delivery types.

Agreed Sym performs by far the best due to the fast delivery of reliable messages
compared to uniform reliable messages. Safe Sym is worst since the full delay of safe
delivery is added to the response time. Optsafe Sym will start to execute upon agreed
delivery but has to wait for the safe delivery to commit, leading to better response time
than Safe Sym. However, the difference is very small since transaction execution only
takes small percent of response time as shown in Fig. 5. Optsafe ESym is significantly
better than Optsafe Sym since it allows for more concurrent execution. Still the execu-
tion time is determined by the final safe delivery.

Consistent Data Replication: Is It Feasible in WANs? 641

Fig. 6. Agreed, safe and optsafe delivery Fig. 7. Total Order Implementations

These results show that best performance can be achieved if we can accept the loss
of some transactions in failure cases. However, if full atomicity is needed, optimistic
delivery and especially our early execution variation can increase performance.

Total Order Implementations. So far, we have used Spread which is a token based
total order algorithm. In this section, we analyze different total order algorithms and
their impact on our replicated database system using JavaGroups. Fig. 7 shows the
response times for Sym, 100% updates, and 5 sites. TOKEN refers to the token based
approach, SEQ to the sequencer based approach, LAMP to Lamport’s algorithm, and
RR to the simple round-robin algorithm. TOKEN has by far the worst performance
due to the delay incurred by rotating the token. Using SEQ, despite requiring three
messages per application message, and the potential bottleneck of one sequencer site,
offers better performance than TOKEN. Furthermore it leads to stable response times
until the sequencer becomes saturated at around 70 tps. LAMP provides faster response
times than TOKEN and SEQ for low loads up to 40 tps although this protocol provides
safe delivery while the others only provide agreed delivery. Response times at 30 tps are
better than at 20 tps because when more messages are sent, acks arrive faster. However,
LAMP saturates earlier due to CPU saturation since it has to keep track of acks. RR
has the lowest response time of all since there are no additional messages and message
rounds. It saturates only shortly before the sequencer due to CPU overhead. As such,
RR seems the preferable choice if agreed delivery is sufficient.

In order to understand the impact of the application on the performance of the GCS
we also conducted experiments with JavaGroups and a light-weight message generator
client, without the replicated database. The results are similar but generally larger mes-
sage throughput is achievable because there is no serious application competing with
JavaGroups for resources. An interesting exception was SEQ that achieves a far higher
throughput than the others without database application, but only a slightly higher
throughput when run together with our replicated database system. This is because the
sequencer site is saturated much earlier when resources are consumed by the database
application. Looking at Spread’s agreed token based algorithm from Fig. 6 and Java-
Group’s TOKEN, transaction response time with JavaGroups are about 2 times higher
than with Spread at the same load. This is probably due to implementation choices like
the programming language and internal data structures within the GCS.

642 Yi Lin et al.

0

10

20

30

40

50

60

20 40 60 80 100

Load (txn/s)

R
es

p
 T

im
e

(m
s)

1 site
2 sites
4 sites
6 sites
8 sites

Fig. 8. Scalability: Queries Fig. 9. Scalability: Update transactions

4.5 Scalability in a WAN

This experiment evaluates the performance for system configurations between one and
8 sites. This time, the workload has 50% update transactions and 50% queries. We use
Spread’s agreed delivery and the Sym algorithm.

Fig. 8 shows that the response times for queries are very similar for all system sizes
for smaller loads. At 80 tps a 1-site system starts to saturate, and the response times for
queries deteriorates while larger system sizes still provide good response times. With
more sites, queries are better distributed and hence, each site is less loaded. Fig. 9 shows
the response times for update transactions. A centralized system is always the best for
updates since there is no communication. A 4-site system has consistently better per-
formance than a 2-site system because the query load is distributed among more sites,
and hence, response times are faster even for updates. For 6 and 8 sites, the response
time increases because of the increased overhead to reach total order.

In summary, for a typical, read-intensive workload, a WAN replicated system of
8 sites can achieve an astonishingly high throughput while providing 1-copy-serial-
izability. Queries are not affected by update transactions and can take advantage of
distribution.

5 Conclusions

This paper presents a detailed WAN based performance analysis of group communi-
cation based data replication providing full data consistency. Since existing protocols
developed for LANs have limitations in WANs due to the message overhead, we have
proposed optimizations (local copy approach, early execution variant) that alleviate the
problems. In general, we believe that consistent database replication is feasible.

Summarizing the alternatives, a symmetric approach is preferable over write set
based approaches because of the lower message overhead. However, if non-determinism
requires a writeset approach, our new local copy approach works better than a primary
copy approach for the majority of transactions. Choosing agreed delivery over safe
delivery can help to reduce response times. If the application requires atomicity in all
situations, optsafe delivery, and especially the newly proposed early execution variation
can alleviate the high message delay of safe delivery. The choice of total order algorithm
and its implementation has an impact on the performance. An algorithm which simply
delivers messages in round-robin appears to have good performance in WAN.

Consistent Data Replication: Is It Feasible in WANs? 643

References

1. Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu. On the Performance of
Consistent Wide-Area Database Replication. Technical Report CNDS-2003-3, CNDS, John
Hopkins University, 2003.

2. Y. Amir and C. Tutu. From Total Order to Database Replication. In Proc. of ICDCS, 2002.
3. C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-Aware Scheduling for Dynamic Content

Applications. In USENIX Symp. on Internet Tech. and Sys., 2003.
4. T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Replication, Consistency, and Practi-

cality: Are These Mutually Exclusive? In ACM SIGMOD Conf., 1998.
5. R. Baldoni, S. Cimmino, and C. Marchetti. Total Order Communications: A Practical Anal-

ysis. In EDCC, Lecture Notes in Computer Science, Vol. 3463, pages 38–54, Mar. 2005.
6. E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering mid-

dleware. In USENIX Conference, 2004.
7. G. V. Chockler, N. Huleihel, and D. Dolev. An Adaptive Totally Ordered Multicast Protocol

that Tolerates Partitions. In PODC, 1998.
8. G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Com-

prehensive Study. ACM Computer Surveys, 33(4), 2001.
9. X. Defago, A. Schiper, and P. Urban. Comparative Performance Analysis of Ordering Strate-

gies in Atomic Broadcast Algorithms. IEICE Trans. Inf. and Syst., E86-D(12), Dec. 2003.
10. E. Pacitti and T. Ozsu and C. Coulon. Preventive Multi-master Replication in a Cluster of

Autonomous Databases. In Euro-Par, 2003.
11. U. Fritzke and P. Ingels. Transactions on Partially Replicated Data based on Reliable and

Atomic Multicasts. In Proc. of ICDCS, 2001.
12. R. Goldring. A discussion of relational database replication technology. InfoDB, 8(1), 1994.
13. J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication and a Solution. In

Proc. of SIGMOD, 1996.
14. J. Holliday, D. Agrawal, and A. E. Abbadi. The Performance of Database Replication with

Group Communication. In FTCS, 1999.
15. Java Groups. homepage: http://www.jgroups.org/.
16. R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso. Improving the Scalability

of Fault-Tolerant Database Clusters. In ICDCS, 2002.
17. K. Böhm and T. Grabs and U. Röhm and H.J. Schek. Evaluating the Coordination Overhead

of Replica Maintenance in a Cluster of Databases. In Proc. of Euro-Par, 2000.
18. B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions over Optimistic

Atomic Broadcast Protocols. In ICDCS, 1999.
19. L. Rodrigues and P. Vicente. An Indulgent Uniform Total Order Algorithm with Optimistic

Delivery. In SRDS, 2002.
20. M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable Replication in

Database Clusters. In DISC’00, pages 315–329, Toledo, Spain, 2000. Springer.
21. F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Distributed

and Parallel Databases, 14(1), 2003.
22. C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional web applications.

In Middleware, 2004.
23. L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong Replication in the

GlobData Middleware. In Workshop on Dependable Middleware-Based Systems, 2002.
24. M. Shapiro and Y. Saito. Scaling optimistic replication. In Future Directions in Distributed

Computing. Springer LNCS 2584, 2003.
25. A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic Total Order in Wide Area Net-

works. In SRDS, 2002.
26. Spread. homepage: http://www.spread.org/.

A Hybrid Message Logging-CIC Protocol
for Constrained Checkpointability

Françoise Baude1, Denis Caromel1, Christian Delbé1, and Ludovic Henrio1,2

1 INRIA – CNRS, Univ. Nice-Sophia Antipolis
2004, Route des Lucioles, BP93, 06902 Sophia Antipolis Cedex, France

{Francoise.Baude,Denis.Caromel,Christian.Delbe,Ludovic.Henrio}@inria.fr
2 Harrow School of Computer Science, Univ. of Westminster, Harrow HA1 3TP UK

Abstract. Communication Induced Checkpointing protocols usually ma-
ke the assumption that any process can be checkpointed at any time. We
propose an alternative approach which releases the constraint of always
checkpointable processes, without delaying any message reception nor al-
tering message ordering enforced by the communication layer or by the
application. This protocol has been implemented within ProActive, an
open source Java middleware for asynchronous and distributed objects
implementing the ASP (Asynchronous Sequential Processes) model.

1 Introduction

To ensure consistency of recovery lines, Communication-Induced-Checkpointing
(CIC) protocols [5, 8, 9] usually make the assumption that every process of
the system can be checkpointed at any time: a reception might lead to a forced
checkpoint. But this assumption can fail for complex or particular systems where
a process is not always in a state that can be checkpointed. In particular, in the
context of Java middlewares like ProActive [7], persistence can be obtained in
a convenient and portable way by standard Java serialization. But, as a thread
cannot be serialized, an important part of the activity1, the threads’ stacks,
cannot be checkpointed without special arrangements which are discussed below.

A first solution is to use specific tools that make checkpoints possible at any
time: threads persistence can be achieved by modifying the execution environ-
ment at the OS level [14] or at the virtual machine level [18], or by using a
native code-based persistence library [13]. Persistence capabilities can also be
added using customized compilers: they add code to capture enough informa-
tions to characterize the state of a process [2], or use compile-time reflection
to provide persistence functions [12]. But those tools usually involve a loss of
portability and/or efficiency. In the context of Java, it is rather unfortunate to
lose portability.

A more portable and convenient solution is grounded on the possibility to
identify program points at which a checkpoint is possible. In the context of
a multi-threaded programming environment like in Java, it concretely means
1 We prefer the term activity rather than process to identify the runtime entity.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 644–653, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability 645

that, at those points, the state of an activity is fully characterized without any
knowledge about the state of its thread(s). For instance, the existence of such
states grounds the weak migration capability of mobile agents, as provided for
instance in Voyager or Aglets [1]: a mobile agent is able to migrate only when
it reaches such a state. We have identified such program points in the ASP
model [6], which are called stable states in the following.

As already said, in CIC checkpointing, a message reception might lead to a
forced checkpoint. In a fully asynchronous message-passing context, message re-
ceptions are unpredictable. So, message receptions can be artificially and simply
delayed without consequence, until a checkpoint can be taken (i.e., the execu-
tion reaches a stable state). But, as soon as synchronization mechanisms through
blocking message reception exists, like the wait-by-necessity mechanism in the
ProActive middleware, or in MPI with the blocking receive routine [11], this sim-
ple solution is not applicable. Indeed, postponing a message reception could lead
to a deadlock (e.g. considering that a message could be awaited by the program
in order to continue the execution and finally reach a stable state, postponing
this message to the next stable state would obviously yield to a deadlock).

Our work has thus consisted in reconsidering the initial simple solution of
postponing message receptions, given the constraints raised by Java middlewares
like ProActive and its associated computation model, the ASP calculus. Eventu-
ally, it has appeared that this new protocol applies for a wider range of contexts.

2 Context

This section describes the hypothesis for which our protocol have been designed
and circumscribes the more general context in which it can be applied.

2.1 Constrained Checkpointability

ProActive being a Java middleware, it is impossible to store the state of a thread,
thus to take a checkpoint at any time. However, some stable states where a
checkpoint is possible can be either automatically identified at the middleware
level, or explicitly defined at the application level.

Middleware Level. An activity is in a stable state when its state can be
represented without any information about its thread (particularly the stack).
The checkpointing can be thus performed using standard Java serialization; the
persistence capability is then fully-transparent to the programmer. We have
identified such states in the ASP model (see Section 2.3).

Application Level. The proposed protocol can be also used at the application
level: stable states could also be specified by the programmer as in [11] ; in
that case, the application would be responsible for restoring the state of the
activity upon recovery. Although this second approach loses transparency for
the programmer, it allows the programmer to save the minimum amount of
data necessary to recover the activity state.

646 Françoise Baude et al.

2.2 Distribution and Communication Model

ASP object calculus is based on concurrent mono-threaded activities communi-
cating using two kinds of messages: request and reply. Each activity consists of
one thread, a set of objects (which we call its applicative state), and a request
queue. There is a master object among the applicative state that is called the
active object. Note that the applicative state of an active object cannot be shared
with another active object: there is no shared memory in our model.

In ASP, when an activity calls a method on an active object, a new request
is added to the request queue of this active object. When the signature of the
called method has a return value, a future is created on the sender side: this
future represents the result of the request that is not known yet. Futures are
generalized references that can be manipulated as classical objects. However,
some operations (e.g. field access) need a real object value to be performed.
Performing such operations on future objects leads to a blocked state called
wait-by-necessity. When the receiver ends the service of a request, the associated
future can be updated: the receiver sends a reply that will replace the future.
Note that the impact of a message reception is different depending on the kind of
the message. On one hand, a request reception modifies only the request queue of
the receiver until it serves the request ; this alteration is reversible by removing
this request. On the other hand, a reply reception modifies, in a non reversible
manner, the applicative state of the receiver.

Causally ordered communications are achieved using a rendez-vous taking
place at the beginning of each communication [4]. When an activity sends a
message to another, it stops its execution until the message is in the context of
the receiver. The rendez-vous implies that communications are acknowledged and
has the advantage to always ensure point-to-point FIFO ordering of messages.

Our model then guarantees causal ordering of messages; the fault-tolerance
protocol thus has to preserve this ordering in case of recovery of the system.
More generally, as any synchronization primitive is sufficient to ensure any (par-
tial) ordering of messages at the application level, a protocol with constrained
checkpointability has to preserve during a recovery the communication order
enforced by the application.

2.3 Properties and Assumptions

The ASP Calculus: In [6], we proved using the ASP calculus the two following
main properties:

Property 1 The relative order of reception of replies during a distributed ex-
ecution has no consequence on the behavior of the program, assuming that no
deadlock is caused by wait-by-necessity.

Property 2 An execution can be characterized only by the ordered lists (one for
each activity) of request sender identifiers.

A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability 647

The first property would not be necessary in a middleware that does not have
futures. A weaker version of the second one seems to be verifiable in most service-
oriented platforms: An execution can be characterized only by the ordered lists of
requests. With such a property, one would just have to store more informations
inside promised requests (Section 3.1) in order to use our protocol.

Assumptions on the System: We also make the following assumptions:

– activities are piecewise-deterministic [17] and fail-stop [16],
– failures are detected in an arbitrary but finite time [19],
– an available host always exists, in order to restart a failed activity,
– a stable storage, known by each activity, exists in order to save checkpoints.

Presence of Stable States: An activity is in a stable state when it does not
serve any request. Indeed, between two request services, the thread state is not
necessary to fully characterize the state of the activity. Consequently, the stable
state of an activity can be recorded through standard Java serialization of the
applicative state and of the request queue. Note that in practice, the presence
of stable states requires that the activities never serve a request which service
does not end. But this restriction is easy to tackle since an infinite service can
always be imitated by a infinite sequence of self-sent requests.

2.4 Notations

Figure 1 shows two activities i and j. j calls a method on i: a request Q is sent.
Eventually, this request is served on i and a reply, result of the service, is sent. A
rectangle drawn using dotted lines represents the period of service of a request.
Conversely, a period of stable state is represented by a simple line. Figure 2
shows a checkpoint Cn

i on an activity i, its sequence number (n) and the request
queue of i ([Q1, Q3, Q4]). An empty queue is denoted by [∅].

3 Principle of the Protocol

The proposed protocol is an adaptation of [5] and [8] for constrained check-
pointability. A parameter TTC, the checkpointing time counter, allows each ac-
tivity to periodically take checkpoints: if an activity has not taken any checkpoint

j

i

(service)

(stable state)

Serve(Q)

R
Q

Fig. 1. Communicating activities

i

Q1 Q4

Q2 Q3 R5

Cn
[Q1,Q3,Q4]

Fig. 2. Checkpoint on an activity

648 Françoise Baude et al.

during TTC seconds then a checkpoint is triggered as soon as a stable state is
reached. This time counter is reinitialized each time a checkpoint is taken. On an
activity, each checkpoint is identified by an index which monotonically increases.
In case of recovery, all activities have to restart from the same checkpoint index;
a set of checkpoint with the same index is called a recovery line. The current
checkpoint index of the sender is piggybacked on every message, and the current
index of the receiver is piggybacked on every acknowledgment message. These
piggybacking allow to identify potential orphan messages (message that have
been sent after but received before the recovery line, then duplicated in case
of recovery) or in-transit messages (messages that have been sent before but
received after the recovery line, then lost in case of recovery).

In classical CIC protocols, such messages should trigger a forced checkpoint
on the sender or on the receiver so as to ensure consistency of the currently built
recovery line. In our context, it is not possible to take those forced checkpoints;
the consequence of this constrained checkpointability is that recovery lines are
inconsistent. Indeed, there might be orphan and in-transit messages. Compared
to classical CIC protocols, our protocol must then handle those messages a-
posteriori, as soon as a checkpoint is possible, to avoid lost or duplicated messages
in case of recovery: we then introduce an additional message-logging mechanism.

Since the sending of logged messages after a recovery is obviously triggered
by the protocol, the message-logging mechanism could lead to a loss of causal
dependencies between messages, and then break the message ordering. Thus,
as long as there might exists a message that can be logged during the first
execution, the protocol has to record enough informations to be able to ensure
execution equivalence in case of recovery. For that, we introduce the request
reception history, a list of promised requests.

3.1 Promised Requests

A promised request is a local substitute for a request that is not yet received in
the re-execution; it only contains the identity of the activity from which a request
is awaited. A promised request awaited from i in the request queue of j is denoted
by Qpmd

i,j . The service of a promised request is subject to synchronization through
a wait-by-necessity mechanism: if an activity tries to serve a promised request,
it is blocked until the awaited request is received and updates the promised one.

To summarize, a promised request is a place holder for a request that will be
received after a recovery and has already been received in the first execution.

3.2 Orphan Messages

The reception of an orphan request should trigger a checkpoint before the de-
livery of this message. As this is not possible, we replace in the next possible
checkpoint the request by a promised one inside the request queue. When re-
sent during recovery, this request will thus automatically be inserted at the right
place in the request queue, like Q in case of recovery from n+ 1 in Figure 3: the

A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability 649

use of a promised request allows to preserve the relative order of requests during
the two executions, thus ensures execution equivalence.

Concerning replies, their reception order is not significant thanks to Property
1 but, as stated in Section 2.2, we cannot cancel their effect on the applicative
state. However, activities being piecewise-deterministic, ensuring the equivalence
of executions is sufficient for guaranteeing that the reply sent during the re-
execution is the same as during the first execution, and thus can be ignored.

3.3 In-transit Messages

In-transit messages (requests and replies) can be logged in the next possible
checkpoint and re-sent during the re-execution. We introduce the re-send queue,
denoted by ⇑{Qn, Qm....}, a queue of messages that have to be re-sent during a
recovery. Figure 4 shows the logging (noted ⇑ {Q}) of the in-transit request Q
in the checkpoint n.

i

j

Q
Q

Cn+1
[∅]

Cn
[∅] Cn+1

[Qpmd
i,j]

Fig. 3. The request Q is replaced by a
promised request in Cn+1

j

i

j

Q Q

Cn-1 ⇑{∅}
[∅] Cn ⇑{Q}

[∅]

Cn ⇑{∅}
[∅]

Fig. 4. The request Q is logged for re-sent
in the checkpoint n of i

3.4 Request Reception History

To preserve message ordering, the protocol must ensure equivalence between the
first execution and the re-execution in case of recovery. By doing this, it also
ensures that orphan replies are identical in the first execution and in the re-
execution (Section 3.2). This equivalence must last until the completion of the
currently built recovery line. Indeed, after this completion, there cannot be any
in-transit nor orphan messages: there cannot be anymore causal relation loss
between messages nor duplicated reply.

So as to ensure execution equivalence, we introduce the request reception his-
tory. Thanks to the Property 2, this history just needs to record the ordered list
of the identity of activities that have sent requests; this information is sufficient
to ensure execution equivalence. Consequently, a request reception history for an
activity i and for its nth checkpoint is a list of promised requests standing for the
requests received between this local checkpoint n and the history closure. The
only constraint on this closure point is that it must occur after the completion
of the recovery line n.

The history closure can thus be triggered by a message sent by the stable
storage as soon as all the checkpoints with the same index have been received.

650 Françoise Baude et al.

The consistency of the history closure line is crucial for preventing infinite wait
on a promised request. It is ensured by avoiding orphan message as in [5]: the
reception of a message from an activity that has already closed its history triggers
on the receiver the closure before the delivery of this message.

Finally, when an activity recovers from a checkpoint n, it just has to append
to its request queue the history of the checkpoint n: execution equivalence is
then ensured as long as an inconsistency could appear.

4 Experiments

A prototype has been implemented within the ProActive Java library. These
experiments are a first experimental validation of our protocol, but [3] and [10]
provide also a formal presentation of the protocol and the main steps of the
correctness proof. [10] proves that our protocol ensures that any re-execution
from any recovery line eventually reaches a consistent global state that occurs
in the first execution.

4.1 Test Applications

We choose to evaluate the overhead induced by our protocol within two repre-
sentative applications:

– “Sieve of Eratosthenes” computes the nth prime number in a master-slaves
configuration. The communication pattern is 1-to-n for the master node.

– “Jacobi” performs an iterative computation on a square matrix of floats. On
each iteration, the value of each point is computed as a function of its value
in the last iteration and the values of its neighbors. A square sub-matrix
is allocated to each activity. The communication pattern is 1-to-m for all
nodes; each activity communicates with its direct neighbors. Each activity
is equivalent to the others.

Note that the benchmarks are performed with the same source code for standard
and fault-tolerant executions, since there is no need to alter nor recompile the
source of an application to make it fault-tolerant. The tests have been performed
on a cluster of bi-Xeon @ 2Ghz 1 Gb RDRAM - 512 Kb L2 cache, Linux 2.4.17,
interconnected with a 1 Gb/s Ethernet, on the Sun Java Virtual Machine 1.4.2.

4.2 Performance Overhead

Table 1 shows the overhead (ExecTimetolerant−ExecTimenon−tolerant

ExecTimenon−tolerant
) induced by

the protocol for respectively the Eratosthenes and the Jacobi application run-
ning with 8 slaves (one slave per CPU) for Eratosthenes, and with 9 sub-matrix
(one sub-matrix per CPU) for Jacobi. The checkpointing time counter is initial-
ized with TTC = 100 sec for each activity. For each data size (the computed
prime number or the matrix size) and for one activity, average checkpoint size
(checkpoint of the slave for Eratosthenes), number of checkpoints performed,
cumulated checkpointing time (the maximum among all activities) and average
received message rate are given.

A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability 651

Table 1. Overhead for Jacobi (9 CPUs) and Eratosthenes (8 CPUs), TTC = 100sec

Erathostenes (# Prime Number) Jacobi (Matrix Size)
Data Size 1000 2000 3500 5000 10000 500 1000 2000 3000

Exec. Time (s) 201 420 785 1152 2477 153 253 563 1315

Msg Rate (msg/s) (Slave) 42 42 42 42 42 78 47 22 9

Msg Rate (msg/s) (Master) 316 331 332 337 338 n/a n/a n/a n/a
Ckpt Size (Mb) 0.39 0.82 1.4 1.95 4.01 0.68 1.07 7.16 15.07

Ckpts 3 5 9 13 27 2 3 6 14

Ckpting Time (s) 0.6 1.1 3.5 7.1 33.5 0.9 1.3 3.7 3.9
Overhead (%) 4.95 6.56 6.38 7.77 7.50 2.87 2.94 4.07 4.41

The measured overhead is low: it varies from about 3% to 8% in the worst
case. This overhead can be decomposed in two parts: overhead due to message
treatment, and time spent for checkpointing (mainly serialization and communi-
cation with the stable storage). The higher overhead observed for Eratosthenes
application is due to the higher received message rate of the master. Both over-
heads increase with data size because of checkpoint size. The smoother increasing
of Jacobi overhead is explained by the fact that the growing of checkpoint size is
counterbalanced by the decreasing of the received message rate for each activity,
while the rate of the master for Eratosthenes does not lower with data size.

We also notice that the number of checkpoints performed by an activity
linearly increases with the fault-tolerant execution time, and that each activity
performs the same number of checkpoints. This stability (observed for all the
applications we have experimented) is an interesting property of our protocol
since a large an unpredictable number of additional checkpoints forced by the
protocol is known to be the Achilles’ heel of CIC protocols [15].

4.3 Scalability

Figure 5 presents the overhead induced by the protocol for Eratosthenes and
Jacobi applications regarding the number of CPUs. Eratosthenes computes the
2000th prime number and Jacobi iterates on a 2000*2000 matrix. We observe
that the overhead remains roughly constant up to 25 CPUs for both applications:
this result demonstrates that the proposed protocol scales well.

4.4 Faulty Execution

Figure 6 shows the recovery time, i.e. the time spent for recovering every activ-
ities after a fault, for Eratosthenes and Jacobi regarding the number of CPUs.

The recovery time remains low, up to 25 CPUs (38 sec for Eratosthenes
and 18 sec for Jacobi) and smoothly increases with the number of CPUs from 9
CPUs. The higher recovery time for Eratosthenes is linked to the higher message
rate for both master and slaves. Indeed, a higher message rate leads to a longer
history, then the synchronization due to promised requests lasts longer.

652 Françoise Baude et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

Eratosthenes (2000)

Number of CPUs

O
ve

rh
ea

d
(%

)

Jacobi (2000)

Fig. 5. Execution overhead for Eratos-
thenes and Jacobi

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

Eratosthenes (2000)

Number of CPUs

R
ec

ov
er

y
tim

e
(s

)

Jacobi (2000)

Fig. 6. Recovery time for Eratosthenes
and Jacobi

5 Conclusion

In this paper, we have presented a new hybrid CIC-message logging protocol for
Java middlewares that does not assume permanent checkpointability. It allows
recovery from lines made of restrictively placed checkpoints, without delaying
any message reception nor breaking message ordering. The proposed protocol:

– deals with in-transit messages thanks to message logging,
– deals with orphan messages thanks to promised requests and history,
– performs low number of checkpoints,
– is fully transparent since there is no need to alter nor recompile code appli-

cation to make it fault-tolerant.

It has been implemented in a 100% Java compatible way within the middleware
ProActive; as a consequence, the usage of dedicated tools for persistence can be
avoided, and portability is total.

Even if the presented protocol has been designed and implemented in the
context of ProActive, its main idea is the ability to recover from inconsistent re-
covery line without breaking any message ordering. As such, this work is applica-
ble to other middlewares, even those using applicative-level persistence. Overall,
the location of checkpoints is no more a strong constraint.

The context of this article is somehow similar to [11]; but, contrarily to
Bronevetsky et al., our protocol focuses on ensuring the message ordering at
recovery. Indeed, a given ordering is always ensured by ProActive but may also
be enforced by some applications, even over MPI. The [11] approach may lead
those applications into a state that should not exist, since only the receptions
of orphan or in-transit messages are logged. Introducing a message reception
history in [11] would allow one to also cope with this category of applications.

The practical target of our research is also large-scale distributed program-
ming such as grids. In this context, CIC protocols are maybe not the best choice.
Indeed, these protocols are more efficient for small systems with low failure rate.
On the contrary, grids are large systems with a high failure rate, and a grid ap-
plication is often partitioned into loosely coupled components, each component
being based upon more strongly cooperating processes. In this case, we think

A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability 653

of an adaptive approach that autonomously chooses the best combined usage of
message logging and hybrid CIC-message logging. The protocol proposed here
can thus be considered as a step towards such a single parameterized protocol.

References

1. Aglets Software Development Kit. IBM, 1999. http://www.trl.ibm.com/aglets/.
2. B.Ramkumar and V.Strumpen. Portable checkpointing for heterogenous architec-

tures. In Fault-Tolerant Parallel and Distributed Systems, pages 73–92, 1998.
3. C.Delbé. Causal ordering of asynchronous request services. In Dependable Systems

and Networks - Student Forum. IEEE, June 2004.
4. B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, asynchronous, and causally

ordered communications. Distributed Computing, 9(4):173–191, 1996.
5. D.Briatico, A.Ciuffoletti, and L.Simoncini. A distributed domino-effect free recov-

ery algorithm. In IEEE International Symposium on Reliability, Distributed Soft-
ware, and Databases, pages 207–215, 1984.

6. D.Caromel, L.Henrio, and B.Serpette. Asynchronous and deterministic objects. In
31st ACM Symposium on Principles of Programming Languages. ACM Press, 2004.

7. D.Caromel, W.Klauser, and J.Vayssiere. Towards seamless computing and meta-
computing in java. In Geoffrey C. Fox, editor, Concurrency Practice and Experi-
ence, volume 10, pages 1043–1061. Wiley & Sons, Ltd., November 1998.

8. D.Manivannan and M.Singhal. A low-overhead recovery technique using quasi-
synchronous checkpointing. In Proceedings of the 16th ICDCS, pages 100–107, 1996.

9. D.Manivannan and M.Singhal. Quasi-synchronous checkpointing: Models, charac-
terization, and classification. In IEEE Transactions on Parallel and Distributed
Systems, volume 10, pages 703–713, 1999.

10. F.Baude, D.Caromel, C.Delbé, and L.Henrio. A fault tolerance protocol for asp
calculus: Design and proof. Technical Report RR-5246, INRIA, 2004.

11. G.Bronevetsky, D.Marques, K.Pingali, and P.Stodghill. Automated application-
level checkpointing of mpi programs. SIGPLAN Not., 38(10):84–94, 2003.

12. J.C.Ruiz-Garcia, M.O.Killijian, J.C.Fabre, and S.Chiba. Optimized object state
checkpointing using compile-time reflection. In Workshop on Embedded Fault-
Tolerant Systems, pages 46–48, 1998.

13. J.Howell. Straightforward java persistence through checkpointing. In Proceedings
of the 3rd International Workshop on Persistence and Java, pages 322–334, 1998.

14. J.S.Plank, M.Beck, G.Kingsley, and K.Li. Libckpt: Transparent checkpointing un-
der Unix. In Usenix Winter Technical Conference, pages 213–223, January 1995.

15. L.Alvisi, E.N.Elnozahy, S.Rao, S.Husain, and A.De Mel. An analysis of communi-
cation induced checkpointing. In Symposium on Fault-Tolerant Computing, pages
242–249, 1999.

16. R.D.Schlichting and F.B.Schneider. Fail-stop processors: an approach to designing
fault-tolerant computing systems. In ACM Transactions on Computer Systems,
volume 1, pages 222–238, 1983.

17. R.E.Strom and S.Yemini. Optimistic recovery in distributed systems. In ACM
Transactions on Computer Systems, volume 3, pages 204–226, 1985.

18. S.Bouchenak. Pickling threads state in the java system. In Third European Research
Seminar on Advances in Distributed Systems, 1999.

19. T.D.Chandra and S.Toueg. Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM, 43(2):225–267, 1996.

A Fault-Tolerant Token-Based Mutual Exclusion
Algorithm Using a Dynamic Tree

Julien Sopena1, Luciana Arantes1, Marin Bertier2, and Pierre Sens1

1 LIP6 – Université Paris 6, INRIA, CNRS
{Julien.Sopena,Luciana.Arantes,Pierre.Sens}@lip6.fr

2 LRI – Université Paris 11, CNRS
Marin.Bertier@lri.fr

Abstract. This article presents a fault tolerant extension for the Naimi-
Trehel token-based mutual exclusion algorithm. Contrary to the exten-
sion proposed by Naimi-Trehel, our approach minimizes the use of broad-
cast support by exploiting the distributed queue of token requests kept
by the original algorithm. It also provides good fairness since, during
failure recovery, it tries to preserve the order in which token requests
would have been satisfied had the failure not occurred.

1 Introduction

Mutual exclusion is a fundamental concept in distributed systems. Several algo-
rithms have been proposed to solve the problem of mutual exclusion, serializing
concurrent accesses to a shared resource. They can essentially be divided into
two groups: permission-based (e.g. Lamport [2], Ricart-Agrawala [8], Maekawa
[3]) and token-based (e.g. Suzuki-Kazami [9], Raymond [7], Naimi-Trehel [5]).
Algorithms of the first group are based on the principle that a node may enter
critical section only after having received permission from all the other nodes
(or a majority of them [3]). The drawback of these algorithms is the high com-
munication overhead. In the second group of algorithms, a system-wide unique
token is shared among all nodes, and its possession gives a node the exclusive
right to enter into the critical section, thus ensuring the safety property.

Some token-based algorithms, such as Raymond [7] and Naimi-Trehel [5],
consider that nodes are organized in a logical tree and that a node always sends
a token request to its father in the tree. Tree-based algorithms have an average
lower message cost, and many of them result in a logarithmic message complexity
O(logN) with regard to the number of nodes. Presenting better scalabilty, they
can be more easily adapted to large scale configurations like grid and peer-to-
peer environments [1]. Another advantage of these algorithms is the simplicity
of their local data structures. However, a tree-based algorithm is very sensitive
to node failure since it cannot tolerate even a single failure of one of the nodes
in a token request path.

In this paper we propose a fault tolerant extension for the Naimi-Trehel
token-based mutual exclusion algorithm. Naimi-Trehel’s algorithm maintains

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 654–663, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm 655

two main data structures: a dynamic logical tree such that the root of the tree is
always the last node that will have the token among the current requesting ones
nodes, and a distributed queue that keeps token requests that have not been
satisfied yet. The dynamic property of the request tree is strongly exploited in
our solution. Let N be the number of nodes in the system. The new algorithm
can tolerate at most N − 1 node failures and the message overhead for failure
recovery is relatively low.

Naimi and Trehel have proposed a fault tolerant extension of their own al-
gorithm in [6]. In the absence of failure, the original algorithm is not modified.
However, recovery from failure is very expensive in terms of messages since it
requires multiple broadcasts, causing a high message overhead. Furthermore, the
distributed queue of token requests has to be completely rebuilt.

We have modified the original Naimi-Trehel algorithm, introducing one addi-
tional message per token request. This modification has minimal impact on the
original protocol in the absence of failures. On the other hand, our algorithm
presents a lower cost in terms of messages in the presence of failures since it
broadcasts at most one message when compared to the multiple broadcast mes-
sages of Naimi-Trehel’s algorithm [6]. In contrast to the latter, the basic idea of
our algorithm, in case of failure recovery, is to reconstruct the distributed queue
of token requests by assembling disconnected portions of the previous queue. In
addition to the low recovery cost, this approach exhibits the fairness property
since it preserves the order in which token requests were previously queued.

We should mention that Mueller also presents in [4] a fault-tolerant extension
of the Naimi-Trehel algorithm without broadcast support. However in his solu-
tion a ring communication structure, which includes all nodes of the system, is
used for detecting a node failure as a message circulates constantly on it. Even if
his solution does not use broadcast support, it also presents a lack of scalability,
since the ring exhibits a message overhead that grows linearly with the number
of nodes. Furthermore, his approach tolerates only one node failure.

The organization of this paper is as follows. Section 2 presents our considered
system model. Section 3 briefly describes Naimi-Trehel’s algorithm and outlines
the problems for making it fault tolerant. Their fault tolerant version of this
algorithm is described in section 4. In Section 5, we describe our fault-tolerant
extension for the original Naimi-Trehel algorithm. A performance comparison of
both fault-tolerant algorithms is presented in section 6, whilst the last section
concludes our work.

2 General Model

We consider a distributed system consisting of a finite set of N sites Π =
{S1, S2, . . . , SN} that are spread throughout a network. Sites communicate only
by sending and receiving messages. Every pair of sites is assumed to be con-
nected by means of a reliable communication channel. However, messages may
be delivered in a different order than the one they were sent in. The words site
and node are interchangeable.

656 Julien Sopena et al.

We consider a synchronous fully-connected network where process speeds
and message transmission times are bounded. Tmsg is the maximum latency for
sending a message between two sites. Contrary to Naimi-Trehel, which considers
that a critical section execution takes Tcs in average, our algorithm makes no
assumption on the time for executing critical sections.

Sites can fail by crashing only, and this crash is permanent. N − 1 node
failures are tolerated.

3 Naimi-Trehel’s Algorithm

Naimi-Trehel’s algorithm [5] is a token-based algorithm. It keeps two data-
structures:

1. A logical dynamic tree structure such that the root of the tree is always the
last site that will get the token among the current requesting ones. Requesting
sites then form a logical tree pointing by probable token owners towards the
root. Initially, the root is the token holder, elected among all sites. We call this
tree the last tree, since each site keeps a local variable called last that points to
the probable owner of the token.

2. A distributed queue which keeps critical section (CS) requests that have
not yet been satisfied. We call this queue the next queue, since each site Si keeps
a local variable called next that points to the next site to whom the token will
be granted after Si leaves the critical section.

One invariant of Naimi-Trehel algorithm is that the root node of the
last tree is always the tail node of the next queue.

When a site Si wants to enter the critical section, it sends a request to its last.
Si then sets its last variable to itself and waits for the token. Site Si becomes
the new root of the tree.

Receiving Si’s token request message, site Sj can take one of the following
actions: (1) Sj is not the root of the tree. It forwards the request to its last
and then updates its last variable to Si. Notice that the last tree is modified
dynamically; (2) Sj is the root of the tree. If Sj is holding an idle token, it sends
it back to Si directly. On the other hand, if Sj holds the token but is in the
critical section or is waiting for the token, Sj sets its next variable to Si. At the
end of the execution of critical section, Sj sends the token to its next.

An example of Naimi-Trehel’s algorithm execution with four nodes is shown
in Figure 1. Initially (a), site A is the root which holds the token. The local last
variable of all nodes points to A. In (b), node B asks for the token by sending a
request to its last (lastB = A). B becomes the new root (lastB = B). Then, A
updates its next and last variables to point to B. In (c), C asks A for the token.
The request is forwarded to B which updates its next to C (nextB = C). Both
A and B update their last to C, since the latter is the last requester of the token
(C becomes the new root of the tree). When A releases the critical section, the
token will be sent to B as nextA = B.

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm 657

AC

B

D

(c)

AC

B

D

(a)

AC

B

D

(b)

Fig. 1. Example of Naimi-Trehel’s algorithm execution

The major challenges for making Naimi-Trehel algorithm fault-tolerant are:
1. The faulty node is an intermediate node of the last tree. In this case, if the

faulty node were used for forwarding the token request before the failure, the
request should be resent. Furthermore, we must be sure that the state of last
tree is consistent before re-sending the request. However, in the Naimi-Trehel
algorithm, while a request message is in transit, the tree is temporarily broken
into several smaller rooted trees. Thus, finding a right path to the root may be
impossible if the failure has occurred when the tree was in an unstable state.

2. The faulty node belongs to the next queue. In this case, it is not possible
to known the path for token transmission anymore. Therefore, next queue must
either be rebuilt from the beginning or by gathering disconnected portions of
the queue which existed before the failure.

3. The faulty node had the token. In this case, the token must be regenerated
and the uniqueness of the token must be guaranteed.

4 Naimi-Trehel Fault Tolerant Extension

In [6], Naimi and Trehel propose a fault-tolerant version of their algorithm.
The original algorithm is not modified but some extensions are included in the
algorithm to detect site failures, recover from failures, and regenerate the token.

To detect a site failure, site Si, which requests the critical section, arms a
timer Twait. This timer depends on latency communication time (Tmsg) and
the average time (Tcs) for executing the critical section. If Si does not receive
the token after the expiration of Twait, it suspects that a failure has occurred.
Therefore, Si broadcasts a CONSULT message to ask for the state of the other
sites and arms a new timer, Telec. When a site Sj receives this message, it
answers to Si only if the latter is its next. At the expiration of Telec, if Si does
not receive any response, it is sure that a failure has occurred. Si then broadcasts
a FAILURE message to detect the presence of the token in one of the sites. A
site replies to Si if it owns the token.

If after a new Telec delay, Si has not received any answer to its failure message,
it considers that the token is lost and it becomes a candidate to regenerate
the token. It then broadcasts an ELECTION message. In case of concurrent
election messages, the site with the smallest identifier is chosen. At the end, an
ELECTED message is broadcasted to inform all sites of the new token owner.
Finally, the identification of the last of each site is set to the new token owner.
Notice that each node having requested the token before the failure has to re-
send its token request.

658 Julien Sopena et al.

5 Our Fault-Tolerant Algorithm

Contrary to the fault tolerant extension proposed by Naimi and Trehel, we have
modified the original algorithm in order to provide the same guarantees in terms
of fault tolerance and to optimise efficiency and complexity in the occurence of
failures.

5.1 Principle of the Algorithm

The guiding principle of our algorithm is to reconstruct the next queue by gath-
ering intact portions of the previous next queue which existed just before the
failure. The aim of this reconstruction is to preserve the initial order of token
requests as much as possible and to avoid request retransmitions, as is the case in
Naimi-Trehel’s solution. On the other hand, if the reconstruction is not possible,
a new next queue will be created as well as a new last tree. The latter needs to
be consistent with the former guaranteeing the invariant mentioned in section 3.

Considering the original algorithm, a site always knows, through its next
variable, which site will receive the token after it, i.e. its successor in next queue.
However, it is not aware of which site will grant the token to it, neither which
sites will get the token before it. In other words, it is not aware of its predecessors
in next queue. Thus, in order to inform a node of its predecessor in next queue,
we have added a confirmation mechanism to the original algorithm for each
token request. Whenever a site Sj updates its next variable, i.e. Sj is in the last
element of the next queue and received a token request, it sends a COMMIT
message to the requester in order to confirm the reception of the request and to
communicate the identification of its predecessors. The next queue then keeps a
ordering where the smallest position corresponds to the site which has the token.
A site loses its position when it leaves the queue. Initially the token holder has
position zero. A COMMIT message sent to the requester Si, by site Sj , contains
the two following informations:
– The k predecessors of Si: k is a configurable parameter, indicating how many
failures the algorithm can recover by using mechanism M1, described below.
– Si’s position in the queue: equals to Si’s closest predecessor’s position + 1.

The cost of having a predecessor information mechanism is low in terms of
messages. We have added just one message per token request. Thus, the message
complexity of the algorithm only grows from log(N) to log(N) + 1 and thus
remains O(log(N))O(log(N))O(log(N)). However, this mechanism enables the detection of failures
more effectively than Naimi-Trehel’s fault tolerant extension. In their approach,
the reception of the token is controlled by a timer Twait, which depends both
on latency (Tmsg) and the time (Tcs) for executing the critical section. In our
approach, the same timer depends only on latency (Tmsg). After receiving a
COMMIT message, Si periodically checks the liveness of its closest predecessor.

After detecting a failure, site Si will start a failure recovery by executing a
different mecanism for each of the three following cases:
– Mechanism 1 (M1). Site Si has received a COMMIT message and there are
less than k consecutive faulty sites in next queue.

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm 659

– Mechanism 2 (M2). Site Si received a COMMIT message, but there are
more than k consecutive faulty sites in the next queue.
– Mechanism 3 (M3). The site did not receive any COMMIT message.

We now detail how to recover from failures in the three cases. M1. When
site Si detects a failure of its closest predecessor, it sends an ARE YOU ALIVE
message to each of its predecessors from the closest to the farthest, so as to check
if they are still alive. It stops querying when it obtains an I AM ALIVE message
from one of its predecessors. The latter then takes Si as its new successor, i.e. it
sets its next variable to Si. The next queue is then reconstructed and the order
is preserved. Furthermore, the last tree remains consistent with the next queue
and the invariant mentioned in section 3 is asserted.

M2. If no predecessor responded to the ARE YOU ALIVE message, Si will
try to reconnect itself to next queue by diffusing a SEARCH PREV message
which contains Si’s position. Si then arms a timer (2 ∗ Tmsg), waiting for the
answer messages. All sites having a smaller position then Si’s will answer to it.
After waiting 2 ∗ Tmsg, Si will choose among these sites, the one which has the
greatest position to become its closest predecessor. Then, Si reconnects itself
to this chosen site by sending a CONNECTION message to it. If Si does not
receive any answer at all after 2 ∗ Tmsg, it concludes that it has no predecessors
and consequently the token has been lost. Si should then regenerate the token,
initializing its position to zero.

Observe that in both mechanisms M1 and M2, due to our predecessor in-
formation approach, the order of next queue is preserved.

M3. We must consider now the case where the site which detects the failure
has not received the COMMIT message yet, and therefore has no position in next
queue. Moreover, in the absence of such information, several sites can detect the
same failure simultaneously.

M3.a We initially consider the situation when just one site Si detects the
failure. In order to reconnect itself to next queue, Si will search for the site
which has the greatest position. This search is initiated by the diffusion of a
SEARCH QUEUE message. Si then arms a timer (2 ∗ Tmsg), waiting for the
answer messages. A site that has a position in next queue answers to Si with an
ACK SEARCH QUEUE message which contains its position in the next queue,
as well as whether or not it has a next. Among all the received answers within
2 ∗ Tmsg, Si will select the site Sj with the greatest position. Si then considers
three possibilities:

(i): Sj has informed that it has no next. Si then resends a token request
to Sj . Notice that, since this request is sent directly to a node at the tail of
next queue, Si does not use last tree to send a token request. Thus, we avoid
the problem mentioned in section 3 concerning the instability of last tree when
token requests are in transit.

(ii): Sj has informed that it has a next. Si can conclude that Sj ’s next has
failed. Si then sends a CONNECTION message to Sj in order to force Sj to
reconnect itself to Si; i.e. Sj will set its next to Si.

660 Julien Sopena et al.

(iii): If site Si has not received any answer, it concludes that it has no more
predecessors and that the token has been lost. Si can then regenerate the token,
initializing its position to 0. It is sure to be the only site to regenerate the token.

M3.b We now discuss the situation when several sites detect the node failure
concurrently. They will start tracking the next queue, and will even generate a
new token, which may bring next queue to an inconsistent state or the loss of
the token uniqueness property. An election mechanism then is necessary. We
consider that a site is elected if it is always candidate after a time of 2 ∗ Tmsg.

Having sent a SEARCH QUEUE message to the other sites as described
above, site Si is a candidate to reconnect to next queue. However, if Si receives
a SEARCH QUEUE message from node Sj , it knows that another site Sj is also
a candidate for reconnection. Thus, if Sj has made fewer accesses to the critical
section than Si (this information is included in the SEARCH QUEUE message)
or Si’s access number is equal to Sj ’s but Sj has a greater identifier than Si,
the latter loses the election, sending a token request to Sj . In turn, Sj will be
responsible for reconnecting itself to next queue. If Sj later loses the election, it
will behave like Si. However, if it wins the election, it finds itself in the situation
of mechanism M3.a. Next queue is thus repaired1.

Contrary to the first two mechanisms, the order of previous token requests
is not preserved in mechanism M3. Thus, last tree must be reconstructed to be
consistent with the new next queue. However, this reconstruction is done dynam-
ically, without any additional overhead in terms of message and latency, since all
the information a site needs has been transmitted to it in the SEARCH QUEUE
message. Considering that Si is the single site that suspected the fault (M3.a),
or the one that wins the election (M3.b), last tree is reconstructed as follows:
I: all sites which do not wait for the token set their last variable to Si.
II: all sites that have a position in next queue set their last variable to Si.
III: all sites without a position, but in wait for the token, set their next variable
to the same value as their last variable.

An example of failure recovery based on mechanism M3 is shown in figure
2. We consider that there are two faulty sites, as shown in figure 2.a. The next
queue is broken into two portions (G,H and A,B,C). Sites G and H have already
obtained a position in next queue, but sites A, B and C have not. The token is
held by site G, first site of the next queue. We also consider that site D had sent
a token request to one of the two faulty sites and while waiting for the COMMIT
message, it accepted a token request from E. Thus, there is a second queue of
sites waiting for the token, but it is not connected to next queue yet. Notice that
in such configuration last tree is also broken (the last variable values of sites F ,
G, H and D have become useless).

Suppose that sites A and D detect a node failure concurrently. Both of them
broadcast a SEARCH QUEUE message. We then say that A wins the election,
i.e. A is the elected node. In figure 2.b, we can see how some of the last variables
are updated. Having a position, sites G and H update their last to A (see II), as

1 To ensure that two sites do not get the same position, message ordering is controlled
by using Lamport’s timestamp.

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm 661

E

D

E

D

Ipos
=

position
identificatuer

(a)

F

BA

(c)(b)

A

C

F

B A

C

F

B

last

next

token holder

faulty site

=

=

=

=

G1

E

D

G1
G1 H

2H 2H 2

4

C 5

3

Fig. 2. Example of our fault-tolerant algorithm execution

well as site F , which was not waiting for the token (see I). However, A, B and
E, which are waiting for the token but do not have a position, update their last
variables to the same value as their respective next variables (see III).

When receiving the ACK SEARCH QUEUE message from H , site A can
conclude that the next of H is a faulty site (see ii). A then sends a CONNEC-
TION message to H . When the latter receives such a message, it sets its next
variable to A. On the other hand, since site D lost the election, it sends a token
request to the elected node (A). When receiving D’s request, A forwards this
request to its last (lastA = B). The request travels along last tree, arriving at C,
the root of the tree. All sites belonging to last path which received the request
update their last variable to D. Site C sets its next variable to D, sending a
COMMIT message to it. Figure 2.c shows the final configuration, considering
that sites D et E have not received a COMMIT message yet.

5.2 Sketch of Proof

We are just going to give the outline of the correctness proof of our algorithm.
For this purpose, we should prove its safety and liveness properties:
– Safety: there is always at most one token in the system, which guarantees
that at most one site can execute the critical section at any time.
– Liveness: A site requesting entry to the critical section will eventually succeed
within a bounded time.

Proof of liveness: This proof comprises two parts. Firstly, we should prove the
liveness for a site which has a position, and then that a site eventually obtains
a position within a bounded time.

In the absence of failures, we can identify the following four invariants, which
are easily proven by induction: I1 - the site with the smallest position has the
token; I2 - the position ordering respects the order of next queue; I3 - after Si

got its position, no site can get a new position which is smaller than Si’s; I4 -
two sites cannot have the same position.

In the absence of failures, these invariants ensure that a site Si holding a
position will receive the token within a finite time. Indeed, I1 and I2 ensure

662 Julien Sopena et al.

site Si that the owner of the token is one of its predecessors while I2 and I3
guarantee that a site is never inserted before Si’s predecessors. On the other
hand, when a failure occurs, invariant I1 is not true anymore if the token is lost.
Thus, to ensure liveness, it is just enough to prove that mechanism M2 is able
to make invariant I1 true again within a bounded time, i.e. that the site with
the smallest position eventually detects the loss of the token and regenerates
it within a bounded time. It is not necessary to prove that the three recovery
mechanisms need to reconstruct the next queue. However, we must prove that
they do not change the other invariants.

To prove the second part, i.e. that a site obtains a position within a bounded
time, we must prove that:
– A site whose token request is lost retransmits it within a bounded time using a
set of data structures which is consistent with the original algorithm. The failure
detection of mechanism M3 takes place within at most N ∗ Tmsg. Moreover, it
is also possible to show a scenario in the absence of failure which is similar to
the one resulting from the execution M3 that rebuilt the last tree and the next
queue.
– A request can be lost a finite number of times. This is ensured by our model,
i.e. there can be at most N−1 permanent crashes. However, if there is an infinite
number of failures, this property keeps true if and only if the system has periods
of stability of at least N ∗ Tmsg.

Proof of safety: in the original Naimi-Trehel algorithm there is always only
one token. However, in our approach, M2 and M3 may regenerate a token. Thus
we need to prove that in these mechanisms:
– A site regenerates a token only when the latter has been lost: in mechanism
M2 (resp. M3), a site regenerates a token, if and only if, it did not receive an
answer ACK SEARCH PREV (resp. ACK SEARCH QUEUE). To prove that
“no answer implies no more token”, its contrapositive can easily be proven. This
can be done by using invariant I1, which implies that if there is at least one
token, then the site with the smallest position has one of these tokens.
– Only one site regenerates the token: we can prove by contradiction that M2
and M3 are not compatible. In the same way, we can prove that two sites cannot
regenerate the token by using both mechanism M2 (resp. M3).

6 Performance Issues

Considering failure detection and recovery, we can compare our algorithm to
Naimi-Trehel’s fault-tolerant one (see section 4).
– Message complexity: in the worst case of failure recovery, Naimi-Trehel’s
fault tolerant algorithm broadcasts four messages. Our solution sends one COM-
MIT message per token request in order to keep control of next queue and a
broadcast SEARCH PREV message, if necessary. It is also worth mentioning
that in the former all the successors of the faulty node must resend their token
request, while in our algorithm only lost requests are resent.
– Time: so as to detect faulty sites, Naimi-Trehel’s algorithm controls the re-
ception of the token. In the worst case, it waits (N − 1) ∗ (Tmsg + Tcs). Our

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm 663

algorithm controls the arrival of the token request at the tail node of next queue
as well as the reception of the COMMIT message by the requester. It then waits
at most ((N −1)+1)∗Tmsg for suspecting a faulty node, which does not depend
on Tcs. Another important point is that our algorithm has fewer phases than
Naimi-Trehel’s during failure recovery, reducing recovery time. Moreover, it may
happen that such a recovery is done while the algorithm goes on executing nor-
mally as if no failure had occurred; i.e it does not need to wait for a stable last
tree as in the Naimi-Trehel approach. The failure recovery time is then covered
up by the time that a site waits for a token.
– Fairness: in Naimi-Trehel’s approach, next queue is rebuilt from the begin-
ning at each failure recovery and the original ordering is not preserved. In our
approach, after receiving the COMMIT message, a site has its position p in next
queue which ensures that it will access the critical section after at most p − 1
other critical section accesses.

7 Conclusion

We presented in this paper a new fault-tolerant algorithm for mutual exclusion.
This algorithm is an extension of the Naimi-Trehel token-based algorithm. Com-
pared to the solution proposed in [6], our algorithm has two main properties:
a short recovery delay and a resilient fairness of requests. In case of failure, we
reconstruct the distributed request queue by assembling portions of the previous
queue. Our algorithm requires at most one broadcast and the order of critical
section requests is preserved as much as possible despite failures.

References

1. M. Bertier, L. Arantes, and P. Sens. Hierarchical token based mutual exclusion
algorithms. In 4th IEEE/ACM CCGrid04, 10 April 2004.

2. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–564, July 1978.

3. M. Maekawa. A
√

N algorithm for mutual exclusion in decentralized systems. ACM
Transactions on Computer Systems, 3(2):145–159, May 1985.

4. Frank Mueller. Fault tolerance for token-based synchronization protocols. Workshop
on Fault-Tolerant Parallel and Distributed Systems, IEEE, april 2001.

5. M. Naimi, M. Trehel, and A. Arnold. A log (N) distributed mutual exclusion al-
gorithm based on path reversal. Journal of Parallel and Distributed Computing,
34(1):1–13, 10 April 1996.

6. Mohamed Naimi and Michel Trehel. How to detect a failure and regenerate the
token in the log(n) distributed algorithm for mutual exclusion. Lecture Notes In
Computer Science LNCS, 312:155–166, 1987.

7. K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans-
actions on Computer Systems (TOCS), 7(1):61–77, 1989.

8. G. Ricart and A. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. CACM: Communications of the ACM, 24, 1981.

9. I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Trans-
actions on Computer Systems (TOCS), 3(4):344–349, 1985.

Self-stabilizing Publish/Subscribe Systems:
Algorithms and Evaluation

Gero Mühl1,�, Michael A. Jaeger1,��, Klaus Herrmann1,�,
Torben Weis1,��, Andreas Ulbrich1,�, and Ludger Fiege2

1 TU Berlin, EN6, Einsteinufer 17, 10587 Berlin, Germany
{g muehl,michael.jaeger,klaus.herrmann}@acm.org,

{weis,ulbi}@ivs.tu-berlin.de
2 TU Darmstadt, Wilhelminenstraße 7, 64283 Darmstadt, Germany

fiege@acm.org

Abstract. Most research in the area of publish/subscribe systems has
not considered fault-tolerance as a central design issues. However, faults
do obviously occur and masking all faults is at least expensive if not im-
possible. A potential alternative (or sensible supplementation) to fault
masking is self-stabilization which allows a system to recover from ar-
bitrary transient faults such as memory perturbations, communication
errors, and process crashes with subsequent recoveries.
In this paper we discuss how publish/subscribe systems can be made self-
stabilizing by using self-stabilizing content-based routing. When the time
between consecutive faults is long enough, corrupted parts of the routing
tables are removed, while correct parts are refreshed in time, and missing
parts are inserted. To judge the efficiency of self-stabilizing content-based
routing, we compare it to flooding, which is the näıve implementation of
a self-stabilizing publish/subscribe system. We show that our approach
is superior to flooding for a large range of practical settings.

1 Introduction

In many applications, independently created components have to be integrated
into complex information systems. Especially in large-scale distributed applica-
tions, a loosely-coupled event-based style of communication has many advan-
tages. It allows the clear separation of communication from computation and
eases the integration of autonomous, heterogeneous components.

In publish/subscribe systems individual processing entities, which we call
clients, can publish information without specifying a particular destination. Sim-
ilarly, clients can express their interest in receiving certain types of information
by subscribing. Clients can be producers and consumers at the same time. Infor-
mation is encapsulated in notifications and the notification service is responsible
for notifying each consumer about all occurrences of notifications which match
one of its active subscriptions.
� Funded by Deutsche Telekom.

�� Funded by Deutsche Telekom Stiftung.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 664–674, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 665

Many research prototypes of notifications services exist including Siena [2],
Gryphon [9], Hermes [10], and Rebeca [7]. The Java Message Service (JMS) [12]
and the Corba Notification Service [8] are two prominent examples of industrial
specifications of notification services. However, in most research prototypes and
industrial specifications fault-tolerance has not been a central design issue as
the focus was mostly put on the efficiency of routing. Obviously, faults do occur
and considering all kinds of faults when implementing fault masking is at least
expensive if not impossible.

A potential alternative (or sensible supplementation) to fault masking is self-
stabilization, a concept introduced by Dijkstra [3] in 1974. He defined a system
as being self-stabilizing if “regardless of its initial state, it is guaranteed to ar-
rive at a legitimate state in a finite number of steps”. In contrast to that, a
system which is not self-stabilizing may stay in illegitimate states forever lead-
ing to a permanent failure of the system. Self-stabilization models the ability
of a system to recover from arbitrary transient faults within a finite time with-
out any intervention from the outside. If the time between consecutive faults
is long enough, the system will start to work correctly again. Transient faults
include temporary network link failures resulting in message duplication, loss,
corruption, or insertion, arbitrary sequences of process crashes and subsequent
recoveries, and arbitrary perturbations of the data structures of any fraction of
the processes. The program code running at the nodes and inputs from the out-
side, however, cannot be corrupted. Dolev [4] gives a comprehensive discussion
of self-stabilization.

The remainder of this paper is structured as follows: In Sect. 2 we introduce
the notion of self-stabilizing publish/subscribe systems. In Sect. 3, we show how
specific routing algorithms can be made self-stabilizing. Sect. 4 presents our com-
parison of self-stabilizing identity-based routing with flooding. Sect. 5 presents
some related work. We close with conclusions and give an outlook in Sec. 6.

2 Self-stabilizing Publish/Subscribe Systems

In previous work, Mühl, Fiege, and Gärtner presented a formalization of pub-
lish/subscribe systems as a requirement specification [5, 7] consisting of safety
and liveness properties. Due to spatial restrictions, we only give an informal
definition of our specification here:

Definition 1. A publish/subscribe system is a system satisfying the following
requirements:

1. Safety Property
(a) A notification is only delivered to a client at most once.
(b) A client only receives notifications that have previously been published.
(c) A client only receives notifications it is subscribed for.

2. Liveness Property: When a client subscribes to a filter and does not issue
an unsubscription for this filter, then, from some time on, every notification
that is published thereafter and matches the filter will be delivered to the
subscribing client.

666 Gero Mühl et al.

Content-based routing is one possibility to implement a distributed notifica-
tion service. In this case, the notification service is realized by a set of brokers
forming an overlay network. Here, we restrict ourselves to acyclic connected
topologies. This restriction can be circumvented, e.g. by running a spanning tree
algorithm on the original (potentially cyclic) topology. Each broker B commu-
nicates with its neighbor brokers NB using asynchronous message passing and
with its mutually exclusive set of local clients LB using local synchronous pro-
cedure calls. The private routing table TB of a broker B determines to which
neighbors and local clients broker B forwards a notification that it processes.
Each routing entry is a pair (F,D) consisting of a filter F having a unique id
id(F) and a destination D ∈ NB ∪ LB. A broker sends a notification that it
processes to all destinations for which a matching filter exists. However, if a
notification is received from a neighbor broker, it is not sent back to this broker.

The routing table determines the current routing configuration of a pub-
lish/subscribe system. A routing algorithm starts from an eligible initial routing
configuration and subsequently adapts it. To achieve this, update messages are
propagated through the broker network when clients issue new or cancel exist-
ing subscriptions. Intuitively, a routing algorithm is valid if it adapts the routing
configuration such that the resulting system satisfies the safety and the liveness
property of Def. 1. Several content-based routing algorithms are known, includ-
ing simple, identity-based, covering-based, and merging-based routing [7]. These
algorithms exist in a peer-to-peer and in a hierarchical variant [1].

Definition 1 requires that the system is correct, i.e. exhibits the desired func-
tionality at its interface, under all circumstances. Thus, all occurring faults would
have to be masked. Provided that a temporary failure of the system can be
accepted, making a system self-stabilizing is an attractive alternative to fault
masking. However, it is in general impossible under the fault assumption of self-
stabilization to require any property that prohibits certain states, i.e. safety
properties. For example, the system could deliver a notification n to a client X
although X has no active subscription matching n because a fault corrupted the
state of the system such that that it “thinks” that X subscribed to n. Therefore,
we require that a self-stabilizing publish/subscribe system satisfies the safety
property of Def. 1 only eventually. This ensures that the system starting from
any state will eventually satisfy the actual safety property and continue to do so
if no faults occur. The liveness property of Def. 1 can be left unchanged. This
leads to the following definition:

Definition 2. A self-stabilizing publish/subscribe system is a system satisfying
the following requirements:

1. Eventual Safety Property: Starting from any state, it eventually satisfies the
safety property of Def. 1.

2. Liveness Property: Starting from any state, it satisfies the liveness property
of Def. 1.

In the following section, we discuss how self-stabilizing publish/subscribe
systems can be realized using self-stabilizing content-based routing algorithms.

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 667

3 Self-stabilizing Content-Based Routing

Under the fault assumption of self-stabilization, the routing configuration can
arbitrarily be corrupted by transient faults. Therefore, the routing algorithm
must ensure that corrupted routing entries are corrected or deleted from the
routing table and that missing routing entries are inserted into the routing table.

For spatial reasons we assume in this paper that each broker stores the in-
formation about its neighbors in its ROM. This ensures that this information
cannot be corrupted. If it would be stored in RAM or on harddisk, it could
also be corrupted by a fault. In this case, we would have to layer self-stabilizing
content-based routing on top of a self-stabilizing spanning tree algorithm. Lay-
ered composition of self-stabilizing algorithms is a standard technique which is
easy to realize when the individual layers have no cyclic state dependencies [4]. In
this case, the stabilization time would be bounded by the sum of the stabilization
times of the individual layers.

3.1 Basic Idea

The basic idea for making content-based routing self-stabilizing is that routing
entries are only leased. To keep a routing entry, it must be renewed before the
leasing period π has expired. If a routing entry is not renewed in time, it is
removed from the routing table. Interestingly, this approach does not only al-
low the publish/subscribe system to recover from internal faults but also from
certain external faults. For example, if a client crashes, its subscriptions are
automatically removed after their leases have expired.

To support leasing of routing table entries, we use a second chance algorithm.
Routing entries are extended by a flag that can only take the two values 1 and 0.
Before a routing entry is (re)inserted into the routing table, all existing routing
entries whose filter has the same id (as the id of the filter of the routing entry
to be inserted) are removed from the routing table. This is necessary as the
ids of the routing entries can be corrupted, too. We assume that the clock of
a broker can only take values between 0 and π − 1 to ensures that if the clock
is corrupted, it can diverge from the correct clock value by at most π. When
its clock overruns, a broker deletes all routing entries whose flag has the value
0 from the routing table and sets the flag of all remaining routing entries to 0
thereafter (new subscriptions have the flag set to 1 initially). Hence, it must be
ensured that an entry is renewed once in π to prevent its expiry. On the other
hand, it is guaranteed that an entry which is not renewed will be removed from
the routing table after at most 2π.

The renewal of routing entries originates at the clients. To maintain its sub-
scriptions without interruption, a client must renew the lease for each of its
subscriptions by “resubscribing” to the respective filter once in a refresh period
ρ. Resubscribing to a filter is done in the same way as subscribing. In general, π
must be chosen to be greater than ρ due to varying link delays. The link delay
δ is the amount of time needed to forward a message over a communication link
and to process this message at the receiving broker. In our model, it is considered

668 Gero Mühl et al.

a fault when δ is not in the range between δmin and δmax. It is important to note,
that assuming an upper bound for the link delay is a necessary precondition for
realizing self-stabilization.

3.2 Flooding

The näıve implementation of a self-stabilizing publish/subscribe system is flood-
ing: When a broker receives a notification from a local client, the broker forwards
the notification to all neighbor brokers. When it receives a notification from
a neighbor broker, the notification is forwarded to all other neighbor brokers.
Additionally, each processed notification is delivered to all local clients with a
matching subscription. Flooding only requires a broker to keep state about the
subscriptions of its local clients. Therefore, errors in this state can be corrected
locally by forcing clients to renew their subscriptions once in a leasing period.
This means that ρ = π. The main advantage of this scheme is that a coordina-
tion among neighboring brokers is not necessary. Hence, no additional network
traffic is generated. Additionally, new subscriptions become active immediately.
While a corrupted or erroneously inserted subscription survives at most 2π in a
routing table and a missing subscription is reinserted after at most π, an erro-
neously inserted or corrupted notification disappears from the network after at
most d · δmax where d is the network diameter, i.e. the length of the longest path
a message can take in the broker network. Hence, for flooding, the stabilization
time Δ, i.e. the time it takes for the system to reach a legitimate state starting
from an arbitrary state, equals max{2π, d · δmax}.

3.3 Simple Routing

The solution for flooding can be extended to simple routing. Simple routing
treats each subscription independently of other subscriptions. A (un)subscription
is inserted into (removed from) the routing table and flooded into the broker net-
work. If a broker receives a (un)subscription from a local client, it is forwarded
to all neighbor brokers. If it was received from a neighbor broker, it is forwarded
to all other neighbor brokers. Thus, simple routing is idempotent to resubscrip-
tions and a subscription is redistributed through the broker network when it is
renewed by the client. Note that here subscriptions become active only gradually.

A critical issue is that the timing assumptions must allow the clients to renew
their leases everywhere in the network before they expire. How large must π be
with respect to ρ in this case? To answer this question, consider two brokers B
and B′ connected by the longest path a message can take in the broker network.
This situation is illustrated in Fig. 1. Assume a local client X of B leases a
routing table entry of B at time t0 and renews this lease at time t1 = t0 + ρ.
X ’s lease causes other leases to be granted all along the path to broker B′.
Considering the best and worst cases of the link delay, the first lease reaches B′

at time a0 = t0 + d · δmin in the best case and the lease renewal reaches B′ at
time a1 = t1 +d ·δmax in the worst case. If X refreshes its leases after ρ time and
if network delays are unfavorable, two lease renewals will arrive at B′ within at

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 669

21

B′
d · δmin π

t1 time

B

d · δmaxt0 ρ

a1

a0

message

d hops

renewal

Fig. 1. Deriving the Minimum Leasing Time.

most a1 − a0. Hence, π > a1 − a0 must hold to ensure that the entry is renewed
in time. Thus, we get π > ρ + d · (δmax − δmin).

The stabilization time Δ depends on the value of π. Since corrupted or er-
roneously inserted messages can contaminate the network, a delay of d · δmax

must be assumed before their processing is finished. After at most 2π, their
effects will be removed everywhere. Overall, the stabilization time sums up to
Δ = d · (δmax− δmin)+ 2π. For example, assume that d = 10, δmax = 25 ms, and
δmin = 5 ms. To guarantee a stabilization time of Δ = 30 s, π = 14.9 s and thus
ρ = 14.7 s follows. There is a tradeoff between π and ρ. To have low message
overhead, ρ should be as large as possible. However, this implies a large value of
π, but π should be as small as possible to facilitate fast recovery.

3.4 Advanced Routing Algorithms

The situation is more complicated if advanced content-based routing algorithms
such as identity-based, covering-based, or merging-based routing are applied.
Contrary to flooding and simple routing these algorithms are – at least the ver-
sions presented so far – not idempotent with respect to resubscriptions. However,
they can be made idempotent with some minor changes. Note that the maximum
stabilization time Δ is not affected by whether an advanced routing algorithm
or simple routing is applied because in the worst case a filter will nevertheless
travel all along the longest path in the network.

Consider identity-based routing (for more details we refer to [7]). When a
broker B processes a new or canceled subscription F from destination D, it
counts the number d of destinations D′ �= D for which a subscription matching
the same set of notifications exists in TB. Depending on the value of d, F is
forwarded differently. If d = 0, F is forwarded to all neighbors if D ∈ LB and to
all neighbors except D if D ∈ NB. If d = 1 and D′ ∈ NB, F is forwarded only
to D′. If d = 1 and D′ ∈ LB or if d ≥ 2, F is not forwarded at all. This scheme
is not idempotent to resubscriptions because if d ≥ 2 and one of the identical
subscriptions is renewed at B, none of those subscriptions will be forwarded.

670 Gero Mühl et al.

This can be circumvented if B takes only those subscriptions into account when
calculating d whose flag is 1. In this case, in each leasing period that subscription
of the identical subscriptions which is renewed first after the broker has run the
second chance algorithm, is forwarded ensuring correct forwarding.

Covering-based routing can also be made self-stabilizing. In this case, only
routing entries with flag 1 are taken into account when looking for identical
subscriptions. However, when looking for subscriptions that really cover a given
subscription (i.e. match a real superset of notifications), additionally also those
routing entries with flag 0 are considered. This is to avoid sending covered sub-
scriptions unnecessarily to neighbors because they are refreshed before a covering
subscription is refreshed. To make merging-based routing self-stabilizing, the re-
freshing of merged filters must additionally be ensured.

3.5 Discussion

The values of π and ρ depend on the delay of the links in the network. So far,
we assumed that these values are fixed and equal for every broker in the system.
In many scenarios, link delays vary a lot such that it could be advantageous
to incorporate this property into the algorithm. We assume that the value of
link delay stored at every adjacent broker can not be corrupted (i.e. it is stored
in ROM). The values of π and ρ has then to be calculated individually for
every subscription, depending on where the publishers are. Additionally, π and
ρ have to be refreshed the same way as described previously for subscriptions.
Advertisements that are sent periodically by the publishers could be used for
this purpose. Taking this approach, the broker algorithm can take advantage
of faster links and stabilizes subtrees of the broker topology faster if the links
allow for this. The application of leasing is a common way to keep soft states.
This technique is used in many protocols and algorithms such as the Routing
Information Protocol (RIP, RFC2453) and Directed Diffusion [6].

4 Simulation

We carried out a discrete event simulation to compare self-stabilizing content-
based routing to flooding with respect to their message complexity. Before we
discuss the results, we describe the setup of the experiments.

4.1 Setup

We consider a broker hierarchy being a completely filled 3-ary tree with 5 levels.
Hence, the hierarchy consists of 121 brokers of which 81 are leaf brokers. Since
we use a tree for routing, this implies a total number of 120 communication links.
We use hierarchical routing but similar results can be obtained for peer-to-peer
routing, too. With hierarchical routing, subscriptions are only propagated from
the broker to which the subscribing client is connected towards the root broker.
This suffices because every notification is routed through the root broker. Hence,

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 671

control messages travel over at most 4 links. We use identity-based routing and
consider 1000 different filter classes (e.g. stocks) to which clients can subscribe.

Subscribers only attach to leaf brokers. Results for scenarios where clients
can attach to every broker in the hierarchy can be derived similarly. Instead of
dealing with clients directly, we assume independent arrivals of new subscriptions
with exponentially distributed interarrival times and an expected time of λ−1

between consecutive arrivals. When a new subscription arrives, it is assigned
randomly to one of the leaf brokers and one of the filter classes is randomly
chosen. The lifetime of individual subscriptions is exponentially distributed with
an expected lifetime of μ−1. Each notification is published at a randomly chosen
leaf broker. Hence, notifications travel over at most 8 links. The corresponding
filter class is also chosen randomly. The interarrival times between consecutive
publications are exponentially distributed with an expected delay of ω−1. We
assume a constant delay in the overlay network of δ = 25 ms including the
communication and the processing delay caused by the receiving broker.

To illustrate the effects of changing the parameters, we considered two possi-
ble values for some of the system parameters: For each of the 1000 filter classes,
a publication is expected every 1 s (10 s), i.e. ω1 = 1000 s−1 (ω2 = 100 s−1). The
expected subscription lifetime is 600 s (60 s), i.e. μ1 = (600 s)−1 (μ2 = (60 s)−1).
Each client refreshes its subscriptions once in 60 s (600 s), i.e. a refresh period
of ρ1 = 60 s (ρ2 = 600 s). Since d = 8 in our scenario, the leasing period is
π1 = 60.2 s (π2 = 600.2 s) for ρ1 (ρ2). Hence, a subscription will on average
be refreshed 10 (100) times before it is canceled by the subscribing client if
μ = (600 s)−1. The resulting stabilization time is Δ1 = 120.6 s (Δ2 = 1200.6 s).

We are interested in how the system behaves in equilibrium for different
numbers of active subscriptions N . In equilibrium, dN/dt = 0 where dN/dt =
λ − μ · N(t), implying N = λ/μ. Thus, if N and μ is given, λ can be deter-
mined. If the system was started with no active subscriptions, we would have
to wait until the system approximately reached equilibrium before we begin the
measurements. However, in our scenario it is possible to start the system right
in the equilibrium. At time 0, we create N subscriptions. For each of these sub-
scriptions, we determine how long it will live, for which filter class it is, and
at which leaf broker it is allocated. Since we use an exponential distribution
for the lifetime, this approach is feasible because the exponential distribution is
memoryless.

4.2 Results

The results of our simulation are depicted in Fig. 2. Note that the right plot is a
magnification of the most interesting part of the left plot. bs1/2 is the notification
bandwidth saved if filtering is applied instead of flooding. The figure shows
bs1 and bs2 which correspond to the publication rate ω1 and ω2, respectively.
Because bs linearly depends on ω, a decrease of ω by a factor of 10 leads to
10 times less saving of notification bandwidth. If there are no subscriptions
in the system, bs1 = 116, 000 s−1 and bs2 = 11, 600 s−1, respectively. These
numbers are 4, 000 s−1 and 400 s−1 less than the overall number of notifications

672 Gero Mühl et al.

0

20000

40000

60000

80000

100000

120000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

bs1

bs2

bc1

bc2

bc3

bc4

0

500

1000

1500

2000

2500

3000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

Fig. 2. Notification bandwidth saved by doing filtering instead of flooding (bs1 : ω1 =
1000 s−1, bs2 : ω2 = 100 s−1) and control traffic caused by filtering and leasing (bc1, bc4, :
ρ1 = 60 s , bc2, bc3, : ρ2 = 600 s, bc1, bc2 : μ1 = (600 s)−1, bc3, bc4 : μ2 = (60 s)−1).

published per second. This is because with hierarchical routing, a notification
is always propagated to the root broker. The control traffic bc is caused by
subscribing, refreshing, and unsubscribing clients. It only arises if filtering is
used. The figure shows bc1, bc2, bc3, and bc4 which result from the different
combinations of μ and ρ. The value to which bc converges for large numbers of
subscriptions, mainly depends on the refresh period ρ. Thus, bc1 and bc3 converge
to 120, 000/ρ1 = 2, 000s−1, while bc2 and bc4 converge to 120, 000/ρ2 = 200s−1.
The evolution of bc for numbers of subscriptions in the range between 0 and
200, 000 is largely influenced by the value of μ. A small μ such as μ2 leads to a
hump (cf. bc3 and bc4 in Fig. 2). Filtering saves bandwidth compared to flooding
if bs exceeds bc. The points where the curve of the respective variants of bs and
bc intersects are important: If the number of subscriptions is smaller than at the
intersection point, filtering is superior, while for larger numbers flooding is better.
For example, the curves of bs1 and bc1 intersect for about 300, 000 subscriptions.
Thus, filtering is superior for less than 300, 000 subscriptions, while flooding is
superior for more than 300, 000 subscriptions. Since we consider 8 scenarios, we
have 8 intersection points in Fig. 2.

The results gained through the simulation show, that applying self-stabilizing
filtering makes sense if the average number of subscriptions in the system does
not grow beyond a certain point. However, it is important to note, that all
assumptions taken for the simulation depict worst-case scenarios. For example,
the equal distribution of subscriptions to leaf brokers is disadvantageous for
filtering. If there was locality in the interests of the clients, filtering would always
save a portion of the notification traffic regardless how large the number of
subscriptions grows [7] and the control traffic would also be smaller. In such
scenarios, filtering can be superior to flooding for all numbers of subscriptions.

5 Related Work

Many self-stabilizing algorithms have been proposed for various kinds of sce-
narios whilst there are only a few contributions that cover publish/subscribe

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 673

systems. In this area self-stabilization was first considered by Mühl [7]. This
work was used as the basis for this paper. Recently, Shen and Tirthapura [11]
presented an alternative approach for self-stabilizing content-based routing. In
their approach, all pairs of neighboring brokers periodically exchange sketches
of those parts of their routing tables concerning their other neighbors to detect
corruption. The sketches that are exchanged are lossy because they are based
on bloom filters (which are a generalization of hash functions). However, due to
the information loss, it is not guaranteed that an existing corruption is detected
deterministically. Hence, the algorithm is not self-stabilizing in the usual sense.
Moreover, although generally all data structures can be corrupted arbitrarily, the
authors’ algorithm computes the bloom filters incrementally. Thus, once a bloom
filter is corrupted, it may never be corrected. Furthermore, in their algorithm,
clients do not renew their subscriptions. Without this, corrupted routing entries
regarding local clients are never corrected. Finally, their algorithm is restricted
to simple routing in its current form.

6 Conclusions and Outlook

To make publish/subscribe systems self-stabilizing, we applied a leasing mecha-
nism ensuring that the routing tables are always refreshed in time provided that
no faults occur. When faults do occur, the leasing mechanism ensures (a) that
corrupted parts of routing tables are either corrected or removed and (b) that
missing part are inserted. This way, routing tables recover. We described how
flooding and simple routing can be made self-stabilizing. In both cases, we calcu-
lated the maximum stabilization time, i.e. the time the system needs to recover
from an error. We also described how the stabilization time depends on the
leasing period and how the refresh period must be chosen to ensure that in
a correct system no routing entries expire. Furthermore, we sketched how ad-
vanced routing algorithms can be made self-stabilizing. Our contributions in this
paper enable the designers of publish/subscribe systems to render their system
self-stabilizing. Therefore, designers and implementers need not consider explicit
fault management mechanisms if fault masking is not an issue.

Using a simulation we tested the effectiveness of our approach in an example
scenario and showed, that it depends on the number of subscriptions in the
system. In future work, it would be interesting to take an analytical approach
to judge the proposed algorithms without employing simulations.

In this paper, we assumed for spatial reasons that the broker topology is stat-
ically stored in ROM. Currently, we work on an algorithm for a self-stabilizing
broker topology which ensures the correct behavior of the system even if nodes
or links are added or removed from the broker topology. Besides this, we are in-
vestigating self-organizing and self-optimizing algorithms for managing the bro-
ker topology. These management algorithms decide on which hosts brokers are
started and to which neighbor brokers a broker connects.

674 Gero Mühl et al.

References

1. A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area
Networks. PhD thesis, Politecnico di Milano, Milano, Italy, Dec. 1998.

2. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

3. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

4. S. Dolev. Self-Stabilization. MIT Press, 2000.
5. L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based systems. The Knowl-

edge Engineering Review, 17(4):359–388, 2003.
6. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed

diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking
(TON), 11(1):2–16, 2003.

7. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, 2002.
http://elib.tu-darmstadt.de/diss/000274/.

8. OMG. CORBA notification service, version 1.0.1. OMG Document formal/2002-
08-04, 2002.

9. L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman.
Exploiting IP multicast in content-based publish-subscribe systems. In IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2000),
volume 1795 of LNCS, pages 185–207. Springer-Verlag, 2000.

10. P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware archi-
tecture. In In Proceedings of the 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), July 2002.

11. Z. Shen and S. Tirthapura. Self-stabilizing routing in publish-subscribe systems.
In 3rd International Workshop on Distributed Event-Based Systems (DEBS 2004),
Edinburgh, Scotland, UK, May 2004.

12. Sun Microsystems, Inc. Java Message Service (JMS) Specification 1.1, 2002.

A Checkpoint/Recovery Model for Heterogeneous
Dataflow Computations Using Work-Stealing�

Samir Jafar1,��, Thierry Gautier1, Axel Krings2, and Jean-Louis Roch1

1 Laboratoire ID – IMAG, Pre-project MOAIS (CNRS-INRIA, INPG-UJF)
51, Avenue Jean Kuntzmann, 38330 Montbonnot St. Martin, France

{Samir.Jafar,Thierry.Gautier,Jean-Louis.Roch}@imag.fr
2 Computer Science Dept., University of Idaho, Moscow, ID 83844-1010, USA

krings@cs.uidaho.edu

Abstract. This paper presents a new checkpoint/recovery method for dataflow
computations using work-stealing in heterogeneous environments as found in
grid or cluster computing. Basing the state of the computation on a dynamic
macro dataflow graph, it is shown that the mechanisms provide effective check-
pointing for multithreaded applications in heterogeneous environments. Two
methods, Systematic Event Logging and Theft-Induced Checkpointing, are pre-
sented that are efficient and extremely flexible under the system-state model,
allowing for recovery on different platforms under different number of proces-
sors. A formal analysis of the overhead induced by both methods is presented,
followed by an experimental evaluation in a large cluster. It is shown that both
methods have very small overhead and that trade-offs between checkpointing and
recovery cost can be controlled.

1 Introduction and Background

Grid and cluster architectures are gaining in popularity for scientific computing appli-
cations. The distributed computations, as well as their underlying infrastructure consist-
ing of a large number of computers, storage and networking devices, pose challenges in
overcoming the effects of node and communication link failures. Since the computation
times are often significant, effective fault-tolerance mechanisms are required to recover
from faults in a fashion that avoids costly restarts.

Fault-tolerance is an effective method to address the possibility of faults in large
systems. This is especially important in the case of grids and clusters since in the ab-
sence of fault-tolerance the probability of failure, and thus the unreliability of such
architecture, increase with the number of components that can fail [21]. Recovery from
faults imply the existence of redundancy, e.g. time, information, or spatial redundancy.
In the case of large heterogeneous environments, redundancy mechanisms must address
the specific requirements associated with recovery mechanisms, taking into account a
dynamic number of possibly dissimilar computational nodes.

� This work is supported by the CNRS, ACI-GRID DOC-G and Région Rhône-Alpes project
RAGTIME.

�� The author is supported by Damascus University.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 675–684, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

676 Samir Jafar et al.

Many possible solutions based on fault-tolerance have been studied in the litera-
ture. Approaches based on duplication [15] can only tolerate a fixed number of faults.
All other protocols are based on saving the state of the processes and on constructing
a consistent global state [11], i.e. log-based and checkpoint-based protocols [5]. The
various protocols can be compared based on three fundamental criteria. The first crite-
rion is coordination, where processes coordinate each other in order to build a consis-
tent global state at the time of checkpointing or recovery. The second is heterogeneity,
which implies that the checkpoint state can be restored on a variety of platforms, e.g.
node architecture or operating system. In the contrary, one speaks of homogeneity. The
last criterion addresses the scope of the recovery, i.e. global or local recovery. If a single
fault causes the roll-back of all processes in the application, one speaks of global recov-
ery. Local recovery implies that only the roll-back of the crashed process is necessary.

We focus on roll-back strategies under consideration of crash faults and present two
major mechanisms: log-based and checkpoint-based rollback-recovery.

1.1 Log-Based Protocols

Message logging [12] is based on the fact that a process can be modelled by a se-
quence of interval states, each one representing a non-deterministic event [16]. Under
the hypothesis that each non-deterministic event can be identified, their logging allows
a crashed process to be recovered by (1) restoring it to the initial state and (2) replaying
messages to it in the same order they were delivered before the crash. To avoid a roll-
back to the initial state of a process and to limit the amount of messages that need to be
replayed, each process periodically saves its local state. Examples of systems based on
this method include MPICH-V2 [4], and FTL-Charm++ [18]. For applications with ex-
tensive inter-process communication, log-based protocols are burdened with the possi-
bly large overhead, with respect to space and time, induced by the logging of messages.

1.2 Checkpoint-Based Protocols

Checkpointing methods are based on periodically saving a global state [11] of the com-
putation to stable storage. In case of a fault, the computation is restarted from one of
these previously saved states. Checkpointing-based methods differ in the way processes
are coordinated and on the interpretation of a consistent global state.

Coordinated checkpointing requires the coordination of all processes for building a
consistent global state before writing the checkpoints to stable storage. The disadvan-
tage of coordinated checkpointing is the large latency due to coordination in order to
achieve a consistent checkpoint. Its advantage is the simplified recovery without roll-
back propagation and minimal storage overhead, since there is only one checkpoint per
process. This protocol is included in [6, 19].

Uncoordinated checkpointing assumes that each process independently saves its
state and a consistent global state is achieved in the recovery phase [5]. The advan-
tage of this method is that each process can make a checkpoint when its state is small.
However, there are two main disadvantages. First, there is a possibility of rollback prop-
agation which can result in a domino effect, i.e. rollback to the beginning of the compu-
tation. Second, the possibility of rollback propagation requires the storage of multiple
checkpoints for each process.

A Checkpoint/Recovery Model for Heterogeneous Dataflow Computations 677

Communication-induced checkpointing is a compromise between coordinated and
uncoordinated checkpointing. To avoid a domino effect that can result from indepen-
dent checkpoints of different processes, a consistent global state is achieved by forcing
each process to take additional checkpoints based on some information piggybacked on
the application messages [2]. The disadvantage of this approach is the possibly large
number of forced checkpoints and the overhead associated with storing them.

There are only few approached supporting portability, multi-threading, local recov-
ery and cost models [4, 13, 20]. However, portability of existing checkpointing tools is
achieved by using portable languages like Java or by re-compilation to support hetero-
geneity [20], but not by the checkpointing mechanism itself.

2 Dataflow Work-Stealing for Grid Computations

Dataflow graphs [9] allow for a natural representation of a parallel execution, and they
can be exploited to achieve fault-tolerance [1]. At runtime, ready-to-execute instruc-
tions are executed depending on the availability of data. Formally, a dataflow graph is
a directed graph G = (V , E), where V is a finite set of vertices and E is a set of edges
representing precedence relations between vertices. The vertex set consists of compu-
tational tasks, as seen in the traditional context of task scheduling, and the edge set
represents the data dependencies between the tasks. Within the context of this research
G is a dynamic dataflow graph, generated at runtime, as described in [7].

We adopt an efficient online scheduling algorithm called work-stealing [14]. The
principle is simple, when a processor becomes idle it tries to steal work from other
processors. In Cilk [14], a theoretical upper bound on the makespan is given for the
case of multithreaded computation. This result was extended in [7] to our dynamic
dataflow graph, and in [3] to consider heterogeneous systems.

2.1 Dataflow and Work-Stealing in KAAPI

The Kernel for Adaptive, Asynchronous Parallel Interface (KAAPI) used in this research
is a C++ library that allows to program and execute multithreaded computations with
dataflow synchronization between threads. The library is able to schedule programs at
fine or medium granularity in a distributed environment.

In the KAAPI execution model a multi-processor system is viewed as a collection
of so-called K-processors, which can be thought of as kernel threads. A process may
consist of several K-processors. A K-processor in turn executes so-called K-threads,
which can be thought of as application-level user threads. On a K-processor only one K-
thread is active at a given time. The thread of control is a sequence of non-interruptible
tasks. A K-processor becomes idle if there are no ready-tasks, i.e. either all tasks have
finished execution or they are waiting for data as the result of synchronization. Under
the work-stealing strategy, an idle K-processor tries to steal a task of a K-thread from a
randomly selected K-processor called victim.

2.2 KAAPI Model Analysis

The KAAPI cost model will be the frame of reference for the analysis in Section 4. The
time of a sequential execution of a program is denoted by T1. It is the total time to

678 Samir Jafar et al.

execute all the operations in the computation on a single processor, with no scheduling
overhead. Furthermore, let T∞ be the execution time of the application as executed on
an unbounded number of processors. Thus T∞ represents the execution time associated
with the critical-path.

For the execution of a KAAPI program on p identical physical processors, the cor-
responding execution time Tp is affected by T1, T∞ as well as the overhead associated
with loading and managing the data-structures and scheduling using work stealing. We
will adopt the simplified model of Cilk-5 [14], which utilizes Graham’s bound [8], and
is also valid for KAAPI. Then, Tp is bounded by (see Equation 2 in [14]):

T1

p
≤ Tp ≤ T1

p
+ c∞T∞ (1)

The constant c∞ defines a bound on the overhead associated with the critical-path. In
the remainder of the text, we assume that each physical processor executes only one
K-processor.

3 Checkpoint/Recovery Model

Before describing the two fault-tolerance mechanisms we have integrated into KAAPI

we need to define the state of an execution. This definition is perhaps the most important
difference between this work and the related works (see Section 1) and is the basis for
allowing checkpointing in a heterogeneous environment with the flexibility of recovery
on any type or number of processors.

3.1 Definition of Execution State

We use a macro dataflow graph to define the state of the application’s execution. The
graph is a representation of the computational tasks to be carried out along with the
associated data, which constitute the inputs and outputs. The dataflow is dynamic,
changing during execution of the program, e.g. at the invocation of a task, and it is
platform-independent. As a result the graph or portions of it can be moved across plat-
forms during execution. Formally, at any instance of time t, the macro dataflow graph
G describes a platform-independent, and thus portable, consistent global state of the
execution of an application.

Whereas graph G is viewed as a single virtual dataflow graph, its implementation is
in fact distributed. Specifically, each process i contains and executes a subgraph Gi of
G. Within this representation lies the flexibility of restarting individual processes: in the
case of a single fault, one does not have to perform a global roll-back. This is due to the
fact that Gi, by definition of the principle of macro dataflow, contains all information
necessary to identify exactly which data is missing. Note that this also includes the
information associated with dependencies between Gi and Gj , i �= j.

The instant of time at which a checkpoint can be taken is either before or after the
execution of an application task. The checkpoint itself is a snapshot of G, which consists
of tasks, specifically their function IDs, and their associated inputs. It does not consist
of the task execution context itself. Understanding this difference between the two con-
cepts is crucial. Checkpointing a task and its inputs simply requires to store the task’s

A Checkpoint/Recovery Model for Heterogeneous Dataflow Computations 679

function ID and its input data. Checkpointing the execution of a task usually consists of
storing the context of the processor, i.e. processor registers (such as program counters
and stack pointers) and data. In the first case, it is possible to move a task and its inputs,
assuming that both are represented in a platform-independent fashion. In the latter case
the fact that the process context is platform-dependent requires a homogeneous system
in order to perform a restore operation.

The checkpointed macro dataflow graph contains only the future of the execution,
i.e. the tasks to be carried out and the necessary data. Certain temporary data associated
with the execution of the task are not necessary to the future of the execution and are
not checkpointed. The result is a reduction of the checkpoint size.

3.2 Systematic Event Logging

Systematic Event Logging (SEL) is derived from a log-based method [12]. Only the
state-change events, i.e. additions and deletions of nodes in the macro dataflow graph,
are logged. A recovery consists of simply loading and rebuilding subgraph Gi asso-
ciated with the failed process i from the respective checkpoint file. The advantage of
this approach is that during recovery it allows the re-execution of single tasks, which is
interesting for applications requiring the certification of computations and results [10].

In the implementation of SEL, the events that trigger the change of the state of the
macro dataflow graph are either the creation or deletion of tasks or the data dependen-
cies they produce. Recall that tasks and data dependencies constitute the two principal
components of the graph. These events, together with a uniquely assigned identifier
allowing their association with the node in the graph, are stored in stable storage.

3.3 Theft-Induced Checkpointing

Theft-induced checkpointing (TIC) is based on the method presented in [2]. The cre-
ation of checkpoints can be initiated (1) at specific checkpointing periods or (2) by the
theft of a task. In the first case, checkpoints of the macro dataflow graph G, i.e. Gi on
process i, are stored periodically1 at pre-defined periods τ . In the second case, the state
of the macro dataflow graph is checkpointed as the result of communication between
processes. In the presence of work stealing, each theft will cause such communication,
thus resulting in a so-called forced checkpoint. The communication due to work stealing
accounts for the only communication of the application. The checkpoint is generated at
the time of a theft operation. A recovery consists of loading Gi from the checkpoint file
related to the crashed process.

Recall that in KAAPI a process executes on a collection of K-processors, which in
turn execute a certain number of K-threads. In the implementation of TIC in KAAPI

the checkpoint of a process is implemented by checkpointing its associated K-processor.
Each K-processor generates incremental checkpoints for each associated K-thread. At
the expiration of period τ , each process checkpoints its state represented by Gi. In case
of a task theft, only the K-processor from which the task was stolen forces a checkpoint.

1 Recall that checkpointing is performed at the task level. This should not be confused with
preemptive periodic scheduling, where the context of the preempted tasks are stored.

680 Samir Jafar et al.

4 Model Analysis

In the analysis of the overhead associated with SEL and TIC we differentiate between
executions without and with faults. Furthermore, we assume that T1

p ' c∞T∞, which
will be referred to as the parallel slackness assumption [14]. In the presence of work-
stealing this leads to a linear speedup of Tp ≈ T1

p .

4.1 Analysis of Fault-Free Execution

If we add a checkpointing mechanism, it is of special interest to analyze its overhead
associated with fault-free execution, since the occurrence of faults is considered to be
the rare exception rather than the norm.

Analysis of SEL: In SEL a log is initiated for each node created. Thus the overhead
associated with logging depends on dataflow graph G. Let T SEL

P denote the execution
of a KAAPI program on p processors under consideration of logging overhead. Then,

T SEL
P ≤ T SEL

1

p
+ c∞T SEL

∞ . (2)

T SEL∞ denotes the critical-path under SEL, where T∞ ≈ T SEL∞ . Furthermore, T SEL
1

denotes the time of a sequential execution of a program under consideration of the
overhead induced by logging, i.e. T SEL

1 = T1+ logging overhead. This overhead is a
function of two parameters. First, it depends on the size of G. Specifically, it depends
on the number of tasks and data dependencies, as well as the size of the latter. Second, it
depends on the time of an elementary access to stable storage, denoted by ts. Therefore,

T SEL
1 = T1 + fSEL

overhead(|G|, ts). (3)

The real measure of SEL overhead is thus T SEL
1 −T1, which in turn allows the deriva-

tion of the overhead in the parallel execution, i.e. T SEL
P − Tp.

Analysis of TIC: In theft-induced checkpointing, a checkpoint is performed period-
ically for each process, as dictated by period τ , and as the result of task stealing. Let
T TIC

P denote the execution of a KAAPI program on p processors under TIC. Thus,

T TIC
P ≤ Tp + max

i=1,...,p
{CheckpointOverheadi}, (4)

where CheckpointOverheadi denotes the total checkpointing overhead on proces-
sor i. This overhead depends on the total number of checkpoints taken on processor
i and the overhead of a single checkpoint. The maximal number of checkpoints per-
formed by a processor is [T TIC

P /τ + Ntheft], where T TIC
P /τ indicates the number of

checkpoints due to period τ and Ntheft is the maximal number of thefts performed by
any processor.

The overhead of a single checkpoint in TIC is different from that in SEL, since
now the checkpoint constitutes the collection of tasks in Gi, rather than a single task.

A Checkpoint/Recovery Model for Heterogeneous Dataflow Computations 681

The number of tasks in Gi has an upper bound of N∞, which denotes the maxi-
mum number of tasks in a path of G [14]. The checkpoint overhead is thus bound
by maxi=1,...,p{CheckpointOverheadi} ≤ [T TIC

P /τ + Ntheft] fTIC
overhead(N∞, ts).

Note that function fTIC
overhead(), which indicates the overhead associated with a single

checkpoint, depends only on G, or more preceisly N∞ and ts. Thus, the checkpointing
overhead is

T TIC
P ≤ Tp + [T TIC

P /τ + Ntheft] fTIC
overhead(N∞, ts). (5)

Under the parallel slackness assumption, it is important to note that the number of
thefts, Ntheft, resulting in forced checkpoints is bound and small for many applications
[14, 17]. Then, by selecting an appropriate τ the number of local checkpoints can be
adjusted in order to obtain T TIC

P ≈ Tp.

4.2 Analysis of Executions Containing Faults

The overhead associated with fault-free execution is the penalty one pays for having
a recovery mechanism. It remains to be shown how much overhead is associated with
recovery as the result of a fault and how much execution time can be lost under different
strategies.

The overhead associated with recovery is due to loading and rebuilding G. This can
be effectively achieved by loading Gi of the affected processes. The time depends on
the size of Gi and is dominated by the size of the data representing the task inputs.
Thus, the time of recovery of a single process i, denoted by tirecovery , depends only
on the size of its associated subgraph Gi. Therefore, tirecovery is of the order of the
size of the subgraph, i.e. tirecovery = O(|Gi|). Note that for a global recovery, as the
result of the failure of the entire application, this translates to max(tirecovery) and not
to

∑
tirecovery .

The advantage of SEL is that, due to its fine granularity, the maximum amount of
execution time lost is that of a single task. Furthermore, the rollback only requires the
recovery overhead of a single task. However, this comes at the cost of higher logging
overhead, as was addressed in Equation 3.

For TIC the maximum amount of lost execution time is generally higher than for
SEL and is bound by period τ . The recovery overhead depends on the size of the graph
that need to be loaded and rebuilt. However, note that by appropriately selecting τ one
can exercise control over the recovery overhead. The trade-off between lower check-
pointing overhead and slower recovery will need to be determined by the application.

It should be noted that we do not consider the time lost due to fault-detection.
Whereas the fault-detection time is an important issue, its impact is not the subject
of this research; any detection mechanism may be used.

5 Experimental Results

The performance and overhead of the SEL and TIC mechanisms were experimentally
determined for the Quadratic Assignment Problem (instance2 NUGENT 22) which was

2 see http://www.opt.math.tu-graz.ac.at/qaplib/

682 Samir Jafar et al.

parallelized in KAAPI. The experiments were conducted on the iCluster23. The clus-
ter consists of 104 nodes interconnected by a 100Mbps Ethernet network. Each node
features two Itanium-2 processors (900 MHz) and 3 GB of local memory.

In order to take advantage of the distributed fashion of the checkpoint, i.e. Gi, each
processor keeps a local copy of its checkpoint. To eliminate this single source of failure,
it is assumed that the checkpoint of each Gi is replicated on other nodes [6]. This
configuration has two advantages. First, it reflects the theoretical assumptions of the
previous section and second, the actual overhead of the checkpointing mechanism is
measured, rather than the overhead associated with a centralized checkpoint server.

Fig. 1. Impact of threshold of parallelism Fig. 2. Checkpoint overhead

The application recursively generates tasks and the degree of parallelism can be ad-
justed. After a given depth of recursion no more tasks are generated. The sequential ex-
ecution time without KAAPI was 34,695 seconds. With KAAPI, at fine grain (threshold
≥ 10), the execution on a single processor generated 225,195 tasks and ran in 34,845
seconds. The impact of the degree of parallelism can be seen in Figure 1 and 2. The
number of parallel tasks generated for different thresholds of parallelism is shown in
Figure 1. The degree of parallelism increases drastically for threshold 5 and approaches
its maximum at threshold 10.

The number of tasks has direct implications on the cost of the checkpointing mech-
anism. Figure 2 shows that the cost of SEL is very susceptible to the total number of
tasks, as predicted by Equation (2) and (3), which showed the overhead as a function of
the number of tasks.

Figure 2 also shows the impact of parallelism on the overhead of TIC for period
τ equal to 1 and 20 seconds. As shown in Equation 5, the overhead is dependent on
the critical-path, i.e. T∞, and N∞. As parallelism increases, and thus both T∞ and N∞
drastically decrease, the checkpointing overhead is reduced. As predicted, the longer
period results in lower cost.

3 http://www.inrialpes.fr/sed/i-cluster2

A Checkpoint/Recovery Model for Heterogeneous Dataflow Computations 683

Figure 3 demonstrates that the checkpoint mechanisms as well as the application
are scalable. As the number of processors increase, the different protocols show little
change in cost. The impact of the number of faults on the cost of recovery for SEL can

Fig. 3. Scalability of the checkpointing Fig. 4. Recovery cost for SEL

be seen in Figure 4. In fact, the overhead due to restart increases linearly. The recovery
times are derived from two measures. The first is the computation time averaging 0.25s
per computational task. The second is the overhead due to loading the checkpoint file,
averaging 7 MBytes, for rebuilding each Gi. Since single process roll-back was hardly
measurable, the experiment shows faults and restarts of all processors.

6 Conclusions

Two portable fault-tolerance mechanisms, systematic event logging and theft-induced
checkpointing, have been introduced for heterogeneous multithreaded applications. The
flexibility of macro dataflow graphs has been exploited to allow for a platform-indepen-
dent description of the application state. This description resulted in flexible, portable,
recovery strategies. Systematic event logging allowed for rollback at lowest level of
granularity, with a maximal computation loss of one task. However, its overhead was
sensitive to the size of the application graph, i.e. the number of tasks. Theft-induced
checkpointing has lower overhead, related to work-stealing, which was shown bound
to the critical-path. The experimental results demonstrated low overhead of both ap-
proaches and confirmed the theoretical analysis.

References

1. M. Hyett A. Nguyen-Tuong, A. S. Grimshaw. Exploiting data-flow for fault-tolerance in a
wide-area parallel system. In Proceedings 15 th Symposium on Reliable Distributed Systesm,
pages 2–11, 1996.

2. R. Baldoni. A communication-induced checkpointing protocol that ensures rollback-
dependency trackability. In Proceedings of the 27th International Symposium on Fault-
Tolerant Computing (FTCS ’97), page 68. IEEE Computer Society, 1997.

684 Samir Jafar et al.

3. M. Bender and M. Rabin. Online scheduling of parallel programs on heterogeneous systems
with applications to cilk, 2002.

4. A. Bouteiller, F. Cappello, T. Hérault, P. Lemarinier, G. Krawezik, and F. Magniette. Mpich-
v2: a fault tolerant mpi for volatile nodes based on the pessimistic sender based message
logging. In SuperComputing, Phoenix, USA, 2003.

5. E. N. Mootaz Elnozahy, L. Alvisi, Y.-M. Wang, and Johnson D. B. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

6. L. V. Kalé G. Zheng, L. Shi. Ftc-charm++: An in-memory checkpoint-based fault tolerant
runtime for charm++ and mpi. In 2004 IEEE International Conference on Cluster Comput-
ing, San Dieago, CA, September 2004.

7. F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille. Athapascan-1: On-line building data
flow graph in a parallel language. In IEEE, editor, PACT’98, pages 88–95, Paris, France,
October 1998.

8. Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

9. T. Ungerer J. Silc, B. Robic. Asynchrony in parallel computing: from dataflow to multithread-
ing, pages 1–33. Nova Science Publishers, Inc., 2001.

10. S. Jafar, S. Varrette, and J.-L. Roch. Using data-flow analysis for resilience and result check-
ing in peer-to-peer computations. In IEEE DEXA’2004, Zaragoza, Spain, August 2004.

11. L. Lamport K. M. Chandy. Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

12. K. Marzullo L. Alvisi. Message logging: Pessimistic, optimistic, causal and optimal. TSE,
24(2):149–159, 1998. Transactions on Software Engineering.

13. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration of unix
processes in the condor distributed processing system. Technical Report CS-TR-97-1346,
Univ. Wisconsin, Madison, 1997.

14. K. H. Randall M. Frigo, C. E. Leiserson. The implementation of the cilk-5 multithreaded
language. In Proceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementation, pages 212–223. ACM Press, 1998.

15. A .Schipper M.Wiesmann, F. Pedonne. A systematic classification of replited database pro-
tocols based on atomic broadcast. In Proceedings of the 3th European Research Seminar on
Advances in Distributed Systems(ERSADS99), pages 351–360, 1999.

16. S. Yemini R. Strom. Optimistic recovery in distributed systems. ACM Trans. Comput. Syst.,
3(3):204–226, 1985.

17. R. Revire. Ordonnancement de graphe dynamique de tâches sur architecture de grande taille.
Régulation par dégénération séquentielle et distribuée. Thèse de doctorat en informatique,
INPG, septembre 2004.

18. L. V. Kale S. Chakravorty. A fault tolerant protocol for massively parallel machines. In FT-
PDS Workshop for IPDPS 2004. IEEE Press, 2004.

19. G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings of the
10th International Parallel Processing Symposium (IPPS ’96), Honolulu, Hawaii, 1996.

20. V. Strumpen. Compiler technology for portable checkpoints. Technical Report MA-02139,
MIT Laboratory for Computer Science, Cambridge, 1998.

21. K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. John Wiley and Sons, New York, 2001.

Topic 9
Parallel Programming:

Models, Methods and Languages

Marco Danelutto, Denis Caromel, Duane Szafron, and Fernando Silva

Topic Chairs

This topic covers innovative aspects as well as improvements in already known
techniques in algorithms, programming models, design methods and languages
that relate to the development of parallel programs. In the call-for-papers, we
stressed several innovative aspects including novel techniques to assemble paral-
lel software from reusable parallel components or from existing sequential code
without compromising efficiency, and techniques to adapt parallel software to
available resources as well as to the features of the problem being solved. A total
of 36 papers were submitted for this topic and, after reviewing, 10 full papers
were accepted (28% rate). We recognized really promising work in many of the
papers that could not be accepted and fully encourage the authors to use the
referees’ suggestions to improve and resubmit their work. The accepted papers
will be presented at the conference grouped into four sessions.

The paper by Wise et. al. discusses an innovative approach to the implemen-
tation of parallel matrix algorithms and will be presented in the session hosting
papers from Topic 4.

A second session hosts papers dealing with parallelism in the context of
shared memory machines. Chan et. al. focus on the implementation of asyn-
chronous handlers in co-begin statements in the context of a Java implementation
of SR named JR. Wang et. al. describe the design and use of source-level stream-
ing pre-computation techniques to improve the performance of memory-bound
scientific applications on SMT processors with limited resources. Nieplocha et.
al. deal with the implementation of Cray symmetric objects in Fortan95.

A third session hosts papers discussing the usage of aspect-oriented tech-
niques and of search parallelism. Carvalho Junior and Dueire Lins explore the
possibilities offered by aspect-oriented programming to incorporate procedural
language computations in the Haskell# implementation of the # programming
model. Copy and Ur exploit aspect-oriented programming techniques in the im-
plementation of testing tools. Last, Viet Le and Pontelli describe the implemen-
tation of a parallel Answer Set solver using search parallelism.

The last session hosts papers related to structured parallelism. Benoit et. al.
discuss how skeletons can be exploited using the eSkel. Aldinucci et. al. describe
experiments in automatic adaptation of structured parallel code to changes in
the target architecture features. González-Escribano et. al. describe an XML
based intermediate representation for nested-parallel programming languages.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 685, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Paradigm for Parallel Matrix Algorithms:�

Scalable Cholesky

David S. Wise��, Craig Citro���, Joshua Hursey†,
Fang Liu†, and Michael Rainey‡

Indiana University, Bloomington

Abstract. A style for programming problems from matrix algebra is
developed with a familiar example and new tools, yielding high perfor-
mance with a couple of surprising exceptions. The underlying philosophy
is to use block recursion as the exclusive control structure, down to a
2p × 2p base case anyway, where hardware favors iterative style to fill its
pipe. Use of Morton-ordered matrices yields excellent locality within the
memory hierarchy—including block sharing among distributed comput-
ers. The recursion generalizes nicely to an SPMD program where such
sharing is the only communication.
Cholesky factorization of an n × n SPD matrix is used as a simple non-
trivial example to expose the paradigm. The program amounts to four
functions, two of which are finalizers for the other two. This insight al-
lows final blocks to be shared with inter-node communication ∈ Θ(n2)
for this algorithm ∈ Θ(n3) flops.

� Supported, in part, by the National Science Foundation under grants numbered
CCR-0073491, ACI–0219884, and EIA–0202048. Copyright on twelve pages intact
transferred, with rights reserved for anyone to make digital or hard copies of part
or all of this work for personal or classroom use, provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice
and the full Springer citation on the first page. Rights are similarly reserved for
any library to share a hard copy through interlibrary loan.

�� Supported, in part, by NSF grants CCR–0073491 and ACI–0219884.
��� Supported, in part, by NSF grant CCR-0107395.

† Supported, in part, by NSF grant number ACI–0219884.
‡ Supported, in part, by NSF grant CCR03-34593.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 687–698, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

688 David S. Wise et al.

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky 689

690 David S. Wise et al.

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky 691

692 David S. Wise et al.

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky 693

694 David S. Wise et al.

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky 695

696 David S. Wise et al.

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky 697

698 David S. Wise et al.

An Exception Handling Mechanism
for the Concurrent Invocation Statement

Hiu Ning (Angela) Chan1, Esteban Pauli1, Billy Yan-Kit Man1,
Aaron W. Keen2, and Ronald A. Olsson1

1 Department of Computer Science, University of California, Davis
Davis, CA 95616 USA

{chanhn,pauli,many,olsson}@cs.ucdavis.edu
2 Computer Science Department, California Polytechnic State University

San Luis Obispo, CA 93407 USA
akeen@csc.calpoly.edu

Abstract. Several concurrent programming languages and systems –
e.g., MPI, .NET, and SR – provide mechanisms to facilitate communica-
tion between one process and a group of others. One such mechanism is
SR’s concurrent invocation statement (co statement). It specifies a group
of operation invocations and normally terminates when all of its invo-
cations have completed. To make the co statement more flexible, it can
specify code in the invoker to execute as each invocation completes or to
terminate the entire co statement before all of its invocations have com-
pleted. We have added an SR-like co statement to JR. Unlike SR, JR pro-
vides exception handling mechanisms, which are integrated with Java’s
exception handling mechanism. However, JR needs additional mecha-
nisms to deal with sources of asynchrony. The co statement introduces
additional such sources of asynchrony for the invocations it initiates. This
paper describes the design and implementation of an exception handling
mechanism for JR’s co statement.

1 Introduction

Communication between one process and a group of others is important in many
concurrent programs. Several concurrent programming languages and systems
provide mechanisms to facilitate such communication, e.g., MPI’s [9] collective
communication; .NET’s [10] delegates and asynchronous invocations, which can
be used to simulate collective communication; and SR’s [1, 2] concurrent invo-
cation statement (co statement, for short), which can be viewed as a form of
collective communication. These mechanisms can be used to broadcast data to
a group of processes and gather back results from each in the group, for in-
stance, in applications such as initiating subparts of numerical computations,
reading/writing a distributed database, and distributed voting schemes.

This paper focuses on the co statement. It specifies a group of operation
invocations and normally terminates when all invocations have completed. The
co statement also allows quantifiers to deal with groups of related operations and

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 699–709, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

700 Hiu Ning Chan et al.

post-processing code (PPC) that is executed as each invocation completes. The
co statement is allowed to terminate before all its invocations have completed.
All these features are useful in practice, as seen in the examples in SR [1, 2] and
later in this paper.

We have added a co statement, similar to SR’s, to the JR concurrent program-
ming language [7, 11]. Unlike SR, JR provides exception handling mechanisms,
which are integrated with Java’s exception handling mechanism. However, JR
needs additional mechanisms to deal with sources of asynchrony, as described in
Reference [8]. The concurrent invocation statement introduces additional such
sources of asynchrony for the invocations it initiates. Thus, we have also de-
signed and implemented an exception handling mechanism for the concurrent
invocation statement and added it to JR (available on the web [5]). Our work
should benefit others considering adding exception handing mechanisms to other
concurrent programming languages and systems.

The rest of this paper is organized as follows. Section 2 presents the con-
current invocation statement without exceptions, introduces our running exam-
ple, and summarizes our previous work with handling exceptions during asyn-
chronous method invocation. Section 3 gives an overview of our approach, illus-
trates it by extending our running example to use exceptions, and discusses and
justifies our design decisions. Section 4 presents an overview of our implementa-
tion and discusses its reasonable performance. Finally, Section 5 concludes.

2 Background

2.1 Concurrent Invocation Statement (Without Exceptions)

Figure 1 shows a small JR program with a simple co statement. It simulates
a two-person election, where each person announces his or her vote. This co
statement contains two arms. The process executing the co statement initiates
the two co invocations (one of aliceVote and one of bobVote); it then waits
until both invocations have finished. Thus, the individual “votes” outputs are
guaranteed to occur before the “over” output.

public class main {
public static void main(String [] args){

co aliceVote();

[] bobVote();
System.out.println("Election is over.");

}
public static op void aliceVote() {

...
System.out.println("Alice votes yes.");
...

}
public static op void bobVote() {

...
System.out.println("Bob votes no.");
...

}
}

Fig. 1. A simple election program.

An Exception Handling Mechanism for the Concurrent Invocation Statement 701

int yesCount = 0, noCount = 0; boolean vote[] = new boolean [voters];

co ((int i = 0; i < voters; i++)) vote[i] = getVote[i]();

for (int i = 0; i < voters; i++) {
if(vote[i]) ++yesCount; else ++noCount;

}
// announce decision

System.out.println("votes For: " + yesCount + " Against: " + noCount);
if (yesCount > noCount)

System.out.println("Victory!");

else
System.out.println("Defeat ;-(");

Fig. 2. Election with tallying of votes after voting.

boolean vote;

co ((int i = 0; i < voters; i++)) vote = getVote[i](){
System.out.println("Voter "+i+ " voted "+vote);
if (vote)

++yesCount;
else

++noCount;
}
// announce decision -- same code as in earlier figure

Fig. 3. Election with tallying of votes during voting.

int yesCount = 0, noCount = 0; boolean vote = false;

co ((int i = 0; i < voters; i++)) vote = getVote[i](){
if (vote) {

if (++yesCount > voters/2) break;
}

else
if (++noCount >= (voters+1)/2) break; // tie -> No

}

// announce decision -- same code as in earlier figure

Fig. 4. Election with decision announced as soon as majority has decided.

Figure 2 shows a more interesting voting program fragment. Here, votes are
received from an array of voters’ operations, getVote. This co statement uses
quantifier notation to initiate all invocations. As each invocation completes, the
result is recorded in the vote array. After all votes are received, the votes are
tallied and the decision is announced.

Figure 3 shows how votes can be tallied as they are received. This co statement
specifies post-processing code (PPC); the scope of the quantifier variable for the
arm includes the arm’s PPC. As each invocation completes, the corresponding
PPC is executed by the same process that initiates the co statement. Thus,
execution of PPCs is serial and variables local to this process used within the
PPC (e.g., vote) are not subject to race conditions. (The assignment to vote is
considered a part of the PPC; it is executed before the rest of the PPC.)

The co statement has an iterative nature with respect to it executing its
PPCs, so a break statement makes sense within a PPC. Figure 4 shows a co
statement that announces the election decision as soon as a majority of voters

702 Hiu Ning Chan et al.

has decided the election. A co statement now terminates when: all its invocations
have completed and their corresponding PPCs have terminated; or execution of
a PPC has executed a transfer of control out of the co statement. Note that, in
this example, invocations whose results are not tallied do continue to execute,
even if the co statement has terminated. However, their subsequent completion
has no effect on the invoking process; indeed, the invoking process may have
completed and no longer exist.

2.2 Simulation of the co Statement Using Existing JR Mechanisms

The co statement can be simulated with other JR language mechanisms, but
doing so is cumbersome for the programmer. For example, Figure 5 shows how
to rewrite Figure 1. It uses send invocations (which are non-blocking) to initiate
the voting and the receive statement to wait until both voters have voted. Here,
and in general, the code requires changing the interface to the vote operations
to have an extra parameter, so that the voter can notify “election central” when
it has finished voting. This extra parameter is a capability (a special kind of
reference) to an operation.

public class main {

public static void main(String [] args){
op void aliceVoted();
op void bobVoted();

send aliceVote(aliceVoted);
send bobVote(bobVoted);

receive aliceVoted();
receive bobVoted();
System.out.println("Election is over.");

}
public static op void aliceVote(cap void() voted) {

...
System.out.println("Alice votes yes.");

...
send voted();

}

public static op void bobVote(cap void() voted) {
...

System.out.println("Bob votes no.");
...
send voted();

}
}

Fig. 5. Hand-coded simulation of Fig. 1.

The general simulation of a co statement with a PPC is more complicated.
To illustrate, Figure 6 shows how to rewrite Figure 4. Figure 6’s code properly
simulates Figure 4’s co statement because the PPC code is executed sequentially,
but it again requires the interface to be changed, e.g., the signatures of getVote
and the body of that operation (not shown). Although this simulation works
fine for the program in Figure 4, the general simulation is more complicated.
For example, suppose the co statement uses the quantifier variable in its PPC,
as in Figure 3. At first look, the code in Figure 6 might seem to work, but
the index variable in the second for loop (where the print statement would be

An Exception Handling Mechanism for the Concurrent Invocation Statement 703

op void voted(boolean);

for (int i = 0; i < voters; i++) {
send getVote[i](voted);

}

for (int i = 0; i < voters; i++) {
boolean vote;

receive voted(vote);
if (vote) {

if (++yesCount > voters/2) break;
}
else

if (++noCount >= (voters+1)/2) break; // tie -> No
}

// announce decision -- same code as in earlier figure

Fig. 6. Hand-coded simulation of Fig. 4.

placed) has no connection to the index variable in the first for loop. Also, if the
co statement has multiple arms, a simple receive statement no longer suffices.
Section 4.1 discusses how to deal with these problems in general.

2.3 Handling Exceptions During Asynchronous Method Invocation

This section summarizes our earlier work that shows how to handle exceptions
during asynchronous method invocation [8, 11]. Our approach bears some re-
semblance to that provided in both ABCL/1 [3] and Arche [4].

JR provides asynchronous method invocation via the send statement. To
facilitate the handling of exceptions thrown from an asynchronously invoked
method, JR requires the specification of a handler object as part of a send. Any
exceptions propagated out of the invoked method are directed to the handler
object. To be used as a handler, an object must implement JR’s Handler inter-
face and define a number of handler methods. A method is defined as a handler
through the use of the handler modifier (much like the public modifier). A
handler method takes only a single argument: a reference to an exception ob-
ject. Each handler method specifies the exact exception type that it can handle.
When an exception is delivered to a handler object, it is handled by the handler
method of the appropriate type.

public class IOHandler implements edu.ucdavis.jr.Handler {

public handler void handleEOF(java.io.EOFException e)
{ /* handle exception */ }

public handler void handleNotFound(java.io.FileNotFoundException e)
{ /* handle exception */ }

}

IOHandler iohandler = new IOHandler();

...
send readFile("/etc/passwd") handler iohandler;

...

Fig. 7. Class definition for and use of a simple handler object.

Figure 7 shows an example definition of a handler object’s class and how it
is used. In this example, handler objects of type IOHandler can handle end-of-
file and file-not-found exceptions. An exception of type java.io.EOFException

704 Hiu Ning Chan et al.

directed to such a handler object will be handled by the handleEOF method.
As seen in Figure 7, a send statement must specify, using a handler clause,
its handler object. The JR compiler statically checks that the specified handler
object can handle each of the potentially thrown exceptions.

3 Design

3.1 Overview of Exceptions in the Concurrent Invocation Statement

A key observation in integrating exception handling with the concurrent invoca-
tion statement is that the co statement adds another source of asynchrony in the
same sense as for the send statement (Section 2.3). Section 2.1 described how if
the co statement’s PPC contains a break statement, then the invoking process
may not even exist when one of its invocations completes; the same now also
pertains to an exception that occurs for one of its co invocations. Therefore, we
add a handler to co invocations that can throw exceptions.

Section 2.1 described when a co statement terminates. A co invocation that
throws an exception does not cause its associated PPC to be executed (discussed
further in Section 3.2). But, that invocation is now considered to have completed
and contributes toward the co statement’s overall termination.

boolean decided = false;

MyHandler mh = new MyHandler();

co ((int i = 0; i < voters; i++)) vote = getVote[i]() handler mh : {
if (vote){

if (++yesCount > voters/2) {decided = true; break;}
}

else
if (++noCount >= (voters+1)/2) {decided = true; break;} // tie -> No

}

System.out.println("votes For: " + yesCount + " Against: " + noCount);

if (!decided)
System.out.println("Too many non-participating voters to decide election");

else {
if (yesCount > noCount)
System.out.println("Victory!");

else
System.out.println("Defeat ;-(");

}

public class MyHandler implements edu.ucdavis.jr.Handler {

public handler void handleNonParticipVoter(NonParticipVoterException e) {
System.out.println("Non-participating voter");

}

}

public class NonParticipVoterException extends java.lang.Exception {

}

Fig. 8. Fig. 4 extended to handle exceptions.

Figure 8 shows how to extend the program in Figure 4 for when the getVote
operation can throw exceptions. The co invocation now specifies a handler, which

An Exception Handling Mechanism for the Concurrent Invocation Statement 705

just outputs an error message. The code that outputs the results now makes sure
that enough voters actually voted yes or no.

3.2 Design Decisions

A simpler approach than using handler objects (Section 3.1) is to just enclose
the co statement, such as the one in Figure 4, within a try/catch statement.
However, if an exception occurs for an invocation, then control transfers to the
catch block and the entire co statement terminates. Thus, the results of those
invocations that complete normally after the exception occurs would be lost.
That would make dealing with code that can throw exceptions, such as that in
Figure 8, much more difficult.

Having invocation-specific handlers allows the co statement to continue in
such cases and terminate cleanly. Moreover, because the PPC can contain state-
ments such as break, exceptions on invocations must be handled somewhere, as
noted in Section 3.1. Thus, if an op can throw an exception, its invocation within
an arm of a co statement must have a handler.

Figure 8 illustrated the use of a handler that is specified for each invocation.
The co statement also allows a default handler for the entire statement so that
exceptions from all invocations are handled by the same handler object. The
default handler is used for any invocation that requires a handler but does not
itself specify a handler. Allowing a default handler is convenient so that users
do not need to specify a handler object for each arm while they can occasionally
provide a special handler for some arms to handle their exceptions. The default
handler is used only if an invocation-specific handler is not specified for a par-
ticular invocation. An alternative is to allow the default handler to be used in
addition to the invocation-specific handler, so that it can handle some types of
exception that a handler object for a specific invocation cannot handle. However,
we have not yet seen a real need for that functionality.

If an exception occurs during execution of a PPC, then execution of the
current block will terminate and control transfers out of the co statement, thus
terminating the co statement. Consider, for example, the following co statement

co f() {
... // PPCf -- throws exception (but contains no try/catch)

}
[] g() {

... // PPCg

}

If the invocation of f finishes before the invocation of g and PPCf throws an
exception that is not caught within PPCf, then PPCg will not be executed when
the invocation of g finishes. This behavior is consistent with exceptions in Java;
e.g., if an exception occurs within a loop in Java code and is not caught within
the loop, the rest of the loop is not executed.

If an exception occurs for a co invocation, the associated PPC is not executed.
This behavior was seen in Figure 8. In addition, if the co invocation assigns to a
variable (vote in Figure 8), that assignment is considered part of the PPC and
is not executed if an exception occurs. An alternative would, of course, be to

706 Hiu Ning Chan et al.

allow the PPC to execute, but it would need some way to distinguish between
success and exception (e.g., if "exceptionOccurred" ...), so that, for example,
it would know whether the variable was assigned.

4 Implementation

4.1 Internal Transformations

Section 2.2 showed how simple co statements can be simulated using other JR
language mechanisms. Internally, the JR translator transforms a co statement in
a way similar to those examples; however, the transformation handles the nec-
essary change of interface and deals with multiple arms and quantifier variables.

co f(5) {PPCf} [] g() {break;} [] ((int i = 0; i < N; i++)) x[i] = h(i) {PPCh}

Fig. 9. Example co statement.

cap void (void) f_retOp = f.cocall(...);

cap void (void) g_retOp = g.cocall(...);
cap void (void) h_retOp [] = new cap void (void) [N];
for (int i = 0; i < N; i++) { h_retOp[i] = h.cocall(...); }

for (int JR_CO_COUNTER = 0; JR_CO_COUNTER < 2+N; JR_CO_COUNTER++) {
inni void f_retOp() {PPCf}

[] void g_retOp() {break;}
[] ((int i = 0; i < N; i++)) void h_retOp[i](int retVal) {x[i] = retVal; PPCh }

}

Fig. 10. Transformed version of Figure 9.

For example, the co statement in Figure 9 is translated internally to roughly
the code in Figure 10. This transformed code first initiates the invocations of all
2+N operations1. Internally, JR operations are objects with methods for various
ways of invoking them [7]. The new cocall method initiates an invocation of its
operation, but it does not block. It returns a capability for an operation that will
be invoked when the initiating invocation completes. The code in Figure 10 then
uses a loop to wait for all of the co’s invocations to complete (i.e., the _retOp
operations to be invoked), but the loop can be exited early. Its body contains
an inni statement, which is JR’s multi-way receive statement: each execution of
inni services an invocation for one of its arms. A multi-way receive is needed
here because the order in which the invocations complete is unknown; indeed, not
all invocations need to complete for a co statement to terminate, as illustrated in
Figure 4. Note how the PPCs in the original program in Figure 9 simply become
blocks of code in the inni in Figure 10; in particular, the break statement in the
co’s PPC simply becomes a break statement that now applies to the for loop.
Also note how the third arm of the inni has a quantifier that is identical to
the quantifier in the original program; thus, the quantifier variable’s value is the
same in the original invocation and in the PPC executed for the corresponding
_retOp invocation.
1 The code records for its later use the actual number of co invocations in case any of

the expressions in the quantifiers or co invocations have side effects.

An Exception Handling Mechanism for the Concurrent Invocation Statement 707

MyHandler mh = new MyHandler();

co f(5) handler mh : {PPCf} [] g() {break;} [] ((int i = 0; i < N; i++)) x[i] = h(i) {PPCh}

Fig. 11. Example co statement with exception handler.

MyHandler mh = new MyHandler();
cap void (void) co_fail_retOp = new op void(void); // new op
cap void (void) f_retOp = f.cocall(mh, co_fail_retOp, ...); // extra parameters

cap void (void) g_retOp = g.cocall(...);
cap void (void) h_retOp [] = new cap void (void) [N];

for (int i = 0; i < N; i++) { h_retOp[i] = h.cocall(...); }
for (int JR_CO_COUNTER = 0; JR_CO_COUNTER < 2+N; JR_CO_COUNTER++) {

inni void f_retOp() {PPCf}
[] void g_retOp() {break;}
[] ((int i = 0; i < N; i++)) void h_retOp[i](int retVal) {x[i] = retVal; PPCh }

[] void co_fail_retOp() {} // new arm -- no body needed
}

Fig. 12. Transformed version of Figure 11.

The implementation supports exception handlers in co statements by extend-
ing the above scheme. For example, consider adding a handler to the invocation
of f in Figure 9, as shown in Figure 11. If an exception occurs for the invocation
of f, then, without any change in the above scheme, the inni statement in Fig-
ure 10 would block forever waiting for f_retOp to be invoked. The extension,
then, prevents that by defining an additional operation that is invoked when an
exception occurs. Thus, the co statement in Figure 11 is translated internally to
roughly the code in Figure 12. Note how operation co_fail_retOp is created,
passed with the handler mh as extra parameters to the cocall method (which is
now overloaded to allow such), and appears in a new arm in the inni. If ex-
ecution of the invocation of f throws an exception, then both the handler mh
is executed and the co_fail_retOp operation is invoked; otherwise, only the
f_retOp operation is invoked.

4.2 Performance

We ran several micro- and macrobenchmarks to assess the performance of our co
statement implementation. We ran these benchmarks on various PCs (1.4GHz
and 2.0GHz uniprocessors; 2.4GHz and 2.8GHz dual-processors) running Linux;
specific results, of course, varied according to platform, but the overall trends
were the same.

The benchmarks confirmed that our implementation of the co statement had
no noticeable impact on regular invocations; and that the cost of executing a
co statement with no exceptions is nearly the same as executing a co statement
with exceptions but with no exceptions actually thrown during its execution.

The benchmarks also showed that the execution costs for our implementation
of the co statement were nearly identical to the hand-coded simulations of the co
statement. For example, the execution costs of the programs in Figures 4 and 6
were about the same for various numbers of voters (10, 100, 500, 1000, 1200,
and 1500). (Actual code and execution times are available on the web [6].)

708 Hiu Ning Chan et al.

Our initial implementation did not perform as well as our current implemen-
tation for larger numbers of voters. It used the more straightforward approach
of creating a _fail_retOp operation for each operation in the co statement that
might throw an exception, including an array of such failure operations for each
quantified operation. The cost of allocation of these additional operations was
high (e.g., for large numbers of voters or when done repeatedly within a loop),
so our current implementation eliminates them.

We considered measuring the performance of our co implementation against
those for other language implementations, but as noted in Section 1, only SR
provides a co statement and it does not provide exception handling. We could
measure the costs of SR’s co statement versus JR’s co statement without excep-
tion handling, but that would really measure more the differences of C (in which
SR is implemented) versus Java (in which JR is implemented).

5 Conclusion

We have extended the JR programming language with a concurrent invocation
statement that includes support for exception handling. This paper described
the design tradeoffs, the implementation and performance of the new exception
handling mechanism, and some examples illustrating how to use this mechanism.
This new feature has been incorporated into the standard JR language release,
which is available on the web [5]. We hope to extend our work by considering
more formal semantics for the concurrent invocation statement and exception
handling for it, and with more comprehensive performance evaluation.

Acknowledgements

Others in the JR group – Erik Staab, Ingwar Wirjawan, Steven Chau, Andre
Nash, Yi Lin (William) Au Yeung, Zhi-Wen Ouyang, Alex Wen, and Edson
Wong – assisted with this work. The referees provided thoughtful comments.

References

1. G. R. Andrews and R. A. Olsson. The SR Programming Language: Concurrency
in Practice. The Benjamin/Cummings Publishing Co., Redwood City, CA, 1993.

2. G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and
G. Townsend. An overview of the SR language and implementation. ACM Trans-
actions on Programming Languages and Systems, 10(1):51–86, January 1988.

3. Y. Ichisugi and A. Yonezawa. Exception handling and real time features in an
object-oriented concurrent language. In Proceedings of the UK/Japan Workshop
on Concurrency: Theory, Language, and Architecture, pages 604–615, 1990.

4. V. Issarny. An exception handling mechanism for parallel object-oriented program-
ming: toward reusable, robust distributed software. Journal of Object-Oriented
Programming, 6(6):29–40, 1993.

5. JR distribution. http://www.cs.ucdavis.edu/∼olsson/research/jr/.

An Exception Handling Mechanism for the Concurrent Invocation Statement 709

6. Code and data for benchmarks. http://www.cs.ucdavis.edu/∼olsson/research/
jr/papers/jrcoexceptsAppendix.

7. A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible distributed pro-
gramming in an extended Java. ACM Transactions on Programming Languages
and Systems, pages 578–608, May 2004.

8. A. W. Keen and R. A. Olsson. Exception handling during asynchronous method
invocation. In B. Monien and R. Feldmann, editors, Euro-Par 2002 Parallel Pro-
cessing, number 2400 in Lecture Notes in Computer Science, pages 656–660, Pader-
born, Germany, August 2002. Springer–Verlag.

9. Message Passing Interface Forum. http://www.mpi-forum.org/.
10. .NET framework developer’s guide. http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/cpguide/html/cpconusingdelegates.asp.
11. R. A. Olsson and A. W. Keen. The JR Programming Language: Concurrent Pro-

gramming in an Extended Java. Kluwer Academic Publishers, Inc., 2004. ISBN
1-4020-8085-9.

smt-SPRINTS: Software Precomputation with
Intelligent Streaming for Resource-Constrained SMTs

Tanping Wang, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos

Department of Computer Science
The College of William and Mary

McGlothlin–Street Hall. Williamsburg, VA 23187–8795
{twang,cda,dsn}@cs.wm.edu

Abstract. We present SPRINTS, a source-level speculative precomputation
framework for scientific applications running on SMTs with two execution con-
texts. Our framework targets memory-bound applications and reduces memory
latency by prefetching long streams of delinquent data accesses. A unique aspect
of SPRINTS is that it requires neither hardware nor compiler support. It is based
on partial cache simulation and a compression algorithm which can accurately
summarize very long streams of cache misses. SPRINTS extracts patterns from
the streams, which are in turn used to generate source-level, highly optimized
precomputation code. SPRINTS achieves significant performance improvements
over plain thread-level parallelization and indiscriminate precomputation based
on code cloning. We demonstrate these improvements using two realistic scien-
tific applications.

1 Introduction

Simultaneous multithreading (SMT) allows multiple threads to concurrently issue in-
structions to different execution units of the same physical processor. SMT has been
recently used as a core architecture by several processor manufacturers [7, 11, 14],
since it has the potential of achieving better performance than conventional superscalar
processors, at a minimal additional cost. The main reason for the cost effectiveness of
SMT processors is that threads share a common set of execution resources. The ma-
jor shortcoming of resource sharing is that it may result to performance loss, should
threads on the processor end up competing for resources such as execution units, in-
struction buffers and cache space. This performance loss is most noticeable in parallel
scientific computations, in which threads tend to be memory-bound and to have identi-
cal resource requirements.

Speculative precomputation (SPR) [4] is a technique which uses thread contexts
in an SMT to eliminate L2 cache misses from the main computation threads, by pre-
executing future memory accesses. SPR has demonstrated the potential of speeding up
pointer-based, single-threaded code on multithreaded processors and several hardware
and software implementations have been investigated in the related literature [3, 8–
10, 12]. This paper makes a case for using SPR as an alternative to thread-level parallel
execution on SMTs with two hardware contexts and limited execution resources. The
motivation for using SPR in scientific codes stems from two observations. First, the

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 710–719, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

smt-SPRINTS 711

hardware of existing SMTs can not handle the resource pressure from multiple memory-
and execution unit-bound threads. A carefully designed SPR scheme can reduce this
pressure to a minimum, while still reducing memory latency suffered by co-executing
application code. Second, most memory-bound scientific codes suffer from memory
latency caused by long, but quite predictable streams of memory accesses. SPR is a
mechanism which can effectively prefetch such streams.

The contribution of this paper is a user-level software SPR framework, which sup-
ports stream-based SPR for scientific applications, with no hardware or compiler sup-
port. We named our framework SPRINTS (Software PRecomputation with INTelligent
Streaming). In the heart of this framework lies a compression and pattern extraction
algorithm, the purpose of which is to identify streams of delinquent loads which can
be directly mapped to streams of data accesses in the source code of the program.
Although multiple forms of streams exist in a program (such as dynamic instruction
streams, streams of data addresses and so on), our framework opts for identifying a
form of streams which can be directly mapped back to computation and data structures
in the source code. SPRINTS represents streams of L2 cache misses as strings of inter-
miss iteration distances, using feedback from a cache simulator. It uses the compression
grammar to identify strong patterns in the loop iterations that incur L2 cache misses and
feeds these patterns back to a source code generator. The source code generator trans-
lates streams into precomputation loops which have small instruction working sets and
are amenable to optimization by the back-end compiler.

SPRINTS has a number of advantages, both as a self-contained tool and compared
to other precomputation strategies. The first is simplicity, as there is no requirement
for compile-time analysis, or additional hardware to trace the code. The second is au-
tomation and transparency to the programmer. The third is portability across SMT ar-
chitectures. The stream identification and compression/decompression engine is inde-
pendent of the target architecture and works end-to-end using only source code. Fi-
nally, SPRINTS is engineered for high performance, using optimizations such as store
removal, prefetch distance control, and prefetch target selection. We have evaluated
SPRINTS on a Hyperthreaded Intel Xeon. Our results show that SPRINTS speeds up
scientific applications for which thread-level parallelization performs poorly.

The rest of the paper is organized as follows: Section 2 introduces SPRINTS and
provides implementation details. The experimental evaluation of SPRINTS is presented
in section 3. In section 4 we discuss related work. Finally, section 5 concludes the paper.

2 Precomputation with Intelligent Streaming

SPR implementations [4, 15] adopt a “top-10” approach for identifying delinquent loads
and emitting precomputation code. More specifically, architectural simulation is used
to identify a few loads which are responsible for most cache misses. Once these loads
are identified, code cloning and slicing are performed to issue the instruction paths that
lead to the delinquent loads and the loads themselves in the precomputation thread.
The “top-10” approach works well in practice because in most codes a few static loads
are responsible for large fractions (e.g. more than 90%) of cache misses. Another rea-
son for using this approach is that precomputation threads interfere with their sibling

712 Tanping Wang, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos

computation threads, sharing execution units and other resources in the processor. Indis-
criminate code cloning in precomputation threads would cause excessive interference,
whereas highly selective code cloning and further optimization of the precomputation
code will reduce the interference. For these reasons we adopt the “top-10” approach for
precomputation in SPRINTS.

SPRINTS uses cache simulation to identify delinquent loads. The practical impact
of using simulation is that SPRINTS can accurately identify critical memory accesses
that need to be prefetched. In contrast, mere code profiling would only discover domi-
nant reference streams without necessarily revealing information on the cache behavior
of these streams. Cache simulation is a generic method which makes SPRINTS portable
with reasonable effort between SMT architectures. Porting SPRINTS requires porting
of the cache simulator to accept memory reference traces from a different ISA and
adaptation of the architectural parameters of the targeted processor’s cache. The port-
ing process can be facilitated by several existing simulation tools.

The profiling mechanism of SPRINTS has two distinctive features. Besides detect-
ing delinquent loads, it also recognizes repetitive patterns in these loads. Moreover, it
maps delinquent loads identified via profiling back to source code and actually emits
source code (at the language level) in precomputation threads. This code prefetches di-
rectly elements of application-level data structures. Currently we map misses back to
array elements, but the same tool can be used to map back to elements of other data
structures as well. SPRINTS uses partial simulation, taking advantage of the iterative
structure of scientific codes to simulate only a few outermost iterations of the dominant
loops and save significantly on simulation time.

SPRINTS targets loop-based scientific applications, which exhibit strong patterns in
several aspects of their control and data flow. In particular, the loop-intensive structure
of scientific applications, and the fact that delinquent loads tend to occur in heavily tra-
versed loops [8] motivate the use of a loop-based approach to precomputation, in which
the speculative thread prefetches streams of data that would otherwise be streams of
cache misses. SPRINTS uses a grammar which detects such streams, by tracking the
loop iterations in which delinquent loads occur and identifying patterns of distances
between delinquent loads, measured in loop iterations. The rationale for this technique
is that long streams of loop iterations with delinquent loads, when mapped back to
source code, can be directly translated to highly optimizable source code loops. Fur-
thermore, using loops for precomputation allows SPRINTS to trigger precomputation
in synch with the sibling computation threads, using loop levels as natural synchroniza-
tion boundaries and specific loop iterations as natural trigger points. This property is
desirable because it allows for accurate and effective control of the runahead distance
between precomputation and sibling computation, which is in turn critical for timely
prefetching [8, 15]. The following sections outline the main components of SPRINTS.

2.1 Cache Simulation and Trace Collection

SPRINTS uses a cache simulator based on Cachegrind, the cache simulation component
of Valgrind1, to obtain complete traces of cache misses. We have modified Cachegrind

1 http://developer.kde.org/˜sewardj/docs-2.2.0/manual.html

smt-SPRINTS 713

to analyze the instruction address stream and detect backward arcs in the dynamic con-
trol flow graph of the program. Backward arcs may correspond to loops, however they
may also correspond to other control structures. SPRINTS uses objdump, a GNU de-
velopment tool, to uniquely identify loops in the program. The tool is used to disassem-
ble the object file and extract the first instruction address of the body of each loop. The
simulator uses these instructions as anchors in order to both correctly identify loops and
keep track of the loop iteration count. We have introduced a new module in Cachegrind
to map uniquely memory references that miss in the cache to array elements, using the
current loop iteration count as input.

2.2 Delinquent Load Identification and SPR Code Generation

Following profiling, SPRINTS reorganizes the trace of cache misses, and groups misses
by associating them with the addresses of the instructions that trigger them. Typically,
few static instructions are responsible for most misses and misses from the same in-
struction tend to exhibit strong repetitive patterns.

SPRINTS uses the Sequitur [1] grammar to compress the trace of misses into a
compact representation. The representation stores the misses as strings of symbols, with
each string corresponding to one array reference accessed in one loop nest. Each symbol
in a string represents the distance (in loop iterations, measured after loop linearization)
from the previous miss for the same data object in the same nest. The grammar is com-
posed of rules in which terminals (symbols) represent unique distances between consec-
utive misses and non-terminals represent concatenations of terminals which uniquely
identify the stream of cache misses for each array reference. Sequitur constructs a
context-free grammar with exactly one word for each reference. The grammar can be
represented as a set of DAGs and the whole stream of misses can be reproduced (un-
compressed) from the grammar with one preorder pass, in time linear to the length of
the grammar. The length of each string is equal to the number of misses incurred by the
corresponding reference, which can then be quantified as a fraction of the total number
of cache misses incurred in the whole program and used to classify the reference as
delinquent or not. In order to identify strong patterns with Sequitur, it suffices to find
non-terminals (sub-strings of the grammar) with multiple occurrences. Each such sub-
string can be translated to a loop which prefetches the stream. These loops are highly
optimizable2 and even parallelizable from a standard back-end compiler.

Consider Figure 1, which shows a loop from the NAS BT benchmark. The loop be-
longs to the x backsubstitute function of the x solve module of BT. The right
part of the figure shows the rules of the Sequitur grammar which describes all the cache
misses incurred in accesses to elements of lhs, in a single string of inter-miss loop
iteration distances. For further details on how this grammar is constructed the reader is
referred to [1]. In the illustrated example, all integers prefixed with an ampersand are
terminal symbols and all other symbols are non-terminals. One can easily observe that
after the first miss, cache misses exhibit a very strong pattern with inter-miss distances

2 Dead-code elimination is the only optimization that needs to be precluded in precomputation
loops. Furthermore, SPRINTS replaces delinquent stores with loads to preserve correctness in
the architectural state.

714 Tanping Wang, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos

for (i = grid_points[0]-2; i >= 0; i--)
for (j = 1; j < grid_points[1]-1; j++)

for (k = 1; k < grid_points[2]-1; k++)
for (m = 0; m < BLOCK_SIZE; m++)
for (n = 0; n < BLOCK_SIZE; n)

rhs[i][j][k][m] -=
lhs[i][j][k][CC][m][n]

*rhs[i+1][j][k][n];

&2 1 1 2 3 3 3 4 5 6 7 8 &5 1
1 -> &8 &8
2 -> 1 &8
3 -> 4 4
4 -> 9 9
5 -> 6 6
6 -> 10 10
7 -> 8 8
8 -> 11 11
9 -> 5 5
10 -> 12 12
11 -> 13 13
12 -> 7 7
13 -> &5 2 2 &8

Fig. 1. Sample loop of x backsubstitute in NAS BT and compression grammar for the
cache misses incurred by elements of lhs, during execution with the Class A problem size.

predominantly equal to 8 iterations, and sporadically equal to 5 iterations. The grammar
given in this example describes a total of 6 million cache misses on elementlhs (spread
over 200 iterations executed by BT, with approximately 30 thousand misses each) with
only 13 rules and a couple of hundreds bytes of storage. A back of the envelope calcu-
lation will show that the entire cache miss sequence of the specific data access is repre-
sented uniquely with the string: 287A3072A512A128A64A8A4582, where A = 587. The
grammar is easily translated into tight loops for prefetching the cache-missing elements
of lhs using a recursive algorithm which visits each rule of the grammar in order.

The precomputation code generation phase of SPRINTS uses the loop iterations
as natural units for controlling the distance between the precomputation and sibling
computation threads. Furthermore, it uses loop iterations to throttle the precomputa-
tion thread, so that the data fetched in a stream do not overflow the L2 cache. Both
techniques (runahead distance control and throttling) derive from our earlier work [15].
Another optimization applied by SPRINTS is the release of processor resources held
by a precomputation thread when the latter is idling and not fetching streams.

3 Experimental Evaluation

We present experiments obtained with the OpenMP, C versions of BT and FT, two real-
istic application codes from the NAS benchmarks suite [6], both using the class A prob-
lem size. BT is a simulated CFD application which uses an implicit finite-difference
algorithm based on the alternate direction implicit method, to solve 3-dimensional com-
pressible Navier-Stokes equations. FT implements a solver for a class of PDEs using
a 3-dimensional bidirectional (forward and inverse) complex FFT. BT and in are good
candidates for speculative precomputation techniques, because their parallelized ver-
sions exhibit performance degradation (in the case of BT), or very modest performance
gains (in the case of FT), when executed on SMTs with two execution contexts. The per-
formance bottlenecks of parallelization stems from contention for execution units and
cache space. A speculative precomputation thread can alleviate these problems and pro-
vide speedup by reducing memory latency. The applications have been compiled with
the Intel C/C++ OpenMP compiler, using the highest level of optimization. Our hard-
ware platform is a four-way SMP with Intel’s Hyperthreaded Xeon processors, clocked
at 1.4 GHz. Each processor offers two execution contexts and is equipped with 8KB L1
data cache, 12KB L1 instruction trace cache and 256 KB unified L2 cache.

smt-SPRINTS 715

The Hyperthreaded processors include a hardwired hardware prefetching engine,
which was active throughout all the experiments. The hardware prefetching engine
may interfere with software prefetcing engines, such as SPRINTS, by detecting and
prefetching some of the references prefetched also by the software prefetching engine.
This effect can not be quantified with the tools available on the specific processor. It
must be noted that the automatic software prefetching engine of the Intel compiler was
activated in the baseline sequential execution of the benchmarks, as well as in paral-
lel executions of the benchmarks with two execution contexts per processor. However,
the Intel’s prefetching engine was deactivated while generating code with SPRINTS.
We have also experimented with manual, non-speculative software prefetching via di-
rectives to the Intel compiler in both single-threaded and multithreaded versions of the
codes, but we have not seen appreciable performance improvements. In the experi-
ments with SPRINTS, we have used a runahead distance of one iteration for each loop
targeted by the software precomputation engine. The distance was controlled without
synchronization, by having the precomputation thread prefetch references from the sec-
ond iteration onwards.

BT L2 Data Cache Misses Distribution

0

2

4

6

8

10

12

lh
s
y
/n
ja
c

lh
s
z
/n
ja
c

lh
s
x
/n
ja
c

lh
s
y
/u

lh
s
x
/u

lh
s
z
/fja
c

lh
s
z
/u

c
o
m

p
u
te
_
rh
s
/rh
s

lh
s
x
/ja
c

lh
s
y
/fja
c

Delinquent data (function/data object)

C
o

n
t
r
i
b

u
t
i
o

n

(
%

)

t
o

t
h

e

t
o

t
a
l

n

u
m

b
e
r

o

f

m

i
s
s
e
s

FT L2 Data Cache Misses Distribution

0

5

10

15

20

25

30

35

e
v
o
lv
e
/u
0

c
ffts
3
/x

c
ffts
2
/x

c
ffts
1
/x

c
fft2
/y
0

fftz
2
/u

fftz
2
/x

fftz
2
/u

c
ffts
/y

c
ffts
/y
0

Delinquent data (function/data object)

C
o

n
t
r
i
b

u
t
i
o

n

(
%

)

t
o

t
h

e

t
o

t
a

l

n

u
m

b
e

r

o

f

m

i
s

s
e

s

Fig. 2. The top delinquent data objects and their contribution to the total number of L2 data cache
misses for BT (left diagram) and FT (right diagram).

Figure 2 depicts the contribution of the top 10 delinquent data accesses of BT and
FT, to the total number of L2 data cache misses for the two applications. Those objects
are responsible for 85% and 91% of the total cache misses in BT and FT respectively.
In fact in FT, 4 objects generate 85.5% of the cache misses. It is thus reasonable to
generate precomputation code targeting just the top few delinquent objects.

Following, we evaluate the impact of 4 different execution strategies to the num-
ber of L2 data cache misses suffered by the applications. The results are depicted in
figure 3. ST stands for the single-threaded execution with one execution context in the
processor. In TLP (Thread Level Parallelism) mode, applications are executed in par-
allel by two threads, each one on a different execution context of the processor. The
SPR (Speculative PRecomputation) scheme exploits one of the contexts to execute a
precomputation thread, which indiscriminately preexecutes all the memory references
of the computation thread in each loop nest where SPR is applied. Finally, SPRINTS
stands for the execution of the application using our precomputation framework. The
precomputation thread of SPR executes exactly the same loops as SPRINTS.

716 Tanping Wang, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos

BT L2 Data Cache Misses

1500

2000

2500

3000

3500

4000

4500

5000

5500

ST TLP SPR SPRINTS

C
a

c
h

e

M

i
s

s
e

s

(
m

i
l
l
i
o

n
s

)

FT L2 Data Cache Misses

60

65

70

75

80

85

90

95

100

ST TLP SPR SPRINTS

C
a
c
h

e

M

i
s
s
e
s

(
m

i
l
l
i
o

n
s
)

Fig. 3. L2 data cache misses under the four different execution strategies for BT and FT.

As expected, both SPR and SPRINTS significantly reduce the number of L2 data
cache misses. SPR results to 31.6% and 25.3% less misses for BT and FT respectively.
The corresponding percentages for SPRINTS are 42.7% and 25.6%. Although the data
accesses targeted by the precomputation strategies are responsible for 85% and 91%
of the misses triggered by BT and FT respectively, none of the strategies is successful
in eliminating all the misses. Moreover, despite the fact that they both target the same
loops and SPR touches more data than SPRINTS, SPRINTS outperforms SPR in all
cases. This difference can be explained by a closer look at the characteristics of the
benchmarks. Both BT and FT have tight, memory intensive loops. As a result, the ex-
ecution time of the precomputation and computation loop bodies is comparable, since
the precomputation thread suffers the latency of cache misses and is as much memory-
bound as the computation thread. This means that computation may run side-to-side or
even overrun precomputation, reducing the effectiveness of the latter. Since SPRINTS
produces more compact precomputation code than SPR, this adverse behavior occurs
less often and the miss coverage is better.

The effect of TLP on cache performance is also highly dependent on the charac-
teristics of applications. The two threads of BT contend for L2 cache space, since their
working sets do not fit in the cache. This results to a dramatic increase of 63% in cache
misses. Contrary to BT, the threads of FT have smaller working sets that fit in the L2
cache. Moreover, they share data and each thread benefits from data prefetched to the
cache by the other thread. As a consequence, the multithreaded execution suffers less
L2 data cache misses than the sequential execution.

Table 1. Speedups over the single threaded execution using the alternative execution strategies.

TLP SPR SPRINTS
BT 0.76 1.02 1.08
FT 1.03 1.03 1.05

Table 1 shows the speedups achieved by the three execution strategies which exploit
both execution contexts of the processor over the single-threaded execution. The per-
formance of the TLP version of BT is poor because of severe cache thrashing, as shown
in figure 3. The outcome is a slowdown of 1.32 over the single-threaded execution. In
the case of FT, multithreading is beneficial for cache performance, however it yields

smt-SPRINTS 717

a marginal speedup of 1.03. The extensive resource sharing in Intel Hyperthreaded
processors clearly does not allow effective exploitation of loop-level parallelism. For
both benchmarks, the latency overlap achieved with multithreaded execution and the
additional instruction-level parallelism do not measure up to the memory latency re-
duction achieved by precomputation. The overall performance of SPR is slightly better.
SPRINTS, outperforms both TLP and SPR. Beyond the higher impact of SPRINTS on
cache performance, the generation of efficient source code for precomputation results to
smaller instruction streams and instruction working sets for the precomputation thread.
This reduces the pressure on shared execution units, to the benefit of the computation
thread. It must be noted that the magnitude of these speedups should be placed in the
context of the capabilities of Intel’s Hyperthreaded processors. The speedups attained
with SPRINTS are comparable or higher than the speedups reported so far from physi-
cal experimentation with these processors [8].

4 Related Work

Research on SPR can be broadly classified into two classes: hardware-based SPR and
software-based SPR. Hardware schemes identify accesses to precompute dynamically,
by recording loads and their latencies at either the instruction fetch or the instruction
retirement stage. Hardware schemes compose SPR code from the recorded delinquent
loads and issue this code dynamically to hardware-triggered threads [3, 13]. The most
aggressive hardware designs provide also a register communication mechanism to trig-
ger SPR threads efficiently [12] without involving the operating system, and use manual
or semi-automated construction of SPR instruction sequences. SPRINTS shares simi-
larities with p-slices of Roth and Sohi [12] in that conceptually, both techniques try to
derive highly optimized sequences of precomputation instructions and they both use re-
sults from simulation to drive the hadware/software precomputation engine. However,
SPRINTS is a software technique which requires no hardware or compiler support.

Software SPR schemes can be based on programmer hints [10], compiler techniques
[8] or binary modification techniques at load time [9]. Compiler and programmer-
assisted techniques are more portable than binary modification techniques. Compiler
techniques are preferable to programmer-assisted techniques because they are easy to
use. SPRINTS shares this advantage with compiler techniques, but at the same time
it differs in some important aspects: SPRINTS does not apply program analysis or
runtime code profiling to detect delinquent loads, or perform any other SPR-specific
optimization. It uses off-line cache simulation to identify all memory accesses that
incur L2 misses and a compression grammar coupled with simple heuristics to pick
those accesses that are responsible for dominant streams of L2 misses. The speculative
streaming code is generated in the same high-level language as the sequential code, and
can be optimized and executed efficiently from an unmodified compiler back-end and
a standard multithreading runtime system. SPRINTS does not require program slicing,
array access analysis, or other advanced compiler support to identify potential cache
misses. Finally, SPRINTS targets specifically memory-bound scientific applications,
which have not been targeted earlier compiler-based SPR schemes.

SPRINTS borrows the algorithm and the Sequitur grammar for compressing streams
of delinquent memory references from earlier work on dynamic hot data stream pre-

718 Tanping Wang, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos

fetching [2]. SPRINTS differentiates from dynamic hot data stream prefetching in the
following aspects: First, SPRINTS uses offline analysis of traces of memory references
that miss in the L2 cache, rather than online analysis of complete traces of memory ref-
erences as they appear in the program. In other words, SPRINTS compresses traces of
misses rather than traces of accesses. This decision is mandated by the tight time con-
straints of prefetching, which in turn calls for high prefetching accuracy and timeliness.
Second, SPRINTS uses offline, rather than online analysis of traces. This is dictated by
the use of simulation, which is an inherently slow technique for detecting streams of
misses, but detects accurately such streams. An online application of SPRINTS would
be possible with additional hardware support for buffering streams of cache misses and
the associated target memory addresses. Intel Itanium processors provide such func-
tionality [5]. Third, SPRINTS exploits simultaneous multithreading, while dynamic
hot data stream prefetching uses a single-threaded prefetching mechanism. Finally, in
contrast to dynamic hot data stream prefetching which targets sequential codes domi-
nated by pointer-chasing, SPRINTS targets memory-intensive scientific codes, which
are dominated by streams of memory references with predictable patterns.

5 Conclusions

This paper presented SPRINTS, a source-level streaming precomputation technique de-
signed to improve the performance of memory-bound scientific applications on SMT
processors with limited resources. Resource sharing often renders the execution engine
incapable of achieving high-performance from regular, thread-level parallelization on
these processors. SPRINTS requires no compiler or hardware support. It uses a com-
pact representation of traces of cache misses and exploits this representation to associate
delinquent memory accesses to data elements in the source code and produce highly ef-
ficient, source-level precomputation code. Experiments with realistic scientific applica-
tions show that SPRINTS clearly outperforms both TLP and indiscriminate speculative
precomputation on Intel’s Hyperthreaded processors. In the near future we plan to ad-
dress a number of design and implementation issues of SPRINTS, including the use
of lossy compression to improve the quality of streams by filtering out noisy irregular
references, the use of mechanisms that can project the miss streams for multiple data
inputs from one cache simulation with a single representative input, and the deployment
of SPRINTS in multi-SMT systems.

Acknowledgements

This work is supported by an NSF CAREER Award (NSF CCF–0346867), an NSF ITR
grant (NSF ACI–0312980) and the College of William and Mary.

References

1. T. Chilimbi. Efficient Representations and Abstractions for Quantifying and Exploitiing Data
Reference Locality. In Proc. of the 2001 ACM SIGPLAN Conference on Programming Lan-
guages Design and Implementation (PLDI), pages 191–202, Snowbird, UT, June 2001.

smt-SPRINTS 719

2. T. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Prefetching for General Purpose Pro-
grams. In Proc. of the 2002 ACM SIGPLAN Conference on Programming Languages Design
and Implementation (PLDI’2002), pages 199–209, Berlin, Germany, June 2002.

3. J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Speculative Precomputation. In Proc.
of the 34th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-34),
pages 306–317, Austin, TX, December 2001.

4. J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. Speculative Pre-
computation: Long-Range Prefetching of Delinquent Loads. In Proc. of the 28th Annual In-
ternational Symposium on Computer Architecture (ISCA–28), pages 14–25, Göteborg, Swe-
den, July 2001.

5. S. Eranian. The Perfmon2 Interface Specification. Technical Report HPL-2004-200R1, HP
Labs, February 2005.

6. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of the NAS Parallel Bench-
marks and its Performance. Technical Report NAS-99-011, NASA Ames Research Center,
October 1999.

7. Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: A Dual-Core Multi-
threaded Processor. IEEE Micro, 24(2):40–47, March/April 2004.

8. D. Kim and D. Yeung. A Study of Source-Level Compiler Algorithms for Automatic Con-
struction of Pre-Execution Code. ACM Transactions on Computer Systems, 22(2):326–379,
2004.

9. S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. Shen. Post-Bass Binary Adap-
tation for Software-Based Speculative Precomputation. In Proc. of the 2002 ACM SIGPLAN
Conference on Programming Languages Design and Implementation (PLDI’2002), Berlin,
Germany, June 2002.

10. C. Luk. Tolerating Memory Latency through Software Controlled Preexecution on Simulta-
neous Multithreading Processors. In Proc. of the 28th Annual International Symposium on
Computer Architecture (ISCA’01), pages 40–51, Göteborg, Sweden, July 2001.

11. Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan
Miller, and Michael Upton. Hyper-Threading Technology Architecture and Microarchitec-
ture. Intel Technology Journal, 6(1), February 2002.

12. A. Roth and G. Sohi. A Quantitative Framework for Quantitative Pre-Execution Thread Se-
lection. In Proc. of the 35th IEEE/ACM Annual International Symposium on Microarchitec-
ture (MICRO–35), Istanbul, Turkey, November 2002.

13. K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving both Per-
formance and Fault Tolerance. In Proc. of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX), pages 191–202,
Cambridge, MA, November 2000.

14. UltraSPARC c©IV Processor Architecture Overview. Technical report, Sun Microsystems,
February 2004.

15. T. Wang, F. Blagojevic, and D. Nikolopoulos. Runtime Support for Integrating Precompu-
tation and Thread–Level Parallelism on Simultaneous Multithreaded Processors. In Proc. of
the 7th ACM SIGPLAN Workshop on Languages, Compilers and Runtime Support for Scal-
able Systems (LCR’2004), Houston, TX, October 2004.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 720–729, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Symmetric Data Objects and Remote Memory Access
Communication for Fortran-95 Applications

Jarek Nieplocha1, Doug Baxter1, Vinod Tipparaju1,
Craig Rasmunssen2, and Robert W. Numrich3

1 Pacific Northwest National Laboratory
Richland, WA, USA

2 Los Alamos National Laboratory
Los Alamos, NM, USA

3 Minnesota Supercomputing Institute, University of Minnesota
Minneapolis, MN, USA

Abstract. Symmetric data objects have been introduced by Cray Inc. in context
of SHMEM remote memory access communication on Cray T3D/E systems
and later adopted by SGI for their Origin servers. Symmetric data objects
greatly simplify parallel programming by allowing programmers to reference
remote instance of a data structure by specifying address of the local counter-
part. The current paper describes how symmetric data objects and remote mem-
ory access communication could be implemented in Fortran-95 without requir-
ing specialized hardware or compiler support. NAS Multi-Grid parallel
benchmark was used as an application example and demonstrated competitive
performance to the standard MPI implementation.

1 Introduction

Fortran is an integral part of the computing environment at major scientific institu-
tions. It is often the language of choice for developing applications that model com-
plex physical, chemical, and biological systems. In addition, Fortran is an evolving
language [1]. The Fortran 90/95 standard introduced many new constructs, including
derived-data types, new array features and operations, pointers, increased support for
code modularization, and enhanced type safety. These features are advantageous to
scientific applications and improve the programmer productivity.

Remote memory access (RMA) operations facilitate an intermediate programming
model between message passing and shared memory. This model combines some
advantages of shared memory, such as direct access to shared/global data, and the
message-passing model, namely the control over locality and data distribution. Cer-
tain types of shared memory applications can be implemented using this approach. In
some other cases, remote memory operations can be used as a high-performance al-
ternative to message passing. On many modern platforms, RMA is directly supported
by hardware and is the lowest-level and often most efficient communication paradigm
available. The RMA has been offered in numerous portable interfaces ranging from
SHMEM [10, 11, 16], ARMCI [12], and MPI-2 [13]. Among these, Cray SHMEM
has been the most widely used interface and offered by hardware vendors such as
Cray, IBM, HP for their architectures. Some important characteristics of SHMEM are
the ease of use, simplicity, demonstrated potential for achieving high performance.

Symmetric Data Objects and Remote Memory Access Communication 721

One of the important characteristics of SHMEM is support for symmetric data ob-
jects. This concept allows the programmer to access remote instances of data struc-
tures through references to the local instance. In particular, the programmer is not
required to keep track of addresses on remote processors as mandated by other RMA
models such as LAPI[15] on the IBM SP where addresses for remote instances of the
same data object can be different and thus need to be exchanged and stored on all
processors. Implementation of symmetric data objects is difficult without hardware
and/or OS assistance on clustered systems. This is because the virtual memory ad-
dresses allocated by the operating system for storing instances of the same data struc-
ture in a cluster can be different across the machine. Without symmetric data objects,
the programmer would be required to store O(P2) addresses on the machine. In addi-
tion, the overall programming model is harder to use and the application codes be-
come more error prone.

In this paper, we take advantage of the new Fortran-95 features to provide high-
level interfaces to one-sided operations on multidimensional arrays consistent with
symmetric data-object model of SHMEM. This work is inspired by Co-Array Fortran
(CAF) [14] with its ability to reference arbitrary sections of so called co-arrays using
high-level array assignments. Co-arrays represent a special type of Fortran-95 arrays
defined on all tasks in the SPMD program. The main contributions of this paper are:
1) definition of an interface that support important features of SHMEM and CAF
using a library- rather than compiler-based approach: symmetric data objects of
SHMEM and one-sided high-level access to multidimensional arrays that CAF offers
(SHMEM does not support it), 2) a description of a portable implementation of these
features without relying on hardware or OS support, and 3) demonstration that the
proposed approach can deliver high performance, both in context of microbenchmarks
as well as the NAS NPB Multigrid (MG) benchmark [4].

The remainder of the paper is organized as follows. Section 2 describes the pro-
posed interface and discusses its characteristics. Section 3 describes the implementa-
tion based on Chasm and the ARMCI one-sided communication library. Section 4
reports experimental results on the Linux cluster with Myrinet that demonstrate that
our implementation outperforms the NAS NPB version of MG.

2 Proposed Approach

We propose to support symmetric data objects and RMA for Fortran-95 applications
based on Fortran-95 array pointers with special memory allocation interface and a set
of remote memory access communication interfaces handling slices (sections) of
Fortran-95 arrays. These interfaces allow users to allocate/free multidimensional For-
tran-95 arrays and to communicate data held in this memory using simple get/put
semantics. In addition, the reference to the remote instance of arrays does not require
users to keep track of addresses on remote note. A single Fortran-95 pointer is used to
represent local and remote instances of a multidimensional array. A unique feature of
these interfaces is that they allow users to take full advantage of Fortran-95 array
mechanisms (like array-valued expressions).

The Fortran interfaces are as follows. Memory allocation is done with calls to the
generic interfaces Malloc_fa and Free_fa (shown below for real, two-dimen-
sional arrays only),

722 Jarek Nieplocha et al.

module Mem_F95

 interface Malloc_fa
 subroutine Malloc_2DR(a, lb, ub, rc)
 real, pointer :: a(:,:)
 integer, intent(in) :: lb(2), ub(2)
 integer, intent(out) :: rc
 end subroutine Malloc_2DR
 end interface

 interface Free_fa
 subroutine Free_2DR(a, rc)
 real, pointer :: a(:,:)
 integer, intent(out) :: rc
 end subroutine Free_2DR
 end interface

end module Mem_F95

In the above, the arrays lb and ub contain the lower and upper bounds of the array to
be allocated and the parameter rc is an error code. Similarly, the generic interfaces
for RMA communication are Put_fa and Get_fa. To save space, here we only
present the interface to the first one for the double precision two dimensional arrays
(the get interface is similar).

module Types_fa
type Slice_fa
 integer :: lo(7)
 integer :: hi(7)
 integer :: stride(7)
 end type Slice
end module Types_fa

module Mov_F95
 interface Put_fa
 subroutine Put_2DR(src, src_slc, dst, dst_slc,
 proc, rc)
 use Types_fa
 real, pointer :: src(:,:), dst(:,:)
 type(Slice_fa), intent(in) :: src_slc, dst_slc
 integer, intent(in) :: proc, rank
 integer, intent(out) :: rc
 end subroutine Put_2DR
 end interface

In the communication interfaces, src and dst are the source and destination ar-
rays respectively, src_slc and dst_slc contain information about the memory
portion (array section) of the source and destination arrays to be used, proc is the
processor number of the destination array, and rc is an error return code. In addition
to being able access sections of multidimensional arrays, to be consistent with the
Fortran-95 capabilities for arrays, the user can also specify stride information.

Symmetric Data Objects and Remote Memory Access Communication 723

The current implementation supports integer, floating, and complex data types of
the 8- and 4-byte kinds but it can also be extended to other Fortran data types (charac-
ter and logical). Array dimensions ranging from one to seven (Fortran limit) are han-
dled. By exploiting Fortran-95 function name overloading, we can use a single name
for the put operation Put_fa

The semantics of the RMA operations (progress, ordering) follow closely that of
the Cray SHMEM. In order to provide the application programmer with abilities to
hide latency, we introduced nonblocking interfaces to put/get calls. A nonblocking
call returns before the user buffer can be accessed and requires a special wait function
to complete. This feature is not available in SHMEM. (Although the CAF standard
does not offer this capability, the Rice CAF compiler adds directives that change
semantics of the array assignments to nonblocking in so called non-blocking regions.)

3 Implementation

Unfortunately, the Fortran-95 standard alone does not provide sufficient capabilities
to implement the memory management required to support symmetric data objects.
However, this is made possible by the use of the Chasm array-descriptor library [9].
In addition, we use the ARMCI portable RMA library to handle communication. Our
approach also relies on MPI for job startup and control. In fact, the user can use the
interfaces described in the previous section in the MPI programs and take advantage
of the full capabilities of MPI e.g., collective operations.

Chasm

Chasm [12, 3] is language transformation system providing language interoperability
between Fortran and C/C++. Language interoperability is provided by stub and skele-
ton interfaces. This code is generated by language transformation programs taking as
input existing user C, C++ or Fortran source code and generating the stub and skele-
ton interfaces to the input code as output [3].

One of the challenges of language interoperability with Fortran is that Fortran as-
sumed-shape array arguments are passed by an array descriptor, rather than as a sim-
ple memory address. Array descriptors contain meta data about the array, including
the base address of the array, the lower and upper bounds for each dimension of the
array, and sometimes, the rank of the array and the type of an array element. The key
point is that the format of the array descriptor is not specified by the language stan-
dard, but is left to be specified by the vendor of the Fortran compiler. Chasm provides
generic C interfaces to the Fortran, vendor-specific array descriptors. Without the
Chasm array-descriptor library, there would be no way to call the ARMCI library
from Fortran and allocate Fortran-95 arrays using the special ARMCI memory neces-
sary for remote communication.

It should be noted that the need for the Chasm array-descriptor library will be re-
duced somewhat once compiler vendors have implemented the Fortran 2003 standard
[8]. Fortran-2003 contains standard mechanisms for interoperating with C that allow

724 Jarek Nieplocha et al.

Fortran array pointers to be associated with memory allocated from C. In addition, a
modified version of the Chasm, array-descriptor interface has been accepted by the
Fortran J3 committee [1] for possible inclusion in the next Fortran standard. This
would then allow the Fortran interfaces, introduced in the previous section, to be used
in a language standard way, with no additional stub or skeleton code needed. Until
this time, either Chasm or Fortran-2003 compilers (with slightly modified Fortran
stub code) will be needed.

ARMCI

The Aggregate Remote Memory Copy Interface (ARMCI) [6] is a portable RMA
communication library. It has been used for implementing distributed array libraries
such as Global Arrays, other communication libraries such as Generalized Portable
SHMEM [10], and compiler run-time systems such as the Adlib [17] or the portable
Co-Array Fortran compiler at Rice University [5]. ARMCI offers an extensive set of
functionality in the area of RMA communication: 1) data transfer operations; 2)
atomic operations; 3) memory management and synchronization operations; and 4)
locks. In scientific computing, applications often require transfers of noncontiguous
data that corresponds to fragments of multidimensional arrays, sparse matrices, or
other more complex data structures. With remote memory communication APIs that
support only contiguous data transfers, it is necessary to transfer noncontiguous data
using multiple communication operations. This often leads to inefficient network
utilization and involves increased overhead. ARMCI, however, offers explicit non-
contiguous data interfaces: strided and generalized I/O vector that allow description of
the data layout so that it could, in principle, be transferred in a single message. Of
course, the effectiveness of actual transfers depends on the ability of underlying net-
works to deal with noncontiguous data (e.g., scatter/gather operations). However,
even when scatter/gather operations are not supported by the network, the ARMCI
strided and vector operations take advantage of the information – for example, at the
level of data packing/unpacking – so that the overall number of messages and network
packets is reduced. The strided interfaces are important for Fortran-95 applications
that use multidimensional arrays.

Fortran-95 Interfaces

The C side of the implementation is composed of 10 functions. Four of the functions
are administrative functions for initializing Fortran array descriptor information,
cleaning up, terminating, and synchronizing that take no arguments. The other six are
functions for allocating Fortran-95 arrays that the ARMCI data movement routines
can handle, blocking put and get operations for the data movement, their nonblocking
analogs, and a function to free the allocated deferred shape arrays.

These functions assume the following Fortran calling convention. When calling
routines with the deferred shape arrays (allocatable) as arguments, each deferred
shape array argument contributes two addresses to the actual argument list. The first
is the data address of the first element of the array and is in order specified in the
arguments of the Fortran call/function reference. The second is the address of the
dope vector describing the deferred shape array and is placed after the end of the
arguments listed in the Fortran call or function reference. Routines with more than

Symmetric Data Objects and Remote Memory Access Communication 725

one deferred shape array have all of the addresses of the dope vectors concatenated at
the end of the argument list appearing in the same relative order as the corresponding
deferred shape array in the Fortran argument list. To support symmetric data objects
even on clusters with virtual memory nodes, we allocate extra array memory (in addi-
tion to the user specific portion) to store array pointers on the remote nodes. When
user specifies pointer to the local instance of the Fortran-95 array, we access the ap-
propriate pointer for the specified processor and pass the required information to
ARMCI put/get calls.

On the Fortran-95 side of the interface, there are corresponding routines to allocate,
put, get (blocking/nonblocking) and free array memory. Fortran-95 does not have the
notion of a generic pointer type, the equivalent of a (void *) in C. Each pointer in
Fortran must point to an array of specified type and dimension (number of indices
used to reference elements in the array). Module procedures are used to overload the
C functionality of void *, giving a similar interface on the Fortran side where the user
does not have to use a different function name for using ARMCI calls on different
data types. Six types of elementary data are supported for one to seven dimensions
yielding 42 Fortran routines for each corresponding C function (allocate, free, put, get
and nonblocking put and get). The six Fortran data types supported are four (I4) and
eight- (I8) byte integers, four- (R4) and eight- (R8) byte floating point numbers and
eight (C4) and sixteen (C8) byte complex numbers. The following parameters provide
a portable shorthand for defining these types and are found in the definekind Fortran-
95 file:

module definekind
 integer, parameter :: I4 = SELECTED_INT_KIND(9)
 integer, parameter :: I8 = SELECTED_INT_KIND(16)
 integer, parameter :: R4 = SELECTED_REAL_KIND(5)
 integer, parameter :: R8 = SELECTED_REAL_KIND(12)
 integer, parameter :: C4 = SELECTED_REAL_KIND(5)
 integer, parameter :: C8 = SELECTED_REAL_KIND(12)
end module definekind

For each operation in each of the 42 flavors, the definekind module is included
and the appropriate type and dimension arguments are declared in an interface block
to the generic C routine.

Sample RMA Code Using Fortran-95 Interfaces

Below is a sample code snippet that allocates a couple of 50X50 arrays of integers,
src_arr and dst_arr, and does a put operation from one to another. These arrays
are first allocated with Malloc_fa interface and then src and dst slice information is
filled up before doing the put communication.

integer(kind=4),pointer::src_arr(:,:),dst_arr(:,:)
type(Slice_fa) :: src_sl,dst_sl
integer :: lb(2), ub(2), ierr
lb(:) = 1
ub(:) = 50
call Malloc_fa(src_arr,lb,ub,ierr)
if (ierr .ne. 0) call myerror()

726 Jarek Nieplocha et al.

call Malloc_fa(dst_arr,lb,ub,ierr)
if (ierr .ne. 0) call myerror()
src_sl%lo(:) = 1
src_sl%hi(:) = 25
src_sl%stride(:) = 2
dst_sl%lo(:) = 25
dst_sl%hi(:) = 50
dst_sl%stride(:) = 2
Put_fa(src_arr,drc_sl,dst_arr,dst_sl,dst_proc,ierr)

4 Experimental Evaluation

We measured the latency and bandwidth of the Fortran 95 RMA calls with micro-
benchmarks. We also ported the NAS MG benchmark to use Fortran-95. The experi-
mental evaluation was carried out on a 24-node dual processor Intel Itanium2 1GHz
cluster interconnected with Myrinet network [7]. The cluster was running Linux
version 2.4.20 operating system. We used the GM dual port E cards, GM 2.1.4 and
MPICH 1.2.5..12. For this test, we used Intel IFC Fortran 7.0 compilers and the 2.96
version of the GNU C compiler. We also used ARMCI 1.1 and Chasm 1.1.0 for the
implementation.

Microbenchmarks

We measured the latency and bandwidth of Fortran-95 RMA interfaces with a micro-
benchmark that does consecutive put and get operations from different memory loca-
tions and averages the time taken for each operation. This is a simple microbench-
mark that shows the bandwidth and latency of the Fortran-95 RMA interfaces. In
addition we also used a similar microbenchmark to measure the bandwidth and la-
tency of ARMCI put and get operations in order to measure the overhead from using
Fortran-95 interfaces that involved interface mapping and all the dope vector manipu-
lations. The bandwidth of the put and get operations for the Fortran-95 RMA inter-
faces is shown in Figure 1. The figure also includes the bandwidth of the correspond-
ing ARMCI put and get calls. The overhead is independent of the message size and it
is related to the cost of duplicating dope vector through Chasm that includes calloc
system call. Based on these findings, the next version of Chasm will include an alter-
native mechanism for accessing some of the information stored in the dope vector that
will be based on portable macros rather than duplication of the dope vector. The
asymptotic bandwidth in the above microbenchmarks is consistent with the bandwidth
results of the Myricom GM [7].

NAS MG Benchmark

The Numerical Aerodynamic Simulation (NAS) parallel benchmarks (NPB) are a set
of programs designed at NASA. Our starting point was NPB 2.4 [4] implementation
written in MPI and distributed by NASA, we modified it to be compiled as a Fortran-
95 file. We replaced MPI calls with the Fortran-95 non-blocking RMA interfaces. In
addition to the mere replacement of the point-to-point message passing communica-
tions part of the current message-passing version of MG NAS kernels, an additional

Symmetric Data Objects and Remote Memory Access Communication 727

set of communication buffers were used to better utilize the one-sided nature of the
RMA interfaces. Figure 2 shows the performance of NAS Fortran-95 MG version
written with Fortran-95 RMA interface and is compared to the original MPI imple-
mentation of NAS which has been compiled with Intel Fortran-95 compiler as an
Fortran-95 file. Despite the overhead Fortran-95 interfaces involve, the RMA Fortran-
95 RMA interface version of the MG benchmark outperforms the MPI version of
NAS MG benchmark for Class B and Class C and performs in par with the MPI ver-
sion for the Class A version of the benchmarks. The performance gains are contrib-
uted to the increased asynchronicity of the RMA model as compared to the two-sided
message passing implementation of the NAS NPB MG benchmark. Table 1 shows the
percentage improvement shown by the Fortran-95 RMA interface implementation of
NAS MG over the standard MPI implementation of NAS MG. Up to 30% improve-
ment was observed.

Fig. 2. Fortran-95 (labled as F95) RMA interfaces vs. MPI implementation of NAS MG
benchmark for Class A, B and C

Fig. 1. Left: Bandwidth of a contiguous Fortran-95 (labled F95 in the figure) Put_fa compared
to ARMCI put. Right: Bandwidth of the Fortran-95 Get_fa compared to ARMCI Get operation

728 Jarek Nieplocha et al.

Table 1. Percentage improvement over the MPI version of NAS MG

NPROC
%improvement over

MPI-Class B
%improvement over

MPI-Class C
2 2.0 10.8
4 30.1 19.9
8 5.6 8.3
16 4.4 18.1
32 12.2 21.4

5 Conclusions and Future Work

The current paper described how symmetric data objects and high-level array oriented
RMA interfaces can be implemented for Fortran-95 applications. The proposed ap-
proach leads to simple yet efficient code, as demonstrated in the context of the NAS
NPB Multi-Grid benchmark. In the process of developing the interface we identified
sources of overhead involved in accessing elements of the dope vector through
Chasm. The next version of Chasm will address them by providing macros for direct
access to the information stored in the dope vector required by these interfaces. Our
future work in addition to these performance optimizations will include performance
comparisons with the Co-Array Fortran code on the Cray X1 where the native Co-
Array Fortran compiler is available as well as to the Rice compiler on Linux clusters.
The implementation of NAS MG using these Fortran-95 RMA interfaces outperforms
the MPI version of the benchmark demonstrating that advantages of the asynchronous
RMA communication outweighs the overhead involved in pointer calculations and
dope vector manipulations.

References

1. http://www.j3-fortran.org
2. Rasmussen, C.E., K.A. Lindlan, B. Mohr, and J. Striegnitz, CHASM: Static Analysis and

Automatic Code Generation for Improved Fortran 90 and C++ Interoperability, Proceed-
ings of LACSI Symposium, Santa Fe, NM, 2004.

3. Rasmussen, C.E., M.J. Sottile, S. Shende, and A.D. Malony, Bridging the Language Gap in
Scientific Computing: The Chasm Approach, Concurrency and Computation: Practice and
Experience, 2005.

4. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fine-
berg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S.
Weeratunga, The NAS parallel benchmarks, RNR-94-007, NASA 1994.

5. C. Coarfa, Y. Dotsenko, J. Eckhardt, J. Mellor-Crummey, Co-Array Fortran Performance
and Potential: An NPB Experimental Study,16th International Workshop on Languages and
Compilers for Parallel Computing. 2003.

6. J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-time Systems”, Parallel and Distributed
Processing, Jose Rolim (Eds.), Springer LNCS-1586, 1999.

7. http://www.myri.com
8. http://j3-fortran.org/doc/year/04/04-007.pdf
9. http://sourceforge.net/projects/chasm-interop/

10. K. Parzyszek, J. Nieplocha, and R.A. Kendall, “A generalized portable SHMEM library for
high performance computing”, in Proc. PDCS’2000, 2000

Symmetric Data Objects and Remote Memory Access Communication 729

11. F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie “Performance Evaluation of the Quadrics
Interconnection Network”, Journal of Cluster Computing, 6(2): 125-142, 2003

12. Rasmussen, C.E.; Lindlan, K.A.; Mohr, B.; Striegnitz, J., CHASM: Static Analysis and
Automatic Code Generation for Improved Fortran-90 and C++ Interoperability, Proceed-
ings of the 2nd LACSI Symposium, 2001.

13. http://www.mpi-forum.org/
14. Robert W. Numrich and John K. Reid, Co-Array Fortran for parallel programming. ACM

Fortran Forum, vol. 17, 2, 1998.
15. G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R.K. Govindaraju, K. Gildea,

P. DiNicola, and C. Bender, “Performance and experience with LAPI: a new high-
performance communication library for the IBM RS/6000 SP”, Proc., IPPS '98, 1998.

16. R. Bariuso and A. Knies, SHMEM User's Guide, Cray Research, Inc., SN-2516, 1994.
17. D. B. Carpenter. Adlib: A distributed array library to support HPF translation. Proc. 5th In-

ternational Workshop on Compilers for Parallel Computers. 1995.

Using Aspects for Supporting Procedural
Modules in # Programming

Francisco Heron de Carvalho Junior1 and Rafael Dueire Lins2

1 Departamento de Computação, Universidade Federal do Ceará
Campus do Pici, Bloco 910, Fortaleza, Brazil

heron@lia.ufc.br
2 Depart. de Eletrônica e Sistemas, Universidade Federal de Pernambuco

Av. Acadêmico Hélio Ramos s/n, Recife, Brazil
rdl@ufpe.br

Abstract. Parallel programming still demands for higher-level lan-
guages, models, and tools that do not incur in performance penalties.
The # programming model aims to meet those claims in large-scale pro-
grams. This paper describes how the # programming model works with
procedural languages by using techniques from AOP (Aspect Oriented
Programming). Performance comparisons with MPI are presented.

1 Introduction

High performance computing (HPC) architectures of today may be split into
three classes: capability computing (MPP’s1), cluster computing [6] and grid com-
puting [14] architectures. Deep memory and source hierarchies can be supported
in all classes. Grids, for example, may have clusters and MPP’s as processing
nodes, which may be formed by multiprocessors. Individual processors may im-
plement vector and super-scalar processing. The consolidation of distributed ar-
chitectures for HPC have brought new challenges. Efficient parallel programming
on these architectures is not a trivial task using the tools available today. Despite
having to specify computations, like in sequential programming, programmers
must partition the application functionality and/or data, according to the fea-
tures of the target architecture, and implement process synchronization. There
are no consensual models for programming parallel architectures.

The evolution of parallel programming technology may be divided into three
phases. The first phase was marked by the use of low level architecture-specific
message passing interfaces. The start of the second phase is marked by the
creation of CRPC (Center for Research on Parallel Computation), in 1989.
From that milestone on, research efforts started to be coordinated, culminating
with the development of several efficient and portable tools, including libraries
for message passing (MPI [17] and PVM [15]), parallel extensions of Fortran
(HPF [12] and Fortran M [13]) and specific-purpose scientific computing libraries
(PETSc [3], ScaLAPACK [5], and many others [11]). The third phase searches
1 Massively parallel processors, the supercomputers.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 730–739, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Aspects for Supporting Procedural Modules in # Programming 731

for models and languages for programming distributed high performance archi-
tectures, reconciling requirements of generality (G), high level of abstraction
(A), portability (P) and efficiency (E), allowing to apply advanced software en-
gineering concepts into the development of HPC software. Despite the efforts
promoted in the second phase, and also due to the expansion in scale of HPC
applications caused by cluster and grid computing, reaching the aims of the
latter phase is still one of the most important challenges in parallel computing
[11, 18].

The # parallel programming model provides a structured way to work with
explicit message passing programming. The # parallel programming environ-
ment supports the analysis of large scale parallel programs by using Petri nets
[9], including “debugging” and simulation facilities, proof of formal properties,
and performance evaluation. The idea behind the # environment is to offer a
“glue” for integrating existing high performance computing programming tech-
nologies in a common component-based framework, where advanced software
engineering techniques may be successfully applied. The current prototype im-
plementation of the # model is Haskell# [8]. Haskell# is a coordination language
for distributing functional computations in clusters. Computations are described
in Haskell, a pure lazy functional language. Haskell was initially adopted because
it provides a clean orthogonal interface between coordination and computation
media through lazy streams, besides allowing the analysis of formal properties
of programs at computation level.

This work presents an approach based on AOP (Aspect Oriented Program-
ming) [16] for incorporating computations written in procedural languages into
the # programming environment. Procedural languages may either be impera-
tive (such as C and Fortran), or object oriented (such as C++, Java, and C#).
They are widely used for high performance programming, as they provide good
time and space performance for scientific computations. Thus, it is possible to
think about multi-lingual implementations of the # programming environment.
This feature is highly desirable in large scale programming for grids.

This paper comprises three more sections. Section 2 presents an overview of
the # programming model. Section 3 shows how procedural modules were intro-
duced to the # programming environment. Section 4 benchmarks the proposed
approach. Conclusions and lines for further works are presented in Section 5.

2 The # Component Model

The # programming model moves parallel programming from a process-based
perspective to an orthogonal concern-oriented perspective. From the process-
based perspective, a parallel program is a collection of processes synchronizing
by means of communication primitives. For improving practice of parallel pro-
gramming, it had been tried to lift level of abstraction for dealing with these
primitives, resulting in efficiency losses. Concerns are scattered along implemen-
tation of processes, since they are orthogonal to processes. In fact, a process
may be viewed as a set of slices, each one describing the role of the process with

732 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

programmer
only by

!

compiler
(front−end)

compiler
(back−end)

Process Slice
Process

intervention

Process ViewComponent View

Program

(Structured, High Level of Abstraction)

computable

computable

computable

computable

Programming

Channel
Port
Unit
Component

Message Passing Programming
(Efficient, Portable, Expressive)

Process

P1

P2P0 P4

P3

C1

C2
C0

C3

?
? !

!

?
? !

!

!
!
!

P0 P2

P1

!
?

? P3
!

P4
?

!?

?
?

?

Process View

Fig. 1. Component Perspective versus Process Perspective

respect to a given concern. In this context, concerns are decomposition criteria
for slicing processes [19]. Thus, they may be viewed as sets of related slices,
probably from distinct processes. From the concern-oriented perspective of par-
allel programming, proposed by the # model, components are programming
abstractions that address functional and non-functional concerns. We believe
that a concern-oriented perspective of parallel programming fits contemporary
advanced software engineering artifacts better than a process-based perspective.

In # programming, the slices that comprise a component are called units.
They are connected in a communication topology, formed by one-direction,
point-to-point, and typed channels. For that, a unit has a set of input and
output ports, whose activation order is dictated by a protocol, specified using
a formalism with expressiveness of labelled Petri nets. In # programming, con-
cerns about parallelism and computations are separated in composed and simple
components, respectively. Composed components comprise the coordination
medium of # programs. They are specified in terms of units and channels,
possibly by composition of existing components, by using some language that
supports the coordination level abstractions of the # model. Today, there are a
textual notation, called HCL (# configuration language), and a visual notation,
called HVL (# visual language). Simple components are specified using Turing-
computable languages, comprising the computation medium of # programs.
They are the atoms of functionality in # programs. Simple components may be
assigned to units of composed components in order to configure computations

Interface or Interface Class Virtual Unit Unit (non−virtual)

Instantiation Assignmennt

interface declaration unit declaration assign declaration

z

w

x

y

protocol

}grouping: x*3 all

until (x | y) & z & w
repeat {seq{par {x?;y?}; z!; w!}

grouping
ports

Fig. 2. Configuring a Unit

Using Aspects for Supporting Procedural Modules in # Programming 733

———————————————————————————
component CPipeLine <N> with

iterator i range [1,N]

interface ICPipe where
ports: i* → o*
protocol: repeat seq{o!; i?} until <o & i>

[/ unit pipe[i] where ports: ICPipe /]

connect pipe[i]→o to pipe[i+1]←i, buffered
———————————————————————————
component Torus <N> with

use Skeletons.Common.CPipeLine

iterator i, j range [1,N]

interface ITorus where
ports: ICPipe @ n → s # ICPipe @ e → w
protocol: repeat seq {par {s!; w!}; par {n?; e?}}

until <n & e & s & w>

[/ unit vpipe[i]; assign CPipeLine<N> to vpipe[i] /]
[/ unit hpipe[j]; assign CPipeLine<N> to hpipe[j] /]

[/ unify vpipe[i].pipe[j], hpile[j].pipe[i]
to node[i][j] where ports: ITorus /]

———————————————————————————
component Farm<N> with

unit distributor where ports: () → job
unit worker where ports: job → result

protocol: seq {job?; result!}
unit collector where ports: result → ()

connect distributor.job to worker.job, synchronous
connect worker.result to collector.result, synchronous

replicate N: worker
———————————————————————————

———————————————————————
component SqMatMult<N> where

iterator i, j range [1,N]

use Skeletons.Common.{Torus, Farm}
use MMShift, SPMD

interface ISqMatMult where
ports: j → r # ITorus
protocol: seq { j?; repeat seq {par {s!;e!};

par {n?;w?}}
counter N ;

r! }

unit mm torus; assign Torus<N> to mm torus
unit mm farm; assign Farm<N> to mm farm

[/ unify farm.worker[i + j × N], torus.node[i][j]
to sqmm[i][j] where ports: ISqMatMult /]

unify farm.distributor, farm.collector, sqmm[0][0]
to sqmm root where

ports: () → ab # c → () #
ISqMatMult @ mm

protocol: seq {ab!; do mm; c? }

unit spmd; assign SPMD<N × N> to spmd
supersede sqmm to spmd.peer

[/ assign MMShift to sqmm[i][j] /]
———————————————————————
module MMShift(main) where

main :: Num t ⇒ t → t → [t] → [t] → ([t],[t],t)
main a b as i bs i = (as o,bs o,c)

where
c = matmult as o bs o
(as o, bs o) = (a:as i, b:bs i)

matmult :: Num t ⇒ t → [t] → [t] → t
matmult [] [] = 0
matmult (a:as) (b:bs) = a*b + matmult as bs
———————————————————————

Fig. 3. Configuration Code of Matrix Multiplication on a Torus

performed by slices. Skeletons [10] are supported by allowing units with no com-
ponent assigned, called virtual units, giving support for high level of abstraction
without loss in efficiency and portability. Nested composition of components is
possible by allowing to assign composed components to units of other composed
components. Besides to give support for non-functional concerns and skeletons,
another important distinguishing feature of the # component model in relation
to other component models [1, 4] is its ability to combine components by over-
lapping them. For that, it is possible to unify units from different composed
components. Component models of today allow only nesting composition. Com-
ponents are black-boxes addressing functional concerns. Whenever supported,
non-functional concerns are introduced by means of orthogonal language ex-
tensions or by using tangling code cross-cutting component modules, like in
sequential programming. However, cross-cutting concerns are not exceptions in
parallel programming. The ability to overlap components makes possible to treat
cross-cutting concerns as first-class citizens when parallelizing of applications.

Figure 3 presents a simple, yet illustrative, process topology of a composed
component, named SqMatMult, that implements a parallel matrix multiplica-
tion strategy based on a systolic interaction pattern amongst processes organized
in a torus. The code is written in HCL, the textual realization of the # coordina-
tion level abstraction. The component SqMatMult is composed by overlapping

734 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

skeletons Torus and Farm. A N ×N Torus is defined by overlapping N +N
instances of CPipeLine. The configuration code of components Torus, Farm,
CPipeLine and SqMatMult, in HCL, are also presented in Figure 3.

3 Procedural Modules as Simple Components

In Haskell# [8], simple components are functional modules written in the pure
lazy functional language Haskell. Haskell provides the simplest technique for
linking computation to coordination media without neither intermediate con-
structors nor extensions to the language Haskell. Functional modules neither
make any reference to HCL constructors nor need to import libraries. They are
standard Haskell modules, exporting the function main, whose arguments and
elements of the returned tuple correspond to arguments and return points of the
simple component. This is possible due to the Haskell support for lazy lists, which
are associated to streams at coordination level [7]. However, using a language
without lazy semantics, other approaches may be applied for keeping orthogonal
the separation between coordination and computation media.

Procedural modules are simple components written in procedural languages,
encompassing imperative and object oriented (OO) paradigms. They are imple-
mented as abstract data types (imperative languages), or objects (OO languages).
The routines, or methods, declared in procedural modules change the data struc-
ture state in the progress of computation. It is needed to define how procedural
module routines (or methods) are invoked in response to events at coordination
level and to define their arguments and return points. Techniques from Aspect
Oriented Programming (AOP) [16] are used for the first purpose. For instance,
a procedural module may be associated to aspect configurations, written in the
Aspect Language (HAL). In AOP, programmers may define pointcut designa-
tors that “identify particular join points by filtering out a subset of all the join
points within the program flow”. In the # terminology, the term program corre-
sponds to the protocol of the unit for which the procedural module is assigned.
Join points correspond to the actions in the protocol. Thus, pointcut designa-
tors stand for sub-sets of these actions. For defining them, labels and pattern
matching operators may identify and filtering actions (joint points) in protocols.
Labels extend HCL syntax for allowing to associate identifiers to actions. Pattern
matching operators may be used for filtering sets of actions according to a given
pattern. For example, the operator “ ? | !” stands for every communication ac-
tion in a protocol, while the operator “seq {p!; ; ;. . .}” stands for any sequential
action, encompassing at least three actions, that begins with the activation of
output port p. A pointcut is enabled whenever one of its join points (actions)
is reached when executing the protocol. Routines in the procedural module are
associated to pointcut designators. They may execute before or after to enable
the pointcut.

Figure 4(a) presents a C version for MMShift. The HAL code presented
in (b) defines three pointcut designators: Initial, Computation, and Trac-
ing. For instance, the pointcut Computation is enabled whenever the actions

Using Aspects for Supporting Procedural Modules in # Programming 735

/* MMShift.c */ {- MMShift.hal -} Wire functions (in MMShift.c)

int a,b sum;

void initial (void) {
sum = 0;

}
void accumulate (void) {

sum = sum + a*b;
}
void show progress (void) {

printf(“sum = %d\n”, sum);
}

point cut Initial for A
point cut Computation for B || C
point cut Tracing for ! || ?

before Initial , call “initial()”
after Computation, call “accumulate()”
after Tracing , call “show progress()”
before Tracing , call “show progress()”

void j(int x, int y) { a = x; b = y; }
void s(int x) { a = x; }
void e(int x) { b = x; }
int n(void) { return a; }
int w(void) { return b; }
int r(void) { return sum; }

/* NOTE: Wire functions are exposed
to the # compiler using a header
file, named MMShift.wf.h, where
their function prototypes are
provided. */

(a) (b) (c)

Fig. 4. C Version of the Functional Module MMShift

(join points) labelled by B and C are reached in the protocol of the unit sqmm of
SqMatMult. A call to the subroutine accumulate is performed after Computa-
tion is enabled. The pointcut designator Initial has an analogous description.
The pointcut designator Tracing is enabled in response to port activation. Be-
fore and after these events, the routine show progress is invoked. No dynamic
binding of routines to coordination events are needed, minimizing overheads.
The # compiler is a static weaver, using the aspect configuration for generating
code that calls specified routines at appropriate join points.

Arguments and return points of procedural modules are defined by means of
wire functions. Essentially, wire functions compute the values to be transmitted
through ports from the encapsulated state of the procedural module. Wire func-
tions are declared in the procedural module and exposed by a header file listing
their prototypes. Figure 4(a) exemplifies wire functions for unit sqmm.

4 Performance Evaluation Using NPB Kernels

A sub-set of the NPB kernels (NAS Parallel Bechmarks) [2] was implemented
in # programming2 by using AOP for linking imperative computations to #
coordination medium: EP (Embarrassingly parallel), IS (Integer Sorting) and
CG (Conjugate Gradient). They are used to compare the performance of # pro-
grams to their C/MPI (IS) and Fortran/MPI (EP and CG) counterparts. This
experiment exemplifies how to design SPMD programs, a class where most of
HPC programs fit, using the # approach. It also demonstrates how to translate
MPI programs to the # model with minor performance penalties, despite gains
in modularity and abstraction. The NPB kernels allow evaluating the use of col-
lective communication skeletons for composing topologies and for automatically
generating efficient code using lower level collective MPI primitives.

The composed components EP, IS, and CG address the functionality of the
respective kernels, implementing the same strategies of parallelism adopted in
the original versions. The differences lay on the separation of concerns between
parallelism and computation in composed and simple components. The coor-

2 Implementation codes of NPB kernels are available at
http://www.lia.ufc.br/ heron/npb hash code.html.

736 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

i = 0 ... m

...p[1] p[n]p[0]

AllReduce
rho_comm[i]

...p[1] p[n]p[0]

AllReduce

rnorm_comm[i]

...p[1] p[n]p[0]

AllReduce
aux_comm[i]

...p[1] p[n]p[0]

AllReduce

norm_temp_comm[i]

...p[1] p[n]p[0]

AllReduce
q_comm[i]

...p[1] p[n]p[0]

AllReduce
r_com[i]

p[0][0] p[0][1] p[0][n]

p[1][0] p[1][1] p[1][n]

p[m][0] p[m][1] p[m][n]

...

...

...
...

Transpose
qT_comm

p[0][0] p[0][1] p[0][n]

p[1][0] p[1][1] p[1][n]

p[m][0] p[m][1] p[m][n]

...

...

...
...

Transpose
qR_comm

...

...
cg_unit[0][0] cg_unit[0][1] cg_unit[0][n]

...

cg_unit[1][0] cg_unit[1][1] cg_unit[1][n]...

cg_unit[m][0] cg_unit[m][1] cg_unit[m][n]

CG

........................
...

.....................
......

...........................

...

IS_FM_Root

IS_FM_Main

assign

assign

assign

assign

unify

Fig. 5. The Topology of Component CG

dination medium specified is composed by overlapping composed components
that implement collective communication skeletons (Figure 5). The resulting
unit supersedes peer unit of a cluster for which component SPMD is assigned,
informing the compiler about the “Single Program, Multiple Data” nature of
the kernels. The procedural modules FM EP, FM IS, and FM CG implement
computations. Their routines are invoked according to events at coordination
level, associated by means of aspect configurations (Section 3).

In the original versions of the NPB kernels, timing concern is implemented
as calls to low-level timing routines intertwined with the code of computations.
Using the # approach, a reusable component, called Timer, was designed for
addressing the concern of execution timing. It was designed for synchronizing
processes before timing begins, measuring duration of computation and com-
munication/synchronization phases in a SPMD parallel program, and finally,
providing timing summaries at the end of the execution. The component Timer
is overlapped to the application components EP, IS and CG, yielding timed
versions of them, called Timed EP, Timed IS and Timed CG, by using unifi-
cation. Using the same approach, it might be possible to design other reusable
components to address cross-cutting concerns, such as debugging, placement and
load balancing strategies, security policies, etc.

4.1 Performance Measures and Discussion

Figure 6 presents the performance figures for the NPB kernels EP, IS and CG.
Standard problem sizes A, B, and C, defined in kernel documentation, is con-

Using Aspects for Supporting Procedural Modules in # Programming 737

0 1 2 3 4 5 6

5

4

3

2222

5

44

2222

CG- A

#

MPI

0 1 2 3 4 5 6

838

184155
84734553

862

195163
84755154

CG- B

#

MPI

1 2 3 4 5 6
64

1169

703

225174116123 66

1239

725

239191141157

CG- C

#

MPI

0 1 2 3 4 5 6

4

77

6

4

3

6

4

77

6

4

3

6

IS- A

#

MPI

0 1 2 3 4 5 6

17

2627

21
19

14

10

17

2728

22
20

15

10

IS- B

#

MPI

1 2 3 4 5 6

16

109111

78
66

39

68

16

111112

81
71

40

67

IS- C

#

MPI

0 1 2 3 4 5 6

136

69

34
17
963

135

68

34
17
963

EP- A

#

MPI

0 1 2 3 4 5 6

546

274

137
69
342211

549

271

135
68
342211

EP- B

#

MPI

0 1 2 3 4 5 6

2201

1099

549
275
1378945

2217

1083

541
273
1368945

EP- C

#

MPI

Fig. 6. Performance Figures for NPB (# vs. MPI)

sidered. For one process, IS and CG exhaust physical memory of cluster nodes
(> 1GB). The architecture used was an Itautec cluster comprising 28 Intel Xeon
nodes, each one with four processors, connected through a Gigabit Ethernet. It
is installed at Computation Department of Federal University at Ceará, Brazil.
MPICH 1.2.4 was used on top of TCP/IP. The data presented show no significa-
tive overheads for # versions in comparison to original ones, despite the gains
in modularity advocated in the previous section. The minor differences are due
to the partitioning of the monolithic original code in several routines scattered
over distinct source files, affecting cache performance, causing larger number of
function calls, and reducing some opportunities for compiler optimizations.

The presented empirical study may not be extended to all # programs and
problem sizes. Indeed, it is not possible to define an exhaustive set of bench-
marks that prove it, for any programming technology or architecture. However,
it is possible to enumerate some reasons that may strengthen the reliability of
the presented results to predict # performance in other situations: (1) virtu-
ally, any parallel programming technology on top of message-passing may be
encapsulated as components in the # programming; (2) # programmers may
implement the same parallelization strategies that they would implement by us-
ing the underlying parallel programming technology. In NPB kernels, # versions
were produced by refactoring the original MPI versions, reusing all computation
code without either modifications or reimplementation; (3) The # compiler does
not add any kind of run-time support to the one provided by the underlying par-
allel programming technology; (4) The # compiler may allow the use of several
parallel programming technologies in the same application, on top of the same
component abstraction. In fact, this is a realistic assumption in current parallel
programming practice, where non-modular combinations of MPI, openMP, and

738 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

possibly, grid enabling tools, such as Globus Toolkit are used together in the
development of applications.

5 Conclusions and Lines for Further Work

This paper demonstrates how imperative and object oriented languages may
be bound to the # programming environment by applying Aspect Oriented
Programming concepts. Performance figures are presented comparing the per-
formance of # versions of some kernels of NPB (NAS Parallel Benchmarks),
where computations are implemented as procedural modules, to their MPI coun-
terparts. The results show no significative performance overheads due to the use
of # programming approach, despite gains in modularity and abstraction.

The work with # programming model is on progress. The main goal is to
develop a parallel programming environment based on # model for integrating
existing parallel programming technology, where the proof and analysis of for-
mal properties, the simulation and the performance evaluation of programs may
become a reality on top of Petri net-based tools and of NS (Network Simulator).

References

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S.
Parker, and B. Smolinski. Towards a Common Component Architecture for High-
Performance Scientific Computing. In The Eighth IEEE International Symposium
on High Performance Distributed Computing. IEEE Computer Society, 1999.

2. D. H. Bailey, T. Harris, W. Shapir, R. van der Wijngaart, A. Woo, and M. Yarrow.
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, December 1995. http://www.nas.nasa.org/NAS/NPB.

3. S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B.
Smith, and H. Zhang. PETSc Users Manual. Technical Report ANL-95/11 Revision
2.1.3, Argonne National Laboratory, Argonne, Illinois, 1996.
http://www.mcs.anl.gov/petsc.

4. F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical
Grid Components. In International Symposium on Distributed Objects and Appli-
cations. Springer-Verlag, 2003.

5. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK User’s Guide. Society for Industrial and Applied Mathe-
matics (SIAM), 1997.

6. R. Buyya (ed.). High Performance Cluster Computing: Architectures and Systems.
Prentice Hall, 1999.

7. F. H. Carvalho Junior, R. M. F. Lima, and R. D. Lins. Coordinating Functional
Processes with Haskell#. In ACM Press, editor, ACM Symposium on Applied Com-
puting, Track on Coordination Languages, Models and Applications, pages 393–400,
March 2002.

8. F. H. Carvalho Junior and R. D. Lins. Haskell#: Parallel Programming Made
Simple and Efficient. Journal of Universal Computer Science, 9(8):776–794, August
2003.

Using Aspects for Supporting Procedural Modules in # Programming 739

9. F. H. Carvalho Junior, R. D. Lins, and R. M. F. Lima. Translating Haskell#
Programs into Petri Nets. Lecture Notes in Computer Science (VECPAR’2002),
2565:635–649, 2002.

10. M. Cole. Algorithm Skeletons: Structured Management of Paralell Computation.
Pitman, 1989.

11. J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White.
Sourcebook of Parallel Computing. Morgan Kauffman Publishers, 2003.

12. High Performance Fortran Forum. High Performance Fortran, Language Specifica-
tion, Version 2.0, January 1997.

13. I. Foster and K. M. Chandy. Fortran M: A Language for Modular Parallel Pro-
gramming. Technical Report MCS-P327-0992, Argonne National Laboratory, June
1992.

14. I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-
tructure. M. Kauffman, 2004.

15. G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam.
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge, 1994.

16. G. Kiczales, J. Lamping, Menhdhekar A., Maeda C., C. Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Lecture Notes in Computer Science
(Object-Oriented Programming 11th European Conference – ECOOP ’97), pages
220–242. Springer-Verlag, November 1997.

17. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
International Journal of Supercomputer Applications and High Performance Com-
puting, 8(3-4):169–416, 1994.

18. A. Skjellum, P. Bangalore, J. Gray, and Bryant B. Reinventing Explicit Parallel
Programming for Improved Engineering of High Performance Computing Software.
In International Workshop on Software Engineering for High Performance Com-
puting System Applications, pages 59–63. ACM, May 2004. Edinburgh.

19. F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages, 3:121–189, 1995.

Multi-threaded Testing with AOP Is Easy,
and It Finds Bugs!

Shady Copty and Shmuel Ur

IBM Haifa Research Lab, Haifs University Campus, Haifa 31905, Israel
{shady,ur}@il.ibm.com

Abstract. We investigate the suitability of AOP (Aspect Oriented Pro-
gramming) for testing tools by trying to implement the ConTest testing
tool using AspectJ, a tool that implements AOP for the Java program-
ming language. We examine whether the entire set of features can be
implemented this way, in the context of the larger problem where mov-
ing to a higher level of abstraction means that some details cannot be
implemented.
Our conclusion from this exercise is that AOP is very suitable for the
implementation of a number of classes of test tools. These include multi-
threaded noise makers such as ConTest, in addition to coverage analyz-
ers, data-race detectors, network traffic simulators, runtime bug pattern
detectors, and others. The main advantage is that the instrumentation
part of the tool creating method, which usually contains little scientific
contribution but consumes most of the work, becomes much easier to per-
form and requires less expertise. In our specific exercise, a task that took
more than half a year and required specialized knowledge, was reduced
to two weeks work by a relative novice.

1 Introduction

The increasing popularity of concurrent Java programming – on the Internet as
well as on the server side – has brought the issue of concurrent defect analysis
to the forefront. Concurrent defects, such as unintentional race conditions or
deadlocks are difficult and expensive to uncover and analyze, and such faults
often escape to the field.

One reason for this difficulty is that the set of possible interleavings is huge,
and it is not practical to try all of them. Only a few of the interleavings ac-
tually produce concurrent faults; thus, the probability of producing one is very
low. Since the scheduler is deterministic, executing the same tests many times
will not help, because the same interleaving is usually created. The problem
of testing multi-threaded programs is compounded by the fact that tests that
reveal a concurrent fault in the field or in stress test are usually long and run
under different environmental conditions. As a result, such tests are not neces-
sarily repeatable, and when a fault is detected, much effort must be invested in
recreating the conditions under which it occurred.

Much research has been done on testing multi-threaded programs. Research
has examined detecting data races[13], [14], [8], replaying in several distributed

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 740–749, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 741

and concurrent contexts[2], static analysis [16] [7] [3], and the problem of gen-
erating different interleavings for the purpose of revealing concurrent faults [4]
[17]. Model checking [15], and coverage analysis [11] [5], and cloning [6] are used
to improve testing in this domain.

AOP is a relatively new technology that allows the creation of generic in-
strumentation [10]. Rather than a complicated program that requires lots of
expertise, instrumentation with AOP is something everyone can use. The cen-
tral idea of AOP is that while the hierarchical modularity mechanisms of ob-
jectoriented languages are useful, they are unable to modularize all concerns of
interest in complex systems. In the implementation of any complex system, there
will be concerns that inherently crosscut the natural modularity of the rest of
the implementation. AOP provides language mechanisms that explicitly capture
crosscutting structures. This makes it possible to program crosscutting concerns
in a modular way, and achieve the usual benefits of improved modularity [9].
From the perspective of our work, AOP is a simple declarative way to write the
instrumentation engine.

In this paper, we demonstrate how to implement a ConTest-like tool using
AOP, specifically AspectJ. We list the features of ConTest and for each feature,
we either show how to implement it or explain why it is not related to instru-
mentation. For the few ConTest features that cannot be implemented due to
limitations in AspectJ, we explain the shortcomings of AspectJ and how it can
be extended. We go through the entire Contest feature list to show that we use
AspectJ to solve a real problem and not an approximation. This paper shows
how to use AOP to create testing tools, and examines the appropriateness of
AOP for the testing domain in general. This is the first time, to our knowledge,
that AOP is used to create a testing tool not specific to logging. This probably
explains the missing features of AspectJ. The analysis contained will be used by
the AspectJ people to make the tool more useful to the testing community.

2 ConTest

ConTest is a tool for finding bugs caused by concurrency. It alleviates the need
to create a complex testing environment with many processors and applications,
and works by instrumenting the bytecode of the application with heuristically
controlled conditional sleep and yield instructions. ConTest is used by more than
fifty testing and developer teams in IBM. In this section, we describe the features
of ConTest.

2.1 Instrumentation Scheme

ConTest instruments Java bytecode using cfparse [12]. It adds instrumenta-
tion points before and after every potential concurrent event, and other non-
concurrent points due to coverage consideration. An event is called ‘concurrent’
if the order of its execution may impact the outcome of the program. For ex-
ample, if two threads are executing but they do not share variables, and each
thread outputs to a different output stream, this program will have no concur-
rent events. However, if they work with different variables but print to the same

742 Shady Copty and Shmuel Ur

output stream, the printing statements are concurrent events, as the ordering
between the events impacts the output by deciding which threads output is first.
Concurrent events can potentially occur at the following locations:

1. Shared variable accesses.
2. Synchronization functions, such as join(), start(), wait() and notify() primi-

tives.
3. Synchronization block, a block or method protected with the keyword syn-

chronize.

In addition, ConTest has coverage related instrumentations.

1. At the entry to every method - used by the method coverage model.
2. At the entry to every basic block - used by the branch coverage model.

It is possible to perform selective instrumentation based on user directives
given as flags to the instrumentation applications.

2.2 Runtime Features

Almost all the ConTest runtime features are based on instrumentation, demon-
strating why all the instrumentation features are necessary.

1. Coverage information is collected and logged. There are a number of types
of coverage models, each of which has it own trace. Sometimes it is necessary
to create more than one coverage trace (for each coverage type) in a run.
For example, a server application is tested by repeatedly running a client
program. All those runs are handled by one JVM running the (instrumented)
server application. Therefore, by default, they will write only one coverage
file. If the user considers each run of the client program a different test,
and a different coverage file is required for each run. It is possible to create
many coverage files with one execution, using callback threads (see below).
All coverage files thus created will have the same timestamp in their name,
but they will have different serial numbers.
The different coverage models are:
(a) Basic coverage models. Logs of the program executing instrumentation

coverage statements, including method, branch, and concurrent point
coverage.

(b) Synchronization coverage. Collects temporal data, which depends
on the order of the specific execution. For example, a synchronization is
considered used if the point was reached while another thread was inside
the synchronization block on the same object.

(c) Interfered location pairs coverage. Each line in the trace file of this
coverage type contains a pair of program locations that were encountered
consecutively in the run, and a third field that is “t” or “f”. The field is
“f” if the two locations were run by the same thread, and “t” otherwise.
That is, “t” means a context switch occurred.

(d) Shared variables coverage. Collects the names of variables detected
as shared in a given run.(i.e., accessed by more than one thread).

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 743

2. ConTest uses many heuristics to try to increase the likelihood of finding
bugs. These heuristics differ in the type of delay added, the frequency, and
the activation rules. The general details are as follows:
(a) ConTest currently supports three different types of noise: yields, sleeps,

and synchYields.
(b) The amount of noise can be controlled by two properties: noiseFre-

quency which determines the probability that noise will be generated
and strenght, which determines the amount.

(c) ConTest can attempt to identify which variables are accessed by more
than one thread, and do the heuristic noise only on accesses to those vari-
ables. A variable is determined to be shared when two different threads
accessed it (read or write). With this option on, the heuristic noise can be
any one of those described above (sleep, yield, etc.), with any strength.

(d) Halt-one-thread heuristic. This heuristic occasionally causes one thread
to stop executing for a long time, until no other thread can advance. It
can be powerful in revealing certain types of concurrent bugs.

(e) Tampering with time-out. The method java.lang.Thread.sleep(long mil-
lis) causes the current thread to stop executing for the specified duration.
This time duration alone should not be counted upon, It should not be
assumed that other threads have completed some tasks by the time the
sleep returns. ConTest helps test that such wrong assumptions are not
made, by randomly reducing the time-out used by these methods. This
simulates a condition in which other threads work more slowly.

(f) Deferring noise generation to a late point in the execution. It may be
desirable for ConTest not to begin its perturbations just as the tested
program begins. For example, maybe a bug was found using ConTest in
the initialization of the program, but the testing the rest of the program
should proceed without ConTest causing the bug to appear again and
again. ConTest can receive the class name or the method name as a
string. Until this class or method is seen, ConTest makes no noise.

3. ConTest provides a number of debugging aids that can be used to pinpoint
a bug once it has been found. These include the following:
(a) Deadlock support. To help debug a deadlock, a report can be generated

containing the following information: a list of threads waiting on a given
lock, a list of which thread is holding each lock, the current line number
of each thread.

(b) Orange box. When the program fails, it is often useful to know something
about the behavior of the program in the last segments of its execution,
similar to the black box on an airplane. The “orange box” keeps a record
of the last n accesses (read or write) to each non-local variable. For
example, if the program execution was terminated due to an exception
caused by variable foo, having the value null, you could use the orange
box feature to check where this value was set.

(c) Partial replay. Replay for multi-threaded applications is very important
for debugging, increasing the likelihood that a bug will reoccur.

744 Shady Copty and Shmuel Ur

(d) Callback thread. By opening a “callback thread”, several kinds of re-
quests from ConTest can be made from the outside, while the tested
program is running: debug reports, closing and restarting coverage ses-
sions, and controlling fault injection. There are two ways to pass requests
to the callback thread: through standard input (normally, the keyboard),
or through a network port (i.e., from another process).

3 AspectJ

AspectJ is an aspect-oriented extension to Java. With just a few new constructs,
AspectJ extend Java to provide support for the modular implementation of a
range of crosscutting concerns. Dynamic crosscutting makes it possible to define
additional implementation to run at certain well-defined points in the execution
of the program. Static crosscutting makes it possible to define new operations
on existing types; it’s called static because it affects the static type signature of
the program. Dynamic crosscutting in AspectJ is based on a small but powerful
set of constructs: join points are well-defined points in the execution of the pro-
gram; pointcuts are a means of referring to collections of join points and certain
values at those join points; advice are method-like constructs used to define ad-
ditional behavior at join points; and aspects are units of modular crosscutting
implementation, composed of pointcuts, advice, and ordinary Java member dec-
larations. We use dynamic crosscutting to implement the features of ConTest
using AspectJ, in a manner similar to that used by ConTest’s instrumentor. [9]

In AspectJ, pointcuts pick out certain join points in the program flow. For
example, the pointcut call(void Point.setX(int)) picks out each join point that
is a call to a method with the signature void Point.setX(int) (i.e., Point’s void
setX method with a single int parameter). A pointcut can be built out of other
pointcuts with: and, or, and not. [1] AspectJ also lets you define pointcuts using
wildcards. For example, set(* *) defines all the assignments to all the variables
in the program. Pointcuts pick out join points, but they don’t do anything else.
To implement crosscutting behavior, we use advice. Advice brings together a
pointcut (to pick out join points) and a body of code (to run at each of those
join points). AspectJ has several different kinds of advice. ‘Before advice’ runs as
a join point is reached, before the program proceeds with the join point. ‘After
advice’ runs after the program proceeds with that join point. “Around advice”
on a join point runs as the join point is reached [1]. The pointcut and the advice
type define where the instrumentation is done, and the advice body defines what
will actually be instrumented.

3.1 ConTest Instrumentation Scheme Using AspectJ

In Section 2.1 we described the instrumentation that ConTest performs on the
program. We now explain how to implement these in AspectJ. The implemen-
tion of the runtime features of ConTest is outside the scope of this paper, and
therefore is not discussed. It is easy to see that the runtime features based on
the instrumentation described could be implemented.

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 745

1. Shared variable accesses. The join point set(* *) or get(* *) instruments all
accesses to variables.

2. Synchronization functions, such as join(), start(), wait() and notify() prim-
itives. These can be instrumented using the point cut call(signature) for
each method.

3. Synchronization block. This kind of point cut is not supported by AspectJ.
4. Additional coverage related instrumentation. These are added due to specific

coverage related user requests.
(a) At the entry to every method - can be easily implemented using the call

point cut.
(b) At the entry to every basic block - not supported by AspectJ.

It is possible to do selective instrumentation in AspectJ using the point cuts
that relate to the static nature of the code.

4 Implementing the Tool

We implemented a few aspects to demonstrate the capabilities of an AOP lan-
guage such as AspectJ. These aspects alter the class files to increase the likeli-
hood of catching concurrent bugs, using ideas already implemented in ConTest.
A special emphasis is put on the instrumentation capabilities. The following is
the source code for the aspect SleepNoise:

public aspect SleepNoise extends Thread{
private static Random rand = new Random();
pointcut noiseVictem():

((get(* *) || set (* *))&& within(!SleepNoise));
after(): noiseVictem() {

try{// noise
if (rand.nextInt(100) == 1){ // activation

sleep(rand.nextInt(50)); // type
}

} catch (Exception e) {};
}

}

SleepNoise is a simple aspect based on a single pointcut and a single advice.
The pointcut defines where the instrumentation is being done. In our example,
we are weaving the after() advice on all the gets and sets for variables in the
instrumented program. The advice is a call to sleep() with a random parameter
in the range [0,50] with a probability of 1% for invoking the sleep method. This
adds noise to the instrumented application as done by ConTest’s instrumentor.
The difference, however, is that this aspect inlines the noise, whereas ConTest
instruments call back methods, which add some runtime overhead. This example
could easily be expanded to instrument special concurrent related methods, such
as sleep, yield, notify, notifyAll, and so on. In addition, the type of noise could

746 Shady Copty and Shmuel Ur

be altered to other types of noise that affect the interleaving of the program, all
creating different kinds of heuristics.

SleepMutator is an aspect that implements the “Tampering with time-out”
heuristic discussed earlier. The following is its source code:

public aspect SleepMutator extends Thread{
pointcut noiseVictem(long i):

call(void sleep(long)) && args(i) && within(!SleepMutator);
private static Random rand = new Random();
void around(long i): noiseVictem(i) {
try{

long newSleepTime = rand.nextInt((int)i*3); // [0,3*sleep]
if (rand.nextInt(5) == 1)
proceed(newSleepTime);

} catch (Exception e) {}
}

};

The pointcut we defined for this heuristic is a sleep call, taking into account
its parameter and using the proceed keyword. The advice calls the sleep method
with a new sleep parameter, chosen randomly in the range of [0, 3*oldParam].

ConTest provides users with coverage information. Using AspectJ, we can
only implement ConTest’s method coverage because AspectJ doesn’t provide a
pointcut for synchronization blocks or for simple blocks.

The following aspect prints the methods called to System.out. Of course,
we could have created a new class that remembers which strings were already
printed and not print them more than once. This aspect could be used for method
coverage. As we started working on this paper, there was no way to retrieve all
the points that were instrumented in AspectJ. This meant that we had no way
of knowing when we reached 100% coverage. In AspectJ 1.2.1c, there is a new
feature added to AspectJ’s compiler (-showWeaveInfo) that accomplishes this.

public aspect Coverage extends Thread{
pointcut methodExecution():

((execution(* *(..)))&& within(!Coverage));
after(): methodExecution(){

System.out.println("called: " +
thisJoinPointStaticPart.getSignature());

}
}

5 Experimental Results

We tested the aspect SleepNoise against several programs with documented bugs.
These programs received a single parameter: the number of threads running
simultaneously, and are categorized as low, medium, or high. We ran the tests

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 747

10 times for each category and for each configuration: once as the uninstrumented
program, called original in the figure, then using ConTest with simple noise, and
finally with the SleepNoise aspect.

(a) Bubble Sort (b) 2’d Bubble Sort

Fig. 1. Bubble sorts

Our first program is a concurrent version of the bubble sort algorithm. The
bug in this program is that the programmer assumed the threads would finish
their work without interruption and accessed the shared resources without syn-
chronization. Figure 1a shows the results for this program. We can clearly see
that using SleepNoise increases the chance of concurrent bugs being manifested.

Our second program is also a bubble sort program, with a different bug. The
programmer used a sleep statement to initialize all threads before they started
working. The results (Figure 1b) show the benefit in using this type of testing.
We see that SleepNoise increased the chance of finding bugs. Note that the
heuristic is very simple and was not modified to suit the specific program. By
tuning the frequency of adding noise and the type of noise, we can achieve better
results.

(a) id (b) doubleLock

Fig. 2. ID Manager and Double Lock

The third program is one that issues IDs for users. Each user requests and
receives a unique ID. The bug is that the programmer assumed that incrementing
the ID counter was an atomic operation and didn’t protect it. We see in Figure
2a that SleepNoise surpassed ConTest’s performance for medium concurrency,
which could be the result of a low activation parameter used for ConTest.

In the last program, the programmer wanted to obtain the locks for two files
in different places, but didn’t maintain a global partial order on the way she
obtained these locks. This introduced a deadlock to the program. SleepNoise

748 Shady Copty and Shmuel Ur

increased the chance of the bug being manifested. Had we been able to instru-
ment synchronization blocks, we would have been able to find this bug much
more easily, by adding a sleep exactly after the first lock was obtained in one of
the two accesses. This would cause the bug to manifest instantly. Unfortunately,
AspectJ doesn’t support point cuts on synchronization blocks.

6 Conclusions and Future Work

We examined the possibility of implementing the instrumentation part of a com-
mercial quality multi-threaded testing tool using AOP. We performed a detailed
examination of all the requirements and checked which of them are satisfiable
with AspectJ. It was important that not only the concepts be checked, but the
fine details. Each application had some features that could not be implemented,
and implementing them in the traditional way reduced much of the benefits of
going to a higher abstraction level.

We found AOP in general, and AspectJ in particular, to be very well suited
for this work. We did find two missing features in AspectJ that are required for
complete implementation of the ConTest tool’s instrumentation needs. One of
those was added while this paper was being written and is now available. The
second one, identifying synchronization blocks as places for instrumentation, is
still unavailable. Had we decided to move to AspectJ, this point could have been
partially mitigated due to the fact that AspectJ is open source and we could
have added this capacity ourselves.

We found that with AspectJ, we could implement a useful testing tool in two
weeks, which would otherwise have taken more than half a year. We consider
AOP and AspectJ to be very important for implementing high quality open
source and academic testing tools, in the domains of data race detection, cover-
age analysis, performance monitoring, trace analysis, concurrent noise making,
network load simulation and many others.

In the experiment described in this paper, we were able to create a commer-
cially useful tool for exposing multi-threaded bugs with very little effort. This
exercise demonstrates the viability of our approach. We plan to continue our
discussions with the AspectJ community to ensure that the development direc-
tions taken will be beneficial to the testing community. If more tools follow this
approach, AspectJ, together with the artifacts that become available, will create
an incentive for additional research in the area.

We add the work presented in this paper to the testing benchmark1, in the
hope that this resource will be utilized by researchers to expand on our work.

References

1. Aspectj getting started, http://www.elipse.org/aspectj.
2. J.-D. Choi and H. Srinivasan. Deterministic replay of java multithreaded applica-

tions. In Proceedings of the SIGMETRICS Symposium on Parallel and Distributed
Tools, August 1998.

1 https://qp.research.ibm.com/QuickPlace/concurrency testing/Main.nsf

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 749

3. J. C. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Proc.
22nd International Conference on Software Engineering (ICSE). ACM Press, June
2000.

4. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Testing multi-
threaded java programs. submitted to the IBM System Journal Special Issue on
Software Testing, February 2002.

5. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java pro-
gram test generation. IBM Systems Journal, 41(1):111–125, 2002. Also available
as http://www.research.ibm.com/journal/sj/411/edelstein.html.

6. A. Hartman, A. Kirshin, and K. Nagin. A test execution environment running
abstract tests for distributed software. In Proceedings of Software Engineering and
Applications, SEA 2002, 2002.

7. K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer,
STTT, 2(4), April 2000.

8. E. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. Towards integration of data-
race detection in dsm systems. Journal of Parallel and Distributed Computing.
Special Issue on Software Support for Distributed Computing, 59(2):180–203, Nov
1999.

9. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.

10. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors,
Proceedings European Conference on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

11. Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe. Software test coverage
and reliability. Technical report, Colorado State University, 1996.

12. S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of
immutable fields in java. In Proceedings of the 2000 conference of the Centre for
Advanced Studies on Collaborative research, page 10. IBM Press, 2000.

13. B. Richards and J. R. Larus. Protocol-based data-race detection. In Proceedings
of the 2nd SIGMETRICS Symposium on Parallel and Distributed Tools, August
1998.

14. S. Savage. Eraser: A dynamic race detector for multithreaded programs. ACM
Transactions on Computer Systems, 15(4):391–411, November 1997.

15. S. D. Stoller. Model-checking multi-threaded distributed java programs. In Pro-
ceedings of the 7th International SPIN Workshop on Model Checking, 2000.

16. S. D. Stoller. Model-checking multi-threaded distributed Java programs. Interna-
tional Journal on Software Tools for Technology Transfer, 4(1):71–91, Oct. 2002.

17. S. D. Stoller. Testing concurrent java programs using randomized scheduling. In In
Proceedings of the Second Workshop on Runtime Verification (RV), volume 70(4)
of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

An Investigation of Sharing Strategies
for Answer Set Solvers and SAT Solvers

Hung Viet Le and Enrico Pontelli

Department of Computer Science
New Mexico State University

{hle,epontell}@cs.nmsu.edu

Abstract. This paper describes a parallel engine for Answer Set solving, based
on exploitation of search parallelism. The work explores a range of alternative
strategies for work sharing, describing their implementations and comparing their
efficiency. These results indicate methodologies to combine sharing strategies and
select the most effective one depending on properties of the problem.

1 Introduction

In recent years, there has been a significant increase of interest towards the applica-
tion of logic-based technology—in particular, technology based on propositional and
SAT solving—in a variety of application domains. This renewed interest has also been
guided by the development of formal modeling and programming paradigms based
on these concepts, such as the widely used Answer Set Programming (ASP) [9]. ASP
builds on logic programming and answer set semantics [5], to provide a set-oriented
programming paradigm. In ASP and SAT, the problem is modeled using clauses of a
propositional theory, and solutions are represented by minimal or stable [5] models
of the theory. A significant push to these efforts comes from the development of effi-
cient implementations of ASP and SAT solvers. These implementations are practical
and scalable to real-life domains. The execution mechanisms employed by ASP are
analogous to those used in general SAT solving, and are based on highly optimized
and/or specialized versions of the Davis-Putnam procedure. In this work, we will focus
on a state-of-the-art ASP engine—i.e., an implementation of the SMODELS algorithms
[13]—though the proposed ideas are applicable to related systems.

In spite of the efficiency provided by existing systems, there are areas where ASP
and SAT solving provide elegant, compact, and highly declarative solutions, but whose
execution requirements are beyond the capabilities of existing systems. E.g., ASP is
widely used in planning in complex domains [7], but the high computational require-
ments limit the domains and goals that can be effectively addressed. Parallelism has
been identified as a natural avenue to further improve applicability of ASP and SAT
solving to real-world problems. Preliminary steps have been taken in the design of par-
allel ASP [4, 11] and SAT solvers [1, 2, 15].

The literature is rich of studies related to the design of parallel engines for traditional
logic programming (mostly Prolog) [6], theorem provers [2], and constraint solvers
[10]. Nevertheless, recent investigations [11] have highlighted that results from these

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 750–760, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 751

related areas are not directly transferable to ASP—e.g., task sharing techniques proved
optimal in the context of Prolog have provided suboptimal performances in ASP.

In this paper, we are interested in the development of techniques to exploit paral-
lelism from ASP at the search level (a.k.a. or-parallelism) and in the context of dis-
tributed search strategies [2]. Parallelism at the search level implies the presence of
multiple processes (search agents) that search in parallel the solution space of the prob-
lem; in ASP and SAT, this corresponds to the concurrent construction of distinct models
of the propositional theory, where each agent explores different truth assignments to
the logical variables of the theory. Theoretical research in the area of search parallelism
[6, 12] underlined that dynamic distribution of work is vital to achieve adequate paral-
lel performance, and two components of the execution model have the greatest impact:
the sharing strategy and the scheduling strategy. Scheduling determines the policy to
be used to select tasks to be exchanged during execution, while the sharing strategy
determines how the exchange of tasks takes place. Our focus is on the latter.

The contribution of this paper is the design of the first complete parallel ASP system
(supporting the complete SMODELS language) on Beowulfs. Our focus is on investigat-
ing the impact of different sharing strategies. We explore a variety of alternatives, some
adaptations to ASP of known methodologies and some novel, and study their behav-
ior on a representative set of benchmarks. The results suggest that flexible dynamic
selection of sharing strategies is vital to guarantee high parallel performance.

2 A Parallel Engine for ASP

Sequential Execution Model: The objective of a computation is, given a propositional
theory (extended Horn clauses in the case of ASP), to determine one or more minimal
models of the theory. For ASP, we are seeking a special set of minimal models, called
stable models [5]. The execution is a fixpoint computation which alternates two phases:
boolean constraint propagation and atom splitting [2]. During constraint propagation,
clauses in the theory are used to extend a partial model, adding to the model those
atoms whose truth value is uniquely determined by the theory (w.r.t. the partial model).
Whenever constraint propagation is not possible, the system performs atom splitting, by
selecting an unknown atom and “guessing” its truth value; this corresponds to the cre-
ation of a choice-point, since backtracking needs to explore both alternative truth values
for such atom. Heuristic strategies (based on estimating the size of the subtrees) are em-
ployed in the selection of the atom during splitting, to guarantee effective propagation.
Because of the non-determinism of atom splitting, the computation can be visualized as
a search tree, where the nodes correspond to the choice-points created by splitting.

Organization of the Parallel Computation: Forcing an atom into the partial model,
via atom splitting, will create two branches of the search tree, corresponding to the two
roles of the atom (true and false). The system needs to completely traverse both sides of
this computation subtree separately, and this is the core of the parallel search process—
i.e., assign distinct branches to different search agents. The left (right) branch of each
node corresponds to setting up the atom’s value to true (false). In search parallelism,
the two branches may be explored concurrently by separate agents.

752 Hung Viet Le and Enrico Pontelli

The initial steps of the parallel computations are performed following a static par-
tition of work. A divide and conquer scheme is applied to the first ≈ lg2 n levels of
the search tree (n is the number of agents). Initially all agents independently perform
the initial boolean propagation; at the first splitting, processors are partitioned along
the two branches—distribution of processors between the two branches is based on
the estimated size of the two subtrees (using the same heuristic strategy of [13]). The
process continues until individual agents are assigned to distinct subtrees. This pro-
cess does not require inter-process communication and resembles the guiding path
generation process of PSATO [15]. After this initial setting, the system switches to a
fully dynamic distributed scheduling strategy, where an idle agent secures new tasks by
performing a sharing operation with another agent. We consider scheduling strategies
that are receiver-initiated (i.e., idle agents initiate scheduling). The dynamic scheduler
(briefly described in Sect. 3.3) is expected to determine a pair 〈P ,N〉, where P is the
active agent from where tasks should be acquired (work-sender), and N is the node
(target node) in the tree containing the task to be exchanged. Once the pair 〈P ,N〉 has
been determined, a sharing operations has to be performed between the idle agent and
P . We will refer to the idle agent as the work-receiver. An idle agent which is searching
for new tasks is called work-checker. The location of the idle agent in the search tree is
called start node. A node with an unexplored alternative is said to be open.

Essential Data Structures: The basic data structures employed extend the traditional
design used for linear time computation of declarative closures. Inter-connected objects
are used to represent each rule and each atom. The computation is based on the use
of a stack, which maintains a representation of the partially constructed stable model
(as references to atoms). If an atom is determined to be true/false, it is pushed on the
stack along with its truth value. An array (history record) has been introduced to record
the choice-points created during the construction of the current branch of the search
tree—i.e., it provides a compact representation of the branch in the search tree built
by the agent. During the execution, search agents operate on the leaves of the search
tree; to assist the sharing operations, each search agent maintains an array (relative
positions) recording the nearest common ancestor (nca) nodes between the agent’s leaf
and the leaf of any other agent. In a distributed setting, determination of the relative
positions require inter-process communication. In this work, the updates are lazily done
via broadcast messages during the sharing operations.

3 Parallel Work Sharing Strategies

The objective of the sharing operation is to transfer tasks between two agents. In order
to allow an agent to restart its computation from a different node, it is necessary to
reconstruct the correct execution state; i.e., if the agent moves to node N , then it will
have to instantiate its data structures to reflect the partial model associated to node N .
[6] surveys over 20 different schemes to address the sharing problem for Prolog.

The formal analysis of search parallelism [12] recognized methods based on con-
stant-time access to the partial model and constant-time alternative selection to be op-
timal. This restricts our choice to sharing methods that maintain the same model and

An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 753

program representation as in sequential models, and that reconstruct the necessary seg-
ments of the computation only when sharing takes place. We can recognize two key
approaches: copying—where the necessary segments of computation are copied from
the work-sender to the work-receiver—and recomputing—where the work-receiver re-
builds the segments of computation with minimal information from the work-sender.
Copying requires significant communication but it minimizes the amount of work done
by the receiver, while recomputing minimizes communication but requires high com-
putation effort by the receiver. Copying has been widely adopted in parallel logic pro-
gramming and considered as the most effective scheme [6]. We explore a solution where
copying and recomputation can alternate depending on the application.

3.1 Recomputation-Based Methods

In the recomputation-based methods, the idle agent acquires work by recreating the
state of computation existing at the time the node where a new alternative is available
was created. In its most direct version, the content of the data structures representing
the clauses and atoms and the content of the stack (representing the partial model) are
recomputed, starting either from the root of the search tree or from the nca node of the
target node and the start node, and ending in the target node [6]. The work-sender only
needs to send a part of its history record, used to guide the work-receiver in making the
correct choices during recomputation (i.e., what alternative to take in each choice-point
created during recomputation). We introduce 4 recomputation methods, which differ in
the amount of recomputation performed and in the way agents move in the search tree.

Method 1: Recomputation with Backtracking (ReBack). The key requirement in this
method is that each agent maintains its relative positions in the search tree w.r.t. the
other agents. The work-receiver acquires work by first backtracking to the nca node of
the start node and the target node (a.k.a. the relative position), and then initiating the
recomputation operation from there. The stack and the other data structures, including
the rule and atom objects, are reconstructed from the relative positions. The path that
runs from the nca node to the target node in the search tree is called the connection.
The description of the connection is present in the work-sender—it is a segment of its
history record (Sect. 2). The connection is exchanged between the two agents, and used
by the work-receiver to perform recomputation. Both the work-receiver and the work-
sender will also mark the target node as explored (to avoid duplication of work). The
relative positions between agents also need to be updated during the sharing operation.
When the receiver has completed the recomputation process, it will replace its relative
positions array with a copy of the relative positions of the work-sender. Meanwhile, the
work-sender broadcasts the new position of the work-receiver to all agents, allowing
them to update their own relative positions arrays (w.r.t. the work-receiver).

The lack of guarantee regarding the order of arrival of messages sent by different
agents might create situations where agents incorrectly update their relative positions.
The overall effect is that the system may be unable to schedule work to idle agents. We
refer to this problem as the mismatch situation.

Method 2: Recomputation by Backtracking-Compare History (ReBackHis). In this
method, instead of maintaining the relative positions between each pair of agents, the

754 Hung Viet Le and Enrico Pontelli

agents explicitly exchange their history records at the beginning of the sharing opera-
tion, determining at such moment the nca node in the search tree w.r.t. their positions.
Whenever two agents exchange work, the work-receiver sends its own history records
to the work-sender. Having compared to the received list, the work-sender figures out
and sends back to the work-receiver the nca node and the connection. The main advan-
tage of this alternative is that the work exchange is done locally, between two agents
without notifying anyone else. On the other hand, the agents do not know their rela-
tive positions, and they may attempt to seek work from agents that have a nca node
close to the root (i.e., agents that are “far” from the receiver). This may cause longer
backtrack/recomputation phases, but we avoid the messages to maintain the relative
positions between agents, reducing traffic and avoiding the mismatch situation.

Method 3: Recomputation Reset (ReReset). In the recomputation reset scheme, the
initial backtracking to the nca node between the positions of the two agents is avoided.
The backtracking step is replaced by a recomputation that starts always from the root
of the search tree. Such scheme requires each agent to store its state at the root of the
tree—i.e., the result of the first constraint propagation—and the ability to make an agent
efficiently switch back to such initial state. This operation is called Reset, and it can be
accomplished by (a) emptying the stack; (b) over-writing the rule and atom objects with
a permanently saved copy of their state at the root node; (c) removing all the atoms
present in the various temporary queues used by the boolean constraint propagation
procedures. The relative positions between the agents are no longer necessary, and the
only communication required is the connection from the root to the target node (which
might be significantly bigger than the connection in ReBackHis).

Method 4: Recomputation Reset Split (ReResetSplit). In this method, instead of shar-
ing the highest node which contains alternatives, the sender sends to the work-receiver
the complete path from the root to the lowest node in its branch. All the nodes with un-
explored alternatives along the branch are distributed between the two agents according
to an interleaved scheme—i.e., the first open node is kept by the work-receiver, the
sender keeps the second one, the work-receiver keeps the third, etc. This scheme bears
some similarities to the stack splitting scheme used in some parallel Prolog systems
[14], where the partitioning is made in contiguous blocks of choice-points; our scheme
makes use of an interleaved distribution—impractical in Prolog (due to the need of
handling side-effects) but effective in ASP, and expected to give rise to more balanced
distributions—since it is unpredictable whether the “richer” nodes are in the upper or
lower levels of the search tree. Compared to the other recomputation methods, ReRe-
setSplit requires larger amount of data exchanged between agents (the complete history
record of the work-sender), and the sender is also required to travel more to get to the
new computation state. However, the agents can share in a single interaction a large
number of open nodes, quickly accessible via local backtracking.

3.2 Copy-Based Methods

In copying, instead of reconstructing the computation state, the idle agent acquires work
by copying the data structures stored in the work-sender agent. In most of the cases, the
data to be transfered include the components of the rule and atom objects that are part of

An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 755

the computation state (e.g., the truth value of the atoms, the counters in the objects used
to keep track of the state of the clause), the stack, the history record, and the relative
positions of the agent. In order to facilitate the copy process, we have separated the rule
objects in two parts—a static part (set during the initialization phase and never copied)
and a dynamic part (modified during the remainder of the execution). The dynamic
parts are collected in arrays to facilitate copying. Also, changes to atom objects are
trailed, and only the modifications are copied. Observe that, while in recomputation
the execution develops from the root of the tree towards the open node, in copying the
computation restarts from the open node and moves up via backtracking.

Method 5: Incremental Copying Split-Maintain the Relative Positions (IncCopyS-
plit). In this method, we exploit the basic copying mechanism, enriched with the idea
of incrementality—incrementality derives from the fact that the idle worker has already
traversed the part of the branch in the search tree from the root node to the nca node,
thus, there is no need to copy it. Like in the case of recomputation by backtracking,
each agent maintains its relative positions with the other agents. The work-receiver
backtracks to the nca node, while the work-sender transfers the part of the stack from
the nca node to the selected open node. The set of clauses and atoms with up-to-date
parameters and links are included in this copying operation. The work-receiver unpacks
the data set and updates its data structures. The update process is performed by replac-
ing the dynamic parts of rules and atoms with the received ones and adding the content
of the received stack to the local stack. Similarly to the ReBack case, all other agents
have to be notified (via broadcast) of the new position of work-receiver in the search
tree. Concurrently to the exchange of data, the agents perform an interleaved partition
of the open choice-points as described in the method ReResetSplit.

Method 6: Incremental Copying Split-Compare History (IncCopySplitHis). This
method is simpler than IncCopySplit. The relative positions between the agents, em-
ployed to support the incremental copying behavior, are no longer required. Analo-
gously to the ReBackHis scheme, the agents exchange their history records to find out
the nca node. As soon as such node has been determined, the sharing process proceeds
exactly as in the IncCopySplit scheme. The only additional difference is that the broad-
cast messages to notify the change of position of the work-receive agents are not re-
quired. As for the ReBackHis scheme, scheduling has to be performed blindly, without
knowledge of the relative positions of the agents, but the message traffic is dramatically
reduced and the mismatch situations are avoided.

Method 7: Copying All Split (CopyAll). This method is the simplest between our
copying approaches. Whenever a sharing operation is invoked, the sender transfers
the complete database of up-to-date rules and atoms (dynamic parts only), along with
the complete stack. The receiver empties its stack and it installs the received data.
Compared to the IncCopySplitHis scheme, the CopyAll allows the same type of blind
scheduling (with the same advantage in terms of reduced traffic), but it does not require
the initial exchange of history records (since knowledge of the nca node is not required).
On the other hand, the method requires the copying of the complete stack, which might
contain a substantially larger amount of data than in the incremental case.

756 Hung Viet Le and Enrico Pontelli

3.3 Further Implementation Details – Scheduling and Termination

The irregular structure of ASP search trees requires the use of a dynamic distributed
scheduling scheme [6, 14]. Each agent alternates between execution phases and schedul-
ing phases. The lack of a central scheduler leads to a situation in which agents do not
have knowledge about the location and status of other agents in the tree. Consequently,
they need to exchange information (e.g., the relative positions broadcasts) to ensure a
good load balancing. The scheduler addresses two aspects: (i) establishes policies for
exchange of scheduling information; (ii) determines global termination (using a token-
ring termination detection). All communications rely on a time-out mechanism, where
unanswered task requests are discarded by the idle agent—this has shown large im-
provements in performance w.r.t. schemes requiring acknowledgments.

A

A

A

A

A

A

A

B
B

B

B

B

B

B

C

C

C

C

C

C

C

D
D

D

D

D

D

D

E

E

E

E
E

E

E

F
F

F

F

F

F
F

H

H

H

H

H

H

H

0 2 4 6 8 10 12
Number of Agents

0

2

4

6

8

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

A

A

A

A

A

A

A

B

B

B

B B
B B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F
F

F

H

H

H

H

H

H
H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

Fig. 1. Puzzle (left) and Queens Benchmarks

The Searching Agent: Whenever an agent has completely exploited all the alternatives
locally available in its branch, it starts requesting work. The work requests are arranged
according to a dynamic ordering of agents (stored in a priority array). By using a good
ordering, a searching agent can reduce the volume of data in copying or recomputation.
Depending on the individual approach, there are alternative strategies to compute the
priority array. E.g., the methods that keep the relative positions of agents, sort the pri-
ority array based on the level of the nca nodes. The other methods start with a random
order and re-sort the array based on the observed communications (e.g., a late message
indicating tasks availability will increase the priority of that agent). Agents are con-
tacted in the order they appear in the priority array. Time-outs lead to generation of a
new request sent to the next agent in the array. The agent enters the idle state when all
its attempts to get work failed. If the idle agent receives the white token, it will forward
the token to the next agent in the ring. If it receives a black token, then it will know that
agents are still working, and it will revert to work-search and scheduling.

4 Experimental Results

The system has been implemented on a Beowulf cluster (Xeon 1.7GHz, 1GB RAM,
Linux, and Myrinet), using Java+MPIJava. The parallel system has an average over-
head of less than 10% over the sequential solver (the SMODELS [13]). We tested the

An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 757

A

A

A

A

A

A

A

B

B

B

B

B

B
B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

2

4

6

8

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetSplitC C
CopyAllD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

Vertex (i)

A

A

A

A
A

A

A

B

B

B

B B

B
B

C

C

C

C

C

C
C

D

D

D

D
D

D
D

E

E

E

E

E

E
E

F

F
F

F
F

F
F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

2

4

6

8

10

Sp
ee

du
p

Seating (ii)

A

A

A

A

A

A

A

B

B

B

B

B

B

B

C
C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

PigeonHole (iii)

A

A
A

A
A A A

B

B

B
B

B

B B

C

C

C C

C C

C

D

D
D

D

D D

D

E

E

E
E

E

E
E

F

F
F

F F
F

F

H

H

H
H H H H

0 2 4 6 8 10 12 14
Number of Agents

0

2

4

6

8

Sp
ee

du
p

Car Plan (iv)

A

A

A

A

A

A

A

B

B

B
B

B

B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

LP1 (v)

A

A

A

A

A

A

A

B

B

B

B

B
B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

LP2 (vi)

A

A

A

A

A

A

A

B

B

B
B

B
B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
InCopySplitF F
IncCopySplitHistoryH H

LP3 (vii)

A

A

A

A

A

A

A

B

B

B

B

B

B
B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

LP4 (viii)

Fig. 2. Speedups for Benchmarks

implementation on a set of benchmarks, focusing on evaluating the different sharing
strategies. All the timings presented are averages over 5 runs.

The Puzzle benchmark (4×4 numeric puzzle) is characterized by a balanced search
tree with fairly short branches and a balanced distribution of choice-points in the dif-
ferent branches; as a result (Fig. 1) the performance and the scalability is good, and all
methods provide comparable results. On the other hand, in the Queens benchmark (14-
queen problem, Fig. 1), we can observe that the speedup of ReBack is significant lower
due to (1) the mismatch problem and (2) the high cost of recomputation. In this problem,
the branches are long and the cost for generating them is comparatively higher than just
copying the corresponding data structures. Furthermore, splitting methods tend to per-
form worse; when the system works near the end of the branches, the agents exchange
work more frequently and the work has “poorer” quality; in this case splitting schemes
tend to generate larger messages (to secure larger chunks of work) without being bal-
anced by advantages in terms of work obtained. The analogous behavior occurs in the
Vertex problem (30-node vertex covering, Fig. 2(i)). The speedups are higher thanks to
the large number of choice-points generated (towards the root part of the tree).

In the Seating party benchmark (Fig. 2(ii)) we see marked differences in perfor-
mance. All speedups tend to flatten for many processors, due to the small number of
choice-points, located in the top part of the tree. In this experiment, the winners are
the simple methods: ReReset and CopyAll where the idle agents start from the root of
computation tree. In the Pigeon Hole experiment (pigeonhole problem with 9 holes and
10 pigeons, Fig. 2(iii)), all methods reach excellent speedups (11 using 12 agents). The

758 Hung Viet Le and Enrico Pontelli

benchmark has both long and short branches, with a balanced distribution of choice-
points on each branch. The Car Plan (planning with continuous time, Fig. 2(iv)) has
a peculiar behavior. It offers a large number of choice-points but many with small
branches. The recomputation schemes are superior, as they quickly reconstruct short
branches, while copying requires transfering all atom and rule objects.

The problems Lp1-Lp4 are synthetic problems proposed in ASSAT [8]—and chal-
lenging for SAT solvers. The speedups of the system are almost linear. ReBack and
IncCopySplit slow down in some cases due to mismatch situations. Similarly, CopyAll
tends to produce worse performance due to the large size of the models constructed—
making non-incremental copying considerably slower.

Discussion: The experiments conducted led to important conclusions regarding the de-
velopment of efficient solvers: (a) There is considerable less uniformity than other
frameworks (i.e., no clear winner); (b) The simple methods (e.g., ReReset) behave
better than the complicated ones. (c) The recomputation approach appears to be rela-
tively better then the copying approach in most of the experiments.
In greater details, we have that:
• Sharing methods that rely on exchange of histories for determining the nca node

are faster than methods that rely on approximated relative positions and broadcast.
• If the number of agents is small, the methods maintaining the relative positions

behave very well. Although the system must handle more messages, the speedups
show the benefits of choosing the “right” agents to share work with.

• Short executions are not suitable to copying (due to messages overhead).
• In recomputation, stack splitting does not greatly improve performance. In ReReset,

the receiver stops recomputing at the first open node, while in ReResetSplit it has
to recompute until the last node. The gain from the extra open nodes has to balance
the extra cost; this is not the case in search trees with work near the root.

This indicates the need to support different sharing strategies in the same solver; dif-
ferent strategies might lead over 60% variations in speedups. The most suitable strat-
egy can be selected based on various factors. At the application level, relevant factors
include the number of agents (if small, methods based on relative positions are bet-
ter), the hardware platform (if the ratio of cpu speed vs. interconnection speed is high,
then recomputation is preferred), and the size of the application (recomputation seems
better for small applications). Factors arising during the computation can also be em-
ployed to dynamically select the most effective strategy; let expand rate denote the

ratio numberOfAtoms
numberGuessedAtoms , where numberGuessedAtoms is the number atom splits and

numberOfAtoms is the total number of atoms in the stack (size of the partial model).

0. If expand rate is high then copying is better than recomputation. If the test is per-
formed dynamically, and the focus is on incremental/relative positions methods,
then expand rate is limited to the part of the search tree branch below the nca node.

1. If recomputation is chosen, then backtracking can be selected if the path from the
root to the nca node is significantly longer then the path from the start node to the
nca node, otherwise reset can be employed. In copying, the copy-all schemes are
more effective than incremental-copy if the nca node is closer to the root.

An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 759

2. Based on the number of atoms between contiguous choice-points, an agent can de-
cide whether to use splitting. E.g., in recomputation, if the sender estimates that the
number of atoms between the consecutive open nodes is large, or the expand-rate is
large, and there are only a few open nodes, then it transfers work without splitting.

3. If the system uses the relative positions and a mismatch situation occurs, then it can
temporarily, or permanently, switch to a reset or an history comparison scheme.

Work is in progress to build a self-adapting sharing procedure based on these ideas.

Communication Frequency: All the communications between agents are asyn-
chronous. It is very important to determine the frequency used by the agents to check
for incoming messages, and the interval used to wait for a reply before giving up. Our
experiments indicate that the frequency and delay intervals should be tied to the esti-
mated size of the tasks available in the open-nodes—to avoid giving away small tasks
or depriving the work-sender of work. Another significant factor is the sharing strategy
adopted, in particular: (1) the presence of splitting requires a lower frequency; (2) ap-
proaches having higher communication requirements (e.g., copying or methods using
relative positions) impose lower frequencies and higher delays; (3) approaches requir-
ing more time to reach the alternative (e.g., recomputation) need longer delays.

5 Conclusions and Future Work

In this paper, we presented preliminary results from an investigation of efficient method-
ologies for the execution of ASP and SAT solvers on Beowulf clusters. In particular, we
focused on the analysis of distinct task sharing strategies, obtained as variations of the
copying and the recomputation schemes—which have been theoretically proved [12]
to be optimal in the context of search parallelism. The different schemes have been
developed to cover a significant spectrum of alternatives, balancing computation and
communication. The ideas have been developed in a complete parallel ASP solver, and
evaluated on a variety of benchmarks.

Relatively little work has appeared in the literature regarding parallelization of SAT
and ASP solvers. A preliminary proposal in this area has been presented in [11], based
on a simple solver; [4] presented a master-slave ASP search parallel engine, based
on PVM (with limited evaluation). [15] describes a distributed implementation of the
SATO SAT solver, based on a master-slave structure; the model relies on a fairly stan-
dard copying scheme. PaSAT [1] is a parallel SAT solver based on shared memory and
dynamic scheduling. [3] presents a large scale copy-based SAT solver.

Current work is focused on analyzing dynamic scheduling strategies and on the
investigation of how scheduling interacts with the sharing strategies presented here.

References

1. W. Blochinger et al. Parallel SAT-Checking with Lemma Exchange: Implementation and
Applications. Theory & Apps. of Satisfiability Testing, ENDM, 2001.

2. M. Bonacina. Taxonomy of Parallel Strategies for Deduction. Annals Math & AI, 29, 2000.
3. W. Chrabakh, R. Wolski. A Parallel SAT solver for the Grid. UCSB TR 2003-05, 2003.

760 Hung Viet Le and Enrico Pontelli

4. R. Finkel et al. Computing Stable Models in Parallel. AAAI Spring Symposium, 2001.
5. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. ILPS, 1988.
6. G. Gupta et al. Parallel Execution of Prolog Programs. ACM TOPLAS, 23(4):472–602, 2001.
7. V. Lifschitz. Answer Set Planning. LPNMR, 373–374. Springer, 1999.
8. F. Lin and Y. Zhao. Computing Answer Sets By SAT Solvers. AAAI, 2002.
9. V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Programming

Paradigm. The Logic Programming Paradigm. Springer Verlag, 1999.
10. L. Perron. Search and Parallelism in Constraint Programming. CP, Springer, 1999.
11. E. Pontelli and O. El-Kathib. Construction of a Parallel Engine for ASP. PADL, 2001.
12. D. Ranjan et al. On the Complexity of Or-Parallelism. NGC, 17(3):285–308, 1999.
13. P. Simons. Extending and Implementing the Stable Model Semantics. PhD, HUT, 2000.
14. K. Villaverde et al. A methodology for order-sensitive execution of non-deterministic lan-

guages on beowulf platforms. Euro-Par, pages 694–703, 2003.
15. H. Zhang et al. PSATO: a Distributed Propositional Prover and its Application to Quasigroup

Problems. J. Symbolic Computation, 11:1–18, 1996.

Flexible Skeletal Programming with eSkel

Anne Benoit, Murray Cole, Stephen Gilmore, and Jane Hillston

School of Informatics, The University of Edinburgh, James Clerk Maxwell Building
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

enhancers@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/mic/eSkel

Abstract. We present an overview of eSkel, a library for skeletal parallel
programming. eSkel aims to maximise the conceptual flexibility afforded
by its component skeletons and to facilitate dynamic selection of skeleton
compositions. We present simple examples which illustrate these proper-
ties, and discuss the implementation challenges which the model poses.

1 Introduction

The skeletal approach to parallel programming is well documented in the re-
search literature (see [1–4] for surveys). It observes that many parallel algorithms
can be characterised and classified by their adherence to one or more of a num-
ber of generic patterns of computation and interaction. For instance, a variety
of applications in image and signal processing are naturally expressed as process
pipelines, with parallelism both between pipeline stages, and within each stage
by replication and/or more traditional data parallelism [5].

Skeletal programming proposes that such patterns be abstracted and pro-
vided as a programmer’s toolkit, with specifications which transcend architec-
tural variations but implementations which recognise these to enhance perfor-
mance. This level of abstraction makes it easier for the disciplined programmer
to experiment with a variety of parallel structurings for a given application,
enabling a clean separation between structural aspects and the application spe-
cific details. Meanwhile, the explicit structural information provided by skeletons
enables static and dynamic optimisations of the underlying implementation.

In [2] we presented a number of observations and proposals designed to facili-
tate the popularisation of the skeletal approach, and outlined the first prototype
of eSkel, a library of skeleton operations for C and MPI. In the light of subse-
quent experiences we isolated and described two key concepts, nesting mode and
interaction mode, which capture important choices in the design of any skeletal
programming framework [6]. This caused us to substantially refine and partly
redesign eSkel. While these and other concepts embedded in eSkel may be found
in various combinations in previous skeletal systems, we believe that this paper
discusses the first attempt to enumerate and compose them systematically and
explicitly within a single framework.

This paper describes current work on the latest instantiation of eSkel. We
describe the ways in which key concepts have been incorporated into the pro-
gramming model and API in order to maximise the flexibility with which the

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 761–770, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

762 Anne Benoit et al.

programmer can shape and reshape skeletal programs, and on the substantial
implementation challenges which this flexibility creates.

2 Dynamic Selection of Skeletons and Modes

eSkel is designed to provide the skeletal parallel programmer with flexibility in a
number of ways. As in the initial prototype [2], a skeleton abstracts the pattern
of interactions between a number of component activities, each of which may be
internally parallel, and which may choose to invoke further skeletons. The skele-
tons provided each encompass the ability to specify the use of either localised
or distributed data (the data spread), and the choice of either explicit or im-
plicit interaction mode [6] to trigger interactions between the various activities.
The aspects of the interface which capture these choices have been rationalised.
Guided by the concept of nesting mode [6], the programmer can choose to in-
corporate both transient and persistent skeleton calls within the same skeleton
nest. Crucially, all of these decisions, as well as the choice of overall skeleton
structure for each phase of a program, are made dynamically, and can there-
fore be based, where appropriate, on information gathered during execution (for
example, data values or sizes). In summary the significant improvements over
eSkel’s first version [2] are as follows.

– The definition of ‘families’ of related skeletons, capturing distinctions in in-
teraction style, have been replaced by the explicit selection of interaction
mode. For example, there is now only one pipeline skeleton, which can be
parameterized to behave as either of its predecessors.

– All skeletons in the original eSkel were (implicitly) in transient mode. There
were no persistent nestings. Both transient and persistent modes are now
available (by setting the corresponding parameter).

– The data model has been revised and extended to incorporate the concept of
molecules, enabling the expression of skeletons (such as Haloswap) in which
several distinct pieces of data are exchanged at each interaction.

2.1 eSkel Interface

The current specification of eSkel defines five skeletons, each with flexibility in
the dimensions discussed above. We will focus on the two of these, Pipeline
and Deal, which have so far been implemented in the current prototype, since
in combination these can illustrate all the points we wish to make. The reader
is referred to the eSkel homepage [7] for discussion of the Farm, HaloSwap and
Butterfly skeletons.

The Pipeline skeleton abstracts classical pipeline parallelism. It allows an
indexed set of activities (called “stages”) to be chained together and applied
to a sequence of inputs. Data is passed from a stage to its successor following
the natural ordering on stage indices. The user can choose between an implicit
pipeline, in which the transfer of the data is done automatically, constraining
the stages to produce one result for each input, or an explicit mode, in which a
stage can produce arbitrarily many results without necessarily consuming data

Flexible Skeletal Programming with eSkel 763

(for example, a generator or filter stage). In the latter case, the data transfer is
controlled by the programmer, by calls to the generic interaction functions Give
and Take.

The Deal skeleton is similar to a traditional farm, but with tasks distributed
strictly cyclically to workers. Thus it is most appropriately used when the work-
load associated with individual tasks is expected to be homogeneous. This skele-
ton is useful nested in a pipeline, in order to internally replicate a stage. Deal
semantics require the ordering of outputs from the skeleton to match that of the
corresponding inputs, irrespective of the internal speed of the workers.

The price for this flexibility is paid in the complexity of the API, where
each skeleton call must specify its choices. In addition to the issues already
discussed, the pragmatic decision to borrow and build upon MPI’s data model
with its already substantial parameter set, leads to rather long parameter lists.
However, when understood as a set of groups, each addressing orthogonal issues,
the parameters become more conceptually manageable. We now present these
groupings informally. Their formal use will be illustrated in Section 2.2.

One set of parameters deals with the called skeleton’s data buffers. As with
any MPI collective operation, there are distributed input and output buffers,
each requiring the standard MPI pointer, type, length definition. These, together
with the enclosing MPI communicator, capture the call’s interface to the rest of
the program. A second set of parameters deals with the call’s internal structure
and interfaces. For example, in a pipeline, we must describe the number of stages
and the types and data modes on their interfaces, and the allocation of processes
from the calling group to the distinct stages (captured by borrowing MPI’s
colouring parameter mechanism to describe the required sub-groups). Finally,
a group of parameters describe the details of the skeleton’s various activities
(stages in a Pipeline, workers in a Deal) with a choice of interaction mode and
a pointer to a function for each.

In the interests of regularity, we have chosen a single generic interface for all
functions which contain code for skeleton activities. The essence of activities is
that they interact in predefined patterns, via the skeleton infrastructure, with
each other and with skeleton calling programs. Each such interaction may involve
different numbers of data atoms, according to the semantics of the skeleton. For
example, “getting the next task” in a Deal skeleton involves a single atom,
whereas “updating the halo” in a HaloSwap skeleton will involve two atoms for
each neighbour (one arriving, one leaving). The eSkel_molecule_t type collects
atoms involved in an interaction into a single sequence. Activity functions both
accept and return a single item, of type eSkel_molecule_t *. The specification
of each skeleton defines its detailed molecule usage.

2.2 Examples

We present two variants of a toy program in order to concisely illustrate the ease
with which the eSkel programmer can describe and revise the parallel structure
of an application. The first version illustrates the use of persistent nesting and
implicit interactions. The second uses transient nesting and explicit interactions.

764 Anne Benoit et al.

1 #define STAGES 4 // Number of pipeline stages
2 #define DEALWORKERS 2 // Number of workers in the deal
3 #define INPUTNB 4 // Input multiplicity
4 #define INPUTSZ 5 // Size of each input datum, per process
5
6 eSkel_molecule_t * SimpleStage (eSkel_molecule_t *thingy) {
7 int i;
8 for (i=0;i<thingy->len[0];i++) {
9 ((int *) thingy->data[0])[i] += 1000;

10 }
11 return thingy;
12 }
13
14 eSkel_molecule_t * DealWorker (eSkel_molecule_t *thingy) {
15 int i;
16 for (i=0;i<thingy->len[0];i++) {
17 ((int *) thingy->data[0])[i] += 1000;
18 }
19 return thingy;
20 }
21
22 void DealStage (void) {
23 int workercol, outmul;
24 if ((myrank() < 1)) workercol = 0; else workercol = 1;
25
26 Deal (DEALWORKERS, IMPL, DealWorker, workercol, STRM,
27 NULL, 0, 0, SPGLOBAL, MPI_INT,
28 NULL, 0, &outmul, SPGLOBAL, MPI_INT, 0, mycomm());
29 }
30
31 int main (int argc, char *argv[])
32 {
33 int i, j, p, next, outmul, mystagenum, mymult, *inputs, *results;
34 spread_t spreads[STAGES+1] = {SPGLOBAL, SPGLOBAL, SPGLOBAL, SPGLOBAL, SPGLOBAL};
35 MPI_Datatype types[STAGES+1] = {MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT};
36 Imode_t imodes[STAGES] = {IMPL, DEV, IMPL, IMPL};
37
38 eSkel_molecule_t *(*stages[STAGES])(eSkel_molecule_t *) =
39 {SimpleStage, (eSkel_molecule_t * (*)(eSkel_molecule_t *))DealStage, SimpleStage, SimpleStage};
40
41 MPI_Init(&argc, &argv); SkelLibInit();
42 inputs = (int *) malloc (sizeof(int)*INPUTNB*INPUTSZ);
43 for (i=0; i<INPUTNB*INPUTSZ; i++) inputs[i] = myrank()*100 + i + 1;
44
45 if (myrank()<2) mystagenum = 0;
46 else if (myrank()<5) mystagenum = 1;
47 else if (myrank()==6) mystagenum = 2;
48 else mystagenum = 3;
49
50 results = (int *) malloc (sizeof(int)*INPUTNB*INPUTSZ); // Create output buffer
51
52 Pipeline (STAGES, imodes, stages, mystagenum, BUF, spreads, types,
53 (void *) inputs, INPUTSZ, INPUTNB, (void *) results, INPUTSZ, &outmul,
54 INPUTNB*INPUTSZ, mycomm());
55
56 MPI_Finalize(); return 0;
57 }

Fig. 1. Example 1

Example 1: Persistent Nesting and Implicit Interactions
This program calls a Pipeline skeleton, in which the second stage contains a
persistently nested Deal. Some of the activities (pipeline stages and deal workers)
are assigned several processes, and process data with “global spread” (i.e. the
data is distributed across such processes and accessed in SPMD style).

The constant declarations define the number of pipeline stages (STAGES),
the number of workers (DEALWORKERS) in the deal, and the number and size of

Flexible Skeletal Programming with eSkel 765

input items (INPUTNB, INPUTSZ). When run with 8 processes, the input to this
pipeline consists of a total of (8*4*5) integers, which are treated as 4 (INPUTNB)
inputs to the pipeline, each of which is constructed from a 5 (INPUTSZ) integer
contribution per process. The first stage in the pipeline has been assigned two
processes. Thus, since we are in “global spread” mode, each pipeline input will
be fed to the two first stage processes as a block of (8*5)/2 integers each.

The main function (lines 31-57) makes the pipeline call. It defines all the
pipeline parameters and assigns processes to the stages. Lines 34-39 describe
the structure of the pipeline: all inter-stage data transfers use global spread
(SPGLOBAL) and involve sequence of integers. All activities except the second
stage use “implicit” mode (IMPL) transfers (in other words, handled implicitly
by the skeleton). The second stage has “devolved” mode (DEV), indicating that
this will be inherited from a persistently nested skeleton (the deal in this case).
All stages will execute the SimpleStage activity, except the second, which exe-
cutes DealStage. Lines 42-43 create some (distributed) input data. Lines 45-48
compute an assignment of processes to stages. Line 50 creates the (distributed)
output buffer. The pipeline call itself is on lines 52-54, and is passed the various
parameters as created, together with details of the input and output buffers in
the style of a conventional MPI collective operation.

Function SimpleStage, on lines 6-12, describes the actions of the first, third
and fourth stages. Since implicit interaction mode is used, the function takes
an eSkel molecule as a parameter and returns a molecule. Here we simply add
1000 to each integer in the block and return the modified molecule. In con-
trast, the second stage is described by DealStage. It computes an assignment
of processes (from the stage) to workers in the internal deal, then calls the Deal
skeleton on lines 26-28. The data mode is stream (STRM) indicating that the
data are streamed into the deal from the parent skeleton. The input and output
buffer related parameters are therefore redundant (all the NULLs and 0s). Deal
workers run the function DealWorker. In our simple example this is identical to
SimpleStage. We leave the duplication to emphasise that these functions can
be programmed independently, if appropriate.

Figure 2 illustrates the requested assignment of processes to stages and work-
ers, and the different communicators involved. This will help to clarify the dis-
cussion of eSkel implementation in Section 3. We have a 4-stage pipeline where
the second stage is a deal with two workers, of which one has two processes. Px
represents process x (0 ≤ x ≤ 7), as indexed in the original MPI_COMM_WORLD. Si
represents stage i (0 ≤ i ≤ 3), and Woj represents worker j (0 ≤ j ≤ 1).

Example 2: Transient Nesting and Explicit Interactions
Our second example demonstrates the use transient nesting, explicit interactions
and local data spread, and also illustrates the ease with which the programmer
can experiment with the high level structure of an application. Working from
the program of example 1, the programmer decides to

– turn the second stage (formerly the Deal) into a simple single process stage;
– reallocate the two spare processes from the second stage to the first stage;

766 Anne Benoit et al.

P0

P1

P2

P3

P4
P6

P5

P7

Wo0

Wo1

Global Communicator

S0

S1
S2

S3

Fig. 2. Example 1 - Mapping of the processes

– adapt the first stage (which now has four processes) so that every second
input is processed by a dynamically created four stage pipeline, with one
process per stage. These are transiently nested pipelines, in contrast to the
persistently nested Deal of example 1. Other inputs are treated as in the
original simple stages.

The structural changes at the outer level are captured in lines of 3, 61, 63,
64, 70 and 71 of Figure 3. Line numbers in parentheses are those of the cor-
responding lines in Figure 2. The rest of main is unchanged, and is omitted
here. The behaviour of the new first stage, and its sub-stages are described by
the new functions StrangeStage and SubStage. StrangeStage creates and calls
the nested pipeline for every second input (controlled by line 44). The nested
sub-stages, called with explicit (EXPL) interaction mode (line 35), use eSkel func-
tions Give and Take to control interactions with neighbouring stages (lines 21
and 26).

3 Implementation Challenges

We now consider the challenges raised by eSkel’s implementation, focusing par-
ticularly on the call tree, which is built dynamically, and allows processes to
find communication partners. We also discuss the management of the input and
output buffers.

3.1 Building the Call Tree Dynamically

In order to correctly implement the communications which have been abstracted
by the skeleton calls, it is necessary for the processes assigned to the various
activities to understand their position within the overall skeleton nest. Since the
structure of the nest emerges dynamically, and independently within distinct
branches, this investigation can only be performed dynamically, at the point at
which no further changes to the structure are possible. In eSkel this occurs when
each activity calls its first explicit (or implicit) interaction. Building the call tree
requires collaborative communications between all processes in the nest.

Flexible Skeletal Programming with eSkel 767

3 #define SUBSTAGES 4 // Number of stages in the nested pipeline

15 void SubStage (void) {
16 int i, **len;
17 eSkel_molecule_t *tempitem;
18
19 len = (int **) malloc (sizeof (int *));
20 tempitem = (eSkel_molecule_t *) malloc (sizeof (eSkel_molecule_t));
21 while (tempitem->data = Take(len)) {
22 tempitem->len = *len;
23 for (i=0;i<tempitem->len[0];i++) {
24 ((int *) tempitem->data[0])[i] += 250;
25 }
26 Give(tempitem->data, tempitem->len);
27 }
28 }
29
30 eSkel_molecule_t * StrangeStage (eSkel_molecule_t *thingy) {
31 static int count=0;
32 int i, outmul;
33 spread_t spreads[SUBSTAGES+1] = {SPLOCAL, SPLOCAL, SPLOCAL, SPLOCAL, SPLOCAL};
34 MPI_Datatype types[SUBSTAGES+1] = {MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT};
35 Imode_t imodes[SUBSTAGES] = {EXPL, EXPL, EXPL, EXPL};
36
37 eSkel_molecule_t *(*stages[SUBSTAGES])(eSkel_molecule_t *) =
38 {(eSkel_molecule_t * (*)(eSkel_molecule_t *))SubStage,
39 (eSkel_molecule_t * (*)(eSkel_molecule_t *))SubStage,
40 (eSkel_molecule_t * (*)(eSkel_molecule_t *))SubStage,
41 (eSkel_molecule_t * (*)(eSkel_molecule_t *))SubStage};
42
43
44 if (count++ % 2) { // handle it directly
45 for (i=0;i<thingy->len[0];i++) {
46 ((int *) thingy->data[0])[i] += 1000;
47 }
48 } else { // handle with a transient pipeline!
49 Pipeline (SUBSTAGES, imodes, stages, myrank(), BUF, spreads, types,
50 thingy->data[0], 1, thingy->len[0], thingy->data[0], 1 , &outmul,
51 thingy->len[0], mycomm());
52 }
53 return thingy;
54 }

(36)61 Imode_t imodes[STAGES] = {IMPL, IMPL, IMPL, IMPL};

(38)63 eSkel_molecule_t *(*stages[STAGES])(eSkel_molecule_t *)
(39)64 = {StrangeStage, SimpleStage, SimpleStage, SimpleStage};

(45)70 if (myrank()<4) mystagenum = 0;
(46)71 else if (myrank()<5) mystagenum = 1;

Fig. 3. Example 2 - changes from example 1

The root of the tree corresponds to the main skeleton call. The children de-
scribe the different activities, and if there are some persistently nested skeletons,
they appear in the tree. The transiently nested structure is not built in the main
tree. The sub-tree will be built dynamically when the transient skeleton call is
performed. Fig. 4 represents the call tree for the examples introduced in the
previous section. The tree of the nested pipeline of Fig. 4b is created at each call
of this pipeline.

768 Anne Benoit et al.

PIPELINE

P0 P6 P5
P7P1

P0

PIPELINE

P1
P2
P3

P6 P5
P7

S1S1
DEAL

Wo0
P2

Wo1
P3
P4

a. Example 1

b. Example 2

PIPELINE

P0 P1 P2 P3

P4

and alternately

S0 S3S2 S0 S2 S3

SS0 SS1 SS2 SS3

S0

Fig. 4. Call trees for the two examples

3.2 Finding Communication Partners

Communication partners are found by traversing the call tree. For example, in
Fig. 4a, we discover that Wo1 takes data from S0 and gives data to S2. Inter-
actions with a neighbouring deal require different partners at each interaction
(because of the cyclic nature of interactions in that skeleton). In our example,
when S0 performs a Give, it needs to give data alternately to Wo0 and Wo1.
To ensure this cyclic distribution we keep track of the number of Give and Take
calls performed. This allows us to find the appropriate partner.

Particular attention must be paid to boundary cases. When S0 performs a
Take, it cannot find a communication partner in the tree. It needs instead to
take the data from the input buffer to the pipeline call. Similarly, S3’s Give
must store data in the output buffer. We detail the management of these buffers
below.

3.3 Managing the Input and Output Buffers

The input buffer must be created collaboratively by all the processes, since each
of them potentially has some of the data at the point of the skeleton call. It is
created just after the call tree has been built, during the first interaction of each
activity. At that time, the processes which have to take data from the input
buffer (processes of S0 in our pipeline examples) collect all the data through
group communication, and build the input buffer.

The output buffer is created by the processes which write results into the
buffer (processes of S3 in the first example). After completion of the skeleton
nest, the results are distributed among all the processes.

More care must be taken when the group of processes dealing with the input
or output buffer are part of a deal. For example, if the nested deal was in S0
instead of S1, both Wo0 and Wo1 need to take data from the input buffer while
maintaining the cyclic order. To address this issue, we dynamically create a

Flexible Skeletal Programming with eSkel 769

thread which distributes the data to the workers. A symmetrical approach is
taken for the output buffer.

3.4 Context of Use

The eSkel library operates within the context of a running MPI program which
has already created its fixed number of processes. Moreover, a fully thread safe
version of MPI (in the sense of MPI THREAD MULTIPLE) must be used. We are
developing eSkel using the Los Alamos Message Passing Interface LA-MPI [8]
and the Sun HPC Cluster Tools [9].

4 Future Work

A full implementation of eSkel is in progress, with the current status reported
on the project web pages [7]. After completion of the initial prototype, work will
focus on development of a set of demonstrator applications, internal optimisa-
tions and expansion of the skeleton set. We will also consider ways in which the
API can be simplified, for example by moving to a more powerfully descriptive
host language such as Java, as and when the Java-MPI combination gains more
widespread practical acceptance. Current work on eSkel is conducted under the
umbrella of the Enhance project [10], which exploits the modelling power of
the Performance Evaluation Process Algebra (PEPA) [11] to predict the perfor-
mance of skeletally structured Grid applications, with a view to assisting in their
scheduling and re-scheduling in the presence of the dynamically heterogeneous
performance and availability characteristics of Grid computing platforms.

Acknowledgements

The authors are supported by the Enhance project (“Enhancing the Performance
Predictability of Grid Applications with Patterns and Process Algebras”) funded
by the Engineering and Physical Sciences Research Council under grant number
GR/S21717/01.

References

1. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press & Pitman, ISBN 0-262-53086-4 (1989)

2. Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing 30 (2004) 389–406

3. Pelagatti, S.: Structured Development of Parallel Programs. Taylor & Francis,
London (1998)

4. Rabhi, F., Gorlatch, S., eds.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer Verlag, ISBN 1-85233-506-8 (2003)

5. Subhlok, J., O’Hallaron, D., Gross, T., Dinda, P., Webb, J.: Communication and
memory requirements as the basis for mapping task and data parallel programs.
In: Proceedings of Supercomputing ’94, Washington, DC (1994) 330–339

770 Anne Benoit et al.

6. Benoit, A., Cole, M.: Two Fundamental Concepts in Skeletal Parallel Program-
ming. In: Computational Science - ICCS 2005. Number 3515 in LNCS, Atlanta,
USA, Springer (2005) 764–771

7. Benoit, A., Cole, M.: http://homepages.inf.ed.ac.uk/mic/eSkel (2005)
8. Aulwes, R.T., Daniel, D.J., Desai, N.N., Graham, R.L., Taylor, L.D.R.M.A.,

Woodall, T.S., Sukalski, M.W.: Architecture of LA-MPI, A Network-Fault-Tolerant
MPI. In: Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS’04), Santa Fe, New Mexico, IEEE Computer Society (2004)

9. Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303-4900, USA: Sun
HPC ClusterTools 3.1 User’s Guide. (2000)

10. Benoit, A., Cole, M., Gilmore, S., Hillston, J.:
http://groups.inf.ed.ac.uk/enhance (2004)

11. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In: Proc. of the 7th Int. Conf.
on Modelling Techniques and Tools for Computer Performance Evaluation. Num-
ber 794 in LNCS, Vienna, Springer-Verlag (1994) 353–368

Dynamic Reconfiguration
of Grid-Aware Applications in ASSIST�

Marco Aldinucci1, Alessandro Petrocelli2, Edoardo Pistoletti2,
Massimo Torquati2, Marco Vanneschi2, Luca Veraldi2, and Corrado Zoccolo2

1 Inst. of Information Science and Technologies – CNR, Via Moruzzi 1, Pisa, Italy
2 Dept. of Computer Science – University of Pisa – Largo B. Pontecorvo 3, Pisa, Italy

Abstract. Current grid-aware applications are implemented on top of
low-level libraries by developers who are experts on grid middleware ar-
chitecture. This approach can hardly support the additional complexity
of QoS control in real applications. We discuss a novel approach used
in the ASSIST programming environment to implement/guarantee user
provided QoS contracts in a transparent and effective way. Our approach
is based on the implementation of automatic run-time reconfiguration of
ASSIST application executions triggered by mismatch between the user
provided QoS contract and the actual performance values achieved.

Keywords: Structured Parallel Programming, grid, QoS contract,
Adaptive Applications

1 Introduction

A grid system is a geographically distributed collection of possibly parallel, in-
terconnected processing elements that all run some kind of common grid middle-
ware (e.g. Globus services). Such platforms are characterized by heterogeneity
of nodes, and by dynamicity in resource management and allocation [1].

One popular approach to grid programming consists in directly exploiting
middleware services within a standard programming language. This approach
rapidly leads to an intolerable complexity as soon as the application is both
complex and requested to exploit an user-defined QoS.

Large scale grid-aware application will require developing toolkits which sup-
port reconfigurable code and the binding of legacy code. They should enforce the
minimization of developing cost by enabling the (static and dynamic) reconfigu-
ration of the application to target different customer scenarios, while exploiting
a good performance/cost ratio over a broad class of hardware platforms. They
should also cope with code reuse providing the programmer with suitable bridges
to interoperate with legacy code (Corba, CCM, Java Beans, DCOM, etc.). In
this context, an advanced run-time support should seamlessly adapt the appli-
cation structure to the current grid status, and transparently manage faulty

� This work has been supported by the Italian MIUR FIRB Grid.it project No.
RBNE01KNFP, and Italian Project “legge 449/97” No. 02.00640.ST97.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 771–781, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

772 Marco Aldinucci et al.

events and performance degradations of the underlying platform, which should
be considered the standard behavior of a large-scale distributed platform.

High-level programming environments for grid aim at moving most of the
grid specific efforts needed while developing high-performance grid applications
from programmers to grid tools and run time systems. Among them, we mention
ASSIST, GrADS, ProActive, Condor, Ibis [2–6]. In particular, ASSIST [2] has
been designed along these guidelines. It supports the development of interoper-
able applications [7] onto heterogeneous platforms [8].

We present here a novel extension of the ASSIST environment exploiting a
self-optimizing run-time targeted to fulfill QoS requirements, which are expressed
at the language level by means of a QoS contract. QoS contract is transparently
managed by the ASSIST compiler that preprocesses it and generates all the
support code needed to enforce it at run-time by controlling parallelism degree,
processes remapping, and algorithm selection. Programmer is just asked to ex-
press a composition of ASSIST modules, and declare a QoS contract either on
each module or on the whole application. We experimentally show that both
stateless and stateful computations may be suitably reconfigured to fulfill sev-
eral kinds of contracts, and that these reconfigurations might have negligible
cost enabling fine grain control on the application dynamic evolution.

ASSIST is briefly introduced in Sect. 2. QoS contracts and their managing
strategy are presented in Sect. 3. ASSIST QoS-enabled run-time support is build
on a set of mechanisms aiming to enable the run-time reconfiguration of appli-
cations. We believe that these mechanisms are an enabling technology for QoS
control of grid-aware applications. Different policies may drive these mechanisms
to target different QoS goals, such as performance and fault-tolerance. In this
paper we mainly focus on these mechanisms, which are presented and evaluated
in Sect. 4. Some examples of performance policies are sketched in Sect. 5, a full
discussion on performance policies is outside the scope of this paper (due to lack
of space). The presented policies are validated through experiments in Sect. 6.

2 The ASSIST Environment and Its Run-Time

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of modules, interconnected by typed streams of
data. Modules can be either sequential or parallel. A sequential module wraps a
sequential function. A parallel module (parmod) can be used to describe the par-
allel execution of a number of sequential functions, that are activated and run as
Virtual Processes on items arrival onto input streams. The sequential functions
can be programmed by using a standard sequential language (C, C++, Fortran).
Virtual Processes may synchronize with one other by barriers. Overall, a parmod
may behave in a data-parallel (e.g. SPMD/for-all/apply-to-all) or task-parallel
(e.g. farm) way and may exploit a distributed shared state which survive to Vir-
tual Processes lifespan. A module can non deterministically accept from one or
more input streams a number of input items, which may be decomposed in parts
and used as function parameters to instantiate Virtual Processes, according to

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 773

Fig. 1. An ASSIST application and a QoS contract is compiled in a set of executable
codes and its meta-data [9]. These informations are used to set up a processes network
at launch time: hexagons represents Virtual Processes, ovals represents processes, solid
edges represent data channels, dashed edges managements channels.

the input and distribution rules specified in the parmod. Virtual Processes may
send onto output streams items or parts of them which are gathered according
to the output rules. More details on ASSIST environment can be found in [2, 9].

The ASSIST compiler translates a graph of modules into a network of pro-
cesses. As sketched in Fig. 1, sequential modules are translated into sequential
processes, while parallel modules are translated into a parametric (w.r.t. the
parallelism degree) network of processes: one Input Section Manager (ISM),
one Output Section Manager (OSM), and a set of Virtual Processes Managers
(VPMs, each of them running a set of Virtual Processes). The actual parallelism
degree of a parmod instance is given by the number of VPMs. ASSIST run-time
support also include a Module Adaptation Manager per parmod (MAM), which
monitors the performances of the parmod, and implements reconfiguration poli-
cies; and an Application Manager (AM), which coordinates the QoS at the level
of the whole application by coordinating MAMs. In this work we focus on MAM
design. AM design is subject of current research, we refer back to Sect. 8 and [9]
for a general description.

3 ASSIST Autonomic Run-Time and QoS Contracts

The initial configuration of an ASSIST program is specified by the set of pro-
cesses that are co-allocated at launch time. The configuration of a parmod is
managed by its MAM, which dynamically decides the number of VPMs, and
their mapping onto grid Processing Elements (PEs) acquired through grid mid-
dleware. The ASSIST compiler prepares a QoS contract for each parmod and
bind them to MAMs. Moreover, a MAM can asynchronously receive a different
QoS contract from the AM in any moment along the application run.

Among all possible QoS goals, in this work we mainly focus on performance
related ones that are achievable through adaptation within each parallel mod-
ule. All aspects regarding modules coordination, as well as other QoS measures

774 Marco Aldinucci et al.

such as reliability, availability, security are currently under investigation. We
introduce the concept of QoS contract. It carries a module QoS goal and the
description on how it should be achieved. In particular:
– Performance features: a set of variables which can be evaluated from module

static information, run-time data collected through monitoring, and perfor-
mance model evaluation.

– Performance model: a set of relations among performance features variables,
some of them representing the performance goal.

– Deployment annotations] describing processes resource needs, such as re-
quired hardware (platform kind, memory and disk size, network configura-
tion, etc.), required software (O.S., libraries, local services, etc.), and other
all strictly required constraints to enforce code correctness.

– Adaptation policy: a reference to the desired adaptation policy chosen among
the ones available for the module. Standard adaptation policies are repre-
sented as algorithms and embedded within MAM code at compile time.

The following is the QoS contract used in experiment Fig. 3 ➋:

Perf. features QLi (input queue level), QLo (input queue level), TISM (ISM ser-
vice time), TOSM (OSM service time), Nw (number of VPMs), Tw [i]
(VPMi avg. service time), Tp (parmod avg. service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw [i]/n, TOSM}, Tp < K (goal)

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-darwin*)

Adapt. policy goal based

MAM run-time behavior may be conveniently sketched in terms of autonomic
control loops [10]. In order to handle situations in which resource availability
affects the performance of the applications, the run-time system of the running
application has to:
1. monitor application actual status by collecting raw sensible performance

data, and synthesize performance features variables;
2. evaluate performance model, and if it is unsatisfied, analyze it to discover

possible causes;
3. if needed, plan a reconfiguration strategy according to the adaptation policy,

with the goal of re-conveying the application in a legal status;
4. execute the reconfiguration, possibly allocating new resources/rebalancing

the computation, possibly migrating entire modules.

4 Reconfiguration Key Concepts and Mechanisms

The modular nature of ASSIST applications and their management enable the
reconfiguration of a subset of modules while neither affecting nor stopping the
ones not involved in the reconfiguration, which can be distinguished in two cate-
gories: (a) involving the alteration of mapping between application activities and
PEs1; (b) involving the variation of process graph structure, including modules
1 ASSIST parmod supports the migration of Virtual Processes between VPMs, and

VPMs between PEs, possibly migrating or remapping associated data.

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 775

parallelism degree2. Observe that, load balancing within a parmod can be man-
aged by reconfigurations of kind (a): the load of a VPM (and the PE hosting it)
may be decreased by moving some of its Virtual Processes to another VPM.

Independently of when the MAM decides to trigger a reconfiguration, the
module is actually reconfigured on the next reconf-safe point. These are the
time windows during a given parmod run in which its internal attributes are
completely defined by the set of local attributes. Notably, the runtime does not
introduce any additional synchronization w.r.t. the ones required by program se-
mantics. It rather delays reconfiguration execution just after next natural reconf-
safe point is reached. We distinguish between two kinds of reconf-safe points:
– on-stream-item: A new item is available in any input streams. A complete

systolic synchronization is induced by the ISM process within the parmod.
If needed, shared state is consolidated along the synchronization process.

– on-barrier : A complete synchronization has happened within a parmod due
to either an explicit or implicit barrier. Barriers are issued by the programmer
or the compiler to enforce the consolidation of shared state (e.g. at each step
of a data-parallel iterative program).

No other points can be considered reconf-safe. Since the reconfiguration process
is designed to be transparent to the programmer, we exclude the possibility of
reconfiguring the parmod during the execution of an user defined function. In
this way, we avoid the instrumentation of legacy code and the adoption of process
dumping techniques that are hardly effective on heterogeneous platforms.

4.1 Reconfiguration Protocol

The MAM triggers a parmod reconfiguration raising a command toward all in-
terested processes which participate, with the MAM, to a distributed reconfig-
uration protocol. All data exchanges (data or computation migrations) happen
among VPMs following a communication schema encoded and optimized for the
particular parmod semantics at compile time. These regard the static instrumen-
tation of reconf-safe points with the minimum needed reconfiguration actions,
e.g. a farm stateless parmod is not instrumented with data migration code.

The MAM participates to the protocol in order to mediate and orchestrate
the interactions between AM and the Grid Abstract Machine, and to enforce
all processes involved are aware and ready to start a reconfiguration at the
next reconf-safe point. This should be enforced also when a complete barrier is
not needed to ensure data integrity (e.g. master-slave). The latter property is
guaranteed by the MAM accordingly to the following behavioral schema:

2 ASSIST support an increment or decrement of the number of VPMs in parmods.

776 Marco Aldinucci et al.

A parmod reconfiguration is initiated by its MAM. The reconfiguration plan is
build accordingly to the proper strategy (see Sect. 5), e.g. increase the number of
PEs, move to it a given number of Virtual Processes. Possibly some resources are
asked to grid middleware through the Grid Abstract Machine. A reconfiguration
command is synthesized, then validated (e.g. do not remove the last VPM, etc.).

The MAM waits in sequence that new started processes are connected to
it; and the ISM, OSM, and all involved VPMs acknowledge the reconfiguration
command. Eventually the MAM waits a reconf-safe point is reached and enforces
all data and computation redistribution is completed.

4.2 Evaluation of Reconfiguration Overhead

We evaluate the cost of reconfiguration mechanisms against the following metrics
(the former two are illustrated in Fig. 2):
– Reconfiguration time (Rt): refers to the total time spent to reconfigure the

application, from the time a MAM decides the reconfiguration to the time
it is completed.

– Reconfiguration latency (Rl): the time elapsed from the point a parmod is
stopped for a reconfiguration to the time it is resumed. This is the foremost
measure from users’ viewpoint.

– Reconfigurable code overhead (Ro): the slowdown of an application when
instrumented with the additional code needed to make it reconfigurable.

Fig. 2. Reconfiguration dynamics and metrics.

These metrics are evaluated on two different ASSIST applications on a dedi-
cated Linux cluster. The cluster hosts 24 P3@800MHz PEs, connected through a
100MBit switched Ethernet. The architectural homogeneity and stability enable
to precisely discriminate the reconfiguration overhead. As shown in [8], ASSIST
already supports heterogeneous platforms in CPU and O.S. with less than 7%
of additional communication cost, due to message marshalling. The reconfigu-
ration mechanisms also support the deployment on to heterogeneous platforms
with TCP/IP or Globus provided communication channels. The two applications
are composed by one parmod and two sequential modules.

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 777

The first is a data-parallel application receiving a stream of integer arrays and
computing a forall of simple function for each stream item; the matrix is stored in
the parmod shared state. In this case the overall shared state has a negligible size
since the experiment is designed to evaluate mechanism overhead. Preliminary
experiments with realistic state size show a linear dependency between Rt and
the global size of parmod shared state.

The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Consider the reconfiguration x → y, where x and y are the number of PEs
before and after the reconfiguration respectively. For the data-parallel parmod,
Rl grows linearly with (x+ y) for both kinds of reconf-safe points, and depends
on shared state size and mapping. Shared state is kept distributed during all the
reconfiguration process. Farm parmod cannot be reconfigured on-barrier since
it has no barriers, and achieves a negligible Rl (below 10−3 ms). This is due to
the fact that no processes are stopped in the transition from one configuration
to the next. Rt, which includes both the protocol cost and time to reach next
reconf-safe point, grows linearly with (x+ y) for the former cost and depends on
user-function for the latter.

5 Adaptation Policies

Adaptation policies are implemented as algorithms, actually methods of the
MAM automatically generated by the compiler. ASSIST provides the program-
mer with hooks to add user-defined policies. The definition of a set of suitable
policies and models to drive MAM and AM analyze and plan phases is sub-
ject of current research. For the sake of brevity, we present here a policy to
automatically drive MAM of a farm-like parmod, adaptation policies for data-
parallel stateful parmod have been presented elsewhere [11]. Farm parmod ex-

778 Marco Aldinucci et al.

ploits on-demand task scheduling that guarantees load-balancing also in case
of heterogeneous platforms, thus the MAM does not need to care about it. As
discussed in Sect. 3, it is worth distinguishing two kinds of goals, and their
adaptation policies. Ensure: (i) a desired service time; (ii) the best effort in the
performance/resource trade-off.

In general, a policy should first analyze causes of module misbehavior reason-
ing on performance features values, then use the performance model to forecast
if an adaptation may lead to contract satisfation. Eventually use mechanisms
API (e.g. add PEs) to reconfigure the module. Different policies can lead to dif-
ferent decisions in the same configuration: when the QoS contract is fulfilled, a
policy of kind (i) would not increase the resource assigned to the module, even
if it could exploit them. A best-effort policy in this case would pursue the max-
imum performance. As well, when incoming data rate decreases, so that some
resources could be released because the module is over-dimensioned w.r.t. the
input rate, a best-effort strategy will promptly release the resources, in order
to optimize their usage, while a goal based policy would not, in the eventuality
that the input rate will raise again.

When operating in best effort mode, the parmod acquires a new resource if
the input queue is filling (its utilization is close to 1) and the output queue is
emptying, i.e. the slower stage in the parmod is the processing one. It releases a
certain amount of resources if exists a proper subset R of the set of VPMs that
provides enough computing power:

BISM <
∑

i∈R Bw[i],where BISM = 1
TISM

, Bw[i] = 1
Tw[i]

in that case, the resources not in R can be released with no loss in performance.
When pursuing target (i), in the condition to release the resource, the actual

bandwidth BISM is substituted by the contractually specified one: Tp. In this
setting, the parmod acquires a new resource if the contract is not satisfied and
the slower stage in the parmod is the processing one (as in the best-effort case);
the conjunction of the two conditions prevents from adding new resources if the
contract is not satisfied but due to other modules low performances.

These policies can clearly distinguish when a contract is violated due to
another module misbehavior: in such case, the module manager is aware that no
actions could be performed to solve the problem: we are investigating cooperation
strategies among managers, to address these issues.

6 Experiments

To evaluate the effectiveness of proposed reconfiguration mechanisms and poli-
cies we tested a farm and a data-parallel parmods on several scenarios. The
former parmod farms out a dummy sequential function with 2s average service
time (experiments in Fig. 3 ➊, ➋, ➌). The latter computes a shortest-path like
algorithm exploiting 640KB of shared state (Fig. 3 ➍). Tests are performed on
the cluster described in Sect. 4.2, results are shown in Fig. 3:

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 779

Fig. 3. Experiments on parmod reconfiguration (see Sect. 6).

➊ Farm: best effort mode: the Input stream pressure, i.e. the frequency at which
parmod receive stream items, is changed along the program run. The parmod
input queue tends to fill when the VPMs consume stream items slower than
they are received, and vice-versa. The MAM tries to match the service time of
VPMs and items arrival time by increasing or decreasing the number of VPMs.
Transient VPMs may be exploited to bring back queue to a safe level.
➋ Farm: a fixed service time specified in the contract and with a fixed input
pressure. Three times, along the program run, a PE is externally overloaded
causing a contract violation. The MAM reacts by adding as many VPMs (one in
the figure) mapped onto fresh PEs until the contract is satisfied. The MAM also
knows (see Sect. 5) that the contract continues to be satisfied if the overloaded
PE is removed, and after a while removes it. On the whole a VPM migrates from
one PE to another without stopping the parmod.
➌ Farm: a fixed service time specified in the contract and with a fixed input
pressure, but the contract is changed by the AM three times along the program
run. Each time, the MAM reacts by adapting the number of VPMs in order to
satisfy the new contract.
➍ Data-parallel: on-barrier reconfiguration during the execution of a single forall.
The MAM receives, during the program run, different contracts with fixed num-
ber of PEs (ranging from 2 to 11); it reacts by asking each time a fresh PE,
mapping on it a VPM, and triggering the suitable computation and shared data
redistribution. Observe that in this case the optimal number of PEs may heuris-
tically be decided since the iteration time (computation time + communication
time) exhibit a quite regular behavior. The figure also show that reconfiguration
is quite efficient since its overhead is comparable to a single iteration time.

The experiments show that the approach is feasible for data-parallel compu-
tations, and that good results are obtained for the task-parallel ones.

780 Marco Aldinucci et al.

7 Related Work

Early experiences of reconfigurable code have been presented since eighties; these
include the management of process migration at O.S. kernel level [12], and li-
braries providing the programmer with a migration API for running processes
(the libckpt [13], MPI-based DyRect [14]). With respect to them, ASSIST is able
to target heterogeneous architectures, at a higher level of abstraction. The ex-
tensions of parallel programming languages (OpenMP [15], HPF [16]) proposed,
are not enough flexible for a grid-like environment (e.g. they cannot acquire new
PEs at run-time). The AFPAC library [17] proposes a similar approach to our in
supporting reconf-safe points (AFPAC coordination protocol) for MPI applica-
tions, however the reconfigurations are not transparent since the user code should
be augmented with both reconf-safe points and reconfiguration code. Java byte-
code portability has been exploited to provide a user-level migration mechanism
(ProActive [4]), even if it is not transparent to the application programmer.

We followed a similar approach to the GrADS project, which exploits a com-
plete environment, including a monitoring architecture, contract negotiators and
configuration optimizer. Differently from GrADS we can reconfigure applications
in transparent manner , and with a sensibly better performance (we can join ad-
ditional resources without completely stopping the application). In particular
[3], reports cost of minutes for reconfiguring a data-parallel application while
ASSIST overheads ranges in milliseconds–seconds span. The lower reconfigura-
tion cost diminishes the criticality of deciding a reconfiguration, and enables the
use of heuristic “try-and-see” approach whether analytic modeling fails.

8 Conclusions and Future Work

We presented a novel extension of the ASSIST environment that seamlessly
support application reconfiguration at run-time. Application reconfiguration is
achieved efficiently and transparently to the application programmers through
parmod reconfiguration. ASSIST parmod are self-optimizing parallel entities
that can be able to respect a dynamically received QoS contract. A parmod
reconfiguration does not have any direct impact on other parmods in the same
application. Also, we shown a set of policies to deal with QoS contracts en-
abling parmods to self-adapt to a running environment that is heterogeneous
and unreliable in provided performance.

On this ground we are extending ASSIST to full grid support. In particular,
all MAMs can be organized in a hierarchy of managers, the root being the Ap-
plication Manager (AM), that enforces a QoS contract for the whole application
[9]. The AM works – in the large – similarly to MAM (see Sect. 3), and lever-
ages on MAMs to detect parmods behaving as bottlenecks for the application:
it reacts sending their MAMs a suitable new contract.

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 781

References

1. Foster, I., Kesselmann, C., eds.: The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann (2003)

2. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28 (2002) 1709–1732

3. Vadhiyar, S., Dongarra, J.: Self adaptability in grid computing. International Jour-
nal Computation and Currency: Practice and Experience (2005) To appear.

4. Baude, F., Caromel, D., Morel, M.: On hierarchical, parallel and distributed com-
ponents for Grid programming. In: Workshop on component Models and Systems
for Grid Applications. (2005)

5. Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In: Grid Computing:
Making the Global Infrastructure a Reality. John Wiley & Sons Inc. (2002)

6. van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kiel-
mann, T., Bal, H.E.: Ibis: a flexible and efficient Java-based grid programming
environment. Concurrency & Computation: Practice & Experience (2005)

7. Magini, S., Pesciullesi, P., Zoccolo, C.: Parallel software interoperability by means
of CORBA in the ASSIST programming environment. In: Proc. of Euro-Par 2004.
Volume 3149 of LNCS., Springer (2004) 679–688

8. Aldinucci, M., Campa, S., Coppola, M., Magini, S., Pesciullesi, P., Potiti, L., Ravaz-
zolo, R., Torquati, M., Zoccolo, C.: Targeting heterogeneous architectures in AS-
SIST: experimental results. In: Proc. of Euro-Par 2004. Volume 3149 of LNCS.,
Springer (2004) 638–643

9. Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M., Zoccolo, C.: ASSIST
as a research framework for high-performance Grid programming environments.
In: Grid Computing: Software environments and Tools. Springer (2005)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36 (2003) 41–50

11. Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D.,
Scarponi, L., Vanneschi, M., Zoccolo, C.: Components for high performance Grid
programming in Grid.it. In: Proc. of the Workshop on Component Models and
Systems for Grid Applications. CoreGRID series. Springer (2005)

12. Zayas, E.R.: Attacking the process migration bottleneck. In: Proc. of the 11th
ACM Symposium on Operating System Principles. (1987)

13. Litzkow, M.: Supporting checkpointing and process migration outside the unix
kernel. In: Usenix Winter Conference. (1992)

14. E. Godard, S. Setia, E.W.: Dyrect: Software support for adaptive parallelism on
nows. In: Proc. of IPDPS Workshop on Runtime Systems for Parallel Program-
ming. (2000)

15. Scherer, A., Lui, H., Gross, T., Zwaenepoel, W.: Transparent adaptive parallelism
on nows using OpenMP. In: Proc. of Principles and Practice of Parallel Program-
ming. (1999)

16. Edjlali, G., Agrawal, G., Sussman, A., Humphries, J., Saltz, J.: Compiler and
runtime support for programming in adaptive parallel environments scientific pro-
gramming. Scientific Programming 6 (1997)

17. André, F., Buisson, J., Pazat, J.L.: Dynamic adaptation of parallel codes: toward
self-adaptable components for the Grid. In: Workshop on component Models and
Systems for Grid Applications. (2005)

SPC-XML: A Structured Representation
for Nested-Parallel Programming Languages�

Arturo González-Escribano1,
Arjan J.C. van Gemund2, and Valent́ın Cardeñoso-Payo1

1 Dept. de Informática, Universidad de Valladolid
E.T.I.T. Campus Miguel Delibes, 47011 - Valladolid, Spain

Phone: +34 983 423270
{arturo,valen}@infor.uva.es

2 Embedded Software Lab, Software Technology Department
Faculty of Electrical Engineering, Mathematics and Computer Science

P.O.Box 5031, NL-2600 GA Delft, The Netherlands
Phone: +31 15 2786144

a.j.c.vangemund@ewi.tudelft.nl

Abstract. Nested-parallelism programming models, where the task
graph associated to a computation is series-parallel, present good anal-
ysis properties that can be exploited for scheduling, cost estimation or
automatic mapping to different architectures.
In this paper we present an XML intermediate representation for nested-
parallel programming languages from which the application task-graph
can be easily derived. We introduce some design principles oriented to al-
low the compiler to exploit information about the task synchronization
structure, automatically determine implicit communication structures,
apply different scheduling policies, and generate lower-level code using
different models or communication tools. Results obtained for simple ap-
plications, using an extensible prototype compiler framework, show how
this flexible approach can lead to portable and efficient implementations.

1 Introduction

A common practice in high-performance computing is to program applications in
terms of the low-level concurrent programming model provided by the target ma-
chine, trying to exploit the maximum possible performance. Portable APIs, such
as message-passing interfaces (e.g. MPI, PVM) propose an abstraction of the ma-
chine architecture, still obtaining good performance. However, programming in
terms of these unrestricted coordination models can be extremely error-prone
and inefficient, as the synchronization dependencies that a program can gener-
ate are complex and difficult to analyze by humans or compilers [14]. Important

� This work has been partially supported by: JCyL under contract number VA-053A05,
the EC (FEDER) and the Spanish MCyT (Plan Nacional de I+D+I, TIC2002-04498-
C05-05 and TIC2002-04400-C03). A preliminary version of this paper was presented
at the 11th Int. Workshop on Compilers for Parallel Computers.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 782–792, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SPC-XML: A Structured Representation 783

decisions in the implementation trajectory, such as scheduling or data-layout be-
come extremely difficult to optimize. Considering these problems, more abstract
programming models, which restrict the possible synchronization and commu-
nication structures available to the programmer, are proposed and studied (see
e.g. [21]). These models, due to their restrictions, are easier to understand and
program, and can provide tools and techniques that help in mapping decisions.

Nested-parallelism models present a middle point between expressiveness,
complexity and easily programming [21]. They restrict the coordination struc-
tures and dependencies to those that can be represented by series-parallel (SP)
task-graphs (DAGs). Thus, nested-parallelism is also called SP programming.
Due to the inherent properties of SP structures [22], they provide clear semantics
and analyzability characteristics [16], a simple compositional cost model [9, 19,
20] and efficient scheduling [1, 7]. These properties can lead to automatic compi-
lation techniques that increase portability and performance. Examples of parallel
programming models based on nested-parallelism include BSP [23], nested BSP
(e.g. NestStep [15], PUB [2]), BMF [20], skeleton based (e.g. SCL [5], Frame [4],
OTOSP/LLC [6]), SPC [9], and Cilk [1].

In previous work (see e.g. [10]) we have shown that many applications classes,
including some typical irregular scientific applications, may be efficiently mapped
to nested-parallelism due to some inherent load or synchronization regularities,
or using simple balancing techniques. In [12] we also discussed how using an
structured XML representation to specify the coordination of a parallel program
may lead to a flexible an extensible compiler framework, where scheduling or
mapping plug-ins may be automatically selected by the application structure
properties (for a further discussion about extensible programming see also [24]).

SPC-XML is an evolving highly-abstract XML intermediate-representation
of nested-parallel programs. Although it is not intended to be used directly by
the programmer, but through front-end translators, it is a complete parallel
coordination language. It is designed as a portable, easy to parse, and extensible
language to simplify experimentation with nested-parallel compiler technology.

SPC-XML uses a common specification syntax for coarse-grain computations
(like in BSP [23] models) or fine-grain computations (like in data-parallel models
such as HPF [3]). By means of simple recursive specifications it delegates to the
compiler the selection of the appropriate granularity for a given application
and target machine. Since no specific memory-model is forced in the language
computations may be adapted to a particular target architecture, supporting
both, distributed and shared-memory models. Due to its extensibility features it
may support, but it is not limited to, any specific set of compile-time scheduling
and data-layout techniques (such in OpenMP [17]), or a given generic run-time
scheduling system for dynamically spawned processes (such in Cilk [1]). New
scheduling or mapping techniques may be applied, and the compilation strategy
may be guided by simple and accurate cost-models.

This XML specification is designed to simplify the reconstruction of the
synchronization task-graph of the application, and to obtain dependency and
data-flow information which help the compiler in determining the implicit com-
munication structure. It is possible to: (a) express the different types of col-

784 Arturo González-Escribano et al.

lective or structured communication operations found in other languages (e.g.
message-passing interfaces [14] or OTOSP/LLC [6]), and (b) inherently support
structured programming or parallel skeletons (e.g. [4, 18]). However, it achieves
it using only one implicit synchronization mechanism (the end of a parallel sec-
tion) in combination with the explicit data-flow information naturally exposed
in the standard parameter-substitution of processes invocations.

In this paper we also show how communication structures may also be re-
structured and optimized at the low-level, obtaining solutions similar to manu-
ally coded message-passing programs. We present preliminary results for simple
applications, generated with a source to source translator prototype which ex-
ploits these techniques. Performance is comparable to that obtained with man-
ually developed MPI codes.

The paper is organized as follows: Section 2 introduces our new proposal for a
tag-based coordination language. In section 3 we discuss how the features of this
language help at the different stages of a completely-automatic compilation-path.
Experiments and results with an example application are presented in section 4.
Finally, section 5 draws our conclusion.

2 SPC-XML: A Tag-Based Coordination Language

In this section we introduce an intermediate highly-structured coordination lan-
guage based on XML. It is named SPC-XML, due to the SPC nested-parallel
model [9] (Series-Parallel and Contention model). The full description of the
language including its DTD can be found in [13]. This full parallel synchroniza-
tion language is designed to support any feature to be found in a nested-parallel
environment such as recursion, critical sections, distributed or shared-memory
models, and manual data-layout specifications. In Fig. 1 we show an excerpt of a
simple cellular-automata program representation. The language is highly verbose
and it is not designed to be written directly by a programmer, but as a conve-
nient intermediate representation. Front-ends to translate legacy code written in
any nested-parallel language to this representation would be a straightforward
development effort. Nevertheless, standard XML tools may be used to edit, vi-
sualize or check consistency of SPC-XML representations. Although its main
functionalities and semantics are clearly defined, SPC-XML is still syntactically
evolving to find a more mature level. The design principles of SPC-XML are:

1. SPC-XML model implements the same semantics as the SPC model and its
underlying process algebra (see e.g. [9]). Processes are composed to form a
program with only two possible operators – sequential and parallel –, which
may be freely nested.

2. It uses XML tags to directly represent the parallelism structure. Nested-
Parallelism is a hierarchical structured form of expressing parallelism. Thus,
a representation using an XML structured document is natural.

3. It is a coordination language [8]. Tags represent only the synchronization
structure. Any classical sequential language may be used to code sequential
sections. This separation simplifies the recognition of the parallel structure.

SPC-XML: A Structured Representation 785

4. The program must specify explicit input/output interfaces for sequential
sections and logical processes. The behavior of a data item in an interface
(input and/or output) will be compulsory specified. This will help the com-
piler to compute data-flow and automatically derive communications for a
given task decomposition and mapping.

5. Tag and attribute names are fully readable to help humans recognize the
main program structures easily.

2.1 Document Structure

An SPC-XML document contains a HEADER tag and a BODY tag. The first one
is used mainly for documentation and to specify low-level sequential code blocks
to be included at the beginning of the target program. The body of the document

<SPC-XML version="0.4"> <!-- *** Cellular-Automata example *** -->

<HEADER> <TITLE>cellAutom</TITLE> </HEADER>
<UNIT-BODY>

<FUNCTION name="seqCellComp" workload="myData#size">
<INOUT name="myData" baseType="double" />

<IN name="myUpBorder" baseType="double" />
<IN name="myDownBorder" baseType="double" />
<CODE> <!-- C code to compute a stage of the cellular automata -->

...
</CODE>

</FUNCTION>

<PROCESS name="main">

<LOCAL> <VAR name="data" baseType="double" dim="[16384][16384]" /> </LOCAL>
<BODY>

<CALL name="initData"> <PARAMETER value="data" /> </CALL>
<CALL name="parallelCell"> <PARAMETER value="data" /> </CALL>

<CALL name="printData"> <PARAMETER value="data" /> </CALL>
</BODY>

</PROCESS>

<PROCESS name="parallelCell"> <!-- Row mapped parallel cellular-automata -->

<INOUT name="data" baseType="double" />
<LOCAL>

<VAR-OVERLAP srcVar="data" name="mainPart[#P]" layout="[#blocks][:]" />

<VAR-OVERLAP srcVar="data" name="upBorders[#P]" layout="mainPart[#i][0][:]" />
<VAR-OVERLAP srcVar="data" name="downBorders[#P]" layout="mainPart[#i][#$][:]" />

</LOCAL>
<BODY>

<LOOP n="1000">
<PARALLEL p="#P"> <!-- As many blocks as processors available -->

<PARBLOCK p="*"> <!-- Default parallel block -->

<CALL name="seqCellcomp">
<PARAMETER value="mainPart[p]" />

<PARAMETER value="downBorders[p-1]" />
<PARAMETER value="upBorders[p+1]" />

</CALL>

</PARBLOCK>
</PARALLEL>

</LOOP>
</BODY>

</PROCESS>
</UNIT-BODY>

</SPC-XML>

Fig. 1. SPC-XML example: Excerpt of a cellular-automata program representation

786 Arturo González-Escribano et al.

contains a collection of elemental units (functions and processes). If a process
called main is found inside a document, this document represents a program
which execution begins at that main process. If the document does not include
a main process, it is a library which may not be compiled alone. All elemental
units may have a DOC tag containing extra documentation tags for automatic
documenting tools. Programming comments are included with the usual XML
tags <!- - - ->.

2.2 Logical Processes and Functions

SPC-XML has a PROCESS tag to define the content of a logical process. Each
process has a well-defined interface, whose formal parameters are defined with
the IN, OUT, INOUT tags, declaring the input/output intent of the data item in
the interface. Processes may contain also a LOCAL tag to declare variables, with
process visibility and scope. The BODY tag of a process contains the tags which
define its behavior. The serial composition is implied in the tags declaration order
as in many common procedural languages. For programmer convenience, other
common control-flow statements are supported by the IF/THEN/ELSE, WHILE,

REPEAT, and LOOP tags. The parallel composition operator is implemented us-
ing the PARALLEL tag. This tag may only contain one or more PARBLOCK tags,
whose contents are composed in parallel. The PARALLEL tag, have an optional at-
tribute named p=”number”, to specify a fixed number of parallel-blocks to spawn.
The PARBLOCK tags may also have a p=”number” attribute, to associate the tag
content with a logical identifier inside the local subgroup of blocks. A default
parallel-block (specify with p=”*”) may be used to fill-up with its content all the
non-associated blocks in a parallel region. The closing parallel tag implies a syn-
chronization of all the blocks to proceed. At this logical synchronization point,
modifications done to the same variable in different blocks are made consistent.
By default, the modifications done by only one block will persist. Nevertheless,
optional attributes may be used in the PARALLEL tag to use typical reduction
operations for given data elements. As in any nested-parallel model, other PAR-

ALLEL tags may appear inside a block, or in other processes called inside a block.
Sequential codes are enclosed inside a FUNCTION tag, to distinguish them from
the logical processes. However, the input/output interface is defined exactly in
the same way. For symmetry, processes and functions are invocated with the
same CALL tags, containing PARAMETER tags to specify the formal to real pa-
rameter substitutions. The language includes some more features to help in the
mapping trajectory. For instance, the programmer, or a profiling tool, may pro-
vide to the scheduling modules with a hint, adding a performance estimation to
any sequential functions using the optional workload=”number” attribute.

2.3 Data Representation and Memory Model

As a coordination model, SPC-XML tags do not imply data manipulation. The
only purpose to define data containers is to describe data-flow between logical
processes and through sequential codes. Thus, SPC-XML variables are generic

SPC-XML: A Structured Representation 787

multi-dimensional arrays of a given data type defined in the sequential language
used. Variables are defined by VAR tags, always inside the LOCAL tag of a process.
There are no expression or data manipulation tags. The only tags which imply
code execution are CALL tags referring to function names (sequential tasks).
Special variables called overlaps are supported to define logical data partitions
over other SPC-XML array variables. Thus, simple data-layouts may be devised.
Each overlap element becomes an alias for a subarray of an associated SPC-XML
variable. They are defined in the local section with the VAR-OVERLAP tag, which
attributes specify the name of the associated variable and the layout of the over-
lap pieces. Subarray specifications may be expressed with a colon-notation sim-
ilar to Fortran90 and some macro-definitions. Moreover, the language provides
with some special terms which represent typical block or stride layouts.

SPC-XML provides a generic distributed-memory model. A process or func-
tion works with local copies of the parameters obtained from the caller. However,
when the programmer knows it is safe to work with shared-memory instead of
creating local copies of a variable, she may give a hint to the compiler, using
the special shared=”yes” attribute on that variable. Nevertheless, the program-
mer should not rely on shared-memory for communication as the underlying
architecture or back-end may not support it. The only communications between
parallel tasks should be driven through processes/functions interfaces.

3 Task-Graph Reconstruction and Mapping

Task decomposition is directly derived from the tag structure of an SPC-XML
specification. In the case of applications which synchronization structure may
be determined in compile-time, the whole task graph may be expanded and
classical graph-scheduling techniques may be applied. For more data-dependent
or dynamic programs, the graph represents only the potential structure, and
suitable run-time scheduling tools should be included and activated in the target
code to obtain the appropriate program behavior. In this paper we focus on
exploiting the language characteristics for applications in the first case.

3.1 Task Decomposition and Synchronization Structure Detection

The lexical/syntactical parsing of an SPC-XML document may be completely
done by generic and portable XML parsers. Due to the clear semantics and
highly structured form of the documents, an application graph is easily recon-
structed from its high-level specification. When considering static programs, the
number of tasks and the the exact shape of the graph is completely determin-
istic. In this task-graph we only consider one type of nodes (tasks which may
contain computation functions) and edges (precedence dependencies which may
derive in data-flow at lower implementation levels). The structure of a static
application is then reconstructed as a DAG (Direct Acyclic Graph) along the
following guidelines: (1) A process invocation is always expanded, inlining its
content where the CALL tag is found, also doing parameter substitution; (2) a
task-node is delimited by consecutive PARALLEL ending and opening tags, and
it contains the function calls found inside the code it represents; (3) the content

788 Arturo González-Escribano et al.

seqCellComp*
INOUT P[p]

IN d[p−1]

IN u[p+1]

n=2

n=1

n=0

n=999

...

printData

In
lin

ed
 p

ro
ce

ss
:

 p
ar

al
le

lC
el

l

Data overlaps

P[0]

P[1]

P[2]

P[3]

u[0]

d[0]
u[1]

d[1]
u[2]

d[2]
u[3]

d[3]

initData

* * *

* * * *

*

data

Fig. 2. Example of graph reconstruction for a cellular-automata (4 processors)

of a PARBLOCK tag is processed as a subgraph; (4) loops with a deterministic
number of iterations are expanded. The closing tag of the loop is in the same
task as its opening tag in the next iteration. An example of their application to
of our cellular-automata program is shown in Fig. 2.

3.2 Mapping and Scheduling Strategies

The mapping module of an SPC-XML compiler should use a machine-model
(which will be also specified in another XML application). The simplest machine-
model may contain only one data-item: the number of processors; while more
complex models may contain other resources information or allocating costs (e.g.
communication parameters, different performances on heterogeneous clusters).
The module may check graph-structure characteristics to select the best suitable
scheduling or mapping technique. The scheduling algorithm selected will supply
the graph with annotations about task-to-processor bindings. Workload annota-
tions, introduced at the specification level through appropriate attributes, will
be a key-point to obtain efficient schedules and accurate cost models.

Mapping decisions are also guided by communication costs. Thus, mapping
modules should compute the communication-volume generated by a given map-
ping, using the information about the input/output interfaces of the functions
contained inside the nodes. At this level, several implementation variants may
be compared to decide the best one for the given target machine. (see e.g. [11]).

The top diagram in Fig. 3 represents the information obtained from the
SPC-XML function interface tags, for one iteration of the cellular-automata
program. This information clearly determines the data-flow between tasks. How-
ever, many low-level parallel-tools or communication-layers are non-restricted to

SPC-XML: A Structured Representation 789

u[1] d[0] u[2] d[1] u[3] d[2]P[0] P[1] P[2] P[3]

u[1] d[0] u[2] d[1] u[3] d[2]P[0] P[1] P[2] P[3]

1 row

4k
 r

o
w

s

4k
 r

o
w

s

4k
 r

o
w

s

4k
 r

o
w

s

1 row
1 row

1 ro
w

1 ro
w

1 ro
w

u[1] d[0] u[2] d[1] u[3] d[2]P[0] P[1] P[2] P[3]

u[1] d[0] u[2] d[1] u[3] d[2]P[0] P[1] P[2] P[3]

Fig. 3. Communication information and a non-nested-parallel mapping solution

nested-parallelism. Compilers based on highly-abstract nested-parallel models,
may optimize communication interchange, specially at synchronization points, if
global information is available (see e.g. [2]). SPC-XML may provide enough data
about communication to allow very simple but efficient optimization techniques.
For instance, the mapping module may detect task nodes where some received
data is not used, but only redirected to other tasks. In this case, data may be sent
directly to the task where it is used. In the bottom diagram in Fig. 3 we repre-
sent such a mapping solution. The synchronization node completely disappears,
because every communication is redirected to further target nodes. Moreover,
the mapping module may use information about data-sizes to reduce the total
communication-volume. In the example, the dashed lines have 4096 more times
data-volume than the non-dashed lines. Thus, the tasks vertically aligned in the
figure may be scheduled to the same processor to improve locality.

This final solution, automatically obtained from the high-level nested-parallel
specification, is the typical best-solution designed when programming a cellular-
automata program with a low-level message-passing library. As applications be-
come more complex, this approach may reduce development and debugging ef-
fort. Moreover, porting an optimizing an application to a different target ma-
chine (for instance a heterogeneous cluster with different resource-power per
node) may not imply changes in the high-level code as data partition sizes and
communications are adapted if needed.

4 Experiments and Results

We have built a source to source translator prototype implementing some of
the techniques previously discussed. Using only the number of processors of the

790 Arturo González-Escribano et al.

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

S
pe

ed
-U

p

processors

Reference MPI code (720 x 720 matrix)

160 iterations
120 iterations
80 iterations
40 iterations

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

S
pe

ed
-U

p

processors

SPC-XML generated code (720 x 720 matrix)

160 iterations
120 iterations

80 iterations
40 iterations

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

S
pe

ed
-U

p

processors

MPI Reference code (120 iterations)

960x960 elements
720x720 elements
480x480 elements
240x240 elements

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

S
pe

ed
-U

p

processors

SPC-XML generated code (120 iterations)

960x960 elements
720x720 elements
480x480 elements
240x240 elements

Fig. 4. Speed-Up of the MPI reference codes and the SPC-XML generated codes

target-machine a simple scheduling is applied and communication redirections
computed. The mapped graph is then translated by a straightforward back-end
to an MPI implementation. An approach to a flexible and extensible compiler
framework exploiting more SPC-XML characteristics is also presented in [12].

We compare results obtained when executing a manually-developed and op-
timized cellular-automata MPI program, and the solutions generated by our
prototype for different matrix sizes. The target-machine is a heterogeneous Be-
owulf cluster connected by a 100Mbit/sec. Ethernet network, and composed by:
3 workstations with an AMD-800Mhz processor; 1 with an AMD-750 Mhz; and
4 with an AMD-500 MHz. We present results of a configuration where proces-
sors with different speeds are evenly interleaved. This configuration shows the
smoothest scalability effects. We have used input matrices up to 960× 960 ele-
ments, and a number of iterations in the range [40, 160].

In Fig. 4 we show the speed-ups obtained when executing the MPI refer-
ence codes and the corresponding codes automatically-generated from SPC-XML
specifications. The plots show how the scaling effects obtained with different ma-
trix sizes and different number of iterations are similar. We remark that we have
detected some inefficiencies in the data-buffering and sequential treatment in-
troduced by our simple back-end in the automatically-generated codes. They
produce small performance-losses, specifically for 4 or 6 processors due to the
heterogeneous nature of the cluster. However, the performance-loss is always

SPC-XML: A Structured Representation 791

less than 3.5% comparing with the corresponding reference code. This shows
that sequential code optimization may have more impact on the performance of
a parallel application than choosing a high-level structured programming model.

The results presented in this paper are extensible to most regular applica-
tions programmed with a coarse-grain style, which derive in static synchroniza-
tion structures. In [12] we present similar experiments with a more complicated
unstructured application, using a graph-partitioning technique to balance an
irregular sparse-matrix computation.

5 Conclusion

In this paper we have discussed an XML intermediate representation for nested-
parallel programming languages, named SPC-XML. The design principles of this
representation allow the compiler to exploit information about the synchroniza-
tion structure of an application, automatically reconstructing its task-graph.
Different mapping or scheduling techniques may be automatically selected as a
function of the structural details of the graph. Moreover, information about data-
flow and implicit communication structures are also exposed and may be easily
optimized, to generate low-level codes adapted to a specific target-machine. Re-
sults obtained for some applications, using a prototype compiler, show how this
flexible approach may reduce the development effort, leading to efficient im-
plementations from portable and high-level nested-parallel specifications. SPC-
XML is the base for a much more generic framework. Future work will include a
further development of mapping techniques, focusing on more powerful symbolic
mapping or scheduling strategies, available for SP programming models.

References

1. R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work
stealing. In Proc. Annual Symp. on FoCS, pages 356–368, Nov 1994.

2. O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn Univer-
sity BSP (PUB) library - design, implementation, and performance. In Proc.
IPPS/SPDP’99, San Juan, Puerto Rico, Apr 1999. Computer Society, IEEE.

3. P. Brinch Hansen. An evaluation of high performance Fortran. ACM SigPlan,
33(3):57–64, Mar 1998.

4. M. Cole. Frame: An imperative coordination language for parallel programming.
Technical Report EDI-INF-RR-0026, Div. Informatics, Univ. of Edinburgh, Sep
2000.

5. J. Darlington, Y. Guo, H.W. To, and J. Yang. Functional skeletons for parallel
coordination. In Europar’95, LNCS, pages 55–69, 1995.

6. A.J. Dorta, J.A. González, C. Rodŕıguez, and F. de Sande. LLC: a parallel skeletal
language. Parallel Processing Letters, 13(3):437–448, Sept 2003.

7. L. Finta, Z. Liu, I. Milis, and E. Bampis. Scheduling UET–UCT series–parallel
graphs on two processors. Theoretical Computer Science, 162:323–340, Aug 1996.

8. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-
munications of the ACM, 35(2):97–107, Feb 1992.

792 Arturo González-Escribano et al.

9. A.J.C. van Gemund. The importance of synchronization structure in parallel pro-
gram optimization. In Proc. 11th ACM ICS, pages 164–171, Vienna, Jul 1997.

10. A. González-Escribano. Synchronization Architecture in Parallel Programming
Models. Phd thesis, Dpto. Informática, University of Valladolid, Jul 2003.

11. A. González-Escribano, A.J.C. van Gemund, and V. Cardeñoso. Predicting the
impact of implementation level aspects on parallel application performance. In
Proc. CPC’2001 Ninth Int. Workshop on Compilers for Parallel Computing, pages
367–374, Edinburgh, Scotland UK, Jun 2001.

12. A. González-Escribano, A.J.C. van Gemund, V. Cardeñoso-Payo, R. Portales-
Fernández, and J.A. Caminero-Granja. A preliminary nested-parallel framework
to efficiently implement scientific applications. In M. Daydé et al., editor, VEC-
PAR 2004, number 3402 in LNCS, pages 541–555. Springer, Apr 2005.

13. A. González-Escribano, A.J.C. van Gemund, V. Cardeñoso-Payo, and R. Portales-
Fernández. SPC-XML(v0.4): An intermediate structured language for nested-
parallel programming environments. Technical Report IT-DI-2005-0001, Dept.
Computer Science, Univ. of Valladolid, Jan 2005.

14. S. Gorlatch. Send-Recv considered harmful? myths and truths about parallel pro-
gramming. In V. Malyshkin, editor, PaCT’2001, volume 2127 of LNCS, pages
243–257. Springer-Verlag, 2001.

15. C.W. Kessler. NestStep: nested parallelism and virtual shared memory for the
BSP model. In Int. Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), Las Vegas (USA), Jun-Jul 1999.

16. K. Lodaya and P. Weil. Series-parallel posets: Algebra, automata, and languages.
In Proc. STACS’98, volume 1373 of LNCS, pages 555–565, Paris, France, 1998.
Springer.

17. OpenMP ARB. OpenMP version 2.5 specification.
WWW. On http://www.openmp.org/ (last access May 2005).

18. S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1998.
19. R.A. Sahner and K.S. Trivedi. Performance and reliability analysis using directed

acyclic graphs. IEEE Trans. on Software Eng., 13(10):1105–1114, Oct 1987.
20. D.B. Skillicorn. A cost calculus for parallel functional programming. Journal of

Parallel and Distributed Computing, 28:65–83, 1995.
21. D.B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM

Computing Surveys, 30(2):123–169, Jun 1998.
22. J. Valdés, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs.

SIAM Journal of Computing, 11(2):298–313, May 1982.
23. L.G. Valiant. A bridging model for parallel computation. Comm.ACM, 33(8):103–

111, Aug 1990.
24. G. Wilson. Extensible programming fot the 21st century. ACM Queue, 2(9):48–57,

December–January 2004-2005.

Topic 10
Parallel Numerical Algorithms

Jacek Kitowski, Andrzej M. Goscinski,
Boleslaw K. Szymanski, and Filomena d’Almeida

Topic Chairs

Fast and reliable parallel algorithms for the basic problems of numerical mathe-
matics and their effective implementation in easy-to-use portable software com-
ponents are crucial for computational solution of scientific and engineering prob-
lems. Since in all domains of high performance computing, parallel execution
routinely is considered as one of the major sources of performance, the sessions
under this topic are a forum for presentation and discussion of new develop-
ments in the field of parallel numerical algorithms, covering all aspects from
basic algorithms, efficient implementation on modern parallel, distributed and
network-based architectures.

This year, 16 papers were submitted, 9 of which have been accepted (ac-
ceptance rate: 56.3%) but one of the authors didn’t submit the camera ready
version. The topic is subdivided into three sessions.

For the first session three papers have been selected: “Performance Mea-
surements of the 3D FFT on the Blue Gene/L Supercomputer”, which presents
performance characteristics of a communication-intensive 3D FFT kernel on
2048-node machine with two different implementations, “Parallel Solution of
Sparse Linear Systems Arising in Advection-Diffusion Problems”, that deals
with prefetching and preconditioning techniques using a SP4 machine and a
Linux cluster, and “Parallelization of Implicit-Explicit Runge-Kutta Methods for
Clusters of PCs” with parallel efficiency about 90% obtained with a sufficiency
large number of grid points.

The second session consists of “Comparison of different parallel modified
Gram-Schmidt algorithms”, that presents computation/communication overlap-
ping technique in two different implementations, showing substantial increase
in performance, and “Automatic Tuning of PDGEMM towards Optimal Perfor-
mance”, that shows possibility of relieving users of arduous parameter study.

The third session holds “Parallelization of Divide-and-Conquer Eigenvector
Accumulation”, that discusses different strategies for parallelization (with super-
linear speedup obtained), “Parallel Order Reduction via Balanced Truncation
for Optimal Cooling of Steel Profiles” with multilayered architecture of libraries
for model reduction proposed and “Broadcast-Based Parallel LU Factorization”
with overlapped communication.

Acknowledgements. The topic chairs would like to thank the external review-
ers for their help. Special thanks go to José C. Cunha for his frequent, ambitious
and always friendly support and advice.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 793, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Performance Measurements of the 3D FFT
on the Blue Gene/L Supercomputer

Maria Eleftheriou, Blake Fitch, Aleksandr Rayshubskiy,
T.J. Christopher Ward, and Robert Germain

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598-0218

{mariae,bgf,arayshu,tjcw,rgermain}@us.ibm.com

Abstract. This paper presents performance characteristics of a communications-
intensive kernel, the complex data 3D FFT, running on the Blue Gene/L architec-
ture. Two implementations of the volumetric FFT algorithm were characterized,
one built on the MPI library using an optimized collective all-to-all operation
[2] and another built on a low-level System Programming Interface (SPI) of the
Blue Gene/L Advanced Diagnostics Environment (BG/L ADE) [17]. We com-
pare the current results to those obtained using a reference MPI implementation
(MPICH2 ported to BG/L with unoptimized collectives) and to a port of ver-
sion 2.1.5 the FFTW library [14]. Performance experiments on the Blue Gene/L
prototype indicate that both of our implementations scale well and the current
MPI-based implementation shows a speedup of 730 on 2048 nodes for 3D FFTs
of size 128×128×128. Moreover, the volumetric FFT outperforms FFTW port
by a factor 8 for a 128×128×128 complex FFT on 2048 nodes.

1 Introduction

The primary goal of the computational science portion of the Blue Gene project is to
advance our understanding of biological phenomena such as protein folding via large
scale computer simulations[10] and as part of this effort the Blue Gene application
group has developed a Molecular Dynamics framework, Blue Matter [12]. Molecu-
lar dynamics (MD) is a well-established computational method used to study complex
bimolecular systems. MD permits the computation of thermodynamic and kinetic prop-
erties of biomolecular systems[19]. Such studies can enhance our understanding of bi-
ological functions and provide insights into processes related to the action of potential
new medications.

Blue Gene/L[15] is a massively parallel supercomputer developed at the IBM T.J.
Watson Research Center in collaboration with Lawrence Livermore National Labora-
tory. BG/L has five networks, two of which are of particular interest to the application
developers: the torus and the collective network. The three-dimensional torus has links
between each node and its six neighbors while the collective network enables low la-
tency broadcast and reduction operations as well as providing the path for i/o to external
devices. Each node operates at a relatively low clock frequency of 700 MHz and has
two PowerPC 440 CPUs on the same chip with associated dual floating point units.
Two modes of operation are supported by the system software: (1) “coprocessor mode”

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 795–803, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

796 Maria Eleftheriou et al.

which runs a single MPI task, and “virtual node mode” which runs two MPI-tasks on
each node.

The operating assumption of the Blue Gene/L architecture is that performance gains
will come from massive parallelism rather than increases in processor clock speed. This
implies that algorithms must achieve good scalability across many thousands of proces-
sors in order to fully exploit the power of this massively parallel supercomputer. One of
the major factors limiting the scalability of parallel molecular dynamics algorithms is
the calculation of full electrostatic forces using Particle-Particle-Particle-Mesh-Ewald
(P3ME)[5] techniques. P3ME methods involve the calculation of a convolution using
two 3D-FFTs for each time step. Typical simulations require 106 to 109 time steps for
10,000-100,000 atoms system. For this reason, efficient computation of the 3D-FFT
algorithm is neccessary. However, efficient implementation of the 3D-FFT presents a
considerable challenge for the communications infrastructure of a parallel machine be-
cause of the all-to-all nature of the distributed transposes required.

The parallel computation of three-dimensional FFTs has been carried out using two
approaches. In the first approach one-dimensional FFTs are computed in distributed
fashion [7, 23, 24] and in the second approach, the transpose method, uses successive
evaluations of independent one-dimensional local FFTs along each direction to evaluate
the 3D-FFT [4, 6, 13, 14, 18]. A detailed description of our implementation of the vol-
umetric FFT along with early performance data on the BG/L architecture has recently
appeared[8]. A description of an earlier version of the volumetric FFT implementation
and its performance on a more conventional (Power4/full bisectional bandwidth switch)
machine were reported previously[9].

In this paper we present the performance characteristics of the volumetric FFT on
BG/L as implemented on two different communication layers: (1) MPI with unopti-
mized and optimized all-to-all collective implementations and (2) a low-level System
Programming Interface (SPI) of the Blue Gene/L Advanced Diagnostics Environment
(BG/L ADE) [17]. The measured performance is compared with limits inherent to the
hardware capabilities of the machine such as the bisectional bandwidth of the BG/L
torus communications network. On BG/L the 3D-FFT of size of 1283 continues to speed
up through 16,384 nodes for the SPI-based version and up to 8,192 nodes for the op-
timized MPI-based vesion. On a single node, the volumetric FFT implementations are
within 50% of the performance of the ported FFTW version 2.1.5, while outperforming
FFTW at larger node counts. It is important to note that the MPI implementation of the
volumetric FFT uses BGL/FFTW-GEL [21] 1D serial FFT as a building block. In the
sections that follow, we describe the hardware limits to ultimate performance of the 3D
FFT on a Blue Gene/L machine based on the hardware “speeds and feeds”[11], present
the experimental measurements and discuss the corresponding results.

2 Hardware Limits on 3D FFT Performance

Lower bounds can be placed on the communication time for a 3D FFT implemented
using the transpose technique by assuming that three all-to-all communications (along
a row or within a plane of the processor mesh) are required. Detailed simulations of
the BG/L torus network indicate that the time required for an all-to-all communica-

Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer 797

tion involving a set of nodes in a line, plane, or volume can be estimated using the
expression[16]:

Tall−to−all =
Vreceived Nhops

Nlinks BW f

where Vreceived is the volume of data received by each node, Nhops is the average number
of hops required (for a three dimensional torus where each dimension is p, Nhops = p/4
for all-to-all in a line, Nhops = p/2 for all-to-all in a plane, and Nhops = 3p/4 for all-
to-all in a volume), Nlinks is the number of links available to each node (2 for linear
communication, 4 for planar communication, and 6 for volumetric communication),
BW is the raw bandwidth of the torus per link (2 bits per processor clock cycle), and
f is the link utilization (simulations indicate that this should be about 80%). This ex-
pression indicates that the time required for all-to-all communication is independent of
the dimensionality of the communication because of the increase of the average hop
count with dimensionality is balanced by the increase in the number of links available.
At the limits of scalability, where messages consist of a single complex number, the
above expression based on bandwidth considerations will become inadequate because
the hardware and software latencies associated with sending a packet will become sig-
nificant.

For an idealized bound on the computation time required to compute a single 1D
FFT of length N, we assume 8N log2 N cycles for a fused multiply-add machine (al-
though the floating point operation count for a 1D FFT is 5N log2 N, data dependencies
force a fused multiply-add machine to use 8 cycles). Highly optimized FFT imple-
mentations, such as the library developed by the team at the Technical University of
Vienna[20] can approach this idealized value. However, the 3D-FFT is dominated by
the communication cost of the transposes for even small node counts and the perfor-
mance of the 1D-FFT building block is not critical.

3 Parallel Performance Analysis

In this section we present performance measurements of the 3D-FFT kernel. Most of
the benchmarks reported in this paper were performed on the 20480 node Blue Gene/L
system at the IBM T.J. Watson Research Center. Each rack consists of two 512-node
mid-planes and each mid-plane comprises 16 node cards. The Blue Gene/L system can
be configured to complete a torus in all three dimension only when it is partitioned as
512 nodes and higher, where the number of nodes is power of 2. All of the benchmarks
executed in 512-node and larger partitions used the torus network, while benchmarks
executed on 32 and 128-node partitions had to use the mesh topology. The performance
metric used here is the “total time to solution” for the problem. Our use cases for the
3D FFT from molecular simulations require strong scaling for relatively small data sizes
such as 323, 643 and 1283.

We compare the performance of two MPI implementations. The first is a port of
MPICH2[22],[1] on BG/L, while the second is the optimized version for the BG/L ar-
chitecture [3] and [2]. The MPI collective of interest to us is MPI Alltoallv. The
default MPICH2 MPI Alltoallv implementation is based on non-blocking communi-
cation calls MPI irecv and MPI isend and thus requires message matching. However,

798 Maria Eleftheriou et al.

the optimized implementation runs on a lower level messaging protocol that avoids the
overheads of MPI point-to-point messages. Additional optimizations include avoiding
sending zero size messages across the network and minimizing the number of cache
misses. All the performance numbers reported here were obtained using co-processor
mode, where both Power PC 440 processors on each node execute a single MPI task.
The MPI tasks were organized in a three-dimensional grid using the MPI Cartesian
topology constructs. By mapping the MPI tasks in our domain decomposition “natu-
rally” to the physical machine topology, we can achieve substantial performance im-
provements since locality plays an important factor in the communication performance.

Figure 1 shows the measured execution time for the volumetric 3D-FFT as imple-
mented using MPI collective communications (both unoptimized and optimized) on the
20480-node BG/L system. Speedup in excess of 700 is observed for 1283 FFT at 2048
nodes and reaches over 900 at 8192 nodes for the MPI-based implementation. The op-
timized MPI outperforms the ported MPICH2 version when the number of tasks is 256
or more.

Although optimizations of the MPI collectives for the Blue Gene/L architecture
give improved performance, it may not yet reflect the full capabilities of the hardware.
To investigate whether even better performance is possible, we have implemented the
all-to-allv collective required by the FFT via the low-level System Programming
Interface (SPI) of the Blue Gene/L (ADE) [17]. The BG/L ADE was developed and is
utilized by the BG/L hardware group for running diagnostics and manufacturing tests.
The SPI packet-level interface provides direct access to the BG/L network-hardware.
In our all-to-allv collective the packets were directly injected into the send FIFOs
and then directly read by the receive FIFOs by using all six links concurrently. More-
over, we prepare the destination lists for the packet-headers in the plan phase, while
in the MPI-based implementation the packet-headers have to be evaluated at each MPI
call.

In an attempt to confine the differences in the implementations to the communica-
tions layer, the FFT code is written using C++ templates and takes a communications
class that encapsulates the details of the communications implementation as a template
parameter.

In Figure 2, we characterize the scalability behavior of the 3D-FFT algorithm on
both MPI and BlueGene/L Advanced Diagnostics Environment SPI. The FFT scales
well on both communications layers. However, as the limits of scalability are ap-
proached (where the node count P = N2 for a N×N×N FFT and only a single 1D-FFT
is performed on each node between transposes) the performance of the SPI implemen-
tation still exceeds that of the optimized MPI version. The difference in the performace
is probably due to the MPI overhead, related to cash misses on the user’s data and
dynamically creating destination lists during every MPI collective calls. Whether fur-
ther improvements are possible in the MPI and/or SPI implementations is a subject for
further investigation.

Comparisons of the volumetric 3D FFT on two different architectures, SP and early
BG/L prototype, to the FFTW[14] library have been reported previously[8]. In this
paper the authors repeat the benchmark on BG/L using the optimized MPI-version and
the new SPI implementation of the all-to-all collective operation.

Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer 799

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000

Ti
m

e
(s

ec
.)

Task Count

1283 MPI Collective (MPICH2)
1283 MPI Collective (optimized)

1283 BG/L ADE Single Core
1283 Model

(a) 128×128×128

1e-005

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Ti
m

e
(s

ec
.)

Task Count

643 MPI Collective (MPICH2)
643 MPI Collective (optimized)

643 BG/L ADE Single Core
643 Model

(b) 64×64×64

1e-005

0.0001

0.001

0.01

0.1

1 10 100 1000

Ti
m

e
(s

ec
.)

Task Count

323 MPI Collective (MPICH2)
323 MPI Collective (optimized)

323 BG/L ADE
323 Model

(c) 32×32×32

Fig. 1. Measured execution times for the volumetric FFT, for a series of problem sizes (323, 643,
1283) as a function of number nodes. Two sets of MPI data are shown. The default MPICH2 im-
plementation data were taken in July 2004 while the optimized MPI data were taken in May 2005
after significant optimization of the all-to-all collectives used by the FFT as were the measure-
ments of the implementation using the BG/L Advanced Diagnostic Environment (BG/L ADE).
The limits to execution time using simple estimates for computation and communication costs
are also shown (the limits shown assume mesh bandwidths which are half of those available on a
torus for node count below 512 and torus bandwidths for larger node counts).

800 Maria Eleftheriou et al.

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000 100000

E
la

ps
ed

Ti
m

e
(s

ec
on

ds
)

Node Count

1283 MPI
1283 BG/L ADE Single Core

643 MPI
643 BG/L ADE Single Core

Fig. 2. Performance measurements of the execution time for the volumetric 3D-FFT[8] running
on MPI and on low level communications interfaces derived from the BG/L Advanced Diagnos-
tics Environment[17] environment.

1

10

100

1000

10000

1 10 100 1000 10000

Sp
ee

du
p

Number of processors

Ideal Speedup
FFTBG on MPI

FFTW Port

Fig. 3. This plot shows a comparison of the speedups of the two different FFT libraries, volumetric
FFT (FFTBG) using the optimized MPI implementation and a straightforward port of version
2.1.5 of FFTW library on Blue Gene/L, as a function of number of processors. The 3D-FFT has
a grid size of (128×128×128).

Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer 801

Figure 3 compares the speedup of the volumetric FFT on both SPI and MPI, and a
port of the FFTW library. The two versions of the volumetric code and the FFTW library
exhibit similar scalability up to 128 nodes. Since the FFTW implementation is based on
the slab decomposition, the speedup flattens after 128 nodes. However, the volumetric
FFT continues to exhibit good speedups through 2048 nodes for the 128× 128× 128
size FFT. Both volumetric FFT versions scale up to 8,192 nodes with the SPI-based
version performing about 20% better on 8,192 nodes.

The comparison of the bounds on execution time based on hardware bandwidths
and idealized 1D serial FFT execution times with the measured total times to solution
in Figure 1 shows significant divergences at small node counts. We conjecture that this
divergence is caused by memory hierarchy effects since floating point efficiencies of
the 1D-FFTs used as building blocks for the 3D-FFT implementation are fairly high,
e.g. for a 64-point FFT, the efficiency of the FFT from the Blue Gene/L FFT library
supplied by the Technical University of Vienna is over 60%.

The memory access pattern of the in-memory transpose required for the 3D-FFT
is presumably very unfavorable for pre-fetching and at low node counts the memory
footprint per node of the larger size 3D-FFTs will certainly spill out of the 4MB L3
cache. No effort has been made to tile the implementation of the memory transposes
in the volumetric FFT. Of course, at the high node counts that represent the limits to
scalability for the FFT, the data will sit in cache and the measured performance more
closely approaches the bandwidth limited constraints on performance. Note that even
without any efforts at tiling, the uniprocessor performance of the volumetric FFT im-
plementation is within 50% of that of the FFTW library implementation. We intend to
use instrumentation that can access the hardware performance counters available on the
Blue Gene/L chip to eventually measure the memory hierarchy effects

4 Summary

We have compared the performance measurements of the volumetric 3D-FFT algo-
rithm, on two communications communication layers, MPI and SPI. Our measurements
shows that the volumetric algorithm performs impressively well on both the optimized
MPI and SPI communication layer. Moreover, we found that the volumetric FFT out-
performs a port of the widely used FFTW library (based on a slab decomposition) by a
significant margin on large numbers of nodes.

At the limits of scalability, approached by the 1283 FFT on 16,384 nodes, where
each node sends packets of the size of single complex number the code still scales,
with the BG/L ADE SPI implementation still being faster than the MPI-based FFT
using the optimized MPI collectives. Future work will involve instrumenting the code
to understand the role of memory access patterns in the performance at small node
counts and continuing optimization of the implementations on both communications
layers. Finally, we plan to reproduce and report the MPI based FFT benchmarks in the
virtual node mode in which each PPC440 core on the chip executes a separate MPI task.

Acknowledgments

We would like to acknowledge the contributions of Georghe Almasi, Charles Archer,
and Mark Giampappa for their work on the high performance communications layers

802 Maria Eleftheriou et al.

implemented on Blue Gene/L. We would like to acknowledge the proof-reading of this
paper by Frank Suits and Alan Grossfield from the Blue Gene/L application and science
team.

References

1. G. Almaśi, C. Archer, J. Castanos, M. Gupta, X. Martorell, J. E. Moreira, Gropp W, S. Rus,
and B. Toonen. MPI on Blue Gene/L:Designing an Efficient General Purpose Messaging
Solution for a Large Cellular System. In Proceedings of the 10th EuroPVM/MPI conference,
Lecture Notes in Computer Science, Klagenfurt, Austria, 2003.

2. G. Almaśi, C. Archer, C. Chris Eway, Philip Heidelberger, X. Martorell, J. E. Moreira, B. D.
Steinmacher-Burow, and Yili Zheng. Optimization of MPI collective operations on Blue-
Genełsystems. 2005. To appear at ICS05.

3. G. Almasi et al. Design and implementation of message-passing services for the Blue Gene/L
supercomputer. IBM Journal of Research and Development, 49(2/3):393–406, 2005.

4. C. E. Cramer and J. A. Board. The Development and Integration of a Distributed 3D FFT for
a cluster of workstations. In 4th Annual Linux Showcase and Conference, pages 121–128,
Atlanta, GA, October 2000.

5. Markus Deserno and Christian Holm. How to mesh up ewald sums. i. a theoretical and nu-
merical comparison of various particle mesh routines. J. Chem. Phys., 109(18):7678–7693,
1998.

6. H. Q. Ding, R. D. Ferraro, and D. B. Gennery. A portable 3D FFT Package for Distributed-
Memory Parallel Architecture. In SIAM Conference on Parallel Processing for Scientific
Computing, 1995.

7. A. Edelman, P. McCorquodale, and S. Toledo. The future fast Fourier transform? In SIAM J.
Sci. Comput., volume 20, pages 1094–1114, 1999.

8. M. Eleftheriou, B.G Fitch, A. Rayshubskiy, T.J.C. Ward, and R.S. Germain. Scalable frame-
work for 3d FFTs on the Blue Gene/L supercomputer: Implementation and early performance
measurements. IBM Journal of Research and Development, 49(2/3):457–464, 2005.

9. Maria Eleftheriou, José E. Moreira, Blake G. Fitch, and Robert S. Germain. A Volumetric
FFT for BlueGene/L. In High Performance Computing – HiPC 2003, pages 194–203, 2003.

10. F. Allen et al. Blue Gene: a vision for protein science using a petaflop supercomputer. IBM
Systems Journal, 40(2):310–327, 2001.

11. N.R. Adiga et al. An overview of the Blue Gene/L supercomputer. In Supercomputing 2002
Proceedings, November 2002.
http://www.sc-2002.org/paperpdfs/pap.pap207.pdf.

12. B.G. Fitch, R.S. Germain, M. Mendell, J. Pitera, M. Pitman, A. Rayshubskiy, Y. Sham,
F. Suits, W. Swope, T.J.C. Ward, Y. Zhestkov, and R. Zhou. Blue Matter, an application
framework for molecular simulation on Blue Gene. Journal of Parallel and Distributed Com-
puting, 63:759–773, 2003.

13. M. Frigo and S. G. Johnson. The Fastest Fourier Transform in the West. Technical Report
MIT-LCS-TR-728, Laboratory for Computing Sciences,MIT, Cambridge, MA, 1997.

14. M. Frigo and S. G. Johnson. FFTW: An Adaptive Software Architecture for the FFT. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 3, pages 1381–1384, 1998.

15. A. Gara et al. Overview of the Blue Gene/L system architecture. IBM Journal of Research
and Development, 49(2/3):195–212, 2005.

16. A. Gara, P. Heidelberger, and B. Steinmacher-burow. private communication.

Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer 803

17. M.E. Giampapa et al. Blue Gene/L advanced diagnostics environment. IBM Journal of Re-
search and Development, 49(2/3):319–332, 2005.

18. P. D. Haynes and M. Cote. Parallel Fast Fourier Transforms for electronic structure calcula-
tions. Comp. Phys. Comm., 130:121, 2000.

19. M. Karplus and J.A. McCammon. Molecular dynamics simulations of biomolecules. Nature
Structural Biology, 9(9):646–652, September 2002.

20. Stefan Kral, Franz Franchetti, Juergen Lorenz, Christoph W. Ueberhuber, and Peter
Wurzinger. FFT Compiler Techniques. In Compiler Construction: 13th International Con-
ference, CC 2004, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004. Proceedings, pages
217–231, 2004.

21. J. Lorenz, S. Kral, F. Franchett, and C. W. Ueberhuber. Vectorization techniques for the Blue
Gene/L double FPU. IBM Journal of Research and Development, 49(2/3), 2005.

22. The MPICH and MPICH2 homepage. {http://www-unix.mcs.anl.gov/mpi/mpich} ,
January 2004.

23. Mohammad Zubair Ramesh C. Agarwal, Fred G. Gustavson. A high performance parallel
algorithm for 1D-FFT. 1994.

24. E. L. Zapata, F. F. Rivera, J. Benavides, J. M. Garazo, and R. Peskin. Multidimensional Fast
Fourier Transform into fixed size hypercubes. IEE Proceedings, 137(4):253–260, July 1990.

Parallel Solution of Sparse Linear Systems
Arising in Advection–Diffusion Problems

Luca Bergamaschi1, Giorgio Pini1, and Flavio Sartoretto2

1 Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Universita’ degli Studi, Via Belzoni 7, 35131 Padova, Italy

{berga,pini}@dmsa.unipd.it
2 Dipartimento di Informatica, Universitá di Venezia

Via Torino 155, 30173 Mestre VE
sartoret@dsi.unive.it

Abstract. Flow problems permeate hydraulic engineering. In order to
solve real–life problems, parallel solutions must be engaged, for attaining
large storage amounts and small wall–clock time. In this communication,
we discuss valuable key points which allow for the efficient, parallel so-
lution of our large, sparse linear systems, arising from the discretization
of advection–diffusion problems. We show that data pre-fetching is an
effective technique to improve the efficiency of the sparse matrix–vector
product, a time consuming kernel of iterative solvers, which are the best
choice for our problems. Preconditioning is another key topic for the ef-
ficient solution of large, sparse, ill–conditioned systems. Up to now, no
extensive theory for choosing the best preconditioner is available, thus
ad–hoc recipes and sound based experience is mandatory. We compare
many preconditioners in order to show their efficiency and allowing a
good choice when attacking problems like ours.

1 Introduction

The advection–diffusion equations are [1]

∂u

∂t
= ∇ · (K∇u − vu) + f , (1)

where u is the unknown function, K is the diffusion tensor, v is a given velocity,
and f is a source or sink term. Dirichlet and Neumann boundary conditions must
be given to identify a well posed mathematical formulation of the flow problem.
Finite Element (FE) integration in space over a 3D FE N–node grid is per-
formed. Further integration in time by finite difference methods is performed by
Crank-Nicolson scheme when v = 0 [1], implicit Euler otherwise. One obtains a
sequence of N ×N linear algebraic systems, Ax = b. Classical FE methods yield
large, sparse linear systems. When the flow velocity is to be accurately com-
puted, the Mixed Hybrid Finite Element (MHFE) method are exploited. MHFE
provides simultaneous solution of fluid pressure and velocity. In our framework,
piecewise-constant pressure is considered, while velocities are approximated us-
ing the lowest order Raviart-Thomas elements [2]. MHFE requires the solution

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 804–814, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Solution of Sparse Linear Systems 805

of sparse linear systems, which for a given mesh are 7∼8 times larger than FE
ones.

Iterative methods are the best choice for solving our test problems, provided
efficient preconditioners are available. When v = 0, Symmetric Positive Defi-
nite (SPD) matrices are obtained; unsymmetric ones otherwise. For SPD matri-
ces, the best available iterative algorithm is Preconditioned Conjugate Gradient
(PCG), while for general, unsymmetric matrices no best iterative algorithm is
available. On the ground of our experience, we selected the BiCGSTAB algo-
rithm [3], which displays robustness and efficiency when attacking our problems.

A core, time consuming, sub–task inside all iterative methods is the matrix–
vector product. We tested Algorithm 2 after Geus and Rollin [4], which attempts
to enhance cache usage by data pre-fetching (DP) techniques. Table 1 shows our
implementation of the algorithm.

subroutine matvec(n, ia, ja, a, x, y)

c Matrix-vector product y = A x, with data pre-fetching.

c The matrix A is stored in CSR format.

c

implicit none

integer n, i, j, j1, k, k1, l

integer ia(*), ja(*)

real*8 a(*), x(*), y(*), s, v, v1

c

k = 1

do i = 1, n

s = 0.

k1 = ia(i+1)

if (k .lt. k1) then

j = ja(k) ! pre-fetch

v = a(k) ! pre-fetch

k = k+1

do while (k .lt. k1)

j1 = ja(k) ! pre-fetch

v1 = a(k) ! pre-fetch

s = s + v * x(j)

j = j1 ! pre-fetch

v = v1 ! pre-fetch

k = k + 1

end do

s = s + v * x(j)

endif

y(i) = s

end do

return

end

Fig. 1. Our implementation of Algorithm 2 after Geus and Röllin.

806 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Preconditioning is another key issue for the efficient solution of large linear
systems. We exploited classical Jacobi, which does not improve convergence very
much, but is both not storage consuming and easily efficiently parallelizable; we
also tested the more powerful FSAI preconditioners [5], which we computed
by our efficient, parallel implementation. For a typical range of Peclet number
values, the quality of ILU(0) and ILUT [6] preconditioners is analyzed in [7].
The results can be easily extended to FSAI and pARMS type preconditioners.

At present, no general rules to identify the best solver for either diffusion or
advection dominated problems are available. This is another motivation to our
study, which is aimed to suggest good solution strategies for several situations.

2 The FSAI Preconditioner

Given a SPD matrix A, let A = LAL
T
A be its Cholesky factorization. The FSAI

method computes an approximate inverse of A in the factorized form H =
GT

LGL, where GL is a sparse nonsingular lower triangular matrix approximating
L−1

A . To attain GL, one must first prescribe a sparsity pattern SL ⊆ {(i, j) : 1 ≤
i �= j ≤ N}, such that {(i, j) : i < j} ⊆ SL. A lower triangular matrix ĜL is
computed by solving the equations

(ĜLA)ij = δij , (i, j) �∈ SL. (2)

The diagonal entries of ĜL are all positive. Defining D = [diag(ĜL)]−1/2 and
setting GL = DĜL, the preconditioned matrix GLAGT

L is SPD and has diagonal
entries all equal to 1. A common choice for the sparsity pattern is to allow non
zeros in GL only in positions corresponding to non zeros in the lower triangular
part of Ak, where k is a small positive integer, e.g., k = 1, 2, 3; see [8]. The
extension of FSAI to the non symmetric case is straightforward; however the re-
solvability of the local linear systems and the non singularity of the approximate
inverse is only guaranteed if all the principal sub-matrix of A are non singular
(which holds true, for instance, when A + AT is SPD).

While the approximate inverses corresponding to Ak, k > 1, are often better
than the one corresponding to k = 1, they may be too expensive to compute and
apply. In [9] a simple approach, called post-filtration, was proposed to improve
the quality of FSAI preconditioners in the SPD case. The method is based on
a posteriori sparsification, by using a drop–tolerance parameter. We found that
the quality of the preconditioner does not heavily depend upon its value, which
ranges in the interval [0, 1]. The aim is to reduce the number of nonzero elements
of the preconditioning factors, in order to decrease the arithmetic complexity of
the iteration phase. In a parallel environment, a substantial reduction of the
communication complexity of the preconditioner-by-vector multiplication can
be achieved.

In the non symmetric case both preconditioner factors, GL and GU , must
be sparsified. Non symmetric matrices with a symmetric nonzero pattern are
considered, i.e. SL = ST

U is assumed, and a symmetric filtration of factors GL

and GU is performed.

Parallel Solution of Sparse Linear Systems 807

3 Parallel Implementation

Our parallel implementation of the algorithms rely upon a data splitting ap-
proach, designed for sparse FE/MHFE matrix–vector (MV) products. The code
is written in FORTRAN 90 and exploits MPI 1.0 calls for exchanging data among
the processors. All our matrices are statically stored into CSR formatted data
structures.

BiCGSTAB and PCG algorithms can be decomposed into a number of scalar
products, daxpy-like linear combinations of vectors, αv+βw, and MV products.

Scalar products, v ·w, were distributed among the P processors.
Concerning matrix splitting, note that uniform block mappings, like those

exploited in High Performance Fortran cyclic directive, are not suitable for our
sparse matrices. We splitted our matrices by a uniform, row–wise block map-
ping. Such distribution is ideal for our problems, since it allows for performing
a piece of MV product on each processor. Moreover, our sparse matrices have
quite the same number of non–zero entries per row, hence blocks consisting of
the same number of rows consist of quite the same amount of bytes. We exploited
blocks of contiguous rows. Non–contiguous row distributions yield more complex
algorithms, which moreover do not perform well on (old) machines where the
communication time changes with the relative position of processors in the com-
munication net. We improved MV evaluation by using a technique for minimizing
data communication between processors [10]. In the greedy matrix-vector algo-
rithm, each processor communicates with each other. Using our approach with
our sparse matrices, usually each processor sends/receives data to/from at most
2 other processors. Moreover, when running on P processors, the amount of
data exchanged, when dealing with a matrix featuring M non–zero entries, is
far smaller than [M/P].

3.1 Parallel Implementation of FSAI

We implemented the FSAI preconditioner computation, both for SPD, and non
symmetric matrices. Our code allows for the specification of either A or A2

sparsity patterns. We used a block row distribution of matrices A, GL (and
also GU in the non symmetric case). Complete rows are assigned to different
processors.

Let ni be the number of non zeros allowed in the i-th row of GL. In the SPD
case, any row i of the GL matrix can be computed independently of each other,
by solving a small SPD dense linear system of size ni. To attain parallelism, the
processor that computes row i must access ni rows of A. Since the number of non
local rows needed by each processor is relatively small, we temporarily replicate
the non local rows on auxiliary data structures. The dense factorizations needed
are carried out using BLAS3 routines from LAPACK. Once GL is obtained, a
parallel transposition routine provides to every processor the eligible part of GT

L .
In the non symmetric case, recall that we assume a symmetric non zero

pattern for matrix A, i.e. we ideally set SL = ST
U . The preconditioner factor GL

is computed as described before, while GU is computed by columns. Hence, no

808 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

additional row exchange is needed with respect to the SPD case. Every processor
performs a fully parallel computation both of a set of rows into GL, and of a set
of columns into GU .

4 pARMS

The parallel Algebraic Recursive Multilevel Solvers (pARMS) package [11, 12] is
an interesting effort in devising distributed preconditioners for iterative solvers.
It works in the framework of distributed linear systems, which provides an alge-
braic representation for the parallel solution of linear systems, Ax = b, arising
in Domain Decomposition Methods. The coefficient matrix A is split among the
available processors. A local Ni × Ni matrix, Ai, and an interface matrix, Xi

are assigned to the i-th processor. Each local vector of unknowns, xi, is split
into a sub–vector ui of interior variable contributions, and a sub-vector yi of
inter–domain interface variables. Analogously, each local right–hand side vector,
bi, is chopped into fi and gi contributions. The equations assigned to processor
i can be written (

Bi Fi

Ei Ci

)(
ui

yi

)
+
(

0∑
j∈Ni

Eijyj

)
=
(
fi

gi

)
. (3)

where the matrices Bi, Fi, Ei, Ci compose a block–splitting of Ai. Additive
Schwarz techniques (with or without overlapping), can be exploited, as well as
Schur complement–type ones. It is well known that scalability and robustness
of Additive Schwarz can be very poor [12]. We found that Schur techniques are
better suited to our problems. These latter techniques rely upon Schur comple-
ment systems. They are derived by eliminating the variables ui in equation (3),
using ui = B−1

i (fi − Fiyi). By substitution in the second equation, one gets

Siyi =
∑
j∈Ni

Eijyj = gi − EiB
−1
i fi = g′i, (4)

where Si is the local Schur complement

Si = Ci − EiB
−1
i Fi.

Assembling equations (4) over all processors, the global Schur complement system

Sy =

⎛⎜⎜⎜⎝
S1 E1,2 . . . E1,p

E2,1 S2 . . . E2,p

...
... . . .

...
Ep,1 Ep−1,2 . . . Sp

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
y1

y2

...
yp

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
g′1
g′2
...
g′p

⎞⎟⎟⎟⎠
is obtained. The matrix S is the global Schur complement. Once the system is
approximately solved, each processor works out the system Biui = fi − Eiyi,
hence attaining an approximated solution x of the original problem. By extensive

Parallel Solution of Sparse Linear Systems 809

testing, we found that for our problems the lsch ilut (left–Schur complement)
algorithm performs better w.r.t. the Additive Schwarz preconditioners, right
Schur complement preconditioners, and Gauss–Seidel preconditioners, which are
described in [12]. The lsch ilut approach solves the global Schur complement
system via Block–Jacobi preconditioning. Note that pARMS package suffers from
the need of assessing a large number of parameters (about 15), corresponding to
the high number of possibilities that can be exploited.

pARMS algorithms are intrinsically parallel. Note that the number of itera-
tions performed heavily depend upon the number of engaged processors, hence
pARMS parallel performance analysis cannot naively rely upon classical param-
eters, like speedup.

5 Numerical Results

Table 1 shows the main characteristics of our test problems.

Table 1. Main characteristics of our test matrices. N=size, nz=number of non–zero
elements, dd= “is it a diagonal dominant matrix?”; HB=half–bandwidth; type = Ma-
trix type: spd= symmetric positive definite, problem = problem type, algorithm = dis-
cretization algorithm, uns= unsymmetrical matrix. Solvers: P=PCG, B=BiCGSTAB.

N nz dd HB type problem algorithm solver
1 268,515 3,926,823 Y 5265 spd diffusion FE P
2 390,160 2,694,160 N 18062 spd diffusion MHFE P
3 531,765 7,817,373 Y 5265 spd diffusion FE P
4 1,059,219 15,605,175 N 20769 spd diffusion FE P
5 1,317,141 19,458,621 N 13041 uns adv-diff FE B
6 2,097,669 31,066,125 N 20769 spd diffusion FE P
7 2,635,731 38,927,991 N 51681 uns adv-diff FE B
8 3,096,640 21,528,640 N 71966 spd diffusion MHFE P

We stopped the iterations when the euclidean norm of the residual, rk =
b−Axk, satisfies ‖rk‖ � 10−12.

We performed our runs on the IBM SP4 system and the IBM Linux Cluster
1350 machine, both located at CINECA supercomputing center, Italy.

The SP4 machine features 16 nodes, each one including 32 POWER 4, 1300
MHz processors. Each node is equipped with a 64 GB memory, one only node
featuring a 128 GB core memory. The nodes are connected with 2 interfaces to
a dual plane set of Colony switches.

The IBM Linux Cluster 1350, CLX for short, is a 256 node machine. Each
node encloses a 2GB DRAM (32 nodes have a 4GB DRAM), and two Intel Xeon
Pentium IV 3.055 GHz processors (10 I/O nodes feature 2.8 GHz processors).
Each processor is equipped with a 512Kb L2 Cache. Disk space is 5.5 TB. The
internal network is a Myrinet IPC one.

810 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Table 2. Wall–clock seconds spent on the SP4, to solve our test problems up to
‖rk‖ � 10−12 accuracy. D = PCG + diagonal preconditioning; F = PCG + FSAI(A)
preconditioning; F1 = PCG + FSAI(A2) preconditioning; D*, F*, F1* are D, F, F1,
respectively, where no data prefetching inside matrix–vector products was exploited.

N alg T1 T2 T4 T8 T16 T32 S2 S4 S8 S16 S32

2,097,669 D* 2611.0 1391.2 834.0 534.9 287.4 151.8 1.88 3.13 4.88 9.08 17.20
F* 1976.0 1111.3 622.4 408.2 205.2 110.2 1.78 3.17 4.84 9.63 17.93

F1* 1548.4 858.6 470.6 347.2 176.3 106.8 1.80 3.29 4.46 8.78 14.50
averages 2045.1 1120.4 642.3 430.1 223.0 122.9 1.82 3.20 4.73 9.17 16.54

2,097,669 D 1822.7 985.5 555.1 375.1 201.6 102.4 1.85 3.28 4.86 9.04 17.80
F 1236.6 655.6 369.6 243.3 144.2 91.2 1.89 3.35 5.08 8.58 13.56

F1 1067.7 570.5 315.0 211.2 118.6 79.6 1.87 3.39 5.06 9.00 13.41
averages 1375.7 737.2 413.2 276.5 154.8 91.1 1.87 3.34 5.00 8.87 14.92

Table 2 compares, on an appropriate test matrix, the performance on the
SP4 of our PCG code either with or without, data pre-fetching (DP) by Geus
& Rollin. The value Tp is the wall–clock seconds spent to solve a problem; Sp =
T1/Tp is the classical speedup value. One can see that appreciably less wall–clock
seconds are spent to solve our test problems when the DP technique is exploited.
The average time over all tests goes down from 764.0 seconds when no DP is used,
to as less as 508.1, which is only 67% of the former time, when DP is exploited.
On the other hand, the speedup values are quite similar; their average values
over all tests are 7.09 for no DP, vs 6.80 with DP. Concerning the assessment of
the parameters in pARMS, we extensively engaged the package on our problems.
We tested s = 30, 50, 80, 100 Krylov subspace sizes. We found that a good choice
is using flexible GMRES (FGMRES) [13], together with s = 100. The lsch ilut
preconditioner with overlapping was enrolled. The fill-in parameter was set to
lfill=60 for all the recursion levels, and the dropping tolerance was tol=10−4.
The group independent set size was set to 5000, while the maximum number of
internal iterations was 5. These values are also suggested in [11].

Table 3 shows the wall-clock times and relative speedup values, S
(r)
p =

Tp/2/Tp, p = 2, 4, 8, 16, 32, recorded on the SP4 when solving our test problems
(all obtained by exploiting DP technique). Note that the I/O time needed for
data input is not considered. The time for printing output results is negligible.

The smallest matrices (problems 1 and 2) were solved on up to 16 processors.
A larger number of processors would assign a too small data set to each one. To
solve the larger problems, up to 32 processors were engaged. Inspecting Table 3
one can see that FSAI(A) allows for a slight decrease of the computing time,
over Jacobi, while FSAI(A2) with drop–tolerance value 0.1 provides appreciable
enhancements over FSAI(A) and Jacobi.

One can see that pARMS in the smaller problems (1–6) is usually more
time consuming than the other methods, while it is comparably expensive in
the larger problem 7. In spite of the fact that we made extensive parameter
space analysis, we could not attain pARMS convergence on problem 8. It is well
known that pARMS suffer from high changes in the iteration number, depend-

Parallel Solution of Sparse Linear Systems 811

Table 3. Analogous to the previous Table. Du = BiCGSTAB + Jacobi; Fu =
BiCGSTAB + FSAI(A); F1u = BiCGSTAB + FSAI(A2); pA = pARMS. Legend for
the symbols: “*” = no convergence attained; “-” = value not computed, “/” = value
not computable.

N alg T1 T2 T4 T8 T16 T32 S
(r)
2 S

(r)
4 S

(r)
8 S

(r)
16 S

(r)
32

1 268,515 D 448.0 230.6 136.5 84.5 52.2 - 1.94 1.69 1.62 1.62 /
F 382.9 198.4 116.7 79.8 49.1 - 1.93 1.70 1.46 1.63 /

F1 86.2 45.3 25.6 16.1 9.3 - 1.90 1.77 1.59 1.73 /
pA 131.3 91.9 86.8 62.2 50.7 - 1.43 1.06 1.40 1.23 /

2 390,160 D 201.2 105.8 62.5 42.9 24.3 - 1.90 1.69 1.46 1.77 /
F 183.2 98.1 54.8 37.6 21.3 - 1.87 1.79 1.46 1.77 /

F1 140.1 73.4 42.3 28.4 15.0 - 1.91 1.74 1.49 1.89 /
pA * 235.8 189.8 217.9 * - / 1.24 0.87 / /

3 531,765 D 1519.3 824.9 459.1 299.7 138.8 88.3 1.84 1.80 1.53 2.16 1.57
F 1542.6 867.9 467.5 323.1 150.4 98.7 1.78 1.86 1.45 2.15 1.52

F1 236.0 126.7 69.9 45.3 21.6 13.5 1.86 1.81 1.54 2.10 1.60
pA 554.3 169.2 140.3 183.9 136.2 131.7 3.28 1.21 0.76 1.35 1.03

4 1,059,219 D 2522.7 1344.6 778.2 549.2 270.4 140.3 1.88 1.73 1.42 2.03 1.93
F 2044.1 1050.5 598.9 479.4 253.7 136.1 1.95 1.75 1.25 1.89 1.86

F1 770.9 412.3 229.1 174.4 93.6 52.3 1.87 1.80 1.31 1.86 1.79
pA * 351.8 245.0 216.8 176.3 92.3 / 1.44 1.13 1.23 1.91

5 1,317,141 Du 666.6 369.1 192.0 132.7 70.8 46.5 1.81 1.92 1.45 1.87 1.52
Fu 527.6 280.3 163.4 113.2 64.9 45.3 1.88 1.72 1.44 1.74 1.43

F1u * * 170.1 102.6 62.0 41.3 / / 1.66 1.65 1.50
pA * * * 202.8 133.6 79.7 / / / 1.52 1.68

6 2,097,669 D 1822.7 985.5 555.1 375.1 201.6 102.4 1.85 1.78 1.48 1.86 1.97
F 1236.6 655.6 369.6 243.3 144.2 91.2 1.89 1.77 1.52 1.69 1.58

F1 1067.7 570.5 315.0 211.2 118.6 79.6 1.87 1.81 1.49 1.78 1.49
pA * * * 652.7 376.2 226.5 / / / 1.73 1.66

7 2,635,731 Du * * 768.9 546.6 380.2 295.2 / / 1.41 1.44 1.29
Fu * * * 536.0 321.6 271.4 / / / 1.67 1.18

F1u * * * 419.3 254.1 212.4 / / / 1.65 1.20
pA * * * 419.7 295.3 191.2 / / / 1.42 1.54

8 3,096,640 D 6202.0 3423.4 1949.1 1612.2 714.7 350.7 1.81 1.76 1.21 2.26 2.04
F 4950.2 2656.0 1506.4 1132.2 574.6 307.2 1.86 1.76 1.33 1.97 1.87

F1 3801.6 2008.9 1176.0 924.3 428.7 242.8 1.89 1.71 1.27 2.16 1.77
pA * * * * * * / / / / /

averages 1410.8 715.7 418.0 337.6 186.8 145.1 1.92 1.68 1.38 1.76 1.61

ing upon the number of processors. Note that in many problems pARMS could
not be run on 1 or 2 processors, due to lack of core memory. When the rela-
tive speedup can be measured, it displays large oscillations, and questionable
values (e.g. S

(r)
2 = 3.28 for N=531,765). From this point of view, PCG and

BiCGSTAB are more robust on this kind of problems. The average standard de-
viation in the number of iterations, counting all our PCG and BiCGSTAB tests,
is 12.9, while for pARMS is 90.3. We feel that solving even larger problems on

812 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Table 4. Analogous to Table 3. Problem 3, N=531,765, results obtained on the CLX
system.

N alg T1 T2 T4 T8 T16 T32 S
(r)
2 S

(r)
4 S

(r)
8 S

(r)
16 S

(r)
32

531,765 D 1726.7 908.7 473.3 250.7 133.2 74.2 1.90 1.92 1.89 1.88 1.80
F 1560.3 821.2 437.4 237.7 139.6 83.3 1.90 1.88 1.84 1.70 1.68

F1 287.9 163.3 90.9 51.1 28.7 16.4 1.76 1.80 1.78 1.78 1.75
pA 521.3 141.6 114.6 166.4 92.3 80.7 3.68 1.24 0.69 1.80 1.14

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 2 4 8 16 32

ef
fi

ci
en

cy

processors

SP4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 2 4 8 16 32

ef
fi

ci
en

cy

processors

CLX

Fig. 2. Problem 3, N=531,765. Average relative efficiency on D, F, and F1 methods,
obtained when running on the SP4 (left frame), and CLX (right frame).

a larger number of processors, pARMS could perform better. Figure 2 shows
the average relative efficiency, E(r)

p = S
(r)
p /2, on problem 3, recorded either on

the SP4 (left frame) or on the CLX (right frame). The average was performed
on D, F, and F1 algorithms; the pA technique was not considered: recall that
the cost of the algorithm heavily depends upon the number of running proces-
sors, hence plain efficiency is meaningless. Usually, the relative efficiency on the
SP4 is quasi optimal for p = 2 processors, good for 4, worsens when doubling
to 8 processors, acceptable on more than 8. Such a behavior is typical for our
problems, when running on CINECA’s machine. The interconnecting network
is not so fast as to allow high speedup values on a large number of processors
(see also [4, 14]). The performance degradation when going from 4 to 8 proces-
sors occurred in all our parallel experiences on this machine, due to hard/soft
processor aggregation into virtual/physical nodes. Since 8 processors share the
same node core memory, when all 8 are engaged on unstructured matrix com-
putations, many memory conflicts are raised. For comparison, Table 4 shows
the time and speedup recorded on the CLX system, for problem 3 (N=531,765).
Comparing with the results on the SP4 after Table 3, one can see that the perfor-
mance is usually better on the CLX. A slight performance decrease is recorded
when going from 1 to 2 processors. Recall that a CLX node encompasses two
processors, sharing the node core memory. One can see that on the CLX the
efficiency behavior matches the parallel expert feeling. This result confirms that
the disturbing low performance on the SP4, when running on 8 processors, is
due to the machine architecture, rather than to our algorithm, which performs
well on other architectures, like CLX.

Parallel Solution of Sparse Linear Systems 813

Summarizing, the parallel performance on the SP4 is more erratic than on
the CLX, but note that the largest problems cannot run on a 2GB CLX node,
unless a suitably large number of processors is engaged.

The parallel degrees obtained on the SP4 are compatible with the exploited
machine, in accordance with the degrees shown e.g. in [4].

6 Conclusions

Summarizing, the PCG algorithm for SPD problems and BiCGSTAB for un-
symmetric ones, equipped with FSAI(A2) preconditioning, prove to be the best
parallel solvers for our problems, on our tests.

Data pre-fetching allows for appreciably improving the efficiency of our sparse
matrix–vector products.

The parallel efficiency of our code on the SP4 can be rated satisfactory. Our
results provide a guideline for the parallel performance that one can expect
when running FE codes. Parallel performance losses can be recorded running on
8 processors, due to the complex, highly non uniform, SP4 architecture. This
problem does not occur on the CLX, where typical parallel performance results
are achieved.

Acknowledgments

This work has been supported by the italian MIUR project Numerical models
for multi-phase flow and deformation in porous media.

References

1. Gambolati, G., Pini, G., Tucciarelli, T.: A 3-D finite element conjugate gradient
model of subsurface flow with automatic mesh generation. Adv. Water Resources
3 (1986) 34–41

2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag,
Berlin (1991)

3. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of BI-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
13 (1992) 631–644

4. Geus, R., Röllin, S.: Towards a fast parallel sparse symmetric matrix-vector mul-
tiplication. Parallel Computing 27 (2001) 883–896

5. Yu. Kolotilina, L., Yu. Yeremin, A.: Factorized sparse approximate inverse precon-
ditionings I. Theory. SIAM J. Matrix Anal. Appl. 14 (1993) 45–58

6. Saad, Y.: ILUT: A dual threshold incomplete lu factorization. Numer. Linear Alg.
Appl. 1 (1994) 387–402

7. Pini, G., Putti, M.: Krylov methods in the finite element solution of groundwater
transport problems. In Peters, A., Wittum, G., Herrling, B., Meissner, U., Brebbia,
C.A., Gray, W.G., Pinder, G.F., eds.: Computational Methods in Water Resources
X, Volume 1, Dordrecht, Holland, Kluwer Academic (1994) 1431–1438

814 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

8. Kaporin, I.E.: New convergence results and preconditioning strategies for the con-
jugate gradient method. Numer. Linear Alg. Appl. 1 (1994) 179–210

9. Yu. Kolotilina, L., Nikishin, A.A., Yu. Yeremin, A.: Factorized sparse approximate
inverse preconditionings IV. Simple approaches to rising efficiency. Numer. Linear
Alg. Appl. 6 (1999) 515–531

10. Bergamaschi, L., Putti, M.: Efficient parallelization of preconditioned conjugate
gradient schemes for matrices arising from discretizations of diffusion equations.
In: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing. (March, 1999) (CD–ROM).

11. Li, Z., Saad, Y., Sosonkina, M.: pARMS: a parallel version of the algebraic recursive
multilevel solver. Numer. Linear Alg. Appl. 10 (2003) 485–509

12. Saad, Y., Sosonkina, M.: pARMS: a package for solving general sparse linear sys-
tems of equations. In Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski,
J., eds.: Parallel Processing and Applied Mathematics. Volume 2328 of Lecture
Notes in Computer Science., Berlin, Springer-Verlag (2002) 446–457

13. Saad, Y.: Iterative Methods for Sparse Linear Systems. Second edition. SIAM,
Philadelphia, PA (2003)

14. Bergamaschi, L., Pini, G., Sartoretto, F.: Computational experience with sequen-
tial and parallel preconditioned Jacobi Davidson for large sparse symmetric ma-
trices. J. Comput. Phys. 188 (2003) 318–331

Parallelization of Implicit-Explicit Runge-Kutta
Methods for Cluster of PCs

José Miguel Mantas1, Pedro González2, and José A. Carrillo3

1 Software Engineering Department. University of Granada
C/ P. Daniel de Saucedo s/n. E-18071 Granada, Spain

jmmantas@ugr.es
2 Department of Applied Mathematics. University of Granada

Avda. Fuentenueva s/n. E-18071 Granada, Spain
prodelas@ugr.es

3 Departament de Matemàtiques - ICREA. Universitat Autònoma de Barcelona
Bellaterra E-08193

carrillo@mat.uab.es

Abstract. Several physical phenomena of great importance in science
and engineering are described by large partly stiff differential systems
where the stiff terms can be easily separated from the remaining terms.
Implicit-Explicit Runge-Kutta (IMEXRK) methods have proven to be
useful solving these systems efficiently. However, the application of these
methods still requires a large computational effort and their parallel im-
plementation constitutes a suitable way to achieve acceptable response
times. In this paper, a technique to parallelize and implement efficiently
IMEXRK methods on PC clusters is proposed. This technique has been
used to parallelize a particular IMEXRK method and an efficient parallel
implementation of the resultant scheme has been derived in a structured
manner by following a component-based approach. Several numerical
experiments which have been performed on a cluster of dual PCs reveal
the good speedup and the satisfactory scalability of the parallel solver
obtained.

1 Introduction

The spatial discretization of a great variety of time-dependent partial differential
equations (PDEs) by the method of lines leads to large systems of ordinary
differential equations (ODEs) with this form:

dy

dt
= f(y) + g(y), y(0) = y0 ∈ IRd, t > 0 (1)

where y = y(t) ∈ IRd is the unknown function of a d-dimensional ODE system
which is defined by the component functions f ,g : IRd −→ IRd. The function
g(y) results from the discretization of the stiff terms and f(y) results from the
discretization of the remaining terms. The function g is usually written as (1/ε)g̃
(g̃ : IRd −→ IRd), where ε > 0 is the stiffness parameter [5].

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 815–825, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

816 José Miguel Mantas, Pedro González, and José A. Carrillo

There are many practical problems where it can be advantageous to integrate
f explicitly, to reduce computational costs, and g implicitly, to avoid excessively
small time steps. In fact, the Jacobian of g in problems of form (1) frequently
exhibits a particular structure (positive definite, symmetric, and sparse) whose
exploitation would make it possible a considerable saving of computational effort
if g is implicitly integrated. This special structure can be lost if global implicit
methods are used to integrate both terms (f(y)+g(y)). Therefore, it often makes
sense to integrate g(y) implicitly and f(y) explicitly in these problems when they
exhibit this structure.

A clear example of this type of system appears in reaction-diffusion and
convection-diffusion problems [1, 7, 12, 13] arising in multiple areas of science
and engineering. In these problems, an explicit scheme would be used for the
reaction (resp. convection) term and an implicit scheme for the diffusion term.

There exists Runge-Kutta methods which are specially suitable for systems
of form (1). These schemes, known as Implicit-Explicit Runge-Kutta Methods
(IMEXRK), apply an implicit discretization for g and an explicit one for f , si-
multaneously, in the same time step and using identical time step size. A Diago-
nally Implicit Runge-Kutta method (DIRK) [2] is usually considered to integrate
g, given the importance of the efficiency in the solution of the stiff part of the
equation [1].

However, the application of an IMEXRK method, together with the com-
plexity of these systems, demands a great deal of computing power which can be
easily achieved by using efficient parallel implementations running on cluster of
Personal Computers (PCs). In this paper, the development of parallel software
based on IMEXRK methods is tackled.

In section 2, the structure of the most relevant IMEXRK methods is briefly
presented. A general technique to parallelize these numerical methods will be
described in section 3. This technique will be applied to a particular IMEXRK
method in section 4, to obtain a new parallel scheme. A component based
methodological approach for deriving group parallel ODE solvers [9, 10] is used in
section 5 to develop an efficient parallel implementation of this numerical scheme.
This approach enables the exploitation of the multilevel parallelism which ex-
hibits the numerical scheme and the ODE system in an structured manner. This
implementation is adapted to solve a 1D rarefied gas shock profile on a cluster of
dual PCs. Section 6 presents the experimental results obtained with the parallel
solver. Finally, section 7 gives the main conclusions of the work.

2 Implicit-Explicit Runge-Kutta Methods

We have considered IMEXRK methods where the implicit solver (which is used
to integrate g) is a DIRK method. With this requirement, we have identified two
relevant types of IMEXRK methods: pure IMEXRK methods [1, 8] and Additive
Semi-Implicit Runge-Kutta methods of type A (ASIRK-A) [13].

A pure s-stage IMEXRK scheme is characterized by two matrices Ã, A ∈
IRs×s (Ã = (ãij), A = (aij)) and two coefficient vectors b̃, b ∈ IRs (b̃ =

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 817

(b̃1, . . . , b̃s), b = (b1, . . . , bs)). The matrix Ã is strictly lower triangular (ãij = 0,
for j ≥ i) and A is lower triangular (ãij = 0, for j > i). When these parame-
ters are applied to a system of form (1), we obtain the numerical scheme which
appears below. This scheme describes how to obtain the vector yn ∈ IRd, which
approximates y(tn), from the approximation given by the previous integration
step yn−1 ≈ y(tn−1):

Yn,i = yn−1 + hn

(i−1∑
j=1

ãijf(Yn,j) +
i∑

j=1

aijg(Yn,j)
)
, i = 1, . . . , s (2)

yn = yn−1 + hn

(s∑
i=1

b̃if(Yn,i) +
s∑

i=1

big(Yn,i)
)
, n = 1, . . . , Nsteps

where Yn,i ∈ IRd, i = 1, . . . , s and hn is the size of the n-th time step (hn =
tn − tn−1). Nsteps is the total number of time steps.

An s-stage ASIRK-A scheme (ASIRK-sA) is represented with the same kind
of parameters as an s-stage IMEXRK method. The only difference is that in
ASIRK-A methods, only a coefficient vector b ∈ IRs is necessary, in addition
to the matrices Ã, A ∈ IRs×s which maintain the same previously mentioned
structure. When these parameters are applied to a system of form (1), we obtain:

Yn,i = hn

⎡⎣f(yn−1 +
i−1∑
j=1

ãijYn,j

)
+ g
(
yn−1 +

i∑
j=1

aijYn,j

)⎤⎦ , i = 1, .., s (3)

yn = yn−1 +
s∑

i=1

biYn,i, n = 1, . . . , Nsteps

3 An Approach to Parallelize IMEXRK Methods

When an IMEXRK method is applied to a system of form (1), s connected
d-dimensional nonlinear systems must be solved sequentially (see (2) and (3)).

If the modified Newton method [2] is applied to solve each of these systems,
we obtain s Newton iterations where the i-th iteration (i = 1, . . . , s) computes an
approximation to the vector Yn,i. Each iteration must be solved before the next
one, because the i-th iteration depends on vectors Yn,j , j = 1, . . . , i− 1, which
must be computed in previous iterations. As a result, the following numerical
scheme is obtained:

for n = 1, . . . , Nsteps

for i = 1, . . . , s
Y

(0)
n,i is computed by using a predictor formula

for v = 1, . . . ,mi

Ri = Qi − Y
(v−1)
n,i

Y
(v)
n,i = Y

(v−1)
n,i +

(
Id − aiihnJg(ki)

)−1

Ri

818 José Miguel Mantas, Pedro González, and José A. Carrillo

The values mi of this method are dynamically determined to ensure that
Y

(mi)
n,i is a good approximation of Yn,i. Jg(ki) denotes an approximation to the

Jacobian of g evaluated at ki and Id denotes the d-dimensional identity matrix.
The values of Qi and ki vary depending on the type of IMEXRK scheme

which is considered. So, for pure IMEXRK schemes, ki = yn−1 and

Qi = yn−1 + hn

(i−1∑
j=1

ãijf(Yn,j) +
i−1∑
j=1

aijg(Yn,j) + aiig(Y (v−1)
n,i)

)
,

and for ASIRK-A schemes, ki = yn−1 +
i−1∑
j=1

aijYn,j and

Qi = hn

⎡⎣f(yn−1 +
i−1∑
j=1

ãijYn,j

)
+ g
(
yn−1 +

i−1∑
j=1

aijYn,j + aiiY
(v−1)
n,i

)⎤⎦ .
Since the iterations must be solved sequentially, this scheme does not exhibit

a lot of task parallelism exploitable across the method [2]. In order to decouple
the calculations associated to each stage, we propose to approximate the solution
of this scheme by using a similar scheme in which the calculations of each stage
can be performed in parallel. The new scheme introduces some of redundant
computation, but this additional cost is relatively small. This scheme is based
on the following reasonable assumptions:

– For ASIRK-A schemes, the Jacobian of g in yn−1 +
∑i−1

j=1 aijYn,j is approx-
imated by the Jacobian evaluated in yn−1 (ki = yn−1). This approximation
does not involve a considerable loss of accuracy and makes it possible to use
the same Jacobian matrix in the calculations of all the stages.

– The calculations of each stage can be performed in a synchronous and concur-
rent manner if, in the v-th iteration of the original scheme, we approximate
Yn,j by Y

(v−1)
n,j and we consider the same number of Newton iterations for

all the stages (v = 1, . . . ,m).

Now, the parallel numerical schemes which result from these assumptions
are described. In these descriptions, the term Y

(v−1)
n,j appears highlighted to

emphasize the modification of the original schemes.

for n = 1, . . . , Nsteps

Y
(0)
n = Pred(Yn−1) (Pred(·) denotes a predictor formula)

for v = 1, . . . ,m
parfor i = 1, . . . , s

Ri = Qi − Y
(v−1)
n,i

Y
(v)
n,i = Y

(v−1)
n,i +

(
Id − aiihnJg(yn−1)

)−1

Ri

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 819

where Yn ∈ IRsd is the so-called stage vector, which contains s d-dimensional
components Yn,i, i = 1, . . . , s (Yn = (Yn,1, . . . , Yn,s)T). The value of m must
be dynamically determined to ensure that (Y (m)

n,1 , . . . , Y
(m)
n,s)T is a good approx-

imation of Yn. Here the term Qi is different. For IMEXRK schemes:

Qi = yn−1 + hn

(i−1∑
j=1

ãijf(Y
(v−1)
n,j) +

i−1∑
j=1

aijg(Y
(v−1)

n,j) + aiig(Y (v−1)
n,i)

)
and for ASIRK-A schemes:

Qi = hn

[
f

(
yn−1 +

i−1∑
j=1

ãij Y
(v−1)
n,j

)
+ g

(
yn−1 +

i−1∑
j=1

aij Y
(v−1)

n,j + aiiY
(v−1)
n,i

)]

With this scheme, the total number of Newton iterations would be no less
than in the original scheme (m ≥ max1≤i≤s(mi)). However, this additional num-
ber of iterations does not involve an excessive loss of efficiency.

4 Application to a Particular IMEXRK Method

Now the derivation of a particular parallel IMEXRK method of second order is
performed. The selected method is termed LRR(3,2,2) [8] (3 stages are used in
the implicit scheme, 2 stages in the explicit scheme and the convergence order
is 2). This method is very suitable in applications where the stiff terms can
be easily separated from the rest of the equations and a high accuracy is not
required in the time discretization [1]. The parameters which characterize this
method [8] lead to the following numerical scheme:

Yn,1 = yn−1 +
1

2
hn[f(yn−1) + g(Yn,1)], Yn,2 = yn−1 +

1

3
hn[f(yn−1) + g(Yn,2)]

yn = Yn,3 = yn−1 + hn[f(Yn,1) +
3

4
g(Yn,2) +

1

4
g(Yn,3)] (4)

This scheme exhibits exploitable task parallelism itself, because the computation
of vectors Yn,1 and Yn,2 can be performed simultaneously. However, the compu-
tation of yn = Yn,3 requires the previous computation of those two vectors. We
have applied the previously described general technique to enable a higher degree
of concurrency, obtaining the following parallel scheme, which has been termed
PIMEXRK3 (Parallel IMEXRK method with 3 stages).

for n = 1, . . . , Nsteps { Y
(0)
n = Pred(Yn−1) // a11 = 1

2
, a22 = 1

3
, a33 = 1

4

for v = 1, . . . , m {
par { parfor i = 1, 2 {Ri = yn−1 + aiihn

[
f(yn−1) + g(Y (v−1)

n,i)
]
− Y

(v−1)
n,i }

R3 = yn−1 + hn

[
f(Y (v−1)

n,1) + 3
4
g(Y (v−1)

n,2) + a33g(Y (v−1)
n,3)

]
− Y

(v−1)
n,3 }

parfor i = 1, 2, 3 { Y
(v)

n,i = Y
(v−1)
n,i + (Id − aiihnJg(yn−1))−1Ri } }

}

820 José Miguel Mantas, Pedro González, and José A. Carrillo

5 Derivation of Parallel Implementations
of the PIMEXRK3 Scheme

Following a component-based approach to derive parallel ODE solvers [9, 10],
termed COMPODES, a distributed implementation of the PIMEXRK3 scheme
has been obtained to solve a particular problem on a cluster of dual PCs, by
appplying 3 phases in sequence.

1. Component-Based Generic Description of the Numerical Scheme
From the mathematical description of the numerical scheme, the first phase
of COMPODES is applied. For that purpose, several abstract operations are
selected and combined suitably to describe the algorithm and to express the
maximum degree of task parallelism. A summarized generic description of the
PIMEXRK3 method, based on abstract operations, is shown in Figure 1a), where
the edges denote data dependencies and the main sources of task parallelism
are represented with concurrent loops (PAR i = 1, 3). We have selected a di-
rect method based on LU decomposition to solve the linear systems, because
this choice enables the reuse of the same LU decomposition for the solution
of all the linear systems which arise in one time step. In fact, The operation
LUdecomp(.., A, ..) denotes the LU factorization of A, SolveSystem(.., A, ..., X)
denotes the computation of X ←− A−1X (assuming LUdecomp(.., A, ..)) and
Feval(.., t, f, y, dy) denotes the evaluation of a function f .

Mjacobian(..., y , , J)0 gg

ConvergenceCtrl (..., R, ...,convergence)

ErrorCtrl(..., y ,Y, t, ...)0

LUdecomp(...,)LUi

Jg

While (t< t)f

LU , i=1,..,3i

R, Y

Compute Jacobian Jg

Factorize LU =I - a h Ji d ii g

Solve LU DY =Ri i i

PAR i = 1 , 3

OUT: yf

IN: f gy , ,0

While(not convergence)

Feval(...,Y , ,Vf)1 3f

Compute f(Y)1

SolveSystem (..., LU ,..., R)i i

R , i=1,..,3i

Feval (...,Y , , Vg)i ig

Compute g(Y)i

Vg , i=1,..,3i

PAR i = 1 , 3

PAR i = 1 , 3

...

...

PDGBTRS (...,)LU , Ri i...,

PAR i = 1 , 3 ON G3(i)

PDGBTRF (...,)LUi

PAR i = 1 , 3 ON G3(i)

IN: REP(G1) f gy ,0 ,

ON G1 Block_SplitBandedMJacobian(...,y)0 g...,, J

OUT: REP(G1) yf

ON G1 ConvergenceCtrl (..., ,...,convergence)R

ON G1 ErrorCtrl (..., , t,...)Y

ON G1 Block_BFeval(.., , f ,)Y Vf1 3

While (t< t)f

While(not convergence)

PAR i = 1 , 3 ON G3(i) Block_BFeval(.., ,g ,)Y Vgi i

...

a) b)

Fig. 1. a) Generic description of PIMEXRK3, b) Description of task scheduling

2. Adaptation to a Particular ODE System
The generic description of the PIMEXRK3 method has been adapted, following
the second COMPODES phase, to perform the time integration of a hydrody-

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 821

namical model of the Boltzmann equation for rarefied gases in 1D [11]. This
model is based on a system of 5 PDEs, termed the relaxed Burnett system [6],
which can be written in the following form:(

Ut

Vt

)
=
(−F (U, V)x

−G(U, V, Ux, Vx) + D(U, V, Ux, Vx)x

)
, where (5)

U =

⎛⎜⎝ ρ
m = ρu

z =
1

2
ρu2 +

3

2
p

⎞⎟⎠ , V =
(

σ
q

)
, F (U,V) =

⎛⎜⎝ ρu

ρu2 + p + σ
1

2
ρu3 +

5

2
up + σu + q

⎞⎟⎠ .

The terms G(U, V, Ux, Vx) and D(U, V, Ux, Vx) are defined in [6]. In this sys-
tem, we have five independent variables ρ (mass density), m = ρu (momentum,
where u is the macroscopic velocity), z = 1

2ρu
2 + 3

2p (total energy, where p is
the normal pressure), σ (pressure deviation tensor) and q (heat flux vector).

A spatial discretization of this system is proposed in [11]. This discretization
is based on combining relaxation schemes for the conservative part and standard
second order central differences for the non conservative part. The resulting
system has 5N ODEs when the 1D space is discretized by using N grid points. A
suitable arrangement of the equations leads to a a narrow banded ODE system
whose Jacobian matrix has 9 subdiagonals and 7 superdiagonals.

The stiff and nonstiff terms in (5) have the following form:

f(U, V) = (−F (U,V)x, 0)T , g(U, V) = (0, D(U, V, Ux, Vx)x − G(U,V, Ux, Vx))T .

If we maintain the same spatial discretization and arrangement which it is
proposed in [11], the subsystem associated to g has a banded structure and the
Jacobian of g has 9 subdiagonals and 5 superdiagonals. Therefore, the banded
structure of the function g and its Jacobian is narrower than in the original
system (f = f + g). Since the structure of the Jacobian matrix for g determines
the complexity of the more costly calculations in the implicit time integration,
the use of an IMEXRK method involves an important reduction of computational
costs.

The initial vector y0 of the ODE system captures the state before a one-
dimensional shock profile with Mach number 10 [11].

In order to enable the exploitation of the particular structure of the sub-
systems f and g, the generic specification of the PIMEXRK3 scheme has been
adapted by replacing several operations (for instance, LUdecomp, MJacobian and
Feval) by specializations which assume a banded structure [10].

3. Parallel Design Decisions
Following the third COMPODES phase, several parallel design decisions have
been made in order to compute efficiently the specialized PIMEXRK3 scheme
on a processor number, P , which is multiple of 3. These decisions include the
scheduling of the tasks and the selection of the best data parallel implementation
and data distribution to realize each operation. An approximation method has
been proposed to make these decisions systematically [10].

822 José Miguel Mantas, Pedro González, and José A. Carrillo

A summarized graphical description of some of these decisions is shown
in Figure 1b). Several groups of processors have been considered to sched-
ule the tasks: a global group with P processors (G1), and 3 disjointed sub-
group with P/3 processors (G3(i), i=1,2,3). To compute an approximation of
the Jacobian of g, we chose an optimal implementation for banded Jacobians
Block SplitBandedMJacobian on the global group G1. This implementation
generates a block column distribution of a compact representation of the Jaco-
bian. The evaluations of the function f are performed on the group G1 while the
evaluations of g for the i-th stage (i = 1, 2, 3) are performed on G3(i). These
evaluations are implemented by using a parallel block routine (Block BFeval)
which takes into account the banded structure of the ODE system terms in or-
der to reduce the remote communication. The LU decompositions and system
solutions for the i-th stage are computed on G3(i) by using the routines of
the ScaLAPACK library [3] PDGBTRF (banded LU Factorization) and PDGBTRS
(banded system solution). These routines takes advantage of the banded struc-
ture of the system and follows a block column distribution.

These decisions have been translated into a parallel program which is ex-
pressed in Fortran augmented with routines of ScaLAPACK and MPI [4].

6 Numerical Experiments

We have performed several numerical experiments on a cluster of 8 dual AMD
processors 2.5Ghz, running Linux, connected via a Gigabit ethernet switch.

Table 1. Comparison among LRR(3,2,2) and PIMEXRK3 numerical solutions

hn= 0.5 0.25 0.125 0.0625

||yLRR − yP3||2 5.599 · 10−2 7.956 · 10−5 2.223 · 10−5 5.970 · 10−6

In order to show the accuracy of the numerical results obtained with the
parallel solver, we compare the numerical solutions obtained with a sequential
implementation of the LRR(3,2,2) method (yLRR) and with an implementation
of the PIMEXRK3 scheme running on 6 processors (yP3). Table 1 shows the
L2-norm of the difference between the numerical solutions obtained with both
solvers (||yLRR − yP3||2). These results have been obtained for t = 5.0 and
N = 200. Several experiments has been performed with a fixed step size although
a different step size has been used in each experiment. The results prove that
there is a great agreement between the solutions obtained by both methods.

The time results (in seconds) obtained for different values of N on several
processor numbers P are shown in Table 2. The speedup results are graphically
shown in Figure 2. These speedup results have been obtained by comparing
the parallel execution time for several values of P , with the execution time
of a sequential implementation of the LRR(3, 2, 2) scheme running on a single

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 823

Table 2. Time results for the PIMEXRK3 scheme applied to the test problem

N = 72 396 900 1296 1800 2520 3600 3996 7200 9000
LRR(P = 1) 0.258 1.417 3.222 4.644 6.451 9.026 12.94 14.37 25.89 32.37

P = 3 0.0899 0.476 1.093 1.585 2.1932 3.074 4.383 4.867 8.76 11.76
P = 6 0.0559 0.259 0.572 0.824 1.1439 1.591 2.292 2.527 4.55 5.71
P = 9 0.063 0.227 0.407 0.569 0.791 1.108 1.562 1.756 3.09 3.78
P = 12 0.0424 0.153 0.311 0.435 0.6013 0.822 1.173 1.286 2.32 2.87
P = 15 0.1906 0.273 0.298 0.399 0.5167 0.707 0.970 1.067 1.94 2.36

3

6

9

12

15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sp
ee

du
p

va
lue

s

Number of spatial grid points

P=15
P=12
P=9
P=6
P=3

Fig. 2. Speedup results for several spatial grid sizes

processor. This implementation of the LRR(3, 2, 2) scheme also takes advantage
of the banded structure of the subsystems. The time results were taken for one
time step and meshes varying from N = 80 to N = 4000 grid points.

The experiments show that a speedup close to the linear speedup can be
achieved when N is greater than 500. In general, efficiencies higher than 90%
are achieved with a sufficiently large number of grid points, except on P = 15
processors where a larger problem size would be necessary to achieve this ef-
ficiency. The results reveal the parallelism which exhibits the new parallel nu-
merical scheme and the satisfactory scalability which offers the implementation
derived by the COMPODES approach.

7 Conclusions

A method to obtain efficient implementations of IMEXRK methods for PC clus-
ters has been described. This method incorporates two procedures:

1. A technique to decouple the computation associated with each stage, when
an s-stage IMEXRK method is applied to a partly stiff system with d ODEs,

824 José Miguel Mantas, Pedro González, and José A. Carrillo

has been introduced. The technique is based on considering the s coupled
d-dimensional nonlinear systems, which arise when an IMEXRK method is
applied, as only one sd-dimensional nonlinear system, and imposing several
reasonable approximation assumptions when the modified Newton method
is used to solve the nonlinear system. As a result, the calculations associated
with each stage of the method can be performed in parallel for each round
of the Newton iteration.

2. A component based approach [10] can be applied to easily derive efficient
implementations of the previously defined parallel schemes. This approach
allows us to exploit the task and data parallelism which exhibits the scheme
by using software components of parallel libraries.

The method has been illustrated by deriving an efficient implementation of
a second order 3-stage IMEXRK method. The experimental results obtained on
a cluster of dual PCs reveal the good speedup and the satisfactory scalability of
the parallel solver for the range of processor numbers which has been considered.

Acknowledgements

The authors acknowledge support from the European IHP network HYKE
“Hyperbolic and Kinetic Equations: Asymptotics, Numerics, Applications”
HPRN-CT-2002-00282. JM and JAC acknowledge partial support from DGI-
MCYT/FEDER project BFM2002-01710. PG acknowledges partial support
from DGI-MCYT/FEDER project BFM2002-02649. JM also acknowledges par-
tial support from MEC/FEDER project TIN2004-07672-c03-02.

References

1. Ascher, U. M., Ruuth, S. J., Spiteri, R. J.: Implicit-Explicit Runge-Kutta Methods
for time-dependent Partial Differential Equations. Applied Numerical Mathema-
tics. 25 (1997) 151-167

2. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford Science Publications. (1995)

3. Dongarra, J., Walker, D. W.: Software libraries for linear Algebra Computations
on High Performance Computers. SIAM Review. 37 (1995) 151-180

4. Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
Univ. of Tennessee, Knoxville, Tennessee, (1995)

5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Dif-
ferential Algebraic Problems. Springer-Verlag. (1996).

6. Jin, S., Pareschi, L., Slemrod, M.: A Relaxation Scheme for Solving the Boltz-
mann Equation Based on the Chapman-Enskog Expansion. Acta Mathematicas
Applicatae Sinica (English Series). 18 (2002) 37-62

7. Kennedy, C. A., Carpenter, M. H.: Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Applied Numerical Mathematics. 1 (2003) 139-181

8. Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes for stiff systems of
differential equations. In Recent Trends in Numerical Analysis. 3 (2000) 269-289

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 825

9. Mantas, J. M., Ortega, J., Carrillo, J. A.: Component-Based Derivation of a Stiff
ODE Solver implemented on a PC Cluster. International Journal of Parallel Pro-
gramming. 30 (2002) 99-148

10. Mantas, J. M., Ortega, J., Carrillo, J. A.: Integrating Multiple Implementations
and Structure Exploitation in the Component-based Design of Parallel ODE Sol-
vers. Recent Advances in Parallel Virtual Machine and Message-Passing Interface.
Lecture Notes in Computer Science. 2840 (2003) 438-446

11. Mantas, J. M. , Pareschi, L., Carrillo, J. A., Ortega, J.: Parallel Integration of
Hydrodynamical Approximations of the Boltzmann Equation for rarefied gases on
a Cluster of Computers. J. Comp. Methods in Science and Engineering. 4 (2004)
33-41

12. Verwer, J.G., Sommeijer, B. : An implicit-explicit Runge-Kutta-Chebyshev scheme
for diffusion-reaction equations. SIAM J. of Sci. Comp. 25 (2004) 1824-1835

13. Zhong, X.: Additive Semi-Implicit Runge-Kutta Methods for Computing High-
Speed Nonequilibrium Reactive Flows. Journal of Comp. Physics. 128 (1996)
19-31

Comparison of Different Parallel Modified
Gram-Schmidt Algorithms

Gudula Rünger and Michael Schwind

Department of Computer Science, Technical University Chemnitz
09107 Chemnitz, Germany

{ruenger,schwi}@informatik.tu-chemnitz.de

Abstract. The modified Gram-Schmidt algorithm (MGS) is used in
many fields of computational science as a basic part for problems which
relate to Numerical Linear Algebra. In this paper we describe different
parallel implementations (blocked and unblocked) of the MGS-algorithm
and show how computation and calculation overlap can increase the per-
formance up to 38 percent on the two different Clusters platforms which
where used for performance evaluation.

1 Introduction

The modified Gram-Schmidt (MGS) algorithm solves the problem of decom-
posing a matrix A ∈ Rm×n (here we consider the case n ≤ m) into ma-
trices Q ∈ Rm×n and R ∈ Rn×n, so that A = QR. The matrix Q com-
puted by the algorithm is an orthogonal matrix composed of orthogonal vectors
Q = {q1, . . . , qn}, the matrix R is upper triangular.

The algorithms presented in this article were mainly developed for the full-
rank QR-problem (m=n), which arises in derivation of Lyaponov -vectors and
-exponents in computational physics [1], where the MGS-algorithm is part of a
repeated orthogonalization process inside an integration process. But there are
many other areas of application for the MGS-algorithm, for example the solution
of linear least squares problems [2] or as part for the iterative solution of linear
systems.

Besides the MGS-algorithm there exist several other algorithms for QR-de-
composition, for example the QR-algorithm with Householder reflectors or the
classical Gram-Schmidt algorithm (CGS). The Householder algorithm has a
higher accuracy in the orthogonal vectors qi, so that the norm ‖I − QTQ‖ is
in the range of machine-accuracy (I is the identity matrix), but it needs more
floating-point-operations 8

3m
3 then MGS 2m3 (m = n). The CGS- and the MGS-

algorithm are mathematically equivalent but behave differently in the orthogo-
nality of the computed matrix Q. In the MGS-algorithm the norm ‖I − QTQ‖
can be predicted by an upper bound [2] but there exists no such bound for the
CGS-algorithm.

The algorithm used in this article is called the row-wise MGS-algorithm
because it constructs the R-matrix of the QR-decomposition row by row. There

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 826–836, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Comparison of Different Parallel Modified Gram-Schmidt Algorithms 827

exists another version of the MGS-algorithm called the column-wise version, but
it is difficult to derive a efficient parallel implementation for the column-wise
algorithm.

The parallel algorithms are realized in the SPMD programming style with
MPI as communication library for message passing. The parallel realization of
the algorithms uses the block-cyclic-mapping over a two dimensional processor
grid of dimension (PM×PN), with PM processor rows and PN processor columns.
We have chosen this layout because experiments have shown that this leads to
the best performance and speedup values for the underlying cluster platforms.

For using todays computers with deep memory hierarchies most efficiently, we
have developed two variants of Level-3 implementations of the algorithm based
on the sequential algorithm described in [2, 3]. The distinction between Level-2
and Level-3 algorithms is based on the operations which the algorithms use. The
Level-2 algorithms use matrix-vector operations and the Level-3 algorithms use
in addition matrix-matrix operations [4].

Early work on parallel Gram-Schmidt orthogonalization is described in [5–7].
Actual work on the topic of the parallel modified Gram-Schmidt algorithm often
concentrates on the case of having a matrix to orthogonalize with m >> n. In
this situation often row-wise and block or cyclic column-wise distributions are
used. Our investigations have shown that for the case of having square matrices
a block-cyclic distribution over a two dimensional processor grid gives the best
performance for the Level-3 algorithms. In [8, 9] different parallel block Gram-
Schmidt algorithms for a row-wise distribution have been presented, where the
vectors have been grouped to a non constant block-size to have similar accuracy
as MGS. Our algorithm in this work uses the iterated classical Gram-Schmidt al-
gorithm [10] to increase accuracy. In [11] different partitioning schemes for MGS
including row-wise, block and cyclic column-wise partitionings were analyzed
and they use ring-communication (pipelined algorithm) which we adapt for our
parallel Level-3 algorithm (Algorithm 4) for the double-cyclic distribution.

2 Sequential-Algorithms

2.1 Level-2 MGS

The MGS algorithm orthogonalizes a matrix A through a series of transforma-
tions of the column-vectors ai, i = 1, . . . , n with previously computed orthogonal
vectors qj (1 ≤ j < i) in the following way:

qj
i = qj−1

i − (qj−1
i , qj−1)︸ ︷︷ ︸

rij

qj−1 = (I − qj−1q
T
j−1)︸ ︷︷ ︸

Pj−1

qj−1
i , (1)

with qi = qi
i/ ‖qi

i‖︸︷︷︸
rii

and q0
i = ai

The superscript j indicates that a vector has been transformed with the vectors
q1, . . . , qj . When a vector q0

i = ai is transformed by i− 1 orthogonal vectors qj ,

828 Gudula Rünger and Michael Schwind

1 ≤ j < i it is normalized and stored as the new vector qi. The norm ‖qi
i‖ is the

element rii and the inner-product (·, ·) in Formula (1) is the element rij of R. The
orthogonalization can be seen as a series of multiplication with transformation
matrices Pj (see Formula (1)). Algorithm 1 shows the pseudo-code of the row-
wise-algorithm which uses a matlab like notation to represent sub-matrices. In
a first step, the matrix A is copied into Q so that the algorithm applies all the
transformations to Q. The vector qi is normalized in the i-th step of the main
loop and then used to transform the vectors qi+1, . . . , qn with matrix-vector
operations. For the transformation a vector r of size n− i+1 is calculated. This
vector is then used for a rank-1-update of the column-vectors qi+1, . . . , qn. The
symbol “− =” in Algorithm 1 describes that the matrix on the left is replaced
by itself minus the matrix on the right. The norm ‖qi‖ and the vector r build
the elements i to n of the i-th row of matrix R and are stored in line 4 and 10.
Algorithm 1 requires 2mn2 floating-point-operations.

Algorithm 1: MGS
Procedure MGS(A,Q,R)
begin

1 Q = A
2 for i = 1 to n do

3 q = Q[:, i]
4 R[i, i] = ‖q‖
5 q = q/‖q‖
6 Q[:, i] = q
7 if i < n then

8 r = Q[:, i + 1 : n]T · q
9 Q[:, i + 1 : n]− = q · rT

10 R[i, i + 1 : n] = rT

end

Algorithm 2: BMGS
Procedure BMGS(A,Q,R)
begin

1 Q = A
2 for i = 1 to n Step b do

3 Q̄ = Q[:, i : i + b − 1]
4 ICGS (Q̄, R[i : i + b − 1, i : i + b − 1])
5 Q[:, i : i + b − 1] = Q̄
6 if i < n − b then

7 R̄ = Q̄T · Q[:, i + b : n]
8 R[i : i + b − 1, i + b : n] = R̄
9 Q[:, i + b : n]− = Q̄ · R̄

end

2.2 Level-3 MGS

A Level-3 formulation of the MGS algorithm can be derived by replacing many
transformations of Q through Pj (see Formula (1)) with transformations by
matrices Lk which are defined as follows:

Lk = I − Q̄kQ̄
T
k , 1 ≤ k < (n/b) (2)

The block-matrix Q̄k consists of b orthogonal vectors Q̄k = (qi1 , . . . , qi2), i1 =
(k − 1) · b + 1, i2 = kb, which can be calculated with a Level-2 algorithm.
Without loss of generality n can be assumed to be a multiple of b.

To get numerical properties comparable to the Level-2 MGS-algorithm it is
important to use a Level-2-algorithm which minimizes the norm ‖Q̄T

k Q̄k − I‖.
[2] suggests to use the iterated classical Gram-Schmidt algorithm (ICGS) for
the Level-2 transformation, which orthogonalizes the columns of Q̄k a second

Comparison of Different Parallel Modified Gram-Schmidt Algorithms 829

Algorithm 3: applyTransform
Procedure applyTransform(Ql,Rl,Q̄l,s,e)

1 if MyRank owns parts of columns of Q between s and e then

2 -generate a local block of inner products with a local matrix-multiplication with
the parts of Q̄l transposed and parts of Ql in range from s to e and store it in R̄l

3 -sum R̄l in process column and broadcast the result in process column
4 -local Rank-k-update of Ql with Q̄l and R̄l

5 -local store parts from R̄l into Rl

Algorithm 4: PBMGS
Procedure PBMGS(Al,Ql,Rl)
begin

1 - copy local parts of Al into Ql

2 for i = 1 to n − b Step b do

3 k = (i − 1)/b mod PN

4 if MyRank is in process column k then

5 -Level-2 factorization of Q in range of vectors i to i + b− 1 store the result
in Q̄l and the generated elements of R

6 if i < n − b then

7 -broadcast Q̄l within process row; root of broadcast are processes of
process column k

8 -applyTransform(Ql,Rl,Q̄l,i+b,n)

end

Algorithm 5: PBMGS2
Procedure PBMGS2(Al,Ql,Rl)
begin

1 - copy local parts of Al into Ql

2 for i = 1 to n − b Step b do
k = (i − 1)/b mod PN

3 if MyRank is in process column k then

4 if i > b then

5 applyTransform(Ql,Rl,Q̄l
old,i,i + b − 1)

6 -Level-2 factorisation of Q in range of vectors i to i + b− 1 store the result
in Q̄l

new

7 -start Broadcast of Q̄l
new asynchronously in process row; root of broadcast

are processes of process column k

8 if i > b AND i < n − b then

9 -applyTransform(Ql,Rl,Q̄l
old,i + b,n)

10 -end Broadcast of Q̄l
new

11 Q̄l
old = Q̄l

new

end

time with the classical Gram-Schmidt algorithm (CGS) depending on an easy-
to-compute re-orthogonalization criterion [10].

830 Gudula Rünger and Michael Schwind

A pseudo-code-implementation of a Level-3-version of the MGS algorithm is
presented in Algorithm 2. In line 3 the ICGS-algorithm is called to form Q̄ from
columns i to i+ b− 1 of Q. While calculating Q̄ the upper diagonal elements of
an b× b sub-matrix of R are created and are stored in R[i : i+ b−1, i : i+ b−1].
The block-matrix Q̄ is copied back into Q after the orthogonalization in line
5. After the ICGS-phase, the resulting matrix Q[:, i + b : n] is transformed by
calculating a block of inner-products through a matrix-matrix-multiplication in
line 7 of Algorithm 2. The resulting matrix R̄ has dimension b× (n− i− b + 1)
and stores the elements of the sub-matrix R[i : i+ b− 1, i+ b : n] of R in line 8.
In line 9 a rank-k-update of the columns i + b to n of Q is made with Q̄ and R̄
to complete the block-transformation.

The number of floating-point-operations of the Level-3-MGS-algorithm de-
pends on the number of orthogonalization steps in the ICGS-step. If only one
orthogonalization is required the number of floating-point-operation is nearly
the same as for MGS; if every vector needs a second orthogonalization step the
number of floating-point-operations is about 2mn(n + b).

Figure 2 D shows the ratio between the number of re-orthogonalizations and
the number of columns for different 300 × 300 random-matrices with different
condition numbers. The matrices have been generated with the routine DLATMS
of the Lapack [12] testing library. A value of 1 means that every vector has to
be orthogonalized twice in the ICGS step, whereas a value of 0 means that every
vector has to be orthogonalized only once. There is a strong decency of the ratio
from the block-size and condition number.

3 Parallel-Algorithms

We describe only the parallel implementation of two Level-3 algorithms, but
show in the next section the performance of the Level-2 algorithm too. The
parallel Level-2-algorithm can be derived when setting the block-length of the
Level-3 algorithm to one. For the parallel Level-3 algorithm we have chosen to
use the column-block length of the underlying block-cyclic-mapping as block
length of the Level-3-algorithm. This reduces the number of messages to send in
the Level-2-phase and is typical for many other parallel software.

A pseudo-code of the parallel Level-3 algorithm is described in Algorithm 4;
it is a “straight forward” parallelization of Algorithm 2. A superscript l denotes
the local parts of a distributed matrix or vector. In the following we describe the
main steps from Algorithm 4:

1. ICGS-step: This step performs the Level-2-Transformations in line 4. Since
the block-length of the algorithm is equal to the block length of the distribu-
tion, this process is only done in one process column k = i/b mod PN , which
changes in every step cyclically. For the ICGS-step communication with com-
bined reduction/broadcast operations are required for building vector norms
and inner-products of column-vectors through matrix-vector-products.

Comparison of Different Parallel Modified Gram-Schmidt Algorithms 831

2. Broadcast: The matrix Q̄ generated in the previous step is needed to form
the product in line 7 of the sequential algorithm. Since Q̄ is located only
in one column, every process in the process column k which holds Q̄ must
distribute its local parts of Q̄ to all other processes in his process row.

3. Transformation: The transformation of the columns of Q in range i+ b to
n through R̄ and Q̄ in lines 6 to 9 of the sequential Algorithm 2 is described
in Algorithm 3.

The parameters of the algorithm for the transformation of the matrix Q (Algo-
rithm 3) are the local parts of Q,R̄, Q̄, and a range (global indices) of column-
vectors of Q to which the transformation will be applied. Line 1 of Algorithm
3 checks whether a processor column runs out of data. The following steps of
Algorithm 3 are as follows:

1. Matrix-Multiplication: The matrix multiplication of line 7 (Alg. 2) can
be parallelized by the decomposition of the inner-products which build the
matrix-product globally. It consists of two steps:
(a) Local Matrix-Multiplication: Build local inner-products through a

matrix-multiplication of the local parts from Q̄ (transposed) with local
parts of Q.

(b) Reduction/Broadcast: A summation of the local-inner products by a
global communication operation in the process columns yields the global
inner products. Since the result is needed in the next step a broadcast
of the results is done within the process columns.

2. Local Rank-k-Update: The operand matrices Q̄ and R̄ are used to make
a global Level-3-update of the matrix Q by local updates.

3. Building R: When the parameter for the distribution (grid-dimension, block
length) is the same for the matrices Q and R then this step needs no redis-
tribution of the matrix R̄ which holds parts of R. Some attention must be
taken, when copying local parts from R̄ into local parts of R. Since the row-
block-length may be different from b, there is the possibility that rows from
R̄ must be stored on different process rows.

3.1 Communication Patterns

Efficient communication is essential for reaching high efficiency on today’s hard-
ware architectures. A property of the parallel algorithms presented above is that
communication takes place only in the process rows or in the process columns,
which can be potentially independent. In [11] the runtime of the algorithms
is analyzed for the strict column-block-cyclic and row-block-wise case. For the
column-cyclic distribution they use a ring-broadcast for communication and
for the row-wise case a tree-implementation for reduce/broadcast. Since our
algorithms use the block-cyclic distribution, we use the combination of both
communication-patters. For the broadcast within process rows we use a ring-
broadcast and for the reduce/broadcast within the process columns we use a
tree-implementation.

832 Gudula Rünger and Michael Schwind

3.2 Communication/Calculation Overlap

In the parallel algorithm PBMGS there is a strict order between computation
and communication. But it is possible to overlap these two. [13] presents a
scheme for block matrix factorizations and presents results for QR-/LU- and
Cholesky-factorizations. This scheme was specified for pure column-block-cyclic
distributions but can be extended to block-cyclic-distributions too. The idea in
[13], when transferred to Level-3-MGS, is to not transform the column-vectors
of Q with Q̄ on all process columns fully in one step. The process column which
is responsible for the next Level-2-transform updates only a small stripe with
length b with Q̄ and then does the Level-2-transform on that stripe. The result
of this transform Q̄new is send via a broadcast asynchronously, while the other
process columns do the update with the old Q̄. For Algorithm 5 we adopt the
idea of [13] to the Level-3 modified Gram-Schmidt orthogonalization but imple-
ment it over a two dimensional processor grid using block-cyclic distribution.
Algorithm 5 uses block-matrices Q̄old and Q̄new. The matrix Q̄old is used for the
Level-3-transformations in the i-th step of the main-loop, while Q̄new is calcu-
lated and distributed at that step. The asynchronous broadcast is implemented
through a sequential broadcast using standard MPI Isend-/MPI Irecv-routines
for asynchronous communication.

4 Performance Evaluation

The performance evaluation has been done on two different machines, a Beowulf-
Cluster (CLiC) with 528 Pentium III processors running at 800 MHz connected
with Fast Ethernet and a SMP-Cluster of 16 dual XEON nodes running at
2GHz connected with SCI in a 4×4 torus. The CLiC-Cluster uses LAM Version
6.5.2 and the XEON-Cluster uses ScaMPI for message passing. Both clusters use
libgoto [14] for local operations.

The performance in GFlop/s for 16 processors for different sizes of the input-
matrix is shown in Figure 1. For this measurements only one processor per node
is used on the XEON-Cluster. A label with It=1 means that the curve was
measured with 1 orthogonalization in the ICGS-step per vector and It=2 means
there have been two orthogonalizations per vector. The runtime for a typical run
of the algorithms lies between these 2 curves, depending on the input-matrix.

In all figures it can be seen that the flop-rate of the Level-3 algorithm in-
creases with higher matrix-sizes because the ratio of communication-time to
computation-time shifts towards computation. The maximum flop rate measured
with 16 processors on the XEON-Cluster is 38.4 GFlop/s and on the CLiC 4.73
GFlop/s for the PBMGS2 algorithm (see Figure 1 A2,B2). This is about 60%
on the XEON- and about 37% on the CLiC-Cluster of the total peak perfor-
mance, which is 64 GFlop/s on the XEON and 12.8 GFlop/s on the CLiC for 16
processors. The performance of the algorithms will be higher if we measure the
performance for higher matrix-dimensions, but the highest matrix-dimensions
(6000 × 6000) in Figure 1 is the maximum which is needed for the application
of the algorithms described in [1].

Comparison of Different Parallel Modified Gram-Schmidt Algorithms 833

For both Level-3 algorithms the optimal processor grid configuration (dia-
grams A2,B2) is the square configuration for 16 processors. As it can be seen the
row-wise or the column-block-cyclic distribution are not optimal for the Level-3
algorithms. In the square configuration the algorithm with the overlap of com-
munication and calculation (Alg. 5) reaches an up to 38% better performance
on the XEON-Cluster (m = n = 1500, It = 2) and an up to 30% better per-
formance on the CLiC-Cluster (m = n = 1500,It = 2) than the Algorithm 4,
in Figure 1 A2,B2. It can be observed that algorithm PBMGS2 can increase
the percentage of peak floating-point performance up to 10% on the XEON and
up to 4.7% on the CLiC-Cluster compared to algorithm PBMGS. While the
performance of PBMGS2 with the optimum grid-configuration is better than
algorithm PBMGS (Alg. 4), there is a performance loss in the implementation
of algorithm PBMGS2 when using the column-block-cyclic distribution, since
the sequential broadcast in the process row which should be overlapped with
the calculation in the algorithm PBMGS2 takes too long in this configuration
to have an advantage in overlapping communication with the calculation.

The curves with two iterations per vector (It=2) in the ICGS-step show
a slight performance decrease for both Level-3 implementations (PBMGS, PB-
MGS2). This is expected since there are more floating-point-operations and more
communication. For the row-wise distribution the decreased performance can
be explained by the extra communication introduced for the additional inner-
products. For the column-block-cyclic distribution (grid: 1 × 16) idle-waiting
occurs since all process columns wait for the result of the ICGS-step which is
calculated in a single process column. For the square process grid both effects,
the higher communication time and the higher idle-waiting time, are the rea-
son for the difference in performance for the curves with one orthogonalization
(It = 1) and with two orthogonalizations per vector (It = 2) in the ICGS-step
on both machines.

Figure 2 C1 shows the performance of the algorithms for different processor
numbers of the clusters in percent of the peak floating-point performance normal-
ized to the processor number. The performance has been determined for different
block-sizes and grid-configurations and the highest performance is shown. It is
shown that the CLiC-Cluster reaches a smaller utilization of the processors as
the XEON-Custer for both Level-3 algorithms when more than one processor is
used. The reason for this is the worse ratio of performance of local operations to
network bandwidth on the CLiC.

Figure 2 C2 shows the parallel speedup for the measurements of Figure 2 C1.
The highest speedup for the algorithms PBMGS and PBMGS2 on the XEON-
Cluster is 19.8 and 22.6 which is a parallel efficiency of about 61.9% and 70.6%,
respectively. On the CLiC-Cluster with 64 processors the highest speedup is 19.6
for PBMGS and 21 for PBMGS2. The parallel efficiency on the CLiC is much
lower and is 30.7% (PBMGS) and 32.8% (PBMGS2) for 64 processor. On the
CLiC-Cluster with a processor number higher than 64 processor the performance
of algorithms PBMGS and PBMGS2 is equal. Local calculations seem to be too
short to overlap with the dominating communication times of the sequential
column-broadcast.

834 Gudula Rünger and Michael Schwind

The performance of the Level-2 algorithm is not higher than 10% of the peak
floating-point performance on both Clusters (see Figure 1 and 2 C1). The reason
for this is the poor cache utilization of the Level-2 operations which results in a
stall of the processors because of memory operations. By increasing the number
of processors the memory bandwidth increases and the Level-2 algorithm has
a high speedup on the CLiC as shown in Figure 2 C2. On XEON-Cluster the
PMGS algorithm has a speedup drop for 24 and 32 processors because in this
range two processors per node are used. Since matrix-vector operations on the
XEON cannot utilize the cache efficiently and the two processor per node share
the memory bandwidth the speedup drop appears.

654321

matrix size (x1000)

(B2) XEON optimum

654321

matrix size (x1000)

(B3) XEON column-block-cyclic
35

30

25

20

15

10

5

654321

matrix size (x1000)

(B1) XEON row-wise

(A2) CLIC optimum

(A3) CLIC column-block-cyclic
4.5

4

3.5

3

2.5

2

1.5

1

0.5

(A1) CLIC row-wise

 PMGS
 PBMGS It=1
 PBMGS It=2
 PBMGS2 It=1
 PBMGS2 It=2

Fig. 1. Performance in GFlop/s for 16 processors for different matrix-sizes on the CLiC
(top) and on the XEON (bottom) for the row-wise- (grid: 16×1), optimal- and column-
block-cyclic-distribution (grid: 1×16) (from left to right). The optimal grid is the 4×4
grid for PBMGS and PBMGS2 and the 1 × 16 grid for PMGS

5 Conclusion

We have developed a Level-3 modified Gram-Schmidt algorithm (PBMGS2)
which has the advantage of overlapping communication and calculation. The per-
formance of PBMGS2 has been compared with a Level-2 (PMGS) and a Level-3
implementation (PBMGS) which where derived from a “straight forward” par-
allelization. A comparison of the two Level-3 algorithms on the two different

Comparison of Different Parallel Modified Gram-Schmidt Algorithms 835

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

p
e
r
c
e
n
t

number of processors

(C1) Performance 6000x6000

CLIC PMGS
CLIC PBMGS
CLIC PBMGS2
XEON PMGS
XEON PBMGS
XEON PBMGS2

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

number of processors

(C2) Speedup 6000x6000

CLIC PMGS
CLIC PBMGS
CLIC PBMGS2
XEON PMGS
XEON PBMGS
XEON PBMGS2
ideal Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

r
e
−

o
r
th

o
g
o
n
a
li
z
a
ti
o
n
s
/c

o
lu

m
n
s

block length b

(D) ratio re−orthogonalizations/columns

1
10
100
1e3
1e4
1e5
1e6
1e7

Fig. 2. Performance in percent of the total peak floating-point for the specific processor
number (left) and Speedup (middle) for different number of processors for an m = n =
6000 matrix. right: Ratio between orthogonalizations in the ICGS-step and number of
columns of the input-matrix for the Level-3-algorithms for different block lengths and
different condition numbers of a m=n=300 random input-matrix

Clusters shows that the algorithm with the overlapping of communication and
calculation can increase the performance up to 38% compared to the paral-
lel Level-3 implementation without communication calculation overlap. We also
show that the often described row-wise- and column-block-cyclic distributions
for parallel modified Gram-Schmidt are not optimal for the Level-3 algorithms
(PBMGS, PBMGS2) for the full rank QR-problem on Cluster-platforms and we
have realized a more efficient two dimensional block-cyclic distribution for the
Level-3 algorithm.

References

1. G. Radons, G. Rünger, M. Schwind, and H. Yang. Parallel Algorithms for the De-
termination of Lyapunov Characteristics of Large Nonlinear Dynamical Systems.
In Extended Abstracts: PARA’04 Workshop on State-of-the-Art in Scientific Com-
puting, Copenhagen, Denmark, 2004. CDROM.

2. Å. Björck. Numerics of Gram-Schmidt Orthogonalization. Linear Algebra Appl.,
197–198:297–316, 1994.

3. W. Jalby and B. Philippe. Stability Analysis and Improvment of the Block
Gram-schmidt Algorithm. SIAM Journal on Scientific and Statistical Computing,
12:1058–1073, 1991.

4. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

5. E. L. Zapata, J. A. Lamas, F. F. Rivera, and O. G. Plata. Modified Gram-Schmidt
QR factorization on Hypercube SIMD Computers. Journal of Parallel and Dis-
tributed Computing, 12:60–69, 1991.

6. H. De Meyer, C. Niyokindi, and G. Vanden Berghe. The implementation of parallel
gram-schmidt orthogonalisation algorithms on a ring of transputers. Computers
and Mathematics with Applications, 25:65–72, 1993.

836 Gudula Rünger and Michael Schwind

7. D. P. O’Leary and P. Whitman. Parallel QR factorization by householder and
modified Gram-Schmidt algorithms. Parallel Computing, 16:99–112, 1990.

8. D. Vanderstraeten. A Generalized Gram-Schmidt Procedure for Parallel Applica-
tions. http://citeseer.ist.psu.edu/vanderstraeten97generalized.html.

9. D. Vanderstraeten. An accurate parallel block Gram-Schmidt algorithm without
reorthogonalization. Numer. Linear Algebra Appl., 7(4):219–236, 2000.

10. W. Hoffmann. Iterative Algorithms for Gram-Schmidt Orthogonalization. Com-
puting, 41:334–348, 1989.

11. S. Oliveira, L. Borges, M. Holzrichter, and T. Soma. Analysis of different par-
titioning schemes for parallel Gram-Schmidt algorithms. Parallel Algorithms and
Applications, 14(4):293–320, April 2000.

12. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

13. K.Dackland, E. Elmroth, and B. K̊agström. A Ring-Oriented Approach for Block
Matrix Factorizations on Shared and Distributed Memory Architectures. In PPSC,
pages 330–338, 1993.

14. K. Goto and R. van de Geijn. On reducing tlb misses in matrix multiplication.
Technical Report TR-2002-55, 2002.

Automatic Tuning of PDGEMM
Towards Optimal Performance

Sascha Hunold and Thomas Rauber

Department of Mathematics and Physics
University of Bayreuth, Germany

{hunold,rauber}@uni-bayreuth.de

Abstract. Sophisticated parallel matrix multiplication algorithms like
PDGEMM exhibit a complex structure and can be controlled by a large
set of parameters including blocking factors and block sizes used for the
serial execution on one of the participating processors. But it requires
a deep understanding of both the parallel algorithm and the execution
platform to select the parameters such that a minimum execution time
results. In this article, we describe a simple mechanism that automati-
cally selects a suitable set of parameters for PDGEMM which leads to a
minimum execution time in most cases.

1 Introduction

There is usually a complex dependency between the computations and the mem-
ory accesses performed by a computation-intensive program, the required data
exchanges between neighboring processors, and the computation and communi-
cation characteristics of the execution platform. Parallel numerical libraries like
ScaLAPACK (Scalable LAPACK) [1, 2] or PETSc [3] try to cope with these
dependencies by providing a set of parameters which allow the user to adjust
the execution behavior of the library routines to the characteristics of the execu-
tion platform such that the parallel execution time is reduced as far as possible.
By selecting appropriate parameter values, the library routines can run very effi-
ciently on most parallel execution platforms. But it is often quite difficult for the
user to select suitable parameter values, since this requires a deep understanding
of the algorithmic behavior of the library routines. In many situations, the user
wants to use the library as black-box and does not have time to learn more about
the internals of the algorithm. Moreover, even knowing the algorithmic details
of a library routine does not necessarily yield a suitable set of parameters to use.
The complex dependency between the algorithm and the characteristics of the
execution platform is still present and it is usually necessary to perform runtime
experiments with different parameter settings before a suitable set of parame-
ters can be identified. It even might be the case that for different numbers of
processors different parameter values lead to the best performance.

In this situation, it would be useful to have a tool that automatically selects
a suitable set of parameters, thus relieving the user from this time-consuming

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 837–846, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

838 Sascha Hunold and Thomas Rauber

work. In this article, we address this issue. In particular, we consider the matrix-
matrix multiplication routine PDGEMM of ScaLAPACK. PDGEMM is part of
PBLAS which is the parallel implementation of BLAS (Basic Linear Algebra
Subprograms) for distributed memory machines. It can be used as a building
block in a parallel version of Strassen’s algorithm [4] as well as in many ad-
vanced algorithms from scientific computing. We investigate which parameters
have a major impact on the overall performance and should therefore be consid-
ered in more detail. In particular, we present an approach to tune the PDGEMM
routine by adjusting the parameters gradually to the given execution platform.
The Automatically Tuned Linear Algebra Software (ATLAS) [5] provides an
approach for the sequential case, but there is no solution for a parallel execu-
tion yet. An experimental evaluation shows that the proposed method selects a
parameter setting that leads to significant performance gains compared to the
default setting for different test platforms.

The rest of the paper is organized as follows. Section 2 gives an overview
of the algorithmic details of the PDGEMM routine and shows examples of how
to use PDGEMM routines in a C environment. Section 3 analyzes the impact
of different parameters for PDGEMM. In Section 4 we describe an heuristic
method for an automatic selection of suitable PDGEMM parameters to optimize
PDGEMM. Section 5 evaluates the experimental results and Section 6 concludes.

2 Algorithmic Details

To improve the performance of the PDGEMM routine efficiently we must first
consider some algorithmic details. The PDGEMM routine which is part of
ScaLAPACK is derived from the DIMMA algorithm (Distribution-Independent
Matrix Multiplication). DIMMA is an enhanced version of SUMMA (Scalable
Universal Matrix Multiplication Algorithm), see [6] for a detailed description
of SUMMA and [7] for an introduction of DIMMA. We also refer to [8] for an
overview of basic parallel matrix-matrix multiplication algorithms such as the
algorithms of Cannon or Fox.

In the following, we summarize the basic ideas which make PDGEMM (using
DIMMA) a well-performing algorithmic option in many cases. An example of
the starting configuration of matrix A for DIMMA and SUMMA is shown in
Figure 1. In SUMMA, the processors P0 and P3 broadcast the first column
of A along their row, i.e., P0 sends its first column to processors P1 and P2.
At the same time, the first row of matrix B which is distributed likewise is
broadcasted along the processor columns. When the broadcasts are performed
on a logical ring, SUMMA takes advantage of a pipelined communication scheme.
The authors of DIMMA state that SUMMA contains extra waiting times between
two communication procedures [7]. Hence, DIMMA improves the communication
scheme and eliminates the extra waiting time by proceeding to send blocks of
columns (rows) from the current column (row) of the processor grid. That means,
in SUMMA the processors P1 and P4 broadcast column 1 directly after receiving
column 0 from P0 and P3, respectively. In case of DIMMA, P0 and P3 continue
with broadcasting another column whose distance is LCM blocks where LCM

Automatic Tuning of PDGEMM Towards Optimal Performance 839

0
0

10
8
6
4
2

3 6 9 1 4 7 10 2 5 8 11

1
3
5
7
9

11

LCM(2,3)

A

PP

10 2PP

P3 54

P

Fig. 1. DIMMA snapshot for a 2 × 3 processor grid. DIMMA uses a block cyclic dis-
tribution of matrix A onto the processors.

is the least common multiple of the grid dimensions p and q. For a further
performance improvement, SUMMA as well as DIMMA use blocks of columns
(rows) rather than single columns (rows).

Since it is not very straightforward to use ScaLAPACK routines from C
we would like to demonstrate the calling conventions from within C. We indi-
cate that this method is compiler specific. Because Fortran 77 uses the call-by-
reference paradigm we need to pass the address of each parameter to Fortran
functions. The basic problem of calling Fortran routines from C is the conversion
of strings. Figure 2 shows a sample call of PDGEMM from C for our compiler
collection, see Table 1. The function c2f char copies a character into a charac-
ter buffer. Since there is no header file for C, an underscore is required for the
linker to resolve the PDGEMM function. But primarily we want to emphasize
the use of hidden parameters. The last two arguments of the call to PDGEMM
are hidden parameters because they need to be passed in order to make the
Fortran function work but the arguments are not part of PDGEMM’s Fortran
interface. The hidden parameters 1L denote the length of the passed strings, i.e.
the length of cha and chb. If we had a function with three string parameters we
would need to pass three hidden parameters as well.

c2 f cha r (cha , ’N ’) ;
c 2 f cha r (chb , ’N ’) ;
pdgemm (cha , chb , &m, &k , &n , & sca lar , a [0] ,

&one , &one , & desca , b [0] , & one , &one , & descb ,
&sca lar , c [0] , & one , & one , & descc , 1L , 1L) ;

Fig. 2. Call to PDGEMM from C.

3 Parameter Analysis and Optimization Strategies

In this section we examine the performance dependencies of PDGEMM from
different parameters. The experiments were performed on a cluster with 32 Dual
Opteron nodes. An overview of the configuration is given in Table 1.

840 Sascha Hunold and Thomas Rauber

Table 1. System configuration used for experiments.

System 32 node cluster (each node equipped with 2 AMD Opterons)
Linux 2.4.21

Processor Opteron 244, 1.8 GHz, 128 KB L1-Cache, 1024 KB L2-Cache
C/F77 Compiler GCC 3.4.0
MPI version MPICH 1.2.5 + VMI 2.0 (Infiniband)
Infiniband driver Mellanox HPC Gold Collection (IBHPC) v0.5.0 for Linux

Mellanox THCA for Linux 3.2-rc17
ScaLAPACK 1.7
ATLAS 3.6.0

As the sequential computation of PDGEMM is based on BLAS [9], the right
choice of the BLAS implementation is crucial for the overall parallel performance
of PDGEMM. There is a tremendous performance difference between hardware-
optimized BLAS routines and the standard routines. When the user has no
access to a vendor-provided BLAS library like ESSL, we recommend using the
ATLAS library [5]. All local computations used in the evaluation of the parallel
algorithms are performed by ATLAS. Moreover, each experiment reported herein
was repeated at least three times.

Since all variables in the parameter list of PDGEMM and also the logical
block size defined inside ScaLAPACK may influence the runtime, the search
space for optimization is extremely large. To obtain a satisfactory parallel per-
formance, it is necessary to use a local computation kernel which almost achieves
the peak performance of the processor.

The parameters with the biggest influence on the performance of the algo-
rithm are the dimensions of the input matrices, the number of processors and
their arrangement within the processor grid.

There are also other parameters that strongly influence the MFLOPS rate of
the algorithm but are not obvious. These are

1. the three blocking factors mb, nb and kb of the block-cyclic distribution of
matrices A, B and C which are of size m× k, k × n and m× n,

2. and the logical block size lb.

Blocking factor The blocking factor is used to distribute the rows and columns
of the matrices onto the processor grid. A blocking factor of b means that
blocks of matrix M of size b × b are distributed block-cyclicly. It is also
possible to have distinct blocking factors for each matrix dimension.

Logical block size The logical block size denotes the size of the sub-matrix of
C which is computed by each processor per parallel step of PDGEMM. Let
the logical block size be lb. In each parallel step, a processor Pi gathers lb
rows of A and lb columns of B and computes a part of the result matrix C
of size lb× lb.

Automatic Tuning of PDGEMM Towards Optimal Performance 841

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1664 1536 1408 1280 1152 1024 896 768 640 512 384 256 128 1

M
F

LO
P

S
/p

blocking factor

p = 64, logical block size = 128

1024
2048
3072

4096
5120
6144

7168
8192
9216

10240
11264
12288

13312

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1664 1536 1408 1280 1152 1024 896 768 640 512 384 256 128 1

M
F

LO
P

S
/p

blocking factor

p = 64, logical block size = 512

1024
2048
3072

4096
5120
6144

7168
8192
9216

10240
11264
12288

13312

Fig. 3. Performance of PDGEMM, number of processors p = 64 for matrix sizes from
1024 to 13312 for different blocking factors.

3.1 Impact of the Blocking Factor

In order to analyze the performance dependency on the blocking factor, we have
performed several tests of PDGEMM with varying block sizes. Due to the huge
number of degrees of freedom we limited the test cases to square input matrices
and square matrix blocks where mb = nb = kb. We performed numerous tests
with blocking factors ranging from 1 to a logical maximum which is defined by
the matrix dimensions and the processor grid. Furthermore, we also examined
how the logical block size is reflected in the runtime of PDGEMM for each range.
Figure 3 shows the performance of PDGEMM for 64 processors and for different
blocking factors using logical block sizes of 128 and 512. The experiment was
repeated for 8, 16 and 32 processors as well, using logical block sizes of 32, 64,
and 256. We observed that the coarse characteristics of the resulting MFLOPS
rate does not depend on the logical block size, but the MFLOPS rate is only
slightly increased (decreased) for a smaller (larger) value of the logical block
size. Hence, big differences in the MFLOPS like at 1536 and 1664 in Figure 3
can not be compensated by adjusting only the logical block size. But let us have
a closer look at Figure 3. The MFLOPS rates for matrix dimension 13312 show
peaks for blocking factors 1, 128 and 1664. This behavior can be explained as
follows: The 64 processors are arranged in a grid of 8×8 elements. Thus, in each
dimension the matrix is distributed evenly among the processors if 13312

8 = 1664
is a multiple of the blocking factor. And indeed, 1664 is a multiple of 1, 128
and 1664. In these cases, the data is uniformly distributed over all processors in
the grid which leads to a balanced workload on homogeneous systems. So, when
in doubt which blocking factor to use, it is a good choice to use the possible
maximum M which is M = matrix dimension

processors in row (colum) .

It is not surprising that high performance is achieved when the matrix di-
mensions are multiples of the blocking factor. But choosing the blocking factor
appropriately does not necessarily lead to best performance. The central param-
eter to optimize is therefore the logical block size.

842 Sascha Hunold and Thomas Rauber

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
F

LO
P

S
 /

pr
oc

es
so

r

logical block size lb

PDGEMM, p=32, nb=128

6144
8192
10240
12288

Fig. 4. MFLOPS achieved by PDGEMM with different logical block sizes, number of
processors p = 32, blocking factor nb = 128 (Infiniband).

3.2 Impact of the Logical Block Size

The logical block size directly influences the overall performance of PDGEMM.
A small value of the logical block size (lb) will not only cause more communi-
cation but worse, the local matrix updates (multiplications) will not reach the
processor’s peak performance. On the other hand, choosing a very large value
may hamper the pipelined communication scheme and so the overlapping of
communication and computation as well.

Finding the best value for the logical block size is highly machine-dependent
and the impact on the resulting execution time can only be determined exper-
imentally. We ran a series of tests with PDGEMM on the cluster system for
varying values of lb. Since the value lb is hard-coded in file pilaenv.f of the
ScaLAPACK distribution, the value lb in pilaenv.f needs to be changed and
ScaLAPACK must be recompiled for each test. The results of this experiment is
shown in Figure 4 and Figure 5. Figure 4 contains the MFLOPS rate achieved by
PDGEMM using the Infiniband network. Figure 5 shows the results for the Gi-
gabit Ethernet. We can observe that the plots in both figures have similar char-
acteristics, i.e., the bandwidth and latency of the interconnection network plays
a minor role. As example, we consider the steep increase of the MFLOPS rate at
block size 672 for a matrix dimension of 12288. The 32 processors are arranged
in a 4 × 8 grid and each processor stores 12288

4 = 3072 rows and 12288
8 = 1536

columns of the matrices, if a suitable blocking factor nb has been chosen. Let us
examine the case where the biggest performance enhancement has been observed.
For lb = 672, PDGEMM performs a series of local matrix-multiplications using
DGEMM where the matrix A is of size 3072× 672 and Matrix B has 672× 1536
elements. One local matrix update with these parameters achieves about 3508
MFLOPS on a single Opteron processor. In comparison, with a logical block size
of 656 the routine DGEMM achieves 3380 MFLOPS only, which is about 4%

Automatic Tuning of PDGEMM Towards Optimal Performance 843

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
F

LO
P

S
 /

pr
oc

es
so

r

logical block size (lb)

PDGEMM, p32, nb=1

6144
8192
10240
12288

Fig. 5. MFLOPS achieved by PDGEMM with different logical block sizes, number of
processors p = 32, blocking factor nb = 1 (Gigabit Ethernet).

slower. We measured the cache misses generated by DGEMM using PAPI [10].
Figure 6 clearly shows that the weak performance is the result of producing more
L2 cache misses which is caused by the fact that DGEMM (ATLAS) generates
a different call tree for lb = 656 and lb = 672.

Instead of ignoring possible drops in the MFLOPS rate, we present an ap-
proach to avoid choosing an unfavorable logical block size which is discussed in
Section 4.

4 Automatic Parameter Tuning

In this section, we present an approach for selection a favorable logical block size.
The basic problem of optimizing the logical block size is the huge search space.
The logical block size depends on the network parameters, the dimension of
the matrices, the matrix ordering, the processor grid, the number of processors
and the BLAS implementation. Additional informations about the hardware,
e.g. cache size, will surely decrease the search space but it remains too large to
evaluate all possible combinations.

We present an heuristic method based on an evaluation on a single processor
of the parallel execution platform. The approach is simple, but it turns out to be
fast and provides a suitable logical block size for the parallel case. The algorithm
keeps two matrix dimensions fixed and varies the third one. The size of the matrix
dimensions which are kept fixed is computed by the information provided by the
user, e.g. the number of processors, the typical size of matrices and the preferred
processor grid. The third and varying dimension represents the logical block
size. After the series of tests on a single processor has been completed, the
optimization algorithm selects the smallest logical block size which is only less
than a fixed percentage f slower than the best logical block size (which is in
general the largest, but, as we said before, for the parallel execution the largest

844 Sascha Hunold and Thomas Rauber

 3250

 3300

 3350

 3400

 3450

 3500

 3550

 300 400 500 600 700 800
 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

M
F

LO
P

S

L2
 c

ac
he

 m
is

se
s

Matrix dimension k

DGEMM, m=3072, n=1536

L2 Data Cache misses
MFLOPS of DGEMM

Fig. 6. MFLOPS vs. L2 cache misses by DGEMM (ATLAS).

 3150

 3200

 3250

 3300

 3350

 3400

 3450

 3500

 400 600 800 1000 1200 1400 1600

M
F

LO
P

S

Matrix dimension k

DGEMM, p=1, m=3072, n=1536

DGEMM

Fig. 7. MFLOPS by DGEMM (ATLAS). Vertical lines at 668 and 1444.

logical block size is not always the fastest). For a specific parallel platform, the
algorithm only needs to run once on one processor in a pre-computation phase
to determine a suitable value of the logical block size. Then, this block size can
be used for all parallel executions. In our experiments, we obtained the best
performance for f = 2%.

5 Experimental Evaluation

We now consider the experimental evaluation of the proposed method on the
cluster system from Table 1. The cluster consists of 32 processors and we want
to use a rectangular grid, e.g. 4 rows and 8 columns. The typical size of matrices
is set to 12288 in each dimension. Hence, PDGEMM will deal with submatrices
of size 3072× lb and lb× 1536. The tuning algorithm will test all possible logical
block sizes in the range 2 . . . 1536 (odd numbers are not considered). The test
results are shown in Figure 7. The function line has a maximum at 1444. The

Automatic Tuning of PDGEMM Towards Optimal Performance 845

6144 8192 10240 12288
0

500

1000

1500

2000

2500

Matrix dimension

M
F

LO
P

S
 /

pr
oc

es
so

r

LB=32
LB=668
LB=1444

6144 7168 8192 9216 10240 11264
0

500

1000

1500

Matrix dimension

M
F

LO
P

S
 /

pr
oc

es
so

r

LB=32
LB=216

Fig. 8. MFLOPS achieved by PDGEMM on 32 processors. Left: results for Opteron
cluster (Infiniband) for logical block size lb = 32, 668, 1444; right: performance com-
parison of PDGEMM for a logical block size of 32 and 216 on Xeon cluster (SCI).

smallest matrix dimension which is less than 2% slower than 1444 is 668. We
marked both values in the plot. The value of 668 is the optimized logical block
size. Surprisingly, the value that has been found is very close to the crucial
value of 656. For a final evaluation of the logical block size, Figure 8 (left)
compares the performance of PDGEMM achieved with the default value of the
logical block size (lb = 32) and with the automatically selected value of 668.
The plot also includes the MFLOPS rates for a logical block size of 1444 for
comparison reasons. It can be observed that the block size which achieves best
results on a single processor is not necessarily gaining the maximum performance
in parallel. For matrix dimensions 10240 and 12288 in Figure 8 on the left, the
performance gain for the automatically selected logical block size is 18% and
15%, respectively. Additional tests have been performed on a cluster consisting
of 16 nodes (Dual Xeon 2 GHz). The nodes are running Linux and are connected
via an SCI network. The resulting MFLOPS achieved by PDGEMM for this
cluster are shown on the right-hand side of Figure 8. The tuning algorithm
selects a logical block size of 216. This block size clearly outperforms the default
settings of PDGEMM. In this experiment, the automatically selected value of
lb = 216 reduces the runtime of PDGEMM by up to 47% for a matrix dimension
of 11264.

6 Conclusions

The performance of ScaLAPACK routines strongly depends on the logical block
size. In this article we have shown how to use the function PDGEMM and how
to improve its performance by selecting a well-suited blocking factor and a logi-
cal block size automatically. The experimental results confirm that the heuristic
method of selecting a logical block size leads to a significant performance en-
hancement of PDGEMM.

846 Sascha Hunold and Thomas Rauber

References

1. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK: A Linear Algebra Library for Message-Passing Computers. In:
Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing (Minneapolis, MN, 1997), Philadelphia, PA, USA, Society for Indus-
trial and Applied Mathematics (1997) 15 (electronic)

2. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley,
K., Walker, D., Whaley, R.C.: ScaLAPACK: A Portable Linear Algebra Library
for Distributed Memory Computers - Design Issues and Performance. Technical
report, Knoxville, TN 37996, USA (1995)

3. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: PETSc 2.0 User Manual.
Argonne National Laboratory, http://www.mcs.anl.gov/petsc/. (1997)

4. Hunold, S., Rauber, T., Rünger, G.: Multilevel Hierarchical Matrix Multiplication
on Clusters. In: Proceedings of the 18th Annual ACM International Conference on
Supercomputing, ICS’04. (2004) 136–145

5. Whaley, R.C., Dongarra, J.J.: Automatically Tuned Linear Algebra Software.
Technical Report UT-CS-97-366, University of Tennessee (1997)

6. Geijn, R.A.V.D., Watts, J.: SUMMA: Scalable Universal Matrix Multiplication
Algorithm. Concurrency: Practice and Experience 9 (1997) 255–274

7. Choi, J.: A New Parallel Matrix Multiplication Algorithm on Distributed-Memory
Concurrent Computers. Concurrency: Practice and Experience 10 (1998) 655–670

8. Golub, G.H., Van Loan, C.F.: Matrix Computations, Third Edition. John Hopkins
University Press (1998)

9. Dongarra, J., Croz, J.D., Hammarling, S., Duff, I.: A Set of Level 3 Basis Linear
Algebra Subprograms. ACM Transactions on Mathematical Software 16 (1990)
1–17

10. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A Scalable Cross-
Platform Infrastructure for Application Performance Tuning Using Hardware
Counters. In: Supercomputing ’00: Proceedings of the 2000 ACM/IEEE confer-
ence on Supercomputing (CDROM), IEEE Computer Society (2000) 42

Parallelization of Divide-and-Conquer
Eigenvector Accumulation

Wilfried N. Gansterer and Joachim Zottl�

Institute for Distributed and Multimedia Systems
University of Vienna

Lenaugasse 2/8, A-1080 Vienna, Austria
{wilfried.gansterer,joachim.zottl}@univie.ac.at

Abstract. This paper discusses and compares several parallelization
strategies for tree-structured computations. In particular, we focus on
the parallelization of the eigenvector accumulation process in divide-
and-conquer eigensolvers, such as the recently developed block divide-
and-conquer (BD&C) eigensolver. We describe a model algorithm for
evaluating the performance of several parallel variants of this accumula-
tion process, and we develop a block parallel approach which is shown
to achieve good speedup in experiments on PC clusters.

1 Introduction

In this paper, we summarize a comparison of several strategies for efficiently
parallelizing tree-structured algorithms, that is, algorithms, where the depen-
dencies between individual tasks have the structure of a tree. In particular, we
focus on the process of accumulating eigenvectors in divide-and-conquer based
eigensolvers [1, 2] as an important application scenario.

Approach. The eigenvector accumulation phase of the block divide-and-conquer
(BD&C) eigensolver [2] is a special case of a tree-structured algorithm. In this
case, the input to each task in a node of the tree computation consists of the two
(eigenvector) matrices V2i−1 and V2i, where V2i−1 has special (block diagonal)
structure. The task itself is to multiply these two matrices, and the output is
a combined eigenvector matrix which is input at the next level of the compu-
tation tree (see Fig. 1). The size of the matrices to be multiplied in each node
grows as the computation proceeds towards the root, and thus the computational
complexity grows cubically with the matrix size.

Obviously, this process could be parallelized over the nodes of the tree by
assigning different tasks to different processors. However, with the decreasing
number of tasks towards the root of the tree, fewer and fewer processors are active
and thus this approach becomes less and less efficient for increasing numbers
of processors. Another possibility is to parallelize each task in a data parallel
approach over all processors. The efficiency of this approach depends on the size

� Partly supported by the EC-funded project HPC-Europa, contract number 5060079.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 847–856, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

848 Wilfried N. Gansterer and Joachim Zottl

V
1

V
3

C
1

C
2

V
2

x C
12

C
3

C
4

V
4

x C
34

x V
6

C
1234

V
5

level
1

level
2

level
3

Fig. 1. Tree structured eigenvector accumulation problem

of the data left for each node and tends to be efficient only for large problems
and/or for a small or medium number of processors. Thus, an efficient approach
has to focus on task parallelism initially and then gradually put more emphasis
on data parallelism as the computation approaches the root of the tree.

Our main objective in this paper is to compare and evaluate different strate-
gies for efficiently parallelizing the divide-and-conquer eigenvector accumulation
process. For this purpose, we have developed and implemented a prototypical
algorithmic model of this process which accurately reflects its dominant per-
formance and parallelization properties and thus allows us to evaluate various
parallelization strategies. The evaluation of this prototypical algorithmic model
is also relevant for the parallelization of the BD&C eigensolver as a whole, since
its computational effort tends to be dominated by the eigenvector accumula-
tion process. For simplicity, we restrict ourselves to situations where the number
of processors p available is p = 2h with h ∈ N (balanced binary tree). Direct
generalization to an arbitrary number of processors is possible.

Motivation. Potentially very large eigenvalue problems with banded structure
arise in numerous important applications. Parallel processing is often essential
in order to solve realistic cases, causing high demand for efficient and scalable
parallel eigensolvers. This motivates research in parallelizing the recently de-
veloped BD&C eigensolver [2], which does not require tridiagonalization of the
given block tridiagonal or banded matrix. Its eigenvector accumulation phase
investigated here is the most difficult part to parallelize.

The concepts investigated in this paper are also relevant for all classes of
algorithms, where the results of two neighboring tasks in the tree are passed
on to the next higher level in the tree, where they form the inputs of a task at
this higher level (divide-and-conquer-type algorithms, tree-structured algorithms
based on binary trees, etc.).

Related Work. A parallel version of the tridiagonal divide-and-conquer eigen-
solver was presented in [1]. In this paper, we are considering the more general
block tridiagonal situation, we are pursuing a different approach in the “start-up
phase” (when there are more blocks than processors), and we are also investi-
gating modifications of the block cyclic data distribution used in [1].

Parallelization of Divide-and-Conquer Eigenvector Accumulation 849

The core of the eigenvector accumulation process is a special matrix multi-
plication. Many parallel algorithms for performing this operation on distributed
memory computers have been developed. We mention Fox’s algorithm [3] and
one of its implementations, PUMMA [4], for block cyclic data distribution, both
operating on square processor grids. Important extensions of Fox’s algorithm for
more general rectangular processor grids are SUMMA [5] and DIMMA [6].

Synopsis. The rest of the paper is structured as follows. In Section 2, the basic
algorithmic structure of the (sequential) BD&C algorithm and of its eigenvector
accumulation phase are described. In Section 3, our prototypical model for the
eigenvector accumulation, various parallelization strategies, and their implemen-
tation are discussed. In Section 4 we summarize experimental results. Finally,
Section 5 contains conclusions and future work.

2 Divide-and-Conquer Type Eigensolvers

Divide-and-conquer eigensolvers have evolved into highly efficient and compet-
itive methods for computing spectral information of symmetric matrices. Their
basic idea is to split the given matrix into parts, to compute the spectral in-
formation of each of these parts “conventionally”, and then to synthesize the
spectral information of the original problem from the spectral information of
the subproblems.

This synthesis is based on special algebraic matrix properties [7]. Divide-and-
conquer eigensolvers for matrices with special structure have been developed:
tridiagonal divide-and-conquer (TD&C) for tridiagonal matrices [8], and, more
recently, the BD&C eigensolver for block tridiagonal matrices [2, 9]. A parallel
version of TD&C is already available [1], whereas a parallel version of BD&C is
currently under development.

2.1 Sequential BD&C

As mentioned before, BD&C efficiently computes approximate eigenpairs of a
block tridiagonal matrix. A block tridiagonal matrix is a natural generalization of
a (scalar) tridiagonal matrix, where every scalar is “expanded” into a block–thus,
any symmetric banded matrix is a block tridiagonal matrix. BD&C is especially
competitive in situations where it suffices to approximate spectral information
to low or medium accuracy, i. e., where full accuracy is not required. It involves
the following three phases:

1. Subdivision of the problem into p subproblems, which mainly involves inde-
pendent operations on each of the off-diagonal blocks and correction opera-
tions involving neighboring blocks;

2. eigendecomposition of each of the subproblems, which can be performed
completely independently; and

3. synthesis of the solutions of the p subproblems.

850 Wilfried N. Gansterer and Joachim Zottl

The synthesis phase tends to dominate the execution time for the entire BD&C
eigensolver, and its main part is the accumulation of the eigenvector matrices of
the subproblems into the final eigenvector matrix of the original problem.

2.2 Eigenvector Accumulation

The eigenvector accumulation process in the current BD&C algorithm consists
of a sequence of matrix multiplications with the structure of a binary tree.

For illustration purposes, we consider a special case where the original prob-
lem has been subdivided into four subproblems, numbered 1 through 4 (cf.
Fig. 1). Given the eigenvector matrices C1 and C2 of subproblems 1 and 2 as well
as the eigenvector matrix V2 of the dependencies between these subproblems, the
eigenvectors C12 of the combination of subproblems 1 and 2 can be computed
as the matrix product

C12 =
(
C1

C2

)
V2. (1)

Analogously, the eigenvectors C34 of the combination of subproblems 3 and 4
can be computed. With the eigenvector matrix V6 of the dependencies between
subproblems 2 and 3, the eigenvectors of the combination of all four subproblems
can be computed as

C1234 =
(
C12

C34

)
V6.

Obviously, this process has the structure of a binary tree. If the number of sub-
problems is p = 2h with h ∈ N then the tree is balanced. Important properties
of this process, such as computational complexity, optimal orderings of the sub-
problems, etc., have been analyzed in [2] and [9].

The focus in this paper is on parallelization. The operations in the subdivision
phase as well as the eigendecompositions of the diagonal blocks are in general
easy to parallelize over the blocks involved, exploiting the natural parallelization
potential inherent in a divide-and-conquer approach. In the synthesis phase all
the dependencies are collected, and thus this part, in particular the eigenvector
accumulation process, is most difficult to parallelize efficiently. In the next section
we will discuss and compare several strategies for achieving this goal.

3 Parallel Eigenvector Accumulation

The main parallelization challenge of the BD&C eigensolver arises in the synthe-
sis phase. By far the most important and dominating in terms of complexity and
computation time is the accumulation process of the eigenvectors as described in
Section 2.2. This process exhibits complicated data dependencies with strongly
varying computation and communication costs since the size of the matrices
involved increases while the number of the matrices involved decreases.

It is difficult to parallelize the accumulation process efficiently and to achieve
scalability to high numbers of processors. Thus, this process is also an interesting

Parallelization of Divide-and-Conquer Eigenvector Accumulation 851

parallel benchmarking problem. Important aspects, such as the workload and the
communication/computation ratio can be adjusted via the number of blocks and
the sizes of the blocks in the block tridiagonal matrix (cf. [10]).

3.1 A Prototypical Performance Model

In order to be able to focus on the central parallelization aspects we have de-
signed a prototypical model of the basic structure of the eigenvector accumula-
tion process which reflects all essential properties relevant for the performance
and scalability of a parallel eigenvector accumulation process. This model is
described in the following.

Based on the input parameters k (number of diagonal blocks) and bi, i =
1, 2, . . . , k (sizes of the diagonal blocks,

∑k
i=1 bi = n) we generate a symmetric

block tridiagonal matrix with random entries. Assuming that p < k processors
are available, in the first phase we split the sequence of diagonal blocks into p
consecutive portions such that the sum of the block sizes in each portion is as
close to n/p as possible (thus balancing the workload over the available proces-
sors). Each processor then combines all the blocks assigned to him locally and
sequentially according to repeated application of Equation (1). All the matrices
representing the dependencies between subproblems are created randomly. At
the end of this phase, each processor has computed a full matrix with size equal
to the sum of the sizes of his local blocks. Since all this is done locally and inde-
pendently, the values of k and bi do not have an impact on parallel performance.
In the second phase, the process continues analogously in parallel, according to
Equation (1). Again, matrices representing dependencies between subproblems
are created randomly when required. Finally, the n × n combination matrix of
all k original subproblems is computed.

This model algorithm reflects the basic operations of the eigenvector accu-
mulation process in the BD&C eigensolver. It never computes actual eigenvector
data but uses random numbers instead. However, since in terms of computational
effort the creation of the actual eigenvector data in the BD&C is asymptotically
less important than the accumulation of this data, we can expect the model
algorithm to properly reflect the asymptotic runtime behavior and thus to be a
sound basis for evaluating parallelization strategies.

3.2 Parallelization Strategies

We have implemented and investigated several strategies for parallelizing this
model algorithm: (i) a purely task parallel variant, (ii) a purely data parallel
variant, (iii) a mixed variant which switches from task parallel to data parallel
at a certain stage of the process, and (iv) a pipelined combination of task and
data parallel aspects which we call block parallel variant.

Task Parallel. Each new task (multiplying two eigenvector matrices according
to Equation (1)) to be completed is assigned to an available processor. Once the
task is completed, the processor becomes idle (cf. Fig. 2(a)).

852 Wilfried N. Gansterer and Joachim Zottl

This variant has potential advantages in the early stages of the accumulation
process when many small tasks are to be completed, but it has disadvantages in
the later stages, since gradually the number of tasks decreases and consequently
more and more available processors become idle.

Data Parallel. In this variant, several processors work on each task simulta-
neously in a data parallel fashion. This can be implemented by using a parallel
matrix multiplication method for each combination operation (1). We are using
the SUMMA algorithm [5] which is very competitive in terms of communication
costs, memory efficiency, and flexible processor grid usage. In our current imple-
mentation, we always group four processors together to work in a data parallel
fashion in order not to occupy too many processors in a single branch of the tree.
As the computation proceeds, the number of tasks decreases, the size of tasks
increases, and thus it would be possible to group more processors together.

In contrast to the task parallel variant, the data parallel approach keeps more
processors busy all the time and it has potential performance advantages in the
late stages of the accumulation process when the tasks are big. However, it has
disadvantages in the early stages of the accumulation process when the tasks are
small, especially for larger processor numbers.

P
0

P
0

P
0

P
1

P
2

P
3

P
3

(a) Task Parallel

P
0

P
0

P
0

P
1

P
1

P
1

P
2

P
2

P
2

P
3

P
3

P
3

(b) Block Parallel

Fig. 2. Two variants for parallelizing the binary tree structure problem arising in
divide-and-conquer eigenvector accumulation on p = 4 processors

Mixed. The previous considerations suggest a variant which explicitly switches
from a task parallel to a data parallel approach when—in relation to the number
of processors available—the number of tasks is considered too small and/or when
a task to be completed is considered big enough. Obviously, the question arises
how to determine the appropriate “switching point”. In our implementation,
this switching is based on the size of the block resulting from the combination
operation (1) and we have investigated the sensitivity of the parallel performance
in terms of this switching parameter (see Section 4).

Block Parallel. The central ideas of the block parallel variant, similar to the
SUMMA algorithm for matrix multiplication, are illustrated using the notation
from Equation (1): (i) Distribute the matrices C1 and C2 block row wise, V2

Parallelization of Divide-and-Conquer Eigenvector Accumulation 853

column block wise. This distribution does not imply any additional communi-
cation overhead, since the eigenvectors contained in V2 can be computed such
that they are located properly. (ii) Accumulate the local block portions of the
matrix product (1) on all processors simultaneously. The resulting matrix C12

is distributed block row wise over all processors (see Fig. 2(b)). (iii) Shift the
column blocks of V2 cyclically over all processors in order to accumulate the next
local blocks (see Fig. 3). The communication requirements of this strategy are
low and mostly localized, and all processors are busy during the entire accumu-
lation process. Our experiments confirm that this variant is suited best among
the variants considered for parallelizing the eigenvector accumulation process.

Fig. 3. Cyclic shifting of subblocks of V2i in the block parallel variant

4 Experiments

In this section, we summarize and discuss our experimental results. First, we
give a brief overview of the hard- and software used. Then we summarize our
results, comparing different parallelization strategies among each other and with
related ScaLapack routines [11].

4.1 Hard- and Software Environment

Hardware. Experimental results are shown for the Schrödinger II cluster at the
University of Vienna and for the Strider cluster at the University of Stuttgart.
Schrödinger consists of 192 compute nodes in total. For a batch job the num-
ber of nodes available to us was limited to 32. Each node is equipped with an
Intel Pentium 4 (2.53 GHz) processor and 1 GB main memory. The nodes are
connected via a Gigabit Ethernet. Strider consists of 125 compute nodes. Each
node has two 64 Bit Dual Opteron (2 GHz) and 4 GB main memory. The nodes
are connected via Myrinet 2000.

Software. We have written our programs in C, using MPI (LAM 7.1.1 or
MPICH 1.2.6) for the parallelization. For the matrix-matrix multiplications we
used the xgemm routines from Atlas CBlas.

We also compared the speedup achieved with our routines with the speedup
of related ScaLapack routines, in particular with pxsytrd and pxstedc for
computing eigenvalues and eigenvectors of a symmetric/symmetric tridiagonal

854 Wilfried N. Gansterer and Joachim Zottl

matrix. It has to be emphasized that the ScaLapack routines provide a different
functionality than our model algorithm and thus it is not suitable to compare
runtimes achieved or to strictly relate speedup values. The purpose of including
these routines is to give an idea about the big picture and about the general
parallelization behavior of our model algorithm in relation to the well established
ScaLapack standard.

4.2 Results

Table 1 summarizes execution time Tp and speedup Sp of three of the strategies
discussed in Section 3. In addition, we also give corresponding data for ScaLa-
pack routines (which is essentially a data parallel approach). Fig. 4 illustrates
Sp graphically.

Table 1. Execution time Tp in [s], and Speedup Sp for n = 7000 (k = 140, b = 50) at
Schrödinger and Strider cluster

Task Parallel Mixed Block Parallel ScaLapack

Schrödinger Schrödinger Strider Schrödinger Strider
p Tp Sp Tp Sp Tp Sp Tp Sp Tp Sp Tp Sp

1 140.30 1.00 138.28 1.00 138.57 1.00 71.04 1.00 267.26 1.00 245.95 1.00
2 74.95 1.87 75.61 1.83 45.42 3.05 36.10 1.97 128.08 2.08 160.34 1.53
4 66.52 2.11 66.51 2.08 23.06 6.01 19.52 3.64 60.48 4.42 75.08 3.28
8 65.42 2.15 52.69 2.62 18.44 7.52 10.75 6.61 31.38 8.52 40.15 6.13

16 63.39 2.21 38.59 3.58 11.37 12.19 6.55 10.85 15.68 17.05 24.25 10.14
32 65.89 2.13 39.98 3.46 7.92 17.50 4.80 14.56 8.34 32.05 17.72 13.88

We notice that for eight and more processors the mixed variant is a little bit
faster than the task parallel one. This is explained by the switching strategy
which checks for three conditions: (i) the number of total active processors must
be at least eight, (ii) at least four processors have to be available for data parallel
processing, and (iii) the size of the task must be greater than 1000. These settings
are the result of experimentally investigating the behavior of the mixed variant
for varying the switching point s. Those experiments showed that s ≈ 1000 is a
good choice for most parameter settings considered. For example, for n = 5000
and one to 32 processors the execution time is increasing linearly for s > 1000
with a break-even point at s = 1500.

The ScaLapack routines have significantly longer sequential runtimes which
leads to higher speedup values. On the Strider cluster, the speedup values of the
block parallel variant are slightly better than those of the ScaLapack rou-
tines. However, as indicated before, the functionality of these routines differs
significantly from our routines, and thus those data cannot be used for direct
performance comparisons. Generally speaking, Fig. 4 indicates that the block
parallel variant has by far the best parallel performance among the variants in-
vestigated in this paper and that it achieves a scaling behavior similar to related

Parallelization of Divide-and-Conquer Eigenvector Accumulation 855

Task Parallel
Mixed

Block Parallel
pxsytrd+pxstedc

Schrödinger: problem size n = 7000 (k = 140, b = 50)

of processors

Sp
ee

du
p

302520151050

30

25

20

15

10

5

0

Fig. 4. Parallelization strategies for eigenvector accumulation and related ScaLapack
routines at Schrödinger cluster for n = 7000 (k = 140, b = 50). In the block parallel
variant and in the ScaLapack routines all processors are busy all the time

ScaLapack routines which are a well established standard for many problems
of this type.

5 Conclusions and Future Work

We have developed and compared several strategies for parallelizing the eigenvec-
tor accumulation process in the BD&C eigensolver based on a model algorithm
developed for this tree structured problem. Experimental evaluation showed that
a block parallel approach achieves by far the best parallel performance. It is
much faster and scales much better than a task parallel and a mixed variant (a
combination of task and data parallel variants).

This functionality is currently not available. The standard alternative pro-
vided by ScaLapack is tridiagonalization-based. Although absolute runtimes
are not comparable since the actual functionality provided is very different, we
have shown that the scaling behavior of our model algorithm for block tridiago-
nal matrices is comparable to that of the tridiagonalization-based ScaLapack
approach. Speedup values are high for a small or medium number of processors.
Due to cache-effects, ScaLapack routines sometimes even exhibit superlinear
speedup.

For large processor numbers (and for a constant problem size) we have to
expect a decreasing tendency in the speedup values, both for our model algorithm
as well as for the related ScaLapack routines. Benchmarking on more and
diverse parallel architectures will be required to investigate the performance
behavior in more detail.

Future Work. Our final goal is to develop a fully parallel BD&C eigensolver.
Thus, we will also work on the parallelization of the other phases of BD&C.

856 Wilfried N. Gansterer and Joachim Zottl

In terms of functionality, the next important step is to integrate two im-
provements into the model algorithm: the ability to simulate higher rank modi-
fications, and the ability to simulate deflation in the dependencies between sub-
problems. Moreover, we are currently also investigating an alternative parallel
eigenvector computation with potentially better scaling behavior.

References

1. Tisseur, F., Dongarra, J.: A parallel divide and conquer algorithm for the symmet-
ric eigenvalue problem on distributed memory architectures. SIAM J. Sci. Comput.
20 (1999) 2223–2236

2. Gansterer, W.N., Ward, R.C., P.Muller, R., Goddard, III, W.A.: Computing ap-
proximate eigenpairs of symmetric block tridiagonal matrices. SIAM J. Sci. Com-
put. 25 (2003) 65–85

3. Fox, G., Otto, S., Hey, A.: Matrix algorithms on a hypercube i: Matrix multipli-
cation. Parallel Computing 4 (1987) 17–31

4. Choi, J., Dongarra, J.J., Walker, D.: Pumma: Parallel universal matrix multi-
plication algorithms on distributed memory concurrent computers. Concurrency:
Practice and Experience 6 (1994) 543–570

5. van de Geijn, R.A., Watts, J.: Summa: Scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience 9 (1997) 255–274

6. Choi, J.: A fast scalable universal matrix multiplication algorithm on distributed-
memory concurrent computers. In: Proceedings of the 11th International Parallel
Processing Symposium, IEEE Press (1997) 310–314

7. Gu, M., Eisenstat, S.C.: A stable and efficient algorithm for the rank-one mod-
ification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15 (1994)
1266–1276

8. Gu, M., Eisenstat, S.C.: A divide-and-conquer algorithm for the symmetric tridi-
agonal eigenproblem. SIAM J. Matrix Anal. Appl. 16 (1995) 172–191

9. Gansterer, W.N., Ward, R.C., Muller, R.P.: An extension of the divide-and-conquer
method for a class of symmetric block-tridiagonal eigenproblems. ACM Trans.
Math. Softw. 28 (2002) 45–58

10. Gansterer, W.N., Zottl, J.: Message passing vs. virtual shared memory - a perfor-
mance comparison. In Juhász, Z., Kacsuk, P., Kranzlmüller, D., eds.: Distributed
and Parallel Systems: Cluster and Grid Computing. Volume 777 of The Kluwer
International Series in Engineering and Computer Science. Springer-Verlag (2005)
39–46

11. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics
(1997)

Parallel Order Reduction
via Balanced Truncation

for Optimal Cooling of Steel Profiles�

José M. Bad́ıa1, Peter Benner2, Rafael Mayo1, Enrique S. Quintana-Ort́ı1,
Gregorio Quintana-Ort́ı1, and Jens Saak2

1 Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I
12.071–Castellón, Spain

{badia,mayo,quintana,gquintan}@icc.uji.es
2 Fakultät für Mathematik, Technische Universität Chemnitz

D-09107 Chemnitz, Germany
{benner,jens.saak}@mathematik.tu-chemnitz.de

Abstract. We employ two efficient parallel approaches to reduce a
model arising from a semi-discretization of a controlled heat transfer
process for optimal cooling of a steel profile. Both algorithms are based
on balanced truncation but differ in the numerical method that is used
to solve two dual generalized Lyapunov equations, which is the major
computational task. Experimental results on a cluster of Intel Xeon pro-
cessors compare the efficacy of the parallel model reduction algorithms.

Keywords: Linear dynamical systems, 2D heat equation, model reduc-
tion, balanced truncation, generalized Lyapunov equations

1 Introduction

We consider the problem of optimal cooling of steel profiles. This problem arises
in a rolling mill where different phases in the production process require differ-
ent temperatures of the raw material. To achieve a high production rate, the
temperature has to be reduced rapidly to the level required by the next phase.
The cooling process, accelerated by spraying cooling fluids on the surface of the
profile, has to be controlled since large gradients in the temperature lead to
unwanted deformations, brittleness, loss of rigidity, and other undesirable prop-
erties.

The heat distribution in the profile is modeled by an instationary linear
heat equation. The standard Galerkin approach for discretizing the heat transfer

� J.M. Bad́ıa, R. Mayo, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı were supported
by the CICYT project No. TIC2002-004400-C03-01 and FEDER, and project No.
P1B-2004-6 of the Fundación Caixa-Castellón/Bancaixa and UJI. P. Benner and J.
Saak were supported by the DFG Sonderforschungsbereich 393 Parallele Numerische
Simulation für Physik und Kontinuumsmechanik at TU Chemnitz.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 857–866, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

858 José M. Bad́ıa et al.

model in space, as described in Section 1.1, results in a first-order ordinary
differential equation of the form:

Eẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0. (1)

Here, x0 ∈ Rn contains the initial temperature distribution in the profile, u(t)
and y(t) are vectors for the inputs (i.e., temperatures of the cooling fluid) and
outputs (i.e., approximate temperature gradients) of the system, respectively,
and E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The system in (1) can also
be modeled by the transfer function matrix (TFM) G(s) = C(sE −A)−1B +D.
The number of states, n, is known as the state-space dimension (or the order)
of the system.

The goal of model reduction is to find a reduced-order LTI system,

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r , n, and associated TFM Ĝ(s) = Ĉ(sE − Â)−1B̂ + D̂ which
approximates G(s). The reduced-order realization can then replace the original
high-order system in the design of the optimal controller, thus simplifying by
much this phase of the problem.

It is the goal of this paper to demonstrate that model reduction algorithms
based on balanced truncation (BT) can effectively be applied to problems of size
up to n = 100, 000 (and even higher) when appropriate numerical algorithms
are used.

Traditional algorithms for BT model reduction are available, e.g., in libraries
such as SLICOT1 or the Matlab control-related toolboxes, and can be employed
to reduce models with a few hundreds of state-space variables on current desktop
computers. Here we employ two different parallel BT algorithms that allow the
reduction of much larger systems, as those arising in the optimal cooling problem.
These algorithms are integrated into the parallel libraries for model reduction
of large-scale dense and sparse linear systems, PLiCMR [3] and SpaRed [1],
respectively.

The paper is structured as follows. We conclude this section by describing
with some detail the discretization procedure of the heat transfer model for the
steel profile. In Section 2 we review our algorithms for BT model reduction of
linear systems. In Section 3 we briefly describe the multilayered architecture of
libraries employed by our model reduction algorithms. Finally, the efficacy of
the algorithms is reported in Section 4, and some concluding remarks follow in
Section 5.

1.1 Discretization of the Optimal Cooling Problem

The optimal cooling problem was discretized using the ALBERTA-1.2 fem-toolbox
[11]. We applied linear Lagrange elements and used a projection method for the
1 Available from http://www.win.tue.nl/niconet/NIC2/slicot.html.

Parallel Order Reduction via Balanced Truncation 859

curved boundaries. An initial mesh (see Fig. 1) was produced using Matlab
pdetool function, which implements a Delaunay triangulation algorithm. Finer
discretizations were then obtained by global mesh refinement using a bisection
refinement model. As a result, we obtained four different mesh resolutions and
associated systems of order n = 1,357, 5,177, 20,209, and 79,841, corresponding
to maximum mesh widths (or edge sizes) h= 5.5280 × 10−2, 2.7640 × 10−2,
1.3820× 10−2, and 6.9100× 10−3, respectively. The number of nonzero elements
in matrices A and E range from about 4% for the smallest model to 0.009% for
the largest one. A more detailed description of the model is given in [5].

Fig. 1. Finite element discretization of the profile (left) and sparsity pattern (right)
for the model of order n=1,357.

In our case, the best approximation error of the finite element discretization
that one can expect is of order O(hs) for an s ∈ [1, 2). Here s is very close
to 2, for the boundary is almost of class C∞, i.e., if the two rightmost edges
were smoothly topped off we would have sufficient regularity to obtain s = 2 at
best. Thus, reducing the model with an error bound smaller than h2 should not
contribute any significant additional error. The reduced-order models presented
in Section 4 meet this requirement.

2 Model Reduction of Large Linear Systems

2.1 The Square-Root BT Method

BT model reduction [7, 10, 12, 13] belongs to the family of absolute error meth-
ods, which aim at minimizing ‖Δa‖∞ = ‖G−Ĝ‖∞. Here ‖G‖∞ denotes the L∞-
or H∞-norm of a stable, rational matrix function defined as

‖G‖∞ = sup
ω∈R

σmax(G(jω)), (3)

where j :=
√−1 and σmax(M) stands for the largest singular value of M .

860 José M. Bad́ıa et al.

BT methods are strongly related to the controllability Gramian Wc and the
observability Gramian Wo of the system (1), given by the solutions of the two
dual generalized Lyapunov matrix equations

AWcE
T + EWcA

T + BBT = 0, (4)
AT W̃oE + ET W̃oA + CTC = 0. (5)

In the optimal cooling problem, the matrix pair (A,E) is stable (all its gener-
alized eigenvalues are in the open left complex plane), so that Wc and Wo =
ET W̃oE are positive semidefinite, and therefore can be factored as Wc = STS
and Wo = RTR. Here, S and R are usually refered to as the Cholesky factors of
Wc and Wo.

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [U1 U2]
[
Σ1

Σ2

]
[V1 V2]T , (6)

where U and V are orthogonal matrices, and Σ = diag (σ1, σ2, . . . , σn) is a
diagonal matrix containing the singular values of SRT ; those are also known as
the Hankel singular values (HSV) of the system.

Given a partitioning of Σ into Σ1 ∈ Rr×r and Σ2 ∈ R(n−r)×(n−r), and a
conformal partitioning of U and V in (6), the square-root (SR) version of BT
determines a reduced-order model of order r as

Ê = TlETr, Â = TlATr, B̂ = TlB, Ĉ = CTr, D̂ = D, (7)

with the projection matrices Tl and Tr given by

Tl = Σ
−1/2
1 V T

1 RE−1 and Tr = STU1Σ
−1/2
1 . (8)

The state-space dimension r of the reduced-order model can be chosen adaptively
as this method provides a realization Ĝ satisfying

‖Δa‖∞ = ‖G− Ĝ‖∞ ≤ 2
n∑

j=r+1

σj . (9)

In the following subsections we revisit two generalized Lyapunov solvers in-
troduced in [2, 6, 8] which provide low-rank approximations to a Cholesky or
full-rank factor of the solution matrix. These approximations can reliably sub-
stitute S and R in the computation of (6) and (8). For simplicity, we only
describe those solvers that obtain approximations of the Cholesky factor of Wc

in (4). Analogous iterations provide approximations for the Cholesky factor of
Wo in (5).

2.2 Solution of Generalized Lyapunov Equations
via the Matrix Sign Function

Since its introduction in [9], the sign function has proved useful in a variety
of numerical linear algebra problems. In particular, the following variant of the

Parallel Order Reduction via Balanced Truncation 861

Newton iteration for the matrix sign function can be used for the solution of the
generalized Lyapunov equation (4):

A0 ← A

S̃0 ← B
k ← 0
repeat

Ak+1 ← 1√
2

(
Ak + EA−1

k E
)

Compute the rank-revealing QR (RRQR) decomposition
1√
2

[
S̃k EA−1

k S̃k

]T
= Qs

[
Rs

0

]
Πs

S̃k+1 ← RsΠs

k← k + 1
until ‖Ak − E‖1 < τ‖Ak‖1

Here τ is a tolerance threshold for the iteration that is usually set as a
function of the problem dimension and the machine precision. Convergence can
be improved by using several acceleration techniques. In our case, we employ
an approximation of the norm scaling [4]. The RRQR decomposition can be
obtained by means of the traditional QR factorization with column pivoting.

Sign function iterations usually present a fast convergence rate, which is
ultimately quadratic. However, the inverse of a sparse matrix is in general dense
and therefore the previous iterative scheme cannot exploit the sparsity of the
matrix A. Note that, on the other hand, we can easily take advantage of the
sparsity of E as this matrix is involved in matrix products and it is not modified
during the iteration.

On convergence, after j iterations, S̃ = 1√
2
S̃jE

−T , of dimension l̃ × n, is a

full (row-)rank approximation of ST so that Wc = STS ≈ S̃S̃T .

2.3 Low Rank Solution of Generalized Lyapunov Equations

The cyclic low-rank alternating direction implicit (LR-ADI) iteration proposed
in [8] can be reformulated for the generalized Lyapunov equation (4) as follows:

V0 ← (A + p1E)−1B

Ŝ0 ←
√−2 α1 V0

k ← 0
repeat

Vk+1 ← Vk − δk(A + pk+1E)−1EVk

Ŝk+1 ←
[
Ŝk , γkVk+1

]
k ← k + 1

until ‖γkVk‖1 < τ‖Ŝk‖1
In the iteration, {p1, p2, . . .}, pk = αk + βk j, is a cyclic set of (complex)

shift parameters (that is, pk = pk+t for a given period t), γk =
√

αk+1/αk, and
δk = pk+1+pk, pk being the conjugate of pk. This iteration may suffer from a slow

862 José M. Bad́ıa et al.

convergence rate, which is super-linear at best. Nevertheless, the iteration only
requires the solution of linear systems with sparse coefficient matrices and matrix
products. The use of sparse direct solvers is recommended here as iterations k
and k + t share the same coefficient matrices for the linear systems.

The performance of the LR-ADI iteration strongly depends on the selection
of the shift parameters. For further details, see [6, 8, 15].

On convergence, after j iterations, a low-rank matrix Ŝ = Ŝj of order n× l̂ =
n× (jm), is computed such that ŜŜT approximates Wc = STS.

It should be emphasized that the iterative methods described in the previous
two subsections for solving (4)–(5) significantly differ from standard methods
used in the Matlab toolboxes or SLICOT [14]. As the iterative solvers produce
low-rank approximations to the full-rank or Cholesky factors, the computation
of the SVD in (6) is usually much more efficient: instead of a computational cost
of O(n3) flops (floating-point arithmetic operations) when using the Cholesky
factors, this approach leads to an O(m · p · n) cost where, in model reduction,
often m, p, n; see [3].

3 Parallel Implementation

The matrix sign function-based iteration basically requires dense linear algebra
operations such as matrix products and the solution of linear systems (via matrix
factorizations). On the other hand, the LR-ADI iteration is composed of sparse
linear algebra operations as matrix-vector products and the solution of sparse
linear systems (via direct methods). Once the generalized Lyapunov equations
are solved, the final stages of the SR BT method require the computation of an
SVD and a few matrix products.

Our approach for dealing with these matrix operations is based on the use of
existing parallel linear algebra and communication libraries. (For an extensive
list, see http://www.netlib.org/utk/people/JackDongarra/la-sw.html.) In
Fig. 2 we display the multilayered architecture of libraries employed by our par-
allel model reduction codes for large-scale dense and sparse systems in PLiCMR
and SpaRed, respectively. All model reduction codes employ the parallel dense
linear algebra libraries ScaLAPACK and PBLAS. Depending on the structure
of the state-space matrix pair (A,E) the kernels in SpaRed also use the banded
linear system solvers in ScaLAPACK or the sparse linear system solvers in the
packages MUMPS or SuperLU. PARPACK is our key to compute eigenvalue
information of large sparse matrix pairs.

4 Experimental Results

All the experiments presented in this section were performed on a cluster of np =
16 nodes using ieee double-precision floating-point arithmetic (ε ≈ 2.2204 ×
10−16). Each node consists of an Intel Xeon processor@2.4 GHz with 1 GByte
of RAM. We employ a BLAS library specially tuned for this processor that

Parallel Order Reduction via Balanced Truncation 863

PLiCMR

SuperLU

SpaRed

ScaLAPACK
PBLAS

MPI LAPACK
BLAS

Parallel model reduction
libraries

linear algebra libraries

linear algebra libraries
Parallel dense/banded

Communication and dense/banded

PARPACKMUMPS
libraries
Sparse linear algebra

Fig. 2. Multilayered architecture of libraries for model reduction.

achieves around 3800 Mflops (millions of flops per second) for the matrix prod-
uct (routine DGEMM from http://www.cs.utexas.edu/users/kgoto).The nodes
are connected via a Myrinet multistage network and the MPI communication
library is specially developed and tuned for this network. The performance of the
interconnection network was measured by a simple loop-back message transfer
resulting in a latency of 18 μsec. and a bandwidth of 1.4 Gbit/sec.

In this section, we compare the BT parallel routines in libraries PLiCMR and
SpaRed (hereafter, PLiCMR-BT and SpaRed-BT). Given the amount of compu-
tational resources available and the memory requirements of the sign function-
based iteration, we could only apply the PLiCMR-BT routine to the two smaller
cases, n = 1, 357 and 5, 177.

In order to reduce the models, we first compute the HSVs of the system and,
from there, we select the order r of the reduced realization. Obviously, a larger
order provides a more accurate model, but also increases the cost of those stages
involving the reduced system. Table 1 reports the order r of the reduced realiza-
tion, a bound for the absolute error of the reduced-order realization (computed
as in (9)), and the first and (r + 1)-th HSV of the system. All these data were
obtained by applying the SpaRed-BT routine to the system. No difference was
found when the PLiCMR-BT routine was applied to compute these parameters
for the two smaller problems. Our results hereafter refer to the reduced realiza-
tions of order r = 45, 45, 70, and 80 for the n = 1, 357, 5,177, 20,209, and 79,841
cases, respectively.

In order to measure the numerical accuracy of the reduced realizations, in
our next experiment we compare the frequency response of the original system,
G, with that of the reduced-order realization computed with the PLiCMR-BT
and SpaRed-BT routines, Ĝ. Figure 3 reports the absolute error ‖G − Ĝ‖∞,
where the norm is defined as in (3). All four figures show that the absolute error
is well below the theoretical bound. For the two smallest problems, there is no
notable difference between the PLiCMR-BT and Spared-BT routines.

We next report in Tables 2 and 3 the specific results for each one of the model
reduction methods. In particular, we report the number of iterations required

864 José M. Bad́ıa et al.

Table 1. Order and absolute error of the reduced realizations.

n r Δa σ1 σr+1

1,357 45 6.5e-7 3.5e-4 5.2e-7
5,177 45 1.3e-6 3.5e-4 9.0e-8

20,209 45 1.4e-4 2.5e-2 7.0e-6
20,209 60 2.7e-5 2.5e-2 1.6e-6
20,209 70 8.6e-6 2.5e-2 4.7e-7
79,841 45 2.2e-4 2.6e-2 1.1e-5
79,841 60 4.6e-5 2.6e-2 2.4e-6
79,841 80 5.4e-6 2.6e-2 3.1e-7

Table 2. Results for the PLiCMR-BT routine.

n #iter. l k RWc (S̄) RWo (R̄) np Time (sec.)
1,357 8 310 181 1.04e-22 7.20e-14 4 21.1
5,177 8 351 209 1.48e-21 9.95e-14 16 142.6

for convergence (#iter.), the dimensions of the low-rank approximations of S
and R (labeled as l and k, respectively), and the absolute residuals of these
approximations, computed as

RWc(S) := ‖A(STS)ET + E(STS)AT + BBT ‖F , and

RWo(R) := ‖AT (E−TRTRE−1)E + ET (E−TRTRE−1)A + CTC‖F .

Finally, we also provide the number of nodes involved in the reduction (np), and
the execution time required by the corresponding algorithm. A comparison of
the results in both tables show a much slower convergence rate for the SpaRed-
BT algorithm which then provides approximations to the Cholesky factors of
much larger order than the PLiCMR-BT algorithm. On the other hand, the use
of an approximation of larger order also explains, in part, the slightly better
absolute residuals for the SpaRed-BT algorithm. However, the most important
difference between the two methods lies in the execution times. For the two
smallest problems, using a smaller number of computational resources (proces-
sors), the SpaRed-BT algorithm provides the reduced realization faster than the
PLiCMR-BT algorithm. Furthermore, only the kernel from the SpaRed library
can reduce the largest two cases, while doing so with the PLiCMR kernel would
require a number of resources much larger than available in our cluster.

5 Concluding Remarks

We have compared two parallel BT model reduction algorithms using a problem
arising from a semi-discretization of a controlled heat transfer process for opti-
mal cooling of a steel profile. The algorithms are included in the parallel libraries
for model reduction PLiCMR and SpaRed and basically differ in the general-
ized Lyapunov equation solver that is employed in each case: the PLiCMR-BT

Parallel Order Reduction via Balanced Truncation 865

10
−2

10
0

10
2

10
4

10
6

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Frequency w

M
ag

ni
tu

de

Absolute error in frequency response; n=1357−>r=45

PLiCMR
SpaRed
Error bound

10
−2

10
0

10
2

10
4

10
6

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Frequency w

M
ag

ni
tu

de

Absolute error in frequency response; n=5177−>r=45

PLiCMR
SpaRed
Error bound

10
−2

10
0

10
2

10
4

10
6

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Frequency w

M
ag

ni
tu

de

Absolute error in frequency response; n=20209−>r=70

SpaRed
Error bound

10
−2

10
0

10
2

10
4

10
6

10
−10

10
−9

10
−8

10
−7

10
−6

Frequency w

M
ag

ni
tu

de

Absolute error in frequency response; n=79841−>r=80

SpaRed
Error bound

Fig. 3. Absolute error in the frequency response for the reduced-order realizations.

Table 3. Results for the SpaRed-BT routine.

n #iter. l k RWc (Ŝ) RWo (R̂) np Time (sec.)
1,357 82 574 492 4.9e-24 1.0e-14 1 14.2
5,177 98 686 588 8.5e-23 1.5e-14 1 35.4

20,209 76 532 456 1.5e-14 2.0e-13 4 151.4
79,841 78 546 468 3.9e-13 9.6e-14 16 484.7

method is based on the sign function iteration while the SpaRed BT method
employs a generalization of the LR-ADI iteration.

The experimental results show that, for the optimal cooling of steel profiles
problem, the SpaRed-BT algorithm is clearly the best option. By exploiting the
sparsity of the problem this algorithm requires less computational resources,
provides the answer faster, and allows the reduction of problems which could
not be dealt with using the PLiCMR-BT algorithm. On the other hand, for the
small-dimension problems, the models computed by the PLiCMR-BT algorithm
are presumably more accurate and can serve as a reference for those computed
with SpaRed.

References

1. R.M. Bad́ıa, P. Benner, R. Mayo, and E.S. Quintana-Ort́ı. Parallel algorithms
for balanced truncation model reduction of sparse systems. In Proc. of PARA’04 –
Workshop on State-of-the-Art in Scientific Computing, Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Heidelberg, New York, to appear.

866 José M. Bad́ıa et al.

2. P. Benner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Parallel model reduction
of large-scale descriptor linear systems via balanced truncation. In Proceedings of
the 6th International Meeting on High Performance Computing for Computational
Science. VECPAR’04, number 3402 in Lecture Notes in Computer Science, pages
340–353. Springer-Verlag, Berlin, Heidelberg, New York, 2005.

3. P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. State-space truncation
methods for parallel model reduction of large-scale systems. Parallel Comput.,
29:1701–1722, 2003.

4. P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving linear matrix equa-
tions via rational iterative schemes. Journal of Scientific Computing, to appear.

5. P. Benner and J. Saak. A semi-discretized heat transfer model for optimal cooling
of steel profiles. In P. Benner, V. Mehrmann, and D. Sorensen, editors, Dimension
Reduction of Large-Scale Systems, volume 45 of Lecture Notes in Computational
Science and Engineering, pages 353–356. Springer-Verlag, Berlin/Heidelberg, Ger-
many, 2005.

6. J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix
Anal. Appl., 24(1):260–280, 2002.

7. B.C. Moore. Principal component analysis in linear systems: Controllability, ob-
servability, and model reduction. IEEE Trans. Automat. Control, AC-26:17–32,
1981.

8. T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comput., 21(4):1401–1418, 2000.

9. J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function. Internat. J. Control, 32:677–687, 1980.

10. M.G. Safonov and R.Y. Chiang. A Schur method for balanced-truncation model
reduction. IEEE Trans. Automat. Control, AC–34:729–733, 1989.

11. A. Schmidt and K. Siebert. Design of Adaptive Finite Element Software; The Finite
Element Toolbox ALBERTA, volume 42 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag, Berlin/Heidelberg, 2005.

12. M.S. Tombs and I. Postlethwaite. Truncated balanced realization of a stable non-
minimal state-space system. Internat. J. Control, 46(4):1319–1330, 1987.

13. A. Varga. Efficient minimal realization procedure based on balancing. In Prepr. of
the IMACS Symp. on Modelling and Control of Technological Systems, volume 2,
pages 42–47, 1991.

14. A. Varga. Model reduction software in the SLICOT library. In B.N. Datta, edi-
tor, Applied and Computational Control, Signals, and Circuits, volume 629 of The
Kluwer International Series in Engineering and Computer Science, pages 239–282.
Kluwer Academic Publishers, Boston, MA, 2001.

15. E.L. Wachspress. The ADI model problem, 1995. Available from the author.

Broadcast-Based Parallel LU Factorization

Fernando G. Tinetti� and Armando E. De Giusti

III-LIDI, Facultad de informática
Universidad Nacional de La Plata

50 y 115, 1er. Piso
1900 La Plata, Argentina

Abstract. This paper presents a parallel LU factorization algorithm
designed to take advantage of physical broadcast communication facil-
ities as well as overlapping of communication and computing. Physical
broadcast is directly available on Ethernet networks hardware, one of
the most used interconnection networks in current clusters installed for
parallel computing. Overlapped communication is a well-known strat-
egy for hiding communication latency, which is one of the most common
source of parallel performance penalization. Performance analysis and
experimentation of the proposed parallel LU factorization algorithm are
presented. Also, the performance of the proposed algorithm is compared
with that of the algorithm used in ScaLAPACK (Scalable LAPACK),
which is commonly accepted as having optimized performance.

1 Introduction

Parallel computing on low-cost clusters is now a common approach in many
scientific areas [3] [4]. Problems of linear algebra in general, and systems of
equations in particular, have usually taken advantage of such parallel computing
platforms to reduce the time needed to obtain a solution. In this context of
linear algebra, there are some libraries avilable for parallel computing, such as
ScaLAPACK [6] and PLAPACK [22]. Libraries specifically designed for linear
algebra computing are used from many years ago. LAPACK (Linear Algebra
PACKage) [2] is considered the de facto standard for the whole area of linear
algebra applications, and the BLAS (Basic Linear Algebra Subroutines) library
is well-suited for performance optimization, including parallelization [9].

Solving dense systems of equations is one of the most important tasks in
the field of linear algebra. Furthermore, this problem is used as a benchmark
for supercomputers, and the list of the 500 fastest computers is basically made
by measuring the time to solve large systems of equations [12]. From the point
of view of numerical processing, LU factorization is made following the well-
known block processing approach, which is adopted for most (if not all) of the
computing subroutines/algorithms in the field of linear algebra [16] [13]. For the
parallel approach, bidimensional block cyclic decomposition is used in most of the
approaches, included that of ScaLAPACK [10] [6]. Currently, the ScaLAPACK
� Investigador Asistente CICPBA

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 867–876, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

868 Fernando G. Tinetti and Armando E. De Giusti

approach is considered good enough to be well established and used, and research
is being conducted for workload balance in heterogeneous and/or dynamically
changing environments [5] [7] [8]. A parallel LU factorization algorithm based
on broadcast messages is proposed taking into account that:

1) Many of the current parallel computing platforms are low-cost clusters of
computers interconnected by Ethernet [15]. On these clusters, physical broadcast
is available even when switching (with Ethernet switches) is used to allow mul-
tiple point-to-point simultaneous communications. Furthermore, the standard
Ethernet is being upgraded for better performance [20] [1] maintaining back-
ward compatibility in general, and the broadcast address in particular. From
the theoretical point of view, physical broadcasts are very interesting because
of their natural scalability. In practical terms, however, synchronizations and/or
acknoledgements are necessary and the time taken for these tasks is usually de-
pendent on the number of computers involved in broadcasts. Also, some other
interconnection networks support physical broadcasts or multicasts, in top of
which a broadcast routine can be designed [17] [14].

2) The block processing LU factorization defines a very clear pattern of data
dependence, since it is defined in terms of iterations with [2] [16]: a) single current
block processing, on a small submatrix of the matrix being factorized, and b)
trailing matrix update with the processed current block. This implies that a
current block is needed for most of the processing in all the iterations and, if the
matrix is distributed amongst two or more computers, the current block should
be broadcasted to the computers with elements to be updated.

3) The LU factorization is similar enough to other factorizations such as QR,
Cholesky, etc. to expect that the same approach could be applied at least in those
factorizations with a similar processing pattern. Taking the QR factorization
as an example, the processing pattern is almost the same as that of the LU
factorization, even when the processing on a single block and the trailing matrix
update are not the same for the two factorizations [10].

2 Broadcast-Based Parallel LU Factorization Algorithm

Some issues should be addressed for a broadcast-based parallel LU factorization:
1) High message latency (or startup) times penalizing parallel performance.

Message latency on clusters are mainly due to a combination of the message
passing interface/library/operating system overhead plus the latency of the in-
terconnection hardware involving interface cards and, usually, switches or hubs.

2) The broadcast message routine implemented in message passing libraries
does not usually take advantage of the physical broadcast facilities provided by
interconnection networks (e.g. Ethernet). Message passing libraries such as the
freely available implementations of MPI [19] are not focused on optimizing the
broadcast message routine by using physical broadcast or multicast facilities.
Instead, message passing libraries implementations usually optimize point-to-
point routine/s and implement broadcast in terms of spanning trees [17] or just
multiple messages from the broadcast sender (the broadcast root).

Broadcast-Based Parallel LU Factorization 869

3) The parallel algorithm itself, since most (if not all) current parallel algo-
rithms are based on bidimensional data distributions and simultaneous broad-
casts on the two dimensions or broadcasts and point-to-point communications
expected to be carried out simultaneously, such as in ScaLAPACK [6]. Given
that physical broadcasts are going to be used to optimize broadcast messages,
more than one message at a given time should not be scheduled, since it would
imply performance penalization by sequential communications. It is clear that a
single computer cannot receive a physical broadcast and another frame/packet
at the same time.

Each one of the above three issues have been addressed fairly straightforward,
and decisions can be evaluated either analytically or by experimentation. The
strategy to avoid the high message latency penalization has been overlapping lo-
cal computing with communication, which is very useful on parallel computing.
This overlapping should be introduced in the algorithm, thus becoming a con-
straint/guideline for designing the algorithm. A broadcast message routine has
been designed and implemented on top of the User Datagram Protocol (UDP)
[18], whose broadcast facilities are implemented by most of the operating sys-
tems (e.g. Linux, Solaris, AIX) with physical broadcast on Ethernet networks.
The parallel algorithm is designed with one-dimensional data distribution, which
in the specicic case of LU factorization is useful also to avoid communications
for selecting the pivot/s on each iteration. More specifically, a row block cyclic
partitioning is made, with the block size (or bs, number of consecutive rows in
a block) defined for performance tuning, as in ScaLAPACK. In either case, the
block size is small enough to have many more blocks than computers, and blocks
are cyclically distributed. The row block cyclic partitioning used for LU matrix
factorization amongst computers P0, P1, and P2 is shown in Fig. 1-a). A sim-
plified pseudocode of the process running on computer Pi is shown in Fig. 1-b),
where nblocks = n/bs, Factorize implies LU factorization with pivoting on a
single block, send_b and recv_b are the routines to send and receive a broadcast
message respectively, and Update -on a single block or on local blocks- implies
several tasks: a) applying pivots, b) a triangular system solve, and c) a matrix
multiplication. In fact, numerical processing (i.e. factorization and update) is
the same as in the sequential case [2] except that every computer modifies only
local data. More details on the sequential as well as parallel LU factorization
algorithm can ba found in [21].

The idealized case in which computing and communication are overlapped
and there is no overhead due to broadcast messages (except for the communi-
cation of the first block) is shown in Fig. 2. Most of the local computing time
in each computer (shown as Proci on Fig. 2) is mainly due the trailing matrix
update which includes a matrix multiplication.

Time Required by Floating Point Operations. Processing requirements
of the trailing matrix update depend on the iteration. Given a matrix of n× n
elements, the block size bs, and starting iterations with i = 1, the matrix update
in the i th iteration is made on a submatrix of (n− i∗ bs)× (n− i∗ bs) elements.
Furthermore, the trailing matrix update is defined as

870 Fernando G. Tinetti and Armando E. De Giusti

 if (i == 0)
 Factorize and send_b block 0
 for (j = 0; j < nblocks; j++)
 {
 if (block j is not local)
 recv_b factorized block j
 if (block j+1 is local)
 {
 Update and Factorize block j+1
 send_b factorized block j+1
 }
 Update local blocks /* block j+1
 has been already updated */
 }

P
1

P
2

P
0

bs

bs

P
0

P
1

P
2

P
0

A =

a) Row Block Cyclic Distribution. b) Parallel LU Factorization Pseudocode.

Fig. 1. Row Block Cyclic Partitioning.

Bcast
0

Proc
0

Bcast
1

Proc
1

Bcast
2

Proc
nblocks−1

Bcast
nblocks

Time

Proc
nblocks

Fig. 2. Overlapped Computing and Communication.

tA− tL× tU ; tA ∈ IR(n−i∗bs)×(n−i∗bs), tL ∈ IR(n−i∗bs)×bs, tU ∈ IRbs×(n−i∗bs)

Thus, the number of floating point operations required for the trailing matrix
update in iteration i, FlopUpd(i), is given by

FlopUpd(i) = 2 ∗ bs ∗ (n− i ∗ bs)2 (1)

because the matrix multiplication tL × tU requires (n − i ∗ bs)2 ∗ (2 ∗ bs − 1)
floating point operations and the matrix subtraction requires (n−i∗bs)2 floating
point operations. Taking into account that the processing workload is evenly
distributed amongst p computers, the time required for floating point operations
on each computer in iteration i is given by

t(FlopUpd(i), p) =
tf ∗ FlopUpd(i)

p
(2)

where tf is the time required for a single floating point operation.

Time Required by Broadcast Communications. The timing model of
point-to-point communications can be taken as a starting point:

t(m) = α + β ∗m (3)

Broadcast-Based Parallel LU Factorization 871

where m is the amount of data to transfer, α is the communication latency or
startup cost, and 1/β is the network communication bandwidth. Timing models
for broadcast communication usually depend on the implementation selected for
the broadcast routine in a specific implementation. In the specific case of the
research presented in this paper, the broadcast message implementation is such
that: a) data is physically broadcasted using UDP, and b) acknowledgements are
received at the broadcast root from all the receivers to provide a reliable broad-
cast message. These details are hidden to the user (pertain to the broadcast
implementation). Given that data is sent as in a point-to-point operation and
there is a very low rate of message loss, the time required for data transmission
through the network can be modeled as in the poit-to-point messages, i.e. (β∗m)
in Eq (3), with m = bs ∗ (n − i ∗ bs) on iteration i. However, ackowledgements
sent from receivers to the root attempt against scalability, because these mes-
sages cannot be received simultaneously at the broadcast root. Even when there
are multiple ways of avoiding such a performance drawback, it is still possible
to analyze the time required by broadcast messages. Summarizing, the timing
model for the broadcast operation in the i th iteration is

t(bcast(i, p)) = αb + lpp ∗ (p− 1) + β ∗ bs ∗ (n− i ∗ bs) (4)

where αb is the latency of the broadcast implementation independently of the
number of computers involved, lpp is the latency per processor of the broadcast
implementation, and p − 1 is the number of receivers in a broadcast operation.
Summarizing, Eq. (4) is the timing model of the broadcast implementation made
in the context of the research related with this paper.

Time Required by the Algorithm. Taking into account the pseudocode of
Fig. 1-b) and the algorithm behavior described in Fig. 2, the time required to
complete the parallel algorithm on p processors is given by

t(parLU, p) =
n/bs∑
i=1

max(t(FlopUpd(i), p), t(bcast(i, p))) (5)

It is expected that the numerical computing time in the first iterations is greater
than the time required by broadcast communications. Also, given that a) the
trailing matrix is made smaller as more iterations are completed, and b) broad-
cast message latency is constant from the point of view of trailing matrix size,

t(FlopUpd(i), p) ≥ t(bcast(i, p)); i ≤ k

t(FlopUpd(i), p) < t(bcast(i, p)); i > k

and Eq. (5) becomes

t(parLU, p) =
k∑

i=1

t(FlopUpd(i), p) +
n/bs∑

i=k+1

t(bcast(i, p)) (6)

872 Fernando G. Tinetti and Armando E. De Giusti

3 Comparison with ScaLAPACK:
Expected Time and Experimentation

The expected time for the Scalapack LU factorization algorithm is well known:

t(ScaLU, p) =
2 ∗ n3

3 ∗ p tf +
(3 + log2(p)/4) ∗ n2

√
p

β + (6 + log2(p)) ∗ n ∗ αptp (7)

where αptp is the message latency for a point-to-point message [7] [8] [6], and
the rest of parameters/coefficients have already been explained and used.

Some different points of view prevent a direct comparison among Eq. (7) and
Eq. (6) above. The first term of Eq. (7) reflects the number of floating point op-
erations in ScaLAPACK’s timing model: 2/3∗n3. This is the traditional number
of operations for the sequential LU factorization as given in the literature [16].
The timing model given for the proposed parallel algorithm takes into account
that most of the computing time is needed for the trailing matrix update whose
number of operations is given in Eq. (1) for the i th iteration. However, both
algorithms are directly based on the blocked LU factorization, so the number of
floating point operations should be the same and it is not necessary a deeper
comparison analysis to determine which one -Eq. (7) or Eq.(6)- is more accurate.

The ScaLAPACK timing model for communication is reflected in the sec-
ond and third terms of Eq. (7). ScaLAPACK’s communication costs are taken
into account for every block/element of the matrix. On the other hand, for the
approach proposed in this paper, Eq. (5) and Eq. (6) directly reflect that a
broadcast communication adds time to the total expected algorithm time only
when it is greater than the corresponding trailing matrix update time. Even
when the numerical computing time is greater than the broadcast time in only
a few iterations -e.g. k < 20 or k < 30 in Eq. (6)- the communication time
(in those iterations) does not add time to the total processing time. However,
the broadcast timing model of Eq. (4) is far from optimal and implies at least
that the latency grows linearly with the number of processors. On the other
hand, ScaLAPACK relies on spanning trees and, thus, the timing model implies
a logarithmic growth depending on the number of processors.

Table 1. Cluster Characteristics.

Clock Mem Mflop/s (DGETRF)
2.4 GHz 1 GB ∼= 2500

Some simple experimentation will clarify the comparison on a real envi-
ronment. Computers (PCs) used for experimentation have the characteristics
summarized in Table 1, and the interconnection network is 100 Mb/s Ether-
net with complete switching. Performance in Table 1 is given in Mflop/s using
DGETRF, the sequential LU matrix factorization with double precision floating
point number representation. The total number of available computers is 20,
and experiments were made with 2, 4, 8, 16, and 20 computers. Matrix sizes

Broadcast-Based Parallel LU Factorization 873

are scaled up according to the number of computers and memory available.
Local/sequential computing is made by using fully optimized ATLAS BLAS
(Automatically Tuned Linear Algebra Software BLAS) [23]. ScaLAPACK com-
munication is made as usual: BLACS (Basic Linear Algebra Communication
Subroutines) implemented on top of MPICH implementation of MPI. Every
possible bidimensional processors grid P × Q was considered for ScaLAPACK
routines, e.g. for 16 processors, the experimental grids were: 1×16, 16×1, 2×8,
8×2, and 4×4. Also, square block sizes were used for ScaLAPACK routines: 16,
32, 64, 100 and 128. The proposed algorithm does not need to define a bidimen-
sional processors grid, and the block values used for experimentation are the
same as those used for ScaLAPACK routines.

Figure 3 shows the parallel perfomance measured as efficiency for LU matrix
factorization on different number of computers from 2 to 20. The matrix order
(size) for each number of computers is shown in parenthesis on the x axis. Bars
show the best efficiency value obtained by the algorithms for each number of
computers. Light gray bars labeled as “Sca” correspond to values obtained by
ScaLAPACK’s PDGETRF. Dark gray bars labeled as “Prop” correspond to val-
ues obtained by the proposed parallel LU matrix factorization algorithm. The
proposed algorithm performance is better than that implemented in ScaLA-
PACK from the point of view of “raw” efficiency and performance degradation
from 2 to 20 computers. It is worth to mention the similarity among the ScaLA-
PACK’s results shown in Fig. 3 with those in [8], where ScaLAPACK is used
for LU matrix decomposition and linear equation system solving. In Fig. 3 as
well as in [8] the efficiency is about 0.5 (or 50% of the total available computing
power). It is possible now to analyze the specific results regarding, for example,
the advantage of broadcast overlapping of the proposed algorithm. For 20 com-
puters, for example, the specific experimentation values are: n = 45000, bs = 64,
the total number of blocks and iterations is 704 and

t(FlopUpd(i), p) ≥ t(bcast(i, p)); i = 1, . . . , 363
t(FlopUpd(i), p) < t(bcast(i, p)); i = 364, . . . , 704

i.e. the first 363 broadcast messages do not add any time to the total elapsed
time of the parallel algorithm on 20 computers. Thus, more than 51% of the
broadcasts are completely made in background and this explains the very good
parallel performance values shown in Fig. 3.

LU matrix factorization is specially penalized in ScaLAPACK’s two dimen-
sional matrix distribution due to the partial pivoting needed for numerical sta-
bility. Partial pivoting implies a collective communication in a row or a column
of processors (for pivot selection) which implies a group communication penal-
ization in an algorithm defined mainly for point-to-point communications. Given
that the proposed parallel LU matrix factorization distributes data by column
block or row block, this penalization is not found. Finally, the proposed paral-
lel LU matrix factorization algorithm efficiency for 20 computers is about 7%
worse than the efficiency for 2 computers, while SaLAPACK efficiency for 20
computers is about 23% worse than the efficiency for 2 computers.

874 Fernando G. Tinetti and Armando E. De Giusti

2 (14000) 4 (20000) 8 (29000) 16 (41000) 20 (45000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sca Prop

Number of Computers (Matrix Order)

E
ff

ic
ie

nc
y

Fig. 3. LU Matrix Factorization Efficiency.

4 Conclusions and Further Work

A parallel LU factorization algorithm based on broadcast messages seems to
be a good idea to optimize performance at least on clusters interconnected by
networks with broadcast/multicast facilities, such as Ethernet and InfiniBand.
Furthermore, the parallel LU matrix factorization algorithm presented in this
paper is very simple and, thus, easy to understand and implement on clusters.
A specific broadcast message routine has been implemented focusing Ethernet
networks, and this routine has been successfully used in the parallel algorithm.

The performance analysis has been presented regarding the computing time
of the proposed algorithm, which is dependent on the broadcast message im-
plementation. Very good performance values are obtained in experiments by
taking advantage of physical broadcast as well as overlapping communication
with computing in the proposed parallel algorithm. These performance values
are shown to be better than those obtained by the ScaLAPACK LU factorization
algorithm, which is currently assumed to be optimized for distributed memory
parallel computers. Furthermore, the proposed algorithm not only obtains bet-
ter performance than that implemented in ScaLAPACK but also have better
performance scalability as the number of computers is increased.

Other factorization algorithms from the field of linear algebra seem to be well
suited for parallelization beased on broadcast messages. Factorization methods
such as QR and Cholesky are among the inmediate candidates given their simi-
larity in the numerical computing pattern, even when the individual operations
are different from those in the LU factorization.

From the point of view of parallel hardware and clusters, it would be highly
beneficial to experiment on more powerful clusters. The cluster computing power
could be increased by having more computers as well as with computers with
more processing power. Also, interconnection networks with performance better
than Ethernet 100 Mb/s should be used. Immediate candidates in this sense are
Ethernet 1 and 10 Gb/s.

Broadcast-Based Parallel LU Factorization 875

Acknowledgements

Experimentation presented in this paper has been carried out at the Universidad
Nacional de La Plata’s JavaLab, with 20 IBM NetVista 8305-HRY, donated
by IBM, as part of the Academic Cooperation Agreement signed between the
University and IBM Argentina.

References

1. 10 Gigabit Ethernet Alliance (10GEA), 10 Gigabit Ethernet Technology Overview
White Paper, May 2002. Available at
http://www.10gea.org/10GEA White Paper Rev1 May2001.pdf.

2. Anderson E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK Users’
Guide (Second Edition), SIAM Philadelphia, 1995.

3. Anderson T., D. Culler, D. Patterson, and the NOW Team, “A Case for Networks
of Workstations: NOW”, IEEE Micro, Feb. 1995.

4. Baker M., R. Buyya, “Cluster Computing at a Glance”, in R. Buyya Ed., High
Performance Cluster Computing: Architectures and Systems, Vol. 1, Prentice-Hall,
Upper Saddle River, NJ, USA, pp. 3-47, 1999.

5. Beaumont O., V. Boudet, A. Petitet, F. Rastello, Y. Robert, “A Proposal for a
Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions
on Computers, 50(10):1052-1070, 2001.

6. Blackford L., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley,
ScaLAPACK Users’ Guide, SIAM, Philadelphia, 1997.

7. Chen Z., J. Dongarra, P. Luszczek, K. Roche, “Self adapting software for numerical
linear algebra and LAPACK for clusters”, Parallel Computing 29, pp. 1723-1743,
Elsevier B.V., 2003.

8. Chen Z., J. Dongarra, P. Luszczek, K. Roche, “The LAPACK for Clusters Project:
an Example of Self Adapting Numerical Software”, Proceedings of the 37th Hawaii
International Conference on System Sciences, pp. 1-10, 0-7695-2056-1/04, IEEE,
2004.

9. Choi J., J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, R. Whaley, “A proposal
for a set of parallel basic linear algebra subprograms”, Technical Report CS-95-292,
University of Tennessee Knoxville, LAPACK Working Note 100, May 1995.

10. Choi J., J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, R. Whaley, “The De-
sign and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization
Routines”, Report ORNL/TM-12470, Sep. 1994.

11. K. Dackland and E. Elmroth. “Design and Performance Modeling of Parallel Block
Matrix Factorizations for Distributed Memory Multicomputers”, Proceedings of
the Industrial Mathematics Week, pp 102-116, Trondheim, 1992.

12. Dongarra J., “Performance of Various Computers Using Standard Linear Equa-
tions Software”, University of Tennessee, Knoxville TN, 37996, Computer Science
Technical Report Number CS - 89 - 85, January 2005,
http://www.netlib.org/benchmark/performance.ps.

13. Dongarra J., D. Walker, “Libraries for Linear Algebra”, in Sabot G. W. (Ed.), High
Performance Computing: Problem Solving with Parallel and Vector Architectures,
Addison-Wesley Publishing Company, Inc., pp. 93-134, 1995.

876 Fernando G. Tinetti and Armando E. De Giusti

14. InfiniBand Trade Association, InfiniBand Architecture Specification, Release 1.0,
October 24 2000.

15. Institute of Electrical and Electronics Engineers, Local Area Network - CSMA/CD
Access Method and Physical Layer Specifications ANSI/IEEE 802.3 - IEEE Com-
puter Society, 1985.

16. Golub G., C. Van Loan, Matrix Computations, 2nd Edition, The John Hopkins
University Press, 1989.

17. Liu J., A. R, Mamidala, D. K. Panda, “Fast and Scalable MPI-Level Broadcast
Using InfiniBand’s Hardware Multicast Support”, Proc. 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), p. 10b, Santa Fe, New Mexico,
USA, April 2004.

18. Postel J., “User Datagram Protocol”, RFC 768, USC/Information Sciences Insti-
tute, Aug. 1980.

19. Snir M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra., MPI: The
Complete Reference, Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press,
1998.

20. Spurgeon C. E., Ethernet: The Definitive Guide, O’Reilly and Associates, ISBN
1565926609, 2000.

21. Tinetti F. G., “LU Factorization: Number of Floating Point Operations and Par-
allel Processing in Clusters”, Technical Report LIDI PLA-001-2003, May 2003,
available at https://lidi.info.unlp.edu.ar/∼fernando/publis/LUops.pdf

22. van de Geijn R., Using PLAPACK: Parallel Linear Algebra Package, The MIT
Press, 1997.

23. Whaley R. C., A. Petitet, J. J. Dongarra, Automated Empirical Optimization of
Software and the ATLAS Project. Available at
http://www.netlib.org/lapack/lawns/lawn147.ps

Topic 11
Distributed and High-Performance Multimedia

Laszlo Böszörmenyi, Max Mühlhäuser, Geoff Coulson, and Nuno Correia

Topic Chairs

Efficient resource management to handle multimedia data is one of the most
important challenges of the next decade. The needs implied by multimedia
sources may easily lead to data and processing explosion. The requirement to
store, process, and manage large data sets naturally pose the question of pro-
grammable parallel processing systems in supporting and enabling multimedia
technology. Furthermore, the indexing and retrieval of multimedia data includes
time-consuming algorithms, thus high-performance architectures and algorithms
are necessary in order to allow the use of multimedia databases and archives in
real-world scenarios.

A number of novel and hard questions arise in this context, which can be
answered only by applying techniques of parallel and/or distributed comput-
ing. The scope of this topic embraces issues from high-performance coding and
retrieving over parallel architectures for multimedia servers, databases and in-
formation systems (including grids), up to highly distributed architectures in
heterogeneous, wired and wireless networks. In short, the two main areas that
were considered for this topic are (1) High-Performance Multimedia, including
parallel and distributed algorithms for fast coding and retrieval of multime-
dia data or metadata and architectures and algorithms for multimedia servers,
databases and information systems (including grids); (2) Distributed Multime-
dia, in particular, architectures and algorithms for QoS- and context-awareness
in heterogeneous (wired and wireless) networks and distributed architectures re-
lated to MPEG, including novel ideas regarding “Universal Media Access” as
defined in MPEG-21.

This year 13 papers of high value were submitted to this topic area. We thank
all authors for their submissions. All papers were reviewed by 4 reviewers. 5 pa-
pers were selected to be presented at EuroPar 2005, in two sessions. One session
is devoted to Architectures for distributed multimedia services and contains the
papers “Dynamic distributed collaborative merging policy to optimize the mul-
ticasting delivery scheme”, “Dynamic proxy-cache multiplication inside LANs”
and the “Perspective for Lecture Videos”. The second session, on Coding based
enhancements of video services, contains the papers “A Scene-based Bandwidth
Allocation Scheme for Transferring VBR Streams on Clustered Video Servers”
and “DCT Block Conversion for H.264/AVC video transcoding”.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 877, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Distributed Collaborative
Merging Policy to Optimize

the Multicasting Delivery Scheme�

X.Y. Yang1, Porfidio Hernández1, F. Cores2, A. Ripoll1,
R. Suppi1, and Emilio Luque1

1 Computer Science Department, ETSE, Universitat Autònoma de Barcelona
08193-Bellaterra, Barcelona, Spain

2 Computer Science & Industrial Engineering Department, EPS
Universitat de Lleida, 25001, Lleida, Spain

Abstract. The advance of Internet 2 and the proliferation of switches
and routers with level three functionalities made the multicast one of
the most feasible video streaming delivering techniques for the near fu-
ture. Assuming this to be true, this study addressed the over-load sit-
uation that a streaming server could suffer due to client requests. As a
solution, we proposed new multicast delivery scheme that allows every
active client to collaborate with the server regardless of the video that
they are watching, alleviating server loads, and therefore server resource
requirements. The solution combined the multicast delivery scheme and
client-side buffer collaboration in order to decentralize the delivery pro-
cess. The new video delivering scheme was designed as two separate
policies: the first policy used client collaboration to deliver first part of
videos and the second policy could merge two or more multicast channels
using distributed collaboration between a group of clients. Experimental
results show that this scheme is better than previous schemes in terms
of resource requirements and scalability.

1 Introduction

The high increase in the commercial use of the Internet (distance learning, Video
on Demand (VoD) and digital video libraries) has generated a substantial growth
in the demand for video streaming systems. In video streaming environments,
users request the videos they desire and a server delivers the requested video
information; allocating, using the most simple delivery technique, a dedicated
server unicast channel for each video request. Even though the unicast delivery
scheme is easy to implement, it is excessively expensive and there is a lack of
scalability.

In order to reduce the cost of video-delivery and attain high server scalabil-
ity, three complementary research approaches have been investigated: (1) server
� This work was supported by the MCyT-Spain under contract TIC 2001-2592 and

partially supported by the Generalitat de Catalunya- Grup de Recerca Consolidat
2001SGR-00218.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 879–889, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

880 X.Y. Yang et al.

transmission schemes using multicast, this strategy allows users to share server
and network bandwidth to reduce the individual service cost; (2) video stream-
ing technique with application layer multicast enables multicast transmission
schemes beyond a local area network, assuming only IP unicast at the network
layer; and (3) proxy caching [6], enabling high scalability for clients dispersed
across a wide-area. The main focus of this study is the design of multicast de-
livery in order to reduce the individual service cost, specially, we proposed a
delivery scheme that is able to offer true VoD services[10].

Sophisticated video delivery techniques based on multicast have appeared
such as Batching [4], Patching [1][2], Adaptive Piggybacking [3], Merging[5],
Chaining [7] and Cooperative Video Cache(CVC)[8].

With a Batching technique, video requests for the same video that are sub-
mitted in the same short interval time are served by a single multicast channel.
Clients suffer a certain period of waiting time and the average length of waiting
time depends on the policy of selecting the clients to serve with the first available
channel. Due to this waiting time, a Batching approach only provides near-VoD
service. A Batching approach is also called static multicast since late coming
requests are not allowed to join any already on-going multicast channel. With
Patching, however, clients are dynamically assigned to join multicast channels.
Since late coming clients miss part of the video information, a separate unicast
channel, called a patch stream, is needed to deliver the first part of the video.
The Patching approach assumes that clients can simultaneously download two
streams and has a local buffer, capable of saving t minutes of video. While a
client is watching a video from the patch stream, the video information arriving
from multicast channels is buffered. Even though the Patching policy provides
true-VoD service, the server resource requirement increases depending on the
request arrival frequency due to unicast channels. Furthermore, a request is only
able to join a multicast channel if the difference between the request arrival time
and the multicast channel start-time is lower than t.

Like Patching, Adaptive Piggybacking and Merging are also dynamic multi-
cast approaches. In the Piggybacking policy, the server slows down and speeds
up the delivery rate of two consecutive multicast channels in order to merge
two multicast channels into one. The number of channels that Piggybacking can
merge is limited by the fact that less than 5% adjustment of the delivery rate is
allowed, in order to preserve the display quality that clients receive. The Merging
policy, however, does not change the display quality. Two multicast channels are
merged using the client buffer. In the Merging policy, while clients are playing
the video, they try to buffer video information from a previous multicast chan-
nel. This policy can only merge channels that are started in a period of time no
longer than the length of video information that each client is able to save in
their buffer.

The main ideas behind Chaining and CVC are fairly similar. Both policies are
based on the creation of a delivery chain in which video information is forwarded
from one client to another. With these policies, a new client receives the video
from an existing chain and does not consume any server bandwidth. However,
delivery chains could only be formed if the interarrival times of client requests

Dynamic Distributed Collaborative Merging Policy 881

are short, limited by the size of each individual client’s buffer. Furthermore, only
clients that are watching the same video can take part in the formation of the
chain.

In this paper, we propose a new delivery technique called Dynamic Dis-
tributed Collaborative Merging (DDCM). The DDCM technique is based on
the peer-to-peer paradigm and allows every active client to collaborate with the
server regardless of the video that they are watching. The client collaborations
are performed by two complementary delivery policies. Under the first policy,
while successive incoming requests are allowed to join an existing multicast chan-
nel, the missed video information (patch stream) is delivered by another client
who is playing the same video. Unlike the Patching policy, the patch stream does
not consume the server’s resources. The aim of the second policy is to dynam-
ically merge multicast channels using distributed buffers. More than one client
of different videos could be used in the merging process of two channels. The
merge policy is able to merge multicast channels regardless of the time between
their start-times. The merge policy enables clients of unpopular videos to help
the server to merge the channels of more popular videos, and vice versa.

The rest of the paper is organized as follows: in section 2, we show the key
ideas behind DDCM. Performance evaluation is shown in section 3. In section
4, we indicate the main conclusions of our results and future work is explained
in the final section.

2 Dynamic Distributed Collaborative Merging Scheme

In the delivery scheme design, we assume that clients are able to hold two sym-
metric channels. We assume that video information is encoded with Constant
Bitrate (CBR) and that each client channel is able to receive/send one video
stream. We refer to network unicast channel that delivers the first part of a
video as patch stream and the multicast channel that delivers the information
for the complete video as complete stream.

The DDCM delivery scheme is designed as two separate policies: 1) Patch
Stream Manager (PSM) whose main role is to deliver patch streams using client
collaborations. 2) Complete Stream Manager (CSM). The main function of this
second policy is to try to merge two or more complete streams into one.

2.1 Patch Stream Manager Design

When the first request from client Ci arrives time ti, the server opens a new
complete stream(M1) for the client. When a second request from client Ci+1

arrives in time ti+1, the server decides whether or not the client can be served
by using a previous complete stream (M1). In order to serve by using a previous
complete stream, client(Ci+1) must have enough buffer to save more than (ti+1−
ti) seconds of video information from the complete stream. If not, the server will
open a new complete channel. In the other case, a patch stream is needed to
send video information from 0 to (ti+1 − ti). The remaining video information
((ti+1 − ti) to the end) will be sent by the previous complete stream.

882 X.Y. Yang et al.

For each new patch stream, the PSM policy searches for an active client that
has the first part of the video in their local buffer. In such a case, a collaborative
client will open a patch stream and send the first part of the video. Client Ci+1

will also join the previous multicast complete stream. Should there be no such
client, the server starts a new patch stream using server bandwidth.

Fig 1 shows the delivery process following PSM for 6 clients. Each client has 3
minutes of buffer and client requests arrive at minutes 1, 2, 3, 5, 6, and 7. Under
the clients name, we indicate the length of buffer that each client is dedicated for
the collaboration. For example, C3’s collaboration buffer is 1 minute, while C2
collaborates with a buffer of 2 minutes. These values depend on the length of the
patch stream that the client needs for the delivery process. In the case of C1, no
patch stream is needed, so the full buffer (3 minutes) is used for collaboration.
In order to know the buffer size that each client dedicates to collaboration, each
client sends a control message to the server when the client has filled the buffer
with the first part of video.

Fig. 1. Patch Stream Manager

Fig 1 shows that C2 and C3 are served using one multicast channel and
2 patch streams using server bandwidth. In the case of C5 and C6, the patch
streams are delivered by C3 and C2 respectively. As we can see in Fig 1, the
PSM policy is capable to deliver patch streams without consuming the server’s
bandwidth after minute 5.

The more clients are accepted by the server, the more client collaborations
will be produced with PSM policy. This characteristic makes the PSM especially
suitable as a delivery scheme for highly demanded video where a lot of patch
streams are needed. However, after several minutes, the server has more than
one client that is able to serve the same patch stream. This redundancy implies
poor client resource utilization since many of clients will not be involved in the
collaboration mechanism of PSM.

2.2 Complete Stream Manager Design

The CSM’s aim is to merge the existing complete streams. Once a complete
stream is merged into another, the complete stream will not consume any server
resources. Since complete streams are usually long, and therefore demand most of

Dynamic Distributed Collaborative Merging Policy 883

the server’s resources, the CSM efficiently replaces the server resource demand
with client collaborations. The CSM scheme achieves a high degree of client
resource utilization since almost every client is involved in the collaboration
mechanism regardless of the video that they are watching.

Given two multicast channels (M1 and M2), the key idea of CSM is that
a group of clients form a collaborative buffer to merge M2 with M1. Then,
the multicasting channel (M2) from the server is replaced by a channel (M21)
from the collaborative clients. Since more than one client could be used in the
merging process, the CSM is able to merge multicast channels regardless of the
time between their start-times.

Fig 2 shows the collaborative buffer created between clients C1, C2, C3 and
C6 that collaborate by providing 3, 2, 1 and 1 minutes of buffer respectively.
A total of 7 minutes of video information could be saved in this collaborative
buffer.

Fig. 2. Complete Stream Manager

Each client of the collaborative group successively saves video information
from M1 and then delivers the information to M2 when clients of this channel
need it. Fig 3 shows the delivery process of two multicasting channels(M1 and
M2). The M2 was started 4 minutes(S) later than M1. The merging process
starts when block C and 8 are being delivered to M1 and M2 respectively.
Channel M2 is closed in time 4, and a new channel M21 is opened.

In order to know what information each client has to save, the video infor-
mation of M2 is divided into blocks and enumerated. The CSM decides the list
of blocks that a client has to save. For example, C1 saves blocks [C,D,E], [J,K,L]
and so on. After saving the blocks [C,D,E] in time 0-3, C1 waits 1 minute before
starting to send the video information to M21. Block E is sent to M21 in time
6 and, after that, the C1 starts to save blocks [J,K,L].

Once the channel M2 is merged with M1, the CSM has to guarantee that
while a client is delivering video blocks, there are enough other clients that are
saving other video blocks being delivered by the server with M1. Since, each
client can only use one stream in the collaboration, either to deliver or to save
video information, the two processes (delivery and saving) have to be performed
separately. In the case of Fig 3, while C4 is delivering block I, it should not
receive any video information except the video that C4 is playing.

884 X.Y. Yang et al.

Fig. 3. CSM delivery process

2.3 Client Collaboration Group Construction Process

In the merging process, two parameters are determined by the CSM: 1)The
client collaboration (BCi) that is the size of buffer of each client Ci that is
to be dedicated to the formation of the collaborative buffer. 2) Accumulated
buffer size that is the total size of the collaborative buffer. The value of these
two parameters is determined under 2 constraints: a) A client cannot use more
buffer than it has. b) A client only use one channel in the collaboration process.

Constraint a) is trivial and requires no further explanation. We established
two conditions for the CSM group construction process in order to satisfy con-
straint b). Supposing that the CSM is interested in merging two channels that
are separated into S units of time. We can formulate these 2 conditions as fol-
lows: Given a collaboration group CG of clients {C1, C2, ..., Cn} 1 in which the
buffer collaborations for each client are {BC1 , BC2 , ..., BCn}, the CSM has to
satisfy:

1. Maximum collaboration: the collaboration (BCi) of a client Ci can not be
greater than the value of S.

BCi ≤ S for all Ci ∈ CG (1)

2. Minimum accumulated buffer size: The total accumulated buffer size(BL)
has to be bigger or equal (S + max {BCi}).(∑

Ci∈CG

BCi = BL

)
≥ S + max {BCi} for all Ci ∈ CG (2)

Satisfying conditions (1) and (2), unconditioned by S, we get:

BL− BCi ≥ S ≥ BCi for all Ci ∈ CG (3)
1 In the selection of clients, local network connection distance is considered in order

to minimize the local network overhead.

Dynamic Distributed Collaborative Merging Policy 885

The condition (3) indicates that the accumulated buffer size of all groups
except for a client Ci is always bigger than Ci’s collaboration(BCi) and is bigger
than S. This means that the CSM guarantees that while a client Ci is sending
video information there are enough other clients saving video information from
the earlier multicast channel. Furthermore, while a client Ci is saving video
information, there are enough other clients sending information. Since a client
does not to have save information while it is sending, or vice versa, the CSM
guarantees that in the collaboration process, each client will not use up more than
one channel, leaving another one for playback. In this way, the CSM constructs
the collaboration group in accordance with the following steps:

Step 1: The CSM calculates S of every pair of channels which could be merged
and chooses the pair with the smallest S as channels to be merged.

Step 2: Satisfying conditions (2), the DDCM forms a list of clients {C1, C2, ...,
Cn}. In this step, the maximum collaboration of each client Ci is limited by
the condition (1).

Step 3: Blocks of video (V bj) that a client Ci has to save and deliver are
determined by: (V bj − StartBlock) mod BL ≥ ∑i−1

m=1 BCm and (V bj −
StartBlock) mod BL <

∑i
m=1 BCm where BL =

∑n
i=1 BCi (the total ac-

cumulated size of collaborative buffer), BCi is the collaboration of client Ci

and StartBlock is the block number which indicates the starting point of
the merging process.

3 Performance Evaluation

We have used our prototype to evaluate the performance of the DDCM. There
are three key questions that we are interested in addressing: 1) how much re-
duction in server bandwidth could be achieved using DDCM in accordance with
the video’s popularity? 2) How much server bandwidth is required using DDCM
when the system is offering more than one video? 3) How could the client col-
laboration following the DDCM scheme help in a high-demand situation?

The DDCM is implemented in our prototype using C++ language under
Linux system. We have implemented the entire necessary client feature in a Xine
player plug-in[9]. In the experimentation, clients are emulated using a cluster of
PCs and client requests are generated following a Poisson(Pk = λk

k! ·e−λ)process.
The Zips-like(Px = 1

xz·
∑Sv

i=1
1

iz

) distribution is used in order to assign the pop-

ularity of videos. We assume that the video length is 90 minutes and clients is
able to save up to 5 minutes of video information.

3.1 Server Bandwidth Requirement According to Video Popularity

Fig 4 shows the server bandwidth requirement, in number of streams, using
Patching, merging, PSM and DDCM(PSM+CSM). We perform this experiment
under various request rates, which are normalized as the number of requests ar-
riving during 90 minutes (video length). The resource requirement of a Merging

886 X.Y. Yang et al.

Fig. 4. Server Bandwidth Requirement for one video

policy is determined by results from [5]. We should point out that no buffer con-
straint is considered in Merging policy and, in a real case scenario, the Merging
policy could only merge two streams separated by no more than client buffer
length, so the performance will not be as good. The key observations from Fig
4 are:

1) Using Patching policy, the bandwidth requirement increases with more
requests. This makes the Patching policy unsuitable for a high demand video
service.

2) Under PSM, clients can collaborate with the server to deliver patch
streams. Regardless of the interarrival time, the server does not need any more
than 18 streams to serve a video. This makes the PSM more suitable than a
Patching policy for serving popular videos.

3) The main virtue of the DDCM(PSM+CSM) could be summarised as,
’more request less server bandwidth’. As we can see in Fig 4, the service band-
width requirement of the DDCM increases up to 12 streams. Up to this point,
there are not so many client resources that can be used to merge complete
streams. As soon as a critical mass of client resources are collected, the CSM
tries to merge consecutive streams and the bandwidth requirement drastically
drops to 1-2 streams per video. Compared with a Patching policy, the
DDCM(PSM+CSM) is able to achieve a resource reduction of 73% (4 vs. 15
streams) if there are 30 requests during 90 minutes (one request per 3 minutes).
Reduction of 92.5% (2 vs. 27 streams) is achieved when there are 360 requests.
Comparing with Merging policy, the DDCM(PSM+CSM) does not reduce the
required resource until 30 requests. However, with 180-720 requests, the Merging
policy gets closer to PSM (10-14 streams) and the DDCM(PSM+CSM) reduces
the bandwidth consumption up to 85.71% (2 vs. 14 streams).

3.2 Service Bandwidth Requirement for Multiple Videos

In order to measure the bandwidth requirement of a server that is offering more
than one video, we suppose that the catalog is 30 to 550 videos. We consider
that the number of requests that arrive during the video length(90Minutes) is
from 90 (low client activity) to 4500 (high client activity).

Dynamic Distributed Collaborative Merging Policy 887

a)100 videos, 90-4500 requests in 90min b)30-550 videos, 2700 requests in 90min

Fig. 5. Server bandwidth requirement for multiple videos

Fig 5 a) shows the server bandwidth needed to serve 100 videos. The Patching
policy shows an increase in bandwidth requirement where there is high client
activity (768 and 859 channels in order to serve 3600 and 4500 requests in 90
minutes). The PSM reduces the required stream up to 6.4%(804 vs. 859), while
DDCM(PSM+CSM) reduce up to 64.61% (304 vs. 859).

We also obtained the bandwidth requirement if a client is not able to col-
laborate with the server to merge the channels that are not delivering the
same video as the one that the client is playing. As we can see in Fig 5 a)
(DDCM(SameMovie)) the requirement is clearly higher than the DDCM with-
out this restriction. These results justify our delivery policy design.

Fig 5 b) shows the server bandwidth requirement according to the size of the
catalog. We have supposed that 2700 requests arrive in 90 Minutes. Regardless
of the delivery policy, the bandwidth requirement increases in accordance with
the number of videos. The DDCM shows a requirement reduction of between
85.23%(30 videos) to 27.77%(550 videos). The DDCM is able to reduce the
number of required channels by 300-344.

3.3 Circumstantial Workload Variations

In this section we are interested in measuring the server’s capacity to face circum-
stantial workload variations. Suppose the following situation: we are designing
a VoD system for 3600 clients and, for most of the time, only 50% of the clients
are active. Taking the equipment cost into consideration, the VoD server could
be designed for a particular, acceptable blocking probability. Most of times, the
server is able to attend to all the client requests(20 requests/minute). However,
in special situations, such as the Olympic Games, all 3600 clients may decide to
request videos at same time (40 requests/minute). Furthermore, since the most
of population is interested in this event, the video’s popularity distribution could
change, increasing the skew parameter of Zipf-like distribution.

Fig 6 shows the requirement variation when twice the number of client re-
quests reach the server. With a Patching policy, the resource requirement in-
creases by 51.58% to 34.74% depending on the skew parameters variation. As

888 X.Y. Yang et al.

Fig. 6. Requirement increase in circumstantial workload variation

the skew fact increases, the resource requirement variation gets lower. With PSM,
the resource increases 32.60% when the skew fact increases to 1 from 0.9. In this
case, the PSM is 6.1% better than a Patching policy that produces an increase
of 34.74%. DDCM policy produces a maximum increase of 16.67% if there is
no variation in popularity distribution. In the worst case (skew fact 0.9), the
DDCM is 67.68% better than a Patching policy in terms of increase in resource
requirement.

4 Conclusions

We have proposed and evaluated a new video delivery technique called Dynamic
Distributed Collaborative Merging that enables clients to efficiently collaborate
with VoD servers. With DDCM policy, every client is able to collaborate with
server, regardless of the video that they are watching. Instead of independent
collaborations between the server and a client, the DDCM synchronizes a group
of clients in order to merge multicast channels to achieve a better network effi-
ciency.

Our experimental results show that DDCM has lower resource requirements
than Patching policy, achieving reduction up to 92.5%. Offering multiple videos
with high client activity, the DDCM is able to reduce the resource requirement
up to 64.61%. These results corroborate the high scalability of DDCM when
the number of requests is high. The DDCM achieves a more suitable investment
in VoD server resources, since the client’s punctual variation in the demand is
covered by client contributions. Experimental results show that the DDCM is
67.68% better than Patching policy in terms of increase in resource requirement,
suggesting that DDCM is more suitable delivery policy for VoD, in which the
number of active clients changes over time.

5 Future Work

In this study, we have not considered the client network load that will suffer
due to our policies and more research will be needed. However, we would like to

Dynamic Distributed Collaborative Merging Policy 889

point out that multicast schemes are usually effective in local networks. Fault
tolerance is another pending question that should be carefully analyzed.

References

1. Y. C. K. A. Hua and S. Sheu. Patching: A multicast technique for true video-on-
demand services. In ACM Multimedia Conf., Bristol, U.K., 1998.

2. L. Gao and D. Towsley. Threshold-based multicast for continuous media delivery,
2001.

3. L. Golubchik, J. C. S. Lui and R. R. Muntz, Adaptive piggybacking: a novel tech-
nique for data sharing in video-on-demand storage servers, in Proc. of ACM Mul-
timedia Systems, 1996, pp. 140-155

4. C. C. Aggarwal, J. L. Wolf and P. S. Yu, ”On Optimal Batching Policies for Video-
on-Demand Storage Servers”, In Proc. of the IEEE International Conference on
Multimedia Computing and Systems, Hiroshima, Japan, June, 1996.

5. M. K. V. D. L. Eager and J. Zahorjan. Bandwidth skimming: A technique for
cost-effective video-on-demand. Multimedia Computing and Networking 2000, San
Jose, CA, 2000.

6. F. Cores, A. Ripoll, E. Luque, Double P-Tree: A Distributed Architecture for
Large-Scale Video-on-Demand, Euro-Par 2002, LNCS 2400, pp. 816-825, Aug.
2002.

7. K. A. Hua, S. Sheu, and J. Z. Wang, Earthworm: A Network Memory Manage-
ment Technique for Large-Scale Distributed Multimedia Applications, Proc. IEEE
INFOCOM’97, Kobe, Japan, Abril 7-11, 1997, pp. 58-66

8. de Pinho, Leonardo Bidese, Ishikawa, Edison, de Amorim, Claudio Luis, Glove:
A Distributed Environment for Scalable Video-on-Demand Systems, International
Journal of High Performance Computing Applications 2003 17: 147-161

9. http://xinehq.de/, January, 2005
10. H. Ma and K. G. Shin, Multicast Video-on-Demand Services, ACM Communication

Review, pp. 31-42, January, 2002

Dynamic Proxy-Cache Multiplication
Inside LANs

Claudiu Cobârzan�

“Babeş-Bolyai” University, Computer Science Department,
Mihail Kogălniceanu 1, 400084 Cluj-Napoca, Romania

claudiu@cs.ubbcluj.ro

Abstract. Proxy-cache deployment in LANs has become a current prac-
tice with well known benefits. For situations when a proxy-cache comes
under constraints, due to increased load, and has to drop requests or
perform cache replacement, we propose the alternative solution of cache-
splitting. This means to dynamically deploy additional proxy-caches in-
side the LAN, and divert towards them some of the requests addressed to
the original proxy-cache(s). By doing this, better response time, load bal-
ancing, higher availability and robustness of the service can be achieved
than when using a single proxy-cache.

1 Introduction

The constant increase in both volume and demand of multimedia data in the
Internet tends to stress the existing infrastructure. The main factors are the
characteristics of multimedia data (e.g. size, bandwidth requirements) which
highly differ from those of typical web data. The traditional way to cope with
such situations is to deploy proxy-caches at LAN edges. Under certain conditions
a single proxy-cache does not suffice, so multiple proxy-caches have to be used.
Cooperative caching has been introduced for web caches, e.g. Harvest [4] and
Squid [18], and for video caches as well, e.g. by Brubeck and Rowe [3] and
MiddleMan [1].

Our paper proposes a novel proxy-cache system that is able to “spawn” new
proxies via split operations whenever the actual situation demands it. Examples
of such situations include extremely high load and severe storage constraints on
the proxy. In those cases, one additional proxy-cache in the LAN would help
lower the load on already running proxy-caches as well as increase the capacity
of the “federate” cache.

The system we propose dynamically adjusts the number of running proxies in
the LAN, depending on the load and on client request patterns, by either spawn-
ing new proxies on periods with high activity or putting them in a “hibernate”
state or even stopping them on periods with low activity.
� The work was done during the stay at Klagenfurt University, Austria, within the

CEEPUS (Central European Exchange Program for University Studies) framework,
in winter 2004-2005.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 890–900, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Proxy-Cache Multiplication Inside LANs 891

2 Proxy-Cache Splitting

There are situations when having a single proxy-cache in the LAN does not
suffice, for example when servicing large, popular content to many clients, or
when the volume of requested data puts the proxy-cache under constraints (cpu,
mem, storage, etc.). In those cases, requests have to be rejected in order to lower
the load on the machine and cache replacement has to be performed in order to
free disk space. We state that in some circumstances it would be more beneficial
to just deploy an additional proxy-cache inside the LAN. This new proxy-cache
could take over some of the load on the existing proxy-cache(s) and by doing
so, avoid both request dropping and cache replacement. On the other hand, if
current and maybe predicted future load could be handled by a smaller number
of proxy-caches than those currently active, then some of them could enter a
“hibernating” state or could be shut down (stopped).

The distributed architecture we propose, assumes the deployment of two
types of entities: the dispatchers and the daemons. The dispatchers are pro-
cesses/threads that run on the same node as the proxy-cache and can be seen
as front-ends of the proxy-caches which:

– handle incoming requests - serve them either from the local cache, or from
the origin server; if this is not possible, the requests are forwarded to other
active dispatchers/proxies in the LAN or they are discarded; a request is
forwarded to the best candidate (the dispatcher that has a cached copy of
the requested object or the one with the smallest load);

– manage the proxy code - archive the proxy code and send it to the location
on which a new proxy-cache is to be spawned (using the daemon running on
the selected target)

– manage the “child” proxy-cache processes - the dispatchers are responsi-
ble with stopping/ pausing/ restarting a “child” proxy-cache depending on
various conditions (global load, volume of the clients’ requests, volume of
streamed/stored data, etc.)

The daemon processes/threads run in the ideal case on every node of the
LAN and are responsible for:

– managing clients’ requests - the daemon either directly receives, or it inter-
cepts the client requests and then decides to forward them to the appropriate
proxy-cache, depending on the local available knowledge about the global
state of the proxy-cache “federation”

– managing the proxy code - the daemon receives/compiles the code sent by a
dispatcher that initiates a proxy split operation;

– managing the local proxy-cache process - stops/ pauses/ restarts it, either
as a result of incoming requests from its “parent” proxy, or depending on
specific local conditions (load, storage capacity).

In the case the daemon thread/process hosted on a certain node crashes, the
clients from that node still have access to the federate cache as long as the proxy-
cache(s) set as default in the client’s browser is/are still running. This is also

892 Claudiu Cobârzan

true for the clients from nodes with no running daemons at all. The daemon is
essential in the proxy-cache splitting process, as it is used by the “parent” to
transfer its code if it is not already available at the selected node.

2.1 The Model of the Proposed Distributed
Proxy-Cache Architecture

We consider that the number of nodes in the LAN is n. Let P be the set of
available proxy-caches (there is at least one running proxy cache in the LAN):

P =
k⋃

i=1

Pi, k = |P |, 1 ≤ k ≤ n

A proxy-cache Pi is defined as follows:
Pi = (maxResourcesi,minResourcesi, LCi), i = 1..k

where:

– maxResourcesi - represents the maximum amount of resources that can be
used by the proxy-cache:

maxResourcei = (maxCpui,maxMemi,maxCapacityi,maxLani)
namely the maximum amount of CPU power, memory, storage space and
external bandwidth;

– minResourcesi - represents the minimum amount of resources that have to
be used in order to serve any client’s request. It is defined in a similar mode
with the maxResourcesi;

– LCi - the content of the local cache
LCi = {cij , j = 1..q}, q = the number of cached objects

An object cij is defined as:
cij = (size(cij), timeLastAccess(cij), hitCount(cij), qualityV alue(cij))

where size(cij) is the size of the object, timeLastAccess(cij) indicates the last
time the object has been requested, hitCount(cij) shows the number of times
the object has been served from the cache and qualityV alue(cij) ∈ [0..1] is the
measure of the object’s quality (based on the actual characteristics of the video
object, such as resolution, color information, etc.)

The qualityV alue is a relative value that shows the degree in which the
cached object matches the desired quality of a certain class of users. A value
equal or close to 1 corresponds to the objects that have exactly or almost the
desired quality, while values close to 0 are assigned to objects that show the most
drastic difference between actual and desired quality. High absolute quality does
not necessarily mean that the qualityV alue is close to 1. For example, if the vast
majority of the users have only limited display size, say 800x600, a video object
encoded at 1280x1024 will have a qualityValue closer to 0 than to 1, because
further operations (e.g. transcoding) have to be performed in order to deliver
the object to the requesting clients.

For each object cij , a utility value can be computed using a function
u : LCi → R:

Dynamic Proxy-Cache Multiplication Inside LANs 893

u(cij) = const1 ∗ size(cij) + const2 ∗ 1
timeLastAccess(cij)+

+const3 ∗ hitCount(cij) + const4 ∗ qualityV alue(cij)
where const1, const2, const3, const4 ∈ [0, 1] and const1 + const2 + const3 +
const4 = 1 (u(cij) is computed as a weighted average of the different char-
acteristics of the cached video object).

Those constants can be fixed when the proxy-cache is started and remain
the same during the run period of the proxy-cache. Another possibility that
needs further investigation would be to dynamically modify those values when
traffic conditions, load level, request rate, etc. reaches certain values, in order to
maximize the byte hit ratio. The utility value of the cached objects is used to
decide which objects get discarded when performing cache replacement.

We use D to denote the set of dispatchers:

D =
k⋃

i=1

Di, k = |P |, 1 ≤ k ≤ n.

As each dispatcher corresponds to a certain proxy-cache, there is a function
f (bijection), f : D → P, f(Di) = Pi, ∀i ∈ {1, .., k} (a proxy P has exactly one
dispatcher D). One dispatcher Di is defined as follows:

Di = (Pi, GC,GU, siblingsi), ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

where:

– Pi - the corresponding proxy
– GC - the content of the global cache (viewed as the union of all local caches)

GC =
k⋃

i=1

LCi, ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

– GU - the utility values for the objects in GC

GU =
k⋃

i=1

LUi, ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

where LUi = the set of utility values for the objects in LCi

LUi = {u(cij)|cij ∈ LCi, j ∈ {1, ..., q}, q = |LCi|)}, i ∈ {1, ..., k}
– siblingsi - the rest of the running proxies/dispatchers (siblingsi = P \{Pi}).

We denote by A, the set of daemons, ideally running on each node of the
LAN.

A =
n⋃

i=1

DAi

There is a function g (bijection), g : [1..n] → A, g(i) = DAi, ∀i ∈ {1, .., n}
which assigns each node in the LAN a running daemon. One daemon DAi is
defined as follows:

DAi = (P ′i, LOAD(P ′i),
⋃

p∈P ′
MLCp(m)), ∀i ∈ {1, ..., n}

894 Claudiu Cobârzan

where:

– P ′i - a subset of the proxy-cache set P (P ′i ⊆ P)
– LOAD(P ′i) - the load of the proxy-caches in the subset P ′

LOAD(P ′i) =
⋃

p∈P ′
LOAD(p)

where LOAD(p) represents the current load of the proxy p ∈ P ′
– MLCp(m) - the most “useful” m objects stored in the cache p ∈ P ′

MLCp(m) =
m⋃

i=1

cij , u(cij) ≥ u(cij+1), ∀j ∈ {1, ..., q − 1}

where cij represents the cached object and u(cij) the value returned by the
utility function defined above for the object.

2.2 Proxy Splitting Scenarios

As mentioned before we intend to perform a splitting operation under two con-
ditions: when the proxy-cache is under storage constraints or under load con-
straints. The question is how to decide that a splitting operation is more appro-
priate than performing cache replacement or reject the incoming requests? We
propose the following two conditions:

A. In the Case of Storage Constraints
If ∀i ∈ {1, .., k}, ∀m, s ∈ {1, .., q}(m �= s), k = |P |, q = |LCi|

|u(cim)− u(cis)| < δ (1)

then perform splitting, else perform cache replacement.
In other words, splitting is performed when all cached objects are essentially

“equally” useful - the difference between the utility of all objects in the cache is
smaller than a certain fixed limit δ. The condition could be relaxed, if considering
that not for all, but for a certain fraction of the cached object set, the above
mentioned condition holds.

If the condition does not hold, than cache replacement should be performed
with regard to the utility of the objects. As an observation, if const1 = const3 =
const4 = 0 then the cache replacement strategy is basically LRU (Least Recently
Used), and if const1 = const2 = const4 = 0, the cache replacement strategy is
LFU (Least Frequently Used).

We present a short example of how the values of those constants could in-
fluence the decision of making either a split operation or perform cache replace-
ment. Consider that the cache contains only 5 objects with the characteristics
described in Table 1. Consider now Table 2 with four values configurations for
the constants that appear in the definition of the utility function (see Subsec-
tion 2.1).

Dynamic Proxy-Cache Multiplication Inside LANs 895

Table 1. Characteristics of the cached objects

Cached objects Size (MB) Time of last access Hit count Quality value

c1 100 1 60 1
c2 100 5 70 1
c3 100 10 80 1
c4 100 20 90 1
c5 100 30 100 1

Table 2. Values for the coefficients used by the utility function u

Configuration const1 const2 const3 const4

conf1 0.25 0.25 0.25 0.25
conf2 0.10 0.40 0.40 0.10

conf3(LRU) 0 1 0 0
conf4(LFU) 0 0 1 0

The graphical representation of the utility values corresponding to the data
in Table 1 and Table 2 can be seen in Figure 1.

It can be seen that the decision to perform either cache replacement or a
split operation highly depends on the value configuration of the coefficients. For
example, if δ = 15 and the proxy is under storage constraints, cache replacement
will be performed if configuration 3 or 4 are used, but a split operation will be
initiated if configuration 1 or 2 are considered.

B. In the Case of Load Constraints
When servicing a request for an object cij a certain amount of resources must be
available. If ∀Pi ∈ P the available resources are not enough to service a request
ri, than ri is discarded and the particular time ti is marked.

If ∀i ∈ {1, .., p− 1} (p fixed) we have

ti+1 − ti < ξ (2)

(the time interval between p consecutive discarded requests is smaller than a
fixed threshold ξ), than we make a split operation.

It is to investigate in a real time environment how different values for δ and
ξ influence the dynamics of the system.

2.3 Additional Costs Induced by the Proposed Architecture:
Best-Case/Worst-Case Scenarios

Inside the system, the message exchange cost can be viewed with regard to the
required time to transmit a message, with regard to the amount of data that is
transferred, or as a combination of the two (both time and data volume).

In the following, we give a short analysis of the best/worst case scenarios from
the point of view of the latency perceived by the client. For a similar analysis
on the amount of data transferred within the system, please see [5].

896 Claudiu Cobârzan

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6

ut
ili

ty
 v

al
ue

cached data

conf 1
conf 2

conf 3 (LRU)
conf 4 (LFU)

Fig. 1. The utility values for the cache configuration from Table 1 computed using the
constants values from Table 2

The delay perceived by the client depends on the delay introduced by the
LAN communication, the one introduced by the WAN communication, as well as
on the delay introduced by searching the local caches and the server repository.

We make the following notations:

– Delay - the total delay as perceived by the client
– dlan - the delay introduced when transmitting a message in the LAN;
– dwan - the delay introduced when transmitting a message in the WAN;
– dcache - the delay introduced when searching the local cache;
– dserver - the delay introduced when searching the server repository/per-

forming admission control;
– dtimeOut - the time out interval fixed for the proxy-server communication

We propose the following forwarding algorithm for requests passed from one
proxy to another inside the LAN: when a proxy receives a request, it first checks
the local cache and returns the appropriate object in case of a hit. Otherwise
(local miss) it checks the list with cached objects at siblings’ sites in order to
see if the requested object is cached in the federate cache. If it does, it marks
the request and sends it to the appropriate sibling. The decision to forward a
request to a certain proxy is made based on the locally available information
on the global state of the federate cache. It may happen that this information
is outdated and that by the time a forwarded request reaches the sibling, the
requested object does not exist anymore on the sibling site. The worst case would
be when a request received by a dispatcherDi is forwarded from one dispatcher
to the other until it returns to Di. In this case, supposing that the client didn’t
cancelled the request, it is forwarded by Di to the origin server S.

Suppose there are k active proxy-caches, and using the above mentioned
notations, we distinguish the following two worst cases, when it comes to the
user perceived latency:

– bouncing request and server down

Delay = (k + 1)dlan + kdcache + dtimeOut

Dynamic Proxy-Cache Multiplication Inside LANs 897

– bouncing request and server can’t serve incoming requests

Delay = k(dlan + dcache) + 2(dlan + dwan) + dserver

The best case is of course when the first proxy receiving the client request,
can serve it from the local cache. In this case we have:

Delay = 2dlan + dcache

Assuming the following two configurations, conf1 with dlan = 0.1, dcache =
0.001, dwan = 0.5, dserver = 0.005 , and conf2 with dlan = 0.01, dcache =
0.001, dwan = 0.05, dserver = 0.005 (measurements in seconds) the maximum
introduced delay in the case up to 11 proxy-caches are active inside a LAN is
showed in Figure 2.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10 11

in
tr

od
uc

ed
 d

el
ay

 (
se

c)

number of active proxy-caches

worst case scenario (conf 1)
worst case scenario (conf 2)

Fig. 2. Maximum introduced delay

It can be seen from the above example that, if the load on both proxy-caches
and server(s) is more or less constant, then only variations in network condi-
tions (local and external) makes the delay vary. In a well connected high speed
LAN/WAN, the more realistic configuration would be one similar to conf2, but
when no control over internal/external network can be assumed, a configuration
like conf1 is very probable. The values for conf1 and conf2 were measured at
Klagenfurt University during normal working hours.

This means that even without constraints regarding the available external
bandwidth, it is highly probable for the maximum number of active proxy-caches
to be limited by the additional latency that would be induced in the worst case
scenario. This holds especially if the network conditions are not very good (we
have high induced latencies for both LAN and WAN) as the delay is highly
dependable on those conditions.

We have performed a series of simulation experiments [6] using synthetic log
traces generated with WebTraff [11]. Figure 3 shows the variation of byte-hit
ratio with the number of active proxy-caches inside the LAN (after up to four
split operations). The log we used for this particular simulation consisted of 1000
requests following a Zipf distribution with α = 0.3 for a number of 300 video

898 Claudiu Cobârzan

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

by
te

-h
it

ra
tio

cache size (% from total transfered data)

1 proxy
2 proxies
3 proxies
4 proxies
5 proxies

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

by
te

-h
it

ra
tio

cache size (% from total transfered data)

1 proxy
2 proxies
3 proxies
4 proxies
5 proxies

Fig. 3. The variation of the byte-hit ratio with the number of active proxy-caches and
cache size. (Left) Cache replacement strategy set to LRU. (Right) Cache replacement
strategy uses the utility values of the objects

objects. From those, 70% were one-timers while their size was approximately
3GB and followed a Pareto distribution with the tail index set to 1.2.

We simulated two replacement strategies, LRU and one strategy that used
the utility values of the cached objects (objects with the lowest utility values are
discarded when cache replacement has to be performed). The utility of the cached
objects was computed with the value 0.25 set for all four coefficients. It can be
seen that as the size of the deployed caches increases so does the byte-hit ratio
but, more important, the values obtained when using the two above-mentioned
cache replacement strategies are pretty close. Figure 3 also seems to suggest
that the benefits obtained from adding new proxy-caches inside the LAN tend
to diminish as the number of active proxies increases (the increase in byte-hit
ratio is greater when moving from 1 to 2, or even from 2 to 3 active proxies than
it is when moving from 3 to 4 or from 4 to 5 active proxies).

There is a trade-off between costs and benefits, the best cost/benefit ratio
seems to be achieved at a moderate number of proxies, as Figure 2 and Figure 3
suggest. We intend to validate this assumption in a real time environment, once
our implementation of the system (which is based on the existing implementation
of the QBIX proxy-cache [16]) is completed.

3 Related Work

The last few years have brought an increasing interest in video caching as a
result of the rising popularity and availability of multimedia content on the
Web. The vast majority of the research concentrates on partial video caching,
approach that considers specific parts of videos or is done with respect to the
quality of the videos. Examples of proposals for partial video caching include
caching of a prefix [17], caching of a prefix and of selected frames [10], caching
of a prefix combined with periodic broadcast [8], caching of hotspot segments
[7]. Other approaches consider the caching of a prefix based on popularity [12],
segment-based prefix caching [19] or variable sized chunk caching [2].

Dynamic Proxy-Cache Multiplication Inside LANs 899

Quality based video caching proposals include periodic caching of layered
coded videos [9], adaptive caching of layered coded videos in combination with
congestion control [14], quality adjusted caching of GoPs (group of pictures)
[15] or simple replacement strategies (patterns) for videos consisting of different
quality steps [13].

Regarding distributed video caching we have, among others, the work of
Brubeck and Rowe [3] proposing multiple video servers accessible via the web
and which manage tertiary storage systems as well as the MiddleMan [1] system
which proposes a cooperative caching video server.

Our proposal, though having similarities with that in [1], differs from previous
work by the fact that our system is dynamic and able to adjust the number of
running proxy-caches in the LAN in a fully distributed fashion depending on a
number of factors including current load, storage constraints, request patterns.

4 Conclusion and Future Work

We have presented a distributed proxy-cache architecture which aims at provid-
ing better service to LAN clients. The feature that distinguishes our proposal
from those made in the past is the dynamic characteristic of our system which
is able to adapt itself to changes in access, request and response patterns as well
as to changes in network conditions.

Future work will focus on finishing the implementation of the system, eval-
uating its performance in real-life situations and compare the performance with
the case in which a single proxy-cache is used. Other points of interest are rep-
resented by the conditions triggering the split, hibernate and shut down opera-
tions. Another interesting problem is what happens in a system like the one we
described, when multiple outgoing links with different capacities are available.

Acknowledgements

I would like to thank my supervisor from Klagenfurt University, prof. dr. Laszlo
Böszörmenyi for his constant help, support and guidance during my research
work.

References

1. Acharya, S., Smith, B.: Middleman: A Video Caching Proxy Server. In: Proceedings
of the 10th International Workshop on Network and Operating System Support
for Digital Audio and Video (2002)

2. Balafoutis, E., Panagakis, A., Laoutaris, N., and Stavrakakis, I.: The impact of
replacement granularity on video caching. In: IFIP Networking 2002. Lecture Notes
in Computer Science, vol. 2345. Springer-Verlag, Berlin, Germany, (2002) 214-225

3. Brubeck, D.W., Rowe, L.A.: Hierarchical Storage Management in a Distributed
VOD System, In: IEEE MultiMedia, Fall 1996, Vol. 3, No. 3

900 Claudiu Cobârzan

4. Chankhunthod, A., Danzig, P, Neerdaels, C., Schwartz, M., Worrell, K.: A Hier-
archical Internet Object Cache. In: Proceedings of the 1996 USENIX Technical
Conference (1996)

5. Cobârzan, C., Böszörmenyi, L.: Dynamic proxy-cache multiplication inside LANs.
Technical Reports of the Institute of Information Technology, University Klagen-
furt, TR/ITEC/05/2.02

6. Cobârzan, C., Böszörmenyi, L.: Measurements on byte-hit ratio variation in LANs
deploying multiple proxy-caches. Technical Reports of the Institute of Information
Technology, University Klagenfurt, TR/ITEC/05/2.05

7. Fahmi, H., Latif, M., Sedigh-Ali, S., Ghafoor, A., Liu, P., Hsu, L.H.: Proxy Servers
for Scalable Interactive Video Support. In: IEEE Computer, 43(9): (2001) 54-60

8. Guo, Y., Sen, S., Towsley, D.: Prefix Caching Assisted Periodic Broadcast for
Streaming Popular Videos. In: Proceedings of ICC (International Conference on
Communications) (2002)

9. Kangasharju, J., Hartanto, F., Reisslein, M., Ross, K.W.: Distributing Layered
Encoded Video through Caches. In: Proceedings of IEEE INFOCOM (2001)

10. Ma, W.-H., Du, D.H.-C.: Reducing Bandwidth Requirement for Delivering Video
over Wide Area Networks with Proxy Server. In: IEEE International Conference
on Multimedia and Expo, (2000) 991-994

11. Markatchev, N., Williamson, C.: WebTraff: A GUI for Web Proxy Cache Workload
Modeling and Analysis. In: IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems, Vol. 10, (2002)
356-363

12. Park, H. S., Chung, K.D., Lim, E.J.: Popularity-based Partial Caching for VOD
Systems using a Proxy Server. In: Workshop on Parallel and Distributed Comput-
ing in Image Processing, Video and Multimedia (2001)

13. Podlipnig, S., Böszörmenyi, L.: Replacement strategies for quality based video
caching. In: Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME). Vol. 2. IEEE Computer Society, Piscataway, NJ, (2002) 49-53

14. Rejaie, R., Kangasharju, J.: A Quality Adaptive Multimedia Proxy Cache for In-
ternet Streaming. In: Proceedings of the International Workshop on Network and
Operating Systems Support for Digital Audio and Video (2001)

15. Sasabe, M., Wakamiya, N., Murata, M., Miyahara, H.: Proxy Caching Mechanisms
With Video Quality Adjustment. In: Proceedings of the SPIE Conference on In-
ternet Multimedia Management Systems (2001) 276-284

16. Schojer, P., Böszörmenyi, L., Hellwagner, H, Penz, B., Podlipnig, S.: Architecture
of a quality Based Intelligent Proxy (QBIX) for MPEG-4 Videos, World Wide Web
Conference, (2003) 394-402

17. Sen, S., Rexford, J., Towsley, D.: Proxy Prefix Caching for Multimedia Streams.
In: Proceedings of the IEEE INFOCOM99. (1999) 1310-1319

18. Wessels, D.: Web Caching. O’Reilly, 2001
19. Wu, K.-L., Yu, P.S., Wolf, J.L.: Segment-Based Proxy Caching of Multimedia

Streams. In: Proceedings of the Tenth International World Wide Web Conference
(2001)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 901–908, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Perspectives for Lecture Videos*

Michael Hartle, Henning Bär, Christoph Trompler, and Guido Rößling

Darmstadt University of Technology, Department of Computer Science,
Hochschulstr. 10, 64289 Darmstadt, Germany

{mhartle,hcbaer,trompler,roessling}@informatik.tu-darmstadt.de
http://www.dlh.informatik.tu-darmstadt.de

Abstract. This article presents an architecture for automated multi-perspective
lecture recordings. The implementation switches between several video streams
showing different perspectives in order to make the recording more vivid and to
reduce the tunnel vision effect of single-perspective recordings. Automatic
switching can be based on time intervals or, at a later stage of development, via
simple recording rules.

1 Introduction

Recently, lecture recordings are increasingly put online in order to support the stu-
dents with their examination preparations. This is also the goal of the OpenCourse-
Ware Project of the MIT [1].

A survey conducted at the Oxford Brooks University [2] has shown the strong in-
terest of students in such an offering. Our own surveys among more than 500 students
yielded the result that more than half of them considered lecture recordings as help-
ful. Yet, our own experience demonstrates that the acceptance is based on the quality
of the material presented. Reductions in quality, e.g. if slides are not readable or the
lecturer leaves the field of view being recorded, result in a notable drop of accep-
tance.

Lecture recordings containing an occasional change of perspective are more vivid
for the viewer than a video stream fixed on the lecturer. Students also obtain an im-
pression on the surroundings of the lecture if the recording also includes scenes of the
audience present.

For the multi-perspective recording system presented in this article, a lecture hall
was equipped with several cameras. These cameras can be operated remotely and can
be turned and pitched. Furthermore, the lecture hall was also provided with a re-
cording server for the video streams.

After a brief overview of related systems, we describe the processing steps, our re-
cording approach and post-processing operations.

2 Related Work

At the University of Wisconsin - Madison [3], the lecture recordings are costly post-
processed, based on knowledge about following scenes and digital zooming.

* The underlying project for this report was supported by the German Federal Ministry of

Education and Research under code 08NM208. The responsibility for the content of this pub-
lication lies with the respective authors

902 Michael Hartle et al.

Microsoft [4] presents a system which localizes both the lecturer during his presen-
tation and even students posing questions in order to direct the cameras automatically.
The publication uses the advantages of a non-intrusive localization method which is
also a research topic pursued in our research group. In [5], a localization method is
described using an additional camera.

In [6], a system is presented which synchronizes video streams with provided
slides. Another goal is the improvement of the quality of slides recorded via the video
stream. Therefore, the actual lecture recording is generated in a post-processing step.

At the University of Queensland [7], several multimedia streams are synchronized
and offered as a single document. This system is not limited to video streams and
slides, but can also incorporate other media such as texts, pictures or images.

Several additional recording systems are being presented in [8]. Among other sys-
tems, Lecturnity (http://www.lecturnity.de) and the MS Producer (http://www.micro-
soft.com/office/powerpoint/producer) are installed on a computer system also used
for presentation which simplifies a mobile deployment. However, a fixed installation
with support for changes of perspective and tracking of lecturers is complicated by
using both the recording and presentation system on the same computer.

The FAME Room [9] is a meeting room at Karlsruhe, Germany, where the speaker
is located via audio-tracking. A digital "lecture assistant" is employed which handles
other supporting tasks besides the audio-tracking such as controlling light levels and
audio volume.

Typical recording systems are limited to a proprietary format such as Real Media
or Microsoft PowerPoint. This severely limits new innovative methods of presenta-
tions offered by using open media format alternatives. Furthermore, some systems
require additional hardware such as separate cameras needed for localization. Finally,
necessary manual post-processing does not scale adequately for practical applica-
tions. Many publications do not consider the automation of this process which is
essential for keeping the required manual amount of work to a minimum for a large
number of recordings.

3 Management of the Recording Process

The recording process of our system can be described as a composition of several
steps. This section regards the control of the recording process. Section 4 describes
the actual recording, followed by the post-processing steps in Section 5. As the em-
phasis of a slide-based presentation is placed on the readability of the slides, these are
captured separately and combined with the video stream. Further details regarding the
required technology are presented in Section 6.

The recording is started and stopped manually by an operator. The functionality
can also be available on the presentation system, so the lecturer is also able to control
the process. The editing process creates the resulting video file which covers the
whole lecture.

For starting the recording process, a management application is provided which
controls the recording server via local-area network. The operator, either the lecturer
himself or an assistant, clicks on the Start Preview button. This results in a signal for

Perspectives for Lecture Videos 903

the recording server to send a video preview as a live stream. Using the preview, the
setup can be tested, e.g. whether the audio signal is being properly transmitted from
the lecturer’s wireless microphone, or whether the correct field of view or the correct
perspective is being recorded.

When the lecture begins, the Start Section button of the management application
has to be triggered, which again sends a signal to the recording server. The server
stores the current time into a configuration file necessary for the later post-processing.
The lecture recording can be paused by using the respective buttons of the manage-
ment application.

Until the end of the lecture, the name of the lecture to be associated with the re-
cording can be chosen from a list. At the end of the lecture, the Stop Lecture button
has to be triggered and the recording server is ordered to finalize the configuration
file for the post-processing step and to copy the recorded video stream to a central
server. On this server, incoming recordings are accepted via a web service and auto-
matically sorted based on date, lecture name and a unique ID of the recording. Stored
on the central server, the recordings are held available for post-production via the
video editing application.

4 Real-Time Video Recording

The recording system was developed based on the architecture shown in Figure 1.
The Capturing Controller is responsible for the generation of the multi-perspective
video. It controls the other modules depending on the necessary steps to be per-
formed. The Camera Controller handles commands for turning and pitching the cam-
eras ordered by the Capturing Controller. The Perspective Selector changes the per-
spective when a corresponding command was issued by the Capturing Controller.
The Locator starts the search for the lecturer only on request based on the camera that
was marked as available by the Camera Controller. The Recorder is a standard video
recording application.

Fig. 1. Recording architecture

904 Michael Hartle et al.

Achieving a lecture recording of acceptable quality requires a good integration and
cooperation of these modules. They can be installed as a single software package on
one machine or distributed over several machines, depending on the requirements of
the available infrastructure. The communication between the modules is based on
web services as an open protocol in order to facilitate the modularity and exchange-
ability of the implementation of entire modules. Some of these modules are written in
Java, which allows modules to be utilized on multiple platforms. For example, the
Java-based Camera Controller in our infrastructure is running on a Linux system, but
can also easily be deployed on a Microsoft Windows system.

The following sub-sections explain these modules in detail.

4.1 Capturing Controller

The Capture Controller is responsible for all scenes and for the choice of an appropri-
ate perspective for each scene, where a scene is defined as the sequence between two
changes of perspective. The length of a scene varies in accordance with the proposi-
tions of [4] between several minutes for perspectives showing the lecturer and several
seconds for scenes showing the audience. Typically, neither panning nor zooming is
performed while a scene is recorded, although there are constellation-specific excep-
tions. The Capturing Controller manages all other modules. It can order the Locator
to localize the lecturer using a separate camera. Using the result of the Locator, the
Capturing Controller requests the Camera Controller to point to and zoom into the
close-up range of the lecturer with an available camera. Finally, it uses the Perspec-
tive Selector to switch the perspective to the new prepared camera.

This example is a typical constellation generating one of many imaginable re-
cordings. The following constellations are examples which can be of use for a lecture
recording:
• Close-up recordings of the lecturer
• Overview of the lecture hall centered on the lecturer
• Slow panning over the audience
• Overview of the audience

4.2 Camera Controller

The cameras installed in the lecture halls can be controlled regarding pan, tilt and
zoom through a serial interface. The instruction set allows changing the horizontal
and vertical angles as well as the zoom for a camera.

Although this instruction set is quite helpful, managing several cameras on this ba-
sis is difficult. The same direction of different cameras leads to completely different
views. Thus we prefer cartesian coordinates for managing the camera positioning. As
a prerequisite, we first have to measure the positions of the cameras after the camera
installation, because the absolute cartesian coordinates of a camera target have to be
computed into corresponding angle settings for each camera involved.

The Camera Controller internally operates with different spherical coordinate sys-
tems, where each system`s center is defined by a camera. Using cartesian coordinates
is easier to work with especially when describing planar surfaces like the black board

Perspectives for Lecture Videos 905

or the walls. So an easy command offered by the interface is lookAt, which directs the
camera to a desired target.

Close-up views, overviews and localization are examples for different standard
settings, which are necessary for a recording. The Camera Controller knows several
of such settings, like setCloseRec, which offers a close-up view of the lecturer.

Currently this control is performed manually. The network interfaces allow an easy
replacement of the calls from a graphical user interfaces by those of an automated
process. A diploma thesis is being written about this automatic Camera Controller.

4.3 Locator and Perspective Selector

The Locator is needed when the Capturing Controller decides to record a close-up
view of the lecturer. The Capturing Controller first chooses a camera for the localiza-
tion and one for the recording. The current status of development requires setting the
localization camera to a predefined localization position. The Locator is then ordered
to find the lecturer with the available camera. In a lecture hall, the lecturer usually
moves in an area close to the black board or the presentation surface. The Locator
only takes this area into account. Other areas like the auditorium which are most
likely irrelevant for the localization of the lecturer can be blanked out. For the re-
maining area, a simple comparison of adjacent frames is sufficient to figure out those
areas where movement takes place. The Locator assumes that the lecturer most likely
caused those movements and thus can be found at that position. The quality of the
Locator has been proven in first tests. In the next term, the Locator will be tested in
first real lectures.

During recording, the Perspective Selector chooses the digital video streams which
shall be made visible. It offers the currently selected stream as a virtual capture de-
vice to the operating system, which can then be used by further modules.

4.6 Recorder

Basically any recording software can be chosen for the encoding and storage of the
video and audio signals. To eventually synchronize the slides with the video more
easily, we customized the recording software so it writes the time at which the re-
cording was started to a file beneath the actual video. This is not strictly required, but
makes the manual synchronization with the slides much easier. The procedure of
cutting the video depends very much on the recorded format. In our installation, we
use mpeg4ip [10] to record our video, because

• mepg4ip is available as open-source project, which allowed us to modify it so that
the time can be stored at which the recording was started;

• mpeg4ip provides us with a suited video codec and file format on the basis of an
international normalized standard, which can easily be post-processed with exist-
ing software products;

• mpeg4ip can generate both local files and video streams which can be transmitted
to double-check the recording while it is in progress.

906 Michael Hartle et al.

5 Post-processing the Videos

All presented slides have to be included in these recordings to enable students to
properly prepare for examinations. They are visible as fixed images. We use a presen-
tation environment [11] to create those fixed images, with which images are created
out of the slides no matter which presentation software is being used. The file names
of the images are based on the time when the according slide was shown.

The creation of the lecture recordings is done in two steps. First, the video is being
cut, then both the cut video and the slide images are being referenced by a SMIL [13]
file in accordance with their interplay during the lecture.

The editing of the videos is done via Apple’s QuickTime SDK [14]. The video is
cut to properly match the beginning and ending of the recorded lecture and to remove
all sections of the lecture where the cameras provided a video stream, yet the re-
cording was paused via the management application. Finally the edited video stream
is put back together without any re-encoding taking place and thus without additional
quality loss or computational expenses. The information at which time the cuts are
planned can be taken out of the configuration file which is generated by serializing
events like starting, stopping, and pausing the recording.

The changing slide images are created in an independent fashion, as mentioned at
the beginning of this chapter, and thus are available separately. The video can be
referenced directly in the SMIL file, which connects the edited video stream and the
presented slides. The synchronization of both media is gathered on the basis of the
slide presentation time encoded in the file name of each slide and the starting time of
the video. The beginning and ending points of time of the video stream are obtained
from the configuration file.

The SMIL file can be downloaded from a dynamically generated website. So we
realized an interface to the interaction software TVremote [12], which allows students
to use their mobile devices during the lecture to tag a section for later video review.
They can access a list of their personal tags and start the lecture video by clicking on
one of those tags.

An example of a SMIL-based lecture recording combining and synchronizing
separate fixed images and video stream can be seen in Figure 2, shown with Apple’s
QuickTime Player.

6 Practical Operation of the System

We have been offering lecture recordings to our students for more than two years. In
the beginning, the cameras had to be controlled manually. Since the winter term
2003/2004, our multi-perspective system is used practically and the cameras can be
controlled from remote. That is a great assistance, as controlling the cameras can even
be delegated to trained student helpers without in-depth technical knowledge. In the
winter term 2002/2003, a poll of the didactical team of our university found out that
more than 50% of the students experienced the recordings as helpful. At that time, the
recordings were made using only a single perspective. Members of the didactical
team recommended including changes of the perspective in our systems to offer an

Perspectives for Lecture Videos 907

overall visual impression of the lecture hall. In winter term 2003/2004, lecture videos
were made using changes of the perspective. The result of a poll thereafter showed
that more than 70% of the students found the recordings partially or very helpful for
the test.

Fig. 2. A lecture recording ready for distribution among students. The hand-written annotations
on the slide were added during the course of the lecture

7 Outlook

The work of recent years focused on the automation of the described recording proc-
ess in order to increase the amount of lecture recordings without increasing the work-
load for the staff involved. Further works are intended to increase the quality and the
cooperation of the modules presented in section 4.

Several features and ideas have led to an investigation of solutions based on Ap-
ple’s QuickTime file format [15] as an alternative to the currently used SMIL-based
system. Solutions for goals such as interactive content-based navigation or the com-
bination of both fixed images and edited video stream into a single file are currently
investigated. Concerning these features, the QuickTime specification seems to pro-
vide promising approaches.

Although we are investigating these solutions, no stable and satisfactory results re-
garding the creation and playback of such content are currently at hand. With their
availability, these results are expected to be the subject of a future publication.

References

1. MIT OpenCourseWare – Fact Sheet. Online at
http://web.mit.edu/newsoffice/2001/ocw-facts.html. (2001) (seen on July 12, 2004)

908 Michael Hartle et al.

2. Phillimore, R.: Face to Face or eContent: Student and Staff Perspective. In: Proceedings of
the International Conference on Computers in Education. IEEE Press (2002) 211-212

3. Gleicher, M., Heck, R., und Wallick, M.: A Framework for Virtual Videography. In: Pro-
ceedings of the 2nd International Symposium on Smart Graphics. ACM Press, New York
(2002) 9-16

4. Rui, Y., Gupta, A. und Grudin, J.: Videography for Telepresentations. In: Proceedings of
the conference on Human Factors in Computing Systems. ACM Press, New York (2003)
457-464

5. Rui, Y., He, L., Gupta, A. und Liu, Q.: Building an Intelligent Camera Management Sys-
tem. In: Proceedings of the 9th ACM International Conference on Multimedia. ACM Press,
New York (2001) 2-11

6. Mukhopadhyay, S. and Smith, B.: Passive Capture and Structuring of Lectures. In: Pro-
ceedings of ACM Multimedia. ACM Press, New York (1999) 277-287

7. James, D., Hunter, J.: A Streamlined System for Building Online Presentation Archives us-
ing SMIL. In: Proceedings of the Australasian conference on Computing Education. ACM
Press, New York (2000) 145-152

8. Lauer, T., Ottmann, T.: Means and Methods in Automatic Courseware Production: Experi-
ence and Technical Challenges. In: Proceedings of the World Conference on E-Learning in
Corporate, Government, Healthcare, & Higher Education (E-Learn 2002). AACE Press,
Charlottesville, VA (2002)

9. Rogina, I., Schaaf, T.: Lecture and Presentations Tracking in an Intelligent Meeting Room.
In: Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces
(ICMI’02). IEEE Press (2002) 47-52

10. MPEG4IP – Open Streaming Video and Audio. Online at http://mpeg4ip.net. (seen on Feb-
ruary 8, 2004)

11. Rößling, G., Trompler, C., Mühlhäuser, M., Köbler, S. und Wolf, S.: Enhancing Classroom
Lectures with Digital Sliding Blackboards. In: Proceedings of the Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE 2004), Leeds, UK.
ACM Press, New York (2004) 218-222

12. Bär, H., Rößling, G., Mühlhäuser, M.: Improving Interaction During Lectures: A Minimal-
Distraction Approach. In: Proceedings of the World Conference on Educational Multime-
dia, Hypermedia & Telecommunication (ED-MEDIA). AACE Press, Charlottesville, VA
(2004) 1250-1255

13. W3C Synchronized Multimedia Homepage. Online at http://www.w3.org/AudioVideo/
(seen on May 30, 2005)

14. Apple QuickTime Developer Connection. Online at http://developer.apple.com/quicktime/
(seen on May 30, 2005)

15. Apple QuickTime Developer Connection, QuickTime File Format. Online at
http://developer.apple.com/documentation/QuickTime/QTFF/qtff.pdf (seen on May 30,
2005)

A Scene-Based Bandwidth Allocation Scheme
for Transferring VBR-Encoded Videos�

Dafu Deng and Hai Jin

Cluster and Grid Computing Lab
Huazhong University of Science and Technology, Wuhan, 430074, China

{dfdeng,hjin}@hust.edu.cn

Abstract. This paper classifies the variable-bit-rate traffic characteris-
tics into two parts—the intra-scene VBR and the inter-scene VBR, and
quantitatively analyzes the effects of these two kinds of VBR issues on
the network traffic characteristics. Based on the analysis results, we pro-
pose a scene-based bandwidth allocation scheme to handle the bandwidth
burstness problem. Performance evaluation based on real-life MPEG-IV
video traces shows that the proposed scheme can achieve good tradeoff
among the different objectives such as the performance measurements of
network traffic burstness, initial delay, and client buffer requirement.

1 Introduction

Due to the inherent bit rate variety, variable-bit-rate (VBR) encoded streams are
very difficult to be transmitted through the current best-effort Internet while
guaranteeing quality-of-service (QoS)[1]. To reduce the network traffic burst-
ness, previous works have proposed two categories of schemes: the renegotiation
schemes, such as RCBR [3] and RED-VBR [11], as well as the constant bit rate
(CBR) transmission with client prefetching schemes. The renegotiation schemes
are often used in live streaming services.

Capitalizing on a priori knowledge of the size of frames contained in pre-
recorded videos, the second schemes, such as MVBA [8], MCBA [10], CRTT[5],
e-PCRTT[4], and PCRTT-DP[6], reduce the network traffic by smoothing the
peak bit rate. It works by calculating the minimum bandwidth to prevent client
buffer underflow. Further, considering both the bandwidth and the client buffer
size, it uses dynamic methods to determine the amount of data to be transmit-
ted in advance and allocate data transferring bandwidth. Paper [2] has analyzed
the performance of those schemes in detail and shown that: MCBA and MVBA
algorithms exhibit similar performance for the peak rate smoothing and the vari-
ability of bandwidth allocations, while MCBA algorithm is much more effective
at reducing the total number of rate changes; CRTT, e-PCRTT, and PCRTT-
DP schemes need small client buffer requirement and introduce large bandwidth
variability and large peak rate requirement.
� This paper is supported by National 863 Hi-Tech R&D Program under grant

2002AA1Z2102.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 909–918, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

910 Dafu Deng and Hai Jin

In this paper, we propose a scene-based bandwidth allocation scheme called
SBA for pre-recorded VBR video objects. SBA scheme can significantly reduce
the network traffic burstness caused by bit-rate variety while achieving small
client buffer requirement and short initial delay. The subsequent sections are
organized as follows. In section 2, we analyze the traffic characteristic of MPEG
videos. Section 3 describes the SBA scheme in detail. In section 4, we evaluate
the performance of the proposed scheme via real-life MPEG-IV traces. Finally,
section 5 ends with conclusions and future works.

2 Traffic Characteristic of MPEG Videos

To achieve a high compression rate and a high playback quality, MPEG coding
technique encodes the video data into three kinds of frames: Intra-coded (I)
frames, Predictive (P) frames, and Bi-directionally predictive (B) frames. The
I -frames are coded independently by removing spatial redundancy and providing
access point to the coded sequence where decoding begins. The P -frames are
coded by referencing the preceding I - or P - frame. The temporal and spatial
redundancies with respect to the preceding I (or P) frame are removed. The
B -frames obtain prediction from both a previous and a future I (or P) frame.
The temporal and spatial redundancies with respect to both the preceding and
future I (or P) frames are removed. These three kinds of frames are organized
into groups, called group of pictures (GOP). Usually, each GOP contains one I -
frame, and optionally one or more P and B frames. The playback time interval
for each frame is a constant value, which usually equals to 40 ms (i.e. frame rate:
25 fps) or 33ms (i.e. frame rate: 30 fps). The fluctuation of transmission rate is
caused by the frame size variety.

There are two issues causing frame size variety. One is the intra-scene issue,
namely the intra-scene VBR (Ia-VBR). Usually, one visual scene (with similar
picture content) is comprised of one or several GOPs. In the same visual scene,
I -frames have very similar frame sizes because they are independently encoded
on the basic of picture content. The size of P -frames is smaller than that of
I -frames because the temporal redundancy referring to the preceding I -, or P -
frame is removed. B -frames have the smallest frame size because the temporal
redundancy referring to both the previous and the future I (or P) are removed.
The other is the inter-scene issue, namely the inter-scene VBR (Ie-VBR). When
there is a major change in picture content, the temporal correlation may be poor.
It requires that a new I, P, and B frames sequence be encoded. In the same
video object, the compression rate for removing spatial redundancy (by DCT
algorithm) is approximately a constant value. Hence, the more complexity the
picture content has, the larger the size of corresponding I (P, B)-frames will be.

The following statistical coefficients can be used to quantitatively describe
the effect of the Ia-VBR and the Ie-VBR on the network traffic characteristic.

υ(Ie)i is the ratio of the peak bandwidth for transferring the first I -frame
of the scene with the most complex picture content to the mean bandwidth for
transferring first I -frames of all scenes contained in the i-th video object, i.e.

A Scene-Based Bandwidth Allocation Scheme 911

υ(Ie)i =
max{Sk

I }
E[Sk

I]
k ∈ {1, . . . , ηi} (1)

where ηi is the number of scenes contained in the i-th video object and Sk
I is the

size of first I -frame contained in the k -th scene. Since I -frames are independently
encoded on the basic picture content of scenes, υ(Ie)i indicates the effect of the
Ie-VBR on the network traffic burstness.

υ(Ia)i is the mean intra-scene bandwidth burstness. For each scene, the
bandwidth burstness is a ratio of the peak bandwidth to the mean bandwidth
of that scene. Hence, υ(Ia)i can be described as

υ(Ia)i = E[
max{Sm

k }
E[Sm

k]
] k ∈ {1, . . . , ηi},m ∈ {1, . . . , εk} (2)

where εk is the number of frames contained in the k-th scene and Sm
k is the size

of the m-th frame in the k-th scene. It indicates the effect of the Ia-VBR issue
on the network traffic burstness.

ξ(Ie)i is the standard deviation of bandwidth fluctuation among different
scenes, i.e.

ξ(Ie)i =
√

E[(Sk
I − E[Sk

I])2] k ∈ {1, . . . , ηi} (3)

It indicates the bandwidth variation resulting from the Ie-VBR of the i-th
video object.

ξ(Ia)i is the mean standard deviation of bandwidth fluctuation in the internal
scene, i.e.

ξ(Ia)i = E[
√

E[(Sm
k − E[Sm

k])2]] (4)

where k ∈ {1, . . . , ηi} and m ∈ {1, . . . , εk}. It represents the bandwidth variation
caused by the Ia-VBR of the i-th video object.

Fig. 1. The distribution of statistical coefficients (a) υ(Ie), υ(Ia) and (b) ξ(Ie), ξ(Ia)
among real-life MPEG-IV video traces.

Fig.1 plots the distribution of these statistical coefficients among 100 real-
life MPEG-IV video traces1 with different contents including Movies, Sports,
1 Some traces are obtained from the web site:

http://www-tkn.ee.tu-berlin.de/˜fitzek/TRACE/pics. Others are extracted from
real-life DivX movies.

912 Dafu Deng and Hai Jin

News, Talk show, several Episodes, music and Cartoons. Here, one visual scene
is assumed to be one GOP. Referring to part (a) of Fig.1, it can be easily found
that the value of υ(Ie)i is smaller than that of υ(Ia)i with high probability. The
mean value of υ(Ia)i (≈ 3.67) is near 1.38 times as the mean value of υ(Ie)i

(≈ 2.66). It indicates that the effect of the Ie-VBR on network traffic burstness
is smaller than that of the Ia-VBR. However, as shown in part (b) of Fig.1,
ξ(Ie)i is far larger than ξ(Ia)i for all video traces and the expected value of
ξ(Ie)i (≈ 268.2Kb/s) among all video traces is 1.51 times as the expected value
of ξ(Ia)i (≈ 176.8Kb/s). This represents that the mean bandwidth variation
caused by the Ie-VBR is far larger than that resulting from the Ia-VBR.

Intuitively, the bandwidth burstness indicates the level of difficulty to guaran-
tee lossless transmission when transferring video data through Internet, whereas
the bandwidth variation indicates the required ”cost” (i.e. client buffer, initial
buffer delay, etc.) for smoothing the bandwidth burstness. Hence, smoothing the
bandwidth burstness that results from the Ie-VBR may consume large cost and
just achieve small smoothing result. However, if we divide these two kinds of
VBR characteristics and smoothing the bandwidth burstness resulting from the
Ia-VBR first, large bandwidth smoothing result may be obtained with low cost
consumption.

3 Scene-Based Bandwidth Allocation Scheme

The basic idea of the SBA scheme is that first stripping the bit rate variety caused
by Ie-VBR and Ia-VBR into different video segments; and then, smoothing the
Ia-VBR contained in each video segment such that the impact of bandwidth
fluctuation on the network traffic can be significantly reduced with low smooth-
ing cost. In this section, we first give a threshold-based video striping scheme to
divide these two kinds of bit rate varieties into different segments, and then illus-
trate an off-line bandwidth allocation strategy to allocate a constant bandwidth
for each segment.

3.1 Threshold-Based Video Striping

Let{Sj
I : j = 1, 2,. . . } represent the sequence of I -frames in the video object,

where Sj
I indicates the size of the j-th I -frame. Consider that some consecutive

I -frames may have similar size. It indicates that the picture contents of those
frames are similar and the inter-scene bit rate variety among them is very small.
Thus, it is not necessary to divide them into different segment. We define the
logical visual scene (LVS) to be the consecutive frame sequence in which the
maximum size warp among I -frames is less than 2×p×Sk

I , where Sk
I represents

the size of the first I -frame included in that LVS and p is a threshold (p ≥ 0).
The threshold-based video striping scheme is to divide different LVS s into

different segments. Obviously, the first segment starts at the first I -frame. Sup-
pose that the current segment is the i-th segment that starts with the k-th
I -frame. The (n+k+1)-th I -frame of the sequence {Sj

I : j = 1, 2, . . .} indicates
the start point of the (i + 1)-th segment if

A Scene-Based Bandwidth Allocation Scheme 913

Fig. 2. The principle of the threshold-based video striping scheme.

|Sn+k+1
I − Sk

I | ≥ p× Sk
I (5)

Fig.2 shows the principle of the threshold-based video striping scheme. In
this figure, one unit of time on the x-axis corresponds to a frame playback
time interval. The solid vertical lines represent the corresponding frame sizes.
The dotted horizontal lines indicate the size boundaries of I -frames for different
segments. In this video splitting scheme, the size of all I -frames within the i-th
segment is located between (1 − p)× Sk

I and (1 + p)× Sk
I .

3.2 Bandwidth Allocation

Suppose that the i-th video object is the requested one. The playback starting
time of the i-th video object is 0 and the transmission starting time of the i-th
video object is −d, where d represents the initial buffer delay used for prefetching
video data into client buffer. On the server side, assume that Mi is the total
number of striped video segments. L(m) and l(m) represent the amount of video
data and the serial number of the last frame contained in the m-th segment
(m ∈ {1, 2, . . . ,Mi}), respectively. Let χj and Tj represent the amount of video
data contained in the j-th frame and the playback time for the j-th frame,
respectively. bm, tms , and tme is the allocated constant bit rate, the transmission
starting time and the transmission ending time of the m-th segment, respectively.
Obviously, to guarantee consecutive transmission, the value of tms must be equal
to the value of tm−1

e , i.e.

tms =

⎧⎨⎩
-d m=1

tm−1
s +

m−1∑
k=1

Lk

bm−1
m = 2, 3, . . . ,Mi

(6)

On the client side, a playback buffer with a capacity of B bits is supplied
to receive the requested video data. The received video data is played back at
a fixed rate of F frames per second. Let B(t) represent the buffer occupancy at
time t. A(t) and C(t) represent the cumulated video data arrived at the playback
buffer at time t and the cumulated video data that have been consumed at time
t, respectively. Bmax is used to represent the maximum client buffer occupancy

914 Dafu Deng and Hai Jin

during the stream playback. Fig.3 shows the relationship between A(t), C(t),
and B(t).

Since each segment is transferred at a constant bit rate, the arrival stream
A(t) can be expressed as

A(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t < −d
m−1∑
k=1

Lk + bm × (t− tms) −d ≤ t ≤ tme ,

(m ∈ {1, 2, . . . ,Mi})
Mi∑
k=1

Lk t > tMi
e

(7)

where term
∑m−1

k=1 Lk represents the cumulated video data that have been trans-
ferred to the playback buffer during time period [t1s, t

m−1
e], term bm× (t− tm−1

e)
represents the video data contained in the m-th segment that have been trans-
ferred to the playback buffer during time period [tm−1

e , t].
As the video data is played back at the fixed rate F frame/s, the playback

stream C(t) can be described as

C(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 t < 0
tF∑

k=1

χk 0 ≤ t ≤ Ni

F

Mi∑
k=1

Lk t > Ni

F

(8)

Then, the playback buffer occupancy B(t) is given by

B(t) = A(t) − C(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < −d
bm × t −d ≤ t < 0
Mi∑
k=1

Lk + bm × (t− tms)−
tF∑

j=1

χj 0 ≤ t ≤ tme ,

(m ∈ {1, 2, . . . ,Mi})
Mi∑
k=1

Lk −
tF∑

j=1

χj tMi
e < t ≤ Ni

F

0 t > Ni

F

(9)

We use the following off-line method to allocate bandwidth. First, we set the
mean bit rate of the first segment to be the allocated constant bit rate b1. i.e.

b1 =
L1 × F

l(1)
(10)

where L1 represents the total number of video data contained in the first segment
and l(1)

F represent the cumulated time for playing back the first segment. In order
to guarantee no buffer underflow during the time interval when the first segment

A Scene-Based Bandwidth Allocation Scheme 915

Fig. 3. The relationship between arrival stream A(t), playback stream C(t), and buffer
occupancy B(t).

is in playback, the condition B(t) ≥ 0 must be met. Combining equation (6),
(9), and (10), we derive that the minimum required initial buffer delay d as

d =
l(1)×

tF∑
j=1

χj

F × L1
− t 0 ≤ t ≤ Tl(1) (11)

Secondly, the arrival stream A(t) for the m-th segment can be described
as a line from the start point (tms ,

∑m−1
k=1 Lk) to the end point (tme ,

∑m
k=1 Lk).

The slope of this line is exactly the allocated transmitting bit rate for the m-
th segment (as showed in Fig.3). Obviously, larger transmission bit rate results
in larger play buffer occupancy. Thus, we allocate the transmitting bandwidth
for the m-th segment bm (m ∈ {2, 3, . . . ,Mi}) to be the minimum required bit
rate to guarantee no buffer underflow during the requested video object being
playback. According to the equation (9), we obtain

bm = max{

tF∑
j=1

χj −
m−1∑
k=1

Lk

t− tms
} (12)

where t ∈ {Tl(m−1)+1, Tl(m−1)+2, . . . , Tl(m)}.

4 Performance Evaluation

For illustration, we evaluate the performance of SBA scheme via experiments
and compare it with the MCBA scheme, the e-PCRTT scheme, and the CRTT
scheme.

4.1 Experimental Environment

Experiment is based on real-life MPEG-IV video traces with different contents
including Movies, Sports, News, Talk show, several Episodes, Music and Car-
toons. All traces are played back at a rate of F = 25 frames/s and the total

916 Dafu Deng and Hai Jin

number of video traces is 100. Among them, the lengths of News and some
Sports are 30334 frames and that of other traces are 89,998 frames. The mean
bit rates of them are varied from 0.1Mb/s to 1Mb/s and the ratios of the peak
bit rate to the mean bit rate are varied from 3.5 to 35.0 with the mean value
9.99.

4.2 Experimental Results

Fig.4 illustrates how the striping threshold p affects the average initial delay, the
average client buffer occupancy, and the average traffic burstness of all traces,
respectively. From part (a), we find that, by the increment of p, the average
buffer delay D is increased immediately. On the one hand, the larger p results in
that the first segment of requested video object contains more bit rate variation
of inter-scene VBR characteristic and requires more smoothing cost–D. For the
same reason, as shown in part (b), the average client buffer requirement Bmax is
also dramatically increased by the increment of p. However, referring to part (c),
it can be found that the average traffic burstness is decreased by the increment
of p due to that more bit rate variation of inter-scene VBR is smoothed. Overall,
p ∈ [0.4, 0.6] can achieve a good tradeoff among the performance of the initial
delay, the client buffer requirement, and the network traffic burstness.

Fig. 4. The effect of striping threshold p on (a) the average initial delay D, (b) the
average client buffer occupancy Bmax, (c) the average traffic burstness TB.

Parts (a), (b), and (c) of Fig.5 plot the comparison of distributions of the
initial delay, the network traffic burstness, and the maximum buffer occupancy
on 100 MPEG-IV video traces among the CRTT scheme, the e-PCRTT scheme,
the MCBA scheme, and the SBA scheme with striping threshold p = 0.4, respec-
tively, where the internal figure of each part illustrates the comparison of the
corresponding mean value. For the network traffic burstness, referring to part
(b), it can be easily found that the CRTT scheme can achieve optimal perfor-
mance since it uses the constant mean bandwidth to transfer video data. With
high probability, the MCBA scheme and the SBA scheme with stripping thresh-
old p = 0.4 have very similar performance and the e-PCRTT scheme with given
parameters d = 60 and B = 8M has the worst smoothing effect. For example,
as shown in the internal figure of part (b), among 100 MPEG-IV video traces,
the mean traffic burstness of the e-PCRTT scheme is 5.1, while those of the

A Scene-Based Bandwidth Allocation Scheme 917

Fig. 5. The comparison of distributions of (a) the initial buffer delay, (b) the network
traffic burstness, as well as (c) the maximum client buffer occupancy on 100 MPEG-IV
video traces; and the individual comparison of (d) the initial delay, (e) the allocated
bandwidth, and (f) the client buffer occupancy for the movie clip Silence of Lambs
among the CRTT scheme, the e-PCRTT scheme, the MCBA scheme, and the SBA
scheme with striping threshold p = 0.4.

MCBA scheme and the SBA scheme are just 2.6 and 3.0, respectively. Referring
to part (a) and part (c), however, it can be seen that the smoothing costs of the
CRTT scheme, the MCBA scheme, and the e-PCRTT scheme are very huge. As
shown in the internal figures of parts (a) and (c), among 100 MPEG-IV traces,
the mean initial buffer delay and the mean maximum client buffer occupancy
required by the CRTT scheme are 118 seconds and 10MB. For each video trace,
the maximum client buffer occupancy resulting from the MCBA scheme is 8MB,
whereas the e-PCRTT needs nearly 4.1MB maximum buffer consumption and
60s initial buffer delay. In contrast, the mean initial buffer delay and the mean
maximum buffer occupancy needed by the SBA scheme are just 7.7 seconds and
1.8MB.

Parts (d), (e), and (f) of Fig.5 illustrate the comparison of the initial buffer
delay, the allocated bandwidth, and the client buffer occupancy for the movie clip
Silence of the Lambs among those schemes, respectively. In this case, as shown
in the part (e), the network traffic burstness of the SBA scheme is somewhat less
than those of the MCBA scheme and the e-PCRTT scheme. As shown in part(d)
and part(f), the required initial buffer delay and the maximum client buffer
occupancy are just 7 seconds and 3.5 MB, respectively, while the initial buffer
delay and the maximum client buffer occupancy resulting from the e-PCRTT
scheme and the MCBA scheme are (60s,4MB), and (0s, 8MB), respectively.
The CRTT scheme must use 360 seconds initial buffer delay and consume 25MB
client buffer. The smoothing cost is too big to be endured by the true VoD
systems.

918 Dafu Deng and Hai Jin

5 Conclusions and Future Works

In this paper, we propose a scene-based bandwidth allocation scheme, called
SBA, which can significantly reduce network traffic burstness of VBR streams
while achieving small client buffer requirement, and short initial delay. Unlike
previous schemes, SBA scheme first splits video objects into small segments
based on the complexity of picture content in different logical visual scene. Then,
it uses constant bit rate to transfer each segment so that the variable bit rate can
be effectively smoothed. Our ongoing researches focus on developing scene-based
bandwidth reserving protocols for improving server bandwidth utilization.

References

1. S. V. Anastasiadis, K. C. Sevcik, and M. Stumm, Server-Based Smoothing of Vari-
able Bit-Rate Streams, Proc. of the ACM MM’01, pp. 147-158, 2001.

2. W. Feng and J. Rexford, Performance Evaluation of Smoothing Algorithms for
Transmitting Prerecorded Variable-Bit-Rate Video. IEEE Trans. on Multimedia,
1(3):302-312, Sept. 1999.

3. M. Grossglauser, S. Keshav, and D. N. C. Tse, RCBR: A Simple and Efficient
Service for Multiple Time-Scale Traffic, IEEE/ACM Transaction on Networking,
5(6):741-751, Dec. 1997.

4. O. Hadar and R. Cohen, PCRTT Enhancement for off-line video smoothing, The
Journal of Real-Time Imaging, 7(3): 301-314, Jun. 2001.

5. S. Kang and H. Y. Yeom, Transmission of video streams with constant bandwidth
allocation, Computer Communications, 22(2):173-180, Feb. 1999.

6. J. M. McManus and K. W. Ross, A dynamic programming methodology for man-
aging prerecorded VBR sources in packet-switched networks, Telecommun. Syst.,
Vol.9, 1998.

7. W. C. Poon and K. T. Lo, The transportation of VBR-encoded video using de-
terministic characterization and bandwidth renegotiation, Computer Communica-
tions, 25(8):731-740, May 2002.

8. A. R. Reibman and A. W. Berger, Traffic descriptors for VBR video teleconferenc-
ing over ATM networks, IEEE/ACM Transactions on Networking, 3(3):329-339,
Jun. 1995.

9. A. R. Reibman and B. G. Haskell, Constraints on Variable Bit-rate Video for ATM
Network, IEEE Trans. on Cricuits and Systems for Video Technology, 2(4):361-372,
Dec. 1992.

10. J. Rexford and D. Towsley, Smoothing Variable-Bit-Rate Video in an Internetwork.
IEEE Trans. on Networking, 7(2):202-215, Apr. 1999.

11. H. Zhang and E. W. Knightly, Red-vbr: a renegotiation-based approach to support
delay-sensitive vbr video, ACM Multimedia Systems Journal, Vol. 5, pp. 164-176,
1997.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 919–927, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DCT Block Conversion
for H.264/AVC Video Transcoding

Joo-Kyong Lee and Ki-Dong Chung

Dept. of Computer Engneering, Pusan National Univ.,
Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Korea

jklee@melon.cs.pusan.ac.kr, kdchung@pusan.ac.kr

Abstract. In H.264/AVC [1], integer transforms are applied instead of the 8×8
discrete cosine transform (DCT) of previous standards to avoid inverse trans-
form mismatch problems. However, these transforms make it difficult to
transcode the precoded video contents with the earlier video coding standards
into H.264/AVC in DCT-domain, thus causing cascaded re-encoding in the
pixel-domain. There are strong requests for an efficient way to solve this prob-
lem. In this paper, we propose a new conversion scheme from an 8×8 DCT
block into four 4×4 DCT blocks in H.264/AVC. Experimental results show that
the proposed scheme improves PSNR up to 0.1dB and a little computational
complexity compared with the cascaded pixel-domain IDCT/DCT. Moreover,
other DCT-domain transcoding methods are applicable based on our scheme.

1 Introduction

As the number of networks, types of devices, and video representation formats in-
crease, interoperability between different systems and different networks is becoming
more important [2]. To provide a seamless interaction between senders and receivers,
diverse research on video transcoding such as bit-rate reduction [3], spatial resolution
reduction [4], frame skipping [5][6], and simple video format conversion [7] has been
studied. Recently, many DCT-domain approaches have been proposed to reduce the
computation complexity [8][9][10][11].

H.264/AVC is the latest international video coding standard approved by ISO/IEC
as International Standard 14496-10 (MPEG-4 part 10) Advanced Video Coding
(AVC) and by ITU-T as Recommendation H.264. Its original aim was to provide
enhanced compression efficiency and improved support for reliable transmission
compared with earlier standards such as H.263+ and MPEG-4 visual and its target
applications include two-way video communication (video telephony) and non-
interactive applications (broadcast, streaming) [12]. With respect to coding efficiency,
H.264/AVC outperforms MPEG-2 and MPEG-4 by 63% and 37%, respectively [13].
With this reason, H.264/AVC is expected to replace soon other video coding stan-
dards such as MPEG-2, MPEG-4 for video telephony, broadcast and streaming of
standard definition TV. However, the various coding tools like 1/4 pel motion com-
pensation, deblocking filter or integer transform what H.264/AVC adopts to improve
coding efficiency, brought H.264/AVC in the most algorithmic discontinuities in the
evolution of standardized video coding [13]. That is, these state-of-the-art tools are
obstacles to transcode video contents compressed by earlier standards into
H.264/AVC in the common-domain. For instance, the 4×4 integer transform makes it
difficult to transcode the prior compressed video contents in DCT-domain. This is

920 Joo-Kyong Lee and Ki-Dong Chung

because the transform matrix of 4×4 DCT was modified into integer elemental matrix
and the rest floating point values are absorbed by quantization step, thus avoiding
inverse transform mismatch problems, in addition to reduction of computation com-
plexity by just using add operations and shift operations.

Fig. 1. The 8×8 DCT block conversion into four 4x4 approximate DCT blocks

In this paper, we propose a new algorithm that converts an 8×8 DCT block into
four 4×4 approximate DCT blocks adopted in H.264/AVC in order to support DCT-
domain transcoding as shown in Fig. 1, where is 8×8 DCT block and

= is a 4×4 approximate DCT block. This scheme has advantages in com-

putation complexity and video quality compared with cascaded pixel-domain
transcoding.

This paper is organized as follows. In Section 2 we describe the differences be-
tween DCT of earlier video standards and 4×4 approximate DCT of H.264/AVC. In
Section 3 we show our DCT conversion algorithm. Experimental results will be pre-
sented in Section 4, and the conclusion is shown in Section 5.

2 Transform in Video Coding Standards
DCT separates the image into parts of differing importance with respect to the image's
visual quality. Almost video coding standards adopts 8×8 block DCT, except the
H.264/AVC standard which adopts 4×4 integer transform. In this section we examine
two different transforms, respectively.

2.1 DCT for Previous Standards

DCT represents an image as a sum of sinusoids of varying magnitudes and frequen-
cies. DCT maps X, a block of N×N samples into a new block Y, N×N block of coeffi-
cients. DCT can be described in terms of a transform matrix H, that is, the trans-
formed block Y=HXHT, where the pth row and qth column of H is defined by Eq. 1 and
superscript T denotes transposition of matrix [14]. Since the transform matrix is or-
thogonal the inverse DCT is given by X=HT YH.

πα

α

≤ ≤ −
= = +

≤ ≤ −

=
=

≤ ≤ −

(1)

DCT Block Conversion for H.264/AVC Video Transcoding 921

2.2 Transforms in H.264/AVC [12][14]

H.264/AVC uses three different types of transforms depending on the residual data
type to be coded. If a macroblock is predicted using the type INTRA_16×16, the 16
DC coefficients of the luminance component are transformed by 4×4 Hardamard
transform and 4 DC coefficients of each chrominance component are transformed by
2×2 Hardamard transform. For all other 4×4 blocks, 4×4 approximate DCT is applied.
In this paper, we do not consider the Hardamard transform because it is only applied
to the DC coefficients in INTRA_16×16 macroblock, and it cannot be target to con-
vert because it was newly adopted in H.264/AVC.

The 4×4 approximate DCT in H.264/AVC is modified from the original DCT. The
4×4 transform matrix is illustrated in Eq. 2 by setting of in Eq. 1.

This matrix multiplication in Eq. 2 can be described in the form of Eq. 3, where the
operator ⊗ indicates that each elements of is multiplied by the element in the
same position in matrix .

π π

− −
= =

− −
− −

= = =

(2)

It is desirable to replace the transform matrix of Eq. 3 by an orthogonal matrix
with integer entries to avoid inverse transform mismatch problems and to reduce the
computation complexity. In Eq. 4, to simplify the implementation of the transform, b
and d are modified as and , respectively, and the 2nd and 4th rows of matrix

are scaled by a factor of two and the matrix is scaled down to compensate. This
transform is an approximation to the 4×4 DCT. However, the result of the transform
is not identical to the 4×4 DCT because the factors b and d are changed. Conse-
quently, when we convert the 8×8 DCT block into the 4×4 approximate DCT block,
we should compensate the differences.

π

= = ⊗

− − − −
= ⊗

− − − −
− − − −

= = ≈ = ≈

(3)

922 Joo-Kyong Lee and Ki-Dong Chung

= ⊗

− − − −
= ⊗

− − − −
− − − −

= = ≈ =

3 The 8x8 DCT Block Conversion to the 4x4 Approximate DCT

The goal of this paper is to convert exactly an 8×8 DCT block into four 4×4 approxi-
mate DCT blocks in H.264/AVC without using a cascaded pixel-domain approach
that performs the inverse DCT(IDCT)/DCT. Specifically, one 8×8 DCT block is con-
verted to four 4×4 approximate DCT blocks described as transformed matrix in Eq.
4. Fig. 1 describes (a) the simple cascaded pixel-domain transcoding architecture and
(b) the proposed DCT conversion architecture. Other DCT-domain transcoding
schemes can be applied to H.264/AVC transcoding based on this DCT conversion
scheme.

Fig. 2. Illustration of simple transcoding architecture between MPEG-2 and H.264/AVC: (a)
cascaded pixel-domain transcoding architecture (b) proposed DCT conversion architecture

3.1 Extracting 4×4 Block in the Pixel-Domain

The 8×8 DCT block conversion into four 4×4 approximate DCT blocks is extended
from the pixel-domain extracting. In the pixel-domain, extracting of the 4×4 sub-
block from is defined by Eq. 5, where is an 8×8 motion compensated

(MC) block or a non-MC block in the pixel-domain with displacement matrices
= that perform vertical and horizontal filtering, respectively. The loca-

tion of sub-block in can be seen in Fig. 1. The matrices of size 4×8 and

 of size 8×4 are defined in Eq. 6, where
×

is identity matrix of size 4. The pre-

DCT Block Conversion for H.264/AVC Video Transcoding 923

multiplication by extracts a sub-block size of × from vertically whereas,

the post-multiplication by extracts × block from the resultant block horizon-

tally.

= ⋅ ⋅ ≤ ≤ (5)

() ()× ×× ×

×

×× ×

= = = =

= = = =
 (6)

3.2 Extracting a 4×4 Block in the DCT-Domain

The 4×4 DCT block is calculated by performing DCT on the extracted sub-block,

of Eq. 5. Due to the distributive property of matrix multiplication with respect to the
DCT, transformed matrix of is given by = ⋅ ⋅ as represented in Eq. 7.

= ⋅ ⋅ ≤ ≤
= ⋅ ⋅

= ⋅ ⋅

 (7)

where are the DCT representations of respec-

tively. Especially, can be written in the form of × ×⋅ ⋅ and

× ×⋅ ⋅ where
× ×

 are the transform matrices produced from Eq. 1

for 4×4 and 8×8 DCT, respectively. × indicates the transpose of
×

.

Consequently, can be rewritten in the form of Eq. 8. In the Equation, the prod-

uct of matrices, × ×⋅ ⋅ and × ×⋅ ⋅ can be pre-computed and stored

in the memory as look-up table. According to Eq. 8 we can convert the 8×8 DCT
block, to four 4×4 DCT blocks, ≤ ≤ . However, we should convert

to the 4×4 approximate DCT blocks of H.264/AVC, because there exists the differ-
ence between 4×4 DCT and 4×4 approximate DCT. This difference is caused by the
differences of in Eq. 3 and Eq. 4.

× × × ×= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≤ ≤ (8)

At last, we can obtain a 4×4 transformed block, , in H.264/AVC by replacing

× with the modified transform matrix,
×′ by letting = and =

instead of π= ≈ = ≈ (see Eq. 9). With this modified

transform matrix we can exactly converts an 8×8 DCT block into a 4×4 approximate
DCT block of H.264/AVC.

Let us show more specific derivation processes. In Eq. 10, the sub-block of the

raw block (before any transform) is transformed to the 4×4 approximate DCT

924 Joo-Kyong Lee and Ki-Dong Chung

block, , in H.264/AVC. This is what we want to get the result of DCT conver-

sion. In Eq. 11, is described as the product of three matrices, ⋅ ⋅ . The

detail explanation about this form is described in Eq. 5 and Eq. 6. With associative
property of matrix multiplication, Eq. 11 can be described as Eq. 12 which equals to
Eq. 13 by the orthogonal property of the DCT transform matrix such as

= = where is the identity matrix of order n. Again, by applying the

associative property of matrix multiplication to Eq. 13, we can get the form of Eq. 14.
This Equation is equal to Eq. 8, because the matrix multiplication

× ×⋅ ⋅ is

identical with .

× × × ×′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≤ ≤ (9)

× ×′ ′= ⋅ ⋅ (10)

× ×′ ′= ⋅ ⋅ ⋅ ⋅ (11)

× ×′ ′= ⋅ ⋅ ⋅ ⋅ (12)

× × × × × ×′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (13)

× × × × × ×′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (14)

To recapitulate, we proposed a new scheme to convert an 8×8 DCT block into four
4×4 approximate DCT blocks in H.264.AVC. Using the proposed scheme, we can
exactly convert with lower complexity than cascaded re-encoding method in pixel-
domain

4 Experimental Results

In this section, we compare the performance of our proposed conversion algorithm
with the cascaded re-encoding method of pixel-domain (we call this method as “base-
line” method). We assume that input bitstreams for the transcoders are compressed in
the MPEG-2 encoder. To simulate the transcoders that adopt the different methods
respectively, we modified MPEG-2 TM5 encoder and decoder [15] and implemented
the architectures of Fig. 2. In the MPEG-2 encoder, we only use integer pixel motion
vector to avoid different half pixel calculation between MPEG-2 and H.264/AVC.
Even though it is out of our focus in this paper, it is an important research subject to
transcode MPEG-2 video sequence to H.264/AVC.

In the experiments, we tested the objective performance and the computation com-
plexity with different motion characteristic sequences: FOOTBALL, CARPHONE,
and CLAIRE in Quarter Common Intermediate Format (QCIF). We compressed the
video sequences in MPEG-2 encoder with GOP size 6, I/P distance 3 as varying the
quantization step size or Qstep from 1 to 30. In the transcoder, we simulated transcod-
ing process by changing the re-quantization step size or re-Qstep from 1 to 40.

Fig. 3 shows the peak signal-to-noise ratio (PSNR) by changing the re-Qstep from
1 to 40 in the transcoder at fixed Qstep (a) 4 and (b) 20 of the MPEG-2 encoder. It is
difficult to distinguish the performances of the proposed scheme from those of base-
line method in the figure. However, our proposed scheme slightly outperforms the
base method by 0.05~0.1dB numerically. Fig. 4 shows the average PSNR of our
scheme for CLAIRE sequence is higher than that of baseline method where Qstep 4 in

DCT Block Conversion for H.264/AVC Video Transcoding 925

the MPGE-2 encoder and re-Qstep 6. In Fig. 5, we show the real images reconstructed
from baseline method and our proposed scheme when the Qstep=4 in the MPEG-2
encoder and the re-Qstep is 6 in the transcoder. The sample images show almost same
visual quality.

0 10 20 30 40
29

30

31

32

33

34

35

36

37

38

Quantization step size

P
S

N
R

(d
B

)

(b) MPEG-2 Q step=20

0 10 20 30 40
30

32

34

36

38

40

42

44

46

48

Quantization step size

P
S

N
R

(d
B

)

(a) MPEG-2 Q step=4

football-b
football-c
carphone-b
carphone-c
claire-b
claire-c

dfootball-b
football-c
carphone-b
carphone-c
claire-b
claire-c

Fig. 3. Change of re-Qstep from 1 to 40 in the cascaded pixel domain transcoder and in the
proposed transcoder at fixed Qstep (a) 4 and (b) 20 in the MPEG-2 encoder

80 85 90 95 100 105 110
42.5

43

43.5

44

P
S

N
R

(d
B

)

Frame Number

Qstep=4 to 6 base
Qstep=4 to 6 conv

Fig. 4. PSNR comparison for CLAIRE sequence ranging from 81st to 110th frame where the first
quantization value is set to 4 and re-quantization value is set to 6

Lastly, let us show you the computation complexity comparison between the base-
line scheme and our proposed scheme. For computation complexity, we do no con-
sider fast DCT/IDCT methods but just consider the reference DCT/IDCT methods.
However our proposed scheme also can be applied by the same kind of fast method to
speed up the conversion.

Table. 1 shows the number of operations to transcode the 8×8 DCT block to four
4×4 approximate DCT blocks. “M” stands for the number of multiplication operations
and “A” for adds. Baseline method needs 64×(8M+7A)×2=1024M+896A for 8×8
IDCT because 8×8 IDCT is represented by products of three 8×8 blocks In
H.264/AVC the transform can be implemented by only shift and addition operations
can be reduced by the symmetric property. In JM 8.2 the 4×4 block requires 64 addi-

926 Joo-Kyong Lee and Ki-Dong Chung

tions and 16 shifts. Therefore, 256 additions and 64 shifts are required for an 8×8
block. So, this method requires 1024 multiplications, 1152 adds and 64 shifts. The
proposed methods using Eq. 9 requires 1024 multiplication operations and 896 add
operations. This is calculated from fourfold of products of three matrices size of 4×8,
8×8, 8×4 respectively. As stated previously, matrix multiplication × ×′ ⋅ ⋅

and × ×′⋅ ⋅ is pre-computed and stored memory in Eq. 9. The additive mem-

ory requires only for 128 fixed-point coefficients. During the products, we can use
partially computed matrices repeatedly without any computation because

= = = = in Eq. 9.

(b)

(c)

(d)

(e)(a)

(f)

Fig. 5. The real images for the sample video sequences at Qstep=4 and re-Qstep=6:
FOOTBALL (a)-(b) CARPHONE (c)(d) CLAIRE (e)(f). The first row images were made from
baseline scheme and the second row images from proposed scheme

Table 1. The number of operations to transcode an 8×8 DCT block to 4×4 approximate DCT
block

Function Baseline method Proposed method
DCT conversion - 1024M+896A
8×8 IDCT 1024M+896A -
4×4 approximate DCT 256A+64S -
Total operations 1024M+1152A+64S 1024M+896A

5 Conclusion

In this paper, we proposed an efficient and exact conversion algorithm for the 8×8
DCT block into four 4×4 approximate DCT blocks to transcode the precoded video
contents with the earlier video coding standards such as MPEG-2, H.263 and MPEG-
4 into H.264/AVC. Based on the proposed scheme, other DCT-domain transcoding
methods can be applied to H.264/AVC transcoding.

The simulation results show that PSNR of the proposed method outperforms the
cascaded re-recoding method in pixel-domain by maximum 0.1 dB and that computa-
tion complexity is saved by 256A+64S per 8×8 block.

DCT Block Conversion for H.264/AVC Video Transcoding 927

Even though we only considered the DCT conversion in this paper, in the near fu-
ture we will propose a new transcoder architecture that includes both quantization
conversion and DCT conversion to improve video quality and computation complex-
ity.

References

1. ISO/IEC 14496-10:2003: Coding of Audiovisual Objects –Part 10: Advanced Video cod-
ing. 2003 and ITU-T Recommendation H.264: Advanced video coding for generic audio-
visual services.

2. Vetro, A.; Christopoulos, C.; Sun, H.: Video Transcoding Architectures and Techniques:
An Overview. IEEE Signal Processing Magazine, Vol. 20. Issue 2. 18-29, March 2003

3. H. Sun, W. Kwok, and J. Zdepski: architectures for MPEG compressed bitstream scaling,
IEEE Trans. Circuits Syst. Video Technol., Vol. 5, 191-199, Apr. 1996

4. N. Bjork and C. Christopoulos: Trascoder architectures for video coding, IEEE Trans. Con-
sumer Electron., vol.44, 88-98, Feb. 1998.

5. J. Youn, M.T. Sun, and C.W. Lin: Motion vector refinement for high performance
transcoding. IEEE Trans. Multimedia, vol. 1, Mar. 1999, 30-40

6. J.N. Hwang, T.D. Wu, and C.W. Lin: Dynamic frame-skipping in video transcoding. In
Proc. IEEE Workshop Multimedia signal processing, Redondo Beach, CA, DEC. 1998,
616-621

7. Kalva, H., Vetro, A.. Sun, H., Performance Optimization of the MPEG-2 to MPEG-4 Video
Transcoder, SPIE Conference on VLSI Circuits and Systems, Vol. 5117, May 2003, 341-
350

8. S.F. Chang and D.G. Messerschmidt: Manipulation and compsiting of MC-DCT com-
pressed video, IEEE. J. Select. Areas Commun., Vol. 13, Jan. 1995.

9. C.W. Lin and Y.R. Lee: Fast algorithms for DCT-domain video transcoding, in Proc. IEEE
Int. Conf. Image Processing, Thessaloniki, Greece, Vol. 1, Sept. 2001, 421-424

10. Haiyan Shu: An Efficient Arbitrary Downsizing Algorithm for Video Transcoding, IEEE
Trans. Circuits Syst. Video Technol., Vol.14, No.6, Jun. 2004

11. Kwang-deok Seo, Jae-Kyoon Kim: Fast motion vector re-estimation for transcoding
MPEG-1 into MPEG-4 with lower spatial resolution in DCT-domain, Signal Processing:
Image Communication 19(2004) 299-312

12. Iain E.G. Richardson: H.264 and MPEG-4 video compression. Willey (2003)
13. J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer,

and T. Wedi: Video Coding with H.264 / AVC: Tools, Performance, and Complexity, IEEE
Circuits and Systems Magazine, Vol. 4, No. 1, Apr. 2004, 7-28

14. Henrique S. Malvar:Low-Complexity Transform and Quantization in H.264/AVC, IEEE
Trans. Circuits.Syst. Video Technol. Vol. 13, No.7, Jul. 2003, 598-602

15. http://www.mpeg.org/MPEG/MSSG/tm5/

Topic 12
Theory and Algorithms for Parallel Computation

Andrea Pietracaprina, Kieran Herley,
Christos Zaroliagis, and Casiano Rodriguez-Leon

Topic Chairs

The study of theoretical aspects related to the design, analysis and experimenta-
tion of efficient algorithms, and to the identification of effective models of com-
putation, represents a fundamental research area in parallel computing, which
has been alive and productive for over two decades and well represented in the
Euro-Par community. A distinctive characteristic of this Topic 12 is the vari-
ety of contributions addressing classical problems as well as the new challenges
posed by recent technological advances and emerging computing paradigms.

This year 13 papers were submitted to the topic, investigating a variety of
algorithmic and modeling problems for parallel computation and communication.
Among all submissions, 4 papers were accepted as full papers for the conference,
resulting in a 31% acceptance rate.

Accepted papers contain the following contributions: new centralized and
distributed algorithms for bufferless routing in leveled networks, which attain
optimal performance within logarithmic factors; results concerning the existence
and the design of truthful mechanisms for the computation of shortest path trees
in communication networks where edges are owned by selfish agents, under both
utilitarian and non-utilitarian scenarios; embeddings of the hypercube in the
partitioned optical passive starts network consisting of g groups of d processors
each, which are optimal for all values of g and d; on-line algorithms to serve
sequences of adversarial access requests to a shared memory page issued by n
processors moving in a certain metric space, which attain good competitive ratios
with respect to communication costs.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 929, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Bufferless Routing on Leveled Networks

Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
{buschc,kelkas,magdon}@cs.rpi.edu

Abstract. We give near optimal bufferless routing algorithms for leveled
networks. N packets with preselected paths are given, and once injected,
the packets may not be buffered while in transit to their destination. For
the preselected paths, the dilation D is the maximum path length, and
the congestion C is the maximum number of times an edge is used. We
give two bufferless routing algorithms for leveled networks:
(i) a centralized algorithm with routing time O((C + D) log(DN));
(ii) a distributed algorithm with routing time O((C + D) log2(DN)).
The distributed algorithm uses a new technique, reverse-simulation,
which is used to obtain a distributed emulation of the centralized algo-
rithm. Since a well known lower bound on the routing time is Ω(C +D),
our results are at most one or two logarithmic factors from optimal.

1 Introduction

We study bufferless routing on leveled networks, where packets cannot be stored
at nodes while in transit to their destination. In particular we consider hot-potato
(or deflection) routing [2], in which packets get “deflected” (like a “hot-potato”)
if they cannot make progress toward their destination. Buffereless routing is ap-
propriate when buffering is costly or impossible, for example in optical networks.

A leveled network with depth L has L + 1 levels of nodes, numbered 0 to L.
Every node belongs to exactly one level, and the only edges are between nodes
at consecutive levels (Figure 1). Many routing problems on multiprocessor net-
works can be represented as routing problems on leveled networks, for example
routing problems on the Butterfly, the Mesh (Figure 1), shuffle-exchange net-
works, multidimensional arrays, the hypercube, fat-trees, de Bruijn networks,
etc. (see [7, 14] for more details).

We assume a synchronous routing model in which at each discrete time step,
a node forwards at most one packet down any link (two packets may use a link,
one in each direction). We study many-to-one batch routing problems: we are
given N packets with preselected paths; each node is the source of at most one
packet, but may be the destination of many packets. Every preselected path is
monotonic in the sense that every edge in a path connects a lower level node
with a node in the next higher level, i.e., a path moves from left to right on the
general leveled network depicted in Figure 1. Here we are only concerned with
scheduling the packets given the paths, and not how to obtain the paths.

The routing time is the time at which the last packet reaches its destination.
For the preselected paths, the congestion C is the maximum number of packets

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 931–940, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

932 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

3

Butterfly Mesh

1 L

2

0 1 2 3 4 5 6

0

1

L − 1

......

0 2

General Leveled Network

Fig. 1. Leveled networks

that traverse any edge, and the dilation D is the maximum path length. At most
one packet can traverse any edge per time step, a lower bound on the routing
time is Ω(C + D), and routing times close to this are optimal.

If two or more packets wish to follow the same link at the same time step,
then a conflict occurs. Only one packet can follow this link, and the others must
be deflected along alternative links (since there are no buffers). Deflections may
change the preselected paths, however, we only consider bufferless algorithms in
which the final path followed by the packets contains every edge in its preselected
path. A routing time close to (C+D) is still optimal with respect to any routing
algorithm, buffered or not, even when we allow path deformation, provided that
the final paths contain the preselected paths.

Our Contributions. We present two new bufferless routing algorithms for
many-to-one routing problems in leveled networks. The first algorithm is cen-
tralized, and has routing time O(C log(DN)+D), which is at most a logarithmic
factor from optimal. The second algorithm is distributed and has routing time
O(C log2(DN) + D log(DN)), a logarithmic factor worse than the centralized
algorithm. In the distributed algorithm, all routing decisions are made locally.
Both results hold with high probability (w.h.p.), i.e., with probability at least
1 − O(1/DN). The distributed algorithm relies on a new technique, reverse-
simulation, which efficiently emulates the centralized algorithm. The final paths
used by the packets contain the preselected paths, which is useful to provide
guarantees for the delivery time of the packets. Further, for the centralized al-
gorithm, a packet never strays away from its preselected path.

The fundamental idea behind the centralized algorithm is to partition the
network into frames each containing O(log(DN)) levels. Packets are divided into
O(C) sets that move from frame to frame. The packets of a particular set are
routed from frame to frame by coloring their dependency graph, which is a graph
representing the conflicts between packet paths. It takes O(log(DN)) time steps
to move all the packets from one frame to the next, and since a packet traverses
at most O(D/ log(DN)) frames to its destination, once a packet is injected, it is
delivered in O(D) time steps. The packet sets are injected sequentially, spaced by
the time it takes to move packets from one frame to the next, so the last packet is
injected at time O(C log(DN)), resulting in a routing time O(C log(DN) + D).
Note that packets are not injected all simultaneously, but rather each packet is
injected at an appropriate time after which it moves from frame to frame.

Efficient Bufferless Routing on Leveled Networks 933

The main idea behind the distributed algorithm is to color the dependency
graph in a distributed way: packets randomly select colors and if the coloring is
valid, they will make it to their destination. If not, they use reverse simulation
to trace their paths backwards, recompute colors, and the process repeats. The
distributed coloring imposes an extra logarithmic factor in the routing time.

Related Work. Bufferless routing algorithms have been studied for various
specific network topologies, [1, 3–8, 10–12, 15]. Most related to our work is
[7], which gives a distributed algorithm for leveled networks with routing time
O(C+L) log9(LN). By using refined techniques, we improve this result by seven
logarithmic factors, and obtain a result in terms of D, rather than L. A recent
result in [9] gives a general bufferless routing algorithm for arbitrary networks
with routing time O((C + D) log3(n + N)), where n is the size of the network.
By taking advantage of the special structure of leveled networks, we can obtain
a better routing time. Further, our centralized algorithm is one of the few hot-
potato routing algorithms that keep the packets on their original preselected
paths. Store-and-forward (buffered) routing algorithms exist with near optimal
routing time for leveled as well as arbitrary networks (see for example [13]).

Paper Outline. We begin with some preliminaries (Section 2), followed by the
centralized (Section 3) and the distributed algorithm (Section 4).

2 Preliminaries

We begin with some preliminaries regarding packet paths, oscillations, frames,
and the dependencies between packets.

Paths. Every packet π has a preselected path p with path length |p|. Its current
path at time step t, denoted p(t), is defined as follows; we assume that the current
path is maintained in the header of the packet, and is used for deciding where
to send the packet at each time step. At time 0, p(0) = p, its preselected path. If
at time t, packet π is in node vi, with current path p(t) = (vi, vi+1, . . . , vk), and
packet π successfully follows the first edge (vi, vi+1) (the packet moves forward),
then, at time t + 1, packet π appears in node vi+1 with current path p(t +
1) = (vi+1, . . . , vk). If, however, at time t + 1 packet π is deflected toward a
node vj , then at time t + 1 it appears in node vj with current path p(t + 1) =
(vj , vi, vi+1, . . . , vk). If the packet moves forward, |p(t + 1)| = |p(t)| − 1 and if it
is deflected, then |p(t + 1)| = |p(t)|+ 1.

Oscillations. Suppose packet π has current path (vi, vi+1, . . . , vk). π oscillates
on edge e = (vi, vi+1) if it moves back and forth on e: if at time t, π appears
in vi, then at time t + 1, π appears in vi+1, and at time t + 2 it is back in vi,
and so on. When a packet oscillates, the length of its current path increases and
decreases by one each time. Oscillations are useful because they provide a way
to “buffer” packets on edges instead of at nodes.

Frames. We partition the levels of the network into γ non overlapping frames
F1, F2, . . . , Fγ , each containing λ levels (except for the last frame, which may

934 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

contain fewer). Frame Fi, 1 ≤ i < γ, consists of the λ levels (i− 1)λ, . . . , iλ− 1.
Frame Fγ consists of the levels (γ − 1)λ, . . . , L. Note that γ = !(L + 1)/λ". We
will pick λ = 4α log(DN), where α is an integer constant that will be defined
later; thus, the frames have logarithmic size. (If log(DN) is not an integer, we
use ! log(DN) ".)

We call the levels in frame Fi the inner-levels of Fi, and we number them from
1 to λ. Thus, inner-level k of frame Fi corresponds to real level (i−1)λ+(k−1),
where 1 ≤ k ≤ λ. The odd inner-levels are numbered 1, 3, . . . , λ−1 (recall that λ
is even). The inner level of an edge is the smaller of the inner-levels of the nodes
it is incident with. Thus, corresponding to odd inner-levels are odd inner-edges,
and similarly even inner-levels and even inner-edges.

Packet Sets and Dependency Graphs. We partition the set of packets Π
into s = 8αeC sets, Π1, Π2, . . . , Πs. Each packet is placed into one of these
sets uniformly at random. Thus, Π =

⋃s
i=1 Πi, and Πi ∩Πj = ∅ for i �= j, so

|Π | = ∑s
i=1 |Πi| = N .

Consider the packets in Πi, and two consecutive frames Fj and Fj+1. For
each packet π ∈ Πi denote by qπ the sub-path of its preselected path that
consists only of edges in Fj and Fj+1. We define the packet dependency graph
G(i,j) = (V(i,j), E(i,j)) as follows. The nodes of V(i,j) correspond to the packets
in Πi, so |V(i,j)| = |Πi|. Let π, σ ∈ Πi, then (π, σ) ∈ E(i,j) if and only if the
paths qπ and qσ share some edge in (Fj , Fj+1), i.e., if the paths collide.

The degree of a packet π in G(i,j), denoted d(i,j)(π), is the number of edges
incident with π. The degree of G(i,j), denoted d(i,j), is the maximum degree of
any packet in V(i,j). Let d = max{i,j} d(i,j), i.e., d is the maximum degree of any
of the graphs G(i,j), for any i and j.

We show that d cannot be too big. In fact, a packet path collides with at
most 2λC other paths over two consecutive frames. Only approximately 2λC/s =
O(λ/α) of these packets are in the same set, so we expect that d = O(λ/α):

Lemma 1. d ≤ λ/α = 4 log(DN), with probability at least 1− 1/DN .

Groups. We partition the network into groups, such that each group is a collec-
tion of γ′ consecutive frames, where γ′ = 2!D/λ " (namely, the group consists
of at most 2D + 2λ levels). We define two sets of groups. The first set of groups
is S1 = {g1, g2, . . . , gk1}, where group gi consists of frames F(i−1)γ′+1, . . . , Fiγ′ .
The group gk1 consists of the rightmost frames in the network and may contain
fewer than γ′ frames. Note that the groups in S1 do not share any levels. The
second set of groups is S2 = {h1, h2, . . . , hk2}, where group hi consists of frames
F(i−1+1/2)γ′+1, . . . , F(i+1/2)γ′ . The group hk2 , consists of the rightmost frames
in the network and may contain fewer than γ′ frames. Note that the groups in
S2 are shifted by γ′/2 frames with respect to the groups in S1.

A packet belongs to a group if its path lies entirely within the group. A packet
belongs to at least one group (since its preselected path length is at most D and
the groups have size ≥ 2D). If the packet belongs to a group in S1, we assign it
to S1, otherwise it belongs to a group in S2, and we assign it to S2. Note that
a packet may belong to a group in S1 and to a group in S2 if its path is in the

Efficient Bufferless Routing on Leveled Networks 935

intersection of the two groups. In this case, it is assigned to S1. We denote by
Π(Si) the packets that belong to group Si, and by Π(x, Sj) the set of packets
that belong to group x of Sj .

3 Centralized Algorithm

In the centralized algorithm, we route the packets in two consecutive sessions.
First, we route the packets Π(S1) (belonging to groups in S1), and then the
packets Π(S2). Since the packets in Π(S2) are routed after the packets in Π(S1)
have reached their destinations, they cannot possibly interfere with each other.

A particular session contains packets in various groups. Since a packet’s path
is contained in a single group, and since the groups are level-wise disjoint, the
packets in one group can be routed simultaneously with all the packets in another
group without any possibility of interfering. Thus, it suffices to describe the
algorithm to route the packets in any one group. We will focus on the particular
group x = g1 of S1. The algorithm for other groups is identical. We will simplify
the notation by dropping the x and Sj dependence. Hence, from now on, Π will
denote Π(g1, S1), and Πi will denote Πi(g1, S1).

The session consists of m phases, each of duration τ time steps. Packets move
on waves, from left to right, one frame per phase. Each packet set Πi is associated
with a particular wave, and each packet in Πi uses this wave until it reaches its
destination. Packets are assigned colors with respect to the dependency graph.
Packets of the same color are routed together on a boat (level) in the wave.
Different colors use different boats.

3.1 Waves

A wave ω is a pointer to a frame. Initially the wave is NULL. The wave enters
the network (points to frame F1) at some phase φi, and points to the next
higher frame at each subsequent phase, so in phase φi+k, it points to frame
Fk+1. Eventually, ω points to the last frame Fγ′ , and then leaves the network
(becomes NULL). There are s waves ω1, . . . , ωs (equal to the number of packet
sets). Wave ωi enters the network at phase φ2i−1. The last wave ωs enters in
phase φ2s−1 and after γ′ phases, it has left the network, so the number of phases
is m = 2s + γ′ − 1. We use the wave to also denote the frame it points to.

The purpose of wave ωi is to route the packets in set Πi along with it, as
it moves from lower to higher levels. Packet π ∈ Πi is injected when wave ωi

contains π’s source. The packet then moves along its wave and is absorbed either
when the wave contains its destination or its destination is one frame ahead of the
wave. Note that waves are spaced 2 frames apart in order to avoid interference
of packets in different waves while the waves move from frame to frame.

At the beginning of each phase, packets appear inside their respective waves,
and frames between waves are empty of packets; this property is essential for
moving packets along their waves. Consider a phase φ during which wave ωi

points to frame Fj . At the beginning of φ, Fj contains only packets from Πi,

936 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

and Fj+1 is empty of packets. By the end of phase φ, the packets in Fj will move
from frame Fj to frame Fj+1. Thus, at the beginning of the next phase, all these
packets are still in the wave ωi, and frame Fj is empty (which allows packets
of Πi+1 to move along wave ωi+1). We continue by describing in detail how the
packets of Πi move from Fj to Fj+1 during phase φ.

3.2 Initial and Target Levels

Suppose that phase φ consists of time steps t1, t2, . . . , tτ . At the beginning of
phase φ, the packets of Πi that are already in wave ωi are oscillating on odd
inner-edges of Fj . Suppose π ∈ Πi is oscillating on odd inner-edge e = (v	, v	+1)
of Fj , where the inner level of v	 is � (which is odd). The packet oscillates on
e so that at odd time steps t1, t3, . . . , packet π appears in v	. We say that π
oscillates at inner-level �, which is the initial inner-level of π in phase φ.

Now suppose that the current path of π at its initial inner-level � is a sub-
path of its preselected path. During phase φ, packet π will follow its current
path until it reaches a target inner-level �′ in Fj+1, where it will oscillate for
the remainder of the phase. At its target level, π’s current path will remain a
sub-path of its preselected path. The target level will become the new initial
level at the next phase, when the wave ωi points to Fj+1.

We define χ(i,j) different target inner-levels �1, �2, . . . , �χ(i,j) in Fj+1, where �k

is inner-level λ−(2k−1) in Fj+1. (Note that target inner-levels are odd, because λ
is even.) The parameter χ(i,j) is the chromatic number of the dependency graph
G(i,j). Since d(i,j) ≤ d, a trivial polynomial time coloring algorithm using d + 1
colors shows that χ(i,j) ≤ χ = d + 1. Each packet in Πi is thus assigned a color
between 1 and χ(i,j). Denote by Πi(k) the respective subset of Πi with color
k. Packets in Πi(k) have target level �k. Note that in the above discussion we
assume that j < γ′. If j = γ′ then all the target inner-levels are set to real level
2D−1, which are still in Fj . By construction, the paths of packets of same color
are conflict-free, i.e. do not share any edge, and thus can be routed together in
“boats” (see below). Further, the fact that the last frame extends beyond level
2D does not cause a problem because no packet will ever need to move into that
region, as it will be absorbed before that.

3.3 Boats

A boat b is a pointer to a level. We have χ(i,j) boats b1, . . . , bχ(i,j) . Initially, bk is
NULL. At time step t4k−3, boat bk points to the first inner-level of Fj (the boat
enters the wave). At each subsequent step, the boat points to the next higher
inner-level, so that at time step t4k−3+l it points to inner-level l + 1. After the
boat reaches the last inner-level of Fj it continues to the inner-levels of Fj+1 until
the boat reaches the target level �k of Fj+1, after which bk becomes NULL again.
Note that boats are spaced 4 levels away from each other, which will be important
when an oscillating packet needs to be deflected (see below). When the context is
clear, we use the term boat to refer to the inner-level it points to. Note that the

Efficient Bufferless Routing on Leveled Networks 937

last boat enters at time t4χ(i,j)−3, and takes 2λ−2χ(i,j)+1 steps to leave the wave,
so the number of time steps per phase is τ = 2(λ+maxi,j χ(i,j)−1) ≤ 2(λ+χ−1).

The packets of Πi(k) will use boat bk to move to their target level �k in Fj+1.
Suppose π ∈ Πi(k) is oscillating with initial level � at the beginning of phase φ.
Packet π will continue to oscillate until its boat bk is at inner-level �, at which
time packet π will “catch its boat” and move along with it. While on its boat
bk, π follows its current path until it reaches its target inner-level �k in Fj+1.
If, during this trip, π passes through its target node it is absorbed; otherwise
π reaches its target inner-level �k at which it will oscillate for the remainder of
the phase. Note that bk passes through odd inner-levels (in particular π’s initial
level) at odd time steps, so π is at its initial level when bk passes through it.

Packet Injection. A packet π ∈ Πi(k) with source node in frame Fj , is injected
into the network when its boat bk passes through its source node. π then moves
along with bk, following its current path, until it reaches its target level �k. While
packets move along their boats they may conflict with other packets; we now
describe how to handle such conflicts.

3.4 Packet Conflicts

Suppose π ∈ Πi(k) is on its boat bk, progressing along its current path to its
target level �k. π cannot conflict with another packet of Πi(k) because their
current paths are conflict-free (Πi(k) is an independent set in G(i,j)). Earlier
boats bk′ with k′ < k are ahead of bk, so π cannot conflict with packets in Πi(k′).
π can only conflict with packets in Πi(k′′) for k′′ > k, which are oscillating in
Fj . In such a conflict, the oscillating packet is deflected (i.e., oscillating packets
have lower priority than packets on boats). We show below that this does not
disrupt the algorithm.

Suppose π deflects packet σ ∈ Πi(k′′) which oscillates on edge e = (v	, v	+1)
(� is σ’s inner-level in Fj). Packet π deflects σ at the (odd) time step tk at which
π passes through �. Assume that σ followed edge e′ = (vl−1, vl) to reach v	. We
deflect σ along edge e′ to inner-level �− 1, (so that at time step tk+1, σ appears
in vl). Note that this is always possible because no other packet oscillating at
v	 arrived there using edge e′, because the packets that are oscillating at v	

all followed the same boat, and hence had edge disjoint paths. Note also that
a packet oscillating on the first inner-level may be deflected into the previous
frame Fj−1 by an injected packet, but this causes no problem. Packet σ now
follows edge e′ to appear back in vl at the (odd) time step tk+2. This is possible
because at time step tk+1 there is no boat passing through inner-level �−1 (boat
bk+1 is two levels away), and thus σ cannot be deflected further. When packet
σ is back at inner-level �, it continues to oscillate in �. Therefore, σ is always
at level � at odd time steps, and thus it can move with boat bk′ , when it passes
through �. Clearly, deflected packets remain on their path.

3.5 Routing Time

Since λ must be large enough to accommodate 2χ levels in Fj+1 (at least χ odd
target inner-levels), and χ ≤ d+ 1, λ = 4α log(DN) ≥ 2(d+ 1). From Lemma 1,

938 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

d ≤ 4 log(DN) w.h.p., so we can choose α = 3. The routing time is O(m · τ) (m
phases, each of duration τ). Using m = O(s + γ′) = O(C + D/ log(DN)), and
τ = O(λ + χ) = O(log(DN)) w.h.p. (Lemma 1), we get

Theorem 1. The routing time of the centralized algorithm is O(C log(DN) +
D), with probability at least 1− 1/DN .

4 Distributed Algorithm

We show how to make the centralized algorithm (Section 3) distributed when
all nodes know C, D, and N (a commonnly made assumption [7, 13]). Given
C,D,N , nodes can compute λ, γ′, s,m, τ . (Nodes do not need information about
the paths of packets other than the one they inject.)

The setup is similar to the centralized algorithm: packets follow boats on
waves to their destinations. The major difference with the centralized algorithm
is that the new algorithm provides a distributed coloring of the dependency
graphs G(i,j). The distributed coloring is accomplished with the method of re-
verse simulation that is described below.

4.1 Reverse Simulation

In the distributed algorithm, we define χ = 2λ/α (with α = 12) which will be an
upper bound on the number of colors assigned to the packets. Packets of set Πi

follow wave ωi. Suppose ωi points to frame Fj . We define the initial and target
levels in Fj , Fj+1 as in the centralized algorithm. The set of packets A ⊆ Πi

which are oscillating at their initial inner levels in frame Fj at the beginning of
the phase will move to Fj+1, where they will oscillate at their target levels.

A phase is divided into ξ rounds r1, . . . , rξ, each of length 2τ time steps, twice
as long as a phase in the centralized algorithm. Each round has χ boats and target
levels as in the centralized algorithm. At the beginning of round r1, each packet
in A chooses a color randomly among χ colors. Let A1 be the set of packets with
a valid color, and A′

1 the packets with an invalid color. (A = A1 ∪A′
1.)

During round r1, all packets in A will follow their respective boats. The
packets in A1 will not be deflected, and they follow their respective boats to
successfully reach their target levels where they will oscillate for the rest of the
round. Some packets, A′′

1 ⊆ A′
1, will collide with non-oscillating packets as they

follow their boats. Such packets can mark themselves as members of A′
1. These

packets need to choose new colors and try again. At the end of round r1, all
packets in A return to their initial level (see below). In round r2, packets in set
A′′

1 choose a new color, and a subset A′
2 ⊆ A′′

1 will still have an invalid color. A
subset A′′

2 ⊆ A′
2 will collide with non-oscillating packets, and will need to choose

new colors in the next round. Continuing in this way, in round k, the packets in
A′′

k−1 choose new colors, and those in A′
k ⊆ A′′

k−1 still do not have a valid color.
Of these packets, A′′

k will collide with non-oscillating packets. We will show A′
ξ

is empty w.h.p, i.e., all packets have a valid color by the last round. Thus, in

Efficient Bufferless Routing on Leveled Networks 939

the last round, all the packets reach their target inner-levels, where they will
oscillate till the next phase. We give the details below.

We define 4 levels of priority, 0, 1, 2, 3. When two or more packets collide,
the packet with highest priority always wins, and ties are broken randomly.
A packet which successfully reachs its target level in round k (without being
deflected by non-oscillating packets) keeps its color in all subsequent rounds and
attains priority 3 for the remainder of the phase, whenever it is not oscillating.
An oscillating packet has priority 1. A packet that chooses a new color in a
round attains priority 2 for the round. If, during the round, it collides with any
priority 2 or 3 packet, it immediately attains priority 0 for the remainder of the
round, and will select a new color in the next round. Such priority 0 packets do
not “distract” other forward going packets, and they follow arbitrary paths, due
to deflections, for the remainder of the round.

At the end of a round, all packets in A (with valid or invalid coloring) need
to appear back at their initial levels. Let t be the time step that the last boat
in the round leaves the network. After time t, all packets follow, in reverse, the
path that they followed from the beginning of the round. Thus, by the end of
the round, they appear at their initial level where they oscillate until the next
round. The path reversal is accommodated by having the nodes store all their
computations from the beginning of the round up to time t. After time t, the
nodes simply do the reverse computations, since routing is a reversible operation.
(This is why we need the round to be twice as long as τ .)

4.2 Packet Injections

So far we considered only the oscillating packets in Πi, that already appear in Fj

at the beginning of phase φ. We also need to consider the set of packets B ⊆ Πi

that will be injected in Fj during φ. Packets of B can be further partitioned into
two sets: B1, which are the packets of B whose source are at odd inner-levels of
Fj , and B2, which have sources at even inner-levels of Fj . Packets of B1 and B2

are treated separately so that they can not interfere with each other.
We divide phase φ into three sub-phases φA, φB1 , and φB2 in which we send

the packets of the respective sets A, B1 and B2 to Fj+1. Each sub-phase consists
of ξ rounds. We also divide the frame Fj+1 into three disjoint regions FA, FB1 ,
and FB2 , each consisting of 2χ inner-levels and containing χ target levels. Region
FA occupies the upper one-third (right) inner-levels of Fj+1, FB1 the middle one-
third inner-levels, and FB2 the lower (left) one-third inner-levels. Packets of set
A,B1 and B2, have their target levels in FA, FB1 and FB2 , respectively.

During phase φA the packets of set A will move to region FA, using the
algorithm we described in Section 4.1. During φB1 , the packets of B1 are injected
into the network, and then they move to their target levels in region FB1 using
the reverse simulation technique that was used for packets in set A. The initial
levels of the packets in B1 are the inner-levels of their sources, and the packets are
injected at the beginning of phase φB1 . Since a node injects at most 1 packet, the
packets are guaranteed to be able to oscillate on their initial inner-levels during
the reverse simulation. At the beginning of phase φB2 , the packets of set B2 are

940 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

injected into the network. Those packets will move to their target levels in region
FB2 during phase φB2 using the reverse simulation technique that was used for
packets in set A. Those packets will also oscillate on their initial inner-levels,
which are even (as opposed to packets in A and B1 which have odd initial inner-
levels). In order to handle the even levels, during this phase the boats enter the
frame Fj from inner-level 2.

4.3 Routing Time

Since χ ≥ 2d w.h.p, a packet picks a valid color with probability ≥ 1
2 , thus only

O(log(DN)) rounds are needed for every packet to pick a valid color, adding an
extra factor of log(DN) to the centralized routing time. (We omit the details.)

Theorem 2. The routing time of the distributed algorithm is O(C log2(DN) +
D log(DN)), with probability 1−O(1/DN).

References

1. S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Direct routing on trees.
In Proc. SODA, pages 342–349, 1999.

2. P. Baran. On distributed communications networks. IEEE Transactions on Com-
munications, pages 1–9, 1964.

3. A. Ben-Dor, S. Halevi, and A. Schuster. Potential function analysis of greedy
hot-potato routing. Theory of Computing Systems, 31(1):41–61, Jan. / Feb 1998.

4. S. N. Bhatt, G. Bilardi, G. Pucci, A. G. Ranade, A. L. Rosenberg, and E. J.
Schwabe. On bufferless routing of variable-length message in leveled networks.
IEEE Trans. Comput., 45:714–729, 1996.

5. A. Borodin, Y. Rabani, and B. Schieber. Deterministic many-to-many hot potato
routing. IEEE Tran. on Parallel and Dist. Sys., 8(6):587–596, June 1997.

6. A. Broder and E. Upfal. Dynamic deflection routing on arrays. In Proc. STOC,
pages 348–358, May 1996.

7. C. Busch. Õ(congestion + dilation) hot-potato routing on leveled networks. Theory
Comput. Syst., 37(3):371–396, 2004.

8. C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proc. STOC,
pages 278–285, May 2000.

9. C. Busch, M. Magdon-Ismail, and M. Mavronicolas. Universal bufferless routing.
In Proc. 2nd Workshop on Approximation and Online Algorithms (WAOA), pages
239–252, 2004.

10. C. Busch, M. Magdon-Ismail, M. Mavronicolas, and R. Wattenhofer. Near-optimal
hot-potato routing on trees. In Proc. Euro-Par, pages 820–827, 2004.

11. U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In Proc. FOCS,
pages 553–562, 1992.

12. C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays.
In Proc. SPAA, pages 273–282, 1993.

13. F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing
and sorting on fixed-connection networks. J. Algorithms, 17(1):157–205, 1994.

14. F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays - Trees - Hypercubes. Morgan Kaufmann, San Mateo, 1992.

15. F. Meyer auf der Heide and C. Scheideler. Routing with bounded buffers and
hot-potato routing in vertex-symmetric networks. In Proc. ESA, 1995.

Efficient Truthful Mechanisms for the
Single-Source Shortest Paths Tree Problem�

Luciano Gualà1 and Guido Proietti1,2

1 Dipartimento di Informatica, Università di L’Aquila, Italy
{guala,proietti}@di.univaq.it

2 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy

Abstract. Let a communication network be modelled by an undirected
graph G = (V, E) of n nodes and m edges, and assume that each edge is
controlled by a selfish agent. In this paper we analyze the problem of de-
signing a truthful mechanism for computing one of the most used struc-
tures in communication networks, i.e., the single-source shortest paths
tree. More precisely, we will show that under various realistic agents’ be-
havior scenarios, it can be guaranteed not only the existence, but also
the efficiency (in terms of running time complexity) of such mechanisms.
In particular, for the fundamental case in which the problem is util-
itarian, we will show that a truthful mechanism can be computed in
O(mn log α(m,n)) time, where α(m, n) is the classic inverse of the Ack-
ermann’s function.

Keywords: Equilibria in Distributed Systems, Single-Source Shortest
Paths Tree, Selfish Agents, Algorithmic Mechanism Design, Truthful
Mechanisms.

1 Introduction

Mechanisms are a classical concept of the theory of non-cooperative games [16].
In these games there are several independent agents that have to work together
in order to optimize a global objective function. However, each agent has her own
valuation function and may lie in hope of getting a higher profit. This leads to
economically suboptimal resource allocation and is therefore undesirable. The
main objective of mechanism design theory is to study how to incentive the
agents in order to cooperate with the solving algorithm. A mechanism is a pair
M = 〈g(·), p(·)〉, where g(·) is an algorithm computing a solution, and p(·)
specifies the payments provided to the agents. Informally, a mechanism is truthful
if its payments guarantee that agents are not stimulated to lie. Then, the problem
of combining the game theoretic concept of designing a truthful mechanism, with
the computational complexity requirement of designing an efficient algorithm, is
exactly the topic of the algorithmic mechanism design (AMD) for selfish agents.

� Work partially supported by the Research Project GRID.IT, funded by the Italian
Ministry of Education, University and Research.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 941–951, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

942 Luciano Gualà and Guido Proietti

In their seminal paper concerned with AMD [15], Nisan and Ronen addressed
the classic shortest path problem. This problem enjoys the property of being
utilitarian. For utilitarian problems, there exists a well-known class of truthful
mechanisms, i.e., the Vickrey-Clarke-Groves (VCG) mechanisms [4, 6, 21], and
therefore the shortest path problem can be solved optimally. Afterwards, in a
sequel of papers, efficient truthful mechanism have been designed for solving
several other network design problems [8, 9, 12, 14, 15, 19].

In this paper, we focus on one of the most popular network topologies, that
is the single-source shortest paths tree (SPT). What is interesting here is that an
SPT naturally admits both utilitarian and non-utilitarian formulations. Indeed,
as we will discuss later in the paper, it can well happen that an agent gives an
evaluation of her contribution which is simply proportional to her private type,
and this unavoidably makes the problem non-utilitarian. Therefore, we analyze
both the scenarios, and we provide the following main results:

– In the utilitarian case, we provide a VCG-mechanism which can be imple-
mented in O(mn logα(m,n)) time on a RAM, and in O(mnα(m,n)) time on
a pointer machine, where α(m,n) is the inverse of the Ackermann’s function
defined in [20];

– In the non-utilitarian case, we provide: (i) an n-approximate VCG-mech-
anism which can be implemented in almost optimal O(mα(m,n)) time, and
(ii) a mechanism guaranteeing both truthfulness and positive utilities for the
agents which can be implemented in O(m + n logn) time.

The paper is organized as follows: In Section 2 we recall some basic definitions
from both graph theory and algorithmic mechanism design; in Section 3 we deal
with the utilitarian version of our problem, while in Section 4 we analyze the
different solutions for the non-utilitarian case.

2 Basic Definitions

Let G = (V,E) be an undirected graph, with |V | = n nodes and |E| = m edges,
and with a positive real weight associated with each edge e ∈ E. Given a source
node s and a destination node z in G, a path in G between s and z is a shortest
path, say PG(s, z), if the sum of its edge weights (called distance in G between
s and z, and denoted by dG(s, z)) is minimum. Given a source node s ∈ V , we
denote by SG(s) a single-source shortest paths tree (SPT) of G rooted in s, i.e,
the union of all the shortest paths from s to every v ∈ V \ {s}. Given u, v ∈ V ,
we denote by LCA(u, v) the least common ancestor of u and v in SG(s), i.e, the
ancestor of both u and v in SG(s) which is farthest from s.

Let e = (u, v) ∈ SG(s) be a tree edge, with u closer to s than v. Let M(e)
denote the set of nodes in SG(s) reachable from s without passing through edge
e, and let N(e) = V \M(e) be the remaining nodes. Sets M(e) and N(e) define
a cut in G, and C(e) = {(x, y) ∈ E\{e} | (x ∈M(e)) ∧ (y ∈ N(e))} is the set of
the edges crossing the cut. Moreover, we denote by ||e|| the cardinality of N(e).

Efficient Truthful Mechanisms for the SPT Problem 943

Let a communication network be modelled by a 2-edge-connected graph G,
and assume that each edge is owned by a selfish agent Ae, which holds a private
information te. We call this value input type of the agent Ae. This value depends
on various factors (e.g., bandwidth, reliability, etc.). Only agent Ae knows te,
while everything else is public knowledge. Each agent has to declare a public
reported type re to the mechanism. We will denote by t the vector of input
types, and by r the vector of bids.

For a given optimization problem defined on G, there exists some set of
feasible solutions F that the mechanism is allowed to choose. For each feasible
solution x ∈ F , some measure function μ(x, t) is defined, which depends on the
true types. The mechanism tries to optimize μ(x, t), but of course it does not
know t directly.

For every agent Ae, a function ve(te, x) expresses Ae’s valuation with respect
to an output x ∈ F : this is a quantification of the service carried on by Ae into x.
While te is known only by the agent Ae, the valuation function is public. In order
to offset the costs deriving from these services, the mechanism provides some
reward to agents participating to the computed solution, i.e., the mechanism
makes a payment pe(r) to the agent Ae for the service provided in a solution
which is computed as a function of the reported vector r.

A mechanism is a pair M = 〈g(r), p(r)〉, where g(r) is an algorithm that,
given agents’ bids, computes a feasible solution in F , and p(b) is a scheme which
describes the payments provided to the agents.

For each agent Ae and for each solution g(r) computed by the mechanism,
the utility function of Ae is defined as ue(te, r) = pe(r)−ve(te, g(r)). We assume
that each agent is selfish, i.e., she always attempts to maximize her utility. Let
r−e denote the vector of all bids besides re; the pair (r−e, re) will denote the
vector r. We say that truth-telling is a dominant strategy for agent Ae if bidding
te always maximizes her utility, regardless of what the other agents bid, i.e.,
ue(te, (r−e, te)) ≥ ue(te, (r−e, re)), for all r−e and re. A mechanism is said truth-
ful if, for every agent, truth-telling is a dominant strategy. Moreover, let ε(σ)
denote a positive real function of the input size σ. Then, an ε(σ)-approximation
mechanism is a mechanism which returns a solution g(r) which comes within a
factor ε(σ) from the optimum, i.e., μ(g(r), t) ≤ ε(σ) ·μ(x∗, t), where x∗ is an op-
timal solution with respect to the vector t. We say that a mechanism is poly-time
computable if g(·) and p(·) are computable in polynomial time and that satisfies
the voluntary participation condition if agents never incur in a net loss.

One of the most important results in mechanism design theory are the well-
know Vickrey-Clarke-Groves (VCG) mechanisms. A VCG-mechanism applies
to mechanism design problems called utilitarians and enjoys the fundamental
property of being truthful. A mechanism design problem is called utilitarian if
its measure function satisfies μ(x, t) =

∑
e∈E ve(te, x).

Definition 1 (VCG-mechanisms). A mechanism is of the VCG-family if:

1. g(r) ∈ argminx∈F

{∑
e∈E ve(re, x)

}
.

2. pe(r) =
∑

e′ �=e ve′(re′ , g(r))+he(r−e), where he(r−e) is an arbitrary function
independent of re.

944 Luciano Gualà and Guido Proietti

3 The Utilitarian Case

Let be given a communication network modelled by an undirected graph G =
(V,E) in which each edge e ∈ E is owned by a selfish agent. In the following, we
will denote by G and G̃ the input graph as weighted with respect to the reported
values and the input types, respectively.

Suppose that Ae holds, as the private type te for the owned edge e, the length
of the communication link, and thus the time needed to cross it, and assume that
the system-wide goal is to minimize the completion time for delivering a message
from a distinguished node s ∈ V to every node v ∈ V \{s}. This means that the
system looks for an SPT rooted in s of G̃.

3.1 A (Truthful) VCG-Mechanism

By using the notation introduced in the previous section, the problem can be
formalized as follows. The set of feasible solutions F is the set of all the spanning
trees (considered in the following as rooted in s) of G̃, and a measure of a solution
T ∈ F is

μ(T, t) =
∑
v∈V

dT (s, v). (1)

To complete the description of the problem, we have to define the agents’
valuation. It is clear that, if an agent Ae participates to the output with her
edge e, she will incur in a transmission cost (i.e., the cost for forwarding a
message through that edge). In our scenario it is reasonable to assume that the
transmission cost is proportional to the length of the edge, i.e., proportional to
the value te. Notice that the TCP/IP protocol used in Internet for broadcasting
a message is the so-called unicast. In this protocol, if a source wants to send
a message to a set of recipients, it must send a copy of the message for each
destination. Therefore, if any solution T ∈ F is used for broadcasting a message
from s to all the other nodes, then the cost for the agent Ae can be expressed
as follows:

ve(te, T) =
{
te||e|| if e ∈ E(T);
0 otherwise.

Indeed, if an agent Ae participates to the output T , she will incur a transmission
cost of te for each message which passes through e, and the number of these
messages is exactly ||e||.

From the above assumptions, it immediately follows that the problem is
utilitarian. Indeed, the measure function (1) can be rewritten as

μ(T, t) =
∑
v∈V

dT (s, v) =
∑

e∈E(T)

te||e|| =
∑
e∈E

ve(te, T).

This means that we can use a VCG-mechanism to solve the problem. There-
fore, let M1 be a mechanism defined as follows:

Efficient Truthful Mechanisms for the SPT Problem 945

1. The algorithmic output specification selects an SPT SG(s) of G;
2. Let G− e = (V,E\{e}). Then, the payment function for Ae is defined as

pe(r) =
{∑

v∈V dG−e(s, v)−
(
μ(SG(s), r) − re||e||

)
if e ∈ E(SG(s));

0 otherwise.

It is clear that the above payments obey to Definition 1 and then the mech-
anism is a (truthful) VCG-mechanism. Furthermore, this is a payment scheme
inducing a so-called pivotal mechanism, which can be shown to satisfy the vol-
untary participation [4].

3.2 Mechanism Time Complexity

The algorithmic question is now the following: how fast can the above mechanism
be computed? We start analyzing the cost for computing the payment scheme.

To compute pe(r) for each e ∈ E(SG(s)), the bottle-neck is to find all the
distances dG−e(s, v), for every v ∈ V . Indeed, it is not hard to see that the term
μ(r, SG(s)) − re||e|| can be found, for all the edges e ∈ E(SG(s)), in O(n) time.
A trivial solution consists in computing a new SPT of the graph G − e from
scratch, once for each edge e ∈ E(SG(s)). This solution clearly takes O(mn +
n2 logn) time. We now show how to improve (on a RAM) the above bound to
O(mn logα(m,n)) time.

We start by computing, for all the pairs u, v ∈ V , the distance dG(u, v). This
can be done in O(mn logα(m,n)) time [17]. Then, we solve n− 1 subproblems.
Each subproblem is identified by a distinct destination node z ∈ V , and asks for
computing the distance dG−e(s, z) for each edge e of the path in SG(s) between s
and z. We have to solve exactly n−1 subproblems, one for each z ∈ V \{s}, since
the distance from s to z may increase – as a consequence of deleting the edge e –
only if e belongs to PG(s, z). We will solve each subproblem in O(m logα(m,n))
time, by achieving a bound of O(mn logα(m,n)) time for the original problem.

Let PG−e(s, z) be a replacement shortest path for the edge e, i.e., a path from
s to z in G− e of (minimum) length dG−e(s, z). The problem of finding all the
replacement shortest paths, one for each edge of PG(s, z), has been efficiently
solved in O(m + n logn) time on a pointer machine [10], and O(mα(m,n))
time on a word RAM [11], respectively. Both algorithms are based on a pre-
computation of the SPTs SG(s) and SG(z). We now show how to improve the
above results to O(m logα(m,n)) time, by using a powerful structure called
Split-Findmin [17].

Let e = (u, v) be an edge on PG(s, z), with u closer to s than v. Since a
replacement shortest path PG−e(s, z) joining s and z must contain an edge in
C(e), it follows that it corresponds to a path of length

dG−e(s, z) = min
f=(x,y)∈C(e)

{
k(f) := dG−e(s, x) + rf + dG−e(y, z)

}
,

which can be shown [10] to be equivalent to

dG−e(s, z) = min
f∈C(e)

{
dSG(s)(s, x)+rf+dSG(z)(y, z)

}
= min

f∈C(e)

{
dG(s, x)+rf+dG(y, z)

}
. (2)

946 Luciano Gualà and Guido Proietti

Hence, since we have pre-computed the all-pairs distances in G, k(f) is available
in O(1) time for fixed f . It then remains to select the minimum over C(e). To do
this efficiently, we use a Split-Findmin structure. This is a structure operating
on a collection of disjoint sequences of n elements. Initially, there is only one
sequence containing all the elements, and each element u has a key k(u) := +∞.
Then, the structure supports the following operations:

split(u): Split the sequence containing u into two sequences of elements: one
up to and including u, the other sequence taking the rest;

findmin(u): Return the element (and the associated key) in u’s sequence with
minimum key;

decrease-key(u, k′): Set k(u) := min{k(u), k′}.
We find all the distance dG−e(s, z) as follows. First, we label each non-tree

edge f with the value (2). Then, we initialize a Split-Findmin structure, where
the initial n-elements sequence consists of the vertices of SG(s) as sorted in any
arbitrary post-order. We maintain two invariants: (1) every sequence in the Split-
Findmin structure corresponds to some rooted subtree of SG(s), and (2) k(u)
corresponds to the label of a min-label edge connecting u to a vertex outside u’s
sequence (i.e., outside the subtree of SG(s) currently containing u).

Let now e = (u, v) ∈ PG(s, z). By invariants (1) and (2), if S is a sequence in
the Split-Findmin structure and v is the root of the subtree corresponding to S,
then findmin(v) will return a key k(fe), where fe is a non-tree edge belonging to
PG−e(s, z) and k(fe) is exactly the distance dG−e(s, z). Once fe is determined,
we proceed to solve the problem for the children of v along the path PG(s, z).
Because of the post-order arrangement of the nodes, v is the rightmost element
in its sequence. Then, we perform one split centered at the element preceding
v in the sequence (this will sever v), and one additional split (in any arbitrary
order) for each of the children of v in SG(s), to reestablish invariant (1). After,
we focus on the sequence associated with the children of v in PG(s, z), say w,
and we restore invariant (2) by performing a number of decrease-key operations.
More precisely, for each edge f = (w′, y) such that LCA(w′, y) = v and w′ is a
descendant of w in SG(s), we issue the operation decrease-key(w′, k(f)) (see
Figure 1). Concerning the time complexity, the following lemma holds:

Lemma 1. Let PG(s, z) be a shortest path joining s and z. Given all the dis-
tances dG(s, x) and dG(z, x) for each x ∈ V , all the distances dG−e(s, z) for each
e ∈ PG(s, z) can be determined in O(m logα(m,n)) time.

Proof. Since k(f) is available in O(1) time for a fixed non-tree edge f , labelling all
the non-tree edges takes O(m) time. Concerning the Split-Findmin operations,
in total there are O(m) operations: O(n) splits (one for each subtree whose
root is adjacent to some node of PG(s, z)), O(n) findmins (one for each node of
PG(s, z)), and O(m) decrease-keys (at most one for each non-tree edge). This
takes O(m logα(m,n)) time [17]. Other costs, such as the post-order traversal
and finding least common ancestors, are linear [2]. ��

Efficient Truthful Mechanisms for the SPT Problem 947

y′′

s

v

e

z

w

v′ v′′

SG(s)

u

w′

y′

S · · · w′ · · · w′′ · · · w· · · v′ · · · v′′ v

w′′

Fig. 1. The sequence S corresponding to the subtree of SG(s) rooted at v is split after
the findmin(v) operation. Dashed edges are those for which a decrease-key operation
is performed.

We are now ready to prove the main result:

Theorem 1. The mechanism M1 is a truthful mechanism for the utilitarian
SPT problem, and can be computed on a RAM in O(mn logα(m,n)) time.

Proof. The mechanism belongs to the VCG-family, and therefore it is truthful.
Concerning the output specification, the fastest solution for computing an SPT
is the classic Dijkstra’s algorithm implemented with Fibonacci heaps, which runs
in O(m + n logn) time [5]. On the other hand, as far as the payment scheme is
concerned, we proceed as follows. First, we find the all-pairs distances in G in
O(mn logα(m,n)) time [17], and we solve each of the above described subprob-
lems in O(m logα(m,n)) time. Then, for each edge e = (u, v) ∈ E(SG(s)), we
extract from the solutions of the subproblems all the distances dG−e(s, x), for
every x in the subtree of SG(s) rooted at v (all the other nodes clearly maintain
their distance from s in G− e). Thus, we can easily compute pe(r) in O(n) time,
since μ(r, SG(s)) and re||e|| can be obtained in O(n) time by a trivial modified
post-order visit of SG(s). Since we have to compute exactly n−1 payment func-
tions, one for each tree edge, the claim follows. ��

Notice that on a pure pointer machine model, the mechanismM1 can be com-
puted in O(mnα(m,n)) time, since in this case the Split-Findmin data structure
requires O(mα(m,n)) time for solving any given subproblem [17].

4 The Non-utilitarian Case

The utilitarian scenario assumes that each agent, in doing her valuation, starts
from the assumption that each atomic operation will involve a traffic load on the

948 Luciano Gualà and Guido Proietti

owned edge which is proportional to the edge length times the size of the corre-
sponding appended subtree of SG(s). However, in another reasonable scenario,
an agent might evaluate her participation to an output T ∈ F simply as follows:

ve(te, T) =
{
te if e ∈ E(T);
0 otherwise. (3)

This scenario is realistic whenever the agent starts from the assumption that
each atomic operation will involve a traffic load on the owned edge which is
proportional only to the edge length (this can happen, for instance, when the
transmission protocol replicates at each node a given message once for each
descending node, like in the Internet Protocol multicast [3], so that each tree
edge will simply afford the cost of forwarding a single message).

This setting makes the problem non-utilitarian, since the measure function
associated with the SPT problem does not equal the sum of the agents’ valua-
tions. In the following, we show how to approach the problem from two different
perspectives. In both cases, we make use of the pointer machine computational
model, since we cannot take advantage of the addressing capabilities of a RAM,
as we did for the utilitarian case.

4.1 An Approximate VCG-Mechanism

A brute-force solution consists in designing a mechanism from the VCG-family.
Since the algorithmic output specification has to minimize the sum of the agents’
valuations, this will clearly return an MST of G̃. More formally, let M2 be the
mechanism defined as follows:

1. The algorithmic output specification computes an MST of G;
2. Let w(TG) =

∑
e∈E(TG) re denote the total weight of the solution TG, as

computed in G. Then, the payment function for Ae is defined as

pe(r) =
{
w(TG−e)−

(
w(TG)− re

)
if e ∈ E(TG);

0 otherwise.

Theorem 2. The mechanism M2 is a truthful n-approximation mechanism for
the non-utilitarian SPT problem, and is computable on a pointer machine in
O(t∗(TG)) = O(mα(m,n)) time, where t∗(TG) is the time needed to solve opti-
mally the MST problem.

Proof. It is easy to see that g(·) minimizes the sum of the agents’ valuations and
that the mechanism belongs to the VCG-family. Indeed, the above payments
obey to Definition 1 and then the mechanism is truthful (and consequently TG

is an MST of G̃). Concerning the approximation ratio, let SG̃(s) be an optimal
solution for the SPT problem. We now show that the solution returned by the
VCG-mechanism is a factor-n approximation. Indeed, if we consider TG̃ as rooted
in s, we have

μ
(
t, T

G̃

)
=

∑
e∈E(T

G̃
)
te||e|| ≤ n

∑
e∈E(T

G̃
)
te = n w

(
T

G̃

) ≤ n w
(
S

G̃
(s)
) ≤ n μ

(
t, S

G̃
(s)
)
.

Efficient Truthful Mechanisms for the SPT Problem 949

Concerning the time complexity, observe that the mechanism essentially re-
quires the computation on a pointer machine of an MST of G (which can be done
optimally through the algorithm presented in [18], which has an O(mα(m,n))
runtime, but for which a tighter analysis is not known), and the solution of a sen-
sitivity analysis problem on TG. As showed in [7], such a problem can be solved
in optimal time as well, but still a tight analysis cannot be provided, thought it
is known that such a problem is not harder than the MST one. Summarizing,
the time complexity is O(t∗(TG)) = O(mα(m,n)). ��

Notice that the above approximation ratio is tight, since it is easy to exhibit
an example in which an MST is an n-approximation of an SPT. This means
that we cannot hope to get a better approximate result by means of VCG-
mechanisms.

4.2 An Exact Truthful Mechanism Satisfying
the Voluntary Participation

The alternative solution we propose is inspired to the results in [1], where the
authors show how to design truthful mechanisms for those problems in which
each agent’s valuation has the form ve(te, x) = te we(r), where we(r) is called
work curve for agent Ae and it is some amount of work that depends on the
algorithmic output specification, which in its turn is a function of the reported
types vector r. We say the output algorithm g(r) is decreasing if each of the
associated work curves is decreasing (i.e., we(r−e, re) is a decreasing function of
re, for all Ae and fixed r−e).

In [1] it is shown that a mechanism is truthful for a problem where each
agent’s valuation has the above form if and only if the output algorithm g(r)
is decreasing, and the payments are given by an explicit formula involving an
integral of the the work curve. In particular, if

∫ +∞
0

we(r−e, z) dz is bounded for
all Ae and r−e, the mechanism satisfies also the voluntary participation and the
payment function is of the form

pe(r−e, re) = re we(r−e, re) +
∫ +∞

re

we(r−e, z) dz. (4)

As far as the SPT problem is concerned, let now g(r) denote the output
specification of an algorithm computing an SPT of G. Then, for each agent Ae,
we can rewrite the valuation (3) as ve(te, g(r)) = te we(r), where

we(r) =
{

1 if e ∈ E(g(r));
0 otherwise. (5)

Then, we can formally define the following mechanism M3:

1. The algorithmic output specification selects an SPT SG(s) of G;
2. The payment function for Ae is defined as (4)1.
1 From the assumption that the graph G is 2-edge-connected, it follows that (5) sat-

isfies
∫ +∞
0

we(r−e, z) dz < +∞, thus implying that we can apply (4), which satisfies
voluntary participation.

950 Luciano Gualà and Guido Proietti

We can now prove the following result:

Theorem 3. The mechanism M3 is a truthful mechanism for the non-utili-
tarian SPT problem, and is computable on a pointer machine in O(m+ n logn)
time.

Proof. The truthfulness follows from the fact that the output function is decreas-
ing. Indeed, for each agent Ae, if we denote by r̂e the maximum reported type
for e such that e belongs to the computed solution, then the function we(r−e, re)
is equal to 1 for 0 ≤ re ≤ r̂e, and is equal to 0 for any re > r̂e. Thus, this is a
mechanism in the class defined in [1].

From the time complexity point of view, once again the output specification
can be computed in O(m + n logn) time. Concerning the payments, we have to
compute all the integrals

∫ +∞
re

we(r−e, z) dz, one for each e ∈ E(SG(s)) (for all
other edges, the payment (4) is obviously equal to 0). By definition, we have∫ +∞

re

we(r−e, z) dz = r̂e − re,

from which it follows that for a tree edge, we have that pe = r̂e. Let now e =
(u, v) ∈ E(SG(s)), with u closer to s that v. Then, e remains in SG(s) as long as
dG(s, u)+ re ≤ dG−e(s, v), from which it follows that r̂e = dG−e(s, v)− dG(s, u).
As shown in [12], computing dG−e(s, v) is equivalent to select a non-tree edge
such that

dG−e(s, v) = min
f=(x,y)∈C(e)

{
dG−e(s, x) + rf + dG−e(y, v)

}
. (6)

The selection of all the non-tree edges (one for each tree edge) satisfying (6)
costs O(mα(m,n)) time [12]. This means that we can compute all the payments
in O(mα(m,n)) = O(m + n logn) time, from which the claim follows. ��

References

1. A. Archer and É. Tardos, Truthful mechanisms for one-parameter agents, Proc.
42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), 482–491, 2001.

2. A.L. Buchsbaum, H. Kaplan, A. Rogers, and J. Westbrook, Linear-time pointer-
machine algorithms for least common ancestors, MST verification, and dominators,
Proc. 30th ACM Symp. on Theory of Computing (STOC’98), 279–288, 1998.

3. Cisco Systems Inc. c©, Internetworking Technologies Handbook, Cisco Press, 2004.
4. E. Clarke, Multipart pricing of public goods, Public Choice, 8:17–33, 1971.
5. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net-

work optimization algorithms, J. of the ACM, 34(3):596–615, 1987.
6. T. Groves, Incentives in teams, Econometrica, 41(4):617–631, 1973.
7. L. Gualà and G. Proietti, Optimal MST sensitivity analysis on a pointer machine,

manuscript submitted for publication, 2005.

Efficient Truthful Mechanisms for the SPT Problem 951

8. L. Gualà and G. Proietti, A truthful (2-2/k)-approximation mechanism for the
Steiner tree problem with k terminals, 11th Int. Computing and Combinatorics
Conference (COCOON’05), to appear.

9. J. Hershberger and S. Suri, Vickrey prices and shortest paths: what is an edge
worth?, Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS
2001), 252–259.

10. K. Malik, A.K. Mittal, and S.K. Gupta, The k most vital arcs in the shortest path
problem, Oper. Res. Letters, 8:223–227, 1989.

11. E. Nardelli, G. Proietti, and P. Widmayer, A faster computation of the most vital
edge of a shortest path, Info. Proc. Letters, 79(2):81–85, 2001.

12. E. Nardelli, G. Proietti, and P. Widmayer, Swapping a failing edge of a single
source shortest paths tree is good and fast, Algorithmica, 36(4):361–374, 2003.

13. E. Nardelli, G. Proietti, and P. Widmayer, Finding the most vital node of a shortest
path, Theoretical Computer Science, 296(1) (2003) 167–177.

14. E. Nardelli, G. Proietti, and P. Widmayer, Nearly linear time minimum spanning
tree maintenance for transient node failures, Algorithmica, 40(2):119–132, 2004.

15. N. Nisan and A. Ronen, Algorithmic mechanism design, Games and Economic
Behaviour, 35:166–196, 2001.

16. M.J. Osborne and A. Rubinstein, A course in Game Theory, MIT Press, 1994.
17. S. Pettie and V. Ramachandran, Computing shortest paths with comparisons and

additions, Proc. 13th ACM Symp. on Discrete Algorithms (SODA’02), 267–276,
2002.

18. S. Pettie and V. Ramachandran, An optimal minimum spanning tree algorithm,
J. of the ACM, 49(1):16–34, 2002.

19. G. Proietti and P. Widmayer, A truthful mechanism for the non-utilitarian mini-
mum radius spanning tree problem, 17th ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA’05), to appear.

20. R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. of the
ACM, 22(2):215–225, 1975.

21. W. Vickrey, Counterspeculation, auctions and competitive sealed tenders, J. of
Finance, 16:8–37, 1961.

Optimal Embedding of the Hypercube
on Partitioned Optical Passive Stars Networks�

Christos Kaklamanis and Charalampos Konstantopoulos

Research Academic Computer Technology Institute and
Computer Engineering and Informatics Department,

University of Patras, 26500 Rio, Greece
{konstant,kakl}@cti.gr

Abstract. Partitioned Optimal Passive Stars network, POPS(d, g), is
an optical interconnection network of N processors (N = dg) which uses
g2 optical passive star couplers. The processors of this network are par-
titioned into g groups of d processors each and the g2 couplers are used
for connecting each group with each of the groups, including itself. In
this paper, we present an optimal embedding of the hypercube on this
network for all combinations of values of d and g. Specifically, we show
how to optimally simulate the most common hypercube communication
pattern where each hypercube node sends a packet along the same di-
mension. Optimal simulation of this communication on the POPS(d, g)
network has already been presented for d ≤ g in the literature, but for
the case d > g, the optimality remained an open problem. Now, we show
that an optimal simulation is feasible in this case too.

1 Introduction

The partitioned optical passive stars (POPS) network is an optical intercon-
nection network used in multiprocessor systems that has recently attracted the
interest of many researchers [1–10]. A POPS(d, g) network comprises g2 optical
passive stars (OPS) couplers that connect N processors where N = dg. Pro-
cessors are split into g groups of d processors each. Processors of group j can
send messages to all processors of group i through the OPS coupler OPS(i, j)
(i, j = 0, . . . , g − 1). However, at each communication step (termed also slot),
only one of the processors of group j can send a message through the coupler
OPS(i, j). Then, this message is broadcast to all the processors of group i. In
Fig. 1, we see that each processor can send to or receive from more than one
coupler during the same slot. However, this increases the hardware complexity
in each processor. So, in this paper we make the practical assumption that each
processor can send or receive at most one message at each slot.

In this paper, we present a simulation of hypercube communications on the
POPS(d, g) network. Specifically, we show an optimal technique for one-hop

� This work was supported in part by the European Union under the FET IST project
CRESCCO.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 952–961, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal Embedding of the Hypercube on POPS Networks 953

Fig. 1. A POPS(4, 2) network of 8 processors

movements where each hypercube node sends a packet along the same dimension.
This communication pattern is the most commonly met in parallel hypercube
algorithms. Hypercube is a powerful network that has been widely used for
development of many elegant parallel algorithms [11]. So an efficient hypercube
simulation on a POPS(d, g) network enables the use of the these algorithms on
the POPS(d, g) network too.

When performing a permutation, !d
g " slots is a trivial lower bound on the

POPS(d, g) network. So, the simulation of movements between neighboring nodes
on the hypercube takes at least that much time. Actually, for d = g, it has been
proved in [9] that hypercube simulation demands 2 · !d

g " = 2 slots at least.
Sahni [4] was the first that dealt with the problem of hypercube simulation

on the POPS(d, g) network. Assuming that processor i simulates the node i of
the hypercube, he proved that a one-hop movement on the hypercube along the
same dimension can be simulated in 2 · !d

g " slots. Mei et al. [9] used a different
mapping and reduced the complexity to the lower bound for d ≤ g. However,
for the case d > g, their simulation achieves the lower bound only for the mono-
directional moves, that is when each node of a particular N

2 -node subhypercube
sends messages to the corresponding node of the complementary subhypercube.
However, the simulation of bidirectional moves still requires 2 · !d

g " slots, two
times higher than the lower bound for d > g.

Our simulation closes this gap and is optimal for all values of d and g. Specif-
ically, for d < g and d > g, !d

g " slots are needed, whereas for d = g, 2 · !d
g " slots

are enough.

954 Christos Kaklamanis and Charalampos Konstantopoulos

2 Preliminaries

A N -node hypercube (N = 2n) is an interconnection network where there is a
link between two nodes when their addresses differ in a single bit position. In
other words, node i = in−1in−2 . . . i1i0 is connected directly to n other nodes,
namely the nodes ⊕k(i) = in−1in−2 . . . ik . . . i1i0 where k = 0 . . . n−1. The dense
interconnection structure of the hypercube makes for the development of many
efficient parallel algorithms on that network but unfortunately, this increases
the hardware complexity of each hypercube node. So an efficient simulation of
the hypercube to a sparser interconnection network, such as the POPS network
simply means that we can apply elegant techniques that have been successful
for the hypercube to more practical interconnection networks as well.

The problem of an efficient hypercube simulation on a POPS(d, g) network
boils down to finding a one-to-one mapping μ : H → P of the set H =
{0, . . . , N − 1} of hypercube nodes to the set of processors P = {0, . . . , N − 1}
of the POPS network such that one-hop bidirectional moves along the same di-
mension on the hypercube can be simulated in a minimum number of slots on
the POPS network. But, by closer look at the POPS network, we realize that
what really matters is not the specific POPS processor which simulates a hy-
percube node, but the group containing that processor, since all processors of a
group are indistinguishable as far as the routing function of the POPS network
is concerned. So, it is enough to find a many-to-one mapping μ : H → G where
G = {0, 1, . . . , g− 1} is the set of groups of the POPS(d, g) network. Notice also
that d and g are powers of two in this paper, since their product, N , is a power
of two as well.

Before presenting our simulation technique, we should introduce some useful
notations and definitions. So first we define two functions c01 and c10 as follows:

c01(x) =
{

01 if x has an even number of 1s
10 if x has an odd number of 1s

and

c10(x) =
{

10 if x has an even number of 1s
01 if x has an odd number of 1s

For convenience, we also define the constant functions c00(x) = 00 and c11(x) =
11.

We can also define the complements of these functions as c01(x) = c10(x),
c10(x) = c01(x), c00(x) = c11(x) and c11(x) = c00(x). When x is clear from the
context, we will use the shorter notations c00, c01, c10 and c11. So, for example
if x is a k-bit number, the 4+k-bit number c01(x)c10(x)x will be simply written
as c01c10x.

Finally, by using the functions above, we define the following function

inv(ci) =
{
ci if i = 01 or 10
ci if i = 00 or 11

Optimal Embedding of the Hypercube on POPS Networks 955

3 The Simulation Technique

Next, we present our simulation of the hypercube network on a POPS(d, g)
network. First we describe the technique for the case d > g and then we show
how we can easily generalize for the other two cases.

3.1 Hypercube Simulation for d > g

The processors of a POPS(d, g) network are separated into g groups of d proces-
sors each. As mentioned before, a permutation routing on a POPS(d, g) network
takes at least !d

g " = d
g slots, since the best we can do is to partition the d pro-

cessors of a group into g subgroups of d
g processors each and then send messages

by using a different coupler for each subgroup. A bidirectional move between
neighboring nodes along the same dimension on the hypercube, is actually a
permutation, and so a lower bound for this simulation is d

g slots again. For
reaching this lower bound, our mapping of the hypercube on the POPS(d, g)
network should be such that the neighbors of all hypercube nodes mapped on
the same group of the POPS(d, g) network are equally distributed among the g
groups, i.e. d

g neighbors per group. Furthermore, this property should hold for
the simulation of movements along any hypercube dimension.

Now, we define a mapping μ that has the desired properties. The mapping
is recursive, however, due to space limitation we give a closed form directly.

Definition 1. For N = 2n, N = dg, g = 2b, d = 2a, d > g, let cji,lb−1
. . . cji,l1

cji,l0
x (l = 0 . . . g − 1, l = lb−1, lb−2 . . . l0, x = 0 · · · 2n−2b − 1) be the addresses

of the d hypercube nodes mapped onto the processors of group gi (i = 0 · · · g − 1,
i = ib−1ib−2 . . . i0). If r is a bit position in i (r = 0 . . . b − 1), we have the
following cases:

– ir = 0. In this case, the pair of bits cji,lr
is given as follows:

cji,lr
=

⎧⎨⎩
c00 if lr = 0
c01 if lr = 1 and l has an odd number of 1s
c10 if lr = 1 and l has an even number of 1s

(1)

– ir = 1. For this case, the pair of bits cji,lr
is given as follows:

cji,lr
=

⎧⎨⎩
c11 if lr = 0
c10 if lr = 1 and l has an odd number of 1s
c01 if lr = 1 and l has an even number of 1s

(2)

For example, for N = 2n, g = 4, d = 2n−2 and for all possible values of x in
the range [0 · · · 2n−4 − 1] the mapping is as follows:

c00c00x
c00c01x
c01c00x
c10c10x︸ ︷︷ ︸

g0

c00c11x
c00c10x
c01c11x
c10c01x︸ ︷︷ ︸

g1

c11c00x
c11c01x
c10c00x
c01c10x︸ ︷︷ ︸

g2

c11c11x
c11c10x
c10c11x
c01c01x︸ ︷︷ ︸

g3

956 Christos Kaklamanis and Charalampos Konstantopoulos

Notice that each expression above represents 2n−4 hypercube nodes, i.e. as
much as the number of possible values of x. For instance, if N = 32, x is 0 or 1,
and so we have the following mapping

00000
00001
00010
00101
01000
10001
10100
01011︸ ︷︷ ︸

g0

00110
00111
00100
00011
01110
10111
10010
01101︸ ︷︷ ︸

g1

11000
11001
11010
11101
10000
01001
01100
10011︸ ︷︷ ︸

g2

11110
11111
11100
11011
10110
01111
01010
10101︸ ︷︷ ︸

g3

Also, note that the concept of odd and even parity has been used in [9] as
well, but now we use that concept differently for defining our mapping.

Next, we prove that the mapping above is optimal.

Theorem 1. One-hop movements along any dimension k (k = 0 . . . n − 1) on
the hypercube are optimally simulated on a POPS(d, g) network in d

g slots for
any d = 2a, d > g and g = 2b.

Proof. We have to prove that for any hypercube dimension k (k = 0 . . . n − 1),
the neighbors of nodes belonging to a group are evenly distributed among all
groups including itself. Specifically, we will prove that each group possesses d

g
neighbors along dimension k of nodes belonging to each of the g groups. For
convenience, we focus on group g0 and where the neighbors of the nodes of that
particular group can be found across the g groups of the POPS(d, g) network.
Similar statements can be made for all other groups as well.

Let cj0,lb−1
cj0,lb−2

. . . cj0,l1
cj0,l0

x (l = 0 . . . g − 1) be the nodes of g0. Let also
gi (i ∈ [0 . . . g − 1]) be some other group and cji,lb−1

cji,lb−2
. . . cji,l1

cji,l0
x be its

nodes. We handle two cases: a) k ∈ [0 . . . n− 2b− 1] and b) k ∈ [n− 2b . . . n− 1].
In the first case, k is a bit position belonging to x, so two hypercube nodes

cj0,pb−1
cj0,pb−2

. . . cj0,p1
cj0,p0

x and cji,qb−1
cji,qb−2

. . . cji,q1
cji,q0

x of group g0 and gi

respectively are neighbors along dimension k if and only if cji,qm
= inv(cj0,pm

),
m = 0 . . . b− 1.

Consider now a bit position r in the binary representation of i and assume
first that i has a 1 at this position. From Definition 1, we can easily see that cji,qr

can be c11, c01 or c10 and so cj0,pr
can be c11, c10 or c01 respectively. However,

c11 is not possible for cj0,pr
and the only actual possibilities are c10 and c01. If i

has 0 at position r, cji,qr
might be c00, c01 or c10 and and hence cj0,pr

will be c00,
c10 or c01 respectively. However, the last two combinations (c01, c10), (c10, c01)
are not possible, because it can be easily checked that p and q have always the
same number of 1s. So eventually, only c00 is possible for cj0,pr

and cji,qr
.

So, we have determined that cj0,pb−1
cj0,pb−2

. . . cj0,p1
cj0,p0

x has c01 or c10 at
the same positions where i has 1 and c00 at all other positions. With this infor-
mation and by Definition 1, we can easily find that parameter p has 1s and 0s at

Optimal Embedding of the Hypercube on POPS Networks 957

the same position as i, which simply means that i = p. Note also that q = p. So
we have actually determined the nodes of g0 with neighbors in gi. By using Def-
inition 1 again, we can also easily prove that cj0,pb−1

cj0,pb−2
. . . cj0,p1

cj0,p0
x and

cji,qb−1
cji,qb−2

. . . cji,q1
cji,q0

x are actually nodes of g0 and gi respectively. Since x

can take 2n−2b = d
g possible values, the number of messages passing through each

of the couplers OPS(i, 0), OPS(0, i) during the simulation of one-hop movements
along dimension k is d

g too.
Notice also that the analysis above still holds when i does not have 1s in its

binary representation, i.e. i = 0. In this case, all d
g messages among nodes of

group g0 are passing through the coupler OPS(0, 0).
Now, we consider the case k ∈ [n−2b . . . n−1]. k is one of the 2b most signif-

icant bits of node addresses determined by the c functions. Let cj0,pr
and cji,qr

be the pair of bits of nodes cj0,pb−1
cj0,pb−2

. . . cj0,p1
cj0,p0

x and cji,qb−1
cji,qb−2

. . .

cji,q1
cji,q0

x inside which bit complement is carried out. Clearly, we have that
r = � (k−n+2b)

2 �. Let also {s0, s1, . . . , st} (0 ≤ t ≤ b− 1) be the (possibly empty)
set of bit-positions where i has 1s. We differentiate between two cases:

r �∈ {s0, s1, . . . , st}. For the pairs cj0,pr
, cji,qr

we have four possible combina-
tions (cj0,pr

, cji,qr
) = (c00, c01), (c00, c10), (c01, c00), (c10, c00). Due to Definition 1,

this implies that p and q differ in bit r.
For z �= r, it should be true that cj0,pz

= cji,qz
. If z ∈ {s0, s1, . . . , st}, cji,qz

could be c11, c01 or c10. c11 is not possible for g0 and thus we have two possibilities
only, namely c01 and c10, which means that p and q both have 1 at position z.

If now z �∈ {s0, s1, . . . , st}, cji,qz
is the same as cj0,pz

and could be c00, c01
or c10. Regardless of the particular c00, c01 or c10 at position z, we can easily
see that p and q do not have the same parity, that is either p or q has an even
number of 1s but not both. This in turn implies that cji,qz

= inv(cj0,pz
) and so

the only possible case is the c00.
So, we have determined the values of bits of p and q in all positions but r.

Firstly, if cj0,pr
= c00, we can easily determine which pair, c01 or c10, cji,qr

is.
Now the rth bit in p is 0 and the corresponding bit in q is 1. From Definition 1
also, cji,qr

is c01 if the number of 1s in q is odd, c10 otherwise. By the same
token, we can specify cj0,pr

when cji,qr
is c00.

To sum up, we finally found two values of parameter p, say p′ and p′′,
which satisfy our conditions. They differ only at position r: p′ has a 0 at bit
r whereas p′′ has a 1 at the same position. Correspondingly, we have two values
for parameter q, q′ with 0 at bit r and q′′ with 1 at the same bit. Apparently,
p′ = q′ and p′′ = q′′. Furthermore, we can easily see that p′ = i or ⊕ri. The
nodes cj0,p′

b−1
cj0,p′

b−2
. . . cj0,p′

1
cj0,p′

0
x, cj0,p′′

b−1
cj0,p′′

b−2
. . . cj0,p′′

1
cj0,p′′

0
x are neighbors

of the nodes cji,q′′
b−1

cji,q′′
b−2

. . . cji,q′′1
cji,q′′0

x, cji,q′
b−1

cji,q′
b−2

. . . cji,q′1
cji,q′0

x respec-

tively. During the simulation of one-hop movements along dimension k of the
hypercube, d

2g messages are starting from nodes cj0,p′
b−1

cj0,p′
b−2

. . . cj0,p′
1
cj0,p′

0
x

and another d
2g messages from nodes cj0,p′′

b−1
cj0,p′′

b−2
. . . cj0,p′′

1
cj0,p′′

0
x. All these

958 Christos Kaklamanis and Charalampos Konstantopoulos

messages are passing through the OPS(i, 0) coupler and so d
g slots are needed in

total for this transfer. Apparently, the number of messages through the OPS(0, i)
coupler is d

g too.
When the set {s0, s1, . . . , st} is empty, i.e. i = 0, the analysis above still holds.

In this case, all d
g messages are among nodes of g0 and are passing through the

coupler OPS(0, 0) in d
g slots.

r ∈ {s0, s1, . . . , st}. The details for this case are basically the same as previ-
ously. The only difference is the possibilities for cj0,pr

and cji,qr
. Now, we have

that (cj0,pr
, cji,qr

) = (c00, c01), (c00, c10), (c01, c11), (c10, c11). In a similar way, we
can find again two p and q values satisfying our conditions. The number of mes-
sages passing through the couplers OPS(i, 0), OPS(0, i) is d

g once more and that
many slots are needed for this routing. Hence, the theorem follows. ��

So far, we have seen that our mapping technique is optimal for d > g. In the
following, we consider the case d ≤ g and show the optimality of our mapping
in this case too.

3.2 Hypercube Simulation for d ≤ g

Due to [9], we know that for d = g, we need at least two slots for the simulation
of one-hop hypercube movements. For d < g, the lower bound is just the trivial
lower bound of 1 slot. Now, we will show how to achieve these lower bounds by
extending our technique. We first deal with the case d < g. The case d = g easily
follows then.

The idea is to reverse the roles of d and g in the mapping presented above.
Specifically, if d = 2a and g = 2b with a < b, we can write the nodes of the N -
node hypercube (N = dg, N = 2n) as cja−1cja−2 . . . cj0x where x = 0 . . . g

d − 1.
By reversing the roles of d and g in our mapping technique, we divide the nodes
of the hypercube into d sets of g nodes each. The ith set1 si (i = 0 . . . d − 1)
contains the nodes cji,la−1

cji,la−2
. . . cji,l0

x where l = 0 . . . d−1. For any two sets
su and sv and any hypercube dimension k, there are exactly g

d nodes in su whose
neighbors along dimension k are inside sv and vice versa. We also have g

2d pairs
of neighboring nodes along the same dimension inside each set.

In order to get g groups of d nodes each, we should divide each set i in g
d

subsets. Each of these subsets should not contain neighboring nodes along any
dimension and also for any two subsets, the first subset should contain at most
one node with neighbor in the other subset.

Since d and g are both powers of 2, we can get g
d subsets by halving the set

i log2
g
d times as follows:

– In the first halving step, we divide each set si into two subsets si0 and si1.
Subset sit (t = 0, 1) is defined as:

sit = {cji,la−1
cji,la−2

. . . cji,l0
xt

l |l = 0 . . . d− 1} (3)

1 We use the term set instead of group in order to avoid confusion.

Optimal Embedding of the Hypercube on POPS Networks 959

where

xt
l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{x|x a (n− 2a)-bit number with odd number of 1s} if l has an odd
number of 1s
and t = 0

{x|x a (n− 2a)-bit number with even number of 1s} if l has an even
number of 1s
and t = 0

{x|x a (n− 2a)-bit number with even number of 1s} if l has an odd
number of 1s
and t = 1

{x|x a (n− 2a)-bit number with odd number of 1s} if l has an even
number of 1s
and t = 1

(4)

– At each of the remaining halving steps, let cji,la−1
cji,la−2

. . . cji,l0
xi,l (l =

0 · · ·d − 1) be the nodes of set si that has resulted from the previous step,
where xi,l is the set of x’s corresponding to the particular values of i and
l. For example, after the first halving step, xi,l is either equal to x0

l or x1
l .

If x0
i,l and x1

i,l is any equipartition of xi,l into two sets, then the two new
subsets si0, si1 of set si are given as follows:

sit = {cji,la−1
cji,la−2

. . . cji,l0
xt

i,l|l = 0 . . . d− 1, t = 0, 1} .

It should be noted that now it does not matter how we partition xi,l in two equal
parts. For example x0

i,l could contain the smallest numbers in xi,l and x1
i,l the

largest ones. So, in comparison with the mapping in [9], our mapping is more
general, since it possesses more “degrees of freedom”.

Now, we prove the following theorem.

Theorem 2. After the first halving step:

1. Each set does not contain pairs of neighboring nodes and
2. between any two sets, the number of nodes that are neighbors along any

hypercube dimension is reduced at least by half.

Proof. For the first statement, we can easily verify that the addresses of the
nodes of each newly created subset differ in at least two bits, and hence nodes
belonging to the same subset cannot be neighbors on the hypercube.

For the second statement, we should check how the neighbors of nodes of the
new subsets are distributed among the subsets. Without loss of generality, we
focus on the set s0 and its two subsets s00 and s01. From the discussion in the
proof of Theorem 1, we know that in order to determine the neighboring nodes
along dimension k between set s0 and another set si, we should differentiate
between two ranges of values of k. Specifically if:

– k ∈ [0 . . . n−2a−1], nodes cj0,pa−1
cj0,pa−2

. . . cj0,p1
cj0,p0

x of s0 are neighbors
with nodes cji,pa−1

cji,pa−2
. . . cji,p1

cji,p0
x of si where p = i,

960 Christos Kaklamanis and Charalampos Konstantopoulos

– k ∈ [n − 2a . . . n − 1], nodes cj0,pa−1
cj0,pa−2

. . . cj0,p1
cj0,p0

xt
p and cj0,⊕rpa−1

cj0,⊕rpa−2
. . . cj0,⊕rp1

cj0,⊕rp0
xt

p of set s0 are neighbors along dimension k of
nodes cji,⊕rpa−1

cji,⊕rpa−2
. . . cji,⊕rp1

cji,⊕rp0
xt

p and cji,pa−1
cji,pa−2

. . . cji,p1
cji,p0

xt
p respectively of set si where p = i, t = (n − k) mod 2, xt

p is given by (4)
and r = �k−n+2a

2 �.
For the first case, after the first halving step, nodes cj0,pa−1

cj0,pa−2
. . . cj0,p1

cj0,p0
xt

p will end up in the subset s0t (t = 0, 1) of set s0 and similarly nodes
cji,pa−1

cji,pa−2
. . . cji,p1

cji,p0
xt

p will be in the subset sit (t = 0, 1) of set si. Now,
the neighbors of nodes of s00 along dimension k are inside si1 and the neighbors
of s01 can be found in si0, which in turn implies that the number of neighbors
between the subsets has really decreased at least by half.

For the second case, since p and ⊕rp always have a different parity, we
can be sure that nodes cj0,pa−1

cj0,pa−2
. . . cj0,p1

cj0,p0
xt

p and cj0,⊕rpa−1
cj0,⊕rpa−2

. . .

cj0,⊕rp1
cj0,⊕rp0

xt
p will end up in different subsets of set s0. The same is true for

the set si. So, again the number of neighbors between any two subsets is at least
halved after the first step.

With regard to the neighboring nodes between the two newly created subsets
s00 and s01 of s0, we can easily see that the pairs of neighboring nodes of the
set s0 have all been split between the two subsets and so again we have reduced
the number of neighboring nodes by half. ��

At each of the remaining halving steps, we are free to take any equipartition of
sets xi,l in two parts. The reason is the following. After the first halving step, the
neighboring nodes along a hypercube dimension between any two sets, su and sv,
are the nodes cju,pa−1

cju,pa−2
. . . cju,p1

cju,p0
xu,p, cjv,qa−1

cjv,qa−2
. . . cjv,q1

cjv,q0
xv,q

for proper p, q, xu,p and xv,q. Now, the second halving step partitions xu,p (xv,q)
into two equal parts, allocating half of the nodes cju,pa−1

cju,pa−2
. . . cju,p1

cju,p0
xu,p

(cjv,qa−1
cjv,qa−2

. . . cjv,q1
cjv,q0

xv,q) to su0 (sv0) and the other to su1 (sv1). We
can easily see that no matter how we halve xu,p and xv,q, the new subsets su0,
su1, sv0, sv1 have at most half neighboring nodes in comparison to sets su and
sv.

So, after applying log2
g
d halving steps, we get g sets of d hypercube nodes

each. These sets have the desired properties with regard to the optimal sim-
ulation of the hypercube on a POPS(d, g) network (d < g). Clearly also, the
mapping of these sets to the groups of the POPS(d, g) network is direct.

We conclude this section, by showing how to achieve optimal simulation of the
hypercube on the POPS(d, g) network when d = g. We start with the mapping
of the hypercube to the POPS(d, g) network for d = 4g where g ≥ 1. Clearly,
for these values of d and g, we need 4 slots for simulating the hypercube on the
POPS(d, g) network. Now, if we halve each group in two subgroups by using
the technique of the first halving step presented above, we get 2g groups of 2g
nodes each. From the discussion above also, it is clear that the simulation of the
hypercube on the POPS(2g, 2g) network now takes 2 slots, i.e. as much as the
lower bound for d = g. So we can simulate the hypercube on the POPS(d, g)
network with d = g in a optimal number of slots.

Optimal Embedding of the Hypercube on POPS Networks 961

4 Conclusions

We have presented an optimal simulation for the most common hypercube com-
munication pattern on the POPS(d, g) network for the whole range of values of d,
g. We first showed how to solve the existing open problem for the case d > g and
then we extended our technique for the case d ≤ g. The optimal simulation of
the hypercube network on more practical interconnection networks implies that
now we are free to apply a number of elegant parallel algorithmic techniques
developed on the hypercube to more “real” multiprocessor systems as well.

References

1. G. Gravenstreter and R. G. Melhem and D. Chiarulli and S. Levitan and J. Teza,
The Partitioned Optical Passive Stars (POPS) Topology, Proceedings of the Ninth
International Parallel Processing Symposium,1995,pp. 4-10

2. G. Gravenstreter and R. G. Melhem, Realizing Common Communication Pat-
terns in Partitioned Optical Passive Stars (POPS) Networks, IEEE Transactions
on Computers, vol. 47, no. 9, September, 1998, pp. 998-1013

3. R. G. Melhem and G. Gravenstreter and D. Chiarulli and S. Levitan, The Commu-
nication Capabilities of Partitioned Optical Passive Star Networks, Kluwer Aca-
demics Publishers, pp. 77-98, 1998, Parallel Computing Using Optical Intercon-
nections, ed. K. Li and Y. Pan and S. Zheng

4. S. Sahni, The Partitioned Optical Passive Stars Network: Simulations and Funda-
mental Operations, IEEE Transactions on Parallel and Distributed Systems, vol.
11, no. 7, July, 2000, pp. 739-748

5. S. Sahni, Matrix Multiplication and Data Routing Using a Partitioned Optical
Passive Stars Network, IEEE Transactions on Parallel and Distributed Systems,
vol. 11, no. 7, July, 2000, pp. 720-728

6. A. Datta and S. Soundaralakshmi, Summation and Routing on a Partitioned Op-
tical Passive Stars Network with Large Group Size, IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 12, December, 2003, pp. 1275-1285

7. A. Mei and R. Rizzi, Routing Permutations in Partitioned Optical Passive Stars
Networks, Proceedings of the IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS 2002), 2002, April

8. P. Berthome and A. Ferreira, Improved Embeddings in POPS Networks through
Stack-Graph Models, Proceedings of the Third International Workshop on Mas-
sively Parallel Processing Using Optical Interconnections, 1996, pp. 130-136

9. A. Mei and R. Rizzi, Mapping Hypercube Computations onto Partitioned Optical
Passive Star Networks, Proceedings of High Performance Computing (HiPC 2003),
2003, pp. 95-104

10. A. Mei and R. Rizzi, Routing Permutations in Partitioned Optical Passive Stars
Networks, Journal of Parallel Distributed Computing, vol. 63, no. 9, 2003, pp.
847-852

11. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays-
Trees-Hypercubes, Morgan Kauffman Publishers, 1992, San Mateo, California

Dynamic Page Migration
Under Brownian Motion�

Marcin Bienkowski and Miroslaw Korzeniowski

International Graduate School of Dynamic Intelligent Systems,
University of Paderborn, Germany

{young,rudy}@upb.de

Abstract. We consider Dynamic Page Migration (DPM) problem, one
of the fundamental subproblems of data management in dynamically
changing networks. We investigate a hybrid scenario, where access pat-
terns to the shared object are dictated by an adversary, and each proces-
sor performs a random walk in X . We extend the previous results of [4]:
we develop algorithms for the case where X is a ring, and prove that with
high probability they achieve a competitive ratio of Õ(min{ 4

√
D, n}),

where D is the size of the shared object and n is the number of nodes in
the network. These results hold also for any d-dimensional torus or mesh
with diameter at least Ω̃(

√
D).

1 Introduction

The Dynamic Page Migration problem [3, 4] arises in a network of processors
which share some global data. Shared variables or memory pages are stored
in the local memory of these processors. If a processor wants to access (read
or write) a single unit of data from a page, and the page is not stored in its
local memory, it has to send a request to the processor holding the page, and
appropriate data is sent back. Such transactions incur a cost which is defined
to be the distance between these two processors plus a constant overhead for
communication. To avoid the problem of maintaining consistency among multiple
copies of the page, the model allows only one copy of the page to be stored within
the network. Additionally, nodes can move with a bounded speed, thus changing
the communication costs. This is typical in mobile wireless networks but also
attempts to capture the dynamics of wired ones.

To reduce the communication cost, the system can migrate the page between
processors. The migration cost is proportional to the cost of sending one unit of
data times the size of the memory page. The problem is to decide, online, when
and where to move the page in order to minimize the total cost of communication
for all possible sequences of requests and network changes. The performance of
� Partially supported by DFG-Sonderforschungsbereich 376 “Massive Parallelität: Al-

gorithmen Entwurfsmethoden Anwendungen” and by the Future and Emerging
Technologies programme of the EU under EU Contract 001907 DELIS “Dynami-
cally Evolving, Large Scale Information Systems”.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 962–971, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Page Migration Under Brownian Motion 963

an online algorithm is measured by competitive analysis [6, 11], i.e. by comparing
its total cost to the total cost of the optimal offline algorithm on the same input
sequence.

Since the input consists of two independent sequences, one describing access
patterns and one for mobility of the network, it is reasonable to assume that they
are created by two adversarial entities; by a request and a network adversary,
respectively. The thoroughly studied problem of page migration (PM) [1, 2, 5,
7, 8, 12] is a special case of DPM, in which the network is static, and only the
request adversary is present1.

Whereas there exist O(1)-competitive algorithms for PM problem [1, 2, 12] in
general networks, in [3, 4] much larger lower bounds for the DPM are given. They
are Ω(min{√D ·n,D}) if both adversaries are adaptive, and Ω(

√
D · logn,D2/3)

if they are oblivious. D denotes the size of the page and n is the number of
processors in the network. The size of this ratio motivates us to search for a
reasonable restriction on the adversary. Following the approach of [4] we consider
the Brownian motion scenario. In this scenario the network adversary is replaced
by a random process – each node performs a random walk on a 1-dimensional
torus, i.e., on a ring.

The Model. Following [3, 4], we describe the DPM problem formally below.
The network is modelled as a set V of n nodes (processors) labelled v1, v2, . . . , vn

placed in a metric space (X , d), where d is the distance function. In our case X
is one-dimensional discrete torus (or alternatively speaking, discrete ring) of
diameter (size) B. We assume discrete time steps t = 1, 2, We denote the
distance between two nodes vx and vy in time step t as dt(vx, vy). Since the
nodes can move, this distance can change with time. A tuple Ct describing the
positions of all nodes in a time step t is called a configuration at time t.

An input consists of a configuration sequence (Ct) and a request sequence
(σt), where σt denotes the node issuing the request at time t. These sequences
are chosen as follows. First, the adversary picks the request sequence (σt) and
the initial configuration C0 of n points on the ring. The rest of the configuration
sequence (Ct) is generated randomly, i.e. for each t, Ct+1 is generated from Ct in
the following way. For each node v its new position is chosen. Let xv(t) denote
the position (coordinate) of v at step t. For each node v we define a random
variable Zv(t).

Zv(t) =

⎧⎨⎩
−1 with probability 1/3

0 with probability 1/3
1 with probability 1/3

(1)

The position of v in step t + 1 is defined as xv(t + 1) = xv(t) + Zv(t). This is
further referred to as the movement rule.

Any two nodes are able to communicate directly with each other. The cost
of sending a unit of data from node vx to node vy at time step t is defined in the
following way by a cost function ct(vx, vy). If vx and vy are the same node (which

1 In fact, in the PM model we do not have a constant overhead, but this may change
the competitive ratio in this model only by a constant factor.

964 Marcin Bienkowski and Miroslaw Korzeniowski

we denote by vx ≡ vy), then ct(vx, vy) = 0. Otherwise, ct(vx, vy) = dt(vx, vy)+1.
We have one shared, indivisible memory page of size D, initially stored at the
node v1. The cost of moving the whole page from vx to vy in time step t is equal
to D · ct(vx, vy).

In time step t ≥ 1, the positions of the nodes are set according to Ct, and
then a request is issued at the node σt. Let PALG(t) denote a node keeping
the algorithm Alg’s page. First, Alg has to pay ct(PALG(t), σt) for serving the
request. Then it can optionally move the page to a new position P ′

ALG(t) paying
the cost D · ct(PALG(t), P ′

ALG(t)). Sometimes, we will abuse the notation by
writing that an algorithm is at vi or moves to vj , meaning that the algorithm’s
page is at vi or the algorithm moves its page to vj .

We consider only online algorithms, i.e. the ones which make decision in step
t solely on the basis of the initial part of the input up to step t, i.e. on the
sequence C1, σ1, C2, σ2, . . . , Ct, σt.

In order to analyze the performance in Brownian motion scenario, we follow
[4] and adapt classical competitive analysis [6, 11] for the model, where the input
sequence is created both by the adversary and the stochastic process. We say
that an algorithm Alg achieves competitive ratio R (or is R-competitive) with
probability p, if there exists a constant A, s.t. for all request sequences (σt) holds

Pr(Ct)

[
CALG(Ct, σt) ≤ R ·COPT(Ct, σt) + A

]
≥ p ,

where CALG(Ct, σt) and COPT(Ct, σt) are costs of Alg and the optimal al-
gorithm, respectively. The probability is taken over all possible configuration
sequences generated by the random movement (1).

Contribution of the Paper. We present three deterministic online algo-
rithms: MajL, MajM, and MajS, for long, middle and short diameters, respec-
tively. Let γ =

√
2 · ln(n · B4) and Q = min{√B,

√
D/B, n}. We prove that

these algorithms, with high probability, attain the competitive ratio O(R) =
Õ(min{ 4

√
D,n}).

Algorithm diameter R
MajL long: B ≥ 64 · γ√D γ2 ·max{1, Q}
MajM middle: 3

√
D ≤ B ≤ 64 · γ√D γ2 ·max{1, Q} · logB

MajS short: B ≤ 3
√
D γ2

This extends the result of [4], where an O(log2 D)-competitive algorithm, work-
ing only for B = Θ(

√
D) and for a constant n was presented. Furthermore,

similarly to [4], it is possible to extend the result for long diameters to any d-
dimensional torus or mesh of diameter B = Ω(γ · √D), losing only a factor of d
in the competitive ratio2.

2 In this case, each node performs a random walk which is a superposition of indepen-
dent random walks (1) in each dimension.

Dynamic Page Migration Under Brownian Motion 965

2 The Algorithms

In this section we present MajL, MajM and MajS. Although they differ in
details, their framework is essentially the same. For the sake of this presentation,
we denote the algorithm by Maj; the three algorithms will be just refinements
of the Maj framework.

Maj works in phases of fixed length K. K = D for MajL, K = B2 · logB
for MajM, and K = Θ(D

B · log(B · n)) for MajS. In a phase P , Maj remains in
one node denoted PMAJ(P). For any time interval I and a node v, weight of v
in I, denoted by wI(v), is defined as the number of requests issued by v during
I. The name Maj is an abbreviation of Majority. Namely, if there exists a node
v∗ �≡ PMAJ(P) s.t. wP (v∗) ≥ K/2, then Maj decides to move to v∗. For long
diameters it moves immediately in the last step of P ; for middle and short ones
it waits for a good opportunity for the next 6 ·B2 · logB steps. These steps are
called migration sequence. Good opportunity means that PMAJ(P) and v∗ come
to each other at the distance of at most 1. If this occurs, Maj moves in this case
to v∗, otherwise it moves at the end of the migration sequence. The next phase
begins right after the migration sequence.

Theorem 1. Maj achieves competitive ratio O(R) in the Brownian motion
scenario of the DPM, with high probability (w.h.p.).

We show that there exists a constant cB,D,n (depending on B, D, and n),
s.t. for any α, any input sequence (σt) and any starting configuration C0, if (Ct)
is generated according to (1), then for S = ((Ct), (σt))

Pr[CMAJ(S) ≤ O(R) · COPT(S) + α · O(cB,D,n)] ≥ 1− 2 ·D−α . (2)

Let cB,D,n = D ·B+R·B3 ·log(B ·D ·n). We group phases (and corresponding
migration sequences) in epochs. For MajL an epoch consists of !B2/D" phases;
for MajM and MajS an epoch consists of just one phase, optionally with its
migration sequence. This guarantees that each epoch’s length is at least B2 and
at most Lp = O((D/B+B2) · log(Bn)). An important property of such division
into phases and epochs is the independence of the configuration sequence or the
algorithm, i.e. the division can be determined entirely on the basis of the request
sequence (σt).

We fix any input sequence S and divide it into epochs M1,M2, We note
that the cost of communication on the ring is bounded by !B/2" + 1 ≤ B (we
may assume that B ≥ 2), and thus the cost of moving the page is at most D ·B.
For any epoch, MajL moves the page at most !B2/D" times, whereas MajM
and MajS move the page at most once. Since the total cost of serving requests
is at most Lp · B, the total cost of Maj in the first two epochs is bounded by
O(D ·B +B3 · log(Bn)) = O(cB,D,n). We may also safely assume that the input
sequence consists of finished epochs only, because we can hide the Maj’s cost in
the last (unfinished) epoch in the additive term of (2), too.

Thus, it is sufficient to relate the cost of Maj to the cost of optimal offline
algorithm Opt in any epoch, but the first and the second one.

966 Marcin Bienkowski and Miroslaw Korzeniowski

Lemma 1 (Crucial Lemma). For any j ≥ 3 holds E[CMAJ(Mj)] ≤ O(R) ·
E[COPT(Mj−1 .Mj)]. The expected value is taken over all random movements
in Mj−2, Mj−1, and Mj.

We defer the proof of the Crucial Lemma to the next subsection, and we
sketch the proof how Theorem 1 follows from this lemma. The complete proof
will be presented in the full version of the paper.

Proof (of Theorem 1). Fix any constant α. We already bound the cost in the
two first epochs. We divide the remaining ones into three disjoint sets M0, M1,
and M2. Mk := {Mj : j ≡ k mod 3}. From the average argument, there exists
χ ∈ {0, 1, 2}, s.t. CMAJ(Mχ) ≥ 1

3 ·CMAJ(M0.M1.M2). By Lemma 1 we have
E[CMAJ(Mχ)] ≤ O(R) · E[COPT(S)].

We consider the value of CMAJ(Mχ). If it is smaller than α ·O(R·B3 · lnD),
then the whole cost of Maj might be hidden in the additive constant of (2).
Otherwise, for all each epoch M ∈ Mχ, the random variables CMAJ(Mj) and
COPT(Mj) are independent. Formally speaking, they are not independent, but
the bounds on the costs of Opt and Maj, which we use there, depend only
on the randomness of the random walks in Mj and two preceding epochs (i.e.
depend on disjoint events). Thus, we may apply Hoeffding bound [9] to get that
both costs of COPT(S) and CMAJ(Mχ) deviate by more than a constant factor
from their expected values with probability at most D−α. The calculations are
similar to the calculations presented in [4]. Thus, Maj is O(R)-competitive with
probability 1− 2 ·D−α. ��

3 Proof of the Crucial Lemma

Fix any time interval I. We introduce a simple but useful notion of auxiliary
weight. As we see later, we can use this notion to obtain a lower bound for
COPT(I), and an upper bound for CMAJ(I). Let vmax be the node which has the
maximal weight in interval I, with ties broken arbitrarily. We define auxiliary
weight of I as WA(I) = |I| − wI(vmax). We note that WA(I) is a measure of
requests’ discrepancy in I. If it is low, then there exists a node vmax, s.t. the
algorithm, which remains in this node within I, pays relatively few. On the other
hand, if it is high, there is no good single position for the page. Naturally, it can
happen, that even if WA(I) is high, all nodes are very close to each other, which
means that the cost of the algorithm in I could be very low. However, such a
configuration sequence is very unlikely to occur.

We keep this rationale in mind, while describing a rough idea of the Crucial
Lemma’s proof. For a set of intervals I, let span(I) denote the shortest time
interval containing all I ∈ I. For any epoch Mj (for j ≥ 3) we prove the
existence of a so-called critical set of disjoint intervals I(Mj), s.t.

1. span(I(Mj)) ⊆Mj−1 .Mj ,
2. E[CMAJ(Mj)] = O(R1) · B ·

∑
Ii∈I(Mj)

WA(Ii),
3. E[COPT(Mj)] = Ω(1/R2) · B ·

∑
Ii∈I(Mj)

WA(Ii),

Dynamic Page Migration Under Brownian Motion 967

where the expected values are taken over the random walks in Mj−2, Mj−1, and
Mj . R1 and R2 are defined as follows.

Algorithm R1 R2

MajL γ2 ·max{1, Q} 1
MajM γ2 ·max{1, Q} · logB 1
MajS 1 γ2

Clearly, if the conditions above are fulfilled, then the Crucial Lemma holds, since
R = R1 · R2.

In this paper, we focus on proving the Crucial Lemma for long and middle
diameters. The proof for short ones can be found in the full version of the paper.
Due to space limitations we also moved the proofs of technical lemmas to the
full version of the paper.

For any fixed epoch Mj (j ≥ 3), we construct the critical set I(Mj), with
the properties described above. Additionally, we will have

1. |span(I(Mj))| ≤ B2

(32γ)2 , and

2. for all Ii ∈ I(Mj), holds |Ii| ≤ B2

(16γ)2·Q and |Ii| = O(D).

3.1 Relating CMAJ to Auxiliary Weight

First, we present a useful characterization of the Maj’s phases. Fix any phase P
of length K. By Pmigr we denote the corresponding migration sequence (if there
is none, then Pmigr = ∅). We distinguish between three cases.

1. Wait phase occurs, if wP (PMAJ(P)) > K/2. Maj does not move and pays
only for requests issued not at PMAJ(P). Since each request incurs a cost of
at most B, CMAJ(P) ≤ (K − wP (PMAJ(P)) ·B.

2. Mixed phase occurs, if for all nodes v, wP (v) ≤ K/2. We have a trivial upper
bound, CMAJ(P) ≤ B ·K.

3. Change phase occurs, if there exists a node v∗ �≡ PMAJ(P) s.t. wP (v∗) > K/2.
CMAJ(P) ≤ B ·K. For long diameters Maj pays at most B ·D = B ·K for
moving the page. For middle ones it pays B · 6 · B2 · logB = O(B ·K) for
requests in Pmigr and the expected cost for moving the page is 1

B · B ·D +
(1− 1

B) ·D = O(D) = O(B ·K/ logB) as follows from the technical lemma
below.

Lemma 2. Consider any two nodes va and vb. If both move according to the
movement rule, then with probability at least 1 − 1/B there exists a time step t
within next 6 · B2 · logB steps s.t. dt(va, vb) ≤ 1.

For any phase P , we denote the phase preceding it by Pprev. As a conclusion
from the phase characterization we get the following lemma.

Lemma 3. For any phase P , E[CMAJ(P . Pmigr)] = O(1) ·B ·WA(Pprev . P).

968 Marcin Bienkowski and Miroslaw Korzeniowski

Proof. If P is a wait phase, then CMAJ(P) ≤ B · WA(P). If P is a mixed
phase, then wP (v) ≤ K/2 for all v, and hence WA(P) ≥ K/2. It follows that
E[CMAJ(P)] ≤ 2·B ·WA(P). Since Pmigr = ∅ and WA(·) is monotonic, the lemma
holds in these cases.

If P is a change phase, then there exists a node v∗ �≡ PMAJ(P), to which
Maj moved at the end of P . However, wPprev (v∗) ≤ K/2, because otherwise
Maj would have moved to v∗ after phase Pprev, and would have been in v∗ in
the whole phase P . Therefore, wPprevP (v∗) ≤ 3

2 ·K. This inequality holds also for
any vi. Indeed, since wP (v∗) > K/2, for any node vi �≡ v∗ holds wP (vi) < K/2,
and hence wPprevP (vi) < 3

2 ·K. Therefore, WA(Pprev .P) ≥ K/2, and thus the
lemma holds. ��
Constructing I(Mj) for middle diameters. For middle diameters, an epoch Mj

consists of only one phase. Therefore, E[CMAJ(Mj)] = O(1)·B ·WA(Mj−1.Mj).
The set {Mj−1.Mj} could be our critical set, consisting of one interval, but this
interval is too long, i.e. has length Θ(B2 ·logB). We may shorten it to the desired
length min{ B2

(32γ)2 ,
B2

(16γ)2·Q} losing at most a factor of O(γ2 ·max{1, Q}· logB) =
O(R1) in auxiliary weight, using the following technical lemma.

Lemma 4. For any interval I and any length 3 ≤ � ≤ |I|, there exists an
interval J ⊆ I of length �, s.t. WA(J) ≥ Ω(1) · 	

|I| ·WA(I).

Constructing I(Mj) for long diameters. In case of long diameters finding critical
set is more complicated, because each epoch consists of multiple phases, and we
cannot apply Lemma 3 directly. Mj consists of κ := !B2

D " phases P1, P2, . . . , Pκ,
each of length D. Let P0 be the last phase of Mj−1. Let L = B2/(32γ)2 ≥ 4 ·D
be the desired span(I(Mj)) length. First, we find a contiguous sequence A of
phases, such that the cost of Maj in A is large. Precisely, there is a sequence A

of �L/D� − 1 phases from Mj such that CMAJ(A) ≥ Ω(�L/D�−1
κ) ·CMAJ(Mj) =

Ω(1
γ2) · CMAJ(Mj).
Let A′ be a subset of A created by taking each second phase from A, in

such way that CMAJ(A′) ≥ 1
2 · CMAJ(A). As a consequence, each two change

phases from A are separated by at least one phase not belonging to A′. Let
I0 := {(Pprev . P) : P ∈ A′}. All intervals from I0 are disjoint and their union
contains whole A. Moreover, I0 is contained in �L/D� consecutive phases, and
hence |span(I0)| ≤ L. By Lemma 3 we get

∑
Ii∈I0

WA(Ii) ≥
∑

Ii∈I0
Ω(1

B) ·
CMAJ(Ii) = Ω(1

B) · CMAJ(A) = Ω(1
γ2) · 1

B · CMAJ(Mj).

Since each interval from I0 has length at most B2

(32γ)2 , we can use Lemma 4

to shorten each Ii ∈ I0 to length B2

(16γ)2·Q losing additional factor of max{1, Q}.
Let I(Mj) be the set of shortened intervals from I0. Then, CMAJ(Mj) = B ·
O(γ2 ·max{1, Q}) ·∑Ii∈I(Mj)

WA(Ii).

3.2 Relating COPT to Auxiliary Weight

Let I(Mi) be the critical set chosen as described in the previous subsection.
Consider any single interval Ii ∈ I(Mj). Informally, a condition for incurring a

Dynamic Page Migration Under Brownian Motion 969

R2R4

R1

R3

R′
i sets

R′′
2 and R′′

4 sets

Fig. 1. Ring partitioning

high cost on any algorithm (in particular, on the optimal offline) in Ii, is that
the nodes have to be distributed on the ring, so that the requests are issued
from the different parts of the ring. This would assure, that an algorithm which
remains at any node v in Ii pays Ω(B) for any request not at v, which amounts
to at least Ω(B) ·WA(Ii).

We show that it is sufficient that nodes are well distributed at the beginning
of span(I(Mj)), and that they behave nicely, i.e. they never run away quickly
from their starting positions. First, we formally define these two properties.
Then we prove that for a single fixed interval Ii ∈ I(Mj), these properties
are fulfilled with a constant probability. Finally, we show that if they hold, then
COPT(Ii) = Ω(1) ·B ·WA(Ii). From this immediately follows that E[COPT(Ii)] =
Ω(1) ·B ·WA(Ii), and by linearity of expectation we get E[COPT(Mj−1.Mj)] =
Ω(1) ·B ·∑Ii∈I(Mj)

WA(Ii). This would finish the proof of the Crucial Lemma.

Definition 1. Fix any nodes configuration C and an interval I. We say that
the nodes are I-distributed, if it is possible to partition the ring into 4 disjoint
contiguous parts R1,R2,R3,R4, each containing B/4 points from X , s.t. both
wI(R1) and wI(R3) are at least 1

16 · WA(I). wI(Ri) denotes the total weight
accumulated in the part Ri, i.e., wI(Ri) =

∑
v∈Ri

wI(v) 3.

Definition 2. We call a configuration sequence of length � convergent, if for
any 1 ≤ i < j ≤ � and any node v, positions of node v in time step i and j
differ by at most γ · √j − i. For any time interval I, we denote the event that a
configuration sequence is convergent in I by conv(I).

Clearly, between the beginning of Mj−2 (called a starting point) and the
beginning of span(I(Mj)) ⊆ Mj−1 .Mj , there are at least B2 steps. We call
them a mixing sequence. We observe, that for any configuration at the starting
point, at the beginning of span(I(Mi)) the position of any node is a random
variable with an almost uniform distribution. Formally, let D be the set of all
probability distributions over our space X , whose variation distance4 to the
uniform distribution on X is at most 1/64. Any ν ∈ D we call an almost uniform
distribution. If for each node v ∈ V , its position is a random variable with
distribution ν ∈ D, and all these variables are independent, then we denote it by
3 By v ∈ A we mean that the position of v is in the set A.
4 In our discrete case, the variation distance between two probability distributions ν1

and ν2 is defined as ‖ν1 − ν2‖ := maxA⊆X |ν1(A) − ν2(A)|.

970 Marcin Bienkowski and Miroslaw Korzeniowski

V ∼ D. The technical lemma below is a reformulation of [4, Observation 10], and
follows from the convergence rate of Markov chain [10] induced by the random
walk (1).

Lemma 5. If a node v starts from any position xv(t) ∈ X at some step t, then
its position after k ≥ B2 steps is a random variable with an almost uniform
probability distribution.

Thus, we may safely assume that V ∼ D at the beginning of span(I(Mj)).
The next two lemmas are proven in the full version of the paper.

Lemma 6. Fix any interval I. If V ∼ D, then the probability that nodes are
I-distributed is at least 1/7.

Lemma 7. For any time interval I starting with any configuration C, if |I| ≤
B2, then Pr[conv(I)] ≥ 1/2.

We are interested in the events conv(I(Mj)) and that nodes are Ii-distributed
at the beginning of span(I(Mj)). These events are independent, as they rely
on disjoint random experiments (random walk inside and before span(I(Mj)),
respectively). Thus, their intersection occurs with probability 1/14. It remains
to show that, if they both occur, then COPT(Ii) = Ω(1) ·B ·WA(Ii)

We observe, that if conv(I(Mj)), then the speed restriction imposed on the
nodes’ movement creates a tradeoff: an algorithm either moves its page from one
point of X to another slowly, or it has to pay much. To formalize this observation
we need the following definition.

Definition 3 (Trails). Fix any interval I. By a trail T (I) we denote the se-
quence of points of X , in which Opt had its page in interval I. The trail in one
step t, T (t) is defined as (POPT(t)) if Opt does not move, and as the sequence
of points on the shortest path between POPT(t) and P ′

OPT(t) if Opt moves.

Lemma 8. Fix any time interval I of length � ≤ B2

(16γ)2·Q . If conv(I) and Opt’s
trail T (I) contains two points from X lying at the distance of at least B/8, then
COPT(I) = Ω(min{1, 1/Q}) ·D ·B.

At the beginning of span(I(Mj)), it is possible to partition the ring into four
parts R1,R2,R3,R4 (see Fig. 1), s.t. wIi(R1), wIi (R3) ≥ WA(Ii)/16. Intuitively,
since the configuration sequence in span(I(Mj)) is convergent, this partition is
approximately preserved within whole span(I(Mj)), and thus in Ii. Formally, we
define sets R′

1,R
′
2,R

′
3 and R′

4 as shown in Fig. 1. R′
1 (or respectively R′

3) has R1

(R3) in its center and contains B/4+2 ·B/32 points. R′
2 (or R′

4) is located in the
center of R2 (or R4) and contains B/8 points. It follows that each pair of points
from different R′

i sets is separated by a distance at least B/32. We define R′′
1

(or respectively R′′
3) as the part of length 3/8 · B having R′

1 (R′
3) in its center.

Thus, R′′
1 , R′

2, R
′′
3 and R′

4 create a partition of the whole ring. We make two key
observations.

Dynamic Page Migration Under Brownian Motion 971

First, each node initially placed in R1 (or respectively in R3) can move by
at most γ ·√|span(I(Mj))| ≤ B/32, and thus remains within the set R′

1 (or R′
3)

during the whole span(I(Mj)). This means that the number of requests issued
in Ii at points from R′

1 (or R′
3) is at least wIi (R1) ≥WA(Ii)/16.

Second, Opt can either remain in R′′
1 .R′

2 .R′
4, remain in R′′

3 .R′
2 .R′

4 or
its trail has to contain either all the points from R′

2 or all the points from R′
4.

We consider two cases, the other two are symmetric.

1. Opt remains in R′′
1 . R′

2 . R′
4 for the whole Ii. Then it has to pay at least

B/32 for each of the requests issued at the points from R′
3, i.e. for at least

WA(Ii)/16 requests. Thus, COPT(Ii) = Ω(B ·WA(Ii)).
2. The trail of Opt’s page contain whole C′

2. Since |Ii| ≤ 1
(16γ)2·Q · B2, we can

apply Lemma 8 to get COPT(Ii) = Ω(min{1, 1/Q}) ·D ·B.

Thus, COPT(Ii) ≥ Ω(B ·min{D,D/Q,WA(Ii)}) = Ω(B ·WA(Ii)), which finishes
the proof.

References

1. B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation. In
Proc. of the 25th ACM Symp. on Theory of Computing (STOC), pages 164–173,
1993.

2. Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task
systems. Theoretical Computer Science, 268(1):43–66, 2001.

3. M. Bienkowski, M. Dynia, and M. Korzeniowski. Improved algorithms for dynamic
page migration. In Proc. of the 22nd Symp. on Theoretical Aspects of Computer
Science (STACS), pages 365–376, 2005.

4. M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide. Fighting against
two adversaries: Page migration in dynamic networks. In Proc. of the 16th ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 64–73, 2004.

5. D. L. Black and D. D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science,
Carnegie-Mellon University, 1989.

6. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

7. M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook. Page migration al-
gorithms using work functions. In Proc. of the 4th Int. Symp. on Algorithms and
Computation (ISAAC), pages 406–415, 1993.

8. C. Lund, N. Reingold, J. Westbrook, and D. C. K. Yan. Competitive on-
line algorithms for distributed data management. SIAM Journal on Computing,
28(3):1086–1111, 1999.

9. S. Rajesekaran, P. M. Pardalos, J. H. Reif, and J. Rolim. Handbook of Randomized
Computing, volume II. Kluwer Academic Publishers, 2001.

10. J. S. Rosenthal. Convergence rates for Markov chains. SIAM Review, 37(3):387–
405, 1995.

11. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

12. J. Westbrook. Randomized algorithms for multiprocessor page migration. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 7:135–150,
1992.

Topic 13
Routing and Communication

in Interconnection Networks

Emilio Luque, Cruz Izu, Olav Lysne, and José Legatheaux

Topic Chairs

Parallel and distributed computing has expanded its scope and application ar-
eas during the last decade. In addition to the traditional parallel computers,
the availability of new set of services through Internet together with contin-
uous improvement in communication bandwidth has led to new programming
paradigms, deployment of high-speed communication infrastructure, and instal-
lation of very large server, usually based on cluster of processors interconnected
by means of some interconnection network.

Communication networks, protocols, routing and communication policies are
crucial factors for the performance of parallel and distributed computations.

This topic of Euro-Par 2005 is devoted to all aspect of communication in
on-chip interconnects, parallel computers, networks of workstations and more
widely distributed systems such as grids. Power-efficient interconnects, I/O ar-
chitectures and storage area networks, switch architectures, as well as multimedia
and QoS aware communication are new topics introduced in the last years and
now included in this topic.

Papers were solicited that examine the design and implementation of inter-
connection networks and communication protocols, advances in system area and
storage area network, routing and communication algorithms, and the cost of
parallel and distributed algorithms.

The Call for Papers attracted 32 submissions for this topic, of which 8 (25%)
were selected for publication and presentation at the conference. The selected
papers cover a wide scope, ranging from performance evaluation and simula-
tion of interconnection networks to optical multistage interconnection networks
also covering topics like routing and scheduling policies, QoS on clusters and
congestion management strategies.

We would like to thank all the authors for their submissions to this Euro-
Par 2005 topic. We owe special thanks to the 76 external referees who provided
competent and timely review reports. Their effort ensured the high quality of
this track of Euro-Par 2005. We expect you will find this topic to be highly
stimulating and quite informative.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 973, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Transport Time Distribution
for Deflection Routing on an Odd Torus�

J.M. Fourneau1 and T. Czachórski2

1 PRiSM, Université de Versailles Saint-Quentin,
45 Av. des Etats Unis, 78000 Versailles, France

2 IITIS-Polska Akademia Nauk,
Ul. Balticka 5, 44-100 Gliwice, Poland

Abstract. We analyze the performance of all optical packet networks.
As optical storage of packets is not available, we assume that the rout-
ing protocol is based on deflection. This routing strategy does not allow
packets loss. However it keeps the packets inside the network, increases
the delay and reduces the bandwidth. Thus the transport delay distribu-
tion is the key performance issue for these networks. Here, we consider
a 2D torus the size of which is odd. The method is based on a fixed
point system between two sub-models. The first subsystem describes the
global network performance while the other one models the stochastic
behavior of two types of packets.

1 Introduction

All optical packets networks have received considerable attention during the
last years. However with actual technology, all-optical networks do not allow
the buffering of packets inside the network. Therefore packets have to be sent
immediately to the next switch along the path. Old algorithm like Deflection
Routing [2] have recently received attention to overcome this weakness [8, 9].
This routing strategy does not allow packets loss. However it keeps the packets
inside the network, increase the delay and reduce the bandwidth. In Shortest-
Path Deflection Routing, switches attempt to forward packets along a shortest
hop path to their destination. Each link can send a finite number of packets per
time-slot (the link capacity). If the number of packets which require a link is
larger than the capacity, only some of them will use the link they ask for and
the other ones have to be misdirected or deflected and they will travel through
longer paths. This is the major drawback of this technique.

The tail of the transportation delay and the average usable bandwidth are
therefore two major measures of interest. The mean number of deflections is not
that large but a significant fraction of the number of packets is heavily deflected.
We have observed several packets with more than 1000 deflections during a sim-
ulation of a 10×10 2D-mesh with unbalanced traffic [3]. As acknowledgments in
� This work has been partially supported by the French RNRT project ROMEO, by a

research project between CNRS and Polish Akademia Nauk and by the EURO NGI
European Network of Excellence.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 975–983, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

976 J.M. Fourneau and T. Czachórski

networking protocols must arrive before some timer expiration, heavily deflected
packets will be considered as lost because they experience delays larger than the
transport time-out. Packets are never physically lost due to physical errors or
buffer congestion, but they can be logically lost because the transport delay is
too large.

Previous analytical studies of deflection [1, 4] have proposed models for net-
works based on 2 × 2 switching blocks without the queueing of new packets.
Recently, Fabrega and Muñoz [7] have modeled a network with deflection rout-
ing using an approximate model based on Markov chains. However, they have
only considered 2× 2 switches and a topology such that only one shortest path
exists between the source and the destination. Yao et al. have presented in [10]
an approximate model for more general topologies which do not contain any di-
rected cycle (again a quite restrictive topology). Clearly, all the models proposed
so far have used some unrealistic assumptions about the network topology and
switches. Furthermore, all these methods only estimate the mean delay while the
important measure is the tail of the delay distribution. Therefore, new methods
to obtain the distribution of the delay are still necessary.

In this paper, we consider 4× 4 switching elements and a 2D torus topology
which was considered as a reasonable topology by the ROM project [8]. We also
assume that the size of the torus is odd (2Z +1) and that there are no optical
converters. Following the ROM conclusions, we consider fixed size packets and
the network is logically synchronous. We model explicitly the routing algorithm
with minimal number of deflections per time slot which has been introduced
recently by Alcatel [5, 9]. We explain at the end of the paper how to model even
size torus.

We model the network by an aggregate representation of the optical packets.
First, we represent the vector distance to destination and we gather the packets
into two sets according to the number of favorable directions for the next hop. We
assume that the packets try to follow a shortest path. Thus only some directions
(among the four existing in the torus) are consistent. In an odd torus, we may
have packets which have only one possible direction and packets which have two
possible directions. In this paper, they are respectively denoted as type 1 and
type 2 packets (see Fig. 1). Our analysis is based on the construction of a Markov
chain which represents the evolution of a typical packet. The state space takes
into account the packet type and the distance vector to the destination.

First, we model the path of a tagged packet inside the net using a Markov
chain. The distribution of the transport time can be computed numerically once
the deflection probabilities for both types of packets are obtained. The proba-
bilities are the solution of a fixed point system based on the flows of type 1 and
type 2 packets. We present an algorithm, numerical results and some simulations
to check the accuracy.

This paper is organized as follows: in Section 2, we present the model of a
tagged packet based on the topological properties of the torus and the traffic
assumptions. Section 3 is devoted to the model of the packet flows. The two sets
of equations provide a fixed point system. In Section 4 we present an algorithm
and we compare numerical results with simulations.

Transport Time Distribution for Deflection Routing on an Odd Torus 977

North

South

EastWest

Type 1 packet
Destination
Type 2 packet

Fig. 1. Type of Packets and Routing

2 Model of a Tagged Packet

Remember that we have divided the packets into two sets: the packets which
have only one possible direction (type 1) and the packets which have two possible
directions (type 2). A type 1 packet has reached one coordinate of its destination
while a type 2 packets must progress in two directions to reach its exit. Of
course, at each step, packets may change their types according to their distance
to destination and the issue of the deflection algorithm. Borrero and Quessette
have proposed the following heuristic which has been proved to be optimal in
[5]. The optimality criteria is the number of deflections at each time slot.

Lemma 1 (Degree 1 node of V1). [5] If a packet has only one possible direc-
tion, we must consider its request before looking at packets of type 2.

Now, let us turn to the model for routing. We assume that the selection of
packet during the routing algorithm is only based on the type of packets. Let p1
and p2 be respectively the probability that a type 1 and type 2 packet will be
deflected at one step. These quantities will be computed in the next section.

Let us now model the evolution of a tagged packet inside the net. First, we
build the transition matrix R of a typical packet and we show it for a torus with
7 rows and columns). The model is based on the following set of states: the initial
state (state 0) before the packet enters the input node and the completion state
(state 1) where the packet leaves the network. State 1 is an absorbing state. We
represent explicitly the packet type (denoted as t1 and t2 in the state descrip-
tion) and the distance vector to destination. Of course, at each step, packets
may change their type according to their vector of distances. Due to traffic as-
sumptions, we aggregate states with equivalent vector of distances: for instance
(1, 2) and (2, 1). Thus the chain has less states to represent the evolution of the
packet inside the net. For instance, for the 7x7 torus, these states are (t1,1,0),
(t1,2,0), (t1,3,0), (t2,1,1), (t2,1,2), (t2,1,3), (t2,2,2), (t2,2,3) and (t2,3,3). The
chain has 11 states. The transport time is the time of a sample-path beginning
at state 0 and finishing at state 1. The PDF of the transport time is obtained
by successive multiplications of the distribution probability by transition matrix

978 J.M. Fourneau and T. Czachórski

R of the Markov chain. The initial distribution puts all the probability mass in
state 0.

Now, let us show the effect of the routing algorithm and the deflection on the
states. Let us consider the two simplest evolution rules: the non deflected type
1 and the deflected type 2. Remember that the size of the torus is 2Z + 1.

– A type 1 packet which is non deflected and which is at distance k is kept as
a type 1 as it progresses along only one direction. Its distance to destination
is therefore k − 1.

– A type 2 packet which is deflected remains a type 2 packet. In general,
the deflection increases by one the distance to destination, except on the
boundary of the torus (see figure 2). Each of the components in the distance
vector may be increased with probability 1/2.

A1

A2

B

B1

B2

A
CC1 C2

C3

D

D1

D2

D3

Fig. 2. Deflection on the torus: the destination is the black square. If a packet in A
on the boundary is deflected, it will reach nodes A1 or A2 at next step. But A, A1
and A2 are at the same distance to destination (i.e. 2Z). For node B, the situation is
even more complex, a deflection in B implies that the packet joins node B1 or B2. At
B2, the distance is the same, while from node B1 it has increased. A deflected type 1
packet in node D may become type 2 (2 possible directions) or stay type 1 (one possible
direction). The distance to destination is now increased by one. But if the deflected
type 1 comes from the boundary (node C) and it moves to C3, then its distance to
destination is kept unchanged

Now consider the two other cases: a deflected type 1 packet and a non de-
flected type 2 packet.

– A type 1 packet at distance k which is deflected has three possible directions.
Two directions lead to a type 2 packet (see figure 2) and one direction to
a type 1 packet. If we assume equiprobable choices for the directions, the
transition rule keeps the packet as type 1 with probability 1/3 and changes it
to type 2 with probability 2/3. Its distance to destination is therefore (1, k)
except in the following case: when the packet is on the boundary of the torus
and it is kept as type 1, the packet is still at distance k along the opposite
direction because the torus size is odd.

Transport Time Distribution for Deflection Routing on an Odd Torus 979

– A type 2 packet at distance (m, k) which is not deflected decreases its dis-
tance to (m, k − 1) or (m − 1, k). And according to its position and the
direction selected it may become a type 1 (if m− 1 = 0 or k− 1 = 0) or stay
a type 2 packet otherwise.

Thus the transitions in R can be easily obtained from the rules formerly
shown and the deflection probabilities p1 and p2. The last part of the matrix
still missing gathers the transitions out of states 0 (the arrivals inside the net).
Each destination node in the net (except the source of the packet) has the same
probability (i.e. 1

N2−1) to be the destination. So, we must count the number of
nodes of type 1 and 2 at distance (k, 0) or (m, k).

R(0, (t1, k)) =
4

N2 − 1
and R(0, (t2,m, k)) =

x2(k + m)
N2 − 1

(1)

where x2(k + m) is the number of nodes in the torus at distance k of their
destination which may contain packets of type 2. Clearly, x2(m+k) = 4k+4m−4
if k+m ≤ Z and x2(m+ k) = 8Z + 4− 4k− 4m when Z ≤ m+ k ≤ 2Z. Finally
for the 7× 7 torus we get (with q1 = 1− p1 and q2 = 1− p2):

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/12 1/12 1/12 1/12 1/6 1/6 1/12 1/6 1/12
1

q1 p1/3 2p1/3
q1 p1/3 2p1/3

q1 p1/3 2p1/3

q2 p2
q2/2 q2/2 p2/2 p2/2

q2/2 q2/2 p2/2 p2/2
q2 p2

q2/2 q2/2 p2/2 p2/2
q22 p2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 Macroscopic Model of the Flows

Clearly, the first model does not take into account the arrival process because
we assume that the packet is in the network. We now study the flow of packets.
Note that due to the topology and the traffic assumptions all the switches are
statistically equivalent. The probabilities of deflection are computed by condi-
tioning on the arrivals. Then these probabilities are shown to be related to the
load of the link using an independence assumption. These last relations provide
a fixed point system for p1 and p2.

3.1 Deflection Probability

The best routing algorithm must route type 1 packets with a higher priority [9].
Therefore it is sufficient to compute the deflection probability of a tagged type
1 packet knowing the exact number of type 1 packets in the switch. Note that

980 J.M. Fourneau and T. Czachórski

the upper bound of the index is 3 because the tagged customer uses one input
link of the switch.

p1 =
3∑

i=0

Pr(i type 1 arrivals)d1(i)

where d1(i) is the probability that the tagged packet of type 1 will be deflected
if another type 1 packet arrives. The probabilities of arrivals are obtained by an
independence assumption. Let us denote by u1 the utilization of an arbitrary
link by type 1 packets.

Pr(i type 1 arrivals) = C(3, i)(u1)i(1 − u1)3−i (2)

As type 2 customers have a lower priority in the routing algorithm, their
deflection probability requires a conditioning on a more complex set of arrivals.

p2 =
i+j=3∑

i=0,j=0

Pr(i type 1 and j type 2 arrivals)d2(i, j) (3)

where d2(i, j) denotes the probability that the tagged type 2 packets will be
deflected due to the arrivals of i type 1 and j type 2 packets. Similarly the prob-
ability of arrivals follows a multinomial distribution because of the independence
assumption (B(3, i, j) is the multinomial coefficient):

Pr(i type 1 and j type 2 arrivals) = B(3, i, j)(u1)i(u2)j(1− u1 − u2)3−i−j

We now have to obtain the elementary probabilities d1(i) and d2(i, j). First
we consider an arbitrary tagged type 1 packet entering into an arbitrary switch.
Clearly, d1(0) = 0 and d2(0, 0) = 0 because there is no competition and d2(1, 0) =
0, and d2(0, 1) = 0 as a type 1 packet or a type 2 packet is not sufficient to deflect
another type 2 packet. To compute the other values, we assume equiprobable
choices when several packets of the same type request the same output. For
the sake of conciseness, we omit the computation of d1 and d2 (see [6] for more
details) and we give the results for positive values in Table 1. During this compu-
tation, we take care of some properties of routing on an odd torus. For instance,
we have:

Lemma 2. All configurations of requests are not possible due to the routing
algorithm and the topology. For shortest path deflection routing in an odd torus,
a type 2 packet can not ask for two opposite directions (for instance North and
South).

3.2 Average Distance and Deflection Probabilities

Let us now establish new relations between the link utilization u and the de-
flection probabilities. We must consider now the number of packets !n1(k) and

Transport Time Distribution for Deflection Routing on an Odd Torus 981

Table 1. Table for d1 and d2(i, j)

d1(1) d1(2) d1(3) d2(0,2) d2(0,3) d2(1,1) d2(1,2) d2(2,0) d2(2,1) d2(3,0)

1
8

11
48

81
256

1
8

9
32

1
16

15
64

1
48

23
192

13
128

!n2(m, k) rather than the state of a single tagged packet. However, the evolution
is modeled by a stochastic matrix M that we can deduce from R. For transitions
inside the network, M(i, j) is equal to R(i, j). Indeed, the average numbers of
customers obey the same evolution rules than a single packet. The only differ-
ences are in the transition between the network and the outside which reflects
the arrival rate. We remove the first two states from R and modify the first row
to take into account the flow entering the network. We assume Poisson arrivals
with rate λ. We need to compute the number of fresh packets of type 1 or 2 en-
tering the network at distance (k, 0) or (m, k). Let us denote a1(k) and a2(m, k)
these numbers. The average number of packets entering the network is also the
average number of packets entering the electronic buffers, if the system is stable.
Therefore it is equal to λN2.

a1(k) = λN2R(0, (t1, k)) and a2(m, k) = λN2R(0, (t2,m, k)) (4)

But, the flow entering the network must be equal to the flow leaving the
switches with a successful transition from a node at distance 1. Therefore: λN2 =
!n1(1)∗(1−p1). Finally, the average population vector is the solution of the linear
system:

(!n1, !n2) = (!n1, !n2)M and !n1(1) =
λN2

(1− p1)
(5)

Let us now turn back to the link utilization u1 and u2. As all the links are
equivalent due to the topology and the traffic assumptions, we get:

u1 =
∑Z

k=1
!n1(k)

4N2
and u2 =

∑2Z
k=2

!n2(k)
4N2

Thus we obtain a fixed point. We have proved the existence of a solution to
this system using Brouwer’s fixed point theory, the continuity of steady-state
distribution proved by Malys̆ev and the convexity of p1 and p2 (see equations 2
and 3). For the sake of conciseness, the proof is omitted (see [6] for more details).

4 Experimental Results

Let us now turn to the numerical algorithm. The computation is iterative: at
each step we compute the new transition probability matrix M and a new set of
values for !n1(i) and !n2(i, j). Then we get p1 and p2 and compute the difference
with their former values. If this difference is smaller than 10−9, we stop the iter-
ations. Initially, p1 and p2 are equal to 0. The computation of vectors !n1 and !n2

982 J.M. Fourneau and T. Czachórski

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

10 15 20 25 30 35

"Simulation"
"Analytic"

Fig. 3. Comparison of simulation and analytical results: average transport time (in
hops) versus load (in packets arriving in the global networks per time slot)

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

"AnalyticLight"
"SimulLight2"

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

"AnalyticHight"
"SimulationHight2"

Fig. 4. Comparison of simulation and analytical results: distribution of the transport
time for arrival rate=10 (left) and 25 (right)

is performed by an usual direct elimination solver. The number of iterations is
usually very low and the matrix is very small: we observe a convergence before
ten iterations. Once the fixed point is found, we obtain the transport time distri-
bution using the probabilities p1 and p2 and few vector matrix multiplications.

We compare the numerical results obtained by our approach to simulation
results for a 7 × 7 torus. In Fig. 3, we present the evolution of the average
transport time (in hops) versus the global arrival rate (in number of packets for
the whole network). Clearly, the approximations are quite accurate, even if we
have used a large scale to emphasis the difference. The analytical results look
optimistic. We now present the distribution of the transport time at light and
moderate load (Fig. 4). Again we depict the simulation and the analytical results.
And the figures show the accuracy of our method, even for the distribution of
the transport delay.

5 Conclusions

To the best of our knowledge, it is the first approach to analyze the transport
time distribution for more general switches and torus. It is possible to model even
torus instead of odd ones. We must slightly change the first model. In an even

Transport Time Distribution for Deflection Routing on an Odd Torus 983

torus, packets may have more than 2 good directions and the probabilities used
to define matrix R are slightly different. To complete the approach, one must also
study the distribution of the waiting time before entering the network. Diffusion
models of these queues are currently under development.

References

1. J. Bannister, F. Borgonovo, L. Fratta, M. Gerla, A versatile model for predicting
the performance of deflection routing networks, Performance Evaluation, V16, pp
201-222, 1992.

2. P. Baran. On distributed communication networks. IEEE Transactions on Com-
munication Systems, CS-12, 1964.

3. D. Barth, P. Berthomé, A. Borrero, J.M. Fourneau, C. Laforest, F. Quessette, and
S. Vial. Performance comparisons of Eulerian routing and deflection routing in a
2d-mesh all optical network. In ESM’2001, 2001.

4. A. Bonnoni, P.P. Prucnal, Analytical evaluation of improved access techniques in
deflection routing networks, IEEE/ACM Trans. on Networking, V4, N5, 1996.

5. A. Borrero, J.M. Fourneau and F. Quessette Packet Selection in a deflection routing
algorithm. ISCIS 2002, Orlando, USA, CRC Press.

6. T. Czachórski and J.M. Fourneau, Performance evaluation of an optimal deflec-
tion routing algorithm on an odd torus, Archiwum informatyki teoretycznej i
stosowanej, V 16, N 4, pp 257-277, 2004.

7. J. Fabrega and X. Muñoz, A study of Network Capacity under Deflection routing
schemes, Europar 03, LNCS 2790, pp 989–994.

8. P. Gravey, S. Gosselin, C. Guillemot, D. Chiaroni, N. Le Sauze, A. Jourdan,
E. Dotaro, D. Barth, P. Berthomé, C. Laforest, S. Vial, T. Atmaca, G. Hébuterne,
H. El Biaze, R. Laalaoua, E. Gangloff, and I. Kotuliak. Multiservice optical net-
work: Main concepts and first achievements of the ROM program. Journal of
Ligthwave Technology, 19:23–31, January 2001.

9. S. Mneimeh and F. Quessette. Minimum Deflection Routing Algorithm, Alcatel
Patent Application #135945, 2002

10. S. Yao, B. Mukherjee, and S. Dixit. Plato: a generic modeling technique for optical
packet switched networks International Journal on Wireless and Optical Commu-
nications, V1, N1, 2003, pp 91-101. World Scientific Publishing.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 984–993, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Routing and Scheduling for a Novel Optical Multistage
Interconnection Network

Siu-Cheung Chau1, Tiehong Xiao2, and Ada Wai-Chee Fu3

1 Dept. of Physics and Computer Science, Wilfrid Laurier University,
Waterloo, Ontario, Canada, N2L 3C5

schau@wlu.ca
2 Dept. of Computing and Information Science

University of Guelph, Guelph, Ontario, Canada, N1G 2W1
txiao@uoguelph.ca

3 Dept. of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong Kong

adafu@cse.cuhk.edu.hk

Abstract. Multistage Interconnection Networks (MINs) are popular in comput-
ing and communication applications. Recently, there have also been significant
advances in electro-optic switches that have made Optical MINs (OMINs) a
good choice for the high channel bandwidth and low communication latency of
high performance computing and communication applications. However, OM-
INs introduce crosstalk which results from coupling two signals within one
switching element. Under the constraint of avoiding crosstalk, what we are in-
terested in is how to realize a permutation that requires the minimum number of
passes. This routing problem is an NP-hard one, and many heuristic algorithms
have been devised to find a solution. In [9], Chau and Xiao have proposed an
algorithm, called the Remove Last Pass (RLP) algorithm, to avoid crosstalk and
route the traffic in an OMIN more efficiently. In this paper, we focus on the
routing and scheduling of a novel OMIN, the base-2 MIN, propounded by Chau
and Fu in [8]. Our experiments prove that any permutation can be realized in no
more than three passes in the base-2 OMIN by using the RLP algorithm, when
the network has no more than 512 nodes. The base-2 OMIN requires only
n(logn+1) switching elements (SEs) for an n×n network, compared to the
crossbar, which requires O(n2) SEs for an n×n network. Therefore, the base-2
MIN should be a good candidate for communication subsystems in a parallel
computing environment.

1 Introduction

The research literature on interconnection networks embodies studies of a large num-
ber of direct networks such as the hypercube, mesh and torus. Although the algorithm
for the hypercube network can attain an optimal time complexity, the network suffers
from unbounded node degrees, and thus, has a poor scalability. Mesh and torus net-
works have a constant node degree and better scalability, but more time is needed to
pass a message from one node to another node.

Routing and Scheduling for a Novel Optical Multistage Interconnection Network 985

Also, researchers have focused on indirect networks such as crossbar networks and
MINs. Crossbar networks can realize all the possible permutations between the inputs
and outputs with a constant communication latency, but the network costs of an n×n
crossbar is O(n2), which is prohibitively high for a large system. On the other hand, a
MIN usually has fewer hardware costs and can also realize all permutations, render-
ing it a good candidate for a communication subsystem.

In addition, electronic MINs have been studied extensively as important intercon-
necting schemes for communication and parallel computing systems. MINs with
electro-optic switching elements (SEs) can offer even a higher channel bandwidth and
lower communication latency than MINs with electronic SEs. A large body of work
has resulted from examining the structure, operation, and performance of these opti-
cal MINs (OMINs) [1][2][3][4][5][6][8][9][10]. The topology of an OMIN is similar
to its electronic peer except that electro-optic switches are used instead of electronic
switches. In this paper, we consider only electronically controlled optical switches
such as Lithium Niobate directional couplers which are illustrated in Figure 1. De-
pending on the amount of voltage at the junction of the two waveguides that carry the
two input signals, either of the two inputs can be coupled to either of the two outputs.

Fig. 1. A Lithium Niobate 2×2 switch.

Unlike their counterpart, electronic MINs, OMINs introduce crosstalk, the result of
coupling two signals within one SE. When crosstalk occurs, a minute amount of the
input signal power can be detected at another output, although the main signal is
injected at the appropriate output. For this reason, the input signal is distorted at the
output due to the loss and crosstalk introduced to the path. Studies also indicate that
crosstalk is the most significant factor that reduces the signal-to-noise ratio and limits
the size of a network [1].

We can eliminate first order crosstalk by ensuring that a switch is not used by two
input signals simultaneously [1][6]. Thus, only one input can be sent to an electro-
optic switch at any given time.

For an n×n MIN, a permutation is a pairing of its inputs and outputs such that
each input is connected to a different output. In other words, a permutation is a one-
to-one mapping between the network inputs and outputs [1]. A permutation is exem-
plified in Figure 2(a).

986 Siu-Cheung Chau, Tiehong Xiao, and Ada Wai-Chee Fu

Fig. 2. (a) A permutation, and (b) routing the permutation in an 8 × 8 Omega network.

If we route all the messages for the permutation in Figure 2(a) simultaneously in
an 8×8 Omega network, crosstalk will occur in each SE as reflected in Figure 2(b).
Apparently, a permutation cannot be realized in one pass in an Omega network, since
the two input links or the two output links in an SE cannot be active at the same time.
It is possible that a permutation can be realized in one pass in the base-2 MIN [8], but
typically, more passes are required to realize a permutation. Consequently, a permuta-
tion needs to be partitioned into several partial permutations [1] to avoid crosstalk.

Traditional routing algorithms for eliminating crosstalk in electronic switching
MINs are not applicable for electro-optic switching MINS. Instead, we adopt a time
domain approach [4] to partition the permutation into several partial permutations, or
passes, such that the connections in each pass can be established in the network, si-
multaneously, without crosstalk; that is, all the inputs are scheduled in several passes
such that no crosstalk occurs in each of the passes. In addition, we employ space
domain approach to avoid crosstalk [1][4], which dilates the network by using more
SEs to form more connection paths so that there are fewer opportunities for crosstalk
to be introduced in each SE. For example, the Benes network and the dilated Banyan
network are dilated MINs, but crosstalk can still be present in dilated networks. In
order to realize any permutation efficiently, we can use the time domain approach and
space domain approach simultaneously. For example, a base-2 MIN requires more
SEs and more than one pass to realize a permutation

2 Routing and Scheduling in Previously Proposed MINs

Since baseline networks, Omega networks, butterfly networks and cube networks are
topologically equivalent, we have selected the Omega network for our comparison.
We use the Window Method [10] to find the conflicts among the messages to be sent
in the Omega network. Then, we can draw a conflict graph [10], where we connect
two nodes by using an edge if there is a conflict between them. We can compute the
degree of conflict for each node in the graph to determine the scheduling order of the
degree ascending algorithm, as well as the degree-descending algorithm.

There are many heuristic algorithms that have been designed to perform the sched-
uling [6]: the sequence increasing algorithm, the sequence decreasing algorithm, the
degree ascending algorithm, the degree descending algorithm, the Genetic Algorithm

Routing and Scheduling for a Novel Optical Multistage Interconnection Network 987

(GA), the Simulated Annealing (SA) algorithm, and the Remove Last Pass (RLP)
algorithm. The RLP was propounded by Chau and Xiao [9]. For our investigation, we
have tested all the algorithms, except the GA, on the novel base-2 optical MIN, pro-
posed by Chau and Fu [8].

The concepts of these algorithms are the same: select one pair, an input and an out-
put, from the permutation for the current pass based on some order, and if no
crosstalk occurs, the pair is scheduled in current pass; otherwise, schedule it in the
next pass. There is, though, a difference in the order by which the pair is selected.
The sequence increasing algorithm selects the next input sequentially, from low to
high, whereas the sequence decreasing algorithm schedules the next input sequen-
tially in reverse order, from high to low. Although the degree ascending algorithm
chooses the next input with the lowest number of degrees first, the degree descending
algorithm prefers the next input with the highest number of degrees first. The Genetic
Algorithm (GA) schedules the messages according to the results from the GA, and
the Simulated Annealing (SA) algorithm schedules the messages based on the results
from the Simulated Annealing algorithm.

2.1 Maximal Conflict Number

The Maximal Conflict Number (MCN) refers to the SE with the highest number of
connections, when all the inputs of a permutation are routed simultaneously in a
given OMIN [9]. For example, Figure 3(a) exhibits a permutation. If we route all the
messages simultaneously in an Omega network, we will obtain the connection setting
in Figure 3(b). The MCN in this case is four, and it exists in the circled SE. As it was
mentioned in Section 1, to avoid crosstalk, no two inputs are allowed to inject to the
same SE. Consequently, the number of passes to realize a permutation cannot be
fewer than the MCN of the permutation for each of the known algorithms except the
RLP algorithm [9].

Fig. 3. (a) A permutation, and (b) routing the permutation in a 16×16 Omega network, the
MCN is 4, which occurs in the circled switch element.

988 Siu-Cheung Chau, Tiehong Xiao, and Ada Wai-Chee Fu

2.2 Remove Last Pass (RLP) Algorithm

In [9], Chau and Xiao have proposed the Remove Last Pass (RLP) algorithm that can
route a permutation in fewer passes than the MCN. The RLP algorithm adopts the
unused paths in the network to relay messages in the permutation. After the initial
solution is derived by the SA algorithm [9], the RLP algorithm is used to remove the
last pass by relaying its messages to the unused paths of the previous passes. The
process is repeated until no more passes can be eliminated. For example, for the per-
mutation in Figure 3(a), a possible solution is to use the SA algorithm (see Figure 4).
We can observe that there is only one message in the last pass. If we use the empty
paths in pass 1, pass 2, and pass 3, the last pass can be eliminated. For instance, node
1 sends a message in pass 1, but node 1 does not receive any message. Therefore, we
can use node 1 as a receiver in pass 1 and as a sender in a later pass such that the
message can be relayed from node 12 node 14 in the last pass. Figure indicates that
no crosstalk is created, and we can route the permutation in fewer than the MCN
passes. Other heuristic algorithms can be used to attain the initial solution for the RLP
algorithm, but the SA algorithm yields better results than the other algorithms do.

 Pass 1: 0 -> 12, 1 -> 5, 2 -> 11, 3 -> 8, 7 -> 3
 Pass 2: 4 -> 9, 5 -> 1, 6 -> 15, 9 -> 10, 10 -> 2, 11 -> 6
 Pass 3: 8 -> 13, 13 -> 0, 14 -> 4, 15 -> 7
 Pass 4: 12 -> 14

Fig. 4. A possible solution by the SA.

(a) (b)

(c)

Fig. 5. (a) In pass 1, one message is added which is from node 12 to node 1. (b) In pass 2, it is
the same as pass 2 in Figure 4. In pass 3, node 1 relays the message to node 14 without creating
crosstalk and pass 4 is eliminated.

Routing and Scheduling for a Novel Optical Multistage Interconnection Network 989

2.3 Experimental Results for the Omega Network

We have tested all the previous algorithms and the RLP algorithm [9] for the Omega
network and have run each of them 1000 times. A random permutation is generated
for each run. The average number of passes and the average computing time is listed
in Table 1 and Table 2, respectively.

Table 1. The average number of passes for a 1000-round runs in an Omega network.

Network Size Seq Inc Seq Dec Degree Asc Degree Des SA RLP
4 2.0 2.0 2.0 2.0 2.0 2.0
8 2.78 2.78 2.91 2.63 2.61 2.58
16 3.69 3.74 3.8 3.54 3.38 3.36
32 4.52 4.52 4.7 4.26 4.1 4.0
64 5.33 5.34 5.66 5.04 4.83 4.64
128 6.19 6.21 6.6 5.79 5.58 5.17
256 6.99 6.99 7.56 6.45 6.44 5.67
512 7.75 7.77 8.53 7.15 7.29 6.02

Table 2. The average time (in milliseconds) for a 1000-round runs in an Omega network.

Network Size Seq Inc Seq Dec Degree Asc Degree Des SA RLP
4 0.08 0.05 0.08 0.05 0.08 0.06
8 0.06 0.02 0.05 0.13 0.42 0.39
16 0.03 0.03 0.49 0.47 0.28 0.13
32 0.13 0.16 2.89 3.19 0.95 0.89
64 0.2 0.12 22.73 23.28 2.7 2.7
128 0.37 0.5 178.37 183.92 5.14 4.58
256 0.51 0.59 1485.9 1523.1 20.11 19.84
512 1.34 0.86 12288 12679 193.67 211.66

3 The Novel Base-2 MIN

In this section, we will review the topology and characteristics of a novel base-2 MIN
which has been proposed by Chau and Fu [8]. The base-2 MIN has more than twice
the number of switches than multistage networks such as baseline, Omega, butterfly
and cube networks do. Therefore, there are more connection paths in the base-2 MIN
than in the other MINs, but the base-2 MIN has a better permutation capability than
other MINs have. The base-2 MIN can realize an all-to-all personalized exchange in
n-1 passes [8], whereas other MINs require a minimum of 2n passes.

The topology of the base-2 MIN is reflected in Figure ; it is a unidirectional block-
ing MIN. The base-2 MIN has n inputs, n outputs, and (logn+1) stages. The stages
are numbered from 0 to (logn), and each has n 2×2 SEs. In total, there are
n×(logn+1) SEs in the base-2 MIN. In stage 0, only one input is injected into each
SE. In the kth stage, one output of the ith switch is connected to the input of the ith
switch in the (k+1)th stage. The other output is connected to the input of the ((i+2k)
mod n) switch in the (k+1)th stage. In the last stage, only one output is used, and the
other output is void.

990 Siu-Cheung Chau, Tiehong Xiao, and Ada Wai-Chee Fu

3.1 Routing for the Novel Base-2 MIN

Since we only need to find the difference c between the source s and the destination
d, the routing for the base-2 MIN is very simple. If d > s, take the value of c and con-
vert it to a0×20+a1×21+...+an-1×2n-1. If ai= 0, where i is in {0...(n–1)}, connect the
((s+a0×20+a1×21+...+ ai-1×2i-1) mod n)th switch in stage i to the first output. If ai=1,
connect the ((s+a0×20+a1×21+...+ai-1×2i-1) mod n)th switch in stage i to the second out-
put. If s > d, add n to d and find the value of c and convert it to a0×20+a1×21+...+an-

1×2n-1. If ai=0, where i is in {0...(n-1)}, connect the ((s+a0×20+a1×21+...+ai-1×2i-1) mod
n)th switch in stage i to the first output. If ai=1, connect the ((s+a0×20+a1×21+...+ai-1×2i-

1) mod n)th switch in stage i to the second output.

Fig. 6. A novel 8 × 8 unidirectional blocking OMIN: base-2 MIN.

The base-2 MIN does not fit the definition of self-routable because the routing tag
has to be determined by both the input and output. In a self-routable network, only
the output is necessary. However, the routing tag can be found automatically, instead
of manually, according to the paired input and output. As a result, we still can say that
the base-2 MIN is a type of self-routable MIN.

For example, in an 8-node base-2 MIN network, there are messages from 1 to 6
and messages from 5 to 3. For the first pair, d > s, we attain the value c = 5 and con-
vert it into a0a1…an-1, which is “101”. Thus, the routing tag for the first pair is 1010,
because we use the upper output in the last stage. This tag indicates that the packet
must take the upper switch output at stages 1, and 3 and the lower switch output at
stage 1 and 1. For the second pair d < s, we calculate that c = 6 and convert it into
a0a1…an-1 which is “011”. Thus, the routing tag for the second pair is 0110. This tag
indicates that the packet must take the upper switch output at stages 0, and 3 and the
lower switch output at stage1 and 3.

Routing and Scheduling for a Novel Optical Multistage Interconnection Network 991

4 Routing and Scheduling in the Novel Base-2 MIN

We need to test all six algorithms for the base-2 MIN network and run each of them
1000 times as we did in the Omega network. The average number of passes and the
average computing time is summarized in Table 3 and Table 4, respectively. From
Table 3, we can see that the SA algorithm gives far better results than the first five
algorithms. Also, it is obvious that the RLP algorithm is superior to the other five
algorithms in terms of the number of passes required. The larger the network size is,
the better the results from the RLP algorithm.

Table 3. The average number of passes for a 1000-round runs in a base-2 MIN.

Network size Seq Inc Seq Dec Degree Asc Degree Des SA RLP
4 1.68 1.67 1.68 1.66 1.65 1.65
8 2.05 2.03 2.18 2.0 2.0 2.0
16 2.55 2.58 2.8 2.43 2.4 2.29
32 3.15 3.17 3.37 3.07 3.03 2.87
64 3.77 3.8 4.1 3.59 3.53 3.02
128 4.36 4.33 4.77 4.17 4.07 3.04
256 5.01 4.95 5.47 4.7 4.62 3.1
512 5.51 5.54 6.15 5.24 5.22 3.4

Table 4. The average time (in milliseconds) for a 1000-round runs in a base-2 MIN.

Network size Seq Inc Seq Dec Degree Asc Degree Des SA RLP
4 0.14 0.09 0.17 0.14 0.09 0.27
8 0.06 0.06 0.28 0.22 0.08 0.08
16 0.06 0.17 0.87 0.86 1.13 0.96
32 0.24 0.23 6.25 6.24 1.91 1.19
64 0.3 0.45 46.19 49.52 0.75 1.26
128 0.41 0.55 374.4 397.58 7.95 9.06
256 1.24 1.33 3041.3 3180.0 10.24 11.13
512 2.48 2.76 24323 25247 227.72 243.3

Table 4 indicates that the Sequence Increasing algorithm and Sequence Decreasing

algorithm have close to the same time complexity, which is the best among all the six
algorithms. Degree Ascending algorithm and Degree Descending algorithm always
take more time than all the other algorithms. The SA algorithm and the RLP algo-
rithm need about the same time for computing.

Since the solutions of the SA algorithm are randomly generated, a different solu-
tion can result each time the algorithm is run on the same permutation. Moreover, the
empty paths in each solution can also be different, affecting the final solution that is
generated by the RLP algorithm. In order to achieve the best solution, we can run the
RLP algorithm more than once and select the best solution from each run. The results
are exhibited in Table 5.

From Table 5, we can see that running the RLP algorithm many times does yield a
better solution than running it only once, when the network size is greater than eight.
For the Omega network, there is no difference between running the RLP algorithm
three, five, or ten times. However, better results can be obtained for the base-2 MIN.

992 Siu-Cheung Chau, Tiehong Xiao, and Ada Wai-Chee Fu

We also find that the RLP algorithm can realize any permutation in no more than
three passes for the base-2 MIN, and no more than six passes for the Omega network.
In fact, no permutation needs more than three passes for a base-2 MIN of a size that is
less than or equal to 512.

Table 5. The average passes for 1000-round cases when running the RLP algorithm many
times to get a final solution.

Base-2 MIN Omega Network Size
Once 3 times 5 times 10 times once 3 times 5 times 10 times

4 1.65 1.67 1.69 1.64 2.0 2.0 2.0 2.0
8 2.0 2.0 1.99 2.0 2.6 2.57 2.58 2.6
16 2.29 2.2 2.17 2.14 3.33 3.23 3.21 3.22
32 2.87 2.78 2.74 2.66 3.97 3.9 3.91 3.9
64 3.02 3.0 3.0 3.0 4.5 4.27 4.27 4.26
128 3.04 3.0 3.0 3.0 5.04 4.97 4.96 4.97
256 3.1 3.01 3.0 3.0 5.29 5.01 5.01 5.01
512 3.4 3.09 3.03 3.0 5.76 5.32 5.32 5.32

If we group two MINs, such as Omega networks, together so that each handles a

partial permutation, no more than three passes are needed to realize a permutation.
However, the combination of two Omega networks requires n×logn 2×2 switches.
Moreover, we have to add an additional column of 2×2 switches before the first stage
and another column after the last stage as indicated in Figure 7. Therefore, n×(logn +
2) 2×2 switches are necessary for the dilated Omega network. The number of
switches is n more than those used in the novel n×n base-2 MIN. The use of two
Omega networks will have (logn+2) stages instead of logn stages for one network.
The novel n×n base-2 MIN has one fewer stage than the dilated Omega network
does. As a result, the base-2 MIN requires less hardware than the dilated Omega
network, and the switching control of the base-2 MIN is much simpler than that of the
dilated Omega network.

Fig. 7. An 8×8 Dilated Omega network.

Routing and Scheduling for a Novel Optical Multistage Interconnection Network 993

6 Conclusion

In this paper, we have investigated the permutation capability of OMINs such as the
Omega network and the base-2 MIN. Also the RLP algorithm has been tested in these
networks to see how it can improve the performance of routing and scheduling. The
RLP algorithm utilizes unused paths in the network to reduce the total number of
passes required for a permutation. From our experiments, we know that any permuta-
tion can be realized in no more than three passes in the base-2 MIN, when the net-
work size is not greater than 512. The base-2 MIN is a better choice for communica-
tion subsystems than the crossbar network in terms of hardware costs and
transmission time. Finally, the base-2 MIN also outperforms the combination of two
MINs such as the Omega, baseline, cubes and butterfly networks. We can conclude
that the base-2 MIN can be a good choice for the high channel bandwidth and low
communication latency of high performance computing and communication applica-
tions.

References

1. Y. Yang, J. Wang, and Y. Pan, Permutation Capability of Optical Multistage Interconnec-
tion Networks, Journal of Parallel and Distributed Computing, vol. 60, no. 1, Jan. 2000,
72-91.

2. Y. Yang and J.Wang, Optimal All-to-All Personalized Exchange in a Class of Optical
Multistage Networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 12,
No. 6, June 2001, 567-582.

3. C. Qiao, A two-level process for diagnosing crosstalk in photonic dilated Benes network,
Journal of Parallel and Distributed Computing, vol. 41, no. 1, 1997, 53-66.

4. C. Qiao and R. Melhem, A time domain approach for avoiding crosstalk in optical block-
ing multistage interconnection networks, J. Lightwave Technology, vol. 12. no. 10, Oct.
1994, 1854-1862.

5. Y. Pan, C. Qiao, and Y. Yang, Optical Multistage Interconnection Networks: New Chal-
lenges and Approaches, IEEE Communications Magazine, Feature Topic on Optical Net-
works, Communication Systems and Devices, Vol. 37, No. 2, Feb. 1999, 50-56.

6. A.K. Katangur, Y. Pan, and M.D. Fraser, Message Routing and Scheduling in Optical
Multistage Networks Using Simulated Annealing, IPDPS, April 2002.

7. H Nakajima, Development on Guided-Wave Switch Arrays, IEICE TRANS. COMMUN.,
vol. E82-B, no. 2, February 1999, 349-356.

8. Siu-Cheung Chau and Ada Wai-Chee Fu, Optimal All-to-All Personalized Exchange in a
Novel Optical Multistage Interconnection Network, International Journal of High
Performance Computing and Networking, pending publication.

9. Siu-Cheung Chau and Tiehong Xiao, A New Algorithm for Message Routing and Sched-
uling in Optical Multistage Interconnection Network, Proceedings of the IASTED
International Conference on Optical Communications Systems and Networks (OCSN
2004), July 2004, 749-755.

10. X. Shen, F. Yang, and Y. Pan, Equivalent Permutation Capabilities between Time Divi-
sion Optical Omega Networks and Non-optical Extra-Stage Omega Networks, Proceed-
ings of 1999 IEEE International Performance, Computing, and Communications Confer-
ence, February 1999, 356-361.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 994–1004, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Topology-Based Hypercube Structures
for Global Communication in Heterogeneous Networks*

Silvia M. Figueira1 and Vijay Janapa Reddi2

1 Department of Computer Engineering, Santa Clara University
Santa Clara, CA 95053-0566, USA

sfigueira@scu.edu
2 Department of Computer Engineering, University of Colorado, Boulder

Boulder, CO 80309, USA
janapare@colorado.edu

Abstract. Hypercube structures are heavily used by parallel algorithms that re-
quire all-to-all communication. When communicating over a heterogeneous and
irregular network, the performance obtained by the hypercube structure will de-
pend on the matching of the hypercube structure to the topology of the underly-
ing network. In this paper, we present strategies to build topology-based hyper-
cubes structures. These strategies do not assume any kind of topology. They
take into account the communication cost between pair of nodes to provide a
performance-efficient hypercube structure. These enhanced hypercube struc-
tures help improve the performance of parallel applications that require all-to-
all communication in heterogeneous networks by up to ~30%.

1 Introduction

Hypercube structures allow a computation that requires all-to-all communication
among P tasks to be performed in logP steps. All-to-all communication is used by a
variety of parallel algorithms, such as barrier synchronization, vector reduction, ma-
trix multiplication, and sorting, making the hypercube one of the most useful struc-
tures in parallel computation [7]. In fact, many popular parallel algorithms use a hy-
percube communication structure, as shown by Leighton [17]. Some examples are the
fast Fourier transform [19, 25], parallel prefix [24], and various computer vision [24]
and linear algebra computations [13]. In addition, the MPICH’s implementation [22]
of the barrier synchronization operation is based on hypercubes.

To use a hypercube structure in an all-to-all operation, the processes are organized
in a hypercube, i.e., the processes are assigned to positions in the hypercube structure
and communicate with the nodes assigned to neighbor positions only. In homogene-
ous clusters, this assignment is generally done according to their nodes’ identifiers,
which are usually assigned blindly (independently of any performance measure) to the
nodes [7, 11, 22]. For example, consider a cluster formed by 4 nodes located in the
same LAN. These nodes are assigned identifiers 0, 1, 2, and 3. According to these
identifiers, a 2D hypercube can be created, as shown in Figure 1, where node 0 com-
municates with nodes 1 and 2, but not to node 3, which also communicates with nodes
1 and 2.

* This research was supported in part by NSF cooperative agreement ACI-9619020 through

computing resources provided by the National Partnership for Advanced Computational In-
frastructure at the San Diego Supercomputer Center

Topology-Based Hypercube Structures for Global Communication 995

Fig. 1. 2D hypercube formed according to the nodes’ identifiers

When using a hypercube structure, communication takes place between nodes that
are connected in the hypercube. For this reason, the organization of the hypercube is a
key process in the all-to-all communication. In regular-topology platforms, organizing
the hypercube blindly may lead to good performance. However, in heterogeneous,
irregular networks, we need a more sophisticated strategy to build the hypercube.
Intuitively, the algorithm would execute more efficiently if we could form the hyper-
cube by having communication take place only between nodes that are separated by a
low-communication cost path, as shown in [6] for binomial trees.

This paper presents possible solutions to embed a given network topology into a
hypercube template to be used in all-to-all communication. We evaluate the efficiency
of the strategies proposed by comparing both the cost of the hypercubes generated and
the time to execute a barrier-synchronization operation using the different hypercubes.
The strategies discussed do not assume any kind of topology, i.e., the machines may
be organized in any topology. It takes into account the communication cost between
the nodes to come up with a performance-efficient hypercube to be used by the bar-
rier-synchronization algorithm.

The strategies proposed are independent of the measure used as communication
cost. In our experiments, latency is used but, in fact, the measure to be used should
reflect the application characteristics. For example, for an application that sends a
large number of short messages, the communication cost should reflect the latency.
For an application that sends a small number of large messages, the communication
should reflect the bandwidth. For an application that sends a large number of large
messages, the communication cost should reflect both the latency and the bandwidth
which, combined with the message size used by the application, provide an accurate
model for communication cost. Note that these costs can be obtained with a perform-
ance prediction tool, such as the Network Weather Service [27].

This paper is organized as follows. Section 2 discusses related work. Section 3 pre-
sents the hypercube-based all-to-all communication algorithm used in the paper. Sec-
tion 4 presents algorithms for creating topology-based hypercubes to be used in all-to-
all communication operations. Section 5 shows experiments performed and results
obtained. Section 6 concludes.

2 Related Work

Hypercube structures play an important role in global communication operations, and
have been the subject of several research papers. Bertsekas et al have described opti-
mal communication algorithms for hypercubes [4]. In [3], the authors presents a study
on algorithms for collective operations for homogeneous parallel environments, and

996 Silvia M. Figueira and Vijay Janapa Reddi

embeddings of different structures into hypercubes have been the subject of [5, 12,
18, 26].

In [1], the authors deal with heterogeneity by forming broadcast trees according to
the capacity of each machine. In [2], the authors present a communication model of
heterogeneous clusters for performance characterization of collective operations.

Several groups have been working on projects related to global communication in
hierarchical topologies. In [20], the authors present ECO, a packet containing efficient
collective operations for interconnected clusters. ECO groups hosts according to the
network topology, i.e., each group contains nodes that belong to the same (homoge-
neous) cluster. Based on these groups, ECO implements the collective operation using
a specific algorithm for each LAN. In [16], the authors also present a solution for
more efficient global communication in hierarchical networks of workstations. They
also group the hosts according to the network topology, but they use a binomial tree
for each LAN. In [15], the authors describe MagPIe, a communication library that
uses performance-efficient structures for global-communication operations in GRID
environments. Global communication in WAN environments, such as the GRID, have
been the subject of many other papers [8, 14], which employ a hierarchical structure
to reflect the hierarchy existent in these environments.

PVM (Private Virtual Machine) [11] and MPICH [22], which is an implementation
of MPI (Message Passing Interface) [21], are libraries used in practice by scientific
applications using heterogeneous networks. Both of them provide various collective
communication operations, such as one-to-all and all-to-all. Originally, they did not
take the network topology into account. However, the Globus group have proposed
the enhancement of MPICH to accommodate for the hierarchical structure of GRID
environments. They use a hierarchical structure, as discussed in [9].

3 Hypercube-Based Communication Algorithm

In [7], Foster proposes a hypercube-based algorithm for all-to-all communication. It
uses a hypercube communication template. The algorithm is executed by each task in
a hypercube communication structure (obtained by the processes’ identifiers). This
algorithm allows an operation that requires all-to-all communication among P proc-
esses to be performed in logP steps. The algorithm is presented below:

The value logp represents the size of the hypercube, and myid represents the node’s
identifier. XOR denotes an exclusive OR operation, and OP is the user-supplied op-
erator, used to combine local data with data arriving from the ith neighbor in the hy-
percube. In each step of the algorithm, each process exchanges its local state (which
embeds its local input with the information received so far from its neighbors) with
one of its neighbors in the hypercube and, then, combines the message received from

Topology-Based Hypercube Structures for Global Communication 997

that neighbor with state to generate a new state. Note that, at each step, each node
communicates with the neighbor indicated by dest = myid XOR 2i, which does not
depend on the network topology.

As shown in [7], this algorithm can be used efficiently, in regular-topology plat-
forms, for vector reductions, matrix transpositions, merge sorts, and so on. However,
as shown in Section 5, in heterogeneous networks, the algorithm’s performance de-
pends on the organization of the hypercube and, at each step, dest should be a node
selected according to the topology of the network.

4 Enhancing Hypercube Structures

Our strategies to reorganize the nodes to form a more performance-efficient hyper-
cube are based on the communication cost between the nodes. The hypercube-based
algorithm works synchronously and, at each step, each node communicates with a
specific node in the same subcube. In this case, placing nodes that are connected by a
low-cost path in communicating positions, so that communication in each step of the
algorithm uses a low communication-cost path, will decrease communication costs
and lower the total cost of the all-to-all operation.

The following subsections present our three algorithms developed to provide to-
pology- based hypercubes. The algorithms take the communication cost between pairs
of nodes into account to form a performance-efficient hypercube.

4.1 Dim2_Cube

This algorithm tries to optimize the first dimension of the hypercube to decrease the
cost in the first step of the all-to-all operation. The algorithm, which is shown below,
is based on the following procedure: For every even position i, assign the first un-
marked node n and select n’s closest unmarked node to be placed at i’s neighbor posi-
tion in the first dimension.

Figure 2 shows an example of a hypercube obtained with the algorithm above. Fig-
ure 2 (left) shows a network in which every link has the same cost. Figure 2 (left)
illustrates the first three steps of the algorithm: node 0 is placed in position 0 with
node 6 as first neighbor, node 1 is placed in position 2 with node 7 as first neighbor,
and node 2 is placed in position 4 with node 3 as first neighbor. Figure 2 (middle)
shows the last step of the algorithm, in which node 4 is placed in position 6 with

998 Silvia M. Figueira and Vijay Janapa Reddi

node 5 (the last unmarked node) as first neighbor. Figure 2 (right) shows the hyper-
cube obtained. Note that three out of the four edges in the first dimension of the hy-
percube shown in Figure 2 (middle) are optimum. However, the last edge obtained
compromises the efficiency of the hypercube.

Fig. 2. Following the Dim2_Cube algorithm

This algorithm executes in time O(n2), where n is the number of nodes and, be-
cause it focuses on the first dimension only, the gains obtained by the hypercubes
generated are limited (see Section 5).

4.2 TSTS_Cube

This algorithm uses a Traveling Salesman Tour with Shortcuts (TSTS), produced
from a Minimal Spanning Tree (MST), to generate a line of nodes, from which each
node is assigned to the corresponding position of the hypercube, according to the gray
code [23].

The Minimal Spanning Tree (MST) is a tree that contains all the nodes in a net-
work, and it is formed in such a way that the cost from the root to each of the nodes is
minimum. The TSTS can be obtained from the MST by traversing it, visiting every
node just once. A detailed explanation of how to create a TSTS from an MST is found
in [10], which proves that the TSTS obtained has a length that is at most twice the
length of the optimum tour.

The algorithm presented below traverses the hypercube positions using the gray
code [23] and assigns nodes to each position according to the TSTS, generated from
the MST corresponding to the network topology. The MST provides nodes that are
close to each other, using locality to benefit the hypercube.

The figures below illustrate the TSTS_Cube algorithm. The algorithm generates
the MST from a given graph, as the one shown in Figure 3 (left). Starting with posi-
tion 0, follow the gray code indexes and the nodes in the TSTS, assigning each node

Topology-Based Hypercube Structures for Global Communication 999

to the corresponding position. In Figure 3 (middle), the numbers on the edges indicate
the sequence in which the nodes are visited, according to the TSTS order. Each node
visited is placed in the next consecutive position, according to the gray code. Nodes
are selected until the hypercube is complete, as shown in Figure 3 (right).

Fig. 3. Following the TSTS_Cube algorithm

This algorithm executes in time O(n2), where n is the number of nodes and, even
though the MST provides the algorithm with locality, this algorithm does not scale
well. The results show that the hypercubes generated achieves an average gain of
about 10% over the hypercubes generated blindly for up to 16 nodes, but the gain
decreases as the number of nodes increase (see Section 5). This happens because
nodes that are part of a branch of the MST (which means they are connected by a low
communication-cost path), will be spread in a line and the locality provided by the
MST will be lost. Also the TSTS does not reflect the MST perfectly because of the
detours.

4.3 Eff_Cube

The previous algorithms are based on optimizing each neighbor only. However, due
to the strong coupling in hypercubes, this may not be the best approach, particularly
for large networks. For example, if a node C is a neighbor of both nodes A and B’s, it
may be a good neighbor for node A, but may not necessarily be a good neighbor for
node B. This strong coupling between neighboring nodes and their edges leads us to
think in terms of selecting neighbor nodes based on the overall efficiency of the se-
lected node.

The Eff_Cube algorithm takes into account the local cost before assigning a node
to a position. Thus, for a given location, the node that generates the least local cost
(sum of the weights on the edge in each dimension) will be chosen for a given posi-
tion.

The algorithm works as follows. Neighbors of position 0 are consecutively as-
signed nodes 0, 1, ..., d, where d is the maximum dimension of the hypercube, since
neighbors for these positions have not been assigned yet. Then, starting with the next
consecutive position, the algorithm traverses all its dimensions in search of empty
neighbors. Let Y be the current position, and Y.n be its nth neighbor. The algorithm
searches for a node X from the list of unused nodes that gives the least local cost. If
the cost of the edges between pairs of nodes are (X ↔ Y.0) = C0, (X ↔ Y.1) = C1,

(X ↔ Y.2) = C2, ..., and (X ↔ Y.n) = Cn, then the local cost to be minimized is

1000 Silvia M. Figueira and Vijay Janapa Reddi

C0+C1+C2+...+Cn. The algorithm assigns neighbors to the current node until all adja-
cent neighbors of the current index are filled with optimum nodes.

The figures below show an example of the Eff_Cube algorithm executing on a 3D
hypercube. All neighbors of the starting position 0 are assigned nodes 0, 1 and 2.
(Figure 4, left). The algorithm proceeds to position 1. For dimension 0, the algorithm
starts traversing through the list of unused nodes to find the best suitable node. All
nodes besides 0, 1 and 2 are checked as they are unused. Selection of the node is
shown in Figure 4 (middle), Figure 4 (right), and Figure 5 (left), using as an example
nodes 3, 5 and 7. For node 3 (Figure 4, middle), (3 ↔ 0) = 13, (3 ↔ 1) = 12, (3 ↔ 2)
= 0, and the local cost = 25. For node 5 (Figure 4, right), (5 ↔ 0) = 11, (5 ↔ 1) = 9,
(5 ↔ 2) = 3, and the local cost = 23. For node 7 (Figure 5, left), (7 ↔ 0) = 10, (7
↔ 1) = 4, (7 ↔ 2) = 3, and the local cost = 17. Of all these nodes, node 7 yields the
lowest local cost. Therefore, node 7 is chosen to be placed in the current empty index.
All adjacent neighbors (Figure 5, right), dimension after dimension, are inserted in the
same way, with the node that provides the least local cost.

Fig. 4. Following the Eff_Cube algorithm

Topology-Based Hypercube Structures for Global Communication 1001

Fig. 5. Following the Eff_Cube algorithm

This algorithm executes in time O(n2(logn)2), where n is the number of nodes, and
the gains obtained by the improved hypercubes is on average around 30% for large
clusters (with 1024 nodes). This algorithm scales well. In fact, the average gain starts
at about 10% for 8 nodes and increases consistently until 1024 nodes. Section 5 shows
a representative set of the experiments performed.

5 Results

To show the effectiveness of the algorithms proposed, we have executed two kinds of
experiments. First, we compare the cost of topology-based hypercubes with the cost
of hypercubes obtained blindly by the system. This comparison is made for a series of
topologies generated randomly. Then, we compare the time to execute a barrier syn-
chronization operation using topology-based hypercubes with the time to execute the
same operation using blindly generated hypercubes. This comparison is also made for
a series of topologies generated randomly.

5.1 Comparing Costs

The cost of a hypercube, which is the measure used in the comparison, is given by the
cost of the node with the maximum cost, where the cost of each node is calculated as
the sum of the weights between the node and each neighbor. Note that the cost for
each node is calculated dimension-by-dimension, and that delays in previous dimen-
sions, in which neighbors may have higher costs to their own neighbors, must be
incorporated in the calculation of the cost for each dimension. The algorithm is shown
below:

1002 Silvia M. Figueira and Vijay Janapa Reddi

Figure 6 shows a representative set of experiments, in which the average gain in
cost is obtained by each algorithm for a set of 1,000 random topologies for each num-
ber of nodes. The gain represents how much lower (in %) the cost of a hypercube
created by the respective algorithm is in comparison with the cost of a hypercube
created blindly for the same topology. In Figure 6 (left), the nodes in each topology
are apart by at most 5 Fast Ethernet links, representing networks in which the nodes
are close. In Figure 6 (right), the nodes in each topology are apart by at most 20 Fast
Ethernet links, representing networks in which the nodes are not close together.

Fig. 6. Maximum cost between each pair of nodes is 5 links (left) and 20 links (right)

The graphs consistently show that the Dim2_Cube algorithm achieves an average
of about 10% independently of the number of nodes, while the TSTS_Cube achieves
a gain of about 10% for small networks, but does not scale well. The Eff_Cube algo-
rithm achieves the highest gains and scales well, achieving an average gain of around
30% for 1024 nodes. These experiments show that the Eff_Cube algorithm imple-
ments the most promising approach, and that considering local costs leads to more
efficient hypercubes. These graphs also show that the algorithms’ behavior is inde-
pendent of the maximum communication cost between the nodes.

5.2 Comparing Execution Times

Besides comparing costs of hypercubes, we have also executed experiments to com-
pare the time to execute a barrier synchronization operation with the different hyper-
cubes. The experiments were executed on the Blue Horizon IBM SP at the San Diego
Supercomputer Center. The IBM-SP is a LAN-based, regular-topology cluster, in
which we have emulated diverse heterogeneous networks by enforcing different la-
tencies between the nodes. Our emulator was implemented using MPI [21]. Given the
number of nodes and a maximum communication cost between any pair of nodes, the
emulator generates random heterogeneous networks, which have various topologies.
The emulator generates the topologies by generating the communication cost between
every pair of nodes. Communication cost are in number of links. The latencies to be
enforced are obtained by multiplying each random cost and a base latency, which is
equivalent to the latency between two workstations connected by fast Ethernet
(100Mbps), i.e., ~35ms. Each emulation executes 10,000 barrier synchronization
operations.

Each graph below shows, for each algorithm, the gain obtained when comparing
the improved hypercube with the one obtained blindly. For each algorithm, the topol-
ogy used was the one that provided the best result among the experiments presented

Topology-Based Hypercube Structures for Global Communication 1003

in Subsection 5.1. The graphs show the cost and the emulation time gains. Note that
they match, showing that our cost calculation is accurate.

Fig. 7. 128 nodes (left) and 1024 nodes (right)

The Eff_Cube algorithm is the best option and achieves gains up to ~40% (Fig-
ure 7, left and right), corroborating the results shown in Subsection 5.1. The
Dim2_Cube algorithm provides gains of up to ~20% (Figure 7, left and right). The
TSTS_Cube algorithm achieves a gain of up to ~15% for small networks (Figure 7,
left), but it does not provide any gain for large networks (Figure 7, right).

6 Conclusion

All-to-all communication is extensively used by parallel algorithms, and adapting
these algorithms to execute efficiently in heterogeneous networks is crucial to im-
prove their performance in this kind of environment.

In this paper, we have presented strategies to organize the nodes in a heterogeneous
network into a hypercube. The strategies are based on the communication cost be-
tween the nodes in the network. The experiments performed have shown that the
Eff_Cube algorithm presented helps to lower communication costs and, consequently,
to improve the performance of algorithms based on all-to-all communication.

References
1. M. Banikazemi, V. Moorthy, and D. K. Panda, “Efficient Collective Communication on

Heterogeneous Networks of Workstations,” in Proceedings of the ICPP’98, August 1998.
2. M. Banikazemi, et al, “Communication Modeling of Heterogeneous Networks of Worksta-

tions for Performance Characterization of Collective Operations,” in Proceedings of the
Heterogeneous Computing Workshop, April 1999.

3. M. Bernaschi and G. Iannello, “Collective Communication Operations: Experimental Re-
sults vs. Theory,” Concurrency: Practice and Experience, vol. 10, no. 5, pp. 359-386, 1998.

4. D. P. Bertsekas, et al, “Optimal Communication Algorithms for Hypercubes,” Journal of
Parallel and Distributed Computing, vol. 11, pp. 263-275, 1991.

5. C. Chen and R. Chen., “Compact Embeddings of Binary Trees into Hypercubes,” Informa-
tion Processing Letters, vol. 54, no. 2, pp. 69-72, April 1995.

6. S. M. Figueira and C. Mendes, “Dynamically Adaptive Binomial Trees for Broadcasting in
Heterogeneous Networks of Workstations,” in Proceedings of the VECPAR, June 2004.

7. I. Foster, “Designing and Building Parallel Programs - Concepts and Tools for Parallel
Software Engineering,” Addison Wesley Publishing Company, 1995.

8. I. Foster, et al, “Wide-Area Implementation of the Message Passing Interface,” Parallel
Computing, vol. 24, no. 12, pp. 1735-1749, 1998.

1004 Silvia M. Figueira and Vijay Janapa Reddi

9. I. Foster and N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous Dis-
tributed Computing Systems,” Proceedings of the Supercomputing’98, November 1998.

10. M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of
NPCompleteness,” W. H. Freeman, San Francisco, 1979.

11. A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jiang, and V. Sunderam, “PVM: A
Users' Guide and Tutorial for Networked Parallel Computing,” MIT Press, 1994.

12. V. Heun and E. Mayr, “Efficient Dynamic Embeddings of Binary Trees into Hypercubes,”
Technical Report TR-98-023, International Computer Science Institute, Berkeley, Califor-
nia.

13. S. L. Johnsson, “Communication Efficient Basic Linear Algebra Computations on Hyper-
cube Architectures,” Journal of Parallel and Distributed Computing, vol. 4, no. 2, pp. 133-
172, 1987.

14. N. Karonis, et al, “Exploiting Hierarchy in Parallel Computer Networks to Optimize Col-
lective Operation Performance,” Proceedings of the 14th IPDPS, pp. 377-84, May 2000.

15. T. Kielmann, et al, “MagPIe: MPI’s Collective Communication Operations for Clustered
Wide Area Systems,” in Proceedings of the PPoPP’99, May 1999.

16. T. Kielmann, H. E. Bal, and S. Gorlatch, “Bandwidth-Efficient Collective Communication
for Clustered Wide Area Systems,” in Proceedings of the IPDPS’00, May 2000.

17. F. T. Leighton, “Introduction to Parallel Algorithms and Architectures,” Morgan Kauf-
mann, 1992.

18. M. Livingston and Q. Stout, “Embeddings in Hypercubes,” Mathematical and Computa-
tional Modeling, vol. 11, pp. 222-227, 1988.

19. C. Loan, “Computational Frameworks for the Fast Fourier Transform,” SIAM, 1992.
20. B. Lowekamp and A. Beguelin, “ECO: Efficient Collective Operations for Communication

on Heterogeneous Networks,” in Proceedings of the 10th International Parallel Processing
Symposium, April 1996.

21. Message-Passing Interface Forum, “MPI: A Message-Passing Interface Standard,” Interna-
tional Journal of Supercomputing Applications, 8(3/4), 1994.

22. MPICH-A Portable Implementation of MPI, http://www-unix.mcs.anl.gov/mpi/mpich/.
23. M. Quinn, “Parallel Computing - Theory and Practice,” McGraw-Hill, 1994.
24. S. Ranka and S. Sahni, “Hypercube Algorithms for Image Processing and Pattern Recogni-

tion,” Springer-Verlag, 1990.
25. P. Swarztrauber, “Multiprocessor FFTs,” Parallel Computing, vol. 5, pp. 197-210, 1987.
26. Y. Tseng, et al, “Low-Congestion Embedding of Multiple Graphs in a Hypercube,” Interna-

tional Conference on Parallel and Distributed Systems, pp. 378-385, 1992.
27. R. Wolski, N. Spring,. and J. Hayes, “The Network Weather Service: A Distributed Re-

source Performance Forecasting Service for Metacomputing,” in Journal of Future
Generation Computer Systems, 1999.

Performance Effects of Node Mappings
on the IBM BlueGene/L Machine

Brian E. Smith1 and Brett Bode2

1 IBM Rochester, 3605 Highway 52 North, Rochester MN 55901
smithbr@us.ibm.com

2 Ames Laboratory, 329 Wilhelm Hall, Ames IA 50011
brett@scl.ameslab.gov

Abstract. The IBM BlueGene/L supercomputer consists of up to 65536
compute nodes connected by several networks including a three-dimen-
sional torus. The BlueGene/L control system allows a user to re-map
MPI ranks to different physical torus coordinates at run-time. Effects of
node mapping on application performance are investigated for Gray-code
mappings with differing aspect ratios, permutations of the X, Y , and Z
coordinates, random mappings and four new mapping types. Results are
presented for three NAS parallel benchmarks - BT, CG, and MG - on
128-way partitions in co-processor mode and virtual node mode on the
prototype BlueGene/L hardware.

1 Introduction

Scientific application developers are constantly looking for ways to get better per-
formance from their code to allow them to solve larger problems. One relatively
easy method of increasing performance is to ensure that the system running the
application is the best system available. For example, if the application code
assumes a certain network topology, running on a different network topology
would not provide the best performance benefits.

The IBM BlueGene/L supercomputer allows a user assign physical torus
coordinates to logical MPI ranks. While not changing the physical topology, this
logical re-arranging allows a user to make more assumptions in the code or port
code from other platforms with less work. And, performance of existing codes
might be improved by providing a more optimal node map for a given application.
This paper looks at the performance benefits of several new mapping strategies
and several existing mapping strategies on three of the NAS parallel benchmarks.

2 BlueGene/L Overview

2.1 The IBM BlueGene/L Hardware

The BlueGene/L supercomputer is a new parallel system from IBM [1],[2] . The
system consists of up to 65,536 relatively modest compute nodes. Each node

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1005–1013, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1006 Brian E. Smith and Brett Bode

consists of two PowerPC 440 cores - each with two 64-bit floating point units, five
network controllers. Each node has a total of 512 MB of memory. The three user-
level networks are a three dimensional torus for high-performance point-to-point
message passing, a global combining/broadcast tree for high-speed collective
operations, and a global interrupt network for extremely fast barriers. The other
two networks for low-level machine control and access to external file servers.

2.2 IBM BlueGene/L Software

The compute nodes run a custom, lightweight kernel. The kernel provides a
single address space to one running application. Therefore, there is no context
switching overhead and applications can use the majority of the 512 MB of
memory. The kernel function-ships system calls to the I/O nodes and handles
application generated signals. For more information on the BG/L software, see
[3].

The standard application programming interface (API) for BG/L application
developers is MPI. Specifically, BG/L uses an optimized MPICH [4] implemen-
tation where many collective operations are optimized to make use of the un-
derlying BG/L hardware.[5] Code is compiled with the IBM XL compilers and
the system is rather “Linux-like” in supported system calls.

2.3 IBM BlueGene/L Control System

The BG/L control system is responsible for booting the system and running
jobs. There are two main operating modes. The standard mode is called co-
processor mode. In this mode, one core is responsible for most computations
while the second core is used for message passing. The other operating mode is
called “virtual node mode” (VNM). In this mode, all of the physical resources
of a node are split in half between the two cores. Since there are half as many
packet send/receive queues per core, there can be performance degradation on
communications-intensive applications. VNM can be very beneficial to applica-
tions that are not memory intensive, nor communications-bound.

3 Mappings

The BG/L control system pieces work together to provide compute processes
their MPI rank based on their physical coordinates in the torus. For example,
a node at physical coordinates (0, 0, 0) would become MPI rank 0. A node at
(1, 0, 0) would then become MPI rank 1. In virtual node mode, a fourth coordi-
nate is required (the processor or core ID, usually referred to as ‘T’). A user may
specify an arbitrary mapping file (as long as all nodes in a partition are uniquely
accounted for in the file, even if they are not used). This allows for some inter-
esting possibilities for improving application performance. For example, many
applications might assume a two-dimensional mesh of processors. Given a proper

Performance Effects of Node Mappings on the IBM BlueGene/L Machine 1007

mapping file, the three-dimensional BG/L torus can be made to look like a two-
dimensional mesh with no link contention. This paper looks at the performance
effects of the standard permutations of X , Y , and Z coordinates (XY Z, XZY ,
Y XZ, Y ZX , ZXY , ZXY . In virtual node mode, the core ID can come first
or last), along with Gray-code mesh mappings, and two other unique mapping
strategies with several variations. A random mapping was also used to compare
results.

3.1 Gray-Code Mappings

When hyper-cubic machine topologies were more common in the early 1990s,
work was done on embedding different order hyper-cubic graphs in whatever di-
mension hypercube was available on the physical hardware of a given machine.
See [6] or [7]. This was done using Gray codes [8]. Gray code sequences are usu-
ally constructed using a binary reflected Gray code algorithm. For example, the
sequence for 8 values (3 bits) would be: 000, 001, 011, 010, 110, 111, 101, 100. For
a simple discussion on embedding a lower-order graph in a higher order topology,
see [6]. The general strategy is to realize that a k-way partition can be written
as k = 2n for some n. Each node in the partition then has an n-bit “address”.
If each node exists in a three-dimensional torus, then the n-bit address can be
broken down into three sub-addresses (x-bits, y-bits, z-bits) for the physical co-
ordinates. To embed a two dimensional mesh in the three-dimensional torus, the
three sub-addresses are split into two sub-addresses with m-bits and n-bits for
location information. This is shown with an example. The 128-way partitions on
the BG/L development machine are 8x4x4 nodes. Each node can then be rep-
resented as n = x1x2x3y1y2z1z2. To embed a 16x8 mesh we convert each node
“address” n to look like n = a1a2a3a4b1b2b3. For example, a Z-first Gray-code
mesh would have n = z1z2x1x2x3y1y2 to then convert to a mesh “address”. The
T Gray-code meshes have the core ID first.

010 01 00

0 000

1 001

2 011

3 010

4 110

5 111

6 101

7 100

3 102 111 010 00

3 10

2 11

1 01

0 00

00
0

0 000 00
1

00
2

00
3

00
4

00
5

00
6

00
7

00
8

00
9

01
0

01
1

01
2

01
3

01
4

01
5

01
6

01
7

01
8

01
9

02
0

02
1

02
2

02
3

02
4

02
5

02
6

03
2

04
8

06
4

08
0

09
6

11
2

03
3

04
9

06
5

08
1

09
7

11
3

03
4

05
0

06
6

08
2

11
4

03
5

05
1

06
7

08
3

09
9

09
8

11
5

03
6

05
2

06
8

08
4

10
0

11
6

03
7

05
3

06
9

08
5

10
1

11
7

03
8

03
9

04
0

04
1

04
2

02
7

02
8

02
9

03
0

03
1

04
3

04
4

04
5

04
6

04
7

05
4

05
5

05
6

05
7

05
8

05
9

06
0

06
1

06
2

06
3

07
0

08
6

10
2

11
8

10
3

07
1

07
2

07
3

07
4

07
5

07
6

07
7

07
8

07
9

08
7

08
8

08
9

09
0

09
1

09
2

09
3

09
4

09
5

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

1 001

2 011

3 010

4 110

5 111

6 101

7 100

0 0000

1 0001

2 0011

3 0010

4 0110

5 0111

6 0101

7 0100

8 1100

9 1101

10 1111

11 1110

12 1010

13 1011

14 1001

15 1000

010 0 |1 00

Fig. 1. Embedding 16 by 8 mesh in 128-Way BG/L Partition

The utility developed to generate all of the maps also allows the user to
specify the dimensions of the mesh to control the aspect ratio of the 2D mesh.

1008 Brian E. Smith and Brett Bode

3.2 Other Mapping Strategies

Because the Gray-code mesh mappings move some nodes away from each other
that would normally be neighbors, another map type called “unfolding” was
developed to try to keep more neighbor nodes next to each other while creating
a mesh-like mapping. Ranks increase along the orientation axis, then increase in
a perpendicular axis and back-track along the orientation axis. This continues
until all nodes are mapped.

In virtual node mode, three different ways of counting the core ID - corefirst
(CF), corelast (CL), and coreplanes (CP) were investigated. In corefirst unfolds,
MPI rank 0 corresponds to physical coordinates (0, 0, 0, 0) while MPI rank 1
corresponds to physical coordinates (0, 0, 0, 1).

In corelast unfolds, the ranks progress along the orientation axis, then move
to the second core and progress back along the orientation axis before increasing
the next orthogonal coordinate.

In coreplane unfolds, the ranks increment along the orientation axis, then
increase on the orthogonal axis, and continue increasing as the physical coordi-
nate decreases. When the physical coordinate is back at 0, the processor core is
increased and the process repeats. These three mappings are shown in 2 for two
rows from an 8x8x8 torus.

Fig. 2. VNM Unfolding Types

4 Procedure

In Sect. 5, results from three NAS benchmarks are presented. The three bench-
marks included show the most variability between mappings. They are BT (block
tri-diagonal), CG (conjugate gradient), and MG (multi-grid). For more informa-
tion on the NAS benchmarks see [9], [10], and [11]. For the results of other NAS
benchmarks (and other benchmarks in general), see [12].

Performance Effects of Node Mappings on the IBM BlueGene/L Machine 1009

The NAS benchmarks come in multiple problem sizes called classes. Results
are shown for classes A, B, and C. Class A is the smallest class available for
parallel machines and tends to be communications-bound on larger partitions
such as 128-way. Class C was the largest class that still showed variation be-
tween mappings on 128-way partitions (in co-processor or virtual node mode),
though there is a class D version of most of the NAS benchmarks. Results are
presented for 128-way BG/L partitions in co-processor mode and virtual node
mode (therefore utilizing 128 or 256 processors).

The result reported by the NAS benchmarks is “MOp/s” (millions of opera-
tions per second). The graphs in Sect. 5 show the MOp/s divided by number of
processors used. Larger values of MOP/s indicate better performance. The NAS
BT benchmark requires a square number of processors so only 121 processors
are used for the co-processor mode results. However, the results get reported as
if 128 processors were actively used. Therefore the MOp/s per processor values
are recalculated for only 121 nodes.

The benchmarks were all run on first generation prototype hardware and were
compiled with the significantly less efficient (compared to IBM XL) GNU com-
pilers. Because of this, the numbers are not meant to represent absolute BG/L
performance. Instead, they are meant to show the relative effects of mappings on
performance. Re-running the benchmarks with the XL compilers should lessen
computational time without affecting communications so the results should show
differences between mappings more clearly.

5 Results

Typically, a smaller problem class performs fewer MOP/s per processor so it is
possible to plot all three classes on the same graph to conserve space. However, a
few smaller problem classes out-performed or performed similarly to larger class
problems for a given mapping. This obscures the larger problem results. This is
especially true in the CG benchmark.

Figure 3 shows the results for the NAS BT benchmark in co-processor mode
for classes A, B, and C.

The most variation between mappings is seen in the class A runs. This is
probably because less time is required for computation in the small problem sizes.
Because the 128-way partition is physically arranged as 8 by 4 by 4 nodes, the
mappings that hide the latency from the fact that there are an average of twice
as many hops in the X direction as Y or Z show reasonably good performance
increases. For example, the Y ZX and ZYX stock mappings show approximately
a fifteen percent improvement over the default XY Z mapping. Similarly the
X-first Gray-codes have the X coordinates as the most significant bit so the
physical X location changes slowly through the MPI ranks. The unfold Y map
counts along the Y axis, then Z before incrementing X . Finally, the Blocks - X
mapping also increases the X coordinate most slowly. Figure 4 shows the results
of running the CG benchmark with the mappings and Fig. 5 shows the results
from MG with 128 processors in co-processor mode. Both results are somewhat

1010 Brian E. Smith and Brett Bode

Fig. 3. BT 128 Processors

Fig. 4. CG 128 Processors

Fig. 5. MG 128 Processors

Performance Effects of Node Mappings on the IBM BlueGene/L Machine 1011

similar in that there was not much variation between the mappings, especially
MG. The MG results are similar to the BT results - the mappings that have the
X coordinate varying the slowest had the best performance.

Figure 6 shows the BT results with a 128-way partition booted in virtual node
mode. Because BT assumes a square mesh of processes, it makes sense that the
square meshes are the best Gray-code performers. As in the co-processor case,
the maps that hide the latency of twice as many hops in X showed the best
performance in general. Figure 8 shows the MG results. As in the 128-way case,
there is less variation than with BT. There was very little variation between the
Gray-code mappings as a function of aspect ratio. The virtual node mode unfold
maps oriented along Y performed well since those mappings cause the physical
X coordinate to vary slowly. Figure 7 shows the results for CG. The results were
somewhat unexpected. Gray-code meshes that were more rectangular tended to
perform better than the square meshes. However, the unfold and stock results
were similar to the BT and MG results. The Gray-code mapping results will
require more investigation of the CG code.

6 Conclusions

Changing the MPI rank mapping on BlueGene/L can show very good perfor-
mance increases (as much as fifteen percent over the default XY Z mapping).
This is especially true if the mapping hides the latency from extra network hops
in asymmetric partition sizes. The majority of BlueGene/L partition sizes are
not perfect cubes so there is potential for performance increases with minimal
effort for most configurations.

Changing the logical node mapping is also an easy thing for an application
developer to try. At the very minimum, the BG/L control system provides the
stock permutations to the user, and developing mapping files is not difficult.

Fig. 6. BT 256 Processors

1012 Brian E. Smith and Brett Bode

Fig. 7. CG 256 Processors

Fig. 8. MG 256 Processors

Generally, mappings that can reduce or hide latency from extra physical dis-
tance from node to node show the best improvement. The performance benefits
should be even better on larger configurations (unfortunately, many of the NAS
benchmarks do not run on large partition sizes to test this) For example, the full
4096-way prototype system at IBM Rochester is thirty-two by eight by sixteen
nodes. On that system, mappings that decrease the X coordinate slowest should
perform very well.

Even in extremely powerful supercomputers, it is important to get as much
performance as possible from the given hardware and software. Node mappings is
one area where very little effort is required for possibly large gains in application
performance.

Performance Effects of Node Mappings on the IBM BlueGene/L Machine 1013

Acknowledgments

This work was supported in part by U.S. Department of Energy. This manuscript
has been authored by Iowa State University of Science and Technology under
Contract No. W-7405-ENG-82 with the U.S. Department of Energy. The authors
would also like to thank IBM for access to BlueGene/L hardware, especially Sam
Ellis, Charles Archer, and Dr. José Moreira.

References

1. The IBM BlueGene/L Team. An overview of the BlueGene/L supercomputer. In
Supercomputing 2002, 2002.

2. F. Allen et al. Blue gene: A vision for protein science using a petaflop supercom-
puter. IBM Systems Journal, 40(2), 2001.

3. Gheorghe Almási et al. An overview of the BlueGene/L system software organiza-
tion. Parallel Processing Letters, 13(4):561–574, 2003.

4. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI message passing interface stan-
dard. Parallel Computing, 22(6):789–828, 1996.

5. Gheorghe Almási et al. Implementing MPI on the BlueGene/L supercomputer. In
Proceedings of Euro-par 2004, 2004.

6. Youcef Saad and Martin H. Schultz. Topological properties of hypercubes. IEEE
Transactions on Computers, 37(7):867–872, 1988.

7. M. Y. Chan and F. Y. L. Chin. On embedding rectangular grids in hypercubes.
IEEE Transactions on Computers, 37(10):1285–1288, 1988.

8. James R. Bitner, Gideon Ehrlich, and Edward M. Reingold. Efficient generation of
the binary reflected Gray code and its applications. Communications of the ACM,
19(9):517–521, 1976.

9. Rob F. Van der Wijingaart. NAS parallel benchmarks version 2.4. Technical report,
NASA Advanced Supercomputing Division, Ames Research Center, Moffett Field,
CA 94035-1000, 2002. NAS-02-007.

10. D. Bailey et al. The NAS parallel benchmarks 2.0. Technical report, NASA Ad-
vanced Supercomputing Division, Ames Research Center, Moffett Field, CA 94035-
1000, 1995. NAS-95-020.

11. D. Bailey et al. The NAS parallel benchmarks. Technical report, NASA Advanced
Supercomputing Division, Ames Research Center, Moffett Field, CA 94035-1000,
1994. NAS-94-007.

12. Brian E Smith. Performance effects of node mapping on the IBM BlueGene/L
machine, June 2005.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1014–1023, 2005.
© Springer-Verlag Berlin Heidelberg 2005

INSEE: An Interconnection Network Simulation
and Evaluation Environment

Fco. Javier Ridruejo Perez and José Miguel-Alonso

The University of the Basque Country
Department of Computer Architecture and Technology

P.O. Box 649, 20080 San Sebastian, Spain
{acbripef,miguel}@si.ehu.es

Abstract. In this paper we introduce INSEE, an environment to help in the de-
sign of interconnection networks for parallel computing systems. It contains
two main modules: a system to generate traffic (TrGen) and a lightweight func-
tional simulator (FSIN). Additionally, external tools can be integrated into the
environment. Examples are SICOSYS (a sophisticated network simulator that
provides accurate timing information) and SIMICS (a complete, detailed com-
puter simulator). This environment has been used to conduct some studies of in-
terest in the design of interconnection networks, such as the effect of head-of-
line blocking in the injection queues of the network routers, the effects of the
injection interface in network performance, and the characteristics of topologies
with skewed wraparound links.

1 Introduction

When designing and building a parallel computer, the decision of which interconnec-
tion network will be used to link all the processing elements is of crucial importance,
because it greatly affects the performance of the system. In the initial design stages,
most architectural proposals (routing algorithms, deadlock-avoidance strategies, to-
pologies, etc.) are commonly tested using fast, functional simulators that do not in-
corporate all the details of the hardware—while considering the most relevant ones, in
such a way that a selection of promising approaches can be made. Then we can pro-
ceed to use more detailed simulators, or even develop hardware prototypes.

As important as a good model of the interconnection network is a good characteri-
zation of the workload it will have to support, in the same way that processors’ design
are made taking into account the programs that will run on them. The network has to
be designed bearing in mind the way it will be used by parallel applications. The
networks for these systems will probably be very different: (1) a small-sized SMP; (2)
a larger CC-NUMA multiprocessor; (3) a massively parallel computer (MPP), and (4)
a distributed system based on web services. In fact, market provides different solu-
tions for each of these needs. We can even go further: it is not the same what we ex-
pect from the network when running master-slave applications with infrequent inter-
change of long messages, that what we demand when running a fine-grained scientific
application where messages are short but interchanged very often. In the first case we
need high throughput, while in the second latency is the main constraint.

For these reasons, a set of tools to simulate-evaluate proposals for interconnection
networks require a choice of simulators as well as a choice of traffic-generation meth-
ods to feed them. This is precisely what we introduce in this paper: INSEE, Intercon-

INSEE: An Interconnection Network Simulation and Evaluation Environment 1015

nection Network Simulation and Evaluation Environment. It includes a fast, func-
tional simulator (FSIN) and a flexible mechanism to generate traffic (TrGen). INSEE
is modular, and can be augmented in many ways: with new modules, or adding capa-
bilities to existing modules.

INSEE tools have been successfully used in our research group to carry out differ-
ent studies of interest in the design of interconnection networks: the effect of head-of-
line blocking in the injection queues of the network routers, the effects of the injection
interface in network performance, and the performance of topologies with skewed
wraparound links. Our aim is to continue improving this tool, and to make it available
to other researchers.

The rest of this paper is organized as follows. Section 2 describes the overall de-
sign of INSEE and its basic tools: FSIN and TrGen. Section 3 enumerates several
lines of research that are being developed with these tools. Section 4 describes tools
with the same purpose than INSEE and compares them with our tools. Section 5
summarizes this paper, and indicates work in progress.

2 Structure and Elements of INSEE

INSEE is organized as a collection of modules, many of which can be used as stand-
alone applications. Fig. 1 represents the interactions between all the modules. FSIN
(Functional Simulator of Interconnection Networks) and TrGen (Traffic Generator)
are the core modules. SICOSYS [13], another network simulator, was built before
coining the INSEE concept, but can be considered a part of it. The rest of the modules
have been developed externally, but can (with some glue code) enhance the capabili-
ties of INSEE, or use it as a source of traffic.

Fig. 1. Overall design of INSEE. Elements with grey background are discussed in this paper.
SICOSYS, although developed independently, is considered part of this environment. The
remaining parts are external modules

The current version of INSEE uses SIMICS [7] as a full system simulator, and a
modified version of MPICH [5] as the source of traces. This will be explained with
more detail in the following sections.

1016 Fco. Javier Ridruejo Perez and José Miguel-Alonso

2.1 FSIN

FSIN (Functional Simulator of Interconnection Networks) is a flexible tool to help in
the design of communication subsystems for parallel computers. Our research group
already has a tool like this, SICOSYS [13]. In many aspects, FSIN could be consid-
ered a scaled-down version of SICOSYS, because their goals are the same: the gen-
eral design of what an interconnection network is, and how routers for these networks
are. However, FSIN is much faster, because it does not simulate the details of the
hardware (that is the reason we call it a “functional” simulator) and consumes much
less memory, thus allowing the simulation of large networks: with FSIN we are rou-
tinely simulating networks of 32K nodes using off-the-self equipment, while with
SICOSYS the reasonable maximum is 1024.

The downside of FSIN is the accuracy when providing timing information. While
SICOSYS includes a very detailed timing model, FSIN only has the notion of “cy-
cle”: all the relevant events in the network take exactly one cycle. Related to this,
SICOSYS allows for the simulation of pipelined routers, while FSIN does not.

Fig. 2 depicts the basic elements of the simulated routers. Most of these elements
can be parameterized: sizes of buffers and queues, number of dimensions (1, 2 or 3),
number of virtual channels (VC) per physical link, uni- or bi-directional links, etc.
This is, though, just a subset of the parameters the designer can modify. A non-
exhaustive list follows: (1) packet size (measured in phits); (2) topology of the net-
work: torus, mesh, midimew [2], twisted_torus; (3) network size; (4) VC management
strategy: Dally [4], bubble [12]; (5) VC request policy (routing): several options,
depending on the previous parameter; (6) VC assignment policy: round-robin, oldest,
longest, random.

Fig. 2. Router model simulated by FSIN. This particular one is a 2-D router with 3 VCs per
physical channel, and 4-phits buffers per VC

INSEE: An Interconnection Network Simulation and Evaluation Environment 1017

FSIN includes a built-in traffic generator that injects packet with fixed length, a
Bernoulli temporal distribution, and a small choice of spatial distributions: uniform,
hot-region, transpose, distribute. For more choices, it can be connected to TrGen.

This tool has been developed in ANSI C, so is fully portable to any computing en-
vironment. The verbosity of the output report can also be configured: from a short,
final summary to a detailed list of all the relevant simulation events.

The most common way of using FSIN is via a batch system (it does not have a
graphical interface) to run a collection of experiments in which one or several of the
input parameters are changed, and then observe the impact of those changes in the
performance of the simulated network. We often focus our attention on the load ac-
cepted by the network (“Load Acc.”) when the offered load (“Load Prov.”) is beyond
saturation. This way we obtain an indicator of the maximum traffic the network can
manage for a given selection of topology, VC management policies, traffic pattern,
etc.

In Fig. 3 (left) we show some results obtained by FSIN, compared to those of
SICOSYS. Input parameters are: 2-D torus of 4x4, 8x8 and 16x16 nodes; 3 virtual
channels per physical channel (one is the bubble-managed escape channel, using
oblivious DOR routing, while the other two are adaptive); packets of 16 phits; queues
of 8 packets; applied load between 0.01 and 1.0; 100.000 simulation cycles. The
curves show the load accepted by the network. Notice that results given by the two
tools show exactly the same trends and very similar values. Fig. 3 (right) shows the
resources used by FSIN compared to those used by SICOSYS, both in memory used
and execution time for the longest experiments. Here is where FSIN shows its advan-
tages: experiments consume much less resources.

Fig. 3. Left: comparison of results provided by FSIN and SICOSYS for the same input parame-
ters. Right: comparison of resources (memory, execution time) used by these tools

2.2 TrGen

An actual interconnection network will not be used to randomly move packets from
one node to another: it will be used to deliver actual traffic generated by actual appli-
cations. The characteristics of this traffic have an enormous impact in network per-
formance and, for this reason, a realistic evaluation of an interconnection network
must be performed with actual traffic. There are many reasons, though, to work with
approximations: (1) actual traffic may be unknown or unavailable; (2) agile advance
in the initial stages of network development; (3) specific testing of particular network
characteristics, etc.

1018 Fco. Javier Ridruejo Perez and José Miguel-Alonso

TrGen is a traffic generation tool that, via a unified API, allows us to tests our de-
signs with a large variety of traffic sources, as depicted in Fig. 1: synthetic sources,
actual traffic taken from traces, and actual traffic taken from an execution-driven
simulation.

Synthetic Traffic
Synthetic traffic is characterized by three distributions: temporal (that determines the
packet inter-arrival times), spatial (destination of packets) and packet-size. The choice
of distributions available is extensible, and they can be parameterized. Currently
available options are:

− Temporal: Bernoulli, constant bursts, Markov (with several variants).
− Spatial: uniform, distribute, zipf, hot-region, constant (transpose, butterfly, perfect

shuffle, inverse, etc.)
− Size: constant, uniform, polynomial.

Traces
Once we have traces taken from the actual execution of a parallel application, we can
use them through the TrGen interface to feed our simulations. In order to do this, we
have used the profiling capabilities of MPICH [5], a widely used MPI [8] implemen-
tation.

One of the limitations of most profiling mechanisms for MPI applications is that
they log collective operations as a single event, without showing the actual packets
that traversed the network. MPICH implements collective operations via the inter-
change of point-to-point messages, although this is performed in a hidden context, not
visible to applications and not logged. We have modified MPICH in order to make
this interchange visible, in such a way that events in trace files are point-to-point
interchanges.

Trace files are pre-processed before being used to feed simulations. We remove all
timing information, while keeping event order (and causality). We do this because
event timestamps are very dependent on the computing platform in use. Without tim-
ing information, simulators are forced to work with infinitely fast CPUs—so the net-
work itself is the element that limits execution times.

Execution-Driven Simulation
The third source of traffic available with TrGen is actual traffic generated and con-
sumed by running applications. To close the simulation circle, we use full system
simulators that host simulated computers (guests), which act as the computing nodes
running parallel applications. In particular, we use SIMICS [7] because of its flexibil-
ity simulating different architectures. Currently we used Pentium 4 (host) machines to
simulate generic x86 (guest) machines running Linux.

Fig. 4 depicts all the elements involved in an execution-driven simulation. The
grey area (left) runs in a SIMICS environment. At the right side we have a network
simulator (such as FSIN or SICOSYS) and, in the middle, TrGen acting as the inter-
face between the two worlds. To make this setup work, it has been necessary to de-
velop two pieces of software:

INSEE: An Interconnection Network Simulation and Evaluation Environment 1019

Fig. 4. Execution-driven simulation. A full system simulator (SIMICS) is connected, through
TrGen, to a network simulator

− A SIMICS module that implements a PCI network adapter. A guest sees this
adapter as an additional Ethernet card. All MPI communication goes through this
adapter. SIMICS is instructed to communicate all activity in this adapter to TrGen.

− A Linux kernel driver to allow the guest machines to use the (simulated) PCI net-
work adapter to interchange messages.

SIMICS Central, a part of the SIMICS environment, also plays an important role,
keeping all guest machines synchronized.

3 Research Performed with INSEE

We plan to make INSEE tools available to the research community under a liberal
licensing (such as GPL). However, some aspects of the code are not yet ready for
distribution: user interface is not intuitive, and portions of the code are not yet fully
tested. None of those aspects affect the functionality claimed in this paper.

Interested readers can obtain a copy of the software by requesting it directly to the
authors. We don’t have the (human) resources to provide technical support to poten-
tial users; however, comments on possible improvements, contributed code, and bug
reports will be welcomed.

The next subsections introduce work already performed and current, in the context
of our research group, where INSEE tools play a crucial role.

3.1 Load Unbalance in Queue Usage

In [10] we report a study of the effect that HOLB (Head-of-line blocking) in the
packet injection queue has on the performance of bidirectional k-ary n-cubes, for
values of k over a certain threshold (around 20). The HOLB causes an unbalanced use
of the channels corresponding to the two directions of bidirectional links, which is
responsible for a drop in the network throughput and a rise in the network delay.
Simulation results obtained with FSIN (using its built-in uniform traffic generator)
show that this anomaly only appears in those rings where most injections are per-
formed (normally, those in the X axis), and that the elimination of the HOLB in the
injection queue enables the network to sustain peak throughput after saturation.

This unbalance is also present under actual workloads. Using RSIM (a simulator of
multiprocessor systems [11]) integrated with SICOSYS we performed an execution-

1020 Fco. Javier Ridruejo Perez and José Miguel-Alonso

driven simulation of the Radix application, part of the SPLASH-2 benchmark suite.
Checking the usage of queues in the network routers, the unbalance was clearly no-
ticeable. It cannot be attributed to the characteristics of the Radix application (it is not
true that nodes in Radix send more data towards one direction that towards the other),
because the application interchanges keys in a highly random, uniform way. Thus,
this behavior confirms our hypothesis about the occurrence of the anomaly not only
with synthetic traffic but also with actual applications.

3.2 Study of Packet Injection Mechanisms

In [6] we analyze the impact that the injection interface has on maximum sustained
throughput in an adaptive cut-through torus network. The work described in the pre-
vious section pointed out that HOLB at the network interface, due to the use of single
FIFO injection queues, may prevent a network from sustaining its peak throughput at
heavy loads. Meanwhile, we observed that most recent commercial parallel systems
use multiple injection queues [1], but little is known about the rationale behind these
design decisions, or their implementation details.

Using FSIN-TrGen we modeled and thoroughly analyzed the effect on perform-
ance of the following factors: the number of injection queues (from 1 to 4), the alloca-
tion of packets to queues (testing different selection policies, with or without pre-
routing at the interface) and the mapping of queues to the available number of injec-
tion channels (virtual injection channels vs. physical injection channels). Network
evaluations for medium to large size 2D tori showed that designs with multiple FIFO
injection queues do not improve performance under uniform traffic, when compared
with the simple, single-FIFO interface. On the contrary, for some injection policies,
throughput loss increases for loads beyond the saturation point. At the heart of this
behavior was network congestion: more injection ports results in more pressure from
the injection interface to acquire the scarce network resources of an already clogged
system.

We concluded that new, restrictive injection policies are required that prevent
processing nodes from overflowing routers with new packets for loads beyond the
network’s saturation point. Interestingly, for small networks, a single injection FIFO
queue, with the HOLB it entails, may actually be a good design choice as it indirectly
provides the much-needed injection control. For networks with thousands of nodes, as
those being implemented in current massively parallel processors, this basic form of
congestion control is not enough. Regardless of the number of injectors, an injection-
throttling mechanism is essential to reduce throughput losses and maintain, or even
increase, maximum sustained throughput.

3.3 Study of Torus-Like Topologies

The interconnection network literature includes many studies devoted to select the
best topology for a given parallel computer, application, or combination of those.
Most current systems use indirect networks (fat-trees, omega) or direct networks of
the k-ary n-cube family. Examples of the later are the 3D-cube for above-mentioned
BG/L, or the 3D-mesh planned for Cray’s Red Storm.

INSEE: An Interconnection Network Simulation and Evaluation Environment 1021

Still, the work in topologies is not complete: it is still possible to obtain perform-
ance gains using the right choices of wiring. Our research group has been for a long
time studying the characteristics of networks such as midimews and twisted tori (see
Fig. 5), which are similar to tori, but with skewed wrap-around links [2,9].

To demonstrate the properties of this family of networks we are using mathemati-
cal analysis as well as simulation—using INSEE.

Fig. 5. Left: midimew network. Right: twisted torus with skews 3 (X-axis) and 0 (Y-axis)

4 Related Work

There are several tools available from research groups with the same purpose of
INSEE. Two of them FlexSim [14] and the Chaos Router Simulator (ChaosSim) [3]
are very close to FSIN.

FlexSim is a powerful tool to simulate wormhole networks. Some of its most sali-
ent advantages over FSIN are: (1) supports full or half-duplex links; (2) models faults
in nodes / links; (3) allows the specification of several delays: routing delay, cut-
through delay, switch-to-switch delay, hand-shaking delay and link arbitration delay
for half-duplex channels; (4) includes a large set of routing and selection functions.
However, it has some downsides. In particular, it neither supports virtual cut-through
networks, nor bubble routing. It cannot take traffic from full system simulators, and
output information is very limited.

ChaosSim is in many aspects close to the initial versions of FSIN. Its development
stopped around 1993, so it does not incorporate most recent advances in interconnec-
tion network design. Positive aspects of ChaosSim are its ability of supporting full
and half-duplex links, and to simulate wormhole as well as VCT networks. It is also
possible to animate simulations using a graphical interface. On the downside, traffic
sources are limited to the usual set (uniform, hot-spot and some permutations), and all
characteristics of the simulated router have to be included in source files, so a change
in a design parameter requires recompilation.

We could have decided to take one these simulators as the foundation for FSIN,
adapting it to our needs. However, that was not an easy task: FlexSim is too circum-
scribed to wormhole routing, so it is not trivial to adjust it to work with virtual cut-
through networks (the ones we are working with). Something similar happens with
ChaosSim: it was developed for a particular design of router, so we would need to
change too many things to simulate our routers.

In addition to this, FSIN has evolved very rapidly from its origin to its present
state; these modifications have been relatively easy because we have a thorough
knowledge of its internals. It would be necessary to fully understand even the most
minor detail of ChaosSim or FlexSim to adapt them to our needs—and that is not an
easy task to do with external code. The design and source code of FlexSim is not

1022 Fco. Javier Ridruejo Perez and José Miguel-Alonso

documented, so it is very hard to understand; in contrast, ChaosSim is better organ-
ized and documented.

As we stated before, it is our intention to release the source code of FSIN (and all
the INSEE modules) under a liberal license, so we are taking special care providing a
well organized and documented product.

We would like to provide a comparison of FSIN, FlexSim and ChaosSim in terms
of metrics such as execution time and memory usage for a given configuration. How-
ever, due to the differences among the tools, it has been impossible to find a network
definition suitable to be simulated in the three of them.

5 Conclusions and Future Work

Although INSEE is still a work in progress, the modules that constitute this environ-
ment have already proven their usefulness when researching interconnection network
topics. We are pleased with the performance of the standalone FSIN and integration
tests with TrGen are also satisfactory.

Clearly, future work includes the improvement of each tool, as well as the integra-
tion capabilities with external tools. Some ideas already stated in this paper are sum-
marized here. We want to improve TrGen in terms of additional sources of synthetic
traffic, more accurate time modeling in trace-driven simulation, and full integration
with SICOSYS. Immediate plans for FSIN include the ability of modeling pipelined
routers. All these improvements will have a common goal: maximization of our capa-
bilities to model, simulate and evaluate interconnection networks.

Acknowledgements

This work has been done with the support of the Ministerio de Educación y Ciencia,
Spain, under grant TIN2004-07440-C02-02, and also by the Diputación Foral de
Gipuzkoa under grant OF-846/2004.

SICOSYS has been designed by the ATC Group at the University of Cantabria
(Spain). This group provided the data for Fig. 3, as well as invaluable help for the
design and implementation of the tools described in this paper.

Work described in Section 4 has been carried out in collaboration with the ATC
Group and with Dr. Cruz Izu (U. of Adelaide).

References

1. N.R. Adiga et al. (2002). An overview of the BlueGene/L Supercomputer. Supercomputing
2002 Technical Papers, Available at http://sc-2002.org/paperpdfs/pap.pap207.pdf.

2. R. Beivide E. Herrada, J.L. Balcazar, A. Arruabarrena (1991). Optimal distance networks
of low degree for parallel computers. IEEE Transactions on Computers. Vol. 40, No. 10.

3. The Chaotic Routing Project at the U. of Washington. Chaos Router Simulator. Available
at http://www.cs.washington.edu/research/projects/lis/chaos/www/chaos.html

4. W. J. Dally and C. L. Seitz (1987). Deadlock-free message routing in multiprocessor inter-
connection networks, IEEE Transactions on Computers, vol. 36, no.5.

5. W. Gropp, E. Lusk, N. Doss, A. Skjellum (1996). A high-performance, portable implemen-
tation of the MPI message passing interface standard, in Parallel Computing, vol. 22, no. 6.

INSEE: An Interconnection Network Simulation and Evaluation Environment 1023

6. C. Izu, J. Miguel, J.A. Gregorio, R. Beivide (2005). Packet Injection Mechanisms and their
Impact on Network Throughput. Technical report EHU-KAT-IK-01-05. Department of
Computer Architecture and Technology, The University of the Basque Country. Available
at http://www.sc.ehu.es/acwmialj/papers/ehu_kat_ik_01_05.pdf

7. Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Håll-
berg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, Bengt Werner, (2002). Simics: A
Full System Simulation Platform, IEEE Computer, February.

8. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Available
at http://www-unix.mcs.anl.gov/mpi/standard.html.

9. J. Miguel, C. Izu, A. Arruabarrena, J. García-Abajo and R. Beivide (1991). Toroidal net-
works for multicomputer systems. Proc. of the ISMM International Workshop on Parallel
Computing. Trani (Italy).

10. J. Miguel-Alonso, J.A. Gregorio, V. Puente, F. Vallejo and R. Beivide (2004) Load Unbal-
ance in k-ary n-cube Networks. Lecture Notes in Computer Science 3149.

11. V.S. Pai, P. Ranganathan, and S.V.Adve (1997). RSIM: An Execution-Driven Simulator
for ILP-Based Shared-Memory Multiprocessors and Uniprocessors. IEEE TCCA New.,
Oct.

12. V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo and J.M. Prellezo (2001). The
Adaptative Bubble Router. Journal of Parallel and Distributed Computing. Vol 61 - n. 9.

13. V. Puente, J.A. Gregorio, R.Beivide (2002). SICOSYS: An Integrated Framework for
studying Interconnection Network in Multiprocessor Systems, Proceedings of the IEEE
10th Euromicro Workshop on Parallel and Distributed Processing. Gran Canaria, Spain.

14. SMART group at the U. of Southern California. FlexSim 1.2. Available at
http://ceng.usc.edu/smart/FlexSim/flexsim.html

Cost / Performance Trade-Offs and Fairness Evaluation
of Queue Mapping Policies�

Teresa Nachiondo1, José Flich1, José Duato1, and Mitchell Gusat2

1 Dept. of Computer Engineering, Universidad Politécnica de Valencia, 46071–Valencia, Spain
{tnachion,jflich,jduato}@gap.upv.es

2 IBM, Research, Zurich Research Lab. GmbH, Saeumerstr. 4,
CH-8803, Rueschlikon, Switzerland

mig@zurich.ibm.com

Abstract. Whereas the established interconnection networks (ICTN) achieve
low latency by operating in the linear region, i.e. oversizing the fabric, the re-
cent strict cost and power constrains demand more efficient utilization of future
networks. Increasing the utilization of lossless ICTNs may, however, lead to sat-
uration and performance degradation owing to HOL-blocking. The current solu-
tion to HOL-blocking consists of using Virtual Output Queueing (VOQ), whose
quadratical scalability is expensive in large networks. To improve VOQ’s scal-
ability we have proposed the Destination-Based Buffer Management (DBBM),
a scheme that compares well with VOQ. Whereas previously we have analyzed
DBBM’s basic operation and performance, in this paper we have set two differ-
ent goals. First we focus on how the different DBBM mappings can impact the
cost/performance of multistage ICTNs. Next, because DBBM can introduce un-
fairness, this constitutes the second theme of our paper. The new results show
that DBBM with modulo-4/8 mapping performs very well for only a fraction of
the VOQ cost. Also in terms of fairness DBBM shows promise, because it (i)
keeps the unfairness degree independent of both topology and routing, while (ii)
minimizing the number of flows affected by unfairness.

1 Introduction

Proprietary lossless ICTNs are frequently used to build large supercomputers such as
BlueGene/L [7] and the Earth Simulator [6]. Alternatively, commercial ICTNs like In-
finiBand [8], Myrinet [11], and Quadrics [14] are used to build large clusters such as
the Myrinet-based Mare Nostrum IBM cluster [1] recently ranked 4th in the Top500
supercomputers [16]. However, these interconnect technologies are not following the
cost/performance curve of other components, and therefore they have remained expen-
sive relative to processor, memory and storage.

Hence the need to reduce the cost of the interconnect. One can drastically reduce the
ICTN costs by decreasing the number of components – adapters, links and switches –
and proportionally increasing the utilization of the remaining parts. The increased load,
however, may require to operate the network as close to saturation as possible, which
raises the probability of creating saturation trees and congestion collapse [13].

� This work was supported by CICYT under Grant TIC2003-08154-C06.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1024–1034, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cost / Performance Trade-Offs and Fairness Evaluation of Queue Mapping Policies 1025

The problem is derived from the initially blocked packets (addressed to the con-
gested “hot” destination) that will also block packets addressed to other cold destina-
tions. Known as Head-of-line (HOL) blocking, this is a key issue in packet switching.
A blocked packet at the head of a queue prevents packets behind it from reaching idle
outputs, thus leading to potentially severe throughput degradation.

2 Motivation

In addition to cost, more recent power constrains [15] also call for a higher utilization of
the ICTN components (i.e. switches and links). With bursty traffic, however, increasing
the link utilization can lead to saturation and performance collapse due to interference
between flows and packet HOL-blocking. Factually any HOL blocking will reduce the
ICTN throughput-delay performance.

First order HOL blocking results from using the FIFO queuing discipline into a
switch element. Ethernet is an example of a switching standard that is widely deployed
with FIFO queuing. Because Ethernet is not typically required to be lossless, as soon as
HOL would occur, packets can be dropped. However, dropping packets is not an option
in our study, i.e. lossless ICTNs

VOQ at switch level –referred in this paper to as VOQ SW– solves HOL block-
ing at a reasonable cost [10] for single stage switches. Normally VOQ SW strictly re-
moves the first –but no higher– order HOL blocking [9]. The best performance would
be reached by applying a global VOQ: at each queuing point there are as many queues
as there are endnode destination ports. This resolves the higher order HOL blocking.
Whereas attractive, the latter solution –called VOQ Net in this paper– is not practically
implementable for a large number of ports.

A new queuing discipline was described in [4, 12]. DBBM uses approximately the
same number of queues as VOQ SW or Virtual Channels (VC) [2], but has no direct
association of these queues to the next stage output ports as VOQ SW does or to band-
width in case of VC. In this paper we investigate how the additional degree of freedom
of DBBM –the mapping of queues to packet flows sorted per destination– can be ex-
ploited to address the higher order HOL blocking [9]. We do this by studying various
mapping options across a variety of multistage topologies, also taking fairness into ac-
count. For reference we compare our results not only to the FIFO and the ideal global
VOQ queuing mechanisms, but also to a few other relevant schemes.

The rest of the paper is organized as follows. In Sect. 3 we present the two typical
queuing options in use today. In Sect. 4 DBBM and its main features are described.
In Sect. 5 different VOQ and DBBM schemes are evaluated in terms of performance,
scalability and fairness. In Sect. 6 conclusions are extracted and future work is outlined.

3 Traditional Queuing Options in Lossless ICTNs

As mentioned above, every switch of a modern ICTN will have a limited set of queues
associated with every input and/or output port; normally the set cardinality is lower than
the number of network endpoints. In some cases switches will have only one queue per
input port, e.g. Myrinet. Otherwise, whenever using multiple queues per switch port, a

1026 Teresa Nachiondo et al.

queuing architecture and a suitable mapping policy must be selected. Here we consider
three alternatives.

The first one is to use VOQ at the switch/link level, i.e. hop-by-hop. Every input port
will have as many queues as output ports, and an incoming packet will be mapped to the
queue associated with the requested output port. Thus HOL-blocking at the switch and
link level is eliminated. HOL -blocking can still occur, however, between flows sharing
a subset of consecutive links along their paths. With switch-level VOQ and no spe-
cial FC means [5], packet switching ICTNs are exposed to a form of flow interference
known as high-order HOL -blocking [9].

As a second option we can use virtual channels (VC) -i.e. different queues with
dedicated FC– as introduced in [2]. These channels can be load-balanced by allocating
each outgoing packet to the (currently) emptiest VC. However, mis-order among the
packets belonging to the same flow can be introduced, thus requiring a resequencing
solution.

4 Destination-Based Buffer Management (DBBM)

As a third option, in [4] we have introduced DBBM as a scheme to reduce HOL-
blocking in ICTNs. Temporal and spatial locality in the packet destination distribution
suggest that a small number of queues could be sufficient for storing all the incoming
packets at each switch - while still classifying and demultiplexing them according to
their destination. This allows DBBM, when used in conjunction with a suitable map-
ping strategy, to practically eliminate most –if not all– of the HOL-blocking. E.g., a sim-
ple mapping method will allow multiple flows to share –cyclically or in linear blocks–
a single DBBM queue. Although some HOL-blocking will be introduced among the
flows having to share the same queue, this approach can radically decrease the set of
queues –and the cost– to be built and maintained in hardware.

Albeit more complex than the direct 1:1 mapping of flows to queues inherent to the
VOQ disciplines, a simple DBBM mapping method could be based on the destination
encoding. E.g. some bits of the destination address field in the packet header will select
the DBBM queue where the packet is to be stored. As a subset of the lowest order bits
are used, here this method is referred to as ’modulo’ mapping; e.g, for a network with
256 destinations and 16-queue DBBM, the four least significant bits of the destination
ID (8-bit field) will point to the queue to map the flow into.

With DBBM, different mappings trade-off between performance and implementa-
tion cost - expressed in the number of hardware queues. In [12] we have performed an
evaluation of the ’modulo’ mapping in some multistage networks. We have shown that,
to practically reach the maximum throughput, the number of DBBM queues required
per switch was 8 times lower than for a full VOQ. However, DBBM’s mapping policy
now primarily determines the system performance.

Since the number of DBBM queues is lower than the number of ICTN endpoints, ir-
respective of the mapping policy in use any DBBM can –and eventually will– map flows
addressed to different destinations to the same queue (i.e. intrinsic HOL-blocking).

DBBM’s principle of operation is depicted in Fig. 1.(a); more details in [4, 12]. Its
main functions are:

Cost / Performance Trade-Offs and Fairness Evaluation of Queue Mapping Policies 1027

If queue sharing is not used

used and

not used
queue sharing

If Restoration

then the queue stores
If queue sharing is used

(allways the same destinations)
packets for several destinations

(destination changed over time)
packets for only one destination
then the queue stores

If queue sharing
not used

queue sharing

If Replacement
used and

not used

OP

. . .
FUNCTION

REPLA−

CEMENT

FUNCTION

FUNCTION

RATION

RESTO−

MAPPING

DBBM queues

Injection link

Overflow queue

OP = Output Port address

Incoming packet

(a) The DBBM family of strategies (b) Shared-queue DBBM with modulo-4
mapping

Fig. 1. DBBM description.

– Queue sharing: indicates whether packets with different destinations can be con-
currently stored in the same queue or not. Both cases require a careful mapping of
packet destinations to queues. In the first case to minimize the HOL-blocking. In
the second one, when regular queues are no longer available, an auxiliary “over-
flow” queue will store either the newly incoming packets or the packets relocated
from a regular queue. The overflow queue operation, however, introduces a few
practical issues of implementation and re-ordering.

– Mapping method: determins the queue where an incoming packet will be stored.
E.g., a mapping method may indicate a set of queues from which a free one will be
selected (set-associative).

– Replacement: a binary value that indicates whether already stored packets can be
relocated from a regular queue when an incoming packet requests that queue. Used
only if queue sharing is not enabled.

– Replacement function: selects one of the queues indicated by the mapping method
to (i) relocate a previously stored packet in order to (ii) store the incoming packet.

– Restoration: a binary value that indicates whether packets in the overflow buffers
are allowed to move back to a regular queue when this has room. Used only if queue
sharing is not enabled.

– Restoration function: selects the packets (with the same destination) to be relo-
cated back into their initial regular queue, if restoration is enabled.

The simplest DBBM strategy allows queue sharing. With shared-queue DBBM
(SQ-DBBM) each queue can only store packets for a subset of the destination ports. I.e.
as if (i) the physical output ports of the network were virtually grouped into a smaller
set of logical output ports and (ii) each SQ-DBBM queue stores packets destined only
to a particular logical output port. Thus SQ-DBBM implements a ’set-VOQ’ architec-
ture organized on logical, instead of the physical, fabric ports. While this strategy does
not directly avoid HOL-blocking, it may reduce it down to negligible values when a
suitable mapping method is used. In-order delivery is simplified as all the packets of a
flow will be mapped to the same queue, where they are stored in arrival order.

1028 Teresa Nachiondo et al.

A mapping algorithm computes the address of the [SQ-DBBM] queue based on
the flow ID - by decoding some bits of the destination ID in the packet header. Which
bits are used depends on the mapping strategy. If the most-significant bits are decoded,
consecutive port addresses are mapped to the same queue (block mapping); if the least-
significant bits are decoded, consecutive addresses are mapped to different queues, cy-
cling modulo-k (cyclic or modulo-k mapping; k=4,8,16 no. of DBBM queues). In this
paper we study SQ-DBBM with modulo-4/8/16 mapping as depicted in Fig. 1.(b). Ei-
ther scheme can be implemented in both inputs adapters and switches and will be re-
ferred to as DBBM 4Q, 8Q and 16Q, respectively.

Although most DBBM mappings show good results in the overall (aggregate) net-
work throughput and/or average latency, they may also introduce notable unfairness,
and possibly even starvation, between certain individual flows. To the best of our knowl-
edge there is no analysis yet of the DBBM mapping unfairness - which here constitutes
one of our two objectives.

Also in this paper we will analyze how different mappings impact the ICTN cost.
We will evaluate the performance of each mapping method while varying number of
endpoints attached per switch. Our goal is to maximize the system performance when
minimizing the ICTN hardware resources available for a constant number of endpoints
connected in 2D and 3D mesh topologies.

5 Performance Evaluation

To achieve our above stated goals we will compare the performance of 6 queuing and
mapping schemes. Ordered per increasing cost, they are: (a) single FIFO (1Q), (b)
DBBM 4Q, (c) DBBM 8Q, (d) load-balanced (EMPTIEST 8Q), (e) VOQ SW and (f)
VOQ Net.

1Q (a) sets the lower bound of performance, that of a single queue with FIFO ser-
vice. As the simplest queuing structure, even in single-stage fabrics with uniform traf-
fic the 1Q scheme is theoretically limited at 58% throughput. DBBM is represented
by (b,c), id est SQ-DBBM with modulo-4/8 mapping, respectively. This scheme was
briefly described above. EMPTIEST 8Q (d) is a load-balancing scheduling strategy
with 8 queues per input port. I.e., packets will be always mapped to the queue with the
lowest current occupancy. Whereas such load-balancing is based on the queue status
of the next/downstream switch, this mapping is destination/port-oblivious, and thus it
represents the opposite of VOQ (DST-based, load-independent). VOQ SW (e) is the
typical VOQ scheme implemented in some modern ICTNs. It applies a link-level VOQ
at every hop; i.e. switch will have at every input port as many queues as output ports.
VOQ Net (f) sets the upper bound of performance, that of an end-to-end VOQ scheme
globally applied across the entire ICTN. VOQ Net requires in every switch and IA as
many queues as destinations in the network. Its main use here is as a reference for other,
more practical, schemes.

5.1 Simulation Model

We have developed a detailed event-driven simulator that allows us to model the net-
work at a level adequate for our study. The simulator models an ICTN with switches,

Cost / Performance Trade-Offs and Fairness Evaluation of Queue Mapping Policies 1029

nodes, and links. Buffers up to 4KB are modeled for both the input and the output
ports of every switch. The buffer capacity is statically divided by the number of queues
defined by each of the six schemes above, resulting in a fixed size per queue.

At every switch packets are forwarded from any input queue to any output queue
through a multiplexed crossbar. We have considered a crossbar bandwidth of 1.5 GB/s
with a speedup of 1.5. The crossbar is controlled by a scheduler that receives requests
from the packets at the head of any input queue. A requesting packet is forwarded only
if the corresponding crossbar input and crossbar output are free. At each output port a
weighted round-robin arbiter selects the output queue to be served.

For links we assume serial full-duplex pipelined transmissions with 1 GB/s effective
bandwidth. The link-level flow control (LL-FC) protocol is credit-based; a packet can
be transmitted downstream only if a credit is available. Whenever a packet frees an
input buffer location a new credit is sent to the output port upstream. A similar flow
control scheme has been implemented for the internal switch traversal (input-output
packet forwarding). The maximum number of credits per output (input) port depends
on the buffer size at the next input (output) port and the total number of queues. The
LL-FC packets share the link bandwidth with data traffic.

The endpoints are connected to switches using Input Adapters (IAs). Every IA is
modeled by (i) a fixed number N of message admittance queues organized in VOQ;
(ii) and a variable number of injection queues organized similarly to the output ports
of a switch. When a new message is generated, first it is stored completely in the ad-
mittance queue assigned to its destination; then it is segmented into 64B packets before
being transferred to an injection queue. The transfer from admittance queues to injec-
tion queues are controlled by a round-robin arbiter. The transmission of packets from
injection queues into the network is controlled by a weighted round-robin arbiter.

5.2 Topologies and Traffic Patterns

In [12] performance of DBBM with modulo mapping was evaluated in different multi-
stage ICTNs. Now, 2D/3D meshes and a bidirectional multistage network (BMIN) will
be evaluated for performance and fairness. In all the cases deterministic routing is used;
for the 2D and 3D meshes we use the Dimension Order Routing (DOR). The BMIN is
built from 8-port switches interconnected in a perfect shuffle topology.

We have defined 8 different scenarios based on synthetic traffic patterns as (par-
tially) shown in Table 1. All the cases cause a congestion tree by oversubscribing the
hotspotted endpoint; for background traffic 70% of the sources inject at 20% of link
bandwidth to randomly selected destinations, while the remaining 30% of sources in-
ject full rate to a randomly selected hotspot destination. As the background traffic shares
links and queues with the flows belonging to the congestion tree, substantial HOL-
blocking is introduced in multiple switches.

5.3 Evaluation Results

First we analyze the overall performance achieved by each of the 6 schemes. Then the
network (cost) is reduced by removing some switches and links. Finally we focus on
fairness by analyzing the goodput patterns, i.e. the traffic arrived at each destination.

1030 Teresa Nachiondo et al.

Table 1. Topologies and synthetic traffic patterns evaluated.

Traffic Injected
to random destinations to hotspot

Endpoints % of Injection % of Injection
Case Network Total attached injecting rate injecting rate

evaluated endpoints per switch Sources (% of link BW) Sources (% of link BW)

#1 8 × 8 64 1 70% 20% 30% 100%
#2 8 × 8 × 4 256 1 70% 20% 30% 100%
#3 BMIN (64 × 64) 64 4 70% 60% 30% 100%
#4 4 × 4 64 4 70% 20% 30% 100%
#5 16 × 16 256 1 70% 20% 30% 100%
#6 8 × 8 256 4 70% 20% 30% 100%
#7 4 × 4 256 16 70% 5% 30% 100%
#8 4 × 4 × 4 256 4 70% 20% 30% 100%

Overall Performance. Hotspot traffic (cases #1 and #2, Fig.s 2.(a) and 2.(b)) in 2D
and 3D meshes show that VOQ Net achieves the maximum throughput whereas 1Q and
EMPTIEST perform the worst. Reason for EMPTIEST’s poor performance: eventually
most of its queues will be backlogged with packets belonging to the congestion tree.
Similar results have been observed in all the studied cases that –for space reasons– can
not be shown here; henceforth results for 1Q and EMPTIEST will be only plotted for
case #1.

VOQ SW achieves 77% of the VOQ Net throughput, whereas DBBM-4Q performs
better. Overall DBBM matches VOQ Net; e.g., for #1, DBBM-4/8Q achieves 90/95%
of the VOQ Net performance. Similar for #2, despite the increase in the number of
endpoints. DBBM-4/8Q achieves 86/91% of the VOQ Net throughput. However, with
16 queues (a reduction factor of 16 of VOQ Net queues) DBBM achieves 97% of the
VOQ Net throughput.

Whereas in Fig. 2.(c) (case #3) VOQ SW achieves 71% of the VOQ Net, DBBM
roughly matches the VOQ Net performance - 92% and 96% with 4, resp. 8 queues.
Confirming our results from previous work, regardless of the topology, DBBM can
match VOQ Net in performance - while using a reduced set of queues.

Performance on Reduced Networks. One way to reduce the ICTN cost is by sharing:
connect more endpoints to each switch, thus also increasing the HOL-blocking proba-
bility. This is confirmed in cases #5 (Fig. 2.(d)), #6 (Fig. 2.(e)), and #7 (not shown); in
each, 256 endpoints attached to 2D meshes with different sizes. In all them VOQ SW
shows worse performance than DBBM. DBBM-8Q reaches 91% of VOQ Net for cases
#5 and #7, and 83% for case #6.

For a 4 × 4 × 4 mesh with 256 endpoints (traffic case #8, Fig. 2.(f)) DBBM-16Q
achieves 97% of the VOQ Net. VOQ SW reaches 61% of the VOQ Net, whereas with
a larger network (8 × 8 × 4) and with the same number of endpoints (256) it achieves
77% of the VOQ Net throughput. On the other hand, DBBM has constant performance,
independent of the network size. Again, also in reduced networks DBBM achieves the
VOQ Net performance.

Cost / Performance Trade-Offs and Fairness Evaluation of Queue Mapping Policies 1031

Fig. 2. Accepted traffic vs. simulated time.

Fairness. Thus far DBBM and VOQ SW exhibit good performance for hotspot traffic,
DBBM being more efficient. Also they perform well when the network size is reduced.
However, as they map different flows to the same queue, they introduce a degree of
unfairness. We analyze this effect by plotting for each scheme the accepted traffic per
endpoint.

Figures 3.(a), 3.(b), 3.(c), and 3.(d) show the traffic received by each endpoint for
traffic case #4 (4 × 4 mesh with 4 nodes/switch), when VOQ Net, VOQ SW, DBBM-
8Q and EMPTIEST scheme is used, respectively. The highest bar represents the hotspot
(endpoint 30), which reaches 90% of received traffic (axes are truncated at 50%). With
VOQ Net every destination, except the hotspot, receives roughly the same goodput.
With VOQ SW, all the flows that share two consecutive links with the congested flow
suffer from HOL-blocking. Thus the number of affected flows does not only depend

1032 Teresa Nachiondo et al.

on the mapping function, but also on routing algorithm and topology. Every 4 consec-
utive endpoints exhibit similar percentages of accepted traffic, since 4 is the number
of rows and columns used in the case #4 topology. The routing algorithm used was
DOR. This, together with VOQ SW scheme, causes that most of the flows sharing a
column or a row in its path with the packets addressed to the congested destination will
be allocated to the same queue. Hence the reduction in the number of received packets
by the ’victimized’ destinations. With DBBM, the number of affected flows depends
on the number of queues, but not on routing. Figure 3.(c) shows that one out of every
eight flows receives less packets than the others. This is because only one queue out of
eight is used to map congested packets. Only those destinations which share the queue
with this congested destination will experience HOL-blocking, and thus, will exhibit a
reduction in the number of received packets. 7 out of 64 destinations are affected by the
congestion tree, with a goodput reduction of 8%. For VOQ SW, however, half of desti-
nations suffer - reduced their respective accepted traffic rate below 10%. As the number
of endpoints attached per switch increases (reducing the network size), this effect will
be amplified by VOQ SW - i.e. more destinations will be affected by one congested
destination. With DBBM the effect remains isolated to ’victim’ destinations.

With EMPTIEST all the destinations are equally affected by the HOL-blocking that
the congested destination introduces; in Fig. 3.(d) congestion spreads across all the
switches (in the path toward their destination).

Figures 3.(e) and 3.(f) show the traffic received by the destinations for case #3
(BMIN network), when DBBM-8Q and VOQ SW are applied, respectively. The be-
haviour for cases #3 and #4 is similar. The pattern of affected flows repeats indepen-
dently of the traffic case. The main difference is in throughput. With DBBM, the number
of affected flows depends only on the number of used queues, whereas with VOQ SW
more flows are affected by unfairness. In the latter scheme all the flows suffer from
high-order HOL-blocking derived from the hotspot. Once more we see how the number
of affected flows does not only depend on the mapping function, but also on the routing
algorithm.

We observe that in certain situations DBBM is unfair to some flows. E.g., Fig.s 3.(g)
and 3.(h) show the received traffic for the first 64 endpoints for case #6. For DBBM the
affected destinations are the same as before but they have decreased their reception rate
below 5%. With the same traffic, VOQ SW behaves worse: half of the endpoints have
a traffic percentage lower than 5%.

To conclude, excepting VOQ Net, all the other schemes introduce some degree of
unfairness under high load and congestion. However, DBBM is the only one that keeps
the unfairness degree independent of the topology and routing used.

6 Conclusions

In order to reduce HOL-blocking a number of queuing schemes and mapping methods
have been proposed. Theoretically only a full end to end VOQ, or at least a subset of
non-interfering flows [3] is able to eliminate completely HOL-blocking. However, this
solution is not scalable to large ICTNs. In order to overcome these problems, other
mapping strategies have been proposed and evaluated. In these evaluations we have
studied the trade-offs between performance and the number of required queues. We

Cost / Performance Trade-Offs and Fairness Evaluation of Queue Mapping Policies 1033

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(a) VOQ Net (traffic #4)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(b) VOQ SW (traffic #4)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(c) DBBM 8Q (traffic #4)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(d) EMPTIEST 8Q (traffic #4)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(e) DBBM 8Q (traffic #3)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(f) VOQ SW (traffic #3)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(g) DBBM 8Q (traffic case #6)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

IA Des tination

T
h
r
o
u
g
h
p
u
t

(
%

)

(h) VOQ SW (traffic case #6)

Fig. 3. Accepted traffic per destination.

have analyzed the unfairness that a mapping strategy can introduce in lossless ICTNs.
Also, we have analyzed how the different mapping methods can help in reducing the
cost of the ICTNs.

Simulation results have confirmed that both link/switch-level VOQ (VOQ SW) and
destination-oblivious load-balancing (EMPTIEST) schemes suffer from high-order
HOL-blocking. On the other hand, for a moderate increase in complexity DBBM shows
clear improvements, linearly proportional to the number of operating queues. Indepen-
dent of the network size, DBBM with 8 queues has achieved roughly the same through-
put as the ’ideal’ VOQ, while using only a small fraction of the queues.

Excepting VOQ Net, all the mapping strategies introduce some degree of unfair-
ness. However, DBBM kept the unfairness independent of the topology and the routing
in use. For DBBM, the number of affected flows by the congestion tree depends on the
number of used queues, whereas for VOQ SW the affected flows not only depend on
the mapping function but also on the routing algorithm. As future work we are currently
exploring other DBBM schemes, such as combinations of block and cyclical mapping.

Acknowledgments

We are indebted to Ton Engbersen and Ronald Luijten for significant contributions and
careful review.

1034 Teresa Nachiondo et al.

References

1. Barcelona Supercomputing Center (BSC), http://www.bsc.org.es, Nov. 2004.
2. W. J. Dally, Virtual-channel Flow Control, in Proceedings of the 17th Int. Symp. on Com-

puter Architecture, ACM SIGARCH vol. 18, no. 2, pp. 60-68, May 1990.
3. W. J. Dally and B. Towles Principles and Practices of Interconnection Networks, San Fran-

cisco, CA, Morgan Kaufmann, 2004.
4. J. Duato, J. Flich, and T. Nachiondo, Cost-Effective Technique to Reduce HOL-blocking in

Single-Stage and Multistage Switch Fabrics, Euromicro Conference on Parallel, Distributed
and Network-based Processing, pp. 48-53, Feb. 2004.

5. J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcı́a, and T. Nachiondo, A New Scalable
and Cost-Effective Congestion Management Strategy for Lossless Multistage Interconnec-
tion Networks, Int. Symp. on High-Performance Computer Architecture, Feb. 2005.

6. Earth Simulator Center. http://www.es.jamstec.go.jp/esc/eng/index.html.
7. IBM BG/L Team, An Overview of BlueGene/L Supercomputer, ACM Supercomputing Con-

ference, 2002.
8. InfiniBand Trade Association, InfiniBand Architecture. Specification Volume 1. Release 1.0.

Available at http://www.infinibandta.com/.
9. M. Jurczyk and T. Schwederski, Phenomenon of Higher Order Head-of-Line Blocking in

Multistage Interconnection Networks under Nonuniform Traffic Patterns, IEICE Transac-
tions on Information and Systems, Special Issue on Architectures, Algorithms and Networks
for Massively Parallel Computing, Vol. E79-D, No. 8, pp. 1124-1129, August 1996.

10. C. Minkenberg, On Packet Switch Design, Ph.D. Thesis, Eindhoven University of Technol-
ogy, Sep. 2001.

11. Myrinet, 2000 Series Networking. Available at http://www.cspi.com/multicomputer/ prod-
ucts/2000 series networking/ 2000 networking.htm.

12. T. Nachiondo, J. Flich, and J. Duato, Efficient Reduction of HOL blocking in Multistage
Networks, Workshop on Communication Architecture for Clusters (CAC 2005), April 2005.

13. G. F. Pfister and V. A. Norton,Hot Spot Contention and Combining in Multistage Intercon-
nection Networks, IEEE Transactions on Computers, vol. C-34:10,pp. 943-948, Oct.1985.

14. Quadrics QsNet. Available at http://doc.quadrics.com.
15. L. Shang, L. S. Peh, and N. K. Jha, Dynamic Voltage Scaling with Links for Power Op-

timization of Interconnection Networks, Proc. Int. Symp. on High-Performance Computer
Architecture, pp. 91–102, Feb. 2003.

16. http://www.top500.org

On the Correct Sizing on Meshes Through
an Effective Congestion Management Strategy�

Pedro Javier Garćıa1, José Flich2, José Duato2, Francisco José Quiles1,
Ian Johnson3, and F. Naven3

1 Dept. de Informática. Escuela Politécnica Superior
Universidad de Castilla-La Mancha 02071-Albacete, Spain

{pgarcia,paco}@info-ab.uclm.es
2 Dept. of Computer Science, Univ. Politécnica de Valencia 46071-Valencia, Spain

3 Xyratex, Haven, UK

Abstract. Interconnection networks used in clusters of PCs are often
dimensioned with certain restrictions. One restriction could be the reduc-
tion of power consumption and overall cost. In this sense, the network
size must be reduced. Another restriction is to guarantee that the sy-
stem offers a minimum bandwidth. In this case, the network size must
be increased. In both cases, the head-of-line (HOL) blocking effect (rela-
ted to network congestion) may appear, degrading network performance
and thus, preventing the correct sizing of the network. Therefore, some
mechanisms should be implemented for reducing or eliminating this pro-
blem, in order to dimension the network as desired while keeping network
performance at maximum. In this paper we analyze the impact on net-
work performance when using different mechanisms for handling HOL
blocking when interconnection networks with mesh topology are dimen-
sioned in several ways. We show that the previously proposed RECN
congestion control mechanism is key in order to efficiently eliminate HOL
blocking in meshes and, therefore, it allows the correct network sizing.

1 Introduction

In the last years, clusters of PCs are becoming a challenging alternative to
massive parallel computers dedicated to high performance computing (HPC).
Also,cluster of PCs are becoming an alternative to build large Internet servers.
The attractive performance/cost ratio of PCs makes building large cluster-based
systems an interesting solution. Examples of clusters for HPC can be obtained
from the top500 list [1] where 294 systems out of 500 are clusters of PCs (three
in the top five list). Also, commercial Internet portal servers using clusters are
being used at AOL, Google, Amazon or Yahoo.

In such systems, the interconnection network plays a key role in the perfor-
mance achieved. For this, it is common to use high-speed interconnect networks
like Myrinet [2], InfiniBand [3], and Quadrics [12]. Such networks provide high
� This work was supported by CICYT under Grant TIC2003-08154-C06 and by UPV

under Grant 20040937.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1035–1045, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1036 Pedro Javier Garćıa et al.

bandwidth and low latencies. However, these networks offer additional features.
One of the most interesting feature is that network topology can be as flexible as
needed. Indeed, nothing prevents a network designer to attach several endnodes
to the same switch or to build a complete irregular network. This capability
makes system scalability a reality in cluster-based systems.

However, new problems arise in these networks that may affect scalability.
One of the main problems is congestion. As these networks usually do not drop
packets (lossless networks), whenever a packet blocks (as it requests a resource
not available) it may block other packets stored behind it, even in the case they
could make forward progress (they would request available resources). This effect
is referred to as head-of-line (HOL) blocking. HOL blocking will be propagated
quickly because flow control spreads the congestion, thus collapsing the network.

The de facto solution to avoid congestion has traditionally been to overdi-
mension the interconnection network. The introduction of wormhole switching
[4] made feasible to integrate a switch into a single chip. In turn, this allowed
such a dramatic increase in link bandwidth that interconnection networks could
be overdimensioned at a low cost. As a consequence, reported network utilization
in parallel machines and clusters has been quite low for almost two decades.

On the other hand, power consumption is becoming increasingly important.
As VLSI technology advances and link speed increases, interconnects are con-
suming an increasing fraction of the total system power [5]. Taking this into
account, there are only two ways of reducing network power consumption: a)
reducing the number of links in the network (and using the remaining links
more efficiently), and b) using some frequency/voltage scaling technique to re-
duce link power consumption [5]. Unfortunately, dynamic voltage scaling (DVS)
techniques are quite inefficient due to their extremely slow response in the pre-
sence of traffic variations and the suboptimal frequency/voltage settings during
transitions [6]. In fact, a recent paper shows that static voltage scaling (SVS)
combined with adaptive routing achieves higher performance and lower power
consumption than DVS techniques, as far as the network does not saturate [6].

Thus, the simplest way to reduce cost and power consumption is reducing the
network size (less switches and links). Obviously, as the network size is reduced,
the offered network bandwidth will be also lower. Therefore, the network must be
dimensioned accordingly to the estimated bandwidth required by the endnodes
of the system. For instance, the network designer can rearrange the endnodes
and attach a higher number of endnodes at each switch. Imagine a system with
256 endnodes attached through a 16× 16 mesh network using links with 1Gbps
capacity. This network can be reduced to a 4×4 mesh network (attaching groups
of 16 endnodes to the same switch) only if the available network bandwidth (16
Gbps1) is enough for communicating the endnodes. Notice that this can be
the case for a server system where the traffic is highly local (applications are
exclusively run in groups of 16 endnodes attached to the same switch).

1 Theoretically, for uniform traffic, the offered bandwidth of a mesh network is 2 ×
BWbisection.

On the Correct Sizing on Meshes 1037

However, as the network size is reduced, the link utilization will be higher
and, thus, the network will work closely to the saturation point. Additionally,
notice that traffic is usually bursty (temporal congestion trees will be common).
In this scenario, it will be usual that the network will be working beyond its
saturation point. Therefore, it will be required an effective congestion control
mechanism in order to allow an effective reduction in the network size.

Another restriction for network dimensioning is when more bandwidth is
required by the system. This is the case of HPC systems where it is expected to
have an intense traffic among all endnodes (working on the same application).
Therefore, the way to dimension these systems is to put as much switches and
links as necessary to meet the required traffic conditions. As an example, a
system with 16 endnodes attached to a 4× 4 mesh network can be scaled up by
building a larger system with 256 endnodes attached to a 16×16 mesh network.
At first sight it seems that there will be no problems when using more network
components. This can be deduced from the fact that the utilization of links will
be lower (as the network is overdimensioned). However, notice that as network
size is increased, the average path length will also increase. Therefore, packets
will travel longer distances and, in the presence of congestion trees, they will
have more chances of being affected by the HOL blocking effect. Thus, again it
will be necessary an effective congestion management technique that eliminates
those effects in order to allow an effective increase in the network size without
degrading performance.

HOL blocking has been studied for long, and very efficient techniques exist
for avoiding it within a single switch (e.g. virtual output queues (VOQs) [7],
dynamically allocated multiqueues (DAMQs) [8], congestion buffers [9], etc.).
These techniques work by allocating separate buffers for packets destined to dif-
ferent output ports or by providing a way for non-blocked packets to pass blocked
packets. However, these solutions either do not work efficiently for multihop net-
works (e.g. DAMQs) or are not scalable at all because the number of buffers
required at every switch port increases linearly with the number of endpoints
attached to the network. Thus, overall buffer capacity increases at least quadra-
tically with the number of network endpoints. Although some implementations
of network-level VOQs exist [10], they are very expensive and do not scale, and
may even become infeasible beyond certain network size.

An intermediate solution is to use VOQ at the switch level. With this solution,
every switch port has as many queues as output ports of the switch, and whenever
a packet arrives to the port it is stored in the queue assigned to its requested
output port. Although this solution does not eliminate completely HOL blocking
it can minimize its impact. This solution will be referred to as V OQsw .

In [13] we proposed a new congestion management technique, referred to as
RECN (Regional Explicit Congestion Management), focused in eliminating the
HOL blocking effect produced by congestion trees rather than eliminating con-
gestion. In particular, once incipient congestion is detected within the network,
RECN assigns new queues to the congested points and thus, the congested traffic
is isolated and the HOL blocking is avoided.

1038 Pedro Javier Garćıa et al.

A recent technique has also been proposed in [11], referred to as DBBM
(Destination-Based Buffer Management). In this approach, the whole set of net-
work endpoints are divided into several sets, and all the packets addressed to a
set of destinations are stored in the same queue. Thus, HOL blocking is avoided
among destinations grouped in different sets. Notice that RECN differs from
DBBM in the sense that dynamic queues are allocated for congestion trees whe-
reas in DBBM queues are statically allocated to groups of destinations. Although
DBBM is very efficient in the general case, there may be some special traffic si-
tuations that may introduce HOL blocking.

In this paper we take on different challenges. Firstly, we apply the RECN
mechanism to mesh networks. By doing this, we analyze the benefits that RECN
will give to applications run on such networks. Secondly, we will analyze up to
what extent the traditional V OQsw solution is able to efficiently handle the
HOL blocking introduced when the network is dimensioned in different ways
(downsizing the network to reduce cost and power consumption and upsizing the
network to achieve a certain bandwidth). As a third challenge we will evaluate
RECN as a way to allow an efficient system sizing. We will show that, contrary
to the V OQsw solution, RECN allows to achieve ideal network sizing.

The rest of the paper is organized as follows. In Section 2, RECN is descri-
bed. In Section 3, scalability issues by using RECN and V OQsw are analyzed in
detail by means of simulation results of network performance under different si-
tuations of traffic, network size and congestion control mechanisms used. Finally,
in Section 4 some conclusions are drawn.

2 RECN Description

RECN (Regional Explicit Congestion Notification)[13] is a new congestion ma-
nagement strategy that focuses on eliminating the main negative effect of con-
gestion: the HOL blocking. In order to achieve it, RECN detects congestion
and dynamically allocates separate buffers for each congested flow, assuming
that packets from non-congested flows can be mixed in the same buffer without
producing significant HOL blocking.

RECN requires the use of a kind of deterministic routing that makes possible
to address a particular network point from any other point in the network. In
fact, RECN has been designed for PCI Express Advanced Switching (AS) [14,
15], a technology that uses source routing. AS packet headers include a turnpool
made up of 31 bits, that contains all the turns (offset from the incoming port
to the outgoing port) for every switch in a route. Thus, a switch, by inspecting
the appropriate turnpool bits, can know in advance if a packet that is coming
through one of its incoming ports will pass through a particular network point.

In order to separate congested and non-congested flows, RECN adds a set of
additional queues at every input (ingress) and output (egress) port of a switch.
These queues (referred to as Set Aside Queues or SAQs) are dynamically allo-
cated and used to store packets passing through a congested point. To do this,
RECN associates a CAM memory to each set of queues. The CAM contains

On the Correct Sizing on Meshes 1039

all the control info required to identify the congested point and to manage the
corresponding SAQ. In the aim of guaranteeing in order delivery, whenever a
new SAQ is allocated, forwarding packets from that queue is disabled until the
last packet of the standard queue (at the moment of the SAQ allocation) is for-
warded. This is implemented by a simple pointer associated to the last packet
in the standard queue and pointing to the blocked SAQ.

Whenever an ingress or egress queue receives a packet and fills over a given
threshold, a RECN notification is sent to the sender port indicating that an
output port is congested. When congestion is detected at the egress side, the
congested point is this egress port. In order to detect congestion at the ingress
side, the standard queue is replaced by a set of detection queues. The detection
queues are structured at the switch level: there are as many detection queues as
output ports in the switch, and packets heading to a particular output port are
directed to the associated detection queue. So, when a detection queue reaches
a threshold, it means that the associated output port is congested.

RECN notifications also include the routing information (a turnpool) to reach
the congested output port from the notified port. Upon reception of a notifica-
tion, each port maps a new SAQ and fills the corresponding CAM line with
the received turnpool. From that moment, every incoming packet that will pass
through the congested point (easily detected from the turnpool of the packet)
will be stored in the newly allocated SAQ, thus eliminating the HOL blocking
it may cause. If a SAQ becomes subsequently congested, a new notification will
be sent upstream to some port that will react in the same way, allocating a
new SAQ, and so on. As the notifications go upstream, the included information
indicating the route to the congestion point is updated accordingly, in such a
way that growing sequences of turns (turnpools) are stored in the corresponding
CAM lines. So, the congestion detection is quickly propagated through all the
branches of a congestion tree. Apart from the SAQs allocated due to notificati-
ons, when congestion is detected at the ingress side, a SAQ is also allocated at
this port, and the detection queue and the new allocated SAQ are swapped.

RECN keeps track (with a control bit on each CAM line) of the network
points that are a leaf of a congestion tree. Whenever a SAQ with the leaf bit set
empties, the queue is deallocated and a notification packet is sent downstream,
repeating the process until the root of the congestion tree is reached.

Regarding flow control, RECN uses for each individual SAQ a level-based
flow control (Xon/Xoff). This mechanism is different from the credit-based flow
control used for standard queues, that considers all the unused space of the port
data memory available for each individual queue. Xon/Xoff scheme guarantees
that the number of packets in a SAQ will be always below a certain threshold.
Further details about RECN can be found in [13].

3 Performance Evaluation

In this section we will evaluate the performance of the network, in several scena-
rios of network size, traffic load, and different mechanisms focused in reducing
the HOL-blocking: VOQ at the network level (VOQnet), VOQ at the switch le-

1040 Pedro Javier Garćıa et al.

vel (VOQsw) and RECN. For this purpose we have developed a detailed event-
driven simulator that allows us to model the network at the register transfer
level. Firstly, we will describe the main simulation parameters and the modeling
considerations we have used in all the evaluations. Secondly, we will present the
evaluation results and analyze them.

3.1 Simulation Model

The simulator models square meshes consisting of a variable number of switches
and bidirectional links that connect a variable number of endnodes. Specifically,
we have used five network configurations, shown in Table 1. In all the cases X-Y
deterministic routing is used.

Table 1. Network configurations and traffic cases evaluated.

Network Top #sw #endnodes/sw
#1 16 × 16 256 1

#2 8 × 8 64 4

#3 4 × 4 16 16

#4 8 × 8 64 1

#5 4 × 4 16 1

normal traffic congestion tree
Traffic #sources dst #sources dst

#1 100% random - -
#2 87.5% random 12.5% hot-spot
#3 75% random 25% hot-spot

Due to the different number of endnodes per switch, the number of bidirec-
tional ports of the switches varies depending on network configuration. At these
ports, the simulator models a 128 KB memory for both input and output ports.
When VOQ is used, the total memory size per port is equally divided into as
many queues as endnodes (VOQnet) or into as many queues as ports in the
switch (VOQsw).

RECN has been modeled in detail. The memory is shared by all the queues
(detection or standard queues and SAQs) defined at this port at a given time, in
such a way that memory cells are dynamically allocated (or deallocated) for any
queue when it is required. In order to support the RECN detection at ingress
ports, several detection queues are defined at ingress ports, and one standard
queue at egress ports.

To model the links, we have assumed serial full-duplex pipelined links with
8 Gbps bandwidth. Inside every switch, packets are forwarded from any input
queue to the corresponding output queue through a multiplexed crossbar. The
crossbar access is controlled by an arbiter that receives requests from packets
at the head of any input queue. A requesting packet is forwarded only when
the corresponding crossbar input and crossbar output are free. Requests from
packets in detection queues have preference over requests from packets in SAQs.

Regarding flow control, we have modeled several mechanisms. RECN uses
credit-based flow control at the port level. So, whenever a new packet is trans-
mitted from an output port to the corresponding input port of the next switch, a
credit is consumed. When a packet leaves an input port, a new credit is granted

On the Correct Sizing on Meshes 1041

to the previous output port at the upstream switch or endnode. Output port
credits can be consumed for transmitting packets from the standard queue or
SAQs at this port. A similar flow control scheme has been implemented for the
internal (input-output) switch packet forwarding. So, the maximum number of
credits per output (or input) port depends on the total memory size at the next
input (or output) port. In addition, Xon/Xoff flow control has been modeled
for limiting the injection of packets between SAQs. When the occupancy of a
SAQ grows up to a given threshold2, an Xoff packet is sent to the corresponding
upstream SAQ. Any SAQ that receives an Xoff packet stops the injection of
packets until the reception of an Xon packet. Any SAQ that previously sent an
Xoff packet sends an Xon packet when its occupancy goes below a given thres-
hold. On the other hand, a credit-based flow control at the queue level has been
implemented for the VOQs mechanisms. In these cases, the maximum number
of credits per queue depends on the total memory size at the next input (or
output) port and the number of queues at this port. Flow control packets have
been modeled and they share the link bandwidth with data packets.

Endnodes are connected to switches using Input Adapters (IAs). Every IA is
modeled with a fixed number of message admittance queues following a VOQnet
scheme, and a variable number of injection queues, that follow a scheme similar
to that of the output ports of a switch. So, SAQs can be allocated dynamically
at the output side of input adapters when the RECN mechanism is used. When
a message is generated, it is stored completely in the admittance queue assigned
to its destination, and is packetized before being transferred to an injection
queue. We have used 64-byte packets. The transfer from admittance queues to
injection queues is controlled by an arbiter that follows a round-robin scheme.
The injection of packets from injection queues to the network is also controlled
by an arbiter that selects the next packet to be transmitted, using a round robin
scheme among all the queues.

3.2 Traffic Load

For all the network configurations we have made experiments under several traffic
scenarios. We have used synthetic traffic patterns modeling simple but significant
traffic situations in order to check how the analyzed mechanisms react to different
traffic loads. Table 1 shows the traffic parameters of each traffic case.

For each traffic case, there is a variable percentage of sources injecting traffic
to random destinations. This percentage is 100% in traffic case #1, but it is
lower in traffic cases #2 and #3. In these cases, the rest of sources inject traffic
to the same destination (endnode 32 for network configurations #1, #2, #3 and
#4; endnode 10 for network configuration #5). Thus, in these cases, congestion
trees will be formed in the network. All the endnodes inject traffic at the same
rate during all the simulation period. This rate has been varied in an incremental
way for obtaining a metric of the network performance under different loads of
normal and congested traffic.
2 Although several thresholds have been tested, all of them gave us similar performance

results. Therefore, we fixed threshold to 1% of total port memory.

1042 Pedro Javier Garćıa et al.

For all the cases evaluated, the network relative throughput3 as a percentage
will be shown (for different injection rates). This will allow direct comparisons
among different network configurations.

3.3 Performance Evaluation

In the following subsections we will show simulation results that allow us to
analyze the impact of RECN and VOQsw when used as a mechanism to reach
the maximum performance when sizing the network in different ways. Moreover,
results for VOQnet will be also shown as a reference for maximum performance
(no possible HOL blocking). Specifically, we will analyze first the impact of such
mechanisms when the network is downsized while keeping constant the number of
endnodes. Next, we will analyze their impact when the network size is increased
in order to achieve higher bandwidth.

Reducing Network Cost and Consumption. Figure 1 shows the perfor-
mance results for network configurations #1, #2 and #3 for different traffic
patterns. For traffic case #1 (Figures 1.a, Figures 1.b, and Figures 1.c), all
the mechanisms evaluated achieve roughly the maximum performance, although
the performance slightly decreases when VOQsw is used for high traffic loads.
This is because VOQsw does not correctly handle all the traffic, and some HOL
blocking appears. Additionally, for higher traffic loads (beyond saturation point;
not shown), VOQsw even significantly degrades performance. On the other hand,
in these situations, RECN keeps relative throughput above 90%.

From the previous results, it could be deduced that VOQsw is an effective
mechanism that allows to achieve maximum performance for low or medium
traffic loads. However, real traffic is usually bursty, and a different behavior
could be expected. Indeed, Figures 1.d, 1.e, and 1.f show the results for network
configurations #1, #2 and #3 when a light hot-spot traffic pattern (traffic case
#2) is present in the network. For all the network configurations, VOQsw is not
able to obtain maximum performance, regardless of the injection rate. Indeed,
for network configuration #1, it achieves only 50% of relative throughput. It
can be seen that, as network size decreases, VOQsw tends to achieve higher re-
lative throughput. This is due to the shorter average routes on the network, that
reduce the HOL blocking effect. On the opposite side, RECN achieves roughly
maximum throughput (90% of relative network throughput in the worst case).
So, RECN eliminates the HOL blocking introduced by the congestion tree and,
as a consequence, it uses efficiently all the bandwidth offered by the network.

For a more intense hot-spot traffic pattern (traffic case #3), the behavior is
similar but more dramatic for VOQsw. Results for this traffic case are shown in
Figures 1.g, 1.h, and 1.i for network configurations #1, #2 and #3, respectively.

3 Network relative throughput is computed as the network absolute throughput di-
vided by the maximum theoretical throughput (2 × BWbisection). The maximum
theoretical throughput for the N × N mesh is 4 × N bytes/ns.

On the Correct Sizing on Meshes 1043

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(a) Network Conf. #1

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(b) Network Conf. #2

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(c) Network Conf. #3

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(d) Network Conf. #1

 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20 25 30

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(e) Network Conf. #2

 20

 40

 60

 80

 100

 5 10 15 20

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(f) Network Conf. #3

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(g) Network Conf. #1

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(h) Network Conf. #2

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(i) Network Conf. #3

Fig. 1. Relative throughput for network configurations #1, #2 and #3, traffic case
(a,b,c) #1 (uniform), (d,e,f) #2 (light hot-spot), and (g,h,i) #3 (heavy hot-spot).

To sum up, RECN allows to achieve the maximum bandwidth offered by the
network by virtually eliminating the HOL blocking introduced by the higher use
of links when network is downsized. VOQsw is far from achieving the maximum
offered network bandwidth as it does not handle properly HOL blocking.

Increasing Network Size and Bandwidth. Now, we will evaluate how VO-
Qsw and RECN behave when they are used as a technique to achieve maximum
throughput when overall network bandwidth is increased by upsizing the net-
work. For all the network configurations evaluated in this section, one endnode
is attached to each switch. Thus, as the network size increases, the number of
endnodes also increases, and so does the average length of routes (potentially
increasing HOL blocking).

Figure 2 shows the performance for different network configurations (#1, #4,
and #5) and different traffic patterns. For uniform traffic pattern (traffic case #1,
Figures 2.a, 2.b, and 2.c) it can be deduced that the VOQsw solution behaves
roughly as well as RECN and VOQnet. From this fact, it could be deduced
also that VOQsw is a good solution in order to efficiently upsize the network.
However, again, this deduction is not valid when a congestion spot is present in
the network (modeling bursty traffic). For a light congestion tree (traffic case

1044 Pedro Javier Garćıa et al.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(a) Network Conf. #1

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(b) Network Conf. #4

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(c) Network Conf. #5

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(d) Network Conf. #1

 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20 25 30 35

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(e) Network Conf. #4

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(f) Network Conf. #5

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(g) Network Conf. #1

 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20 25 30 35

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(h) Network Conf. #4

 10

 20

 30

 40

 50

 60

 2 4 6 8 10

R
el

at
iv

e
T

hr
ou

gh
pu

t (
pe

rc
en

t)

Generated traffic (bytes per nanosecond)

VOQnet
RECN

VOQsw

(i) Network Conf. #5

Fig. 2. Relative throughput for network configurations #1, #4 and #5, traffic case
(a.b,c) #1 (uniform), (d,e,f) #2 (light hot-spot), and (g,h,i) #3 (heavy hot-spot).

#2, Figures 2.d, 2.e, and 2.f) in the network, again, the VOQsw solution suffers
HOL blocking that is not solved, and therefore, it does not achieve maximum
offered bandwidth. Relative network throughput is always lower that 70%.

On the other hand, RECN is able to keep the maximum performance for all
the network configurations. It has to be noted that RECN achieves its goal by
using a maximum of 8 SAQs. Figure 3 shows, for traffic case #3 and network
configurations #1, #4 and #5, the maximum SAQ utilization at ingress and
egress sides. It can be seen that the maximum number of SAQs used is below 8
for most of the traffic loads.

4 Conclusions

We have shown the importance of using a suitable congestion control mechanism
for virtually eliminating the HOL blocking that appears by dimensioning in
several ways interconnection networks with mesh topology. From the results
presented in this paper, we can deduce that network performance is affected by
HOL blocking when the network is sized in certain ways and VOQsw is used.
On the contrary, the RECN mechanism allows to dimension the network in
any way while keeping network performance roughly at maximum, due to the

On the Correct Sizing on Meshes 1045

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60

M
ax

im
um

 #
 S

A
Q

s

Generated traffic (bytes per nanosecond)

Ingress side
Egress side

(a) Network Conf. #1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35

M
ax

im
um

 #
 S

A
Q

s

Generated traffic (bytes per nanosecond)

Ingress side
Egress side

(b) Network Conf. #4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10

M
ax

im
um

 #
 S

A
Q

s

Generated traffic (bytes per nanosecond)

Ingress side
Egress side

(c) Network Conf. #5

Fig. 3. Maximum number of SAQs used. Configurations #1, #4, #5, traffic case #3.

efficient handling of the HOL blocking problem. Moreover, this can be achieved
in a scalable way. Therefore, RECN allows to reduce network size, cost and
power consumption or to increase network size and overall bandwidth without
degrading network performance.

References

1. Top 500 supercomputer list, http://www.top500.org.
2. N. J. Boden et al, “Myrinet - A gigabit per second local area network,” IEEE

Micro, pp. 29–36, February 1995.
3. InfiniBandTM Trade Association, http://www.infinibandta.com.
4. W. J. Dally and C. L. Seitz, “The Torus Routing Chip,” Journal of Distributed

Computing, vol. 1, no. 3, pp. 187–196, Oct. 1986.
5. L. Shang, L. S. Peh, and N. K. Jha, “Dynamic Voltage Scaling with Links for

Power Optimization of Interconnection Networks”, in Proc. Int. Symp. on High-
Performance Computer Architecture, pp. 91–102, Feb. 2003.

6. J. M. Stine and N. P. Carter, “Comparing Adaptive Routing and Dynamic Voltage
Scaling for Link Power Reduction”, Computer Architecture Letters, vol. 3, June
2004.

7. T. Anderson et al, “High-Speed Switch Scheduling for Local-Area Networks”, ACM
Transactions on Computer Systems, vol. 11, no. 4, pp. 319–352, Nov. 1993.

8. Y. Tamir and G. L. Frazier, “Dynamically-Allocated Multi-Queue Buffers for VLSI
Communication Switches”, IEEE Trans. on Computers, vol. 41, no. 6, June 1992.

9. A. Smai and L. Thorelli, “Global Reactive Congestion Control in Multicomputer
Networks”, in Proc. 5th Int. Conference on High Performance Computing, 1998.

10. W. J. Dally, P. Carvey, and L. Dennison, “The Avici Terabit Switch/Router”, in
Proc. Hot Interconnects 6, Aug. 1998.

11. J. Duato, J. Flich, and T. Nachiondo, Cost-Effective Technique to Reduce HOL
Blocking in Single-Stage and Multistage Switch Fabrics, Euromicro Conference on
Parallel, Distributed and Network-based Processing, pp. 48-53, Feb. 2004.

12. Quadrics QsNet. Available at http://doc.quadrics.com
13. J. Duato, I. Johnson, J. Flich, F. Naven, P.J. Garćıa, T. Nachiondo, “A New Sca-

lable and Cost-Effective Congestion Management Strategy for Lossless Multistage
Interconnection Networks”, in Proc. 11th Int. Symp. High-Performance Computer
Architecture, Feb. 2005.

14. “Advanced Switching for the PCI Express Architecture”. White paper. Available
at http://www.intel.com/technology/pciexpress/devnet/AdvancedSwitching.pdf

15. “Advanced Switching Core Architecture Specification”. Available at
http://www.asi-sig.org/specifications for ASI SIG.

A New Hardware Efficient Link Scheduling
Algorithm to Guarantee QoS on Clusters�

José Manuel Claver1, Maŕıa del Carmen Carrión2, Manel Canseco1,
Maŕıa Blanca Caminero2, and Francisco José Quiles2

1 Dept. of Computer Science and Engineering. E.S.T.C.E.
Univ. Jaume I, 12071 - Castellón, Spain

{claver,canseco}@icc.uji.es
2 Dept. of Computer Science, Escuela Politécnica Superior

Univ. de Castilla-La Mancha, 02071 - Albacete, Spain
{carmen,blanca,paco}@info-ab.uclm.es

Abstract. Contemporary router/switch technology for high-perfor-
mance local/system area networks (LANs/SANs) should provide the ca-
pacity to fit the high bandwidth and timing requirements demanded by
current applications. The MultiMedia Router (MMR) aims at offering
hardware-based QoS support within a compact interconnection com-
ponent. One of the key elements in the MMR architecture is the link
scheduling algorithm. This algorithm must solve conflicts among data
flows that share an input physical link. Required solutions are motivated
by chances for parallelization and pipelining, while providing the neces-
sary support both to multimedia flows and to best-effort traffic. In this
work, a cost-aware link scheduling based on the temperature coding of
priority value associated to every head flit is presented and evaluated.

1 Introduction

Current applications include not only best-effort traffic such as ftp or e-mail
but also multimedia QoS-aware applications. Numerous examples can be high-
lighted from web-based applications, interactive simulations, virtual meeting and
collaborative design environments. Clusters are being commonly used as back-
end servers for these applications, so some QoS support is needed within the
underlying interconnection network.

The problem of providing architectural QoS support within switching ele-
ments in cluster and local area environments is still an open issue [1] [2] [3].
Thus, the MultiMedia Router1 (MMR) architecture [4] arises as a solution to
provide hardware-based QoS support within an interconnection component tar-
geted for use in cluster and LAN environments. The MMR organization is based
on input queues and a multiplexed crossbar internal switch.

� This research was partially supported by the Spanish CICYT under grants No.
TIC2003-08154-C06-04 and TIC2003-08154-C06-06.

1 The MultiMedia Router is devised as a link-layer interconnection element. The term
“router” is inherited from the interconnection elements used in multicomputer and
multiprocessor networks, rather than from the IP world.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1046–1056, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Hardware Efficient Link Scheduling Algorithm 1047

In order to achieve high link bandwidth utilization and to provide the QoS
needed by the applications, the MMR requires efficient traffic scheduling algo-
rithms. These algorithms decide which data must be transmitted at each time,
so their behaviour will determine whether QoS guarantees are fulfilled or not.
Most of the scheduling solutions appearing in the literature for such organiza-
tion seek to maximize the link and internal switch utilization [5], and do not
address QoS issues. Some recent research on scheduling algorithms tries to offer
both high throughput and QoS support. However, these are almost theoreti-
cal solutions. Compact and fast hardware implementations of these algorithms
are hardly feasible, which prevents their use in high-speed interconnection net-
works. Moreover, most scheduling solutions for input-buffered switches need to
run at speeds higher than links to provide QoS guarantees and high link uti-
lization, or lack the needed flexibility to concurrently accommodate different
connection requirements. Thus, in this paper, a new link scheduling algorithm is
presented, the Temperature-IABP (TIABP). The main features of this algorithm
are to provide high-throughput and QoS guarantees to the different multimedia
flows, according to their reservations, while being suitable for a simple low cost
hardware implementation. Preliminary performance evaluation results and im-
plementation on a Xilinx Virtex 2000E FPGA of a Temperature-IABP based
link scheduling are presented. Due to the complexity of this device a high level
hardware specification language, HandelC [6], is used.

The rest of the paper is organized as follows. First, Section 2 outlines the main
characteristics of the Multimedia Router architecture. Then, in Sections 3 and 4
the new resource scheduling algorithm proposed for the MMR and its hardware
architecture features are explained. Extensive evaluation results follow, which
reveal the effectiveness of the proposed link scheduling algorithm. Finally, some
conclusions are given.

2 The Multimedia Router

Figure 1 depicts the general organization of the Multimedia Router. In the fol-
lowing paragraphs, the basic building components will be briefly described. The
interested reader is referred to [4] for a more detailed description.

Switch

Routing Unit

Phit Buffers

VCM+LS

VCM+LS

VCM+LS

VCM+LS

Switch Scheduler

Ph
ys

ic
al

 I
np

ut
 L

in
ks

Ph
ys

ic
al

 O
ut

pu
t L

in
ks

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

Phit Buffers

VCM - Virtual Channel Memory
LS - Link Scheduler

Fig. 1. MultiMedia Router organization.

1048 José Manuel Claver et al.

a) Input Buffers: To support a large number of multimedia connections, the
storage buffers at each input link are organized as a set of virtual channels. One
virtual channel is provided per connection, in order to consider the QoS of each
flow. This approach also avoids the head-of-line blocking.

The MMR avoids losing data due to buffer overflow by using per connection
flow control at the link level. The selected scheme is credit-based flow control,as
InfiniBandSM does [7]. The flow control unit will be referred to as a flit.

b) Routing Unit: The MMR uses a hybrid switching technique: a connection-
oriented scheme, Pipelined Circuit Switching (PCS) [8], for the multimedia flows,
and Virtual Cut-Through (VCT) [9] for best-effort messages. Paths are com-
puted according to the Exhaustive Profitable Backtracking (EPB) routing algo-
rithm [10] for multimedia flows, while best-effort messages are routed according
to a fully adaptive routing algorithm [11].

c) Internal Switch: Due to the large number of virtual channels, the MMR
internal switch is a multiplexed crossbar with as many ports as physical chan-
nels. This crossbar organization implies several arbitration tasks. First, the Link
Scheduler module (LS) solves conflicts at the input side selecting the virtual
channel that will use the crossbar input port in the next flit cycle. Then, the
Switch Scheduler module does a second arbitration, because several input chan-
nels might request the same output link for the same flit cycle.

The choice of link and switch scheduling algorithms are critical parameters
for the MMR. Both scheduling algorithms must cooperate to guarantee that the
bandwidth allocated to each connection is available during data transmission.

In the MMR, link bandwidth and switch port bandwidth are split into flit
cycles2. Flit cycles are grouped into rounds. The number of flit cycles in a round
is an integer multiple K (K > 1) of the number of virtual channels per link. The
allocated flit cycles will be assigned to the requesting connection every round.

The link and switch scheduling algorithms proposed for the MMR are par-
titioned into three basic decisions, thus being well suited to parallelization and
pipelining: Candidate Selection, Port Ordering and Arbitration. The Candidate
Selection phase is carried out by the link schedulers. Thus, it is performed in
parallel for every input link. Its purpose is to select a set of one or more virtual
channels, with flits ready for transmission, called candidates. The switch sched-
uler, also known as crossbar arbitration, tackles the other two phases. They are
aimed at selecting a set of conflict-free input/output port matchings among the
candidates chosen by link schedulers.

3 A New Cost-Effective Link Scheduling Algorithm

The link scheduling algorithm carries out the Candidate Selection phase of the
scheduling problem, thus is, it chooses a small set of candidates per every physical
input link. Selection will be based on a biased priority scheme associated to every

2 A flit cycle is the time taken for a flit to be transmitted through the router and
across the physical link.

A New Hardware Efficient Link Scheduling Algorithm 1049

head flit. The key point in our scheme is that priorities are biased according to
the ratio between the QoS a flit is receiving and the one it should receive.

We proposed the Inter-Arrival Biased Priority (IABP) scheme in [12]. In
that case, the priority of a flit is computed as the ratio between the queuing
delay, and the inter-arrival time (IAT) for the flits in the connection. The effect
is that the priority grows as queuing delay grows. Moreover, priority grows faster
for those flits belonging to high-bandwidth consuming connections, that is, there
are more chances that they will be forwarded sooner through the switch.

In a first attempt to achieve a more practical implementation biasing func-
tion, the Simple IABP (SIABP) algorithm was devised [13]. The idea is to apply
the same rationale introduced by the IABP algorithm, that is, to relate the
bandwidth required by the connection to the experienced queuing delay, but re-
placing the division with some other less expensive operation. Equations 1 and 2
show how the priority of the header flit is computed and updated:

Priority(0) = NumCycles (1)

Priority(t) = Priority(0) << n (2)

where the symbol << represents a left shifter, NumCycles is related to the band-
width reserved for a connection and n is the position of the highest significant bit
set to 1 in the register that holds the queuing delay. In this way the QoS needed
(represented by the initial priority value) is also related to the QoS received by
the flit (the queuing delay).

Although an important hardware area reduction is got by using this algo-
rithm, a new link scheduling proposal is presented in this work: the Temperature
IABP3, TIABP. The purpose of the TIABP algorithm is not only to get low
area cost but also to improve some critical aspects of the SIABP algorithm.
Considering equations 1 and 2, which describes how is computed and updated
the SIABP priority, we can be aware that inversion priority can happen. The
priority of the header flit allocated in a virtual channel increases with the time
being waiting for the output port. However, if the header flit remains there for
a long time, its priority could decrease. In particular, when the initial priority
value is a power of two, the priority updated can down to zero. In order to avoid
priority inversion, extra hardware must be added to control overflow by freezing
the priority of a virtual channel when the most significant bit of the register
that holds the priority is equal to 1. However, this is not a solution if priorities
are not power of 2. Being aware of this problem, the TIABP priority biasing
function is computed as follows:

a) A counter stores the queuing delay of a flit and it is updated every router
cycle, in the same way as in the IABP and SIABP algorithms.

b) The initial value for the priority is (2k+1 − 1), where k is the position of
the highest significant bit set to 1 of the bandwidth required by the connection
expressed as the flit cycles per scheduling round reserved to service the average
bandwidth of the connection (MSB(NumCycles)).

3 We denote this new link scheduling as Temperature IABP because it uses tempera-
ture coding for the initial priority value representing the QoS needed by a connection.

1050 José Manuel Claver et al.

c) Next, the priority of the flit is computed as the product of the queu-
ing delay times the bandwidth requirements. But, in order to achieve a simpler
hardware design, and similar to SIABP, the product is replaced by shifting op-
erations. More precisely, the priority value is updated by shifting to the left its
current value (i.e., it is multiplied by 2) and by setting the less significant bit.
We should remark that the shifter operation is done each time the queuing delay
becomes greater than 1, 2, 4, . . . , 2n, i.e., every time a bit in the queuing delay
counter is set for the first time since it was reset.

The TIABP algorithm is summarized in equations 3 and 4:

Priority(0) = 2k+1 − 1, k = MSB(NumCycles) (3)

Priority(t) = (Priority(0) << n) + (2n − 1) (4)

where n is the position of the highest significant bit set to 1 in the register that
holds the queuing delay.

As in the SIABP algorithm, TIABP implementation is just reduced to a
shifter and some combinational logic. Nevertheless, using TIABP priority biasing
function, priority inversion is not possible because a priority value can not ever
decrease. If the priority of the header flit allocated in a virtual channel increases,
with the time being waiting for the output port, the maximum priority value
is 2r+1 − 1, where r is the priority register bitwidth. So, extra hardware to
control register overflow is not necessary. Moreover, when the priority is increased
on SIABP, a minimum of 2 bits change their values before overflow. By using
TIABP, a maximum of 1 bit changes its value every time the priority is increased.
This behavior has direct effects on power dissipation.

The priority temperature coding used on the TIABP also simplifies the sort-
ing stage circuitry of the link scheduler which generates the candidate vector
that is sent to the Switch Scheduler. This stage, called SORT on the SIABP, is
a sorting bitonic network, and their basic elements are comparators. By using
temperature coding, the design of this comparators is less complex and requires
a reduced hardware area. We denote as TSORT (Temperature-SORT) the new
implementation of the sorting bitonic network used on TIABP.

4 FPGA Hardware Architecture

In order to implement a MMR on a single chip we have studied the design and
implementation of some of their more important modules on an FPGA based
board. As a result of this work, a more simple and lower power dissipation
circuitry has been obtained. We have focused our effort on the design of the
SIABP and SORT modules, which are the core of the Link Scheduler (LS). Thus,
we have developed a new version of LS using TIABP and TSORT modules.

4.1 Hardware Implementation

In order to evaluate the results of TIABP design, we have used the Celoxica
RC1000 PCI based FPGA board [14]. The RC1000 is a PCI bus plug-in card for
PC. It has one large Xilinx FPGA (in our case a Virtex 2000E, with 2 million

A New Hardware Efficient Link Scheduling Algorithm 1051

equivalent gates) with four banks of memory for data processing operations and
two PCI Mezzanine Cards (PMC) for input/output with the outside world. The
Virtex 2000E is based on slices that contain two 4-bit LUTs each one.

The FPGA Virtex has been programmed using HandelC [6] and the Celoxica
DK1 environment. HandelC is a behavioral C based hardware description system
developed by Celoxica that allows Co-simulation. Parallelism of process and
synchronization are taken from the CSP model, in particular, from the Occam
language. HandelC uses standard data types with user defined bitwidths. So,
HandelC provides an efficient use of hardware resources.

The SIABP module updates the priority connection each time the queuing
delay is increased to the next power of 2, following the HandelC macro

shl0(Priority) = ((Priority <– (width(Priority) − 1)@0b0,

while the TIABP module updates the priority following the HandelC macro
shl1(Priority) = ((Priority <– (width(Priority) − 1)@0b1,

where @ is the concatenation operator. Both, SIABP and TIABP modules, up-
date Priority in 1 clock cycle.

The bitonic network of SORT and TSORT modules is recursively built with
basic sorter blocks which sort 2 virtual channels in function of its priority. These
basic sorter blocks use a comparator, implemented as a boolean macro, called
Prio greater. For the SORT module this macro is expressed as

Prio greater(Priority1,P riority2) = (Priority1) > (Priority2),

while for the Temperature-SORT (TSORT), it is expressed as
Prio greater(Priority1, P riority2) = ((Priority1)|(Priority2)) == (Priority1).

A sorting bitonic network needs O(log2(ncv)2ncv) modules of Prio greater
and O(1/2log2(ncv)2) clock cycles to compute a candidate vector, where ncv is
the number of virtual channels per input link.

5 Performance Evaluation

This section presents the implementation results in Xilinx Virtex 2000E FPGA
and the performance evaluation of the link scheduling proposed in this paper
being used inside the MMR.

We first present preliminary scaling results expressed in terms of FPGA area
and maximum clock rate for the SIABP/TIABP and SORT/TSORT modules.
Then, the performance evaluation of the link scheduling is done by using a
discrete-event C++ simulator.

5.1 Area/Delay Results

For the purpose of this evaluation, we scaled the design of SORT/TSORT mod-
ules to handle a different number of virtual channels from 4 to 128. The bitwidth
used to represent priority of each virtual channel is 16 bits in all cases. For each
result, we report the FPGA area (in equivalent NAND gates) and maximum
clock rate provided by the Celoxica DK1 tools.

1052 José Manuel Claver et al.

1,00E+03

1,00E+04

1,00E+05

1,00E+06

4 8 16 32 64 128

Number of Virtual Channels

A
re

a
(in

 N
A

N
D

s)

0

50

100

150

200

250

300

350

400

C
lo

ck
 (

M
H

z)

SORT Area

TSORT Area

SORT Clock

TSORT Clock

Fig. 2. Area/Clock Rate estimation for SORT and TSORT implementation with dif-
ferent number of Virtual Channels.

Figure 2 reports FPGA area/delay results obtained by SORT and TSORT
designs for 4, 8, 16, 32, 64, and 128 virtual channels. As the number of virtual
channels increase from 4 to 128, the area used by SORT and TSORT designs
increases linearly. But in all cases the TSORT implementation uses between 9%
and 13% less area than SORT. Respect to the maximum clock rate, both designs
obtain similar results. Thus, maximum clock rate decreases logarithmically when
the number of virtual channels is increased. This similar delay between both
SORT and TSORT implementations is due to the fact that TSORT in completely
instantiated by the DK1 tool using FPGA LUTs, but SORT is instantiated using
LUTs (in all cases a number greater than in TSORT) and other FPGA specific
resources that accelerate the Prio greater modules used in its design.

In the case of the biasing function, we have found that there are not noticeable
differences between SIABP (without support of overflow control) and TIABP.
For an initial priority bitwidth of 12 bits, the SIABP module design utilizes 50
LUTs (53 LUTs if overflow control is included) while the TIABP module utilizes
51 LUTS. The maximum clock rate in both designs is 294 MHz.

5.2 Simulation Results

With the previous results in mind, we are going to evaluate the performance of
a single 4 × 4 MMR, with full-duplex 1.24 Gbps 16 bit-wide links. This gives a
router cycle of 12.9ns. The number of virtual channels per input link is 128. Flits
are 1024 bit long. The MMR buffers have capacity to store one flit per virtual
channel. The scheduling round size, determined by the K parameter, has been
been set to K = 16.

Constant and Variable Bit Rate traffics (CBR and VBR traffic, respectively)
have been considered in simulations. The CBR traffic model is composed of
a mix of synthetic connections with 64 Kbps, 1.54 Mbps, and 55 Mbps aver-
age bandwidth. These are representative of several applications, such as audio,

A New Hardware Efficient Link Scheduling Algorithm 1053

and uncompressed video and high-definition video transmission, respectively.
The VBR traffic model is based on traces obtained from real MPEG-2 video
sequences. This is a typical type of multimedia flow [15].

Traffic sources inject their flits into buffers located in the corresponding NIC
attached to every input/output port. Input workload is measured as a percentage
of link bandwidth. Destination ports have been randomly selected using a uni-
form distribution. No statistical information is gathered until some scheduling
rounds have been completed in order to get data only when the system is stable.
Simulations have been carried out for long enough to record significant data on
applications performance. Due to space limitations, only the most significant
results are presented in this paper.

First, the TIABP scheme is compared with both the IABP and SIABP algo-
rithms. Average delay since generation for the CBR flows and the VBR traffic
are presented in Figures 3(a-c). Results show little differences when load is under
saturation point (less than 75% of generated load). When load is closes to satura-
tion, the best performance is got by the SIABP algorithm. The most significant
differences occurs between the IABP and the SIABP algorithms for medium
CBR flows (1.54 Mbps). Regarding the TIABP algorithm, it presents results
similar to that obtained with the SIABP algorithm for medium CBR flows, but
performance is slightly worse for high bandwidth CBR flows (55 Mbps) and for
VBR flows. Having into account that the TIABP algorithm reduces the hard-
ware cost, this performance degradation can be tolerated only if the QoS of the
traffic can be guaranteed.

Hence, in order to know whether the multimedia flows are receiving the
requested QoS, we have depicted in Figures 3(d-f) the distribution of flits/frames
delays, for one of the highest workload levels simulated (85% of link utilization).
This distribution is computed as the percentage of flits/frames that suffered a
delay lower than a set of thresholds. Threshold values are related to the QoS
needs of the connections. In the case of CBR flows, their values are related to
the IAT(Inter Arrival Time) of the connection while for VBR flows thresholds
are related to the frame time (33 millisecs). For the CBR flows, Figures 3(d-e)
show similar results for all the algorithms. For the VBR flows, see Figure 3(f),
less frames fulfill the tightest thresholds when TIABP is used, as compared to
SIABP. Nevertheless, the new proposal obtains reasonable deadlines for all the
frames.

From the analysis above, it can be concluded that the router with the TIABP
scheme is able to provide QoS guarantees to the multimedia flows at a lower
hardware cost than than both the IABP algorithm and the SIABP algorithm.

For reference purposes, the performance obtained when using the practical
TIABP algorithm is compared to that achieved when introducing a couple of
classical algorithms acting as link schedulers. The algorithms chosen for this
purpose are Virtual-Clock (VC) [16] and Weighted Fair Queuing (WFQ) [17].
Like TIABP does, both VC and WFQ assign priorities to flits according to the
bandwidth requirements of the connection they belong to.

1054 José Manuel Claver et al.

10

20

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

IABP
SIABP
TIABP

3

6

9

12

15

18

21

24

27

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

IABP
SIABP
TIABP

25

50

75

100

125

150

175

200

225

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

IABP
SIABP
TIABP

(a) CBR-1.54Mbps (b) CBR-55Mbps (c) VBR

0

10

20

30

40

50

60

70

80

90

100

42 168 675 2700 10800 43200

N
um

be
r

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

IABP
SIABP
TIABP

0

10

20

30

40

50

60

70

80

90

100

1.2 9.5 75.7 605.4 4843 38748

N
um

be
r

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

IABP
SIABP
TIABP 0

10

20

30

40

50

60

70

80

90

100

2.06 8.25 33 132 528 2212

N
um

be
r

of
 fr

am
es

 (
%

)

Thresholds (milisec)

1 s

IABP
SIABP
TIABP

(d) 85% load. CBR-1.54Mbps (e) 85% load. CBR-55Mbps (f) 85% load. VBR

Fig. 3. IABP vs TIABP: Delay since generation (a)-(c) and Distribution delay(d)-(f).

The plots shown in Figures 4(a) and 4(d) correspond to the average delay
since generation obtained with the three link switch schedulers, for the CBR
connections with medium and highest requirements. While TIABP outperforms
the others algorithms for medium CBR flows, saturation is reached at lower loads
than when using the VC algorithm for the most demanding CBR flows. On the
other hand, considering the distribution delay of the algorithms, Figures 4(b)
and 4(e), we can appreciate that little differences are found between the results
obtained with VC and TIABP. Moreover, when WFQ is used a large amount
of flits (30% of the generated flits, approximately) cannot fulfil even the most
relaxed thresholds. Note that plots depict the distribution of flits delay for a
workload of 85%.

The conclusion is that when WFQ is used, the connections with the highest
bandwidth requirements cannot meet their QoS requirements, because they do
not receive their share of bandwidth. On the other hand, VC and TIABP exhibit
better behavior when operating in this way.

Last, Figures 4(c) and 4(f) show average jitter. TIABP is able to provide an
almost constant average jitter over all the workload range, below or equal the
values obtained for the other two algorithms.

6 Conclusion

The main goal pursued by the MultiMedia Router (MMR) project is to design
a single-chip router able to efficiently handle multimedia flows and best-effort
traffic in LAN/SAN environments. In order to achieve this goal, solutions to
many difficult resource management and scheduling problems must be provided,
while keeping into account that these solutions must be simple enough to permit
effective single-chip implementation.

A New Hardware Efficient Link Scheduling Algorithm 1055

10

20

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

TIABP
VC

WFQ

0

10

20

30

40

50

60

70

80

90

100

42 168 675 2700 10800 43200

N
um

be
r

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

TIABP
VC

WFQ
5

10

15

20

25

30

35

40

45

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r
(m

ic
ro

se
cs

)

Generated workload (%)

TIABP
VC

WFQ

(a) Average Delay (b) Distribution Delay (c) Jitter

3

6

9

12

15

18

21

24

27

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

TIABP
VC

WFQ

0

10

20

30

40

50

60

70

80

90

100

1.2 9.5 75.7 605.4 4843 38748

N
um

be
r

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

TIABP
VC

WFQ
0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r
(m

ic
ro

se
cs

)

Generated workload (%)

TIABP
VC

WFQ

(d) Average Delay (e) Distribution Delay (f) Jitter

Fig. 4. TIABP versus VC and WFQ: CBR 1.54Mbps (a)-(c) and CBR 55Mbps(d)-(f).

The link scheduling algorithm is one key element on the MMR design to
provide QoS guarantees to the multimedia flows. Thus, in this work the pro-
posed Temperature-IABP scheme is analysed. We have obtained a simplified
link scheduling design based on the temperature coding of the priority value
associated to every head flit and used in the candidate selection phase. Thus,
TSORT design uses about 10% less FPGA area than the previous SORT design.
Then, the new TIABP link scheduling algorithm reduce the hardware cost while
is available of provide proper QoS guarantees to multimedia flows.

References

1. Myricom, Inc, Guide to Myrinet-2000 Switches and Switch Networks, August 2001.
2. R. Froom, M. Flannagan, and K. Turek, Cisco Catalyst QoS: Quality of Service

in campus networks, chapter Exploring QoS in Catalyst, Cisco Press, 2003.
3. A. Pandey and H.M. Alnuweri, “Quality of Service support over switched Eth-

ernet,” in IEEE Pacific Rim Conf. on Communications, Computers and Signal
Processing, 1999.

4. J. Duato, S. Yalamanchili, M. B. Caminero, D. Love, and F. J. Quiles, “MMR: A
high-performance multimedia router - Architecture and design trade-offs,” in Intl.
Symp. on High Performance Computer Architecture (HPCA-5), 1999.

5. Y. Tamir and H.C. Chi, “Symmetric crossbar arbiters for VLSI communication
switches,” IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 1, 1993.

6. C. Sullivan and S. Chapell, “Handel-C for co-processing an co-design of field
programmable systems on chip,” in Proc. of the JCRA’02, 2002.

7. G. Pfister, High Performance Mass Storage and Parallel I/O, chapter 42: An
Introduction to the InfiniBand Architecture, IEEE Press and Wiley Press, 2001.

1056 José Manuel Claver et al.

8. P. T. Gaughan and S. Yalamanchili, “A family of fault-tolerant routing proto-
cols for direct multiprocessor networks,” IEEE Trans. on Parallel and Distributed
Systems, May 1995.

9. P. Kermani and L. Kleinrock, “Virtual Cut-Through: A new computer communi-
cation switching technique,” Computer Networks, vol. 3, 1979.

10. P. T. Gaughan and S. Yalamanchili, “Adaptive routing protocols for hypercube
interconnection networks,” IEEE Computer, May 1993.

11. F. Silla and J. Duato, “Improving the efficiency of adaptive routing in networks
with irregular topology,” in Conf. on High Performance Computing (HiPC), 1997.

12. D. Love, S. Yalamanchili, J. Duato, M.B. Caminero, and F.J. Quiles, “Switch
scheduling in the Multimedia Router (MMR),” in Intl. Parallel and Distributed
Processing Symp. (IPDPS), 2000.

13. M.B. Caminero, C. Carrión, F.J. Quiles, J. Duato, and S. Yalamanchili, “A cost-
effective hardware link scheduling algorithm for the Multimedia Router (MMR),”
in Lecture Notes on Comp. Sci.: Networking (ICN’01). 2001, vol. 2094, Springer-
Verlag.

14. Celoxica, RC1000 Software Reference Manual, 2001.
15. “Generic coding of moving pictures and associated audio. Rec. H.262. Draft Intl.

Standard ISO/IEC 13818-2,” 1994.
16. L. Zhang, “Virtual Clock: A new traffic control algorithm for packet switching

networks,” ACM Trans. Comp. Sys., May 1991.
17. A. Demers, S. Keshav, and S. Shenker, “Analysis and simulations of a fair queuing

algorithm,” in ACM SIGCOMM, 1989.

Topic 14
Mobile and Ubiquitous Computing

Evaggelia Pitoura, Marios Dikaiakos, Valérie Issarny, and Nuno Preguica

Topic Chairs

Wireless communications along with portable computers, digital assistants and
sensor devices provide a pervasive base for mobile computing. However realiz-
ing truly ubiquitous mobile computing requires innovative theories, paradigms
and applications in various research areas including algorithms, networking, soft-
ware architectures and data management. Topic 14 covers all such aspects. This
topic attracted 33 submissions showing the increasing interest in the field. From
the submitted papers, 8 were accepted as full papers (24% acceptance rate).
The selected papers cover various aspects of mobile and ubiquitous computing
highlighting the diversity of the field and thus making up an interesting and
stimulating track.

Paper presentations are divided into three sessions. Two papers in the first
session address consistency issues. In “Efficient and Fault-Tolerant Update Com-
mitment for Weakly Connected Replication”, J. Barreto and P. Ferreira pro-
pose a novel epidemic weighted voting protocol for achieving eventual consis-
tency in optimistic replication that allows multiple update candidates in an
election. In “Controlling Concurrency in Mobile Computing Environments with
Broadcast-based Dissemination”, J. M. Monteiro and A. Brayner present a new
serializability-based protocol for ensuring data consistency and currency when
data are disseminated to clients through wireless broadcast. The last paper in
this session, “Integrating Mobile Devices into the Grid: Design Considerations
and Evaluation” by S. Isaiadis and V. Getov, discusses implementation and per-
formance issues for integrating mobile devices into the grid. The second session
is shared with Topic 8. The two papers address aspects related to frequency
utilization in wireless networking. In “New Bounds on the Competitiveness of
Randomized Online Call Control in Cellular Networks”, I. Karagiannis, C. Kak-
lamanis and E. Papaioannou present new upper and lower bounds for the online
version of the call control problem in wireless cellular networks. In “A Multiple
Channel Access Protocol for Ad Hoc Wireless Networks”, K-W. Jang considers
the problem of enhancing channel utilization in wireless ad hoc networks through
channel exchange between neighboring nodes. In the last session, in “Personal-
ized Access to Semantic Web Agents Using Smart Cards”, R. C. Erdur and G.
Kardas argue for storing personal information on smart cards. The other two
papers focus on secure networking. K. Kim, J. Hong and J. Lim present a “Fast
and Secure Communication Resume Protocol” to speed up connection resume
after a communication error. In “On AAA with Extended IDK in Mobile IP
Networks”, H. Jeon, M. Y. Chung and H. Choo discuss how to attain fast and
secure mobile IP networking by addressing problems of the hand-off process in
a secure way.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 1057, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient and Fault-Tolerant
Update Commitment Protocol

for Weakly Connected Replicas

João Barreto� and Paulo Ferreira��

INESC-ID / IST
Rua Alves Redol, 9, 1000 Lisboa, Portugal

{joao.barreto,paulo.ferreira}@inesc-id.pt

Abstract. Mobile and other loosely-coupled environments call for de-
centralized optimistic replication protocols that provide highly available
access to shared objects, whilst ensuring an eventual convergence towards
a strongly consistent state. In this paper we propose a novel epidemic
weighted voting protocol for achieving such goal. Epidemic weighted vot-
ing approaches eliminate the single point of failure limitation of primary
commit approaches. Our protocol introduces a significant improvement
nover other epidemic weighted voting solutions by allowing multiple,
causally related updates to be committed at a single distributed elec-
tion round. We demonstrate that our proposed protocol is especially
advantageous with the weak connectivity levels that characterize mo-
bile and other loosely-coupled networks. We support such assumptions
by presenting comparison results obtained from side-by-side execution of
reference protocols in a simulated environment.

1 Introduction

Data replication is a fundamental mechanism for most distributed systems for
performance, scalability and fault tolerance reasons. In particular, optimistic
replication protocols [1] are of extreme importance in mobile and other loosely-
coupled network environments. The nature of these environments calls for decen-
tralized replication protocols that are able to provide highly available full access
to shared objects. Such requirement is accomplished by optimistic replication
strategies, which, in contrast to their pessimistic counterparts, enable updates
to be issued at any one replica regardless of the availability of other replicas.

As a trade-off, the issue of consistency in optimistic replication is problem-
atic. Since replicas are allowed to be updated at any time and circumstance,
updates may conflict if issued concurrently at distinct replicas. Some optimistic
replication protocols ensure that, from such a possibly inconsistent tentative
state, replicas evolve towards an eventual consistent stable state. For this end,
a distributed consensus algorithm is executed so as to reach an agreement on a
common order in which tentative updates should be committed.
� Funded by FCT Grant SFRH/BD/13859.

�� Funded by FCT Project UbiRep (POSI/CHS/47832/2002).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1059–1068, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1060 João Barreto and Paulo Ferreira

There are many scenarios where users, in order to benefit from high avail-
ability, are willing to work with temporarily tentative data, provided that a
commitment agreement regarding such data will eventually be reached. Con-
sider, for instance, a laptop user that becomes disconnected from his corporate
file server after leaving his office. If necessary, he may expect to be able to modify
a report that is currently replicated at his laptop, even if tentatively.

Furthermore, such worker may meet other mobile team colleagues carrying
their replicas and, in an ad-hoc fashion, establish a short term work group to
collaboratively work on the report. A set of causally related tentative updates
will result from such activity. Hopefully, if no update is concurrently issued
from outside the group, such tentative work will be eventually committed by
the underlying consistency protocol. Hence, the high availability provided by an
optimistic replication strategy is especially interesting in such scenarios as the
previous ones. However, the usefulness of one such approach strongly depends
on the ability of the underlying replication protocol to efficiently achieve a com-
mitment decision concerning the tentatively issued data. Users are typically not
inclined towards working on tentative data unless they trust the protocol to
rapidly achieve a strongly consistent commitment decision regarding such data.

Aiming at such central objective, this paper proposes a novel optimistic repli-
cation protocol for efficient and highly available update commitment through the
use of an epidemic weighted voting protocol based on version vectors [2]. The use
of a voting approach eliminates the single point of failure of primary commit ap-
proaches [3]. Hence, the unavailability of any individual replica is not prohibitive
of the progress of the update commitment process. Moreover, commitment agree-
ment is accomplished without the need for a plurality quorum of replica servers
to be simultaneously accessible: voting information flows epidemically between
replicas and update commitment is based solely on local information.

The solution we propose has the main contribution of introducing a signifi-
cant improvement over basic epidemic weighted voting solutions by allowing mul-
tiple update candidates to participate in an election. By using version vectors,
candidates consisting of one or more causally related updates may be voted and
committed by running a single distributed election round. As a result, the overall
number of anti-entropy sessions required to commit updates is decreased when
compared to a basic weighted voting protocol. Hence, update commitment delay
is minimized and so eventual strong consistency guarantees are more rapidly de-
livered to applications. Namely, such reduction is substantial in scenarios where
frequent causally related updates are tentatively generated by applications. The
examples presented above are representative of such update patterns. In worst
case scenarios, our protocol behaves similarly to basic weighted voting protocols.

The paper is organized as follows. Section 2 describes related work, Section 3
introduces the protocol, evaluated in Section 4, and Section 5 concludes.

2 Related Work

The issue of optimistic data replication for mobile and loosely coupled environ-
ments has been addressed by a number of projects [1], with the common intent

An Efficient and Fault-Tolerant Update Commitment Protocol 1061

of offering high data availability. Most of the proposed solutions share the goal of
our work by enforcing eventual convergence towards a strongly consistent stable
form that is explicitly presented to applications.

Three main approaches can be distinguished. Firstly, Golding [4] proposes
that each individual server commits an update when it is certain that it has
been received by every replica. A main limitation is that the unavailability of
any single replica stalls the entire commitment process. On the other hand, a
primary commit strategy, such as the one adopted by Bayou [3], centralizes the
commitment process in a single distinguished primary replica that establishes
a total commit order over the updates it receives. Primary commit is able to
rapidly commit updates, since it suffices for an update to be received by the
primary replica to become committed, provided that no conflict is found. How-
ever, should the primary replica become unavailable, the commitment progress
of updates generated by replicas other than the primary is inevitably halted.

Finally, a third approach uses voting so as to allow a plurality quorum to
commit an update. In particular, Deno [5] relies on an epidemic voting protocol
to support object replication in a transactional framework for loosely-connected
environments. Deno requires one entire election round to be completed in order
to commit each single update, if only non-commutable updates are considered.
This is acceptable when applications are interested in knowing the commitment
outcome of each tentatively issued update before issuing the next one. How-
ever, in the usage scenarios addressed by this paper, users and applications will
often be interested in issuing multiple tentative updates before acknowledging
their commitment. In such situations, the commitment delay imposed by Deno’s
voting protocol becomes unacceptably higher than that of primary commit.

3 Consistency Protocol

The following sections consider a model where a set of logical objects is repli-
cated at multiple server hosts. An object replica at a given server provides local
applications with access to a version of the object contents, as stored by the
replica. Such accesses may read or modify the object contents. In the case of the
latter, an update is issued by the server and applied to the replica.

Updates issued at a given replica are propagated to other servers in an epi-
demic fashion in order to eventually achieve object consistency. The local execu-
tion of an update is assumed to be recoverable, atomic and deterministic. The
former means that a replica will not reach an inconsistent value if it fails before
the update execution completes. It follows from the other two properties that
the execution of the same ordered sequence of updates at two distinct replicas in
the same initial consistent state will yield an identical final state. For simplicity
and without loss of generality, we consider that each logical object is replicated
at every server in the system. For the sake of generality, the set of replicas may
be dynamic, and thus change with the creation or removal of new servers.

Hereafter, we assume an asynchronous system in which servers can only fail
silently. Network partitions may also occur, thus restricting connectivity between
servers that happen to be located in distinct partitions.

1062 João Barreto and Paulo Ferreira

3.1 Overview

Due to the optimistic nature of the consistency protocol, an update issued at a
local replica is not immediately committed at every remaining replica. Instead,
such update is considered to be in a tentative form since conflicting updates
may still be issued at other replicas. The consistency protocol is responsible for
committing such tentative updates into a total order that will be eventually
reflected at every replica.

Our protocol achieves this goal through a weighted voting approach [5]: con-
current tentative updates are regarded as rival candidates in an election. The
servers replicating a given logical object act as voters whose votes determine the
outcome of each election between candidate updates to the object. A candidate
update wins an election by collecting a plurality of votes, in which case it is
committed and its rival candidates are discarded.

Elections consider a fixed per-object currency scheme, in which each voter is
associated with a given amount of currency that determines its weight during
voting rounds. The global currency of a logical object, distributed among its
replica servers, equals a fixed amount of 1. Currencies can be exchanged between
servers and the currency held by failed servers can be recovered by running a
currency reevaluation election, as discussed in [6].

Version Vector Candidates. In some cases, applications will be interested
in generating more than one tentative update prior to its commitment decision.
These may include disconnected mobile applications and ad-hoc groups of mobile
applications working cooperatively in the absence of a plurality quorum. Since
the commitment decision may not be taken in the short-term, these applications
may wish to issue a sequence of multiple, causally ordered tentative updates.

In order to efficiently accommodate for such update scenarios, the novel solu-
tion proposed in this paper employs version vectors to identify candidate updates
in a weighted voting protocol. The flexibility brought by version vectors allows
a sequence of one or more updates to run for the current election as a whole.
In this case, the candidate is represented by the version vector corresponding to
the tentative version obtained if the entire update sequence was applied to the
replica. As the next sections explain, the voting protocol relies on the causality
expressiveness of version vectors to deciding if the update sequence or a pre-
fix of it are to become committed. Consequently, candidates consisting of one or
more causally related updates may be committed on a single distributed election
round. In weakly connected network environments, where such update patterns
are expectably dominant, a substantial reduction of the update commitment
delay is therefore achievable.

Each replica r maintains the following state:

– stabler, which consists of a version vector that identifies the most recent
stable version that is currently known by replica r, obtained after the ordered
application of all committed updates;

– votesr[1..N], which stores, for each server k = 1, 2, .., N , the version vector
corresponding to the candidate voted for by k, as known by r; or ⊥, if the
vote of such server has not yet been known to r;

An Efficient and Fault-Tolerant Update Commitment Protocol 1063

– curr[1..N], which stores, for each server k = 1, 2, .., N whose vote replica r
has knowledge of, the currency associated with such vote;

Each server is able to offer two possibly distinct views over the value of a
replica r to its applications and users: the stable and tentative views. The first
view reflects a strongly consistent value of the replicated object that is identified
by stabler. On the other hand, the tentative view exposes a weakly consistent
value that corresponds to the candidate version that is currently voted by the
local server, votesr[r].

Issuing a tentative update on a replica r causes a new candidate to run for
the current election according to the following rules:
1. If votesr[r] = ⊥, then votesr[r] ← advr(stabler)1 and curr[r] = currencyr;
2. Otherwise, votesr[r] ← advr(votesr[r]);

As the next sections describe in greater detail, voting information flows in an
epidemic fashion among servers and the decision to commit an update is based
only on local replica information. These are important properties for operation
under mobile and loosely-coupled environments. In particular, Section 3.2 ad-
dresses the storage of tentative update and their corresponding commitment
upon a replica value. Section 3.3 then describes the epidemic flow of consistency
information and Section 3.4 finally defines how candidates are elected.

3.2 Update Commitment

The protocol proposed hereafter is orthogonal to the issues of actual transference
and storage of tentative updates. In particular, the protocol does not impose the
decision of whether to transfer and store, at each individual replica, the tentative
updates belonging to every candidate in the current election or, alternatively,
only those concerning the replica’s own candidate.

This means that, at the time a server determines that a given candidate has
won the election and, thus, its updates should be committed, such updates may
not be immediately available. Instead, they will be eventually collected through
succeeding anti-entropy sessions with other servers. Consequently, there may
occur a discrepancy between the most recent stable version identified by the
consistency protocol and the actual stable value that is locally accessible. Such
discrepancy is enabled by an additional element at the state of each replica r:
– cr, which consists of an integer value representing the number of updates in

the stable path that have already been committed by replica r;

The value of cr may be lower than the number of updates that have actually
been determined by the consistency protocol as belonging to the stable path. In
such case, the replica’s stable value does not yet reflect the most recent stable
version r is aware of. As a consequence, the protocol is flexible enough to support
servers with differing memory limitations.

On one hand, servers with rich memory resources may store every update
associated with each candidate, hence being able to immediately gain access to
1 advr advances the counter corresponding to r in the supplied version vector by one.

1064 João Barreto and Paulo Ferreira

rA
currency

0.2

rB

rC

rD

u1
u'1

currency

0.25

currency

0.35

currency

0.2 Logical Time

<1,0,0,0> 0.2

<1,0,0,0> 0.2

<1,0,0,0> 0.2

<1,0,0,0> 0.2

<1,0,0,1> 0.2

<1,0,0,1> 0.2

<1,0,0,1> 0.2

<2,0,0,1> 0.2

<1,0,0,1> 0.2

<1,0,0,0> 0.2

<1,0,0,2> 0.2

<2,0,0,1> 0.2

<1,0,0,2> 0.2

<2,0,0,1> 0.2

<1,0,0,2> 0.2

<2,0,0,1>0.25

votesr

u4
u'4

Fig. 1. Example of update generation and propagation: four replicas with unevenly
distributed currencies start from a common initial stable version stabler = 〈0, 0, 0, 0〉.

the most recent known stable value as each new stable version is determined
by the protocol. On the other hand, memory-constrained devices may opt to
restrict themselves to storing only the updates of their own candidate and, thus,
allow for occasional delays in the availability of the most recent stable value
when rival candidates win an election. In either case, however, the efficiency of
the protocol in taking commitment decisions is not affected. Both strategies may
transparently co-exist in a system of replicas of the same logical object.

Moreover, it is assumed that a log of committed updates is maintained, in-
cluding the following information:
– genr[1..cr], which stores, for each update committed so far in replica r, the

server that generated it.

From the consistency protocol’s viewpoint, the procedure for committing a
sequence of updates u1, .., un, generated by servers i1, ..in, respectively, is there-
fore comprised by the following steps:
1. For each update, uk, genr[cr + k]← ik;
2. cr ← cr + n;

3.3 Anti-entropy

Voting information is propagated through the system by anti-entropy sessions
established between pairs of accessible replicas. An anti-entropy session is an
unidirectional pull-based interaction in which a requesting replica, A, updates
its local election knowledge with information obtained from another replica, B.
In case B has more up-to-date election information, it transfers such information
to A. Furthermore, if A has not yet voted for a candidate that is concurrent to
the one voted for by B, A accepts the latter, thus contributing to its election.

Each anti-entropy session is carried out according to the following procedure,
which should be executed atomically:
1. If stableA < stableB then

(a) stableA ← stableB;
(b) ∀k s.t. votesA[k]‖stableA or votesA[k] ≤ stableA, then votesA[k]← ⊥;

An Efficient and Fault-Tolerant Update Commitment Protocol 1065

2. If (votesA[A] = ⊥ and stableA < votesB [B]) or votesA[A] < votesB[B] then
votesA[A] ← votesB[B] and curA[A] ← currencyA;

3. ∀k �= A s.t. (votesA[k] = ⊥ and stableA < votesB[k]) or votesA[k] <
votesB[k], then votesA[k]← votesB [k] and curA[k]← curB[k].

4. If cA < cB then commit update sequence issued by genB[cA+1], .., genB[cB].

The first step ensures that, in case rB knows about a more recent stable
version, rA will adopt it. This means that rA will regard the elections that
originated such new stable version as completed and so begin a new election from
that point. Such new election is prepared by keeping only the voting information
that will still be meaningful for the outcome of the election. Namely, these are
the votes on candidates that causally succeed the stable version.

As a second step, rA is persuaded to vote for the same candidate as the one
voted by rB, provided that rA has not yet voted for a concurrent candidate.
Subsequently, rA updates its current knowledge of the current election with
relevant voting information that may be held by rB. Namely, rA stores each
vote that it is not yet aware of or whose candidate is more complete than the
one it currently has knowledge of.

Finally, the set of committed updates held by B that are not yet locally
available at replica A are collected and committed by the latter. An example of
update generation and propagation through anti-entropy is illustrated in Fig. 1.

3.4 Election Decision

The candidates being voted in an election represent update paths that traverse
through one of more versions beyond the initial point defined by the stable ver-
sion, stable. These possibly divergent candidate update paths may share common
prefix sub-paths. The following definition expresses such notion.
Definition 1: Maximum common version. Given two version vectors, v1 and v2,
their maximum common version is given by a version vector, mcv(v1, v2), s.t.
∀k,mcv(v1, v2)[k] = min(v1[k], v2[k]). For simplicity, we represent mcv(v1, v2, ...,
vm) as the result of mcv(mcv(mcv(v1, v2)), ...), vm).
Theorem 1: Let v1, .., vm ∈ votesr, be one or more candidate versions known
by replica r, each connoting a tentative update path starting from the stable
version, stabler. Their maximum common version, mcv(v1, .., vm), constitutes
the farthest version of an update sub-path that is mutually traversed by the
update paths of v1, .., vm. Complementarily, the total currency voted for such
common sub-path is obtained by votedr(mcv(v1, .., vm)) = curr[1]+...+curr[N].

The voting protocol is responsible for progressively determining common sub-
paths of candidate versions that manage to obtain a plurality of votes. This
decision is based on the definition of maximum common version among the set
of candidate versions voted at a given replica and on the value of uncommitted
currency, uncommittedr =

∑
cur[k] : votesr[k] �=⊥, according to the following:

Definition 2: Let w be a version vector s.t. w = mcv(w1, .., wm) where w1, ..,
wm ∈ votesr and 1 ≤ m ≤ N . w wins an election when:

1066 João Barreto and Paulo Ferreira

<1,0,0,1>
voted = 0,65

u1 u4
u'1

u'4

Maximum Common Versions at r 2:

uncommitted=0,35

<1,0,0,2>
voted = 0,20

<1,0,0,0> <1,0,0,1> <1,0,0,2>

<2,0,0,1>
voted = 0,45

<2,0,0,1>

Fig. 2. Election decision for replica r2 at the final state in Figure 1. Candidate 〈1, 0, 0, 1〉
has collected a plurality of votes and, thus, u1 and u4 will be committed in that order.

1. votedr(w) > 0.5, or
2. ∀l s.t. l = mvc(l1, .., lk), l1, .., lk ∈ votesr, 1 ≤ k ≤ N and l ‖ w,

(a) votedr(w) > votedr(l) + uncommitedr, or
(b) votedr(w) = votedr(l) + uncommitedr and w <lex l.

The above rules state the conditions that guarantee that a candidate has
collected sufficient votes to win an election. The votes may constitute a majority,
when the amount of currency voted on the winning candidate surpasses 0.5;
or a simple plurality, when the voted currency is greater than the maximum
potentially obtainable currency of any other rival candidate. Ties are decided by
choosing the candidate whose version vector is lexically lower. If one represents
each version vector as a number whose digits are the elements of the vector, such
representation can be numerically compared, thus inducing a lexical order, <lex,
in the version vector space.

Determining if a candidate has won an election depends exclusively on in-
formation that is locally available at each replica. This means that, once having
collected enough voting information, a given replica is able to decide, by its
own, to commit a candidate version that locally fulfills the election winning con-
ditions. Hence, update commitment is accomplished in a purely decentralized
manner. An example is depicted in Fig. 2.

After finding a new winner version vector, w, a replica r atomically takes the
following steps to accept the election decision and prepare for the next election:

1. stabler ← w;
2. ∀vk ∈ votesr s.t. vk‖w or vk ≤ w, votesr[k]← ⊥;
3. If the sequence of updates that comprise the update path defined between

versions stabler and w is locally available, then commit it;

After accepting the election result by setting the winning version as the new
stable version, the second step resets all the defeated candidates to ⊥. Depending
on the local availability of the updates that belong to the winning candidate, they
may be committed into the replica’s stable value; otherwise, further anti-entropy
sessions will ensure that such updates are eventually collected and committed.
A new election can then take place.
Theorem 2 (Correctness): After all elections have been completed at every
replica and all updates belonging to the resulting stable path have been commit-
ted at every replica: ∀r, t, replica r has committed the same ordered sequence of
updates as t.

An Efficient and Fault-Tolerant Update Commitment Protocol 1067

4 Evaluation

C# implementations of the primary commit (Primary), basic weighted voting
(Basic WV) and version vector weighted voting (VVWV) protocols were run
side-by-side in a simulated environment. The simulator includes a collection of
replicas of a common logical object, randomly distributed by a set of network
partitions. Time is divided into logical time slices; at each time slice, each replica
(1) with a given mobility probability, migrates to a different, randomly chosen,
network partition; (2) pulls anti-entropy information from a partner, randomly
selected from the set replicas present in its current partition; and, (3) gener-
ates, with a given update probability, one tentative update. Each replica may be
active or inactive; in the case of the latter, its update probability is null. An
inactive replica exchanges, with a given activation probability, its status with an
active replica after pulling anti-entropy information from it. The differentiation
between active and inactive replicas allows for non-uniform update models to
be simulated, namely the hot-spot model [7], which assumes, based on empirical
evidence, that updates typically occur in a small set of replicas.

The protocols were evaluated against an increasing number of partitions.
Since update contention is prone to arise in a partitioned system, the update
commitment delay is not a sufficiently meaningful measure for our purposes, as
it does not take into account the discarded updates. Instead, a better evaluation
is provided by the update commitment ratio of each protocol, i.e. the percentage
of issued updates that is committed at all replicas.

The measurements were obtained with the fixed settings of 10 replicas with
mobility and activation probabilities of 20% and 40%, respectively, running for
2000 time slices on each experiment; we observed that the variation of such values
does not have a relevant impact on obtained results. Three update models were
tested: with ten, five and just a single active replicas; a global update probability
of 5%, evenly divided by the active replicas, was considered.

The commitment ratio is directly affected by the efficiency of each evaluated
update commitment protocol, since if updates remain in their tentative state for
longer periods, the probability of conflicts is higher; hence, lower commitment
ratios reflect longer delays imposed by the update commitment process. So, as
expected, update commitment ratios decrease as the connectivity among replicas
is weakened by an increasing number of partitions, as shown in Figure 3.

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1 11 21 31 41

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1 11 21 31 41

U
pd

at
e

C
om

m
itm

en
t R

at
io

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1 11 21 31 41

Ten Active Replicas Five Active Replicas One Active Replica

Number of Partitions Number of Partitions

Primary Basic VVWV Primary Basic VVWVPrimary Basic VVWV

Number of Partitions

Fig. 3. Update commitment ratios versus number of partitions, for different numbers
of active replicas.

1068 João Barreto and Paulo Ferreira

However, Primary and VVWV are able to ensure higher ratios than Basic WV
as partitioning grows. Situations of multiple causally related tentative updates
occur more frequently as updates remain tentative for longer periods. Hence, such
results are explained by the efficiency of the former protocols in the commitment
of multiple causally related updates, in contrast to Basic WV. Such situations are
also increased as the global update probability is distributed by a smaller number
of active replicas. Accordingly, the advantage of Primary and VVWV over Basic
WV is accentuated as the number of active replicas decreases. It should be noted
that higher update probabilities yielded equivalent, yet magnified, conclusions.
On the other hand, Primary and VVWV have similar ratios; however, VVWV
has the crucial advantage of not depending on a single point of failure.

Finally, similar experiments compared the two update storage alternatives of
VVWV. A maximum improvement of 0.8% was attained by storing the updates
of all candidates, which suggests that the more resource-efficient alternative of
storing only the updates of a replica’s own candidate is acceptable.

5 Conclusions

We propose a novel epidemic weighted voting protocol, VVWV, for achieving
the goal of optimistic update commitment that allows multiple causally ordered
update candidates to be committed at a single election round. Simulation re-
sults show that, under weak connectivity conditions, VVWV is advantageous
relatively to a basic weighted voting protocol, while attaining similar update
commitment ratios to the less fault-tolerant primary commit protocol.

Additional work [8], not addressed in this paper, shows how dynamic version
vector maintenance can be effectively incorporated into the proposed protocol
and proves Theorems 1 and 2.

References

1. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37 (2005) 42–81
2. Parker, D.S., et al: Detection of mutual inconsistency in distributed systems. Dis-

tributed systems, Vol. II: distributed data base systems (1986) 306–312
3. Petersen, K., et al: Flexible update propagation for weakly consistent replication.

In: Proceedings of the 16th ACM Symp. on Operating Systems Principles. (1997)
4. Golding, R., Long, D.: Modeling replica divergence in a weak-consistency protocol

for global scale dirstibuted data bases. Technical Report UCSC-CRL-93-09 (1993)
5. Keleher, P.: Decentralized replicated-object protocols. In: Proc. of the 18th Annual

ACM Symp. on Principles of Distributed Computing (PODC’99). (1999)
6. Cetintemel, U., Keleher, P.: Light-weight currency management mechanisms in

mobile and weakly-connected environments. Dist. Par. Databases 11 (2002) 53–71
7. D. Ratner, P.R., Popek, G.: Roam: A scalable replication system for mobile com-

puting. In: Mobility in Databases and Distributed Systems. (1999)
8. Barreto, J., Ferreira, P.: Optimistic consistency with dynamic version vector

weighted voting. Technical Report RT/008/2004, Inesc-ID (2004)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1069–1079, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Controlling Concurrency in Mobile Computing
Environments with Broadcast-Based Data Dissemination

José Maria Monteiro1,2 and Ângelo Brayner1

1 Departamento de Informática, UNIFOR
Av. Washington Soares 1321, 60811-905, Ceará, Brasil

{monteiro,brayner}@unifor.br
2 Departamento de Informática, PUC-Rio

R. Marquês de São Vicente 225, 22453-900 - Rio de Janeiro, Brasil
monteiro@inf.puc-rio.br

Abstract. A wireless broadcast environment is defined as a mobile computing
environment in which data are delivered to mobile clients by means of a broad-
cast-based mechanism. Of course, those applications have to see the most recent
consistent database state. For that reason, in such a scenario, database servers
should synchronize operations for ensuring data consistency and currency of
data. However, conventional serializability-based concurrency control protocols
are unsuitable for synchronizing transactions in broadcast environments. The
major goal of this work is to present a new serializability-based protocol to syn-
chronize transactions in data intensive applications. The proposed protocol
saves battery power, since it ensures that mobile clients do not have to contact
servers (for requiring locks, for example) to access data. Thus, mobile clients do
not need to listen to the broadcast continuously; they listen to the broadcast
channel to retrieve data they need. Therefore, the proposed protocol supports
client disconnections. We performed simulation analysis to evaluate the per-
formance of the new protocol. The simulation results show that the proposed
protocol offers better performance than others protocols.

1 Introduction

The integration of portable computer technology with the wireless-communication
technology has created a new paradigm in computer science, the so-called mobile
computing. In a mobile computing environment, network nodes are no longer fixed,
that means, they do not have a fixed physical location. In such an environment, mo-
bile users using a portable computer (denoted mobile client or host) may access
shared information and resources regardless of where they are located or if they are
moving across different physical locations and geographical regions.

Mobile computing technology has made possible the development of new and so-
phisticated database applications. A particular class of such applications can be char-
acterized by having a large number of mobile clients, a small number of servers and a
relatively small database. Electronic commerce applications, such as auctions, road
traffic management systems and automated industrial plants [8] are examples of data-
base applications, which require the support of the mobile computing technology.
Those applications can benefit from a broadcast mode for data dissemination (push-

1070 José Maria Monteiro and Ângelo Brayner

based approach for data dissemination). In this model, a server repetitively broadcasts
data to a client population without a specific request. In turn, clients monitor the
broadcast channel in order to retrieve their data items of interest. Conventionally, data
are delivered to clients on demand (pull-based approach for data dissemination).

Broadcasting data to mobile clients instead of sending them on demand has several
advantages. For instance, the database server is not overloaded with requests from a
large population of mobile clients and it does not have to send individual messages to
a specific client as in pull-based systems. Furthermore, data can be accessed concur-
rently by any number of clients without any performance degradation, since all mo-
bile clients can simultaneously listen to the broadcast channel.

Therefore, broadcast-based data dissemination has become a widely accepted tech-
nique of disseminating data in mobile computing. Many such systems have been pro-
posed and some commercial products for information dissemination in wireless net-
works already support broadcast. For example consider the AirMedia system [3],
which regularly sends CNN news and information to subscribers. Such subscribers
should be equipped with a receiver antenna connected to their personal computers.

A broadcast environment is defined as a mobile computing environment in which
data are delivered to mobile clients by means of a broadcast-based mechanism. Appli-
cations running in a broadcast environment need to read the most recent consistent
database state1. Therefore, the database server (database system running on a server
machine) should ensure that mobile clients “see” the most recent consistent state of
the database. In other words, the database server has to guarantee data consistency
and currency of data. However, most of the published approaches for controlling
concurrency of operations over databases in broadcast environments require that
complex control structures should be sent to mobile clients. Besides having to store
such structures, the clients need to be in active state for longer period of time in order
to manage those structures. Approaches such as invalidation report [7] and update
consistency [8] present these drawbacks. For example, in [8] an n x n matrix should
be sent to all mobile clients, where n is the number of database objects.

In this paper, we propose a new concurrency control protocol for broadcast envi-
ronments. The protocol, denoted temporal serialization graph testing (TSGT, for
short), explores temporal information about database operations (read and write). The
proposed protocol does not require that complex structures be sent to the mobile cli-
ents. The TSGT protocol reduces the communication traffic between server and cli-
ents and minimizes the time interval in which clients need to listen to the broadcast
channel.

The rest of the paper is organized as follows. In section 2, we outline the character-
istics of broadcast environments. Section 3 describes the transactional model that we
will use in this work. In section 4, we describe and analyze the proposed protocol for
concurrency control in broadcast environments. In section 5, the most important
mechanisms for concurrency control in broadcast environments will be described and
discussed. Section 6 shows the results of our simulation experiments. Section 7 con-
cludes this work and outlines future works.

1 Roughly, we can say that a consistent database state represents an acceptable view of the real

world

Controlling Concurrency in Mobile Computing Environments 1071

2 Mobile Computing Environments
with Broadcast-Based Data Dissemination

The main components of a broadcast-based data dissemination environment are de-
scribed next. The database consists of a collection of interrelated data items. The
database server (DBMS) is responsible for storing and managing data of the database.
The broadcast server periodically broadcasts data items to clients. The clients, in turn,
are mobile computers. Applications running on mobile clients perform read and write
operations on database items which are cached by mobile clients.

The broadcast-based data dissemination differs from the traditional model for data
transfer between clients and server. Traditionally, data are sent from the servers to
clients on demand. In broadcast environments, the server periodically broadcasts data
items to a client population without a specific request. Each broadcast period is called
broadcast cycle or bcycle, while the content of broadcast is called bcast. Clients moni-
tor the broadcast channel and retrieve data items they need.

From a transaction processing point of view, it is important to note that, when data
items are broadcast to mobile clients, they are accessed by local transactions running
on those clients. On the other hand, transactions running on the database server can
update those data items after they were broadcast. Thus, it is likely that a mobile cli-
ent reads data item instances which do not exist anymore in the database. Of course,
such a phenomenon should be avoided. Furthermore, since mobile clients can be dis-
connected for long periods of time, transactions running on mobile clients are likely
to be long-living transactions.

3 Transaction Model

A database consists of a collection of disjoint objects representing entities of the real
world. The set of values of all objects stored in a database at a particular moment in
time is called database state. Database states represent snapshots of the real world.
They can only reflect static aspects of the world. However, a database must also re-
flect changes in the real world. Such changes are captured by the notion of state tran-
sition. State transitions represent “jumps” from a particular database state to another
(an updated snapshot of the real world).

The real world imposes some restrictions on its entities. Additionally, databases
must capture such restrictions, denoted consistency constraints. We can couple the
concept of database state to consistency constraints. If the values of objects of a par-
ticular database state satisfy all the consistency constraints, the database state is said
to be consistent.

Application programs containing operations on database objects are tools whereby
state transitions are realized in a database. From the concurrency control perspective,
not all operations of a program are relevant. Only database operations have to be
considered. A transaction is an abstraction which represents a sequence of database
operations resulting from the execution of an application program. Hence, transac-
tions are modeled as finite sequences of operations on database objects. We use the
notation ri(x) (wi(x)) to represent a read (write) operation by a transaction Ti on object
x. OP(Ti) denotes the set of all operations executed by Ti . We will assume that the

1072 José Maria Monteiro and Ângelo Brayner

execution of a transaction preserves the database consistency, if this transaction runs
entirely and isolation from other transactions.

We categorize transactions in a broadcast environment in two classes. One class
comprises transactions executed at the mobile clients. Transactions belonging to this
class are called mobile transactions. Transactions belonging to the second class are
called server transactions, since they run at the database server.

Transactions are executed concurrently. The concurrent execution of a set T of
transactions is realized by interleaving the operations of transactions in T. The execu-
tion of several interleaved transaction is modeled by a structure called schedule. For-
mally, a schedule over a set ℑ={T1,T2, …,Tn} of transactions represents an interleaved
sequence of operations of transactions in ℑ which is an element of the shuffle product
T1∗T2∗…∗Tn. Serial executions of transactions are modeled by means of the notion of
serial schedules. The precedence relation (execution order) between two operations in
a schedule S is represented by <S. For example, the notation p <S q indicates that op-
eration p was executed before q in schedule S. Two operations of different transac-
tions conflict (or are in conflict) if and only if they access the same object of the data-
base and at least one of them is a write operation. It is important to note that not all
schedules are valid; only some of them preserve database consistency. Hence, identi-
fying whether a schedule is correct is a key point in transaction management.

Let S be a schedule over a set ℑ={T1, T2, …, Tn} of transactions. The serialization
graph for S, denoted GS(S), is defined as the directed graph SG(S) = (N,E) in which
each node in N corresponds to a transaction in ℑ. The set E contains edges of the form
Ti → Tj, if and only if Ti, Tj ∈ N and there are two operations p ∈ OP(Ti), q ∈
OP(Tj), where p conflicts with q and p <S q. A schedule S is conflict serializable if and
only if the serialization graph for S (SG(S)) is acyclic. A schedule S is correct if it is
serial or conflict serializable.

4 Synchronizing Database Operations
in a Broadcast Environment

In this section, we will describe and analyze the concurrency control protocol we
propose for synchronizing database operations (belonging to different mobile and
server transactions) in a broadcast environment. The proposed protocol, called tempo-
ral serialization graph testing (TSGT), ensures that broadcast environment applica-
tions access consistent and current data.

The TSGT protocol is based on a similar strategy used by the conventional seriali-
zation graph testing protocol [5]: the dynamic monitoring and management of an
always acyclic conflict graph. In contrast to the classic serialization graph testing, the
TSGT exploits temporal information w.r.t. the moment in which a mobile transaction
operation (read or write) is executed on a given database item.

In our approach, we have decided to distribute concurrency control functions
among mobile clients and the database server. Thus, we assume that the server and
the clients execute specific functionalities, in order to manage the transaction process-
ing in a broadcast environment. In the following, we describe such functionalities.

During each broadcast cycle, the server broadcasts the data items together with a
timestamp. We will assume that data item values sent in broadcast during each cycle
correspond to the database state immediately before the beginning of the broadcast

Controlling Concurrency in Mobile Computing Environments 1073

process. In other words, data instances sent during a broadcast correspond to them
produced by all the transactions that had executed commit operations until the begin-
ning of the broadcast cycle. Such transactions will be called “committed” transac-
tions. Accordingly, the database server should store two versions of each data item Oi:

a version corresponding to the result yield by the last committed transaction
which has updated Oi, and;
a version corresponding to the result yield by the last non-committed transaction
which has updated Oi;

The server is also responsible for building and managing the temporal serialization
graph for a schedule, named global schedule, consisting of operations belonging to
mobile and server transactions. A global schedule models the temporal execution
order in which operations of mobile and fixed transactions are executed. This is pos-
sible because mobile clients send to the server timestamps for database operations
they execute. In Section 4.2, we describe how those timestamps are defined.

Periodically, clients must send a package (message) to the server. Such a package
consists of database objects on which a mobile transaction has executed a database
operation (read or write) and the operation type. This information is sent together with
the corresponding timestamp. Information of operations already informed does not
need to be sent again. When a client receives a commit or an abort request of a mobile
transaction Ti, it sends a message to the server consisting of request (commit or abort).
After that, the client waits for an acknowledgement from the server in order to exe-
cute the commit or abort operation.

4.1 Running Example

We motivate the applicability and feasibility of our proposal by describing an applica-
tion of electronic commerce. In such an application the stock of the main technology
companies is available to auction in an electronic stock exchange. Now consider the
following set of transactions, which read and update values of the stock: T1:
r1(IBM)r1(SUN)C1; T2: w2(IBM)C2; T3: r3(IBM)r3(SUN)C3; T4: w4(SUN)C4; T5:
w5(SUN)C5

The transaction T2 , T4 and T5 are executed at the server. On other hand, the transac-
tion T1 is executed on the client A, while the transaction T3 on client B. Now consider
the global schedule GS presented in figure 1.

We assume that, in the execution scenario presented in figure 1, the packages con-
taining information about the read operations of mobile transactions during the bcy-
clen arrive at the server before sending bcastn+1. The serialization graph for the sched-
ule GS is illustrated in figure 2 (a). Observe that the graph presents a cycle of the
form T1 → T2 → T3 → T4 → T1. Therefore, schedule SG is not conflict serializable
(correct).

Fig. 1. Schedule GS

1074 José Maria Monteiro and Ângelo Brayner

 (a) Serialization Graph for GS (b) Serialization Graph for GS’

Fig. 2. Serialization Graphs for Schedules GS and GS’

Fig. 3. Schedule GS’

Now, we assume that, for some reason (problems in the communication links, for
example), the package which contains the information about the read operations exe-
cuted by transaction T3 during bcycle2 is late. In this case, the server will see the
schedule GS' which is showed in figure 3. The serialization graph for GS’ is depicted
in figure 2 (b).

In figure 2 (b), the serialization graph for GS’ does not present cycles. Conse-
quently, the schedule GS' will be considered conflict serializable, that is, it is correct.

However, observing the database state we can see that it is not consistent. That
means, the correct edge between T3 and T4 in the serialization graph should be T3 →
T4 (as depicted in figure 2 (a)) and not T4 → T3 (figure 2 (b)). Therefore, an incorrect
execution was considered correct improperly. Therefore, the conventional serializa-
tion graph is not sufficient to identify incorrect schedules in broadcast environments.
To avoid the occurrence of such phenomenon, we propose the TSGT protocol, which
will be described in the next section.

4.2 The Temporal Serialization Graph Testing Protocol

The TSGT protocol consists basically of monitoring and management an always
acyclic graph. The graph maintained by TSGT protocol is called temporal serializa-
tion graph. This graph is constructed based on temporal information about the mo-
ment when a data item was read or updated.

Definition 1. C(pi(x)) denotes the timestamp value for the operation pi(x). The value
for C(pi(x)) is defined as follows. If Ti is a transaction executed on the server, then
C(pi(x)) is the cycle number when the operation pi(x) is executed. On the other hand,
if Ti it is a mobile transaction, then C(pi(x)) represents the cycle number in which a
transaction Tj has executed its commit operation, if wj(x) ∈ OP(Tj) and Tj is the last
transaction which has performed a write operation on x. When a mobile transaction Tk
executes an operation pk(x), this timestamp will be associated to pk(x).

Definition 2. The temporal precedence relation (temporal execution order) between
two operations in a schedule S is denoted by t

S. For example, p t

S q indicates that

Controlling Concurrency in Mobile Computing Environments 1075

operation p is temporally executed before q in a schedule S. Let p and q operations in
a Schedule S, we define that p t

S q if and only if one of the following conditions

holds:
i) C(p) < C(q)

ii) C(p) = C(q) and p ∈ OP(Ti), q ∈ OP(Tj), Ti is a mobile transaction, q <s p, Tj
commits in a cycle, whose number is greater than C(p).

iii) C(p) = C(q) and p ∈ OP(Ti), q ∈ OP(Tj), Ti and Tj are transactions executed on
the server, p <s q.

iv) C(p) = C(q) and p ∈ OP(Ti), q ∈ OP(Tj), Ti is a mobile transaction, Tj is a transac-
tion executed on the server, p <s q.

Definition 3. Let S be a schedule over a set ℑ={T1,T2,...,Tn} of transactions. We de-
fine the temporal serialization graph (TSG) for S, denoted TSG(S), as a directed graph
TSG(S) = (N,E), where:

N=ℑ, that is, each node in N represents a transaction in ℑ, and;
E represents the set of edges Ti → Tj, where
• Ti, Tj ∈ N;
• there are two operations p ∈ OP(Ti) and q ∈ OP(Tj), which are in conflict and;
• p t

S q.

A schedule S is conflict serializable if and only if the temporal serialization graph
for S (TSG(S)) is acyclic. A schedule S is correct if it is serial or conflict serializable.

Next, we describe how a TSGT scheduler manages the temporal serialization
graph. When a scheduler starts running, the TSG is created as an empty graph. During
each broadcast cycle, the server broadcasts the values of data items (last value written
by committed transactions) with the respective timestamp. The timestamp for each
data item can be sent in the message header or together with each data item. For each
read operation, the client stores the value and the identification of the read item, to-
gether with the respective timestamp. Periodically, clients should inform to the server,
which read operations they have executed. That is, a client sends periodically a pack-
age containing the item identification and the respective timestamp for each read
operation. As soon as the scheduler receives the first operation of a new transaction
Ti, a node representing this transaction is inserted in the TSG. For each operation pi(x)
∈ OP(Ti) which is received, the scheduler executes the algorithm shown in Figure 4.

In order to illustrate the correctness of the TSGT protocol, consider the example
presented in Section 4.1. Observe that the graph produced by the basic TSGT protocol
corresponds to the correct serialization graph for the schedule GS (see figure 1). The
protocol described above ensures that the scheduler identifies that C(w4(SUN)) >
C(r3(SUN)), inserting, thus, the edge T3 → T4, and not T4 → T3. Therefore, the TSGT
protocol captures the information that the operation r3(SUN) was temporally executed
before w4(SUN).

Thus far, we have analyzed global schedules with mobile transactions involving
only read operations. However, the protocol proposed in this work can control con-
currency in environments with mobile transactions involving write (update) opera-
tions as well, while ensuring database consistency. Next, we show how the TGST
protocol can be used to control concurrency in such environments. First, we need to
make the following observation. The semantic of write operations of a mobile transac-

1076 José Maria Monteiro and Ângelo Brayner

tion stays that an operation wi(x) is in fact executed, when it arrives at the database
server.

Remark 1. Let C(pi(x)) be the timestamp value for the operation wi(x), where Ti is a
mobile transaction. C(pi(x)) represents the cycle number when the operation pi(x)
arrives at the server.

Step 1. The scheduler checks if there exists a conflicting operation q
j
(x) ∈ OP(T

j
) which has

been already scheduled. If there is such an operation q
j
(x), then the scheduler inserts

an edge between T
i
 e T

j
. In order to include such an edge correctly, two different

cases should be considered:
Case 1. T

i
is a transaction executed on the server. In this case, the scheduler will exe-

cute the following temporal verification:
If C(q

j
(x)) ≤ C(p

i
(x))

Then, the scheduler inserts an edge on the form T
j
 → T

i
.

Else
The scheduler inserts an edge on the form T

i
 → T

j
.

Case 2. T
i
 is a mobile transaction. In this case, the scheduler will execute the follow-

ing temporal verification:
If C(q

j
(x)) < C(p

i
(x))

The scheduler inserts an edge on the form T
j
 → T

i

Else
If C(q

j
(x)) > C(p

i
(x))

The scheduler inserts an edge on the form T
i
 → T

j

Else
If T

j
 has already executed the commit operation
The scheduler inserts an edge of the form T

j
 → T

i

Else
The scheduler inserts an edge of the form T

i
 → T

j

Step 2. The scheduler verifies if the new edge introduces a cycle in the temporal serialization
graph. In the affirmative case, the scheduler rejects the operation p

i
(x), undoes the ef-

fect of the operations of T
i
 and removes the edge inserted. Otherwise, p

i
(x) is ac-

cepted and scheduled

Fig. 4. A scheduler implementing the TGST protocol

4.3 Correctness of the TGST Protocol

Next, we prove that schedules produced by the TSGT protocol are conflict serializ-
able. That means, the TSGT protocol ensures database consistency.

Theorem 1. Let TSGS be the set of schedules over the set ℑ={T1, T2, ... , Tn} of
transactions produced by a TSGT protocol and CSR the set of all conflict serializable
schedules over ℑ. Then TSGS=CSR [6].

Sketch of Proof. It is easy to show that TSGS ⊂ CSR. We only need to observe that
every global schedule S produced by the TSGT protocol has an acyclic temporal seri-
alization graph. By definition, TGST(S) represents the conventional serialization
graph for S, with additional temporal information to capture the correct execution
order of the operations in S. In other words, if the TSG for S is acyclic, the serializa-
tion graph is too. Therefore, S∈CSR, consequently, TSGS⊂CSR. To prove that
TSGS⊃CSR, we have to show that every schedule S ∈ CSR can be produced by a
TSGT protocol. We can show this by induction on the length of S that every operation

Controlling Concurrency in Mobile Computing Environments 1077

p in S may not originate a cycle in the TSG and, thus, p may be executed. As already
mentioned, the TSG represents the conventional serialization graph for S, with tempo-
ral information.

5 Related Work

In this section, we will describe and analyze the most important proposals for the
concurrency control in broadcast environments. Initially, we will discuss the invalida-
tion reports approach proposed in [7]. According to this approach, each bcast is pre-
ceded by an invalidation report. Such a report represents a list of all data items that
was updated on the server during the previous broadcast cycle. Client read the invali-
dation report periodically. A mobile transaction T is aborted if an object x previously
read by T appears in the invalidation report. This approach discards some conflict
serializable schedules. Moreover, the client cannot be disconnected for long periods
of time, since the client needs to read every invalidation report.

The multiversion broadcast mechanism [2] consists of keeping previous versions of
data items, in order to reduce the number of aborts of mobile transactions. In this
approach, the server, besides broadcasting database objects, broadcasts multiple ver-
sions for each object. Let C0 be the broadcast cycle number during which the client
transaction T performs its first read operation. To each new read operation, the trans-
action T tries to read the value with the largest version number Cn, such that Cn ≤ C0.
If this version is not available the transaction is aborted. Therefore, this approach does
not eliminate the necessity of aborting mobile transactions. Moreover, it generates an
overhead in the execution of the read operations and to maintain the multiple versions
for each database object..

Shanmugasundaram et al. [8], proposes a mechanism which uses as correctness cri-
terion an extension of the criterion called update consistency. According to this pro-
posal, in each bcycle the server broadcasts an n x n matrix, where n is the number of
database objects. This matrix will be used by clients in order to ensure the consistency
of read operations. For that, clients should listen to the broadcast channel during a
larger period of time in order to retrieve the control matrix. It is important to note that
the clients also have to store the control matrix.

As we can observe, most of the proposals described in this paper requires that con-
trol structures are transmitted by the server during each broadcast cycle and that mo-
bile clients store and manage such structures. For this reason, we can claim that TSGT
protocol is more efficient for the concurrency control in broadcast environments than
the existing proposals.

6 Experimental Results

In order to evaluate the performance of the proposed protocol, we compared it with
the F-MATRIX [8] and multiversion [2] protocols. We evaluated the performance of
these protocols based on the following metrics:

Transaction Response Time: This metric indicates the time interval between the
time a transaction T is submitted by a client and the time that T ends its execution
through a commit operation (including the time involved in restarts).

1078 José Maria Monteiro and Ângelo Brayner

Transaction Restart: This metric indicates the number of restarts occurred for a
set of concurrent transactions. Observe that this metric indirectly measures the
abort rate.

6.1 Simulation Environment

The simulation environment is based on the model used in [8]. It consists of a server,
a client, and a broadcast server for transmitting both the data objects and the required
control information. A mobile transaction is processed until it is committed. Only
read-only transactions are executed on the client. Update transactions are executed on
the server. A small database (300 data objects) helps to intensify data conflicts by
creating hot-spot effect. The objects that the transactions access are determined using
a random distribution function. The transaction length indicates the number of opera-
tions in a transaction. In the simulation experiments we used 8 operations with the
default value for the server transaction length.

6.2 Simulation Results

Fig. 5 show the results of our simulation experiments. TSGT outperforms F-MATRIX
and Multiversion in all the experiments. Furthermore, TSGT is highly scalable with
respect to client transaction length and server transaction length.

Figure 5 (a) shows that our protocol presents a lower abort rate than the F-Matrix
and Multiversion protocols. It shows that our protocol is scalable w.r.t the length of
transactions as well.

Figure 5 (b) shows that transactions are executed in smaller time intervals than the
F-Matrix and Multiversion protocols. Observe that, if we have smaller time intervals
for executing transactions, we increase the throughput of the system.

Although energy usage has not been evaluated in our simulations we claim that
TSGT (in comparison with F-MATRIX and Multiversion protocols) provides reduc-
tion in the use of this important and scarce resource, since it reduces the time that
mobile clients need be connected (in “active” mode). This is because mobile clients
do not require to listen to the broadcast channel continuously; they listen to the broad-
cast channel only to retrieve data they need. Moreover, with lower abort rates and
smaller response times client transactions will commit more quickly, saving energy.

 (a) Abort Rate (b) Comparison of Response Times

Fig. 5. Simulation Results

Controlling Concurrency in Mobile Computing Environments 1079

7 Conclusions

In this paper we have proposed a new mechanism for concurrency control in broad-
cast environments. The proposed protocol, called temporal serialization graph testing
protocol (for short, TSGT), ensures that applications in broadcast environments have
access to consistent and current data. The TSGT protocol ensures that clients do not
need to contact the server to perform their operations. Clients just have to listen to the
broadcast channel in order to retrieve data items of interest and can be disconnected
for long periods of time. Moreover, clients do not need to store nor to manage com-
plex structures as proposed in [2], [7] and [8]. We performed simulation studies to
evaluate the performance of the new protocol. The analysis of simulation results
showed that the proposed protocol presents a better performance than F-Matrix [8]
and Multiversion [2] protocols.

References

1. Victor C.S. Lee and Sang H. Son. On Transaction Processing with Partial Validation and
Timestamp Ordering in Mobile Broadcast Environments. IEEE Transactions on Computers,
Vol. 51, No. 10, 2002.

2. Evaggelia Pitoura and Panos K. Chrysanthis. Multiversion Data Broadcast. IEEE Transac-
tions on Computers, Vol. 51, No. 10, 2002.

3. Web Page of Airmedia inc. White Paper, http:// www.airmedia.com
4. A. Brayner, T. Härder and N. Ritter. Semantic Serializability: A Correctness Criterion for

Processing Transactions in Advanced Database Applications. DATA & KNOWLEDGE
ENGINEERING, 31, 1999.

5. M.A. Casanova. The Concurrency Problem of Database Systems. In Lectures Notes in
Computer Science, 116, 1981.

6. J.M. Monteiro. Temporal Serialization Graph Testing: An Approach to Control Concur-
rency in Broadcast Environments. Msc. Dissertation, Universidade Federal do Ceará, Octo-
ber, 2001 (in Portuguese).

7. E. Pitoura e P. Chrysanthis, Scalable Processing of Read-Only Transactions in Broadcast
Push, IEEE International Conference on Distributed Computing Systems, 1999.

8. J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran e K. Ramamritham. Efficient
Concurrency Control for Broadcast Environments. Proceedings of the ACM SIGMOD Con-
ference, 1999.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1080–1088, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrating Mobile Devices into the Grid:
Design Considerations and Evaluation*

Stavros Isaiadis and Vladimir Getov

Harrow School of Computer Science
University of Westminster, London, UK

{S.Isaiadis,V.S.Getov}@westminster.ac.uk

Abstract. Mobile devices increasingly offer functionality beyond the one pro-
vided by traditional resources – processor, memory and applications. This in-
cludes, for example, integrated multimedia equipment, intelligent positioning
systems, and different kinds of integrated or accessible sensors. For future gen-
eration Grids to be truly ubiquitous we must find ways to compensate for the
limitations inherent in these devices and integrate them into the Grid, in order to
leverage available resources and broaden the range of supplied services. The
unreliability and limitations surrounding the mobile resources and services
could significantly degrade the overall Grid availability and performance. In
this paper, we propose the utilization of various mobile devices in the form of a
single virtual wireless “cluster” that will hide the heterogeneity and dynamicity,
mask the failures and quietly recover from them, provide centralized manage-
ment and monitoring and allow for the federation of similar services or re-
sources towards advanced functionality, quality of service, and enhanced per-
formance. Finally, we present and analyze the results from the simulative
performance evaluation of this design.

1 Introduction

In the last two decades we have experienced a transition towards mobility in the form
of mobile devices, like cell phones initially, and hand-held computers and smart-
phones later. These trends are going to increase in the following years, resulting in a
huge mobile computing community. An analogous transition in the field of communi-
cations and networking from the wired networks and fixed points of attachment to the
flexible wireless networks has been developing rapidly. Furthermore, in addition to
traditional computer resources like processors, memory, storage, and applications,
new generation mobile devices provide support for integrated multimedia equipment,
intelligent positioning systems, and a diverse range of sensors. A possible integration
of these mobile devices into the Grid could benefit both the mobile and the Grid com-
munities. There is no doubt about the former, since mobile users will gain access to a
huge number of resources, high performance facilities, specialized hardware and
software and enormous resource pools. For the latter, it is an opportunity to utilize
available resources in the mobile community and increase its performance and capac-
ity and broaden the range of services and supplied functionality. And for future gen-
eration Grids to be truly ubiquitous we must have the option of integrating mobile
devices into Grid systems (in the rest of this paper we’ll be using the term “mobile

* This research work is carried out partly under the FP6 Network of Excellence CoreGRID

funded by the European Commission (Contract IST-2002-004265)

Integrating Mobile Devices into the Grid: Design Considerations and Evaluation 1081

devices” to refer to resource limited mobile devices with wireless connectivity like
laptops, personal digital assistants, smart phones etc.).

Integrating mobile devices into the Grid could lead to instability and reduced over-
all performance, due to the inherent limitations of mobile devices and wireless com-
munication links. Whenever a failure occurred we would have an avalanche of reac-
tions including job rescheduling, data migration, resource re-allocation and activation
of failure recovery mechanisms, and considering the increased rates of failures in such
an environment, this is not acceptable. In an attempt to overcome these obstacles, we
propose in this paper the clustering of all mobile devices that fall into the same subnet
in order to present them as a single virtual system to the Grid. The main advantages of
our approach are that we manage to hide the heterogeneity, dynamicity and complex-
ity of mobile devices from the Grid, present a centralized point for managements and
monitoring and federate similar resources or services to provide advanced operations
and enhanced performance. Acting on behalf of the wireless cluster and exposing all
available services to the Grid, there will be a set of dedicated proxies. We use this
architecture as our vehicle towards our ultimate goal of developing and evaluating
high service availability and failure resilience techniques in such hybrid Grid envi-
ronments.

The rest of this paper is organized as follows. In the next section, we provide a
brief overview of relevant research in this field. Section 3 gives details on the chal-
lenges we face in trying to integrate mobile devices to the Grid and the architecture
we are adopting in an effort to tackle these problems. Section 4 describes the imple-
mentation details, while section 5 presents the simulative evaluation results and dia-
grams. Finally, section 6 concludes the paper and lists our future plans.

2 Relevant Work

A number of recent and current research projects and papers are dealing with mobility
in Grids. In [2] the authors propose a clustered approach for integrating mobile de-
vices into the Grid, without however, providing any implementation considerations or
evaluation of their approach. In [10] the authors also propose a virtual cluster ap-
proach and a middleware to provide peer-to-peer operations but do not address re-
source virtualization or federation of similar resources or even larger scale collabora-
tion. Also, none of the aforementioned papers address the issues of mobility and
failure resilience and they do not take into consideration the widely used
OGSA/OGSI (Open Grid Services Architecture / Infrastructure) or the recently
adopted OGSA/WSRF (Web Services Resource Framework) specification.

Mobile OGSI.NET [11] is an implementation of an OGSI based Grid container on
the .NET hosting environment on mobile devices based on Microsoft’s PocketPC.
Mobile OGSI.NET allows for Grid service state saving and restoring and distribution
of workload among devices with the same types of services, but with the cost of hav-
ing to change existing services to adhere to the specific Mobile OGSI.NET program-
ming model. Furthermore, Mobile OGSI.NET can only be realized on PocketPCs
with the .NET framework installed.

AKOGRIMO [9] is a European funded project that has recently started and is deal-
ing with mobility issues in the Grid. The purpose of the project is to evaluate the mo-
bile Grid introducing the notion of mobile dynamic virtual organizations through
applications that highlight the challenges present in such mobile environments, like e-

1082 Stavros Isaiadis and Vladimir Getov

health, e-learning and crisis management. AKOGRIMO favors research on ad-hoc
mobile Grids and the integration of mobile IPv6 to support mobility in a Grid envi-
ronment.

Finally, in [1] an agents approach is adopted to tackle device mobility, but the pro-
posed architecture only allows mobile devices to be the consumers of services and not
the providers.

The potential benefit of the integration of mobile devices into the Grid, but also the
challenges that this raises, has been the theme in many other papers and research
projects lately, but none of these provide any implementation methodology or propose
an architecture to support this integration [3, 4, 5, 6, 7].

3 Hybrid Wired – Wireless Grid Environments

Initially the integration of mobile devices into the Grid seems highly unlikely due to
inherent limitations: limited resources (CPU, secondary storage, available memory
etc.); increased power consumption sensitivity; increased heterogeneity; unpredictable
long periods of complete disconnectivity; unreliable, low-bandwidth and high latency
communication links; and very dynamic network layout because of devices entering
and leaving in a very unpredictable manner.

While directly connecting mobile devices to the Grid is very straightforward and
requires no modifications to the existing infrastructure, it could significantly degrade
the overall Grid performance because of the high rate of failures. Whenever a failure
occurred, the Grid components would have to reschedule and reallocate resources for
the active application, possibly migrating data around the Grid thus reducing the re-
sponse time. Considering that in the mobile edge of the Grid, the failure rate is in-
creased, this is not something we would like in busy, heavily loaded and complex
Grid environments. In order to avoid potential performance penalties, we have de-
cided to follow another route: group all mobile devices that fall into the same subnet
and present them as one single virtual resource to the Grid. For this virtualization to
be realized we need a set of dedicated proxies residing between the existing Grid
infrastructure and the wireless cluster (it has to be stated here that by saying “cluster”
we do not mean a cluster in its traditional form – it is more like a grouping of devices
that may, however, borrow some ideas from the cluster domain). This method will
allows us to delegate some control to the proxies, getting some load off the higher
level Grid components. The actual number of proxies will be determined by early
experiments, and it may be possible to distribute the proxy functionality across a
number of workstations conveniently located behind the distribution network of the
“cluster”. Both the direct and the clustered approach are depicted in Figure 1.

By following this approach, we can encapsulate the heterogeneity and the
dynamicity present in the cluster – thus imposing minimal disruption to the regular
Grid operations, and leverage the resource repositories in the wireless cluster.
Furthermore, we can mask all internal failures and recover from them locally without
any notification of the higher-level Grid components. We deal with failures internally,
re-allocating resources from within the cluster itself, locally rescheduling and
migrating data if necessary.

Integrating Mobile Devices into the Grid: Design Considerations and Evaluation 1083

Fig. 1. Direct vs. Clustered connection to the Grid

4 Implementation Prototypes

In this architecture we are adopting a service-oriented approach currently conforming
to the OGSA/OGSI specification and using the Globus Toolkit 3 (GT3) [15] imple-
mentation. In the near future we plan to migrate to the newest WSRF specification [8]
and take advantage of the latest Web Services Description Language [14] (WSDL
v1.2 or v2) that will provide a lot of enhancements for Grid service development.

All resources and specific functionality in the cluster are accessed through Grid
service interfaces, which can fall into one of these two categories (depending on the
interface type and description):

− Services that provide specific functionality, like for example access to a proprie-
tary database, access to a sensor or a vector computer, access to other specialized
hardware or software. Similar services –i.e. that offer the same functionality or
implement the same interface, will be aggregated and presented through a single
service interface deployed at the proxy. All requests arriving at the proxy for a
specific type of service will be forwarded to an available node that supports it.
This technique will give us more flexibility and will allow us to implement collec-
tive operations on all nodes offering this functionality, parallel execution when-
ever this is feasible and supported by the application, or even mirrored execution
for higher reliability.

− Services that provide controlled access to raw resources like processor cycles,
memory, secondary storage etc. Again resources are aggregated and presented
through a single interface, but the aggregator service implementation is now dif-
ferent. Now we only publish a fraction (70-80%) of the total amount of aggregated
resources, in order to expose a virtually more stable environment: there are spare
resources available in the cluster to cover up any possible node failures and avoid
unnecessary disturbance of the Grid by reallocating resources from within the
cluster itself. Failures are now masked and dealt with locally by the “cluster”
community scheduling and recovery components, thus avoiding putting more load
on the higher level Grid scheduling systems, monitoring and failure recovery
mechanisms.

We are implementing early prototypes of the proxy engine components, mainly the
service/resource aggregation and indexing components. These early prototypes are

1084 Stavros Isaiadis and Vladimir Getov

somewhat restrictive at this stage, and we haven’t included functionality that will be
present at the final version –like support for mobility, failure resilience and more. The
purpose of this prototyping is to give us a better insight of the actual needs and chal-
lenges that we will have to face on our way to the final deliverable engine.

After the registration and service aggregation procedure, the engine indexes the
services based on static service information (like functionality offered, hosting de-
vice’s characteristics, available resources and other) and keeps a registry that closely
cooperates with the community scheduler and the information and monitoring ser-
vices to allow for dynamic resource allocation and reservation. It is important to men-
tion that advanced resource reservation can neither be supported nor guaranteed due
to the dynamic nature of the cluster. A lower level description of the whole service
aggregation procedure follows and is also depicted simplified in Figure 2.

Fig. 2. The service aggregation and service generation procedure

1. The mobile node that wishes to expose a service sends the WSDL and an XML
file containing service and device information to the engine by using a convenient
web interface. The XML file will be used for indexing purposes by the Cluster
Service Registry.

2. The WSDL file is parsed using JAXP (Java API for XML Processing) in order to
extract all necessary service information, and is modified so that we can then de-
ploy it at the proxy.

3. Both the original and the modified WSDL files will be fed to a generator that will
automatically create a Java implementation for the aggregator service, the de-
ployment descriptors and all the necessary helper Java classes like the Server-side
skeleton, the client-side proxy, the Service Locator and so on.

4. Next, all these files are collected and put into a Grid Archive File, which is then
deployed to the Grid hosting environment using Apache Ant tools.

5. Finally, the newly deployed service at the Proxy can be published to a UDDI reg-
istry or GT’s MDS (Monitoring and Discovery Service) or any other index ser-
vice.

Integrating Mobile Devices into the Grid: Design Considerations and Evaluation 1085

As is easily observed from the description, both the mobile user and the cluster
administrator have minimal work to do in order for the aggregation and registration to
occur and for the service to be deployed and published. The mobile user merely has to
fill in a small form in the web interface and submit it, while the administrator only has
to deploy the service. In the near future, we plan to fully automate this procedure by
making use of a dynamic resource discovery infrastructure like Jini [13].

The resulting aggregator service deployed at the proxy provides a single interface
to all aggregated resources in the “cluster”. This abstraction makes job submission
easier for inexperienced users and simplifies the job of Grid scheduling systems, since
they can now delegate finer control to the proxy engine which will take care of dis-
tributing the tasks or forwarding service requests to the mobile nodes in the “cluster”.

Fig. 3. Servicing requests

When a request for a service arrives at the proxy, an available mobile node that
match the requirements is found by querying the Cluster Information and Monitoring
Service and the Cluster Service Registry, a new service instance is created and all
subsequent method calls are forwarded to that node. If no nodes can offer the re-
quested functionality a “service unavailable” response is forwarded. Our engine also
takes care of state and lifetime management and any possible notification subscrip-
tions automatically.

5 Simulative Network Performance Evaluation

In order to ensure that this architecture will not present a bottleneck and won’t cause
network performance degradation, we have performed several simulations using
OPNet . We have modeled a very heavily loaded data-centric Grid environment
following regular Grid behavior, i.e. light traffic initially querying service registries,
followed by point-to-point data transfer, request for CPU usage, database queries and
updates etc. A brief description of the simulation environment is given below, fol-
lowed by some of the most important results that were generated.

− 4 Basic Service Sets each one servicing 10 mobile devices, 50% of which contrib-
ute resources to the Grid community. These sets represent the mobile resource
limited edge of the Grid.

1086 Stavros Isaiadis and Vladimir Getov

− A LAN consisting of 50 nodes all of which contribute resources to the community.
The LAN acts as the main Grid infrastructure into which we want to integrate mo-
bile devices.

− A couple of proxy servers residing in between the 4 WLANs and the LAN, acting
as the interface point between the mobile “cluster” and the Grid.

− All Wi-Fi interfaces operate at a rate of 11Mb/s.
− All Ethernet interfaces operate at a rate of 10Gb/s.

During the 60 minutes of the simulation, all nodes (both wireless and wired) re-
quest services that are available either in the WLANs or the LAN. When a Grid node
wants to access a service available in the cluster it sends the request to the relevant
proxy aggregator interface (since the cluster is hidden and access to its services is
provided through the proxies). The proxy will then forward the request to an available
node along with the necessary data or code to execute. In this environment we as-
sumed that no failures occurred as the main goal of the simulation is to measure the
network load and the proxy response time, not the actual engine functions or perform-
ance. We were mainly interested in the wireless media statistics and the proxy utiliza-
tion and response time, in order to ensure that no performance or network traffic bot-
tlenecks occurred because of the narrow proxy design – “narrow” because all traffic
between the Grid and the “cluster” goes through the proxies.

• Wireless Media

Fig. 4. Wireless Media Delay and Load

We can see from the second graph that at no point during the simulation there was
any data dropped due to network traffic as the wireless media never reached its full
potential (averaged at around 5Mbits/sec ≅ 45%) and the media access delay was kept
to very low levels at around 7msecs. Our architecture, doesn’t introduce any network
performance bottlenecks even though the simulation environment was very heavily
loaded.

Integrating Mobile Devices into the Grid: Design Considerations and Evaluation 1087

• Proxy Performance

Fig. 5. Proxy CPU Utilization and Server Processing Time

The results showed that the two proxies handled very efficiently the heavy traffic
we injected to the network (utilization was kept around 50% following a bursty na-
ture) and the server performance was kept to very good levels despite the big number
of service requests arriving from both the WLANs and the LAN.

6 Conclusions and Future Work

So far we have implemented the components responsible for service aggregation and
indexing, and those dealing with servicing requests. Everything is achieved with
minimal intervention from the mobile user and the cluster administrator. This is very
important since we do not want to discourage mobile users from contributing to the
Grid community by requesting lengthy and complicated procedures. Also, a cluster
membership scheme – if one is deemed necessary – will be built on top of already
installed Grid security infrastructure making use of available certificates so that no
extra inconvenience is caused and alignment with existing authentication and authori-
zation mechanisms is achieved.

We have tested our engine’s aggregation and indexing components against a wide
variety of services and it has been proved to perform efficiently. Nevertheless, there is
still plenty of work to do and we have to implement failure prediction, detection and
recovery components that will take us one step closer to our ultimate goal of auton-
omy and high service availability in this wireless environment.

The simulation reports we got were more than encouraging and showed that even
for a very heavily loaded hybrid environment our proxies responded very well and
there were no performance or network traffic bottlenecks introduced due to the “thin”
proxy layer architecture. Near future plans include experimental evaluation of our
design and addressing mobility and roaming issues between two wireless “clusters”.

1088 Stavros Isaiadis and Vladimir Getov

As we are dealing with resource limited devices, we need to develop a lightweight
Grid platform suitable for such devices. The authors also participate in ongoing re-
search regarding a generic components based Grid platform and hence we are confi-
dent that we will have results in this field in the near future [12].

Finally, we need to investigate available community schedulers suitable for wire-
less and very dynamic environments in order to select and integrate one in our proxy
engine. The scheduler will cooperate closely with the wireless “cluster” service regis-
try and the monitoring and information components of the engine in order to deal with
dynamic resource allocation and load distribution whenever this is feasible.

References

1. L. Cheng, A. Wanchoo, I. Marsic, “Hybrid Cluster Computing with Mobile Objects”, Proc.
of Fourth International Conference on High-Performance Computing in the Asia-Pacific
Region, 2000.

2. T.Phan, L. Huang, C. Dulan, “Challenge: Integrating Mobile Wireless Devices into the
Computational Grid”, ACM MOBICOM, 2002

3. G. H. Forman, J. Zahorjan, “The Challenges of Mobile Computing”, IEEE Computing Mi-
lieux, 1994

4. Chlamtac, J. Redi, “Mobile Computing: Challenges and Potential”, Encyclopedia of Com-
puter Science, 4th edition, 1998

5. M. Franz, “A Fresh Look at Low Power Mobile Computing”,
http://research.ac.upc.es/pact01/colp/paper15.pdf

6. B. Chen, C. H. Chang, “Building Low Power Wireless Grids”,
http://www.ee.tufts.edu/~brchen/pub/LowPower_WirelessGrids_1201.pdf

7. D. Bruneo, M. Scarpa, A. Zaia, A. Puliafito, “Communication Paradigms for Mobile Grid
Users”, IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003

8. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D.Snelling, S.
Tuecke, “From Open Grid Services Infrastructure to WS-Resource Framework: Refactor-
ing & Evolution”,
http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf, 2004

9. The AKOGRIMO project: http://www.akogrimo.org
10. J. Hwang, P. Aravamudham, “Proxy-based Middleware Services for Peer-to-Peer Comput-

ing in Virtually Clustered Wireless Grid Networks”, in Proceedings of International Con-
ference on Computer, Communication and Control Technologies, 2003

11. D. Chu, M. Humphrey, “Mobile OGSI.NET: Grid Computing on Mobile Devices”,
http://www.cs.virginia.edu/~humphrey/papers/MobileOGSI.pdf, 2004

12. J. Thiyagalingam, S. Isaiadis, V. Getov, "Towards Building a Generic Grid Services Plat-
form: A Component-Oriented Approach", in V. Getov and T. Kielmann (Eds), "Component
Models and Systems for Grid Applications", 39-56, Springer, 2005

13. J. Waldo, K. Arnold, “The Jini specifications”, Jini technology series. Addison-Wesley,
Reading, MA, USA, Second edition, 2001

14. R. Chinnici, M. Gudgin, J. Moreau, S. Weerawarana, “WebServices Description Language
(WSDL) 1.2”, World Wide Web Consortium. TUhttp://www.w3.org/TR/wsdl12/UT, 2003

15. The Globus Project, http://www.globus.orgUT

New Bounds on the Competitiveness
of Randomized Online Call Control

in Cellular Networks�

Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

Research Academic Computer Technology Institute and
Dept. of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece
{caragian,kakl,papaioan}@ceid.upatras.gr

Abstract. We address the call control problem in wireless cellular net-
works that utilize Frequency Division Multiplexing (FDM) technology.
In such networks, many users within the same geographical region (cell)
can communicate simultaneously with other users of the network using
distinct frequencies. The available frequency spectrum is limited; hence,
its management should be done efficiently. The objective of the call con-
trol problem is, given a spectrum of available frequencies and users that
wish to communicate in a cellular network, to maximize the number of
users that communicate without signal interference. We study the online
version of the problem in cellular networks using competitive analysis
and present new upper and lower bounds.

1 Introduction

In this paper we study frequency spectrum management issues in wireless net-
works. We consider wireless networks in which base stations are used to build
the required infrastructure. In such systems, the architectural approach used is
the following. A geographical area in which communication takes place is divided
into regions. Each region is the calling area of a base station. Base stations are
connected via a high speed network. When a user A wishes to communicate with
some other user B, a path must be established between the base stations of the
regions where users A and B are located. Then communication is performed in
three steps: (a) wireless communication between A and its base station, (b) com-
munication between the base stations, and (c) wireless communication between
B and its base station. At least one base station is involved in the communi-
cation even if both users are located in the same region or only one of the two
users is part of the cellular network (and the other uses for example the PSTN).
Improving the access of users to base stations is the aim of this work.

Network Model. The network topology usually adopted [8, 9] is the one shown
in the left part of Figure 1. All regions are regular hexagons (cells) of the same
� This work was partially funded by the European Union under the IST FET Project

CRESCCO.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1089–1099, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1090 Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

size. This shape results from the uniform distribution of identical base stations
within the network, as well as from the fact that the calling area of a base station
is a circle which, for simplicity reasons, is idealized as a regular hexagon. Due
to the shape of the regions, we call these networks cellular wireless networks.

Many users of the same region can communicate simultaneously with their
base station of the network via frequency division multiplexing (FDM). The
base station is responsible for allocating distinct frequencies from the available
spectrum to users so that signal interference is avoided. Since the spectrum of
available frequencies is limited, important engineering problems related to the
efficient reuse of frequencies arise. Signal interference usually manifests itself
when the same frequency is assigned to users located in the same or adjacent
cells. Alternatively, in this case, we may say that the cellular network has reuse
distance 2. By generalizing this parameter, we obtain cellular networks of reuse
distance k in which signal interference between users assigned the same frequency
is avoided only if the users are located in cells with distance at least k.

Signal interference in cellular networks can be represented by an interference
graph G whose vertices correspond to cells and an edge (u, v) indicates that the
assignment of the same frequency to two users lying at the cells corresponding
to nodes u and v will cause signal interference. The interference graph of a
cellular network of reuse distance 2 is depicted in the right part of Figure 1. If
the assumption of uniform distribution of identical base stations does not hold,
arbitrary interference graphs can be used to model the underlying network.

Fig. 1. A cellular network and its interference graph if the reuse distance is 2.

Problem Definition. In this paper we study the call control (or call admission)
problem which is defined as follows: Given users that wish to communicate,
the call control problem on a network that supports a spectrum of w available
frequencies is to assign frequencies to users so that at most w frequencies are
used in total, signal interference is avoided, and the number of users served is
maximized.

We assume that calls corresponding to users that wish to communicate ap-
pear in the cells of the network in an online manner. When a call arrives, a
call control algorithm decides either to accept the call (assigning a frequency to
it), or to reject it. Once a call is accepted, it cannot be rejected (preempted).
Furthermore, the frequency assigned to the call cannot be changed in the future.

New Bounds on the Competitiveness of Randomized Online Call Control 1091

We assume that all calls have infinite duration; this assumption is equivalent to
considering calls of the same duration.

Competitive analysis [4] has been used for evaluating the performance of
online algorithms for various problems. In our setting, given a sequence of calls,
the performance of an online algorithm A is compared to the performance of the
optimal algorithm OPT . Let B(σ) be the benefit of the online algorithm A on the
sequence of calls σ, i.e. the set of calls of σ accepted by A and O(σ) the benefit
of the optimal algorithm. We define the competitive ratio or competitiveness
of an algorithm A as maxσ

|O(σ)|
E[|B(σ)|] , where E [|B(σ)|] is the expectation of the

number of calls accepted by A, and the maximum is taken over all possible
sequences of calls. This definition applies to both deterministic and randomized
algorithms. Usually, we compare the performance of deterministic algorithms
against off–line adversaries, i.e. adversaries that have knowledge of the behavior
of the deterministic algorithm in advance. In the case of randomized algorithms,
we consider oblivious adversaries whose knowledge is limited to the probability
distribution of the random choices of the randomized algorithm.

Related Work. The static version of the call control problem generalizes the
famous maximum independent set problem. The online version of the problem
is studied in [1–3, 5, 7, 10, 12]. [1], [2], [7] and [10] study the call control problem
in the context of optical networks. Pantziou et al. [12] present upper bounds
for networks with planar and arbitrary interference graphs. Usually, competitive
analysis of call control focuses on networks supporting one frequency. Awerbuch
et al. [1] present a simple way to transform algorithms designed for one fre-
quency to algorithms for arbitrarily many frequencies with a small sacrifice in
competitiveness (see also [7] and [13]). Lower bounds for call control in arbitrary
networks are presented in [3].

The greedy algorithm is probably the simplest online algorithm. It considers
frequencies as positive integers. When a call arrives, it seeks for the smallest
available frequency. If such a frequency exists, the algorithm accepts the call
assigning this frequency to it, otherwise, the call is rejected. As observed in [5],
this algorithm has competitive ratio equal to the size of the maximum indepen-
dent set in the neighborhood of any node of the interference graph (see also
[12]). The competitive ratio of the greedy algorithm is a lower bound on the
competitiveness of every deterministic algorithm. In particular, this gives lower
bounds of 3, 4 and 5 on the competitiveness of every deterministic online call
control algorithm in cellular networks of reuse distance k = 2, k ∈ {3, 4, 5} and
k ≥ 6, respectively.

The first randomized algorithm with competitive ratio smaller than 3 in
cellular networks with reuse distance 2 was presented in [5]. The main drawbacks
of this algorithm are that it uses a number of random bits which is proportional
to the size of the sequences of calls and, that it works in networks that support
only one frequency. By extending the “classify and randomly select” paradigm
[1, 2, 12], the authors in [6] present a series of simpler randomized algorithms
that use a small number of random bits or comparably weak random sources, and
have small competitive ratios even in the case of arbitrarily many frequencies, in

1092 Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

cellular networks of any reuse distance k. The best competitive ratio obtained is
4−Ω(1

k), while the randomness used is the ability to select equiprobably one out
of an odd number of distinct objects. The best competitive ratio obtained for
k = 2 is 7/3. The best known lower bounds on the competitiveness of randomized
algorithms are 13/7 and 25/12 for cellular networks of reuse distance k ≥ 2 and
k ≥ 5, respectively ([5, 6]).

Our Results. In this paper, we present (Section 2) a new online call control
algorithm with competitive ratio 16/7 for cellular networks with reuse distance 2,
improving the previous best known upper bound of 7/3. Our algorithm is based
on the “classify and randomly select” paradigm, uses only 4 random bits, and
works in networks with arbitrarily many frequencies. Furthermore, we show new
lower bounds of 2 and 2.5 on the competitiveness against oblivious adversaries
of online call control algorithms in cellular networks of reuse distance k ≥ 2 and
k ≥ 6, respectively (Section 3). Our new lower bounds improve previous ones for
almost all cases of the reuse distance (k �= 5).

2 The Upper Bound

In this section, we present the online algorithm CRS-D achieving a competitive
ratio of 16/7 against oblivious adversaries. The algorithm is based on the “clas-
sify and randomly select” paradigm. Such algorithms use a coloring of the cells
(i.e., a coloring of the nodes of the interference graph) and a classification of the
colors into not necessarily disjoint color classes. The algorithm randomly selects
one out of the available color classes and executes the greedy algorithm for calls
appearing in cells colored with colors from the selected color class, while it com-
pletely ignores (i.e., rejects) the calls appearing in any other cell. The following
lemma gives a connection between the coloring of the interference graph and
the definition of the color classes and the competitiveness of the “classify and
randomly select” algorithm that uses them.

Lemma 1 ([6]). Consider a network with interference graph G = (V,E) and
let χ be a coloring of the nodes of V with the colors of a set X. If there exist ν
sets of colors (color classes) s0, s1, ..., sν−1 ⊆ X and an integer λ ≤ ν such that

– each color of X belongs to at least λ different color classes, and
– for i = 0, 1, ..., ν−1, each connected component of the subgraph of G induced

by the nodes colored with colors in si is a clique,

then the online call control algorithm which uses the coloring χ and the ν color
classes according to the “classify and randomly select” paradigm has competitive
ratio ν/λ against oblivious adversaries.

A proof was presented in [6]. The intuition behind the proof is that (1) the
algorithm runs the greedy algorithm on a fraction of λ/ν of the cells, (2) the
optimal solution of the subsequence defined by these calls has size at least λ/ν
times the size of the original optimal solution, and (3) the greedy algorithm
computes an optimal solution when applied to the subsequence.

New Bounds on the Competitiveness of Randomized Online Call Control 1093

Algorithm CRS-D uses a coloring of the cells with sixteen colors 0, . . . , 15
defined as follows. The cell with coordinates (x, y, x + y) is colored with color
4(x mod 4) + y mod 4. The color classes are defined as s4i+j for 0 ≤ i, j ≤ 3 as
follows:

s4i+j = {4i + j, 4i + (j + 1) mod 4, 4((i + 1) mod 4) + j,

4((i + 1) mod 4) + (j + 2) mod 4, 4((i + 2) mod 4) + (j + 1) mod 4,
4((i + 2) mod 4) + (j + 2) mod 4, 4((i + 3) mod 4) + (j + 3) mod 4}

An example of this coloring is depicted in Figure 2.

Fig. 2. The 16-coloring used by algorithm CRS-D. The grey cells are those colored
with colors in the class s0.

We now show that the coloring and the color classes used by algorithm CRS-
D satisfy the conditions of Lemma 1. Each color k = 0, 1, ..., 15 belongs to 7
of the 16 color classes s0, s1, ..., s15. For any i, j such that 0 ≤ i, j ≤ 3, color
4i+ j belongs to the color classes 4i+ j, 4i+(j−1) mod 4, 4((i−1) mod 4)+ j,
4((i− 1) mod 4)+ (j− 2) mod 4, 4((i− 2) mod 4)+ (j− 1) mod 4, 4((i− 2) mod
4) + (j − 2) mod 4, and 4((i − 3) mod 4) + (j − 3) mod 4. Now, consider the
cells colored with colors from the color class s4i+j and the corresponding nodes
of the interference graph. The connected components of the subgraph of the
interference graph defined by these nodes are of the following types:

– cliques of three nodes corresponding to cells colored with colors 4i+ j, 4i+
(j+1) mod 4, and 4((i+1) mod 4)+j, respectively. Indeed, the neighborhood
of such nodes contains nodes colored with colors 4i+(j+2) mod 4, 4i+(j+
3) mod 4, 4((i+1) mod 4)+ (j+1) mod 4, 4((i+1) mod 4)+ (j+3) mod 4,
4((i+3) mod 4)+ j, 4((i+3) mod 4)+(j+1) mod 4, 4((i+3) mod 4)+(j+
2) mod 4, 4((i + 2) mod 4) + j, and 4((i + 2) mod 4) + (j + 3) mod 4 which
do not belong to class s4i+j .

1094 Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

– cliques of three nodes corresponding to cells colored with colors 4((i+1) mod
4)+(j+2) mod 4, 4((i+2) mod 4)+(j+1) mod 4, and 4((i+2) mod 4)+(j+
2) mod 4, respectively. Again, the neighborhood of such nodes contains nodes
colored with colors 4i+(j+ 2) mod 4, 4i+(j+3) mod 4, 4((i+1) mod 4)+
(j + 1) mod 4, 4((i+ 1) mod 4) + (j + 3) mod 4, 4((i+ 3) mod 4) + j, 4((i+
3) mod 4)+(j+1) mod 4, 4((i+3) mod 4)+(j+2) mod 4, 4((i+2) mod 4)+j,
and 4((i + 2) mod 4) + (j + 3) mod 4 which do not belong to class s4i+j .

– isolated nodes corresponding to cells colored with color 4((i+3) mod 4)+(j+
3) mod 4. The neighborhood of such a cell consists of cells colored with colors
4i+(j+2) mod 4, 4i+(j+3) mod 4, 4((i+2) mod 4)+ j, 4((i+2) mod 4)+
(j + 3) mod 4, 4((i + 3) mod 4) + j, and 4((i + 3) mod 4) + (j + 2) mod 4
which do not belong to class s4i+j .

Hence, the coloring and the color classes used by algorithm CRS-D satisfy
the conditions of Lemma 1 for λ = 7 and ν = 16. This yields the following.

Theorem 1. Algorithm CRS-D for call control in cellular networks with reuse
distance 2 is 16/7-competitive against oblivious adversaries.

Obviously, the algorithm uses only 4 random bits for selecting equiprobably
one out of the 16 color classes.

3 Lower Bounds

In this section, using the Minimax Principle [14] (see also [11]), we prove new
lower bounds on the competitive ratio, against oblivious adversaries, of any ran-
domized algorithm in cellular networks with reuse distance k ≥ 2. We consider
networks that support one frequency; our lower bounds can be easily extended
to networks that support multiple frequencies. In our proof, we use the following
lemma.

Lemma 2 (Minimax Principle [11]). Given a probability distribution P over
sequences of calls σ, denote by EP [BA(σ)] and EP [BOPT (σ)] the expected benefit
of a deterministic algorithm A and the optimal off–line algorithm on sequences
of calls generated according to P. Define the competitiveness of A under P, cPA
to be such that

cPA =
EP [BOPT (σ)]
EP [BA(σ)]

.

Let AR be a randomized algorithm. Then, the competitiveness of A under P is a
lower bound on the competitive ratio of AR against an oblivious adversary, i.e.
cPA ≤ cAR .

So, in order to prove a lower bound for any randomized algorithm, it suffices
to define an adversary which produces sequences of calls according to a probabil-
ity distribution and prove that the ratio of the expected optimal benefit over the
expected benefit of any deterministic algorithm (that may know the probability
distribution in advance) is above some value; by Lemma 2, this value will also
be a lower bound for any randomized algorithm against oblivious adversaries.

New Bounds on the Competitiveness of Randomized Online Call Control 1095

Theorem 2.
(a) No randomized online call–control algorithm can be better than 2-competitive
against oblivious adversaries in cellular networks with reuse distance k ≥ 2.
(b) No randomized online call–control algorithm can be better than 2.5-competi-
tive against oblivious adversaries in cellular networks with reuse distance k ≥ 6.

Proof. Due to lack of space, we prove only the first part of the theorem here. The
proof of the second part which uses similar ideas in a slightly more complicated
way will appear in the final version of the paper.

We present an adversary ADV-2 which produces sequences of calls according
to a probability distribution P2 which yields the lower bound. We show that the
expected benefit of every deterministic algorithm (that may know P2 in advance)
for such sequences of calls is at most 2, while the expected optimal benefit is
at least 4. The first statement of Theorem 2 then follows by Lemma 2. First,
we describe the sequences of calls produced by ADV-2 without explicitly giving
the cells where they appear; then, we show how to construct them in cellular
networks of reuse distance k ≥ 2.

We start by defining a simpler adversary ADV-1 that works as follows: It
first produces two calls in cells v0 and v1 which have distance at least k. Then
it tosses a fair coin.

– On HEADS, it produces two calls in cells v00 and v01 which are at distance
at least k from each other, at most k − 1 from v0 and at least k from v1.
Then, it stops.

– On TAILS, it produces two calls in cells v10 and v11 which are at distance at
least k from each other, at most k− 1 from v1 and at least k from v0. Then,
it stops.

Now, consider the set of all possible deterministic algorithms A1 working on
the sequences produced by ADV-1. Such an algorithm A1 ∈ A1 may follow one
of the following strategies:

– It may accept both calls in cells v0 and v1 presented at the first step. This
means that the calls presented in the second step cannot be accepted.

– It may reject both calls in cells v0 and v1 and then either accept one or both
calls presented in the second step or reject them both.

– It may accept only one of the two calls in cells v0 and v1 and, if the calls
produced at the second step by ADV − 1 are at distance at least k from the
accepted call, either accept one or both calls presented in the second step or
reject them both.

In the first two cases, the expected benefit of the algorithm A1 is at most 2.
In the third case, the expected benefit is 1 (in the first step) plus the expected
benefit in the second step. The latter is either zero with probability 1/2 (this is
the case where the cells of the calls produced by the adversary in the second step
are at distance at most k− 1 from the cell of the call accepted by the algorithm
in the first step) or at most 2 with probability 1/2. Overall, the expected benefit
of the algorithm is at most 2.

1096 Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

The adversary ADV-2 works as follows: It first produces two calls in cells v0

and v1 which have distance at least k. Then it tosses a fair coin.

– On HEADS, it produces two calls in cells v00 and v01 which are at distance
at least k from each other, at most k − 1 from v0 and at least k from v1.
Then, it tosses a fair coin.
• On HEADS, it produces two calls in cells v000 and v001 which are at

distance at least k from each other, at most k − 1 from v0 and v00, and
at least k from v1 and v01. Then, it stops.

• On TAILS, it produces two calls in cells v010 and v011 which are at
distance at least k from each other, at most k − 1 from v0 and v01 and
at least k from v1 and v00. Then, it stops.

– On TAILS, it produces two calls in cells v10 and v11 which are at distance at
least k from each other, at most k− 1 from v1 and at least k from v0. Then,
it tosses a fair coin.
• On HEADS, it produces two calls in cells v100 and v101 which are at

distance at least k from each other, at most k − 1 from v1 and v10, and
at least k from v0 and v11. Then, it stops.

• On TAILS, it produces two calls in cells v110 and v111 which are at
distance at least k from each other, at most k − 1 from v1 and v11, and
at least k from v0 and v10. Then, it stops.

Observe that, the subsequence of the last 4 calls produced by ADV-2 essentially
belongs to the set of sequences of calls produced by ADV-1.

Now, consider the set of all possible deterministic algorithms A2 working on
the sequences produced by ADV-2. Such an algorithm A2 ∈ A2 may follow one
of the following strategies:

– It may accept both calls in cells v0 and v1 presented at the first step. This
means that the calls presented in the next steps cannot be accepted.

– It may reject both calls in cells v0 and v1 and then apply a deterministic
algorithm A1 on the subsequence presented after the first step.

– It may accept only one of the two calls in cells v0 and v1 and, then, if the
calls produced at the next steps by ADV-2 are at distance at least k from
the accepted call, apply a deterministic algorithm A1 on the subsequence
presented after the first step.

In the first case, the expected benefit of the algorithm A2 is at most 2. In
the second case, the expected benefit of A2 is the expected benefit of A1 on
the sequence of calls presented after the first step, i.e., at most 2. In the third
case, the expected benefit is 1 (in the first step) plus the expected benefit in
the next steps. The benefit of the algorithm in the next steps is either zero with
probability 1/2 (this is the case where the cells of the calls produced by the
adversary in the next steps are at distance at most k−1 from the cell of the call
accepted by the algorithm in the first step) or the expected benefit of A1 on the
sequence of calls presented after the first step, i.e., at most 2 with probability
1/2. Overall, the expected benefit of the algorithm is at most 2.

New Bounds on the Competitiveness of Randomized Online Call Control 1097

Furthermore, the expected optimal benefit on sequences produced by ADV-2
is at least 4. Indeed, in each of the possible sequences

σ00
2 = 〈v0, v1, v00, v01, v000, v001〉, σ01

2 = 〈v0, v1, v00, v01, v010, v011〉,
σ10

2 = 〈v0, v1, v10, v11, v100, v101〉, σ11
2 = 〈v0, v1, v10, v11, v110, v111〉

generated by the ADV-2, the calls in cells 〈v1, v01, v000, v001〉, 〈v1, v00, v010, v011〉,
〈v0, v11, v100, v101〉, and 〈v0, v10, v110, v111〉 can be accepted, respectively. Overall,
the ratio of the expected optimal benefit over the expected benefit of algorithm
A2 on the sequences generated by the adversary ADV-2 is at least 2, which (by
Lemma 2) is a lower bound on the competitive ratio of any randomized algorithm
for call control.

Next, we show how the adversaryADV-2 locates the calls in cellular networks
of reuse distance k ≥ 2 completing the proof of the first part of the theorem.

The coordinates of the cells hosting possible calls produced by ADV-2 are:

v0 = (0,−k,−k) v1 = (0, k, k)
v00 = (0,−2k + 1,−2k + 1) v01 = (0,−1,−1)
v10 = (0, 1, 1) v11 = (0, 2k − 1, 2k − 1)
v000 = (k − 1,−2k + 1,−k) v001 = (−k + 1,−k,−2k + 1)
v010 = (k − 1,−k,−1) v011 = (−k + 1,−1,−k)
v100 = (k − 1, 1, k) v101 = (−k + 1, k, 1)
v110 = (k − 1, k, 2k − 1) v111 = (−k + 1, 2k − 1, k)

An example of all cells hosting possible calls produced by ADV-2 when k = 3 is
depicted in Figure 3.

Fig. 3. The calls that may be produced by the adversary ADV-2 in a cellular network
of reuse distance 3. The grey cells host calls of the sequence σ10

2 .

We have to show that any of the possible sequences of calls generated accord-
ing to P2 satisfies the constraints defined above. We have four possible sequences
to examine: σ00

2 , σ01
2 , σ10

2 and σ11
2 . We show that one of them, e.g., σ10

2 satisfies
the constraints; the proof for the other cases is similar due to symmetry. First,
the cells v0 and v1 have distance 2k ≥ k. The cells at distance at most k−1 from

1098 Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

v0 are those contained between the x-rows k−1 and −k+1, between the y-rows
−2k + 1 and −1, and between the z-rows −2k + 1 and −1. The cells at distance
at most k− 1 from v1 are those contained between the x-rows k− 1 and −k+1,
between the y-rows 1 and 2k − 1, and between the z-rows 1 and 2k − 1. Hence,
cells v10, v11, v100, v101 are all at distance at least k from v0 and at most k − 1
from v1. Since k ≥ 2, the cells v10 and v11 have distance 2k − 2 ≥ k. Also, the
cells at distance at most k − 1 from v10 are those contained between the x-rows
k − 1 and −k + 1, between the y-rows −k + 2 and k, and between the z-rows
−k + 2 and k. The cells at distance at most k − 1 from v11 are those contained
between the x-rows k − 1 and −k + 1, between the y-rows k and 3k − 2, and
between the z-rows k and 3k − 2. Hence, cells v100, v101 are at distance at most
k− 1 from v10 and at least k from v11. In addition, v100 and v101 are at distance
2k − 2 ≥ k since k ≥ 2. ��

4 Conclusions

In this paper, we presented a new online call control algorithm with competitive
ratio 16/7 for cellular networks with reuse distance 2, improving the previous
best known upper bound of 7/3. The algorithm is based on the “classify and
randomly select” paradigm, uses only four random bits and works in networks
with arbitrarily many frequencies. We have also presented new lower bounds of 2
and 2.5 on the competitiveness against oblivious adversaries of online call control
algorithms in cellular networks of reuse distance k ≥ 2 and k ≥ 6, respectively.
Our new lower bounds improve previous ones for almost all cases of the reuse
distance (k �= 5).

An interesting open problem is to close the gap between 16/7 and 2 on the
competitiveness of online randomized call control algorithms in cellular networks
with reuse distance 2. In particular, improving the upper bound would require
entirely new techniques since the coloring used by algorithm CRS-D seems to be
the best possible that satisfies the conditions of Lemma 1.

References

1. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. Competitive On–line
Competitive Algorithms for Call Admission in Optical Networks. Algorithmica,
Vol. 31(1), pp. 29-43, 2001.

2. B. Awerbuch, Y. Bartal, A. Fiat, A. Rosen. Competitive Non–Preemptive Call
Control. In Proc. of the 5th Annual ACM–SIAM Symposium on Discrete Algo-
rithms (SODA ’94), pp. 312–320, 1994.

3. Y. Bartal, A. Fiat, and S. Leonardi. Lower Bounds for On–line Graph Problems
with Applications to On–line Circuit and Optical Routing. In Proc. of the 28th
Annual ACM Symposium on Theory of Computing (STOC ’96), pp. 531-540, 1996.

4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

5. I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Efficient On–Line Frequency
Allocation and Call Control in Cellular Networks. Theory of Computing Systems,
Vol. 35, pp. 521-543, 2002. Preliminary versions in SPAA ’00 and IPDPS ’01.

New Bounds on the Competitiveness of Randomized Online Call Control 1099

6. I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Simple On-line Algorithms for
Call Control in Cellular Networks. In Proc. of the 1st Workshop on Approximation
and Online Algorithms (WAOA ’03), LNCS 2909, Springer, pp. 67-80, 2003.

7. T. Erlebach and K. Jansen. The Maximum Edge-Disjoint Paths Problem in Bidi-
rected Trees. SIAM Journal on Discrete Mathematics, Vol. 14(3), pp. 326-355,
2001.

8. W.K. Hale. Frequency Assignment: Theory and Applications. In Proc. of the IEEE,
68(12), pp. 1497–1514, 1980.

9. J. Janssen, D. Krizanc, L. Narayanan, and S. Shende. Distributed On–Line Fre-
quency Assignment in Cellular Networks. Journal of Algorithms, Vol. 36(2), pp.
119-151, 2000.

10. S. Leonardi, A. Marchetti–Spaccamela, A. Prescuitti, and A. Rosen. On–line Ran-
domized Call–Control Revisited. SIAM Journal on Computing, Vol. 31(1), pp.
86–112, 2001.

11. R. Motwani and B. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

12. G. Pantziou, G. Pentaris, and P. Spirakis. Competitive Call Control in Mobile
Networks. Theory of Computing Systems, Vol. 35(6), pp. 625-639, 2002.

13. P.-J. Wan and L. Liu. Maximal Throughput in Wavelength-Routed Optical Net-
works. Multichannel Optical Networks: Theory and Practice, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, AMS, Vol. 46, pp. 15-26,
1998.

14. A. C. Yao. Probabilistic Computations: Towards a Unified Measure of Complex-
ity. In Proc. of the 17th Annual Symposium on Foundations of Computer Science
(FOCS ’77), pp. 222–227, 1977.

A Multiple Channel Access Protocol
for Ad Hoc Wireless Networks

Kil-Woong Jang

Dept. of Mathematical and Information Science, Korea Maritime University
1 YeongDo-Gu Dongsam-Dong, Busan, Korea

Tel: +82-51-410-4375
Fax: +82-51-404-3986

jangkw@bada.hhu.ac.kr

Abstract. We propose a new multiple channel access protocol to en-
hance the channel utilization and minimize the connection breakage
probability in ad hoc wireless networks. In ad hoc networks with mul-
tiple channels, communication between a pair of hosts can directly be
established using one of available channels. However, hosts’ mobility or
using channel by neighbors may cause a co-channel interference prob-
lem or the connection breakage. To solving these problems, the proposed
protocol establishes the new connection using a channel exchange mech-
anism, which exchanges its available channel with the current channel
of the neighboring host without co-channel interference. In addition, it
efficiently maintains the current connection of the communicating hosts
from co-channel interference caused by hosts’ mobility. We evaluate the
performance of the proposed protocol using simulation. Simulation re-
sults indicate that the proposed protocol may offer performance better
than the conventional protocol in terms of the channel utilization and
the connection breakage probability.

Keywords: ad hoc wireless networks, multiple channel access protocol,
co-channel interference

1 Introduction

The demand for mobile and direct services has generated interest in ad hoc net-
works. Ad hoc networks have been designed that mobile host can directly com-
municate with each other without supporting stationary infrastructures, such as
base stations or access points, in conventional wireless networks. In particular,
since the stationary infrastructures are hard to establish in situations (i.e., war or
natural disasters), mobile users have required the ad hoc service. In conventional
wireless networks, if traffic gives overloads to the stationary infrastructures, it
may cause high transmission delay and low throughput. On the other hand, mo-
bile hosts, in ad hoc networks, can directly communicate with each other in the
transmission range allowed by the transmission power. Due to the transmission
range, each host acts as a router, forwarding traffic for other hosts in out of
range using routing protocols [6].

Ad hoc hosts have limited channel resources and direct communication be-
tween a pair of hosts in the transmission range is established using a same

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1100–1109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks 1101

common channel. Owing to using limited channel resources, it is important to
efficiently utilize channels and reduce connection breakage in ad hoc networks.
In IEEE 802.11 protocol for wireless LANs [8], RTS/CTS mechanism is proposed
to avoid the occurrence of collision and increase throughput for ad hoc networks.
Wireless LANs were typically defined in a single channel system. As the num-
ber of communicating hosts increases, systems with a single channel may have
the disadvantage which is declination of system performance. However, IEEE
Standard 802.11 already has multiple channels available for use. IEEE 802.11b
physical layer has 14 channels, 5MHz apart in frequency. However, to be non-
overlapping and be able to use channels, the frequency must be divided into at
most 30MHz. Thus the number of available channels used for communication
is 3: channel 1, 6 and 11. On the other hand, IEEE 802.11a has 12 channels,
and the number of available channels is 8 for indoor use and 4 for outdoor use,
respectively.

There are many related studies for multiple channels [1–5]. Dynamic Channel
Assignment (DCA) [2] assigns channels in an on-demand style. This protocol
maintains one control channel and other data channels. Each host has two half-
duplex transceivers, and one is for control channel and the other is for data
channel, respectively. The basic operation in this protocol is similar to IEEE
802.11 protocol. Using RTS/CTS packets, a pair of hosts decides which channel
to communicate. Dual Busy Tone Multiple Access [4] has two common channels,
which is one control channel and one data channel. To avoid hidden terminals, a
control message called busy tone is transmitted on a control channel. In [5], they
propose a protocol that is similar to DCA. This protocol also has one control
channel and many data channels, and selects the best channel under channel
condition of receiver. Anther important issue for multiple channel access protocol
is the co-channel interference, which can be occurred due to host mobility or
the same channel usage. Previous study [7] was proposed to use a power control
mechanism to eliminate the co-channel interference. As the communicating hosts
reduce the power of signal, the communication range is reduced and thus the
co-channel interference can be eliminated.

In this paper, we propose the multiple channel access protocol to enhance
the channel utilization and reduce the connection breakage probability. In the
proposed protocol, each host stores the state of channels of communicating neigh-
bors in the communication range and establishes the new communication link
using the channel exchange mechanism, which exchanges its available channel
with the occupied channel of a communicating neighbor under certain condi-
tions. In addition, the proposed protocol is designed to minimize the co-channel
interference caused by host mobility.

2 Proposed Multiple Channel Access Protocol

For simplicity, we first describe the basic operation of the proposed protocol
using an example of ad hoc networks, as shown in Fig. 1. In this figure, a circle
node represents a mobile host. The white-colored host is in idle state and the
gray-colored one is in communication state. A dashed line between two hosts

1102 Kil-Woong Jang

D C

F

E

G
H

J
I

A B

1

2

3

2

Fig. 1. An example of ad hoc networks.

indicates that each host exists in the communication range and can directly
communicate with each other. For example, hosts in the communication range
of host A are hosts B, C and E. A line between two gray-colored hosts represents
a connecting link between a pair of hosts. A symbol in a circle node represents
the address of the host, and the number on the connecting link indicates the
channel ID being used by the pair of hosts.

In ad hoc networks with multiple channels, no host can use the channel that
is occupied by the communicating neighbors in the communication range owing
to the co-channel interference. For example, in Fig. 1, we assume that the total
number of available channels in a host is three and then channel IDs are 1, 2
and 3. Hosts C and E in the communication range of host A occupy channel 1
and 2, respectively. Thus, host A is able to use only channel 3. On the other
hand, host B can only use channel 1. In this situation, the conventional protocol
is unable to establish communication between hosts A and B. In other words, a
new connection is blocked if no common channel between a pair of hosts exists,
and then both must wait until a new common channel is released.

To carry out the proposed protocol, the following operations are positively
necessary. After communication is established between a pair of hosts, both
inform their neighbors of a connection message. This message includes the com-
munication state of the host, the occupied channel ID and the addresses of
communicating hosts. If communication between a pair of hosts is terminated,
terminated hosts inform their neighbors of a termination message. Therefore,
each host can dynamically specify the state of neighbors from the received mes-
sages. To support the operations, each host maintains a table in its memory,
which records the channel usage information of the neighbors, to efficiently de-
termine an available channel. This table is called the channel information table.
Fig. 2 shows the channel information table of host A in Fig. 1. For example,
hosts C and D are in a communication state and use channel 1 for communica-
tion. Now, we describe the operation of the proposed protocol in the situation
of Fig. 1. The proposed protocol is attempted in the following order.

1. Host A broadcasts a connection request message with available channel IDs
and the address of host B. On receiving the message, host B compares the
received channel IDs with its channel information. If there is an identical
available channel, host B replies a connection confirm message with the
identical channel ID to host A and then executes step 4; otherwise, step 2 is
initiated.

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks 1103

Channel ID Channel state Address 1 Address 2

1

2

3

BUSY

IDLE

DC

E F

BUSY

Fig. 2. Channel information table of host A.

2. Host B sends a check request message with the channel IDs received from
host A to its communicating neighbors. The neighbors check whether they
can continuously communicate, if they exchange its occupied channel with
the received channels. If there are available channels, each neighbor replies
a check confirm message with the available channel IDs to host B and then
executes step 3; if not, it replies a check confirm message with a NULL
value to host B and then executes step 3.

3. When host B receives the check confirm message, it replies a connection
confirm message, including the available channel ID of host B and the
available channel IDs received from neighbors, to host A and then executes
step 4.

4. When host A receives the connection confirm message, it compares its
channel information with the channel IDs received from host B. If there is
an identical channel, it selects the channel for communication and sends a
connection notification message with the selected channel ID to host B and
then executes step 7; if not, we perform step 5.

5. Host A sends a check request message with its available channel IDs to
communicating neighbors. The neighbors check whether they are continu-
ously able to communicate, if they exchange its occupied channel with the
received channels. If there are available channels, each neighbor replies a
check confirm message with the available channel IDs to host A and then
executes step 6; otherwise, it replies a check confirm message with a NULL
value to host B and then executes step 6.

6. When host A receives the check confirm message, it compares the received
channel ID with the channel IDs received from host B. If there is an iden-
tical channel, host A selects the channel for communication and sends a
connection notification message with the selected channel ID to host B
and then executes step 7; if not, we perform step 9.

7. When host B receives the connection notificationmessage, it checks whether
the selected channel is equal to the occupied channel of the neighbors. If so,
it sends a change request message with one of available channels in it to the
neighbor. The neighbor received the message exchanges its occupied chan-
nel with the received channel. After the channel is successfully exchanged,
the neighbor replies a change confirm message to host B. Host B received
the message sends a channel notification message, including the selected
channel ID and addresses of hosts A and B, to the neighbors and host A.

1104 Kil-Woong Jang

D C

F

E

G
H

J
I

A B

1

2

3

2

1

Fig. 3. An example for illustrating the channel assignment after host B exchanges its
available channel with the occupied channel of host G.

D C

F

E

G
H

J
I

A B

2

3

2

1

3

Fig. 4. An example for illustrating the channel assignment after host A exchanges its
available channel with the occupied channel of host C.

8. When host A receives the channel notification message, it checks whether
the selected channel is equal to the occupied channel of the neighbors. If so,
it sends a change request message with one of available channels in it to the
neighbor. The neighbor received the message exchanges its occupied channel
with the received channel. After the channel is successfully exchanged, the
neighbor replies a change confirm message to host A. Host A received
the message sends a channel notification message, including the selected
channel ID and addresses of hosts A and B, to the neighbors.

9. If all the above conditions do not hold, then the connection cannot be ac-
complished. Normally, this would result in the connection being blocked.

As carried out the operation of the proposed protocol, communication be-
tween hosts A and B is established as shown in Figs. 3 and 4. During the opera-
tion, each host checks if it can exchange its available channels with the occupied
channel of neighbors. Simultaneously, it should be checked the state of channels
in a host, which is communicating with the neighbor. For example, in Fig. 1,
host G checks if it can exchange the occupied channel of host H with the channel
received from host B. If host H is unable to exchange channels 1 and 3, host G
is unable to exchange its occupied channel for the channel received from host B.
Under this condition, since host B exchanges its available channel with the occu-
pied channel of the neighboring host, Fig. 3 shows that communication between
hosts A and B can be established. In Fig. 4, since host A exchanges its available
channel for the occupied channel of the neighboring host, communication can be
established.

In ad hoc networks, each host can directly communicate with each other and
move anywhere. As a communicating host moves toward another communicating

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks 1105

3

D

3

2 1

2

Move

E G

C A

H I

JB

F

Fig. 5. An example of ad hoc networks for executing the proposed protocol due to host
mobility.

host using a same channel, the co-channel interference between both is gradually
arisen. For example, in Fig. 5, hosts A and C are communicating over channel
3. Hosts B and H are also using the same channel for communication. As host
A moves toward host B, the co-channel interference is arisen. In this section,
we present the operation of the proposed protocol to minimize the co-channel
interference between a pair of hosts due to host mobility.

For simplicity, we describe the protocol operation for host mobility using an
example of ad hoc networks, as shown in Fig. 5. The proposed protocol for host
mobility is presented below.

1. As host A interferes with host B due to host mobility, hosts A and C check
their channel information table and determine a new available channel for
channel assignment. If hosts A and C have a new available channel, they
change their occupied channel to the new channel. Next, hosts A and C send
a channel notification message, including the new channel ID, the addresses
of hosts A and C, to their neighbors, respectively; if not, we perform step 2.

2. Hosts A and C send a check request message with their occupied channel ID
to their communicating neighbors except host B. The neighbors received the
message check whether the co-channel interference occurs, if they exchange
their occupied channel for the received channel. If no co-channel interference
occurs, each neighbor replies a check confirm message with the received
channel ID to hosts A or C; otherwise, it replies a check confirm message
with a NULL value to hosts A or C.

3. When hosts A and C receive the check confirm message, they check if
there is an available channel from the received information. If so, they send
a change request message with the occupied channel to the neighbor. The
neighbor received the message exchanges its occupied channel with the re-
ceived channel. After the channel is successfully changed, the neighbor replies
a change confirm message to hosts A or C. In addition, hosts A or C send
a channel notification message, including the new channel ID, addresses of
hosts A or C, to their neighbors, respectively; if not, step 4 is initiated.

4. Host A sends a interference request message to host B. On receiving the
message, hosts B and H check their channel information table and determine
a new available channel for channel assignment. If hosts B and H have a new

1106 Kil-Woong Jang

3

D

3

2

1

2

E G

C A

H I

JB

F

Fig. 6. An example of ad hoc networks after host A changes its occupied channel to a
new available channel.

available common channel, they change their occupied channel to the new
channel and then host B sends a interference confirm message with the
new channel ID to host A. Next, hosts B and H send a channel notification
message, including the new channel ID, the addresses of hosts B or H, to
neighbors, respectively; if not, we perform step 5.

5. Hosts B and H send a check request message with their occupied channel ID
to their communicating neighbors except host A. The neighboring hosts re-
ceived the message check whether the co-channel interference occurs, if they
exchange its occupied channel with the received channel. If no co-channel
interference occurs, each neighbor replies a check confirm message with the
received channel ID to hosts B or H; otherwise, it replies a check confirm
message with a NULL value to hosts B or H.

6. When hosts B or H receive the check confirm message, they check if there
is an available channel in the received information. If so, they send a change
request message with the occupied channel to the neighbor. The neigh-
bor received the message exchanges its occupied channel with the received
channel. After the channel is successfully changed, the neighbor replies a
change confirm message to hosts B or H. Finally, hosts B and H send a
channel notification message, including the new channel ID, addresses of
hosts B or H, to their neighbors, respectively.

As carried out the operation of the proposed protocol, we assign a new chan-
nel to hosts A and C, as shown in Fig. 6. If all the above conditions do not
hold, we are unable to assign a new channel to the interfered hosts. Then, the
co-channel interference between hosts A and B occurs.

3 Performance Evaluation

In this section we study the impact of the estimation process on the capacity
of the proposed protocol through computer simulation. We develop a simulation
model to analyze the performance of the proposed protocol under the assumption
of ideal channel conditions (i.e., no hidden terminals and capture). The QoS
measures that we are interested in are the connection breakage probability, Pb,
and the channel utilization, U .

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks 1107

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1 1.5 2 2.5 3 3.5 4 4.5

λ

P
b

DCA (n=3)
proposed protocol (n=3)

DCA (n=4)
proposed protocol (n=4)
DCA (n=5)
proposed protocol (n=5)

Fig. 7. Connection breakage probability for various values of n.

For simulation, we developed a discrete event driven simulator using a high
level computer language, C++. The network model for simulation consists of
randomly placed 100 nodes in a 1000×1000 m area. We also consider a mo-
bile network model, where the nodes move independently of one another, which
random speeds that are uniformly distributed between 0–20m/s. The mobility
pattern is based on the random waypoint model [6]. Simulations are performed
in wireless LAN environment. The bit rate for each channel is 11Mbps, and
the transmission range of each host is approximately 100 m. We assume that
each node has a constant bit rate (CBR) traffic and 512 bits control packets,
respectively. We also assume that traffic at every node is generated according
to Poisson processes with identical mean arrival rates λ. Each simulation was
performed for duration of 60 seconds. The simulation results shown in this paper
are valid for up to 95% confidence intervals.

We provide numerical results, based on simulation, to compare the perfor-
mance of the proposed and DCA protocols. We obtained values for the connec-
tion breakage probability and the channel utilization under different traffic loads
λ, ranging from 1 to 4.5 connections per unit time. Three difference values, 3, 4
and 5, were used for a total number of available channels, n, in a host.

Fig. 7 shows Pb for the proposed and DCA protocols under varying n. In this
figure, we can observe that the proposed protocol has better performance than
the DCA protocol. When n is increased to 5, the proposed protocol significantly
outperforms the DCA protocol in terms of Pb. This result can be observed that
the Pb curve in the proposed protocol is up to four orders of magnitude lower
than in the DCA protocol. The reason the proposed protocol provides a lower
Pb curve is that it can exchange its available channels with the occupied channel
of neighbor and thus reduce the connection breakage probability.

Fig. 8 shows the values of U under varying λ. The proposed protocol achieves
uniformly higher values of U under various loads. The difference between the pro-

1108 Kil-Woong Jang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5

λ

U

DCA (n=3)
proposed protocol (n=3)
DCA (n=4)
proposed protocol (n=4)
DCA (n=5)
proposed protocol (n=5)

Fig. 8. Channel utilization for various values of n.

posed and DCA protocols is most apparent at high loads. Reason the proposed
protocol provides a higher U value is that it exploits the channel exchange mech-
anism. At the same traffic loads, we can see that the protocol in n=3 has a higher
values than in n=5. As λ is increased, the probability that hosts use channels
in the lower number of available channels is higher than in the higher number
of available channels. Therefore, in the lower number of available channels, the
U value is higher than in the higher number of available channels. In addition,
since the probability of the channel exchange is increased at lower channels, the
proposed protocol significantly outperforms the DCA protocol. This result can
be observed in Fig. 8, where the proposed protocol at high load is over 10%
more than in the DCA protocol. On the other hand, at n=5, the U curve in the
proposed protocol is closer than in the DCA protocol. However, the difference
in the U curves will be larger as λ is increased.

4 Conclusions

We have presented a new multiple channel access protocol to improve the system
performance in ad hoc wireless networks. In the proposed protocol, each host
maintains the channel information and the state of the neighboring hosts. Based
on this information, each host carries out a communication with other hosts
without the co-channel interference. When the co-channel interference occurs
due to host mobility, the proposed protocol minimizes the co-channel interference
by allowing hosts to exchange their available channel with the occupied channel
of their neighbor. We evaluated the performance of the proposed protocol using
simulation. The simulation was focus on the connection breakage probability as
well as the channel utilization and then compared with the conventional protocol.
The numerical results indicated that the proposed protocol outperformed the
conventional protocol over wide range of parameters.

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks 1109

References

1. A. Nasipuri, J. Zhuang and S. R. Das, ”A multichannel CSMA MAC protocol for
multihop wireless networks,” Proc. WCNC’99, Sept. (1999) 1402–1406

2. S. L. Wu, C. Y. Lin, Y. C. Tseng and J. P. Sheu, ”A new multi-channel MAC
protocol with on-demand channel assignment for mobile Ad Hoc networks,” Int’l
Symposium on Parallel Architectures, Algorithms and Networks, (2000) 232–237

3. C. Y. Chang, P. C. Huang, C. T. Chang and Y. S. Chen, ”Dynamic channel
assignment and reassignment for exploiting channel reuse opportunities in Ad Hoc
wireless networks,” IEICE Trans. Commun., vol. E86-B, no. 4, April (2003) 1234–
1246

4. J. Deng and Z. Haas, ”Dual Busy Tone Multiple Access (DBTMA): A New Medium
Access Control for Packet Radio Network,” Florence, Italy, (1998)

5. N. Jain and S. Das, ”A Multichannel CSMA MAC Protocol with Receiver-Based
Channel Selection for Multihop Wireless Networks,” in Proceedings of the 9th Int.
Conf. on Computer Communications and Networks (IC3N). Oct. (2001)

6. J. Broch et al., ”A Performance Comparison of Multi-Hop Wireless Ad Hoc Net-
work Routing Protocols,” in Proceedings of the 4th Int. Conference on Mobile
Computing and Networking (ACM Mobicom ’98), Oct. (1998) 85–97

7. Y. B. Ko, V. Shankarkumar and N. H. Vaidya, ”Medium access control protocols
using directional antennas in Ad Hoc network,” IEEE INFOCOM 2000, (1999)
13–21

8. IEEE Standard for Wireless Medium Access Control and Physical Layer Specifi-
cations, Aug. (1999)

Personalized Access to Semantic Web Agents
Using Smart Cards

Riza Cenk Erdur1 and Geylani Kardas2

1 Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey
erdur@staff.ege.edu.tr

http://bornova.ege.edu.tr/~erdur
2 Ege University, International Computer Institute,

35100 Bornova, Izmir, Turkey
geylani@bornova.ege.edu.tr

http://ube.ege.edu.tr/~kardas

Abstract. In this paper, we mainly focus on the integration of smart
card based access to semantic web enabled multi-agent systems. Besides
classical benefits such as smart card based authentication and authoriza-
tion, integration of such a feature will make it possible for semantic web
agents to take the personal knowledge stored as instances of a specific
personal ontology in the smart cards into account and behave in a way
that is more responsible to the individual requirements of the users. To
integrate smart card based access to a semantic web agent, we need an
agent plan specifically defined for that purpose. This plan will be re-
sponsible for both communicating with the smart card reader module
and for semantically manipulating the personal knowledge that is trans-
ferred from the card. In the paper, we give the implementation level
details for this plan. Another important aspect of the paper is that var-
ious alternatives for storing ontological knowledge on smart cards have
been discussed based on some experimental results.

1 Introduction

Semantic web [2] aims to transform the World Wide Web into a knowledge repre-
sentation system in which the information provided by web pages is interpreted
using ontologies. This gives the opportunity for autonomous and interacting en-
tities - semantic web agents [6] - to collect and interpret semantic content on the
behalf of their users. On the other hand, smart card technology has paved the
way for an individual to carry personal information in a small card with storage,
data processing and security features [8].

By the marriage of agent, semantic web and smart card technologies, in
addition to classical benefits such as smart card based authentication and au-
thorization for accessing agent systems, semantic web agents can be accessed
using smart cards that store users personal knowledge as instances of a specific
personal ontology. By this way, agents can take the personal knowledge stored

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1110–1119, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Personalized Access to Semantic Web Agents Using Smart Cards 1111

in the card into account in adapting their behavior to act in a way that is more
responsible to the individual requirements of their users.

Here, we will describe a scenario to illustrate an example case where enabling
smart card based access to semantic web agents may have potential benefits for
the users: Let us think of a multi-agent system, which has been established to
provide tourism related facilities in a specific geographic area. If smart card based
access to this multi-agent system is provided via card terminals located in several
places such as airports or various locations in city centers, then a newly arrived
traveler without a pre-built travel plan can have the chance of discovering the
hotel facilities that best matches against her personal knowledge stored in her
smart card. In addition, after discovering the hotel facility, it will also be possible
for the traveler to make an online reservation from the terminal using the credit
card knowledge that is defined and stored as part of her personal knowledge.
We believe that this scenario is valid, because there are always travelers around
without a pre-built travel plan.

A semantic web enabled multi-agent system infrastructure that can be used
in realizing the above scenario is shown in Fig. 1.

Fig. 1. The basic infrastructure for smart card based access to a multi-agent system

As shown in Fig. 1, the user agent in the multi-agent system must have the
functionality to deal with the smart card based accesses. The user agent also
must have the capability of understanding ontologies, since it has to understand
the personal ontology instance that is transferred from the users smart card. In
the multi-agent system, information is represented using semantic web standards
such as OWL [12]. Hence, the information agents have the capability of manipu-
lating semantic knowledge and answering queries over that semantic knowledge.
Agent platform services, which are agent management, agent directory, and agent
message transport services, are standard services that a platform, on which the
multi-agent system is operating, has to provide. These services are usually pro-
vided as built-in services by the multi-agent development framework/ platform
used.

In this paper, we mainly focus on the integration of smart card based access
to the agents in a semantic web enabled multi-agent system. To achieve such
kind of integration, we have to define a basic agent plan for that purpose. This

1112 Riza Cenk Erdur and Geylani Kardas

agent plan is needed both for communicating with the smart card reader modules
and for manipulating the transferred personal knowledge. Manipulation of the
transferred personal knowledge includes parsing it, constructing the ontology
model in memory, and preparing requests for querying the knowledge stored in
information agents.

In smart card technology related literature, there are several studies covering
the use of smart cards in Web applications, especially in medical healthcare
systems [4]. However, there is no work discussing in detail either how smart card
access support can be integrated to multi-agent systems or how ontologies are
stored in smart cards, transferred from them and manipulated in agents. This
paper aims to fill in this gap by discussing the implementation level details.

2 Architecture for Enabling Smart Card Based Access

In this section, first, the generic agent plan needed for smart card based access to
a semantic web agent is explained. Then, details concerning the implementation
of this plan are given. Finally, the personal ontology, which is used in representing
the personal knowledge of each user, is given and various alternatives about
storing ontologies in smart cards are discussed.

2.1 A Generic Agent Plan for Smart Card Related Behavior

To behave in a way to satisfy what is expected from them, agents formulate
plans. Each plan consists of a number of tasks that are scheduled and executed.
Plans are represented using a planning formalism. Hierarchical Task Network
(HTN) is the most frequently used planning formalism in the planner modules
[11] of agent development frameworks. Hence, the plan component defined for
smart card access in this paper will be explained based on the HTN approach.

HTN structure consists of nodes that represent tasks. Since a task may be
composed of subtasks, the plan structure may take the form of a tree-like struc-
ture. There are two kinds of links in a HTN representation. Reduction links
describe the de-composition of high-level tasks to subtasks. Provision or out-
come links represent value propagation between task nodes [11].

In an agent, smart card access related behavior can be modeled as a composite
HTN task structure that consists of three subtasks, which are card reading and
session opening subtask, the ontology manipulation related subtask(s) and card
writing and closing the session subtask. Fig. 2 shows the HTN structure of this
composite task.

As shown in Fig. 2, the smart card access task is a complex task that consists
of three subtasks. The first subtask is responsible for waiting for the smart card
to be inserted into card acceptance device and opening a new session when the
card is inserted. After the session is opened, knowledge is read from the card
and this knowledge is passed to the second subtask via the provision Knowl-
edge_FromCard. The second subtask is a complex task that represents the be-
havior related with the manipulation of the semantic personal knowledge. After

Personalized Access to Semantic Web Agents Using Smart Cards 1113

Fig. 2. HTN structure for smart card access behavior

the information agents are queried based on the concepts in the personal knowl-
edge, incoming results are passed to the third subtask via the Results provision,
which writes the necessary results back to the card and closes the session. We
used a task for card writing, because we preferred the final results of a request
to be written on users card so as to keep a history for the user.

2.2 Implementation Details for the Generic Plan

We need two basic components for implementing the smart card based access
support plan completely. The first component is a middleware, which will enable
an agent to communicate with the smart card. The second component is an API
that is going to be used for the manipulation of ontological knowledge. In the
following paragraphs, we discuss these two components.

In general, a smart card and an application communicate using a special pro-
tocol, which is called as Application Protocol Data Unit (APDU) and which is an
application layer standard based on ISO 7816-4 [8]. In order to retrieve personal
knowledge from the card, an agent needs to communicate with the smart card
using APDU packages. However, we think that this task that is quite primitive
and that integrating codes for pure smart card access will make an agents plan
unnecessarily complicated. Hence, we have proposed a layered approach and us-
ing the OpenCard Framework (OCF) API [10] developed a middleware to handle
smart card communications on behalf of the agents. OCF is an API that sup-
ports communication between the smart card host and the applications inside
the card. It supports Java platform and is maintained by the OpenCard Consor-
tium. Our middleware uses this API to control smart card events and manage

1114 Riza Cenk Erdur and Geylani Kardas

operations like card applet selection, cryptographic key exchange, receiving and
sending of APDUs.

The user agent, which is the users entrance point to the multi-agent system,
is responsible for manipulating the personal knowledge that is transferred from
the smart card. Personal knowledge is an instance of the personal ontology.
Personal knowledge is stored in the smart card in compliant with the semantic
web standards, such as an OWL document. The user agents access this document
over a secure and authenticated communication channel established between the
smart card and the agent itself.

An agent handles the semantic knowledge by creating the resource model of
the personal ontology and querying the model. For example, in tourism domain,
a user agent using the personal knowledge should first determine its customer’s
preferences for hotel reservation and then based on these preferences prepare
requests for querying the hotel information represented semantically in hotel
agents. In our implementation, we have used JENA API [9] to supply reading,
writing and semantic querying of ontological knowledge in agent components.
JENA is a semantic web framework, which provides a programming environment
for RDF, RDFS and OWL and includes a rule-based inference engine. It also
ensures a query language for RDF called RDQL. Our agents use RDQL to query
on the ontology model to obtain the desired semantic knowledge.

During the implementation of the multi-agent system, the generic HTN struc-
ture, for which the subtask implementation details are given above, is instanti-
ated and executed based on the plan definition and execution model of the agent
development tool that is being used. For example, if JADE [1] is being used as the
agent development framework/platform, then the generic HTN structure will be
implemented and executed in compliant with the behavior model of JADE. How
the generic plan is instantiated using an agent development framework/platform
will be clear in section 3, which includes a case study explaining the instantiation
of this plan in JADE environment.

2.3 Personal Ontology Example and Storing Its Instances
on the Card

As mentioned before, the personal knowledge that is stored in the cards should
be an instance of a specific personal ontology. Such an example personal ontology
consists of two main parts: The first part is the domain independent part, where
user identification, contact and payment information are kept. The other part
is the domain specific part and includes knowledge represented using a specific
domain ontology. For example, if the smart card is intended to be used in tourism
domain for travelers who want to discover hotels and make reservations, then
the knowledge belonging to this part will be represented using a specific tourism
ontology defining facilities about hotels and reservations. One such ontology is
introduced in [7].

Various alternatives may be considered for storing ontological knowledge in
smart cards. These various alternatives are discussed below for different cases
by giving the possible advantages and disadvantages:

Personalized Access to Semantic Web Agents Using Smart Cards 1115

Alternative-1: Store the personal knowledge completely in the card.
Advantages for alternative-1:

i) The knowledge stored in the card can be transferred to the agent by taking
the advantage of strong security and authentication features of smart cards.

Disadvantages for alternative-1:
i) The storage capacity of smart cards is limited. However, the personal

ontology is not very complex in most cases and capacity would not be a serious
problem with the application of the scaling down techniques. One such technique
is introduced in [3].

ii) To investigate whether response time may be a problem as the ontology file
sizes get larger, we have measured the time needed to read or write ontological
knowledge and have seen that as the file sizes increase, the time needed to read
from or write to the card increases linearly. Measurements have been realized
using Gemplus GemXpresso 211/PK model Java cards with multi applet support
and with 32K ROM, 32K EEPROM and 2K RAM. JavaCard Framework 2.1 has
been used during on-card software development. Gemplus GCR410 serial card
read/write device has been connected to a terminal PC with 9600 baud data
transmission rate. The measurement results are shown in Fig. 3. As Fig. 3 shows,
larger personal knowledge file sizes may cause delays in response time. One of the
most important reasons for delays is that APDU packets are maximum 255 bytes
length and this requires multiple packet exchanges for large file sizes increasing
the response time. In addition, the time values in Fig. 3 also include the time
needed to convert the byte stream to a Java file in the agent. Please note that
the ontological knowledge is stored in byte-streams in the card, which then needs
a conversion into necessary Java files/objects.

Fig. 3. Read/Write times for different ontology file sizes

Alternative-2: Store only the URL of the personal knowledge document in the
smart card. In this case, the agent retrieves the URL of the ontology instance
document rather than the document itself and then accesses the document over
the Internet.

1116 Riza Cenk Erdur and Geylani Kardas

Advantages for alternative-2:
i) Obviously this approach decreases smart card communication time and

shortens card sessions.
Disadvantages for alternative-2:

i) The security feature of smart cards cannot be used. The agent itself should
manage the accessing privileges and security over the Internet. This may be a
problem for the private part of personal knowledge, such as the payment infor-
mation.

Conclusion: We have preferred the first alternative in our implementation al-
though storing ontologies completely in the card may cause delays for especially
large ontology files and especially for write operations. The reason for preferring
the first alternative is that we think of taking the advantage of smart cards as
a means of secure, portable and cheap personal knowledge storage media for
accessing semantic web enabled multi-agent systems. In addition, ontology file
transfer delays can be overcome using more efficient connection technologies be-
tween the card acceptance device and the host. In our experiment, the serial
COM port has been used, which is another potential cause for the delays in
transferring large ontology files.

3 Case Study: A Multi-agent System for Tourism Domain

As a case study, we have implemented a prototype semantic web enabled multi-
agent system for realizing the infrastructure of the scenario given in the intro-
duction section. There exist two types of agents in the developed system: hotel
agents and customer agents. A hotel agent is an information type agent that rep-
resents a hotel in the system. A customer agent is an interface type agent that
is responsible for searching suitable hotel rooms and making reservations based
on the personal knowledge read from the card. The overall architecture of the
system is shown in Fig. 4. The agents in the system have been developed using
JADE [1], which currently is one of the most widely used Java based multi-agent
system development framework/platform in the multi-agent literature.

The implementation consists of three Java packages, which are named as
“CustomerCard”, “CustomerCardClient” and “Tourism” respectively. The “Cus-
tomerCard” package includes on-card Java application, which is developed using
Java Card Framework (JCF) [5]. This package is related with the smart card
reader/writer unit connected to the host PC via COM port as shown at the
left side of Fig. 4. The “CustomerApplet” class in this package is extended from
the “javacard.framework.Applet” and it processes command APDUs sent from
a customer agent. The “CustomerCardClient” package behaves like a middle-
ware between the on-card applet and the customer agent. As it is shown in the
middle part of Fig 4., this package resides on the same host with the customer
agent that has smart card access and it supports functionalities such as smart
card applet selection, APDU communication and hex-coded data package han-
dling. The third package, which we named as the “Tourism” package, contains
the agents in the developed multi-agent system, including the hotel agents and

Personalized Access to Semantic Web Agents Using Smart Cards 1117

Fig. 4. A multi-agent system with a smart card access integrated customer agent

the customer agents. The agent management service maintaining life cycles of
agents in a multi-agent system and the directory service providing yellow pages
services to other agents are already supported by JADE platform.

The hotel agents and the customer agent are instances of the class “HotelA-
gent”, and “CustomerAgent” respectively. These classes are derived from jade.core
.Agent class and these agents behaviors are implemented using the behavior
model of JADE. During initialization, a hotel agent registers itself to the plat-
forms directory service as a Hotel Service provider. So, when a customer agent
looks for a specific hotel room, it gets the hotel agents description from the direc-
tory service and can interact with this hotel agent. To be semantic web enabled,
the RDQL [9] query language is supported. As mentioned before, JENA API
has been used in semantic knowledge manipulations in all kinds of agents.

3.1 Instantiating the Generic Smart Card Access Plan
in JADE Environment

The generic HTN structure given in section 2 can be modeled as a finite state
machine (FSM) with transitions between subtasks. In JADE, there is a composite
behavior subclass “jade.core.behaviours.FSMBehaviour” [1], which can be used
to model behaviors as a finite state machine. For this reason, we have used
JADE’s FSM behavior to model the customer agents behavior as shown in Fig.
5. Each state of the FSM is implemented as a subclass of jade.core.behaviors.
OneShotBehaviour.

Initially, the state is CARD_WAITING. After the card is inserted and a suc-
cessful customer PIN entry is made, customer’s personal knowledge is transferred
from smart card and the RESERVATION_INIT becomes the new state. In that
state, the customer agent searches for the descriptions of the agents providing
hotel reservation services and updates its contact list based on the response from

1118 Riza Cenk Erdur and Geylani Kardas

Fig. 5. Finite state machine of the customer agents behavior

the directory service so that the hotel agents that are going to be queried are
determined. Now, the state becomes QUERY. In this state, the customer agent
first constructs an ontology model for the personal ontology instance transferred
from the card. Second, based on the concepts in the domain dependent part of
users personal knowledge, the customer agent prepares requests, places them in
agent communication language messages and sends them to each hotel agent
determined before. Then, it waits for the replies from hotel agents. When a suc-
cessful query result is returned from one of the hotel agents, the customer agent
begins to behave in RESERVATION state and makes a second contact with the
suitable hotel agent for reservation. Customer agent writes the reservation in-
formation to the customers smart card and finishes customers card session in
RESERVATION_FINISH state. At this point, it can again wait for a new card
session or completely terminates by calling doDelete() method in FINISH state.
The errors during the execution of the behavior are managed in ERROR state
of the behavior.

4 Conclusion

In this paper, it has been mainly discussed how to enable personalized access to
semantic web enabled multi-agent systems using smart cards that store users’
personal knowledge as instances of a specific personal ontology. For this pur-
pose, a generic agent plan, which is responsible for communicating with the
smart card terminal via a suitable middleware and for transferring and seman-
tically manipulating the personal knowledge, is given. This plan has been tested
with agents implemented on JADE platform. The reason for choosing JADE is
that it is currently one of the well-known and widely used agent development
frameworks/platforms for Java environments.

Personalized Access to Semantic Web Agents Using Smart Cards 1119

Another aspect that is discussed in the paper is the various alternatives for
storing ontological knowledge in smart cards. As it is stated in the local conclu-
sion part in section 3, we have preferred the approach of storing the personal
knowledge completely in the card, because we wanted to take the advantage of
smart cards as a means of secure, portable and cheap personal knowledge storage
media for accessing semantic web enabled multi-agent systems.

References

1. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Software Practice and Experience, 31 (2001)
103-128.

2. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web, Scientific Amer-
ican, 284(5), (2001), pp:34-43.

3. Bobineau, C., Bouganim, L., Pucheral, P.,Valduriez, P., PicoDMBS: Scaling Down
Database Techniques for the Smartcard, VLDB (2000): 11-20

4. Chan, A.T.S.: Web-enabled smart card for ubiquitous access of patient’s medical
record. WWW ’99: Proceeding of the eighth international conference on World
Wide Web, 31 (1999) 1591-1598.

5. Chen, Z.: Java CardTM technology for smart cards architecture and programmers
guide. Addison-Wesley, Massachusetts USA, (2000)

6. Dickinson, I.: The Semantic Web and Software Agents: Partners, or Just Neigh-
bours?, AgentLink News 15, September, 3-6 (2004). http://www.agentlink.org

7. Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz, A., Kirbas, S., Gurcan, Y.:
Semantically enriched web services for the travel industry. SIGMOD Record 33(3):
21-27 (2004).

8. Hansmann, U., Nicklous, M.S., Schack, T. and Seliger, F.: Smart card application
development using Java, Springer-Verlag, Berlin Germany, (2000)

9. JENA, A Semantic Web Framework for Java, http://jena.sourceforge.net/
10. OpenCard Consortium, OpenCard Framework 1.2 Programmer’s Guide, IBM

Deutschland Entwicklung GmbH, Boeblingen Germany, (1999)
11. Paolucci, M. et al., A Planning Component for RETSINA Agents, Intelligent

Agents VI, LNAI 1757, N.R.Jennings and Y. Lesperance, eds., Springer Verlag,
(2000).

12. Web Ontology Language (OWL), http://www.w3.org/2001/sw/WebOnt/

Fast and Secure Communication Resume
Protocol for Wireless Networks

Kihong Kim1, Jinkeun Hong2, and Jongin Lim1

1 Graduate School of Information Security, Korea University,
1, 5-Ka, Anam-dong, Sungbuk-ku, Seoul, 136-701, South Korea

hong0612@hanmir.com, jilim@korea.ac.kr
2 Division of Information and Communication, Cheonan University,

115 Anse-dong, Cheonan-si, Chungnam, 330-740, South Korea
jkhong@cheonan.ac.kr

Abstract. There are important performance issues in secure wireless
networks, such as power, bandwidth, and bit error rate (BER), that
must be considered when designing a communication resume protocol.
The efficiency of a secure communication resume for a fast resume of
secure communication is a key point in secure connection development.
In this paper, a fast secure communication resume protocol for a wireless
network is presented and evaluated against the efficiency of conventional
resume protocols. Our proposed resume protocol is found to achieve bet-
ter performance, in terms of transmission traffic, consumed time, and
BER, than conventional resume protocols.

1 Introduction

The wireless transport layer security (WTLS) provides privacy, authentication,
and integrity in wireless application protocol (WAP) [1]. As the use of wireless
networks becomes more widespread, the necessity of security for these networks
is of increasing importance. However, in order to solve security issues in wireless
networks, the efficiency of security services must be taken into account. From the
point of view of wireless environmental characteristics, research on optimizing
the security considerations of WTLS, such as low bandwidth, limited consumed
power energy and memory processing capacity, and cryptography restrictions,
has been presented [2][3][4][5]. Secure session exchange key protocol and secu-
rity in wireless communications have been researched by Mohamad Badra and
Ahmed Serhrouchni [6], and by Mohammad Ghulam Rahman and Hideki Imai
[7]. Hea Suk Jo and Hee Yong Youn [8] examined a synchronization protocol
for authentication in wireless LANs, while Min Shiang Hwang et al. [9] pro-
posed an enhanced authentication key exchange protocol. However, in terms of
efficiency, the performance considerations for secure wireless networks, such as
power, bandwidth, and BER, are very important. Of particular importance for
a secure connection point is the efficiency of the secure communication resume
for the fast resume of secure communication. In this paper, a protocol for fast
secure communication resume using IV count in wireless networks is presented
and its performance is evaluated against that of conventional resume protocols.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1120–1129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast and Secure Communication Resume Protocol for Wireless Networks 1121

Results shows that the proposed protocol achieves better performance in terms
of transmission traffic, consumed time, and BER than conventional protocols.

The remainder of this paper is organized as follows. In the next section,
detailed descriptions of the full handshaking and communication resume protocol
are given. In section 3, the proposed secure communication resume protocol is
illustrated. Some performance considerations are presented in section 4, and
concluding remarks are provided in section 5.

2 Key Handshaking Protocol in WTLS

The WTLS protocol determines the session key handshaking mechanism for se-
cure services and transactions in wireless networks, and consists of the following
phases: the handshaking phase, the change cipher spec phase, and the record
protocol phase (RP) [3][4][5]. In the handshaking phase, all the key techniques
and security parameters, such as protocol version, cryptographic algorithms, and
the method of authentication, are established between the client and the server.
After the key handshaking phase is complete, the change cipher spec phase is
initiated. The change cipher spec phase handles the changing of the cipher [6][7].
The RP phase is a layered protocol phase that accepts raw data to be transmitted
from the upper layer protocols.

Secure communication necessitates the encryption of communication chan-
nels. To achieve this, a key handshaking protocol allows two or more users to
share a key or an IV. A key handshaking protocol is illustrated in Fig. 1. The
client sends a client hello message that includes information such as the version,
acceptable cipher suites, and client random. When the server receives the client
hello message, it responds with a hello message to the client and it also sends
its certificate, key exchange, certificate request, and server hello done message.
After receiving the server hello done message, the client responds by authenti-
cating itself and sending its certificate. Then, the client generates the premaster
secret and sends its encryption data EKUS [Premaster Secret] encrypted with
the server’s public key to the server. The premaster secret is used to generate a
master secret that is shared between the client and the server. The client then
generates the master secret using the premaster secret, client random, and server
random. It also generates a sufficiently long key block using the master secret,
client random, and server random [1]. The generated key block is hashed into a
sequence of secure bytes, which are assigned to the message authentication code
(MAC) keys, session keys, and IVs. This is represented as follows in Eq. (1).

MS = PRF (PS, ′′MS′′, CR + SR) (1)
KB = PRF (MS, ′′KE′′, CR + SR)

Here, MS is the master secret, KB is the key block, PS is the premaster
secret, CR is the client random, SR is the server random, PRF is the pseudo
random function, and KE is the key expansion. The client sends a change ci-
pher spec message and finished message. The server also generates MAC secrets,
session keys, and IVs. Then it sends the finished message to the client. Finally,
secure communication is established using session keys and IVs.

1122 Kihong Kim, Jinkeun Hong, and Jongin Lim

1. Client Hello

2. Server Hello

3. Server Certificate and Key Exchange

4. Client Certificate Request

5. Server Hello Done

6. Client Certificate

7. Client Key Exchange

8. Certificate Verity

9. Change Cipher Spec / Finished

10. Secure Communication

Client Server

Fig. 1. Full handshaking protocol in WTLS protocol

2.1 Communication Resume Protocol Using Premaster Secret

After completion of the full handshaking protocol shown in Fig. 1, a secure com-
munication is established. However, data frame loss occurs because of bit slips,
channel loss, reflection, and diffraction in the communication channel. If a data
frame is lost, the output of the decryptor will be unintelligible for the receiver
and a communication resume will be required. The aim of the communication
resume is to ensure that the encryptor and decryptor have the same internal
state at a certain time. An internal state different from all previous sessions has
to be chosen to prevent the reuse of session keys or IVs [10][11][12]. To overcome
the problems caused by these data frame losses, resume protocols for secure
communication have been suggested. Such protocols can be achieved by one of
two methods: 1) premaster secret regeneration and retransmission, or 2) random
regeneration and retransmission.

Fig. 2 shows a protocol for a secure communication resume using premaster
secret regeneration and retransmission. In this protocol, a new premaster secret
is generated and sent in each communication resume, and thus it results in the
generation of a new master secret and new key block. Therefore, new session keys
and new IVs are generated for every communication resume. However, since a
new premaster secret is generated and sent in each secure communication resume,
this method has disadvantages such as a large computation load, time delay, and
BER.

This protocol is executed as follows. First, secure communication is performed
for time Δt, and then data frame loss occurs. After the server realizes the data

Fast and Secure Communication Resume Protocol for Wireless Networks 1123

3. Client Key Exchange = EKUS [Premaster Secret]

4. Change Cipher Spec / Finished

5. Change Cipher Spec / Finished

Client Server

1. Secure Communication
.
.
.
.

Data Frame Loss

tΔ

2. Request Premaster Secret for Session Resume

6. Secure Communication Restart

dΔ

Fig. 2. Conventional protocol using premaster secret

frame loss, it requests a new premaster secret for communication resume. The
client generates a new premaster secret and sends EKUS [Premaster Secret]
to the server. The client then generates a new master secret using the new
premaster secret and the original random cached in the initial hello message
stage, and generates a new key block using the new master secret and original
random. Thus, the result is the generation of new session keys and new IVs.

New MS = PRF (New PS, ′′MS′′, Original CR + Original SR) (2)
New KB = PRF (New MS, ′′KE′′, Original CR + Original SR)

The client then sends the finished message to the server. The server gener-
ates a new master secret and a new key block, and then also sends the finished
message to the client. After the communication resume time Δd, secure commu-
nication is reinitiated.

2.2 Communication Resume Protocol Using Random Value

On the other hand, the protocol for a secure communication resume using ran-
dom regeneration and retransmission is shown in Fig. 3. In this protocol, a new
random is generated and sent in each secure communication resume, which re-
sults in the generation of a new key block in each communication resume. As
with premaster secret regeneration and retransmission, this protocol also suffers
from time delay, and a large BER.

Secure communication is performed for time Δt, and then data frame loss
occurs. After realizing the data frame loss, the server requests a new random

1124 Kihong Kim, Jinkeun Hong, and Jongin Lim

5. Change Cipher Spec / Finished

Client Server

1. Secure Communication
.
.
.
.

Data Frame Loss

tΔ

2. Request Premaster Secret for Session Resume

7. Secure Communication Restart

dΔ

3. Client Hello = {Version, Cipher Suite , Random, Etc}

4. Server Hello = {Version, Cipher Suite, Random, Etc}

6. Change Cipher Spec / Finished

Fig. 3. Conventional protocol using random value

for communication resume. The client generates a new random and includes it
in a hello message. After the server receives the hello message from the client,
it sends its own hello message that includes its new random. The server also
generates a new key block using the new random and cached original master
secret, and then generates new session keys and new IVs. This means that a
resumed communication will use the same master secret as the previous one. Note
that, although the same master secret is used, new random values are exchanged
in the secure communication resume. These new randoms are taken into account
in the new key block generation, which means that each secure communication
starts up with different key materials: new session keys and new IVs.

New KB = PRF (Original MS, ′′KE′′, New CR + New SR) (3)

Finally, the server sends the finished message to the client. The server gen-
erates a new key block, and then it also sends the finished message to the client.
After communication resume time Δd, secure communication is reinitiated.

3 Proposed Secure Communication Resume Protocol

3.1 Proposed Protocol Using IV Count

To overcome the problems inherent in conventional secure communication re-
sume protocols and to reinitiate secure communication much faster than they
allow, we propose a fast, efficient, and secure communication resume protocol
that uses an IV count value.

Fast and Secure Communication Resume Protocol for Wireless Networks 1125

3. IV Count Value = EKUS [Count Value of IV]

4. Change Cipher Spec / Finished

5. Change Cipher Spec / Finished

Client Server

1. Secure Communication
.
.
.
.

Data Frame Loss

tΔ

2. Request Count Value of IV for Session Resume

6. Secure Communication Restart

dΔ

Fig. 4. Proposed protocol using IV count

Fig. 4 shows the proposed secure communication resume protocol, in which
a count value of IV is sent to generate the new IVs in each secure communica-
tion. After realizing the data frame loss, the server requests a new count value
of IV for communication resume. The client generates the new IV count value
and sends its encrytpion data EKUS [Count V alue of IV] encrypted with the
server’s public key to the server. It then generates new IVs using the count value.
That is, the count value is used to generate new message protection materials,
which means that each secure connection starts up with different IVs. Therefore,
a resumed communication will use the same session keys as the previous com-
munication. Note that, although the same session keys are used, new IVs are
used in the secure communication resume. The client sends the change cipher
spec and finished message to the server. The server generates new IVs using the
received count value, and then sends the change cipher spec and finished message
to the client. The client and server finally have the new IVs after communication
resume time Δd.

I = I0 + C, 1 ≤ C ≤ 2IV Size − 1 (4)

Here, I is the value of IV in each communication and I0 represents the value
of the original IV. C is a count value in each communication resume and is
increased by a value of one for every communication resume.

3.2 Security Analysis

Security problems regarding attacks against the WAP WTLS were surveyed by
Markku Juhani Saarinen [5], and it has been found that many of the changes that

1126 Kihong Kim, Jinkeun Hong, and Jongin Lim

were made by the WAP Forum have led to increased security problems [1]. In
this paper, to determine the key refresh period for secure communication resume,
the key refresh concept, which is referred by the WAP forum, was used and the
condition of low bound was derived to avoid collisions from the birthday paradox
[13]. By the birthdat paradox, for strong collision resistance and a well-designed
block cipher function with n bit input block size, it must hold that finding any
pair (x, y) / f(x) = f(y), takes 2n/2 trials. In the birthday bound, this means
that even a perfect n bit block cipher function will start to exhibit collisions
when the number of inputs nears the birthday bound 2n/2. Then, if coincidence
exists, the problem of the plaintexts information issue occurs. Consequently, a
new key is generated and updated before encrypting the 2n/4 input plaintext
blocks.

TKey Refresh = 2n/4 (5)

On the other hand, IV resets after 2IV Size. The probability of IV reset within
the 2n/4 key refresh period is as small as the IV size is large, while the probability
of its reset is as large as the IV size is small. For instance, if an IV size is 8
bytes, it resets after 264. This means that 8 bytes IV do not reset within the
216 key refresh period, namely, 264/4 input plaintext blocks in 64 bits block size.
Therefore, if data frame loss occurs within the key refresh period, and if then a
secure communication resume is required, we have only to generate and update
a new IV for every communication resume instead of a new key generation. In
addition, we have only to generate and update new keys at the time of key
refreshing.

4 Performance Consideration

In this paper, to prove the efficiency of the proposed protocol, we compared
and analyzed the transmission message size, the consumed time, and BER for
communication resume of our proposed protocol with conventional protocols.

Table 1 shows a comparison of the transmission procedure and message sizes:
CLT is the client, SVR is the server, the Change Cipher Spec/Finished message
is CCS/F, V is WTLS version, and SID is session ID, R is random, and SI is a
security association such as key exchange suit, cipher suit, compression method,
etc. In the premaster secret protocol, the transmission messages sizes is about 46
bytes. In the case of random protocol, the transmission messages are about 86
bytes in size. However, in the proposed protocol, the transmission messages are
composed only of the count value of IV, CLT CCS/F message, and SVR CCS/F
message and their size is about 34 bytes. This Table shows that our proposed
protocol allows the establishment of secure communication in an economic way,
as it has fewer transmission message flows and smaller sizes than either the
premaster secret or the random protocol.

To evaluate the efficiency of secure communication resume protocol, the BER
in each protocol must also be considered. The results of BER in 3G at 384Kbps
according to the number of communication resume are shown in Table 2. Here,
T1 are the transmission bits at each 1 iteration, TC1 are the transmission bits

Fast and Secure Communication Resume Protocol for Wireless Networks 1127

Table 1. Comparison of Δd and transmission message size

Protocol for Resume Steps Δd Transmission Message Size

Premaster Secret 20 bytes
Premaster Secret 3 CLT CCS/F 13 bytes

SVR CCS/F 13 bytes

[V, R, SID, SI] CLT Hello 30 bytes
Random 4 [V, R, SID, SI] SVR Hello 30 bytes

CLT CCS/F 13 bytes
SVR CCS/F 13 bytes

IV Count Value 8 bytes
Proposed 3 CLT CCS/F 13 bytes

SVR CCS/F 13 bytes

Table 2. BER in 3G according to the number of communication resumes (per hour)

Protocol for Resume �1 �2 �4 �6 �8

T1 2.78 × 10−7 5.56 × 10−7 1.11 × 10−6 1.67 × 10−6 2.22 × 10−6

Premaster Secret TC1 5.03 × 10−7 1.11 × 10−6 2.22 × 10−6 3.33 × 10−6 4.44 × 10−6

TC3 1.26 × 10−6 2.78 × 10−6 5.55 × 10−6 8.33 × 10−6 1.11 × 10−5

T1 4.72 × 10−7 9.44 × 10−7 1.89 × 10−6 2.83 × 10−6 3.78 × 10−6

Random TC1 9.72 × 10−7 1.94 × 10−6 3.89 × 10−6 5.83 × 10−6 7.78 × 10−6

TC3 2.97 × 10−6 5.94 × 10−6 1.19 × 10−5 1.78 × 10−5 2.38 × 10−5

T1 1.94 × 10−7 3.89 × 10−7 7.78 × 10−7 1.16 × 10−6 1.56 × 10−6

Proposed TC1 2.78 × 10−7 5.56 × 10−7 1.11 × 10−6 1.67 × 10−6 2.22 × 10−6

TC3 1.17 × 10−6 2.33 × 10−6 4.67 × 10−6 7.00 × 10−6 9.33 × 10−6

at each 1 iteration with 50 % redundancy channel coding, and TC3 are the
transmission bits at 3 iterations with 50 % redundancy channel coding. When
computing the BER for 1 communication resume number per hour in the TC1
environment, the BERs in each protocol are provided: 5.03× 10−7 in premaster
secret protocol, 9.72×10−7 in random protocol, and 2.78×10−7 in the proposed
protocol. This means that the proposed protocol reduces BER by over 45 %
when compared with the premaster secret protocol, and by about 72 % when
compared with the random protocol.

The consumed time and key refresh iteration is shown in Table 3. If a data
frame loss occurs within the key refresh period, the proposed communication
resume protocol is performed to reopen secure communication and a new key is
generated and updated at the key refresh period. For example, at 100bps in 2G,
CT is needed to 699 min and CTavg results in a key refresh of 2 iterations per
day. Here, CT is consumed time for key refresh and CTavg is the average refresh
iterations during one day.

1128 Kihong Kim, Jinkeun Hong, and Jongin Lim

Table 3. Consumed time and key refresh iteration in 2G, 3G bearer service environ-
ment (at cryptor input/output block size = 64 bits)

Consumed Time 2G at 100bps 2G at 9.6Kbps 3G at 14.4Kbps 3G at 384Kbps

CT 699 min 7.28 min 4.85 min 0.18 min

CTavg 2 iterations 198 iterations 297 iterations 7910 iterations

In the TC1 case in Table 4, the total consumed time using the proposed
protocol for one day, 10.8 sec, is considerably less than the total consumed time
using either the premaster secret protocol (14.7 sec) or the random protocol
(27.4 sec).

Table 4. Total consumed time for communication resume for one day (at crypto in-
put/output block size = 64 bits)

Protocol for Resume 2G at 100bps 2G at 9.6Kbps 3G at 14.4Kbps 3G at 384Kbps

T1 7.4 sec 7.5 sec 7.4 sec 7.9 sec
Premaster Secret TC1 14.7 sec 15.0 sec 15.1 sec 15.8 sec

TC3 44.2 sec 45.5 sec 45.4 sec 39.6 sec

T1 13.8 sec 13.9 sec 14.0 sec 13.5 sec
Random TC1 27.4 sec 27.7 sec 28.1 sec 27.7 sec

TC3 82.6 sec 85.1 sec 83.2 sec 84.6 sec

T1 5.4 sec 5.5 sec 5.4 sec 5.5 sec
Proposed TC1 10.8 sec 11.1 sec 10.7 sec 7.9 sec

TC3 32.6 sec 33.7 sec 33.6 sec 33.2 sec

5 Conclusion

Most security research in wireless networks is focused on secured routing and
transmitting in the network. However, because of the security issues in wireless
networks, we suggest that the efficiency of security services is also an important
issue. In this paper, a fast and secure communication resume protocol using IV
count for wireless networks is presented and evaluated against the efficiency of
conventional resume protocols. During the secure communication resume phases,
we manage to reduce transferring traffic and thus also reduce the bandwidth on
wireless networks. Moreover, our enhanced proposed protocol is able to reduce
the consumed time or cryptographic load and the computations in order to
reopen secure communication quickly.

Therefore, this proposed communication resume protocol provides a fast re-
sume of secure communications, while reducing the transferring traffic, consumed
time, and BER in a WTLS protocol environment.

Fast and Secure Communication Resume Protocol for Wireless Networks 1129

References

1. WAP Forum. Wireless Transport Layer Security Spec. http://www.wapforum.org.
2. S. Jormalainen and J. Laine. Security in the WTLS.

http://www.tml.hut.fi/Opinnot/Tik-110.501/1999/papers/wtls.htm.
3. R. Karri and P. Mishra. Optimizing the Energy Consumed by Secure Wireless

Sessions-WTLS Case Study. Mobile Networks and Applications, No. 8, Kluwer
Academic Publishers, 2003.

4. P. Mikal. WTLS : The Good and Bad of WAP Security.
http://www.advisor.com/Articles.nsf/aid/MIKAP001, 2001.

5. M. J. Saarinen. Attacks against the WAP WTLS Protocol.
http://www.freeprotocols.org/harm0fWap/wtls.pdf, 1999.

6. M. Badra et al.. A New Secure Session Exchange Key Protocol for Wireless Com-
munication. IEEE International Symposium on Personal, Indoor and Mobile Radio
Communication, 2003.

7. M. G. Rahman and H. Imai. Security in Wireless Communications. Wireless
Personal Communications, No. 22, Kluwer Academic Publishers, 2002.

8. H. S. Jo and H. Y. Youn. A New Synchronization Protocol for Authentication in
Wireless LAN Environment. ICCSA’04, LNCS publishers, 2002.

9. M. S. Hwang et al.. On the Security of an Enhanced Authentication Key Exchange
Protocol. AINA’04, LNCS publishers, 2004.

10. J. Daemen, R. Govaerts, and J. Vandewalle. Resynchronization Weakness in Syn-
chronous Stream Ciphers. Pre-proceeding of EUROCRYPT’93, 1993.

11. R. K. Nichols and P. C. Lekks. Wireless Security - Models, Threats, and Solutions.
McGraw-Hill Telecom, 2002.

12. E. Amoroso. Fundamentals of Computer Security Technology. PTR Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

13. B. Schneier. Applied Cryptography, 2nd ed, John Wiley and Sons Inc., 1996.

On AAA Based on Brokers
and Pre-encrypted Keys in MIPv6�

Hoseong Jeon, Min Young Chung, and Hyunseung Choo

School of Information and Communication Engineering
Sungkyunkwan University

440-746, Suwon, Korea +82-31-290-7145
{liard,mychung,choo}@ece.skku.ac.kr

Abstract. For providing mobility services for users through the global
Internet, Mobile IP (MIP) has been standardized by IETF. Since con-
ventional MIP has been investigated without the support of the security,
IETF suggests that the current servers capable of performing the au-
thentication, authorization, and accounting (AAA) be used for secure
services. However the quality of service (QoS) may be degraded due to
inefficiency on integrating the conventional MIP and AAA. For this, we
propose a fast and secure handoff mechanism based on IDentification Key
(IDK) along with Authentication Value (AV). Also we evaluate the per-
formance of the proposed scheme in terms of the probability of handoff
failure and average latency. The results show that our proposed mecha-
nism yields better performance than session key exchange mechaism [11]
and ticket based one [12] while maintaining the similar level of security.

1 Introduction

Based on mobility as the essential characteristic for mobile networks, the Mobile
IP standard solution for use with the wireless Internet was developed by the
Internet Engineering Task Force (IETF) [1, 2]. However, Mobile IP does not ex-
tend properly to highly mobile users. Moreover, the term mobility implies higher
security risks than static operation in wired networks, since the traffic may at
times take unexpected network paths with unknown or unpredictable security
characteristics. Hence, there is a need to develop technologies that simultane-
ously enable IP security and mobility over wireless links [3].

By combining Mobile IP and AAA structure [4], the message on the Mobile
IP network can be provided with additional security through AAA protocol.
However, while an Mobile Node (MN) roams in foreign networks, a continuous
exchange of control messages is required with the AAA server in the home net-
work [5–8]. The control message contains the confidential information to identify
the privilege of the mobile user for the service. Standard AAA handoff mech-
anism has inefficient authenticating procedures that limit its quality of service
(QoS). To resolve such problems, session key exchange mechanism [11] and ticket
based mechanism [12] are proposed in the literature.
� This paper was supported in parts by Brain Korea 21 and the Ministry of Information

and Communication, Korea. Corresponding author: H. Choo.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1130–1139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6 1131

The session key exchange mechanism, basically, reuses the previously as-
signed session key. In this mechanism, the handoff delay can be decreased im-
portantly. However, it requires that the trusted third party should support key
exchanges between Access Routers (ARs). For this reason, it uses only the intra-
handoff within the same domain. The ticket based mechanism using an encrypted
ticket that can support authentication and authorization for the MN has been
proposed. It reduces the delay and the risk on MN authentication in Mobile
IPv6 (MIPv6). However, it generates additional signalings and overheads of AAA
server.

In order to reduce signaling delay required for performing authentication pro-
cedures we have proposed an IDK mechanism based on a pre-encrypted key [13].
However, it just uses service requests due to the mobility of MNs. For improv-
ing this shortage, an extended IDK mechanism (EIDK) has been proposed [14].
EIDK mechanism uses single AV to extend the effectiveness of IDK into the
handoff process. EIDK with single AV compared with previous mechanisms is
up to about 20-40% better in terms of average latency that considers hand-
off latency and service latency. However, it is vulnerable to the ‘replay attack.’
To handle this problem, we propose EIDK mechanism with multiple AVs and
evaluate its average handoff latency for the reasonable number of AVs.

The rest of the paper is organized as follows. In Section 2, an overview of
the Mobile IP and AAA protocol is presented. And the session key exchange
mechanism and the ticket based AAA mechanism are given. Our proposed EIDK
based AAA mechanism is discussed in Section 3. After that the performance is
evaluated along with previous methods in Section 4. Finally we conclude the
paper in Section 5.

2 Preliminaries

The IETF AAA Working Group has worked for several years to establish a gen-
eral model for authentication, authorization, and accounting. AAA in mobile
environments is based on a set of clients and servers (AAA Foreign and AAA
Home) located in the different domains. It operates based on the security as-
sociations (SAs) (SAs : SA1, SA2, SA3, and SA4) as shown in Fig. 1. For the
support regarding the secure communication, MN requires dynamic security as-
sociations. They are defined by sharing the session keys such as K1, K2, and K3

between MN and Foreign Agent (FA), between MN and Home Agent (HA), and
between HA and FA, respectively. Once the session keys have been established
and propagated, the mobility devices can securely exchange data [9, 10].

Session Key Exchange Mechanism
The session key exchange mechanism is based on a variant of Diffie-Hellman key
agreement protocol instead of asymmetric key cryptography [11].The protocol
has two system parameters p and g. They are both public and may be used
by all the users in a system. The p is a prime number and g (usually called a
generator) is an integer less than p with the following property: for every number
n between 1 and p− 1 inclusive, there is a power k of g such that n = gk mod

1132 Hoseong Jeon, Min Young Chung, and Hyunseung Choo

Fig. 1. AAA security association in Mobile IPv6

Fig. 2. Secure session key exchange procedure

p. The protocol depends on the discrete logarithm problem for its security. It
assumes that it is computationally infeasible to calculate the shared secret key
k = gab mod p given the two public values (ga mod p) and (gb mod p) when the
prime p is sufficiently large.

For the fast operations, this scheme reuses the previously assigned session
keys, the session keys for FA(SMN−FA and SFA−HA). To ensure the confiden-
tiality and integrity of the session keys, it uses the encryption and decryption
under a short lived secret key, KoFA−nFA, between oFA and nFA. The key is
dynamically shared between them and can be created by only two entities.

Ticket Based AAA Mechanism
A ticket based AAA mechanism reduces the overhead on the service request by
utilizing the pre-encrypted ticket without intermediate encryptions and decryp-
tions. If the MN wants to request a service, it sends a ticket to AAAH for its
authentication. The authentication of MN is performed by the Ticket Granting
Service ASM (TGS ASM) in the AAA server. The result of authentication is
returned to the MN, which allows the MN to request the service [12].

However, this mechanism has four additional signaling messages for the ticket
issue. Fig. 3 describes exchanged additional signaling messages on initial regis-
tration. Four messages added are ticket/service request message, AAA ticket/

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6 1133

Fig. 3. Initial registration in ticket based AAA model

service request message, AAA ticket/service reply message, and ticket/service
reply message. The messages between MN and HA are based on the general Mo-
bile IP protocol, and the messages between HA and Home AAA server (AAAH)
are based on the extended AAA protocol in Mobile IP networks.

EIDK Based AAA Mechanism with single AV
This mechanism reduces handoff and service signaling cost using IDK and AV [14].
However, it is vulnerable to the ‘replay attack’ due to a single AV its on use. It
means that the malicious node traps the authentication sequence that has been
transmitted by an authorized user through the network, and then has replayed
the same sequence to get himself authenticated. In this case, the authorized user
is attacked by the malicious one.

3 EIDK Based AAA Mechanism with Multiple AVs

This section deals with the secure enhanced EIDK mechanism using multiple
AVs. Basically, this modified mechanism is identical to the previous EIDK pro-
posed in [14], except using multiple AVs. For the proposed mechanism, we as-
sume as follows: 1) an AAA server authenticates and authorizes subscribers, and
verifies IDK. It also creates AV; 2) an AAA client is either HA or FA, which
has the functionality to generate and to deliver AAA messages; 3) an AAA bro-
ker (AAAB) authenticates MN instead of AAA Home (AAAH); and 4) an MN
generates IDK and delivers it.

In order to reduce the time for repeated encryptions and decryptions, an MN
generates an encrypted information called IDK using authentication time (AT).
This value represents the time at the initial registration of the MN. The IDK
consists of the following [13]:

• Network Access Identifier (NAI) of MN
• Address of the AAA server that provides services to the MN
• Service identifier allowed for the MN
• Home network address and IP address of the MN
• IDK lifetime
• A random number (128 bits)
• The session key shared by the MN and the AAA server
• CoA of next possible area expected to be moved (optional)
• Authentication time (AT).

1134 Hoseong Jeon, Min Young Chung, and Hyunseung Choo

The proposed mechanism reduces the authentication delay and signalings at
the foreign domain by using AV. The AV contains an information for MN and
session keys in FA for the session key reuse. They are encrypted based on SA
between AAAH and AAAB [4]. It consists of following:

AV = SAAAAH−AAAB { MN information || FA′s session keys || Nonce }

Initial Registration to AAAH
As indicated in Fig. 4, the sequence of message exchanges for each authentication
mechanism is performed for the initial registration in the home network. We
assume that there is no security associate between MN and HA. This is because
we do not consider the pre-shared key distribution in AAA protocol in this work.

Fig. 4. Initial registration

Fig. 4(a) shows the initial registration of the basic AAA model. And both
the ticket based model and the proposed EIDK based one follow the basic AAA
model in the initial registration. However, as you see in Fig. 3, additional sig-
naling for issuing a ticket is required for faster services on requests in the ticket
based model.

Fig. 4(b) shows the initial registration procedure for the EIDK based mech-
anism. In the authentication reply phase, AT is delivered to MN together with
authentication reply message (AREP). Accordingly, both the MN and AAAH
server share a secret value. This one is the arrival time of the request message
for the MN at AAAH. The AT would be used as a part of the encryption key
value on IDK by MN and later it is used as the decryption key in AAAH. Unlike
the ticket based model scheme, MN receives AT along with the authentication
reply message without further additional signaling in our scheme.

Service Requests
The procedure routine of message exchanges for the service request in the home
domain is in Fig. 5. The service request message (SREP) is encrypted and de-
crypted by the key distributed from AAAH on the authentication process in
the basic AAA model. As you see in Fig. 5(a), service request message (SREQ)
and SREP are encrypted and decrypted at MN, HA, and AAAH whenever they
are exchanged, and these can be a significant overhead. Ticket based model
in Fig. 5(b) reduces the overhead on the service request by utilizing the pre-
encrypted ticket without intermediate encryptions and decryptions. This can be
done by the extended AAA server structure. Also the model assumes that the

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6 1135

Fig. 5. Service request

time for ticket issuing and granting is not significant. However, this may not
guarantee its superiority in the real world.

In Fig. 5(c), the proposed EIDK based model does not need the extended
AAA server structure, but just maintains the current one. Intermediate encryp-
tions and decryptions are not necessary on the service request in our scheme.
Since we employ the pre-encrypted IDK which is created by MN beforehand. Un-
like the basic AAA model, the EIDK based AAA model requires IDK creation
and the time for it. But this scheme reduces the total delay since it eliminates
the time for intermediate encryptions and decryptions.

Handoff Procedures Using Multiple AVs
The purpose of multiple AVs is to improve previous EIDK mechanism. We pro-
pose the usage of multiple AVs for the preventing ‘replay attack.’ Each AV is
used only once and then it is no longer valid, so eavesdropping and replay attack
are not our concern.

Fig. 6 represents the proposed handoff mechanism. It eliminates encryption
and decryption delay in the authentication procedure by using pre-encrypted
AV, and reduces the number of signalings due to the AAAB. When MN moves
to a foreign network, AAAH creates AVs that are delivered to the AAAB. After

Fig. 6. Description of handoff mechanism using AVs

1136 Hoseong Jeon, Min Young Chung, and Hyunseung Choo

that operation, the AAAB authenticates MN instead of AAAH. As a result,
the MN reduces authentication procedure and its delay in the foreign network
since AAAB takes care of authentication job for MN on behalf of its AAAH. If
there is no AVs in AAAB, the proposed scheme should perform the procedure
from (1) to (4) once more. According to the number of AVs, the performance of
this scheme is affected. It is considered as factors in performance analysis in the
following section.

4 Performance Evaluation

In order to evaluate performance of our proposed algorithm, we make the fol-
lowing notations:

• TMN−AR/TAR−AAAH(F)/TAAAH(F)−AAAB: time required for transfer in a
message between MN and AR/AR and AAAH(F)/AAAH(F) and AAAB.

• Ese/Esd: time required for symmetric key encryption/decryption of a mes-
sage at MN/AR/AAAH/AAAF/AAAB

• BU : binding update time
• AS: authentication time in AAAH
• Tk: ticket issuance and verification time in AAAH
• IDK: IDK creation and verification time in MN/AAAH/AAAB
• AV : authentication time using AV in AAAB
• BIR/TIR/EIR: time required for initial registration as basic AAA scheme/as

ticket based scheme/as EIDK based scheme.
• B

H/F
Intra/SH/F

Intra/E
H/F
Intra: time required for intra handoff as basic AAA scheme/

as session key exchange scheme/as EIDK based scheme in home(foreign)
domain

• BInter/SInter/EInter: time required for inter handoff as basic AAA scheme/
as session key exchange scheme/as EIDK based scheme

• B
H/F
Serv/TH/F

Serv /EH/F
Serv : time required for service request as basic AAA scheme/

as ticket based scheme/as EIDK based scheme in home(foreign) domain

Authentication procedures can be classified into three cases: initial registration,
handoff and service request. And then handoff can be also classified into another
three cases by the position of the MN: intra handoff in home/foreign domain
and inter handoff. Lastly, service request can be classified into two cases: service
request in home/foreign domain. We calculate times required in schemes we
discuss (Figs. 2–6) for performance evaluation based on the following equations:

• [Initial Registration]
BIR = 2 · TMN−AR + 2 · TAR−AAAH(F) + 4 ·Ese + 4 ·Esd + AS + BU
TIR = 2 · (2 ·TMN−AR +2 ·TAR−AAAH(F) +4 ·Ese +4 ·Esd)+AS +Tk+BU
EIR = 2 · TMN−AR + 2 ·TAR−AAAH(F) + 4 ·Ese + 4 ·Esd +AS +BU + IDK

• [Intra Handoff in the home domain]
BH

Intra = 2 · TMN−AR + 2 · TAR−AAAH(F) + 4 · Ese + 4 · Esd + AS + BU
SH

Intra = 4 · TMN−AR + 4 · TAR−AAAH(F) + 4 · Ese + 4 · Esd + BU
EH

Intra = 2 · TMN−AR + 2 · TAR−AAAH(F) + 2 ·Ese + 2 ·Esd + 2 · IDK +BU

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6 1137

• [Intra Handoff in the foreign domain]
BF

Intra = 2 · TMN−AR + 4 · TAR−AAAH(F) + 4 · TAAAH(F)−AAAB + 10 ·Ese +
10 ·Esd + AS + BU
SF

Intra = 4 · TMN−AR + 4 · TAR−AAAH(F) + 4 · TAAAH(F)−AAAB + 4 · Ese +
10 ·Esd + AS + BU
EF

Intra = 2 · TMN−AR + 2 · TAR−AAAH(F) + 2 · TAAAH(F)−AAAB + 3 ·Ese +
3 · Esd + 2 · IDK + BU

• [Inter Handoff]
BInter = 2 · TMN−AR + 4 · TAR−AAAH(F) + 4 · TAAAH(F)−AAAB + 10 ·Ese +
10 ·Esd + AS + BU
SInter = 4 · TMN−AR + 4 · TAR−AAAH(F) + 4 ·Ese + 4 ·Esd + BU
EInter = 2 · TMN−AR + 2 · TAR−AAAH(F) + 2 · TAAAH(F)−AAAB + 3 · Ese +
3 · Esd + 2 · IDK + BU

• [Service request in home domain]
BH

Serv = 2 · TMN−AR + 2 · TAR−AAAH(F) + 4 ·Ese + 4 ·Esd + AS + BU
TH

Serv = 2 · TMN−AR + 2 · TAR−AAAH(F) + 2 · Ese + 2 ·Esd + Tk + BU
EHome

Serv = 2 · TMN−AR + 2 · TAR−AAAH(F) + 2 ·Ese + 2 ·Esd + IDK + BU

• [Service request in foreign domain]
BF

Serv = 2 · TMN−AR + 4 · TAR−AAAH(F) + 4 · TAAAH(F)−AAAB + 10 ·Ese +
10 ·Esd + AS + BU
TF

Serv = 2 · TMN−AR + 4 · TAR−AAAH(F) + 4 · TAAAH(F)−AAAB + 5 ·Ese + 5 ·
Esd + Tk + BU
EF

Serv = 2 · TMN−AR + 4 · TAR−AAAH(F) + 4 · TAAAH(F)−AAAB + 5 · Ese +
5 · Esd + IDK + BU

Using these equations and the system parameter in Table 1 [10, 13, 14], we
compute the handoff probability and the average latency.

Table 1. System parameters

Bit rates Processing time

Wire links 100 Mbps Routers (HA,FA) 0.5 msec

Wireless links 2 Mbps Nodes (MN) 0.5 msec

Propagation time Tk 3.0 msec

Wire links 500 μsec IDK 3.0 msec

Wireless links 2 msec AS 1.0 msec

Data size AV 1.0 msec

Message size 256 bytes Ese and Esd 1.0 msec

BU 0 msec

We analyze the handoff procedure to obtain the handoff failure rate for each
handoff mechanism. It is influenced by few factors that are the velocity of MN
and the radius of a cell. Figs. 7 and 8 show probability of handoff failure and
average latency for various cell radii, respectively. From the results, secure ex-
change scheme shows the better performance for frequent handoff situations and
ticket-based one has better result for frequent service requests. However, EIDK

1138 Hoseong Jeon, Min Young Chung, and Hyunseung Choo

0 20 40 60 80 100

10
−2

10
−1

Cell Radius(m)

P
ro

ba
bi

lit
y

of
 H

an
do

ff
F

ai
lu

re

v = 4km/h

Basic
Exchange
EIDK

0 20 40 60 80 100

10
−1

Cell Radius(m)

P
ro

ba
bi

lit
y

of
 H

an
do

ff
F

ai
lu

re

v = 40km/h

Fig. 7. The probability of handoff failure

200 400 600 800 1000
10

0

10
1

Cell Radius(m)

A
ve

ra
ge

 L
at

en
cy

(m
se

c)

service rate = 0.2

Basic
Ticket
Exchange
Proposed

200 400 600 800 1000
10

0

10
1

10
2

Cell Radius(m)

A
ve

ra
ge

 L
at

en
cy

(m
se

c)

service rate = 0.8

Fig. 8. Average handoff latency

based mechanism shows even better performance than previous mechanisms be-
cause it considers two factors the handoff latency and service latency at the same
time.

Fig. 9 shows average latency of EIDK mechanism according to the number of
AVs. It is indicated that the average latency for the modified scheme increases

100 200 300 400 500 600 700 800 900 1000
10

0

10
1

Cell Radius(m)

A
ve

ra
ge

 L
at

en
cy

(m
se

c)

Single AV
Multiple AVs(4)
Multiple AVs(8)
Multiple AVs(12)

Fig. 9. Single AV versus multiple AVs

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6 1139

as the number of AVs is increases. For given cell radius, average latency of EIDK
mechanism decreases as the number of AVs increases. However excessive number
of AVs may cause additional overheads. Therefore it is important to select the
appropriate number of AVs in this modified scheme.

5 Conclusion

In this paper, we proposed the EIDK based AAA mechanism with multiple AVs.
This scheme prevents ‘replay attack’ for malicious users and reduces the latency
due to handoffs and services. The performance comparison shows that the EIDK
based mechanism is superior to previous schemes we disscuss in this paper in
terms of latency while maintaining the same security level. Also, the performance
of the proposed mechanism depends on the number of AVs employed. For further
studies, researches on the optimal number of AVs are underway.

References

1. C.E. Perkins, “IP Mobility Support,” IETF RFC 2002.
2. B. David, C. Perkins, and J. Arkko,“Mobility Support in IPv6,” IETF draft, In-

ternet Draft draft-ietf-mobileip-ipv6-17.txt, May 2002.
3. C. Perkins, “Mobile IP Joins Forces with AAA,” IEEE Personal Communications,

vol. 7, no. 4, pp. 59–61, August 2000.
4. J. Vollbrecht, P. Cahoun, S. Farrell, and L. Gommans, “AAA Authorization Frame-

work,” RFC 2904, 2000.
5. J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. debruijn, C.de

Laat, M. Holdrege, and D. Spence, “AAA Authorization Application Examples”,
IETF RFC 2905.

6. S. Farrell, J. Vollbrecht, P. Calhoun, and L. Gommans,“AAA Authorization Re-
quirements,” RFC 2906, August 2000.

7. S. Glass, T. Hiller, S. Jacobs, and C. Perkins, “Mobile IP Authentication, Autho-
rization, and Accounting Requirements,” RFC 2977, 2000.

8. A. Hasan, J. Jahnert, S. Zander and B. Stiller, “Authentication, Authorization,
Accounting and Charging for the Mobile Internet,” Mobile Summit, September
2001.

9. C. Yang, M. Hwang, J. Li, and T. Chang, “A Solution to Mobile IP Registration for
AAA,” Springer-Verlag Lecture Notes in Computer Science, vol. 2524, pp. 329–337,
November 2002.

10. A. Hess and G. Schafer, “Performance Evaluation of AAA/Mobile IP Authentica-
tion,” 2nd Polish-German Teletraffic, 2002.

11. H. Kim, D. Choi, and D. Kim, “Secure Session Key Exchange for Mobile IP Low
Latency Handoffs,” Springer-Verlag Lecture Notes in Computer Science, vol. 2668,
pp. 230–238, January 2003.

12. J. Park, E. Bae, H. Pyeon, and K. Chae “A Ticket-based AAA Security Mechanism
in Mobile IP Network,” Springer-Verlag Lecture Notes in Computer Science 2003,
vol. 2668, pp. 210–219, May 2003.

13. H. Jeon, H. Choo, and J. Oh, “IDentification Key Based AAA Mechanism in Mobile
IP Networks,” ICCSA 2004 vol. 1, pp. 765–775, May 2004.

14. H. Jeon, M. Chung, and H. Choo, “On AAA with Extended IDK in Mobile IP
Networks,” ICCSA 2005 vol. 3480, pp. 538–539, May 2005.

Topic 15
Peer-to-Peer and Web Computing

Anne-Marie Kermarrec, Márk Jelasity,
Antony Rowstron, and Henrique Domingos

Topic Chairs

Distributed systems have experienced a shift of scale in the past few years. This
evolution has generated an interest in peer-to-peer systems and resulted in much
interesting work. Peer-to-peer systems are characterized by their potential to
scale due to their fully decentralized nature. They are self-organizing, adapting
automatically to peer arrivals and departures, and are highly resilient to failures.
They rely on a symmetric communication model where peers act both as servers
and clients. As the peer-to-peer concepts and technologies become more mature,
many distributed services and applications relying on this model are envisaged
in the context of large-scale distributed and parallel systems. This topic exam-
ines peer-to-peer technologies, applications, and systems, and also identifies key
research issues and challenges.

Twenty papers were submitted to this topic and six were accepted. These
papers were organized in two sessions. The first one has three papers discussing
peer-to-peer overlay construction, and the second session is devoted to applica-
tions of peer-to-peer overlays.

In “Epidemic-style management of semantic overlays for content-based search-
ing”, the authors presents a proactive epidemic protocol to build semantic over-
lays and cluster peers having similar content. In “Long range contacts in overlay
networks”, the authors propose a protocol to reactively add long range contacts
in an overlay network based only on actual routing requests. The approach en-
ables to tolerate non uniform distribution of the peers in the logical space. In the
paper “Combining the use of clustering and scale-free nature of user exchanges
into a simple and efficient P2P system”, the results of a depth-first search are
used to create links between peers so that resulting neighbours in the overlay are
peers which have successfully cooperated to find results for previous searches.

“AGNO: an adaptive group communication scheme for unstructured P2P net-
works” presents a group notification protocol which operates on an unstructured
peer-to-peer network. In this approach, the results of previous lookups opera-
tions are also used to speed up the notification process. In “Pastis: a highly-
scalable multi-user peer to peer file system”, the authors present the design and
evaluation of a read-write peer-to-peer file sharing system based on the Pas-
try/Past approach. The last paper, entitled “Semantic peer to peer overlays for
publish/subscribe networks”, presents a content-based publish-subscribe system.
A peer-to-peer overlay is built so that peers get connected to neighbours having
similar subscribing patterns.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 1141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Epidemic-Style Management of Semantic Overlays
for Content-Based Searching

Spyros Voulgaris and Maarten van Steen

Vrije Universiteit Amsterdam
Department of Computer Science

De Boelelaan 1081a, 1081HV Amsterdam
{spyros,steen}@cs.vu.nl

Abstract. A lot of recent research on content-based P2P searching for file-
sharing applications has focused on exploiting semantic relations between peers
to facilitate searching. To the best of our knowledge, all methods proposed to
date suggest reactive ways to seize peers’ semantic relations. That is, they rely
on the usage of the underlying search mechanism, and infer semantic relations
based on the queries placed and the corresponding replies received. In this paper
we follow a different approach, proposing a proactive method to build a semantic
overlay. Our method is based on an epidemic protocol that clusters peers with
similar content. It is worth noting that this peer clustering is done in a completely
implicit way, that is, without requiring the user to specify his preferences or to
characterize the content of files he shares.

1 Introduction

File sharing peer-to-peer (P2P) systems have gained enormous popularity in recent
years. This has stimulated significant research activity in the area of content-based
searching. Sparkled by the legal adventures of Napster, and challenged to defeat the
inherent limitations concerning the scalability and failure resilience of centralized sys-
tems, research has focused on decentralized solutions for content-based searching,
which by now has resulted in a wealth of proposals for peer-to-peer networks.

In this paper, we are interested in those group of networks in which searching is
based on grouping semantically related nodes. In these networks, a node first queries its
semantically close peers before resorting to search methods that span the entire network.
In particular, we are interested in solutions where semantic relationships between nodes
are captured implicitly. This capturing is generally achieved through analysis of query
results, leading to the construction of a local semantic list at each peer, consisting of
references to other, semantically close peers.

Only very recently, an extensive study has been published on search methods in
peer-to-peer networks, be they structured, unstructured, or of a hybrid form [1]. This
study reveals that virtually all peer-to-peer search methods in semantic overlay networks
follow an integrated approach towards the construction of the semantic lists, while at the
same time accounting for changes occurring in the set of nodes. These changes involve
the joining and leaving of nodes, as well as changes in a node’s preferences.

The problem we are faced with is that the construction of semantic lists should re-
sult in highly clustered overlay networks. These networks excel for searching content

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1143–1152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1144 Spyros Voulgaris and Maarten van Steen

when nothing changes. However, to handle dynamics requires the discovery and prop-
agation of changes that may happen anywhere in the network. For this reason, overlay
networks should also reflect desirable properties of random graphs and complex net-
works in general [2, 3]. These two conflicting demands generally lead to complexity
when integrating solutions into a single protocol.

Protocols for content-based searching in peer-to-peer networks should separate these
concerns. In particular, we advocate that when it comes to constructing and using se-
mantic lists, these lists should be optimized for search only, regardless of any other
desirable property of the resulting overlay. Instead, a separate protocol should be used
to handle network dynamics, and provide up-to-date information that will allow proper
adjustments in the semantic lists (and thus leading to adjustments in the semantic over-
lay network itself).

In this paper we propose such a two-layered approach for managing semantic over-
lay networks. The top layer contains a gossip-based protocol that strives to optimize
semantic lists for searching only. The bottom layer offers a fully decentralized service
for delivering, in an unbiased fashion, information on new events, similar in nature to
the peer-sampling service recently described in [4]. Again, this service is implemented
using a gossip-based protocol (which, by the way, is very different from those described
in [4]).

Our main contribution is that we demonstrate that this two-layered approach leads to
high-quality semantic overlay networks. We substantiate our claims through extensive
simulations using traces collected from the eDonkey file-sharing network [5].

The paper is organized as follows. We start with presenting our protocols in the
next section, followed by describing our experimental setup in Section 3. Performance
evaluation is discussed in Section 4, followed by an analysis of consumed bandwidth in
Section 5. We conclude with a discussion in Section 6.

2 The Protocol

2.1 Outline

In our model each peer maintains a dynamic list of semantic neighbors, called its se-
mantic view, of fixed small size �. A peer searches for a file by first querying its semantic
neighbors. If no results are returned, the peer then resorts to the default search mecha-
nism.

Our aim is to organize the semantic views so as to maximize the hit ratio of the first
phase of the search. We will call this the semantic hit ratio. We anticipate that the prob-
ability of a neighbor satisfying a peer’s query is proportional to the semantic proximity
between the peer and its neighbor. We aim, therefore, at filling a peer’s semantic view
with its � semantically closest peers out of the whole network.

We assume the existence of a semantic proximity function S(FP,FQ), which given
the file lists FP and FQ of peers P and Q, respectively, provides a numeric metric of
the semantic proximity between the two peers. The more semantically similar the file
lists of P and Q are, the higher the value of S(FP,FQ). We are essentially seeking to
pick peers Q1,Q2, ...,Q� for peer P’s semantic view, such that the sum ∑�

i=1 S(P,Qi) is
maximized.

Epidemic-Style Management of Semantic Overlays for Content-Based Searching 1145

We assume that the semantic proximity function exhibits some sort of transitivity,
in the sense that if P and Q are semantically similar to each other, and so are Q and
R, then some similarity between P and R is likely to hold. Note that this transitivity
does not consist a hard requirement for our system. In its absence, semantically related
neighbors are discovered based on random encounters. If it exists though, it is exploited
to dramatically enhance efficiency.

2.2 Design Motivation

From our previous discussion, we are seeking a means to construct, for each node, a
semantic view from all the current nodes in the system. There are two sides to this
construction.

First, based on the assumption of transitivity in the semantic proximity function S,
a peer should explore the semantically close peers that its neighbors have found. In
other words, if Q is in P’s semantic view, and R is in Q’s view, it makes sense to check
whether R is also semantically close to P. Exploiting the transitivity in S should then
quickly lead to high-quality semantic views.

Second, it is important that all nodes are examined. The problem with following
only transitivity is that we eventually will be searching only in a single semantic clus-
ter. Similar to the special “long” links in small-world networks [6], we need to establish
links to other semantically-related clusters. Likewise, when new nodes join the network,
they should easily find an appropriate cluster to join. These issues call for a randomiza-
tion when selecting nodes to inspect for adding to a semantic view.

In our design we decouple these two aspects by adopting a two-layered set of gossip
protocols, as can be seen in Figure 1. The lower layer, called CYCLON [7], is respon-
sible for maintaining a connected overlay and for periodically feeding the top-layer
protocol with nodes uniform randomly selected from the network. In its turn, the top-
layer protocol, called VICINITY, is in charge of focusing on discovering peers that are
semantically as close as possible, and of adding these nodes to the semantic views.

Fig. 1. The two-layered framework.

2.3 Gossiping Framework

All information exchange between peers is carried out by means of gossip items, or
simply items. A gossip item created by peer P is a tuple containing the following three
fields:

1146 Spyros Voulgaris and Maarten van Steen

1. P’s contact information (network address and port)
2. The item’s creation time
3. Application-specific data; in this case P’s file list

Each node maintains locally a number of items per protocol, called the protocol’s
view. This number is the same for all items, and is called the protocol’s view size (cv for
VICINITY, and cc for CYCLON).

Figure 2 presents a generic skeleton forming the basis for both VICINITY and CY-
CLON gossiping protocols. Each node runs two threads. An active one, which periodi-
cally wakes up and initiates communication to another peer, and a passive one, which
responds to the communication initiated by another peer.

The functions appearing in boldface, namely selectPeer(), selectItems-
ToSend(), and selectItemsToKeep() form the three hooks of this skeleton.
Different protocols can be instantiated from this skeleton by implementing specific poli-
cies for these three functions, in turn, leading to different emergent behaviors.

The number of items exchanged in each communication is predefined, and is called
the protocol’s gossip length (gv for VICINITY, and gc for CYCLON).

/*** Active thread ***/
// Runs periodically every T time units
q = selectPeer()
myItem = (myAddress, timeNow, myFileList)
buf_send = selectItemsToSend()
send buf_send to q
receive buf_recv from q
view = selectItemsToKeep()

/*** Passive thread ***/
// Runs when contacted by some peer
receive buf_recv from p
myItem = (myAddress, timeNow, myFileList)
buf_send = selectItemsToSend()
send buf_send to p
view = selectItemsToKeep()

Fig. 2. Epidemic protocol skeleton.

For VICINITY, we chose the policies shown in Figure 3(a). We note that the RAN-
DOM protocol resembles T-Man [8]. The only difference is that in T-Man peers ex-
change their whole views, instead of just a subset of them. As we discuss below, AG-
GRESSIVELY BIASED will turn out to be an excellent choice for forming semantic clus-
ters.

Note that selectItemsToKeep() takes into account CYCLON’s cache too in
selecting the best cv items to keep. This is the default link between the two layers.

For CYCLON, we made the choices shown in Figure 3(b). CYCLON is a protocol we
previously developed, and which is extensively described and analyzed in [7].

Effectively, what selectItemsToSend() and selectItemsToKeep() es-
tablish is an exchange of some neighbors between the caches of the two communicating

Epidemic-Style Management of Semantic Overlays for Content-Based Searching 1147

Hook Description
selectPeer() Select peer from the item with the oldest timestamp
selectItemsToSend()

RANDOM Randomly select gv items
BIASED Select the gv items of nodes semantically closest to the selected peer

AGGRESSIVELY BIASED Select the gv items of nodes semantically closest to the selected peer
from the VICINITY view and the CYCLON view

selectItemsToKeep() Keep the cv items of nodes that are semantically closest, out of items in
its current view, items received, and items in the local CYCLON view. In
case of multiple items from the same node, keep the one with the most
recent timestamp.

(a)

Hook Description
selectPeer() Select peer from the item with the oldest timestamp
selectItemsToSend():

active thread Select own item and randomly gc−1 others from the CYCLON view
passive thread Randomly select gc items from the CYCLON view

selectItemsToKeep() Keep all gc received items, replacing (if needed) the gc ones selected to
send. In case of multiple items from the same node, keep the one with
the most recent timestamp.

(b)

Fig. 3. The chosen policies for (a) the VICINITY protocol and (b) the CYCLON protocol.

peers. In addition to that, the selected peer’s item in the initiator’s cache is always re-
moved, but the initiator’s (new) item is always placed in the selected peer’s cache.

CYCLON creates an overlay with completely random, uncorrelated links between
nodes, such that the in-degree (number of incoming links) is practically the same for
each node. Importantly, it can achieve this property fairly quickly even when a small
number of items (such as 3 or 4) is exchanged in each communication, even for large
caches of several dozens of items. Therefore, it is ideal as a lightweight service that can
offer a node a randomly selected peer from the current set of nodes.

3 Experimental Environment and Settings

All experiments presented here have been carried out with PeerSim [9], an open source
simulator in Java for P2P protocols, developed at the University of Bologna.

To evaluate our protocol, we used real world traces from the eDonkey file sharing
system [10], collected by Le Fessant et al. in November 2003 [5]. A set of 12,000 world-
wide distributed peers along with the files each one shares is logged in these traces. A
total number of 923,000 unique files is being collectively shared by these peers.

In order to simplify the analysis of our system’s emergent behavior, we determined
equal gossiping periods for both layers. More specifically, once every T time units
each node initiates first a gossip exchange with respect to its bottom (CYCLON) layer,
immediately followed by a gossip exchange at its top (VICINITY) layer. Note that even
though nodes initiate gossiping at universally fixed intervals, they are not synchronized
with each other.

1148 Spyros Voulgaris and Maarten van Steen

Even though both protocols are asynchronous, it is convenient to introduce the no-
tion of cycles in order to study their evolutionary behavior with respect to time. We
define a cycle to be the time period during which each node has initiated gossiping ex-
actly once. Since each node initiates gossiping periodically, once every T time units, a
cycle is equal to T time units.

A number of parameters had to be set for these experiments, listed here.

Proximity Function S. We chose a rather simple, yet intuitive proximity function to
test our protocol with. The proximity S between two nodes P and Q, with file lists
FP and FQ respectively, is defined as the number of files that lay in both lists. More
formally: S(FP,FQ) = |FP

⋂
FQ|. As stated in 2.1, the semantically closer two nodes

are, the higher the value of S is. Note that our goal was to demonstrate the power
of our gossiping protocol in forming a semantic network based on a proximity
function. Even though much richer proximity functions could have been applied, it
was out of the scope of this paper.

Semantic View Size �. In all experiments the semantic view consisted of the 10 se-
mantically closest peers in the VICINITY cache. As shown in [11], a semantic view
size of � = 10 provides a good tradeoff between the number of nodes contacted in
the semantic search phase and the expected semantic hit ratio.

Cache size. For the cache size selection, we are faced with the following tradeoff for
both protocols. A large cache size provides higher chances of making better item se-
lections, and therefore accelerate the construction of (near-)optimal semantic views.
On the other hand, the larger the cache size, the longer it takes to contact all peers
in it, resulting in the existence of older—and therefore more likely to be invalid—
links. Of course, a larger cache also takes up more memory, although this is gener-
ally not a significant constraint nowadays.
Considering this tradeoff, and after a set of experiments that cannot be presented
due to space limitations, we fixed the cache size to 100 as a basis to compare dif-
ferent configurations. When both Vicinity and Cyclon are used, they are allocated
50 cache entries each.

Gossip length. The gossip length, that is, the number of items gossiped per gossip
exchange per protocol, is a crucial factor for the amount of bandwidth used. This
becomes of greater consequence, considering that an item carries the file list of
its respective node. So, even though exchanging more items per gossip exchange
allows information to disseminate faster, we are inclined to keep the gossip lengths
as low as possible, as long as the system’s performance is reasonable.
Again, for the sake of comparison, we fixed the total gossip length to 6 items. When
both Vicinity and Cyclon are used, each one is assigned a gossip length of 3.

Gossip period T . The gossip period is a parameter that does not affect the protocol’s
behavior. The protocol evolves as a function of the number of messages exchanged,
or, consequently, of the number of cycles elapsed. The gossip period only affects
how fast the protocol’s evolution will take place in time. The single constraint is that
the gossip period T should be adequately longer than the worse latency throughout
the network, so that gossip exchanges are not favored or hindered due to latency
heterogeneity. A typical gossip period for our protocol would be 1 minute, even
though this does not affect the following analysis.

Epidemic-Style Management of Semantic Overlays for Content-Based Searching 1149

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500

av
g

co

m
m

on
 fi

le
s

pe
r

se
m

. n
ei

gh
bo

r

cycles

Optimal value
Random Vicinity

Random Vicinity + Cyclon
Biased Vicinity + Cyclon

Aggr. Biased Vicinity + Cyclon

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 600 700 800 900 1000 1100

av
g

co

m
m

on
 fi

le
s

pe
r

se
m

. n
ei

gh
bo

r

cycles

Optimal value
Random Vicinity

Random Vicinity + Cyclon
Biased Vicinity + Cyclon

Aggr. Biased Vicinity + Cyclon

(b)

Fig. 4. (a) Convergence of sem. views’ quality. (b) Evolution of semantic views’ quality for a
sudden change in all users’ interests at cycle 550.

4 Performance Evaluation

4.1 Convergence Speed

To evaluate the convergence speed of our algorithm, we test how quickly it finds nodes
having files in common. The proximity function’s objective is for each node to discover
the � peers that have the most common files with it. Therefore, a good metric of the
progress towards this goal is the average number of common files between a node and
each one of its semantic neighbors. From our traces, we measured that in the optimal
organization, this metric has a value of 3.88.

Figure 4(a) shows this metric as a function of the cycle for four distinct configura-
tions. In favor of comparison fairness, the cache size and gossip length are 50 and 3,
respectively, in each layer, for all configurations. The only exception is the first config-
uration, which has a single layer. In this case, the cache size and gossip length are 100
and 6, respectively. All experiments start with each node knowing 5 random other ones,
simply to ensure initial connectivity in a single connected cluster.

In the first configuration, RANDOM VICINITY is running stand-alone. The progress
of the semantic views’ quality is rather steep in the first 100 cycles, but as nodes gradu-
ally concentrate on their very own neighborhood, getting to know new, possibly better
peers becomes rare, and progress slows down.

In the second configuration, a two-layered approach consisting of RANDOM VICIN-
ITY and CYCLON is running. The slow start compared to stand-alone VICINITY is a
reflection of the smaller VICINITY cache (3 as opposed to 6). However, the two-layered
approach’s advantage becomes apparent later, when CYCLON keeps feeding the RAN-
DOM VICINITY layer with new, uniform randomly selected nodes, maintaining a higher
progress rate, and outperforming stand-alone VICINITY in the long run.

In the third configuration, BIASED VICINITY demonstrates its contribution, as
progress is significantly faster in the initial phase of the experiment. This is to be ex-
pected, since the items sent over in each BIASED VICINITY communication, are the
ones that have been selected as the semantically closest to the recipient.

1150 Spyros Voulgaris and Maarten van Steen

Finally, in the fourth configuration, AGGRESSIVELY BIASED VICINITY keeps the
progress rate high even when the semantic views are very close to their optimal state.
This is due to the broad random sampling achieved by this version. In every commu-
nication, a node is exposed to the best peers out of 50 random ones, in addition to 50
peers from its neighbor. In this way, semantically related peers that belong to separate
semantic clusters quickly discover each other, and subsequently the two clans merge
into a single cluster in practically no time.

4.2 Adaptivity to Changes of User Interests

In order to test our protocol’s adaptivity to dynamic user interests, we ran experiments
where the interests of some users changed. We simulated the interest change by picking
a random pair of nodes and swapping their file lists in the middle of the experiment.
At that point, these two nodes found themselves with semantic views unrelated to their
(new) file lists, and therefore had to gradually climb their way up to their new semantic
vicinity, and replace their useless links by new, useful ones.

Once again, we present the worst case —practically unrealistic— scenario, of all
nodes changing interests at once, at cycle 550 of the experiment of figure 4(a). The
evolution of the quality of the semantic views (using the metric introduced in 4.1) after
the moment when all nodes change interests, is presented in figure 4(b). The faster con-
vergence compared to figure 4(a) is due to the fact that views are already fully filled up
at cycle 550, so nodes have more choices to start looking for good candidate neighbors.

Even though this scenario is very unrealistic, it demonstrates the power of our pro-
tocol in adapting to even massive scale changes. This adaptiveness is due to the priority
given to newer items in selectItemsToKeep(), which allows a node’s items with
updated semantic information to replace older items of that node fast.

4.3 Effect on Semantic Hit Ratio

In order to further substantiate our claim that semantic based clustering endorses P2P
searching, we conducted the following experiments. A randomly selected file was re-
moved from each node, and the system was run considering proximity based on the
remaining files. Then, each node did a search on that special file. We measured the
semantic hit ratio to be over 36% for a semantic view of size 10.

Figure 5 presents the semantic hit ratio as a function of the cycle. Three experi-
ments are shown, with gossip lengths for both layers set to 1, 3, and 5. Note that the
hit ratio was autonomously computed in each cycle, without affecting the mainstream
experiment’s state.

5 Bandwidth Considerations

Due to the periodic behavior of gossiping, the price of having rapidly converging pro-
tocols may inhibit a high usage of network resources (i.e., bandwidth).

In each cycle, a node gossips on average twice (exactly once as an initiator, and on
average once as a responder). In each gossip 2 · (gv + gc) items are transferred to and
from the node, resulting in a total traffic of 4 · (gv + gc) items for a node per cycle. An
item’s size is dominated by the file list it carries. A single file is identified by its 128-
bit (16-byte) MD4 hash value. Analysis of the eDonkey traces [5] revealed an average

Epidemic-Style Management of Semantic Overlays for Content-Based Searching 1151

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50

se
m

an
tic

 h
it

ra
tio

 (
%

)

cycles

gossip length 5
gossip length 3
gossip length 1

Fig. 5. Semantic Hit Ratio, for gossip lengths 1, 3, and 5 in each layer.

number of 100 files per node (more accurately, 99.35). Therefore, a node’s file list takes
on average 1,600 bytes. So, in each cycle, the total number of bytes transferred to and
from the node is 6,400 · (gv + gc).

For gv = gc = 3, the average amount of data transferred to and from a node in one
cycle is 38,400 bytes, while for gv = gc = 1, it is just 12,800. Considering the gossip
period T equal to 1 minute, this translates to an average bandwidth of 640 and 213
bytes per second, respectively. With gv = gc = 3 the system adapts a little faster to
changes, but if bandwidth is of high concern, gv = gc = 1 can also provide very good
results. Note that with a period of 1 minute, in the first 8 minutes we reach 85% of the
optimal semantic hit ratio, having roughly 30% of all requests handled by the semantic
neighbors.

We consider such a bandwidth consumption to be rather small, if not negligible
compared to the bandwidth used for the actual file downloads. It is, in fact, a small
price to pay for relieving the default search mechanism from about 35% of the search
load.

6 Discussion

To the best of our knowledge, all earlier work on implicit building of semantic overlays
relies on using heuristics to decide which of the peers that served a node recently are
likely to be useful again in future queries [11–13].

However, all these techniques inhibit a weakness that challenges their applicability
to the real world. They all assume a static network, free of node departures, which
is a rather strong assumption considering the highly dynamic nature of file-sharing
communities. Also, it is not clear how they perform in the presence of dynamic user
preferences.

Regarding proximity-based P2P clustering, our work comes close to T-Man[8].
However, a key difference is that T-Man assumes continuous proximity metrics. That
is, every node can point any other node to the right direction. This is not true in the
problem we faced, i.e. in the case of completely unrelated peers. We dealt with it by
harnessing CYCLON’s randomness. This renders our solution more generic. Moreover,
T-Man assumes a preconstructed almost random graph to start with. We make no such
assumptions.

1152 Spyros Voulgaris and Maarten van Steen

Another key difference is that T-Man aims at fixing an overlay’s links to the optimal
ones, that is, the ones that minimize a given energy function. Our work aims at continu-
ously exchanging links, so that the optimal ones become known relatively soon to each
node, but do not remain static links of this node.

Concluding, in this paper we introduced the idea of applying epidemics to build and
dynamically maintain semantic lists in a large-scale file-sharing system. Specifically,
we showed that using a two-layered approach combining two epidemic protocols is the
appropriate way to build such a service. Finally, we presented a fast converging, highly
adaptable, yet lightweight epidemic-style solution to this problem.

Acknowledgements
We would like to specifically thank Fabrice Le Fessant for providing us with the eDon-
key2000 traces[5] he gathered in November 2003.

References

1. J. Risson and T. Moors. Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Technical Report UNSW-EE-P2P-1-1, University of New South Wales, Sydney,
Australia, September 2004.

2. Reka Albert and Albert-Laszlo Barabasi. Statistical Mechanics of Complex Networks. Re-
views of Modern Physics, 74(1):47–97, January 2001.

3. M.E.J. Newman. Random Graphs as Models of Networks. In S. Bornholdt and H. G. Schus-
ter, editors, Handbook of Graphs and Networks: From the Genome to the Internet, chapter 2.
John Wiley, New York, NY, 2002.

4. M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The Peer Sampling Service:
Experimental Evaluation of Unstructured Gossip-Based Implementations. In Middleware
2004, volume 3231 of Lect. Notes Comp. Sc., Berlin, October 2004. ACM/IFIP/USENIX,
Springer-Verlag.

5. Fabrice Le Fessant, S. Handurukande, Anne-Marie Kermarrec, and Laurent Massoulié. Clus-
tering in peer-to-peer file sharing workloads. In 3rd International Workshop on Peer-to-Peer
Systems (IPTPS), San Diego, USA, February 2004.

6. Duncan J. Watts. Small Worlds, The Dynamics of Networks between Order and Randomness.
Princeton University Press, Princeton, NJ, 1999.

7. Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Inexpensive membership man-
agement for unstructured p2p overlays. Journal of Network and Systems Management, To
appear in 2005.

8. Márk Jelasity and Ozalp Babaoglu. T-Man: Fast gossip-based construction of large-scale
overlay topologies. Technical Report UBLCS-2004-7, University of Bologna, Department
of Computer Science, Bologna, Italy, May 2004.

9. Peersim. http://peersim.sourceforge.net/.
10. edonkey. http://www.edonkey2000.com.
11. S. Handurukande, A.-M. Kermarrec, F. Le Fessant, and L. Massoulié. Exploiting seman-

tic clustering in the edonkey p2p network. In 11th ACM SIGOPS European Workshop
(SIGOPS), Leuven, Belgium, September 2004.

12. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using interest-based
locality in peer-to-peer systems. In INFOCOM Conference, 2003.

13. S. Voulgaris, A. Kermarrec, L. Massoulié, and M. van Steen. Exploiting semantic proxim-
ity in peer-to-peer content searching. In 10th International Workshop on Future Trends in
Distributed Computing Systems (FTDCS 2004), Suzhu, China, November 2001.

Long Range Contacts in Overlay Networks�

Filipe Araújo and Lúıs Rodrigues

Universidade de Lisboa, Departamento de Informática, Faculdade de Ciências
Campo Grande, Edif́ıcio C6, 1749-016 Lisboa, Portugal

{filipius,ler}@di.fc.ul.pt

Abstract. In this paper we present and evaluate a novel mechanism,
called Hop Level, that creates and maintains long range contacts (LRCs)
in overlay networks. The Hop Level mechanism owns the following char-
acteristics: i) lazy creation of the LRCs, ii) support for unbalanced
node distribution, iii) support for multidimensional spaces and iv) near-
optimal path lenght/node degree trade-off. These characteristics make
Hop Level specially suited for overlay networks that support range data
queries (as opposed to distributed hash tables that only support exact
queries) with one or more dimensions. Furthermore, and unlike previous
similar work, Hop Level can handle churn very well, because it postpones
creation of the LRCs until it is necessary. In this way, nodes that have
short lives do not overload the network with their state update requests.

1 Introduction

Distributed hash tables (DHTs) have recently emerged as an important com-
ponent for distributed systems. A DHT is a dictionary that outputs values in
exchange of keys. A common aspect to the most well-known DHTs [6, 7, 9, 13,
14, 16, 17] is that they operate in the application layer as an overlay network.
To overcome the limitations inherent to DHTs, some researches have proposed
a shift to a more powerful paradigm: the distributed storage systems [4, 5, 8]
(DSSs). Unlike DHTs that only perform exact queries, DSSs allow efficient range
queries. As a consequence, when compared to a DHT, the design of a DSS is more
complex. First, in a DSS, we cannot assume that data is uniformly distributed in
space. Second, we cannot assume that entrance and departure patterns of data
items will favor balancing. On the contrary, DHTs were based on the assumption
that consistent hashing would result in a perfect balance of node identifications
and data items.

Often, in overlay networks, it is possible to distinguish between two different
types of contacts: “nearby” contacts, forming a kind of connected lattice between
nodes that have close virtual identifications, and “long range contacts” (LRCs)
between nodes that have “distant” virtual node identifications. While the former
type of contacts may be important in certain overlays, to ensure connectedness
and routing convergence, short path lengths actually depend on the latter type
� This work was partially supported by the LaSIGE and by the FCT project INDIQoS

POSI/CHS/41473/2001 via POSI and FEDER funds.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1153–1162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1154 Filipe Araújo and Lúıs Rodrigues

of contacts. In fact, it is the capability to “jump” over many close nodes in a
single hop that makes it possible to achieve short path lengths. Therefore, in this
paper, we present the Hop Level mechanism, which creates and maintains LRCs
in overlay networks. The Hop Level mechanism can be used in many different
overlay networks to reduce path lengths, including DHTs and DSSs. Neverthe-
less, it is particularly well suited to DSSs, because it can cope with unbalanced
distribution of nodes and it supports single as well as multidimensional data.
We believe that this is one of the most innovative aspects of Hop Level, because
most overlay networks are tied to unidimensional address spaces, where nodes
must be numerically or alphabetically ordered (e.g., SkipNets [6]).

Since node degree and diameter of a network cannot be arbitrarily and si-
multaneously reduced, the trade-off between these two metrics is often used as
a fundamental efficiency measure of an overlay network. For an O(1) node de-
gree, the expected diameter can be at best O(log n), while for an O(log n) node
degree, the expected diameter cannot be shorter than O(log n/ log logn) [7], for
an n-node network. Given this limitation, path lengths of Hop Level achieve a
nearly optimal trade-off with node degree. Furthermore, unlike existing overlay
networks that implement DHTs and DSSs, when a node using the Hop Level
mechanism enters the network, it postpones the creation of the LRcs to simplify
the entrance. Later, it progressively creates the LRCs as they are needed to route
real messages. In fact, lazy creation of the LRCs is one of the most significant
aspects of Hop Level, as this reduces control traffic with only a minor effect on
routing performance. In this way, behavior of Hop Level under churn is very
good.

The remainder of the paper is organized as follows: Section 2 states the prob-
lem we are solving. Section 3 overviews previous work. Our long range contact
mechanism is described and evaluated, respectively in Sections 4 and 5. Section 6
concludes the paper.

2 Problem Statement

Throughout this paper we will consider that routing convergence is ensured by
nearby contacts already existing in the overlay network, e.g., as in [10] or [9].
Although these are examples of two-dimensional networks (of which we tested
the Delaunay triangulation of [10]), there is however no restriction to the number
of dimensions of the overlay network. A crucial point here is that distribution of
nodes does not need to follow any specific pattern.

Hence, we will consider the following conditions: i) nodes are organized into
a multidimensional underlying overlay network having only nearby contacts; and
ii) identification of nodes is arbitrary (as a result, distribution of nodes in space
may be unbalanced). The goal of condition ii is to maintain locality, by pre-
venting arbitrary conversion of node addresses from one space of identifications
to another, e.g., by an hash function. There are many practical examples where
this restriction holds. In a DSS, nodes may receive their identification according
to the data items that they store. In [4], the overlay structure directly reflects

Long Range Contacts in Overlay Networks 1155

the contents of the data, which is organized in a sequential order. In this way,
it is possible to make range queries efficiently. On the contrary, hashing data to
obtain some balance in a different identification space would defeat this goal.
Another example where the condition ii holds occurs in systems where identifi-
cation of a node bears some relation with its physical location, like in [3] or when
using landmark ordering [13].

Furthermore, we will consider the use of a routing scheme where i) the prepro-
cessing algorithm can only collect information of O(1) nearby peers and O(log n)
distant peers per node and ii) the routing algorithm will select, among the for-
warding node’s contacts (either short or long range), the one which is closest to
destination in terms of Euclidean distances1. Given these conditions, our goal
is to design a mechanism that creates and maintains a set of LRCs at each
node such that routing convergence is guaranteed with O(log n) expected path
lengths despite non-uniform node distribution. Moreover, each node should store
O(log n) LRCs and this number must not depend on the size of the virtual identi-
fication space, but only on the nodes effectively existing in the system. Balancing
the workload among the peers in the DSS is not a goal of this paper; such issue
is orthogonal to our work and is already tackled in previous work, like [4].

Before presenting the Hop Level mechanism we will overview previous re-
search in the topic of overlay networks to capture the relevant features that
should be owned by efficient sets of LRCs.

3 Related Work

There is a huge body of work related with overlay networks and, in particu-
lar, with DHTs. In some DHTs it is possible to do an explicit separation be-
tween nearby and long range contacts (e.g., in DHTs based on a ring). However,
there are also many other systems where this separation is only implicit or non-
existent. In constrat to the previous cases, CAN [13] exhibits no LRCs but only
short range contacts, thus having longer path lengths. To overcome this limita-
tion, Xu and Zhang [17] proposed a mechanism called “expressways for CAN”
that augments basic CAN with LRCs. This work and others, like [9] and [11] are
very similar in spirit to the Hop Level mechanism.

All the DHTs referred before assume a balanced distribution of nodes in
space. Unlike these, LAND [1] copes with unbalanced distribution of nodes, but
it does not meet the conditions stated in Section 2, because it hashes identifiers of
objects. SkipNet [6] was also designed from scratch to cope with the unbalanced
use of identification space. In fact, SkipNet is more appropriate to support a DSS,
because it supports range queries. However, the identification space of a SkipNet
is unidimensional and generalization to higher-dimensional spaces does not seem
trivial. Unlike SkipNet, [4, 5, 8] have explicit support for complex load balancing
mechanisms without impairing efficient range queries. Of these, only Mercury [5]
1 There is no loss of generality in assuming Euclidean distances, as other metrics could

also be used if more appropriate to the structure of the lattice, e.g., Manhattan
distance or unidimensional virtual identification distance.

1156 Filipe Araújo and Lúıs Rodrigues

supports multidimensional range queries. However, Mercury requires a different
data structure (a ring of nodes) for each queriable attribute (including a copy of
the data). When compared to these systems, support of multidimensional range
queries is inherent to the Hop Level mechanism and does not need to be mapped
to multiple unidimensional queries.

4 Hop Level LRCs Mechanism

We now describe our proposal to build LRCs in unbalanced overlays. Using our
Hop Level mechanism, LRCs are established automatically whenever a message
goes through b consecutive hops. Consider, for instance, that some node F is
forwarding a message m to node N1 originated at node S and destined to node
D. If node F realizes that N1 will be the b-th hop of m it triggers the creation of a
LRC from S to N1, denoted by S

1→ N1. To do this F sends a control message to
S. The process is repeated from N1 onwards: if after b hops, message m reaches
N2, N1 will create a LRC to N2, N1

1→ N2, and so on. Let us call these LRCs,
level-1 LRCs. If the message path is very long, it may happen that a sequence
of b level-1 LRCs occurs, for instance: S 1→ N1, N1

1→ N2, . . ., Nb−1
1→ Nb. In

this case, a new LRC from S directly to Nb should be created. This new LRC,
S

2→ Nb, is one level above of the previous ones. This mechanism should be
applied recursively for all levels. Hence, a LRC of level-l jumps over bl hops.

To bound the number of LRCs per node, we limit the number of LRCs that
exist in each level. This allows the number of LRCs to grow with the size of the
network. The shape of this growth is evaluated in Section 5.

4.1 Algorithm

Our implementation of Hop Level algorithm requires a minimum of three vari-
ables per level l to be carried in each message m: the number of hops, nhm[l], the
node that may receive a new LRC of that level, sm[l], and whether this node has
space for an additional LRC, am[l]. Whenever level counter nhm[l − 1] reaches
the limit b, a new LRC, starting at sm[l] should be created. To conserve space
we do not discuss signaling cost here, but it is possible to leave some of this
temporary information at the nodes to shorten messages.

When a forwarding node uses a LRC of level-l to send a message, it must
check the LRC used by the previous hop node, say level-p. If l > p, neither one
of the LRCs that preceded this hop can be used to create new LRCs (e.g., if
a level-3 LRC is being taken after a previous level-2 LRC). Now, consider that
message m is going to be sent along its b-th consecutive hop of level-l to node
N . In this case, forwarding node F sends a control message to the node that
initiated the sequence of level-l, prompting it to create a LRC of level-(l + 1) to
node N . Then, node F sets the number of hops of level-l to 0 and increments
the number of hops of level(l+1) by 1. Should this substituting hop become the
b-th hop of level-(l+1), the same process is repeated for level-(l+1), and so on,
until a level with fewer than b hops is reached.

Long Range Contacts in Overlay Networks 1157

Algorithm 1 Hop Level algorithm.
{Executed at node F when forwarding m to node N}
{Control information carried in message m:}

{maxm — highest valid level; pm — level of LRC used to reach F ;}
{∀k ∈ [0, maxm] : nhm[k], sm[k], am[k] — resp., number of hops, first node and whether there

are available slots in the first node for level-k;}
1: l ← level of LRC from F to N (F

l→ N)
2: if pm = ⊥ or pm < l then
3: maxm ← l + 1; lim ← maxm

4: else
5: lim ← pm

6: end if
7: for all k ∈ {l, . . . , lim − 1} do
8: sm[k + 1] ← F ; am[k + 1] ← aF [k + 1]; nhm[k] ← 0
9: end for
10: nhm[l] ← nhm[l] + 1
11: while nhm[l] ≥ b do
12: nhm[l] = 0
13: if am[l + 1] > 0 then

14: instruct sm[l + 1] to create LRC sm[l + 1]
l+1→ N

15: end if
16: l ← l + 1;
17: if maxm == l then
18: maxm ← maxm + 1; nhm[maxm − 1] ← 0
19: sm[maxm] ← sm[maxm − 1]; am[maxm] ← am[maxm − 1]
20: end if
21: nhm[l] ← nhm[l] + 1
22: end while

To implement this algorithm, messages must carry the level pm of the LRC
used by the previous hop to reach F , and an indication of the highest level of the
array that contains valid information, maxm. Each node F , when forwarding the
message m to N , executes Algorithm 1.aF [k] is a boolean variable that indicates
whether F has slots available at level k to store additional LRCs. If F is the
source of the message, F = S, it is necessary to set previous level pm ← ⊥. In this
case, the execution of the algorithm will initialize maxm ← l+1, sm[max]← S,
am[max]← aS [max] and nhm[max− 1]← 0.

To maintain the LRCs evenly distributed in face of membership changes, we
periodically delete the least recently used LRC of some randomly selected levels.
In our experiments, path lengths did exhibit low sensitivity to variations of the
deletion period. Nodes should also purge hanging LRCs that point to neighbors
that left. To do this, nodes can send periodic beacons to their neighbors. Al-
ternatively, we can trade this beacon traffic by latency, by using, again, a lazy
approach. In this latter solution, nodes only detect that a LRC is hanging when
they try to use it. For the highest churn rates we tested in Section 5, when using
a lazy apprach, 13.3% of the messages tried to follow hanging LRCs. This figure
goes down to 1.2% for the lowest churn rate.

5 Evaluation

Experiment Settings. In this section we experimentally evaluate Hop Level with
b = 2. Most experiments, including the comparison with eCAN-like mechanism
(to be presented ahead) use a Delaunay triangulation as the underlying lat-

1158 Filipe Araújo and Lúıs Rodrigues

tice [10]. However, for benchmarking purposes we have also used a mapping of
a two-dimensional space into a unidimensional ring. In our experiments we eval-
uate the following aspects: i) the behavior of Hop Level, when different limits
for LRCs by level are used; this includes knowing the distribution of the LRCs
by the levels; ii) the behavior of Hop Level when compared to the eCAN-like
mechanism, both in balanced and extremely unbalanced scenarios; iii) the be-
havior of Hop Level in a ring; iv) the cost of the bootstrap mechanism of Hop
Level and, finally; v) the behavior of Hop Level in dynamic settings, including
settings with strong membership variation, i.e., under churn.

In the tests, arbitrary pairs of nodes exchange a large number of messages
in networks with sizes ranging from 100 to 50, 000 nodes. To route the messages
we have used the greedy routing algorithm, because it has good performance
and it works both in the underlying lattice and with LRCs, without requiring
any extensions. Furthermore, it agrees to the conditions of Section 2. Hence,
next hop is always the neighbor (connected by a short or long range contact)
closest to destination. To let Hop Level LRC scheme converge, and depending
on the network size, we routed up to 1, 000, 000, 000 different messages and only
used the final 3000 paths in the evaluation of path lengths. Nevertheless, we also
show that our mechanism achieves good routing performance much earlier than
that. To test unbalanced distributions of nodes we used a truncated Gaussian
bivariate distribution with standard deviations of 0.01 in a [0, 1]× [0, 1] square.

Number of LRCs per Level. The first aspect that we evaluate is the performance
achieved by different configurations of the Hop Level mechanism. The goal is
to determine the limit for the number of LRCs per level that ensures the most
reasonable compromise between path lengths and node degrees. Figures 1(a)
and 1(b) respectively show the average path lengths (in number of hops) and
the average number of LRC used by each node for different network sizes and
for different configurations of the Hop Level mechanism: with 1, 2, 4, 6 and 8
LRCs per level. We can see that all configurations achieve an approximately log-
arithmic/logarithmic trade-off (a logarithmic growth is represented by a straight
line). We believe that this is quite an interesting aspect, because it minimizes
the need for manual configuration of parameters. In the rest of our experiments
we set the limit to 6 LRCs per level. Figure 1(c) shows how many LRCs exist
on the entire network and the average length of those LRCs for each hop level.
To do this evaluation, we have used a 50, 000 node network with a balanced
distribution of nodes, because a balanced distribution allows to reason in terms
of distance. From the growth of the number of levels it is possible to determine
the growth of the number of LRCs per node. Given that the distance growth
from one level to the next is approximately exponential this figure points to the
conclusion that the number of levels is approximately logarithmic.

Comparison with “eCAN-Like” and Hop Level in a Ring. To offer some compar-
ative measurement, we ran our scheme against a benchmark mechanism called
“eCAN-like”. This benchmark results from an adaptation of the eCAN [17] log-
arithmic/logarithmic node degree/path length mechanism (whose applications

Long Range Contacts in Overlay Networks 1159

(a) Average path lengths (b) Average number of LRCs

(c) Distribution of LRCs (d) Hop Level vs. eCAN-like

Fig. 1. Path length and number of LRCs.

most closely resemble those of our own algorithm). Although we made some
simplifications to the original eCAN, we believe that our implementation of ex-
pressways mimics the eCAN LRC mechanism with enough accuracy to allow
a fair comparison. The idea in eCAN-like is to make a first level division of
the entire space in four big squares. Each node keeps LRC to the two neigh-
boring squares. Then, the four big squares are further divided in other four
smaller squares. This time, nodes inside squares have a total number of four
LRC (above, below, right and left). This process is repeated for as many levels
as wanted. In our context, we fixed the number of levels to 8, in a total of 30
LRCs. The actual LRC will be the node responsible for the central point of each
neighboring square. Comparison of Hop Level against the eCAN-like is depicted
in Figure 1(d), for unbalanced networks. The number of LRCs is not depicted
because it is constant in eCAN-like. Bad behavior of the eCAN-like mechanism
is easily explainable: density of LRCs is no longer enough near the center and
routing to nearby nodes will tend to become linear with the number of hops in
the lattice, instead of logarithmic. On the contrary, node distribution has a very
little impact on Hop Level.

Due to lack of space, we do not show results of mapping a two-dimensional
space into a ring (the same could be done for any number of dimensions). As
expected, path lengths in a ring are also logarithmic, but paths are shorter in

1160 Filipe Araújo and Lúıs Rodrigues

(a) A network with 100 nodes (b) A network with 10000 nodes

(c) Number of LRCs (d) Dynamic 1000 node network

Fig. 2. Dynamic performance.

a multidimensional space due to the higher connectivity of nodes. This result is
interesting not only for benchmarking, but also because it shows that hashing
nodes into a ring can have its costs in performance (not to mention a possible
loss of locality information).

Network Convergence. Figures 2(a) and 2(b) depict for two network sizes the
growth in the number of LRCs of the entire network and the reduction in the
path lengths. In both cases, we can observe that for all network sizes under test,
a short number of messages suffices to let the network reach a state similar to
a steady state. For all network sizes we tested, path lengths within 3 times the
optimal can be achieved before 5 messages have been generated by each node.

Dynamic Settings. In this section we will use settings similar to the ones de-
scribed in Araneola [12], which are based on real measurements [2, 15]. Hence,
we assume that around 7% of the nodes are permanent. The remaining 93% of
the nodes are non-permanent and can enter or leave the network at any instant
and repeatedly do so. When a node enters the network it becomes active, when it
leaves it goes to sleep state. When network starts, non-permanent nodes are nei-
ther active nor sleeping, but in a fourth state that we can call as out. This means
that the network starts with 7% of the permanent nodes. Then, a bootstrap pro-
cess starts, bringing 50 new nodes from out to active or sleep states with equal

Long Range Contacts in Overlay Networks 1161

probabilities at each time step2. After each time step, any non-permanent node
that is either active or sleeping can switch from one state to the other with a
given fixed probability3 — this simulates the churn (note that nodes reenter the
network in a fresh state, i.e., without any LRCs originating or pointing to it).
A node can never return to the out state. The main parameter to vary in this
experiment is the rate at which nodes enter and leave the network or, in other
words, the average lifetime of non-persistent nodes. The probability of switching
state after a time step is varied from 0.00005 to 0.0025. In the Hop Level mecha-
nism, churn is associated with two types of costs: the signaling cost of changing
network topology and the cost of worse routing performance.

Figure 2(c) shows the number of LRCs created in the network under churn
(signaling cost). From the perspective of active non-persistent nodes, the shorter
the lifetime, the fewer LRCs such a node will create. This corresponds to the line
deemed “LRCs p/ node”. On the other hand, the load for the network and for
the persistent nodes increases with churn. This is represented in the line deemed
“LRCs p/ active node”, which shows the total number of LRCs created in the
network, divided by the average number of active nodes. We can see that even
with very small lifetimes, the growth in the number of LRCs created per active
node is moderate. Churn also degrades routing performance. This is illustrated
in Figure 2(d) for a non-persistent node’s lifetime of 10% of experiment up time.
The pattern depicted in this graphic is similar for other average lifetimes. Some
time after the number of nodes stabilizes, the number of LRCs per (new entering)
node starts to decay until it stabilizes to a value that depends on the churn rate.

6 Conclusions

In this paper we presented the Hop Level mechanism that manages Long Range
Contacts (LRCs) in overlay networks. Experimental results showed that per-
formance of Hop Level is nearly optimal and independent of node distribution
in space. Furthermore, Hop Level resists churn very well without compromis-
ing performance in fresh networks. For these reasons, we believe that the Hop
Level mechanism is applicable to a broad class of overlay networks, including
multidimensional range queries in Distributed Storage Systems.

References

1. I. Abraham, D. Malkhi, and O. Dobzinski. Land: stretch (1+ ε) locality-aware net-
works for dhts. In fifteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 550–559. Society for Industrial and Applied Mathematics, 2004.

2. K. Almeroth and M. Ammar. Collecting and modeling the join/leave behavior of
multicast group members in the mbone. In High Performance Distributed Com-
puting (HPDC ’96), pages 209–216, Syracuse, NY, USA, august 1996.

2 A time step is counted after 50 messages.
3 Hence, an exponential distribution can model joins and leaves.

1162 Filipe Araújo and Lúıs Rodrigues

3. F. Araújo and L. Rodrigues. Geopeer: A location-aware peer-to-peer system. In
The 3rd IEEE International Conference on Network Computing and Applications
(NCA ’04), pages 39–46, Cambridge, MA, USA, august 2004.

4. J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balancing and locality in range-
queriable data structures. In Twenty-Third Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing (PODC 2004), St. Johns, New-
foundland, Canada, July 2004.

5. A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable multi-
attribute range queries. SIGCOMM Comput. Commun. Rev., 34(4):353–366, 2004.

6. N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality properties. In Fourth USENIX Symposium
on Internet Technologies and Systems (USITS ’03), Seattle, WA., March 2003.

7. F. Kaashoek and D. Karger. Koorde: A simple degree-optimal distributed hash
table, 2003.

8. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-
peer systems. In SPAA ’04: Proceedings of the sixteenth annual ACM symposium
on Parallelism in algorithms and architectures, pages 36–43. ACM Press, 2004.

9. J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In
Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000.

10. J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with Delau-
nay triangulation overlays. Technical Report CS-2001-26, University of Virginia,
Department of Computer Science, 5 2001.

11. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a
small world. In 4th Usenix Symposium on Internet Technologies and Systems, 2003.
http://www.usenix.org/events/usits03/.

12. R. Melamed and I. Keidar. Araneola: A scalable multicast system for dynamic
environments. In The 3rd IEEE International Conference on Network Computing
and Applications (NCA ’04), pages 5–14, Cambridge, MA, USA, august 2004.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Conference on applications, technologies, archi-
tectures, and protocols for computer communications, pages 161–172. ACM Press,
2001.

14. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science,
2218:329–350, 2001.

15. S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file
sharing systems. In Multimedia Computing and Networking (MMCN), San Jose,
CA, USA, january 2002.

16. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In ACM SIGCOMM,
San Diego, August 2001.

17. Z. Xu and Z. Zhang. Building low-maintenance expressways for p2p systems.
Technical Report HPL-2002-41, HP, 2002.

Combining the Use of Clustering
and Scale-Free Nature of User Exchanges

into a Simple and Efficient P2P System�

Pierre Fraigniaud1, Philippe Gauron2, and Matthieu Latapy3

1 CNRS, LRI, Univ. Paris-Sud, 91405 Orsay, France
pierre@lri.fr

2 LRI, Univ. Paris-Sud, 91405 Orsay, France
gauron@lri.fr

3 CNRS, LIAFA, Univ. Paris VII, 75005 Paris, France
latapy@liafa.jussieu.fr

Abstract. It was recently observed that the user interests in P2P sys-
tems possess clustering properties that can be used to reduce the amount
of traffic of flooding-based search strategies. It was also observed that the
user interests possess scale-free properties that can be used for the de-
sign of routing-based search strategies. In this paper, we show that the
combination of these two properties enables the design of an efficient and
simple fully decentralized search strategy. This search strategy is simple
in the sense that it does not require maintaining any structured overlay
network topology connecting the peers. It is efficient in the sense that
simulations processed on real-world traces show that lookups perform in
logarithmic expected number of steps.

1 Preliminaries

This paper focuses on fully decentralized Peer-to-Peer (P2P) systems, i.e., a
(large) set of users, called peers, exchanging information in the absence of any
central service. Such P2P systems are self-organized, and all peers play the same
role. Searching for objects (files, resources, etc.) in such systems requires the
use of specific algorithms: object queries are transmitted from peer to peer; if a
peer p receives a query for some object that it can provide, then p simply sends
the object to the demander; otherwise, p forwards the query to one or several
neighboring peer(s). The way peers are connected, and the choice of the peer(s)
the query is forwarded to, are essential parts of the P2P system architecture.

Two main ways of forwarding queries in fully decentralized P2P systems have
been identified: either by flooding (as in, e.g., Gnutella), or by using Distributed
Hash Tables and their underlying routing protocols (as in, e.g., CAN [12] or
Chord [14]). Both ways present some drawbacks. In particular, the traffic induced
by flooding consumes a significant portion of the bandwidth, and DHT-based
� The two first authors received supports from the INRIA project “Grand Large”, and

from the project PairAPair of the ACI “Grandes Masses de Données”.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1163–1172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1164 Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

protocols use ad hoc connections between peers which are generally hard to
maintain and hardly support sophisticated queries. As a consequence, the design
of simple search protocols insuring both quick answers and low control traffic is
still an open problem. Roughly speaking, one is facing the following alternative:
either connecting the peers in an unstructured manner – which is simple but
requires flooding – or connecting the peers in a structured manner – which
enables routing but is complex.

In this paper, our objective is to propose a method possessing both advan-
tages: simple search in an unstructured P2P system. To achieve this, we will
mainly use the statistical properties of real-world peer-to-peer queries and we
use the interest graph as overlay.

1.1 The Central Idea

Peers are nodes of a physical underlying network, i.e., the Internet which sup-
port physical communication between peers. Fully decentralized P2P systems
are based on virtual connections between peers, which form an overlay network
on top of the physical network. Basically, a peer p1 is connected to a peer p2

in the overlay network if p1 knows the physical address of p2, and vice versa.
Communications between neighboring peers in the overlay network are routed in
the physical network via its communication primitives. The P2P system has no
control on the way the communications are processed by the physical network
but it fully controls the overlay network, and it supports the search procedure.

As argued by various researchers (see [1] and the references therein), the
overlay network should better map to the physical network, so that neighboring
peers in the overlay network would be close in the physical network. A commu-
nication between two neighboring peers in the overlay network would then be
processed quickly by the underlying physical network. It is shown in [1] that one
can dynamically maintain an overlay network such that the distance between
two peers in the overlay network is no more than 1 + ε times their distance in
the physical network, for any ε > 0. However, this approach requires using rather
complex control procedures.

Alternatively, one could relate the overlay network to the interests of peers.
Indeed, if two peers have interests in common, then they will probably exchange a
lot, and thus they should better be close in the overlay network. In practice, peers
do not exchange objects with arbitrary other peers. Instead, they tend to group
themselves into communities, with lots of exchanges inside the communities, and
only few exchanges between them. Several authors already noticed this fact and,
based on it, have proposed some improvements for existing systems (see, e.g.,
[5, 8, 9, 15, 16]). In this paper, our objective is to show that these works can be
pushed further while keeping our solution very simple.

1.2 Peer Interests as a Graph

One can represent the peer interests as a graph in which two peers are connected
if and only if they have some interests in common. Deriving a formal definition of

Combining the Use of Clustering and Scale-Free Nature of User Exchanges 1165

what is meant by “having some interests in common” is a difficult task. Various
propositions have been made, based on keywords, objects in common, etc. We
will here use the following simple definition: two peers are connected in the
interest graph if they have exchanged an object in the past. Note that two such
peers may actually have very different interests, but at least their interests are
related in some way. Note also, and this is essential in our context, that, since
the P2P system processes all the queries, it contains a (distributed) view of the
interest graph at any time.

It has been recently shown (cf., e.g., [7–9]) that, similarly to most social
networks and most real-world complex networks, the interest graph as defined
above has several non-trivial statistical properties that make it very different
from standard random graphs. In particular, the interest graph has:

– a low density (the average degree is very low compared to the number of
nodes);

– a small average distance (it typically scales logarithmically with the size of
the network);

– a clustered structure (the graph is locally dense although the (global) density
is low)

– a scale-free nature (i.e., degrees are very heterogeneous, most nodes having
a low degree, but some nodes having a high degree).

In our method, the overlay network will be nothing but the interest graph
as described above, and the performances of our method will strongly rely on
the aforementioned four properties. In fact, our method is based on both the
clustering and the scale-free nature of the interest graph, two notions that were
considered separately in several previous works, listed thereafter.

1.3 Using Scale-Free Properties

Using the scale-free nature of real-world networks for the design of efficient search
strategies have been proposed in [2, 6, 13]. In these papers, the authors approxi-
mate the heterogeneous degree distributions by power laws and study the prop-
erties of some (random or deterministic) walks in random graphs with power law
degree distributions (see also [10]).

In [2], at each step of the search strategy, the current node scans its neighbors
and if none has the searched data, then the query is forwarded to the highest
degree neighbor. A mean-field analysis, confirmed by simulations, shows that
the expected number of steps required to find an object in a random power
law network with n nodes and exponent α, scales sub-linearly as n3(1−2/α) for
2 < α < 3.

In [6], the authors perform simulations on another model of power law net-
works, and compare a random walk search strategy with a search strategy guided
by high degree nodes. They observe that the latter search strategy performs bet-
ter than the former. In particular, it returns a path of polylogarithmic length
between the source and the target. Nevertheless, the search strategy performs
in a polynomial number of steps due to loops in the search path.

1166 Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

In [13], the authors propose an original approach. Every node first publishes
its data at every node along a random walk of length L. The search strategy then
proceeds along a random walk of same length, and every node traversed by the
walk starts partially flooding the network (the search is sent through every edge
with probability < q, where q is the percolation threshold of the network). It is
then shown that this search efficiently locates the data by setting L ∼ n1−2/α

for 2 < α < 3. The authors also present heuristics reducing the amount of traffic
induced by this strategy.

1.4 Using Clustering Properties

Just like the heterogeneous nature of peers is captured (in part) by the degree
distribution, some cultural and social factors induce a clustered structure of the
interest graph. For example, if a peer p1 is interested in an object O held by
another peer p2, then it will probably be interested in other objects held by
p2. Moreover, p1 will also probably be interested in objects held by other peers
interested in O. This can be summarized by the following facts:

– peers organize themselves in communities (dense subgraphs), and
– two peers which exchanged data are likely to exchange other data in the

future.

Based on these observations, [15] proposed to enhance Gnutella with an
interest-based structure in which a link (called shortcut) between peers that
have exchanged an object is added on top of the Gnutella network. Simulations
show that the shortcuts reduce the total load of the system by a factor 3 to 7.
Hence, the clustered nature of the interest graph can be used to improve search
strategies. Nevertheless, this search strategy remains based on flooding the net-
work.

Other contributions pointed out that the clustered nature of the interest
graph could be used to design efficient P2P systems [5, 8, 9, 15, 16], but no
protocol has actually been proposed.

1.5 Our Contribution

The previous works surveyed before gave some evidence to the fact that the
scale-free nature of the interest graph, as well as its clustered structure, are two
basic statistical properties that can be used for improving search strategies in
P2P systems. Nevertheless, these works all used one of these two properties only.
In this paper, we show that using a combination of these two properties results
in even better performances.

We present the QRE (pronounced query) protocol, in which the overlay net-
work is nothing but the interest graph. Despite the fact that this graph is not
structured, we present a simple search procedure that is not based on flood-
ing, and does not require any information on the global topology of the overlay
network. This search procedure is simple in the sense that it does not require

Combining the Use of Clustering and Scale-Free Nature of User Exchanges 1167

sophisticated publish procedures. Moreover, because of the somewhat greedy
maintenance of the overlay network, joining and leaving procedures are both
very simple.

To evaluate the performance of our method, we have performed intensive
simulations based on real-world traces. These simulations demonstrates that our
search procedure locates objects in a logarithmic expected number of steps, which
outperforms all previous solutions based on only one of the two basic statistical
properties of the interest graph (scale-free nature or clustered structure).

2 The QRE Protocol

This section is devoted to the description of the QRE protocol. In order to
illustrate the main features of QRE, we deliberately keep it as simple as possi-
ble. Moreover, keeping QRE simple enables evaluating the direct impact of our
contribution, without mixing it with other optimizations.

Connections between peers in the overlay network of QRE are driven by the
queries processed in the system: a peer is connected to the peers to which it
has uploaded an object, or from which it has downloaded an object. Queries are
routed by a search procedure (described below), and are of the form 〈@,O, k〉
where @ is the physical address of the source peer initiating the query, O is the
description of an object, and k ≥ 1 is the number of different providers of O the
source wants to get.

We assume that each peer in the system stores the objects that it provides,
as well as a (compact) description of these objects in a local lookup table. We
also assume that every peer stores a local copy of the lookup table of each of its
neighbors. Regular communications between a peer p and its neighbors allows
the system to support this facility. Finally, we assume that every peer knows the
degree (number of neighbors) of each of its neighbors.

2.1 The Search Method

For routing a query Q = 〈@,O, k〉, QRE essentially executes a (distributed)
depth-first search (DFS) where the priority is given to highest degree nodes.
More precisely, for every peer p that is receiving a query Q, if neither p nor
any of its neighbors can positively answer to Q, then p forwards Q to its highest
degree neighbor among the ones which have not yet processed Q; if there is none,
then p sends the query Q back to the peer from which it received Q. Figure 1
summarizes this simple search procedure. The search procedure proceeds this
way until k copies of O have been found.

To avoid loops in the search, every peer stores the list of queries Q that it has
processed so far, as well as the identity of the neighbors to which Q has already
been forwarded.

Note that QRE does not use hashing. As a consequence, it can support
complex queries, as wild-cards searching, regular expression searching, or interval
searching. Note also that the search is exhaustive in QRE.

1168 Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

(1) if p has O, then p sends O to @;
(2) else

(2.1) if p has a neighbor p′ that stores O
then p forwards Q to p′;

(2.2) else if all the neighbors of p have already received Q
then p sends Q back to the neighbor from which it received Q;

(2.3) else p forwards Q to its neighbor of maximum degree
among the ones that have not yet received Q.

Fig. 1. The search procedure in QRE for the query Q = 〈@,O, 1〉.

2.2 Dynamics of the System

In QRE, any successful search induces a modification of the connections between
the peers: if p1 receives a positive answer for a query Q from another peer p2,
then a link is set between p1 and p2, i.e., p1 and p2 exchange their addresses
and their lookup tables. In addition, their neighbors are informed of the changes
in their degrees. This way, the system maintains an overlay network which is
nothing but the interest graph as defined before.

As in most previously proposed P2P systems, we assume that any peer aiming
at joining the system knows an entry point, i.e. a peer already in the system,
whose address is publicly available. We assume that a joining peer always wants
to provide or to get an object. Therefore, a joining peer is always associated to
an object. The join procedure is based on such an object, say O: the joining
peer sends a query for O and connects, as specified before, to the peer(s) that
answer(s) to this query. If no peer returns a positive answer, then the joining
peer connects directly to the entry point.

In QRE, when a peer wants to leave the system, it sends a leaving message to
all its neighbors, and disconnects from the system. Any peer receiving a leaving
message removes the sender from its lookup table, and informs its neighbors of
its new degree. Note that QRE can also handle brutal departures of peers by
periodically checking the presence of neighbors.

We stress the fact that QRE does not need the use of any underlying P2P
system. The joining procedure is self-contained. The overlay graph grows from
the entry point, based solely on the queries, and on their answers. The first peers
will typically connect directly to the entry point (because the data they look for
are not in the system). However, the new peers will eventually receive positive
answers, and the overlay will then grow in a non-trivial manner.

3 Performance of QRE

There is currently no satisfactory model capturing the peers behavior accurately
enough to enable a formal evaluation of our method (i.e., including simultane-
ously: clustering properties, scale-free properties, and the fact that two neigh-
boring peers will probably exchange objects more than once). Because of this,

Combining the Use of Clustering and Scale-Free Nature of User Exchanges 1169

we performed simulations on real-world traces, extracted from eDonkey [3], and
described in detail in [7]. The trace upon which we performed our simulations is
2h 53mn long and involves 46, 202 peers. It contains the search requests of the
users, but not the connections and disconnections.

3.1 Simulation Protocol

From the trace, we extracted a (chronological) list of tuples (pi
0, p

i
1, p

i
2, . . . , p

i
ki

),
each associated to a query Qi. Peer pi

0 is the source of the ith query, ki is the
number of requested providers, and the pi

j , j = 1, 2, . . . , ki, are the providers. We
have considered 342, 204 queries of that type, involving 46, 202 nodes in total.

Our simulator proceeds with each tuple, step by step, as follows. Step i
considers tuple Qi, and simulates the behavior of QRE when dealing with a
request Q where pi

1, p
i
2, . . . , p

i
ki

are the providers of the object requested by pi
0.

In other words, we simulated the behavior of QRE, as described in Section 2,
for a query 〈pi

0,Oi, ki〉 where pi
1, p

i
2, . . . , p

i
ki

are the peers currently holding Oi.
If pi

0 is not yet in the network at step i, then the simulator performs the join
procedure for pi

0 where the entry point is chosen uniformly at random among
the peers currently in the network. Then, pi

0 connects to the entry point and
launches the query. Its link to the entry point is removed when pi

0 receives an
answer from a peer providing Oi (and thus connects to it).

3.2 Simulation Results

Figure 2 displays the degree distribution of the peers (after all the requests have
been processed), i.e., for k ≥ 1, the number δ(k) of peers with degree k. This
distribution is heavy tailed (there are peers with large degree). However, δ(k)
does not follow a strict power law. Nevertheless, we will see that the heavy
tail is sufficient for our search strategy to perform efficiently. Importantly, the
maximum degree is 690, but only 0.25% of the peers have a degree larger than
300. Conversely, 2/3 of the peers have a degree ≤ 20. The average degree is 47, 9.
These characteristics prove that QRE scales well with the number of nodes.

 1

 10

 100

 1000

 10000

 1 10 100 1000

#n
od

es

degree

Fig. 2. Degree distribution in the overlay
network of QRE.

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

#s
te

ps

#copies

Fig. 3. Impact of the number of
providers on the search time.

1170 Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

Figure 3 displays the average number of steps required to locate one copy
of an object, as a function of the total number of providers of this object. This
number of steps decreases rapidly with the number of providers. In fact, locating
an object that has at least seven copies in the network requires at most 10 steps
on average, and a popular object O has, on average, a copy present on a node at
distance at most 2 from a peer requesting O. Importantly, O is not necessarily at
distance at most 2 from any peer, but O is at distance at most 2 from any peer
interested in O. This demonstrates the existence of communities in the interest
graph, captured and used by QRE.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

#s
te

ps

#nodes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 100 1000 10000 100000

#s
te

ps

#nodes

Fig. 4. Average number of steps to locate an object.

From Figure 3, rare objects are located by the search procedure of QRE
after a relatively large number of steps. However, once this price has been paid
by some peer, the next searches for the same object will require less and less
steps while there are more and more copies of the object in the network, and
while its providers are more and more connected. Figure 4 (left) displays the
average number of steps s(n) required to locate one copy of an object, as a
function of the number n of peers in the system. Linear regression indicates that
s(n) scales linearly with the logarithm of the number n of peers in the system
(see Figure 4 (right)). This is the most important experimental result in our
contribution: searching in QRE requires O(log n) number of steps on average. In
particular, the search procedure of QRE performs at least as well as the search
procedures of DHTs like Chord [14], Viceroy [11], or those based on the binary
de Bruijn graph (see [4] and references therein).

Figure 5 displays the average number of steps required to locate 20% of the
copies of an object currently present in the system. Locating copies of a popular
object requires at most ten steps. As a consequence, QRE could be efficiently
used in combination with any protocol enabling downloading large files from
several providers in parallel.

Finally, Figure 6 displays the number of queries that required k steps to be
performed, which is well fitted by a power law. Most queries require few steps to
be performed, and only very few queries require lot of steps (this corresponds to
very rare data, for which it is necessary to search a large portion of the network).
Typically, a TTL of 100 steps would enable most queries to be satisfied.

Combining the Use of Clustering and Scale-Free Nature of User Exchanges 1171

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

#s
te

ps
 fo

r
20

%

#copies

Fig. 5. Search time for 20% of the
providers

Fig. 6. Distribution of the number of
hops to find an object.

4 Conclusion

In this paper, our main objective was to push further the idea of using the
properties of the peer interest for the design of efficient search strategies in P2P
systems. We indeed believe that these properties are among the key factors to
be considered for the design of efficient and fully decentralized P2P systems.
To support this belief, we demonstrate that the interest graph can be used as
an overlay network supporting very simple procedures for searching, joining,
and leaving the system. The main properties of the interest graph are (1) its
clustered structure, and (2) the heterogeneity of the node degrees. Our search
strategy uses these two properties. It locates objects in a logarithmic expected
number of steps, without flooding, nor using any sophisticated routing or publish
procedures.

Probably, more subtile and more efficient search strategies could be defined
on the interests graph, using other properties of the graph, or combining our
approach with others. In particular, it is unclear whether the DFS algorithm
selecting high degree nodes first is the most appropriate search strategy for the
interest graph. Further investigations are also required to measure the impact
of limiting the maximum degree of the peers, as well as other issues like the the
load of the high-degree nodes, the robustness of the system.

References

1. I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + ε) locality-aware
networks for DHTs. In 15th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 550-559, 2004.

2. L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search in power law
networks. Physical Review E, vol. 64, pages 46135-46143, 2001.

3. eDonkey: www.edonkey2000.com/

4. P. Fraigniaud and P. Gauron. An overview of the content addressable network
D2B. Brief announcement at the 22nd ACM Symp. on Principles of Distributed
Computing (PODC), page 151, 2003.

1172 Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

5. S. Handurukande, A.-M. Kermarrec, F. Le-Fessant, and L. Massoulié. Exploiting
Semantic Clustering in the eDonkey P2P Network. In 11th SIGOPS European
Workshop (SIGOPS), pages 109-114, 2004.

6. B. Kim, C. Yoon, S. Han, and H. Jeong. Path finding strategies in scale-free
networks. Physical Review E, vol. 65, pages 027103-1–027103-4, 2002.

7. S. Le-Blond, M. Latapy, and J.-L. Guillaume. Statistical analysis of a P2P query
graph based on degrees and their time evolution. In 6th Int. Workshop on Dis-
tributed Computing (IWDC), 2004.

8. S. Le-Blond, M. Latapy, and J.-L. Guillaume. Clustering in P2P exchanges and
consequences on performances. In 4th Int. Workshop on Peer-To-Peer Systems
(IPTPS), 2005.

9. F. Le-Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulié. Clustering
in Peer-to-Peer File Sharing Workloads. In 3rd Int. Workshop on Peer-to-Peer
Systems (IPTPS), 2004.

10. Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker. Search and replication in unstructured
peer-to-peer networks. In 6th Int. Conf. on Supercomputing, pages 84-95, 2002.

11. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scalable and dynamic lookup
network. In 21st Symp. on Principles of Distributed Computing (PODC), 2002.

12. S. Ratnasamy and P. Francis and M. Handley and R. Karp and S. Shenker. A
scalable content-addressable network. In SIGCOMM, pages 161-172, 2001.

13. N. Sarshar, P. Boykin, and V. Roychowdhury. Percolation search in power law
networks: making unstructured peer-to-peer networks scalable. In 4th International
Conference on Peer-to-Peer Computing, pages 2-9, 2004.

14. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: a
scalable peer-to-peer lookup service for Internet applications. In SIGCOMM, pages
149-160, 2001.

15. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using
interest-based locality in peer-to-peer systems. In INFOCOM, pages 2166-2176,
2003.

16. S. Voulgaris, A.-M. Kermarrec, L. Massoulié, and M. van Steen. Exploiting Seman-
tic Proximity in Peer-to-peer Content Searching. In 10th IEEE Int. Workshop on
Future Trends in Distributed Computing Systems (FTDCS), pages 238-243, 2004.

Pastis: A Highly-Scalable Multi-user
Peer-to-Peer File System

Jean-Michel Busca1, Fabio Picconi2, and Pierre Sens2

1 INRIA Rocquencourt
Le Chesnay, France

jean-michel.busca@inria.fr
2 LIP6, Université Paris 6 - CNRS

Paris, France
{fabio.picconi,pierre.sens}@lip6.fr

Abstract. We introduce Pastis, a completely decentralized multi-user
read-write peer-to-peer file system. In Pastis every file is described by
a modifiable inode-like structure which contains the addresses of the
immutable blocks in which the file contents are stored. All data are stored
using the Past distributed hash table (DHT), which we have modified
in order to reduce the number of network messages it generates, thus
optimizing replica retrieval.
Pastis’ design is simple compared to other existing systems, as it does not
require complex algorithms like Byzantine-fault tolerant (BFT) replica-
tion or a central administrative authority. It is also highly scalable in
terms of the number of network nodes and users sharing a given file
or portion of the file system. Furthermore, Pastis takes advantage of
the fault tolerance and good locality properties of its underlying storage
layer, the Past DHT.
We have developed a prototype based on the FreePastry open-source im-
plementation of the Past DHT. We have used this prototype to evaluate
several characteristics of our file system design. Supporting the close-to-
open consistency model, plus a variant of the read-your-writes model,
our prototype shows that Pastis is between 1.4 to 1.8 times slower than
NFS. In comparison, Ivy and Oceanstore are between two to three times
slower than NFS.

1 Introduction

Although many peer-to-peer file systems have been proposed by different re-
search groups during the last few years [1–5], only a handful are designed to
scale to hundreds of thousands of nodes and to offer read-write access to a large
community of users. Moreover, very few prototypes of these large-scale multi-
writer systems exist to this date, and the available experimental data are still
very limited.

This research was conducted as part of the GDS project (http://www.irisa.fr/GDS)
of the ACI MD program, supported by the french Ministry of Research.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1173–1182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1174 Jean-Michel Busca, Fabio Picconi, and Pierre Sens

One of the reasons for this is that, as the system grows to a very large scale,
allowing updates to be made anywhere anytime while maintaining consistency,
ensuring security, and achieving good performances is not an easy task. Read-
only systems, such as CFS [4], are much easier to design since the time interval
between meta-data updates is expected to be relatively high. This allows the
extensive use of caching, since cached data are either seldom invalidated or kept
until they expire. Security in a read-only system is also quite simple to imple-
ment. Digitally signing a single root block with the administrator’s private key
and using one-way hash functions allows clients to verify the integrity and au-
thenticity of all file system data. Finally, consistency is hardly a problem since
only a single user, the administrator, can modify the file system.

Multi-writer designs must face a number of issues not found in read-only sys-
tems, such as maintaining consistency between replicas, enforcing access control,
guaranteeing that update requests are authenticated and correctly processed,
and dealing with conflicting updates.

The Ivy system [3], for instance, stores all file system data in a set of logs
using the DHash distributed hash table. Each user has its own log to which
he appends his own updates. This eliminates the need of a central serialization
point, and provides high security against attacks, including attacks from users
who turn out to be malicious, but also limits the number of users (more users
means more logs to traverse when reading a file).

Oceanstore [2] uses a completely different approach to handling updates by
introducing a centralization point called the primary tier. This set of replicas
serialize updates using a Byzantine-fault tolerant (BFT) [6] algorithm. However,
BFT is expensive, and primary tier nodes must be highly resilient and well-
connected. Although Oceanstore has many features, the system is quite complex,
and its centralized design may not be suitable for a community of cooperative
users.

With the aim of finding a solution to the shortcomings of these systems we
have designed Pastis, a highly-scalable, completely decentralized multi-writer
peer-to-peer file system. For every file or directory Pastis keeps an inode object
in which the file’s metadata are stored. As in the Unix File System, inodes
also contain a list of pointers to the data blocks in which the file or directory
contents are stored. All blocks are stored using the Past distributed hash table,
thus benefiting from the locality properties of both Past and Pastry [7].

Our system is completely decentralized. Security is achieved by signing inodes
before inserting them into the Past network. Each inode is stored in a special
block called User Certificate Block, or UCB. Data blocks are stored in immutable
blocks, called Content-Hash Blocks, the integrity of which can easily be verified.
All blocks are replicated in order to ensure fault tolerance and to reduce the
impact of network latency.

Finally, we have implemented a prototype written in Java. It runs the Free-
Pastry [8] open source implementation of Past and Pastry. We have modified
the original FreePastry’s implementation, generalizing the Past lookup call to
efficiently support one of the consistency models provided by Pastis.

Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System 1175

size, ctime, etc.

directory inode

id CHB1
id CHB2

id CHBi
id CHBii
id CHBiii

UCB1

directory contents

file1 id UCB2
file2 id UCB3
file3 ...

CHB1...

size, ctime, etc.

file inode

id CHB3
id CHB4
...

UCB2

CHB3

file contents

...

indirect block

id CHBx
id CHBy
id CHBz

CHBi

directory contents

file4 id UCB4
file5 id UCB5
file6 ...

CHBz

Fig. 1. File System Structure.

The remaining part of this paper is as follows: section 2 introduces Past
and Pastry. Section 3 presents the design of our system in more detail. Section 4
presents our prototype, and evaluate its performance. Finally, section 5 concludes
this paper. More details on Pastis can be found in [9].

2 Pastry and Past

Pastry [7] is a peer-to-peer key-based routing substrate designed to support a
very large number of nodes. In a Pastry network, each node has a unique fixed-
length node identifier (nodeid), whose address space can be thought of as a circle
ranging from 0 to 2160− 1. Routing is performed with keys: a message is routed
to the node whose nodeid is numerically closest to the specified key.

Pastry’s routing algorithm is derived from the work by Plaxton [10]. This
type of prefix-based routing can achieve very low hop counts, usually O(logN),
where N is the number of overlay nodes. However, one important feature of
Pastry is that it takes into account network locality to optimize overlay routes.

Past [11] is a highly-scalable peer-to-peer storage service which provides a dis-
tributed hash table abstraction. Past uses Pastry to route messages between Past
nodes, thus benefits from Pastry’s properties, i.e. scalability, self-organisation,
locality, etc. In addition, Past ensures high data availability through the use of
replication: it implements a lazy replication protocol that maintains a constant
number of replicas of each stored block, as nodes join and leave the network.

Although not detailed in this paper, we have generalized the Past lookup call
so that it now supports one or more search predicates. This allows us to efficiently
retrieve an inode replica whose version stamp is not older than a given value. We
use this feature in the read-your-write consistency model, as described in 3.2.

3 Design

We begin the description of our file system by presenting how file system data
are stored on the network. The data structures used in our design are similar to
those of the common Unix file system (UFS). For each file the system stores an

1176 Jean-Michel Busca, Fabio Picconi, and Pierre Sens

inode-like object which contains the file’s metadata, much like the information
found in a traditional inode.

As shown in Figure 1, each inode is stored in special DHT blocks called User
Certificate Blocks (UCBs). For each UCB a private-public key pair is generated
by the user who creates the file, i.e. the file’s owner, and the private key is stored
in the owner’s computer.

All inodes contain at least the following information: inode type, file at-
tributes, and security information. This is basically the same information as
that returned by the stat Unix system call. Specific inode types contain addi-
tional fields which are only necessary for the corresponding file type. Regular
file and directory inodes, for instance, contain a list of pointers to other blocks
in which the file or directory contents are stored. Symbolic link inodes, in turn,
contain only the link’s destination path.

File and directory contents are stored in fixed-size DHT blocks called Content-
Hash Blocks (CHBs). The DHT address of each CHB is obtained from the hash
of the block’s contents, and is stored within the file’s inode block pointer table.
As with UFS inodes, we use single, double, and triple-indirect blocks to limit
the size of the inode’s block pointer table.

In order to optimize directory operations, each directory inode holds a small
number of directory entries in the inode itself. Therefore, clients accessing di-
rectories that contain only a few files need not retrieve any CHBs. Retrieving
or inserting the UCB in which the inode is stored may be sufficient, thereby
reducing operation time and increasing performance.

Our design is similar to that of CFS [4], the main difference lying in the use
of modifiable blocks (UCBs) to store inodes, thus eliminating the cascade effect
of CFS when updating an inode.

3.1 Updates and Conflicts

Modifying a file or directory in Pastis requires updating the UCB in which its
inode is stored, but it also usually involves the insertion of new CHBs. For
instance, writing to a file will usually take the following steps:

1. Fetch the file inode (UCB) from the network
2. Fetch the corresponding data block(s) (CHB)

3. Modify the data block(s) and insert them into the DHT

4. Modify the inode’s pointer table with the addresses of the new data block(s), and

reinsert the inode into the DHT

Note that modifying the contents of data blocks changes their DHT keys
(which are obtained by hashing the block contents). Thus the need for updating
the inode’s pointer table.

If two or more clients update an inode concurrently, then a conflict will most
probably occur. In our current design, the conflict-resolution mechanism works
as follows: each inode update is uniquely identified by a version stamp, consisting
of the version number of the update and the unique id of the user who issued it.

Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System 1177

We define a total order on version stamps by first comparing version numbers,
and if they are equal, by comparing user ids.

Each time a user commits an update to a file or directory, the inode’s version
number is incremented, and the new inode is inserted into the Past DHT. During
insertion, the Past client sends the new inode to all replicas. Each replica checks
that the new inode’s version number is greater than the existing one before the
replica is overwritten. If this check fails, the update is aborted.

3.2 Consistency

Our system currently supports two consistency models: close-to-open and a vari-
ant of the read-your-writes guarantee.

Close-to-open consistency [12] is a relaxed consistency model widely em-
ployed in distributed file systems such as AFS and NFS. In this model the open
and close operations determine the moment in which files are read from and
written to the network. The advantage of using close-to-open consistency is that
local write operations need not be propagated to the network until the file is
closed. Similarly, once a file has been opened, the local client need not check
whether the file has been modified by other remote clients, an operation that
would require accessing the network. In other words, the local client can cache
the file’s contents while it is opened, and keep this cache until the file is closed.

In our system, the close-to-open model is implemented by retrieving the
latest inode from network when the file is opened and keeping a cached copy
until the file is closed. Any following read requests are satisfied using the cached
inode. New CHBs are also buffered locally instead of being inserted immediately
into the DHT. Finally, when the file is closed all cached data are flushed to the
network and removed from the local buffer.

Note that this scheme works because the immutable data blocks (CHBs)
that store the contents of each different version of a given file (a new version
appears each time the file is closed) are never removed from the network. If they
were, then the data blocks pointed to by a cached inode could be no longer
valid. Alternatively, a complex garbage collection mechanism would have to be
employed to safely remove unused immutable block from the DHT.

The close-to-open consistency model may be stronger than what many ap-
plications actually need. In fact, applications which access files that are seldom
shared, or that are not shared at all could benefit from a further relaxed consis-
tency. For these applications we have implemented another consistency model,
based on the read-your-writes session guarantee, originally introduced by Bayou
[13]. Our read-your-writes model guarantees that when an application opens a
file, the version of the file that it reads is not older than the version it previously
wrote. Once the file is opened, file updates are performed as in the close-to-open
model.

The key advantage of the read-your-writes model is that it requires fewer
accesses to the DHT than the close-to-open model and thus yields lower response
time. Because of possible rollback attacks and Past’s lazy replication mechanism,
the latter model requires all inode replicas to be retrieved to ensure that the latest

1178 Jean-Michel Busca, Fabio Picconi, and Pierre Sens

version is used. By contrast, in the read-your-writes model, it suffices to retrieve
at least one inode replica whose version stamp is not less than a given value.
Since all of the replicas are written when closing a file, all replicas normally
satisfy the search predicate, including the one that is closest to the application
opening the file. We leverage Pastry and Past’s locality property and fetch this
replica in just one lookup path, using our generalized lookup call, thus achieving
the lowest possible latency.

Note that in practice, it is highly likely that a file open will retrieve the latest
version of the file, as in the close-to-open model. The only case the retrieved inode
is not the latest one is when the node queried during lookup is acting maliciously,
or has not been updated yet following a recent change in the set of nodes hosting
the replicas of the inode.

3.3 Security

Pastis ensures write access control and data integrity through the use of stan-
dard cryptographic techniques and ACL certificates. Pastis does not currently
provide read access control, but users may encrypt files’ contents to ensure data
confidentiality if needed.

Write access control and data integrity are ensured as follows. The owner
of a file issues a write certificate for every user he allows to write to the file.
When a user modifies the file, he must properly sign the new version of the
inode and provide his write certificate along with the inode. The certificate and
the inode signature are checked by DHT nodes before they commit the update.
A user performs the same checks when reading the file in order to assert the
integrity of the file’s contents. These mechanisms along with the use of replication
make Pastis tolerant to Byzantine behaviour of DHT nodes and rollback attacks,
provided at least one replica is not faulty. However, unlike Ivy, our security model
assumes that all users allowed to write to a given file trust one another regarding
update operations on that file. Because of space limitations the details of Pastis
security mechanisms will not be developed here.

4 Prototype and Evaluation

The latest version of our prototype uses FreePastry 1.3.2 and runs on any plat-
form that supports the Java VM 5.0.

We developed a discrete event simulator, LS3 [16], in order to conduct ex-
periments on large-scale networks. LS3 simulates such networks by randomly
locating nodes on a sphere and deriving network latency from the distance be-
tween source and destination nodes. The maximum network latency corresponds
to two diametrically opposed points on the sphere.

In order to evaluate the performance of our prototype we use the Andrew
Benchmark [12], which consists of five phases: (1) create directories, (2) copy files,
(3) read file attributes, (4) read file contents, and (5) run a make command. The
source directory we use as input to the benchmark contains two sub-directories

Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System 1179

and 26 C source and header files, for a total size of 190 Kbytes. The benchmark
executes on top of a node running a Pastis/Past/Pastry stack, which in turn
communicates with other Past nodes to store and retrieve blocks. These com-
munications can take place either through a real network, or be confined to the
local Java VM when using the LS3 simulator.

Real experiments are run on Pentiums 4 2.4 GHz with 512 Mbytes of RAM,
running Linux 2.4.x. In order to simulate the latency of inter-node communica-
tions, we use a DummyNet [14] router, running FreeBSD 4.5. Experiments using
the LS3 simulator are run on a Pentium 4 1.8 GHz with 2 Gbytes of RAM.

It is important to notice that all layers from the Pastry layer upwards are
unaware of whether they are executing on top a simulated or a real environment.
In other words, the executed code corresponding to the DHT and Pastis layers
is the same in both cases.

4.1 Network Size

This experiment evaluates Pastis’ scalability with respect to the number of nodes
in the network. We run the Andrew Benchmark on a simulated network of in-
creasing size, with a constant maximum network latency of 300ms. We use the
close-to-open consistency model, and Past’s replication is disabled.

Figure 2 shows the total and per-phase execution time of the benchmark
for network sizes ranging from 16 to 32768 nodes. We observe that the total
execution time increases only by 13.5% between 16 (311 s) and 32768 nodes
(353 s). This good result is mainly due to Pastry’s efficient routing algorithm.
This experiment confirms, however, that Pastis does not introduce any flaw in
the overall design and preserves Pastry and Past’s scalability over a wide range
of network sizes.

4.2 Concurrent Clients

In this experiment we evaluate the performance impact of running multiple file
system clients concurrently in a real environment. We run from one up to 16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 16 64 256 1024 4096 16384

E
xe

cu
tio

n
T

im
e

(s
)

Number of Nodes

Total
Phase 1
Phase 2
Phase 3
Phase 4
Phase 5

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

168421

T
ot

al
 E

xe
cu

tio
n

T
im

e
(r

el
at

iv
e

to
 o

ne
 c

lie
nt

)

Concurrent Benchmark Clients

Pastis
Ivy

Fig. 2. Network size (left), Concurrent clients (right).

1180 Jean-Michel Busca, Fabio Picconi, and Pierre Sens

concurrent Andrew Benchmark clients, each client writing to a different directory
so that no conflicts are generated. In all cases we use a Past network of 16 nodes,
with a block replication factor of 4 and a 100 ms emulated inter-node delay. The
consistency model is close-to-open.

Figure 2 shows that the total execution time for a single client is 311 seconds.
As the number of clients increases, execution time appears to grow linearly, with
only a 2% increase for 4 concurrent clients. This suggests that Pastis scales well
in terms of concurrent clients. In comparison, according to [3] an equivalent test
performed on the Ivy file system shows a 70% increase when going from 1 to
4 concurrent clients. This is not surprising since having multiple logs (one per
participant) forces Ivy clients to traverse all the logs that have been modified,
even if the records appended by the other users do not concern the files accessed
by the local user. In Pastis, running 16 concurrent client produces only a 11.3%
increase compared to a single client, which is very low considering that every
node is running a benchmark client.

4.3 Consistency Models

This experiment compares the performance of the two consistency models that
Pastis implements. We run the Andrew Benchmark on a simulated network of
32768 nodes, with a maximum network latency of 300 ms and a block replication
factor of 16. We perform three test runs. The first run uses the close-to-open
(CTO) consistency model, and the second uses the read-your-writes (RYW)
model. The third run also uses the read-your-write model, but this time with
10% of the closest inode replicas being stale.

Figure 3 shows the total and per-phase execution time for each of these three
runs. The left, middle and right bars represent the CTO, RYW and RYW with
failures runs, respectively. Execution time is broken down into three categories:
the lower part of each bar represents the cumulative CHB read and write time,
the middle part represents the UCB write time and the upper part represents
the UCB read time. We observe that in the close-to-open model, almost 40% of

 0

 50

 100

 150

 200

 250

 300

 350

 400

TotalPhase 5Phase 4Phase 3Phase 2Phase 1

E
xe

cu
tio

n
T

im
e

(s
)

Benchmark Phases

CHB read+write

UCB write

UCB read

 0

 50

 100

 150

 200

 250

 300

TotalPhase 5Phase 4Phase 3Phase 2Phase 1

E
xe

cu
tio

n
T

im
e

(s
)

Benchmark Phases

NFS

Pastis RYW

Pastis CTO

Fig. 3. Consistency models (left), NFS comparison (right).

Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System 1181

the overall time is spent in UCB reads. This is because all of the live replicas of
a given UCB must be retrieved to determine its latest version, as required by the
consistency model. As expected, the read-your-writes model yield better perfor-
mance than the close-to-open model by reducing UCB read time. We observe
that while CHB read-write time and UCB write time remain the same as in the
close-to-open model, UCB read time decreases by 85% (144 s for close-to-open,
21 s for read-your-writes), yielding a 33% increase in overall performance. Fi-
nally, the results also show that even in the presence of 10% stale UCB replicas
the overall time increases by only 3% in the read-yrou-write model.

4.4 NFS Comparison

In this test we compared Pastis’ performance to that of NFS v3. This allows us
to make an indirect comparison to other peer-to-peer file systems for which a
comparison with NFS has been performed [2, 3]. First we run a single Andrew
Benchmark client on a real network of 16 machines, each running an instance of
Past, with a replication factor of 4. We emulate an inter-node latency of 100 ms
using the DummyNet router (a ping between any two machines yields a 200 ms
round-trip time). We then run an Andrew Benchmark client on an NFS client
accessing a single NFS server, and also emulate a 100 ms latency between client
and server (a RPC therefore takes 200 ms).

As shown in Figure 3, total execution time is less than twice that of NFS
when Pastis consistency model is set to close-to-open. With the read-your-writes
model, Pastis is only 40% slower than NFS. In comparison, other peer-to-peer
file systems [2, 3] are between two to three times slower than NFS.

5 Conclusion and Future Work

We have implemented a multi-user read-write peer-to-peer system with good
locality and scalability properties. The use of Pastry and a modified version
of Past is crucial to achieve a high level of performance, a difficult task since
large-scale systems are particularly subject to network latencies.

Another equally important factor is the choice of the consistency model, as
strict consistency can impair performance significantly. Therefore, a peer-to-peer
file system should offer a range of different degrees of consistency, thus allowing
applications to choose between various levels of consistency and performance.
Pastis currently provides two relaxed consistency models and future work will
involve envisaging and adding new models. Ongoing work focuses on providing
support for concurrency control, through the implementation of file locks and
exclusive file creation, for application requiring strict consistency.

Finally, our prototype evaluation based on simulation and real execution
suggests that Pastis is only 1.4 to 1.8 times slower than NFS. However, our
results are still preliminary and must be corroborated by further evaluations.

1182 Jean-Michel Busca, Fabio Picconi, and Pierre Sens

References

1. A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. How-
ell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, Avail-
able, and Reliable Storage for an Incompletely Trusted Environment. In 5th Sym-
posium on Operating Systems Design and Implementation (OSDI 2002), Boston,
MA, December 2002.

2. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore:
An architecture for global-scale persistent store. In Proc. ASPLOS’2000, Cam-
bridge, MA, November 2000.

3. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A Read/Write Peer-to-
Peer File System. In Proceedings of 5th Symposium on Operating Systems Design
and Implementation (OSDI 2002).

4. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooper-
ative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada, Oct. 2001.

5. Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive
replication in the pangaea wide-area file system. In 5th Symp. on Op. Sys. Design
and Implementation (OSDI 2002), Boston, MA, USA, December 2002.

6. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. of USENIX
Symposium on Operating Systems Design and Implementation (OSDI 1999).

7. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing orlarge-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware 2001,
Heidelberg, Germany, Nov. 2001.

8. FreePastry. http://freepastry.rice.edu/
9. J-M. Busca, F. Picconi, P. Sens. Pastis: a highly-scalable multi-user peer-to-peer

file system. INRIA Technical Report 5288. August 2004.
10. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of repli-

cated objects in a distributed environment. In Proceedings of ACM SPAA. ACM,
June 1997.

11. A. Rowstron and P. Druschel. Storage management and caching in Past, a large-
scale, persistent peer-to-peer storage utility. In Proc. of the ACM Symposium on
Operating System Principles (SOSP 2001), October 2001.

12. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,
and M. West. Scale and performance in a distributed file system. In ACM Trans-
actions on Computer Systems, volume 6, February 1988.

13. A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B.Welch. The
Bayou architecture: Support for data sharing among mobile users. In Proc. of IEEE
Workshop on Mobile Computing Systems & Applications, Dec. 1994.

14. L. Rizzo. Dummynet and Forward Error Correction. In Proc. of the 1998 USENIX
Annual Technical Conf., June 1998.

15. Pastis. http://regal.lip6.fr/projects/pastis
16. LS3. http://regal.lip6.fr/projects/pastis/ls3

AGNO: An Adaptive Group Communication Scheme
for Unstructured P2P Networks"

Dimitrios Tsoumakos and Nick Roussopoulos

Department of Computer Science
University of Maryland, College Park
{dtsouma,nick}@cs.umd.edu

Abstract. We present the Adaptive Group Notification (AGNO) scheme for effi-
ciently contacting large peer populations in unstructured Peer-to-Peer networks.
AGNO defines a novel implicit approach towards group membership by moni-
toring demand for content as this is expressed through lookup operations. Utiliz-
ing search indices, together with a small number of soft-state shortcuts, AGNO
achieves effective and bandwidth-efficient content dissemination, without the cost
and restrictions of a membership protocol or a DHT. Our method achieves high-
success content transmission at a cost at least two times smaller than proposed
techniques for unstructured networks.

1 Introduction

A multicast transmission is defined as the dissemination of information to several hosts
within a network. These hosts are interested in receiving the same content from an
authority node (such as a web server) and naturally form a group. The lack of deploy-
ment of multicast communication in the IP layer has led to the development of various
application-level multicast protocols, in which the end hosts are responsible for imple-
menting this functionality. One-to-many communication is a very useful mechanism for
a variety of network applications (e.g., [1–6]).

A number of methods have been proposed to implement multicast communication
utilizing some popular P2P overlays, e.g., [3, 7–9]. Nevertheless, these approaches take
advantage of the structure that DHTs (distributed hash tables) provide. In many realistic
scenarios, the topology cannot be controlled and thus DHTs cannot be used (e.g., ad-
hoc networks or existing large-scale unstructured overlays). Other approaches require
frequent communication overhead between group members and explicit membership
protocols. These schemes often prove unsuitable because of the generated traffic for
large and dynamically changing group populations.

Today, many popular P2P applications operate on unstructured networks, where
peers have a local only knowledge of a network in which nodes enter and leave fre-
quently in an ad-hoc manner. For such systems, contacting large numbers of nodes is
implemented by either broadcast-based schemes (e.g., [10, 11]), or gossip-based ap-

" This material is based upon work supported by, or in part by, the U.S. Army Research Labora-
tory and the U.S. Army Research Office under contract/grant number DAAD19-01-1-0494.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1183–1193, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1184 Dimitrios Tsoumakos and Nick Roussopoulos

proaches, e.g., [4–6]. Both produce large numbers of messages by contacting many
hosts inside the network1.

In this paper, we present the Adaptive Group Notification (AGNO) method. AGNO
combines the utilization of state accumulated during the search process together with
probabilistically stored requester addresses. Our method builds its knowledge by only
monitoring the independently conducted lookups and does not require any control or
membership message exchange. Finally, we show that AGNO achieves an efficient and
adaptive performance in a variety of environments and group sizes.

2 The AGNO Protocol

2.1 Our Framework and Overview of APS

We assume a pure P2P model, with no imposed hierarchy over the set of participating
peers. All of them may equally serve and make requests for various objects using unique
object IDs. Each peer retains its own collection which is locally maintained. Ignoring
physical connectivity and topology from our talk, we assume that peers are aware of
their one-hop neighbors in the overlay. A multicast transmission in this setting (also
referred to as the notification or push phase hereafter) is initiated by an object holder
(or server node) and its target is to reach as many group members (or requester nodes)
as possible with the least amount of messages over the overlay. The focus of this work
is to describe an efficient mechanism for such transmissions and not to define their
content.

For our motivating example, we assume a distributed, unstructured P2P system,
where peers share and request replicated resources. Objects are assumed to be updated
often, like results of a live sports meeting, weather maps, stock quotes, real time aggre-
gated statistics, etc. There exist some nodes (similar to the web servers or mirror sites
in the Internet) that provide with fresh content, but their connectivity or availability
varies, as happens with all other network nodes. Peers that are interested in retrieving
the newest version of the content conduct searches for it in order to locate a fresh or
closer replica. In this environment, interest in a specific object is tied to the lookups
generated for it. We argue for a push-based approach, where content holders can for-
ward notifications (or other object-specific information) towards the interested hosts.
Our assumption is that peers which have recently searched or retrieved an object would
also be interested in receiving such content. For example, we can assume that a user
frequently asking for the temperature of an area would like to be informed about an
update or another object-related notification.

It is important to note here that peers still search and retrieve objects in a distributed
manner, using one of the available lookup protocols for unstructured systems. The noti-
fication itself is not necessary to be directly related to the object: A severe weather alert
to be effective in the next 3 hours is not related to the current area temperature object.
Similarly, a notification may state that node(s) hosting security-related software will be-
come unavailable soon (still not related to the objects shared). A change in quote prices
or breaking news inside a web page are, on the other hand, directly linked to the object’s

1 Due to severe space constraints, a detailed analysis of the related work appears in the accom-
panying technical report [12].

AGNO: An Adaptive Group Communication Scheme for Unstructured P2P Networks 1185

content. Group communication requires a considerable amount of bandwidth, therefore
content providers should wisely assess the importance of various updates/notifications
and choose to push those that would be the most beneficial.

The Adaptive Probabilistic Search (APS) [13] method is a search scheme for un-
structured overlays. Each node keeps a local index consisting of one entry for each of
its neighbors. These index values reflect the relative probability of a node’s neighbor to
be chosen as the next hop in a future request for a specific object. Searching is based on
the simultaneous deployment of k walkers and probabilistic forwarding. Indices are up-
dated along the walkers’ paths according to object discovery or failure. APS has proved
to be an adaptive, bandwidth-efficient scheme which also provides for robust behavior
in dynamic environments [14]. All nodes participating in a lookup benefit from the pro-
cess, while others inherit search knowledge by proximity. Index values are refined as
more searches take place, enabling the network to build a useful soft-state.

2.2 AGNO Protocol Description

The main idea behind AGNO is to couple search knowledge with the information neces-
sary to contact interested peers. Thus, the equivalent of group membership is demand,
realized through searches and object sharing that are independently conducted by peers.
The granularity can be as coarse or fine-grained as the application requires, but for the
remainder of this paper we assume that groups are formed on a per-object basis.

After each search with the APS scheme, peers accumulate knowledge about the
relative success of a search through their neighbors. Intuitively, after a few lookup op-
erations have been conducted, overlay paths with high index values are the ones most
frequently used to connect requesters to object holders. In AGNO, nodes utilize those
indices in order to forward group messages towards possible group members during the
push phase. Note here that, although the APS method is used as a means to provide with
the soft state, our approach can be used with other search mechanisms, as long as they
support a similar demand incentive.

APS keeps an index value for each neighbor. For AGNO, each peer P also maintains
the index values that P’s neighbors hold relative to P. If A→ B denotes the index value
stored at node A concerning neighbor B for a particular object, then peer P must know
X → P, for each neighbor X . These values can be made known to P either implicitly
or explicitly during the search phase: In the first case, peer P can infer the value of
X → P if it knows about the index update process used and the initial value. In the
explicit approach, whenever a search is conducted and X forwards to P, it piggybacks
X → P. We call these new stored values the reverse indices, to distinguish them from
the indices used by APS in searches. For the rest of our discussion, we assume that the
explicit approach is used. Reverse indices are used by nodes during the push phase to
select which neighbors will receive the notification, but they are not the only state that
our method utilizes.

During searches, intermediate nodes decide with probability pr whether to store
the requester’s ID or not. For a search path h hops long, the (ID, address) pair of the
requester will be stored on hpr peers on average. With this scheme, we create a number
of shortcuts called backpointers along the search paths which point to group members.
Each peer can individually decide on the maximum number of backpointers stored.

1186 Dimitrios Tsoumakos and Nick Roussopoulos

Fig. 1. Search for an object stored at the gray
node and the push phase from this node to-
wards the requesters (black nodes).

t

t2t1t0 t3

R
ev

er
se

 I
nd

ex
 V

al
ue

Fig. 2. Example of the reverse index value up-
date process.

For simplicity, we assume that all nodes can store a maximum of c backpointer values.
Backpointers are soft-state that gets invalidated after some amount of time.

In the push phase, a peer that receives the notification message forwards it to its
neighbors consulting the respective reverse index values. Moreover, a peer forwards
directly to each of its valid backpointers with probability pn. These messages have a
T T L = 1 and do not travel further. Notifications are discarded either when their T T L
value reaches zero or if they are received by a node more than once due to a cycle.
Therefore, our scheme combines a selective, modified-BFS forwarding augmented with
direct messaging (backpointers) in order to contact group members. This is shown pic-
torially in Figure 1.

We now discuss how the aforementioned state is maintained. The backpointer val-
ues expire after a certain amount of time. Since our incentive to push a message is the
demand on a per-object basis, new backpointers replace the oldest valid ones (if a node
already has c valid backpointers). As searches take place inside the system, the back-
pointer repositories get updated, while the probabilistic fashion in which they are stored
guarantees a diverse collection of (ID, address) pairs. Reverse indices get updated dur-
ing searches, but this is not enough: There may be peers that have searched for an object
and built large index values, but are no longer interested in receiving notifications (i.e.,
stop querying for that object). If searches are no longer routed through those peers, the
respective reverse index values will not be updated and will remain high.

To correct this situation, we add an aging factor to the reverse indices, which forces
their values to decrease with time. Peers need to keep track of the time that a reverse
index was last updated in order to acquire its correct value before using it. When a peer
receives a search message, it sets the corresponding reverse index to the piggybacked
value and its last modified field to the time of receipt. We describe this process in Figure
2. The value of the index decreases exponentially, while two searches at times t1, t2 reset
its value. A push message received at time t3 will use the value as shown in the figure.
The last modified value is also reset when a reverse index is used, since a peer computes
its current value before using it.

2.3 Protocol Specifics

1) Space Requirements: The amount of space required by the peers is O(d + c) per
object, where d is the average node degree in the overlay and c is the maximum number

AGNO: An Adaptive Group Communication Scheme for Unstructured P2P Networks 1187

......

Thresh0 Thresh1 Thresh2 Threshn

a0 b0 b1 b2

Fig. 3. Sample binning scheme with the respective threshold values for each interval.

of backpointers stored. For about 1 million objects, assuming c = d = 4, each peer
would need approximately 48MB of memory for AGNO, definitely affordable by the
vast majority of modern hosts.

2) Forwarding: Nodes use a threshold parameter T hresh in order to choose to which
neighbors the notification will be forwarded. Neither the probabilistic or the top-k value
schemes are suitable, as they fail in a variety of cases. Consider for example a peer with
very low values for all its neighbors. Thresholding enables peers to forward to the most
“promising” (active in searches) parts of the overlay. A good first approximation is for
each peer to use the average of all its neighbors’ indices as Thresh. Nevertheless, both
the average and the median values fail as well in various circumstances (e.g., when all
indices have a very similar low or high value).

3) Local Threshold Computation: Peers use a globally defined binning scheme to
decide for the value of Thresh. The binning method divides the space of index values
into a number of disjoint intervals. Bini = ([ai,bi),T hreshi) is characterized by its lower
and upper limit values ai,bi (a0 < b0 = a1 < b1 = a2...) and a T hreshi value. The final
threshold value is T hresh = T hreshi, if the average of the neighbors’ reverse index
values lies in [ai,bi). Bins represent an approximation that maps reverse indices to a
value representing their quality. Higher numbered bins represent higher quality indices.
Figure 3 gives a graphic description of our binning scheme.

For small i values we should pick few neighbors (therefore a high threshold relative
to the bin’s interval), while for large i (i.e., high quality bins), most of the neighbors
need to be chosen. As a simple heuristic for selecting Threshi, their values are chosen
such that T hreshi−1−bi−1 > T hreshi−bi and T hreshi−1 < Threshi, i.e., the higher the
order of a bin, the smaller its threshold value is compared to the bin’s upper limit.

4) Reverse Index Aging: Peers that lose interest in an object should be left out of
the push phase as quickly as possible. Our scheme uses an aging factor ξ together with
the last modified time of each reverse index to reduce the influence of inactive ones.
Assuming index P → Q was last modified at time tlast , its value at time t ≥ tlast is:
P→ Q(t) = (1− ξ)t−tlast P→ Q(tlast), where ξ ∈ [0,1]. For ξ = 0.2, a reverse index
value will be at 80% of its last modified after one time unit.

The value of ξ dictates how aggressive our aging will be. It depends on the rate at
which requests (and therefore index updates) occur: The larger the rate of searches, the
more aggressive the aging can be. Nevertheless, it is still application-dependent, since
the rate at which notifications are issued (or even their content) largely affects the aging
factor. We define λr,λn to be the average rates at which a peer or server makes requests
or issues notifications respectively.

For the remainder of this paper, we assume that peers use a value for ξ which sat-
isfies: (1− ξ)T maxi(T hreshi) < mini(T hreshi) (1). In effect, we pick ξ such that any
reverse index with value less or equal to maxi(T hreshi) will be reduced below the low-
est threshold (and thus will not be selected) if not used for T time steps. In the vast

1188 Dimitrios Tsoumakos and Nick Roussopoulos

majority of cases, notifications are considerably less frequent than requests, therefore
we set T = O(1/λr). This is done in order to quickly identify and decrease idle indices
in the overlay. The maximum T hreshi represents the smallest high-quality index value
in our binning scheme. Therefore, we choose ξ such that all reverse indices up to that
level of quality are discarded after a period of time T without getting updated. Choosing
larger threshold values or smaller T values results in a more aggressive aging.

5) Estimation of λr: In order for our scheme to work without requiring a priori
knowledge of the request rate but also to be able to adapt to changes in the workload,
we need an effective yet inexpensive mechanism to estimate its value and compute
the new ξ before each push. This value is then piggybacked downstream and used by
all receiving nodes. In order to estimate λr, we need the zeroth and first frequency
moment (F0 and F1 respectively) of the request sequence arriving at a server. F0 is
the number of distinct IDs that appear in the sequence, while F1 is the length of the
sequence (number of requests). Servers can easily monitor the number of incoming
requests inside a time interval. Many efficient schemes to estimate F0 within a factor
of 1± ε have been proposed (e.g., [15, 16]). We use one of the schemes in [15], which
requires only O(1/ε2 + log(m)) memory bits, where m is the number of distinct node
IDs. In reality, m is in the order of the distinct peers within T TL hops from a server,
since only these nodes can reach it. After each push phase, both estimates are reset and
a new estimation cycle begins.

6) Backpointer Selection: Clearly, following the same number of backpointers at
different peers and times is not efficient. Our method utilizes the local thresholding
computation to assist in the process of selecting valid backpointers. Given that a peer’s
threshold bin is i at time t, the probability with which each stored backpointer will be
followed is pni, given from the set {pn0, pn1, ...pni, ...} (i.e., one pn value for each bin).
We choose those values such that pni > pni+1, since better quality bins forward to more
neighbors and need not waste more bandwidth. With this scheme, AGNO adaptively
balances the amount of forwarded messages per peer between the shortcuts and the
neighbors according to the current quality of its reverse indices.

3 Simulation Results
3.1 Simulation Methodology and Compared Methods

Requesters make searches for objects using APS at rate λr (exponentially distributed
interarrival times), while servers initiate push transmissions at rate λn. At each run, we
randomly choose a node that plays the role of a server and a number of requesters,
also uniformly at random. Results are averaged over several hundred runs. We present
results for both random and power-law graphs, utilizing BRITE [17] and Inet-3.0 [18]
to create these overlays respectively.

The following metrics are used to evaluate the performance of a scheme: The suc-
cess rate, which is the ratio of contacted group members versus the total number of
group nodes and the bandwidth stress, which we define as the ratio of the produced
messages over the minimum number of messages in order to contact all members.

AGNO Parameters: Given the value of 5 as an estimate for the T TL parameter[19],
we set pr ≥ 1

T T L . Given the index update policy used by APS as described in [13], we
employ a simple 3-bin scheme. The first bin represents indices below the initial value

AGNO: An Adaptive Group Communication Scheme for Unstructured P2P Networks 1189

0 20 40 60 80 100
searches per member

0

20

40

60

80

100

%
 o

f
m

em
be

rs
 c

on
ta

ct
ed

AGNO (random)
Shortcuts(random)
AGNO (power-law)
Shortcuts(power-law)

Fig. 4. Success over variable number of
searches.

0 20 40 60 80 100
searches per member

1

1.5

2

2.5

3

st
re

ss

AGNO (random)
Shortcuts(random)
AGNO (power-law)
Shortcuts(power-law)

Fig. 5. Stress over variable number of
searches.

(no successes), the second those with some hits and the last those with more successes.
By default, we set c � d (which reserves an amount of space for backpointers roughly
equal to the average node degree) and T = 2Tr. Thus from (1) we have:
ξ = 1−0.440.5λr . The value of λr (and therefore ξ) is estimated right before each server
push using ε = 0.1. A more detailed description of the parameters chosen as well as
experimental evaluations with different parameter/bin selections can be found in [12].

Compared Methods: We compare our method against 3 algorithms: The SCAMP
membership protocol [5] and the two rumor-spreading schemes in [6]: Rumor Monger-
ing (RM) and its deterministic version (det-RM), where peers have complete topology
information. In SCAMP, joining members subscribe by contacting a random existing
member. Upon receiving a subscription request, a member forwards it to all the mem-
bers in its local repository. Nodes decide probabilistically whether to store or forward
the subscription. For the unsubscription process, a node notifies the locally known mem-
bers to replace its ID with the IDs of the members it has received messages from. Group
communication is performed in the standard gossip-based manner. SCAMP is shown to
converge to a local state of slightly over log(n) member IDs, which guarantees with
high probability that all members will receive a notification. In [6], peers that have re-
ceived a message less than F times, forward it to B randomly selected neighbors, but
only those that the node knows have not yet received it. The deterministic version of
that algorithm requires global knowledge of the overlay. Nodes forward messages to all
neighbors with degree equal to 1, plus to B remaining neighbors that have the smallest
degrees.

Finally, we also implement a pure shortcut forwarding scheme (Shortcuts), where
backpointers are stored as in AGNO, while in the push phase a peer forwards to all valid
shortcuts, using the standard T TL scheme. For SCAMP, we first run the membership
phase, in which we favor the method by assuming joining peers know all already joined
members. The parameters for those three methods are the branching factor B, which
represents how many other peers shall be contacted per forwarding step and the seen
value F that represents how many times a peer can receive the same message before
dropping it.

1190 Dimitrios Tsoumakos and Nick Roussopoulos

Table 1. (Success, Stress) results for the remaining methods using 500 requesters.

SCAMP RM det-RM
10K Random (89%,2.7) (89%,34.5) (98%,31.1)

10K Power-law (68%,2.1) (27%,13.6) (65%,10.8)

10 100 1000 2000
group size

1

5

10

15

20

st
re

ss

AGNO
SCAMP
RM
det-RM

Fig. 6. Stress over variable group size.

10 100 1000 2000
group size

40

60

80

100

%
 o

f
m

em
be

rs
 c

on
ta

ct
ed

AGNO
SCAMP
RM
det-RM

Fig. 7. Success over variable group size.

3.2 Basic Performance Analysis

In this first set of experiments, using a group of 500 requesters, we vary the number of
lookups each of them makes before a single push phase occurs. We report the results
averaged over 10,000-Node random and power-law topologies. Figures 4 and 5 present
the results for AGNO and Shortcuts which are affected by the number of searches.

We notice that the pure shortcut scheme cannot provide an efficient notification
method by itself. AGNO quickly contacts the majority of requesters after only a few
searches take place, while maintaining a low stress factor. As our scheme creates better
quality indices, there exists a slight variation in the stress. This is due to the fact that
after a certain number of queries, peers switch to a different (higher) bin on average.

In the power-law topologies, where about 34% of the peers have degree one, fewer
paths are used compared to the random graphs. This, combined to the fact that ξ = 0
in these experiments, explains why the stress for AGNO slightly increases with more
requests. The respective results for the remaining methods (not affected by searches) are
shown in Table 1. AGNO proves very accurate (in the big majority of runs) and also the
most bandwidth-efficient of the compared methods. All three rumor-spreading schemes
show considerably worse numbers in the power-law topologies. det-RM is much more
effective than RM in such graphs, which is in accordance to the findings of [6].

Next, we measure the scalability of our method with group sizes ranging from 10
to 2,000 peers using the random topologies. Requesters make only 10 searches on av-
erage, immediately followed by a single push phase from the server. For SCAMP, the
membership protocol is run before each different group size. Figures 6 and 7 present
the results.

Our method is very successful in all group sizes, deteriorating only slightly as the
members increase. This happens because with more requesters, their average distance
from the server increases (the number of peers reachable from a node increases expo-
nentially with the hop distance). This makes APS searches (and its indices) less accurate

AGNO: An Adaptive Group Communication Scheme for Unstructured P2P Networks 1191

0 100 200 300 400
time(sec)

20

40

60

80

100

%
 o

f
m

em
be

rs
 c

on
ta

ct
ed lr=.2

lr=.6
lr=1
lr=6
SCAMP

Fig. 8. Success over variable λr values (Tn =
10sec).

0 100 200 300
time(sec)

1

1.5

2

2.5

3

st
re

ss

lr=0.2
lr=0.6
lr=1.0
lr=6.0
SCAMP

Fig. 9. Stress values over variable λr values
(Tn = 10sec).

for some requesters. The RM schemes produce a similar number of messages regardless
of the group size, while the closest competitor (SCAMP) has roughly twice the stress
value of AGNO, without including the overhead of the membership phase. Our method
manages to contact a very high percentage of the members (86-99.5%) using an almost
constant message ratio over the group size.

3.3 Sensitivity to λr

Assuming a group size of 1,000 peers, we try to evaluate the performance of AGNO
for different λr values. Figures 8 and 9 show the results. Not surprisingly, the larger
the value of λr, the faster the increase in the success rate, since indices get accurate
faster. Another observation is that, regardless of the average request rate, our method
asymptotically manages to contact all interested peers and reach a very low stress level
(below 1.3). For most realistic scenarios (Tn >> Tr), the choice of Tn does not affect
AGNO’s performance. In the very rare cases that Tn < Tr, we just set T = O(Tn) to
achieve comparable adaptation. In all cases, our adaptive aging mechanism selects a
suitable value for ξ such that the stress remains almost stable and below 1.4, half the
value of the best of the remaining schemes (SCAMP). For small request rates, peers
adapt using initially low and then higher quality bins (thus the slight variation in stress).
The smaller the value of λr, the longer this adaptation takes.

3.4 Changes in Group Sizes

Figure 10 shows how our two metrics are affected by having 10%–80% of the 1,000
requesters leave the group (stop making queries) at time t = 100sec. We assume (worst-
case scenario) that all these nodes jointly and instantly decide to leave the group. In
all runs, the stress value peaks at the time of the departures, since the same number of
peers are notified but fewer are now considered as members. The size of the departing
sub-group directly affects the stress increase. The stress value instantly drops due to
our aging mechanism, but it does not reach its previous value. This is due to the fact
that a peer’s indices get updated not only when it makes a request but also when any
request passes through it. Therefore, while shortcuts for departing peers expire, indices
leading to them may still have large values, depending on the relative positions of other
requesters in the overlay. On the other hand, the success rate is hardly affected.

1192 Dimitrios Tsoumakos and Nick Roussopoulos

0 100 200 300 400
time (sec)

1

2

3

4

5

st
re

ss

dep=0.1
dep=0.2
dep=0.5
dep=0.8

0 100 200 300 400
time

0

20

40

60

80

100

su
cc

es
s

(%
)

Fig. 10. Stress and success rates when a different ratio of peers depart at time t=100sec (λr =
1,Tn = 10sec).

150 200 250 300 350 400 450 500
time (sec)

60

70

80

90

100

%
 o

f
co

nt
ac

te
d

m
em

be
rs

AGNO
RM
det-RM
SCAMP

Fig. 11. Success after a series of member de-
partures and arrivals (λr = 0.5,Tn = 10).

150 200 250 300 350 400 450 500
time (sec)

0

10

20

30

40

50

st
re

ss

AGNO
RM
det-RM
SCAMP

Fig. 12. Stress after a series of member depar-
tures and arrivals (λr = 0.5,Tn = 10).

Figures 11 and 12 display the performance of the compared methods under a com-
bination of member joins and leaves. At times t = {200,350}sec, 50% of the current
group members decide to leave. At t = {250,280,300,400,420,440}sec, 50% of the
non-active requesters re-join the group. Members make requests at λr = 0.5/sec, while
the group notification phase is performed every 10 secs.

The success rate shows an instant decrease at the exact time of arrival which is pro-
portional to the number of joining peers. Nevertheless, always more than 85% of the
current members are contacted, and AGNO has learned of their presence by the exact
next transmission. In the next push phases, the method quickly reaches its previous lev-
els. On the other hand, the value of stress is decreased after member joins and balances
the small increase that occurs after member departures. SCAMP and the two rumor
spreading schemes show big variations in the stress metric. For RM and det-RM, this
happens because of the change in the group size (same number of messages regardless
of peer membership), while for SCAMP this is due to the subscription and unsubscrip-
tion processes. AGNO contacts the vast majority of members at a cost 1 to 10 times
lower than the closest compared method (SCAMP).

AGNO: An Adaptive Group Communication Scheme for Unstructured P2P Networks 1193

4 Conclusions

In this paper we present AGNO, an adaptive and scalable group communication scheme
for unstructured Peer-to-Peer networks. Our method integrates knowledge accumulated
during searches to enable content-providers contact the large majority of interested
peers with very small overhead. We described in detail our adaptive mechanisms to
regulate message forwarding according to the quality of existing knowledge as well as
to ensure efficient performance in all group operations. A variety of simulations showed
that AGNO adapts quickly to variable request rates and group sizes, being at least twice
as bandwidth-efficient as the compared methods.

References

1. Chu, Y., Rao, S., Seshan, S., Zhang, H.: Enabling conferencing applications on the internet
using an overlay muilticast architecture. In: SIGCOMM. (2001)

2. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:
SIGCOMM. (2002)

3. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: An architecture for
scalable and fault-tolerant wide-area data dissemination. In: NOSSDAV. (2001)

4. Datta, A., Hauswirth, M., Aberer, K.: Updates in highly unreliable, replicated peer-to-peer
systems. In: ICDCS. (2003)

5. Ganesh, A., Kermarrec, A., Massoulie, L.: SCAMP: Peer-to-peer lightweight membership
service for large-scale group communication. In: Networked Group Communication. (2001)

6. Portmann, M., Seneviratne, A.: Cost-effective broadcast for fully decentralized peer-to-peer
networks. Computer Communications 26 (2003)

7. Rowstron, A., Kermarrec, A., Castro, M., Druschel, P.: Scribe: The design of a large-scale
event notification infrastructure. In: NGC. (2001)

8. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, F., O’Toole, J.: Overcast: Reliable multi-
casting with an overlay network. In: OSDI. (2000)

9. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level multicast using
content-addressable networks. Lecture Notes in Computer Science (2001)

10. Gnutella website: http://www.gnutella.com.
11. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A Local Search Mechanism for Peer-

to-Peer Networks. In: CIKM. (2002)
12. Tsoumakos, D., Roussopoulos, N.: AGNO: An Adaptive Group Communication Scheme for

Unstructured P2P Networks. Technical Report CS-TR-4590, University of Maryland (2004)
(ext. version) http://www.cs.umd.edu/ dtsouma/objects/pbroad.pdf.

13. Tsoumakos, D., Roussopoulos, N.: Adaptive Probabilistic Search for Peer-to-Peer Networks.
In: IEEE Intl Conf. on P2P Computing. (2003)

14. D.Tsoumakos, Roussopoulos, N.: A Comparison of Peer-to-Peer Search Methods. In:
WebDB. (2003)

15. Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D., Trevisan, L.: Counting distinct ele-
ments in a data stream. In: RANDOM. (2002)

16. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments. In: STOC. (1996)

17. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal Topology
Generation. In: MASCOTS. (2001)

18. Jin, C., Chen, Q., Jamin, S.: Inet: Internet Topology Generator. Technical Report CSE-
TR443-00, Department of EECS, University of Michigan (2000)

19. Ripeanu, M., Foster, I.: Mapping the gnutella network: Macroscopic properties of large-scale
peer-to-peer systems. In: IPTPS. (2002)

Semantic Peer-to-Peer Overlays
for Publish/Subscribe Networks

Raphaël Chand1 and Pascal Felber2

1 Institut EURECOM, France
chand@eurecom.fr

2 University of Neuchâtel, Switzerland
pascal.felber@unine.ch

Abstract. Existing publish/subscribe systems suffer from several draw-
backs, such as the reliance on a fixed infrastructure of reliable brokers,
or the lack of expressiveness of their subscription language. Most impor-
tantly, the challenging task of routing messages based on their content
remains a complex and time-consuming operation, and often provides
results that are just barely better than a simple broadcast.
In this paper, we present a novel approach to publish/subscribe that
was designed to specifically address these issues. The producers and con-
sumers are organized in a peer-to-peer network that self-adapts upon
peer arrival, departure, or failure. Our publish/subscribe system features
an extremely simple and efficient routing process and excellent scalabil-
ity to large consumer populations, both in terms of routing and peer
management overhead.

1 Introduction

Motivations. The publish/subscribe paradigm is well adapted to loosely-
coupled, large scale distributed systems. However, in most traditional publish/
subscribe systems, the routing process is a complex and time-consuming oper-
ation. It often requires the maintenance of large routing tables on each router
and the execution of complex filtering algorithms to match each incoming doc-
ument against every known subscription. The use of summarization techniques
(e.g., subscription aggregation [1, 2]) alleviates those issues, but at the cost of
significant control message overhead or a loss of routing accuracy.

In addition, content networks usually rely on a fixed infrastructure of reliable
brokers, or assume that a spanning tree of reliable brokers is known beforehand.
This approach clearly limits the scalability of the system in the presence of
large and dynamic consumer populations. Finally, in most existing systems, the
network topology has no relationships with the subscriptions registered by the
consumers. As a consequence, the process of routing an event often involves a
large number of routers, some of which have no interests in the event but only
act as forwarders. The routing process is then only barely more efficient than a
broadcast (which benefits from a much lower processing overhead).

To address these limitations, we have designed a publish/subscribe system
that follows a radically different approach to content-based networking. First,

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1194–1204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1195

the routing process in our system is extremely simple and has very low resource
requirements. Second, by organizing peers based on their interests, content dis-
tribution is highly efficient as compared to broadcast. Finally, instead of relying
on a fixed infrastructure of reliable brokers, our system is organized as a peer-to-
peer network: join and leave operations, as well as peer failures, are taken care
of at the design level with efficient peers management algorithms. We present in
this paper two instantiations of our system that use the same routing protocol
but differ by the way peers are organized. Experimental evaluation illustrates
the various trade-offs that they offer in terms of efficiency and accuracy.

We would like to emphasize that we propose a new peer-to-peer approach
for publish/subscribe, which relies on a system model that differs significantly
from other peer-to-peer applications like file sharing. In particular, we assume
that peers are well behaved and remain online for reasonably long periods of
time, in the sense that the rate of message publication is higher than the fre-
quency of peers’ arrivals or departures. Our system provides mechanisms for
organizing communities of peers that wish to exchange information using the
publish/subscribe paradigm, without reliance on central servers or fixed infras-
tructures.

Related Work. Most publish/subscribe systems use an overlay network of
event brokers to implement some form of distributed content based routing,
most notably IBM Gryphon [3], Siena [1], Jedi [4] and XNet [5]. As previously
mentioned, these systems suffer from various limitations in terms of extensibility,
scalability, and cost. To address some of these issues, a few content-based sys-
tems based on peer-to-peer (P2P) networks have been recently proposed. In [6],
the authors combine the notion of rendezvous nodes and content-based multicast
to implement content based routing in a peer-to-peer environment. HOMED [7]
is a peer-to-peer overlay for distributed publish/subscribe systems. Peers are
organized in a logical binary hypercube according to their subscriptions. Rout-
ing is achieved by propagating the event along a multicast tree embedded in
the hypercube. In [8], the authors also implement publish/subscribe in a peer-
to-peer environment. The system is “data-aware” in the sense that it exploits
information about registered subscriptions to build hierarchical structures. How-
ever, they differ from our approach in that the system is topic-based and the
routing algorithm is based on multicast. Finally, some proposals have been made
to implement content based routing on top of the Chord [9] P2P network. Ex-
amples of such systems are [10] and [11]. Unlike in our approach, they consider
structured P2P networks and do not take advantage of semantic communities.

2 The Routing Process

Protocol. Our system is composed of a collection of peers. Each peer has reg-
istered certain interests that specify the types of messages that it is willing to
receive. Each peer is connected with a set of other peers—its neighbors—with
which it exchanges messages. We initially make the natural assumption that

1196 Raphaël Chand and Pascal Felber

peers publish messages that match their own interests (we can easily relax this
assumption, as will be discussed later). The routing protocol in our system is en-
tirely based on the principle that every peer forwards a message to its neighbors
if and only if the message matches its own interests. The routing process starts
when a peer P publishes a message m. Since P is interested in m, it forwards it
to all its neighbors. Routing then proceeds trivially as shown in Algorithm 1.

Algorithm 1 Routing protocol.
1: Receive message m for the first time from neighbor n
2: if m matches interests then
3: Forward m to all neighbors (except n)
4: end if

The intuition of the algorithm is to spread messages within a community
that shares similar interests and to stop forwarding them once they reach the
community’s boundary. We emphasize the fact that the routing protocol is ex-
tremely simple and requires almost no resources from the peers. It consists of a
single comparison and message forwarding operation. In addition, it requires no
routing state to be maintained in the peers in the system. Each peer is only aware
of its own interests and the identity of its direct neighbors, not their interests.
The key to the protocol is the proper organization of the peers into semantic
communities.

Accuracy. Clearly, the aforementioned process is not perfectly accurate and
may lead to a peer receiving a message that it is not interested in—which we call
a false positive— as well as missing a message that matches its subscriptions—a
false negative. In other words, our system may deliver out-of-interest messages
and may fail to deliver messages of interest. This is obviously due to the fact
that a peer is not aware of the interests of its neighbors and forwards messages
only based on its own interests. The challenge is thus to organize the peers so
as to maximize routing accuracy. It should be noted that false positives are
usually benign, because peers can easily filter out irrelevant messages, whereas
false negatives can adversely impact application consistency.

Interest-Driven Peers Organization. Consider two neighbor peers P1 and
P2. If P1 and P2 have registered close interests, it means that they are interested
in similar types of messages. That is, if P1 is interested in a message, it is likely
that P2 is also interested in it, and vice versa. It follows that neighbor peers
should have close interests in order to minimize occurrences of false positives and
false negatives in our system. In other words, we must organize peers based on
the interests they registered: proximity in terms of neighborhood should reflect
the proximity of the peers’ interests.

To evaluate the proximity between two registered interests I1 and I2, a prox-
imity metric must be used, that is, a function f(I1, I2) that indicates how similar
I1 and I2 are. Unfortunately, defining a good proximity metric is a challenging

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1197

problem. It very much depends on the target application, on the language used
to specify interests, and most of all on the messages being distributed in the
system. The problem of interest proximity has been further discussed in [2].

3 Organizing Peers According to Containment

We now describe a hierarchical organization of the peers that yields no false
negatives and only a limited amount of false positives. It uses a proximity metric
based on the notion of interest containment, as specified in Definition 1. Note
that the containment relation is transitive and defines a partial order. We define
in a similar manner the relation of interest equivalence.

Definition 1. Interest I1 contains interest I2, or I1 ⊇ I2 ⇔ (∀ message m, m
matches I2 ⇒ m matches I1).

Interest I1 is equivalent to interest I2, or I1 ∼ I2 ⇔ (I1 ⊇ I2 ∧ I2 ⊇ I1).
That is: ∀ message m, m matches I2 ⇔ m matches I1.

The containment-based proximity metric, which we refer to as fc, allows us to
compare interests that share containment relationships and is defined as follows.
Consider the set of all registered interests I = {I1, I2, · · · , In} that contain I.
Let {Ii, Ij , · · · , Im} ⊆ I be the longest sequence of non-equivalent interests such
that Ii ⊇ Ij ⊇ · · · ⊇ Im. Then,

fc(I, I ′) =

⎧⎪⎨⎪⎩
−∞, if I � I ′;
∞, if I ∼ I ′;
|{Ii, Ij , · · · , Im}|, otherwise.

Intuitively, the objective of this metric is to favor interests that are them-
selves contained in many other interests, i.e., that are very specific and selective.
Note that this metric is not symmetric. The containment-based proximity metric
can be used with any subscription language, provided that it defines a contain-
ment relationship. Of course, it applies best to subscription languages that are
likely to produce subscriptions with many containment relationships. We wish
to emphasize, however, that our routing protocol can be used with any other
proximity metric, as we shall see in Section 4.

Network Description. Peers are organized in a containment hierarchy tree,
based on the proximity metric fc defined earlier. To simplify, we assume that each
peer has expressed its interests by registering exactly one subscription (if that is
not the case, the peer will appear multiple times in the hierarchy). The contain-
ment hierarchy tree is defined as follows. A peer P that registered subscription
S is connected in the tree to a parent peer Pa that registered subscription Sa

if Sa is the subscription in the system closest to S according to the proximity
metric fc. Given the definition of the metric fc, this means that Sa is the deep-
est subscription in the tree among those that contain S. When we have more
than one peer to choose from, we select as parent the peer that has the lowest

1198 Raphaël Chand and Pascal Felber

number of children in order to keep the tree as balanced as possible. Because
of Definition 1, peers that have registered equivalent interests in the system
are organized in specialized, balanced subtrees with limited degree that we call
equivalence trees. From the perspective of other peers in the system, an equiv-
alence tree is considered as a single entity represented by its root node, which
is positioned in the containment hierarchy tree using the rules described above.
Non-equivalent children of the peers in an equivalence tree are always connected
to its root. To interconnect top level peers that do not share containment rela-
tionships with each others, we introduce an artificial node that we refer to as the
root node. This node is purely virtual and is implemented by simply connecting
top-level peers with each other through “sibling” links. A simple containment
hierarchy tree is illustrated in Figure 1. The equivalent peers P8, P9 and P10

are organized in the equivalence tree rooted at P8. Note that both P2 and P4

contain P3, but P2 has a greater depth and is hence a better parent. Similarly,
P6 is connected to P5 rather than P1.

Impact on the Routing Process. From Algorithm 1 and the fact that peers
are organized in a containment hierarchy tree, it follows that the paths followed
by a message form a content distribution tree, in which inner nodes are true
positives and leaves are either false positives or leaves in the tree topology.
Consequently, routing is efficient in terms of bandwidth usage. Besides, there
are no false negatives in our system. We wish to point out that false positives can
only be avoided by having each peer know about its neighbors’ interests, which
conflicts with our design guidelines. Finally, the construction of the containment
hierarchy tree topology enables us to minimize the occurrence of false positives
with uniform subscription and message workloads. Indeed, the fact that a peer
P has for parent the peer of highest possible depth that contains it means that
a message m has a greater chance of being discarded on the way from the root
node to P . A simple example is illustrated in figure 1, where peer P5 publishes
message D. The path followed by D is highlighted by the arrows.

Maintaining the Containment Hierarchy Tree. We have implemented sev-
eral peers management algorithms to maintain the containment hierarchy tree
when peers dynamically join and leave the system. We now briefly discuss their
basic principles and most relevant features.

The join algorithm aims at inserting a new peer P with subscription S in
the tree topology. Consequently, the system is first probed to find adequate
containment or equivalence relationships between S and the other registered
subscriptions. This can be done by recursively propagating join messages in the
hierarchy tree. It is important to note that a join message usually traverses only
a fraction of the tree, very much like regular messages. As a result of the probing
phase, P joins the tree by connecting to a parent that is either an equivalent
peer, if any, or a peer of highest depth whose subscription contains S. Next, P
proceeds to the reorganization phase, which might lead to moving some existing
peers so as to become P ’s children. Indeed, when P has connected to a parent in
the tree, some other peers may now be closer to P than their actual parent in the

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1199

m =

Name=A
Vol.<200

Name=A
Price=30
Vol.=100

Name=A
Vol.=150

Price>10

Name=A
Price=20

Name=A
10<Price<30

P4

P5

P6 P7

P1

P2

P3

Pr

P8

P9 P10

m

Name=A

Name=A
Vol.>500

Name=A
Price=30
Volume=100

Name=A
Vol.>500

Name=A
Vol.>500

Fig. 1. A simple publish/subscribe sys-
tem for stock quotes with participants or-
ganized in a containment hierarchy tree.
The subscription registered by a peer is
represented next to it.

P4

P5

P6

P7

P1

P3

P3

Pr

Name=A
Volume<150
Price<50

Pnew

Name=A
Price=30
Volume=100

Name=A
Volume=150

Name=A
Volume<200

Name=APrice>10

Name=A
10<Price<30

Name=A
Price=20

Fig. 2. Peer Pnew has been inserted in the
network with P5 as its closest peer. Peer
P6 is reorganized as Pnew ’s child because
the latter is a better parent than P5.

tree. The reorganization phase introduces significant overhead in the system, in
particular because it requires additional propagations of join messages. As a con-
sequence, we have implemented three different flavors of the join algorithm. The
first variant of the algorithm always performs all possible reorganizations. The
second variant of the algorithm never performs any reorganizations. Finally, the
third variant of practical relevance periodically performs reorganizations (only a
given percentage of peers are reorganized). The different variants reach different
compromises between joining complexity and accuracy of the hierarchy tree.

When peer P with registered subscription S wishes to leave the system—or
when it fails—each of its children has to be reconnected to another parent in the
tree. If P is part of an equivalence tree, then we simply perform a leaf promo-
tion (a leaf downstream P is promoted to P ’s position). If P is not part of an
equivalence tree, then the leave algorithm consists in reconnecting P ’s children
to their grand-parent. It follows that every peer needs to know its grand-parent
(or several ancestors for increased fault-tolerance); this is achieved with trivial
modifications to the join algorithm and negligible additional control traffic. Al-
though extremely simple, this recovery technique may cause the accuracy of the
containment hierarchy tree to degrade over time. This is due to the fact that P ’s
parent may not be the closest peer in the system for P ’s children. In addition,
P ’s parent may suffer from the increased number of connections that it has to
manage. To address those issues or in case P ’s parent has also failed, P ’s chil-
dren can look for another replacement parent by executing the join algorithm,
typically starting from some ancestor, at the price of higher overhead. Note that,
if we wish to maintain an optimal tree, additional peers among P ’s descendants
might need to re-evaluate their position as well if P ’s departure has decreased
their depth.

1200 Raphaël Chand and Pascal Felber

Scalability Issues. The instantiation of our system using the containment-
based metric organizes peers in tree topologies. It follows that high-level peers
receive a high number of messages. As these peers have very “broad” interests,
it is not unnatural that they receive a high percentage of published messages:
they are interested in those messages. They are also more exposed to control
messages from the peer management algorithms, but this traffic can be reduced
by confining the join and reorganization procedures within selected subtrees.
The most serious scalability issue comes from the fact that high-level peers may
have a large number of neighbors to forward messages to (recall that both the
routing process and the peers management algorithms are straightforward and
demand very little resources). To address this problem, we have performed slight
modifications to our original protocol to reduce by a great deal the bandwidth
utilization at the peers. Because of space requirements, we shall only briefly
introduce these techniques. Informally, the principle of the improved scheme
consists in connecting the children of a node with “sibling” links in a double-
linked list. When a peer receives a message, it forwards it to its two neighboring
siblings and one of its children, chosen uniformly at random. This approach
dramatically reduces the bandwidth requirements of peers that have a large
number of children, but also slows down the propagation of messages in the
system. It is therefore desirable to use it only for overloaded peers.

4 Organizing Peers According to Similarity

As previously mentioned, the routing protocol used to disseminate messages
does not make specific assumptions about the proximity metric used to orga-
nize the peers in semantic communities. We now present a generalization of
the containment-based proximity designed to alleviate two of its limitations: (1)
its poor applicability to subscription language and/or consumer workloads with
little or no containment relationships, and (2) its tree topologies that may be
fragile with dynamic consumer populations. This generalization is based on the
general principle of interest similarity.

Similarity Metric. We first define the notion of interest similarity as follows.

Definition 2 (Interest similarity). Consider two interests I1 and I2. Let I
be the universe of all possible interests. We define the similarity between I1 and
I2, noted Sim(I1, I2), as a function from I2 in the interval [0, 1] that returns the
probability that a message m matching I1 also matches I2.

We then define our proximity metric based on interest similarity, which we
refer to as fs:

Definition 3 (Proximity metric fs). fs : I2 �→ [0, 1] :

fs(I1, I2) =
Sim(I1, I2) + Sim(I2, I1)

2

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1201

Note that the proximity metric fs is symmetric, that is, if I1 is close to I2
according to fs, then I2 is equally close to I1. However, the similarity function
is a priori not symmetric.

Network Description. We now briefly describe the hierarchical organization
of peers based on the proximity metric fs. A peer P with registered interest
I chooses a set of n neighbors Pi, which are the n peers in the system with
interests closest to I according to fs (in case of equality, the peers with less
connections are chosen). In turn, P can be chosen by some other peers as one of
the n best peers according to fs (such that I is amongst the n interests in the
system closest to their subscription according to fs).

This approach effectively organizes the peers in “interest communities,” i.e.,
groups of peers that share similar interests. Because of the definition of the sim-
ilarity function and the proximity metric fs, this organization optimizes routing
accuracy by minimizing the number of false positives and negatives exchanged
by neighbor peers. To maintain good connectivity between the communities and
prevent some of them from being closed (because their interests do not compare
with the other communities’ interests), P also chooses r neighbors at random
in the system, in addition to the n peers selected with fs. Routing proceeds
as described in Section 2. Peer management algorithms are also very similar to
those presented earlier, with a few differences discussed in [12]. However, the
routing algorithm can be enhanced to have even better control on false positives
and false negatives. For instance, we can add an indulgence factor γ that allows
a peer to forward a message even if it is not interested in it. The process, which
may be performed only γ times per message, is expected to reduce the false
negatives ratio, notably by improving the transfer of messages between commu-
nities. Another improvement is to add a random neighbor forwarding probability
ρ, which controls the probability for a peer P to actually forward a message to
its r random neighbors. The base case, ρ = 100%, produces fewer false negatives
but more false positives; lower values of ρ have the opposite effect.

Obviously, if n + r > 1, the peers are organized in graphs instead of trees.
We can also observe that, if we set n = 1, r = 0 and we define Sim(I1, I2) = 1 if
I1 ⊇ I2 and Sim(I1, I2) = 0 otherwise, peers are organized using a containment-
based metric similarly to the topology of Section 3.

The organization of peers in graphs rather than trees benefits from several
advantages. It has better connectivity and is hence more resilient to failures and
frequent arrivals or departures. Also, it has better flexibility and offers higher
scalability since the traffic load is more evenly distributed amongst the peers.
Finally, this model can be applied to any subscription languages and consumer
workloads even if the subscriptions share little or no containment relationships.

5 Performance Evaluation

To test the effectiveness of our publish/subscribe system, we have conducted
simulations using real-life document types and large numbers of peers. We pro-
pose an evaluation of our system when using both the containment and similarity

1202 Raphaël Chand and Pascal Felber

metrics presented earlier. We are mostly interested in studying the routing pro-
cess in the system. Indeed, we have seen that the cost for its extreme simplicity is
that it induces a certain inaccuracy in terms of false positives and negatives but
that an efficient topology enables to minimize their occurrence. In this evalua-
tion, we quantify the accuracy of our system experimentally. In-depth evaluation
of other aspects of our system is available in [12].

Peers in our system register their interests using the standard XPath lan-
guage to specify complex, tree-structured subscriptions. Documents are XML
documents. To evaluate our system when using the similarity metric, we have
implemented a proximity metric for XML documents and XPath subscriptions.
Because of space limitations, the metric is not detailed in this paper (a descrip-
tion can be found in [12]).

Containment Metric. We first focus on the system when peers are organized
in a containment hierarchy according to the proximity metric fc. We have seen
that this topology enables to suppress all occurrences of false negatives. As a
consequence, we aim at quantifying experimentally the number of false positives
generated by the routing process in the system. For that purpose, we proceeded
as follows. We first simulated networks of different sizes, with each version of
the join algorithm presented in section 3, by sequentially adding peers with
randomly-generated subscription (we used a reorganization rate of 10% for the
join version with periodic reorganization). We then routed 1, 000 random doc-
uments by injecting them at the root node.1 For each document, we computed
the false positives ratio as the percentage of peers in the system that received a
message that did not match its interests. The results, shown in Figure 3, were
obtained by taking the average of 1, 000 executions.

We observe that the average false positives ratio remains small, typically less
than 10% in most cases, and decreases exponentially with the size of the con-
sumer population. This is due to the efficiency of the tree topology. By organizing
peers based on their interests, documents are filtered out as soon as they reach
the boundary of the community of interested consumers. The efficiency of the tree
topology improves with the size of the consumer population because of the in-
creasing number of containment relationships shared between the peers. Besides,
we computed that on average, and independently of the consumer population,
the percentage of uninterested peers in the system is 75%, which illustrates the
benefits of our routing protocol over a broadcast. Unsurprisingly, join algorithms
that reorganize the peers more frequently produce network topologies that have
a lower false positives ratio. As explained in section 3, this is directly related to
the number of reorganizations that are performed by each algorithm. However,
the differences are very small and the benefits of the slight increase in accuracy
may not justify the additional overhead of the reorganization process.

Similarity Metric. We now study the accuracy of the system when peers are
organized in a graph according to the proximity metric fs based on subscrip-
1 Note that the number of false positives would not be affected when injecting the

messages at another node than the root.

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1203

0

5

10

15

20

20000 40000 60000 80000 100000

A
vg

. f
al

se
 p

os
iti

ve
 r

at
io

 (
%

)

Peers population

Join with reorganization
Join without reorganization

Join with periodic reorganization

Fig. 3. False positives ratio for networks
of different sizes.

0

5

10

15

20

25

30

5000 10000 15000 20000

22.3

2.5

14.0

5.3

R
at

io
 (

%
)

Peers population

FP (n=5,ρ=100)
FN (n=5,ρ=100)

FP (n=5,ρ=50)
FN (n=5,ρ=50)

Fig. 4. False positives and false negatives
ratios for networks of different sizes.

tion similarities. Since this topology does not prevent the occurrence of false
negatives, we are interesting in quantifying the accuracy of our system both in
terms of false positives and false negatives. For that purpose, we proceeded as
in the case of the metric based on containment. We first generated networks of
different sizes, using a value of n = 5 for the number of proximity neighbors and
r = 1 for the number of random neighbors. We then injected random documents
and quantified the routing accuracy. We measured the false positives ratio as the
percentage of the peers in the system that received a message that did not match
their interests, and the false negatives ratio as the percentage of peers interested
in a message that did not receive it. We experimented with random neighbor
forwarding probabilities ρ of 100% and 50%. Results are shown in Figure 4.

We first observe that the average false negatives ratio remains small, typ-
ically less than 5%, which shows that on average, for a given document, only
a small fraction of the population of interested consumers does not receive it.
The false positives ratio, while significantly higher, still remains at reasonable
values, typically around 25%. We also remark that, as expected, a lower value
of the parameter ρ favors the false positives ratio over the false negatives ratio.
For a value of ρ = 50%, the false positives ratio improves significantly (14% for
20, 000 peers), at the cost of a slight increase of the false negatives ratio (5%
for 20, 000 peers). Finally, all performance metrics decrease with the size of the
consumer population, which shows that the routing accuracy globally improves
with the consumer population. This can be explained by the fact that, in larger
populations, peers are able to find better neighbors according to the proximity
metric fs and hence reduce the occurrence of false positives and false negatives.

6 Conclusion

We have designed a novel publish/subscribe system, based on the peer-to-peer
paradigm, that specifically address some of the limitations of existing systems. In
particular, our network does not rely on a dedicated network of content routers,
nor on complex filtering and forwarding algorithms: it features an extremely

1204 Raphaël Chand and Pascal Felber

simple routing process that requires almost no resources and no routing state to
be maintained at the peers. The price to pay for this simplicity is that routing
may not be perfectly accurate, in the sense that some peers may receive some
messages that do not match their interests (false positives), or fail to receive rel-
evant messages (false negatives). By organizing the peers according to adequate
proximity metrics, one can limit the scope of this problem. We have proposed a
containment-based proximity metric that allows us to build a bandwidth-efficient
network topology that produces no false negatives and very few false positives.
We have also developed a proximity metric based on subscription similarities
that yields a more solid graph structure with negligible false negatives ratios
and very few false positives. As part of our ongoing research, we are studying
refinements of our proximity metrics that take into account additional factors
such as physical proximity or link bandwidth, in order to minimize latency and
maximize throughput.

References

1. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on Computer Systems 19 (2001)

2. Chan, C.Y., Fan, W., Felber, P., Garofalakis, M., Rastogi, R.: Tree Pattern Aggre-
gation for Scalable XML Data Dissemination. In: Proceedings of VLDB. (2002)

3. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., Sturman,
D.: An efficient multicast protocol for content-based publish-subscribe systems.
In: Proceedings of ICDCS. (1999)

4. Cugola, G., Nitto, E.D., Fugetta, A.: The JEDI event-based infrastructure and its
application to the development of the opss wfms. IEEE Transactions on Software
Engineering 27 (2001) 827–850

5. Chand, R., Felber, P.: A scalable protocol for content-based routing in overlay
networks. In: Proceedings of NCA, Cambridge, MA (2003)

6. Perng, G., Wang, C., Reiter, M.: Providing content based services in a peer to
peer environment. In: Proceedings of DEBS, Edinburgh, UK (2004)

7. Choi, Y., Park, K., Park, D.: Homed: A peer-to-peer overlay architecture for
large-scale content-based publish/subscribe systems. In: Proceedings of DEBS,
Edinburgh, UK (2004)

8. Baehni, S., Th, P., Guerraoui, E.: Data-aware multicast. In: Proceedings of the
5th IEEE International Conference on Dependable Systems and Networks. (2004)

9. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proceedings of ACM
SIGCOMM. (2001) 149–160

10. Terpstra, W., Behnel, S., Fiege, L., Zeidler, A., Buchman, A.: A peer-to-peer
approach to content-based publish/subscribe. In: Proceedings of DEBS, San Diego,
USA (2003)

11. Triantafillou, P., Aekaterinidis, I.: Content-based publish-subscribe over structured
p2p networks. In: Proceedings of DEBS, Edinburgh, UK (2004)

12. Chand, R., Felber, P.: Semantic Peer-to-Peer Overlays for Publish/Subscribe Net-
works. Technical report, Institut EURECOM (2005)

Topic 16
Applications of High-Performance

and Grid Computing

Ray Bair, Ed Seidel, Michel Daydé, and José Laginha Palma

Topic Chairs

The use of parallel computing and distributed information services is spreading
quite rapidly, as today’s difficult problems in science, engineering and indus-
try far exceed the capabilities of the desktop PC and department file server.
The availability of commodity parallel computers, ubiquitous networks, matur-
ing Grid middleware, and portal frameworks is fostering the development and
deployment of large scale simulation and data analysis solutions in many areas.
This topic highlights recent progress in applications of high performance paral-
lel and Grid computing, with an emphasis on successes, advances, and lessons
learned in the development and implementation of novel scientific, engineering
and industrial applications.

Today’s large computational solutions often operate in complex information
and computation environments where efficient data access and management can
be as important as computational methods and performance, so the technical
approaches in this topic span high performance parallel computing, Grid com-
putation and data access, and the associated problem-solving environments that
compose and manage advanced solutions.

This year the 23 papers submitted to this topic area showed a wide range
of activity in high performance parallel and distributed computing, with the
largest subset relating to genome sequence analysis. Nine papers were accepted
as full papers for the conference, organized into three sessions. One session fo-
cuses on high performance genome sequence comparison. The second and third
sessions present advanced approaches to scalable simulations, including some
non-traditional arenas for high performance computing. Overall, they underscore
the close relationship between advances in computer science, computational sci-
ence, and applied mathematics in developing scalable applications for parallel
and distributed systems.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 1205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1207–1216, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Parallel Linear Space Algorithm
for Large-Scale Sequence Alignment

Eric Li, Cheng Xu, Tao Wang, Li Jin, and Yimin Zhang

Intel China Research Center, Intel Corporation, Beijing, China
{Eric.q.li,Cheng.xu,Tao.wang,Jin.li,Yimin.zhang}@intel.com

Abstract. Aligning long DNA sequences is a fundamental and common task in
molecular biology. Though dynamic programming algorithms have been devel-
oped to solve this problem, the space and time required by these algorithms are
still a challenge. In this paper we present the Parallel Linear Space Alignment
(PLSA) algorithm to compute the long sequence alignment to meet this chal-
lenge. Using this algorithm, the local start points and grid cache partition the
whole sequence alignment problem into several smaller independent subprob-
lems. A novel dynamic load balancing approach then efficiently solves these
subproblems in parallel, which provides more parallelism in the trace-back
phase. Furthermore, PLSA helps to find k near-optimal non-intersecting align-
ments. Our experiments show that this proposed algorithm scales well with the
increasing number of processors, and it exhibits almost linear speedup for large-
scale sequences.

1 Introduction

Pair-wise sequence alignment is a fundamental operation in bioinformatics. It is use-
ful to identify the similar and diverged regions between two sequences, e.g., DNA or
protein sequences. From a biological point of view, matches may turn out to be simi-
lar functions, e.g., homology pairs and conserved regions, while mismatches may
detect functional differences, e.g., Single Nucleotide Polymorphism(SNP).

Using dynamic programming, Needleman and Wunsch presented the first global
alignment algorithm in 1970 [12]. Smith and Waterman improved this algorithm for
local alignment to find the longest common substring [13]. As these algorithms have
quadratic complexities with respect to the length of two sequences, they require ex-
cessive memory and computation time than single computation resources can afford,
especially for large-scale sequences such as genome data [3, 4, 10]. E.g., aligning
sequences with several megabytes length would require several Terabytes of memory.

To overcome this difficulty, Hirschberg first uses a linear space algorithm to find
common substrings [6]. Myers and Miller apply Hirschberg’s linear space algorithm
to sequence alignment [10]. Although it reaches linear space, the algorithm is not
very efficient due to significant re-computations in the backward bisecting search
period. Regarding the parallel possibilities in the linear space alignment, several algo-
rithms are also proposed to improve performance by using more processors. Martins
et al. [9] calculates the whole similarity matrix by using wave front parallelism. This

1208 Eric Li et al.

algorithm suffers from similar drawback as Myers’ algorithm in that it also requires
large re-computations in the backward bisecting search. FastLSA [1] improves
Myers’ and Martin’s algorithms by incorporating some extra space called “grid
cache” to save a few rows and columns of similarity matrix H, and then divides the
whole problem into several subproblems. Though FastLSA has less re-computation
than Martins’ algorithm, the scalability performance is limited since the decomposed
subproblems are independent of each other, and therefore they can only be solved
sequentially. Chen and Schmidt’s algorithm uses the grid cache and start points to
find k near-optimal local alignments [5]. After the start and end points of an align-
ment are determined, they solve the alignment using Hirschberg’s bisecting search
algorithm. This incurs redundant re-calculations and longer execution time in the
backward period.

Having studied these algorithms, we propose an efficient algorithm, i.e., “Parallel
Linear Space Alignment” (PLSA) for large-scale sequence alignment. PLSA takes
advantage of the grid cache and global/local start points, and it uses a dynamic load
balancing approach to efficiently parallelize the trace-back phase, which provides
more parallelism than conventional algorithms. Moreover, using global start points
can help to find all the k near-optimal local alignments at the same time.

The rest of this paper is organized as follows. In section 2, we introduce the basic
sequence alignment Smith-Waterman algorithm. In section 3 we describe our pro-
posed PLSA algorithm and in section 4, we analyze our experimental results. Finally,
in section 5 we summarize our discussion.

2 Smith-Waterman Algorithm

For two sequences S1 and S2 with length l1 and l2, the Smith-Waterman algorithm
[13] computes the similarity matrix H(i,j) to identify the optimal subsequences by
Eq(1):

≤≤==
≤≤==

−−
−−

=

−−
−−

=

+−−

=

β
α
β
α

 (1)

Where sbt(.) is the substitution matrix of cost values. Affine gap costs are defined
as follows: is the cost of the first gap; is the cost of the following gaps. H(i, j) is
the current optimal similarity value ending at position (i, j). E and F are the cost val-
ues from a vertical or horizontal gap, respectively. For example, the two sequences of
S1 and S2 generate the similarity matrix, and the whole optimal alignment can be

Parallel Linear Space Algorithm for Large-Scale Sequence Alignment 1209

traced back as illustrated in Figure 1. The memory and time complexity for the
Smith-Waterman algorithm is O(l1×l2), which imposes challenging requirements
both on computer memory and execution time when handling long sequences such as
whole genomes.

Fig. 1. Smith-waterman sequence alignment

3 PLSA Algorithm

Our PLSA algorithm is presented to efficiently solve the sequence alignment problem
in parallel with linear space. It first uses the grid cache and global/local start points to
decompose the whole problem into several smaller independent subproblems. Then a
dynamic task decomposition approach is employed to solve these subproblems in
parallel. The whole process consists of two parts: 1) forward calculating the whole
similarity matrix by wave-front parallelism, and 2) backward solving subproblems to
find k near-optimal alignment paths by using a dynamic task decomposition mecha-
nism. Figure 2 shows the flowchart of the PLSA algorithm.

3.1 Basic Scheme in PLSA

For large-scale sequence alignment, the whole similarity matrix H is usually too large
to be fully stored in the memory. In the PLSA algorithm, we use grid cache to store
just a few rows and columns of H rather than storing the whole matrix. Figure 3
shows the case for the grid division k = 3. The entire similarity matrix is initially
computed in the forward phase and only three rows and three columns are saved in
the grid cache during the computation.

1210 Eric Li et al.

In order to decompose the large alignment problem into several smaller independ-
ent subproblems, PLSA uses the global/local start point to locate the ancestor point in
the grid cache. The global start point of the position (i, j) denotes the starting position
of the local alignment path, and the local start point of the position (i, j) is the inter-
section point between its left/up grid and the alignment path. Similar to Eq (1), the
start point Hst(i, j) is calculated using the following recurrence equations:

Fig. 2. Flowchart of PLSA

Fig. 3. Grid Cache and Start Points in PLSA

Parallel Linear Space Algorithm for Large-Scale Sequence Alignment 1211

=
=

+−−=−−
=

=

−−=−
−−=−

=

−−=−
−−=−

=

β
α
β
α

(2)

For example, in Figure 3(b), when obtaining the maximal score point M, we search
both the last column and the last row grid to find its local start point D. Similarly, we
can determine C is the local start point of D in this sub matrix. This procedure is re-
cursively performed to find all the local start points (D, C, B, and A) and the global
start point S in the optimal path. These start points form a series of independent rec-
tangular subproblems that correspond to the subsequence alignments. Since the start
and end point of these subproblems have been determined, we can get the boundary
information from the status of the start point. However, as illustrated in Fig 3(a),
FastSLA does not have this functionality; it has to solve these subproblems serially,
extending from the bottom right to the top left boundary region. It can be observed
that the dashed area in PLSA is smaller than FastLSA, which indicates that fewer re-
computations are achieved in our algorithm. Theoretically, considering the calcula-
tion complexity, when sequence S1 and S2 are aligned using a grid cache with k rows
and k columns, the worst execution time for PLSA and FastLSA are

−×× and −×× , respectively. In fact, the best execution time for

FastLSA can only compete with the worst case for PLSA.
The Smith-Waterman algorithm only computes the optimal local sequence align-

ment result. However, the detection of near-optimal non-intersecting local alignments
is particularly important and useful in practice. PLSA uses the global start point in-
formation [5] to find these near-optimal local alignments at the same time without
introducing extra re-computations. In order to determine k near-optimal non-
intersecting alignments, the k highest similarity scores together with different global
start points are stored during the linear-space computation of the similarity matrix.
For example, in Figure 5(a), two near optimal alignments can be found by tracing
back from M and M’ with their global start point S and S’, respectively.

To improve the tradeoff between time and space, we use block as the basic matrix
filling unit. A block, something like a 2D matrix, denotes a memory buffer which is
available for solving the sequence alignment problem. If a problem or sub problem is
small enough, it will be directly solved within a block. Otherwise it will be further
decomposed into several smaller subproblems until they can be solved. After all these
subproblems are solved, the sub paths are concatenated to get the final optimal align-
ment path.

1212 Eric Li et al.

3.2 Parallelization of the Forward Phase

In the forward phase, the computation of each block follows the dynamic program-
ming Eq (1) to fill the block matrix. The whole similarity matrix firstly initializes the
values of the left-most column and top-most row by using the InitTopLeftData proce-
dure in Figure 2. After that, the top-left block can be computed immediately. Consid-
ering the dependencies among these blocks, i.e., a block depends on its adjacent left,
upper-left, and upper blocks, we use wavefront parallelism to fill the whole matrix.
The wavefront moves in anti-diagonals as depicted in Figure 4, and the shift direction
is from the north-west to the south-east. Parallelization of the wavefront computation
can be done in several different ways, according to the particular parallel architecture
used. On fine-grained architectures such as shared memory system, a relatively
smaller block is used, since we can exploit the parallelism with smaller granularity.
On the other hand, for distributed memory system such as a PC cluster, it is more
efficient to assign a relatively larger block to each processor.

In order to better exploit the data locality and minimize the communication over-
head, we use a tile-based processing scheme in the wavefront parallelization. A tile is
a strip of blocks consisting of a complete horizontal blocks, when a processor finishes
computing a tile, it proceeds to work on the next available tile.

Along with the block computation, some temporary data are saved to the grid
cache when they encounter the grid columns/rows. After the whole matrix has been
filled, we can find the k maximal scores and use the local start point stored in the grid
cache to decompose the whole problem into several independent subproblems. Fi-
nally, all of these subproblems are put together into the unsolved subproblem queue
and are processed in the backward phase.

3.3 Parallelization of the Backward Phase

Generally there are two kinds of parallelisms in the backward phase: the inherent
wavefront parallelism in each subproblem and the inter-dependencies among all these

Fig. 4. Wavefront parallelism

Parallel Linear Space Algorithm for Large-Scale Sequence Alignment 1213

subproblems. However, both parallelisms have their deficiencies. The first one only
exploits the parallelism within one subproblem, which decomposes a subproblem
recursively until its descendant subproblems can be solved in the block size. This
approach is too fine grained and does not scale well for more processors. The second
approach, simply assigning the subproblems to all of the processors, cannot guarantee
the load balance parallel performance. The limited number and different size of the
subproblems may not satisfy the requirements of the equal task assignments among
all the processors. Therefore, we take advantages of these two kinds of parallelism to
partition these subproblems equally for all the processors in the backward phase.

In order to meet this requirement, we further separate the backward phase into two
sub phases: the collective solving subproblem phase and the individual solving sub-
problems phase, to dynamically assign tasks to all the processors. During the collec-
tive solving phase, we first detect whether the unsolved subproblem queue is in the
“balanced state” or not by Eq (3), where M and N are the total processor and sub-
problem number, respectively. Sizei is defined as the area for each subproblem and
Sizepj is the total area of subproblems assigned to the jth processor. If the difference of
the sum area of the subproblems assigned to each processor is within the Threshold
value (default value is 10%), the subproblems can be considered to enter the “bal-
anced state”, indicating that the whole subproblems can be distributed equally to each
processor.

≤≤<
−

=
=

(3)

Fig. 5. Backward phase parallelism

When the unsolved subproblem queue is not in the “balanced state”, we pop up
the subproblem with the largest size from this queue and decompose it into several
smaller descendant subproblems using a similar method to that used in the forward
phase. After that, these descendant subproblems are pushed back into the unsolved
queue. Then a new iteration begins until it reaches the “balanced state”. Figure 5

1214 Eric Li et al.

demonstrates how the collective phase works, where the largest subproblem (B, C) is
decomposed into some smaller descendent ones. This decomposition process pro-
ceeds until all the available subproblems can be equally assigned to all the processors.

After the unsolved subproblem queue is in the “balanced state” by recursive sub-
problem decompositions, PLSA enters the individual solving subproblems phase.
During this period, each processor works on the assigned subproblems, in serial and
independently. Finally, after all the subproblems have been solved, we can collect the
sub sequence alignment results and concatenate them to the final optimal alignment
paths.

4 Experimental Results

The experiments are carried out on a 16-node PC cluster interconnected with a 1Gbps
Ethernet switch. Each node has a 2.8 GHz Intel Pentium 4 processor with a 1GB
memory. We use the RedHat 9.0 Linux operating system and MPICH-1.2.5 [14]
message passing library as the software environments. All of our implementations of
the PLSA algorithm are written from scratch in C++ without reference to any free
Smith-Waterman implementations. In order to evaluate the scalability of the algo-
rithm, nucleotides ranging from 30K to 300K length are chosen from a test suite sug-
gested by the bioinformatics group at Penn State University [11] for accurate scaling
use.

4.1 Scalability Performance and Analysis

The parallel characteristics of the proposed algorithm are obtained with tools such as
the Intel VTune analyzer[7] and Vampir[8]. Figure 6 exhibits the scalability perform-
ance of the PLSA algorithm on 16 processors.

0

2

4

6

8

10

12

14

16

0 4 8 12 16Procs

S
pe

ed
up

30kx30k 100kx100k 300kx300k

Fig. 6. Speedup performance for different size sequences (3x3 grid divisions)

For small scale sequence alignment such as a 30k*30k problem, the speedup is lin-
ear for two and four processors, but starts deteriorating when eight or more proces-
sors are used. The slowdown for more processors occurs because the granularity of
the work assigned to each processor decreases. Moreover, the backward phase has to
decompose the subproblems into even smaller size descendant subproblems to

Parallel Linear Space Algorithm for Large-Scale Sequence Alignment 1215

achieve load balance for all processors. Therefore tremendous communication over-
head will occurs in this period.

The trend is similar for a 100k*100k sequence alignment. The speedup ascends
almost linearly for up to eight processors but gets a little slower for 16 processors.
The 12.3x speed-up number indicates that all the processors are not fully utilized. It
provides much better granularity for the paralleled tasks, but not enough to satisfy 16
processors. With the increased size of the sequence alignment, we get much better
speed-up curves, almost linear speed-up for 300k problems, and our statistical result
shows that the parallel scheme can scale well with the problem size. More specifi-
cally, a 15.1x speedup can be obtained with 16 processors when outputting three
near-optimal paths. Comparing the scalability of the forward and backward phase,
Table 1 shows that the forward phase is better than the backward phase with the in-
crease of processors. This is not surprising since the backward phase has to decom-
pose a number of smaller subproblems which will incurs more synchronization and
communication overhead.

Table 1. Execution time for 300k size sequence alignment (3x3 grids and 6000x400 block size)

300kx300
k

For-
ward(s)

Forward-
Speedup

Back-
ward(s)

Backward
Speedup

Total Speedup

1 4318.08 1752.14 6070.56 1.00
2 2183.18 1.98 946.08 1.85 3129.98 1.94
4 1104.24 3.91 451.68 3.88 1556.35 3.90
8 584.64 7.39 238.32 7.35 822.91 7.38
16 288.34 14.98 132.48 13.23 420.82 14.43

To summarize, PLSA demonstrates very good scalability performance in the
backward phase, and it achieves almost linear speed-up with large data sets. We can
also expect that PLSA scales well with more processors.

4.2 The Impact of Various Parameters on Parallel Performance

There are several parameters that can be tuned to achieve the best parallel perform-
ance. The first parameter is the block size. As shown in Table 2, smaller block size
has a better cache locality performance, and is well suited to shared memory parallel
systems. The larger block size increases the task granularity and scales well with the
typical cluster system, which has long communication latencies.

Table 2. Block size impact for 100k size sequence alignment

Block Size (height x width) 120 x 80 6000 x400
Average Time on 8 CPUs(s) 193.3 102.0
Average Time on 1 CPU (s) 621.2 743.1

The second parameter is the number of grids. With an increased number of grids,
the backward phase will perform fewer re-computations, since the total area of the
decomposed subproblems becomes smaller. However, there are tradeoffs between the
grid number, memory size, and the additional computations involved with the grids.
The last parameter is the number of near-optimal alignments k. The speedup in k

1216 Eric Li et al.

alignments (k>1) is usually better than the single alignment since more subproblems
can be generated in the backward phase to have better load balance performance.

5 Conclusions

In this paper we propose an algorithm, PLSA, which is very efficient for large-scale
sequence alignment in linear space. The basic idea is to trade space for time, where
several key techniques have been put forward in our algorithm. The global/local start
point and grid cache techniques can divide the whole sequence alignment problem
into several smaller independent subproblems. We further exploit different parallel-
isms in the backward phase, and propose a novel dynamic load balancing approach to
efficiently solve these subproblems in parallel. Moreover, a global start point can help
to find k near-optimal non-intersecting alignments. The experiments demonstrate that
PLSA exhibits good scalability performance, and it can be parameterized to tailor
different parallel systems. All these advantages make the PLSA a better choice for
large-scale sequence alignment.

References

1. Adrian Driga, Paul Lu, Jonathan Schaeffer, Duane Szafron, Kevin Charter and Ian Parsons,
“FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Align-
ment,” in the International Conference on Parallel Processing, 2003.

2. Aluru, S., Futamura, N., Mehrotra, K., “Biological sequence comparison using pre• x
computations,” in Proceedings 13th IEEE International Parallel Processing Symposium,
653-659, 1999.

3. A.L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg,
“Alignment of whole genomes,” Nucleic Acids Research, 27(11):2369–2376, 1999.

4. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg, “Fast algorithms for large-scale ge-
nome alignment and comparison,” Nucleic Acids Research, 30(11):2478–2483, 2002.

5. Chunxi Chen and Bertil Schmidt, "Computing Large-scale alignments on a Multi-luster,” in
the IEEE International Conference on Cluster Computing, 2003.

6. D.S., Hirschberg, “A linear space algorithm for computing longest common subsequences,”
Comm. ACM, 18:341-343, 1975.

7. Intel Corp., Intel® Vtune™ Performance Analyzer, (available on-line:
http://developer.intel.com/software/products/vtune/).

8. Intel Corp. and Pallas, http://www.pallas.de/pages/vampir.htm
9. Martins, W.S., del Cuvillo, J.B., Cui, W., Gao, G.R., “Whole Genome Alignment using a

Multithreaded Parallel Implementation,” in Proceedings 13th Symposium on Computer
Architecture and High Performance Computing, September 10-12, 2001.

10. Myers, E., Miller, W., “Optimal alignments in linear space,” Computer Applications in the
Biosciences, 4:11-17, 1988.

11. Penn State University, Bioinformatics Group, http://bio.cse.psu.edu, 2001.
12. Saul B. Needleman and Christian D. Wunsch, “A General Method Applicable to the Search

for Similarities in the amino acid Sequence of Two Sequences,” Journal of Molecular Bi-
ology, 48:443-453, 1970.

13. Temple F. Smith and Michael S. Waterman, “Identification of Common Molecular Subse-
quences,” Journal of Molecular Biology, 147:195-197, 1981.

14. http://www-unix.mcs.anl.gov/mpi/mpich/

Parallel Multiple Sequence Alignment
with Decentralized Cache Support

Denis Trystram1 and Jaroslaw Zola1,2,"

1 Laboratoire ID–IMAG, Grenoble, France""

zola@imag.fr
2 Institute of Computer & Information Sciences
Czestochowa University of Technology, Poland

Abstract. In this paper we present a new method for aligning large sets of bi-
ological sequences. The method performs a sequence alignment in parallel and
uses a decentralized cache to store intermediate results. The method allows align-
ments to be recomputed efficiently when new sequences are added or when align-
ments of different precisions are requested. Our method can be used to solve im-
portant biological problems like the adaptive update of a complete evolution tree
when new sequences are added (without recomputing the whole tree).
To validate the method, some experiments were performed using up to 512 Small
Subunit Ribosomal RNA sequences, which were analyzed with different levels of
precision.

1 Introduction

Multiple sequence alignment (MSA) is one of the most commonly studied problems in
computational biology. It is a general technique utilized in biological sequences analysis
such as structure modeling, function prediction or phylogenetic analysis [1]. Unfortu-
nately, finding an accurate multiple alignment is a hard optimization problem. Firstly,
because it is difficult to provide a formalization which would be satisfactory from the
biological viewpoint. Secondly, having a good model usually means it is algorithmi-
cally very hard to produce the best (or optimal) alignment. Indeed, the Generalized
Tree Alignment Problem (GTA), which has been shown to be the most accurate formal-
ization of MSA, is Max–SNP–Hard [2].

Another factor making MSA a complex problem is the size of the analyzed data. Of-
ten, an input dataset contains hundreds of long sequences (e.g. longer than 1000 bp1).
This is especially true for biological sequence databases [3]. For example, in June
2004, the Hovergen Database contained 312987 aligned nucleic sequences classified
into 32820 families [3]. While databases like the Hovergen are very useful in molecular
phylogenetic studies, they require an enormous number of computations when updated.
Adding new sequences to an already aligned family of sequences usually requires the
entire alignment to be recomputed from the beginning.

" The work of Jaroslaw Zola has been supported by French Government.
"" Laboratory ID–IMAG is funded by CNRS, INRIA, INPG and UJF.
1 Base Pair (bp) is a basic unit used to express the sequence length. One bp corresponds to one

character.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1217–1226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1218 Denis Trystram and Jaroslaw Zola

In previous contributions [4, 5] we have reported on two heuristics aimed at solving
the GTA problem. In this paper, we extend these approaches. We analyze typical appli-
cation cases of our alignment procedure (called PhylTree) and we characterize sources
of reference locality in the alignment computations. Furthermore, we propose a par-
allel server designed to build alignments of large sequence sets. The server utilizes a
decentralized cache to store partial alignments so that they can be reused when a new
alignment is requested (i.e. extended with new sequences or a more precise one).

2 A New Method for Multiple Sequence Alignment

2.1 The PhylTree Method

The PhylTree method is a generic multiple sequence alignment procedure which has
been proposed recently [4]. As it has been presented in detail in our previous papers,
we provide here only its basic concepts with no technical details.

The PhylTree method was designed to build a multiple alignment and the corre-
sponding phylogenetic tree2 simultaneously. It can be characterized as an iterative clus-
tering method whose principle is to group closely related sequences [6]. It consists of
two successive phases: first it generates a distance matrix for all input sequences (based
on the all–to–all pairwise alignments). Then, it searches for the optimal partial solutions
which are later combined to obtain the final phylogenetic tree and multiple alignment.

The method uses two principles: neighbourhood and cluster. A neighbourhood is a
set of k closely related taxa3, where k is an input parameter of the PhylTree procedure
and is a constant integer value (typically, k≥ 4, not larger than 10). A cluster is a group
of m≤ k taxa which creates a part of the final phylogeny.

To determine the clusters the PhylTree algorithm generates a neighbourhood for
every input sequence, then, it finds the best phylogenetic tree for each neighbourhood,
and finally, analyzes all the found trees to extract their common subtrees. These subtrees
describe a set of highly related taxa and correspond to clusters. The above process is
iterative.

The accuracy of the method depends mostly on the parameter k. Increasing k will
widen the search space analyzed to find the clusters. Unfortunately, while this should
improve the accuracy of the final solution, it also increases the number of computations
required to process a single neighbourhood. Basically, to process a neighbourhood we
have to compute all possible (2k−2)!

2k−1(k−1)! trees to find the optimal one.

An important property of PhylTree is its genericity, which means that the method
can use different alignment algorithms and different scoring functions. Moreover, it is
possible to use various definitions of a neighbourhood and neighbourhoods of variable
size (a variant called QuickTree has been proposed as a way of rapid solving large
instances with decreased accuracy).

2 A phylogenetic tree, or phylogeny, represents the evolutionary history of a set of species. In
our consideration it is a rooted binary tree whose leaves are the input sequences.

3 Taxon is an individual, a strain, a species or any unit of classification. In our case, a taxon is a
node of the tree.

Parallel Multiple Sequence Alignment with Decentralized Cache Support 1219

2.2 PhylTree as a Generic Scheme

As mentioned before, PhylTree has been designed to solve the GTA problem. This prob-
lem is a formalization of the multiple sequence alignment based on Steiner trees [2]. In
general, having a set of sequences S we want to determine an optimal phylogenetic tree
T and the corresponding alignment Al.

This basic use of PhylTree is referred to as a single execution. In this paper we
propose an approach based on a decentralized cache support to implement efficiently
PhylTree. It will allow many variants of the problem, which are of interest to biologists,
to be handled easily.

One single execution of PhylTree can be formalized as follows: for a given tuple
(S,F,aF ,k) find a relevant pair (T,Al), where S is the set of the sequences to align, F
describes the alignment method with a scoring function, aF is a set of scoring function
arguments, and k is a tuning parameter for the precision. For example, if F denotes
Sankoff’s Parsimony with a linear affine gap insertion cost then aF represents the costs
of gap opening and gap continuation.

Such a formulation can be used to describe extensions of the single execution prob-
lem: It is very common for a set of sequences with already computed alignment to be
extended with new elements. This is especially true for genomic sequence databases
with periodic updates. Every time new sequences are added, a single execution is per-
formed to obtain an alignment and its corresponding phylogenetic tree for the extended
set. This example can be expressed as follows: for a given (F,aF ,k) and {S0,S1, . . . ,Sl}
such that Si ⊂ S j, i < j find {(T0,Al0),(T1,Al1), . . . (Tl,All)} (sometimes, a relation be-
tween sequence sets can be more general: Si ∩ S j �= /0, i �= j). Surprisingly, while this
situation is very common there are no good solutions able to determine new alignments
and new phylogenetic trees based on the previous results.

Another interesting extension is to build alignments with a different level of pre-
cision. A series of single executions is performed for the same set of input sequences,
which differ only by the parameter k. That is: for a given (S,F,aF) and {k0,k1, . . . ,kl}
generate {(T0,Al0),(T1,Al1), . . . (Tl ,All)}. Of course, it is possible that in some cases
parameter k will be changed together with a set of input sequences. More precisely,
when expanding a set of previously aligned sequences we may wish to change the pre-
cision of the new alignment.

2.3 Related Work

Both multiple sequence alignment and phylogeny are of great importance to biologists,
but at the same time these problems are very computationally demanding. That is why
parallel and distributed programming is often used to improve the efficiency of existing
bioinformatics applications.

One of the most popular programs is the ClustalW package [6]. This tool imple-
ments basic MSA algorithms based on the phylogenetic tree approximation. In recent
years a few different parallel versions of ClustalW have been proposed [7, 8], designed
for both shared and distributed memory architectures. However, in most cases, the par-
allel approach is limited to the main ClustalW algorithm. While these approaches have
been proved to be efficient for a single execution case, they make no assumption about

1220 Denis Trystram and Jaroslaw Zola

possible dependencies between series of executions. Moreover, the accuracy of the so-
lutions generated by ClustalW is usually poor for large amounts of input data. In [9]
Catalyurek et al. proposed an implementation of ClustalW based on caching the align-
ments score. This work, however, is limited to the sequential version of the algorithm,
and cache is only utilized to store the scores of the pairwise alignments.

A significant part of the research on parallel bioinformatics is concerned with max-
imum likelihood methods [1]. However, this class of algorithms is designed to recon-
struct the evolutionary history (phylogenetic tree), and the sequence alignment is the
tool required to build a proper tree. A good example of such software is the RAxML
package. Recently, the authors of RAxML have reported a phylogeny inference of
10000 taxa [10]. While this result is really impressive, it cannot be directly compared
with the results of the multiple alignment, since the problems are slightly different.

2.4 Alignment Reference Locality

The basic idea of the PhylTree method is a greedy exploration of the partial alignments
search space. The exploration is performed through the analysis of the neighbourhoods.
A set of multiple alignments is performed for every neighbourhood. If two neighbour-
hoods share two or more common elements, their analysis will require some common
computations. Obviously, the alignments computed for the same elements of the first
and second neighbourhood will be the same. Furthermore, the analysis of a single neigh-
bourhood of size k requires k!

2·(k−2)! distinct pairwise alignments to be computed. On
the other hand, all possible pairwise alignments are generated in the first phase of the
method. Consequently, the alignments computed in the first phase of the PhylTree pro-
cessing can be used in the second phase, and the results computed during the second
phase can be reused from one iteration to the next, or even within the same iteration. In
fact, our experiments showed that in some cases only 20% of computations have to be
actually performed as the others are redundant.

The properties described above relate to a single execution of PhylTree. Of course,
the same features hold for the cases described in Section 2.2. If we consider a series of
single executions, then all requests (executions) have very similar characteristics, e.g.
the same evolutionary model and common (or the same) input dataset. Therefore, the
intermediate results, generated by a query in the series, have the potential to be reused
by other requests. For example, if a series of single executions is based on the same set
of input sequences but different values of k are requested, then all pairwise alignments
computed during the first execution can be reused in all subsequent executions. Hence,
a distance matrix for the whole group of requests needs to be computed once only.

3 Parallel Server and Cache Support

The PhylTree method has been used to build a PhyloBuilder server. The server allows
a series of single executions, submitted by one or several users, to be run. Our server
was designed to work under the control of a batch queuing system, for example SGE or
PBS. Users submit their computation (request) via some kind of interface, for example
a web page, and for every request a single execution script is generated. This script is
submitted to the dedicated scheduler queue. Next, each request is executed using our

Parallel Multiple Sequence Alignment with Decentralized Cache Support 1221

parallel server, and a persistent cache is used to store partial results. Users requests are
dynamic. This means that we are not able to predict which parameters or what kind of
input will be used in the request.

3.1 Parallel PhylTree
The PhylTree method provides good quality results at the expense of being time con-
suming for most real–life applications. Even if caching is applied, the number of com-
putations to perform remains large. But, at the same time, the PhylTree design makes it
easy to parallelize.

We have chosen a distributed master-worker architecture with arbitrary selected
master node. This choice was based on the following observations: (i) The first phase of

PhylTree is an independent task consisting of (n2−n)
2 pairwise alignments. As a result,

it is easy to parallelize. However, the parallelisation should support heterogeneous ar-
chitectures. Primarily, because two different pairwise alignments may require different
computation times (depending on the lengths of the input sequences). Secondly, because
caching may change the actual number of computations which have to be performed by
a given worker. (ii) The second phase of PhylTree is an iterative process. At each iter-
ation, a set of neighbourhoods is processed, and a single iteration is completed by the
distance matrix update. Thus, each iteration contains a single synchronization point.
Moreover, the number of neighbourhoods per iteration is typically close to / less than
the number of available workers. Hence, the assignment of neighbourhoods to workers
may result in large idle times at the end of each iteration.

Summarizing, the parallel PhylTree method proceeds as follows: First, the mas-
ter processor reads the input sequences and broadcasts them to all workers. Next, each
worker receives a part of the distance matrix to compute. At this stage, we use the guided
self–scheduling strategy, since it allows the load imbalance imposed by the heteroge-
neous environment to be minimised. Processing the distance matrix, a worker analyzes
its efficiency by measuring the number of base pairs aligned per second. Thanks to this
analysis, the master node can rank all the workers accordingly to their efficiency. In
the second phase, only the processing of the neighbourhoods is parallelized. That is:
at each iteration, the master determines the neighbourhood sets, and then, it starts to
generate all possible tree topologies for each neighbourhood. Each worker receives its
part of the generated topologies and looks for one with the highest alignment score.
To achieve this objective, it has to compute MSA for every single topology. Because
the number of created tree topologies for all neighbourhoods is usually much greater
than the number of workers, again dynamic scheduling is used. However, at this stage,
the host priorities computed in the first phase are utilized. Half of the total number of
topologies is distributed proportionally to the workers’ priorities. Then, the other part
is distributed using the guided self–scheduling. When a worker completes its part of
the computations it sends back the resulting best tree topology and the corresponding
alignment to the master. To complete an iteration, the master computes the clusters and
updates the distance matrix accordingly.

3.2 Cache of Alignments
In order to remove redundant computations, and so improve the efficiency of the Phyl-
Tree, we have designed and implemented an alignment cache.

1222 Denis Trystram and Jaroslaw Zola

The purpose of the alignment cache is to store and manage all intermediate align-
ments so that they can be reused in future computations. An important issue here is to
design a caching system is such a way that the cache management cost will not offset
the performance improvement obtained from using cached results. Another concern is
how to store the alignment results. Cached data should contain all the information re-
quired when it is reused, for example, a description of the underlying tree topology. This
requirement is a direct consequence of the PhylTree genericity – some of the alignment
procedures may use various help structures (e.g. alignment profile). Finally, since we
are dealing with a parallel version of PhylTree, the cache system must be able to work
in the distributed environment.

To accomplish the requirements described above, we have implemented a decen-
tralized caching system based on the CaLi framework [11]. Our solution consists of
two subsystems which differ in their management policies, and store different types of
alignments. The first subsystem is dedicated to caching pairwise alignments. It is man-
aged using the well known LRU policy and is replicated among all the workers when
the first phase of PhylTree is completed. The second subsystem is responsible for stor-
ing only multiple alignments. It is managed using a variant of Greedy–Dual Size (GDS)
policy [12] and it is distributed among the worker nodes.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16

P
er

ce
nt

 o
f R

eq
ue

st
s

[%
]

Alignment Size

k=4
k=5
k=6
k=7

Fig. 1. Percentage of requests for an alignment of given size in a single execution. The same input
data set was used for each execution.

The are several reasons why we distinguish between pairwise and multiple align-
ment. Pairwise alignments are the most frequently computed alignments in every exe-
cution (see Fig. 1). The time required to compute a pairwise alignment is much shorter
than the time required to compute a multiple alignment. Finally, all pairwise alignments
computed in the first phase of PhylTree will be reused in the second phase. On the other
hand, the multiple alignment computations take place only in the second phase and
we are not able to predict a priori which of them will be the most often requested. In
addition, multiple alignment’s popularity decreases with its size, but its cost (time to
compute) increases. Unfortunately, because PhylTree may use various alignment pro-
cedures, it is not possible to describe the exact dependencies between the size, cost and
popularity of alignments.

Parallel Multiple Sequence Alignment with Decentralized Cache Support 1223

Figure 1 shows the percentage of requests for an alignment of given size in a single
execution of various levels of precision. As it can be seen, in every execution nearly
30% of requests is related to the pairwise alignments. This can be explained by the
fact that PhylTree creates only several sequences (clusters) per iteration. As a result, in
almost every iteration some pairwise alignments are requested. Of course, this general
tendency may differ slightly depending on the size and type of the input dataset.

3.3 Cache Implementation

As we have already pointed out, our caching system utilizes two distinct subsystems.
While these subsystems are based on different management strategies, they use similar
techniques to create and describe the entries stored in the cache.

A single alignment inserted into the cache is compressed and written in the binary
file. Such an entry is identified by a unique key, generated as follows. First, the se-
quences to be aligned and the tree topology are digested using a hashing function, for
example SHA–256. Then, the resulting fingerprint is extended with the identifier of
alignment method F and its parameters aF . Each time a worker is requested to compute
an alignment, it first generates the key and then queries the proper cache (depending on
the number of input sequences). If a hit occurs, the requested alignment is read and the
identifiers of the component sequences are compared with the identifiers of the input
sequences. This mechanism allows us to detect possible collisions of keys. If no col-
lision is found, the alignment loaded from the cache is used. Otherwise, that is in the
case of collision or cache miss, it is computed, and its result is inserted into the cache.

The pairwise alignment cache is a local storage system replicated among the work-
ers. Because the number and the size of pairwise alignments are small compared to the
total size of data generated during a single execution, the time of replication is not re-
ally significant compared to the total processing time. Replication guarantees that all the
pairwise alignments will be served by the local cache in the second phase. The pairwise
alignment cache is managed using the LRU policy. As a result, each pairwise alignment
computed in the first phase remains in the cache during the second phase. Of course, we
assume here that the capacity of the pairwise alignment cache is large enough to store
the alignments generated by at least one single execution.

The management of the multiple alignment cache is a more challenging task. Be-
cause of the distribution of the computations, the same alignment may be requested or
computed by different workers simultaneously. Additionally, the alignment computed
by a given worker in one iteration may be requested by another one during another iter-
ation. Therefore we have implemented the multiple alignment cache as a decentralized,
content–addressable system. Every key describing the cache record is mapped to one
of the workers, which becomes the delegate worker for a given key. When a worker
requests a multiple alignment, the caching system first checks the local storage. If no
proper entry is found, the request is forwarded to a delegate worker cache. If a miss
occurs, the worker computes the requested alignment and then inserts the result into the
local cache and into the delegate worker cache. If a remote hit occurs, the requested
entry is inserted into the local storage. In this way the multiple alignment cache is par-
tially replicated, which in turn increases the number of local hits, and the application
of a good hashing function guarantees the uniform distribution of the cache entries.

1224 Denis Trystram and Jaroslaw Zola

The application of content–addressing has a very important advantage: If the requested
alignment is not cached locally, it means that it has been not used by a given worker yet.
At the same time, this alignment could have been computed by another worker and be
already present in the delegate worker cache. Hence, in the worst case only one remote
request is necessary to check if a given alignment has to be computed or not.

4 Performance Evaluation

We performed a set of experiments with actual biological data to validate our approach.
We randomly created several groups of between 32 and 512 sequences, coming from
SSU ribosomal RNA. The average length of the analyzed sequences was 1300 bp vary-
ing from 1200 bp to 1400 bp. These sequences were then analyzed using our parallel
server.

Our experiments were performed on a small cluster of 7 SMP nodes connected by a
GbitEthernet network. Every node was equipped with a dual Itanium2 CPU (one CPU
used by the server and one by OS), 4GB of RAM and was running under Linux. A
single node could use 32MB of storage for a pairwise alignment cache and 128MB for
a multiple alignment cache. The SCSI disk storage was managed by a ReiserFS file
system which allows many large files to be handled efficiently.

4.1 Experiments

In the first experiment, we generated a set of requests to compute MSA with a different
level of precision for |S|= 64 sequences. We started our simulation with an empty cache
submitting requests with parameter k0 = 4. For each further request, the value of k was
increased by 1. Table 1 shows the results of request processing for different values of k.

In the next experiment we examined efficiency of our approach when the set of
input sequences is extended in every execution. In the first request we used a set of
|S0| = 32 sequences and then, we doubled the number of sequences in each request:
Si = Si−1 ∪ Sx, where Sx is a group of new input sequences of the same cardinality. In
every request, we have used k = 5 as a level of precision. Table 2 presents the time of
request processing depending on the size of the input dataset.

In both experiments we utilized Sankoff’s Parsimony with the gap opening cost
equal to 2.0 and gap continuation cost equal to 1.0.

4.2 Discussion

As we could expect, the caching technique noticeably improved the performance of the
server in both of the described experiments. Table 1 shows that the hit ratio Hr, and
cost hit ratio Cr (defined as the cost of alignments found in the cache divided by the
total cost of alignments requested during the execution, where the cost of alignment is
the time required to compute it) increases with every execution. This can be explained
by the fact that the results of previous computations are utilized, and an increase in the
size of neighbourhoods results in a higher redundancy of computations. The cost saving

Parallel Multiple Sequence Alignment with Decentralized Cache Support 1225

Table 1. Results of request processing for different values of k, where Tp is the execution time
for the parallel server and Tc is the execution time for the parallel sever with cache support. Hrp

and Hrm are respectively the hit ratio for the pairwise and multiple alignment cache. Crp and Crm

describe the cost hit ratio for the pairwise and multiple alignment cache, and Cs = 1− Tc
Tp

is the
cost saving ratio for the whole cache system.

k Tp[s] Tc[s] Hrp Hrm Crp Crm Cs E = Tp
Tc

4 3940 2155 0.42 0.28 0.085 0.36 0.45 1.82
5 18330 8591 1.0 0.31 0.096 0.43 0.53 2.13
6 178517 74092 1.0 0.37 0.08 0.50 0.58 2.41

Table 2. Results of request processing for different sizes of the input dataset S.

|S| Tp[s] Tc[s] Hrp Hrm Crp Crm Cs E = Tp
Tc

32 6747 3430 0.87 0.28 0.099 0.39 0.49 1.96
64 18182 9123 0.82 0.29 0.079 0.41 0.49 1.99

128 55300 24796 0.74 0.34 0.066 0.48 0.55 2.23
256 156831 63631 0.63 0.34 0.067 0.53 0.59 2.46
512 438539 144090 0.43 0.45 0.048 0.63 0.67 3.04

ratio Cs is dominated by the cost hit ratio of the multiple alignment cache. This con-
firms our claim that it is more profitable to cache multiple alignments. The cost saving
generated by the pairwise alignment cache is lesser than we expected, however it is
still significant. Similar tendencies can be observed in the second experiment (Tab. 2),
except that the pairwise alignment cache hit ratio decreases. This is because of a ge-
ometric increase in the input dataset size, which in turn increases the relative number
of multiple sequence alignment computations. The cache hit ratio for the multiple se-
quence alignment cache stabilizes around 35% for the input of 256 sequences. At this
point, the cache is saturated and the cache replacement policy is used. In spite of this,
the cost saving ratio, as well as cache hit ratio, increases. This is possible thanks to the
application of the cost–aware replacement policy, that is GDS. In fact, our trace driven
simulations have shown that GDS attains the highest hit ratio and cost saving ratio in
comparison with other strategies, like LRU, LFU or other size–based policies.

The presented results show that the efficiency of the server depends on the size of
the input data and the required precision. More precisely, the cost saving ratio will be
minor for short sequences, and analysis with small k will result in a low cache hit ratio.
The same factors will influance the scalability of our system. Increasing the number
of workers should allow larger problems to be solved with better precision rather than
achieving better performance for small data.

In our experiments we did not compare the parallel and sequential versions of the
server. This is because the sequential version is too memory consuming, e.g. for k > 5
alignment of a few sequences becomes an out–of–core problem. For the same reason
only one server process is executed on the SMP node.

1226 Denis Trystram and Jaroslaw Zola

5 Conclusions

In this work we presented a new cache–based approach to solving the parallel multi-
ple sequence alignment problem. We condacted a formal analysis and we verified by
experiments that the application of decentralized caching can substantially improve the
efficiency of the alignment computations in both, a single execution and series of single
executions. We believe that our approach can be combined with other existing MSA
software, such as, for example, ClustalW or 3D-Coffee.

In our considerations we assume that all requests share the same alignment proce-
dure. The problem of how to use the results of previous computations when alignment
with a different evolution model is requested remains open. In particular, is it possible
to exclude some of the tree topologies during neighbourhood processing knowing that
they were of little value when analyzed with different parameters.

Both, our parallel server and detailed results of MSA can be accessed on–line via
the https://hal.icis.pcz.pl/PhyloServer web page.

References

1. Holder, M., Lewis, P.O.: Phylogeny estimation: traditional and bayesian approaches. Nature
Reviews Genetics 4 (2003) 275–284

2. Jiang, T., Lawler, E.L., Wang, L.: Aligning sequences via an evolutionary tree: complexity
and approximation. In: ACM Symp. on Theory of Computing. (1994) 760–769

3. Duret, L., Mouchiroud, D., Gouy, M.: HOVERGEN, a database of homologous vertebrate
genes. Nucleic Acids Res. 22 (1994) 2360–2365

4. Guinand, F., Parmentier, G., Trystram, D.: Integration of multiple alignment and phylogeny
reconstruction. In: Eur. Conf. on Comp. Biology, Poster Abstr. (2002)

5. Parmentier, G., Trystram, D., Zola, J.: Cache-based parallelization of multiple sequence
alignment problem. In: Proc. of Euro-Par ’04. (2004) 1005–1012

6. Higgins, D., Thompson, J., Gibson, T.: CLUSTALW: improving the sensitivity of progres-
sive multiple sequence alignment through sequence weighting, position-specific gap penal-
ties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673–4680

7. Li, K.B.: ClustalW–MPI: ClustalW analysis using distributed and parallel computing. Bioin-
formatics 19 (2003) 1585–1586

8. Mikhailov, D., Cofer, H., Gomperts, R.: Performance optimization of ClustalW: Parallel
ClustalW, HT Clustal, and MULTICLUSTAL.
http://www.sgi.com/industries/sciences/chembio/resources/clustalw (2005)

9. Catalyurek, U., Ferreira, R., Kurc, T., Saltz, J.: Improving performance of multiple sequence
alignment analysis in multi–client environments. In: Proc. of HiCOMB ’02. (2002)

10. Stamatakis, A., Ludwig, T., Meier, H.: Parallel inference of a 10.000–taxon phylogeny with
maximum likelihood. In: Proc. of Euro-Par ’04. (2004) 997–1004

11. Zola, J.: CaLi – generic computational buffers library. http://icis.pcz.pl/∼zola/CaLi (2005)
12. Balamsh, A., Krunz, M.: An overview of web caching replacement algorithms. IEEE Comm.

Surv. & Tutor. 6 (2004) 44–56

Parallel Construction of Large Suffix Trees
on a PC Cluster

Chunxi Chen and Bertil Schmidt

School of Computer Engineering,Nanyang Technological University, Singapore
{pg03452644,asbschmidt}@ntu.edu.sg

Abstract. The suffix tree is a key data structure for biological sequence analysis.
Even though efficient algorithms for suffix tree construction exist, for long DNA
sequences such as whole human chromosomes, their run-time is still very high . In
this paper we introduce a new parallel algorithm for suffix tree construction. This
algorithm uses a new data structure call the common prefix suffix tree (CPST). Our
parallel implementation on a PC cluster leads to significant run-time savings.

1 Introduction

The suffix tree is a compact trie of all suffixes over a string. It is a key data struc-
ture in the field of bioinformatics, since it permits very efficient solutions to many
string based problems. Examples include exact and approximate substring matching,
the longest common substring problem and the maximal repetitive structures prob-
lem [8]. Consequently, many widely used large-scale bioinformatics applications have
achieved amazing performance using suffix trees, such as MUMmer [5], REPuter [15],
and OASIS [17].

Several linear-time algorithms for suffix tree construction have been introduced
(see [8] for a summary). Among them, Ukkonen’s algorithm is most widely used. The
key feature of Ukkonen’s algorithm is to make use of suffix links, which allow the incre-
mental construction of suffix trees. Unfortunately, these algorithms are impractical for
constructing large size suffix trees because of high memory overheads. For example, the
suffix tree of the whole human chromosomes of length 3 Giga base pairs (GBp) using
the advanced space saving optimization requires 30 to 50 gigabytes of memory [14].
Therefore, new suffix tree construction approaches are required in bioinformatics be-
cause biological sequences typically have very large size and sequence datasets are
growing at an exponential rate [20].

In order to tackle the memory bottleneck problem in constructing a large size suffix
tree, researchers have tried several approaches. We summarize this research work into
four categories:

1) Space saving optimizations. This approach exploits various kinds of re-
dundancies in suffix trees to obtain more space efficiency[14]. However, the internal
structure of suffix trees doesn’t permit very significant space saving optimization
without any sacrifice of suffix tree virtues.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1227–1236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1228 Chunxi Chen and Bertil Schmidt

2) Disk-based approaches. Disk-based approaches [7, 9, 19] hold the suffix
trees in second memory. Unfortunately, suffix tree construction has poor memory
locality since it requires a semi random walk over the tree as it is constructed [6].
Therefore, large-size suffix trees that will not fit in memory would take an unac-
ceptably long time to construct and be accessed due to excessive page faulting.

3) New data structures. Another method is to develop alternative data struc-
tures which store less information than suffix trees and therefore have lower mem-
ory overheads. Some new data structures are suffix array [18], level compressed
trie [1], suffix binary search tree [10], suffix cactus [12] and PT-tree [4]. This ap-
proach has the following two common shortcomings [14]. Firstly, they are specif-
ically designed for certain applications and can not be adapted to other kinds of
problems without severe performance degradation. Thus, they are not as versatile as
suffix trees. Secondly, direct construction of these data structures is usually slower
than suffix tree construction.

4) Constructing suffix trees in parallel. This approach uses the
idea of processing sub-trees independently. Once all the sub-trees have been con-
structed it is possible to merge them together to form a complete suffix tree. We
call this the sub-tree idea.

In this paper, we are using a PC cluster to parallelize suffix tree construction. A
similar approach has been previously used in [3] and [2]. Unfortunately, [3] only gives
some actual experiments on a binary alphabet, which is not relevant in practice; [2] con-
structs suffix trees not in a cluster, but a SMP machine with 4 CPUs and large memory.
The main contributions of this paper are as follows:

1) Presentation of a data structure with the corresponding
O(n)-time construction method. The data structure is called common
prefix suffix tree (CPST). All suffixes in a CPST share a common prefix. A stan-
dard suffix tree can be divided into a number of CPSTs. Each CPST can be tackled
independently by one node in a parallel environment. We present an algorithm that
permits a linear time construction of CPSTs.

2) Implementing the proposed method efficiently on a PC
cluster. The major difficulty of constructing a large suffix tree inside a cluster
arises from the need to access the whole input sequence while constructing CPSTs.
Our solution is to set aside several data-servers which hold the whole sequence.
Processes constructing CPSTs then can access the sequence through communicat-
ing with these data-servers.

The rest of the paper is organized as follows. In Section 2, we provide the pre-
liminaries of suffix trees. In Section 3, we give the description of the CPST and the
algorithm for linear time construction. The parallel implementation on a PC cluster is
described and evaluated in Section 4. Finally, Section 5 concludes our paper and with
an outlook to further research.

2 Preliminaries

A suffix tree for a string S of length L is a rooted directed tree with exactly L leaves
numbered 1 to L. For any leaf i, the concatenation of the edge labels on the path from

Parallel Construction of Large Suffix Trees on a PC Cluster 1229

the root to the leaf exactly spells out the suffix of S that starts from location i. Assume
xs is a string over an alphabet Σ, where x ∈ Σ and s ∈ Σ∗. In a suffix tree, for
an internal node A with path-label (from the suffix tree root to the node) xs, there
exists another node B with path-label s, Then the pointer from B to A is called a
suffix link. The reason that suffix links are of interest is that they permit the suffix tree
construction in linear time [8]. The suffix tree with corresponding suffix links for the
string S = accattgaagcgttaccagttat$ is shown in Figure 1.

15

8

1

9

18

4

22 17

3 16
11

7

24

10

12 19

6

13

5

23

21

: Suffix link
i : The suffix starting from locationi of the input sequence

2 14

20

ag a

g a c c

t
c

t

g
t

t

$

c

a

g

t

c
a

g
t

g

g

a

$
c

t

a
t

c t

t $

g t g

a

c

t
a

t
c

ROOT
1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. The suffix tree of the sequence accattgaagcgttaccagttat$.

3 Constructing a Suffix Tree with CPSTs

3.1 CPST: Common Prefix Suffix Tree

A way of dividing the problem (constructing suffix trees) into smaller sub-problems is
to group the suffixes of a string first and then construct suffix trees for each suffix group.
All suffixes of a string can be grouped according to the prefixes of each suffix. We define
a common prefix suffix tree (CPST) of a string S to be a compact trie of a subset of the
suffixes of the string which start with a same prefix (shown in Definition 1).

Definition 1. Common prefix suffix tree (CPST): For a given string S
and a substring “compre” of S, a common prefix suffix tree, denoted as
CPST (S, compre), is the compact trie of all suffixes of S which start with compre.

Figure 2 shows four CPSTs for the string S = accattgaagcgttaccagttat$ and
the common prefixes a, c, g, and t, i.e. CPST (S, a), CPST (S, c), CPST (S, g),
and CPST (S, t). All CPSTs have fictitious connections to a root node. Considering
the case compre = g, all suffixes in S starting with the g are gaagcgttaccagttat$,
gcgttaccagttat$, gttaccagttat$, and gttat$. The trie of all these suffixes are presented
by he CPST (S, g).

1230 Chunxi Chen and Bertil Schmidt

8

15 1 9 18
4

17 3 16 2 11
7 1912

6 23

201310 14
21

5

: Compre suffix link
i : The suffix starting from locationi of the input sequence

a

g
t

c
a

c
g t

c t

a c
a

g
t g

t

g
a

c

tt
a

c
t

$g

g

t
a

c t
c

t

CPST(S,"a") CPST(S,"c") CPST(S,"g") CPST(S,"t")

a
c g

t

a12 12
1

1

2

3

Fig. 2. The CPSTs of the sequence accattgaagcgttaccagttat$. using compres: a, c, g, and t.

3.2 Constructing CPSTs in Linear Time

A CPST is actually a subtree of a standard suffix tree. Once all the CPSTs of a given
string have been constructed, the standard suffix tree of the string can be easily derived
by concatenating the roots of every CPST with the virtual root of the standard suffix
tree (shown in Figure 2).

Definition 2. Suffix chain: For each internal node of a suffix tree, there exists a
directed chain of suffix links starting from this node and ending at the root node. This
directed chain is called suffix chain.

For example in Figure 1, The suffix chain for internal node 3 is: 3→4→13→root.

Definition 3. Compre suffix link: Given are two internal nodes A and B inside
the same CPST. We define a compre suffix link from A to B, if A and B are part of the
same suffix chain in the standard suffix tree, where A is before B and no other internal
node of the CPST lies between A and B on this suffix chain. We also define a compre
suffix link from B to the root of the CPST, if no other node inside the CPST is part of the
suffix chain between B and the root of the standard suffix tree.

Let’s consider the suffix chain illustrated in Figure 3: F→A→C→D→B→E
→root. Node A and B belong to CPST2. We draw a compre suffix link from A to
B, since the part of suffix chain between A and B (A→C→D→B) doesn’t contain any
other nodes of CPST2. Additionally, there is a compre suffix link from B to the root of
CPST2.

In order to simplify the description, we use s[i, j] to denote the substring of S start-
ing at location i and ending at location j. len(compre) denotes the length of compre.
pathlabel(N) denotes the characters on the path from the root to the internal node N .
If suffix i starts with the prefix compre, we say suffix i is valid for CPST (S, compre).
The edge characters from node A to B is denoted as e(A,B).

Theorem 1. Given an internal node A of CPST(S, compre) with pathlabel(A) =
S[l1, l2]. Assume suffix l3 is the next valid suffix for CPST(S, compre) and l3 +

Parallel Construction of Large Suffix Trees on a PC Cluster 1231

CPST1 CPST2 3CPST

A B C DFE

Root of the
Suffix tree

Com−pre suffix link
Suffix link

Fig. 3. An example for the compre suffix link.

Com−pre suffix link

ROOT of CPST

A
B

S:

pathlable(A)=S[l1, l2]

pathlable(B)=S[l3+len(compre), l2]

l1 l2

S[l1, l2]:
S[l3 + len(compre), l2]:

l3 + len(compre)

Fig. 4. The illustration for Theorem 1.

len(compre) ≤ l2. Then there exists an internal node B with pathlabel(B) = S[l3 +
len(compre), l2] and a compre suffix link from A to B.

Proof. The proof has two parts.

1. Existence of B. Since A is an internal node, there exists at least two sub-
strings of S with pathlabel(A) = S[l1, l2] = S[l4, l5]. Hence, there are also two
substrings of S with S[l3 + len(compre), l2] = S[l6, l5]. Therefore, there must be
an internal node B with pathlabel(B) = S[l3 + len(compre), l2].

2. Existence of compre suffix link from A to B. We show there
exists a direct chain of suffix links from A to B by induction over n = l3 +
len(compre) − l1. The claim then follows since A and B are inside the same
CPST .

Basic Step: n = 1. Obviously, there is a directed suffix link from A to B.
Inductive Step: According to induction hypothesis, there is a directed
chain of suffix links from A to a node C with pathlabel(C) = S[l3 +
len(compre) − 1, l2]. Since there must also be a suffix link from C to B, it
can be concluded that there is a directed chain of suffix links from A to B.

1232 Chunxi Chen and Bertil Schmidt

Com−pre suffix link

ROOT of CPST

B

D

C

A

Fig. 5. The illustration for theorem 2.

Theorem 2. Given an internal node C with parent node A inside CPST(S, compre).
Assume there is a suffix link from A to another internal node B. Then there exists a node
D below B with e(A, C) = e(B, D) and there is a compre suffix link form C to D.

Proof. Let pathlabel(A) = S[l1, l2] and pathlabel(C) = S[l1, l4]. Since there is a
compre suffix link from A to B, it holds pathlabel(B) = S[l3, l2], where l3 is the next
valid suffix for CPST (S, compre) after l1 and l3 < l2. With theorem 1 follows that it
exist an internal node D with pathlabel(D) = S[l3, l4] and a compre suffix link from
C to D. obviously, D is below B and e(A,C) = s[l2 + 1, l4] = e(B,D).

Our algorithm constructs a CPST through orderly inserting valid suffixes for the
CPST. In [8], the introduction of suffixlinks permits the usage of the skip/count trick
which makes the Ukkonen’s algorithm be in linear time. the compre suffix link in
CPSTs is the counterpart of suffixlinks in standard suffix trees according to theo-
rem 2. It can locate the next node in the CPST through using the skip/count trick instead
of traversing the CPST from its root. Based on the definitions and theorems above, the
algorithm of constructing CPST (S, compre) can be described as follows:

CPST construction algorithm:
Input: String S = α$, where α ∈ Σ∗, $ �∈ Σ, and Σ is a finite alphabet.

Common prefix compre ∈ Σ∗ with |compre| < |α|
Output: CPST (S, compre)

N = number of valid suffixes(S, compre);
IF (N == 0) RETURN (nil);
FOR i = 1 TO N BEGIN

ν(i) =starting position of the ith valid suffix in S;
END

current node = CPST root;
theorem2 flag node = current node.father.compre suffix link;
FOR i = 1 TO N BEGIN

IF ((current node == CPST root)||(theorem2 flag node == CPST root))
new nodes info = traversal(current node, ν(i), S);

Parallel Construction of Large Suffix Trees on a PC Cluster 1233

ELSE

new nodes info = skip count(theorem2 flag node, current node.edgelabels);
create new nodes(new nodes info)
create new CompreSuffixLink(new internal node, old internal node)
current node = new internal node;
theorem2 flag node = current node.father.compre suffix link;

END

RETURN (CPST root);

Theorem 3. For an input sequence S and a substring compre, CPST (S, compre)
can be constructed in linear time.

Proof. Our algorithm constructs a CPST (S, compre) through orderly inserting valid
suffixes for the CPST. Assume that the insertion of valid suffix Vi results in a new
internal nodeA with pathlabel(A) = S[Vi+len(compre), li]. The time complexity for
this assertion is O(li − Vi). For valid suffixes whose starting locations are in the range
[Vi, li] (such as suffixes Vi+1 and Vj), we can use the skip/count trick [8] to insert them
according to theorem 2. The time complexity for these insertions using the skip/count
strick are O(m), where m is the number of suffixes whose starting locations are in the
range [Vi, li]. Hence, the time complexity for inserting all valid suffixes whose starting
locations are in the range [Vi, li] is O(lli − Vi) + O(m). Obviously, it is linear to the
length of the range. The whole input string is composed by these ranges. Therefore, the
insertions of all valid suffixes can be accomplished in linear time.

4 Parallel Implementation and Performance Evaluation

4.1 Input DNA Sequence

The DNA sequence used in this paper is human chromosome NC 000001.4 which is
downloaded from [20]. The alphabet of actual DNA sequences consists of 16 characters,
in which a, c, g, and t represent the four bases of DNA and r, y, w, s, m, k, b, d, h,
and v represent undetermined base-pares. In the paper, we only consider the determined
bases a, c, g, and t. For example, the human chromosome NC 000001.4 extracted by
us is of length 222,827,884 bp.

4.2 Prefix Distribution in DNA Sequences

The purpose of presenting the new data structure called CPST is to divide a large-size
suffix tree into a number of smaller size CPSTs first and then each CPST can be pro-
cessed independently. This idea presumes that the suffix trees can be divided efficiently
using CPST. However, this might not be possible for systematically biased sequences.
Let’s consider a worst case. For a sequence S = aaaaaaaaaaaaaaaaaaaaaa, all the
suffixes of the sequence start with same prefix a. Thus, the idea of CPST is inefficient.

Fortunately, systematically biased sequences rarely occur in practice. The appear-
ance of the 4 symbols a, c, g, and g in actual DNA sequences is almost evenly dis-
tributed. This ensures that the number of DNA sequence suffixes starting with differ-
ent possible prefixes are not severely imbalanced. Here we take human chromosome

1234 Chunxi Chen and Bertil Schmidt

NC 000001.4 length of 222,827,884 as an example. Table 1 shows that the number of
suffixes starting with different prefixes are well balanced. This means the suffix tree can
be divided efficiently into sub-problems using CPSTs.

Table 1. The number of suffixes of the human chromosome NC 000001.4 length of 222,827,884
(only consider a, c, g and t)which start with 1-letter and 2-letter prefixes.

compre Num of suffixes compre Num of suffixes compre Num of suffixes compre Num of suffixes
a 64875254 c 46493994 g 46483769 t 64974866

compre Num of suffixes compre Num of suffixes compre Num of suffixes compre Num of suffixes
aa 21191409 ac 11189673 ag 15878823 at 16615349
ca 16200299 cc 12132633 cg 2256627 ct 15904435
ga 13313713 gc 9838754 gg 12121539 gt 11209763
ta 14169833 tc 13332934 tg 16226780 tt 21245318

4.3 Parallelization Strategy

During the course of constructing CPSTs, the input string must reside in memory. This
means every process in the parallel environment must allocate enough memory to hold
the the input sequence first and then the remaindering memory can be allocated to con-
struct CPSTs. Obviously the efficiency is low when the input sequence is large. This is
the key reason some parallel implementations do not scale well.

If a cluster permits fast intra-cluster communication, it is possible that one or more
nodes hold the input string while other nodes efficiently access the string by intra-
cluster communication. We call this the sharing input string idea. Our implementation
uses one or more data-servers which hold the whole input sequence. The processes
constructing CPSTs (constructors) access the sequence through communication with
these data-servers.

In order to decrease the communication between dataservers and constructors,
we introduce the concept of smallnode and largenode. The communication between
dataservers and constructors consists of two parts: 1) the constructors need to access
the input string; and 2) the constructors need to get the edge labels of a node. The com-
munication in Case 1 has good efficiency since the constructors can get a whole block of
the substring a time. The highly frequent and low efficient communication comes from
the Case 2, because the number of the nodes is large and the overhead of every commu-
nication is high. We classify the nodes of a CPST according to the lengths of their edge
lables. The nodes whose edge-label lengths are larger than a criterion (nodesize) are
called largenodes, or else called smallnodes. If the edge labels of the smallnodes
are kept in their CPSTs, the access to these smallnodes doesn’t need communication.
Therefore, the communication in Case 2 will decrease.

4.4 Performance Evaluation

The cluster used in this paper consists of 10 nodes connected by a Gbit/s myrinet switch.
Each node comprises two 2.6GHz CPUs and 1 Gigabytes RAM. In our experiments, the
length of compre is set to 2 and therefore the number of CPSTs is 16. The nodesize is
set as 10. The number of constructors are 4 times that of dataservers. Figure 6 shows

Parallel Construction of Large Suffix Trees on a PC Cluster 1235

50 100 150 200
0

600

1200

1800

2400

3000

3600

T
im

e
(

se
co

nd
s

)

The length of the imput string in Mbp
4 8 12 16

0

1

2

3

4

S
pe

ed
up

s

The number of processors

the ideal speedup
actual speedup

Fig. 6. The left part shows the runtimes for input strings with different lengths; The right part
shows speedups using the input string length of 50M.

that the construction time of our implementation is in a linear relationship to the length
of the input string. In addition, the speedup is almost linear.

5 Conclusion

The suffix tree is a key data structure for biological sequence analysis. However, con-
struction of a suffix tree for long DNA sequences is made challenging by high memory
overheads and poor memory locality. In this paper, we have introduced an efficient par-
allel algorithm for large-scale suffix tree construction using the CPST data structure. We
have shown how a standard suffix tree can be divided into a number of CPSTs. Each
CPST can then be processed independently by one cluster node. Our algorithm permits
linear-time construction of CPSTs. In order to reduce space while constructing CPSTs
inside a cluster, we use one or more data-servers which hold the whole sequence inside
the cluster. Constructors access the input sequence through communicating with these
data-servers. Our implementation can achieve linear space for a human chromosome
DNA sequence.

References

1. A. Andersson and S. Nilsson, “Efficient Implementation of Suffix Trees”, Software-Practice
and Experience, 25(2), 129-141, 1995.

2. A.L. Brown. “Constructing Chromosome Scale Suffix Tree”. the 2nd Asia-Pacific Bioinfor-
matics Conference. New Zealand, 2004.

3. R. Clifford and M. Sergot. “Distributed and Paged Suffix Trees for Large Genetic Databases”.
Journal of Discrete Algorithms. Accepted.

4. L. Colussi and A. De Col, “A time and space efficient data structure for string searching on
large texts”, Information Processing Letters, 58(5), 217-222, 1996.

5. A. Delcher, A. Phillippy, J. Carlton, and S. Salzberg. “Fast Algorithms for Large-scale
Genome Alignment and Comparision.” Nucleic Acids Research, 30(11):2478-2483, 2002.

1236 Chunxi Chen and Bertil Schmidt

6. M. Farach, P. Ferragina, and S. Muthukrishnan. “Overcoming the Memory Bottleneck in
Suffix Tree Construction”. Proc. of IEEE Annual Symposium on Foundations of Computer
Science, 1998.

7. P. Ferragina and R. Grossi. “The string B-Tree: a new data structure for string search in
external memory and its application.” Journal of the ACM, 46(2):238-280, 1999.

8. D. Gusfield. Algorithms on strings, trees and sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

9. E. Hunt, M.P. Atkinson, and R.W. Irving. “A Database Index to Large Biological Sequences.”
The VLDB J., 7(3):139–148, 2001.

10. R.W. Irving, “Suffix Binary Search Trees”, Research Report, Department of Computer Sci-
ence, University of Glasgow, 1996.

11. R. Japp. “Persistent Indexes for Data intensive applications”. Twentieth British National con-
ference on Databases. Coventry, UK, Lecture Notes in computer Science, 2712.

12. J. Kärkkäinen, “Suffix Cactus: A Cross Between Suffix Tree and Suffix Array”, Proc. of
the Annual Symposium on Combinatorial Pattern Matching (CPM’95), LNCS 937, 191-204,
1995.

13. J. Kärkkäinen and E. Ukkonen. “Sparse Suffix Tree”. COCOON’96, LNCS1090, Hongkong,
1996.

14. S. Kurtz. “Reducing Space Requirement of Suffix Trees”. Software Practice and Experience,
29(13):1149–1171, 1999.

15. S. Kurtz and C. Schleiermacher. “REPuter: Fast Computation of Maximal Repeats in Com-
plete Genomes.” Bioinformatics, 15(5):426-427, 1999.

16. U. Manber and E.W. Myers, “Sufix Arrays: A New Method for On-line String Searches”,
SIAM Journal on Computing, 22(5), 935-948, 1993.

17. C. Meek, J. M. Patel, and S. Kasetty. “OASIS: An Online and Accurate Technique for Local-
alignment Searches on Biological Sequences.” In VLDB, 2003.

18. G. Navarro, R. Baeza-Yates, and J. Tariho. “Indexing Methods for Approximate String
Matching.” IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

19. S. Tata, R.A. Hankins, J.M. Patel. “Practical Sufix Tree Construction.” in proceedings of the
30th VLDB Conference, Toronto, 2004.

20. The Growth of GenBank, NCBI, 2004. http://www.ncbi.nlm.nih.gov/genbank/
21. MPICH project: http://www-unix.mcs.anl.gov/mpi/mpich/

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1237–1245, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Parallel Edge-Based Inexact Newton Solution
of Steady Incompressible 3D Navier-Stokes Equations

Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

Center for Parallel Computations and Department of Civil Engineering
Federal University of Rio de Janeiro, P. O. Box 68516

RJ 21945-970 – Rio de Janeiro, Brazil
{renato,marcos,alvaro}@nacad.ufrj.br

Abstract. The parallel edge-based solution of 3D incompressible Navier-Stokes
equations is presented. The governing partial differential equations are discre-
tized using the SUPG/PSPG stabilized finite element method [5] on unstruc-
tured grids. The resulting fully coupled nonlinear system of equations is solved
by the inexact Newton-Krylov method [1]. Matrix-vector products within
GMRES are computed edge-by-edge, diminishing flop counts and memory re-
quirements. The non-linear solver parallel implementation is based in message
passing interface (MPI). Performance tests on several computers, such as the
SGI Altix, the Cray XD1 and a mini-wireless cluster were carried out in repre-
sentative problems and results have shown that edge-based schemes require less
CPU time and memory than element-based solutions.

1 Introduction

We consider the simulation of steady incompressible fluid flow governed by Navier-
Stokes equations using the stabilized finite element formulation in [5]. This formula-
tion allows that equal-order-interpolation velocity-pressure elements are employed by
introducing two stabilization terms: the Streamline Upwind Petrov-Galerkin (SUPG)
and the Pressure Stabilizing Petrov Galerkin stabilization (PSPG).

When discretized, the incompressible Navier-Stokes equations give rise to a fully
coupled velocity-pressure system of nonlinear equations due the presence of convec-
tive terms in momentum equation. The inexact Newton method [1] associated with a
proper preconditioned iterative Krylov solver, such as GMRES, presents an appropri-
ated framework to solve nonlinear systems, offering a trade-off between accuracy and
the amount of computational effort spent per iteration.

Inspired by finite volume methods, edge-based data structures have been intro-
duced for explicit finite element computations of compressible flows on unstructured
grids composed by triangles and tetrahedra. Soto et al [11] recently introduced an
edge-based approach to solve incompressible flows with an uncoupled fractional step
formulation. The advantages of edge-based schemes with respect to conventional
element-based schemes are a major reduction in indirect addressing (i/a) operations
and memory requirements.

When dealing with large scale problems the use of parallel solvers is an essential
condition and the use of an algorithm able to run efficiently in shared, distributed or
hybrid memory systems has been a motivation for many researchers to turn the solver
strategy more independent of the hardware resources. Therefore, the main goal of this

1238 Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

work is the development of edge-based data structures for the SUPG/PSPG finite
element formulation to solve steady incompressible fluid flows by a parallel inexact-
Newton method.

The remainder of this work is outlined as follows: next section briefly describes the
governing equations and finite element formulation. The third section presents some
remarks on edge-based data structures for unstructured grids. The subsequent section
treats the parallel implementation, results and final comments are summarized in the
last sections.

2 Governing Equations
and SUPG/PSPG Finite Element Formulation

Let be the spatial domain, where nsd is the number of space dimensions. Let
Γ denote the boundary of Ω. We consider the following velocity-pressure formula-
tion of the Navier-Stokes equations governing steady incompressible flows:

()∇ ∇ σ = 0,

∇ = 0,

where ρ and u are the density and velocity, σ is the stress tensor.
The essential and natural boundary conditions associated with equations (1) and (2)

can be imposed at different portions of the boundary Γ and represented by,

= σ = (3)

where Γg and Γh are complementary subsets of Γ.
Let us assume following [5] that we have some suitably defined finite-dimensional

trial solution and test function spaces for velocity and pressure, and

The finite element formulation of equations (1) and (2) using SUPG and

PSPG stabilizations for incompressible fluid flows can be written as follows: find
and such that and :

∇ ∇() () ()

∇ ∇ ∇() ()

∇ ∇ ∇() ()

In the above equation nel is the number of elements in the mesh. The first four inte-
grals on the left hand side represent terms that appear in the Galerkin formulation of
the problem (1)-(3), while the remaining integral expressions represent the additional
terms which arise in the stabilized finite element formulation. Note that the stabiliza-
tion terms are evaluated as the sum of element-wise integral expressions. The first
summation corresponds to the SUPG (Streamline Upwind Petrov/Galerkin) term and

Parallel Edge-Based Inexact Newton Solution 1239

the second to the PSPG (Pressure Stabilization Petrov/Galerkin) term. The spatial
discretization of equation (4) leads to a following system of nonlinear equations,

 (5)

where x = (u, p) is a vector of nodal variables comprising both nodal velocities and
pressures and F(x) represents a nonlinear vector function.

Newton’s method is attractive method to solve the system (5) because it converges
rapidly from any sufficiently good initial guess [1]. However, one drawback of New-
ton’s method is the need to solve a locally linear system at each stage. Computing the
exact solution can be expensive if the number of unknowns is large and may not be
justified when is far from a solution. Thus, one might prefer to compute approxi-
mated linear solutions, leading to the following algorithm,

(6)

for step 1 until convergence do
 Find some ηk ∈ AND that satisfy
 ||F(xk)+J(xk) sk|| • ηk ||F(xk)||

 set

for some adaptively chosen ηk ∈ , where || • || is a norm of choice. The Jacobian,
J(xk), is numerically approximated using Taylor’s expansions as described by Tez-
duyar [6]. This formulation naturally allows the use of an iterative solver like
GMRES or BiCGSTAB: one first chooses ηk and then applies the iterative solver to
(6) until a is determined for which the residual norm is satisfied. In this context ηk
is called as a forcing term and can be specified in several different forms as described
in [2].

3 Edge-Based Data Structures

Edge-based data structures operate directly in the nodal graph of the underlying un-
structured grid. It was shown in [3] that for unstructured grids edge-based data struc-
tures have more advantages than element-by-element (EBE) and compressed storage
row (CSR) schemes. In the edge-based strategies, global coefficients are computed
and stored in single DO-LOOPS making the evaluation of the left and hand sides
faster and less memory demanding. We may derive an edge-based finite element
framework by noticing that the element matrices can be disassembled into their con-
tributions as shown in [7, 8]. For the set of all elements sharing a given edge, we may
add their contributions, arriving to the edge matrix, which for the problem at hand is a
non-symmetric 16 × 16 matrix. In Table 1 we compare the storage requirements to
hold the coefficients of the element and edge matrices as well as the flop count and
indirect addressing (i/a) operations to compute sparse matrix-vector products in the
Krylov iterative driver element-by-element or edge-by-edge, that is,

, (7)

where ne is the total number of local structures (edges or elements) in the mesh and pl
is the restriction of p to the edge or element degrees-of-freedom.

1240 Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

Table 1. Memory to hold the matrix coefficients and computational costs for element and edge-
based matrix-vector products for tetrahedral finite element meshes

 Memory Flop i/a
Elements 1056 nnodes 2112 nnodes 1408 nnodes

Edges 224 nnodes 448 nnodes 448 nnodes

All data in this table is referred to nnodes, the number of nodes in the finite ele-
ment mesh. According to [9], the following estimates are valid for unstructured 3D
grids, nel 5.5×nnodes, nedges 7×nnodes, where nedges is the number of edges in
the mesh. We may observe that data in Table 1 favors the edge-based scheme.

4 Parallel Implementation

The parallel inexact nonlinear solver presented in the previous section was imple-
mented based in the message passing parallelism model (MPI). The original unstruc-
tured grid was partitioned into non-overlapped sub-domains by the use of the
METIS_PartMeshDual routine provided by Metis package [4]. Afterwards, the parti-
tioned data was reordered to avoid indirect memory addressing and IF clauses inside
hot loops and MPI communications. Therefore, the equation numbers shared by the
partitions were relocated to the last entries of the corresponding arrays.

Most of the computational effort spent during the iterative solution of linear sys-
tems is due to evaluations of matrix-vector products or matvec for short. In our tests
matvec operations achieved 92% of the total computational costs. In element-by-
element (EBE) and edge-by-edge (EDE) data structures this task is message passing
parallelizable by performing matvec operations at each partition level, then assem-
bling the contribution of the interface equations calling MPI_AllReduce routine over
the last array entries. Finally, it is important to note that edge (and element) matrix
coefficients are computed in single DO-LOOPS also in each partition.

5 Results

This section presents two benchmark problems to analyze the parallel solver perform-
ance. The numerical procedure considers a fully coupled u-p version of the stabilized
formulation using linear tetrahedron elements. The parallel solver is composed by an
outer inexact-Newton loop and an inner GMRES(25) with nodal block diagonal pre-
conditioned linear solver.

The computations were made on two SGI Altix 3700 systems (32/64 Intel Itanium-
2 CPUs with 1.3/1.5 GHz and 128/256 Gb of NUMA flex memory), and a Cray XD1
system (32 AMD Opteron CPUs with 1.8 GHz). Some portability and mobile parallel-
ism tests were performed on a mini-cluster fast-ethernet/wireless composed by 4 lap-
top nodes with Intel Centrino processors and Microsoft Windows platform. The same
code was compiled for three different systems (Intel Fortran 8.1 on SGI Linux sys-
tems, Portland Group Fortran on Cray Linux and Compaq Visual Fortran on mini-
cluster Intel/Windows). No CPU optimizations besides those provided by standard
compiler flags (-O3) were made.

Parallel Edge-Based Inexact Newton Solution 1241

5.1 Three Dimensional Leaky Lid-Driven Cavity Flow

In this well known problem the fluid confined in a cubic cavity is driven by the mo-
tion of a leaky lid. Boundary conditions consist in a unit velocity specified along the
entire top surface and zero velocity on the other surfaces. Table 2 shows the problem
dimensions employed for all parallel performance tests, where in the label cav-nn, nn
means the number of line divisions through the x, y, and z dimensions for mesh con-
struction purposes. Fig. 1 (left) shows the streamlines for Reynolds 400 for the cav-
101 mesh. We may note the main vortex formation and the singularities at the cavity
corners, typical for this problem. Fig. 1 (right) show the computed vertical and hori-
zontal velocities at the centerline, together with the recent numerical results of Lo et
al [13] and Shu et al [14]. We may observe that all results are in good agreement.

Table 2. Problem dimensions

 Elements Edges Nodes Equations
cav-31 148,955 187,488 32,768 117,367
cav-51 663,255 819,468 140,608 525,556
cav-71 1,789,555 2,193,048 373,248 1,421,776
cav-101 5,151,505 6,273,918 1,061,208 4,101,106

Fig. 1. (Left) Streamlines in a leaky lid-driven cubic cavity (right) Characteristic results for
vertical and horizontal velocity at the centerline

In Fig. 2 (left) is shown the scaled speedup on the SGI Altix computed according
to Gustafson’s law [10] and defined by Ss= n+(1-n) s, where n is the number of proc-
essors and s corresponds to the normalized time spent in the serial portion of the pro-
gram. The scalability reached on SGI Altix for the models listed in Table 2 is shown
in Fig. 2 (right). Note that when increasing the problem size the serial fraction s tends
to shrink as more processors are employed. In our tests with SGI Altix 3700 we have
employed up to 32 Intel’s Itanium-2 processors and according to [10] the scaled
speedup should be a linear function with moderate slope 1-n such as the line we have
measured and shown in Fig. 2 (right).

The scaled efficiency on SGI Altix for EDE data structure is presented in Fig. 3
(left). Good results may be observed for the cavity models, especially for those with

1242 Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

larger number of degrees of freedom. In some cases efficiencies greater than 100%
may be attributed to cache effects. The time spent when solving the cav-71 problem
with EBE and EDE data structures is plotted in Fig. 3 (right). We may observe that
the EDE solutions were faster than the EBE in all cases. Nevertheless, the CPU time
ratios between EBE and EDE solutions are around 2.5 up to 16 processors. For 32
processors this ratio decreases. This is an indication that as we refine the meshes,
CPU time ratios between EBD and EDE has a tendency to remain around this value.

Fig. 2. (Left) Scaled speedup on SGI Altix for EDE data structure and cav101 model. (right)
Scalability for the models considered

Fig. 3. (Left) Scaled efficiency for EDE data structure on SGI Altix. (right) Wall time compari-
sons for EBE and EDE data structures for cav-71 mesh

The inexact nonlinear solver behavior is sketched in Fig. 4 through the decrease of
relative residual (left), GMRES tolerance, and nonlinear iteration time (right). Note
that at the beginning of the solution procedure the linear tolerance is large enough to
allow very fast nonlinear iterations. When a sudden decay in the relative residual is
detected, as may be seen in nonlinear iterations 14 to 24, the inexact nonlinear method
identifies that the desired solution is imminent and the linear tolerance is tightened to
entrap the final solution.

Fig. 5 shows the results of tests performed on a mini-cluster formed by 4 laptops
and a wireless/fast-ethernet network (2 Intel Centrino 1.6 GHz/512Mb, 1 Intel Cen-

Parallel Edge-Based Inexact Newton Solution 1243

trino 1.3 GHz /512Mb and 1 Intel Pentium 4 2.4 GHz/512Mb interconnected by a
Linksys Wireless-B Hub, IEEE 802.11b/2.4GHz/11Mbps or Fast-Ethernet
10/100Mbps network). These tests show the versatility and portability that message
passing codes can offer, making possible the solution of even large scale problems
employing modest machines.

Fig. 4. (Left) Relative nonlinear residual. (right) GMRES tolerance (bars) controlled by inexact
nonlinear method and time per nonlinear iteration (lines)

3
9
8
.
6
6

5
2
3
.
0
2

2
3
1
4
.
9
1

3
9
8
.
6
6

1
7
8
.
6
9

1
5
4
.
5
2

Fig. 5. (Left) Minicluster mobile wireless/fast-ethernet, (Right) Performance comparison be-
tween wireless and fast-ethernet networks

Fig. 5 (right) shows that the wireless technology employed (Wireless-B) was not
able to deliver the bandwidth required to reach a desirable speedup in this irregular
MPI parallel computation. However, with the increasing bandwidth in wireless tech-
nology mobile-parallel computations will be a reality in the near future. The low
speedups achieved in the minicluster with fast-ethernet network were also due to the
small problem size, as occurred in the case shown in Fig. 3 (left) for SGI Altix.

5.2 Flow Through a Los Angeles Class Submarine

This problem consists on a simplified three-dimensional simulation of a laminar flow
around a Los Angeles class submarine. The detailed solution and discussion of this
problem, involving transient and turbulent flow is given in [12]. Fig. 6 (left) shows

1244 Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

the mesh over the submarine hull. The volume mesh comprises 504,947 tetrahedral
elements, 998,420 edges and 92,564 nodes. The solution for this problem is shown in
Fig. 6 (right), where the pressure contour is plotted over the submarine hull and the
velocity in two longitudinal cutting planes. For this problem the linear tolerance oscil-
lated from the maximum value of 0.99 to a minimum of 2.7×10-2 and the computa-
tions were carried out until a minimum relative residual of 10-10 was reached after 21
nonlinear iterations.

Fig. 7 (left) shows some comparisons between the systems employed in our tests
with EDE data structure. We may see only slight differences between the systems. In
Fig. 7 (right) we compare the solution time spent to solve the problem with EBE and
EDE data structures. Note again that the EDE data structure running in one CPU was
faster than EBE employing four CPUs.

Fig. 6. (Left) Surface mesh, (Right) Typical solution - hull surface (pressure contour), cut
planes (velocity contour)

Fig. 7. (Left) Message passing performance in SGI Altix and Cray XD1 – edge-based data
structure, (Right) Data structure comparisons on SGI Altix (MPI)

6 Conclusions
We have tested the performance of a parallel edge-based inexact Newton solver for
fully coupled velocity-pressure nonlinear systems of equations arising from the
SUPG/PSPG finite element formulation of steady incompressible flow on unstruc-
tured grids. We observed that the inexact nonlinear method employed has shown good
balance between accuracy and computational effort. The edge data structure de-
creased the solution time even without employing any data reordering method to

Parallel Edge-Based Inexact Newton Solution 1245

exploit the cache. Our tests with benchmark problems have shown good parallel per-
formances, but interface mapping techniques could be used to reduce the amount of
data communication. The code is portable across different computer platforms, rang-
ing from a mobile wireless cluster to the SGI Altix 3700 and Cray XD1 systems with-
out any code modifications or CPU guided optimizations.

Acknowledgements
The authors would like to thank the financial support of the Petroleum National
Agency (ANP, Brazil) and the Center for Parallel Computations (NACAD) and the
Laboratory of Computational Methods in Engineering (LAMCE) at the Federal Uni-
versity of Rio de Janeiro. The authors are very grateful for the computational re-
sources provided by Silicon Graphics Inc. (SGI/Brazil) and Cray Inc. We are also
indebted to Prof. M. Behr from RWTH Aachen University by the submarine mesh.

References
1. Dembo, R. S., Eisenstat, S. C. and Steihaug, T., Inexact Newton Methods, SIAM J. Numer.

Anal. (1982) 19: 400-408.
2. Eisenstat, S. C. and Walker, H. F., Choosing the Forcing Terms in Inexact Newton Method,

SIAM. J. Sci. Comput. (1996) 17–1: 16–32.
3. Ribeiro, F. L. B. and Coutinho, A. L. G. A., Comparison Between Element, Edge and Com-

pressed Storage Schemes for Iterative Solutions in Finite Element Analyses, Int. J. Num.
Meth. Engrg. 2005; 63-4:569-588.

4. Karypis G. and Kumar V., Metis 4.0: Unstructured Graph Partitioning and Sparse Matrix
Ordering System. Technical report, Department of Computer Science, University of Min-
nesota, Minneapolis, (1998) http://www.users.cs.umn.edu/~karypis/metis.

5. Tezduyar, T. E., Stabilized Finite Element Formulations for Incompressible Flow
Computations, Advances in Applied Mechanics (1991) 28: 1-44.

6. Tezduyar, T. E., Finite Elements in Fluids: Lecture Notes of the Short Course on Finite
Elements in Fluids, Computational Mechanics Division – Vol. 99-77, Japan Society of Me-
chanical Engineers, Tokyo, Japan (1999).

7. Catabriga, L., Coutinho, A. L. G. A., Implicit SUPG solution of Euler equations using
edge-based data structures. Comput. Methods in Appl. Mech. and Engrg, 2002, 32(191):
3477-3490.

8. Coutinho, A. L. G. A., Martins, M. A. D., Alves, J. L. D., Landau, L., Moraes, A., Edge-
based finite element techniques for non-linear solid mechanics problems. Int. J. Num.
Meth. Engrg, 2001, 50(9):2053-2068.

9. Lohner, R., Edges, stars, superedges and chains, Comput. Methods in Appl. Mech. and
Engrg 1994, 111(3-4): 255-263.

10. Gustafson, J. L., Montry, G. R. and Benner, R. E., Development of Parallel Methods for a
1024-Processor Hypercube, SIAM J. on Sci. and Stat. Comp., 1988, 9(4):609-638

11. Soto, O., Löhner, R., Cebral, J. and Camelli, F., A Stabilized Edge-Based Implicit Incom-
pressible Flow Formulation, Comput. Methods Appl. Mech. Engrg. 2004, 193:2139-2154.

12. http://manila.cats.rwth-aachen.de/developer/cases/la.0808, last visited in May 10, 2005.
13. Lo, D. C., Murugesan, K and Young, D. L., Numerical solution of three-dimensional veloc-

ity-vorticity Navier-Stokes equations by finite difference method, Int. J. Numer. Meth. Flu-
ids 2005, 47:1469-1487.

14. Shu, C., Wang, L. and Chew Y T, Numerical computation of three-dimensional incom-
pressible Navier-Stokes equations in primitive variable form by DQ method, Int. J. Numer.
Meth. Fluids 2003; 43:345-368.

High Performance Computing for a Financial
Application Using Fast Fourier Transform

Sajib Barua, Ruppa K. Thulasiram�, and Parimala Thulasiraman

Department of Computer Science, University of Manitoba
Winnipeg, MB R3T 2N2 Canada

{sajib,tulsi,thulasir}@cs.umanitoba.ca

Abstract. Fast Fourier Transform (FFT) has been used in many scien-
tific and engineering applications. In the current study, we have applied
the FFT for a novel application in finance. We have improved a recently
proposed mathematical model of Fourier transform technique for pricing
financial derivatives to help design and develop an effective parallel al-
gorithm using a swapping technique that exploits data locality. We have
implemented our algorithm on 20 node SunFire 6800 high performance
computing system and compared the new algorithm with the traditional
Cooley-Tukey algorithm We have presented the computed option values
for various strike prices with a proper selection of strike-price spacing to
ensure fine-grid integration for FFT computation as well as to maximize
the number of strikes lying in the desired region of the asset price.

Keywords: HPC for commercial application; Option pricing; Fast
Fourier transform; Mathematical modeling; Parallel algorithm; Data
locality.

1 Introduction

The finance industry demands efficient algorithms and high-speed computing
in solving many problems [1]. In this research we cut across two historically
established, technologically evolving and most importantly traditionally different
areas: computing and finance - computational finance. Specifically, this paper
addresses the problem of option pricing.

Terminologies: An option is a financial contract where one of the two parties
involved, known as holder, gets the right (but not obligation) to buy/sell a set of
underlying financial instruments such as stocks at a preset price (known as exer-
cise or strike price) at a preset date (known as exercise/maturity date) from/to
the other party known as the writer. If the holder decides to exercise the option,
the writer is obligated to satisfy the holder’s decision. Buying/selling underlying
asset through such contract is referred to as Call/Put option. If the option can
be exercised only at the maturity date, the option contract is known as European
option, whereas if the option can be exercised any time prior to the maturity, it
is known as American option. Value of a call/put option (shortly call/put value
� Author for Correspondence: tulsi@cs.umanitoba.ca

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1246–1253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

High Performance Computing for a Financial Application 1247

or call/put price) depends on the spot price of the underlying asset, strike price
among other parameters such as risk-free interest rate, volatility1 of the asset,
period of the contract.

The solution for the optimal exercise policy for a financial option must typi-
cally be performed numerically, and is usually a computationally intensive prob-
lem. Pricing of options has been traditionally done using either binomial tree ap-
proach or using Monte-Carlo simulation or engineering approaches such as finite-
differencing (see for example [2]). A recent addition to the numerical techniques
for the option pricing problem is the use of Fast Fourier Transform (FFT) [3]. By
providing an one-to-one mapping from the mathematics of Fourier space to the
computational domain of the FFT, [4] explored the high performance computing
for this problem.

In the current study, we develop an improved mathematical model of FFT
for option pricing and a new parallel FFT algorithm. While there are many
FFT algorithms available, for example, Stockham auto sort algorithm (SAS) [5]
(chapter 1.7) and Bailey algorithm [6], we had to develop a new algorithm in the
current study especially to satisfy the mathematics of the option pricing problem
described in section 2. The structure of our new algorithm behaves similar to the
SAS algorithm, however, captures the physics of option pricing closer than the
SAS algorithm as explained in section 2. Due to lack of space we do not discuss
the SAS or other available algorithms here. Readers are referred to [5] for an in
depth look on various FFT algorithms. We leave the work on fine tuning SAS [5]
(chapter 1.7) and Bailey’s [6] algorithm for option pricing problem as a future
study.

The rest of the paper is organized as follows. In section 2, we mention the
drawback of one major related work on mathematical model of option pricing
problem using Fourier transform and present an improvement to the mathemat-
ical modeling with which a finer mapping from mathematics to the FFT com-
putational domain for option pricing is presented. In section 3, we present the
new FFT algorithm, which exploits data locality to improve the performance.
The results are presented in section 4, with call value results followed by the
experimental results. We conclude the current study in section 5.

2 Drawback of an Existing FFT Model
and Improved Model for Option Pricing

An important contribution of the current work is to alleviate the drawback in
Carr-Madan (CM) model [3]. They developed a FFT model for option pricing
in continuous and discrete form as follows: If M = e−αk/π and ω = e−i then

CT (k) = M

∫ ∞

0

ωvkψT (v)dv. (1)

1 Variation in the asset prices is generally split into two parts: (i) changes due to known
factors affecting the asset price such as periodic changes - known as deterministic
changes or drift in prices; (ii) changes due to unknown phenomena in the market
place - generally known as volatility.

1248 Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

If vj = η(j − 1) and applying trapezoidal rule for the integral on the right of
equation (1), CT (k) can be written as

CT (k) ≈M

N∑
j=1

ψT (vj)ωvjkη, k = 1, . . . , N, (2)

where the effective upper limit of integration is Nη and vj corresponds to various
prices with η spacing. Here CT (k) is the call option price; ψT (v) is the Fourier
transform of this call price given by ψT (v) = e−rT φT (v−(α+1)i)

α2+α−v2+i(2α+1)v ; where α is a
dampening factor and k is the logarithm of the strike price, k = log(K)); r
is the interest rate; T is the period of the option contract. The calculation of
ψT (v) depends on the factor φT (u), where u = v − (α + 1)i. We derive φT (v)
as, φT (v) =

∫ λ

0
(cos(vk) + i sin(vk))qT (s)ds where λ is terminal spot price and

integration is taken only in the positive axis.
To calculate the call values, equation (1) has to be solved analytically. The

discrete form equation (2) is not suitable to feed into the existing FFT algorithms
for example,Cooley-Tukey [7], Stockham auto sort [5](chapter 1.7) and Bailey [6].
Hence, the CM model in its current form cannot be used for faster pricing. This
is a major drawback of using CM model for practical purposes and for real time
pricing we need to improve this mathematical model.

This leads us to state the objectives of the current work as: (1) Improv-
ing the mathematical model that will be tractable for parallel computing and
for getting accurate solutions quickly; (2a) Designing an efficient parallel FFT
algorithm that can map the mathematics from the improved model to the com-
putational domain; and (2b) implementing the algorithm on distributed memory
architecture to study the performance.

Improved Mathematical Model: The limits on the integral have to be selected in
such a way as to generate real values for the FFT inputs. To generate the closed
form expression of the integral, the integrands, especially the function qT (s),
have to be selected appropriately. Without loss of generality, we use uniform
distribution for qT (s). This implies occurrence of a range of terminal log prices
at equal probability, which could, of course, be relaxed and a normal or other
distribution could be employed. Since the volatility of the underlying asset is
assumed constant (low) the variation in the drift is expected to cause a stiffness2

2 Stiffness occurs when two processes controlling a physical phenomenon proceeds at
two extremely different rates. It is common in scientific problems such as chemical
reactions and high temperature physics. When a system with such physical phe-
nomenon is manifested in mathematics such as differential or integral equations, the
mathematical system is known to be stiff, where solution of such systems of equa-
tions would require special techniques to handle the ‘stiffness’. Drift and volatility
in the finance systems act as two phenomena affecting the system away from equi-
librium hence may induce ‘stiffness’. Our assumptions of uniform distribution for
the density function to make the integration easier, in conjunction with assumed
constant volatility, however, naturally avoids this issue.

High Performance Computing for a Financial Application 1249

in the system. However, since we have assumed uniform distribution for qT (s),
variation in drift is eliminated and hence the stiffness is avoided. Therefore, use
of uniform distribution would make the integration easier.

For computation purposes, the upper limit of equation (1) is assumed as
a constant value and the lower limit is assumed as 0. The upper limit will be
dictated based on the terminal spot price. In other words, to finish the call option
in-the-money3, the upper limit will be smaller than the terminal asset price and
hence we arrive at the the modified expression for φT (v) presented earlier.

Without loss of generality, further modifications are required as derived be-
low. The purpose of these modifications is to generate feasible and tractable
initial input condition to the FFT algorithm from these equations. Moreover,
these modifications make the implementation easier. Due to lack of space we
skip the mathematical derivation and present the final improved mathematical
model as

ψT (v) =
A

{B}{C2 + D2}
[
{CΔ + DΔx}+ i{CΔx −DΔ}

]
(3)

where, A = e−rT qT (s); B = (α+ 1)2 + v2; C = α2 +α− v2; D = (2α+ 1)v. We
use this final expression for the new parallel FFT algorithm to compute the call
price function. The financial input data set for our parallel FFT algorithm is the
calculated data points of ψT (v) for different values of v. We refer equation (3)
as BTT-CM Model or BTT-CM equation.

We then calculate call value for different strike price values vj where j will
range from 1 to N . The lower limit of strike price is 0 and upper limit is (N−1)η
where η is the spacing in the line of integration. Smaller value of η gives fine
grid integration and a smooth characteristics function of strike price and the
corresponding calculated call value. If γ is the spacing in k, then the values for k
can be obtained from the equation: ku = −p+γ(u−1), for u = 1, . . . , N. Hence,
the log of the ratio of strike and exercise price will range from −p to p where
p = Nγ

2 . Substitution of previous equation for ku in equation (2) and replacing
vj with (j − 1)η in the equation gives (for u = 1, ..., N)

CT (ku) ≈ exp(−αku)
π

N∑
j=1

{e−iγη(j−1)(u−1))eipvjψT (vj)η}. (4)

Comparing equation (4) with the basic FFT equation, we note that γη = 2π
N .

Smaller values of η will ensure fine grid for the integration. But call prices at
relatively large strike spacings (γ), few strike prices will lie in the desired re-
gion near the stock price [3]. Furthermore, if we increase the values of N , we

3 In-the-money call option is a situation where underlying asset price of the option
is larger than the strike price; at-the-money call means asset price equals the strike
price; natural extension is for out-of-the-money call, which corresponds to a situation
where the asset price is smaller than the strike price. These definitions are reversed
for a put option

1250 Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

will get more intermediate points of the calculated call prices (CT (ku)) corre-
sponding to different strike prices (vj). This helps the investor to capture the
call price movements of an option for different strike prices in the market. In the
experimental result (section(4)) of 1024 (N) numbers of calculated call values,
assuming η = 0.25 with the intuition that it will ensure fine grid integration, γ
is calculated as 0.02454. Similar to basic FFT equation, equation (4) can also be
parallelized with an efficient parallel algorithm. In the next section we develop
a data swapping technique that exploits data locality to reduce communication
on a parallel computer and effectively apply our mathematical model. We im-
plement this algorithm with the inputs derived from equation (4).

3 An Effective Parallel FFT Algorithm

Figure 1 illustrates our data swap algorithm. We assume we have N (N = 2m)
data elements and P (P = 2p) processors where N > P [8]. In our algorithm, we
apply the blocked data distribution and the first (logN−logP) stages require no
communication. However, in the last logP stages that require communication,
we swap some data at each stage and let the data reside in the processor’s local
memory after swapping. Therefore, the identity of some of the data points in
each processor changes at every stage of the logP stages.

Fig. 1. Data Swap Algorithm

In figure (1), we can see that in iteration 2, processor 0 needs two input data
points with index 4 and 5 and these do not reside in the local processor. Hence, we
need two send operations to bring these values from processor 1. In general, for
an input data point with N/P data in every processor, N/(2P) communication is

High Performance Computing for a Financial Application 1251

required. This is half of what is required in the Cooley-Tukey algorithm. That is,
in the new parallel FFT algorithm, the number of communications is reduced by
half. We take advantage of the the fact that communication between processors is
point to point and swap the data in a similar manner. However, in this case, only
N
2P amount of data (message size) is communicated by each processor at every
stage. Also note that, data swapping between processors at each location allows
both the upper and lower part of the butterfly computations to be performed
locally by each processor. This improvement enhances good data locality and
thereby providing performance increase in the new FFT algorithm compared
to the Cooley-Tukey algorithm. Analytically, the parallel runtime is given by [9]
tc(N/P) logN+t

′′
s logP+tw(N/2P) logP , where ts is the start up time; tw is the

per word transfer time; and tc is the time required for the butterfly computation.

4 Results and Discussions

Option Pricing Results: Figure (1) shows how the data swap algorithm calcu-
lates the call values from the input data set generated from the BTT-CM equa-
tion. The data swap algorithm calculates N number of call values. When the
call option is in-the-money, the investor would prefer to exercise the option
(purchasing the option) at the strike price and immediately sell the asset in the
market at the terminal spot price. Thus, the holder can profit. Figure (2) de-
picts the calculated in-the-money call values for different strike prices using the
data swap algorithm. In the experiment of call value computation, strike price
can be any value between 0 and 300. Our data swap algorithm can calculate
(figure 1) call values for in-the-money, at-the-money and out-of-the-money call
options. We are considering in-the-money call where the terminal spot price is
always greater than the strike price. Therefore, figure 2 plots a portion of the
calculated call values (in-the-money) from the output values of the data swap
algorithm. The plot shows that the normalized option value is decreasing with
the increase of strike price. If X , the strike price, is decreased, the call option
value is expected to increase, which can be seen in figure 2. For larger values of
N we can get more number of call values computed for the strike price range
from 0 to 127, which makes the plot as a continuous function.

Significant Experimental Results: The experiments were conducted on a 20 node
SunFire 6800 high performance computing system at the University of Manitoba
running MPI. The Sunfire consists of Ultra Sparc III CPUs, with 1050 MHz clock
rate and 40 gigabytes of memory and runs Solaris 8 operating system. The data
generated in section 2 is used for the FFT input. Due to lack of space, we present
only limited number of results.

Figure (3 a) depicts a comparison of the execution time between the swap al-
gorithm and the Cooley-Tukey algorithm. At each iteration N

2P = 220

25 = 215 data
points are swapped on each of the 16 processors. On a 2 processor machine, there
are log 220 − log 2 = 19 local computations and only 1 remote communication.
However, there is a significant decrease in execution time in 16 processors. This is

1252 Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150

Strike Price

N
o

rm
al

iz
ed

 C
al

l V
al

u
e

Fig. 2. Computed Call Values

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

2^10 2^12 2^14 2^16 2^18 2^20

Data Size (N)

T
im

e
in

 m
se

c
(T

)

Cooley-Tukey
(16 Processors)

Swap Algorithm
(16 processors)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

Number of Processors (P)

E
ff

ic
ie

n
cy

 (
E

) N = 2^12

N = 2^13

N = 2^14

N = 2^16

N = 2^19

Fig. 3. a)Comparison of the execution times of swap and Cooley-Tukey algorithms,
and b) Efficiency of the data swap algorithm

attributed to the fact that in MPI, the packing and unpacking of N
2P = 218 data

elements for each of the 2 processors requires significant amount of time. When
we compare the swap algorithm to the Cooley-Tukey algorithm in figure (3)
on 16 processors, the swap algorithm performs 15% better than Cooley-Tukey
algorithm on a data size of 220.

We calculated the efficiency of the swap algorithm for various processors on
a fixed data size as presented in figure (3b). The efficiency for 16 processors is
close to 1. For 4, 8, and 16 processors the efficiency is 90% for data sizes 214,
216, 219 respectively. Also for 8 and 16 processors the efficiency is 50% for 212

and 213 respectively. These results illustrate that as we increase the data size
and the number of processors, the swap algorithm exhibits very good scalability.

5 Conclusions

Without loss of generality, we have improved the mathematical modeling of FFT
for option pricing and we have identified appropriate values for the parameters to
generate the input data set for the parallel FFT computations. We have reduced
the communication latency by improving the data locality. We have presented
the computed call values for various strike prices with a proper selection of

High Performance Computing for a Financial Application 1253

strike-price spacing to ensure fine-grid integration for FFT computation as well
as to maximize the number of strikes lying in the desired region of the asset price.
Compared to the traditional Cooley-Tukey algorithm, the current algorithm with
data swapping performs better by more than 15% for large data sizes.

Acknowledgement

The last two authors acknowledge partial financial support from Natural Sciences
and Engineering Research Council (NSERC) of Canada and the University of
Manitoba Research Grant Program (URGP). They also gratefully acknowledge
the discussions with Prof. Sanjiv R. Das, Department of Finance, Leavey School
of Business, Santa Clara University, Santa Clara, CA, USA, on the Fourier trans-
form application for finance problems especially the option pricing problem.

References

1. E. J. Kontoghiorghes, A. Nagurnec, and B. Rustem. Parallel Computing in Eco-
nomics, Finance and Decision-making. Parallel Computing, 26:207–209, 2000.

2. J.C. Hull. Options, Futures and Other Derivatives. Prentice Hall, Upper Saddle
River, NJ, 5th edition, 2002.

3. P. Carr and D. B. Madan. Option Valuation using the Fast Fourier Transform. The
Journal of Computational Finance, 2(4):61–73, 1999.

4. R. K. Thulasiram and P. Thulasiraman. Performance Evaluation of a Multithreaded
Fast Fourier Transform Algorithm for Derivative Pricing. The Journal of Supercom-
puting, 26(1):43–58, Aug. 2003.

5. C.Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM:
Frontiers in Applied Mathematics, Philadelphia, PA, 1992.

6. D. H. Bailey. FFTs in External or Hierarchical Memory Fourier. The Journal of
Supercomputing, 4, 1990.

7. J.W. Cooley, P.A. Lewis, and P.D. Welch. The Fast Fourier Transform and its
Application to Time Series Analysis. Wiley, New York, 1977. In statistical Methods
for Digital Computers.

8. A. Grama and A. Gupta and G. Karypis and V. Kumar. Introduction to Parallel
Computing. Addison Wesley, New York, NY, Second edition, 2003.

9. S. Barua. Fast Fourier Transform for Option Pricing: Improved Mathematical Mod-
eling and Design of an Efficient Parallel Algorithm. Master’s thesis, University of
Manitoba, Winnipeg, MB, Canada, July 2004.

Parallel Simulation of the Propagation
of Powdery Mildew in a Vineyard

Agnès Calonnec1, Guillaume Latu2, Jean-Marc Naulin1,
Jean Roman3, and Gaël Tessier3

1 INRA Bordeaux, UMR INRA-ENITA, Santé Végétale
BP81, 33883 Villenave d’Ornon Cedex, France
2 LSIIT UMR 7005, Université Strasbourg 1

67412 Illkirch Cedex, France
3 INRIA Futurs and LaBRI UMR 5800, ScAlApplix project

Université Bordeaux 1 and ENSEIRB, 33405 Talence Cedex, France
http://www.labri.fr/scalapplix

Abstract. This paper describes a parallel simulator for the propaga-
tion of a parasite in a vineyard. The model considers the structure, the
growth and the susceptibility of the plant which play a major role in
the development of the fungus and the spread of epidemic. Two spatial
scales are distinguished for the dispersal of the parasite. We use both a
realistic discrete model for the local dispersal, and a stochastic model
for the long-range dispersal that averages the displacement of spores.
An algorithmic description of the parallel simulator is given and real life
numerical experiments on IBM SP3 are provided, that use up to 128
processors.

1 Introduction

In this paper, we consider the simulation of a biological host-parasite system. The
studied parasite is powdery mildew, a fungus of grapevine. Many epidemiological
studies have been performed on this topic; however the dynamics of the spread of
epidemics is not well known and powdery mildew is still the main fungus disease
of grapevine in the world.

A large number of multiscale mechanisms interact in this system. A better
understanding and a more effective control of epidemics will depend on our
understanding of the dynamical relationships between the environment, the host
and the pathogen. Knowledge obtained during experiments in vineyards will be
first integrated into a model and then into a simulator. One purpose of this work
is to reproduce the interactive events of the system and to synthesize them in
order to understand and evaluate macroscopic emerging phenomena.

The simulation requires a large amount of computations, mainly due to the
number of spores produced by the parasite and dispersed over the vineyard.
An initial sequential simulator only considered only one grapevine [4]. A parallel
version has been developed to model the dynamics of epidemic over a parcel. To
our knowledge, this approach based on realistic simulations is rather new and
has not been yet met in other research works concerning this topic.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1254–1264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard 1255

The biological system and its modeling will be first presented. A profiling
of the sequential program will be detailled so as to identify the most time-
consuming steps that will be good candidates for parallelization. Then, data
distribution and parallel algorithms will be explained; results about scalability,
load-balancing and performance issues of this first implementation will be given.
Finally, we will conclude with the possible evolutions.

This interdisciplinary work is a collaboration between the INRIA Futurs
ScAlApplix project and the LSIIT UMR 7005 for the computer science field, the
INRA UMR Santé Végétale in Villenave d’Ornon for the biological investigations
and the MAB UMR 5466 for the mathematical models.

2 Biological Issues and Modeling

The structure of a grapevine is strongly influenced by management practices of
viticulture system. Two almost horizontal branches carry primary shoots which
themselves carry secondary shoots. Apparition and growth of organs are es-
sentially dependant on their position, on the vigour of the plant and on the
temperature.

Powdery mildew [1] is a polycyclic fungus that spreads thanks to microscopic
airborne spores. We break up the biological cycle in several processes: infection
of leaves or clusters by spores, a latency period during which the rising colony is
only growing, and a sporulation phase during which spores are released by wind.

2.1 General Modeling

The simulation covers a single season from January to the beginning of Septem-
ber with a time step of one day. Location and onset of primary infection are
parameters of the simulation. The dynamics of epidemic is closely related to
the quantitative and qualitative development of hosts: the number, the posi-
tion and the age of organs. Thus the model simulates the 3D development of
stocks. The computer model for a grapevine is a binary tree, in which each node
represents an element of the plant. A node contains information on its spatial
configuration, its biological attributes, and its possible infection state. Parame-
terized functions, some of them stochastic, are used to describe system growth.
Host growth depends on a few magnitudes: temperature T and trophic state
which is a temperature-dependant variable. Fungal colony growth depends on
temperature and organ age. A vigorous grapevine can bear hardly thousand
leaves whereas a weak one three to four times less. The model restricts infection
to leaves and the number of colonies to one per leaf. During a day, approxima-
tively tens of thousands of spores are possibly extracted from all the sporulating
colonies of a grapevine.

As for the dispersal of spores, it is for the moment impossible for us to know
the real movement of microscopic spores that can travel up to several hundreds
of meters. Therefore, two scales for the dispersal of spores have been distin-
guished: local and long-range dispersals. The limit between these scales remains

1256 Agnès Calonnec et al.

confusing as it depends on the studied pathosystem. Literature mentions the
ratio 80%/20% between local and long-range dispersals for an optimal disease
spread [9].

2.2 Local Dispersal

In the current version of the model, local dispersal was limited to the source
grapevine and its two direct neighbours in the row. At this scale, the distance
covered by spores is short, the dispersal occurs in the canopy, supposed to be
homogeneous in a local area. Thus, we made the hypothesis that spores have
linear trajectories during local dispersal.

Each day, spores are spreading from each sporulating colony. The spread
is performed within a dispersal cone. Its axis orientation is determined by the
mean wind direction of the day represented by the vector (ux, uy, uz). Its open-
ing angle alpha is a simulation parameter. Algorithms and data structures have
been inspired by ray-tracing methods in image synthesis [8]. A rectangular par-
allelepiped delimits the volume of grapevine. For efficiency, this volume was cut
out with a discrete mesh size of small parallelepipeds called voxels [6]. Each voxel
has the list of leaves contained in its volume. So computing the leaves intercept-
ing a cone comes down to getting the voxels intercepting this cone, as shown
in Fig. 1. The voxel discretization avoids to traverse the whole binary tree for
the determination of all the leaves of the stock intercepting the cone. When a
cone reaches one edge of the including parallelepiped, its becoming depends on
the exit side: spores either fall on the ground, or they are transmitted to the
contiguous grapevine, or they are dispersed over the vineyard.

the spread
origin of

dispersal
cone

Fig. 1. Dispersal cone in a grapevine with bold voxels intercepting the cone

2.3 Long-Range Dispersal

Field data come from several campaigns of disease follow-up in vineyards. Mea-
sures of vertical and horizontal gradients of spore densities over short periods and
in fixed vegetation are available, but no spore dispersal measures on a growing
crop. At field scale, the previous cone-based dispersal approach is not realistic
enough, because the spores have complex trajectories. A stochastic and averaged
approach using distribution laws [7] has been considered.

Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard 1257

From each grapevine, random drawings following Gaussian distributions yield
a displacement; this displacement identifies the destination grapevine for each
spore that has to be dispersed over the field. Then, on the destination plant,
dispersal cones are used to determine the points of impact of spores, and so the
infected leaves.

Set hypotheses and choices of distributions require calibrating the simulator
outputs with field data. Some parameters have already been estimated, some
others will be refined in the future.

3 Profiling of the Sequential Program

This section is about the time complexity and performance analysis of the se-
quential simulator. This simulator treats a single grapevine. Of course, there is
no dispersal with neighbouring vine stocks or over the field.

During each iteration (one day) of the simulation, variables T, ux, uy, uz are
fetched. Before bud break, we evaluate if there is budding or not. After bud-
ding, an iteration consists of several steps. Primary infection and management
practices occur only at precise day and so, count for a little part of computation
time. On the other hand, growth and local dispersal are the most costly steps,
that is why they will be examined in detail. To formulate accurately their time
complexities, let us call #nodes the number of nodes in the binary tree, #leaves
its number of leaves and #voxels the number of voxels in the grapevine volume.

3.1 Apparition and Growth of Organs

Apparition and growth of organs are two sub-steps, each one using one recursive
traversal of the binary tree. Host growth and pathogen growth are calculated
simultaneously while treating infected nodes. The time complexity of the growth
function is Θ(#nodes).

3.2 Dispersal of Spores into Grapevine

Input parameters of local dispersal are a grapevine, the day, and the tempera-
ture and wind characteristics of the day. Dispersal process is based on a recursive
traversal of the binary tree. For each infected node encountered, operations of
the function source dispersal (described in Fig. 2) are performed. Variables x,
y and z are the node coordinates, and n spores is the number of spores extracted
from its colony on the current day. At function return, n spores represents the
number of spores not captured and is daily accumulated in the vine data struc-
ture (see Fig. 3).

The procedure get voxels cone gets the voxels intercepting the cone issued
from the colony in (x, y, z), with the direction (ux, uy, uz) and the opening
angle alpha. Its time complexity is linear with the number of voxels returned
in vox list. This number depends on the position of the source lesion, on the
direction and opening angle of the dispersal cone and on the mesh granularity.
With our set of parameters, the mesh size is 1.5m long, 1m large and 1.4m high,

1258 Agnès Calonnec et al.

function source_dispersal(day, T, x, y, z, ux, uy, uz, n_spores)

vox_list <- get_voxels_cone(x, y, z, ux, uy, uz, alpha)

nodedist_list <- get_nodedist_list(vox_list, x, y, z)

quicksort(node_list)

for nd in nodedist_list do

if test_node_in_cone(nd, x, y, z, ux, uy, uz, alpha)

captured <- captured_spores(nd, x, y, z, alpha)

n_spores <- n_spores - captured

potential <- node_potential(nd, day, T, captured)

if(potential >= thresthold) then

node_infection(nd, day)

endif

end for

end function

Fig. 2. Algorithm of spore dispersal from a source point

and contains 150 voxels. In average, about one third up to half of all voxels are
processed by the function. Its complexity is O(#voxels).

The function get nodedist list considers each voxel in vox list and cal-
culates for all its leaves the distance to the source lesion. Then, it merges the
created list with those of other voxels. Here, computation time is proportional to
the number of leaves in the returned list nodedist list. Our measures with our
parameters indicate 41.7% of all leaves are intercepted in average; so we admit
that the size of nodedist list is proportional to #leaves. The time complexity
is O(#leaves).

quicksort sorts nodedist list according to the distance of leaves to the source
lesion. This is done in O(#leaves · log(#leaves)) in average.

The for loop first tests for each leaf in nodedist list, whether this leaf is
indeed intercepted by the cone, using scalar product and trigonometric functions.
It calculates the number of spores captured by the leaf according to its distance
to the cone axis, and its potential to be infected according to its susceptibility
decreasing exponentially with its age. At end, the leaf is possibly infected. The
time complexity of the for loop is O(#leaves).

Theoretical time complexity of local dispersal is O(#leaves · log(#leaves)).
However, elementary operations in the loop are quite complex and might require
a lot of time.

During our simulation on a single grapevine, almost 4000 dispersal cones were
thrown, spreading two to three millions of spores, of which hardly one million
left the volume of the vine. Time spent during the different operations of the
source dispersal function was measured. For each operation corresponding to
a step of this function and for all iterations, Tab. 1 reports the total time and
the time of the longest execution.

Although #leaves is most of the time bigger than #voxels, the function
get nodedist list requires less time than get voxels cone. Indeed, the tran-
sition from a list of voxels to its list of leaves is a cheap operation. Computing
the leaves intercepting cones without using voxels would take much more time.

Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard 1259

Table 1. Comparison of execution times of the different operations in the function
source dispersal

Operations Total time (s) Longest execution time (ms)
get voxels cone 0.156 0.086
get nodedist list 0.087 0.095
quicksort 0.417 0.555
for loop 0.259 0.340

According to theoretical complexities, the last two steps are the most costly.
The quicksort execution time is not expected to vary, whereas the processing
of leaves in the for loop may increase with the model refinement, especially the
possible multiple infections of a same leaf.

4 Description of the Parallel Simulator

The simulation of disease spread over a vineyard does not come to only simulate
the disease on each grapevine. Indeed, there exist many interactions between
stocks pertaining to the parasite dispersal, which will lead to communications.
We decided to develop an SPMD[2] parallel code, so we must focus on data
distribution and efficient communication strategies.

4.1 Data Distribution

As illustrated in Sect. 3, costly computational steps are host and pathogen
growth and local dispersal of spores. Distributing stocks over processors makes
the growth trivially parallel.

Local dispersion will generate communications between adjoining stocks al-
located to different processors. So as to reduce these communications, the field
should be cut out in blocks of maximal size and minimal common edges.

Moreover, grapevine vigour – parameter not taken into account currently –
plays a role in plant growth and so in the number of organs. A vigorous stock
area will produce an higher amount of computations. This point suggests to
allocate a set of uniformly distributed stocks to a processor in order to privilege
a good load-balancing.

The implemented load-balancing is static and consists in a 2D block-cyclic
distribution. The need of a dynamic load-balancing will be adressed later. The
set of stocks allocated to a processor is called its local stocks.

4.2 Parallel Algorithm

Let us first describe precisely how the dispersal with neighbouring stocks and
the long-range dispersal are modeled. Each processor has two matrices, named
transmission matrix TM and dispersal matrix DM. Both have the field dimen-
sions: they have as many lines as rows in the field, and as many columns as stocks

1260 Agnès Calonnec et al.

in the rows. Each one of their elements is associated with the stock of same co-
ordinates in the field. An element in the transmission matrix is a list of dispersal
cones transmitted to the corresponding stock by its neighbours. An element in
the dispersal matrix is the number of spores received by the corresponding stock
from all others in the vineyard.

After budding, an iteration on a processor is described in Fig. 3.

for vine in local_stocks do

vine_computations(vine, day, T, ux, uy, uz, TM, DM)

end for

neighbouring_dispersal(local_stocks, day, T, TM, DM)

long_range_dispersal(local_stocks, DM)

Fig. 3. Algorithm of a parallel iteration after budding

vine computations corresponds to the operations of Sect. 3 performed on
a single grapevine, except that dispersal cones that exit the vine volume by
lateral sides are added to the adequate cone lists of TM. Other exiting spores
are accumulated in the vine data structure for later long-range dispersal.

neighbouring dispersal sends the elements of the TM matrix using a
MPI Alltoall communication [3], and calls source dispersal to propagate
cones in grapevines. Exiting spores are not transmitted a second time to neigh-
bouring stocks, they are all accumulated for long-range dispersal.

long range dispersal considers each grapevine in local stocks and accumu-
lates spores on the DM matrix entries by using Gaussian random drawings.
Again, a MPI Alltoall communication is performed on the DM matrix entries,
and then spores are dispersed in grapevines thanks to the source dispersal
function. Currently, the value in DM associated to a stock is not only a number
of spores, but n numbers corresponding to the amount of spores received by the
stock from other ones in the n uniformly spread directions.

5 Performance Analysis

The implemented parallel simulator uses MPI [3] and MPI-communications with-
in an SMP node are performed via shared memory. The distribution is block
cyclic, and each block contains only one stock.

A platform located at CINES1 (Montpellier, FRANCE) was used for the
numerical experiments: it is a parallel cluster with 29 nodes of 16 IBM Power 3
processors. Up to 128 processors were used for simulations.

5.1 Load-Balancing Analysis

Currently load-balancing depends totally on the quality of the initial distribu-
tion. As we have seen, grapevine vigour can generate more computations on
1 Centre Informatique National de l’Enseignement Supérieur

Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard 1261

some areas of the field. The stocks that are primary foci of the epidemic can
induce load-imbalance too.

However, three different periods could be distinguished during the simulation.
During about the first 80 days preceding the budding, the computation cost
is very low. This period is short in time and well-balanced. A large second
period corresponds to the development of the plants and to the beginning of
the epidemic. Some important load-imbalance can be observed at this moment,
but this period does not represent the most costly part of the simulation. Because
of the rapid disease spread, the last period contains most of the computations
due to the dispersal of high numbers of spores and is rather well-balanced. So,
the whole simulation balancing is determined by the one of that last period.

Simulations were performed on the Power 3 platform for a 32×32 field with
several configurations: 2, 4, 8 and 16 processors on a same node (SMP), 32
processors on two nodes, 64 processors on four nodes and 128 on eight nodes.
Table 2 reports for the days 150 and 220, belonging to the second and third
periods of the simulation respectively, the maximum (top number) and the min-
imum (bottom number) times of each step over all processors. It provides also
the communication times that include synchronization time.

Table 2. Maximum and minimum times in milliseconds of each step over all processors
for 32×32 field simulations on the Power 3 platform

day 150 day 220
Number of processors 2 8 32 128 2 8 32 128

Computation time

Vine growth 270
263

60
57.6

14.9
13.6

4.03
3.18

1593
1549

396
380

98.3
85.7

24.6
19.9

Local dispersal 52.2
19.5

17.4
4.75

8.62
1.16

7.75
0.27

15120
14670

3700
3526

981
813

266
183

Neighbour dispersal 29.7
0.27

11.6
0.2

7.88
0.24

8.51
0.5

6330
6215

1619
1430

426
336

121
64.3

Global dispersal 0.013
0.009

0.005
0.004

0.004
0.003

0.004
0.003

15760
15470

4044
3749

1049
892

295
195

Final dispersal 0.15
0.15

0.052
0.051

0.014
0.012

0.009
0.005

3468
3429

848
824

211
190

56.5
43.8

Communication time

Neighbour dispersal 59.3
0.096

24.9
0.3

14.4
2.45

30.6
19.4

588
0.11

210
1.72

200
3.27

127
24.1

Global dispersal 30
0.55

12.1
0.69

12.7
5.02

66.5
56.5

402
0.7

338
0.62

185
4.79

126
20.1

A ratio of ten to several thousands can be noticed between step times at day
150 and those at day 220. The most costly computation at day 220 is rather well
balanced up to 128 processors. Vine growth is clearly the fastest computational
step and represents a very small part compared to the whole dispersal process.
The minimum of communication steps corresponds to the effective communica-
tion time. The maximum measures in addition the idle time of the processor
that ends first the computation. Furthermore, maximum communication time is
small, if not negligible, in comparison with computation time, and it is decreasing
with the number of processors at day 220.

1262 Agnès Calonnec et al.

5.2 Scalability Analysis

Maximum computation, communication and total times for the complete simu-
lations are reported in Fig. 4 and other performance measures in Fig. 5.

Processors 2 8 32 128

Computation
time

2234.4 553.7 141.4 37.76

Communication
and idle time

70.8 41.1 25.9 21.89

Total
time

2236 563.9 153.5 55.78

Fig. 4. Maximum computation, commu-
nication and total times in seconds for a
complete simulation on a 32×32 field

2 4 8 16 32 64 128

20

40

60

80

100

%

 0

relative efficiency
communication − idle percentage

Fig. 5. Relative efficiency in comparison
with 2 processors and ratio (communica-
tion and idle time) / (total time), for a
complete simulation on a 32×32 field

As expected, computation time is about inversely proportional to the number
of processors involved in the simulation, which is a good result.

Relative efficiency remains above 90% up to 32 processors, it is about 80%
with 64 processors and drops to 63% with 128 processors. Currently, there is no
overlapping of communications by computations. It is only possible for the com-
munications of the neighbour dispersal step and should be done in the future to
improve performances. The ratio of communication time divided by global time
increases from 2 to 128 processors because of load imbalance in computations.
To enhance parallelism of the application the load-balancing should be refined.

6 Quality of the Current Biological Results

The simulator is still in the calibration phase and basic sub-models are being
validated. Nevertheless, current outputs of the program are already coherent
with field data. These outputs at field level consists of maps where each stock
is represented by a point. The greyscale of this point depends on the severity of
disease on the stock: from white to black, severity increases. Figure 6 represents
three maps of a 32×32 field. Primary infection is located on four stocks in the
top-left corner during days 110 and 127. The three maps correspond respectively
to the days 160, 180 and 210. These results correspond qualitatively to field
observations made by biologists.

7 Conclusion

These first results are encouraging: the simulator performances are quite good
in terms of scalability and load-balancing.

Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard 1263

Fig. 6. Three maps of a 32×32 field at days 160, 180 and 210

The simulator is still in the calibration process and some future adjustments
could strongly modify its behaviour. Our simple modeling of the vertical wind
component is being reviewed with bioclimatologists. To take into account the
important variations of this component [5], several dispersal cones will be spread
from each sporulating colony every day. Each cone will carry a part of the spores
released by the colony during the given day. This modification will increase the
computational time of local dispersal and will generate more communications
between neighbouring stocks.

We also consider the extension of the local dispersal domain to all the neigh-
bouring stocks of a source stock, including its neighbours in the previous and
next rows.

Imbalance may appear when taking into account the grapevine vigour, hence
it could imply to improve load-balancing strategy.

Moreover, it will be interesting to model prophylactic2 methods.

References

1. Bulit (J.) et Lafon (R.). – Powdery mildew of the vine. In : The powdery mildews,
éd. par Academic press, London. – DM Spencer, 1978.

2. Grana (Ananth), Gupta (Anshul), Karypis (George) et Kumar (Vipin). – Introduc-
tion to Parallel Computing. – Addison Wesley, 2003, second edition édition. ISBN
2-201-64865-2.

3. MPI Forum. – Message Passing Interface MPI Forum Home Page.
Available from http://www.mpi-forum.org/.

4. Naulin (J.-M.), Tessier (G.), Bailey (D.), Langlais (M.) et Calonnec (A.). – A
host/pathogen simulation model : Powdery mildew and vine. – february 2005. Sub-
mitted to New Phytologist.

5. Raupach (M. R.), Finnigan (J. J.) et Brunet (Y.). – Coherent Eddies and Turbulence
in Vegetation Canopies: The Mixing-Layer Analogy. Boundary-Layer Meteorology,
vol. 78, 1996, pp. 351–382.

6. Samet (Hanan). – The Design and Analysis of Spatial Data Structures. – University
of Maryland, Addison-Wesley Publishing Company, 1989. ISBN 0-201-50255-0.

2 set of measures to fight against epidemics; for example chemical treatments.

1264 Agnès Calonnec et al.

7. Shigesada (Nanaka) et Kawasaki (Kohkichi). – Invasion and the range expansion of
species: effects of long-distance dispersal. In : Proceedings of BES Annual Sympo-
sium 2001 ’Dispersal’, chap. 17, pp. 350–373. – Blackwell Science (in press), 2002.

8. Whitted (Turner). – An improved illumination model for shaded display. Commu-
nications of the ACM, vol. 23, n̊ 6, 1980, pp. 343–349. – ISSN:0001-0782.

9. Zawolek (M. W.) et Zadocks (J. C.). – Studies in Focus Development: An Optimum
for the Dual Dispersal of Plant Pathogens. Phytopathology, vol. 82, n̊ 11, 1992, pp.
1288–1297.

Parallelism for Perturbation Management
and Robust Plans�

Jan Ehrhoff2, Sven Grothklags1, and Ulf Lorenz1

1 University of Paderborn
Faculty of Computer Science, Electrical Engineering and Mathematics

Fürstenallee 11, D-33102 Paderborn
2 Lufthansa Systems Airline Services GmbH

Network Management Solutions
Am Prime Parc 9, D-65479 Raunheim

Abstract. An important insufficiency of modern industrial plans is their lack of
robustness. Disruptions prevent companies from operating as planned before and
induce high costs for trouble shooting. The main reason for the severe impact of
disruptions stems from the fact that planners do traditionally consider the precise
input to be available at planning time.
The Repair Game is a formalization of a planning task, and playing it performs
disruption management and generates robust plans with the help of game tree
search. Technically, at each node of a search tree, a traditional optimization prob-
lem is solved such that large parts of the computation time are blocked by se-
quential computations. Nevertheless, there is enough node parallelism which we
can make use of, in order to bring the running times onto a real-time level, and
in order to increase the solution quality per minute significantly. Thus, we are
able to present a planning application at the cutting-edge of Operations Research,
heavily taking advantage of parallel game tree search. We present simulation ex-
periments which show the benefits of the repair game, as well as speedup results.

1 Introduction

An important problem in aircraft planning is to react with an instant decision, after a
certain disruption hinders the company to act as planned before. This problem touches
various research directions and communities. Because the problems are often compu-
tationally hard [14] the field might become an El Dorado for parallel computing and
grid computing. A stochastic multi-stage fleet-assignment optimization problem is in
the focus of this paper. The used solution method is based on game tree search.

Multistage Decisions Under Risk. The reason for disruptions obviously stems from
the fact that planners lack information about the real behavior of the environment at

� This work has been partially supported by the European Union within the 6th Framework
Program under contract 001907 (DELIS) and the German Science Foundation (DFG), SFB
614 (Selbstoptimierende Systeme des Maschinenbaus) and SPP 1126 (Algorithmik großer und
komplexer Netzwerke).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1265–1274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1266 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

planning time. Often, data is not as fixed as assumed in the traditional planning process.
Instead, we know the data approximately, we know distributions over the data. In the
airline example, we know a distribution over a leg’s (i.e. flight’s) possible arrival times.
Traditionally, plans are built which maximize profits over ’expected’ or just estimated
input data, but we belong to the group of people who believe that it is more realistic to
optimize the expected payoff over all possible scenarios instead. This view on the world
leads us to something that is often called ’multistage decisions under risk’, related to
linear stochastic programming [4, 16], stochastic Optimization [11], game playing [2],
replanning [10] and others [18].

Current Planning Processes in Airline Industry. An airline planning process starts
with the so called network design, which roughly tells the planning team which routes
(so called legs) should be taken into account. Then, a first ’plan’ is made which shows
when which legs are offered to the customers. Thereafter, the process contains two
layers which are of special interest for us.

Typically, airline companies have aircrafts of different types (so called subfleets),
which differ in size and economic behavior. Given a flight schedule and a set of aircrafts,
the fleet assignment problem is to determine which type of aircraft should fly each flight
segment. A solution of the fleet assignment problem and the flight schedule together
answers the question of how many aircrafts of which subfleet have to be at certain
places at certain times.

So called time-space networks, which are special flow graphs, can be used to give a
specific mathematical programming formulation for this class of problems. They were
introduced by Hane et al. in [7] to solve the fleet assignment problem. On the basis of
the fleet assignment, a so called rotation plan is generated. It describes which physical
aircraft must be at which place in the world and at which time.

The planning is dominated by deterministic models. All uncertainties are eliminated
through restrictive models. However, since some time, several large airline companies
have come to the conclusion that new models and methods are necessary in order to
exploit further potentials for cost reduction.

Game Tree Search. Game tree search is the core of most attempts to make comput-
ers play games. The game tree acts as an error filter and examining the tree behaves
similar to an approximation procedure. At some level of branching, the complete game
tree (as defined by the rules of the game) is cut, the artificial leaves of the resulting
subtree are evaluated with the help of heuristics, and these values are propagated to the
root [9, 15] of the game tree as if they were real ones. For 2–person zero-sum games,
computing this heuristic minimax value is by far the most successful approach in com-
puter games history, and when Shannon [19] proposed a design for a chess program in
1949 it seemed quite reasonable that deeper searches lead to better results. Indeed, the
important observation over the last 40 years in the chess game and some other games
is: the game tree acts as an error filter. Therefore, the faster and the more sophisticated
the search algorithm, the better the search results! This, however, is not self-evident, as
some theoretical analyzes show [1, 8, 13].

Parallelism for Perturbation Management and Robust Plans 1267

New Approach. Our approach [3] can roughly be described by looking at a (stochas-
tic) planning task in a ’tree-wise’ manner. Let a tree T be given that represents the
possible scenarios as well as our possible actions in the forecast time-funnel. It consists
of two different kinds of nodes, MIN nodes and AVG nodes. A node can be seen as
a ’system state’ at a certain point of time at which several alternative actions can be
performed/scenarios can happen. Outgoing edges from MIN nodes represent our pos-
sible actions, outgoing edges from AVG nodes represent the ability of Nature to act in
various ways. Every path from the root to a leaf can then be seen as a possible solution
of our planning task; our actions are defined by the edges we take at MIN nodes under
the condition that Natures acts as described by the edges that lead out of AVG nodes.

The leaf values are supposed to be known and represent the total costs of the ’plan-
ning path’ from the root to the leaf. The value of an inner MIN node is computed by
taking the minimum of the values of its successors. The value of an inner AVG node is
built by computing a weighted average of the values of its successor nodes. The weights
correspond to realization probabilities of the scenarios.

Let a so called min-strategy S be a subtree of T which contains the root of T , and
which contains exactly one successor at MIN nodes, and all successors that are in T at
AVG nodes. Each strategy S shall have a value f(S), defined as the value of S’s root.
A principle variation p(S), also called plan, of such a min-strategy can be determined
by taking the edges of S leaving the MIN nodes and a highest weighted outgoing edge
of each AVG node. The connected path that contains the root is p(S). We are interested
in the plan p(Sb) of the best strategy Sb and in the expected costs E(Sb) of Sb. The
expected costs E(p) of a plan p are defined as the expected costs of the best strategy S
belonging to plan p, e.g. E(p) = min{E(S) | p(S) = p}. Because differences between
planned operations and real operations cause costs, the expected costs associated with a
given plan are not the same before and after the plan is distributed to customers. A plan
gets a value of its own once it is published.

This model might be directly applied in some areas, as e.g. job shop scheduling
[12], not, however, in applications which are sensible to temporary plan deviations. If a
job shop scheduling can be led back to the original plan, the changes will nothing cost,
as the makespan will stay as it was before. That is different in airline fleet assignments.
Mostly, it is possible to find back to the original plan after some while, but nevertheless,
costs occur. A decisive point will be to identify each tree nodes with a pair of the system
state plus the path, how the state has been reached.

1.1 Organization of This Paper

We introduce the Repair Game as a reasonable formalization of the airline planning
task on the level of disruption fighting. Section 2 describes the Repair Game, its formal
definition, as well as an interpretation of the definition and an example. In Section 3 we
describe a prototype, which produces robust repair decisions for disrupted airline sched-
ules, on the basis of the Repair Game. Section 4 contains details of the parallelization
of the search procedure. In Section 5 we compare the results of our new approach with
an optimal repair procedure (in the traditional sense). A comparison of the sequential
and the parallel version of our prototype is additionally given. Section 6 concludes.

1268 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

2 The Repair Game

Definitions. We define the Repair Game via its game tree. Its examination gives us
a measure for the robustness of a plan and on the other hand it presents us concrete
operation recommendations.

Definition 1. (Game Tree)
For a rooted tree T = (V,E) let L(T) ⊂ V be the set of leafs of T . In this paper, a
game tree G = (V,E, h) is a rooted tree (V,E), where V = VMAX ∪· VMIN ∪· VAV G

and h : V → IN 0.

Nodes of a game tree G represent positions of the underlying game, and edges
move from one position to the next. The classes VMAX , VMIN , and VAV G represent
three players MAX , MIN , and AV G and for a node/position v ∈ Vi the class Vi

determines the player i who must perform the next move.

Definition 2. (*Minimax Value)
Let G = (V,E, h) be a game tree and wv : N(v) → [0, 1] be weight functions for all
v ∈ VAV G, where N(v) is the set of all sons of a node v. The function *minimax : V →
IN 0 is inductively defined by

*minimax(v) :=

⎧⎪⎪⎨⎪⎪⎩
h(v) if v ∈ L(G)
max{*minimax(v′) | v′ ∈ N(v)} if v ∈ VMAX \ L(G)
min{*minimax(v′) | v′ ∈ N(v)} if v ∈ VMIN \ L(G)∑

v′∈N(v)(wv(v′) · *minimax(v′)) if v ∈ VAV G \ L(G)

Definition 3. (Repair Game)
The goal of the Repair Game = (G,p,g,f,s) is the calculation of *minimax(r) for a
special game tree G = (V,E, g + f) with root r and uniform depth t; p ∈ L(G) is a
special leaf, g, f and s are functions. The game tree has the following properties:

– Let P = (r = v1, v2, . . . , p = vt) ∈ V t be the unique path from r to p. P describes
a traditional, original plan.

– V is partitioned into sets S1, . . . , Sn, |V | ≥ n ≥ t by the function s : V →
{Si}1≤i≤n. All nodes which belong to the same set Si are in the same state of the
system — e.g. in aircraft scheduling: which aircraft is where at which point of time
—, but they differ in the histories which have led them into this state.

– g : {Si}1≤i≤n → IN0 defines the expected future costs for nodes depending on
their state; for the special leaf p holds g(s(p)) = 0

– f :
⋃

1≤τ≤t{V }τ → IN 0 defines the induced repair-costs for every possible
(sub)path in (V,E) ; every sub-path P ′ of P has zero repair-costs, f(P’) = 0

– the node evaluation function h : V → IN 0 is defined by h(v) = g(s(v)) +
f(r . . . v); note that h(p) = 0 holds by the definition of g and f

2.1 Interpretation and Airline Example

A planning team of e.g. an airline company starts the game with the construction of a
traditional plan for its activities. The path P represents this planned schedule, which

Parallelism for Perturbation Management and Robust Plans 1269

also is the most expected path in the time-funnel, and which interestingly gets an ad-
ditional value of its own, as soon as it is generated. It is small, can be communicated,
and as soon as a customer or a supplier has received the plan, each change of the plan
means extra costs for the change. Disruptions in airline transportation systems can now
prevent airlines from executing their schedules as planned. As soon as a specific disrup-
tion occurs, the MIN-player will select a repairing sub-plan such that the repair costs
plus the expected future repair costs are minimized.

As the value of a game tree leaf v depends on how ’far’ the path (r, . . . , v) is away
from P , it will not be possible to identify system states (where the aircrafts are at a spe-
cific time) with tree nodes. Therefore, the tree nodes V are partitioned into S1∪· . . .∪· Sn.
In Si all those nodes are collected which belong to the same state, but have different
histories. All nodes in the same state Si have the same expected future costs. These
costs are estimated by the function g. The function f evaluates for an arbitrary partial
path, how far it is away from the level-corresponding partial path of P . Inner nodes of
the game tree are evaluated by the *Minimax function.

Fig. 1. The Repair Game Tree.

Figure 1 shows a rotation plan at the right. Aircrafts A, B, and C are either on
ground, or in the air, which is indicated by boxes. A shadowed box means that the
original plan has been changed. The time goes from the top down. The left part of the
figure shows a game tree, where the leftmost path corresponds to the original plan P .
When a disruption occurs, we are forced to leave the plan, but hopefully we can return to
it at some node v. The fat path from node v downward is the same as in the original plan.
Thus, at node v, we have costs for the path from the root r to v, denoted by f(r . . . v)
and future expected costs, denoted by g(s(v)). If we follow the original plan from the
beginning on, we will have the same expected costs at the time point represented by v,
but different path costs. The only node with zero costs typically is the special leaf node
p of the original plan.

3 Experimental Setup

In accordance with our industrial partner, we built a simulator in order to evaluate differ-
ent models and algorithms The simulator is less detailed than e.g. SimAir [17], but we

1270 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

believe that it is detailed enough to model the desired part of the reality. Furthermore, it
is simple enough such that the occurring problems are computationally solvable.

First of all, we discretize the time of the rotation plan into steps of d = 15 minutes.
Every departure in the current rotation plan is a possible event point, and all events
inside one d minute period are interpreted as simultaneous. When an event occurs,
the leg which belongs to that event can be disrupted, i.e. it can be delayed by 30, 60,
or 120 minutes, or it can be canceled with certain probabilities. Let T be the present
point of time. The simulator inspects the events between T and T + d, and informs a
repair engine about the new disruptions, waits for a corrected rotation plan, and steps d
minutes forward.

The aim is to compare two different repair approaches with each other. The first one
is called ’Myopic MIP’ solver and it repairs a plan after a disruption with the help of a
slightly modified time-space network such that the solution of the associated network
flow problem is an optimal one, under the assumption that no more disruptions will
ever occur. This engine represents traditional deterministic planning. It only needs a
modified cost function because the repair costs are mainly determined by the changes
on the original plan, rather than by leg profits.

The second engine, called ’T3’, is an engine which plays the Repair Game. It com-
pares various solutions of the modified time-space network flow problem and examines
various scenarios which might occur in the near future. The forecast procedure makes
use of the dynamics time-locally around time T and T + d as follows: Instead of gener-
ating only one myopic MIP optimal solution for the recovery, we generate several ones.
They are called our possible moves. A simple, certainly good heuristic is to demand that
these solutions have nearly optimal costs concerning the cost function which minimizes
the cost for changes. For all of these possible moves, we inspect what kind of relevant
disruptions can come within the next d minutes. On all these scenarios, we repair the
plan again with the help of the myopic MIP solver, which gives us value estimations
for the arisen scenarios. We weight the scenarios according to their probabilities, and
minimize over the expected values of the scenarios. Concerning the new part of the plan
we have not optimized the costs over expected input data, but we have approximately
minimized the expected costs over possible scenarios. The following algorithm is a sim-
plified version of the algorithm shown in [2]. We refer to [3] for further details of the
repair engines.

value *minimax(node v, value α, value β)
1 generate all successors v1, . . . , vb of v; let b be the number of successors
2 value val := 0;
3 if b = 0 return h(v) /∗ (leaf eval)∗/
4 for i := 1 to b
5 if v is MIN-node {
6 β := min(β, *minimax(vi, α, β)); if α ≥ β return β; if i = b return β
7 } else if v is AVG-node { // let w1, .., wb be the weights of v1, .., vb

8 val+ = *minimax(vi, α, β) · wi;
9 if val + L · ∑b

j=i+1
wj ≥ β return β; if val + U · ∑b

j=i+1
wj ≤ α return α

10 if i = b return val
11 } else { // v is MAX-node. Analogously to v is a MIN-node }

Parallelism for Perturbation Management and Robust Plans 1271

4 Parallelization

The basic idea of our parallelization is to use dynamic load balancing and to decom-
pose the search tree, to search parts of the search tree in parallel and to balance the load
dynamically with the help of the work stealing concept. This works as follows: First,
a special processor P0 gets the search problem and starts performing the *minimax
algorithm as if it would act sequentially. At the same time, the other processors send re-
quests for work, the REQUEST message, to other randomly chosen processors. When
a processor Pi that is already supplied with work, catches such a request, it checks,
whether or not there are unexplored parts of its search tree, ready for evaluation. These
unexplored parts are all rooted at the right siblings of the nodes of P ′

is search stack.
Either, Pi sends back that it cannot serve with work with the help of the NO-WORK
message, or it sends such a node (a position in the search tree etc.) to the requesting
processor Pj . That is done with the help of the WORK message. Thus, Pi becomes a
master itself, and Pj starts a sequential search on its own. The master/worker relation-
ships are dynamically changed during the computation. A processor Pj being a worker
of Q at a certain point of time may become the master of Q at another point of time.
In general, processors are masters and workers simultaneously. If, however, a processor
Pj has evaluated a node v, but a sibling of v is still under examination of another pro-
cessor Q, Pj will wait until Q sends an answer message. When Pj has finished its work
(possibly with the help of other processors), it sends an ANSWER message to Pi. The
master-worker relationship between Pi and Pj is released, and Pj is idle again. It again
starts sending requests for work into the network.

When a processor Pi finds out that it has sent a wrong local bound to one of its
workers Pj , it makes a WINDOW message follow to Pj . Pj stops its search, corrects
the window and starts its old search from the beginning. If the message contained a
cutoff, Pj just stops its work. A processor Pi can shorten its search stack due to an
external message, when e.g. a CUTOFF message comes in which belongs to a node
near the root. In absence of deep searches and advanced cutting techniques, however,
CUTOFF and WINDOW messages did not occur in our experiments.

In many applications, the computation at each node is fast in relation to the ex-
change of a message. E.g. there are chess programs which do not use more than 1000
processor cycles per search node, including move generation, moving end evaluating
the node. In the application presented here, the situation is different. The sequential
computations at each node takes several seconds if not even minutes, such that the la-
tency of messages is not remarkably important. Therefore, the presented application is
certainly well suited for grid computing, as well. However, it is necessary to overlap
communication and computations. We decoupled the MIP solver from the rest of the
application and assigned a thread to it.

In distributed systems, messages can be delayed by the system. Messages from the
past might arrive, which are outdated. Therefore, for every node v a processor generates
a local unique ID, which is added to every message belonging to node v. Thus, we are
always able to identify misleading results and to discard invalid messages. We refer to
[5] for further details.

1272 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

Table 1. The daily-average profit of T3 over Myopic, two different weeks, six measure points
each.

run 1 run 2 run 3 run 4 run 5 run 6

week 1 2320 27696 32261 -9238 -15799 13150

week 2 11040 48778 11580 -1253 9144 8389

5 Results

The basis for our simulations is a major airline plan plus the data which we need to
build the plan and its repairs. The plan consists of 20603 legs, operated by 144 aircrafts
within 6 different subfleets. The MIP for this plan has 220460 columns, 99765 rows,
and 580793 non-zeros. Partitioned into single days, the resulting partial plan for any
single day consists of a corresponding smaller number of columns and non-zeros.

All experiments are performed on a 4-node-cluster of the Paderborn University.
Each node consists of two Pentium IV/2.8 GHz processors on a dual processor board
with 1 GB of main memory. The nodes are connected by a Myrinet high speed inter-
connection network. The cluster runs under the RedHat Linux operating system.

We simulated 14 days, and we divided this time period into 14 pieces such that
we arrived at a test set with 14 instances. Moreover, time is divided into segments
of 15 minutes, and everything happening in one 15 minute block is assumed to be
simultaneous. We compare the behavior of the ’myopic MIP’ and the ’T3’ engines. We
appropriately choose the probabilities for disruptions and control the performance of
the objective function c(TIM,ECH,CNL, revenue) = 50 ·TIM+10000 ·ECH+
100000·CNL−revenue, TIM being time-shifts, ECH meaning that the aircraft type of
a leg had to be changed, CNL being the number of necessary cancellations and revenues
being the traditional cost measure for the deterministic problem. A test run consists of
about 1400 single decisions, and first tests showed benefits of more than three percent
cost reductions over the myopic solver. Although a benefit of more than three percent
looks already promising, statistical significance cannot be read out of a single test run.
The engines make nearly 100 decisions per simulated day. However, these decisions
cannot be taken as a basis for significance examinations, because the single decisions
are part of a chain and not independent from each other. The results of the single days
seem to form no normal distribution and, moreover, depend on the structure of the
original plan. Therefore, we made further test runs and grouped those outcomes of each
simulated week to one. We measure the average daily profit of a week, in absolute
numbers (see Table 1). The profit, which is statistically significant, is the benefit of the
T3-engine over the Myopic-MIP engine.

5.1 Speedups

We measure speedups of our program with the help the first three days of the test set
which consists of the 14 single days, mentioned above. The time for simulation of
the days using one processor is compared with the running time of several processors.
The speedup (SPE) is the sum of the times of the sequential version divided by the

Parallelism for Perturbation Management and Robust Plans 1273

Table 2. Speedups.

proc simtime day 1 SPE day1 simtime day 2 SPE day2 simtime day 3 SPE day3

1 226057 1 193933 1 219039 1
2 128608 1.76 111612 1.73 126915 1.73
4 68229 3.31 59987 3.23 66281 3.30
8 46675 4.84 40564 4.78 46065 4.75

sum of the times of a parallel version [6]. Each test day consists of 96 single measure
points. Table 2 shows the speedups which we could achieve. We are quite satisfied with
these speedups because they bring the necessary computations on a real-time level. Of
course, the question arises how the work load and the search overhead behave. As the
sequential and the parallel version do indeed exactly the same, search overhead does
not exist. Neither the costs for communication are relevant. The only reason that we
cannot achieve the full speedup are the large sequential computing periods, caused by
the commercial MIP solver.

6 Conclusion

Playing the Repair Game leads to more robust (sub-)plans in airline scheduling than
traditional deterministic planning can provide. Our forecast strategy outperforms the
myopic MIP solver by means of simulations. We have parallelized the search in order
to drop the computation times to real time. Next, we will look for more clever and
selective search heuristics, examine heuristics which give us fast new moves, and refine
the simulator.

We presented an application which we think is a typical example for the benefits of
cluster parallelism and grid computing. The stochastic fleet assignment problem that we
presented in the frame of game tree search makes profit from its speed. The faster the
application can be performed, the larger is the gained profit. Planning under uncertainty
becomes more and more important in Operations Research. The resulting problems are
hard to solve and can often only be approximated. We are convinced that parallel game
tree search will become an important part of that area.

References

1. I. Althöfer. Root evaluation errors: How they arise and propagate. ICCA Journal, 11(3):55–
63, 1988.

2. B.W. Ballard. The *-minimax search procedure for trees containing chance nodes. Artificial
Intelligence, 21(3):327–350, 1983.

3. J. Ehrhoff, S. Grothklags, and U. Lorenz. Das Reparaturspiel als Formalisierung von Planung
unter Zufallseinflüssen, angewendet in der Flugplanung. In Proceedings of GOR conference:
Entscheidungsunterstützende Systeme in Supply Chain Managment und Logistik, pages 335–
356. Physika-Verlag, 2005.

4. S. Engell, A. Märkert, G. Sand, and R. Schultz. Production planning in a multiproduct batch
plant under uncertainty. Preprint 495-2001, FB Mathematik, Gerhard-Mercator-Universität
Duisburg, 2001.

1274 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

5. R. Feldmann, M. Mysliwietz, and B. Monien. Studying overheads in massively parallel
min/max-tree evaluation. In 6th ACM Annual symposium on parallel algorithms and ar-
chitectures (SPAA’94), pages 94–104, New York, NY, 1994. ACM.

6. P.J. Flemming and J.J. Wallace. How not to lie with statistics: the correct way to summerize
benchmark results. CACM, 29(3):218–221, 1986.

7. C.A. Hane, C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, and G. Sigismondi.
The fleet assignment problem: solving a large-scale integer program. Mathematical Pro-
gramming, 70:211–232, 1995.

8. H. Kaindl and A. Scheucher. The reason for the benefits of minmax search. In Proc. of the
11 th IJCAI, pages 322–327, Detroit, MI, 1989.

9. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence,
6(4):293–326, 1975.

10. S. Koenig, D. Furcy, and Colin Bauer. Heuristic search-based replanning. In Proceedings
of the International Conference on Artificial Intelligence Planning and Scheduling, pages
294–301, 2002.

11. P. Kouvelis, R.L. Daniels, and G. Vairaktarakis. Robust scheduling of a two-machine flow
shop with uncertain processing times. IIE Transactions, 32(5):421–432, 2000.

12. V.J. Leon, S.D. Wu, and R.h. Storer. A game-theoretic control approach for job shops in the
presence of disruptions. International Journal of Production Research, 32(6):1451–1476,
1994.

13. D.S. Nau. Pathology on game trees revisited, and an alternative to minimaxing. Artificial
Intelligence, 21(1-2):221–244, 1983.

14. C. H. Papadimitriou. Games against nature. Journal of Computer and System Science,
31:288–301, 1985.

15. A. Reinefeld. An Improvement of the Scout Tree Search Algorithm. ICCA Journal, 6(4):4–
14, 1983.

16. W. Römisch and R. Schultz. Multistage stochastic integer programming: an introduction.
Online Optimization of Large Scale Systems, pages 581–600, 2001.

17. J. M. Rosenberger, A. J. Schaefer, D. Goldsman, E. L. Johnson, A. J. Kleywegt, and G. L.
Nemhauser. Simair: A stochastic model of airline operations. Winter Simulation Conference
Proceedings, 2000.

18. S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach. 2003. Prentice Hall
Series in Artificial Intelligence.

19. C.E. Shannon. Programming a computer for playing chess. Philosophical Magazine, 41:256–
275, 1950.

SPH2000: A Parallel Object-Oriented
Framework for Particle Simulations with SPH�

Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

Wilhelm-Schickard-Institut für Informatik
Department of Computer Engineering

University of Tübingen
Sand 13, 72076 Tübingen, Germany

{ganzenmu,pinkenbu,rosen}@informatik.uni-tuebingen.de

Abstract. A widespread method in parallel scientific computing is SPH,
a grid-free method for particle simulations. Lots of libraries implement-
ing this method evolved in the past. Since most of them are written in
FORTRAN or C, there is a lack of integration of object-oriented concepts
for scientific applications. These libraries are therefore hard to maintain
and to extend. In this paper, we describe the design and implementation
of sph2000, a parallel object-oriented framework for particle simulations
written in C++. Its key features are easy configurability and good ex-
tensibility for the users to support their ongoing development of the SPH
method. The use of design patterns lead to an efficient and clear design
and the implementation of parallel I/O improved the performance sig-
nificantly. A sample application was implemented to test the framework.

1 Introduction

Within the Collaborative Research Center (CRC) 382 physicists, mathematicians
and computer scientists work together to research new aspects of astrophysics
and the motion of multiphase flows, evolve them to models and run parameter
studies to verify these models. Several particle codes are used to simulate these
physical problems.

A well known particle simulation method is Smoothed Particle Hydrodynam-
ics (SPH). SPH is a grid-free Lagrangian method for solving the hydrodynamic
equations for compressible and viscous fluids. It was introduced in 1977 by [4]
and [7] and has become a widely used numerical method for astrophysical prob-
lems. Nowadays the SPH approach is also used in fields of material sciences, for
modeling multiphase flows [9] and the simulation of brittle solids [2].

Resolution and accuracy of a simulation depend on the number of used par-
ticles and interaction partners. Actual physical problems need large numbers to
achieve reasonable results. Thus, high-performance computers are indispensable.

� This project is funded by the DFG within CRC 382: Verfahren und Algorithmen
zur Simulation physikalischer Prozesse auf Höchstleistungsrechnern (Methods and
algorithms to simulate physical processes on supercomputers).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1275–1284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1276 Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

As a result, most users in the domain of physical simulations developed self-made
parallel scientific libraries. Although object-oriented programming became most
recently state-of-the-art in parallel programming, almost all libraries are still im-
plemented in FORTRAN or C, leading to a lack of integration of object-oriented
concepts for parallel scientific applications.

Our group has a strong effort to develop fast parallel particle libraries, which
are portable to all important parallel platforms. Therefore, we developed a paral-
lel object-oriented SPH framework which is clearly structured, easy to configure,
maintain and extendable by the advantages of object-oriented programming and
design patterns. The main goals were to provide a general framework for SPH-like
particle simulations and to reduce the parallel overhead and serial parts, which
limit the overall speedup. To apply object-orientation to parallelization, we use
TPO++, an object-oriented communication library set up on top of MPI [5].
It was developed in our working group and provides the same functionality and
efficiency as MPI 1.2. Recently, we extended it by an object-oriented interface
for parallel I/O. A sample application points up the usability of our approach.

This paper is organized as follows. In Section 2, we present related work.
Section 3 contains the design and implementation of the framework. In Section
4 we present a sample application and in Section 5 we conclude.

2 Related Work

Cactus [1] is a large framework for parallel physical simulations with many mod-
ules, called thorns, which offers interfaces for different languages, e.g. for C++.
POOMA [11] is as well a wide-spread framework for parallel physical computa-
tions. Both libraries, like most others, are laid out for grid methods. Although
POOMA supports moving particles, they have to be arranged in arrays. The
focus is on interactions and transformations between the particle arrays and the
grid fields.

Besides other SPH libraries [6], Gadget [12] is a large SPH library which
offers standard algorithms for astrophysics with self-gravitation. However, like
most SPH libraries, it is not object-oriented.

The embedding of pure particle methods in object-oriented libraries is not
very common. To use the given object-oriented libraries, the developer of particle
methods must take along the overhead of grid methods, deal with a higher
complexity and learn the concepts of the library, although not every concept is
needed. Using the procedural SPH libraries means to abandon the advantages
of object-oriented programming.

3 Design and Implementation

3.1 Design Goals

Our main goal was to develop a parallel object-oriented SPH-framework with
extensibility, maintainability and reusability of the code. A main concern in the

SPH2000: A Parallel Object-Oriented Framework 1277

design was the strict decoupling of parallelization and physics. Another goal
was to prove the feasibility of the object-oriented approach in the performance
critical domain of particle simulations without loosing efficiency. The result is
a parallel object-oriented particle simulation framework written in C++, called
sph2000. Classes modeling the elements of the problem domain generate a well
structured design. The use of several design patterns [3] helped to organize the
classes clearly and efficient. They are introduced to structure the class library,
to separate and group the application elements, as well as to define uniform
interfaces. Additionally, they allow to insert extensions more simply because of
decoupled elements. Table 1 shows the application elements and its correspond-
ing design patterns.

Table 1. Application elements and corresponding design patterns.

Element Responsibility Design Pattern
Initialization Configuration, Object Creation Builder, Configuration Table
Mathematics Time Integration Strategy, Iterator, Index Table
Physics Particles, Interactions, Strategy, Compositum, Iterator,

Right Hand Side (RHS) Index Table
Parallelization Communication, Decomposition, Strategy, Mediator, Proxy

Load Balancing
Geometry Simulation Domain, Subdomains Strategy, Decorator

The independent elements can be extended, causing no changes in other
classes. The classes within an element can be easily exchanged because of uniform
interfaces. Once implemented this enables the user to form new classes by simply
copying and adapting the existing ones. Thus, extensions supplement the code
instead of changing it.

3.2 Configuration of Simulation Runs

Another goal was to simplify the configuration of simulations, which mainly
means to configure a simulation run after the compilation at runtime by reading
a parameter file. To avoid conditional compilation with preprocessor directives,
as it is often seen in C libraries, the Strategy pattern, which is based on the
object-oriented concept of polymorphism is used. With this pattern the program
instantiates objects at runtime due to the configuration parameters.

The complete configuration with all parameters of a simulation is stored in an
object of the class ParameterMap (Configuration Table pattern). Every object
which needs parameters owns a reference to the ParameterMap object. Thus all
objects can access the configuration uncomplicatedly. Mainly the initialization
objects (Builder pattern) access the ParameterMap to realize the exchangeability
of the components. Every Strategy offers an accordant parameter to determine
which concrete implementation must be used in the simulation. In every simu-
lation run, the Builders create and initialize only the needed objects.

1278 Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

The concept of the configuration table makes the configuration data available
for all auxiliary programs which work with simulation data. Such supplementary
tools adopt the existing ParameterMap class without changes.

3.3 A Quantity Index Store

The flexibility of the framework is mainly up to the used physics. Because of en-
hancing the framework simultaneously with the physical method, the integration
of additional physical quantities and the exchangeability of different calculation
methods has to be guaranteed.

An SPH particle is a sampling point of the differential equations which moves
with the flow and represents a volume element of the moving fluid. It contains
all physical quantities of a fluid element, their interactions between each other
have to be evaluated and they have to be communicated among the subdomains.

To protect the user from adapting the Particle class for every application,
we introduced the class IdStore as an index table. The Particle class contains
only the administrative structure for the communication by message passing and
two STL containers for the scalar and the vector variables. The initialization
determines the fixed number of needed variables within a simulation and writes
them into the index table. Thus the particles can adapt themselves dynamically
at start time to the respective simulation.

The basis for this design are two classes, the QuantityBuilder and the IdStore.
The QuantityBuilder implements references to the used physics and initializes
the IdStore object. It evaluates the parameters from the ParameterMap and
reserves an index in the IdStore for every physical variable (e.g. position, speed
and density). The physical variables are stored inside the particle in the order of
these indices. Since the particle itself has no idea about the contained variables,
classes needing a particles’ variable have to get the information through the
IdStore, which represents the interface to the variables.

3.4 Object-Oriented View of the Right Hand Side

The QuantityBuilder class is designed according to the Builder pattern. Besides
the initialization of the IdStore it establishes the QuantityList, an STL container
of calculation objects for the physical quantities. Since there are no general SPH
formulas for the equations of motion, many different approaches evolved in the
past. To achieve a high flexibility, the calculation objects are defined as a Strategy
with a Quantity base class.

The QuantityBuilder knows all possible quantities and their dependencies.
By reading the physical parameters from the ParameterMap, quantities are se-
lected and stored in the QuantityList in respect to the physical dependencies
(see Fig. 1). In each time step an RhsCalculator object iterates through the
QuantityList to compute the right hand side (RHS) of the differential equations.

Like most elements of the framework, the Integrator class is also implemented
as a Strategy and thus configurable and extendable like the quantity classes. The
several Runge-Kutta and adaptive integrators of the framework are based on an

SPH2000: A Parallel Object-Oriented Framework 1279

«strategy»
Quantity

«builder»
QuantityBuilder

«iterator»
RhsCalculator

«compositum»
QuantityList

{builds}

{iterates}

DvDt DvDtArtVisc DRhoDt DeDt

Fig. 1. Simplified class diagram of the sph2000 calculation classes.

abstract Integrator class. It defines interfaces to iterate through all particles’
differential variables to integrate the right hand side and to store intermediate
integration steps. The Strategy pattern is very easy to apply, since the user only
has to write a configuration file, e.g. which Integrator should be utilized, and
the Builders only create the needed objects of each Strategy.

3.5 Parallelization and Domain Decomposition

Geometrical Point of View. For an efficient parallelization we implemented a
domain decomposition, dividing up the simulation area into several rectangular
subdomains. These are equally spaced at the beginning of the simulation but
dynamically change their size during runtime to keep the load balanced between
all processors. The size is thereby given by the number of interaction partners,
since this linear effects the calculation time.

A class SubSimulation was implemented, which defines the base methods of
a subdomain like administrating the geometry, the adjacent domains and the
particles within the subdomain. It is based on the Strategy pattern to be able to
differentiate between subdomains with different tasks. The framework knows two
specialized types of SubSimulations. The BoundarySimulation extends the Sub-
Simulation by methods for reflecting and absorbing particles at the boundaries.
The InletSimulation, based on the Decorator pattern, can decorate the latter
with additional methods for inserting new particles to the simulation through
an inlet. The ParameterMap includes the initial and behavioral values of these
three types.

Domain Decomposition by Grouping Objects. In every time step each
subdomain has to process the same tasks, like preparing the calculation, com-
municating particles to other subdomains, computing lists which contain the in-
teraction partners, calculating the right hand side, or integrating the equations
of motion. Each subdomain therefore contains classes and objects respectively
for these tasks. From an object-oriented view each subdomain is a group of
objects, which represent this area geometrically. The communication and appli-
cation flow within a group is implemented using an intra node Mediator, which

1280 Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

knows all contained objects, coordinates the chronological processing of the tasks
and uncouples all objects within a group from each other.

To communicate particles and other information to and from the adjacent
subdomains, an inter node Mediator is needed. This Communicator encapsu-
lates the information about the whole domain and communication structure.
The implementation follows the design patterns Strategy and Mediator. The
class BaseCommunicator defines the interface between intra node and inter node
communication (see Fig. 2).

«mediator, strategy»
BaseCommunicator

TpoCommunicatorSingleCommunicator

«mediator»
Mediator

math SPH, physics geometry

 subdomain

Fig. 2. Simplified diagram of a subdomain in sph2000. The upper part shows the
modules with the SPH classes and the intra node mediator. The lower part shows the
class diagram for the communication strategy. The Communicator classes encapsulate
the whole inter node communication. The calculation objects are completely decoupled
from the parallelization.

The major advantage of this concept is, that it enables the user to easily
divide up the simulation domain into as many subdomains as processors are
available. For communication between the processors the message passing ob-
ject TpoCommunicator is generated, which uses TPO++. In case of a single
processor simulation this communicator only has to be replaced by a single-
node communicator. The user only has to exchange the communicators in the
configuration file, leaving the code unchanged.

To coordinate all subdomains a special master subdomain is implemented,
which is extended by several administration objects. These are objects for time-
keeping and administrating all particles as well as particle-I/O objects for saving
and restoring particle allocations.

3.6 Parallel I/O

The first results of sph2000 showed a significant lack in performance due to
sequential I/O. Since current standards like MPI 2 [8] only support procedural

SPH2000: A Parallel Object-Oriented Framework 1281

interfaces for parallel I/O, we extended TPO++ by an object-oriented interface
for parallel I/O [10].

The initial version of sph2000 implements an I/O strategy with one master
process gathering the part results from all other processes and saving the whole
data in ASCII format to disk. The new strategy using the parallel I/O interface
was to implement collective I/O. Thereby, all processes can access the same file in
parallel, which improves the performance significantly, since the communication
to the master process is needless and the whole parallel I/O bandwidth can be
used for transferring the data to and from disk. In addition, the library internally
calculates the correct offsets within the file where each process has to place its
part, avoiding any extra implementation by the user.

To provide sph2000 with parallel I/O, the particle-I/O class of the framework
had to be adapted. The following listing shows the adapted method saveDataFile

and represents the simple usage of the interface:

#include<tpo++.H>

void ParticleIO::saveDataFile(const ParticleContainer& particles, string name)

{
TPO::File fh;
int code = fh.open(TPO::CommWorld, name, TPO_MODE_CREATE);

fh.write_all(particles.begin(), particles.end());
fh.close();

}

This implementation of using a single collective call (fh.write all) reduces
the size of the original code by about 100 lines of code. The call is needed to
save the containers of particle objects of each processor to disk simultaneously.
Two iterators begin() and end() thereby define the beginning and ending of the
container. This syntax also enables the user to store only a sub-set of particle
objects to disk.

The performance improvement through the usage of parallel I/O within the
framework depends on the application as well as on the ratio between the pro-
portion of computation and I/O within the application. To determine the real
performance gain we inserted it in our sample application, which is presented in
the next section.

4 Sample Application

A first sample application was implemented to test the whole framework. It
simulates the injection of diesel into an air filled chamber. Diesel engine manu-
factures are interested in an optimal injection of the diesel into the combustion
chamber. A perfect mixing of diesel and air means an efficient use of the fuel
and therefore reduces emission. For this reason the breakup of the diesel jet must
be examined and understood. When injected into the cylinder of an engine, the
diesel jet undergoes two stages of breakup. In the primary breakup large drops
and filaments split off the compact jet. These turn into a spray of droplets dur-
ing the secondary breakup. This secondary process is well known and can be
modeled as a spray, but the understanding of the primary breakup is only in the

1282 Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

initial stages. The physical effects that might influence the primary breakup are
the pressure forces in the interface region of diesel and air, instabilities of the jet
induced by cavitation inside the injection nozzle, surface tension and turbulence.
In this area SPH simulations are not very common. There are several problems
concerning the physics of multiphase flows and the requirements in terms of
compute power are very high. Due to its extensibility sph2000 is very applicable
for this area and enables the user to easily and fast implement new physical
concepts. So far the framework provides 5 kernel functions, 6 integrators, and 20
quantities to calculate the state equations and the equations of motion for the
air and diesel particles.

Fig. 3. 3D simulation of diesel injection with 2.5 million particles. The picture shows
the injected diesel. First drops are already split off the jet. The injection causes a
density wave traveling in front of the liquid stream.

2D and 3D simulations with up to 2.5 million particles reveal a broadening
and breakup of the diesel jet leading to turbulences behind the dispartment.
After a while single drops are separated from the compact jet, see Fig. 3.

The performance of the sample application was conducted on Kepler [13], a
self-made clustered supercomputer based on commodity hardware. It consists of
two parts: An older part with 96 dual Pentium III (650 MHz) nodes with 1 GB
of memory, and a newer part with 32 dual AMD Athlon (1.667 GHz) nodes, each
sharing 2 GB of memory. We measured two different simulation setups: The first
running on the Pentium nodes with disabled I/O and the second on the Athlons
with I/O enabled in every second time step, to compare the performance of
sequential and parallel I/O. We always used only one processor per node.

Table 2 shows the performance results of the first setup. Due to memory
shortage of the Pentium nodes, the measurements were made starting with 2
nodes. The parallelization scales very good up to 64 processors leading to a
remarkable speedup of 44.10.

SPH2000: A Parallel Object-Oriented Framework 1283

Table 2. Results of the first simulation setup with 1 million particles on Pentium III.

Processors 1 2 4 8 16 24 32 64

Time per step (in s) - 116.9 58.8 33.8 16.4 11.3 9.7 5.3
Speedup - 2.00 3.98 6.90 14.24 20.68 24.10 44.10

The results of the second simulation setup show the significant effect of par-
allel I/O on the performance (see Table 3). The I/O part could be improved by
a factor of 20 when using 32 processors working on a parallel file system with
32 distributed disks. Since I/O is only a small proportion of the whole simula-
tion, the overall gain using parallel I/O reduces to a - still remarkable - factor of
3.5 (64 processors). Note that even the sequential simulation with parallel I/O
is faster than without parallel I/O, due to changing from ASCII file format to
binary format and less code overhead for saving the particles.

Table 3. Results of the second simulation setup with 1 million particles on Athlon.

Processors 1 2 4 8 16 24 32 64

Execution time (in s)
- sequential I/O 2090.2 1050.9 530.4 407.0 349.4 305.1 272.4 251.6
- parallel I/O 1223.5 617.2 312.5 191.4 130.9 96.5 79.8 71.3
Speedup
- sequential I/O 1 1.98 3.94 5.13 5.98 6.85 7.67 8.30
- parallel I/O 1 1.98 3.91 6.39 9.34 12.67 15.33 17.15

5 Conclusion and Future Work

The application of object-oriented development methods has improved the qual-
ity of our simulation codes. The implementation is very easy to maintain and
extend, e.g. to add the physics of surface tension or turbulence. The result of
object-oriented techniques with design patterns is a framework, in which classes
have clear and strictly separated responsibilities. Different methods can be inter-
changed without influencing other code. The use of our parallel I/O library and
optimizations for communication reduced the sequential parts of the framework
to a minimum. These lead to a well scaling parallel performance.

In the future, we focus on the development of models for simulating surface
tension and turbulence. Due to an increased number of particles which is needed
to simulate these effects meaningful, we are investigating solutions to decrease
the amount of calculated interactions without increasing the runtime of the sim-
ulations. Since optimizing the communication is not sufficient, we furthermore
try to exclude less important calculations: First, we try to separate the density
wave of the injected diesel from the outer air, and second, the air particles shall
be generated during runtime according to the motion of the jet. The idea is to
calculate only air regions, which are affected by the diesel jet. Both leads to
notedly less calculation overhead.

1284 Sven Ganzenmüller, Simon Pinkenburg, and Wolfgang Rosenstiel

References

1. G. Allen, T. Goodale, E. Seidel. The Cactus Computational Collaboratory: En-
abling technologies for relativistic astrophysics, and a toolkit for solving pdes by
communities in science and engineering. In 7th Symposium on the Frontiers of
Massively Parallel Computation-Frontiers 99, New York, 1999. IEEE

2. W. Benz, E. Asphaug. Catastrophic Disruptions Revisited. In Icarus, 142: 5–20,
1999

3. Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995

4. R. A. Gingold, J. J. Monaghan. Smoothed Particle Hydrodynamics: Theory and
Application to Non-Spherical Stars. In Monthly Notices of the Royal Astronomical
Society, 181: 375–389, 1977

5. T. Grundmann, M. Ritt, and W. Rosenstiel. TPO++: An object-oriented message-
passing library in C++. In Proceedings of the 2000 International Conference on
Parallel Processing, pages 43–50. IEEE Computer society, 2000.

6. S. Kunze, E. Schnetter, R. Speith. Development and Astrophysical Applications of
a Parallel Smoothed Particle Hydrodynamics Code with MPI. In High Performance
Computing in Science and Engineering ’99, E. Krause, W. Jäger (ed.), Springer,
p. 52 – 61, 2000.

7. Leon B. Lucy. A Numerical Approach to Testing the Fission Hypothesis. In The
Astronomical Journal, 82(12): 1013–1024, 1977

8. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface. Online. URL:
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html, July 1997.

9. F. Ott, E. Schnetter. A modified SPH approach for fluids with large density
differences. In ArXiv Physics e-prints, 3112-+, 2003

10. S. Pinkenburg and W. Rosenstiel. Parallel I/O in an Object-Oriented Message-
Passing Library. In Proceedings of the 11th European PVM/MPI Users’ Group
Meeting, 2004.

11. J. V. W. Reynders, J. C. Cummings, P. J. Hinker, M. Tholburn, M. S. S. Banerjee,
S. Karmesin, S. Atlas, K. Keahey, W. F. Humphrey. Pooma: A framework for
scientific computing applications on parallel architectures. In Parallel Programming
using C++, MIT Press, 1996; http://acts.nersc.gov/pooma/

12. V. Springel, N. Yoshida, S. D. M. White. GADGET: A Code for Collisionless and
Gasdynamical Cosmological Simulations. In New Astronomy, 6(3): 51, 2001.

13. University of Tübingen. Kepler Cluster website. Online, URL: http://kepler.sfb382-
zdv.uni-tuebingen.de/kepler/start.shtml, 2001.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1285–1294, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle
Modeling System

Jason Cope1, Craig Hartsough2, Peter Thornton2, Henry Tufo1,2,
Nathan Wilhelmi2, and Matthew Woitaszek1

1 University of Colorado, Boulder, CO 80309, USA
{jason.cope,matthew.woitaszek}@colorado.edu

2 National Center for Atmospheric Research, Boulder, CO 80305, USA
{craigh,thornton,tufo,wilhelmi}@ucar.edu

Abstract. Grid-BGC is a Grid-enabled terrestrial biogeochemical cycle simula-
tor collaboratively developed by the National Center for Atmospheric Research
(NCAR) and the University of Colorado (CU) with funding from NASA. The
primary objective of the project is to utilize Globus Grid technology to integrate
inexpensive commodity cluster computational resources at CU with the mass
storage system at NCAR while hiding the logistics of data transfer and job
submission from the scientists. We describe a typical process for simulating the
terrestrial carbon cycle, present our solution architecture and software design,
and describe our implementation experiences with Grid technology on our sys-
tems. By design the Grid-BGC software framework is extensible in that it can
utilize other grid-accessible computational resources and can be readily applied
to other climate simulation problems which have similar workflows. Overall,
this project demonstrates an end-to-end system which leverages Grid technolo-
gies to harness distributed resources across organizational boundaries to achieve
a cost-effective solution to a compute-intensive problem.

1 Introduction

Setting up and running high-resolution simulations of terrestrial biogeochemical
(BGC) processes is currently an involved process for scientists. Performing a com-
plete simulation consists of gathering required environmental data from various stor-
age systems onto one platform, running preprocessing software to prepare meteoro-
logical data for the target model, executing the simulation itself, and then moving the
data to other systems for post-processing, visualization, and analysis. The process
must then be repeated for multiple simulation tiles constituting the desired geographi-
cal region requiring mundane repetition and attention to detail. As such, the overhead
to running terrestrial biogeochemical simulations is quite high, and scientists must
perform many manual tasks and possess adequate data storage, computational re-
sources, and substantial platform-specific computer expertise.

The objective of the Grid-BGC project is to create a cost effective end-to-end solu-
tion for terrestrial ecosystem modeling. Grid-BGC allows scientists to easily config-
ure and run high-resolution terrestrial carbon cycle simulations without having to
worry about the individual components of the simulation or the underlying computa-
tional and data storage systems. In order to run a simulation, the user interacts with a
web-based portal to control the various stages of processing. The portal then functions

1286 Jason Cope et al.

as a grid client, submitting the simulation to a Grid-BGC tile processing grid service
that gathers the required data from the storage systems and performs the simulation.

The development of Grid-BGC is a collaborative effort between the National Cen-
ter for Atmospheric Research (NCAR) and the University of Colorado (CU). The
Grid-BGC project uses computational and data grid technology [3] to leverage the
resources available at both organizations in order to provide a cost effective and high
performance solution. In particular, Grid-BGC is designed to run on commodity clus-
ter systems such as those available at the university instead of production supercom-
puter systems at NCAR. Large model runs, however, produce multi-terabyte output in
excess of the capacity available on the university clusters, so the system utilizes the
NCAR Mass Storage System (MSS) for its storage requirements. Our software solu-
tion is also designed to provide reliable model execution tolerant of the transients
present in distributed grid systems, support NCAR’s operational security require-
ments, and be extensible enough to support running other similar scientific models.

As we engineer the Grid-BGC software, our overall goal is to develop an extensi-
ble set of grid-enabled tools that solve this problem and will be useful for subsequent
similar Grid-based projects. The software infrastructure developed for Grid-BGC
enables application-oriented data accessibility. Instead of requiring users to manually
locate data by searching through a reference interface, entire applications can be con-
figured to locate and download required data. In the past, these simulations would
have to be performed at NCAR in order to gain access to the mass storage system.
This is no longer the case, as data grid technologies allow the data to be accessed
from anywhere.

The remainder of this paper is organized as follows: Section 2 describes relevant
related projects in the grid community. Section 3 presents the workflow required for
this terrestrial ecosystem model and forms the basis for our system requirements.
Section 3 presents our solution architecture and design, and section 4 relates the cur-
rent state of our prototype implementation and test grid. Section 5 describes our ex-
periences with cluster-based grid computing. The final sections present future work
and conclusions.

2 Related Work

Many other organizations are developing projects similar to the Grid-BGC execution
platform. These projects, which range from holistic graphical workflow manipulation
tools to client-server distributed processing systems, differ in approach and magni-
tude. All of these tools are service-based and allow computational platforms to expose
computational resources as a commodity for the use of a community. While we are
presenting our solution in respect to our targeted terrestrial climate model, our soft-
ware environment is completely general and usable by applications with similar char-
acteristics.

One example of running legacy applications in a Grid environment is the Grid
Execution Management for Legacy Code Architecture (GEMCLA) project [4]. The
goal of GEMCLA is to provide a framework designed to make any legacy code ex-
ecutable as an Globus Toolkit (GT) 3.0 [3] compliant Grid service without manually
turning each application into a Grid service, access to the legacy source code, or re-
quiring custom Java executable wrapping. GEMCLA functions as a Grid service with
a front-end that interacts with the client to pass parameters and a back-end to run jobs

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System 1287

using the Globus master managed job factory service. The interface to the legacy code
is described in an XML file. GEMCLA also provides a robust graphical workflow
editor, uses traditional Globus Toolkit components for job execution, and also pro-
vides workflow management and portal services.

While GEMCLA focuses on running single applications in a grid environment,
other projects provide managed computing services. For example, the Distributed
Infrarastructure with Remote Agent Control (DIRAC) project developed by CERN
coordinates computational resources for large physics simulations [9]. DIRAC is a
high-throughput service oriented computational grid middleware application. In the
DIRAC architecture, a user submits a series of computational jobs to a central server,
much like a queue on a traditional cluster. Software running on each compute site
determines its free computing resources, and then polls the central server to retrieve
jobs for processing. The server runs a “Matchmaker” service to select the best jobs for
the available resources. The authors assert that this pull methodology is less complex
and more scalable than a traditional server-based scheduling system that must main-
tain the state of every compute node at all times. DIRAC implements its own data
management system, including replica catalogs and a reliable data transfer service.
Job execution is flexible, as each job simply installs software required for to its execu-
tion.

Similarly, NorduGrid was developed to handle large physics simulations [2]. The
authors considered the use of previous grid computing tools, such as Globus and
software developed by the European Data Grid, but found that they were as a whole
inadequate and other components were required. NorduGrid augments the Globus
Toolkit with a user interface, grid manager, replica catalog, and information dissemi-
nation service. The user interface, installed on client machines, provides the ability for
users to submit job requests and obtain system information. The information service
provides information on storage and computing resources on a grid using the Globus
Monitoring and Discovery System (MDS). Finally, the grid manager provides an
interface layer between the grid and the system software, such as a batch scheduling
system. NorduGrid utilizes the Globus Replica Catalog to locate data sources and
GridFTP to transfer files, but is intended for operation on cluster computer systems
with locally shared file systems. Job requests are flexible and are submitted to the
Grid Manager using Resource Specification Language.

Our approach to service-oriented computing is different. Instead of introducing
complexity to support future arbitrary software execution, we impose a priori admini-
stration overhead to ensure that specific applications may be executed on resources
that advertise their availability. Other solutions utilize a job description language,
such as the Globus Resource Specification Language (RSL), to describe jobs in their
most basic terms, such as requested architecture, requested number of nodes and
processors, requested data capacity. Then, when the job is actually scheduled on a
computer, the user’s application and data must be transferred to that platform and
executed. Many things can go wrong, ranging from compilation problems, long-
distance storage system access problems, and a host of issues related to client envi-
ronment configuration management.

We approach service-oriented computing from a contract perspective. In our archi-
tecture, a computational resource broadcasts that it can provide, for example, the
Grid-BGC tile processing service. This broadcast availability demonstrates a com-
mitment to provide the service with minimal details. The executable has been in-
stalled and tested, required security relationships have been established, and paths to

1288 Jason Cope et al.

remote storage systems have been tested. Instead of a job description language like
RSL, the client submits a processing job using a generic specification format suitable
for many types of executables but with additional stanzas specific to the advertised
service. Our software approach provides a fault tolerant computational offloading grid
service for specifically configured applications.

3 Terrestrial Ecosystem Modeling
Our software system uses two NCAR software applications, Daymet and Biome-
BGC, to simulate the terrestrial ecosystem in a three step workflow (see Fig. 1). The
Biome-BGC model is point-based; that is, it simulates the ecosystem at a single point
on a spatial grid representing an area of planetary surface. The model itself acts on
only one point at a time, but multiple points within a region are aggregated into tiles
that become the unit of work for the Biome-BGC simulation. For a simulation, the
area of land under analysis is broken up into manageable tiles and each tile is simu-
lated independently.

Fig. 1. Carbon cycle modeling workflow

The first stage in the workflow is preprocessing to convert raw single-site meteoro-
logical data into the spatially gridded format required by the simulator. The data in-
gest program Daymet [7] interpolates ground-based weather observations to produce
high-resolution grids of historical surface weather data. These tile weather fields are
then stored for possible later re-use. The Daymet output is then piped into the Biome-
BGC model [8] in conjunction with soil and plant data. The model simulates the ter-
restrial carbon, water, and nitrogen cycles. The soil and plant data specification essen-
tially defines forests and deserts, and the Daymet output describes where it rains, so

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System 1289

the model grows trees in the forests and saguaro cacti in the deserts. The output is
post-processed to display map overlays of variables of interest to climatologists such
as gross primary production of carbon by photosynthesis.

The point- and tile-based nature of the Daymet and Biome-BGC models require
that a scientist pay careful attention to parameter setup and spatial tile decomposition.
Before Grid-BGC, the scientist running the simulation was required to manually or-
ganize the preprocessing and model execution for every tile independently. The Grid-
BGC system architecture is designed to automate the process and eliminate this over-
head. User interaction is constrained to a web-based portal interface, and the system
automatically generates spatial tiles necessary to run the simulation over a desired
area.

4 Architecture

Our software architecture is composed of several components that work together in a
coordinated manner using Grid technology. GT 3.2 is used to provide grid enabled
web services, authentication protocols, and data transfer facilities (see Fig. 2). These
features are utilized in the four primary components of Grid-BGC: the user interface
portal, the grid service, the JobManager daemon, and the DataMover file transfer
utility.

Fig. 2. System architecture

The user interface portal provides the front-end for the Grid-BGC system. The in-
terface exposes mechanisms to define simulation parameters and support collabora-

1290 Jason Cope et al.

tion between users. A grid-enabled client is integrated into the portal, which interfaces
with the remotely executing grid service. The client can interpret data received from
the grid service and present it to the user and can communicate user requests to start
simulations and query simulation status to the grid service. The portal essentially
provides a thin web-based client that can accommodate a distributed user base with
heterogeneous systems easily and efficiently.

A single grid service, the Grid-BGC Grid Service, is exposed by our execution
framework. The primary responsibility of the service is to act as a link between the
user interface portal and the execution environment. The service allows clients to
invoke methods that start, stop, and analyze the state of Daymet and Biome-BGC jobs
executing in the Grid-BGC environment. Communication between the service and the
user interface portal is accomplished through the transmission of an XML based
specification language. This language is not specific to Grid-BGC. Instead, the lan-
guage is intended to support running any executable requiring input files, initializa-
tion files, and command line arguments. Upon receiving a message from the portal the
service method parses the message, stores the parsed data into a persistent database,
and then executes the appropriate action specified by the message. Once the action
has been completed, the method composes a response message and sends it to the
client in the portal. Typical actions include starting, stopping, and querying the state
of a simulation.

The JobManager daemon is responsible for managing the high-level execution
tasks of the Biome-BGC jobs and controlling the simulation of their constituent tiles.
This includes preparing and priming a simulation by fetching needed input data sets
from remote storage, starting, stopping, and monitoring the tile Daymet and Biome-
BGC simulations, monitoring the execution environment, and performing cleanup
operations when a job completes. A persistent database is used to store all the actions
the server must execute, the state of all active processes in the Grid-BGC execution
environment, and the state of the JobManager itself.

The final component of our solution required for Grid-BGC simulations is Data-
Mover [6]. This file transfer facility, developed by Lawrence Berkeley National Labo-
ratories for the Earth System Grid (ESG) project, is designed to replicate large sets of
files between tape- and disk-based mass storage systems using GridFTP [1] and is
currently in use at national laboratories in the United States. We use DataMover to
transfer files between NCAR and CU. DataMover provides GSI authentication [10],
reliable file transfer guarantees, and the required interface to the NCAR Mass Storage
System. File staging is straightforward. Input files used by the Biome-BGC model are
downloaded from the DataMover server at NCAR, and as the simulations finish, the
generated output files are moved from CU to NCAR.

5 Implementation Experiences and Discussion

The Grid-BGC prototype implementation currently provides a fully functional grid
service, grid client, JobManager daemon, and data transfers through the use of Data-
Mover. At the present time, the prototype only executes Grid-BGC jobs, but we are
working to increase the robustness of the software for application to similar projects.
To date, this project has provided us with several valuable experiences while attempt-
ing to produce a working system that appeals to scientists, administrators, and soft-
ware developers. In particular, we have ensured that the Grid-BGC framework fits in

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System 1291

a managed security environment, provides reliability features to support execution on
commodity cluster equipment, and is extensible so that its components are useful for
future projects.

5.1 NCAR Security and Auditing Requirements

As a large government computing facility, NCAR provides computing resources to
both internal projects and community users. Maintaining data security and auditing
for charging purposes is required of all systems implemented at NCAR. The Grid-
BGC solution is designed to meet these NCAR security and auditing requirements
while functioning in a Globus Grid-based environment.

In a traditional grid environment, users authenticate with servers only using public
key certificates. Because NCAR limits access to the mass storage system to users
possessing a NCAR-issued “gatekeeper” account, our users must establish an account
with NCAR and then use this username and password to authenticate with our portal.
We internally generate a Grid-BGC certificate for all of our users. When a user logs
in to the portal, their Grid-BGC certificate is used to instantiate a proxy that is up-
loaded into a MyProxy [5] server for later retrieval and used to contact tile processing
grid services.

The authentication scheme on the cluster providing the grid service is intentionally
simple to reduce administration overhead. All Grid-BGC user certificates are mapped
to one UNIX user account. When a user submits a simulation request, the portal au-
thenticates with the grid service using the user’s certificate. The grid service merely
stores the simulation request in a database, and the JobManager daemon then runs the
simulations under the auspices of the service account. At no time does the user actu-
ally have possession of their internal Grid-BGC certificate, so they may not connect
to a compute cluster directly but must use the portal interface.

In addition to the portal contacting the cluster running the grid service, it is also
necessary for the JobManager daemon on the cluster to contact the NCAR mass stor-
age system to download and upload data. Because NCAR requires complete user-
based accountability, the daemon running under a service account must impersonate
the user who submitted the request. To do this, we have a job request contain informa-
tion about the portal’s MyProxy server and the user’s current stored proxy certificate.
When the daemon must authenticate with the mass storage system, it first retrieves a
copy of the user’s proxy from the MyProxy server and uses these credentials for the
data transfer.

5.2 Reliability and Fault Tolerance

Engineering fault tolerance into the Grid-BGC system is essential in our distributed
grid environment. While the users of the CU cluster enjoy an uptime usually meas-
ured in months, during the course of Grid operations the end-to-end system is surpris-
ingly prone to problems. We must cope with scheduled downtime – NCAR actually
shuts down their entire facility once or twice a year for physical plant maintenance –
as well as anticipated transients and genuine errors. Our software distinguishes be-
tween transients and errors so that users are not bothered with cryptic messages when

1292 Jason Cope et al.

a solution must be postponed due to the temporary unavailability of a required re-
source.

To facilitate fault tolerance, all cluster-side components including the grid service,
the JobManager daemon, the data transfer system, and the models are arbitrarily re-
startable. The grid service is stateless and only performs atomic database transactions,
so it may be restarted at any time. The remainder of the fault tolerance is built into the
JobManager daemon.

Despite our best efforts, the CU cluster is still occasionally subject to node reboots
with little or no warning, power failures, and students who ignore system administra-
tor threats and circumvent the job scheduler to run code that is capable of causing
kernel panics. The JobManager daemon monitors and controls the data transfer proc-
esses and simulation batch queue jobs. If, for any reason, a data transfer of a simula-
tion job fails without completing successfully, the JobManager can restart it. If a job
fails repeatedly, the system is presumed to be operating in a failure mode, and jobs are
held for administrator intervention. Finally, the daemon itself maintains persistent
state information in a database and all management system iterations are atomic. In
the event of a system problem, the daemon may be stopped immediately. When it is
restarted, the queue history is analyzed to determine if running jobs completed suc-
cessfully, jobs are finalized or restarted as appropriate, and everything resumes nor-
mally. The Grid-BGC grid service provides “submit and forget” tile processing capa-
bilities.

5.3 Expandability to Other Projects

The Grid-BGC software is designed to reliably execute the data transfers and models
under its control within a completely flexible framework. Thus, the model it is run-
ning may be changed at any time. In addition to running the terrestrial ecosystem
model integral to Grid-BGC, the Grid-BGC JobManager can be configured to run
unrelated software applications among cooperating grid sites. We are also examining
the possibility of extracting the Reliable Job Execution Service, a software component
developed as part of the Grid-BGC Job Manager, and making it available by itself as
part of a Grid middleware initiative.

6 Future Work and Conclusions

Work is underway to turn our Grid-BGC prototype into a fully functional system
capable of running end-to-end carbon cycle simulations for the BGC user community.
We believe that the entire system, including the user interface portal, will be fully
operational by June 2005. At that point the system will be sufficiently developed to
introduce climatologists as beta users.

After demonstrating full integrated functionality with our development cluster, we
intend to expand the system to involve other clusters available via our grid. The first
step is to provide the Grid-BGC tile processing service on other clusters under our
control at the university and NCAR. A grid metadata publication and discovery ser-
vice will be used to maintain clusters that are available to run tile simulation jobs and
new simulations will be dispatched to clusters with the shortest anticipated turnaround
time. The second step is to allow other collaborative institutes to instantiate their own

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System 1293

tile processing services. In this case, users with their own clusters will be allowed to
specify that their simulation jobs be run on their dedicated hardware instead of our
shared resources.

One substantial component of Grid-BGC is data storage and transfer. We presently
use DataMover to transmit data from one site to another. While DataMover maintains
its own caching capabilities, it may be useful to analyze the operation of the Grid-
BGC system in a production mode to determine if certain files should be replicated
instead of transferred. This analysis will not be possible until the system is being used
to run real science-based simulations instead of our test job collection.

Grid-BGC demonstrates an end-to-end system prototype leveraging Grid technolo-
gies to distribute a scientific application seamlessly across organizational boundaries.
Our use of the Globus toolkit allows us to access NCAR datasets while running the
computationally-intensive software on remotely administered commodity clusters.
Overall, Grid-BGC provides a cost-effective, end-to-end solution for terrestrial eco-
system modeling through a straightforward and simple interface. As we have engi-
neered the Grid-BGC execution framework to be as extensible as possible, we hope to
apply our software solution for use in other similar applications.

Acknowledgements

University of Colorado computer time was provided by equipment purchased under
DOE SciDAC Grant #DE-FG02-04ER63870, NSF ARI Grant #CDA-9601817, NSF
sponsorship of the National Center for Atmospheric Research, and a grant from the
IBM Shared University Research (SUR) program. NASA has provided funding for
the Grid-BGC project through the Advanced Information Systems Technology Office
(NASA AIST Grant #NAG2-1646) and the Terrestrial Ecology Program.

References
1. Allcock, B., Bester J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C., Meder,

S., Nefedova, V., Quesnal, D., Tuecke, S. Data Management and Transfer in High Per-
formance Computational Grid Environments. Parallel Computing Journal, Vol. 28 (5), May
2002.

2. Eerola, P., Kónya, B., Smirnova, O., Ekelöf, T., Ellert, M., Hansen, J. R., Nielsen, J. L.,
Wäänänen, A., Konstantinov, A., Ould-Saada, F. The NorduGrid Architecture and Tools.
Proceedings of Computing in High-Energy and Nuclear Physics (CHEP 03), La Jolla, Cali-
fornia, March 2003.

3. Globus. The Globus Project, 2004, http://www.globus.org/A
4. Kacsuk, P., Goyeneche, A., Delaitre, T., Kiss, T., Farkas, Z., and Boczko, T. High-level

Grid Application Environment to Use Legacy Codes as OGSA Grid Services. Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing (GRID 2004), Pitts-
burgh, USA, 8 November 2004.

5. Novotny, J., Tuecke, S., Welch, V. An Online Credential Repository for the Grid:
MyProxy. Proceedings of the Tenth International Symposium on High Performance Dis-
tributed Computing (HPDC-10), IEEE Press, August 2001.

6. Sim, A. J. Gu, A. Shoshani, V. Natarajan. DataMover: Robust Terabyte-Scale Multi-File
Replication over Wide-Area Networks. Proceedings of the 16th International Conference
on Scientific and Statistical Database Management, 403, 21 June 2004.

7. Thornton, P.E., S.W. Running, and M.A. White. Generating surfaces of daily meteorologi-
cal variables over large regions of complex terrain. Journal of Hydrology, 190: 214-251,
1997.

1294 Jason Cope et al.

8. Thornton, P.E., S.W. Running. An improved algorithm for estimating incident daily solar
radiation from measurements of temperature, humidity, and precipitation. Agricultural and
Forest Meteorology, 93: 211-228, 1999.

9. Tsaregorodtsev, A., Garonne, V., and Stokes-Rees, I. DIRAC: A Scalable Lightweight Ar-
chitecture for High Throughput Computing. Proceedings of the 5th IEEE/ACM Interna-
tional Workshop on Grid Computing (GRID 2004), Pittsburgh, USA, 8 November 2004.

10. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J., Kesselman,
C., Meder, S., Pearlman, L., Tuecke, S. Security for Grid Services. The Twelfth IEEE In-
ternational Symposium on High-Performance Distributed Computing, June, 2003.

Author Index

Acacio, Manuel E. 582
Adabala, Sumalatha 1
Agarwal, Anurag 606
Ahlin, Daniel 124
Aldinucci, Marco 771
Alias, Christophe 336
Almasi, George 560
Alt, Martin 391
Andreoni, Wanda 560
Antonopoulos, Christos D. 710
Arantes, Luciana 654
Araújo, Filipe 1153
Archer, Charles 560
Armendáriz-Iñigo, Jose E. 349

Bad́ıa, José M. 857
Bailey, David H. 185
Baille, Fabien 312
Bair, Ray 1205
Bair, Raymond 15
Bal, Henri 411
Bampis, Evripidis 312
Baraglia, Ranieri 454
Barreto, João 1059
Barthou, Denis 336
Barua, Sajib 1246
Baude, Françoise 644
Baxter, Doug 720
Bedassé, Dwight S. 30
Beltrán, Marta 292
Bender, Michael 207
Benitez, Domingo 497
Benner, Peter 857
Benoit, Anne 761
Bergamaschi, Luca 804
Bertier, Marin 654
Beyler, Jean Christophe 325
Bhanot, Gyan 560
Bienkowski, Marcin 962
Bode, Brett 1005
Boman, Erik G. 241
Bosque, Jose L. 292
Bozdağ, Doruk 241
Brayner, Ângelo 1069
Brevik, John 432

Brooke, John M. 475
Buenabad-Chávez, Jorge 61

Burtscher, Martin 19
Busca, Jean-Michel 1173
Busch, Costas 931

Bär, Henning 901
Böszörmenyi, Laszlo 877

Calonnec, Agnès 1254
Camacho, Rui 347
Caminero, Maŕıa Blanca 1046
Canal, Ramon 519
Canseco, Manel 1046
Caragiannis, Ioannis 1089
Cardeñoso-Payo, Valent́ın 782
Caromel, Denis 644, 685
Carrillo, José A. 815
Carrión, Maŕıa del Carmen 1046
Castro-Company, Francisco 349
Catalyurek, Umit 241
Caymes-Scutari, Paola 95

César, Eduardo 83, 95
Chan, Hiu Ning (Angela) 699
Chand, Raphaël 1194

Chau, Siu-Cheung 984
Chen, Chunxi 1227
Chen, Dong 560
Choo, Hyunseung 1130
Chung, Ki-Dong 919
Chung, Min Young 1130
Citro, Craig 687
Clauss, Philippe 325
Claver, José Manuel 1046
Cobârzan, Claudiu 890
Cohen, Albert 323
Cole, Murray 761

Cope, Jason 1285
Copty, Shady 740
Cores, F. 879

Correia, Nuno 877
Coulson, Geoff 877
Coutinho, Alvaro L.G.A. 1237
Curioni, Alessandro 560
Czachórski, T. 975

1296 Author Index

d’Almeida, Filomena 793
Danelutto, Marco 685
Danielsson, Johan 124
Danjean, Vincent 166
Daydé, Michel 1205
De Bosschere, Koen 571
de Carvalho Junior, Francisco Heron 730
De Giusti, Armando E. 867
de Juan-Maŕın, Rubén 349
de Kergommeaux, Jacques Chassin 17
de Supinski, Bronis R. 196
Decker, Hendrik 349
Delbé, Christian 644
Deng, Dafu 909
DeRose, Luiz 146
Dikaiakos, Marios 1057
Domı́nguez-Domı́nguez, Santiago 61
Domingos, Henrique 1141
Drozdowski, Maciej 231
Duato, José 1024, 1035
Dumitrescu, Catalin L. 465
Dutot, Pierre-François 302

Eeckhout, Lieven 571
Ehrhoff, Jan 1265
Ekman, Per 124
Eleftheriou, Maria 560, 795
Elias, Renato N. 1237
Erdur, Riza Cenk 1110

Fahringer, Thomas 50, 93, 272
Felber, Pascal 1194
Fellows, Donal K. 475
Ferreira, Paulo 1059
Fiege, Ludger 664
Figueira, Silvia M. 994
Figueiredo, Renato 1
Fitch, Blake 560, 795
Flich, José 1024, 1035
Folliot, Bertil 40
Fortes, José A.B. 1
Foster, Ian 421, 465
Fourneau, J.M. 975
Fraigniaud, Pierre 1163
Freeman, Timothy 421
Freiling, Felix 593
Fu, Ada Wai-Chee 984
Furtado, Pedro 360

Gaglio, Salvatore 595

Galron, Daniel 421
Gansterer, Wilfried N. 847
Ganzenmüller, Sven 1275
Gara, Alan 560
Garćıa, José M. 582
Garćıa, Pedro Javier 1035
Garg, Vijay K. 606
Gatani, Luca 595
Gauron, Philippe 1163
Gautier, Thierry 675
Gebremedhin, Assefaw H. 241
Germain, Robert 560, 795
Gerndt, Michael 104
Getov, Vladimir 1080
Gilmore, Stephen 761
Giné, Francesc 220
Giroudeau, R. 252
González, Pedro 815
González, Antonio 519
González-Escribano, Arturo 782
González-Vélez, Horacio 401
Gorlatch, Sergei 391
Goscinski, Andrzej M. 793
Griebl, Martin 323
Grothklags, Sven 1265
Gualà, Luciano 941
Gunnels, John 560
Gupta, Manish 560
Gusat, Mitchell 1024
Guzmán, Antonio 292

Hachichi, Assia 40
Hanzich, Mauricio 220
Hartle, Michael 901
Hartsough, Craig 1285
Heidelberg, Philip 560
Helian, Na 370
Henrio, Ludovic 644
Herley, Kieran 929
Hermanns, Marc-André 156
Hernández, Porfidio 220, 879
Herrmann, Klaus 664
Hillston, Jane 761
Hong, Jinkeun 1120
Hunold, Sascha 837
Hursey, Joshua 687

Ipek, Engin 196
Irún-Briz, Luis 349

Author Index 1297

Isaiadis, Stavros 1080
Issarny, Valérie 1057
Izu, Cruz 973

Jaeger, Michael A. 664
Jafar, Samir 675
Jang, Kil-Woong 1100
Jelasity, Márk 1141
Jeon, Hoseong 1130
Jiménez-Peris, Ricardo 633
Jin, Hai 909
Jin, Li 1207
Johnson, Ian 1035
Jugravu, Alexandru 272
Junqueira, Flavio 617

Kaklamanis, Christos 952, 1089
Kardas, Geylani 1110
Kargupta, Hillol 347
Ke, Jian 19
Keahey, Katarzyna 421
Keen, Aaron W. 699
Keidar, Idit 593
Kelkar, Shailesh 931
Kemme, Bettina 633
Kenmei, Bénédicte 325
Kermarrec, Anne-Marie 1141
Kielmann, Thilo 379
Killian, Earl 530
Kim, Kihong 1120
Kitowski, Jacek 793
Kluge, Michael 176
Knüpfer, Andreas 176
König, J.C. 252
Kola, George 442
Konstantopoulos, Charalampos 952
Korzeniowski, Miroslaw 962
Kosar, Tevfik 442
Kozyrakis, Christos 530
Krawczyk, Henryk 17
Krings, Axel 675

Laforest, Christian 312
Lam, Herman 1
Larriba-Pey, Josep-Lluis 485
Latapy, Matthieu 1163
Latu, Guillaume 1254
Lawenda, Marcin 231
Le, Hung Viet 750

Lee, Bu-Sung 381
Lee, Craig A. 379
Lee, Gyungho 508
Lee, Joo-Kyong 919
Lefèvre, Laurent 379
Legatheaux, José 973
Li, Eric 1207
Li, Tianchao 104
Lim, Jongin 1120
Lin, Yi 633
Lins, Rafael Dueire 730
Liu, Fang 687
Livny, Miron 442
Loft, Richard 560
Lorenz, Ulf 1265
Luque, Emilio 83, 95, 220, 497, 879, 973
Lysne, Olav 973

Magdon-Ismail, Malik 931
Malewicz, Grzegorz 262
Malinowski, Lars 124
Malony, Allen D. 72, 93
Man, Billy Yan-Kit 699
Manne, Fredrik 241
Manneback, Pierre 17
Mantas, José Miguel 815
Margalef, Tomás 17, 95
Martin, Cyril 40
Martins, Marcos A.D. 1237
Marzullo, Keith 617
Matsunaga, Andréa 1
Mayo, Rafael 857
McKee, Sally A. 196
Meyerhenke, Henning 209
Miegemolle, Bernard 282
Miguel-Alonso, José 1014
Mohr, Bernd 146, 156
Moncelli, Stefano 454
Monchiero, Matteo 487
Monteil, Thierry 282
Monteiro, José Maria 1069
Morajko, Anna 95
Moreira, José 13, 323, 560
Mouläı, F.K. 252
Moure, Juan Carlos 497
Muñoz-Escóı, Francesc D. 349
Mucci, Philip J. 124
Mühl, Gero 664
Müller, Jens 391
Mühlhäuser, Max 877

1298 Author Index

Nachiondo, Teresa 1024
Nagel, Wolfgang E. 176
Namyst, Raymond 166
Naulin, Jean-Marc 1254
Naven, F. 1035
Nieplocha, Jarek 720
Nikolopoulos, Dimitrios S. 710
Noronha, Ranjit 134
Numrich, Robert W. 720
Nurmi, Daniel 432

O’Boyle, Michael F.P. 323
Olsson, Ronald A. 699

Palaysi, J. 252
Palermo, Gianluca 487
Palma, José Laginha 1205
Panda, Dhabaleswar K. 134
Papaioannou, Evi 1089
Pascal, Patricia 282
Patarin, Simon 40
Patiño-Mart́ınez, Marta 633
Pauli, Esteban 699
Petrocelli, Alessandro 771
Picconi, Fabio 1173
Pietracaprina, Andrea 929
Pini, Giorgio 804
Pinkenburg, Simon 1275
Pistoletti, Edoardo 771
Pitman, Mike 560
Pitoura, Evaggelia 1057
Ponomarev, Dmitry V. 540, 550
Pontelli, Enrico 750
Preguica, Nuno 1057
Proietti, Guido 941
Puppin, Diego 454

Quiles, Francisco José 1035, 1046
Quintana-Ort́ı, Enrique S. 857
Quintana-Ort́ı, Gregorio 857

Rainey, Michael 687
Rana, Omer F. 14
Rasmunssen, Craig 720
Rauber, Thomas 837
Rayshubskiy, Aleksandr 560, 795
Re, Giuseppe Lo 595
Reddi, Vijay Janapa 994
Rexachs, Dolores Isabel 497

Richard, Samuel 282
Ridruejo Perez, Fco. Javier 1014
Riley, Katherine 560
Ripoll, A. 879
Roch, Jean-Louis 675
Rodrigues, Lúıs 593, 1153
Rodriguez-Leon, Casiano 929
Roman, Jean 1254
Ros, Alberto 582
Rosenberg, Arnold L. 262
Rosenstiel, Wolfgang 1275
Roussopoulos, Nick 1183
Rowstron, Antony 1141
Rößling, Guido 901
Rünger, Gudula 826

Saak, Jens 857
Sanjeepan, Vivekananthan 1
Santos, Lúıs Paulo 207
Sartoretto, Flavio 804
Schamberger, Stefan 209
Schmidt, Bertil 1227
Schulz, Martin 196
Schwiegelshohn, Uwe 207
Schwind, Michael 826
Seidel, Ed 1205
Sens, Pierre 654, 1173
Sexton, James 560
Shan, Hongzhang 114
Shapiro, Marc 593
Sharkey, Joseph J. 540, 550
Shende, Sameer S. 72
Shi, Yixin 508
Silva, Fernando 685
Silva, João Gabriel 379
Silva, Lúıs 93
Silvestri, Fabrizio 454
Skadron, Kevin 485
Smith, Brian E. 1005
Smith, James E. 519
Snavely, Allan 93, 185
Solsona, Francesc 220
Sopena, Julien 654
Sorribes, Joan 83, 95
Speight, Evan 19
Strohmaier, Erich 114
Suits, Frank 560
Suppi, R. 879
Szafron, Duane 685
Szymanski, Boleslaw K. 793

Author Index 1299

Talia, Domenico 347
Tang, Ming 381
Tang, Xueyan 381
Tessier, Gaël 1254
Thibault, Nicolas 312
Thomas, Gaël 40
Thornton, Peter 1285
Thulasiram, Ruppa K. 1246
Thulasiraman, Parimala 1246
Tinetti, Fernando G. 867
Tipparaju, Vinod 720
Tonellotto, Nicola 454
Torquati, Massimo 771
Trancoso, Pedro 485
Trompler, Christoph 901
Truong, Hong-Linh 50
Trystram, Denis 207, 1217
Tsoumakos, Dimitrios 1183
Tsugawa, Mauŕıcio 1
Tufo, Henry 560, 1285

Ulbrich, Andreas 664
Ungerer, Theo 485
Ur, Shmuel 740

Valduriez, Patrick 347
van Gemund, Arjan J.C. 782
van Nieuwpoort, Rob 411
van Reeuwijk, Kees 411
van Steen, Maarten 1143
Vandeputte, Frederik 571
Vanneschi, Marco 771
Veraldi, Luca 771
Vetter, Jeffrey 146
Voran, Theron 560

Voulgaris, Spyros 1143
Vranas, Pavlos 560

Wacrenier, Pierre-André 166
Walkup, Bob 560
Wang, Frank 370
Wang, Tanping 710
Wang, Tao 1207
Ward, Chris 560
Ward, Paul A.S. 30
Ward, T.J. Christopher 795
Weis, Torben 664
Wilhelmi, Nathan 1285
Wise, David S. 687
Woitaszek, Matthew 1285
Wolf, Felix 156
Wolski, Rich 432

Xiao, Tiehong 984
Xu, Cheng 1207

Yang, X.Y. 879
Yeo, Chai-Kiat 381

Zaroliagis, Christos 929
Zhang, Xuehai 421
Zhang, Yimin 1207
Zhao, Ming 1
Zhestkov, Yuriy 560
Zhu, Liping 1
Zmily, Ahmad 530
Zoccolo, Corrado 771
Zola, Jaroslaw 1217
Zottl, Joachim 847

	Frontmatter
	Invited Talks
	On the Use of Virtualization and Service Technologies to Enable Grid-Computing
	The Evolution of the Blue Gene/L Supercomputer
	Agent Based Computational Grids: Research Issues and Challenges
	Science on a Large Scale

	Topic 1 -- Support Tools and Environments
	Topic 1 Support Tools and Environments
	Tolerating Message Latency Through the Early Release of Blocked Receives
	Fast Convex Closure for Efficient Predicate Detection
	A Generic Language for Dynamic Adaptation
	Soft Computing Approach to Performance Analysis of Parallel and Distributed Programs
	The Data Diffusion Space for Parallel Computing in Clusters
	Models for On-the-Fly Compensation of Measurement Overhead in Parallel Performance Profiling
	Modeling Pipeline Applications in POETRIES

	Topic 2 -- Performance Prediction and Evaluation
	Topic 2 Performance Prediction and Evaluation
	Automatic Tuning of Master/Worker Applications
	Performance Cockpit: An Extensible GUI Platform for Performance Tools
	Apex-Map: A Synthetic Scalable Benchmark Probe to Explore Data Access Performance on Highly Parallel Systems
	PerfMiner: Cluster-Wide Collection, Storage and Presentation of Application Level Hardware Performance Data
	Performance Evaluation of MM5 on Clusters with Modern Interconnects: Scalability and Impact
	A Performance Measurement Infrastructure for Co-array Fortran
	Event-Based Measurement and Analysis of One-Sided Communication
	An Efficient Multi-level Trace Toolkit for Multi-threaded Applications
	Knowledge Based Automatic Scalability Analysis and Extrapolation for MPI Programs
	Performance Modeling: Understanding the Past and Predicting the Future
	An Approach to Performance Prediction for Parallel Applications

	Topic 3 -- Scheduling and Load-Balancing
	Topic 3 Scheduling and Load-Balancing
	Balancing Parallel Adaptive FEM Computations by Solving Systems of Linear Equations
	CISNE: A New Integral Approach for Scheduling Parallel Applications on Non-dedicated Clusters
	On Optimum Multi-installment Divisible Load Processing in Heterogeneous Distributed Systems
	A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers
	Complexity and Approximation for the Precedence Constrained Scheduling Problem with Large Communication Delays
	Batch-Scheduling Dags for Internet-Based Computing
	Scheduling Workflow Distributed Applications in JavaSymphony
	Tasks Mapping with Quality of Service for Coarse Grain Parallel Applications
	Initiating Load Balancing Operations
	Hierarchical Scheduling for Moldable Tasks
	On-Line Bicriteria Interval Scheduling

	Topic 4 -- Compilers for High Performance
	Topic 4 Compilers for High Performance
	The Periodic-Linear Model of Program Behavior Capture
	Deciding Where to Call Performance Libraries

	Topic 5 -- Parallel and Distributed Databases, Data Mining and Knowledge Discovery
	Topic 5 Parallel and Distributed Databases, Data Mining and Knowledge Discovery
	MADIS: A Slim Middleware for Database Replication
	Hierarchical Aggregation in Networked Data Management
	Mining Global Association Rules on an Oracle Grid by Scanning Once Distributed Databases

	Topic 6 -- Grid and Cluster Computing: Models, Middleware and Architectures
	Topic 6 Grid and Cluster Computing: Models, Middleware and Architectures
	Combining Data Replication Algorithms and Job Scheduling Heuristics in the Data Grid
	Towards High-Level Grid Programming and Load-Balancing: A Barnes-Hut Case Study
	An Adaptive Skeletal Task Farm for Grids
	Developing Java Grid Applications with Ibis
	Virtual Workspaces in the Grid
	Modeling Machine Availability in Enterprise and Wide-Area Distributed Computing Environments
	Faults in Large Distributed Systems and What We Can Do About Them
	A Grid Information Service Based on Peer-to-Peer
	GRUBER: A Grid Resource Usage SLA Broker
	An Architecture for Distributed Grid Brokering

	Topic 7 -- Parallel Computer Architecture and ILP
	Topic 7 Parallel Computer Architecture and ILP
	The Combined Perceptron Branch Predictor
	Target Encoding for Efficient Indirect Jump Prediction
	Dynamic Partition of Memory Reference Instructions -- A Register Guided Approach
	Value Compression for Efficient Computation
	Improving Instruction Delivery with a Block-Aware ISA
	Non-uniform Instruction Scheduling
	Instruction Recirculation: Eliminating Counting Logic in Wakeup-Free Schedulers
	Early Experience with Scientific Applications on the Blue Gene/L Supercomputer
	A Detailed Study on Phase Predictors
	A Novel Lightweight Directory Architecture for Scalable Shared-Memory Multiprocessors

	Topic 8 -- Distributed Systems and Algorithms
	Topic 8 Distributed Systems and Algorithms
	A Dynamic Distributed Algorithm for Multicast Path Setup
	Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding
	Replication Predicates for Dependent-Failure Algorithms
	Consistent Data Replication: Is It Feasible in WANs?
	A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability
	A Fault-Tolerant Token-Based Mutual Exclusion Algorithm Using a Dynamic Tree
	Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation
	A Checkpoint/Recovery Model for Heterogeneous Dataflow Computations Using Work-Stealing

	Topic 9 -- Parallel Programming: Models, Methods and Languages
	Topic 9 Parallel Programming: Models, Methods and Languages
	A Paradigm for Parallel Matrix Algorithms:
	An Exception Handling Mechanism for the Concurrent Invocation Statement
	smt-{\itshape SPRINTS}: {\itshape S}oftware {\itshape Pr}ecomputation with {\itshape Int}elligent Streaming for Resource-Constrained SMTs
	Symmetric Data Objects and Remote Memory Access Communication for Fortran-95 Applications
	Using Aspects for Supporting Procedural Modules in \# Programming
	Multi-threaded Testing with AOP Is Easy, and It Finds Bugs!
	An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers
	Flexible Skeletal Programming with eSkel
	Dynamic Reconfiguration of Grid-Aware Applications in ASSIST
	SPC-XML: A Structured Representation for Nested-Parallel Programming Languages

	Topic 10 -- Parallel Numerical Algorithms
	Topic 10 Parallel Numerical Algorithms
	Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer
	Parallel Solution of Sparse Linear Systems Arising in Advection--Diffusion Problems
	Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs
	Comparison of Different Parallel Modified Gram-Schmidt Algorithms
	Automatic Tuning of PDGEMM Towards Optimal Performance
	Parallelization of Divide-and-Conquer Eigenvector Accumulation
	Parallel Order Reduction via Balanced Truncation for Optimal Cooling of Steel Profiles
	Broadcast-Based Parallel LU Factorization

	Topic 11 -- Distributed and High-Performance Multimedia
	Topic 11 Distributed and High-Performance Multimedia
	Dynamic Distributed Collaborative Merging Policy to Optimize the Multicasting Delivery Scheme
	Dynamic Proxy-Cache Multiplication Inside LANs
	Perspectives for Lecture Videos
	A Scene-Based Bandwidth Allocation Scheme for Transferring VBR-Encoded Videos
	DCT Block Conversion for H.264/AVC Video Transcoding

	Topic 12 -- Theory and Algorithms for Parallel Computation
	Topic 12 Theory and Algorithms for Parallel Computation
	Efficient Bufferless Routing on Leveled Networks
	Efficient Truthful Mechanisms for the Single-Source Shortest Paths Tree Problem
	Optimal Embedding of the Hypercube on Partitioned Optical Passive Stars Networks
	Dynamic Page Migration Under Brownian Motion

	Topic 13 -- Routing and Communication in Interconnection Networks
	Topic 13 Routing and Communication in Interconnection Networks
	Transport Time Distribution for Deflection Routing on an Odd Torus
	Routing and Scheduling for a Novel Optical Multistage Interconnection Network
	Topology-Based Hypercube Structures for Global Communication in Heterogeneous Networks
	Performance Effects of Node Mappings on the IBM BlueGene/L Machine
	INSEE: An Interconnection Network Simulation and Evaluation Environment
	Cost / Performance Trade-Offs and Fairness Evaluation of Queue Mapping Policies
	On the Correct Sizing on Meshes Through an Effective Congestion Management Strategy
	A New Hardware Efficient Link Scheduling Algorithm to Guarantee QoS on Clusters

	Topic 14 -- Mobile and Ubiquitous Computing
	Topic 14 Mobile and Ubiquitous Computing
	An Efficient and Fault-Tolerant Update Commitment Protocol for Weakly Connected Replicas
	Controlling Concurrency in Mobile Computing Environments with Broadcast-Based Data Dissemination
	Integrating Mobile Devices into the Grid: Design Considerations and Evaluation
	New Bounds on the Competitiveness of Randomized Online Call Control in Cellular Networks
	A Multiple Channel Access Protocol for Ad Hoc Wireless Networks
	Personalized Access to Semantic Web Agents Using Smart Cards
	Fast and Secure Communication Resume Protocol for Wireless Networks
	On AAA Based on Brokers and Pre-encrypted Keys in MIPv6

	Topic 15 -- Peer-to-Peer and Web Computing
	Topic 15 Peer-to-Peer and Web Computing
	Epidemic-Style Management of Semantic Overlays for Content-Based Searching
	Long Range Contacts in Overlay Networks
	Combining the Use of Clustering and Scale-Free Nature of User Exchanges into a Simple and Efficient P2P System
	Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System
	AGNO: An Adaptive Group Communication Scheme for Unstructured P2P Networks
	Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks

	Topic 16 -- Applications of High-Performance and Grid Computing
	Topic 16 Applications of High-Performance and Grid Computing
	Parallel Linear Space Algorithm for Large-Scale Sequence Alignment
	Parallel Multiple Sequence Alignment with Decentralized Cache Support
	Parallel Construction of Large Suffix Trees on a PC Cluster
	Parallel Edge-Based Inexact Newton Solution of Steady Incompressible 3D Navier-Stokes Equations
	High Performance Computing for a Financial Application Using Fast Fourier Transform
	Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard
	Parallelism for Perturbation Management and Robust Plans
	SPH2000: A Parallel Object-Oriented Framework for Particle Simulations with SPH
	Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

