José C. Cunha
Pedro D. Medeiros (Eds.)

Euro-Par 2005
Parallel Processing

11th International Euro-Par Conference
Lisbon, Portugal, August/September 2005
Proceedings

LNCS 3648

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3648

José C. Cunha Pedro D. Medeiros (Eds.)

Euro-Par 2005
Parallel Processing

11th International Euro-Par Conference
Lisbon, Portugal, August 30 — September 2, 2005
Proceedings

@ Springer

Volume Editors

José C. Cunha

Pedro D. Medeiros

Universidade Nova de Lisboa

Faculdade de Ciéncias e Technologia CITI Centre
Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: {jcc,pm}@di.fct.unl.pt

Library of Congress Control Number: 2005931410

CR Subject Classification (1998): C.1-4, D.1-4, F.1-3, G.1-2, H.2

ISSN 0302-9743
ISBN-10 3-540-28700-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28700-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11549468 06/3142 543210

Preface

Euro-Par Conference Series

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel computing. The major themes
can be divided into the broad categories of hardware, software, algorithms and
applications for parallel computing. The objective of Euro-Par is to provide a
forum within which to promote the development of parallel computing both as
an industrial technique and an academic discipline, extending the frontier of
both the state of the art and the state of the practice. This is particularly im-
portant at a time when parallel computing is undergoing strong and sustained
development and experiencing real industrial take-up. The main audience for,
and participants in, Euro-Par are seen as researchers in academic departments,
government laboratories and industrial organizations. Euro-Par’s objective is to
be the primary choice of such professionals for the presentation of new results
in their specific areas. Euro-Par is also interested in applications which demon-
strate the effectiveness of the main Euro-Par themes. Previous Euro-Par confer-
ences took place in Stockholm, Lyon, Passau, Southampton, Toulouse, Munich,
Manchester, Paderborn, Klagenfurt, and Pisa. Next year, the conference will
take place in Dresden. Euro-Par has a permanent Web site where its history and
organization are described: http://www.europar.org. The Euro-Par conference
series is traditionally organized in cooperation with the International Federa-
tion for Information Processing (IFIP), in cooperation with the Association for
Computer Machinery (ACM), and in cooperation with the Institute of Electrical
and Electronics Engineers (IEEE) Computer Society, Technical Committee on
Parallel Processing (TCPP).

Euro-Par 2005 in Lisbon, Portugal

Euro-Par 2005 was the eleventh conference in the Euro-Par series. It was orga-
nized by the Centre for Informatics and Information Technology (CITI) and the
Department of Informatics of the Faculty of Science and Technology of Univer-
sidade Nova de Lisboa, at the Campus of Monte de Caparica.

The conference included three invited tutorials: Testing Multi-threaded and
Distributed Applications (Eitan Farchi and Shmuel Ur, IBM, Haifa); Kerrighed,
a Single System Image Cluster Operating System (Christine Morin and Re-
naud Lottiaux, IRISA/INRIA); and Creating and Managing Distributed Sci-
entific Workflows (presented by Omer F. Rana, joint work with Ian Taylor,
Matthew Shields and David W. Walker, Cardiff University).

VI Preface

The conference included invited talks by José A.B. Fortes (Advanced Com-
puting and Information Systems Lab, University of Florida), On the Use of
Virtualization and Service Technologies to Enable Grid Computing; by José E.
Moreira (IBM Systems and Technology Group, Rochester), The Fwvolution of
the Blue Gene/L Supercomputer; by Omer F. Rana (Cardiff University), Agent
based Computational Grids: Research Issues and Challenges; and by Raymond
Bair (Laboratory Computing Resource Center, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory), Science on a Large Scale. A full
paper of the talk given by Fortes, and the abstracts of the talks by Moreira,
Rana, and Bair, are included in these proceedings.

A co-located workshop was organized by the GridCoord European initia-
tive on grid computing, on Really Large-Scale Grid Architecture, gathering re-
searchers from the CoreGrid NoE and leading researchers experienced with the
actual deployment of applications at a very large scale. The workshop was based
on the contribution of invited speakers, and the workshop attendance was free for
Euro-Par 2005 participants. The CoreGRID EU Network of Excellence organized
several working meetings during the conference, enriching the opportunities for
debate of Euro-Par related topics.

Euro-Par 2005 Statistics

Euro-Par 2005 was organized according to the traditional conference format,
in 16 topics covering a diversity of dimensions of parallel and distributed com-
puting. Each topic was supervised by a committee of four persons: a global
chair, a local chair, and two vice-chairs. The call for papers attracted a total of
388 submissions, representing 44 countries (based on the corresponding author’s
country). An average of 3.8 review reports were collected for each paper, for a
grand total of 1470 review reports that involved about 700 different reviewers. A
total of 121 full papers were accepted: 120 regular papers, and one distinguished
paper. This year, there was no call for short papers, unlike previous conferences.
Eventually, the camera-ready version of one paper was not submitted by one
author, and therefore 120 papers are actually included in the proceedings. Pa-
pers were accepted from 23 different countries. The principal contributors by
country were the USA (30 accepted papers), France (17 accepted papers), Spain
(16 accepted papers), and Germany (13 accepted papers).

Acknowledgments

FEuro-Par 2005 was made possible due to the support of many individuals and
organizations. The CITI Centre, the Department of Informatics, and the Fac-
ulty of Science and Technology of Universidade Nova de Lisboa were the main
conference institutional sponsors. A number of institutional and industrial spon-
sors gave their contributions and/or participated in organizing exhibits at the
conference site. Their names and logos appear on the Euro-Par 2005 Web site:

Preface VII

http://europar0s.di.fet.unl.pt. In particular, we gratefully acknowledge the sup-
port from IBM Portugal.

Special thanks are due to the authors of all the submitted papers, the mem-
bers of the topic committees, and all reviewers in all topics, for their contributions
to the success of this conference.

We are grateful to the members of the Euro-Par Steering Committee for their
support. In particular, Marco Danelutto, co-organizer of Euro-Par 2004, and
Harald Kosch, co-organizer of Euro-Par 2003, never failed to give us their prompt
advice regarding all the organization details. We owe special thanks to Christian
Lengauer, chairman of the Steering Committee, who was always available for
sharing with us his experience in the organization of Euro-Par, and for giving us
friendly advice, support, and encouragement. We also thank Luc Bougé, vice-
chair, for his vision and contributions to improve Euro-Par conferences. We are
gratefull to Springer for publishing these proceedings. In particular, to Alfred
Hofmann, and also specially to Ursula Barth, for their permanent availability
and willingness to solve the difficulties that appeared in the preparation of the
proceedings.

Euro-Par 2005 was co-sponsored by the IFIP TC10/WG10.3, and organized
in cooperation with ACM (SIGACT, SIGARCH, SIGMETRICS, SIGMM, SIG-
MOBILE, SIGMOD, SIGOPS and SIGSOFT), and in technical cooperation with
the IEEE Computer Society TCPP.

Euro-Par 2005 was a GridCoord and a CoreGRID event, with co-located
activities from these EU initiatives, and we thank Luc Bougé and Thierry Priol
for their influence in making this possible.

We gratefully acknowledge the enthusiastic support from the Rector of the
University and the Dean of the Faculty. Locally, we thank the staff of the De-
partment of Informatics and the CITI research centre, funded by the Portuguese
Ministério da Ciéncia, Tecnologia e Ensino Superior and all the people from the
faculty services, as well as Filipa Reis, head secretary of the department, and
Madalena Almeida, from Viagens Abreu, who made possible the local organi-
zation of Euro-Par 2005. In particular, we acknowledge the excellent efforts of
the local team: Jorge Custédio, Carmen Morgado, Paulo Lopes, Vitor Duarte,
Joao Lourencgo, Cecilia Gomes, Rui Marques, Miguel Mauricio, and the student
volunteers, who were all committed to solving the numerous problems related to
the conference organization.

It was our pleasure and an honor to host Euro-Par 2005 at Universidade
Nova de Lisboa. We hope all the participants enjoyed the technical programme
and the social events organized during the conference.

Lisbon, June 2005 José C. Cunha
Pedro D. Medeiros

Organization

Euro-Par Steering Committee

Chair

Christian Lengauer

Vice-Chair
Luc Bougé

European Representatives
José Cunha
Marco Danelutto
Rainer Feldmann
Christos Kaklamanis
Paul Kelly
Harald Kosch
Thomas Ludwig
Emilio Luque
Luc Moreau
Rizos Sakellariou

University of Passau, Germany

ENS Cachan, France

New University of Lisbon, Portugal
University of Pisa, Italy

University of Paderborn, Germany
Computer Technology Institute, Greece
Imperial College London, United Kingdom
University of Klagenfurt, Austria

University of Heidelberg, Germany
Universitat Autonoma of Barcelona, Spain
University of Southampton, United Kingdom
University of Manchester, United Kingdom

Non-European Representatives

Jack Dongarra
Shinji Tomita
Honorary Members

Ron Perrott
Karl Dieter Reinartz

Observers

Wolfgang Nagel
Anne-Marie Kermarrec

University of Tennessee at Knoxville, USA
Kyoto University, Japan

Queen’s University Belfast, United Kingdom
University of Erlangen-Nuremberg, Germany

Dresden University of Technology, Germany
IRISA Rennes, France

X Organization

Euro-Par 2005 Local Organization

Euro-Par 2005 was organized by the CITI Research Centre and the Department
of Informatics of the Faculty of Science and Technology of Universidade Nova
de Lisboa.

Conference Chair

José C. Cunha

Conference Vice-Chair

Pedro D. Medeiros

Webmaster and Systems Management

Jorge Custédio

Technical Support

Vitor Duarte, Joao Lourenco, Cecilia Gomes, Rui Marques, Miguel Mauricio

Social Events

Carmen Morgado

Exhibits

Paulo Lopes

Secretariat and Registration

Filipa Reis
Madalena Almeida (Viagens Abreu)

Organization XI

Euro-Par 2005 Program Committee

Topic 1: Support Tools and Environments

Global Chair
Henryk Krawczyk

Local Chair
Tomas Margalef

Vice Chairs

Jacques Chassin
de Kergommeaux
Pierre Manneback

Faculty of Electronics, Telecommunications
and Informatics, Technical University of
Gdansk, Gdansk, Poland

Computer Architecture and Operating
Systems Dept., Univ. Autonoma de
Barcelona, Barcelona, Spain

INPG-ENSIMAG, LSR-IMAG, Grenoble,
France
Faculté Polytechnique de Mons, Belgium

Topic 2: Performance Prediction and Evaluation

Global Chair
Allen D. Malony

Local Chair

Luis Silva

Vice Chairs

Thomas Fahringer

Allan Snavely

Department of Computer and Information
Science, University of Oregon, Eugene, USA

Department of Informatics Engineering,
University of Coimbra, Portugal

Institute for Computer Science, University of
Innsbruck, Austria

San Diego Supercomputer Center, University
of California, USA

Topic 3: Scheduling and Load Balancing

Global Chair
Denis Trystram

Local Chair
Luis P. Santos

ID-IMAG, Grenoble, France

Dept. of Informatics, University of Minho,
Braga, Portugal

XII Organization

Vice Chairs
Uwe Schwiegelshohn

Michael A. Bender

Computer Engineering Institute, University
of Dortmund, Dortmund, Germany

Dept. of Computer Science, State Univ. of
New York at Stony Brook, USA

Topic 4: Compilers for High Performance

Global Chair
Albert Cohen

Local Chair
José Moreira

Vice Chairs

Martin Griebl
Michael O’Boyle

INRIA Futurs, Parc Club Orsay Université,
Orsay, France

IBM Systems and Technology Group,
Rochester, MN, USA

University of Passau, Germany
Institute for Computing Systems
Architecture, University of Edinburgh, UK

Topic 5: Parallel and Distributed Databases, Data Mining

and Knowledge Discovery

Global Chair
Domenico Talia

Local Chair
Rui Camacho

Vice Chairs
Hillol Kargupta

Patrick Valduriez

DEIS, University of Calabria, Rende CS,
Italy

Faculty of Engineering, University of Porto,
Portugal

Dept. of Computer Science and Electrical
Engineering, University of Maryland
Baltimore County, USA

INRIA and LINA-Université de Nantes,
France

Topic 6: Grid and Cluster Computing: Models, Middleware

and Architectures

Global Chair
Craig Lee

The Aerospace Corporation, El Segundo,
California, USA

Local Chair

Joao Gabriel Silva

Vice Chairs
Thilo Kielmann

Laurent Lefevre

Organization XIII

Dept. of Informatics Engineering, University
of Coimbra, Portugal

Dept. of Computer Science, Vrije
Universiteit, Amsterdam, The Netherlands

INRIA RESO/LIP Ecole Normale Supérieure
de Lyon, France

Topic 7: Parallel Computer Architecure
and Instruction-Level Parallelism

Global Chair
Theo Ungerer

Local Chair
Pedro Trancoso

Vice Chairs
Kevin Skadron

Josep-Lluis Larriba-Pey

Institute of Informatics, University of
Augsburg, Germany

Dept. of Computer Science, University of
Cyprus, Nicosia, Cyprus

Dept. of Computer Science, University of
Virginia, Charlottesville, USA

Dept. of Computer Architecture, Universitat
Politécnica de Catalunya, Barcelona, Spain

Topic 8: Distributed Systems and Algorithms

Global Chair
Marc Shapiro

Local Chair
Luis Rodrigues

Vice Chairs
Felix Gaertner

Idit Keidar

Microsoft Research Cambridge, UK

Dept. of Informatics, University of Lisbon,
Portugal

Dept. for Computer Science, RWTH Aachen
University, Germany

Dept. of Electrical Engineering, Technion —
Israel Institute of Technology, Haifa, Israel

X1V Organization

Topic 9: Parallel Programming: Models, Methods, and Languages

Global Chair
Marco Danelutto

Local Chair
Fernando Silva

Vice Chairs
Denis Caromel

Duane Szafron

Dept. of Computer Science, University of
Pisa, Italy

Dept. of Computer Science, University of
Porto, Portugal

INRIA and Institut Universitaire de France,
Univ. de Nice Sophia Antipolis, France

Dept. of Computing Science, University of
Alberta, Edmonton, Canada

Topic 10: Parallel Numerical Algorithms

Global Chair
Jacek Kitowski

Local Chair
Filomena d’Almeida

Vice Chairs

Boleslaw K. Szymanski

Andrzej M. Goscinski

Institute of Computer Science, AGH
University of Science and Technology,
Krakow, Poland

Faculty of Engineering, University of Porto,
Portugal

Rensselaer Polytechnic Institute, Troy, NY,
USA

School of Information Technology, Deakin
University, Victoria, Australia

Topic 11: Distributed and High-Performance Multimedia

Global Chair
Laszlo Boeszoermeny

Local Chair

Nuno Correia

Institute for Information Technology,
University of Klagenfurt, Austria

Dept. of Informatics, Universidade Nova de
Lisboa, Portugal

Organization XV

Vice Chairs
Max Mihlhauser Technical University of Darmstadt, Germany

Geoff Coulson Computing Department, Lancaster
University, UK

Topic 12: Theory and Algorithms for Parallel Computation

Global Chair

Andrea Pietracaprina Dipartimento di Ingegneria
dell’Informazione, Universita di Padova, Italy

Local Chair
Casiano Rodriguez-Leon Universidad de La Laguna, Tenerife, Spain

Vice Chairs

Kieran Herley Dept. of Computer Science, University
College Cork, Ireland

Christos Zaroliagis Dept. of Computer Engineering and
Informatics, CTI and University of Patras,
Greece

Topic 13: Routing and Communication in Interconnection Networks

Global Chair

Emilio Luque Computer Architecture and Operating
Systems Dept., Universitat Autonoma de
Barcelona, Spain

Local Chair

José Legatheaux Martins Dept. of Informatics, Universidade Nova de
Lisboa, Portugal

Vice Chairs

Cruz Izu Dept. of Computer Science, University of
Adelaide, Australia

Olav Lysne Simula Research Laboratory, Lysaker,
Norway

Topic 14: Mobile and Ubiquitous Computing

Global Chair

Evaggelia Pitoura Dept. of Computer Science, University of
Toannina, Greece

XVI Organization

Local Chair
Nuno Preguica

Vice Chairs
Marios Dikaiakos

Valérie Issarny

Dept. of Informatics, Universidade Nova de
Lisboa, Portugal

Dept. of Computer Science, University of
Cyprus, Nicosia, Cyprus
INRIA-Rocquencourt, Domaine de Voluceau,
France

Topic 15: Peer-to-Peer and Web Computing

Global Chair
Anne-Marie Kermarrec

Local Chair

Henrique Joao Domingos

Vice Chairs

Anthony Rowstron
Mark Jelasity

INRIA/IRISA, Campus Universitaire de

Beaulieu, France

Dept. of Informatics, Universidade Nova de
Lisboa, Portugal

Microsoft Research Cambridge, UK
Dept. of Computer Science, University of
Bologna, Italy

Topic 16: Applications of High-Performance and Grid Computing

Global Chair
Raymond Bair

Local Chair
José Laginha Palma

Vice Chairs
Ed Seidel

Michel Daydé

Mathematics and Computer Science
Division, Argonne National Laboratory, USA

Faculty of Engineering, University of Porto,
Portugal

Max-Plank Institute fiir Gravitationsphysik,
Germany and Louisiana State University,
Baton Rouge, USA

IRIT-ENSEEIHT, Toulouse, France

Euro-Par 2005 Referees

Organization

Not including members of the Programme and Steering Committees.

Ahmed Abdelkhalek
Tarek Abdelrahman
Jaume Abella

Adnan Agbaria
Kunal Agrawal
Kento Aida

Reza Akbarinia
Mohammad Mursalin Akon
Marco Aldinucci
Gabrielle Allen
Francisco Almeida
JP Moitinho de Almeida
Paulo Sérgio Almeida
Martin Alt

Albano Gomes Alves
Yair Amir

Maria Andreou
Cosimo Anglano
David Angulo

Filipe Araujo

Toni Arbona
Jean-Paul Arcangeli
Esther Arkin

Alvaro F.M. Azevedo

David A. Bader

Gal Badishi

Faruk Bagci

Iris Bahar

Mark Baker

Omar Bakr

Henri Bal

Subir Bandyopadhyay
Carlos Baquero
Ranieri Baraglia
Valmir C. Barbosa
Luiz A. Barroso
Sandro Bartolini
Alessandro Bassi
Michael Bauer
Jean-Francois Bauwens

Olivier Beaumont
Micah Beck
Zinaida Benenson
Anne Benoit

Amit Bhaya
Ricardo Bianchini
Ganesh Bikshandi
Angelos Bilas
Vicente Blanco
Francois Bodin
Sabine Bohm
Lars Ailo Bongo
Edward Bortnikov
K. Boryczko

Luc Bouganim
Anu Bourgeois
Hinde Lilia Bouziane
Tim Brecht

Uwe Brinkschulte
Y. D. Bromberg
Jim Browne

Piotr Brudlo
David Bunde
Mathijs den Burger
Yann Busnel
Javier Bustos
Rajkumar Buyya

Susana Cabago
Massimo Cafaro
Wei Cai

Yvan Calas
Lasaro Jonas Camargos
Sonia Campa
Ramon Canal
Yves Caniou

Juan Carlos Cano
Massimo Canonico
Jiannong Cao
Franck Cappello
Manuel Carro

XVII

XVIII Organization

Antonio Carzaniga
Rafael Casado
Henri Casanova
Anténio Casimiro
Jorge Castro
Christophe Cerin
Teresa Chambel
Agneés de La Chapelle
Ricardo Chaves
Ann Chervenak
Gregory Chockler
Marcelo Cintra
Walfredo Cirne
Antonio Cisternino
Rance Cleaveland
Andrea Clematis
Raphael Clifford
Murray Cole
Raphael Collet
Michele Co
Carmela Comito
Antonio Congiusta
Massimo Coppola
Julita Corbalan
Ricardo C. Correa
Luis Correia

Paulo Correia
Alexandre di Costanzo
Vitor Santos Costa
Cedric Coulon
Patrick Crowley
Maria Cutumisu
Czarnul

Pasqua D‘Ambra
Litaize Daniel
Abdelmadjid Dargham
Kei Davis

Kurt Debattista
Jérome Décamps

Ewa Deelman

Chirag Dekate

Carole Delporte-Gallet
Camil Demetrescu
Yves Denneulin

Enrico Denti

Veerle Desmet
Frédéric Desprez
Robert Dew
Gerasimos Dimitriadis
Menno Dobber
Shlomi Dolev

Rion Dooley

Yon Doursiboure
Karel Driesen

Steven G. Dropsho
Rubing Duan

Ziyang Duan

Sérgio Duarte
Frederick Ducatelle
Jan Duennweber

Tain Duff

Franciszek A. Dul
Catalin L. Dumitrescu
Christopher Dutchyn
Pierre-Francois Dutot
Inés de Castro Dutra
Partha Dutta

Vaclav Dvorak
Sandhya Dwarkadas
W. Dzwinel

Jeff Edmonds
Lieven Eeckhout
Alexandre Eichenberger
Liane Eitan

M. Ellinas

Vincent Englebert
Dick Epema

Carsten Ernemann
Carl Esswein

Luis Angelo Estefanel

Josep Fabrega
Carlo Fantozzi
Hugues Fauconnir
Dror Feitelson
Paolo Ferragina
Paulo Ferreira
Fabrice Le Fessant

Amos Fiat

Ludger Fiege

Irene Finocchi
Stephen Fitzpatrick
Jose Flich
Pierfrancesco Foglia
Nuno Fonseca
Victor Francisco Fonte
Philippe Fortemps
José Fortes

Dimitris Fotakis
Geoffrey Fox

Pierre Fraigniaud
Felipe M. G. Franca
Daniel Franco
Antonio Frangioni
Hubertus Franke
Roy Friedman
Filippo Furfaro

Estelle Gabarron
Edgar Gabriel
Efstratios Gallopoulos
Ayalvadi Ganesh
Dennis Gannon
Xiaofeng Gao

Nuno Garcia

Maria Jesus Garzaran
Thierry Gautier
Georgi Gaydadjiev
Jean-Patrick Gelas
Arpad Gellert

Giorgio Ghelli

Seth Gilbert

Roberto Giorgi

L. Giraud

Olivier Gluck

Kevin Glynn

Alfredo Goldman
Michael Goldwasser
Maria Cecilia Gomes
Tom Goodale

José Gortes
Dhrubajyoti Goswami
Candelaria Hernandez Goya

Organization

Paul Grace

Maria Gradinariu
Jose Angel Gregorio
Armin Groesslinger
Roberto Grossi
Abdou Guermouche
Ronan Guivarch

Fei Guo

Jia Guo

Youssef Hamadi
Abdelkader Hameurlain
Lance Hammond
Sidath Handurukande
Audun Fosselie Hansen
Robert Harakaly
Andrew Harrison
Michael Hartle
William Hart

Akira Hatanaka
Yasushi Hayashi
Andreas Heinemann
Bruce Hendrickson
Ludovic Henrio
Andreas Herkersdorf
Porfidio Herndndez
German Rodriguez Herrera
Elisa Heymann
Christian Hochberger
Juergen Hofer

P. Horan

Geir Horn

S.T. Huang

Kevin Huck

Daniel Hughes

Shiwen Hu

Andrei Hutanu
Zhigang Hu

Alexandru Iosup

Michael A. Jaeger
Samir Jafar
Mathieu Jan
Klaus Jansen

XIX

XX Organization

Detlef Jantz

Stephen Jarvis
Emmanuel Jeannot
Emmanuel Jeanvoine
Wojciech Jedruch
Jean-Pierre Jessel
Chris Jesshope
Arshad Jhumka
Gangyi Jiang

Daniel A. Jiménez

Daniel Jiménez-Gonzalez

Ricardo Jimenez-Peris
Ackbar Joolia

Josep Jorba

Joaquim Jorge
Norman P. Jouppi
Alexandru Jugravu
Flavio Junqueira

Pawel Kaczmarek
Dave Kaeli

David Kaeli

Tim Kaiser

Christos Kaklamanis
Odej Kao

Helen Karatza
Wolfgang Karl

Nick Karonis

Irit Katriel

Krishna M. Kavi
Gabor Kecskemeti
Joerg Keller

Tan Kelley

Paul Kelly

Mazen Kharbutli
Artur Klauser
Gabriel Kliot

Can Emre Koksal
Georgios Koltsidas
Miriam Konkel
Spyros Kontogiannis
Alix Munier Kordon
Harald Kosch
Evangelos Kotsovinos
Andreas Krall

Dieter Kranzlmueller
Axel Krings

Mukkai Krishnamoorthy

Ajay Kshemkalyani
Archit Kulshrestha
Piyush Kumar
Pierre Kuonen
Klaus Kursawe
Shay Kutten
Georgi Kuzmanov
Amund Kvalbein
Costas Kyriacou

John Lach

Adrian Lahanas
Marco Lapegna
Gregor von Laszewski
Luciano Lavagno
Doug Lea

Ben Lee

Kevin Lee

P.A. Lee

Charles Lefurgy
Arnaud Legrand
Zhou Lei

Sebastien Leriche
Vincenzo Liberatore
Keqin Li

Alexandre A. B. Lima
Mikko Lipasti
Jinshan Liu
Xiaoming Li

Josep Llosa

Gabriel Loh

Luis Lopes

Paulo Afonso Lopes
Ricardo Lopes
Pedro Lopez

Joao Lourenco
Mikel Lujan

Frank Luk

Paul Lu

Jason Maassen
Steve MacDonald

Cam Macdonell

Jon MacLaren

Erik Maehle

Kaoutar E1 Maghraoui
Nicolas Maillard
Andrew Maloney
Marco Mamei

D. Manivannan
Rajit Manohar
Daniel Marques

Osni Marques

José F. Martinez
Xavier Martorell
Mike Marty

Carlo Mastroianni
Ivan Matosevic
Kiminori Matsuzaki
M. Matuszek

Marios Mavronicolas
Michael O. McCracken
Sally A. McKee
Pedro Medeiros
Nordine Melab

Roie Melamed

John Mellor-Crummey
Alex Mendiburu
Philippe Merle
Andre Merzky
Valentin Mesaros
Michael Messig
Norbert Meyer
Pierre Michaud

B. Scott Michel

Sam Midkiff

Jose Miguel-Alonso
Simon Miles

Mike Minkoff

Neeraj Mittal
Michael Mitzenmacher
Hashim H. Mohamed
Sonia Ben Mokhtar
Ossi Mokryn

Carlos Molina
Burkhard Monien
Sebastien Monnet

Organization

Paulo Monteiro
Alberto Montresor
Oveeyen Moonian
Anna Morajko

Luc Moreau

Jose A. Moreno
Luz Marina Moreno
Andreas Moshovos
Achour Mostefaoui
Grégory Mounié
Francisco Moura
Juan Carlos Moure
Rim Moussa

Trevor Mudge

Gero Miihl

Toan Lucian Muntean
Amy L. Murphy
Peter Musial

Hidemoto Nakada
Jim Napolitano
Wahid Nasri

Mario Nemirovsky
Kyriacos Neocleous
Francesco Nerieri
Nuno Ferreira Neves
Tuan Anh Nguyen
Rob van Nieuwpoort
Christos Nomikos
Nils Agne Nordbotten
Maério Serafim Nunes

Rui Oliveira

Suely Oliveira

Salvatore Orlando

Pablo Montesinos Ortego
Djamila Ouelhad]j

Emre Ozer

Can Ozturan

Mathias Pacher
Esther Pacitti
Gérard Padiou
Marc Pantel
Dimitris Papadias

XXI

XXII Organization

Evangelos Papapetrou
Marina Papatriantafilou
Koulla Papavasiliou
Michael Papka

Savas Parastatidis
Nikos Parlavantzas

G. Paschos

Sarantis Paskalis
Simon Patarin

Sanjay Patel

Yale Patt

Mathias Paulin
Johnatan Pecero-Sanchez
Fernando Pedone
Joao Pedro

Susanna Pelagatti
Liang Peng

Lucia Draque Penso
José Pereira

Paulo Rogério Pereira
Christian Perez

Juan Carlos Pérez
Fabrizio Petrini

Jan Petzold

Gert Pfeifer

C. Pham

Chris Phillips
Guillaume Pierre
Jean-Marc Pierson
Anténio M. S. Pina
Eduardo Pinheiro
Alexandre Pinto
Stefan Pleisch

Sabri Pllana

Stefan Podlipnig
Eleftherios Polychronopoulos
Konstantin Popov
Peter Popov
Fernando Cores Prado
Pascale Primet
Thierry Priol

Radu Prodan

Alberto Proenga

Kirk Pruhs

Valentin Puente

André Puga
Diego Puppin

Jun Qin

Francesco Quaglia
Francisco J. Quiles
Martin Quinson

Bruno Raffin

Sergio Rajsbaum
Pierre Ramet

Alex Ramirez

Ruy Ramos

Omer Rana

Andrew Rau-Chaplin
Pierre-Guillaume Raverdy
Kees van Reeuwijk
Alexander Reinefeld
Sven-Arne Reinemo
Steve Reinhardt

José Renau

Carlos Ribeiro

Olivier Richard

Stefan Richter

Ana Ripoll

Etienne Riviere
Thomas Robertazzi
Antonio Robles
Ricardo Rocha
Jean-Louis Roch
Rodrigo Rodrigues
Francisco Almeida Rodriguez
Jose E. Roman
Michiel Ronsse

Brian Ropers-Huilman
Alain Roy

Peter Van Roy
Krzysztof Rzadka

Daniele Sacchetti
Francoise Sailhan
Pascal Sainrat

J. César de Sa
Rizos Sakellariou
Francisco de Sande

Oliverio J. Santana
Jesus Jorge Santiso
Elizeu Santos-Neto
Nuno Santos
Alvaro Suarez Sarmiento
Yiannakis Sazeides
R. Schaefer

Jochen Schiller
Hartmut Schmeck
Alan Schmitt
Michael Schoettner
Peter Schulthess
Frank Olaf Sem-Jacobsen
Miquel A. Senar
Daniela di Serafino
Clovis Seragiotto
Jocelyn Srot

Jay Sethuraman
Keith Seymour
André Seznec
Xipeng Shen
Kazuyuki Shudo
Alex Shvartsman
Mumtaz Siddiqui
Volkmar Sieh
Dario Silva
Fabricio Da Silva
Fabrizio Silvestri
Jens Simon

Brett Sinclair

Ajit Singh

Mukesh Singhal
Gurdip Singh
Oliver Sinnen
Henk Sips

David Skillicorn
Martin Skutella
Dimitris Skyrianoglou
Yahya Slimani

Jim Smith

Joao Luis Sobral
Thomas Sgdring
Anil Somayaji
Toannis Sourdis
Leonel Augusto Sousa

Organization

Paulo Sousa
Francesco Spadini
Giandomenico Spezzano
Daniel Spooner
Srikanth T. Srinivasan
Yannis Stamatiou
Dylan Stark

Kyriakos Stavrou

L.J. Steggles

Benhur Stein

George Steiner

Per Stenstrom

David Stewart

Kirk Stewart

A. Striegel

Torsten Suel

Remo Suppi

Frederic Suter

Yoshio Tanaka
Yarong Tang
David Tarjan
Ferda Tartanoglu
Gadi Taubenfeld
Kenjiro Taura

Tan Taylor

Andrei Tchernykh
Shanghua Teng
Jim Teresco
Gabor Terstiansky
Oliver Theel
Ingebjorg Theiss
David Thompson
Fernando Tinetti
Nicola Tonelloto
Jesper Larsson Traff
Corentin Travers
Frederic Tronel
Wolfgang Trumler
Paolo Trunfio
Hong-Linh Truong
Eleni Tsiakkouri
Kostas Tsichlas
Kostas Tsichlas
Theodoros Tsiftsis

XXIIT

XXIV Organization

Philippas Tsigas
George Tsouloupas
Dean Tullsen
Georg Turban
Stefan Turek
Roland Tusch
Mayank Tyagi
Gary Tyson

Jo Ueyama
Sascha Uhrig
Augustus K. Uht
Brygg Ullmer
Gil Utard

Neil Vachharajani
Sathish S. Vadhiyar
Fernando Vallejo
Hans Vandierendonck
Paulo B. Vasconcelos
Jose Marcos Moreno Vega
Pierangelo Veltri
Kees Verstoep
Vincent Villain

Alex Villazon
Jean-Marc Vincent
Lucian Vintan
Frédéric Vivien
Berthold Vécking
Michael Voss

Spyros Voulgaris
Jaksa Vuckovic

Jian Wang

Jinling Wang

Jon Weinberg

Zunce Wei

Michael Welzl
Matthias Werner
Matthias Westermann
Tony White

Philipp Wieder
Gerhard J. Woginger
Nicole Wolter

Adam K. L. Wong
Patrick Worley
Joachim Worringen
Gosia Wrzesinska

Wei Xing

Ramin Yahyapour
Kun Yang

Eiko Yoneki

Eiko Yoneki

Ki Hwan Yum

Apostolos Zarras
Eberhard Zehendner
Chongjie Zhang

Hu Zhang

Mingmin Zhang
Dong Zhou
Wolfgang Ziegler
Craig Zilles

Corrado Zoccolo
Albert Zomaya

Table of Contents

Invited Talks

On the Use of Virtualization and Service Technologies

to Enable Grid-Computing i 1
Andréa Matsunaga, Mauricio Tsugawa, Ming Zhao, Liping Zhu,
Vivekananthan Sanjeepan, Sumalatha Adabala, Renato Figueiredo,
Herman Lam, and José A.B. Fortes

The Evolution of the Blue Gene/L Supercomputer 13
José Moreira

Agent Based Computational Grids: Research Issues and Challenges. 14
Omer F. Rana

Science on a Large Scale 15

Raymond Bair

Topic 1 — Support Tools and Environments 17
Henryk Krawczyk, Jacques Chassin de Kergommeaur,
Pierre Manneback, and Tomds Margalef (Topic Chairs)

Tolerating Message Latency Through the Early Release
of Blocked Receives 19
Jian Ke, Martin Burtscher, and Evan Speight

Fast Convex Closure for Efficient Predicate Detection................... 30
Paul A.S. Ward and Dwight S. Bedassé

A Generic Language for Dynamic Adaptation 40
Assia Hachichi, Gaél Thomas, Cyril Martin, Bertil Folliot,
and Simon Patarin

Soft Computing Approach to Performance Analysis of Parallel
and Distributed Programs i 50
Hong-Linh Truong and Thomas Fahringer

The Data Diffusion Space for Parallel Computing in Clusters 61
Jorge Buenabad-Chdvez and Santiago Dominguez-Dominguez

Models for On-the-Fly Compensation of Measurement Overhead
in Parallel Performance Profiling L. 72
Allen D. Malony and Sameer S. Shende

Modeling Pipeline Applications in POETRIES......................... 83
FEduardo César, Joan Sorribes, and Emilio Luque

XXVI Table of Contents

Topic 2 — Performance Prediction and Evaluation....... 93
Allen D. Malony, Thomas Fahringer, Allan Snavely,
and Luis Silva (Topic Chairs)

Automatic Tuning of Master/Worker Applications 95
Anna Morajko, Eduardo César, Paola Caymes-Scutart,
Tomds Margalef, Joan Sorribes, and Emilio Luque

Performance Cockpit: An Extensible GUI Platform
for Performance Tools e 104
Tianchao Li and Michael Gerndt

Apex-Map: A Synthetic Scalable Benchmark Probe
to Explore Data Access Performance on Highly Parallel Systems 114
Erich Strohmaier and Hongzhang Shan

PerfMiner: Cluster-Wide Collection, Storage and Presentation

of Application Level Hardware Performance Data 124
Philip J. Mucci, Daniel Ahlin, Johan Danielsson,
Per Ekman, and Lars Malinowski

Performance Evaluation of MM5 on Clusters with Modern Interconnects:
Scalability and Impact i 134
Rangit Noronha and Dhabaleswar K. Panda

A Performance Measurement Infrastructure for Co-array Fortran......... 146
Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

Event-Based Measurement and Analysis of One-Sided Communication 156
Marc-André Hermanns, Bernd Mohr, and Felix Wolf

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 166
Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

Knowledge Based Automatic Scalability Analysis and Extrapolation
for MPI Programso oot 176
Michael Kluge, Andreas Knipfer, and Wolfgang E. Nagel

Performance Modeling: Understanding the Past
and Predicting the Future....... 185
David H. Bailey and Allan Snavely

An Approach to Performance Prediction for Parallel Applications 196
Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee

Table of Contents XXVII

Topic 3 — Scheduling and Load-Balancing................. 207
Denis Trystram, Michael Bender, Uwe Schwiegelshohn,
and Luis Paulo Santos (Topic Chairs)

Balancing Parallel Adaptive FEM Computations by Solving Systems
of Linear Equationst 209
Henning Meyerhenke and Stefan Schamberger

CISNE: A New Integral Approach for Scheduling Parallel Applications

on Non-dedicated Clustersttt 220
Mauricio Hanzich, Francesc Giné, Porfidio Herndndez,
Francesc Solsona, and Emilio Luque

On Optimum Multi-installment Divisible Load Processing
in Heterogeneous Distributed Systems 231
Maciej Drozdowski and Marcin Lawenda

A Scalable Parallel Graph Coloring Algorithm

for Distributed Memory Computersouuiinireinenennen.. 241
Erik G. Boman, Doruk Bozdag, Umit Catalyurek,
Assefaw H. Gebremedhin, and Fredrik Manne

Complexity and Approximation for the Precedence Constrained
Scheduling Problem with Large Communication Delays 252
R. Giroudeau, J.C. Konig, F.K. Moulai, and J. Palaysi

Batch-Scheduling Dags for Internet-Based Computing 262
Grzegorz Malewicz and Arnold L. Rosenberg

Scheduling Workflow Distributed Applications in JavaSymphony 272
Alexandru Jugravu and Thomas Fahringer

Tasks Mapping with Quality of Service

for Coarse Grain Parallel Applications 282
Patricia Pascal, Samuel Richard, Bernard Miegemolle,
and Thierry Monteil

Initiating Load Balancing Operations.......... 292
Marta Beltrdn, Jose L. Bosque, and Antonio Guzmdn

Hierarchical Scheduling for Moldable Tasks........... 302
Pierre-Frangois Dutot

On-Line Bicriteria Interval Scheduling 312
Fabien Baille, Evripidis Bampis, Christian Laforest,
and Nicolas Thibault

XXVIII Table of Contents

Topic 4 — Compilers for High Performance 323
Albert Cohen, Michael F.P. O’Boyle, Martin Griebl,
and José Moreira (Topic Chairs)

The Periodic-Linear Model of Program Behavior Capture 325
Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

Deciding Where to Call Performance Libraries 336
Christophe Alias and Denis Barthou

Topic 5 — Parallel and Distributed Databases,

Data Mining and Knowledge Discovery 347
Domenico Talia, Hillol Kargupta, Patrick Valduriez,
and Rui Camacho (Topic Chairs)

MADIS: A Slim Middleware for Database Replication 349
Luis Irun-Briz, Hendrik Decker, Rubén de Juan-Marin,
Francisco Castro-Company, Jose E. Armenddriz-Inigo,
and Francesc D. Munoz-Escoti

Hierarchical Aggregation in Networked Data Management............... 360
Pedro Furtado

Mining Global Association Rules on an Oracle Grid
by Scanning Once Distributed Databases................ 370
Frank Wang and Na Helian

Topic 6 — Grid and Cluster Computing:

Models, Middleware and Architectures 379
Craig A. Lee, Thilo Kielmann, Laurent Lefévre,
and Joao Gabriel Silva (Topic Chairs)

Combining Data Replication Algorithms and Job Scheduling Heuristics
in the Data Grid 381
Ming Tang, Bu-Sung Lee, Xueyan Tang, and Chai-Kiat Yeo

Towards High-Level Grid Programming and Load-Balancing:
A Barnes-Hut Case Study oovvinni e 391
Martin Alt, Jens Miiller, and Sergei Gorlatch

An Adaptive Skeletal Task Farm for Grids 401
Horacio Gonzdlez-Vélez

Developing Java Grid Applications with Ibis............. 411
Kees van Reeuwijk, Rob van Nieuwpoort, and Henri Bal

Table of Contents XXIX

Virtual Workspaces in the Grid 421
Katarzyna Keahey, Ian Foster, Timothy Freeman, Xuehai Zhang,
and Daniel Galron

Modeling Machine Availability in Enterprise
and Wide-Area Distributed Computing Environments 432
Daniel Nurmi, John Brevik, and Rich Wolski

Faults in Large Distributed Systems and What We Can Do About Them . 442
George Kola, Tevfik Kosar, and Miron Livny

A Grid Information Service Based on Peer-to-Peer 454
Diego Puppin, Stefano Moncelli, Ranieri Baraglia, Nicola Tonellotto,
and Fabrizio Silvestri

GRUBER: A Grid Resource Usage SLA Broker 465
Catalin L. Dumitrescu and Ian Foster

An Architecture for Distributed Grid Brokering........................ 475
John M. Brooke and Donal K. Fellows

Topic 7 — Parallel Computer Architecture and ILP 485
Theo Ungerer, Josep-Lluis Larriba-Pey, Kevin Skadron,
and Pedro Trancoso (Topic Chairs)

The Combined Perceptron Branch Predictor........................... 487
Matteo Monchiero and Gianluca Palermo

Target Encoding for Efficient Indirect Jump Prediction 497
Juan Carlos Moure, Domingo Benitez, Dolores Isabel Rexachs,
and Emilio Luque

Dynamic Partition of Memory Reference Instructions —
A Register Guided Approach 508
Yizin Shi and Gyungho Lee

Value Compression for Efficient Computation.......................... 519
Ramon Canal, Antonio Gonzdlez, and James E. Smith

Improving Instruction Delivery with a Block-Aware ISA 530
Ahmad Zmily, Earl Killian, and Christos Kozyrakis

Non-uniform Instruction Scheduling 540
Joseph J. Sharkey and Dmitry V. Ponomarev

Instruction Recirculation: Eliminating Counting Logic
in Wakeup-Free Schedulers 550
Joseph J. Sharkey and Dmitry V. Ponomarev

XXX Table of Contents

Early Experience with Scientific Applications

on the Blue Gene/L Supercomputercooooiiiiiiiinnn...

George Almasi, Gyan Bhanot, Dong Chen, Maria Eleftheriou,
Blake Fitch, Alan Gara, Robert Germain, John Gunnels,

Manish Gupta, Philip Heidelberg, Mike Pitman,

Aleksandr Rayshubskiy, James Sexton, Frank Suits, Pavlos Vranas,
Bob Walkup, Chris Ward, Yuriy Zhestkov, Alessandro Curioni,
Wanda Andreoni, Charles Archer, José Moreira, Richard Loft,
Henry Tufo, Theron Voran, and Katherine Riley

A Detailed Study on Phase Predictors

Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere

A Novel Lightweight Directory Architecture

for Scalable Shared-Memory Multiprocessors

Alberto Ros, Manuel E. Acacio, and José M. Garcia

Topic 8 — Distributed Systems and Algorithms

Marc Shapiro, Idit Keidar, Felix Freiling,
and Luis Rodrigues (Topic Chairs)

A Dynamic Distributed Algorithm for Multicast Path Setup...........

Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio

Distributed Maintenance of a Spanning Tree

Using Labeled Tree Encoding i

Vigay K. Garg and Anurag Agarwal

Replication Predicates for Dependent-Failure Algorithms..............

Flavio Junqueira and Keith Marzullo

Consistent Data Replication: Is It Feasible in WANs?

Yi Lin, Bettina Kemme, Marta Patino-Martinez,
and Ricardo Jiménez-Peris

A Hybrid Message Logging-CIC Protocol

for Constrained Checkpointability

Francgoise Baude, Denis Caromel, Christian Delbé,
and Ludovic Henrio

A Fault-Tolerant Token-Based Mutual Exclusion Algorithm

Using a Dynamic Tree i

Julien Sopena, Luciana Arantes, Marin Bertier, and Pierre Sens

Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation . ..

Gero Miihl, Michael A. Jaeger, Klaus Herrmann, Torben Weis,
Andreas Ulbrich, and Ludger Fiege

.. 633

664

Table of Contents XXXI

A Checkpoint /Recovery Model for Heterogeneous Dataflow Computations
Using Work-Stealing i 675
Samir Jafar, Thierry Gautier, Azel Krings, and Jean-Louis Roch

Topic 9 — Parallel Programming:

Models, Methods and Languages 685
Marco Danelutto, Denis Caromel, Duane Szafron,
and Fernando Silva (Topic Chairs)

A Paradigm for Parallel Matrix Algorithms: Scalable Cholesky........... 687
David S. Wise, Craig Citro, Joshua Hursey, Fang Liu,
and Michael Rainey

An Exception Handling Mechanism

for the Concurrent Invocation Statement 699
Hiu Ning (Angela) Chan, Esteban Pauli, Billy Yan-Kit Man,
Aaron W. Keen, and Ronald A. Olsson

smt-SPRINTS: Software Precomputation with Intelligent Streaming

for Resource-Constrained SMTs. i 710
Tanping Wang, Christos D. Antonopoulos,
and Dimitrios S. Nikolopoulos

Symmetric Data Objects and Remote Memory Access Communication

for Fortran-95 Applications. 720
Jarek Nieplocha, Doug Baxter, Vinod Tipparaju, Craig Rasmunssen,
and Robert W. Numrich

Using Aspects for Supporting Procedural Modules in # Programming 730
Francisco Heron de Carvalho Junior and Rafael Dueire Lins

Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! 740
Shady Copty and Shmuel Ur

An Investigation of Sharing Strategies for Answer Set Solvers
and SAT SOLVETSo 750
Hung Viet Le and Enrico Pontelli

Flexible Skeletal Programming with eSkel 761
Anne Benoit, Murray Cole, Stephen Gilmore, and Jane Hillston

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 771
Marco Aldinucci, Alessandro Petrocelli, Edoardo Pistoletti,
Massimo Torquati, Marco Vanneschi, Luca Veralds,
and Corrado Zoccolo

SPC-XML: A Structured Representation

for Nested-Parallel Programming Languages 782
Arturo Gonzdlez-Escribano, Arjan J.C. van Gemund,
and Valentin Cardenoso-Payo

XXXII Table of Contents

Topic 10 — Parallel Numerical Algorithms
Jacek Kitowski, Andrzej M. Goscinski, Boleslaw K. Szymanski,
and Filomena d’Almeida (Topic Chairs)

Performance Measurements of the 3D FFT

on the Blue Gene/L Supercomputereuueeueneneeeno..
Maria Eleftheriou, Blake Fitch, Aleksandr Rayshubskiy,
T.J. Christopher Ward, and Robert Germain

Parallel Solution of Sparse Linear Systems Arising
in Advection—Diffusion Problems........... L.
Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Parallelization of Implicit-Explicit Runge-Kutta Methods
for Cluster of PCs. e
José Miguel Mantas, Pedro Gonzilez, and José A. Carrillo

Comparison of Different Parallel Modified Gram-Schmidt Algorithms
Gudula Ringer and Michael Schwind

Automatic Tuning of PDGEMM Towards Optimal Performance..........
Sascha Hunold and Thomas Rauber

Parallelization of Divide-and-Conquer Eigenvector Accumulation.........
Wilfried N. Gansterer and Joachim Zottl

Parallel Order Reduction via Balanced Truncation for Optimal Cooling

of Steel Profiles
José M. Badia, Peter Benner, Rafael Mayo, Enrique S. Quintana-Ort,
Gregorio Quintana-Orti, and Jens Saak

Broadcast-Based Parallel LU Factorization
Fernando G. Tinetti and Armando E. De Giusti

Topic 11 — Distributed and High-Performance
Multimedia...........
Laszlo Boszormenyi, Max Mihlhduser, Geoff Coulson,
and Nuno Correia (Topic Chairs)

Dynamic Distributed Collaborative Merging Policy to Optimize

the Multicasting Delivery Scheme i,
X.Y. Yang, Porfidio Herndndez, F. Cores, A. Ripoll, R. Suppi,
and Emilio Luque

Dynamic Proxy-Cache Multiplication Inside LANs
Claudiu Cobdarzan

Perspectives for Lecture Videos
Michael Hartle, Henning Bdr, Christoph Trompler, and Guido RdfSling

Table of Contents XXXIII

A Scene-Based Bandwidth Allocation Scheme
for Transferring VBR-Encoded Videos 909
Dafu Deng and Hai Jin

DCT Block Conversion for H.264/AVC Video Transcoding 919
Joo-Kyong Lee and Ki-Dong Chung

Topic 12 — Theory and Algorithms

for Parallel Computation.................................... 929
Andrea Pietracaprina, Kieran Herley, Christos Zaroliagis,
and Casiano Rodriguez-Leon (Topic Chairs)

Efficient Bufferless Routing on Leveled Networks 931
Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

Efficient Truthful Mechanisms
for the Single-Source Shortest Paths Tree Problem 941
Luciano Guala and Guido Proietti

Optimal Embedding of the Hypercube
on Partitioned Optical Passive Stars Networks 952
Christos Kaklamanis and Charalampos Konstantopoulos

Dynamic Page Migration Under Brownian Motion................... ... 962
Marcin Bienkowski and Miroslaw Korzeniowski

Topic 13 — Routing and Communication
in Interconnection Networks................................ 973

Emilio Luque, Cruz Izu, Olav Lysne, and José Legatheauz
(Topic Chairs)

Transport Time Distribution for Deflection Routing on an Odd Torus 975
J.M. Fourneau and T. Czachdrski

Routing and Scheduling
for a Novel Optical Multistage Interconnection Network................. 984
Stu-Cheung Chau, Tiehong Xiao, and Ada Wai-Chee Fu

Topology-Based Hypercube Structures for Global Communication
in Heterogeneous Networks i i i 994
Silvia M. Figueira and Vijay Janapa Reddi

Performance Effects of Node Mappings
on the IBM BlueGene/L Machine, 1005
Brian E. Smith and Brett Bode

INSEE: An Interconnection Network Simulation
and Evaluation Environment 1014
Fco. Javier Ridruejo Perez and José Miguel-Alonso

XXXIV Table of Contents

Cost / Performance Trade-Offs and Fairness Evaluation
of Queue Mapping Policies
Teresa Nachiondo, José Flich, José Duato, and Mitchell Gusat

On the Correct Sizing on Meshes Through

an Effective Congestion Management Strategy
Pedro Javier Garcia, José Flich, José Duato, Francisco José Quiles,
Ian Johnson, and F. Naven

A New Hardware Efficient Link Scheduling Algorithm

to Guarantee QoS on Clusters i
José Manuel Claver, Maria del Carmen Carrion, Manel Canseco,
Maria Blanca Caminero, and Francisco José Quiles

Topic 14 — Mobile and Ubiquitous Computing
Evaggelia Pitoura, Marios Dikaiakos, Valérie Issarny,
and Nuno Preguica (Topic Chairs)

An Efficient and Fault-Tolerant Update Commitment Protocol
for Weakly Connected Replicas
Jodo Barreto and Paulo Ferreira

Controlling Concurrency in Mobile Computing Environments
with Broadcast-Based Data Dissemination
José Maria Monteiro and Angelo Brayner

Integrating Mobile Devices into the Grid:
Design Considerations and Evaluation
Stavros Isaiadis and Viadimir Getov

New Bounds on the Competitiveness
of Randomized Online Call Control in Cellular Networks
Toannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou

A Multiple Channel Access Protocol for Ad Hoc Wireless Networks
Kil-Woong Jang

Personalized Access to Semantic Web Agents Using Smart Cards
Riza Cenk Erdur and Geylani Kardas

Fast and Secure Communication Resume Protocol
for Wireless Networkso
Kihong Kim, Jinkeun Hong, and Jongin Lim

On AAA Based on Brokers and Pre-encrypted Keys in MIPv6
Hoseong Jeon, Min Young Chung, and Hyunseung Choo

Table of Contents XXXV

Topic 15 — Peer-to-Peer and Web Computing 1141
Anne-Marie Kermarrec, Mdrk Jelasity, Antony Rowstron,
and Henrique Domingos (Topic Chairs)

Epidemic-Style Management of Semantic Overlays
for Content-Based Searching........... il 1143
Spyros Voulgaris and Maarten van Steen

Long Range Contacts in Overlay Networks 1153
Filipe Aratdjo and Luis Rodrigues

Combining the Use of Clustering and Scale-Free Nature
of User Exchanges into a Simple and Efficient P2P System 1163
Pierre Fraigniaud, Philippe Gauron, and Matthieu Latapy

Pastis: A Highly-Scalable Multi-user Peer-to-Peer File System 1173
Jean-Michel Busca, Fabio Picconi, and Pierre Sens

AGNO: An Adaptive Group Communication Scheme
for Unstructured P2P Networks............ 1183
Dimitrios Tsoumakos and Nick Roussopoulos

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks 1194
Raphaél Chand and Pascal Felber

Topic 16 — Applications of High-Performance
and Grid Computing........................... 1205
Ray Bair, Ed Seidel, Michel Daydé, and José Laginha Palma
(Topic Chairs)

Parallel Linear Space Algorithm for Large-Scale Sequence Alignment 1207
Eric Li, Cheng Xu, Tao Wang, Li Jin, and Yimin Zhang

Parallel Multiple Sequence Alignment
with Decentralized Cache Support 1217
Denis Trystram and Jaroslaw Zola

Parallel Construction of Large Suffix Trees on a PC Cluster 1227
Chunzi Chen and Bertil Schmidt

Parallel Edge-Based Inexact Newton Solution
of Steady Incompressible 3D Navier-Stokes Equations 1237
Renato N. Elias, Marcos A.D. Martins, and Alvaro L.G.A. Coutinho

High Performance Computing for a Financial Application
Using Fast Fourier Transform.......... oo .. 1246
Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

XXXVI Table of Contents

Parallel Simulation of the Propagation of Powdery Mildew

inaVineyard.o

Agnes Calonnec, Guillaume Latu, Jean-Marc Naulin, Jean Roman,
and Gaél Tessier

Parallelism for Perturbation Management and Robust Plans...........

Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz
SPH2000: A Parallel Object-Oriented Framework

for Particle Simulations with SPH

Sven Ganzenmiiller, Simon Pinkenburg, and Wolfgang Rosenstiel

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System . .

Jason Cope, Craig Hartsough, Peter Thornton, Henry Tufo,
Nathan Wilhelmi, and Matthew Woitaszek

Author Index

On the Use of Virtualization and Service Technologies
to Enable Grid-Computing

Andréa Matsunaga, Mauricio Tsugawa, Ming Zhao,
Liping Zhu, Vivekananthan Sanjeepan, Sumalatha Adabala,
Renato Figueiredo, Herman Lam, and José A.B. Fortes

Advanced Computing and Information Systems Laboratory (ACIS)
Dep. of Electrical and Computer Engineering, University of Florida, Gainesville, FL. 32611
fortes@ufl.edu

Abstract. The In-VIGO approach to Grid-computing relies on the dynamic es-
tablishment of virtual grids on which application services are instantiated. In-
VIGO was conceived to enable computational science to take place In Virtual
Information Grid Organizations. Having its first version deployed on July of
2003, In-VIGO middleware is currently used by scientists from various disci-
plines, a noteworthy example being the computational nanoelectronics research
community (http://www.nanohub.org). All components of an In-VIGO-gener-
ated virtual grid — machines, networks, applications and data — are themselves
virtual and services are provided for their dynamic creation. This article reviews
the In-VIGO approach to Grid-computing and overviews the associated mid-
dleware techniques and architectures for virtualizing Grid components, using
services for creation of virtual grids and automatically Grid-enabling unmodi-
fied applications. The In-VIGO approach to the implementation of virtual net-
works and virtual application services are discussed as examples of Grid-
motivated approaches to resource virtualization and Web-service creation.

1 Introduction

The future envisioned by the concept of Grid-computing is one where users will be
able to securely and dependably access, use, “publish” and compose applications as
services anywhere and anytime. Transparently to users, Grids will have to aggregate
resources, possibly across different institutions, to provide application services. In
addition, Grid middleware will have to create in the aggregated resources the execu-
tion environments where services and users can securely run or create applications of
interest and access needed data. Unless properly designed, individual solutions for
each of these requirements can conflict with each other, as shared resources cannot be
easily reconfigured to simultaneously provide multiple execution environments se-
curely and on-demand for different users and applications. This article argues that
resource virtualization and service technologies provide ideal mechanisms to address
these and other key requirements of Grid-computing, and describes components of In-
VIGO, an evolving deployed system that successfully uses this approach [1], [2].

The remainder of this paper is organized as follows. The In-VIGO approach is
briefly reviewed in Section 2. Virtual machines and the corresponding services for
their creation and management are reviewed in Section 3. Virtual file systems and
associated services are overviewed in Section 4. Virtual networking techniques are
presented in Section 5. Virtual applications and virtual application services are dis-
cussed in Section 6. Section 7 describes how the different In-VIGO components are

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1-12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Andréa Matsunaga et al.

securely integrated. Conclusions and the current status of In-VIGO middleware and
research are presented in Section 8.

2 The In-VIGO Approach

In-VIGO is unique in that it decouples user environments from physical resources by
using technologies that virtualize all resources needed for Grid-computing, including
machines, networks, applications and data (see Figure 1). Users will typically interact
with In-VIGO through a portal where they can invoke applications of interest. In-
VIGO delivers these applications through Web-enabled user interfaces that interact
with virtual application (VA) services. VA services interact with other application
services as well as other Grid-computing middleware services. VA services decouple
application interfaces from application implementations thus hiding the kinds of
codes and machines used to provide services. Transparently to users, VA services
engage with virtualization services to create the virtual machines, file systems, net-
works and possibly other applications needed to generate a virtual grid with the nec-
essary execution environment for the application delivered by the VA service. Virtu-
alization services decouple users and execution environments needed by applications
from the physical machines that provide them, thus allowing different instances of an
application service to transparently run on different physical hardware.

Grid x
S | e

Virtual information grids
Services H Services H Services H Services
Virtual computing grids

Virtual Virtual Virtual Virtual
Machines Networks Data Applications

/! g
) 2%

mmj

Fig. 1. High-level view of the In-VIGO approach

Ultimately, Grids will be useful only if they can provide application services for
users. In-VIGO provides each user with a persistent private virtual workspace that
enables him/her to both launch and develop applications, use and manage private
data, and carry out conventional operating system tasks through, for example, a Unix-
like shell. It is also very important that, in addition to the use of services, the process
of deploying applications as services be as simple as possible. Service creation should
not require application developers to know details of how Grid middleware works,
and should not require the involvement of administrators. In-VIGO provides auto-
mated procedures to create application services that only require developers to pro-
vide a description of how a tool works. This description is comparable in nature and
complexity to the “man pages” of an operating system command. It includes the
command-line grammar and some additional information on software dependencies
and other requirements of the application’s execution environment.

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 3

3 Virtual Machines and Virtual Machine Services

In-VIGO supports dynamic allocation of execution environments per user and per
distinct application by using virtual machine technologies (including language-based
Java VMs, as well as O/S-based VMs, such as VMware, User-mode Linux) and/or
“shadow” accounts. For efficiency and scalability purposes, mechanisms are provided
for multiplexing virtual machines and accounts among users and applications without
compromising security and customizability. Virtual machines can either be created
and destroyed for every In-VIGO session or be made persistent across sessions. Vir-
tual machines used to run applications can also be shared across several applications
by using “shadow accounts” [3], which are pre-created accounts on machines that In-
VIGO can use on behalf of arbitrary users.

In-VIGO manages virtual machines through a set of Grid service-based middle-
ware components — VMShop and VMPlant [4]. The key differentiators of this ap-
proach from related work reflect the design decisions of: (1) supporting different VM
technologies, such as VMware, User-Mode Linux; (2) allowing flexible, application-
centric VM environment configurations using direct acyclic graph (DAG) representa-
tions; and (3) supporting dynamic “cloning” of previously-built VM images. Virtual
machines managed using this middleware are highly customizable by the client, on a
per-application basis. In contrast, dynamic virtual environments [5] enable the crea-
tion of VMs from a master disk (e.g. a Linux distribution with pre-installed Globus
software) but do not provide mechanisms for the client to specify the desired ma-
chine’s configuration.

“Classic” VMs present the image of a dedicated operating system while enabling
multiple O/S configurations — completely isolated from each other — to share a single
machine. This is an effective mechanism for resource consolidation, and a key reason
for the renewed interest and popularity of VMse. They also provide a flexible, power-
ful execution environment for Grid computing, offering isolation and security mecha-
nisms complementary to operating systems, customization and encapsulation of entire
application environments, and support for legacy applications [6], addressing a fun-
damental goal of Grid computing — flexible resource sharing.

VMShop provides a single logical point of contact for clients to request three core
services: create a VM instance, query information about an active VM instance, and
destroy (collect) an active VM instance. Requests for virtual machine creation re-
ceived by VMShop contain specifications of hardware, network and software configu-
rations. VMShop is then is responsible for selecting a VMPlant for the creation of a
virtual machine. This process is implemented through a communication API and a
binding protocol that allows VMShop to request and collect bids containing estimated
VM creation costs from VMPlants.

The VMPIlant implements the process of VM instantiation, using the VM’s DAG
specification provided by a client through VMShop as its input. In addition to sup-
porting flexibility of VM configuration, the DAG aids the implementation of an effi-
cient VM creation process by supporting partial matches of cached VM images to find
a suitable match — a “golden” machine. Once a golden machine has been found,
VMPIlant clones the machine, and then parses the DAG to perform a series of configu-
ration actions on the new machine. Once a machine is cloned, the configuration proc-
ess returns a descriptor of the machine, which can be used by the client to make future
references to the VM instance when issuing requests to VMShop.

4 Andréa Matsunaga et al.

4 Virtual File Systems and Virtual File System Services

In-VIGO uses a Grid Virtual File System (GVFS [7]) to support efficient and trans-
parent Grid-wide data provisioning [1], [8]. GVFS presents a generic file system in-
terface to applications by building a virtualization layer upon the de-facto NFS [9]
distributed file system, and does so without changing the existing O/S clients/servers.
It achieves on-demand cross-domain data transfers via the use of middleware-
managed interchangeable logical user accounts [3] and file system proxy-based data
access authentication, forwarding and user-identity mapping [10]. The design sup-
ports deployment of one or more proxies between a native NFS client and server. A
multi-proxy setup is important to implement extensions to GVFES, provide additional
functionality and improve performance.

A unique aspect of In-VIGO is how it integrates virtual machine and file system
techniques to provide flexible execution environments and on-demand, transparent
data access for unmodified applications. Data management has a key role in realizing
the benefits of VM-based Grid computing [6] because a VM computing session typi-
cally involves data distributed across three different logical entities: the “state server”,
which stores VM state; the “compute server”, which provides the capability of instan-
tiating VMs; and the “data server”, which stores user data. Without a virtual file sys-
tem, instantiating a VM requires the explicit movement of state files to a compute
server, and the explicit movement of user data to the VM once it is instantiated. In
contrast, through GVFS, In-VIGO middleware creates dynamic GVFS sessions be-
tween the state and compute servers to support access of VM states for VM instantia-
tion, and between the VM and data servers to support access to user data for applica-
tion execution within the VM [7].

GVES supports secure Grid-wide data provisioning for both VM states and user
files by way of two mechanisms: private file system channels and session-key based
inter-proxy authentication. Privacy and integrity are guaranteed by the SSH connec-
tion, and user authentication is independently carried out by each private file system
channel. Through the use of the virtualization layer, the session key handling is com-
pletely transparent to kernel clients and servers, and it only applies to inter-proxy
authentication between tunnel end-points.

Caching is especially important to exploit data locality and hide network latency in
Grid environments. In each GVFS session, the client-side proxy can dynamically
establish and manage a file system disk cache to complement the kernel memory
buffer with much greater capacity. The cache operates at the granularity of NFS RPC
calls and satisfies requests with cached file attributes and data blocks. For write re-
quests, it can employ write-back to hide write latencies and avoid transfers of tempo-
rary data. Furthermore, GVFS caches can be customized in many aspects (including
size, associativity, write policy and consistency semantics) and thus be tailored to the
needs of different applications. GVFS’ inherent on-demand block-based data access
manner allows for partial transfer of files and can benefit many applications, espe-
cially VM monitors, which typically access only a very small part of often Gigabyte-
size VM disk state. As an application, the middleware can schedule GVFS sessions
with VMM-specific coherence to allow for high-performance VM instantiations. For
example, a VM with non-persistent state can be read-only shared among multiple
users while each user has a “clone” of the VM and independent redo logs, so that
aggressive read caching for state files and write-back caching for redo logs can be
employed [7].

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 5

The data management middleware mentioned above has been implemented as
WSRF-compliant services to provide interoperable service interfaces and flexible
state management [11]. These services include: 1) file system service, which runs on
every server and controls the local file system proxies to establish and configure spe-
cific GVFS sessions; 2) data scheduler service, which provides central scheduling and
customization of GVFS sessions and interacts with individual file system services to
start the sessions; 3) data replication service, which creates and manages data replicas
for the purpose of fault tolerance and load balancing. To initiate a VM-based comput-
ing session in In-VIGO, the VMPIlant service requests the data scheduler service to
prepare a GVFS session between the VM state server and the VM host to instantiate a
compute VM. Afterwards, the VAS service can request the scheduling of another
session between the VM and the data server, so the application can be started inside
the VM and access the user files via GVFS.

5 Virtual Networking

Network connectivity is an obvious necessity in Grid-computing, as it makes remote
job execution/submission possible and also allows communication between processes
for parallel and/or distributed applications. However, due to firewalls and NAT de-
vices, symmetric connectivity is often absent when resources are distributed across
wide-area networks and different administrative domains.

Hosts behind firewalls or NATs can only initiate communication, i.e., they cannot
receive communication initiation requests. This limits the hosts’ ability to receive
remote job execution requests and participate in distributed computations. Existing
solutions to the asymmetric connectivity problem still face one or more of the follow-
ing issues: (1) changes in firewalls or NAT configuration are required (e.g., to allow
traffic in some ports or to forward ports), possibly violating security policies; (2)
knowledge of network usage (e.g., transport port number) is necessary; (3) high ad-
ministration overheads are implicit, since actions are required every time a new re-
source is added or removed from the Grid; and (4) application-transparency is not
preserved. Solutions based on address/port translation require either the applications
to be aware of resource discovery protocols (e.g., SOCKS [12], DPF and GCB [13])
or changes to be done in OS kernel network stack and/or in the Internet infrastructure
(e.g., IPNL [14] and AVES [15]). When networking complexity is abstracted and a
new API is exposed, application-transparency is lost (e.g., peer-to-peer networks and
the Ibis programming environment [16]). Tunneling-based approaches have difficul-
ties with firewalls and high administrative overhead (e.g., VPN, VNET [17], VIOLIN
[18] and X-Bone [19]).

ViNe, the In-VIGO component responsible for network virtualization, has been de-
signed to address all the above issues. It also has additional features such as support
for on-demand creation, deployment and removal of isolated virtual networks that
specifically connect the necessary machines for execution of a Grid application. The
architecture of ViNe is based on IP-overlay on top of the Internet and resembles a
site-to-site VPN setup. In each participating network, a ViNe router (VR) is placed in
order to handle all ViNe traffic. VRs are responsible for intercepting IP packets des-
tined to ViNe private address space, encapsulate them with ViNe header and forward
them to the VR that can deliver the original IP packet. VRs make routing decisions
(i.e., to where a packet needs to be forwarded) based on a set of routing tables, which

6 Andréa Matsunaga et al.

can be updated by secure VR-to-VR communication. The secure update of the tables
is the key for the on-demand definition of new virtual networks.

When a VR is placed in a network environment behind a firewall or NAT device, it
is called a limited VR. Limited VRs cannot receive communication initiated by peer
VRs, so a VR without limitations needs to be allocated as an intermediate node,
which is called queue VR. Routing tables of all VRs are updated to forward to the
queue VR the packets that are destined to the limited VR subnet. Since a limited VR
can initiate communication, it is its responsibility to contact the queue VR and re-
trieve packets.

ViNe uses the private IP address space which is not routable in the Internet. Since
ViNe nodes cannot be reached directly from the Internet, network security can be
discussed with respect to external traffic and internal traffic. External traffic includes
VR-to-VR communication, including encapsulated IP packets and control messages.
Internal traffic includes the actual communication between hosts in ViNe space. VR-
to-VR communication is secured by cryptographically authenticating all messages,
and also by encrypting critical information exchange such as control messages. Inter-
nal traffic security is achieved by either implementing all security policies of an or-
ganization in the VR or delegating that function to the firewall that may be already
present in the site. The latter is possible because ViNe does not modify IP packets,
and the firewall can still inspect and filter ViNe internal traffic following original
rules.

The first prototype of VR has been implemented in Java, with low level network-
ing handled by C code. Hosts do not need the installation of additional software in
order to join ViNe, requiring only the operating systems be able to bind additional IP
addresses to a network interface and to define static routes. Those features are present
in most modern operating systems, making ViNe platform independent. Experiments
showed that ViNe can offer performance that is close to the physical network, both in
round-trip latency and throughput.

ViNe enables machines, even if they are connected to private networks, to easily
join the Grid, and also can minimize the reluctance of system administrators to share
resources by not requiring changes in security policies in the existing networks (a
minimal change may be necessary, i.e. allowing ViNe traffic through the shared re-
sources; however, the ViNe traffic will undergo the same packet inspection/filtering
as the regular network traffic).

6 Virtual Application Services

The In-VIGO Virtual Application (VA) framework enables developers to automati-
cally and transparently enable unmodified legacy applications “for the Grid” and
users to transparently access deployed applications using virtualized resources “on the
Grid”. This requires the creation of VA services capable of orchestrating the use of
previously discussed virtualization and other core Grid-middleware components.
GridLab’s Grid Application Toolkit (GAT) [20], Application Web Services (AWS)
[21] and GridPort [22] are examples of other frameworks that aggregate core Grid-
middleware to facilitate execution of applications and construction of Web-portals,
but that do not consider exposing each application as a Web/Grid-service.

A virtual application consists of a physical application (unmodified application bi-
naries and necessary execution environment) and additional software that (1) custom-

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 7

izes the interface of the physical application to appear as multiple different applica-
tions with different capabilities for different users, and (2) interacts with other mid-
dleware in order to enable multiple simultaneous non-conflicting application instances
on Grid resources. In particular, the virtual application makes use of the resource
virtualization techniques and services described in the previous sections (virtual ma-
chines, virtual file system and virtual networks) to create the execution environment
required by the application.

A virtual application service is a virtual application whose interfaces comply with
WSREF specifications. Grid-enabling is the process of turning command-line applica-
tions interfaces into services that can be integrated into Grid-portals and delivered
through Web-based interfaces. Unless automated, Grid-enabling demands consider-
able time and programmer effort, especially for legacy applications which do not use
programming technologies and practices that are well suited for Grid-computing and
are not interoperable with other applications. To overcome this issue, the VA ap-
proach provides automatic Grid-enabling of legacy applications for which the follow-
ing information needs to be provided: command-line syntax, description of the com-
mand line in natural language, application resource requirements, and execution
environment settings.

Generated virtual application services are: (1) Consumable: the VAS can be dis-
covered by, and made available to, other organizations in a technology-neutral man-
ner that hides heterogeneity and allows interoperability and composition; (2) Isolated:
simultaneous conflict-free execution of multiple unmodified applications is possible;
(3) Customizable: VAS functionality can be customized to be the same as the original
application, or it can be restricted, augmented, or composed with other applications,
per user or per user-group; (4) Scalable to create and deploy: application virtualiza-
tion is a one-time automated process that greatly reduces the overhead of creation and
deployment of multiple application services; (5) Dynamically enabled: VAS deploy-
ment can be done in a “plug-and-play” fashion without having to bring down any part
of the Grid infrastructure.

A distinct contribution of the VA approach is the VA language that allows the de-
scription of command-line applications interface with potentially complex set of pa-
rameters. The specifiable information about the command-line format includes the
following: parameter types, default values, number of occurrences of a parameter,
groupings of parameters, dependencies among parameters, multiple group choices,
and parameter sweeping information. This language allows an application enabler, a
special user who has knowledge of the application, but not necessarily of the underly-
ing Grid infrastructure, to describe the application in a more comprehensive manner
than solutions proposed by SoapLab [23] and Generic Application Factory Service
(GAFS) [24]; thus, allowing strong parameter-type validation.

The VA architecture supports three processes: virtual application enabling, virtual
application service customization and generation, and virtual application service utili-
zation. It is divided into three tiers: the Web-portal tier which automatically generates
web interfaces of the Grid-services, the virtual application tier discussed in this sec-
tion and the virtual-Grid tier composed of virtualization services described in the
previous sections (Fig. 2). Two solutions for the virtual application service customiza-
tion and generation process were implemented in In-VIGO: (1) Generic Application
Service (GAP) [25] in which a generic Grid-service dynamically configures itself
according to the application information, making the interface of the specific applica-
tion available to the service client using a description language developed in the In-

8 Andréa Matsunaga et al.

Yirtual Virtual

L—A Application ‘*"‘ Application ‘*"‘ a VII?::l‘a:ilon

4% Service 4.4 Customization A Ezablin
Utilization and Generation B
Administrator

¥ | :
Portal | | Portal Portal
Interface i Interface Interface

\1gl

Portal
Tier

s SVA { Customization

" envice Senvice -

g Enabling

23 SVA'2 l Senvice
(= .

; ervice > VAS

2 Generatar

£ VA3 .

= Senice | Service

k=3 - " - -

1] B A Y T el . W N

® 3 W YES Wil 15

£ Senvice Senvice Senvice Senvice

£

[] VA Framework — Enabling

— Customization and Generation
|:| Other Frameworks ____, | jilization

Fig. 2. VA Architecture. Components are separated into portal, virtual application and virtual
Grid tiers. From right to left, the diagram depicts paths for: (1) enabling an application by an
enabler, (2) customizing and generating the virtual application services VA 1, VA 2 and VA 3
by an administrator and (3) utilizing the virtual Grid (virtual machines, virtual file system, and
virtual networks) to deliver the VA 3 service to a user

VIGO project, and (2) Virtual Application Service (VAS) which generates one spe-
cific Grid-service for each application so that the application interface is fully de-
scribed using the standard Web Services Description Language (WSDL). The VAS
framework transforms the application information into XMLSchemas fully using the
expressiveness of it, including it as part of the service description (WSDL), and then
it generates, compiles and deploys the service implementation. The solution makes
use of third party tools like XMLBeans to generate complex binding types expressed
in XMLSchemas, a modified WSDL2Java to generate the service implementation,
AdminClient to deploy the service, Apache Ant to coordinate this automated process,
and Apache Axis and Tomcat as containers of the generated services.

7 Building Virtual Grids: In-VIGO at Work

In order to enable sharing of geographically distributed computational and data re-
sources with different usage policies, In-VIGO middleware shares with other Grid
middleware, the requirement of interfacing with heterogeneous resource access and
authentication schemes. Using resources managed by cluster or other Grid middle-
ware, such as Globus or Condor-G, entails delegation of jobs to these middleware
components using the appropriate job management syntax, and authentication and
authorization scheme. This section describes the approaches used in current In-VIGO
deployments to interface with multi-institutional resources for managing tasks associ-
ated with In-VIGO middleware and users.

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 9

In-VIGO users do not have direct access to, and are completely decoupled from,
user accounts on Grid resources where jobs are effectively run. In-VIGO middleware
has full control of all resources and is responsible for starting jobs as well as main-
taining them, with complete freedom on how to dynamically map Grid users to local
users, and possibly recycle local user accounts among Grid users. The approach
brings advantages for both Grid users and resource providers: Grid users are freed
from the need to manage several credentials; resource administrators are freed from
the task of reconfiguring the access control of resources every time a user joins or
leaves the Grid.

In-VIGO users authenticate themselves by presenting their username and password
to the Grid portal. After login, user actions resulting in access to a Grid resource are
handled by the In-VIGO middleware through the use of Role-Based Access Control
(RBAC) mechanisms, offering Single Sign-On (SSO) for users. Users are grouped
into roles (e.g., regular, Matlab licensed, administrator), while resources are config-
ured by their providers with a set of permission groups which define operations (e.g.,
a simulator in demo, full and configuration modes). Appropriate mappings between
user roles and permission groups are defined, and In-VIGO middleware enforces the
mappings when accessing resources on behalf of users. For example, only users in the
“Matlab licensed” role would be able to run a Matlab-based simulator in its full op-
eration mode.

Resources, especially local user accounts, need to be isolated from each other be-
cause they are recycled among Grid users. To address this need, local accounts are
either pre-created by resource providers, or created on-demand for a particular user in
VMs where In-VIGO middleware has administrative privileges. In the first case, In-
VIGO middleware makes sure that, at any point in time, only one user is mapped to a
given local user account, and also that the account is cleaned when the job finishes. In
the latter case, accounts are created and destroyed for one Grid user, without the need
for recycling. Since a local account does not run processes for two different users
simultaneously, user isolation at process level is guaranteed. However, local user
accounts also need to have their data access privileges limited to the current assigned
Grid user, as isolation is compromised if the local accounts have access to data of all
Grid users. GVFS provides the necessary data isolation between Grid users. GVFS
controls access at the granularity of directories so that In-VIGO middleware is able to
limit the shadow account’s access of data to the home directory of the Grid user allo-
cated to it. Further data isolation, among jobs running for the same Grid user, can be
achieved by limiting the access of the local user accounts running the jobs to the job
working directory, which are subdirectories under the Grid user’s home directory.

As the In-VIGO middleware has all the necessary credentials to access accounts
(i.e., to remotely submit a job, independently of the mechanism — Condor, GSI, PBS,
SSH, etc) to run jobs on behalf of the user, providing SSO access to Grid resources is
trivial. More complex SSO solutions are however required when providing users
access to interactive applications that require application level authentication from the
user. Examples of such applications currently supported by In-VIGO include VNC
sessions and a web-based file-manager. In the case of VNC, In-VIGO remotely starts
its server process with a random password in a shadow account. When the user re-
quests access to the VNC desktop, In-VIGO embeds the necessary credential into the
VNC client applet and transmits it securely (through SSL) to the user. When the VNC
client is run by the user, it authenticates automatically (on behalf of the user) to the
server. Adding RBAC to the above process, enables In-VIGO to allow sharing of

10 Andréa Matsunaga et al.

workspaces among users, i.e., it enables a group of users (belonging to a single user
role) to access a given VNC session without the need for users to share credentials
and/or passwords.

In-VIGO selects resources for running In-VIGO user or middleware related tasks
based on the job requirements specified by the In-VIGO application enabler, and
resource availability and usage policies. This resource matching is performed by In-
VIGO in the case of resources directly managed by it, or may be delegated to the
cluster or Grid software, such as Condor-G or PBS, managing the resources. In the
latter case, In-VIGO job requirements need to be mapped to job requirements in the
specification syntax of the cluster or Grid software. Allowing for direct specification
of job requirements based on the specification syntax of specific cluster/Grid software
requires that the application enabler be aware of the types of resources that the appli-
cation can use. This problem is typically overcome by introducing a uniform specifi-
cation syntax that subsumes the specification syntax of the varied cluster/Grid soft-
ware. Since existing cluster/Grid specification syntax used to describe resource/
request properties are based on symmetric flat attributes [26], the uniform specifica-
tion syntax inherits their shortcoming, namely the need for tight coordination between
resource providers and consumers to agree upon attribute names and values. To allow
for a flexible and extensible approach to resource matching in In-VIGO semantic
matching of resource descriptions is used [27]. The In-VIGO job specifications and
resource descriptions and usage policies are described using RDF [28] based ontolo-
gies, along with semantic entailments for matchmaking. Handlers specific to the type
Cluster/Grid software are then used to map job specification and job management
information to the software-specific syntax. The asymmetric description of resource
and request enables VA descriptions that are decoupled from the supported resources
and implementation of resource matching in In-VIGO.

8 Conclusions and In-VIGO Status

Many challenges faced in early versions of Grid middleware were due to the need to
support different applications and distinct users on heterogeneous resources under
separate administrative control. The use of virtualization effectively minimizes the
impact of hardware and system software dependencies on Grid middleware by gener-
ating on-demand the execution environments needed for each application and user.
The use of services enables customization of applications for each user while hiding
implementation details, thus removing the need for multiple variants of Grid middle-
ware. This “dual rail” decoupling greatly facilitates the management of Grid resources
without interfering with other users, and the creation and provision of services with-
out conflicts with other service implementations.

The In-VIGO research reported in this paper confirms the potential benefits of vir-
tualization and services by devising and deploying efficient services for the creation
of virtual resources and virtual grids, and providing techniques for the automatic
Grid-enabling of applications as services and their on-demand instantiation. The first
version of In-VIGO has been online since July of 2003; this and newer versions of In-
VIGO have been the subject of research and development since August of 2001. The
concepts discussed in this paper have been implemented in at least one of these ver-
sions. Extensive prototyping and experimental evaluation of these concepts have
demonstrated that the overheads of using virtualization and services are either mini-

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 11

mal or acceptable for most Grid-computing applications. In-VIGO middleware is
currently being used to deliver Grid-based computational services to users in several
domains of science and engineering, which include computational nanoelectronics,
coastal and ocean modeling, materials science, computer architecture and parallel
processing.

Acknowledgements

The In-VIGO project is supported in part by the National Science Foundation under
Grants No. EIA-9975275, EIA-0224442, ACI-0219925, EEC-0228390; NSF Mid-
dleware Initiative (NMI) collaborative grants ANI-0301108/ANI-0222828, SCI-
0438246; and by the Army Research Office Defense University Research Initiative in
Nanotechnology. The authors also acknowledge two SUR grants from IBM and a gift
from VMware Corporation. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation, Army Research Office, IBM, or
VMware.

References

1. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R.J., Fortes, J.A.B., Krsul, 1., Matsunaga,
A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From Virtualized Resources to
Virtual Computing Grids: The In-VIGO System. Future Generation Computing Systems,
special issue on Complex Problem-Solving Environments for Grid Computing, Vol 21/6,
2005, 896-909.

2. Fortes, J.A.B., Figueiredo, R.J., Lundstrom, M.S.: Virtual Computing Infrastructures for
Nanoelectronics Simulation. IEEE Proceedings: Special Issue on Blue Sky Technologies
(in press), 2005.

3. Kapadia, N., Figueiredo, R.J., Fortes, J.A.B.: Enhancing the Scalability and Usability of
Computational Grids via Logical User Accounts and Virtual File Systems. In Proceedings
of Heterogeneous Computing Workshop at the International Parallel and Distributed
Processing Symposium, April 2001.

4. Krsul, L., Ganguly, A., Zhang, J., Fortes, J., Figueiredo, R.: VMPlants: Providing and Man-
aging Virtual Machine Execution Environments for Grid Computing. In Proceedings of
Supercomputing 2004.

5. Keahey, K., Doering, K., Foster, I.: From Sandbox to Playground: Dynamic Virtual
Environments in the Grid. In Proceedings of Fifth IEEE/ACM International Workshop on
Grid Computing (GRID'04).

6. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A Case for Grid Computing on Virtual Ma-
chines. In Proceedings of International Conference on Distributed Computing Systems,
May 2003.

7. Zhao, M., Figueiredo, R.J.: Distributed File System Support for Virtual Machines in Grid
Computing. In Proceedings of 13th IEEE International Symposium on High Performance
Distributed Computing, June 2004.

8. Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: The PUNCH Virtual File System: Seamless
Access to Decentralized Storage Services in a Computational Grid. In Proceedings of IEEE
International Symposium on High Performance Distributed Computing, August 2001.

9. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS Version 3
Design and Implementation. In Proceedings of USENIX Summer Technical Conference,
1994.

10. Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: Seamless Access to Decentralized Storage
Services in Computational Grids via a Virtual File System. In Cluster Computing, 2004.

12

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Andréa Matsunaga et al.

Zhao, M., Chadha, V., Figueiredo, R.J.: Supporting Application-Tailored Grid File System
Sessions with WSRF-Based Services. In Proceedings of the 14th IEEE International Sym-
posium on High Performance Distributed Computing, July 2005, 202-211.

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: SOCKS protocol version 5.
RFC1928, March 1996.

Son, S., Livny, M.: Recovering Internet Symmetry in Distributed Computing. In Proceed-
ings of the 3rd International Symposium on Cluster Computing and the Grid, May 2003.
Francis, P., Gummadi, R.: IPNL: A NAT-Extended Internet Architecture. In Proceedings of
the ACM SIGCOMM 2001, August 2001.

. Eugene Ng, T.S., Stroica, I., Zhang, H.: A Waypoint Service Approach to Connect Hetero-

geneous Internet Address Spaces. In Proceedings of USENIX 2001, June 2001, 319-332.
Denis, A., Aumage, O., Hofman, R., Verstoep, K., Kielmann, T., Bal, H.: Wide-Area
Communication for Grids: An Integrated Solution to Connectivity, Performance and Secu-
rity Problems. In Proceedings of 13th IEEE International Symposium on High Performance
Distributed Computing, June 2004.

Sundararaj, A., Dinda, P.: Towards Virtual Networks for Virtual Machine Grid Computing.
In Proceedings of the 3rd USENIX Virtual Machine Research and Technology Symposium,
May 2004.

Jiang, X., Xu, D.: VIOLIN: Virtual Internetworking on Overlay Infrastructure. In Proceed-
ings of Parallel and Distributed Processing and Applications: Second International Sympo-
sium, ISPA 2004, Hong Kong, China, December 13-15, 2004.

Touch, J., Hotz, S.: The X-Bone. Proc. of Global Internet Mini-Conference at Globecom,
November 1998.

Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., van
Nieuwpoort, R., Reinefeld, A., Schintke, F., Schott, T., Seidel, E., Ullmer, B.: The grid ap-
plication toolkit: toward generic and easy application programming interfaces for the grid.
In Proceedings of the IEEE, Vol.93, Iss.3, March 2005, 534-550.

Pierce, M., Fox, G., Youn, C., Mock, S., Mueller, K., Balsoy, O.: Interoperable Web ser-
vices for computational portals. In Proceedings of the 2002 ACM/IEEE conference on Su-
percomputing (Baltimore, MD, 2002), IEEE Computer Society Press, 2002, 1-12.

Thomas, M., Boisseau, J.: Building Grid Computing Portals: The NPACI Grid Portal Tool-
kit. Grid Computing: Making the Global Infrastructure a Reality, Ch 28. F. Berman, G. Fox
and T. Hey, eds. John Wiley and Sons, Ltd, Chichester (2003).

Senger, M., Rice, P., Oinn, T.: Soaplab - a unified Sesame door to analysis tools. In
Proceedings of UK e-Science All Hands Meeting September 2003, 509-513.

Gannon, D., Alameda, J., Chipara, O., Christie, M., Dukle, V., Fang, L., Farrellee, M., Kan-
daswamy, G., Kodeboyina, D., Krishnan, S., Moad, C., Pierce, M., Plale, B., Rossi, A.,
Simmbhan, Y., Sarangi, A., Slominski, A., Shirasuna, S., Thomas, T.: Building grid portal
applications from a web service component architecture. In Proceedings of the IEEE,
Vol.93, Iss.3, March 2005, 551-563.

Sanjeepan, V., Matsunaga, A., Zhu, L., Lam, H., Fortes, J.A.B.: A Service-Oriented, Scal-
able Approach to Grid-Enabling of Legacy Scientific Applications. In Proceeding of
International Conference on Web Services (ICWS), Industry Track, July 2005.

Solomon, M., Raman, R. and Livny, M.: Matchmaking distributed resource management
for high throughput computing. In Proceedings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing, Chicago, IL, July 1998.
Tangmunarunkit, H., Decker, S. and Kesselman, C.: Ontology-Based Resource Matching in
the Grid - The Grid Meets the Semantic Web. The Semantic Web - ISWC 2003, Second In-
ternational Semantic Web Conference, Sanibel Island, FL, USA, October 20-23, 2003, Pro-
ceedings. Lecture Notes in Computer Science 2870 Springer 2003, ISBN 3-540-20362-1
Lassila, O., and Swick, R.R.: Resource description framework (rdf) model and syntax
specification. In W3C Recommendation, World Wide Web Consortium. February 1999.
http://www.w3.0org/TR/1999/REC-rdf-syntax-19990222.

The Evolution
of the Blue Gene/L Supercomputer

José Moreira

IBM Systems and Technology Group, Rochester, USA

Abstract. The Blue Gene project started in the final months of 1999.
Five years later, during the final months of 2004, the first Blue Gene/L
machines were being installed at customers. By then, Blue Gene/L had
already established itself as the fastest computer in the planet, topping
the TOP500 list with the breathtaking speed of over 70 Teraflops. Since
the beginning of 2005, many other systems have been installed at cus-
tomers, the flagship machine at Lawrence Livermore National Laboratory
has greatly increased in size, and Blue Gene/L has established itself as
a machine capable of breakthrough science.

We here examine how Blue Gene/L came to be. We describe how some
key technical decisions were made that shaped the overall hardware and
software architecture of this machine. We also describe the nature of the
interactions between the teams inside and outside IBM that led to Blue
Gene/L being such a successful venture. Finally, we explain why this is
just the beginning, and why there is more excitement ahead of us than
behind us in the Blue Gene project.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 13, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent Based Computational Grids:
Research Issues and Challenges

Omer F. Rana

Cardiff University, UK

Abstract. As computer and computational scientists have to manage
access to increasingly complex computing and data resources, this be-
comes a time consuming task. This is especially true for Computational
Grids, which can involve the integration of resources distributed across
multiple administrative domains. Deciding which systems to use, where
the data resides for a particular application domain, how to migrate the
data to the point of computation (or vice versa), and data rates required
to maintain a particular application “behaviour” become significant. To
support these, it is important to develop brokering approaches based
on intelligent techniques — to support service discovery, manage perfor-
mance based on data from monitoring tools, and support data selection.
Although the use of broker-based techniques can be found in literature
today — very few of these fully utilise the potential of an agent-based sys-
tem. Intelligent agents provide a useful means to achieve the objectives
outlined above. An important and emerging area within Grid computing
is the role of service ontologies — especially domain specific ontologies,
which may be used to capture particular application needs. Using these,
scientists may be able to share and disseminate their data and software
more effectively. This has been recognised as being important by both
the computer and computational science community — and current ef-
forts towards establishing “Semantic Grids” is a useful first step in this
direction.

The role of agent standards and how they can be integrated with Grid
computing is explored. Specialist activities that can be undertaken by
agent-based computing are outlined, along with example implementation
of such systems. Research challenges that still need to be addressed are
highlighted, along with possible benefits that overcoming such challenges
will bring.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Science on a Large Scale

Raymond Bair

Mathematics and Computer Science Division, Argonne National Laboratory, USA

Abstract. The TeraGrid, the U.S. National Science Foundation’s multi-
year project to build a distributed national cyberinfrastructure, entered
full production mode in the fall of 2004, providing a coordinated set of
services for the science and engineering community. TeraGrid operates
a unified user support infrastructure and software environment across
its eight resource partner sites, which together provide more than 40
teraflops of computing capability and mass storage capability in the
petabytes, linked by networks operating at tens of Gigabit/sec. This
unified environment allows TeraGrid users to access storage and infor-
mation resources as well as over a dozen major computing systems via
a single allocation, either as stand-alone resources or as components of
a distributed application using Grid software capabilities. Many lessons
can be drawn from the dual pursuit of high performance and close inte-
gration.

The next phase will be even more exciting, with the roll out of a wide
range of science gateways and additional advanced applications. Science
gateway projects are aimed at supporting access to TeraGrid via web por-
tals, desktop applications or via other grids. An initial set of 10 gateways
will address new scientific opportunities in fields from bioinformatics to
nanotechnology as well as interoperation between TeraGrid and other
Grid infrastructures.

TeraGrid is also enabling an impressive array of large scale science appli-
cations, where researchers can perform complex simulations and manip-
ulate enormous data sets in novel ways to gain new insights into research
questions and societal problems, for example, finding the most efficient
and least expensive ways to clean up groundwater pollution.

Effort in these and other related areas will allow more researchers and
educators access to TeraGrid capabilities and advance compatibility be-
tween TeraGrid and other major Grid deployments such as Open Science
Grid, Network for Earthquake Engineering Simulation (NEES), and ma-
jor European and Asian Grid deployments.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Topic 1
Support Tools and Environments

Henryk Krawczyk, Jacques Chassin de Kergommeaux,
Pierre Manneback, and Tomas Margalef

Topic Chairs

Nowadays parallel distributed programmers use different tools and environments
that facilitate the design, programming, testing, debugging and performance
analysis and tuning of their applications. However, they do not satisfy all user
requirements, such as broad usability, high effectiveness and proper accuracy.
Therefore new propositions are still being developed and their properties tested
on modern environments, such as clusters and grids. Their main aim is to simplify
the understanding of what-and-why happens during execution of parallel and
distributed applications. An important step is to prepare semantic descriptions
of system behaviour and to make progress in high quality automatic analysis of
performance bottlenecks.

This year 23 papers were submitted to this topic. Overall, they address dif-
ferent usability aspects of parallel distributed environments and tools to improve
quality of program behaviour and performance analysis in such environments.
The broad scope of considerations includes efficient distributed compilation,
nested loop optimisation, checkpointing, system and software configuration man-
agement. Besides, monitoring, logging and tuning procedures design for different
environments as well as middleware improvements to create high quality services
are presented. Among the submissions, only seven papers (30%) were finally ac-
cepted. They concentrate on improvements to the effectiveness and accuracy of
the performance analysis of parallel and distributed programs. Novel approaches
to these problems based on soft computing are presented. In particular, a high
level query language is introduced to support performance analysis using lin-
guistic expressions. Moreover, the performance profiling model is described to
create a general algorithm for on-the-fly overhead assessment and compensa-
tion. The methods for improving performance of selected routine libraries are
also discussed, and usability of analytical models and corresponding tools is also
evaluated. New modelling techniques, based on occurrence and interrelationships
of events, to build a data structure of a partial order of events is also given. Mod-
ification of existing middleware environments towards specification and dynamic
adaptation of system services is also considered.

The qualified papers propose improvements in tools and parallel distributed
environments and are a good material for foresting a discussion during session
meetings.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 17, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tolerating Message Latency Through the Early Release
of Blocked Receives

Jian Ke!, Martin Burtscher!, and Evan Speight?

! Computer Systems Laboratory, School of Electrical & Computer Engineering,
Cornell University, Ithaca, NY 14853, USA
{jke,burtscher}@csl.cornell.edu

2 Novel System Architectures, IBM Austin Research Lab, Austin, TX 78758, USA
speight@us.ibm.com

Abstract. Large message latencies often lead to poor performance of parallel
applications. In this paper, we investigate a latency-tolerating technique that
immediately releases all blocking receives, even when the message has not yet
(completely) arrived, and enforces execution correctness through page protec-
tion. This approach eliminates false message data dependencies on incoming
messages and allows the computation to proceed as early as possible. We im-
plement and evaluate our early-release technique in the context of an MPI run-
time library. The results show that the execution speed of MPI applications im-
proves by up to 60% when early release is enabled. Our approach also enables
faster and easier parallel programming as it frees programmers from adopting
more complex nonblocking receives and from tuning message sizes to explicitly
reduce false message data dependencies.

1 Introduction

Clusters of workstations can provide low-cost parallel computing platforms that
achieve reasonable performance on a wide range of applications reaching from data-
bases to scientific algorithms. To enable parallel application portability between vari-
ous cluster architectures, several message-passing libraries have been designed. The
Message Passing Interface (MPI) standard [10] is perhaps the most widely used of
these libraries. MPI provides a rich set of interfaces for operations such as point-to-
point communication, collective communication, and synchronization.

Sending and receiving messages is the basic MPI communication mechanism. The
simplest receive operation has the following syntax: MPI _Recv(buf, count, dtype,
source, tag, comm, status). It specifies that a message of count elements of data type
dtype with a tag of (tag, comm) should be received from the source process and stored
in the buffer buf. The status returns a success or error code as well as the source and
tag of the received message if the receiver specifies a wildcard sourceltag. The
MPI_Recv call blocks until the message has been completely received. The MPI stan-
dard also defines a non-blocking receive operation, which basically splits MPI_Recv
into two calls, MPI_Irecv and MPI_Wait. The MPI Irecv call returns right away
whether or not the message has been received, and the MPI_Wait call blocks until the
entire message is present. This allows application writers to insert useful computation
between the MPI _Irecv and MPI_Wait calls to hide part of the message latency by
overlapping the communication with necessary computation.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 19-29, 2005.
© Springer-Verlag Berlin Heidelberg 2005

20 Jian Ke, Martin Burtscher, and Evan Speight

In both cases, the computation cannot proceed past the blocking call (MPI_Recv or
MPI_Wait). In our library, we immediately release (unblock) all blocked calls
(MPI_Recv and MPI_Wait) even when the corresponding message has not yet been
completely received, and prevent the application from reading the unfinished part of
the message data through page protection. Our early-release technique automatically
delays the blocking for as long as possible, i.e., until the message data is actually
used by the application, and eliminates the false message data dependency implied by
the blocking calls. As such, it provides the following benefits:

e [t allows the computation to continue on the partially received message data in-
stead of waiting for the full message to complete, thus overlapping the communi-
cation with the computation.

e All blocking receives are automatically made non-blocking. The message blocking
is delayed as much as possible, benefiting even nonblocking receives with sub-
optimally placed MPI_Wait calls.

e Programmers no longer need to worry about when and how to use the nonblocking
MPI calls, nor do they need to intentionally dissect a large message into multiple
smaller messages. This reduces the development time of parallel applications. In
addition, the resulting code is more intuitive and easier to understand and main-
tain, while at the same time providing or exceeding the performance of more com-
plex code.

We implemented the early-release technique in our erMPI runtime library. Appli-
cations linked with our library instantly benefit from early release without any modi-
fication. erMPI currently supports the forty most commonly-used MPI functions,
which is enough to cover the vast majority of MPI applications.

There has been much work on improving the performance of MPI runtime librar-
ies. TMPI [12], TOMPI [1] and Tern [6] provide fast messaging between processes
co-located on the same node via shared memory semantics that are hidden from the
application writer. Tern [6] dynamically maps computation threads to processors
according to custom thread migration policies to improve load balancing and to
minimize inter-node communication for SMP clusters. Some implementations [9, 11]
take advantage of user-level networks such as VIA [2] or InfiniBand [4] to drastically
reduce the messaging overhead, thus reducing small-message latency. Other research-
ers have investigated ways to improve the performance of collective communication
operations in MPI [5, 13]. Prior work by the authors has explored using message
compression to increase the effective message bandwidth [7] and message prefetching
to hide the communication time [8].

This paper is organized as follows. Section 2 introduces our erMPI library and de-
scribes the early-release implementation of blocked receives. Section 3 presents the
experimental evaluation methodology. Section 4 discusses results obtained on two
supercomputers. Section 5 presents conclusions and avenues for future work.

2 Implementation
2.1 The erMPI Library

We have implemented a commonly used subset of forty MPI functions in our erMPI
library, covering most point-to-point communications, collective communications,
and communicator creation APIs in the MPI specification [10]. The library is written

Tolerating Message Latency Through the Early Release of Blocked Receives 21

in C and provides an interface for linking with FORTRAN applications. erMPI util-
izes TCP as the underlying network protocol and creates one TCP connection be-
tween every two communicating MPI processes. Each process has one application
thread as well as one message thread to handle sending to and receiving from all
communication channels.

2.2 Early-Release Mechanism

The messaging thread creates an alias page block for each message receive buffer
posted via an MPI_Recv or MPI Irecv call and stores incoming message data via
these alias pages. The application thread making the call to MPI_Recv or MPI_Wait
never blocks when calling these routines, which is a slight departure from the spirit of
these calls. However, if the message has not arrived or is only partially complete, the
application thread protects the unfinished pages of the message receive buffer and
immediately returns from the MPI_Recv or MPI_Wait call that would otherwise have
blocked. Thus, computation can continue until the application thread touches a pro-
tected page, which causes an access exception, and the application is then blocked
until the data for that page is available.

Alias Pages
N | |
PI’ P’ P3’ | RI R2 R3
Original Pages P1 P2 P3
| RW | NorRW | NoRW |
Pl P2 P3

(a) (b)

Fig. 1. Receive page examples

Figure 1 (a) shows an example of a receive buffer consisting of three pages. The
virtual pages P, and P, (i € {1,2,3}) are mapped to the same physical page. The in-
coming message data is stored into the receive buffer through the alias pages P,
which are created from the original buffer pages passed to MPI_Recv and are never
protected. When the application thread calls MPI_Recv or MPI_Wait in this example,
it will notice that P, is completely filled and therefore protects only P, and P,, which
will be granted ReadWrite access again by the messaging thread as soon as those
pages are filled. The application thread returns from the MPI_Recv or MPI_Wait call
without waiting for the completion of P, and P..

2.3 Implementation Issues

Shared Receive Pages. Figure 1 (b) depicts three outstanding receives, R, R, and R,.
All three receive buffers include part of page P,. To handle such cases, we maintain a
page protection count for shared receive pages to enforce the correct protection ac-
tion. A page’s protection count is incremented for each early-release protection. Note
that a page only needs to actually be protected when the page protection count is in-
creased from zero to one. If all three receives are released early, P,’s page protection

22 Jian Ke, Martin Burtscher, and Evan Speight

count will be three. The count is decreased by one as soon as one of the receives
completes the page. Once the count reaches zero, the page is unprotected.

There are at most two shared pages for each receive operation, one at the head of
and the other at the tail of the receive buffer. For efficiency reasons, we log the page
protection counts of all head and tail pages in a hash table.

Alias Page Creation. Most modern operating systems allow multiple virtual pages to
be mapped to the same physical page and expose this function via system calls such
as mmap in Unix and MapViewOfFile in Windows NT.

Creating an alias page is an expensive operation. To facilitate alias page reuse, we
store the alias page description in a hash table. Each entry in the hash table records the
starting addresses of both the original and the alias page blocks and the page block
length. We hash the starting address of the original page block to index the hash table.
A new alias page block is created if there is no hit or if the existing alias block is too
small; otherwise a preexisting block is reused. Alias page blocks are allocated at a 16-
page granularity. The page size is 4 kB in our system.

Send Operation. It is important that the protected pages be accessed only by the
application thread running in user mode. If these pages are touched by a kernel or
subsystem thread or in kernel mode, it may be impossible to catch and handle the
access exceptions gracefully. This can happen when a send buffer shares a page with
a receive buffer and the send buffer is passed to the operating system. To prevent this
scenario, we also use alias page blocks for sends.

2.4 Portability and MPI Standard Relaxation

Even though we evaluate our early-release technique on Windows with TCP as the
underlying network protocol, it can be similarly implemented on other systems, as
long as the following requirements are met:

e The OS supports page protection calls and access violation handling.

e The network protocol can access the protected receive buffer. This is possible if
the network subsystem has direct access to the physical pages or if alias pages can
be used to interface with the communication protocol.

e The MPI library can be notified when a partial message arrives. This allows the
protected pages to be unprotected as early as possible.

MPI_Recv returns the receive completion status in the status structure. It usually
includes the matching send’s source and fag and indicates whether the receive is a
success. If a wild card source or tag is specified and the call is early released, the
matching send’s source or tag is typically not known. In such a case, we delay the
early release until this information is available. We always return a receive success in
the status field and force the program to terminate should an error occur.

2.5 Other Issues

Message Unpacking. In our sample applications, messages are received into the
destination buffers directly, allowing the computation to proceed past the receive
operation and to work on the partially received message data. For applications that
first receive messages into an intermediate buffer and then unpack the message data

Tolerating Message Latency Through the Early Release of Blocked Receives 23

once they have been fully received, the early-released application thread would cause
an access exception and halt the execution right away due to the message unpacking
step, limiting the potential of overlapping useful computation with communication.

Since unpacking adds an extra copy operation and increases the messaging latency,
it should be avoided whenever possible. More advanced scatter receive operations
provide better alternatives for advanced programmers and parallelizing compilers.
Another possible solution is to unpack the message as needed in the computation
phase instead of unpacking the whole message right after the message receive.

Correctness. To guarantee execution correctness, an early-released application thread
is not allowed to affect any other application thread before all early-released receives
are at least partially completed. This means that new messages are not allowed to
leave an MPI process if there exists unresolved early-released receives. Otherwise, a
causality loop could be formed where an early-released application thread sends a
message to another MPI process, which in turn sends a message that matches the
early-released receive.

3 Evaluation Methods

3.1 Systems

We performed all measurements on the Velocity + (Vplus) and the Velocity I (V2)
clusters at the Cornell Theory Center [3]. Both clusters run Microsoft Windows 2000
Advanced Server. The cluster configurations are listed below.

e Vplus consists of 64 dual-processor nodes with 733 MHz Intel Pentium III proces-
sors, 256 kB L2 cache per processor and 2 GB RAM per node. The network is
100Mbps Ethernet, interconnected by 3Com 3300 24-port switches.

e V2 consists of 128 dual-processor nodes with 2.4 GHz Intel Pentium 4 processors,
512 kB L2 cache per processor and 2 GB RAM per node. The network is Force10
Gigabit Ethernet interconnected by a Force10 E1200 switch.

3.2 Applications

We evaluate the performance of early release on three representative scientific appli-
cations: PES, N-body, and M3. In general, we see small performance improvements
on benchmark applications due to the message unpacking effects.

PES is an iterative 2-D Poisson solver. Each process is assigned an equal number
of contiguous rows. In each iteration, every process updates its assigned rows, sends
the first and last row to its top and bottom neighbors, respectively, and receives from
them two ghost rows that are needed for updating the first and last row in the next
iteration. We fix the two corner elements (0,0), (N-1, N-1) to 1.0 and the other two
corner elements (0, N-1), (N-1, 0) to 0.0 as boundary conditions.

N-Body simulates the movement of particles under pair-wise forces between them.
All particles are evenly distributed among the available processes for the force com-
putations and the position updates. After updating the states of all assigned particles,
each process sends its updated particle information to all other processes for the force
computation in the next time step.

24 Jian Ke, Martin Burtscher, and Evan Speight

M3 is a matrix-matrix-multiplication application. In each iteration, a master proc-
ess generates a random matrix A, (emulating a data collection process), distributes
slices of the matrix to slave processes for computation, and then gathers the results
from all slave processes. Each slave process stores a transposed transform matrix B,
which is broadcast once from the master process to all slaves when the computation
starts. Each slave process first receives matrix A, which is part of matrix A, then
computes matrix C, = A, *B and sends C, to the master. Note that this parallelization
scheme is by no means the most efficient algorithm for multiplying matrices.

0000 E=8 o O

(a) PES (b) N-Body (c) M3

Fig. 2. Communication patterns

The communication patterns of these three applications for four-process runs are
shown in Figure 2. The circles represent processes and the lines represent the com-
munication between processes; each PES process only communicates with at most
two neighboring processes; each N-Body process communicates with every other
process; and each M3 slave process communicates with the master process. The mes-
saging calls used are MPI_Send, MPI_Irecv, MPI_Wait and MPI_Waitall.

Table 1. Problem size and message size information

Program Problem Size Message Size (64-process run)
Size A Size B Size C Size A Size B Size C
PES 5120X5120, 2000 [10240X10240, 1000/20480X20480, 500 40 kB 80 kB 160 kB
N-Body 110240, 200 20480, 100 40960, 50 9 kB 18 kB 35 kB
M3 1024X1024, 400 |2048X2048, 40 4096X4096, 20 128 kB 512 kB 2 MB

Table 1 lists the three problem sizes we used for each application. Size A is the
smallest and Size C is the largest. In the “Problem Size” columns, the number before
the comma is the matrix size for PES and M3 and the number of particles for N-Body;
the number after the comma is the number of iterations or simulation time steps. We
have adjusted the number of iterations so that the runtimes are reasonable. We run
these applications with 16, 32, 64 and 128 processes and two processes per node. The
resulting message sizes for 64-process runs are shown in the “Message Size” col-
umns. We obtained the runtimes with three MPI libraries. MPI-Pro is the default MPI
library on both clusters. The erMPI-B is the baseline version of our erMPI library, in
which the early release of receives is disabled. erMPI-ER is the same library but with
early release turned on.

4 Results
4.1 Scaling Comparison

Figure 3 (a—f) plots the scaling with problem size B of PES, N-Body and M3. Each
application has two subgraphs, the left one shows Vplus and the right one V2 results.
Each subgraph plots the execution speeds of the three MPI libraries against the num-

Tolerating Message Latency Through the Early Release of Blocked Receives 25

ber of processes used. The execution speeds are normalized to the 16-process run of
the erMPI baseline library.

For a fixed problem size, the communication-to-computation ratio increases as the
problem is partitioned among an increasing number of processors, which leads to
worsening of parallel efficiency and scalability.

/ 7.0
~-MPI Pro - 1 [<~MPIPro

-B-orMPIB / 8- erMPI B

#—erMPI ER —A-erMPI ER

~
o

o
o

g
o

o
o

o
o

Speedup over 16-process erMP| B
N w S
o o o
Speedup over 16-process erMPI B
w e
> o

~
o

\

o
B

o
o
o
o

16 32 64 128 16 32 64 128
Number of Processes Number of Processes

(a) PES on Vplus (b) PES on V2

3.0

g
o

~MPI Pro —#=MPI Pro
2.5 +——|~@erMPI B ~#-erMPI B

~&-erMPI ER /\ ~&-erMPI ER ~ j
20 A

el
o

o)
o o
z z
o o
3 2. 220
@ o
8 //(l%\ s /
215 215 *
¢ o \
3 1 . i
3 3
205 05
Q Q
(2] »
0.0 T T 0.0 T T T
16 32 64 128 16 32 64 128
Number of Processes Number of Processes
(c) N-Body on Vplus (d) N-Body on V2
6.0 6.0
~MPI Pro ~#=MPI Pro /
o A o
T 50 #-erMPI B T 5.0 +—— @ erMPI B A
§ ~&-erMP| ER / % ~&-erMPI ER
2 4.0 ? 4.0
[@
§ / §
s 830
by 3.0 “;’ 3.0
[[}
220 2204
Q Q
3 2
8 1.0 Ly 210
Q Q
(2] »
0.0 T T T 0.0 T T T
16 32 64 128 16 32 64 128
Number of Processes Number of Processes
(e) M3 on Vplus (f) M3 on V2

Fig. 3. Scaling comparisons

For PES (Figure 3 (a, b)), the erMPI early-release library scales the best among the
three MPI libraries. The erMPI baseline library also scales better than MPI-Pro. PES
scales better on the Vplus cluster than on V2. It appears that the higher processing

26 Jian Ke, Martin Burtscher, and Evan Speight

power of V2 leads to a higher communication-to-computation time ratio and hence
worse scalability.

N-Body is a communication intensive application. The communication dominates
the computation as the number of processes increases. Figure 3 (c, d) shows that the
MPI-Pro speedups start to saturate at around 32 processes and degrade at 128 proc-
esses. V2 has a higher network throughput and thus performs better than Vplus. Our
erMPI library scales, with and without early release, to 64 processes.

In Figure 3 (e, f), MPI-Pro performs better than the erMPI baseline for 32 and 64
processes on Vplus, but worse than the erMPI baseline for 128 processes on V2. The
speedups in the remaining cases are roughly equal. erMPI with early release performs
significantly better than both the baseline and MPI-Pro, especially for 64- and 128-
process runs.

4.2 Early-Release Speedup

The scaling results from the previous section show that our baseline is comparable
(superior in most cases) to MPI-Pro. In this section, we focus on the performance
improvement of the early-release technique over the baseline. The speedups over the
baseline erMPI library are plotted in Figure 4 (a - c) for the three applications. The
labels along the x-axis indicate both the cluster and the problem size. Each group of
bars shows results for runs with 16, 32, 64 and 128 processes. For the few non-
scalable runs that take longer than the runs with fewer processes, the performance
improvement over the baseline is meaningless and is left out of the figure.

We see that the speedups of a given problem size and cluster usually increase as
the number of processes increases, as is the case for Vplus.B and Vplus.C with PES;
for Vplus.C and V2.C with N-Body; and for Vplus.C, V2.A and V2.B with M3. The
same trend holds in the other cases except for the last one or two bars. This is due to
the increasing communication-to-computation ratio as the number of processes in-
creases. Early release has little potential for performance improvement in cases where
the communication time is minimal. On the other hand, when the communication-to-
computation ratio becomes too large, the speedup decreases in some cases. There are
two reasons for this behavior. First, when receives are released early, application
threads that proceed past the receive operations may send more data into the commu-
nication network, which worsens the network resource contention in communication-
intensive cases. Second, as the communication-to-computation ratios increase past a
certain level, the remaining computation is small enough that overlapping it with
communication provides little performance benefit.

The same reasoning explains the speedup trends for varying problem sizes and
clusters. As the problem size decreases, the communication-to-computation ratios
increase and lead to higher early-release speedups. This behavior can be seen in the
PES 16-process runs on Vplus, the N-Body 16- and 32-process runs on Vplus and 16-
process runs on V2, and the M3 16-, 32- and 64-process runs on both Vplus and V2.
The V2 cluster has a relative faster network (bandwidth) than Vplus and hence the
potential for speedups due to early release is smaller. Indeed, V2 demonstrates a
smaller performance improvement in most cases, except for N-Body sizes B and C,
where the two negative effects start to impact the early-release speedups.

Tolerating Message Latency Through the Early Release of Blocked Receives 27

1.15

=)

Speedup over no early release
o o
o (3]

4
©
5]

VplusA VplusB VplusC V2A V2B v2.c

(a) PES

m16
w32
064
[mr2s]

o

=)

o
&
Speedup over no early release

Speedup over no early release

=3
S

o
©
s

VplusA VplusB VplusC V2A V2B V2C VplusA VplusB VplisC V2A V2B V2C
(b) N-Body (c) M3
Fig. 4. Speedups due to early release

Four cases of PES show early-release speedups of over 10%. N-Body exhibits
speedups of up to 32%, with four cases being over 20%. M3 reaches over 30%
speedup in six cases, with a maximum speedup of 60%.

4.3 Early-Release Overhead and Benefit

The early-release overhead includes the creation of the alias page blocks and the page
protection for unfinished messages. Since the alias page blocks are reused in our im-
plementation, the overhead is amortized over multiple iterations and is negligible.
Table 2 compares the page protection plus unprotection time on V2 with the raw
transfer time over a 1 Gbps network. The cost of page protection is much smaller than
the message communication latency. Most importantly, there is little penalty to the
run time since the application thread would have been blocked waiting for the incom-
ing message to complete anyway.

Table 2. Page protection overhead

Message Size 4 kB 16 kB | 64 kB | 256 kB
Protection Cost 30ps | 3.0pus | 3.3pus | 4.5pus
1 Gbps Transfer Time 33pus | 131pus | 0.5ms | 2.1 ms

28 Jian Ke, Martin Burtscher, and Evan Speight

Parallel applications frequently consist of a loop with a communication phase and a
computation phase. When a process receives multiple messages from multiple senders
in the communication phase, often the computation following the communication
need not access some of the received messages for a while. For example, the PES
process receives two messages in the communication phase, one from the process
“above” and the other from the process “below” it. The message data from the lower
neighbor is accessed only at the end of computation phase, thus blocking for its com-
pletion at the end of the communication phase is not necessary. The same is true for
N-Body as each process receives messages from multiple processes in the communi-
cation phase. Our early-release technique eliminates this false message data depend-
ency and delays the blocking until the message data is indeed accessed. The reduced
blocking time is most pronounced in the presence of load imbalance or processes
running out of lock-step.

Each M3 slave process receives only one message in the communication phase, so
the above effect does not appear. Nevertheless a similar false data dependency is
eliminated by the early-release technique; the computation can start on the partially
finished message data, maximally overlapping the communication with computation.

5 Conclusions and Future Work

In this paper, we present and evaluate a technique to release blocked message receives
early. Our early-release approach automatically delays the blocking of message re-
ceives as long as possible to maximize the degree of overlapping of communication
with computation, effectively hiding a portion of the message latency. The perform-
ance improvement depends on the communication-to-computation ratio and the extent
of false message data dependencies of each application. Measurements with our
erMPI library show an average early-release speedup of 11% on two supercomputing
clusters for three applications with different communication patterns.

In future work, we plan to eliminate the message unpacking step for some bench-
mark applications and study the early-release performance on these highly tuned ap-
plications. Future research may also explore the usage of a finer early-release granu-
larity to further improve the performance.

Acknowledgements

This work was supported in part by the National Science Foundation under Grant No.
0125987. This research was conducted using the resources of the Cornell Theory
Center, which receives funding from Cornell University, New York State, federal
agencies, foundations, and corporate partners.

References

1. E. D. Demaine, “A Threads-Only MPI Implementation for the Development of Parallel
Programs,” Intl. Symp. on High Perf. Comp. Systems, 7/1997, pp. 153-163.

2. D. Dunning, G. Regnier, G. McApline, D. Cameron, B. Shubert, F. Berry, A. Merritt, E.
Gronke and C. Dodd, “The Virtual Interface Architecture,” IEEE Micro, 3/1998, pp. 66-76.

3. http://www.tc.cornell.edu/

10.

11.

12.

13.

Tolerating Message Latency Through the Early Release of Blocked Receives 29

. Infiniband Trade Association, Infiniband Architecture Specification, Release 1.0, Oct.

2000.

. A. Karwande, X. Yuan and D. K. Lowenthal, “CC-MPI: A Compiled Communication Ca-

pable MPI Prototype for Ethernet Switched Clusters,” The Ninth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, 6/2003, pp. 95-106.

. J. Ke, “Adapting parallel program execution in cluster computers through thread migra-

tion,” M.S. Thesis, Cornell University, 2003.

. J. Ke, M. Burtscher and E. Speight, “Runtime Compression of MPI Messages to Improve

the Performance and Scalability of Parallel Applications,” Supercomputing, 11/2004.

. J. Ke, M. Burtscher and E. Speight, “Reducing Communication Time through Message

Prefetching,” Intl. Conf. on Parallel and Distributed Processing Techniques and Applica-
tions, 6/2005.

. J. Liu, J. Wu, S. P. Kini, P. Wyckoff and D. K. Panda, “High Performance RDMA-Based

MPI Implementation over InfiniBand,” Intl. Conf. on Supercomputing, 6/2003, pp. 295-
304.

MPI Forum, “MPI: A Message-Passing Interface Standard,” The Intl. J. of Supercomputer
Applications and High Performance Computing, 8(3/4):165-414, 1994.

E. Speight, H. Abdel-Shafi, and J. K. Bennett, “Realizing the Performance Potential of the
Virtual Interface Architecture,” Intl. Conf. on Supercomputing, 6/1999, pp. 184-192.

H. Tang and T. Yang, “Optimizing Threaded MPI Execution on SMP Clusters,” Intl. Conf.
on Supercomputing, 6/2001, pp. 381-392.

R. Thakur and W. Gropp, “Improving the Performance of Collective Operations in
MPICH,” European PVM/MPI Users' Group Conference, 9/2003, pp. 257-267.

Fast Convex Closure for Efficient Predicate Detection

Paul A.S. Ward and Dwight S. Bedassé*

Shoshin Distributed Systems Group
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
{pasward, dsbedass}@shoshin.uwaterloo.ca

Abstract. The behaviour of parallel and distributed programs can be modeled as
the occurrence of events and their interrelationship. Event data collected accord-
ing to the event model is stored within a partial-order data structure, where it can
be reasoned about, enabling debugging, program steering, and autonomic feed-
back control of the application. Reasoning over event data, a critical requirement
for autonomic computing, is typically in the form of predicate detection, a search
mechanism able to detect and locate arbitrary predicates within the event data.
To enable hierarchical predicate detection, compound events are formed by com-
puting the convex closure of the matching primitive events. In particular, the Xie
and Taylor convex-closure algorithm forms the basis for such an approach to
predicate detection. Unfortunately, their algorithm can be quite slow, especially
for hierarchical compound events.

In this paper, we study the cause of the problems in the Xie and Taylor algo-
rithm. We then develop an efficient extension to their algorithm, based on a simple
caching scheme. We prove our algorithm correct. We also provide experimental
results that demonstrate that our approach reduces the execution time of the Xie
and Taylor algorithm by up to 98 percent.

Keywords: Autonomic computing, program steering, predicate detection tool.

1 Motivation

The architecture of tools for monitoring and debugging message-passing parallel pro-
grams, enabling parallel-program steering, and the autonomic observation and con-
trol of enterprise and distributed systems is broadly similar, and can be characterized
as shown in Fig.1. A variety of such tools have been built over the years, including
ATEMPT [16, 17], Object-Level Trace [1 3], POET [20], POTA [23], and Log and Trace
Analyzer [| 2]. The managed system is instrumented with monitoring code that captures
significant event data. Ideally, the information collected will include the event’s process
and thread identifiers, number, and type, as well as partner-event identification, if any.
This event data is forwarded from each process to a central monitoring entity which,
using this information, incrementally builds and maintains a data structure of the partial
order of events that form the computation [2 |]. That data structure may be queried by
a variety of systems, the most common being visualization engines for debugging and
steering and, more recently, control entities for autonomic computing [5].

* The authors would like to thank IBM for supporting this work.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 30-39, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Fast Convex Closure for Efficient Predicate Detection 31

Managed System Control Control
Code Entity
Monitoring Entity
Monitoring éb
Code [V~

Visualization
System

O—=
—=O——=

Fig. 1. Monitoring and Control Architecture

The querying of the partial-order data structure for predicate detection has the intent
of either displaying predicates of interest to the user, or feeding the information directly
into the controller. Rapid analysis of event data is critical for both of these uses. While
there have been several approaches to predicate detection (e.g., [4, 14, 22]), this paper
focuses on hierarchical predicate detection based on compound events [|]. The current-
best algorithm that employs this technique was developed by Xie and Taylor [24] and
is implemented within the eclipse system [5].

In using the Xie and Taylor system we discovered it to be very slow in a non-trivial
number of cases. Specifically, queries could take several hours to execute. In this paper,
we describe a series of experiments that we performed to determine the cause of the
slowness in the Xie and Taylor algorithm. As a result of our analysis, we developed a
novel incremental closure algorithm that improved the performance of the predicate-
detection algorithm by up to 98%.

The remainder of this paper is organized as follows. We first briefly review the op-
eration of the Xie and Taylor algorithm, describing the basics of hierarchical predicate
detection based on compound events. We discuss related work. In Sect.3 we detail in
three steps the problem with the Xie and Taylor algorithm, the theoretical basis for in-
cremental closure calculations, and finally our algorithm that solves the problem. We
then provide both a theoretical and experimental analysis of our approach in Sect.3.1.
We discuss related work in Sect.5, contrasting it with our approach. We conclude by
observing what we have achieved and what issues remain open.

2 Fundamentals

We now describe the basics of hierarchical predicate detection based on compound
events, and the Xie and Taylor approach specifically. We first briefly review the funda-
mentals of modeling systems as partial orders, which forms the basis of this work.

The event-based approach to modeling multi-threaded, parallel, and distributed sys-
tems abstracts computations into sequential processes' each of which is a sequence of
four types of events: transmit, receive, unary, and synchronous. These events are con-
sidered to be atomic. Further, they form the primitive events of the computation.

The Lamport “happened before” relation [2 1] is then defined as the smallest transi-
tive relation satisfying

! Throughout this paper we will use the term “process” to indicate any sequential entity. It might
be a single-threaded process, a thread, a semaphore, an EJB (in the case of Object-Level Trace),
a TCP stream, etc.

32 Paul A.S. Ward and Dwight S. Bedassé

1: y . 1/ y
1. €py = 8%2 if e,, occurs before 8%2 on the same process (i.e. p; = p2 and ¢ < j)

2. el =<el ifel isasendeventand el is the corresponding receive event
P1 P2 Op1 P2

This relation, together with the events, forms the partial order of the computation.
Events are concurrent if they are not in the “happened before” relation.

epy L ep, == ey, e, Ny, Boey, @

Given a partial order of computation, there are two types of patterns that are typ-
ically sought. First we may seek patterns within the structure of the partial order. For
example, we may wish to look for the pattern:
ey, Seh, Nep Seh Nep ey s 1 # pe # s)
This particular pattern is a crude form of race detection. We are seeking events in pro-
cesses p; and ps that both precede an event in a third process py but that have no
synchronization between them. The events thus form a potential race condition.

This form of structural pattern searching is equivalent to directed-subgraph isomor-
phism. Specifically, it is equivalent to asking if the directed acyclic graph that represents
the partial order of the computation contains a subgraph isomorphic to the directed
graph that represents the pattern being sought. The directed graphs in this equivalence
can be either the transitive reductions or the transitive closures of the respective partial
orders. This problem is known to be NP-complete [£].

The second type of pattern that we may seek is a pattern within a consistent global
state. There are several varieties that may be sought, such as stable predicates (once
the predicate is true, it remains true), definite predicates (the predicate is true on all
possible paths in the lattice), possible predicates (the predicate is true on some paths
in the lattice), and so forth. From the perspective of a partial-order data structure, the
primary concern is the ability to determine what is, or is not, a consistent global state.
This in turn means we need the ability to determine structural patterns that are consistent
global states. It is, as with the first type, NP-complete in the general case. This paper
focuses solely on the problem of determining structural patterns within the partial order.

2.1 Hierarchical Predicate Detection Based on Compound Events

To alleviate the problem of NP-completeness, and to reduce the complexity of patterns,
the approach taken is to seek hierarchical predicates based on compound events. In this
approach, whenever a sub-pattern is matched, the events that form it are closed (accord-
ing to a criteria to be described below) into a compound event. The requirements of such
a compound event is that it must possess (most of) the properties of a primitive event.
Specifically, given a compound event and any other event (primitive or compound), it
must be possible to determine the precedence relationship between the two. The most
effective way currently known of ensuring these requirements is that the compound
event be convex closed [19], defined as follows:

Definition 1 (Convex Event). An compound event c is convex if and only if

Veiejec T i 2epNeg 2ej=e €c

Fast Convex Closure for Efficient Predicate Detection 33

and extending the definition of precedence to compound events to:
c = Cj — Eleieci;ej €c;€i = €4

Note that the definition does not result in cyclic precedence provided the compound
events are convex. Note also that a primitive event can be compared with a compound
event by considering it to be a compound event with a single constituent element.

We now motivate this approach with a simple example. Consider seeking four
events, ey, ea, €3, and e4 such that e; =< ez, es < ey, and yet ensuring that e; and
eo are each concurrent with both es and e4. Given this requirement, a non-compound-
event-based approach would require the pattern sought to be:

(e1 X e2) A(es = ea) A(ex [l e3) Afen || ea) Alez [l es) A(ez || eq)
By contrast, the compound-event-based approach seeks the pattern
(e1 = e2) || (e3 X eq)

Note that while the compound-event-based approach does require two convex clo-
sure operations, it requires only four precedence tests, while the alternate approach
requires ten”. Further, observe that as predicate complexity increases, the advantage of
the compound-event-based approach increases. Finally, note that in this case the match-
ing events will be identical, regardless the method chosen. While this is not always true,
we have found that it is not difficult to prune unwanted matches from the system.

2.2 The Xie and Taylor Algorithm

Given the problem of structural predicate detection, Xie and Taylor developed a straight-
forward naive-backtracking algorithm. A parse tree is created of the pattern sought.
This tree is processed in prefix order. Whenever the parse-tree node that is matched is
a precedence-relationship node, the convex closure is computed, creating a compound
event at that point in the parse tree. This is treated as a matched event. This process con-
tinues until either the desired pattern is found, or there is no matching event, in which
case the algorithm backtracks, matching a different event.

The key features of their algorithm are their pruning rules, necessary to limit the
search space, and their convex-closure algorithm. We do not modify their pruning rules,
and thus will not comment on them further other than to note that our approach is
orthogonal to their pruning rules. Any revisions to the pruning rules may affect the
performance of the algorithm, but will not affect the correctness of the overall system.

The critical aspect of their approach, from the perspective of this paper, is their
convex-closure algorithm. This algorithm takes an input event set of primitive events,
and returns as output two sets, front and back, that represent the front and back of the

2 While it may seem that the precedence test cost is higher for compound events, this is not in
fact the case. It is possible to assign a vector timestamp to a convex event in much the same
manner as one is assigned to a primitive event, enabling precedence determination between
convex events to be as efficient as it is with primitive events [18].

34 Paul A.S. Ward and Dwight S. Bedassé

convex event set, respectively. For a given convex event C, e € front(C) if-and-only-if
Aer €' <, e, where € <, e if events e and ¢’ are in the same process p and event ¢’
precedes event e. Back is defined analogously:

e € back(C) <=4 e <, € 3)

Thus, in the worse case the convex event covers all processes in the computation, and
thus front and back will have size IV, where N is the number of processes. In such
a case, the computational complexity of their algorithm is O(N3). The full technical
details of their algorithm are available in their paper [24]. From the perspective of our
work, it is a black box. The primary detail specifically required in our work is that in
their algorithm the input event set is composed of two (possibly compound) events.
The usage of the convex-closure algorithm by their predicate-detection mechanism is
such that one of the these input events is held constant, while the other is varied. The
significance of this will become apparent in Sect. 3.3.

3 Incremental Predicate Detection Algorithm

As we have already observed, when using the Xie and Taylor algorithm we found it
to be slow, to the point that in a non-trivial number of cases its execution time was
measured in hours. We therefore set about first determining the cause of the slowness
in their algorithm. Having done so, we developed a theoretically-sound solution to the
problem, and then created an algorithm based on it. We now describe these three steps
in detail.

3.1 Analysis of Existing Approach

To determine the cause of inefficiency in the Xie and Taylor algorithm we performed a
series of experiments using a variety of predicates and data sets. In these experiments,
we instrumented the Xie and Taylor code to determine how many convex closures were
performed, what the input and output sets were for the given closure, and the execution
time to perform the closure in question.

In analyzing the data from these experiments we discovered it was very rare for a
convex closure to consist of an entirely new set of input events. Rather, in more than
90% of cases, only one of the events changed. We further discovered that in cases where
one input event changes, it was typically a near successor of the input event of the prior
closure. However, the Xie and Taylor algorithm made no use of this fact. Rather, it
would simply recompute the closure from scratch.

This problem is best illustrated by example. Consider the set of events shown in
Fig.2. The pattern ¢ < (a < d) is being sought, and events ¢ and a have already been
matched. All that remains is to match d, compute a convex closure between that and the
matched a, and confirm that this is a successor to the matched q. If d is matched to d;
then the convex closure C'1 of a and d; is computed. Unfortunately, C'1 is concurrent
to g. As a result, the search backtracks and matches d to ds. The compound event C2 is
then computed as the convex closure of events a and d5. This is found to be a successor
to ¢, and thus the desired predicate is found. Note that C2 is computed without regard

Fast Convex Closure for Efficient Predicate Detection 35

Fig. 2. Incremental Closure Computation

to the original computation of C'l. By experimental analysis, this lack of incremental
computation was found to be the major cause of inefficiency in the Xie and Taylor
algorithm.

3.2 Theoretical Basis for Improvement

Having found the problem, it was necessary to determine if recomputing the closure
from scratch was an inherent requirement of convex events, or if it was possible to in-
crementally compute such closures. Thus, considering the example of Fig.2, we wished
to compute C2 given C'1.

In this regard, we discovered the following theorems. To understand these theorems,
we first define the following functions.

Definition 2 (Convex Closure). CC(E) is the convex closure of event set E

Definition 3 (Location Set). 1 E is the set of processes in which the various events of
event set E occur.

Given these definitions, we were able to prove the following theorem.

Theorem 1 (Incrementality Theorem).

(1CC(FuU{e})=1CC(E)) AN (CC(E) 2 e) =
CC(EU{e}) =CC(F)UCC(back(CC(E))U{e})

Proof: See [?] O

This theorem states that, as long as the location set does not change, the convex
closure of an event set E' together with a succeeding event e will be the union of the
convex closure of the original set, together with that of the closure of e and the back of
the convex closure of the original set. What this means in practice is that if the convex
closure of the event set E has already been computed, then only a small addition closure
needs to be computed. It is fairly trivial to show that the front set will remain the same as
that of the closure of F, while the back set will be that of the closure of back(CC(E))
together with e.

36 Paul A.S. Ward and Dwight S. Bedassé

3.3 Algorithm

Given Theorem 1, we devised the following algorithm for incremental closure. First, we
assume we have a small cache of closures that have already been computed. This cache
will contain the two input events, together with the convex closure that was computed.
Our incremental closure algorithm is then as follows:

CC(EL1,E2) {
if (in_cache(E1l,?E3,?CCcached) and E3 precedes E2) {
compute CC(back (CCcached), E3);
forall e (back(CCcached) precedes e precedes E2)
verify e is an acceptable event;
}

if (no unacceptable event is found) ({
update cache as appropriate;
return convex closure;
}
if (exists a non-acceptable event OR
no matching cached closure) {
apply Xie and Taylor;
}
}

We now describe the algorithm in detail. First, we check the cache to see if there is a
matching input event. In this matching, we will only check against the first of the two
input events, E1, in the closure computation. This is because that first event is stable,
while the second is varied in the backtracking search process. On finding a match in
the cache, we verify that the corresponding input event E3 that is cached precedes the
second input event, E2 to this convex-closure computation. If this condition is true, we
compute an incremental closure between back of the cached closure and the second
input event. This, however, is insufficient. Per the theorem, the locations sets must be
identical. To satisfy this condition, we must check all events between the cached convex
closure and the new input event, E2, to determine if any are receive or synchronous
events with a partner outside of the location set of the cached convex closure. If any
such event exists, and that event is a successor to the cached closure, then the event is
unacceptable. Specifically, such an event means that the location set of the closure will
exceed that of the location set of the cached closure. Note that only the events that are
part of the incremental closure need to be checked, and not those of the cached closure.
This is typically a small number of events.

If no unacceptable event is found, then the cache should be updated as appropriate,
and the closure returned. We have found that a suitable cache replacement policy is to
replace the closure that was just used. Specifically, this means that a small cache may
be used, while still rendering most closure operations into incremental operations. The
closure returned will be the front set of the cached closure and the back set of the
incremental closure computation.

If no matching cache element is found, or an unacceptable event is found (that is,
the location sets do not match), then we simply revert to the Xie and Taylor algorithm.

Fast Convex Closure for Efficient Predicate Detection 37

4 Analysis

We have implemented our algorithm as an eclipse plug-in, within the basic predicate-
detection system implemented by Xie and Taylor. This allows us to evaluate our algo-
rithm both experimentally and analytically.

From an analytical perspective, we can do no better than Xie and Taylor, since
we degenerate to their algorithm whenever we do not have a suitable basis for an
incremental-closure computation. Further, we can do worse than Xie and Taylor when
we consider the worst-case scenario. In this case, we will compute an incremental clo-
sure over all but a finite number of events in the computation. We then verify this, to
determine if their exist unacceptable events. In the worst case, the last event checked
fails the acceptability requirement, and thus we must compute the desired closure using
the Xie and Taylor algorithm. The acceptability check is thus executed O(n), where
n is the number of events in the computation. The cost of the acceptability check is
O(N), since all events in front must be verified for non-precedence against. In such
an instance, our algorithm would be O(nN + N 3), while Xie and Taylor remains at
O(N3).

While analytically we are no better, and in the worst case, worse than Xie and Tay-
lor, in practice, our algorithm is substantially superior. We have evaluated our algorithm
over more than 50 different parallel and distributed computations covering a variety of
different environments, including Java [10], PVM [9], DCE [0], and puC++ [3] (a lan-
guage used for teaching concurrency). The PVM programs tended to be SPMD style
parallel computations. As such, they frequently exhibited close neighbour commu-
nication and scatter-gather patterns. The Java programs were web-like applications,
including various web-server executions. The DCE programs were sample business-
application code. The ©C++ were sample concurrency problems used in an educational
environemnt, such as Dining Philosophers.

For each experiment we used a variety of predicates, appropriate to the computation
at hand. In the experiments we computed the number of convex closures, the number of
unique front sets, the number of successful incremental closures, and the total execution
time using our algorithm and the Xie and Taylor algorithm. The cache size employed
was one, while the hardware used was a Pentium III 2 GHz, with 512 MB of memory,
together with eclipse version 2.1.3.

For long-running queries, defined as those whose runtime exceeded 30 minutes
when using the Xie and Taylor algorithm, we have found that our algorithm reduced
the runtime by more than 90%. In one instance the runtime was reduced from over four
hours to less than one minute. The cause of the substantial improvement is easily com-
prehended when we observe that, for such queries, the cache-hit rate always exceeded
90%. Further, we observed that the number of closures per unique fronts averaged 15.
This means that, for a given front set, 15 closures were computed. In the Xie and Taylor
algorithm, each such closure would be recomputed from scratch. In our approach, even
with a cache size of one, we effectively only incur the cost of computing the largest
such closure.

While space limitations prevent the publication of the code used, it is available on
request from the first author. Further details of the algorithm, it’s analysis, and raw result
data is available in [2] and/or from the first author.

38 Paul A.S. Ward and Dwight S. Bedassé

5 Related Work

Before concluding, we first briefly review related approaches. Existing work can be
broken down into two main categories, corresponding to the two main types of pattern
sought, and a third, smaller, but more recent, strand. There exists a significant body
of work on seeking predicates in consistent global states (e.g., [4, 22]), as we have
alluded to in Sect.2. While such work is clearly critical in debugging, monitoring, and
controlling parallel and distributed systems, it is fundamentally different from that of
seeking patterns within the partial order itself.

Pattern seeking within the partial order has historically focused on a non-compound-
event-based approach. Such work includes the offline algorithm of Jaekel [14] and its
online version by Fox [7]. Neither method uses the compound-event-based approach
of Xie and Taylor. A variant of the pattern-seeking approach to predicate detection is
Han’s technique for comparing two execution histories [I |]. It is unclear if our work
would be of relevance to her problem. The most recent work in this area is that of Xie
and Taylor, and has already been described.

A third strand of work, which is quite recent, is typified by the IBM Log and Trace
Analyzer [| 2]. This work takes the approach of using what event data is available, rather
than adding monitoring code to an application. This approach is based on the observa-
tion that most enterprise applications already possess substantial log data which repre-
sent events of significance. Further, such applications are unlikely to be instrumented
according to the desires of a third-party autonomic controller. The basic approach is that
the logs are gleaned for event data, which the analyzer then attempts to correlate. The
value of this approach is that it requires no change to existing systems. The success of
the approach is dependent on the degree to which the existing sources possess sufficient
information to provide correct correlation.

6 Conclusions

In this paper we have shown how to efficiently perform hierarchical predicate detection
based on compound events. Our algorithm performs incremental closure computations,
effectively reusing work already done. We have both proven our algorithm correct, and
have demonstrated its efficacy via experiment. While our approach applies only to struc-
tural predicate detection, we expect to study its applicability to the problem of seeking
patterns in consistent global states in the near future.

References

1. A. A. Basten. Hierarchical event-based behavioural abstraction in interactive distributed
debugging: A theoretical approach. Master’s thesis, Eindhoven University of Technology,
Eindhoven, 1993.

2. Dwight S. Bedassé. An efficient computation of convex closure on abstract events. Mas-
ter’s thesis, University of Waterloo, Waterloo, Ontario, 2005. Available at: http://etheses.-
uwaterloo.ca/display.cfm?ethesis id=498.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Fast Convex Closure for Efficient Predicate Detection 39

. P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. pC++:
Concurrency in the Object-Oriented Language C++. Software — Practice and Experience,
22(2):137-172, February 1992.

. Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11:191-201, 1998.

. Eclipse Foundation. The eclipse platform. Online documentation available at: http://www.-
eclipse.org/.

. Open Software Foundation. Introduction to OSF/DCE. Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

. Mark Fox. Event-predicate detection in the monitoring of distributed applications. Master’s
thesis, University of Waterloo, Waterloo, Ontario, 1998.

. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

. Al Geist, Adam Begulin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sun-

deram. PVM: Parallel Virtual Machine. MIT Press, Cambridge, Massachusetts, 1994.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley,

1996. Available at http://java.sun.com/docs/books/jls/.

Jessica Zhi Han. Automatic comparison of execution histories in the debugging of distributed

applications. Master’s thesis, University of Waterloo, Waterloo, Ontario, 1998.

IBM Corporation. Log and trace analyzer for autonomic computing. Online documentation

available at: http://www.alphaworks.ibm.com/tech/logandtrace.

IBM Corporation. Object level trace. Online documentation available at: http://www-106.-

ibm.com/developerworks/websphere/WASInfoCenter/infocenter/olt content/olt/index.htm.

Christian E. Jaekl. Event-predicate detection in the debugging of distributed applications.

Master’s thesis, University of Waterloo, Waterloo, Ontario, 1997.

Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. I[EEE Com-

puter, 36(1):41- 50, 2003.

Deiter Kranzlmiiller, Siegfried Grabner, R. Schall, and Jens Volkert. ATEMPT — A Tool

for Event ManiPulaTion. Technical report, Institute for Computer Science, Johannes Kepler

University Linz, May 1995.

Dieter Kranzlmiiller. Event Graph Analysis for Debugging Massively Parallel Programs.

PhD thesis, GUP Linz, Linz, Austria, 2000.

Thomas Kunz. Abstract Behaviour of Distributed Executions with Applications to Visualiza-

tion. PhD thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1994.

Thomas Kunz. Automatic support for understanding complex behaviour. In Proceedings of

the International Workshop on Network and Systems Management, pages 125-132, August

1995.

Thomas Kunz, James P. Black, David J. Taylor, and Twan Basten. POET: Target-system

independent visualisations of complex distributed-application executions. The Computer

Journal, 40(8):499-512, 1997.

Leslie Lamport. Time, clocks and the ordering of events in distributed systems. Communi-

cations of the ACM, 21(7):558-565, 1978.

Alper Sen and Vijay K. Garg. On checking whether a predicate definitely holds. In 3rd

International Workshop on Formal Approaches to Testing of Software (FATES 2003), 2003.

Alper Sen and Vijay K. Garg. Partial order trace analyzer (POTA) for distributed programs.

In Proc. Workshop on Runtime Verification, 2003.

Ping Xie and David Taylor. Specifying and locating hierarchical patterns in event data. In

Proceedings of the 2004 CAS Conference, pages 66—-80, October 2004.

A Generic Language for Dynamic Adaptation

Assia Hachichi', Gaél Thomas', Cyril Martin®,
Bertil Folliot!, and Simon Patarin?

L LIP 6 - Université de Paris6
{Assia.Hachichi,Gael.Thomas,Cyril.Martin,Bertil.Folliot}@lip6.fr
2 DSI - Universita di Bologna
patarin@cs.unibo.it

Abstract. Today, component oriented middlewares are used to design,
develop and deploy distributed applications easily. They ensure the het-
erogeneity, interoperability, and reuse of software modules.

Several standards address this issue: CCM (CORBA Component Model),
EJB (Enterprise Java Beans) and .Net. However they offer a limited and
fixed number of system services, and their deployment and configuration
mechanisms cannot be used by any language nor API dynamically.

As a solution, we present a generic high-level language to adapt system
services dynamically in existing middlewares. This solution is based on a
highly adaptable platform which enforces adaptive behaviours, and offers
a means to specify and adapt system services dynamically. A first proto-
type' was achieved for the OpenCCM platform?, and good performances
were obtained.

1 Introduction

Computing systems are increasingly complex and difficult to maintain. More-
over, the various elements, that constitute an environment, are often physically
distributed on heterogeneous nodes. Middlewares were introduced to solve these
difficulties, by proposing common generic system mechanisms to the distributed
applications.

The last generation of component oriented middlewares introduces the com-
ponent and container concepts. A container manages system services, such as
persistence, transaction, security or naming, in a way that is transparent for
business code, which is encapsulated in components.

The adaptation of system services is often done statically, by stopping the
middleware execution, which induces a high cost for critical applications. For
this reason the dynamic adaptation is more efficient. Some platforms provide
mechanisms that can be used to adapt services dynamically. Nevertheless, these
mechanisms are specific to the targeted platforms: they are not reusable on

! This work was partially financed by the European project IST-COACH (2001-
34445).
2 OpenCCM is an implementation of the CORBA Component Model specification [1].

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 40-49, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Generic Language for Dynamic Adaptation 41

other middleware platforms easily. Moreover, there is no standard nor model
that unifies adaptation mechanisms independently of platforms.

We propose to use a domain-specific language (DSL) [2] technique: a pro-
gramming language providing high-level abstractions related to a given domain.
The expertise captured in the language allows behaviours to be expressed in an
intuitive and high-level manner, permits verification, and allows generation of
efficient code that is automatically integrated in the target platform.

In this context, our work proposes the Container Virtual Machine (CVM)
approach, which defines a generic adaptation language. The CVM includes a
DSL for writing adaptation behaviours. Each adaptation need is described on
CVM language then is translated to different targeted platform language on the
fly, in an automatic way. This approach allows separation between the adaptation
logic and its implementation, by providing a high-level language.

A first translator has been implemented on the OpenCCM platform [3], an
open source implementation of the CORBA Component Model (CCM) specifi-
cation defined by the Object Management Group (OMG). This prototype allows
the adding and reconfiguring of new system services, and offers administrators
the possibility to specify and deploy system properties dynamically even if they
were not taken into consideration initially.

In the following, Section 2 presents other proposals allowing to make middle-
wares flexible. Then, our proposal for offering high level language for dynamic
adaptation is detailed in the Section 3. Section 4 describes the CVM and exam-
ples implementation, and Section 5 presents the conclusion of our work.

2 Related Work

Several component-based models exist such as: Microsoft .Net, Sun Microsystems
Enterprise Java Beans, or OMG CORBA Component Model. These models are
used to design and to deploy distributed applications. However, they do not allow
easy integration and adaptation of system services® dynamically. Moreover, no
standard envisages describing the integration and adaptation of services after
initial deployment of the application.

The first middlewares were not designed to be flexible. However, adaptation
techniques have been proposed, such as interceptors, and Portable Object Adap-
tor (POA) in CORBA ([1]). The interceptors [3] allow inserting code before the
reception and after sending a request. The POA allows programmers to construct
object implementations that are portable between different ORB products.

Several projects aim at making CORBA more flexible. DynamicTAO [5]
(based on TAO), a reflexive CORBA environment, reifies the internal elements of
the ORB in the form of components called configuration components. Dynamic-
TAO keeps a compatibility with CORBA applications, by offering a high degree
of adaptability. One of the difficulties that this project raises is the problem of
coherence when a policy is replaced by another.

3 System services such as: transaction and replication service.

42 Assia Hachichi et al.

AspectIX [0] adopts a fragmented object model based middleware [7]. The
fragments can mask the replication of a distributed object, impose real-time con-
straints on the communication channel, put the object information in memory
cache, etc. These non-functional (system) aspects can be configured via a generic
interface of the object. Each global object can be configured by a profile that
specifies the aspects that the fragments must respect. Four profiles are planned,
in particular a CORBA profile that allows for these AspectIX objects to inter-
act with CORBA objects. This approach allows a clear separation between the
application and the middleware over which it is deployed.

JAC (Java Component Aspect) allows to weave an aspect dynamically: the
relation between the wrappers and the advice codes can be redefined on the fly.
However, the number of pointcuts is not extensible dynamically: if the class is
already charged in the virtual machine, there is no means to add a new pointcut.

An architecture of open containers is proposed in [3]. This architecture al-
lows dynamic adaptation and extension of the system functions, and it allows
exposing some number of container properties, using control , interception and
coordination mechanisms. OpenORB [9] is a flexible architecture of component
oriented middleware. OpenORB is based on the reflexion. Each Object of the
system is associated to a meta-space which offers structural representation. The
ORB is configured or reconfigured by using the Meta-Object protocol. Java-
POD [10], is a component model which allows attaching system properties to
the components. This attachment is achieved by means of open and extensible
containers. Comet [!1] is an events based middleware. It can be adapted by
inserting pre/post hooks into the components. A language is associated to dy-
namic reconfiguration of the Comet middleware. However this language is not
extensible dynamically, and is not generic since it is applicable only for Comet.

These various projects increase the middleware adaptation possibilities by
re-coding it. Our work takes different direction, we propose a generic high-level
language to adapt the system services dynamically in existing middlewares. Each
adaptation behaviour is described on this high level language then is translated
on all targeted platform language, in an automatic way. This abstract description
allows separation between the adaptation logic and its implementation.

3 Container Virtual Machine Approach

Instead of providing adaptation behaviours that depend on the middleware plat-
form, the Container Virtual Machine approach defines a generic language, which
gives a high-level abstraction of system services adaptation behaviours, that is
independent on the middleware platform. The abstraction behaviours are trans-
lated on the targeted platform, in automatic and dynamic way.

This approach allows (i) the unification of adaptation behaviours, indepen-
dently on the targeted platform, (ii) the automatic generation of CVM scripts
can be achieved by a design tool, and (iii) the generation of platform independent
adaptation models (PIM - Platform Independent Model) and them translation
on the trageted platform (PSM - Platform Specific Model).

A Generic Language for Dynamic Adaptation 43

. (
CVM Runtime Middleware—dependent

Reconfiguration [—— Middleware X
script (DSL) loaded

Fig.1. CVM Concept (Container Virtual Machine)

cl : Communication Interface
Component Application VVM : Virtual Virtual Machine
Middleware /Jf_ i

= CVM Network adaptation
VVM Script

Administration

I Console

I Operating System

Fig. 2. CVM Processing (Container Virtual Machine)

3.1 CVM Design

The CVM approach aims to remain neutral with respect to the platform, and
to separate the adaptation language from its execution. Figure 1 presents the
CVM concept; its input is a configuration script, called a translator, which is
dependent on middleware. The translator enables to translate an adaptation
script written in CVM language for a specific middleware.

3.2 CVM Implementation

The main idea is to add an entry point to different platform middleware, at
the initial deployment and in a transparent way. This entry point enables the
interaction between the CVM platform and its targeted middleware platform,
and is called a Communication Interface (CI). It enables the translation of ab-
stractions to the targeted middleware language. The CVM is mainly based on a
highly adaptive platform to describe and to enforce the adaptation behaviours.
This platform is generic with respect to middleware platforms, and interacts
with each middleware platform through its associated Communication Inter-
face (fig 2). The CVM allows to define new adaptation operations on the fly.

Virtual Virtual Machine: The CVM design requires a highly adaptable lan-
guage to provide separation between the adaptation logic and its implementation,
and to extend the access operations in order to enforce what can be adapted. The
selected highly adaptable platform is the Virtual Virtual Machine (VVM) [12],
which is a dynamic code generator that provides both a complete, reflexive
language, and an execution environment. The VVM allows to modify the imple-
mented mechanisms, to reconfigure the environment, and to extend or modify
the associated language.

The main objectives of this environment are: (i) to maximize the amount of
reflective accesses and intercessions, at the lowest possible software level, while

44 Assia Hachichi et al.

preserving simplicity and efficiency; (ii) to use a common language substrate to
support multiple language and programming paradigms.

To achieve this, the VVM provides four basic services: (i) code generation: a
fast, platform- and language-independent dynamic compiler producing efficient
native code that adheres (by default) to the local platform’s C ABI (Applica-
tion Binary Interface); (ii) meta-data that are kept between compilations, thus
allowing higher-level software to reason about its implementation or that of the
environment, and modify them dynamically; (iii) introspection on dynamically-
compiled code, the application and the environment itself; (iv) input methods,
giving access to the compilation and configuration process at all levels.

The execution model is similar to C and the dynamically-compiled code has
the same performance as a statically compiled and optimized C program. In the
context of the CVM, we added a server which receives Abstract Syntax Tree
from another VVM, compiles and links them, and executes the generated code.

The use of the VVM allows the separation of the adaptation logic from its
implementation. This language must be both extensible to new adaptive needs
dynamically, and generic with respect to the targeted middleware in order to
ensure its reusability. It allows both to reduce the possibilities of reconfiguration
by limiting the language symbols, and/or to extend the language by providing
introspection of the environment and the creation of new symbols.

Remote Administration of the CVM: In order to ensure the adaptation of
several network nodes from a remote administration console, we built a remote
adaptation environment in the VVM platform; this environment must be loaded
on all VVMs. It parses/lexes scripts that reconfigure the target environment;
these scripts are transformed into abstract syntax trees. These trees are sent to
the VVM, which is able to receive them on a communication channel (example:
a TCP socket). These trees are then compiled and executed on the second entity.

In the adaptation context, a client opens a communication channel, and
parses/lexes VVM scripts that reconfigure the remote machine (server), then
sends the corresponding trees to the server. When a server receives the abstract
syntax trees, it compiles and executes them.

4 Qualitative Evaluation

The CVM is evaluated on a CORBA Component Model implementation written
in Java: the OpenCCM [3]. This section details the prototype implementation.

4.1 OpenCCM Translator Implementation

In the case of the OpenCCM platform, the translator is achieved by using a Java
native method, which launches the VVM. The communication Interface (CI) be-
tween the VVM and the standard JVM is provided by JNI (Java Native Inter-
face [13]). JNT is an interface between the native functions and the Java virtual
machine.

A Generic Language for Dynamic Adaptation 45

The VVM is executed by a Java thread in competition with those of the
application. The language of the VVM is then dynamically extended: the scripts
written for the VVM can then interact with the JVM directly, and the VVM is
able to handle the methods and the symbols of the Java application (Fig 2).

A reconfiguration comprises two important steps:

1. The first phase consists in building methods that allow dynamic adaptation
into the VVM; for example: methods that integrate or remove components.

2. The second consists in writing a CVM script that contains the adaptation
needs. This script is loaded remotely by the administration console and is ex-
ecuted by using a CI. Scripts can either extend the reconfiguration language,
or use the keywords already built in to modify the OpenCCM application.

To illustrate the use of the CVM, two examples of reconfigurations are pre-
sented in the rest of this section.

4.2 Integration of Service

We classify the system services in two classes: not-intrusive services, which do
not modify the treated data, and the intrusive services, which modify the data,
and requires synchronization

In this paper we present two examples for integrating services, one is a mon-
itoring service that is not-intrusive and the other one is an encryption service
that is intrusive. These integrations are based on the Portable Interceptors and
on System Oriented Component respectively.

Flexible Monitoring Service: The first example illustrates the dynamic inte-
gration of a flexible monitoring service based on interceptors.

This service was designed to collect statistics on the way components interact
with each other, and to make this information available to a “reconfiguration
service” that will use it to adapt the platform.

The monitoring service is composed of two concurrent processes. The first
one collects all available information concerning the called requests, and records
them in a log file. The second process scans the log generated by the first process
periodically, and calculates the statistics of the call number and the average
response time for given operations. The integration of this service is based on
CORBA portable interceptors.

The CORBA specification [14] defines the portable interceptor interface as
a way to insert hooks directly inside the ORB. These hooks are activated for
every operation performed by the broker: mainly method invocations and result
returning. Hooks may be located either on the client or on the server side. We
conclude that the integration of the monitoring service on the level of interceptor
hooks, allows to invoke the monitoring service code at every request by extract-
ing several metrics, such as the number of times a specific method is invoked, and
sums all the invocations of methods belonging to the same component. However,
no standard language or interface enable to use Portable Interceptors dynami-
cally to achieve an integration of System Services. For this reason the CVM is

46 Assia Hachichi et al.

used to integrate the monitoring service dynamically. This integration comprises
two phases: (i) to specify, in the VVM platform, the new adaptation operations
that allow adding code in the OpenCCM interceptor hooks dynamically. (ii) to
write and to execute a VVM script that integrates service code in hooks through
the Communication Interface.

Encryption Service: Considering an application, that contains two compo-
nents “A” and “B”, included in containers “CA” and “CB” respectively (see
figure 4). Component “A” sends messages to “B” in a regularly way. During
the execution, the administrator decides to send encrypted messages to “B”. In
order to achieve this, we use another mechanism to intercept requests: System
Oriented Components (SOC). This mechanism is used because it is generic; it
can be applied for any middleware, and shows that it is possible to define other
integration mechanisms on the fly.

The System Oriented Component mechanism consists in adding CCM com-
ponents which containing the service code to be added, and in establishing the
necessary connections with the components to which this service will apply.

In our example, the integration of an encryption service consists in inte-
grating an encryption SOC component in container “CA”, and a decryption
SOC component in container “CB”. Basically the integration consists in adding
the necessary operations to the VVM, such as the operations which enable SOC
component creation and handling the connections between any components. The
second step is to write and execute the VVM script which allows us to: (i) add
the encryption SOC in “CA” and another one in container “CB”, (ii) disconnect
“A” and “B”; (iii) establish the connections between “A”, “B” and their respec-
tive SOC (see figure 4 and 3), by ensuring the synchronization. Problems that
can occur are: encoded messages may be received before adding a decryption
SOC, or non-encrypted messages will be sent after adding the decryption SOC.

1. (On container CA 1. <programme>— <reconfiguration>*

- (Dcactn{ato Component A)) 2. <reconfiguration>—<SOC>*| <PI>*
2. (On container CB)

— (Deactivate Component B)) 3. <SOC>— (On container<atomeCont>
3. (On container CA <action>*)

~ (Disconnect components A B) 4. <action>— (<subaction><atome>)

— (Insert SOC SocA)

~ (Connect components A SocA)) 5. <subaction>—Deactivate Component|

4. (On container CB (Insert SOC SocB) Disconnect components <atome> | In-
— (Connect components SocA SocB) sert SOC | Connect components<atome>
— (Connect components SocB B)) |Activate Component

5. (On container CA 6. <atomeCont>— Containerreference.
— (Activate Component A))

6. (On container CB 7. <atome>— Compoenentreference

— (Activate Component B))

Fig. 3. (A) An example of the reconfiguration script that integrates encryption SOC
(B) A part of the CVM grammaire.

A Generic Language for Dynamic Adaptation 47

Container CA Container CB

Component A | | Component B

Before adaptation

(cvm) Container CA Container CB

Component A | | Encryption | Descr);ption Component B
System | ystem
[Yy] oriented [— Oriented
: . o Component

After adaptation

Fig. 4. Integration of the encryption service.

To avoid these problems, the synchronization must be ensured dynamically.
A pseudo-algorithm that is proposed consists in deactivating “A” before “B”,
breaking the connections between “A” and “B”, and then adding the encryption
and decryption SOC in container “CA” and “CB” respectively, finally establish-
ing the necessary connections, and activating “B” before “A”.

In the case where the targeted middleware does not provide the possibility to
activate or deactivate a component, we propose to use a queue. Messages from
“A” will be redirected towards the queue, during integration of encryption and
decryption service. Synchronization is not yet implemented in our encryption
prototype.

4.3 Adaptation of the Encryption Service

To illustrate the adaptation of existing services, we adapt the encryption service
of the previous example, during the execution.

Component behaviour adaptation can be achieved by replacing a component
by a new one. However, it is simpler and less expensive to adapt a component
by replacing some of its methods.

In the case of the encryption SOC adaptation, it is enough to adapt the Java
method that contains the encryption service. The Java standard allows dynamic
loading of a class and overload of the serialization methods. By coupling the Sun
Java platform and CVM, we can adapt a Java method. Let us take the example of
method “metA” from class “A”, the adaptation of this class is done by charging
a new class “A1” which inherits from “A”, and which implements the new code
of “metA”, then redirecting all calls towards the new loaded method (Fig 5).

' ' 6
| CLASS A ' CLASS A
><.> Redirected Invocation \ [
> meta >
- > Invocation 0L ' metA(){
—> inherited class b 1 b3 CLASS AL
1
————————— I>| metant
1
Before adaptation After adaptation

Fig. 5. Method adaptation.

48 Assia Hachichi et al.

4.4 Discussion

Two adaptation examples were presented; one is based on the SOC approach
which is generic in the sense that it can be applied for any component-oriented
middleware. However, the created SOC must have compatible ports with existing
components, and the SOC code is compared to service code that it contains.

The second example is based on the Portable Interceptors (PI) approach,
and is not generic, since the PI concept does not exist in all component-oriented
middlewares, with EJB. But this code size is smaller than the SOC code size.

A Set of ten performance evaluation measures of the dynamic integration
were performed, on a Pentium III 664MHz under Linux. These measures repre-
sent the duration between the old configuration and the new configuration after
the end of service integration. (i) The monitoring service integration average
duration, which is based on the portable interceptors, is 8.539 seconds. (ii) The
encryption SOC integration average duration is 2.054 seconds.

Another set of ten SOC adaptation duration measures were done. This du-
ration represents the time between the initial configuration and the end of the
encryption code replacement. The average of the ten measures is 94 * 1073 sec-
onds.

We note that the integration based on Portable Interceptors is slower than
service based on System Oriented Components. This can be explained by the
cost resulting from the flowing of all requests through the interceptor layer. In
[15], which studies three different ORB implementations, it is shown that the
activation of portable interceptors increases latency by a factor varying between
2% and 10% and decreases request throughput by a factor ranging from 1.5% to
16%, This cost is then limited.

We note that the adaptation duration average is slower than integration
service duration. However, these costs remain limited.

5 Conclusion

This paper presents the Container Virtual Machine, a platform which allows
dynamic adaptation of system services and provides a generic language specific
to adaptation domain (DSL) . This language offers a high-level abstraction of
adaptation behaviour and is itself extensible. Adaptation CVM scripts can be
translated for different target platforms during the execution automatically.

The CVM approach provides a separation between the adaptation logic and
its implementation. CVM language is generic in the sense that it is independent
from the middleware to be adapted. It language enables to describe any new
adaptation and the related operations. It allows an adaptation remote admin-
istration which provides interoperability and synchronisation between several
nodes; it can be aperated on different middleware platforms, such as EJB and
CCM. The provided high-level abstractions are translated automatically for the
targeted platform.

As future works, we aim to reuse the CVM language on the different plat-
forms, such as EJB, then to refine the grammar of our DSL. To provide means

A Generic Language for Dynamic Adaptation 49

that ensure the coherence, atomicity, and verification of the dynamic adaptations
and of there deployment. To achieve the automatic generation of CVM scripts
design tool such as Rationalrose, then to offer mechanisms that execute models
automatically.

References

10.

11.

12.

13.

14.
15.

. Opencem user’s guide (2004)

http://openccm.objectweb.org/doc/0.8.1/user guide.html.

Lawall, J., Muller, G., L.P.Barreto: Caputing os expertise in an event type system:
the bossa experience. In: Tenth ACM SIGOPS European Workshop (EW 2002),
France, Springer-Verlag (2002) 15461

OMG: Interceptors Published Draft with Corba 2.4+ Core Chapters. (2001) Doc-
ument Number ptc/2001-03-04.

Daniel, J.: Au coeur de Corba. (2001)

Kon, F., Roméan, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L.C., Campbell,
R.H.: Monitoring, Security, and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In: Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middleware’2000).
Number 1795 in LNCS, New York, Springer-Verlag (2000) 121-143

. Hauck, F.J., Becker, U., Geier, M., Meier, E., Rastofer, U., Steckermeier, M.: As-

pectIX: An aspect-oriented and CORBA-compliant ORB architecture. Technical
Report TR-14-98-08, Univ. of Erlangen-Nuernberg, IMMD IV (1998)
Makpangou, M., Gourhant, Y., Narzul, J.P.L., Shapiro, M. In: Fragmented objects
for distributed abstractions. IEEE Computer Society Press (1994) 170-186

. Vadet, M., Merle, P.: Les conteneurs ouverts dans les plates-formes & composants.

Journées composants: flexibilité du systéme au langage (2001)

Blair, G.S., Costa, F.M., Coulson, G., Duran, H.A., Parlavantzas, N., Delpiano, F.,
Dumant, B., Horn, F., Stefani, J.B.: The Design of a Resource-Aware Reflective
Middleware Architecture. In: Proceedings of the Second International Conference
on Meta-Level Architectures and Reflection, France, Springer-Verlag (1999) 115—
134

Bruneton, E., Riveill, M.: Javapod: une plate-forme & composants adaptables et
extensibles. Rapport technique 3850, Inria Rhone-Alpes (2000)

Peschanski, F., Briot, J.P., Yonezawa, A.: Fine-grained dynamic adaptation of
distributed components. Middleware 2003 (2003) 132-142

Ogel, F., Thomas, G., Piumarta, I., Galland, A., Folliot, B., Baillarguet, C. In: To-
wards Active Applications: the Virtual Virtual Machine Approach. A92 Publishing
House, POLIROM Press (2003) 28-47

Liang, S.: The JavaTM Native Interface: Programmer’s Guide and Specification.
Addison Wesley Longman (1999)

OMG: Corba / iiop specification 3.0. formal/024206 (2002)

Marchetti, C., Verde, L., Baldoni, R.: Corba request portable interceptors: a perfor-
mance analysis. In: Proceedings of the 3rd International Symposium on Distributed
Objects and Applications, Rome, Italy (2001)

Soft Computing Approach to Performance Analysis
of Parallel and Distributed Programs*

Hong-Linh Truong and Thomas Fahringer

Institute for Computer Science, University of Innsbruck
Technikerstrasse 21A, A-6020 Innsbruck, Austria
{truong, tf}edps.uibk.ac.at

Abstract. This paper describes a novel approach to performance analysis for
parallel and distributed systems that is based on soft computing. We introduce
the concept of performance score representing the performance of code regions
that is based on fuzzy logic. We propose techniques for fuzzy-based performance
classification. A novel high-level query language is designed to support the search
for performance problems by using linguistic expressions. We describe a fuzzy-
based bottleneck search, a performance similarity measure for code regions and
experiment factors, and performance similarity analysis. Our approach focuses
on the support of making soft decisions on evaluation, classification, search and
analysis of the performance of parallel and distributed programs.

1 Introduction

Recently, performance analysis community has focused on developing performance
tools for parallel and distributed programs that are capable of supporting semi-automatic
performance analysis, dealing with large performance data sets, and analyzing multi-
ple experiments. However the development of automatic and intelligent performance
analysis is still at an early stage. Current techniques in existing performance analy-
sis tools have mainly been used to process the performance data that are in the form
of precise numerical data. Firstly, these techniques always apply exact analysis meth-
ods that result in hard conclusions about performance characteristics of applications.
Secondly, existing performance tools interact with the user through complex numerical
values and visualizations which are not easily understood by the user. Thirdly, in the
real world we largely rely on domain expertise and user-provided inputs as parameters
to control the performance analysis and tuning. Such expertise and inputs may be inex-
act and uncertain. However, existing performance tools do not support the specification
and the control of approximate and inexact parameters in data analysis techniques, in
other words, these tools do not provide a mechanism to make soft decisions.

The recent emerging soft computing [1], however, presents another way for evalu-
ating and analyzing data that is based on the concept of soft, inexact, uncertainty. Soft
computing aims to support imprecision, uncertainty and approximate reasoning [!].

* The work described in this paper is supported in part by the Austrian Science Fund as part
of the Aurora Project under contract SFBF1104 and by the European Union through the IST-
2002-511385 project K-W{Grid.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 50-60, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Soft Computing Approach to Performance Analysis 51

In this paper we present a new approach to the performance analysis that we call
the soft performance analysis. In this approach, well known soft computing techniques
such as fuzzy logic (FL), machine learning (ML) concept, and the combination of FL
and ML are studied and developed for performance analysis of parallel and distributed
programs. We introduce the concepts of performance score and performance similarity
measure. Employing these concepts, we develop several soft techniques and methods
for performance analysis such as fuzzy-based performance classification, performance
search, similarity analysis, etc.

The rest of this paper is organized as follows. Section 2 outlines the so-called soft
performance analysis. Section 3 presents a few preliminaries. We introduce the con-
cept of performance score and performance similarity measure in Section 4 and Section
5, respectively. We describe soft techniques for performance analysis including fuzzy-
based performance classification, query language, fuzzy-based bottleneck search and
performance similarity analysis in Section 6. Section 7 discusses the related work. Sec-
tion 8 gives conclusions and the future work.

2 Soft Performance Analysis

Existing performance analysis tools are based on hard computing model that is based on
binary logic and crisp systems. For example, to classify the performance performance
analysis tools normally use a characteristic function. That is, given a performance met-
ric and a set of performance characteristic term, e.g., poor, medium and good, each
term represents a performance class and is associated with a data set, the performance
of a code region is classified according to characteristic terms by using a characteristic
function. However, such classification is in binary form, e.g., a performance of the code
region is either good or not, because the hard computing model does not accept impre-
cision and uncertainty. Since approximate search, classification and reasoning are not
possible, the cycle of finding performance patterns in a large set of performance data
has been lengthened because, in the real world, the boundaries between performance
classes, performance search constraints, etc., are not clearly seen, thus, exact methods
may not yield the expected results. Moreover, current tools focus on supporting the
performance analysis through statistical graphics which are not well suited for process-
ing large performance datasets. In practice, both performance data and expertise used in
performance analysis domain can be uncertain. For example, in the case of performance
classification, performance of code regions is classified into good, but depending on the
degree of good the performance of code regions can be considered as little good, fairly
good or very good. When we are not sure about performance data and expertise, we
may accept some degrees of uncertainty and approximate in our analysis techniques.

To address the above-mentioned issues, we investigate performance analysis tech-
niques that are based on soft computing. The soft performance analysis we propose aims
to develop techniques for performance tools that can (i) extract useful performance in-
formation from large, dynamic and multi-relational performance measurement sources,
(i) support the specification and control of approximate and inexact parameters, com-
mands and requests in existing performance analysis tools, and (iii) interact with the
user through high level notions and concepts expressed in linguistic expressions.

52 Hong-Linh Truong and Thomas Fahringer

We outline the approach as follows. Firstly, fuzzy logic (FL) can help representing
and normalizing quantitative data. We can represent performance score of metric val-
ues by using fuzzy set (FS). By employing the concept of performance scores, we can
develop several techniques that support soft, inexact and uncertainty in performance
analysis. The application of FL theory also involves the concept of linguistic variables
and the use of linguistic variables is particular useful for the end-user because humans
employ mostly words in computing, as presented in the concept of computing with
words [2]. Therefore, by using FL, performance tools can provide a way to perform the
analysis and to interpret performance results with linguistic terms. Secondly, when pro-
cessing large and diverse performance data, information about performance summaries,
similarities and differences of data items in that data become more important as we can-
not examine each data items in detail. Similarity measure techniques can be exploited to
reveal the performance similarities and differences. ML techniques [3] can be utilized
to discover patterns in very large performance datasets. For example, machine learning
is combined with fuzzy computing to provide fuzzy clustering for performance data.
Due to the space limit, this paper presents only a few points of our approach, focusing
on FL and performance similarity techniques. More detail of soft performance analysis
can be found in [4].

3 Preliminaries

3.1 Performance Experiment Data

A program contains a set of instrumented code regions. Performance data collected in
each experiment of the program is organized into a performance experiment data. An
experiment is associated with a set of processing units. A processing unit pu is a triple
(n,p,t) where n, p and ¢ are computational node, process identifier and thread identi-
fier, respectively. A region summary 7s is used to store performance metric records of
executions of a code region cr in a processing unit pu. A performance metric record pm
is represented as a tuple (m,v) where m is the metric name and v is the metric value.
We denote rs(m) as the value of performance metric m stored in region summary rs.

We use performance data obtained from experiments of three Fortran applications
named 3DPIC (MPI program), LAPWO (MPI program) and STOMMEL (mixed
OpenMP and MPI program). All experiments are conducted on a cluster of 4CPU SMP
nodes using MPICH library for Fast-Ethernet 100Mbps and Myrinet.

3.2 Representing Performance Characteristics Under Fuzzy Logic Theory

An FS is used to map metric values onto membership values in the range [0, 1]. An
F'S is expressed as a set of ordered pairs F'S = {(v, u(v))|v € U} where u(v) is the
membership function determining the degree of membership of v, and U is the uni-
verse of discourse of v. Let v be a metric value with the universal of discourse U. U is
characterized by a given set of performance characteristic terms T = {t1,ta, -, tn};
performance characteristic terms are linguistic terms such as poor, medium and high.
Each ¢; is associated with a membership function x;(v) which determines the member-
ship of v in ¢;. v can be classified according to these terms. A modifier (e.g. slightly) is

Soft Computing Approach to Performance Analysis 53

an operation that modifies a performance characteristic term (e.g. bottleneck). The mod-
ification results in a new fuzzy set represented by a new phrase (e.g. slightly bottleneck).
In our experiments, we use the NRC-IIT FuzzyJ Toolkit [5] for fuzzy computing.

4 Performance Score

When evaluating and comparing performance of code regions most existing perfor-
mance tools are normally based on quantitative measurement values and do not employ
quantization or normalization techniques to evaluate multiple metrics. We present the
concept of performance score which is used to evaluate the performance of a code re-
gion within a base, e.g. the parent code region or the whole program. The concept is
based on (i) a set of selected performance metrics characterizing the performance of the
code region, and (ii) a weight set representing the significance of performance metrics.
Given a code region cr, let rs be the region summary of cr with a set of n performance
metrics {my,ma, -, my }. Suppose the number of performance metrics measured is
the same for every code regions. rs can be represented in n dimensional space. Let
v; = r8(m;) be the value of metric m; in rs and let s; be a score that represents the
performance of rs with respect to metric m;. We compute s; as follows

s = i (vs), Mi(v) : [07 Vmi] - [0’ 1] (1

where p;(v) is the membership function determining the performance score, and V;,,,
is the maximum observed value of m,. V,,, is dependent on the level of code region
analysis. For example, if we analyze performance scores of rs with its parent 75pqrent
as the base, Vi, = r'Sparent (m;)-

The value of s; is in the range [0, 1]; 0 means the lowest score, 1 means the highest
score. A higher performance score might be used to imply a higher performance or to
indicate a lower significant impact. The exact semantics of the value of the performance
score is defined by the specific implementation. As a result, performance scores can be
used in various contexts such as to indicate (i) a significant impact level: the higher a
performance score is, the higher impact the code region has, or (ii) a severity, the higher
a performance score is, the more severe the core region is. There are several ways to
select i (v), depending on the specific analysis and approximate model used. The most
simple way is to define the membership function x as p(v;) = VUT:L which assumes that
the score is based on linear model. We can choose trapezoid, S—qunction, Z-function,
triangle, etc., and tool-defined function for p(v).

Each rs is associated with a vector of performance scores s. However, we may
only select a subset of s as metrics to represent the performance of the code region.
Like quantitative measurement values, we can compare two performance scores of two
different metrics. However, because performance scores are normalized values, we can
aggregate performance scores § of 7s into a single score by using the overall weighted
average (OWA) operator. Let {s1, 2, -, s, } be performance scores of s and W =
{wy,wa,- -+, wy,} be the set of weights. w; is a weight factor associated with metric
m;. The aggregate performance score for § may be computed as follows

iy (Isiwil)
ow A = = @

54 Hong-Linh Truong and Thomas Fahringer

For the sake of simplicity, normally w; € (0,1) and Z?:l w; = 1. OWA score is
particular useful for support of decision making in performance analysis and tuning
because very often we have to decide which are the focused metrics of the code regions
that should be tuned and optimized in order to achieve a better performance. Hence we
use the notation (m;, w;) to denote m; with its associated weight w;.

We use performance score in ranking analysis, fuzzy C-means clustering, fuzzy
rules, and similarity analysis. The former three analyses are covered in [4].

S Performance Similarity Measure

Most existing performance tools employ numerous displays, e.g., process time-lines
and histograms, to compare performance measurements and visualize that measure-
ments. Those displays are crucial but the user has to observe the displays and perceive
the similarity and the difference among these values. Moreover, it is difficult to com-
pare multivariate data through visualization. We propose methods to compute the per-
formance similarity measure which can be used as a metric to indicate the performance
similarity among code regions and among experiment factors. Formally, let o; and o; be
objects, a similarity measure is a function sim(o;, 0;) — [0, 1] that compares o; with o,
where 0 denotes complete dissimilarity and 1 denotes complete similarity. Performance
similarity measure can help uncovering similar/dissimilar performance patterns among
code regions, e.g., for making decisions in dynamic performance tuning [6].

5.1 Similarity Measure for Code Regions

Let rs; and rs; be region summaries of cr. Let s;; and s;; be performance score of rs;
and rs; with respect to metric m;, respectively. We use Equation 1 to compute s; and
sj1. The performance similarity measure sim;;(rs;, rs;) is defined as follows

simij(rsi,rsj) =1- dij, dij = Z (lSil — Sjl|2) (3)
=1

where d;; is the distance measure between rs; and rs;; d;; is computed based on Eu-
clidean distance. Note that we can use other distance functions, e.g., Minkowski, Man-
hattan, Correlation and Chi-square, and can use weight factors associated with metrics.
To determine the performance similarity among executions of code regions across
a set of experiments, we use Equation 3 to measure the performance similarity. Given a
code region ¢r and a set of experiments {e1, ea, - - -, e, }. Let rs; be region summary of
cr in experiment e;. We compute similarity measure sim(rs1,7s;), i : 2 — n by using
various membership functions. Given metric m;, when determining performance score,
the maximum observed value V;;,, is obtained from e; which is the base experiment.

5.2 Similarity Measure for Experiment Factors

Experiment factors which can be controllable, e.g. problem size, the number of CPUs
and communication libraries, or uncontrollable such as CPU usage, have significant im-
pact on the performance of the applications. Without considering the similarity between

Soft Computing Approach to Performance Analysis 55

experiment factors, it is difficult to explain cases in which the performance of code re-
gions is not similar because the experiment factors can be different. Therefore, initially
we try to address this problem by measuring similarity between controllable factors.

Let sim (e;, e;) be similarity measure for factor f between experiments e; and e;.
Given a set of controllable factors F' = {f1, f2,- -, fn}, similarity measure is com-
puted for each factor f; € F. There is no common way to compute sim ¢ as a control-
lable factor and its role depend on each experiment. The objective of our analysis is to
find out the relationship between the performance similarity of the code regions, sim,
(e.g. sim(rs;,7s;)), and simy,. Naturally we expect that the similarity measures of the
controllable factors of two experiments and the similarity measures of the performance
of these experiments behave in a similar fashion, e.g. if the controllable factors are very
similar then the performance of experiments should be very similar.

6 Soft Techniques for Performance Analysis

6.1 Performance Classification

Performance classification classifies the performance of code regions according to per-
formance characteristic terms. Formally, given a metric value v and a set of performance
characteristic terms 7' = {¢1,to, - - -, t, }, v are classified according to that terms. In ex-
isting performance tools, the classification gives a binary result: v belongs to only one
t; € T, with no degree of membership. Conversely, the fuzzy-based classification de-
termines the degree to which v fits into ¢;, forall t; € T'.

To classify performance of code regions, we firstly define a set of performance
metric terms for each performance metric m by partitioning the universal of discourse
of metric m into segments and each segment is described by a performance metric term
which is associated with a FS. Performance characteristic terms can be defined based
on training data. After membership functions are determined, the membership degree
of v is computed based on quantitative value v of m.

To demonstrate this analy-
sis, we classify code regions of
3DPIC application executed on
4 processors according to per-
formance characteristic terms

12

Ll
08 |

06 [

Degree

T = {low, medium,high} T
representing the L2 cache miss o)
ratio. Three FSs Z-function, %5 Y os o5 Y 1

L2 cache miss ratio

trapezoid and S-function are
associated with low, medium,
and high term, respectively, as
shown in Figure 1. We then conduct the classification with a few selected code regions.
Figure 2 presents the result with five selected code regions. As shown in Figure 2, the
code region PARTICLE LOAD has high L2 cache miss ratio. However, code region
CAL POWER is member of both low and medium.

New performance characteristic terms can also be built by combining existing ones
with modifiers. For example, we can classify code regions according to very low L2

Fig. 1. Performance characteristic terms low, medium,
high with their associated fuzzy sets.

56 Hong-Linh Truong and Thomas Fahringer

= Performance Classification for L2_TCM/L2_TCA |-
Code Region Classes |
Region 18:PARTICLE_LOADICR_A:191:328] high{degree=0.937)f
Region 26:5R_E_FIELD[CR_AEA3:723] mediurmnidegree=1)
Region 46:10NIZE_MOVE[CR_A:1281:1788] low(degree=0.732)
Region 47:SET_FIELD_PAR_BACK[CRE_A1794:1928] mediumidegree=0.545)
JRegion 458:CAL_POWER[CR_A:2244:2323] lowr{degree=0.007medium{degree=0.28)

Fig. 2. Membership in {low, medium, high} L2 cache miss ratio for selected code regions of
3DPIC.

cache miss ratio; the term very is a fuzzy modifier. The use of modifiers allows us to
extend and enhance the description of performance characteristic terms.

6.2 Fuzzy Query for Performance Search

The fuzzy-based approach offers the possibility of search of performance data with
words. Fuzzy-based search that uses linguistic expressions has been widely employed
in database systems, information retrieval, etc., but not in existing performance tools.

Wel proposef a fuzliy-lf)ased (Statement): : =(Expr) | (Statement) OR (Ezpr)
query language for search ot per- (Expr) ::=(Term) | (Expr) AND (Term)
formance data. Queries are con- (Term) . := (METRIC is (F Eaxpr))

structed based on fuzzy modifiers, Fis. 3. Ton-level syntax of PEREOL
AND and OR operators, and per- 18, Toprievel symax o o

formance characteristic terms. Figure 3 presents the top-level syntax of our PER-
FQL (Performance Query Language based on fuzzy logic). METRIC is a metric
name or a metric expression. A metric expression consists of operands and +, -, *
/ arithmetic operators; operands are metric names. F' Ezpr describes the syntax of
generic linguistic expressions (see [5] for the syntax). These expressions are con-
structed from performance characteristic terms and modifiers. For example, the fol-
lowing query can be used to find code regions which have high wallclock time and

poor L2 cache miss ratio: " (wtime is HIGH EXECUTION TIME) AND (42 7CM is
POOR CACHE MISS)" , where HIGH EXECUTION TIME and POOR CACHE MISS

are performance characteristic terms.

PERFQL allows the user to easily define queries for search of performance data by
using words, not numerical expressions. Thus, it is easy to be understood and interpreted
by the user. Moreover, fuzzy-based queries enable approximate search thus interesting
performance data which is slightly less or greater than the crisp condition can be easily
obtained.

6.3 Fuzzy Approach to Bottleneck Search

There are several tools supporting bottleneck search, e.g., [7, &]. These tools, however,
support crisp-based searching as the search is conducted by checking crisp threshold.
Given a performance metric, a threshold is pre-defined. During the search, the per-
formance metric is evaluated against the threshold, and when the performance metric

Soft Computing Approach to Performance Analysis 57

exceeds the threshold, a bottleneck is assumed to exist in the code region. There are two
drawbacks of current crisp search strategy. Firstly, the search does not give the degree
of severity of the bottleneck, e.g. extremely or slightly bottleneck. Secondly, there is no
support to specify inexact bottleneck search statements such as negligible bottleneck.
These statements are important as the threshold, by nature, is not an exact value.

We propose fuzzy-based bot-

Degree Crisp bottleneck membership function

tleneCk search that addresses the T . Fuzzy “severe bottleneck” membership function
above-mentioned drawbacks. Figure — — — Fuzzy “negligible bottleneck* membership function
4 outlines the fuzzy-based bottle- 1 N -
neck search. Given a threshold, we 1|\ '
can use FSs to represent the severity ,’ \‘
of bottleneck and the negligible bot- 0 I v

. L o\ >
tlenéck range besides the FS repre- Botleneck Upperbound. Metric Value
senting the bottleneck threshold. For threshold
example, in Figure 4 we define a Pi- Fig. 4. Fuzzy vs crisp bottleneck search.

function FS used to check the neg-

ligible (close to) bottleneck points and S-function FS used to check the severity of
bottleneck. When searching the bottleneck points, the value of metric used in bottle-
neck search is evaluated against these FSs. Not only we can locate bottleneck points as
usual but also we can provide the severity of bottleneck, and are able to find negligible
bottleneck points.

—| Fuzzy—based Search [iJ

Code Region L2_TCMIL2Z_TCA | Bottleneck |
PARTICLE_LOAD [0.9497242344418535 | Medium (degree=0.502)/High (degree=0.495)/

(a) Without negligible bottleneck search

= Fuzzy—based Search =0
Code Region | L2 _TCMILZ_TCA | Entileneck |
WMPI_SEND 065601246607 22567 Megligible (degree=0.1)f

APARTICLE_LOAD |0.9497242344413335 Medium (degree=0.502)High (degree=0.485) ||

(b) With negligible bottleneck search
Fig. 5. Example of fuzzy-based bottleneck search.

Very simply, to show advantage of fuzzy-based bottleneck search, we experience
with 3DPIC code to locate code regions that may have L2 cache access problems. Sup-
pose a code region whose L2 cache miss ratio exceeds 0.7 is a bottleneck. In the first
case we use a set of performance characteristic terms 7' = {low, medium, high} rep-
resenting the severity of the bottleneck. Three different fuzzy sets Z-function with range
[0.7,0.8], Pi-function with range [0.75, 0.95] and S-function with range [0.9, 1] are asso-
ciated with low, medium, and high term, respectively. We apply this search with 3DPIC
code executed with 4 processes and we find that there is only one bottleneck as shown
in Figure 5(a). The bottleneck falls into both classes medium and high, as shown in Fig-
ure 5(a). Since we are not certain about the threshold we decided to use another triangle
FS with parameter (0.65,0.7,0.75) to describe close area of the pre-defined bottleneck
threshold. The result is that we find another code region as presented in Figure 5(b).

58 Hong-Linh Truong and Thomas Fahringer

6.4 Similarity Analysis

We have implemented similarity analysis for all region summaries of a given code re-
gion in one experiment, and for region summaries of a set of selected code regions in a
single or multiple experiment(s).

= SCALEA: Similarity Analysis [- &

CodeRegion/Experiment ‘ 2N=4F P4.36 ‘ 2N 4P, GM, 36 | 3Mx4F,P4,36 3MG4P,GM 36 | 3Nx4FP472 N4P,GM, 72 ‘
Region Z:CA_MULTIFOLMENTS[CR_A 256:508] 0.996 0.638 0.639] 0.625] 0625
Region 3:.CA_COULOMEB_INTERSTITIAL_POTENTIALICR_A:536.565] 0.986 0.629 0.636 0.597 0,597
Region 4:CAL_COULOMB_RMT[CR_AG35 668] 0.999 0.63 0.6 0.597 0,597
Region 5:CAL_CP_INSIDE_SPHERES[CR_ABTE:772] 0.987 0.637 0.639 0.598 0.598]
Region B:FFT_REANDICR_OTHERSEQ:B81:883] 0.997 1 0.997 0.4a81 0.981
0.999 1 1 0.536; 0.756]
0.993 1 1 0.49% 0474

Region 7:FFT_REAN3[CR_OTHERSEQ:688:301]
Region 8:FFT_REANS_CRIGR_OTHERSEQGTEA17]

Fig. 6. Similarity analysis for LAWPO. We used (wtime, 1.0) to compute similarity mea-
sure. Experiment 2Nx4P, P4, 36 is selected as the base. 1Nx4P means 1 SMP node with 4
processors. P4 and GM correspond to MPICH CH P4 and Myrinet, respectively. The problem
size is either 36 or 72 atoms. Distance measure is based on Euclidean function.

Figure 6 presents an example of using similarity analysis to examine selected code
regions in 6 experiments. The first observation is that the performance of code region
FFT REANO in the last 5 experiments is almost complete similar to the first experi-
ment. The performance of FFT REAN3, FFT REAN4 is almost similar in the first 4
experiments. This suggests that the performance of these code regions is not affected
by changes of number of processors, communication libraries, even problem sizes (in
case of FFT REANO). All code regions have similar performance in the first two ex-
periments, suggesting the use of Myrinet does not increase much performance. This is
confirmed by many cases in which communication libraries are different but the perfor-
mance is very similar.

Table 1 shows an example of Table 1. Parameters for controllable factors.
parameters of controllable fac- Factor Fuzzy Set Range Factor Category
tors. Table 2 presents the result atoms linear [0,72] problem size
of an example in which similar- CPU S-function [0,64] machine
ity is measured for code region network S-function [0,158.20] communication

CA MULTIPOLMENTS in 6 ex-

periments of LAPWO by using parameters in Table 1. Performance score of the code
region is based on S-function and distance measure is based on Euclidean function. In
some cases, communication factor has very little impact on the performance, e.g., the

Table 2. Example of similarity analysis with experiment factors for CA MULTIPOLMENTS re-
gion in 6 experiments. The first experiment is selected as the base.

Experiments 2Nx4P, 2Nx4P, 3Nx4P, 3Nx4P, 3Nx4P, 3Nx4P,
P4,36 GM,36 P4,36 GM,36 P4,72 GM,72
STM foyom. ({atoms,1}) 1 1 1 1 0.5 0.5

simsopy ({(CPUDY) 1 1 09531 09531 0.9531 0.9531
sims, ... ({etwork,D}) 1 01519 1 01519 1 0.1519
simo ({(wtime,1)}) 1 099 0638 0635 0625 0.625

Soft Computing Approach to Performance Analysis 59

network between the first and the second experiment is quite dissimilar while other fac-
tors are very similar, but the performance is very similar. A similar result obtained if we
examine the fifth and sixth experiments. The CPU factor has significant impact on some
cases. E.g., factors of the third experiment are the same as those of the first experiment,
except that CPU factors are slightly different. However, the performance of the code
region is quite different.

7 Related Work

FL has been used in performance monitoring of parallel and distributed programs, e.g.
performance contracts [9], but has not been exploited in data analysis techniques, e.g.
performance classification, of existing performance tools.

APART introduces the concept of performance property [0] that characterizes a
specific negative performance behavior of code regions. However, performance prop-
erty is associated with a single performance metric. A performance property cannot rep-
resent a set of performance metrics. There is no concept of weight operator associated
with performance properties. Also, our performance score is based on FL that allows
the representation of fuzzy concepts such as near and very. Performance score can be
computed based on linear and non-linear model with various membership functions.

Toward high-level scalable and intelligent analysis, classification based on machine
learning has been used for classifying performance characteristics of communication in
parallel programs [| |]. Ahl and Vetter used multivariate statistical techniques on hard-
ware performance metrics to characterize the system [12]. However, they do not deal
with cases of multiple variables with different scales and weight factors. In [1 3], statisti-
cal analysis is used to study different (controllable and uncontrollable) factors that affect
the mapping process of scientific computing algorithms to advanced architectures.

In [14] dispersion statistics is used to characterize the load imbalance by measuring
the dissimilarity of performance metrics; metrics are normalized by measuring devia-
tion from a mean value of a data set. Our similarity measure is based on fuzzy-based
performance scores and is applied to not only code regions but also experiment factors.

In [6], historical data is used to improved automatic tuning systems. Performance
score, similarity measure and fuzzy rules are fitted well for describing parameters and
for improving decision making in performance tuning.

8 Conclusion and Future Work

This paper proposes a new approach to performance analysis that is based on soft com-
puting. On the one hand, soft performance analysis techniques provide flexible, scal-
able and intelligent techniques for analyzing and comparing the performance of com-
plex parallel and distributed applications. On the other hand, they interact with the user
through high level notions. We complement existing work and contribute flexible and
convenient methods to deal with uncertainty in the performance analysis, e.g. fuzzy-
based bottleneck search, and to conduct the analysis in the form of high level notions,
e.g. fuzzy-based search query. Still the soft performance analysis approach is just at an

60

Hong-Linh Truong and Thomas Fahringer

early stage, we believe it is a promising solution to provide soft, scalable and intelligent
methods for automatic performance analysis.

Our future work is to study the application of soft performance analysis for dynamic

performance tuning. Our proposed techniques could be applied to the performance anal-
ysis of large-scale complex dynamic Grid environments on which resources and their
usage are unpredictable, performance data collected tends to be more imprecision and
uncertainty. Moreover, performance similarity can be used to analyze and compare di-
verse Grid resources. Linguistic variables and fuzzy rules can be used in specifying and
controlling service level agreements (SLAs) in the Grid.

References

10.

11.

12.

13.

14.

. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37 (1994)

77-84

Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems
4 (1996) 103-111

Mitchell, T.M.: Machine Learning. McGraw Hill, New York, US (1997)

Truong, H.L.: Novel Techniques and Methods for Performance Measurement, Analysis
and Monitoring of Cluster and Grid Applications. PhD thesis, TU WIEN, Austria (2005)
http://dps.uibk.ac.at/truong/publications/linh-diss.pdf.

Fuzzy] Toolkit: http://ai.iit.nrc.ca/IR public/fuzzy/fuzzyJToolkit.html (2004)

Chung, I.H., Hollingsworth, J.K.: Using Information from Prior Runs to Improve Automated
Tuning Systems. In: ACM/IEEE SC2004, Pittsburgh, PA (2004)

Cain, H.W,, Miller, B.P., Wylie, B.J.: A Callgraph-Based Search Strategy for Automated
Performance Diagnosis. In: Euro-Par 2000 Parallel Processing. (2000) 108-122

Fahringer, T., Seragiotto, C.: Aksum: A performance analysis tool for parallel and distributed
applications. Performance Analysis and Grid Computing (2003)

Vraalsen, F., Aydt, R.A., Mendes, C.L., Reed, D.A.: Performance contracts: Predicting and
monitoring grid application behavior. In: Proceedings of GRID 2001. Volume LNCS 2242,
Denver, Colorado, Springer-Verlag (2001) 154-165

Fahringer, T., Gerndt, M., Mohr, B., Wolf, F., Riley, G., Traff, J.: Knowledge Specification
for Automatic Performance Analysis. Technical report, APART Working group (2001)
Vetter, J.: Performance analysis of distributed applications using automatic classification of
communication inefficiencies. In: Conference Proceedings of the 2000 International Confer-
ence on Supercomputing, Santa Fe, New Mexico, ACM SIGARCH (2000) 245-254

Ahn, D.H., Vetter, J.S.: Scalable Analysis Techniques for Microprocessor Performance
Counter Metrics. In: [IEEE/ACM SC’2002, Baltimore, Maryland (2002)

Santiago, N.G., Rover, D.T., Rodriguez, D.: A Statistical Approach for the Analysis of
the Relation Between Low-Level Performance Information, the Code, and the Environ-
ment. In: Proceedings of 2002 International Conference on Parallel Processing Workshops
(ICPPW’02), Vancouver, B.C., Canada, IEEE Computer Society Press (2002) 282—
Calzarossa, M., Massari, L., Tessera, D.: A methodology towards automatic performance
analysis of parallel applications. Parallel Comput. 30 (2004) 211-223

The Data Diffusion Space
for Parallel Computing in Clusters

Jorge Buenabad-Chavez and Santiago Dominguez-Dominguez

Seccién de Computacion
Centro de Investigacién y de Estudios Avanzados del IPN
Ap. Postal 14-740, D.F. 07360, México

{jbuenabad, sdguez}@cs.cinvestav.mx

Abstract. The data diffusion space (DDS) is an all-software shared
address space for parallel computing on distributed memory platforms.
It is an extra address space to that of each process running a parallel
application under the SPMD (Single Program Multiple Data) model.
The size of DDS can be up to 2°! bytes, either on 32- or on 64-bit
architectures. Data laid on DDS diffuses, or migrates and replicates, in
the memory of each processor using the data. This data is used through
an interface similar to that used to access data in files.

We have implemented DDS for PC clusters with Linux. However, being
all-software, DDS should require little change to make it immediately
usable in other distributed memory platforms and operating systems.
We present experimental results on the performance of two applications
both under DDS and under MPI (Message Passing Interface). DDS tends
to perform better in larger processor counts, and is simpler to use than
MPI for both in-core and out-of-core computation.

1 Introduction

Today PC clusters are widely used as platforms for parallel computing. Both
message-passing and distributed shared memory environments are available for
developing parallel applications on these platforms. Except for relatively sim-
ple communication patterns, message-passing programming is complicated; the
programmer must specify when and which data to pass between which process-
ing nodes. It is still more complicated for out-of-core computation, since the
programmer must specify, or know, the data partitioning in disk space. How-
ever, message-passing libraries, such as MPI (Message Passing Interface) [12]
and PVM (Parallel Virtual Machine) [15], are widely used because they do not
require special hardware or operating system support.

A distributed shared memory (DSM) simplifies parallel programming be-
cause the location of data is not an issue. Shared data moves between processing
nodes automatically and according to the access pattern of each application.
Most DSM designs require either hardware or operating system support, which
is, nonetheless, readily available in most hardware platforms and operating sys-
tems. If a DSM supports mapping files onto the shared memory, out-of-core

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 61-71, 2005.
© Springer-Verlag Berlin Heidelberg 2005

62 Jorge Buenabad-Chéavez and Santiago Dominguez-Dominguez

computation is as simple to program as in-core computation. This will be most
useful in 64-bit architectures, as in 32-bit architectures only 4 GB are available,
while out-of-core applications today range in the hundreds of GB.

In this paper we present the data diffusion space (DDS), an all-software
shared address space for parallel computing on clusters. It is an extra address
space to the virtual address space of each process running a parallel application.
DDS is for shared data only, which the programmer must explicitly specify as
such through simply declaring it within a C struct declaration. Shared data au-
tomatically diffuses, or migrates and replicates, in the memory of each processor
using the data, under a multiple-readers-single-writer protocol.

The size of DDS can be up to 254 bytes, either on 32- and on 64-bit archi-
tectures. Hence shared data may not all be resident in memory. Some data will
be in the disk space of processing nodes. However, the programmer uses the
same interface to gain access to shared data (without specifying any location for
data). This interface is similar to that used to access data in files. For a read,
the programmer first calls DDS Read(); for a write the programmer first calls
DDS Write(). The programmer then uses the data as it uses data in its local
address space. After using the data the programmer must call DDS UnRead|()
or DDS UnWrite(), respectively.

Data diffusion takes place by dynamically mapping data onto the memory of
each processor using the data. Under out-of-core computation, DDS also maps
shared data onto disk space in each processing node. These applications are likely
to improve their performance under DDS, because DDS first tries to satisfy data
requests from the memory of other nodes, instead of remote disk space.

In Section 2 we present related work. In Section 3 we present the architecture
of DDS and its programming model. In Section 4 we show some empirical data
on the performance of DDS compared to that of MPI for in-core and out-of-core
applications. We offer some conclusions and describe future work in Section 5.

2 Related Work

A useful classification of DSM systems is that based on whether the implemen-
tation is all-hardware, mostly hardware, mostly software, or all-software [0]. All-
hardware DSM moves data between processing nodes by hardware only, and at
a fairly small granularity of typically 16 to 128 bytes. It includes cache-coherent
non-uniform memory access (CC-NUMA) architectures, such as DASH [7] and
Origin [9], and data diffusion architectures (also known as cache only memory
architectures, or COMAs), such as DDM [19] and COMA-F [5]. In CC-NUMAs,
data moves to the cache of each using processor, whether the data is local (res-
ident in the nearest main memory node to a processor) or remote. In COMAsS,
the organisation of main memory is associative, and thus data moves to main
memory nodes, and from these into processor caches, if available.

Mostly hardware DSM also moves data by hardware at a fairly small granu-
larity, but little of its operation (e.g., gaining access to a memory region) is car-
ried out by system software. Examples include Alewife [1] and KSR-1 [4]. Mostly

The Data Diffusion Space for Parallel Computing in Clusters 63

software DSM is the well known virtual shared memory based on paging. Based
on commodity virtual memory hardware, it has been widely investigated and
improved. The first representative, IVY [3], adopted sequential consistency as
its memory consistency model, incurring in general a significant communication
overhead to keep data coherent. This overhead has since been reduced through
the adoption of more efficient consistency models [1 1], such as release consistency
and lazy release consistency, and optimisations relating to the implementation
of the DSM [17].

All-software DSM does not rely on any hardware support other than network
communication hardware. Access to shared data is controlled by software prim-
itives (linked to the application) whose invocation is instrumented/coded either
by a compiler or the application programmer. All-software, compiler assisted
DSM includes Orca [2] Shasta [16], Midway [3], and CAS-DSM [10]. The C Re-
gion Library (CRL) [0] is also all-software DSM but with no compiler support.
The programmer must call CRL procedures to map and gain access to shared
data, and also to relinquish access to, and unmap, shared data.

DDS is similar to CRL regarding the use of shared data. However, the map-
ping of shared data in DDS is made only once. Another difference is that DDS
manages a 254 byte shared address space, both in 32- or in 64-bit architectures.

3 The Data Diffusion Space

The data diffusion space (DDS) was designed to simplify the programming of
parallel applications under the SPMD (Single Program Multiple Data) model.
Under this model, a process is created on each processing node to run a parallel
application. With DDS, the DDSP process is also created, and runs, on each
processing node. DDS is organised into a library to which a parallel application
is linked.

3.1 Architecture

Figure 1 shows the DDS architecture. The data diffusion space is extra to that
of each process running a parallel application. Data in the diffusion space is
dynamically mapped onto the address space of whichever application process is
using the data. We will use the term shared data to refer to data in the diffusion
space from now on.

When an application process requests shared data, and this data is not res-
ident in its local memory, the DDSP process requests the data from a remote
memory node (as described in Section 3.2). When the data arrives, it is placed
somewhere in the address space of the application by DDSP. The address where
the data was placed is given back to the application through the DDS inter-
face (as described in Section 3.3). DDSP processes communicate through TCP
sockets, using blocks of up to 64 KB.

3.2 Protocol

Shared data diffuses under a multiple-readers-single-writer data coherency pro-
tocol. For a read request, a copy of the data is obtained; for a write request, an

64 Jorge Buenabad-Chéavez and Santiago Dominguez-Dominguez

DATA DIFFUSION SPACE

MEM _BLK

Application

DDSP /\
. =
eeoeo @

NODE_0

HD NODE_n-1

Fig. 1. DDS Architecture.

exclusive copy is obtained invalidating all other copies, thus ensuring all proces-
sors have the same view of the shared data.

The DDS protocol is similar to that of COMA-F (Cache-only Memory Archi-
tecture-Flat), an all-hardware distributed shared memory architecture [5]. It
is homeless and directory-based. Data has no home location. It moves to the
memory of the accessing processors and resides there, either until it is invalidated
by a write by a processor or until it is evicted to give room to other data most
recently used.

COMA-F uses associative main memory. Hence data has no home location
therein. When a read or write misses in a memory node, a request is sent to the
home directory of the relevant data item. This directory holds the location (node)
and state information (exclusive, shared) of the item. If the home directory node
is that location, it services the request; otherwise it sends the request to a node
that currently has the item. A home directory is managed in each node, and
some bits of each item address are used to identify a home directory.

DDS uses two directories in each node (see Figure 1). The local directory
(LD) plays the role of an associative memory directory. A data item address is
looked up there to see if the corresponding data item is in the memory. However,
our local directory organisation keeps track of data not only in the memory of a
node, but in both the memory and the disk space of the node. When a memory
is needed to store recently used items, ezxclusive items less recently used are
swapped out onto disk space. Shared items are just discarded.

When a read or write misses in a node, the DDS protocol sends a request to
the relevant home directory, which is used and identified as described above for
the COMA-F protocol.

The Data Diffusion Space for Parallel Computing in Clusters 65

3.3 Programming Model

Figure 2 shows the use DDS in the addition of two matrices: C = A + B. The
programmer must define shared data within the DDS C structure. Before using
shared data, the programmer must call DDS Init as shown in that figure. In
each processing node, DDS Init maps the shared data to the diffusion space,
initialises the local directory and the home directory, and starts the DDSP pro-
cess.

In the matrix addition code, ROWS/nprocs rows are calculated by each
processor. Before accessing data, each processor must gain access to it, through
calling DDS Write or DDS Read. When these procedures return, the relevant
data is already in the processor memory, and will remain there until the corre-
sponding DDS UnWrite or DDS UnRead is issued.

struct DDS { /* declaring shared data */
unsigned int A[ROWS] [COLUMNS];
unsigned int B[ROWS] [COLUMNS];
unsigned int C[ROWS] [COLUMNS];

+;

main() {
DDS_Init(sizeof (struct DDS), &myid) ; /* initialising DDS */

rows = ROWS/nprocs;
offset = myid * (ROWS/nprocs);
for (r=0; r < rows; r++){
i =r + offset;
DDS_Write(DDS_C, i*COLUMNS, COLUMNS); /* gaining access */
DDS_Read(DDS_A, i*COLUMNS, COLUMNS); /* to shared data */
DDS_Read (DDS_B, i*COLUMNS, COLUMNS);
for (j=0; j<NCA; j++){ /* using shared data */
(dds_shmem[off_C+i]) [j] = (dds_shmem[off_A+i]) [j] +
(dds_shmem[off_B+i]) [§1;
¥
DDS_UnWrite(DDS_C, i*COLUMNS, COLUMNS);
DDS_UnRead (DDS_A, i*COLUMNS, COLUMNS);
DDS_UnRead (DDS_B, i*COLUMNS, COLUMNS);

Fig. 2. DDS programming model example: matrix addition.

DDS A,DDS B and DDS C are enumeration constants 0, 1 and 2, respec-
tively. They refer to the order in which arrays A, B and C were declared within
the DDS structure. They are used at run time to index the array dds vars,
where, for each DDS variable/array, the size of each element, the total number

66 Jorge Buenabad-Chéavez and Santiago Dominguez-Dominguez

of elements and the initial (DDS) shared address are found. This information is
used, along with the other two parameters sent to DDS Write/DDS Read, to
calculate the DDS address of the data being accessed. The data is actually ac-
cessed through pointers held in the array dds shmem, and the variables of f A,
of f B and of f C, which are locally shared between the DDSP process and the
application process. The variables of f A, ..., of f C (or that related with other
defined shared data) are updated by DDSP according both to the address of
the data requested with DDS Read or DDS Write, and to the actual location
where that data is placed in the local memory, possibly after being requested
from a remote node.

4 Performance Evaluation

To evaluate the performance of DDS we ran two applications on a 16-node
PC cluster using different numbers of processors, both applications under DDS
and under MPI/MPI-1O [13]. The version of MPI-IO we used is also known as
ROMIO [18], and was used for our MPI version to be either in-core or out-of-
core. In the out-of-core version, PVFS [11] is used and data is partitioned round
robin into disk space along nodes by block (stripe in PVFS terminology). Each
block is the size of n/p rows, where n is the number of rows in each array, and
p is the number of processors used in each application run. Under DDS, out-of-
core applications are programmed as in-core applications are. There is no need
to specify a data partitioning into disk space.

It must be noted that, in programming out-of-core applications under MPI,
programmers partition, or know the partition of, data into disk space. Also,
programmers read data from, and write data to, disk space. That is, the pro-
grammer knows that data does not fit in memory in its entirety, and thus uses
some memory only as a temporary buffer. The number of I/O requests is thus
implicitly defined by the programmer. Under DDS, some reads and writes can be
satisfied from copies in other memory nodes; hence the number of I/O requests
can potentially be reduced.

The 16-node cluster configuration is as follows. Each node has 1 Intel Celeron
1.7 GHz processor, 512 MB RAM memory, and a hard disk drive. Hard disk
drives are, however, of different make, size (1 GB, 3 GB, 4 GB and 8 GB) and
speed. All nodes are interconnected by a 3COM Fast Ethernet switch with 48
ports. The operating system is Linux RedHat 9.0.

4.1 Matrix Multiplication

Our first application is a matrix multiplication (MM) algorithm: C' = A % B.
A and C are managed by rows (the C language default) and the matrix B by
columns (the elements of a column are stored in consecutive localities in memory
and/or in disk space). The matrices used were of size 16K x 16K x 8bytes (long
type), or 2 GB each, a total of 6 GB for the three matrices. The matrices are

partitioned into disk space such that each processor has | 7] consecutive columns

The Data Diffusion Space for Parallel Computing in Clusters 67

Processor A B C Processor

l o 1 2 3 o 142 3 T OIzsl
‘ ‘
PO

0

PO PO PO PO

Pl Pl Pl Pl 2| PO : 2 Pl Pl Pl Pl

3| P PL| P Pl 3| po [I R TR T i 1

Processor — 0 1 .
Processing

Fig. 3. Matrix multiplication: thick lines indicate data partitioning among nodes;
dashed rectangles the elements in array C processed by each processor.

of B and [| rows of A and C (but C is only written). The multiplication is as
follows. Each processor calculates the total value of each element in LZJ rows in
matrix C. Each processor reads | 7 | rows of A into memory, but only [7]/f at
a time, where f = 1,2 and 4 for p = 16,8 and 4, respectively. Then reads all
columns of B, one at a time, f times, to calculate the value of all elements in

n/p rows of C. Fig. 3 shows the data partitioning and processing for n = 4 and
p=2.

Table 1. MM: I/O requests under DDS and MPI-PVFS 16K % 16 K matrices of 8-byte
integers.

DDS MPI-PVFS
Processors Reads Writes Processors Reads Writes
4 69632 4096 4 69632 4096
8 34816 2048 8 34816 2048
16 17408 1024 16 17408 1024

Table 1 shows the average (total/p) number of I/O requests under DDS and
under MPI-PVFS. Under both, the number of I/O requests is the same on 4,
8 and 16 processors. This is somewhat surprising because it means that, under
DDS, the columns of array B, which are the ones shared by all processors,
were not diffused at all. The reason is as follows. In 4, 8 and 16 processors,
each processor uses just above 256 MB of memory to store shared data. On the
other hand, the amount of memory required by the rows of A and C' that each
processor holds in memory at any time is |7]/f = (16384/4)/4 = 1024 in all
processor-count configurations (recall that for p = 4, f = 4, ... and for p = 16,
f=1). This is a total of 1024 x 16384 x 8 (bytes) = 128 MB for each A and C.
Since that many rows A and C are wired (with DDS Read), there is very little
memory for the columns of B to remain resident in main memory, and thus are
evicted from main memory just after being used.

However, each processor uses all the columns of B in the same order, and
thus once a column of B is resident in main memory, should it not be diffused

68 Jorge Buenabad-Chéavez and Santiago Dominguez-Dominguez

to other processors (thus reducing the amount of read requests)? This did not
happen because disk drives in our platform are of different speed, and because we
did not synchronise MM (both under DDS and MPI-PVFS) periodically. Since
processors started reading their rows of A at different speed from different disks,
they did not access columns in B concurrently at all.

Matrices 16k x 16k
45000 T

l‘\/lPI-PVFS-IN‘D
MPI-PVFS-COL --—---
DDS ---%---

40000

35000 |

30000 |

Time (sec)

25000

20000

15000

10000
2

Processors

Fig. 4. MM: response time under DDS and MPI-PVFS.

Figure 4 shows the execution time of MM under DDS and MPI-PVFES, the
latter both with independent I/O (MPI-PVFS-IND) and with collective I/O
(MPI-PVFS-COL). DDS and MPI-PVFS-IND show almost the same perfor-
mance in 4, 8 and 16 processors because they incur the same number of 1/O
operations and because these operations are independent in both versions. MPI-
PVFS-COL also incurred the same number of I/O operations. However, syn-
chronisation of collective operations, coupled with different speed of disk drives,
increased response time.

4.2 Fast Fourier Transform

Our second application applies the Fast Fourier Transform (FFT) to restore de-
graded or defocused images. For an image of N x N pixels, a matrix of size
N x N x 8 (float type) bytes is used. From this matrix, another matrix is cre-
ated, which corresponds to an autocorrelation process of the original image that
contains M x M images, where M = 2N (see Figure 5). The size in bytes of this
matrix is 2N x 2N x (N x N) x 8 = (N*) x 32 bytes.

The image matrix is physically partitioned among processors by rows. In
Figure 5, for p = 4, processor 0 (out of four) stores in disk space the images in
the first row, processor 1 stores the images in the second row and so on.

The Data Diffusion Space for Parallel Computing in Clusters 69

Original image

. 3rd FFT N=2
N M=2N
\\\ P=4
\\N \\
0 <— Ist. FFT
BNl
=1
I
£
s /O
2 Il
(a9
I f
{ { Il 4th FFT
i M

Processors 2nd FFT

Fig. 5. FFT: data partitioning and processing of the images matrix.

Each processor applies the FFT to M /p rows and to M /p columns four times,
as follows (see Figure 5): along entire rows (1st FFT), along entire columns (2nd
FFT), jumping through rows (3rd FFT), and jumping through columns (4th
FFT).

Table 2 shows the number of I/O requests per processor, both under MPI-
PVFES and DDS on 4, 8 and 16 processors, for an original matrix of size 64 x
64 pixels. The total number of I/O requests is the same in all processor-count
configurations. The images matrix is of size ((64)%) x 32 = 512 MB, and could
held in memory in all processor-count configurations.

Table 2. FFT: I/O requests under DDS and MPI-PVFS.

DDS MPI-PVFS
Processors Reads Writes Processors Reads Writes
4 4096 4096 4 12288 12288
8 2048 2048 8 6144 6144
16 1024 1024 16 3072 3072

For each processor-count configuration, the number of I/O requests is fewer
under DDS than under MPI-PVFS. Under DDS only the initial reads to load
data into memory and the final writes to store results in disk space are incurred.
Along the computation, other reads and writes are satisfied from copies in other
memory nodes. There are more I/O requests under MPI-PVFS because each
node manages only one memory buffer to hold an entire row of images at a time.
As mentioned earlier, the application was programmed to manage both in-core

70 Jorge Buenabad-Chéavez and Santiago Dominguez-Dominguez

FFT
300 I : : T T T T
PVFS
DDS ---+---
250 | -
200 -
3
S 150 F -
£
=
100 e -
Tt
,,,,,,,,,,,,,,,,,,,,,,,, .
50 | -
0 I I I) | 1 1
2 4 6 8 10 2 N ¢ ’

Processors

Fig. 6. FFT: response time under DDS and MPI-PVFS.

and out-of-core conditions (managing more buffers complicates programming
even more).

Figure 6 shows execution of FF'T under DDS and MPI-PVFS. In all processor-
count configurations, DDS performs better than MPI-PVFS because it incurs
fewer I/O overhead, reducing response time by half on average.

5 Conclusions and Future Work

We presented the data diffusion space (DDS), an extra shared address space for
parallel computing under the SPMD model on distributed memory platforms.
Compared with message passing, DDS is simpler to use and potentially offers
improved performance both for in-core and out-of-core applications. On appli-
cations tested, DDS shows good performance up to 16 processors.

Programming a parallel application under DDS requires that DDS Read and
DDS UnRead, or DDS Write and DDS UnWrite, functions be called to access
data. DDS brings the data to the memory of the accessing processor whichever
the current location of the data is, either other memory nodes or local or remote
disk space.

We are currently designing a parallel file system with support to mapping
files onto DDS. To support the shared memory programming model completely,
we are also designing an extension to the C language and its compiler to avoid
the use of the DDS interface entirely.

The Data Diffusion Space for Parallel Computing in Clusters 71

References

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

A. Agarwal et al. The MIT Alewife Machine: Architecture and Performance. In
Proceedings of the 22nd ISCA (1995) 943-952.

H.E. Bal, M.F. Kaashoek and A.S. Tanenbaum. ORCA: A Languaje for Parallel
Programming of Distributed Systems. IEEE Transactions on Software Engineering
(March 1992) 190 — 205.

. B.N. Bershad, M.J. Zekauskas and W. A. Sawdon. The midway distributed shared

memory system. In Proceedings of COMPCON’93 (1993) 528-537.
J. Buenabad-Chéavez, H.L. Muller, P.W.A. Stallard and D.H.D Warren. Virtual
memory on data diffusion architectures. Parallel Computing 29 (2003) 1021-1052.

. T. Joe. COMA-F: A Non-hierarchical Cache Only Memory Architecture. Stanford

University Department of Electrical Engineering. PhD Thesis, 1995.

K.L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-Performance All-
Software Distributed Shared Memory. In Proceedings of the 5th SOSP (1995).

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In Pro-
ceedings of the 17th ISCA (1990) 148-159.

K. Li. Shared Virtual Memory Systems on Loosely Coupled Multiprocessors (IVY).
Yale University. PhD thesis, 1986

. J. Laudon and D. Lenoski. The SGI Origin: A c¢cNUMA Highly Scalable Server.

In Proceedings of the 24th ISCA (1997) 241-251.

N. P. Manoj, K. V. Manjunath and R. Govindarajano. CAS-DSM: A compiler
assisted sofware distributed shared memory. International Journal of Parallel Pro-
gramming 32 (2004) 77-122.

M.D. Marino and G. Lino de Campos. A speedup comparative study: three third
generation DSM systems. In Proceedings of the 7th International Conference on
Parallel and Distributed Systems (2000) 153-158 (Workshops).

MPI: The Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/

MPI-2: Extensions to the Message-Passing Interface. http://www.mpi-
forum.org/docs/docs.html

PVFS: The Parallel Virtual File System. http://parlweb.parl.clemson.edu/pvfs/
PVM: Parallel Virtual Machine. http://www.epm.ornl.gov/pvm/pvm home.html
D.J. Scales, K. Gharachorloo and C.A. Thekkath. Shasta: A Low Overhead,
Software-Only Approach for Supporting Fine-Grain Shared Memory. In Proceed-
ings of the 7th ASPLOS (1996) 174-185.

M. Swanson, L. Stoller and J. Carter. Making distributed shared memory simple,
yet efficient. In proceedings of the Third International Workshop on High-Level
Parallel Programming Models and Supportive Environments (1998) 2-13.

R. Thakur, E. Lusk, and W. Gropp. Users Guide for ROMIO: A High-
Performance, Portable MPI-10 Implementation. Technical Report 234, Mathemat-
ics and Computer Science Division, Argonne National Laboratory, 1997.

D.H.D. Warren and S. Haridi. DATA DIFFUSION MACHINE: A Scalable Shared
Virtual Memory Multiprocessor. In Proceedings of the International Conference on
Fifth Generation Computer Systems (1988) 943-952.

Models for On-the-Fly Compensation
of Measurement Overhead
in Parallel Performance Profiling

Allen D. Malony and Sameer S. Shende

Performance Research Laboratory
Department of Computer and Information Science
University of Oregon, Eugene, OR, USA
{malony,sameer }@cs.uoregon.edu

Abstract. Performance profiling generates measurement overhead dur-
ing parallel program execution. Measurement overhead, in turn, intro-
duces intrusion in a program’s runtime performance behavior. Intrusion
can be mitigated by controlling instrumentation degree, allowing a trade-
off of accuracy for detail. Alternatively, the accuracy in profile results
can be improved by reducing the intrusion error due to measurement
overhead. Models for compensation of measurement overhead in parallel
performance profiling are described. An approach based on rational re-
construction is used to understand properties of compensation solutions
for different parallel scenarios. From this analysis, a general algorithm
for on-the-fly overhead assessment and compensation is derived.

Keywords: Performance measurement and analysis, parallel computing,
profiling, intrusion, overhead compensation.

1 Introduction

In parallel profiling, performance measurements are made during program ex-
ecution. There is an overhead associated with performance measurement since
extra code is being executed and hardware resources (processor, memory, net-
work) consumed. When performance overhead affects the program execution, we
speak of performance (measurement) intrusion. Performance intrusion, no mat-
ter how small, can result in performance perturbation [7] where the program’s
measured performance behavior is “different” from its unmeasured performance.
Whereas performance perturbation is difficult to assess, performance intrusion
can be quantified by different metrics, the most important of which is dilation in
program execution time. This type of intrusion is often reported as a percentage
slowdown of total execution time, but the intrusion effects themselves will be
distributed throughout the profile results.

Any performance profiling technique, be it based on statistical profiling meth-
ods (e.g., see [1, 11]) or measured profiling methods (e.g., see [2, 9]), will encounter
measurement overhead and will also have limitations on what performance phe-
nomena can and cannot be observed [7]. Until there is a systematic basis for

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 72-82, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Models for On-the-Fly Compensation of Measurement Overhead 73

judging the validity of differing profiling techniques, it is more productive to
focus on those challenges that a profiling method faces to improve the accuracy
of its measurement. In this regard, we pose the question whether it is possible to
compensate for measurement overhead in performance profiling. What we mean
by this is to quantify measurement overhead and remove the overhead from pro-
file calculations. (It is important to note we are not suggesting that by doing
so we are “correcting” the effects of overhead on intrusion and perturbation.)
Because performance overhead occurs in both measured and statistical profiling,
overhead compensation is an important topic of study.

In our Euro-Par 2004 paper [3], we presented overhead compensation tech-
niques that were implemented in the TAU performance system [9] and demon-
strated with the NAS parallel benchmarks for both flat and callpath profile
analysis. While our results showed improvement in NAS profiling accuracy, as
measured by the error in total execution time compared to a non-instrumented
run, the compensation models were deficient for parallel execution due to their
inability to account for interprocess interactions and dependencies. The contri-
bution of this paper is the modeling of performance overhead compensation in
parallel profiling and the design of on-the-fly algorithms based on these models
that might be implemented in practical profiling tools.

Section §2 briefly describes the basic models from [3] and how they fail. We
discuss the issues that arise with overhead interdependency in parallel execution.
In Section §3, we follow a strategy to model parallel overhead compensation for
message-based parallel programs based on a rational reconstruction of compensa-
tion solutions for specific parallel case studies. From the rationally reconstructed
models, a general on-the-fly algorithm for overhead analysis and compensation
is derived. Conclusions and future work are given in Section §4.

2 Basic Models for Overhead Compensation

In our earlier work [3], we developed techniques for quantifying the overhead of
performance profile measurements and correcting the profiling results to com-
pensate for the measurement error introduced. This work was done for two types
of profiles: flat profiles and profiles of routine calling paths. The techniques were
implemented in the TAUprofiling system [9] and demonstrated on the NAS
parallel benchmarks. However, the models we developed were based on a local
perspective of how measurement overhead impacted the program’s execution.
Profiling measurements are, typically, performed for each program thread of ex-
ecution. (Here we use the term “thread” in a general sense. Shared memory
threads and distributed memory processes equally apply.) By a local perspective
we mean one that only regards the overhead impact on the process (thread)
where the profile measurement was made and overhead incurred.

Consider a message passing parallel program composed of multiple processes.
Most profiling tools would produce a separate profile for each process, showing
how time was spent in its measured events. Because the profile measurements
are made locally to a process, it is reasonable, as a first step, to compensate

74 Allen D. Malony and Sameer S. Shende

for measurement overhead in the process-local profiles only. Our original models
do just that. They accounted for the measurement overhead generated during
TAUprofiling for each program process (thread) and all its measured events,
and then removed the overhead from the inclusive and exclusive performance
results calculated during online profiling analysis. The compensation algorithm
“corrected” the measurement error in the process profiles in the sense that the
local overhead was not included in the local profile results.

The models we developed are necessary for compensating measurement in-
trusion in parallel computations, but they are not sufficient. Depending on the
application’s parallel execution behavior, it is possible, even likely, that intru-
sion effects due to measurement overhead seen on different processes will be
interdependent. We use the term “intrusion” specifically here to point out that
although measurement overhead occurs locally, its intrusion can have non-local
effects. As a result, parallel overhead compensation is more complex. In con-
trast with our past research on performance perturbation analysis [10—12], here
we do not want to resort to post-mortem parallel trace analysis. The problem of
overhead compensation in parallel profiling using only profile measurements (not
tracing) has not been addressed before. Certainly, we can learn from techniques
for trace-based perturbation analysis [13], but because we must perform over-
head compensation on-the-fly, the utility of these algorithms will be constrained
to deterministic parallel execution, for the same reasons discussed in [7, 13].

At a minimum, algorithms for on-the-fly overhead compensation in paral-
lel profiling must utilize a measurement infrastructure that conveys information
between processes at runtime. It is important to note this is not required for
trace-based perturbation analysis (since the analysis is offline) and it is what
makes compensation in profiling a unique problem. Techniques similar to those
used in PHOTON [15] and CCIFT [!] to embed overhead information in MPI
messages may aid in the development of such measurement infrastructure. How-
ever, we first need to understand how local measurement overhead affects global
performance intrusion so that we can construct compensation models and use
those models to develop online algorithms.

3 Models of Parallel Overhead Compensation

To address the problem of overhead compensation in parallel execution, we must
develop models that describe the effect of measurement overhead on execution
intrusion. From these models we can gain insight in how the profiling overheads
can then be compensated. However, unlike sequential computation, the models
must identify and describe aspects of parallel interaction that may cause differ-
ent intrusion behavior and, thus, lead to different methods for compensation.
We know that the methods will involve the communication of information be-
tween parallel threads of execution at the time of their interaction. To be more
specific, we will consider parallel compensation in message passing computation.
The parallel overhead compensation models we present below allow for infor-
mation about execution delay to be passed between processes during message

Models for On-the-Fly Compensation of Measurement Overhead 75

communication. The goal is to determine exactly what information needs to be
shared and how this information is to be used in compensation analysis. The
modeling methodology we develop extends to shared memory parallel comput-
ing, but the case for shared memory will not be presented here.

The approach we follow below constructs an understanding of the parallel
compensation problem from first principles. We first look at only two processes
and then three processes. From this in-depth study, our hope is to gain modeling
and analyses understanding that can extend to the general case. We will follow
a strategy of rational reconstruction where we take scenario measurement cases
and reconstruct an “actual” execution as if the measurement overhead were not
present. From what we learn, we then derive a model that works for that case and
look for consistent properties across the models to formulate a general algorithm
for overhead compensation.

The details of overhead removal in the profile calculation are described in our
earlier paper [3]. The focus below is on determining the actual overhead value to
be removed for each process. These two operations together constitute overhead
compensation.

3.1 Two Process Parallel Models

The simplest parallel computation involves only two processes which exchange
messages during execution. Measurement-based profiling will introduce overhead
and intrusion local to each process that carries between the processes as they
interact. To model the intrusion and determine what information must be shared
for overhead compensation, we consider the following two-process scenarios:

One send Process P1 sends one message to process P2

Two sends P1 sends two messages to P2

Handshake P1 sends one message to P2, then P2 sends one message to P1
General General message send and receive

For each scenario, we enumerate all possible cases for overhead relations between
the processes (what is called the “measured execution” model) and for each case
derive a representation of the execution with the overhead removed (what is
called the “approximated execution” model). We determine the overhead-free
approximation using a rational reconstruction of the “actual” event timings with
the measurement overhead removed.

Both models are presented in diagrammatic form. In additional, we present
expressions that relate the overhead, waiting, and timing parameters from the
measured execution to those “corrected” parameters in the approximated exe-
cution. It is important to keep in mind that the goal is to learn from the rational
reconstruction of the approximated execution how profile compensation is to be
done in the other scenarios, especially the general case. For space reasons, we
consider only the One Send and General scenarios in this paper.

Scenario: One Send. Consider a single message sent between two processes,
P1 and P2. Figure 1 shows the two possible cases, distinguishing which process

76 Allen D. Malony and Sameer S. Shende

Measured Execution Approximated Execution
Case 1
ol x1
P1 4‘ 3 P1 sl—l
t t
ol (=xI) \
02
P2 o P2 —=
LRb Re ' Rb '
Re
ol>=o02+w
02’=02+Ww
w =0
x2 = min(ol, 024+w) = 02+w
Case 2
ol
s g x1
Pl [Pl O
= t t
ol (=x1)
02
W w X2
P2 —i } P2 Tt
Rb Re ' Rb Re” '
ol<o2+w

02’ =02 - (01-02 if 01>02)
w =w+ (02 -o0l)
x2 = min(ol, 02+w) = ol

Fig. 1. Two-Process, One-Send — Models and Analysis (Case: 1, 2).

has accumulated more overhead up until the time of the message communication.
Execution time advances from left to right and shown on the timelines are send
events (S) and receive events (Rb, receive begin; Re, receive end). The overhead
on P1 is 0l and the overhead on P2 is 02. The overhead is shown as a blocked
region immediately before the S or Rb events to easily see its size in the figure,
but it is actually spread out across the preceding timeline where profiled events
occur. Also designated is the waiting time (w) between Rb and Re, assuming
waiting time can be measured by the profiling system.

Case 1 occurs when P1’s overhead is greater than or equal to P2’s overhead
plus the waiting time (0ol > 02 4+ w). A rational reconstruction of the approxi-
mated execution determines that P2 would not have waited for the message (i.e.,
S would occur earlier than Rb). Hence, the approximated waiting time (desig-
nated as w’) should be zero, as seen in the approximated execution timeline. Of
course, the problem is that P2 has already waited in the measured execution for
the message to be received. In order for P2 to know P1’s message would have
arrived earlier, P1 must communicate this information. Clearly, the information
is exactly the value ol, P1’s overhead. This is indicated in the figure by tagging
the message communication arrow with this value.

With P1’s overhead information, P2 can determine what to do about the
waiting time. The waiting time has already been measured and must be cor-
rectly accounted. If the approximated waiting is adjusted to zero, where should
the elapsed time represented by w go? If the profiling overhead is to be correctly
compensated, the measured waiting time must be attributed to P2’s approxi-
mated overhead (02’ = 02 4+ w)! This is interesting because it shows how the
naive overhead compensation can lead to errors without conveyance of delay

Models for On-the-Fly Compensation of Measurement Overhead 77

information between sender and receiver. It is also important to note that Rb
cannot be moved back any further in the approximated execution. This suggests
that the only correction we can ever make in the receiver is in the waiting time.

The overhead value sent by P1 with the message conveys to P2 the infor-
mation “this message was delayed being sent by ol amount of time” or “this
message would have been sent ol time units earlier.” We contend that this is ex-
actly the information needed by P2 to correctly adjust its profiling metrics (i.e.,
compensate for overhead in parallel execution). We refer to the value sent by P1
as delay and will assign the designator x to represent its modeling and analysis
that follows. For instance, P1’s delay is given by x1. In both cases, z1 = ol,
but it is not always true that delay will be equal to accumulated overhead, as
we will see. Now an interesting question arises. How much earlier would future
events on process 2 occur in the approximated execution after the message from
P1 has been received? In general, each process will maintain a delay value (zi
for process Pi) for it to include in its next send message to tell the receiving pro-
cess how much earlier the message would have been sent. In the approximated
execution, for denotational purposes, we show the x1 and x2 values for P1 and
P2 as shaded regions after the last events, S and Re, respectively. We also show
an expression for the calculation of z2 for this case.

Moving on to the second case, the overhead and waiting time in P2 is greater
than what P1 reports (i.e., 0l < 02+ w). Rationally, this means that S happens
after Rb in the approximated execution. What is the effect on w’, the approx-
imated waiting time? It is interesting to see that w’ can increase or decrease,
depending on the relation of 01 to 02. (Remember, ol is the same as z1 in these
cases.) However, the occurrence of Re is certainly dependent on S and, thus, 22
will be entirely determined by (and, in fact, equal to) z1.

General Scenario. The goal of the two process models is to enumerate the pos-
sible cases arising from send/receive message communication. From these cases,
we can rationally reconstruct the approximated execution to determine how over-
head, waiting, and delay times are to be adjusted. From this reconstruction, we
can derive expressions for overhead analysis and correction. The similarity in
the case results leads us to propose a general scenario for two processes. This
scenario considers an arbitrary message send on one process and corresponding
message receive on the other process. Thus, this is a generalization of the One
Send scenario above. However, we now use the delay values x1 and 22 instead
of the ol and 02 overheads in the analysis. The expressions for the two cases are
given below (refer to Figure 1):

Case 1 Case 2

xl >=x2 4+ w xl <x24+w

02’ =02+ w 02’ = 02 - (x1-x2 if x1>x2)
w =0 w =w + (x2-x1)

x1’ = x1 x1l’ =x1

x2” = min(x1, x24w) = x2 + w x2" = min(x1, x24+w) = x1

78 Allen D. Malony and Sameer S. Shende

The importance of the general scenario is the case analysis showing how the
delay values are updated and what information is shared between processes dur-
ing message communication. (Keep in mind that we are arbitrarily designating
P1 as the sender and P2 as the receiver. The analysis also applies when P1 is
the receiver and P2 the sender, with appropriate reversals of notation in the
expressions.) Notice that the overhead values ol (not shown) and 02 are accu-
mulated overheads. The 02 value is updated here to account for waiting time
processing, but whenever any new measurement overhead occurs on P1 or P2,
the accumulated overheads ol and 02 must be updated accordingly. Similarly,
any new measurement overhead must also be added to the delay values x1 or
2.

Just to be clear, it is the overhead values that are being removed during
the profiling calculations. Thus, we want these overhead to be accurately ac-
counted. The conclusion of the two process modeling is that we can handle the
parallel overhead compensation for ALL two-process scenarios by applying the
general analysis described above on a message-by-message analysis, maintaining
the overhead and delay values as the online analysis proceeds.

3.2 Three Process Parallel Models

The question at this point is whether that conclusion applies to three or more
processes. That is, can the general two-process analysis be applied on a message-
by-message basis to all send/receive messages between any two processes in a
multi-process computation and, more importantly, give the desired overhead
compensation result? We look at two scenarios with three processes to get a
sense of the answer. These scenarios are:

Pipeline Process P1 sends a message to P2, then P2 sends to P3
Two Receive Process P1 and P3 sends a message each to process P2

We argue that these two scenarios are enough to elucidate all similar cases
regardless of the number of processes. Again, we follow a rational reconstruction
approach to determine approximated executions and then derive expressions for
updating overhead, waiting time, and delay variables to match the reconstructed
executions. Only the Two Receive scenarios is described in detail in this paper.

Scenario: Two Receive. When more than two processes are communicating,
it is not hard to find a scenario that raises unpleasant issues in our ability to
correct overhead intrusion under a different set of receive assumptions. These
issues are brought on by the effect of intrusion on message sequencing. The Two
Receive scenario exposes the problem. Here one process, P2, receives messages
from two other processes. There are four cases to consider depending on the
relatives sizes of overheads and waiting times. Figures 2 and 3 show two of the
cases. For simplicity, we return to looking only at the first messages being sent
and received on each process, and consider the initial overheads (not the delays
values) in the analysis.

Models for On-the-Fly Compensation of Measurement Overhead 79

Measured Execution Approximated Execution
ol
P1 4‘ S P1 S
t t
ol
2z bRe X2 bRe
P& [P2
R Ryt ® Rpy 2
02a e 02a
03 03
03 03
T I = T o £
St St
) A 4
First message S
ol >=02+w (xl=ol) Pl 7
02’=02+w
w =0
x2 = min(ol, 02+w) = 02+w = 02’ RbRe X2’
Second message P2 RbRe 1
03>=x2+02a+y (x3=03)

02”7 =02"+02a+y
y =0
x2’ = min(03, x2+02a+y) = x2+02a+y = 02" P3

S t

Fig. 2. Three-Process, Two Receive — Models and Analysis (Case 1).

In Figure 2, a two-part approximated execution is shown, with part one
(top) giving the state after the first message is processed and part two (bottom)
showing the result after the second message is processed. The analysis follows the
approach we used before, with new waiting values (v’ and ') being calculated
and P2’s delay value (22) updated. In this case, no waiting time would have
occurred, and no adjustment to waiting time is necessary. Otherwise, nothing
particularly strange stands out in the approximated result.

What would be a surprising result? If the overhead analysis resulted in a re-
ordering of send events in time, between the measured execution and the approx-
imated execution, then there would be concerns of performance perturbation. In
Figure 3, we see the send events changing order in time in the approximated
execution, with P3’s send taking place before P1’s send. As with the other cases,
our analysis reflects a message-by-message processing algorithm. In the rational
reconstruction, we assume the message communication is explicit and pairs a
particular sender and receiver. Under this assumption, the order of messages
received by P2 must be maintained in the approximated execution. In this case,
is the time reordering of send messages in Figure 3 a problem? In fact, no. It is
certainly possible that a process (P2) will first receive a message from a process
(P1) sent after another process (P3) sends a message to the receiving process.
This just reflects the strict order of P2 receives. However, if we consider receive
operations that can match any send, the send reordering exposes a problem with
overhead compensation, since the message from P3 should have been received
first in the “real” execution.

The application of our overhead compensation models to programs using
receive operations that can match any send message results in profile analysis
constrained to message orderings as they are observed in the measured execution.
These message orderings are affected by intrusion and, thus, may not be the

80 Allen D. Malony and Sameer S. Shende

Measured Execution Approximated Execution

ol
S
Pl e Pl

ol
02

w bRe W X2 bRe
O N LS ke
Rb R YT > Rb Ri YT

¢ 02a ¢ 02a
03 03
03 03
S I T s
St St
) A 4
First message S
ol <02+w x1=ol) Pl ;
02’ =02
w =w+ (02 -o0l)
x2 = min(ol, 02+w) = ol W RIRe X2
Second message P2 Rb Re !
03>=x2+02a+y (x3=03)
02”7 =02"+02a+y
y =0
x2’ = min(03, x2+02a+y) = x2+02a+y P3 g >

Fig. 3. Three-Process, Two Receive — Models and Analysis (Case: 2).

message orderings that occur in the absence of measurement. However, while
it is actually possible to detect reordering occurrences (i.e., measured versus
approximated orderings), it is not possible to correct for reordering during online
overhead analysis and compensation. Why? There are two reasons. First, our
analysis is unable to determine if it is correct to associate a receive event with
a different send event. That is, the performance analysis does not know what
type of receive is being performed, one that is for a specific sender or one that
can accept any sender. Second, even if we know the type of receive operation, it
is not possible to know whether changing receive order will affect future receive
events. Therefore, the models must, in general, enforce message receive ordering.

3.3 Modeling Summary and General Algorithm

Our above modeling and analysis of measurement overhead in parallel message
passing programs has produced three important outcomes. First, the rational
reconstructions of the measurement scenarios and the analysis of the approx-
imated executions has resulted in a robust procedure for message-by-message
overhead compensation analysis in parallel profiling. It updates correctly wait-
ing times associated with message processing and calculates per process values
that capture online the amount a process has been effectively delayed due to
measurement overhead and its effects. From this overhead compensation basis,
the parallel profiling operations used to update inclusive and exclusive perfor-
mance can be performed. Second, this analysis requires ALL send messages to
be augmented with the delay value of the sender process at the time the message
is sent. This information is necessary for the receiving process to apply the anal-
ysis procedures. Third, approximation models based on receive type can result
in more accurate overhead handling and profile results, but the accuracy gains
are anticipated to be minor compared to the processing complexity involved.

Models for On-the-Fly Compensation of Measurement Overhead 81

We argue that general overhead scenarios for message passing computations
can all be addressed from what we learned in the two- and three-process modeling
above. A general algorithm for overhead compensation effectively applies the
Two-Process, General modeling and analysis on a message-by-message basis.
The algorithm is composed of three parts:

e Updating of local overhead and delay as a result of local profile
measurements.

e Updating of local overhead and delay as a result of messages re-
ceived and their reported delay.

e Transmission of local delay when a process sends a message.

If the transmission of the delays values can be supported, it should be possible to
incorporate this overhead compensation algorithm in a parallel profiling system
such as TAU[9].

4 Conclusion and Future Work

Profiling is an important technique for the performance analysis of parallel ap-
plications. However, the measurement overhead incurred during profiling can
cause intrusions in the parallel performance behavior. Generally speaking, the
greater the measurement overhead, the greater the chance the measurement will
result in performance intrusion. Thus, there is fundamental tradeoff in profil-
ing methodology concerning the need for measurement detail (as determined
by number of events and frequency of occurrence) versus the desired accuracy
of profiling results. We argue that without an understanding of how intrusion
affects performance behavior and without a way to adjust for intrusion effects
in profiling calculations, the accuracy of the profiling results is uncertain. Most
parallel profiling tools quantify intrusion as a percentage slowdown in the whole
execution and regard this as an implicit measure of profiling goodness. This is
unsatisfactory since it assumes overhead is evenly distributed across all threads
of execution and all profiling results are uniformly affected.

Our early work in parallel perturbation analysis [I 1-13] demonstrated the
ability to track performance intrusion and remove its effects in performance
analysis results. However, there we had the luxury of a fully qualified event trace
which included synchronization events that exposed dependent operation. This
allowed us to recover execution sequences and derive performance results for an
approximated “uninstrumented” execution. While the same perturbation theory
applies, when profiling measurements are used, the analysis must be performed
online.

This paper contributes models for measurement overhead compensation de-
rived from a rational reconstruction of fundamental parallel profiling scenarios.
Using these models we described a general on-the-fly algorithm that can be used
for message passing parallel programs. The errors encountered in our earlier
work on the NAS parallel benchmarks, resulting from our simpler overhead and
compensation models, should now be reduced. However, implementing this al-
gorithms requires the ability to piggyback delay values on send messages and

82

Allen D. Malony and Sameer S. Shende

to process the delay values at the receiver. We are currently developing a MPI
wrapper library to support delay piggybacking that we can use to validate our
approach. Our implementation is intended to be portable to all MPI implemen-
tations and will not require transmission of multiple messages. This scheme will
be incorporated in the TAU performance system.

References

1.

10.

11.

12.

13.

14.

15.

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated
Application-level Checkpointing of MPI Programs,” Principles and Practice of
Parallel Programming (PPoPP), 2003.

L. De Rose, “The Hardware Performance Monitor Toolkit,” Furo-Par Conference,
2001.

A. Fagot and J. de Kergommeaux, “Systems Assessment of the Overhead of Tracing
Parallel Programs,” Furomicro Workshop on Parallel and Distributed Processing,
pp- 179-186, 1996.

S. Graham, P. Kessler, and M. McKusick, “gprof: A Call Graph Execution Pro-
filer,” SIGPLAN Symposium on Compiler Construction, pp. 120-126, June 1982.

R. Hall, “Call Path Profiling,” International Conference on Software Engineering,
pp- 296-306, 1992.

D. Kranzlmiiller, R. Reussner, and C. Schaubschlager, “Monitor Overhead Mea-
surement with SKaMP1,” FuroPVM/MPI Conference, LNCS 1697, pp. 43-50,
1999.

A. Malony, “Performance Observability,” Ph.D. thesis, University of Illinois,
Urbana-Champaign, 1991.

A. Malony and S. Shende, “Overhead Compensation in Performance Profiling,”
Euro-Par Conference, LNCS 3149, Springer, pp. 119-132, 2004.

A. Malony, et al., “Advances in the TAU Performance System,” In V. Getov, M.
Gerndt, A. Hoisie, A. Malony, B. Miller (eds.), Performance Analysis and Grid
Computing, Kluwer, Norwell, MA, pp. 129-144, 2003.

A. Malony, D. Reed, and H. Wijshoff, “Performance Measurement Intrusion and
Perturbation Analysis,” IEEE Transactions on Parallel and Distributed Systems,
3(4):433-450, July 1992.

A. Malony and D. Reed, “Models for Performance Perturbation Analysis,”
ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 1-12, May 1991.
A. Malony, “Event Based Performance Perturbation: A Case Study,” Principles
and Practices of Parallel Programming (PPoPP), pp. 201-212, April 1991.

S. Sarukkai and A. Malony, “Perturbation Analysis of High-Level Instrumentation
for SPMD Programs,” Principles and Practices of Parallel Programming (PPoPP),
pp. 44-53, May 1993.

Unix Programmer’s Manual, “prof command,” Section 1, Bell Laboratories, Mur-
ray Hill, NJ, January 1979.

J. Vetter, “Dynamic Statistical Profiling of Communication Activity in Distributed
Applications,” ACM SIGMETRICS Joint International Conference on Measure-
ment and Modeling of Computer Systems, ACM, 2002.

Modeling Pipeline Applications in POETRIES*

Eduardo César, Joan Sorribes, and Emilio Luque

Computer Science Department, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
{Eduardo.Cesar,Joan.Sorribes,Emilio.Luque}@uab.es

Abstract. Parallel/Distributed application development is an extremely difficult
task for non-expert programmers, and support tools are therefore needed for all
phases of the development cycle of these kinds of application. This study spe-
cifically presents the development of an analytical performance model for pipe-
lined applications. This model is intended to be used in the POETRIES distrib-
uted-program development environment, which is aimed at dynamic perfor-
mance tuning based on frameworks with an associated performance model.

1 Introduction

Parallel/distributed programming constitutes a highly promising approach to the im-
provement of the performance of many applications. However, in comparison to
sequential programming, several new problems have emerged in all phases of the
development cycle of these kinds of application. One of the best ways to solve these
problems would be to develop tools that support the design, coding, and analysis
and/or tuning of parallel/distributed applications.

In the particular case of performance analysis and/or tuning, it is important to note
that the best way for analyzing and tuning parallel/distributed applications depends on
some of their behavioral characteristics. If the application being tuned behaves in a
regular way, then a static analysis would be sufficient. However, if the application
changes its behavior from execution to execution, or even in a single execution, then
dynamic monitoring and tuning techniques should be used instead.

The key issue in dynamic monitoring and tuning is that decisions must be taken ef-
ficiently while minimizing intrusion on the application. We show that this is easier to
achieve when the tuning tool uses a performance model associated to the structure of
the application. Knowing the application’s structure is not a problem if a program-
ming tool, based on the use of skeletons or frameworks, is used for its development.

In this sense, we have designed a distributed-program development environment
(DPSE), called POETRIES [1][2], where knowledge of the application structure is
used for automatic detection and correction of its performance drawbacks at run-time.
Later we will summarize the main characteristics of this tool (section 3), but at this
point we can say that it consists of a programming tool based on frameworks or
skeletons, plus a performance model associated to them, and a dynamic tool, called

This work was supported by MCyT-Spain under contract TIN 2004 — 03388 and partially
supported by the Generalitat de Catalunya — Grup de Recerca Consolidat 2001 SGR-00218.
The work developed at the University of Wisconsin has been supported by the research grant
2003/BE/00170 of the AGAUR

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 83-92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

84 Eduardo César, Joan Sorribes, and Emilio Luque

MATE, where this model is used for dynamically improving the application’s per-
formance, in [3] we describe the implementation of this environment for M-W appli-
cations. This study represents a further step, and is focused on the development of the
performance model associated to the Pipeline framework

In aiming to develop these concepts, we have organized the rest of this paper in the
following way: In section 2, we present an overview of related studies. In section 3,
we describe general structure of POETRIES. In section 4, we present a global analy-
sis of the Pipeline framework. Based on it, in section 5 we present the development of
its associated performance model and in section 6 some experimental results for vali-
dating it. Finally, in section 7 we set out the conclusions of this study.

2 Related Studies

It is possible to classify the related studies into two main sets; firstly those that ad-
dress the problem of distributed application development in its different phases. Sec-
ondly, those related to performance issues, which in turn could be broadly divided
into those that propose a static approach and those that propose a dynamic one.

In the first set, we have found some studies, like the pattern language of [4],
CO,P.S [5], and eSkel[6], which address the whole problem, based on the fact that
there is a set of design patterns which could be applied to those problems suitable to
be solved in parallel. We have also found, in this set, studies, like Skil [7] or [8], that
take advantage of the high abstraction degree of functional languages, as well as other
important properties of these languages, such as separation of behavior and meaning,
and transformation possibilities. Other, studies such as [9] suggest taking advantage
of a popular modeling language (UML), adding to it extensions to model the most
important constructs of parallel/distributed paradigms, plus performance annotations.

In the set of studies related to performance monitoring, analysis and tuning we
have found tools that make a trace based analysis, such as Kappa-Pi [10] and
EXPERT [11]. The former makes a two-step analysis based on a source of ineffi-
ciency knowledge base and generates a set of recommendations concerning ineffi-
ciencies in the application source code. The latter, a tool included in the KOJAK
project, presents the complete performance behavior of the application in three di-
mensions: performance property, source code location and the execution phase where
it occurred, and process or thread location. In this set we have also found a tool called
P3T+ [12], which predicts application performance based on information gathered at
compiler time, plus sequential simulation and architecture parameters.

A tool with a dynamic approach is Paradyn [13] and its Performance Consultant,
which dynamically searches for performance bottlenecks using the W3 search model
(Why is there a performance bottleneck? Where is it? When did it happen?).

It is worth noting that, of the programming tools, few mention the possibility of
taking advantage of knowledge of the application structure to improve their perform-
ance, although the authors of eSkel [6] have recently published [14] a study of the use
of this information, along with process algebras, to evaluate parallel-applications
performance. Surprisingly, none of the performance analysis tools use the application
structure information, even when it is available, to perform their analysis.

Modeling Pipeline Applications in POETRIES 85

3 POETRIES General Structure

As mentioned in the introduction, we have designed a distributed-program develop-
ment environment (DPSE) with dynamic tuning, called POETRIES, which uses
knowledge of the high-level application structure to perform its task. The structure of
this tool is shown in figure 1.

Application development Run-Time
. . Running .
Programming Tool - o
L Application

(bused on frameworks)

code

o[e] —
L Perform. functions —
- — fl .

| Tuning pmnml

Performance model

MATE
Fig. 1. Structure of the POETRIES DPSE

The main idea is that it is possible to define a performance model associated to the
most common application frameworks (frameworks that are offered by many parallel
development tools [5][6][7]). This model includes a set of performance functions
(aimed at the detection of performance drawbacks), some parameters that have to be
monitored (measure points) to evaluate these functions, and some parameters (tuning
points) that could be modified to activate the actions that should be taken to over-
come the detected performance drawbacks.

These definitions make up the static part of the environment. Then, there is a dy-
namic tuning environment (Run-time) which, at application execution time, uses this
performance model to monitor the appropriate parameters to evaluate the perform-
ance functions (performance analyzer) and, takes the required actions to improve the
application performance (funer). This phase, called MATE (Monitoring, Analysis and
Tuning Environment) [15], has been implemented as an independent tool.

To implement this DPSE we have created POETRIES [2] (Performance Oriented
Environment for Transparent Resource-management, Implementing End-user paral-
lel/distributed applications), which integrates a framework-based parallel/distributed
programming environment with the performance model needed to perform the dy-
namic analysis and tuning for these kinds of applications.

4 Pipeline Framework Analysis

The Pipeline framework is a well-known parallel programming structure used as the
most direct way to implement algorithms that consist of performing an orderly se-
quence of essentially identical calculations on a sequence of inputs. Each of these
calculations can be broken down into a certain number of different stages, and these
stages can be applied concurrently to different inputs.

For this study, we will assume that programmers use a linear pipeline framework,
being one with every stage, but first, receiving its input from the previous stage of the

86 Eduardo César, Joan Sorribes, and Emilio Luque

pipe and sending its output to the following one, but last. This is a simplification of
the more general multiple-branch pipelined structure. However, it won’t significantly
influence the fore coming performance analysis because analyzing a multiple-branch
pipe implies an individual analysis of each branch as being an independent pipe and,
in addition, being aware of performance unbalances among different branches.

The possible inefficiencies of pipelined applications are also well known. At first,
the concurrency is limited at the beginning of the computation as the pipe is filled,
and at the end of the computation as the pipe is drained. Programmers should deal
with this inefficiency at the design phase of the application because the way to avoid
it is to assure that the number of calculations the application will perform is substan-
tially higher than the number of stages of the pipe.

Secondly, it is important for there not to be any significant differences between the
computational efforts of the pipe stages because the application throughput of a pipe
is determined by its slowest stage. This is the most important inefficiency of this
structure, and the most difficult to overcome because it does not depend exclusively
on the application design, but also on run-time conditions. Consequently, this draw-
back is suitable for being solved dynamically. There are different approaches for
doing it depending on the target index to be optimized and the resource availability.

Therefore, we may want to improve the efficiency in the use of resources, or even
try to free some underused resources to increase their availability, in this case dy-
namic mapping of stages could be used to group faster stages; thus improving the use
of resources. On the other hand, we may want to improve the application throughput,
in this case, if there are available processors, to replicate slower stages will increase
its throughput, therefore decreasing the application execution time.

Furthermore, we may want to increase the application throughput but also to make
an adequate use of resources. Consequently, a mixed approach could be defined, as a
compromise between optimizing throughput and efficient resource management.

Fig. 2. Structure of a replicated stage. Stage i+1 has been replicated k times and a communica-
tion manager (CM) has been added to control the replicas’ state and distribute incoming tasks

Our aim is to implement a mixed strategy, with the main objective being to opti-
mize the application throughput but also to make reasonable use of resources. How-
ever, as a first step towards this objective we have concentrated on optimizing appli-
cation throughput and, as a consequence, the model presented in this study does not
include considerations about the efficiency of resource management.

Therefore, we assume that the programmer writes an application using a linear
pipeline framework, and then, at run-time, our tuning tool will dynamically decide
which stages should be replicated in order to improve the application’s performance.

Modeling Pipeline Applications in POETRIES 87

In figure 2, we show the structure of a replicated stage. It can be seen that there is a
new process called communication’s manager (CM). It is responsible for monitoring
the replica’s state and for distributing work, when available, to free replicas.

Finally, we should decide whether the CM should run in a separate processor or
should share one with a replica. The first approach is simpler to model but could lead
to a poorer use of resources. The second, in contrast, seems to lead to a better use of
resources, but is more difficult to implement with some communication libraries, and
is also difficult to model because the CM affects, and is affected by, the activity of the
replica that shares a processor with it. We have modeled both options, but in this
study we only present the model associated to the first.

S5 Performance Model of the Pipeline Framework

Once the basic analysis of the framework has been performed and its structure has
been defined, it is time to use the POETRIES methodology outlined in section 3 to
develop the performance model associated to that framework.

Our objective is to increase the throughput of the slower stages in order to increase
the global application performance. The general strategy to reach this objective will
consist of calculating the best replication pattern for the current application’s behav-
iour and available number of processors.

Consequently, if we want to increase the throughput we must minimize the time
needed by each stage to process its inputs, including the time required to deliver the
results to the next stage. We call this production time. Thus, we need expressions to
find the production time each stage can reach (its independent production time), and
also expressions that explain its observed production time due to the influence of
other stages (its dependent production time). Moreover, we should find different
expressions to make these calculations for single (5.1), and replicated stages (5.2).

In our analysis, we assume that there is just one process per processor, and we use
the following terminology:

tl, A = fixed network overhead per message and communication cost.
v, = data volume sent by stage i, in bytes.

tc, = computation time stage i needs to process an input, in ms.

Tr", = production time of k replica of stage i.

Tr, = independent production time of stage i, in ms.

r'Tr,= dependent production time of stage i, in ms.

5.1 Production Time of Single Stages

A single pipe stage is one which receives messages with data, except for the first,
makes its portion of calculation of this data, and sends the results to the next stage,
except for the last.

The independent production time (Tr,) of such a stage will depend on its position
in the pipe, its computation time (tc,), and the current communication conditions -
C(P,v))- (communication protocol -P- and message size -v;-).

88 Eduardo César, Joan Sorribes, and Emilio Luque

This way, we can define the independent production time of a single stage as:
Tr, = tc, + C(P,v,) @)
Where C(P,v)) is defined as:
0 if (i ==n-1) (n = total number of pipe stages).

The last stage will be able to process its next message just after it finishes the cal-
culation of the previous one.

tl if (i <n-1) and (P is not synchronous)

If the communication protocol in use does not force synchronous sends, then the
stage will just have to wait to deliver the message to the library interface.
tl+Av, if (i<n-1)and (P is synchronous)
Otherwise (synchronous sends), the stage will have to wait for the whole commu-
nication to finish before going to the next receive operation.
The dependent production time of the current stage also depends on the dependent
production times of the following and previous stages.
rl'ry = é rl'ry if (P is sync.) and (((i = n-1) and (r'Tr;,>1T)) or
((O<i< n-1) and (rTr.,;>Tr) and (rTri>rTrig)))
rTry, + Av if (P is async.) and (((i = n-1) and (rTr; ;+Av;, >Tr)) or
((O<i<n-1) and (rTri+ivi,>Tr) and (rTri +Avi >1Trig)))
< rTris if ((O<i<n-1) and (P is sync.) and (1Tr;,,>Tr;) and 2)
(rTriy >rTri)) or ((Pis async.) and (r'Trj>Tr;) and
(rTry >rTr+4v)) or ((i=0) and (rTri,>Tr)))

L Tr; Otherwise

5.2 Production Time of Replicated Stages

A replicated pipe stage is one where data messages are received by a special process
called a communication manager (CM), which is responsible for deciding which
stage replica will process the data. Then the chosen replica makes the stage portion of
calculation of this data and sends the results to the next stage, unless it is the last. The
CM is executed on an independent processor.

To calculate the independent production time of such a stage, we should now con-
sider the managing time associated with the CM (tg), and the waiting time for one
free replica (wc,).

The term tgi depends on the communication protocol and possibly on the message
size. Basically, the CM looks at the communication channel and waits for messages
that could come from the previous stage or from one of the stage replicas (indicating
that the replica is free). As there could be many message sources it should look at the
channel without blocking. In consequence, the managing time will be the time needed
to make 1 or 2 probes of the channel with its corresponding receives plus the time
needed to send the requirements to the free replica.

Therefore, if the communication protocol is synchronous then the CM should wait
2*(3tl + Avi) to be ready to process the next requirement message. It has to spend
twice the communication time because, except when filling the pipe, it has to syn-

Modeling Pipeline Applications in POETRIES 89

chronously receive the message from the previous stage (3tl + Avi) and then synchro-
nously send it to a free replica (3tl + Avi). On the other hand, if the communication
protocol is asynchronous then the CM will only have to wait for some network over-
head before seeing if there is a new requirement message, because in this case, library
buffers allow for overlapping communications.

The term wc, depends on the processing capacity of the replicas and the managing
capacity of the CM. Given m replicas, if the CM spends more time managing m input
messages than the time spent by the set of replicas processing the same number of
messages then there will be always free replicas (wc, = 0), which is an undesirable
situation because of the waste of resources.

If the CM has the capacity to feed the m replicas, then the term wc, will less or
equal to the production time of the set of replicas, plus the time needed to send the
message to a replica. Except if the protocol is synchronous, because in such a case the
communication time is included in tg,. Furthermore, the production time of a given
set of replicas depends on the independent production time of each replica Tr", which
in turn is calculated in the same way as the independent production time of a single
stage plus the time needed to send the acknowledgement message to the CM.

Summarizing, the definition of independent production time of replicated stages is:

Tr, = tg, + wc, 3)
Where, tg = { tl+c if (protocol is asynchronous)
2%(3tl + Av)) + ¢ if not
~
: m=1
and wc, = 0 if | S/ <=tg
k=0

< (0,1/ Z"”‘(l/nk) + 4v,] if not and protocol is asynchronous
k=0 ! !

(0, 1/ z :__; (/1+*y1 if not and protocol is synchronous
~

Finally, knowing that the dependent production time of a stage just defines the ef-
fect of its neighbors on the stage, we can say that the dependent production time of a
replicated stage is defined in exactly the same way as for a single stage.

6 Experimental Validation of the Model

In this section, we first want to show the results of some relevant experiments that
have been designed to validate the proposed analytical model for calculating the pro-
duction time of a pipe stage. In order to get these results we have written a synthetic
parametrical pipeline application. This application uses the MPI communication li-
brary and all experiments have been executed on clusters of workstations in the com-
puter science department of the U. of Wisconsin at Madison.

Examples of figures 3 and 4 are included with the objective of showing that the
expressions described in section 5 closely match the behavior of real applications, and
the example of figure 5 is included with the objective of showing how the model can
be used to improve the application’s throughput.

90 Eduardo César, Joan Sorribes, and Emilio Luque

Table 1. Independent, dependent, and measured production times for figure 3 pipe stages

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
(1) Tr, 1.002 s. 1.202s. 1.002 s. 2.002 s. ls.
(2) 1Tr, 2.002 s. 2.002 s. 2.002s. 2.002s. 2.002 s.
Measured 2.015s. 2.015s. 2.03 s. 2.03 s. 2.03s

In figure 3 we can graphically see how the slower stage (3 in this case) affects all
other stages. It is clear that stage 4 has to wait for the output of stage 3, but we can
also see how stages 0, 1, and 2 synchronize with stage 3 due to communication syn-
chronization.

Stage) —> EEESIS]| .
Stage | —* @ | &
Stage 2 —"""- 5 ; ; ; ‘ ; ; ; ; ‘ ;|
Stage 3 ——* | s

Stage 4 —“*-1— AREREEERE -

Fig. 3. Execution trace for a pipeline of five stages with message size of 200 Kb. and comput-
ing times of: 1 s. for stages 0, 2, and 4; 1.2 s. for stage 1; and 2 s. for stage 3

In table 1 we show the independent, dependent, and measured production times for
all stages of the pipeline in figure 3. We should first note that expression (2) for cal-
culating dependent production times tells us that stage 3 is the bottleneck of the ap-
plication, and secondly that the difference between the dependent production times
(tTr) and the measured ones is a result of the communication protocol change that
MPI performs when its buffers become full.

Stage 0 ————» 1
Stage 1
Stage 2
CM 3

Replica
Replica |
Stage 4

} Stage 3
cii

Fig. 4. Execution trace for a 5 stage pipeline, stage 3 with two replicas. Messages of 512 b. and
computing times of: 1 s. (stages 0, 2, & 4); 1.5 s. (stage 1); and 3 s. for each replica of stage 3

T
2454400 280502

In figure 4 we can see how replication improves the throughput of a slow stage.
However, we can see that even with this replication, stage 3 does not match the inde-
pendent production time of stage 4 (the last) yet.

In table 2 we show the independent, dependent, and measured production times for
all stages of the pipeline in figure 4. It can be seen how replication improves the
throughput of the application, but also that the model captures its behavior.

Finally, in figure 5 we can see the result of applying the performance model to an
application (a) for optimizing its throughput by replication (b). In this example the
computation times associated to stages 1, 2, and 3 are four, three, and two times re-
spectively the one associated with stages 0 and 4 (the shortest). In addition, the com-

Modeling Pipeline Applications in POETRIES 91

munication protocol is asynchronous, except if forced by the communication library.
In this case, if there are 10 available processors the model tells us that to optimize
throughput we should replicate stage 1 four times, stage 2 three times, and stage 3
two times. However, if only 5 available processors were available the model would
have advised us to introduce 2 replicas of stage 1, and 1 replica of stage 2, thus im-
proving the throughput to that of stage 3 which is the second fastest stage.

Table 2. Independent, dependent, and measured production times for figure 4 pipe stages

Stage 0 Stage 1 Stage 2 Stage 3 |Replica 0| Replica 1 | Stage 4
Tr, 1.001 s. (1) |1.501 s. (1)[1.001 s. (1)[1.5025.(3)| 3.001s. | 3.001s | 1s.(1)
(2) 1Tr, 1.001 s. 1.501 s. 1.502s. 1.502s. -- - 1.502s.
Measured 1.0009s. | 1.5009s. | 1.5018s. | 1.5017s. | 3.0045 | 3.0018 | 1.503s

] R

Rt I%{fi{ﬁl I‘TLI[' _r...- _r.,- I : i il Stage 2

1 a0 W a
i | e 1 3

Stage 3

[J
OIELNID ITNTER LOGITD LeESTL LIOEO4 ILEERET LINTE LEBOLLD

(b)

Fig. 5. Execution traces of a pipeline application of 5 stages and message size of 10 Kb. Com-
puting time for stages 0 and 4 is 100 ms, for stage 1 is 400 ms, for stage 2 is 300 ms, and for
stage 3 is 200 ms. Without replicas (a), whit the replicas indicated by the model (b)

In this example, the application throughput is improved by 3.7 times from 2.48 to
9.15. If this application were able to produce outputs at the pace determined by its
fastest stage, it would have a throughput of 9.64, which is only 5% better than the one
we have obtained.

7 Conclusions and Future Work

The main goal of our study was to demonstrate that advance knowledge of the struc-
ture of the application is a good way to make appropriate global decisions to dynami-
cally improve its performance. To fulfill this goal we have designed POETRIES as a
distributed-program development environment that integrates a framework based
parallel/distributed programming tool with the performance model needed to perform
the dynamic analysis and tuning of the applications generated using this tool.

We have defined a performance model associated to the pipeline framework with
the aim being to improve the throughput of pipelined applications, and we have
shown experimental results that demonstrate that it is possible to define a realistic
analytical model that closely reflects the real behavior of an application developed
with this framework.

Completing this model to include efficient resource management considerations is
the next challenge. However, we believe that combining frameworks and model

92

Eduardo César, Joan Sorribes, and Emilio Luque

based dynamic performance tuning is a very promising approach for broadening and
encouraging the use of parallel/distributed applications.

References

1.

10.

11.

12.

13.

14.

15.

E. Cesar, A. Morajko, T. Margalef, J. Sorribes, A. Espinosa, E. Luque: Dynamic Perform-
ance Tuning Supported by Program Specification. Scientific Programming, Vol. 10. IOS
Press (2002) 35-44

. E. Cesar, J. G. Mesa, J. Sorribes, and E. Luque: POETRIES: Performance Oriented Envi-

ronment for Transparent Resource-management, Implementing End-user paral-
lel/distributed applications, Lecture Notes in Computer Science (LNCS), Vol. 2790 (Euro-
Par 2003). Springer-Verlag (2003) 141-146

. E. Cesar, J. G. Mesa, J. Sorribes, E. Luque: Modeling Master-Worker Applications in

POETRIES. Proceedings of the 9" International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS 2004). IEEE Computer Society.
Santa Fe, New Mexico (April 2004) 22-30

. B. L. Massingill et al.: A Pattern Language for Parallel Application Programs. Lecture

Notes in Computer Science (LNCS), Vol. 1900 (Euro-Par 2000), Springer-Verlag (2000)
678-681

. S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, K. Tan, “From Patterns to

Frameworks to Parallel Programs”, Parallel Computing, Vol. 28, n. 12, (2002) 1663-1683.

. M. Cole: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel

Programming. Parallel Computing 30(3) (2004) 389-406

. T. Richert: Skil: Programming with Algorithmic Skeletons — A Practical Point of View.

Proceedings of the 12th International Workshop on Implementation of Functional Lan-
guages, Germany (2002) 15-30

. J. Darlington, H. W. To: Building Parallel Applications without Programming. Abstract

Machine Models for H. Parallel Computers, Oxford University Press (1995) 140-154

. S. Pllana, T. Fahringer: On Customizing the UML for Modelling Performance-Oriented

Applications. UML 2002 “Model Engineering, Concepts and Tools”, Springer-Verlag,
Dresden, Germany (September 2002)

A. Espinosa, T. Margalef, E. Luque: Integrating Automatic Techniques in a Performance
Analysis Session. Lecture Notes in Computer Science (LNCS), Vol. 1900 (Euro-Par 2000),
Springer-Verlag (2000) 173-177

F. Wolf, B. Morh: Automatic Performance Analysis of SPM Cluster Applications. Techni-
cal Report IB-2001-05 (2001)

T. Fahringer, A. PoZgaj: P'T+: A Performance Estimator for Distributed and Parallel Pro-
grams. Scientific Programming, IOS Press, Vol. 8, no. 2, the Netherlands (2000)

B. P. Miller et al.: The Paradyn Parallel Performance Measurement Tool. IEEE Computer
28, 11 (November 1995) 37-46

Anne Benoit, Murray Cole, Stephen Gilmore, Jane Hillston: Evaluating the Performance of
Skeleton-Based High Level Parallel Programs. Lecture Notes in Computer Science
(LNCS), Vol. 3038, Springer-Verlag (2004) 289-296

A. Morajko, O. Morajko, J. Jorba, T. Margalef and E. Luque: Automatic Performance
Analysis and Dynamic Tuning of Distributed Applications. Parallel Processing Letters,
Vol. 13 (2), World Scientific (2003) 169-187

Topic 2
Performance Prediction and Evaluation

Allen D. Malony, Thomas Fahringer, Allan Snavely, and Luis Silva

Topic Chairs

Performance is the reason for parallel computing. Achieving high performance
on parallel computer systems is the product of an intimate combination of hard-
ware architecture (processor, memory, interconnection network), system soft-
ware, runtime environment, algorithms, and application design. Performance
evaluation is the science of understanding these factors that contribute to the
overall expression of parallel performance on real machines and on systems yet
to be realized. Benchmarking and performance characterization methodologies
and tools provide an empirical foundation for performance evaluation. Perfor-
mance prediction techniques provide a means to model performance behaviors
and properties as system, algorithm, and software features change, particularly
in the context of large-scale parallelism. These two areas are closely related since
most prediction requires data to be gathered from measured runs of a program,
to identify application signatures or to understand the performance characteris-
tics of current machines.

A total of twenty-nine papers were submitted to the performance prediction
and evaluation topic area. The submissions covered a broad range of prediction
and evaluation topics, and reflect a high level of current interest in the parallel
computing community. The eleven papers accepted (38%) represent state-of-the-
art results from leading parallel performance researchers in the field today. The
papers cover four general themes in performance prediction and evaluation.

The first theme considers methods to explore performance properties from
different evaluation contexts: data access, processor, and interconnect. The un-
derstanding gained from looking at these different performance contexts is valu-
able to forming a more complete performance assessment. The second theme
concerns advances in measurement infrastructure for performance analysis at
the application level. In particular, the three tools reported illustrate techniques
for instrumenting events closely tied to parallel program operation and for cap-
turing performance data needed to correctly interpret performance behavior.
Techniques for performance prediction for large-scale parallel systems is the third
theme in the topic. The contributions here on performance extrapolation from
traces, performance modeling and sensitivity analysis, and performance predic-
tion using machine learning, are especially strong and are important contribu-
tions to the field. Lastly, we consider the connection of performance evaluation in
tools for performance tuning in the fourth theme. Graphical user interface sup-
port for integrated performance environments and automatic tuning for parallel
program archetypes are described.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 93, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Tuning of Master/Worker Applications™

Anna Morajko, Eduardo César, Paola Caymes-Scutari,
Tomds Margalef, Joan Sorribes, and Emilio Luque

Computer Science Department. Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
{ania,paocla}@aomail .uab.es
{ eduardo.cesar, tomas.margalef, joan.sorribes,emilio. luque }@uab .es

Abstract. The Master/Worker paradigm is one of the most commonly used by
parallel/distributed application developers. This paradigm is easy to understand
and is fairly close to the abstract concept of a wide range of applications. How-
ever, to obtain adequate performance indexes, such a paradigm must be man-
aged in a very precise way. There are certain features, such as data distribution
or the number of workers, that must be tuned properly in order to obtain such
performance indexes, and in most cases they cannot be tuned statically since
they depend on the particular conditions of each execution. In this context, dy-
namic tuning seems to be a highly promising approach since it provides the ca-
pability to change the parameters during the execution of the application to im-
prove performance. In this paper, we demonstrate the usage of a dynamic
tuning environment that allows for adaptation of the number of workers based
on a theoretical model of Master/Worker behavior. The results show that such
an approach significantly improves the execution time when the application
modifies its behavior during execution.

1 Introduction

The Master/Worker (M/W) paradigm is one of the most commonly used by paral-
lel/distributed application developers. In this paradigm, a master process distributes a
set of data to be processed among a set of worker processes that receives this data,
processes it and returns the results to the master. This structure fairly faithfully repre-
sents the developer abstract concept. It can be applied to a wide range of applications
and is therefore fairly easy to treat and manage. However, the actual behavior of this
structure depends on several features (target system, number of available processors,
computing capabilities, communication features, input data) that cannot be controlled
by the application developer and can only be found out during runtime. In order to
reach high performance indexes and eliminate performance bottlenecks, the behavior
of the particular application must be analyzed and problems that appear during the
execution must be determined.

One of the major performance bottlenecks in the Master/Worker paradigm is the
inadequate number of workers. When there are not enough worker processes, the
master process distributes the data and becomes idle as it waits for results. On the
other hand, if there are too many workers, the amount of data is divided into small
pieces and the communications saturate the system. Therefore, it is important to find
an optimal number of workers. This number depends on: the computing volume per

* This work has been supported by the MCyT (Spain) under contract TIC2001-2592 and has
been partially supported by the Generalitat de Catalunya — GRC 2001SGR-00218

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 95-103, 2005.
© Springer-Verlag Berlin Heidelberg 2005

96 Anna Morajko et al.

datum, the volume of data sent to and received from the worker processes, the com-
puting capabilities of each of the system’s processors and the latency and bandwidth
of the communication network.

In many cases, these features are not completely static and change dynamically
during the execution of the application (e.g., the computing requirements evolve dur-
ing execution of the application or the computing capabilities of the processors
change due to an additional load in the system). In these situations, the optimal num-
ber of workers is not fixed, but changes during the execution of the application and it
must be tuned dynamically.

In the following sections of this paper, we present a complete performance optimi-
zation scenario that considers the problem of the number of workers in a dynamic
approach. Section 2 presents example automatic analysis and tuning environments. In
Section 3, we describe the performance model used to calculate the optimal number
of workers. In Section 4, we analyze the tuning of the number of workers using the
MATE environment that supports the dynamic tuning of parallel applications. In
Section 5, we present the results of the experiments conducted in the MATE envi-
ronment to dynamically tune the number of workers using the presented performance
model. Finally, Section 6 shows the conclusions of this study.

2 Related Work

The optimization process requires a developer to go through the application perform-
ance analysis and the modification of critical application parameters. First, the per-
formance measurements must be taken in order to provide information about the ap-
plication. Then, the analysis of this information is carried out. It finds performance
bottlenecks, deduces their causes and determines the actions to be taken to eliminate
these bottlenecks. Finally, appropriate changes must be applied into the application.

To reduce developers efforts, an automatic analysis has been proposed. Tools using
this type of analysis are based on the knowledge of well-known performance prob-
lems. They are able to identify critical bottlenecks and help in optimizing applications
by giving suggestions to developers [1, 2, 3, 4].

Such tools require a certain degree of knowledge and experience of paral-
lel/distributed applications. To tackle these problems, it is necessary to provide tools
that automatically perform program optimizations during run time. Active Harmony
[5] is a framework that allows an application for dynamic adaptation to network and
resource capacities. The application must be Harmony-aware, that is, to use the API
provided by the system. The project focuses on the selection of the most appropriate
algorithm. Active Harmony automatically determines good values for tunable
parameters by searching the parameter value space using heuristic algorithm. MATE
uses a distinct approach in which performance models provide conditions and formu-
las that describe the application behavior and allow the system to find the optimal
values. The AppLeS [6] project has developed an application-level scheduling ap-
proach. It combines dynamic system performance information with application-
specific models and user specified parameters to provide better schedules. A pro-
grammer is supplied information about the computing environment and is given a
library to facilitate reactions to changes in available resources. Each application then
selects the resources and determines an efficient schedule, trying to improve its own
performance without considering other applications. MATE is similar to AppLeS in

Automatic Tuning of Master/Worker Applications 97

that it tries to maximize the performance of a single application. However, MATE
focuses on the efficiency of resource utilization rather than on resource scheduling.

3 Performance Model for the Number of Workers

In this section, we present the problem of determining a suitable number of workers
for a M/W application. We will only consider this problem for homogeneous M/W
applications, defining these as applications where all tasks (i.e. a set of data to be
processed by each worker) are approximately of the same size and require the same
processing time. In actual fact, these kinds of applications exhibit a similar perform-
ance to a balanced M/W application with the same total processing time and the same
global communication volume, as shown in [7]. This is an important observation,
because in homogeneous application it is easier to determine the appropriate number
of processors to be used.
For this analysis, we have assumed that the following conditions are met:
e There is just one process (master or worker) per processing element.
e The master process distributes all available data among workers, then waits for all
results and, eventually sends a new set of tasks to workers, which means that the
application could be iterative.

In addition, we will use the following terminology to identify the different parame-
ters that will form part of the performance model:

tl = fixed network time overhead per message, in ms.

A = communication cost per byte (inverse bandwidth), in ms/byte.

v, = size of tasks sent to worker i, in bytes.

v, = size of results sent back to master from each worker, in bytes.

V = total data volume (Z (v,+ v_)), in bytes.

n = current number of workers in the application.

tc, = time that worker i spends processing a task, in ms.

Tc = total computing time (X tc,)

Tt = total time spent on an application iteration (execution time). Our objective is
to estimate and minimize this magnitude.

e Nopt = number of workers needed to obtain the minimum Tt (best performance).

It can be seen that the parameters that must be monitored in order to apply the per-
formance model associated to a M/W application are:

e tl and A which could be calculated at the beginning of the execution and should be
re-evaluated periodically to make allowances for the adaptation of the system to
the network load conditions.

e Task sizes (v,) have to be captured when the master sends tasks to workers.

e Result sizes (v,) have to be captured when the master receives results from work-
ers.

e The time the workers spend on each task (tc,) has to be measured in order to calcu-
late the total computing time (Tc).

Now, we can describe the analysis performed in order to construct the performance
functions associated to this kind of application. We should point out that these func-

98 Anna Morajko et al.

tions are defined to enable the optimization of the execution time of the application
(Tv).

First, the master sends a set of tasks to each worker. If the communication protocol
is asynchronous then the network overhead (tl) for one message overlaps with the
communication time of the previous one (A*y,), otherwise both times should be
added.

n-l

The time spent on this operation is n*tl+ﬂ*zvi if the communication protocol is
i=0

synchronous but, if the protocol is asynchronous then it depends on the relation be-
tween the network overhead (tl) and the communication time (4 *v,).

If tl is greater than A *y, (communication time of the tasks sent to one worker) then
itis n*# (network overhead) + A *v,. This is the overhead of sending messages to all

n—l

workers plus the communication time of the last message, otherwise, it is # Hl*zvi .
i=0

This is the overhead of the first message plus the communication time of all mes-
sages.

Then, as every worker spends the same time processing its tasks, we just have to
add the processing time of one worker (the last one to receive a task); which is tc,.

At this point, processing has finished and we must evaluate what happens to the re-
sults sent back to the master. We only need to add the communication time for the last
message, which is tl + A*v_ (communication time of one answer). This last statement
only holds if the master has completed the data distribution before there is an answer
from a worker, otherwise it will not be ready to receive messages when the last
worker sends its results back.

This never happens before the optimal number of workers if # > A*v,, but may

not be true if #/ < A*v, or when the communication protocol is synchronous. In the
latter case, the following condition must also hold: the time spent by the master to

distribute the tasks (. ’“li"' O ,uy, ﬂ*"z_iv) must be greater than the response
i=0 i=0
time of the first worker (2*#/ + A*v, +1c; + 1*v,,).

The expressions to calculate the total iteration time are formed by adding these
quantities together, if the communication protocol is synchronous and
n—1

n*tl+/1*Zvl- 22%t+ A*v; +1c; + A*v, then we get:

i=0
i=n—1

Tt=n*(@l+1)+A* ZV,. +tc; + A%y,
i=0
But, if the communication protocol is asynchronous we get:
n—1
Tt :2*tl+/1*2vl- +ic, +A*v,
i=0
n—1
P S A*v)and(d+ A% v, > 2%+ A%y, +1c, + A*v,,))

i=0

Tt=n*tl+A*v, +tc, +tl+ A5=vm (if t] >A%v,)

Automatic Tuning of Master/Worker Applications 99

Considering that tc, = Tc/n, v, = p*V/n (a portion p of the overall data volume
which is distributed among the workers), and v, = (1-p)*V/n (the remaining portion
of the overall data volume which are the results that workers return to the master) we
could rewrite these expressions as:

Te=nstl+ 25+t +(n-1*(p+1*i* L
n n

(1
if protocol is synchronow and n*(tl+A*V/n)>2*1 + A*V/n + Tc/n
Or
Tt:(Z*ll+/1*V*p)*n+Tc+ﬂ*(l—p)*V
n
if protocolis asynchronasand (¢ < A * p *V/n)and @
(m<[(A*V +Te)/(A* p*V —1l) |
Or
Tt=n*tl+ Te +il+A 4 if protocol is asynchronams and (t1> A * p* V) 3)

n n

If we calculate 6Tt/6n = 0 for expression (1) then we will obtain an expression to
calculate the number of workers needed to minimize Tt when the communication
protocol is synchronous, which is:

L [(A*V + 4T

And, if we calculate 3Tt/dn = O for expression (3) then we will obtain an expres-
sion to calculate the number of workers needed to minimize Tt when the communica-
tion protocol is asynchronous, which is:

Nopt = (A*V+ TC% %)

We cannot do the same with expression (2) because it can easily be demonstrated
that for this expression: lim,_,., 7t = 0 . But, if the number of workers (n) grows, then

the message size (v,) decreases and, consequently: tl > A*p*V/n when n > A*V/(2*tl).
This means that expression (5) can be also applied from the time this condition holds.
With expressions (1), (2) and (3), we have a model of the behavior of an application,
and we have expressions (4) and (5) to tune the number of workers of the application.

Figure 1 shows the expected execution time for an example M/W application con-
sidering expression (2) and compares the results of predicted values to the real execu-
tion times. This figure presents also the optimal number of workers provided by ex-
pression (4). It can be observed that the predicted behavior matches well the real
behavior.

4 Tuning Number of Workers with MATE

The performance model described in the previous section provides the optimal num-
ber of workers for a particular situation. However, in many cases the developer of an
M/W application cannot know all of the details needed to provide such an optimal
number. Moreover, in many cases the conditions change during the execution of the
application (for example, systems with shared load) and the optimal number of work-

100 Anna Morajko et al.

ers is not fixed, but evolves during the execution of the application. In these cases,
number must be adjusted on the fly during the execution of the application.

Real vs Expected 512Kb 1641.1 ms

02 T T T T T T [t
Expecled ---x
(RS S
018 —k“,‘(
W,
i
LAY
= .14 X
- X
o \"
E AN
= 012 k\\\
12 o
'x_\
kS
N
01 TN
g TR Bes! Number of Workers|
e x'y\\‘.
S
0.08 |- Kok TR,
eI P]
WM N W o R
006 1 1 1 1 1 1 1 1
10 13 20 25 30 35 40 45 50
workers

Fig. 1. Real vs. expected execution time, showing the use of expressions (2) and (4)

To provide dynamic automatic tuning of parallel/distributed applications we have
developed an environment called MATE (Monitoring, Analysis and Tuning Environ-
ment) [8, 9]. MATE performs dynamic tuning in three basic and continuous phases:
monitoring, performance analysis and modifications. This environment dynamically
and automatically instruments a running application to gather information about the
application’s behavior. The technique that fulfills these requirements is called dy-
namic instrumentation [10]. The analysis phase receives events, searches for bottle-
necks applying a performance model and determines solutions to overcome such
performance bottlenecks. Finally, the application is dynamically tuned by applying
the given solution. Moreover, while it is being tuned, the application does not need to
be re-compiled, re-linked or restarted. The knowledge to represent the performance
model of each particular performance problem is specified in a component called a
“tunlet”. Each tunlet includes the information about the measure points to insert in-
strumentation into the target application, the performance model to determine the
behavior of the application and the required modifications, and finally, the tuning
actions to improve the application’s performance.

We have defined two main approaches to tuning: automatic and cooperative. In the
automatic approach, an application is treated as a black-box, because no application-
specific knowledge is provided by the programmer. This approach attempts to tune
any application and does not require the developer to prepare it for tuning (the source
code does not need to be adapted). The cooperative approach assumes that the appli-
cation is tunable and adaptable. This means that developers must prepare the applica-
tion for the possible changes.

We have conducted a variety of practical experiments on parallel/distributed appli-
cations to check whether our approach really works. We have proven that it is effec-

Automatic Tuning of Master/Worker Applications 101

tive, profitable, and can be used for a real improvement in program performance.
Running applications under MATE control has allowed for adaptation of their behav-
ior to the existing conditions and improvements in their performance.

To dynamically tune the number of workers, we determined conditions that a M/W
application must fulfill (as this optimization belongs to the cooperative approach) and
implemented a specific tunlet. The application must be based on iterations where all
processes repeatedly perform all operations. During each iteration, the master distrib-
utes tasks to a specified number of workers and then waits for the results. It must
synchronize the results before the next iteration. Tasks being distributed must be in-
dependent of each other. In addition, the task processing time cannot depend on the
task content, but only on the task size. Finally, worker processes cannot exchange
tasks with each other in order to calculate and provide results. The condition of the
iteration-based application structure implies the existence of a significant number of
iterations. If there is a small number of repetitions, the tuning overhead might be high
and the improvement might not be seen.

The tunlet that optimizes the number of workers requires run-time monitoring of
the functions responsible for exchanging messages (send and receive), in particular:
send entry/exit, receive entry/exit events in the master process, and receive entry/exit
and send entry/exit in all worker processes. Instrumenting these functions we are able
to perform all measurements required by the performance model presented in Section
3 (expressions (4) and (5)).

The model is evaluated after each iteration when all measurements gathered from
that iteration are available. If the computed optimal number of workers differs from
the current value, the associated tuning procedure is invoked. In this case, we require
the application to be prepared by the developer for the potential changes. The applica-
tion must contain the specific variable that represents the number of workers. MATE
will change this variable automatically. During execution, the application should be
aware of the current number of workers and if it is different from the previous one,
the new number must be used. This can only be done between two iterations because
it is difficult to change the current work distribution that is already being processed.
Once the number of workers has been adjusted, the work can be distributed ade-
quately to all running workers.

If there are any new workers to be added, the new machines (processors) are re-
quired for them. There is no sense in running a new worker on the same machine
where another worker is already running. In such a situation we would not gain any-
thing since the CPU time is divided between both workers.

5 Experimental Results

In this section, the experimental results obtained by applying the tuning environment
to a real Master/Worker application are presented. To conduct the experiments, we
selected an intensive computing Forest Fire Propagation application called Xfire [11].
The Xfire application is a Master/Worker PVM based implementation of the simula-
tion of the fireline propagation. It calculates the next position of the fireline consider-
ing the current fireline position and different aspects such as weather, wind, vegeta-
tion, etc. Experiments were conducted on a cluster of homogenous Pentium 4, 1.8
Ghz, (SuSE Linux 8.0) connected by a 100Mb/sec network.

102 Anna Morajko et al.

Since we need to control the load in the system to reproduce the experiments sev-
eral times, we created certain load patterns, so that we can introduce and modify cer-
tain external loads to simulate the system’s time-sharing. We defined load patterns
and executed the application with several fixed number of workers (2, 4, 6, and suc-
cessively until 26) and also under the control of the MATE tuning environment where
the number of workers is adapted dynamically. In every scenario one worker was
executed in the same machine as master.

We have conducted our experiments in two scenarios:

e In the first scenario, Xfire was executed on different number of workers, without
any tuning.

e In the second scenario Xfire was executed under MATE applying the tuning of the
number of workers. The application started with one worker and then during the
execution the number is changed according to the model described in Section 3. In
this scenario one machine of the cluster was dedicated to run the analyzer, so that
the analysis does not introduce additional overhead in the application.

Table 1 summarizes the experimental results. These results are also presented in
Figure 2.

Table 1. Execution time of Xfire (in seconds) considering different number of workers, and
Xfire under MATE

#workers | 1 | 2 | 4 | 6 | 8 |10 12 14]16]18]20] 22] 24| 26
E";‘i"’;t:’n 1209|624 | 345 | 249 | 206 | 181 | 166 | 156 | 144 | 137 [130 | 129 | 122] 125
D + MA.TE Starting with 1 worker 141
Execution Time

Figure 2 shows the execution time of Xfire application considering different num-
ber of workers and in the last column the execution time of Xfire under MATE. As it
is indicated before, Xfire while executed under control of MATE starts with only one
worker. When MATE receives all data from the first iteration, it evaluates the per-
formance model and immediately detects the need of adding workers to reach the
optimal number related to the initial total work. Then during the execution of the
application the load is changed and the number of workers is adapted to the optimal
number provided by the performance model.

It can be observed that execution time of Xfire under MATE is close to the best
execution times obtained by different fixed number of workers. However, the re-

1400
1200
1000
800
600
400
200

o LHL ”D@EL!!L@@HH;

Number of workers

Execution time (Sec.)

E

Fig. 2. Execution time of Xfire considering different number of workers and Xfire under
MATE

Automatic Tuning of Master/Worker Applications 103

sources devoted to the application using the MATE tuning environment are taken
considering the actual requirements of the application and are used when they are
really needed.

6 Conclusions

Parallel and distributed programming offer high computing capabilities to users in
many scientific research fields. The performance of applications written for such
environments is one of the crucial issues. Master/Worker is one of the most signifi-
cant paradigms in these environments. The number of workers is a key issue in con-
sidering the performance of the application.

A performance model to evaluate the optimal number of workers has been pre-
sented. This performance model has been incorporated into the MATE automatic
tuning environment by the corresponding “tunlet”. The presented optimization sce-
nario adapts the number of workers assigned to perform a specified amount of work
to changing environment conditions. It requires the application to be prepared for the
possible changes, i.e. adding or removing worker processes. MATE is able to estimate
the application’s performance by means of the analytical model, and to calculate and
apply the optimal number of workers. The tuning action changes the number of work-
ers by updating the variable value in the master process.

The experimental results show that the dynamic tuning approach significantly im-
proves the execution times without consuming unnecessary resources when the appli-
cation is executed under dynamic conditions (changes in the system load).

References

1. Espinosa, A., Margalef, T., Luque, E. “Automatic Performance Analysis of PVM applica-
tions”. EuroPVM/MPI 2000, LNCS 1908, pp. 47-55. 2000.

2. Wolf, F., Mohr, B., “Automatic Performance Analysis of MPI Applications Based on Event
Traces”. EuroPar 2000, LNCS 1900, pp. 123-132. 2000.

3. Truong, H.L., Fahringer, T. “Scalea: A Performance Analysis Tool for Distributed and Par-
allel Programs”. EuroPar 2002, LNCS 2400, pp. 75-85. 2002.

4. Miller, B.P., Callaghan, M.D., Cargille, J.M. Hollingswoth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam K., Newhall, T. “The Paradyn Parallel Performance Measurement
Tool”. IEEE Computer vol. 28. pp. 37-46. November 1995.

5. Tapus, C., Chung, I-H., Hollingsworth, J.K. “Active Harmony: Towards Automated Per-
formance Tuning”. SC’02. November 2002.

6. Berman, F., Wolski, R. “Scheduling From the Perspective of the Application”. High Per-
formance Distributed Computing 1996. Syracuse, NY, USA, August 1996.

7. César, E., Mesa, J.G., Sorribes, J., Luque, E. “Modeling Master-Worker Applications in
POETRIES”. IEEE 9" International Workshop HIPS 2004, IPDPS, pp. 22-30. April, 2004.

8. Morajko, A., Morajko, O., Jorba, J., Margalef, T., Luque, E. “Dynamic Performance Tun-
ing of Distributed Programming Libraries”. LNCS, 2660, pp. 191-200. 2003.

9. Morajko, A., Morajko, O., Margalef, T., Luque, E.. “MATE: Dynamic Performance Tuning
Environment”. LNCS, 3149, pp. 98-107. 2004.

10. Buck, B., Hollingsworth, J.K. “An API for Runtime Code Patching”. University of Mary-
land, Computer Science Department, Journal of High Performance Computing Applica-
tions. 2000.

11. Jorba, J., Margalef, T., Luque, E., Andre, J, Viegas, D.X. "Application of Parallel Comput-
ing to the Simulation of Forest Fire Propagation", Proc. 3rd International Conference in
Forest Fire Propagation, Vol. 1, pp. 891-900. Portugal, November 1998.

Performance Cockpit:
An Extensible GUI Platform
for Performance Tools*

Tianchao Li and Michael Gerndt

Institut fiir Informatik, Technische Universitat Miinchen,
Boltzmannstr. 3, D-85748 Garching bei Muiichen, Germany
{1lit,gerndt}@in.tum.de

Abstract. Within the EP-Cache project, the Performance Cockpit has
been developed to provide a unified GUI for a series of performance tools.
This is achieved through the establishment of a general extensible archi-
tecture and the application of standardized intermediate representations
of program structures. This paper describes the design and implemen-
tation of this platform, and discusses the future evolvement into a uni-
versal GUI platform for performance tools independent of programming
language and programming paradigms.

1 Introduction

Performance tools are commonly used in high performance computing in order
to understand and correct the performance problems of sequential and parallel
codes. Such tools monitor a program’s execution and produce performance data
that can be analyzed to locate and understand areas of poor performance.

There are a number of performance tools, both research and commercial.
Many of these tools are language-dependent and can be applied to high perfor-
mance programs written in one or more of FORTRAN, C, C++ etc, while some
are language-independent. There are also different programming paradigms, typ-
ically shared memory (PThread, OpenMP) and message passing (MPI, PVM).
The support for those programming paradigms also varies.

The most prevalent approach taken by these tools is to collect performance
data during program execution and then provide post-mortem analysis and dis-
play of performance information. Some tools do both steps in an integrated man-
ner, while other tools or tool components provide just one of these functions. A
few tools also have the capability for run-time analysis, either in addition to or
instead of post-mortem analysis.

Typically, each performance tool provides a customized user interface for
showing the structure of the application, specifying the target of measurement,
controlling the measurement execution and displays the result of measurement.
The diversity of those user interfaces demands a lot of time for studying the

* The work presented in this paper is mainly performed in the context of the EP-
Cache Project, funded by the German Federal Ministry of Education and Research
(BMBF)

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 104-113, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Cockpit 105

usage of a new performance tool, and makes it hard to integrate and incorporate
different performance tools.

While the exact sequence can be different, performance measurement typ-
ically includes the common procedures: instrumenting the monitored program
(source or binary, static or dynamic), linking the instrumented program with
specific runtime libraries, program execution and result retrieval (online or post-
mortem), and result display and/or analysis. This provides us the possibility to
set up a general infrastructure to support different performance tools. In this
infrastructure, a performance tool independent platform serves as the basis that
can be extended by individual modules (plug-ins) to support different perfor-
mance tools.

In the German EP-Cache project, Performance Cockpit has been imple-
mented as an extensible GUI platform for a series of performance tools. Based on
the open source tooling platform Eclipse [1], this platform supports both post-
mortem (i.e. CPTE) and online monitoring (i.e. EPCM) environments, and is
intended to integrate other performance tools. The Performance Cockpit serves
as the starting point for the development of a universal GUI that is neutral to
both programming languages and programming paradigms.

The remainder of this paper is organized as follows. Section 2 introduces the
performance monitoring tools developed in the EP-Cache project, and discusses
the need for a common GUI platform. Section 3 discusses the major issues in-
volved in the design and development, including the establishment of a general
extensible architecture and the standardization of information representations.
Section 4 presents the defined architecture, and section 5 introduces the GUI and
its typical scenario of usage. Section 6 discussed activities related with our devel-
opment, and Section 7 looks forward to the development of a universal platform
for performance tools based on the efforts in Performance Cockpit. The paper
concludes with a short summary in Section 8.

2 The Need for a Common GUI Platform

The EP-Cache (Efficient Parallel Programming of Cache Architectures) project
is a three-year research project funded by the German Federal Ministry for
Education and Research. The goal of this project is to develop new performance
analysis tools and performance tuning techniques with which programs can be
improved to efficiently utilize the underlying cache architectures, especially on
SMPs. As a fundamental part of the EP-Cache project, existing performance
measurement tools are evaluated and new tools either using existing hardware
counters and/or based on a novel hardware monitor design [7] that reveals further
details on the access behaviors for individual data structures and code regions are
developed. These include the Counter-based Profiling and Tracing Environment
(CPTE) [2] and the EP-Cache Monitor (EPCM) [7].

CPTE is a performance monitoring tool based on hardware performance
counters. It provides profiling, tracing, and sampling for arbitrary program re-
gions. Performance measurement with CPTE is done with the following steps -

106 Tianchao Li and Michael Gerndt

instrumentation of the program, specification of measurements, program execu-
tion and generation of the measured values, and analysis of resulting performance
data. Measurement results are produced in the form of a trace file which may
contain measurements for individual instances of a region, and/or summaries of
all instances of a region. The results can also be transformed for visualization
with KCachegrind [0].

EPCM is a data-structure centric performance monitoring tool. It is based
on a novel hardware monitor [7] designed to be integrated into cache controllers
which provides counters that can be configured to measure events for certain
address ranges, and record the accesses in the form of event counts and access
histograms. As the hardware monitor is not available, EPCM is actually imple-
mented on top of a simulator that provides runtime instrumentation of applica-
tion binary, on-the-fly simulation of the cache access behavior and performance
monitoring for multi-processor shared memory systems [11]. EPCM provides
Monitoring Request Interface (MRI, ref. [3]), through which performance analy-
sis tools can specify monitoring requests and retrieve monitoring data in online
fashion. EPCM also generates trace records compatible with VAMPIR, [16] that
is extended with OpenMP, data structure and histogram support.

CPTE and EPCM share some similarities in that both environments are tar-
geted to Fortran 95 OpenMP programs and extendable for other programming
languages and programming paradigms provided that the specific instrumenters
are available. Both require selective code-region instrumentation in user specified
source files and region types. The differences between these two environments
are even more evident. The post-mortem data analysis in CPTE and online mon-
itoring and analysis in EPCM requires different procedures in the measurement.
EPCM’s support for code-regions involves additional code region instrumenta-
tion and different specifications of measurement targets. The measurement re-
sults are also different for CPTE and EPCM in both content and format, and
are to be visualized with different visualization and analysis tools.

In order to ease the usage, graphical user interfaces (GUIs) are demanded for
both CPTE and EPCM. Taken into consideration of the vast differences between
those two environments, it might seem a natural choice to develop separate GUI
for each of those platforms. However, this leaves many problems like duplicate
work for the common features, low maintainability, inconsistent in the user in-
terface and low inter-operability. Instead, we have chosen another approach - to
implement a common GUI to support both these monitoring environments as
well as other existing and future monitoring environments through the establish-
ment of a common extensible infrastructure, namely the Performance Cockpit.

3 Key Issues in Design and Implementation

In the design and implementation of such an extensible GUI platform as the
Performance Cockpit, the major issues to be considered include the establish-
ment of a general extensible architecture and the standardization of information
representations.

Performance Cockpit 107

3.1 Define General Extensible Architecture

A general architecture should be constructed for integrating different perfor-
mance tools through extension. Generality and extensibility are the major con-
siderations of the defined architecture. While the powerful extension mechanism
from Eclipse provides extensibility, the GUI elements required by different tools
are to be studied and organized with respect to their nature for generality.

The generic GUI elements and the underlying supporting mechanisms form
the basic platform, and the tool-specific elements are to be grouped into indi-
vidual extension modules, i.e. plug-ins. Each plug-in extends the basic platform
through properly defined interfaces, i.e. extension points. The interface between
the basic platform and the extensions should be defined generic enough to allow
possible situations of extensions.

For more details of the established architecture, please refer to Section 4.

3.2 Define Standard Representation for Relevant Information

For the interaction between Performance Cockpit and the different performance
tools that are integrated, standardized representation should be defined for all
relevant information. The information includes program code region structure,
program instrumentation targets and/or monitoring requests, as well as the mea-
sured performance data.

For the program code region structure, we have participated in the devel-
opment of Standardized Intermediate Representation (SIR) [13], a standardized
abstract representation of program structure for Fortran 95, Java, C and C++
programs defined in the APART working group [!]. SIR is defined in the format
of XML document; each SIR is a XML document following the DTD or XML
schema definition for SIR. SIR is intended to be used by performance tools and
contains only high-level information about positions and types of statements
and directives (e.g. OpenMP) that represent the coarse structure of programs,
as opposed to more complicated intermediate languages like WHIRL used in the
Open64 compiler suite [9]. This simplicity helps keep SIR compact and applicable
for both procedural and object-oriented programs of various languages.

For the information of program instrumentation and monitoring, common
formats that are general enough for the performance tools of EP-Cache project
are also defined.

4 The General Extensible Architecture

A general architecture for integrating different performance tools has been con-
structed (see Figure 1). This architecture follows a layered design and is based
on the extension mechanism provided by Eclipse.

In this architecture, the generic functions including the management of mon-
itoring projects (new project or example project), configuration of common pref-
erence and project properties, and the management of platform extensions forms

108 Tianchao Li and Michael Gerndt

the performance platform. The support for code instrumentation is provided
with separate instrumentation plug-in, each for a different instrumenter. And
the concrete support for different underlying monitoring platforms, either based
on hardware counters (the CPTE platform), or software simulators (the EPCM
platform) are implemented as separate plug-ins.

. SR
| CPTE Plugn W r{EP(:-MON Plugin |
R —— —_—

Instrumentation Plug-ins

.

' [Performance Platform J '
[Eclipse + CDT + Fortran Plug-in]
i o

Fig.1. The General Extensible Architecture for Performance Cockpit

4.1 Eclipse, CDT and Fortran Plug-In

Eclipse [4] is a kind of universal tooling platform - an open-source extensible
IDE for the integration of various software development tools. Eclipse represents
a component-based approach for software development, which promotes a view
of software development in which applications are composed out of reusable,
relatively large-grained, and mostly pre-existing components.

The C/C++ Development Tools (CDT) [3] provides a full functional C and
C++ IDE for the Eclipse platform. It provides support for C/C++ edit, build,
launch, and debug. For project building, CDT incorporates a standard make
feature (a term used by Eclipse to represent a group of tightly related plug-ins)
that support standard makefiles.

By the time of implementation, Fortran support for Eclipse is not available,
and a self-developed plug-in has been developed for simple Fortran support. It
implements a Fortran 95 editor with simple syntax highlighting, and supports the
building of Fortran applications by reusing the incrementally build functionality
provided by the makefile support of CDT. This part can be replaced once an
advanced Fortran plug-in such as Photran [1] becomes mature.

4.2 The Performance Platform

The performance platform provides the basis for integration and extension for
different performance tools. It is based on Eclipse, Eclipse CDT and the self-
developed Fortran plug-in. The major function of this platform includes the
management of the performance projects, the management of common properties

Performance Cockpit 109

and preferences, and the management of performance tools extensions. For the
management of performance tools extensions, custom interfaces (i.e. extension
points), are defined by the performance platform, through which the individual
performance tools can be discovered and integrated.

4.3 Instrumentation Plug-Ins

Code instrumentation is a separate process from performance measurement, and
is often shared among tools. For each specific code instrumenter, a separate
instrumentation plug-in is to be implemented. Each of these plug-ins provides
GUI elements for the instrumentation of the whole project or selected files of
a certain type (e.g. Fortran programs), and directs the underlying instrumenter
upon user control. The instrumenter also generates information about the source
code structure, in the format of SIR, which will later be read by the GUI and
the individual tools plug-ins.

4.4 Tools Plug-Ins

Each performance tool requires the development of an individual plug-in to be
integrated into the performance platform. The responsibility of each plug-in
includes the translation of standard-based data representation to tool-specific
data formats, providing custom GUI elements, and the interaction with the
underlying tools.

The plug-in for each performance tool must implement certain interfaces to
be managed by the performance platform. User interactions with the common
GUI elements are processed by the performance platform and translated into
appropriate function calls as defined in the interfaces. User interactions with the
custom GUI elements are directly handled by the tool plug-in.

5 The Performance Cockpit GUI

5.1 GUI Elements

In terms of Eclipse, the common GUI elements for performance monitoring pro-
vided by the Performance Cockpit include:

Monitoring Perspective: This perspective organizes all relevant components
into a role-oriented GUI to the user of the monitoring environment.

Project Creation Wizards: These wizards help create projects that are either
empty or containing example programs. Projects created with these wizards are
marked with Monitoring Nature, which is identified later by other components
of the Performance Cockpit.

Monitoring Resource Explorer: As a resource explorer customized for our

measurement environment, it provides standard project and file manipulation
functions; however all unnecessary details are hidden from the user, such as the

110 Tianchao Li and Michael Gerndt

pse clom
Fle Bt hesgate Seach Pkt Aun Winde Hep
[F-BE 5 [Fad| - | v[%e-=-

| [fT et g =

e om %

| R

B =3 e b : 4 i

", General O Li
Region Types T i

T i

Fontran ferma: = "
3 . Sl

Fregeiess: I Sarcoms LOETTT) £ *
iaber pratic: [o= Frmecates [
Edtencis! R z
Regentye = = E oD T T O I Gl crEnsean

o s I Sl AN SUTRITAR [A TARE SO

Fioe @ amecs

= ™ = ler _paemreas ™ “LE_FUGH kA

¥ ik W ol

Frul R ot dl| dewdl

¥ paz o

[

ek | Oe s e
= il 7 caeasl
Ry — a
_om |||t
LS h— aar
M — — El
Free = ! I

Fig. 2. Extensible GUI Platform for Performance Tools

files created during the process of instrumentation and internal configuration
files.

Monitoring Environment Preferences: This enables required configurations
for the monitoring environment, such as the path of instrumenter executable, the
path of result format converter etc.

Instrumentation Wizards: These wizards guide the user through the process
of instrumentation either for selected files or for the whole project.

Code Regions Outline View: This view provides an outline of code regions
for the active editor, according to the result of instrumentation. Context menu
items of this view also allow users to add /remove certain code region(s) into/from
target of measurement.

Code Region Properties View: This view displays available properties and
measurement results of individual code regions, in response to user selections in
the Code Regions Outline View.

In the current implementation of the Performance Cockpit, the following
performance tool specific GUI elements are defined by the plug-ins for CPTE
and EPCM environment:

Measurement Wizards: The measurement wizards guide the user through the
process of measurement. A separate wizard is defined for each of the performance
tools. For example, the measurement wizard for CPTE directs the user to specify
parameters and general requests for the measurement, generates configuration
file, and launches the program measurement.

Performance Cockpit 111

Measurement Result Views: These views display available properties and
measurement results. For example, the EPCM displays the result of each mea-
surement request as a single count or a histogram.

Visualization Wizards: These wizards guide the user to choose and invoke
appropriate external visualizers to display the measurement results.

The above GUI elements, either provided by the common performance plat-
form or contributed by the individual performance tools plug-ins, are seamlessly
integrated with the Eclipse platform. From the user’s perspective, those two
types of GUI elements are not distinguishable (see Figure 2).

All components described above are grouped into a Monitoring Feature,
which allows the whole platform to be installed and updated in a way that
coexists with other Eclipse based systems.

5.2 Usage Scenario

The process of measurement using Performance Cockpit can be summarized as
follows. The user creates a project with one of the Project Creation Wizards,
and then the user can manipulate the content of the project with the Monitor-
ing Resource Explorer. To do instrumentation, the user can right click on the
whole project or selected files and start Project Instrumentation Wizard or Files
Instrumentation Wizard from the context menu. After specifying the required
parameters like region types to be instrumented, the instrumenter is invoked by
the wizard. The user can then open the instrumented files in the Fortran Source
Editor, examine the code regions in the Code Regions Outline View, and specify
local measurement requests for specific code regions. After building the program,
the user invokes the Measurement Wizard for measurement that will guide the
user through out the measurement process, which varies from tool to tool. In
any case, the wizard will launch the program for execution. Once the execution
finishes, the user can choose appropriate Measurement Result Views to examine
the individual measurement, or invoke visualization tools that are integrated in
the platform through the help of Visualization Wizards.

6 Related Works

Previous attempts to construct general interfaces for instrumentation and visu-
alization also exist in other parallel tool groups. The Pablo project [10] at the
University of Illinois has implemented svPablo, a graphical interface for instru-
menting source code and browsing runtime performance data. The Tool Gear
project [15] at LLNL is a GUI tool and database for dynamic instrumentation
and display of the instrumentation results. However, the extensibility and flex-
ibility of such tools are not comparable to our Performance Cockpit. In fact,
taken the vast differences between instrumentation and measurement tools (e.g.
consider just profiling vs. tracing tools), opportunities for integration can be
only guaranteed by a general extensible platform like the Performance Cockpit.

112 Tianchao Li and Michael Gerndt

Existing Eclipse-based GUIs for performance tools include the Eclipse OPro-
file plug-in as a CDT contribution and the Intel VTune Performance Analyzer for
Linux [17]. Both are specific to the underlying tool (OProfile and VTune), and
none of them address the extensibility and coexistence with other performance
tools. The tight dependence with Eclipse CDT also makes Eclipse OProfile plug-
in restricted to C/C++. Intel VTune Performance Analyzer for Linux supports
multiple languages, including Intel Visual Fortran, Java and languages supported
by the Linux GNU Compiler Collection (GCC); however the proprietary nature
of this product and its closed internal data models makes integration with other
tools impractical.

The recently proposed PTP (Parallel Tools Platform) project [12] aims to
extend the Eclipse framework to support a rich set of parallel programming
languages and paradigms, and provide a core infrastructure for the integration
of a wide variety of parallel tools. Although the PTP is still in the initial status of
proposition, it casts new light on the construction of a generic platform including
performance monitoring. We have expressed our interest in this project and will
actively participate in the discussions to influence the design so that the work
in PTP and our work can be seamlessly integrated.

7 Towards a Universal Platform for Performance Tools

The Performance Cockpit provides the basis for the future development of a
universal integration platform for performance tools. Such a platform will be
beneficial to users and developers of all performance tools in that it provides a
consistent user experience and gentle learn curve, enables interoperability among
performance tools, reduces redundant work by reusing common functions, etc. It
is intended to be programming language neutral, programming paradigm neu-
tral, and performance tool neutral.

While the extension architecture and the standardized representation of in-
formation defined in its development generally enables the step-forward towards
universal platform, further efforts are required. In order to be performance tool
neutral, the currently defined architecture should be refined, and standardized
representation of more types of information (e.g. the trace record) should be
defined. This requires of course the examination of a large amount of existing
performance tools and identify the commonalities and specialties. This will also
involve a lot of compromise between generality and functionality.

For Eclipse, supports to programming languages and programming paradigms
are usually provided by extensions from different parties. The integration of
Performance Cockpit with those diverse programming extensions constitutes an-
other challenge, and will foreseenably result into changes to the general architec-
ture and implementation. For example, the PTP described above that provides
support for parallel programming will be integrated as part of the underlying
platform.

Performance Cockpit 113

8 Conclusions

Performance is a very important factor that drives the development of comput-
ing. Code optimization with the help of performance tools is one of the major
measures to achieve better performance. However, the existing performance tools
usually have different graphical user interfaces and results into difficulty in the
usage and poor interoperability.

In the EP-Cache project, the Performance Cockpit, a GUI platform that pro-
vides a unified user interface for a series of performance tools, has been devel-
oped. Compared to other GUIs for performance tools, the Performance Cockpit
excels in its easy learning and usage, its extensibility and interoperability. The
general extensible architecture and standard representations for related infor-
mation that are defined in the development of Performance Cockpit provide the
basis for the future development of a universal platform for performance tools.
The integration of performance tools with the Eclipse environment would also al-
low programmers of high-performance systems to exploit the general advantages
of the integrated interactive development environment.

References

1. APART Working Group. http://www.fz-juelich.de/apart/

2. M. Gerndt, T. Li: Automated Analysis of Memory Access Behavior, Proceedings

of HIPS-HPGC 2005, Denver Colorado, April, 2005

Eclipse C/C++ Development Tools. http://www.eclipse.org/cdt/

Eclipse. http://www.eclipse.org

5. E. Kereku, T. Li, M. Gerndt, and J. Weidendorfer: A Selective Data Structure
Monitoring Environment for Fortran OpenMP Programs, Proceedings of Euro-Par
2004, Pisa, Italy, Aug. 31th - Sept. 3rd, 2004

6. KCachegrind. http://kcachegrind.sourceforge.net

7. M. Schulz, J. Tao, J. Jeitner, W. Karl: A Proposal for a New Hardware Cache
Monitoring Architecture, Proceedings of MSP 2002, Berlin, Germany. June 2002

8. M. Gerndt, E. Kereku: Monitoring Request Interface Version 1.0,
http://wwwbode.in.tum.de/ kereku/projects/epcache/pub/MRI.pdf

9. Open64 Compiler Tools. http://open64.sourceforge.net

10. Pablo Research Group. http://www.renci.unc.edu

11. Photran. http://www.photran.org

12. Eclipse Parallel Tools Platform. http://www.eclipse.org/ptp/

13. C. Seragiotto et. al.: Standardized Interfaces for Representing, Instrumenting, and
Monitoring Fortran, Java, C' and C++ Programs, Concurrency and Computation:
Practice and Experience, submitted.

14. SMART: A Simulation Tool for Monitoring Cache Access Behavior on SMPs,
http://wwwbode.cs.tum.edu/lit /smart/

15. Tool Gear. http://www.llnl.gov/CASC/tool gear/

16. VAMPIR. http://www.pallas.com/pages/vampir.htm, www.tu-dresden.de/zhr/

17. VTune Performance Analyzer for Linux.
http://www.intel.com/software/products/vtune/vlin/index.htm

- w

Apex-Map: A Synthetic Scalable Benchmark Probe
to Explore Data Access Performance
on Highly Parallel Systems

Erich Strohmaier and Hongzhang Shan

Future Technology Group, CRD, Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720
{estrohmaier,hshan}@lbl.gov

Abstract. With the increasing gap between processor, memory, and intercon-
nect speed, the performances of scientific applications on high performance
computing systems have become dominated by the ability to move global data.
However, many benchmarks in the field of high performance computing focus
on measuring the achieved CPU speed in MFlop/s. In this paper, we introduced
a novel benchmark, Apex-Map, which focuses on global data movement and
measures how fast global data can be fed into computational units. Apex-Map is
a parameterized synthetic performance probe and integrates concepts for tempo-
ral and spatial locality into its design. By measuring the Apex-Map perform-
ance for a whole range of temporal and spatial localities performance surfaces
can be generated which can be used to study the characteristics of the computa-
tional platforms and which are useful for performance comparison. Results on a
vector platform and two superscalar platforms clearly reflect the design differ-
ences between these two types of systems.

1 Introduction

Benchmarking of high performance computing has often focused on floating point
performance. One prominent example of this is the Linpack benchmark, which is used
to rank systems in the TOP500 Project [1]. However, the performance of Linpack is in
general not a good performance indicator for real applications. On most platforms,
Linpack can achieve over 70% of peak performance while on the same systems many
real applications might only achieve substantially lower performances.

With the increasing gap between CPU speed and memory speed, the capability to
load and store data locally and globally has become the dominant performance factor
for many applications. System designers are spending enormous efforts to design
complex memory systems and interconnect networks to increase the data transfer
bandwidths and reduce latencies. However, we still lack a quantitative methodology
to relate changes in computer architectures to improvements in application perform-
ances. There even still is no standard or widely accepted way to measure progress in
our ability to access globally distributed data. STREAM [2] is often used to measure
memory bandwidth but its use is limited to at the most a single shared memory node.
Recently, the HPC Challenge benchmark [3] has included the RandomAccess bench-
mark, to measure the rate of integer random updates of memory. Unfortunately, this
benchmark cannot easily be related to scientific applications and thus does not help
much for applications performances.

In this paper, we introduced a novel synthetic memory access probe, called Apex-
Map [4], to measure global data access performance. Apex-Map has three main pa-
rameters, the global memory size M used, the temporal locality a, and the spatial

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 114-123, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Apex-Map: A Synthetic Scalable Benchmark Probe 115

locality L. Our basic assumption is that an application’s global memory access can be
approximated by multiple data access streams, each of which can be characterized
with the three parameters introduced above. The execution profile of Apex-Map can
then be tuned by its set of input parameters to match the data access characteristics of
a chosen scientific application. This allows us to use Apex-Map as a performance
proxy for the actual codes. An advantage of our synthetic benchmark probe is that due
to its simplicity it can easily be run by simulators. This allows its usage in the early
stages of architecture design.

Another feature that distinguishes Apex-Map from many other benchmarks is that
its input parameters can be varied independent of each other between extreme values.
This allows generating continuous performance surfaces to explore the performance
effects of all potential values of the characterizing parameters. By examining these
surfaces, we can understand how changes in spatial or temporal locality affect the
performances of applications and which factors are more important for performance.
Moreover, we can compare these performance surfaces across different platforms and
explore the advantages and disadvantages of each platform. Most current benchmark
suits (HPCC, NAS [5], and SPEC [6]) only contain several application codes or their
synthetic benchmarks have other features strongly limiting the scope of performance
behaviors they can explore. The results of these application benchmarks provide very
good indications how similar applications will perform on a specific platform. How-
ever, these benchmarks are not very helpful for other applications, as their perform-
ances cannot be related directly to them.

The design details of Apex-Map are described in Section 2. In Section 3, we ana-
lyze our results on our three test platforms, two superscalar platforms and one vector
platform. We find that the Apex-Map performance results clearly reflect the design
differences between the superscalar and the vector platforms. Finally, we analyze the
scalability of these three platforms based on the Apex-Map results. Section 4 summa-
rize our results and discusses our ongoing and future work.

2 Implementation

The parallel implementation of Apex-Map uses the same concept as the sequential
version [7]. It has the same three main parameters, the global memory size M, the
temporal locality o, and the spatial locality L. These parameters are related to our
methodology to characterize application performances. Apex-Map assumes that the
performance of a data access pattern of an application can be approximated by com-
bining a blocked access to memory with length L with a non-uniform random address
determined by o. In Apex-Map a global data-array of size M is evenly distributed
across all processes as illustrated in Fig. 1. Data will be accessed in block mode, i.e.,
L continuous memory addresses will be accessed in succession and the block length L
is used to characterize spatial locality. The starting addresses X of these data blocks
are computed by using a non-uniform random address generator driven by a power
function with the shape parameter a. A power function was chosen as generating
function as a simple scale-invariant, one-parameter approximation for the behavior of
real applications.

116 Erich Strohmaier and Hongzhang Shan

0 L | L M-1

|
4_._X._._I:°_§!<_.P'_._._._

Fig. 1. Apex-Map Data Distribution and Data Access

Table 1. The flowchart of the Apex-Map implementation

Basic Parallel MPI

Repeat N Times
Generate Index Array
CLOCK(start)
For each Index i in the Array

Repeat N Times
Generate Index Array
CLOCK(start)
For each Index i in the Array

If (not local data) If (local data)

Get Remote Data Compute
End If Else
Compute Generate Remote Request
CLOCK(end) End If
RunningTime += end — start; Serve Incoming Requests
End Repeat Process Replies
CLOCK(end)
RunningTime += end - start
End Repeat
CLOCK(start)
Wait For Finish
CLOCK(end)

RunningTime += end — start

The basic flowchart of the plain parallel version of Apex-Map is shown in the left
side of Table 1. The indices X are generated and stored in an index array first before
the measurement starts. Then, for each index it is tested, if the addressed data resides
in local memory in which case the computation proceeds immediately, or if it resides
in remote memory in which case it is fetched into local memory first. Apex-Map is
designed to measure the rate at which global data can be fed not only into the memory
or into cache but into the CPU itself. Therefore, it is essential that an actual computa-
tion is performed in the Compute module, which currently is a global sum of all ac-
cessed array elements.

The pre-computed indices X are stored in an array of size I. The indices are gener-
ated based on a power distribution based random function, which is controlled by the
parameters M, L, and a. Generated addresses are shifted so that each process accesses
its own memory with the highest probability. The frequency with which remote data
access occurs is determined by the temporal locality parameter a. For 256 processes
and o = 1, the data accesses follow a uniform random distribution and the percentage
of remote access is 255/256 (=99.6%). With the increase of temporal locality, the
percentage reduces to 0.55% for a = 0.001.

The main output of Apex-Map is the average cycles per data access for one process
and the aggregate bandwidth in MB/s for the given parameters. The results are di-
rectly comparable across different platforms. By running a set of parameters, such as

Apex-Map: A Synthetic Scalable Benchmark Probe 117

a=0.001to 1.0 and L = 1 to 16384 words, Apex-Map can generate a performance
surface to explore the performance effects of temporal locality and spatial locality.

2.1 MPI Implementation

One major non-trivial issue that has not been discussed until now is how the remote
access is carried out. The implementation could be highly affected by the available
parallel programming paradigm and different programming styles. We assume that
the operation for different indices is independent and multiple remote accesses can be
executed on the fly at the same time. Our first version was developed using two-sided
MPI since it is the most popular and portable parallel programming model available
today.

Even if we only consider MPI, there are many implementations thinkable. One
possibility is to aggregate the remote requests instead of sending them one by one. We
explored several different strategies to do this in depth, but had to conclude, that we
ended up only benchmarking our inventiveness for new algorithms to assemble and
exchange these messages and our skills to implement them. This approach not only
further complicates the code, but also conflicts with our locality concept. By exten-
sively rearranging the order of data-accesses, the actual executed address stream will
no longer show the intended features to achieve the given localities. In effect, such
rearranging would substantially change the actual localities from the intended locali-
ties and would go contrary against our design principles. We therefore decided not to
permit such message aggregation and to exchange messages for each remote access.

However, we permit multiple outstanding requests for data and out-of-order proc-
essing of the received data. Since in Apex-Map the process numbers for message
exchanges are generated based on a non-uniform random access, non-blocking, asyn-
chronous MPI functions are used to avoid blocking and deadlock. Given our non-
deterministic random message pattern it was not clear if a scalable implementation of
Apex-Map in MPI was possible. However, we succeeded with an efficient and scal-
able implementation, which shows increasing performance up to 1000s of processors.

Due to the unpredictable communication patterns, the flowchart becomes substan-
tially more complex (see the right side of Table 1) and several MPI related implemen-
tation parameters have to be introduced. The first parameter is B, the number of re-
ceive buffers allocated, which are needed for each call of MPI_Irecv. It defines the
maximum possible number of concurrent outstanding remote data requests per proc-
ess. Another parameter is SMSG, the maximum number of outstanding send handles
defined for MPI_Isend. The last parameter is NSER, with which we limit how many
remote requests can be served at one time by our Serving Incoming Requests module.
This parameter is especially useful when the remote request distribution is imbal-
anced. Without this parameter, a process may get completely stuck in serving remote
requests for a long time and might not make any progress on its own local computa-
tion, which would cause a severe load-imbalance at the end of the global execution.

In summary, there are three kinds of Apex-Map parameters. The first category of
parameters includes M, L and o, which are the characteristic parameters of interest.
The second category includes general implementation related parameters, including
the index array size I and the number of times N the experiment is repeated. The third
category includes parameters related to the MPI implementation such as the number
of receive buffer B, the number of send handles SMSG, and the maximum number of

118 Erich Strohmaier and Hongzhang Shan

served requests in one iteration NSER. Fortunately, experiments on several systems
indicate that our default values for all implementation parameters work reasonably
well on all of them. The “Wait For Finish” module is needed for MPI because even if
a process has finished its own task, it may still need to provide data for other proc-
esses and hence cannot complete its execution.

3 Results and Analysis

In this section, we first introduce the three platforms we tested, two superscalar plat-
forms and one vector platform. Then, we analyze the relation of the results of Apex-
Map and the PingPong benchmark, as a traditional measure for global communication
performance. Finally, we compare the Apex-Map results between the three platforms
and examine how the Apex-Map results reflect their architectural differences.

Table 2. Some characteristics of the three platforms used

CPU Memory Bandwidth | Network
Seaborg | IBM Power3, 375 MHz 16 GB/s /node IBM Colony-II,
1 GB/s /processor 1 GB/s /node
Cheetah | IBM Power4, 1.3 GHz 44 GB/s /node IBM Federation,
1.375 GB/s /processor | 4 GB/s /node
Phoenix | Cray X1, 400 MHz, 25.6 GB/s/ MSP Cray SeaStar
(800 MHz for vector units) 25 GB/s /node

3.1 Three Platforms: Seaborg, Cheetah, and Phoenix

Seaborg is currently the main computing platform of NERSC, a DOE Office of Sci-
ence user facility at Lawrence Berkeley National Laboratory. It is an IBM Power3
based distributed memory machine. Each node has 16 IBM Power3 processors run-
ning at the speed of 375 MHz. The peak performance of each processor is 1.5 Gflop/s.
Its network switch is the IBM Colony II, which is connected to two “GX Bus Colony”
network adapters per node.

Cheetah is a 27-node IBM p690 system with the IBM Federated switch, where
each node has 32 Power4 processors at 1.3 GHz. The peak performance of each proc-
essor is 5.2 Gflop/s. Phoenix is a Cray X1 platform consisting of 512 multi-streaming
vector processors. Each MSP has four single-stream vector processors and a 2 MB
cache. Four MSPs form a node with 16 GB of shared memory. The inter-connect
functions as an extension of the memory system, offering each node direct access to
memories on other nodes. These two machines are currently operated by the center for
Computational Sciences at Oak Ridge National Laboratory. Table 2 lists some main
characteristics of these three systems.

3.2 Relationship with PingPong Performance

The PingPong benchmark performance is a well-accepted performance number of
parallel systems. In this subsection, we are going to examine the relationships be-
tween Apex-Map and PingPong on the above three platforms. The inter-node Ping-
Pong performance is measured with one process sending data while the other process
is receiving them. The code used was obtained from the Pallas MPI benchmarks [8].

Apex-Map: A Synthetic Scalable Benchmark Probe 119

2.00
L
55 1.50 ~ —e— Seaborg
=
£ - 1.00 —i— Cheetah
B A Phoenix
T 050 e
i |

0.00 - . . T T

1 10 100 1000 10000 100000

Message Size (Words)

Fig. 2. The performance ratio between Apex-Map (a =1.0) and PingPong

We plot the relative performance of Apex-Map to PingPong in Fig. 2. The inter-
node Apex-Map bandwidth per process is obtained with a =1.0 (uniform random data
access) and M = 64 Mwords using two Apex-Map processes. Unlike PingPong, Apex-
Map measures the performance of non-uniform random access. The communication
pattern is unpredictable and the code overhead for it is substantially higher. These
factors contribute to the lower performance of Apex-Map when the message size is
small. With the increase of message size, the constant overhead becomes less and less
important and the Apex-Map performance gets closer to that of PingPong. On
Seaborg, Apex-Map performance becomes 60% better than PingPong when message
size reaches 1024 words. If we only count the number of exchanged messages and of
local memory accesses, Apex-Map should perform 200% better than PingPong since
only 50% of the accesses are remote access when o = 1. However, beyond the mes-
sage size of 1024 words, the performance ratio begins to drop. The main reason here
is that Apex-Map measures how fast the data can be fed into the CPU. After remote
data arrive in local memory, they further have to be brought into cache and registers
for the global sum computation. The effect of this computation can be ignored for
smaller messages but is more substantial for large messages on superscalar platforms
such as Seaborg. The performance ratio on Cheetah is similar to Seaborg but the MPI-
overhead seems to be more severe.

On Phoenix, the performance ratio of Apex-Map to PingPong for smaller messages
is even smaller than on the IBM platforms. There also are further differences in the
MPI implementations on these two different systems. On Phoenix, using multiple
receive buffers in Apex-Map does not improve the performance at all while on
Seaborg and Cheetah, the performances benefit substantially from using multiple
buffers. Phoenix also does not exhibit the drop in the performance ratio for large mes-
sages. Experimental results indicate that the sum computation has only a minor effect
on Apex-Map performance on this vector platform.

3.3 Apex-Map Performance

Different from other benchmarks, which usually provide only several performance
points, Apex-Map can generate continuous performance surfaces over a whole range
of temporal and spatial locality values. These surfaces can be used to study the effects
of varying temporal and spatial locality and provide insight into architectural designs.
Fig. 3 and 4 show the surface space for a = 0.001 to 1.0, L = 1 to 65536 words on 256

120 Erich Strohmaier and Hongzhang Shan

processors for M = 64 Mwords*256 on Seaborg and Phoenix. The Z-axis shows the
achieved bandwidth per processes in log-scale.

Seaborg - 256 proc X1 - 256 proc

|04
LRI ST
o1.032.03
[a R R
-1 A0-000
| -2Aa0- 100

Fig. 3. The achieved bandwidth per process Fig. 4. The achieved bandwidth per process
on Seaborg for 256 Processes on Phoenix for 256 Processes

Fig. 3 shows that both temporal and spatial localities affect the bandwidth substan-
tially. The worst performance is observed when oo = 1 and L = 1, which are the lowest
values for temporal and spatial locality. By increasing either the temporal locality or
spatial locality, the performance improves. The best performance is obtained when o
= 0.001 and L = 4096 Words. Further increasing L. does not improve performance.
This is mainly because the sum computation on this platform is less efficient for very
large messages. Beyond L = 4096 spatial locality has only minor influence on per-
formance while temporal locality a still has a large influence. If we look at an inter-
mediate performance level such as 1 MB/s, we see that the temporal locality and spa-
tial locality can be substituted by each other to some degree. To achieve 1 MB/s at
high temporal locality of a = 0.005, a very low spatial locality of L = 1 is sufficient.
With decreasing temporal locality (increasing o), a higher spatial locality of up to L =
85 is needed to maintain this performance. The performance characteristics of Chee-
tah are very similar to Seaborg.

Fig. 5 shows the performance ratio between Cheetah and Seaborg. From Table 2
we see that the ratio of processor speeds between these two systems is 3.47, the ratio
of local memory bandwidth is 1.375, and of network bandwidth is 4. For high tempo-
ral locality or high spatial locality the performance ratio of 2-4 seems to be dominated
by the ratio of the respective memory bandwidth. For low localities, the performance
ratio between these two systems is in the range of 6-8 and thus higher than any ratio
of simple architectural parameters. In this locality range, performance is dominated by
a large number of very short messages. The details of the MPI implementation as well
as the cross-section bandwidth of the interconnect can be expected to have a large
influence on performance in this corner of low localities where it will be notoriously
difficult to achieve high absolute performance.

Fig. 4 shows the performance surface for the Cray X1 for which the effects of in-
creasing spatial locality are significant even for values of L beyond 4096. Spatial
locality affects the performance in general much stronger. For example, on Cheetah,
in order to maintain the bandwidth around 10 MB/s, if we reducing the temporal lo-

Apex-Map: A Synthetic Scalable Benchmark Probe 121

cality a from 0.001 to 1, the spatial locality needs to increase 128 times. On Phoenix,
it only needs to increase 16 times. We also notice that when L changes from 32 to 64,
the performance drops. This is an effect of the MPI implementation on the Cray X1.
When the message size becomes larger than 32 words or 256 bytes, communication in
MPI will switch from eager mode to rendezvous mode and the implementation over-
head increases.

- Bl b
| = Rl iRl
B
W
o7 mas
Bomron
o

[Sl

o

o mae

L L

Fig. 5. The bandwidth performance ratio Fig. 6. The performance ratio between
between Cheetah and Seaborg Phoenix and Cheetah

MES Seaberg - 258 prog Phaenix - 266 proc

FHEED
BZOIEN
TR
D0 X
102303
203111

Fig. 7. Contour plots of the performance surfaces for Seaborg and Phoenix

To compare the performance surface for the superscalar IBM systems with the
Cray vector system we put contour-plots of Seaborg and Phoenix next to each other in
Fig 7. For the IBM systems, the area of highest performance is of rectangular shape
and clearly elongated parallel to the spatial locality axis while for the Cray system it is
elongated parallel to the temporal locality axis. The IBM system can tolerate a de-
crease in spatial locality more easily but is much more sensitive to a loss of temporal
locality. This reflects the elaborate cache and memory hierarchy on the individual
nodes as well as the global system hierarchy which also heavily relies on reuse of data
as the interconnect bandwidth is substantially lower than the local memory band-
width. The Cray system can tolerate a decrease in temporal locality much better but is
sensitive to a loss in spatial locality. This reflects an architecture which depends very
little on local caching of data and an interconnect bandwidth equal to local memory
bandwidth. To see such a clear signature of the Cray architecture is even more sur-
prising considering that we us an MPI based benchmark, which does not fully exploit
the capability of this system. The lines of equal performance on the Cray system are
in general more vertical than diagonal as with the IBM system, which further con-

122 Erich Strohmaier and Hongzhang Shan

firms our interpretation. These differences in our performance surfaces overall clearly
reflect the different design philosophies of these two different systems and demon-
strate the utility of our approach.

The performance ratio between Phoenix and Cheetah is shown in Fig. 6. Interest-
ingly, when the spatial locality is poor or temporal locality is high, the vector proces-
sor X1 delivers less performance than the super-scalar processor Power4. In these
cases, performance is dominated either by short MPI messages for which the Power 4
processor has the clear advantage of a much faster scalar processor or by very local-
ized memory accesses for which the Power4 can effectively use its cache hierarchy. In
this locality range, the Cray X1 can also not show its true potential with our current
MPI based benchmark implementation. A shmem or UPC implementation might
change this. The X1 shows the clearly better performance when spatial locality be-
comes high, especially in the area with poor temporal locality (the bottom-right cor-
ner). In the best case, it can deliver 12 times better performance than Power4 plat-
form. Performance in this corner is dominated by the exchange of many long
messages which requires an interconnect network with a large cross-section band-
width.

4 Conclusion and Future Work

In this paper, we describe a novel synthetic performance probe, Apex-Map. It focuses
on measuring the performance of global data movement and has three main parame-
ters, the global data size M, the temporal locality a, and the spatial locality L. We
assume that the performance of the data accesses of an application can be approxi-
mated by a generic, non-uniform random, block-access to global data defined by the
parameters M, a, and L. We have run multiple experiments with Apex-Map on two
superscalar platforms and one vector platform and have generated continuous per-
formance surfaces, which enable us to study the effects of spatial and temporal local-
ity on performance. The initial results on these platforms show that Apex-Map can be
used to compare efficiency and scalability across different platforms and the perform-
ance surfaces generated by Apex-Map clearly reflect the design differences between
these platforms.

Our first parallel implementation of Apex-Map is based on the most common par-
allel programming model, MPI. Currently we are implementing Apex-Map in other
popular or emerging programming models, such as SHMEM and UPC, to study the
effects of different programming paradigms and their relation to spatial and temporal
locality. More importantly, we are also investigating methods to characterize parallel
applications with the Apex-Map parameters. In our earlier work, we have successfully
characterized several sequential scientific kernels [7] this way. Such a characteriza-
tion allows us to use Apex-Map as a performance proxy for real scientific applica-
tions.

References

1. http://www.top500.org
2. STREAM: Sustainable Memory Bandwidth in High Performance Computers,
http://www.cs.virginia.edu/stream/

~NON DN AW

Apex-Map: A Synthetic Scalable Benchmark Probe 123

. HPC Challenge Benchmark, http://icl.cs.utk.edu/hpcc/

. Apex-Map: Application Characterization-Memory Access Probe, http://ftg.1bl.gov

. NAS Parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB/

. SPEC, http://www.spec.org/

. E. Strohmaier, Hongzhang Shan, “Architecture Independent Performance Characterization

and Benchmarking for Scientific Applications”, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems. Volendam, The
Netherlands, Oct. 2004

. Pallas MPI Benchmarks, http://www.pallas.com/e/products/pmb/

PerfMiner: Cluster-Wide Collection, Storage
and Presentation of Application Level Hardware
Performance Data

Philip J. Mucci®*®*, Daniel Ahlin?, Johan Danielsson?,
Per Ekman?, and Lars Malinowski?

! Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 Center for Parallel Computers, Royal Institute of Technology, Stockholm, Sweden

Abstract. We present PerfMiner, a system for the transparent collec-
tion, storage and presentation of thread-level hardware performance data
across an entire cluster. Every sub-process/thread spawned by the user
through the batch system is measured with near zero overhead and no di-
lation of run-time. Performance metrics are collected at the thread level
using tool built on top of the Performance Application Programming
Interface (PAPI). As the hardware counters are virtualized by the OS,
the resulting counts are largely unaffected by other kernel or user pro-
cesses. PerfMiner correlates this performance data with metadata from
the batch system and places it in a database. Through a command line
and web interface, the user can make queries to the database to report
information on everything from overall workload characterization and
system utilization to the performance of a single thread in a specific ap-
plication. This is in contrast to other monitoring systems that report
aggregate system-wide metrics sampled over a period of time. In this
paper, we describe our implementation of PerfMiner as well as present
some results from the test deployment of PerfMiner across three different
clusters at the Center for Parallel Computers at The Royal Institute of
Technology in Stockholm, Sweden.

1 Introduction

Until unlimited compute power becomes pervasive, HPC systems must be care-
fully managed in order to maximize the users’ productivity and the operating
sites’ return on investment. In most supercomputer installations, the cost of the
machines and their maintenance is passed along to the user in terms of dollars
per CPU hour. The user then either directly purchases compute time from the
site or he applies for a grant from a central authority; often the same authority
that funds the purchase and operation of the machine. This process is designed
to balance a budget, equating an hour of CPU usage with an amortized cost of

* Work by this author has been partially supported by the Department of Energy Sci-
DAC program (grant DE-FC02-01ER25490) and the Los Alamos Computer Science
Institute (contract 86192-001-04 49).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 124-133, 2005.
© Springer-Verlag Berlin Heidelberg 2005

PerfMiner 125

installation, operation and maintenance of a large machine. If we consider that
the lifetime of a supercomputer or large cluster is about four years before it’s
retired, the above process appears wasteful, as it makes no attempt to optimize
the use of either financial or computational resources. Compute time from user
to user and group to group is treated equally; even though the amount of work
that can be accomplished during each CPU hour can differ by many orders of
magnitude. For example, a user with a large allocation and an inefficient code
can easily ’steal’ otherwise available resources from less well-funded users. The
allocation is not based on computational work nor efficiency, rather it’s based
on a rough estimate of the number of CPU hours required to accomplish a given
problem. Given the same budget, it is certainly possible that this user could solve
much larger problems with an optimized code. The converse does not necessarily
hold, as a user with a small budget and a large problem must strive to achieve
some degree of efficiency in order to complete his work in the allotted time. If the
allocation policy was biased towards actual computational resource requirements
AND towards the efficient use of those resources, aggregate throughput of the
system would rise and more CPU hours would be available to the community as
a whole. Consider these other cases:

Purchase of a New Computing Resource. Procurements are often run in two
different modes; either the customer submits a set of benchmarks to be op-
timized by the vendor or the vendor provides access to hardware resources on
which the customer runs the benchmarks. These benchmarks run the gamut from
microbenchmarks that measure particular machine parameters to full-blown ap-
plications. Benchmarks by their very nature, attempt to represent a very large
code base with a very small code base. If hardware performance data could be
collected for every application and correllated with data from the batch system
and other sources, specific criteria that bound application performance could be
used to guide the procurement process. For example, answers to questions like
“Do the majority of our applications demonstrate high level 2 cache hit rates and
thus are sensitive to cache size and front side bus frequency?” provide specific
information about what kind of hardware should be purchased.

Improving the Software Development Cycle. While there are many excellent open
source performance analysis tools available[TAU][SvPablo][Paradyn][Mucci], vir-
tually all of them require the user to change his environment, Makefiles or source
code. While simple for computer scientists, this process is fraught with potential
error for scientists and engineers who are focused on their field of research. One
or two failed attempts at using a performance tool is enough to permanently
deter a scientist from making further efforts to characterize the behavior of his
application. If the monitoring system could itself provide a completely trans-
parent mechanism to measure important performance characteristics and the
user could access that information quickly and easily, the process of application
performane analysis could become an integral part of the software development
process.

126 Philip J. Mucci et al.

Performance Focused System Administration. As mentioned above, by having
access to detailed performance data about all applications, system administra-
tors could systematically address applications and their users that make ineffi-
cient use of compute resources. Centers with application specialist teams could
deploy staff on the basis of low performance and high CPU hour consumption.
This type of targeted optimization effort has the potential of optimizing a sites
heavy users and reap continued benefits through successive generations of ma-
chines as the big users’ applications receive the attention they deserve.

1.1 The Design of PerfMiner

A performance collection system must be carefully designed in order to meet
the above goals. Most importantly, it must be transparent, lightweight and very
efficient. Such a system can be split up into four components:

Integration into the User’s Environment. Changes to the user’s environment
should not be required by the system.

Collection of Hardware Performance Data. The data must be collected at a
sufficiently fine granularity to allow thread-level performance analysis.
Post-processing of the Data and Storage into a Scalable Database. The data-
base must be carefully designed to support queries that may span tables
with ten’s of millions of rows.

Presentation of the Data to the User Community. The interface must be as
simple as possible, yet should facilitate rapid “drill-down” investigation from
widest granularity down to the thread level.

In order to meet the above needs, a performance collection system must be care-
fully designed. First and foremost, it must be focused on the simplicity of it’s
user interface and the speed of which it operates. As the system could be run-
ning on many clusters across a site and measure every job through the system,
the amount of data could grow quite large. The system has four basic compo-
nents: Integration into the user’s environment and/or batch system. This must
be completely transparent to the user, but yet facilitate conditional execution
of monitoring for debugging and other purposes. Collection of the job and hard-
ware performance data. This must also be completely transparent to the user
with no modifications to the user’s job. Post-processing of the data and inser-
tion into a database. The database must be carefully designed to support queries
that may span tables with ten’s of millions of rows. Furthermore, the schema
should facilitate the rapid development of reasonably complex queries in order
to accommodate the demands of its user base. Presentation of the data to the
users, system-administrators and managers. This interface must be as simple as
possible to guarantee maximum acceptance into a daily usage cycle. Complex
functionality should be hidden from the main interface yet remain accessible to
those wishing to dig deeper. The interface should facilitate rapid “drill-down”
investigation from widest granularity down to the thread level.

PerfMiner is an perfomance monitoring system that attempts to meet the above
goals. To test our initial implementation, we deployed PerfMiner for a subset of

PerfMiner 127

users for three weeks across all three of PDC’s clusters, Roxette, a cluster of 16
dual Pentium III nodes, Lucidor, a cluster of 90 dual Itanium 2 systems, and
Beppe, a 100 processor Pentium IV cluster that is one of the six SweGrid clusters
spread across Sweden. All systems have gigabit ethernet as an interconnect, with
the exception of Lucidor which also contains Myrinet-D cards in every node.

In the next four sections, we describe each of the components of the PerfMiner
system, working our way from the integration into the batch system to the Web
interface presented to the user. Following that, we present the results discuss the
relevance of a few queries made to the PerfMiner database. We then conclude
with a review of related work and some comments about the future of PerfMiner.

2 Integration of PerfMiner into the Easy Batch System

One of the challenges of the implementation of PerfMiner at PDC was how to
manage the integration into the batch system. PDC runs a modified version of
the Easy[Easy| scheduler. At it’s core, Easy is a reservation system that works
by enabling the user’s shell in /etc/passwd on the compute nodes. The user is
free to login directly to any subset of the reserved nodes. There is no restriction
on using MPI as a means to access these nodes from the front end. In this
way, Easy serves the needs of PDC’s data processing community who frequently
submit ensembles of serial jobs, often written in Perl. Given this, we could not
count on mpirun as our single point of entry to the compute nodes. This left
us with only one means to guarantee the initiation of the collection process: the
installation of a shell wrapper as the user’s login shell, pdcsh.sh (PDC Shell).
The reader may wonder why we didn’t choose to use a system shell startup
script. Unfortunately, the Bourne shell does not execute the system scripts in
/etc when started as a non-login shell (C-Shell does). By the installation of a
wrapper script, every process, whether started via ssh, kerberized telnet/rsh or
MPI was guaranteed to be executed in our environment. Due to the design of the
Easy scheduler, this modification was rather trivial to perform. Easy maintains
two password files, password.complete and passwd. The former contains valid
shells for all users. The latter contains valid shells only for that user who has
reserved the node. This file is constructed on the fly by Easy when the job has
come to the top of the queue.

The steps for job execution and finalization occur as follows:
First, a preamble script is initiated by Easy: (pdcsh-pre.sh)

1. Check if the cluster, charge group, user and host were enabled for use with
PAPI Monitoring. If not, bail out.

2. Verify the existence of the output directory tree.

3. In the above directory, create two files:
— BUSY, which is a zero length file that indicates that this job is running and
that monitoring is taking place.
— METADATA, which contains job information that is cross referenced with
that from PapiEx. It contains the following fields: cluster name, job ID,

128 Philip J. Mucci et al.

username, number of nodes reserved, charge group (CAC), start time and
the finish time of the job. The finish time is filled in by the postamble script
described below.

Second, Easy conditionally modifies the user’s shell in the passwd files:
(adduser.py)

1. Check if the cluster, charge group, user and host were enabled for use with
PDCSH. If not, bail out.
2. Give the user PDC shell as his login shell on all reserved nodes.

When any job is started on any node, it will run under PDC shell and all
subprocesses and threads will be monitored. (pdcsh.sh)

1. Execute a common cluster wide setup script. (for other administrative pur-
poses)

2. Determine the following:
— Whether or not we are a login shell.
— The user’s actual shell from passwd.complete.

3. If the cluster, charge group, user and host are enabled for PAPI Monitoring,
execute the PAPI monitoring script.

4. Execute the user’s actual shell appropriately. (as a login shell or not)

The PAPI monitoring script performs the following: (papimon.sh)

Check for the file that contains the prepared arguments to PapiEx.
Check that these arguments are correct.

Verify the existence of the output directory tree.

Set the output environment variable to Papikx.

Set up the library preload environment variables.

ANl

At this point, the user’s job runs to completion. The only processes not monitored
are those that are either statically linked or they access PAPI or the hardware
performance monitors directly. Upon completion of the job, a postamble runs on
the front end. This script does the following: (pdcsh-post.sh)

1. Check if the cluster, charge group, user and host were enabled for use with
PAPI Monitoring. If not, bail out.

2. Append the job finish time to the METADATA file.

Remove BUSY file .

4. Schedule the parsing and submission of collected data to the PerfMiner
database and remove/backup the original files.

@

3 Collecting Hardware Performance Data Transparently
with PapiEx

At the lowest level, PerfMiner can use any mechanism to collect application
performance data. However, other methods require the user to recompile his

PerfMiner 129

application or use customized batch scripts. For our setup, we wanted a system
that would be completely transparent to the user, requiring no modifications
to user’s environment, application code or run-time libraries. Existing binaries
would continue to run as they did prior to the deployment of the software. To
accomplish this, we decided to use PapiEx, a tool based on the PAPI[PAPI].
PapiEx can run unmodified dynamically linked binaries and monitor them with
PAPI. It follows all spawned subprocesses and threads and generates output for
each. In PerfMiner, the output of PapiEx is directed to a file, which is then later
parsed by a perl script upon job completion.

4 Scalable Database Design

We chose to use Postgres as the database back end for PerfMiner. The primary
reason for choosing Postgres was prior experience and its support for kerber-
ized authentication. Care has been taken to avoid the use of any nonstandard
SQL that could prevent the use of Mysql, Oracle or another SQL95 compliant
database. Access to the database has been abstracted through the use of both
Perl and PHP’s DBI interface, providing further portability. Much work has
been done to keep the PerfMiner database as robust as possible. In an early
implementation of PerfMiner, we rather hastily built a database schema around
a common set of queries we were hoping to run. We quickly realized that this
was neither general nor robust enough to support queries spanning millions of
rows. Thus a new database was designed, focusing on flexibility, extensibility
and easy of implementation of sophisticated queries. Our goal was to have as
much of the query processing be done by the database server itself instead of
the client. Thus queries processing vast quantities of data can be performed on
underpowered web servers.

4.1 Direct Measurements

There are only two truly static items of knowledge in the database. First, all
measurements have a target (or scope) that is one of cluster, job, node, process
or thread. Secondly, there is a hierarchy of these targets; a cluster contains jobs,
which contain nodes, which contain processes, which contain threads. These tar-
gets can can be regarded as one to many mappings and naturally produce keys for
addressing the collected data. For instance, a specific threads measurements are
accessed by specifying cluster, job, node, process identifier and possibly thread
identifier as the primary key. Since no assumptions of existence of any specific
measurement are made, it is not possible to minimize the tables by putting all
measurements of thread scope in the table that specifies which threads exist (un-
less you are prepared to accept null values and that the underlying database is
able to insert columns in preexisting tables). Instead, each measurement resides
in a separate table. The database also contains additional tables that describe
the scope, type and meaning of each of the collected measurements. This ensures
that no measurement is stored differently from any other. The primary advan-
tage of this approach is that it makes it possible to combine measurements and

130 Philip J. Mucci et al.

construct reports in a uniform way. In PerfMiner, this means that any change in
the data collected from PapiEx or from the batch system, results in the creation
of a table and associated metainformation. Thus, no changes need be made to
the database or to the query engine.

4.2 Derived Measurements

The measurement floating point operations per second (or FLOPS) is an ex-
ample of a derived measurement having thread scope. It combines the direct
measurement, floating point operations, with the derived measurement, dura-
tion, which in turn is derived from clockrate and total cycles. The database is
designed to store information about the derived measurements in the same way
that it stores the direct measurements. The query author does not have to know
if a derived or direct measurement is being referenced in his query.

4.3 Problems with the Current Approach

Putting the measurements in different tables can be perceived as discarding the
fact that they are collected simultaneously and belong to the same thread. When
the data is harvested, the application knows that a certain value of total cycles is
associated with a certain value of total floating point operations. The only way
to reconstruct this information is by joining the two tables, an O(n?) operation.
This can be mitigated by instructing the database to build indexes for the fields
of every metric table that serve as keys. This reduces the cost of the join to
O(nlogn) or less depending on the method used for indexing. However, adding
indexes aggravates another problem caused by the nature of the measurements.
Since the target of most measurements is threads, and the key for addressing a
certain thread is made up of cluster, job, node, process, thread (of which three
are TEXT-fields), the key component will strongly dominate the storage demand
for most tables. A solution to this is to create synthetic keys for tables where
this is a problem.

5 The PerfMiner User Interface

For the current implementation of PerfMiner, the front end runs on an Apache
web server with PHP and JpGraph[JpGraph| installed. JpGraph is an open
source graphing library built upon PHP and the GDGD library. The user is
presented with a simple interface through which he can construct queries to
be visualized. The resulting graph is dynamically generated with JpGraph along
with a corresponding image map, such that the user can click on a corresponding
portion to “drill-down” to more interesting data. As developers, we are presented
with the canonical problem of balancing functionality with interface complexity.
For our initial implementation, we chose a small subset of the available data as
targets of our queries. We chose to present a query interface that specified the
logical-AND of any four items present in the job’s METADATA file: four on which

PerfMiner 131

to scope the queries and one choice by which to group Cluster, Charge Group,
User and Job ID. Each column is updated from the selections to it’s left. Should
the user choose a combination that results in the availability of a single job ID,
an additional dialog is presented with the names of all the processes in that job.

6 Evaluation

PerfMiner aims to meet the needs of three different user bases (users, system
administrators and managers), through a common information collection infras-
tructure. For the user community, we provide a simple way of providing perfor-
mance information about recently submitted jobs without any changes to the
user’s application or environment. This information can contain the efficiency
of various components, the overall processing time of each component or more
details hardware performance metrics. The ultimate goal is to not only provide
performance information but to provide information as to why the components
of that job are performing a certain way. In Figure 1, we have used PerfMiner to
plot instructions per cycle (IPC) against the executable name. This particular
user has submitted a shell script to perform a run of Gamess, an ab-initio quan-
tum chemistry package. Here we find that Gamess was the fifth most inefficient
executable. This data was taken from our Xeon cluster.

o
©

=4
@

e
&

o
Y

o
o

Instructions Per Cycle
o
2

o o
[T
Ly

o
I

o
I

bash uname Klist afslog gamess cat perl grep gunzip sed Is gzip tar sendmail
Process

Fig. 1. PerfMiner Graph of Instructions Per Cycle of a Serial Job

For the administrator and support staff community, we may not be so interested
in per-process performance, but rather the throughput of the system as a whole.
In Figure 2, we have asked the system to plot the average level 1 data cache
hit rate of all jobs and sort the results by user. We find that the user who
has consumed the most compute cycles has the second lowest miss rate of all
jobs. This kind of query is extremely powerful when aiming to maximize the
throughput of a particular system. It’s not hard to envision a scenario where
application specialists approach a user and offer help on code optimizaton.

Lastly, PerfMiner’s goal is to be able to facilitate a good understanding of ex-
actly how the systems are being used by the various user communities. By doing
so, they can plan appropriately for future procurements. The central idea here

132 Philip J. Mucci et al.

Total Cycles Per User

Level 1 Data Cache Miss Rate

jennie peterbr ulfa smeds elenius f97-mal lama liuyq

User

Fig. 2. PerfMiner Graphs of Level 1 Data Cache Miss Rates and Total Cycle Con-
sumption by User

being that they can focus their procurements on having the type of hardware ap-
propriate for the problems being solved. Should the user workload demonstrate
high cache hit-rates and counts of floating point instructions, perhaps a system
with a similar size cache but a higher core clock frequency and deeper floating
point pipeline would be an appropriate upgrade. Should the workload demon-
strate low processor utilization and low TLB-miss rates, perhaps an upgrade of
the I/O subsystem would be more appropriate than a processor upgrade. The
key here is to remove the guesswork involved in the procurement process. Instead
of focusing next generation purchases on either artificial benchmark suites or a
select group of applications, the procurement could be based on exactly what
the user community has demonstrated a need for.

7 Related Work

PerfMiner is most closely related to (and inspired by) the pioneering work done
by Rick Kufrin et al at the National Center for Supercomputing Applications
[Kufrinl]. In that work, a locally developed PAPI based tool PerfSuite[PerfSuite]
is used to collect information on jobs in the batch system. The primary dif-
ferences between our work are the collection mechanism, the design of the
database and the user interface. There are numerous systems in existence that
do cluster-wide performance monitoring. Many of them like Ganglia|Ganglial,
SuperMon[SuperMon], CluMon[CluMon|, NWPerf[NWPerf] and SGI's Perfor-
mance CoPilot[PCP] are extensible frameworks capable of presenting any met-
ric. All these systems gather their metrics only on a system wide basis through
a daemon process that scrapes the /proc filesystem.

References

[SvPablo] Reed, D. A., et al. Scalable Performance Analysis: The Pablo Performance
Analysis Environment. Proc. Scalable Parallel Libraries Conf. IEEE Computer
Society. (1993) 104-113

PerfMiner 133

[Easy] Lifka, D., Henderson, M., Rayl, K.: Users guide to the argonne sp scheduling
system. Technical Report ANL/MCS-TM-201 (1995)

[Paradyn] Miller, B. et al. The Paradyn Parallel Performance Measurement Tool. IEEE
Computer 28/11 (1995) 3746

[TAU] Mohr, B., Malony, A., Cuny, J.: TAU Tuning and Analysis Utilities for Portable
Parallel Programming. Parallel Programming using C++, M.I.T. Press. (1996)

[PAPI] Mucci, P. et al. A Scalable Cross-Platform Infrastructure for Application Per-
formance Tuning Using Hardware Counters. Proceedings of Supercomputing
2000. (2000)

[GD] Boutell.Com, Inc. GD Graphics Library. http://www.boutell.com/gd

[JpGraph] Persson, J. JpGraph - OO Graph Library for PHP.
http://www.aditus.nu/jpgraph/index.php

[PerfSuite] Kufrin, R. The PerfSuite Collection of Performance Analysis Tools.
http://perfsuite.ncsa.uiuc.edu

[Ganglia] The Ganglia Scalable Distributed Monitoring System.
http://ganglia.sourceforge.net

[PCP] Performance Co-Pilot http://oss.sgi.com/projects/pcp

[SuperMon]| SuperMon High Performance Cluster Monitoring.
http://supermon.sourceforge.net

[CluMon] Fullop, J. CluMon Cluster Monitoring System.
http://clumon.ncsa.uiuc.edu

[NWPerf] Mooney, R. et al. NWPerf: A System Wide Performance Monitoring Tool
Poster Session 31, Supercomputing 2004, Pittsburg, PA.

[Petrini] Petrini, F. et al. The Case of the Missing Supercomputer Perfor-
mance:Achieving Optimal Performance on the 8,192 Processors of ASCI Q Pro-
ceedings of Supercomputing 2003. (2003)

[Mucci] Mucci, P. et al. Application Performance Analysis Tools for Linux Clusters.
Linux Clusters: The HPC Revolution 2004, Austin, TX. (2004)

[Kufrinl] Kufrin, R. et al. Automating the Large-Scale Collection and Analysis of
Performance Data on Linux Clusters Linux Clusters: The HPC Revolution 2004,
Austin, TX. (2004)

[Kufrin2] Kufrin, R. et al. Performance Monitoring/Analysis of Overall Job Mix on
Large—Scale Pentium and Itanium Linux Clusters SIAM Parallel Processing,
San Francisco, CA. (2004)

[Monitor] Mucci, P., Tallent, N. Monitor - user callbacks for library, process and thread
initialization/creation/destruction. http://www.cs.utk.edu/~mucci/monitor

Performance Evaluation of MMJ5 on Clusters
with Modern Interconnects:
Scalability and Impact*

Ranjit Noronha and Dhabaleswar K. Panda

Dept. of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210

Abstract. Clusters have become a crucial technology for providing low-
cost high performance computing to scientific applications like weather
prediction. In addition, networks like Myrinet, InfiniBand and Quadrics
have become popular as an interconnection technology for high perfor-
mance clusters. The high-bandwidth, low-latency characteristics of these
networks make them ideally suited to the demanding characteristics of
large scale weather simulations. Additionally, these networks have fea-
tures like efficient and scalable hardware broadcast, reduce and atomic
operations. Some of the features have been integrated into the MPI stack
for these networks, allowing the user to exploit them for improved per-
formance. In this paper, we evaluate the communication characteristics
of a popular weather simulation code MM5 using InfiniBand. We also
investigate how special features of InfiniBand like scalable broadcast can
benefit MM5 performance. For some workloads, we see that InfiniBand
performs up to 34% better than other interconnects. It also performs
better in general than other networks for all workloads.

Keywords: MM5, Myrinet, InfiniBand, Quadrics, System Area Net-
works, Clusters

1 Introduction

Clusters have been widely deployed for providing high-performance computing
for scientific applications. The lower cost of clusters means that several thousand
nodes may be deployed for running large scale applications. Achieving improved
performance from applications on large scale clusters is a challenging endeavor.
This is especially so, given the wide diversity of architectures and networking
technologies. Understanding the characteristics and trade-offs in different cluster
architectures is crucial for achieving the best performance from applications.
To exploit the benefits of parallel computers, several large scale applications
have been parallelized using implementations of the popular MPI standard [1].

* This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506; National Science Foundation’s grants #CCR-0204429 and #CCR-
0311542; and equipment donations from Intel and Mellanox

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 134-145, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Evaluation of MMS5 on Clusters with Modern Interconnects 135

MPI provides an interface to the application, abstracting out details of the under-
lying architecture and network. Computationally demanding applications such
as weather simulation, computational fluid dynamic codes and crash simulation
codes have MPI parallelizations [2—1]. Implementation of MPI such as MPICH
have been ported to a variety of architectures and networks. This allows the
application to be run on a wide-range of platforms. The application may poten-
tially exploit the characteristics of these architectures and networks for improved
performance.

Myrinet [5], InfiniBand [6] and Quadrics [7] are some of the popular net-
works used in high performance computing. These networks offer low latency of
a few microseconds and high-bandwidth communication. Additionally, they offer
several features which may be exploited by the application or MPI layers. Net-
works like Myrinet and Quadrics have a programmable network interface card
(NIC), which may be used to offload application or system level computation [3].
Scalable collectives may be used to enhance application performance. Exploiting
these features is possible not only at the MPI level, but also by the application
itself.

In this paper, we evaluate a widely used weather simulation code MM5. We
attempt to study its communication characteristics. This is done by analyzing the
MPI calls characteristics with increasing system size. Following that, we study
the impact of varying different network parameters like latency and bandwidth
on the performance of the MM5. The impact of special network features is also
evaluated.

The rest of the paper is organized as follows. Section 2 gives some background
on high performance networks, bus technologies and MMS5. Following that in
section 3, the scalability of different workloads is evaluated. In section 4, the
performance of MM5 while varying various network parameters is evaluated.
Some related work is discussed in section 5. Finally, in section 6, conclusions
and future work is presented.

2 Background

In this section, we discuss some of the topics relating to networks and weather
simulation models. In particular, in section 2.1, we first discuss the networking
technology Myrinet, InfiniBand and Quadrics. Following that in section 2.2, we
discuss the weather simulation model MMS5.

2.1 Overview of Cluster-Networking Technologies

In the high performance computing domain, Myrinet, InfiniBand and Quadrics
are three of the popular networking technologies. InfiniBand [] uses a switched,
channel-based interconnection fabric, which allows for higher bandwidth, more
reliability and better QoS support. The Mellanox implementation of the Infini-
Band Verbs API (VAPI) supports the basic send-receive model and the RDMA

136 Ranjit Noronha and Dhabaleswar K. Panda

operations read and write. There is also support for atomic operations and mul-
ticast. MVAPICH [9] is an implementation of Argonne’s MPICH [!] over Infini-
Band. The design of MVAPICH is based on the InfiniBand RDMA primitives.
MVAPICH delivers small message latency of 5.0us and large message bandwidth
of up to 900 MillionBytes/sec. MVAPICH is designed to take advantage of hard-
ware based multicast in InfiniBand [10].

Myrinet [5] is another low latency, high-bandwidth network which uses cut-
through switches. Myrinet E-cards [11] are programmable and allow up to two
ports for maximum bandwidth. MPICH-GM is an implementation of MPICH
over Myrinet delivering small message latency of up to 6.0 us and large mes-
sage bandwidth up to 500 MillionBytes/sec. Quadrics [7] is another high-speed
network. The current generation of Quadrics is Elan 4. Quadrics has a pro-
grammable NIC which can be used to offload computation from the host. MPI/
Elan4 is an implementation of MPICH over Quadrics QsNet II. MPI/Elan4 can
send small messages with a latency of 2.4 us and large messages with a band-
width of up to 900 MillionBytes/s. The latency and bandwidth of these different
networks is shown in Table 1. A basic comparison of these networks in terms of
micro-benchmarks is presented in [12].

Table 1. Latency and Bandwidth for some high performance networks

Network Latency(ps) Bandwidth (MegaBytes/sec)
Myrinet (MPICH-GM) 6.0 500
InfiniBand(MVAPICH) 5.0 890
Quadrics(MPI/Elan4) 2.4 900

2.2 Overview of MM5

MMS5 [4] is a limited area, non-hydrostatic, terrain following sigma-coordinate
model designed to simulate or predict mesoscale atmospheric circulation. This
regional model may be used for prediction on domains ranging from several
thousand miles to a few hundred miles or less. Domains are uniform rectangular
three dimensional areas of the atmosphere. The atmospheric dynamics are non-
hydroscopic and use finite-difference approximations. The model is supported
by several pre- and post-processing programs, which are referred to collectively
as the MM5 modeling system. The MM5 modeling system software is mostly
written in Fortran, and has been developed at Penn State and NCAR as a
community mesoscale model with contributions from users worldwide.

The distributed-memory version of MM5 [13](MM5-MPP) has been imple-
mented using MPI message-passing provided by the parallel Runtime System
Library (RSL) [14]. RSL is a run-time system and library to support paralleliza-
tion of grid-based finite-difference weather models. RSL supports mesh refine-
ment. Mesh refinement allows the original domain to be divided into smaller
areas (which may be nested). By allowing these areas to be non-uniform, com-
putation may be focused on areas of more active interest in the domain. This

Performance Evaluation of MMS5 on Clusters with Modern Interconnects 137

usually sacrifices resolution in some areas of the domain (which may not be of
interest), but reduces the computational requirements. RSL communicates re-
sults between sub-domains as shown in Figure 1. In the next section, we discuss
how different workloads scale with an increase in the number of nodes.

¢ computation on coarse domain Computation on a domain
rsl_exchange_stencil(domain(1),stencil A) \ @ L
rsl_compute_cell(domain(1),solve A)
rsl_exchange_stencil(domain(1), stencil B) | -
rsl_compute_cell(domain(1), solve B)
Broadcast 7 i \

¢ force nested boundaries
rsl_exchange_stencil(stencil_interp)

é L rsl_bcast(domain(1),domain(2))
]
ood
¢ computation on nested domain Merge
do istep= 1,3

rsl_exchange_stencil(domain(1),stencil A)
rsl_compute_cell(domain(1),solve A)
...etc...

enddo
¢ force c¢,d from nest 9

rsl_merge(domain(1),domain(2)) ooo

Fig. 1. Overall parallel driver for a MM5 timestep with nest interactions (courtesy J.
Michalakes, et al. [13])

3 Communication Characteristics of Parallel MM5
(MM5-MPP)

In this section, we take a look at the communication patterns in the parallel
version of MM5 (MM5-MPP) when using MPI over InfiniBand (MVAPICH).
This was done to help us understand what parameters of a network would help
us achieve better performance from this application. For example, if the appli-
cation sends a lot of small messages, low network latency might help. If it sends
large messages, it might be bandwidth sensitive. In addition, we would like to
understand whether the application employs special operations like collectives.
If it does, we would like to examine how efficient implementation of some collec-
tives by certain networks might impact the performance of MM5-MPP. In-order
to do this, we first evaluated how increasing the number of processors or system
size, impacted the performance of the application. Also with increasing system
size, we looked at how the distribution of MPI calls in the application changed.
Finally, we also looked at how the message sizes to different MPI calls changed
with increase in system size.

To evaluate these characteristics of MM5-MPP, we chose two different work-
loads and ran them on a 64-node, dual 2.4 GHz processor cluster with Mellanox

138 Ranjit Noronha and Dhabaleswar K. Panda

MT23108 InfiniBand adapters and a MVAPICH 0.9.4 installation (cluster A).
The first workload is the MM5 benchmark data set [15], which specifies a 3
hour run, TIMAX = 180, with an 81 second time-step (T3A). The second is the
large-domain run (LDOM) which may be obtained from [16]. MM5-MPP allows
the user to divide the workload among the different processors, so as to reduce
the memory usage. This is achieved by specifying two parameters; namely num-
ber of processors in the North-South directions (PROCNS) and processors in the
East-West directions (PROCEW) [13]. PROCNS and PROCEW were set so that
PROCNS >= PROCEW and PROCNS x PROCEW = number of processors.

In Section 3.1, we look at the impact of increasing the number of processors
on execution time. In Section 3.2, we look at the breakdown of time between ap-
plication computation and communication layers. Following that in Section 3.3,
the breakdown of time spent in the various calls in the MPI stack is presented.
Finally in Sections 3.4 and 3.5, the distribution of MPI calls and message sizes
with increasing system size is discussed.

3.1 Effect of System Size

In this section, we observe the effect of an increasing number of processors on
parallel execution time. The workloads T3A and LDOM were run on cluster
A. Since each node has a dual processor, the total number of processors in the
system is 128. This allows us to study the impact of system size up to 128
processors. The effect of increasing system size on execution time for T3A and
LDOM is shown in Figure 2. It can be observed that with increasing system size
for T3A, the execution time decreases up to 128 processors. For T3A, there is an
approximate decrease in execution time of up to 37% when doubling the number
of processors. Figure 2 also shows the scaling efficiency of the two workloads.
It can be seen that for the workload T3A, the scaling efficiency starts at above
90% and then gradually decreases to a little over 65%.

For LDOM, there is a maximum decrease in execution time of 32% when
doubling the number of processors. The scaling efficiency gradually decreases
from 74% to approximately 49%, as shown in Figure 2. For LDOM, the benefits
of an increasing system size plateaus after 64 processors. This can be attributed
to the smaller problem size of LDOM compared to T3A. This leads to an in-
creased load imbalance, which manifests itself as increased wait time. This effect
is discussed in further detail in Section 3.2.

3.2 Overall Application Timing Breakdown

We will now discuss the average per-process breakdown of execution time of the
workloads LDOM and T3A. For improved scalability, it is better to spend the
maximum amount of time in application level computation and as little time
as possible in the communication libraries or in MPT calls. How much time is
spent in the communication libraries is partly dependent on the design of the
application as well as the communication library. If the application uses non-
blocking MPT calls, this time can be minimized. Blocking calls on the other

Performance Evaluation of MMS5 on Clusters with Modern Interconnects 139

gg LDOM —— 100 "LDOM —+—
50] 80 |]
-~ 45+ 1)
[$) je)} L 4
g’ 40 |] g 60 K\l
© | | @ +
g e 40!]
= 30t o
25 1 20
20]
-
15 : . : ' 0 : ' ' '
2 4 8 16 32 64 128 4 8 16 32 64 128
Number of processors Number of processors
T T 1 T T T T
350 T3A —— 00* T3A ——
1 80 F\\/\
o | S r
8 g '
[0} Q
IS <4 L
= 9 40
20
}.
L L L L L 0 L L L L
2 4 8 16 32 64 128 4 8 16 32 64 128
Number of processors Number of processors

Fig. 2. MM5-MPP execution time with increasing system size of two different work-
loads (left) and scaling efficiency (right)

hand increase the amount of time spent in the communication libraries. The
time spent in the communication library also depends partly on the nature of
the progress function employed by the MPI stack.

The breakdown of timing was obtained using the lightweight profiling tool
mpiP [17]. We find that for LDOM, the percentage of time spent in communi-
cation (time spent in MPI layers) increases from slightly less than 5% at two
processors, to approximately 37% at 128 processors. For T3A, the percentage
of communication increases from approximately 2% at two processors to 27%
at 128 processors. This difference can be mainly attributed to the difference in
sizes of the two workloads. LDOM is a smaller workload as compared to T3A.
As a result, the computation datum assigned to each processor is smaller. This
effect manifests itself as increased process skew. Overall, a large amount of time
is spent in MPI layers particularly blocking MPI Receive calls. This issue will
be discussed in more detail in Section 3.3.

3.3 MPI Timing Breakdown

In this section, we discuss the average per-processor distribution of time spent
in different MPI calls for LDOM and T3A. Understanding the distribution of
time spent in different calls, gives us insight into which network might poten-
tially enhance the performance of MM5-MPP. This is specially true in the case
of efficient implementation of collective operations in some of the stacks such as

140 Ranjit Noronha and Dhabaleswar K. Panda

MVAPICH [10]. The percentage of MPI time spent in different calls is shown in
Figure 3. MM5-MPP largely uses the calls for blocking receive, blocking send,
non-blocking receive, message wait, message broadcast and gather corresponding
to MPI Recv, MPI Send, MPI IRecv, MPI Wait, MPI Bcast and MPI Gather
respectively. Since the time spent in MPI IRecv is not significant, it is not shown
in the figure. For both datasets, the percentage of time spent in MPI Bcast in-
creases with increasing system size. For LDOM, time spent in MPI Bcast in-
creases from approximately 4% of total MPI time for a two processor run to
approximately 30% at 128 processors. For T3A, MPI Bcast time increases from
2% at two processors to about 20% at 128 processors. In Section 4.3, the impact
of hardware broadcast on MM5 performance is evaluated.

Percentage
@
3

2 4 64 128

8 16 a2
Number of processes

Fig. 3. Breakdown of time spent in different MPI functions for two different workloads

A large percentage of time is spent in MPI Recv for both LDOM and T3A
and increases with increasing system size. At 128 processors for LDOM and
T3A, the time spent is about 30% and 44% of communication time respectively.
For both cases, time spent in MPI Wait decreases with increase in system size.
This decrease is more rapid in the case of T3A. Time spent in MPI Recv and
MPI Wait can be correlated to the amount of application wait time. This is
approximately 26% for LDOM and 21% for T3A. This would suggest that MM5-
MPP would benefit from dynamic load balancing, currently not implemented in
this version of MM5-MPP.

3.4 MPI Call Count Distribution

In this section, we look at the average per-processor distribution of MPI calls in
MM5-MPP. The distribution of MPI calls for LDOM and T3A with increasing
system size is shown in Figure 4. As discussed in section 3.3, implementation
of MM5-MPP makes calls to the MPI functions for blocking sends, blocking re-
ceives, non-blocking receives, broadcast and gather. These calls are MPI Send,
MPI Recv, MPI IRecv, MPI Bcast and MPI Gather respectively. Since the pro-
portion of calls to MPI IRecv is not significant, these calls are not shown in the
graphs. For both workloads, the number of calls increases with increasing system
size. For LDOM, MPI Send has the highest count, while for T3A MPI Bcast is
the highest. For both cases, the number of calls to MPI Send and MPI Bcast

Performance Evaluation of MMS5 on Clusters with Modern Interconnects 141

LDOM oA

5

Hl MPI_Send
4.5/ Bl MPI_Gather
[MPI_Bcast

o)

IS

log10(call count)
S
&
log10(call count)
©

o
n

°
o -

o
o

2 64 128 2 64 128

8 16 32 8 16 32
Number of processes Number of processes

Fig. 4. Frequency of different MPI calls for the two different workloads

increases ten-fold, when the system size is increased from two processors to 128
processors.

From this we observe that MM5-MPP largely uses blocking MPI calls. MM5-
MPP might benefit from a design which uses more non-blocking calls. This might
be possible through the modification of the rsl exch stencil and rsl merge stencil
calls in Figure 1 to use non-blocking calls. In this case, it might issue a non-
blocking receive, to receive data from its adjacent neighbors. It might then con-
tinue computation on different sub-domains (assuming there is sufficient data
available). Between computations, it might check if there is any additional data
from its adjacent neighbors. If there is data available, it might use that to com-
plete some computations rather than blocking. This would help us with overlap
of computation and communication. This might also help reduce some of the
application wait time discussed in section 3.3. We plan on investigating this in
our future work.

3.5 Message Size Distribution

As discussed in Section 3.4, MM5-MPP largely makes blocking MPI calls. In this
section, we look at the average sizes of messages sent from these blocking calls
namely MPI Send, MPI Recv, MPI Bcast, and MPI Gather. These results are
shown in Figure 5. For both workloads LDOM and T3A, the size of the message

LDOM T3A

El MPI_Send
I MPI_Gather
1 MPI_Bcast 5

log10(size in bytes)
S © N m
log10(size in bytes)

©

2 64 128 2 64 128

8 16 32
Number of processes

8 16 32
Number of processes

Fig. 5. Sizes of messages sent through different MPI calls in two different workloads

142 Ranjit Noronha and Dhabaleswar K. Panda

passed to MPI Send starts at between 129 KiloBytes and 300 KiloBytes at two
processors and gradually decreases to about 40 KiloBytes at 128 processors. On
the other hand, the size of messages passed to MPI Bcast increases from about
50 bytes at two processors to approximately 300 bytes at 128 processors. It
is possible that MMb might benefit from InfiniBand hardware based multicast
support integrated into MVAPICH. The impact of increase in unidirectional
bandwidth on MM5-MPP performance is examined in section 4.1, while the
impact of hardware multicast on MM5-MPP is examined in section 4.3. We will
now examine the impact of different network parameters on the performance of
MM5-MPP.

4 Impact of Network Technology

In this section, we look at how different network parameters affect the execution
time of MM5-MPP. In particular, the impact of latency, bandwidth and hardware
broadcast is examined. Experiments are conducted using the workloads LDOM
and T3A described in Section 3. These workloads were run on cluster B (8-
node, dual 3.0 GHz processor cluster with Myrinet E-cards, Quadrics Elan-4
and Mellanox MT23108 InfiniBand adapters). All experiments were run with
16 processes on eight nodes. In Section 4.1, the effect of network bandwidth
on applications is examined. Following that, we look at the impact of network
latency on MM5-MPP performance in 4.2.

Table 2. Explanation of notation used in this section

Notation Explanation

MPICHGM-1P MPICHGM 1.2.6..14a using E-cards,

with a single port activated (GM 2.0.21)
MPICHGM-2P MPICHGM 1.2.6..14a using E-cards,

with both ports activated (GM 2.1.21)
MVAPICH-1N MVAPICH 0.9.5 with a single NIC per node

MVAPICH-HB MVAPICH 0.9.5 with InfiniBand hardware broadcast enabled
MVAPICH-SB MVAPICH 0.9.5 without InfiniBand hardware broadcast

MPI/Elan4 Quadrics MPI

4.1 Effect of Network Bandwidth

In this section, we examine the impact of bandwidth on the performance of
MM5-MPP. This impact was measured using both different networking tech-
nologies, as well as multi-port support offered by different technologies. Myrinet
E-cards [11] has two ports, each capable of up to 250 MegaBytes/sec for a total
of up to 500 MegaBytes/sec. It is possible to activate either one or both ports
on these cards. We use notation as explained in Table 2. For large messages,

Performance Evaluation of MMS5 on Clusters with Modern Interconnects 143

MVAPICH-1N delivers up to 900 MegaBytes/sec. MPI/ELAN4 delivers up to
900 MegaBytes/sec [9]. The two workloads were run on cluster B, described in
Section 4. The execution time across different networks for LDOM and T3A at 16
processes on 8 nodes is shown in Figure 6. For LDOM, execution time is reduced
by approximately 34% when MPICHGM-2P is replaced by MVAPICH-1N. The
reduction in execution time may be attributed mainly to to the reduction in time
spent in MPT Beast (24.2%), followed by the reduction in MPI Recv (5%), along
with small reductions in MPI Wait, MPI Gather and MPI Send making up the
remaining 5%. Note that hardware broadcast was not enabled for MVAPICH-1N.
For T3A, on replacing MPICHGM-2P with MVAPICH-1N, there is a reduction
in execution time of up to 12%. Most of this reduction comes from reduced time
spent in MPI Bcast.

LDOM T3A

Execution time (sec)
Execution time (sec)

20|

MPICHGM-1P MPICHGM-2P MVAPICH-1N MPI/Elan4 0 MPICHGM-1P MPICHGM-2P MVAPICH-1N MPI/Elan4

Fig. 6. MM5-MPP execution time with different networks

4.2 Effect of Network Latency

We will now examine the effect of network latency on the performance of MM5-
MPP. For the different network MPI stacks, we use notation similar to that in
Table 2. On cluster B, the latency of a 0-byte message for MPI/Eland is approx-
imately 2us while for MVAPICH-1N it is 5us. The bandwidth for large messages
of these two networks is comparable as shown in Table 1. The execution time of
the two workloads LDOM and T3A at 16 processors, on eight nodes is shown
in Figure 6. At 16 processors, for LDOM MVAPICH-1N performs better than
MPI/Elan4 by approximately 20%. Most of this difference may be attributed to
time spent in MPI Recv and MPI Wait. For T3A, there is very little difference
in performance between MVAPICH-1N and MPI/Elan4.

4.3 Effect of Hardware Broadcast

In this section, we evaluate the impact of hardware based broadcast in InfiniBand
on the performance of MM5-MPP. As discussed in section 3.3, and shown in
Figure 3, a significant amount of time spent in the blocking call MPI Bcast. At
16 processors for LDOM, approximately 10% of time is spent in MPI Beast. For

144 Ranjit Noronha and Dhabaleswar K. Panda

T3A at 16 processors, approximately 5% of time is spent in MPI Beast. Also as
discussed in Section 3.5, at 16 processors, the message size passed to MPI Bcast
by both T3A and LDOM is approximately 100 bytes. At this size, hardware
based broadcast does better by up to 50% in terms of latency than the current
software based point-to-point algorithm [10]. It seems likely that MM5-MPP
could potentially benefit from InfiniBand hardware broadcast.

The workloads LDOM and T3A were evaluated with and without hardware
broadcast referred to as MVAPICH-SB and MVAPICH-HB respectively on clus-
ter B, as explained in Section 4. All runs were taken up to 16 processes on eight
nodes. For LDOM there is a reduction in execution time of approximately 2.14%.
For T3A, the reduction in execution time is approximately 5.1%.

5 Related Work

The parallel implementation of MM5, MM5-MPP, was described in [13]. Only
basic scalability in terms of execution time is discussed here. The performance
using different commodity cluster interconnects is not discussed in this paper.
Also the impact of efficient collective operations in modern interconnects on ap-
plication performance is not discussed. The evaluation of the MM5 benchmark
T3A on various architectures is carried out in [15]. Only the basic scalability
in terms of execution time with increasing number of processors is discussed
here. The impact of various network features like multicast is not evaluated
here. The performance and scalability of various networks is evaluated using
micro-benchmarks and NAS parallel benchmarks in [18]. This study focuses
on comparing Myrinet, Quadrics and InfiniBand. The relative performance of
Myrinet, InfiniBand and Quadrics in terms of micro-benchmarks is evaluated
in [12]. There is no application-level evaluation here.

6 Conclusions and Future Work

In this paper, we have looked at the scalability of the parallel distributed memory
version of the popular weather simulation code MM5. We have also looked at the
sensitivity of MMb to network parameters like latency, bandwidth and efficient
collectives like hardware broadcast in InfiniBand. MMb) uses messages sizes of
the order of 100 to 300 KiloBytes for system sizes up to 16 processors. These
sizes decrease with increase in system size. A considerable amount of time is
spent in the collective call MPI Bcast which increases with increasing system.
We conclude that, at smaller system sizes, MM5 would benefit from increased
bandwidth. Experimentation with InfiniBand shows a reduction in execution
time up to 34% compared with Myrinet at 16 processors. For larger system sizes,
the improved latency of hardware based broadcast might be more beneficial
to the application. Experimentally on a 16 processor environment, we see an
improvement of up to 5% in overall execution time when using InfiniBand based
hardware broadcast. Additionally, MM5 spends substantial time waiting in the
MPT calls MPI Wait and MPI Recv as system size increases. We would like to

Performance Evaluation of MMS5 on Clusters with Modern Interconnects 145

determine the impact of efficient communication progress functions available in
stacks like Myrinet MX and Quadrics on the performance of MMS5, for large
scale systems. MM5 also packs and unpacks its own data structures. We would
like to investigate the effect of efficient zero-copy datatypes on the performance
of MM5.

References

11.
12.

13.

14.
15.
16.

17.
18.

. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable Im-

plementation of the MPI, Message Passing Interface Standard. Technical report,
(Argonne National Laboratory and Mississippi State University)

Fluent CFD. (http://www.fluent.com)

LSDYNA. (http://www.lstc.com)

G.A. Grell, J. Dudhia, and D.R. Stauffer: A Description of the Fifth-Generation
Penn State/NCAR Mesoscale Model (MM5). Tech. Rep. NCAR/TN-398+STR,
National Center for Atmospheric Research, Boulder, Colarado (1994)

Boden, N.J., Cohen, D., et al.: Myrinet: A Gigabit-per-Second Local Area Network.
IEEE Micro (1995) 29-35

Infiniband Trade Association. (www.infinibandta.org)

Quadrics Ltd. (www.quadrics.com)

R. Noronha and N. B. Abu-Ghazaleh: Using Programmable NICs for Time Warp
Optimization. IPDPS (2002)

MPI over InfiniBand Project. (http://nowlab.cis.ohio-state.edu/projects/mpi-iba)

. J. Liu, A. Mamidala and D.K. Panda: Fast and Scalable MPI-Level Broadcast

using InfiniBand’s Hardware Multicast Support. IPDPS (2004)

Myrinet E-cards. (http://www.myri.com/myrinet/PCIX/m3f2-pcixe.html)

J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P. Wyckoff and
D. K. Panda.: Micro-Benchmark Performance Comparison of High-Speed Cluster
Interconnects. IEEE Micro. (2004)

J. Michalakes, T. Canfield, R. Nanjundiah and S. Hammond: Parallel Implementa-
tion, Validation and Performance of MM5. Sixth Workshop on the Use of Parallel
Processors in Meteorology, European Center for Medium Range Weather Forecast-
ing, Reading, U.K. (1994)

Michalakes, J.: A Runtime System Library for Parallel Finite Difference Models
with Nesting. Technical Report ANL/MCS-TM-197 (1997)

Parallel MM5 benchmarks. http://www.mmm.ucar.edu/mm5/mpp/helpdesk/
20040304a.html (2004)

MM5 Community Model. (http://www.mmm.ucar.edu/mmb5/)

mpiP MPI Profiling Tool. (http://www.lnl.gov/CASC/mpip)

R. Brightwell, D. Doerfler and K.D. Underwood: A Comparison of 4X InfiniBand
and Quadrics Elan-4 Technologies. IEEE Conference on Cluster Computing. (2004)

A Performance Measurement Infrastructure
for Co-array Fortran

Bernd Mohr!, Luiz DeRose?, and Jeffrey Vetter3

1 Forschungszentrum Jilich, ZAM,
Jilich, Germany
b.mohrefz-juelich.de
2 Cray Inc.

Mendota Heights, MN, USA
ldr@cray.com
3 Oak Ridge National Laboratory
Oak Ridge, TN, USA
vetterjs@ornl.gov

Abstract. Co-Array Fortran is a parallel programming language for scientific
applications that provides a very intuitive mechanism for communication, and
especially, one-sided communication. Despite the benefits of this integration of
communication primitives with the language, analyzing the performance of CAF
applications is not straightforward, which is due, in part, to a lack of tools for
analysis of the communication behavior of Co-Array Fortran applications. In this
paper, we present an extension to the KOJAK toolkit based on a source-to-source
translator that supports performance instrumentation, data collection, trace gener-
ation, and performance visualization of Co-Array Fortran applications. We illus-
trate this approach with a performance visualization of a Co-Array Fortran version
of the Halo kernel benchmark using the VAMPIR event trace visualization tool.

1 Introduction

Co-Array Fortran (CAF) [12] extends Fortran 95 providing a simple, explicit notation
for data decomposition, communication, and synchronization, expressed in a natural
Fortran-like syntax. These extensions provide a straightforward and powerful paradigm
for parallel programming of scientific applications based on one-sided communication.
One of the problems that CAF users face is the lack of tools for analysis of the com-
munication and synchronization behavior of the application. One of the reasons for the
lack of tools is because communication operations in CAF programs are not expressed
through function calls, as in MPI, or via directives that are executed by a run-time li-
brary, as in OpenMP. In contrast, CAF communication operations are integrated into the
language, and, on certain platforms like the Cray X1, they are implemented via remote
memory access instructions provided by the hardware.
For MPI applications, performance data collection is, in general, facilitated by the
existence of the MPI profiling interface (PMPI), which is used by most MPI tools [2,
, 14]. Similarly, performance measurement of OpenMP applications can be done by
instrumenting the calls to the runtime library [!, 4, 5]. However, with the challenge

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 146155, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Performance Measurement Infrastructure for Co-array Fortran 147

of CAF communication primitives being integrated into the language, and potentially
implemented with special hardware instructions, the instrumentation of these commu-
nication primitives requires a different approach that is not straightforward.

In order to address this problem, we first defined PCAF, an interface specification of
a set of routines intended to monitor all important aspects of CAF applications. Then, we
extended the OPARI source-to-source instrumentation tool [0] to search for CAF con-
structs and to generate instrumented source code with the appropriate PCAF calls. Fi-
nally, we implemented the PCAF interface for the the KOJAK measurement system [| 3]
enabling it to trace CAF communication and synchronization instructions. With this ex-
tension, the KOJAK measurement system is able to support performance instrumentation
and performance data collection of CAF applications, generating trace files that can be
analyzed with the VAMPIR event trace visualization tool [| |]. In this paper, we describe
our approach for performance measurement and analysis of CAF applications.

The remainder of this paper is organized as follows. In Section 2, we present an
overview of Co-Array Fortran. In Section 3, we briefly describe the KOJAK performance
measurement and analysis environment. In Section 4, we describe our approach for per-
formance instrumentation and measurement of Co-Array Fortran applications. In Sec-
tion 5, we discuss performance visualization with an example using the Halo kernel
benchmark code. Finally, we present our conclusions in Section 6.

2 An Overview of Co-array Fortran

Co-array Fortran [2] is a parallel programming language extension to Fortran 95. At
the highest level, CAF uses a Single Program Multiple Data (SPMD) model to allow
multiple copies (images) of a program to execute asynchronously. Each image contains
its own private set of data objects. When data objects are distributed across multiple
images, the array syntax of CAF uses an additional trailing subscript in square brackets
to allow explicit access to remote data (as shown in Figures 2 and 4), and it is referred
to as the co-dimension. Data references that do not use these square brackets are strictly
local accesses.The CAF compiler translates these remote data accesses into underlying
communication mechanisms for each target system. CAF also includes intrinsic routines
to synchronize images, to return the number of images, and to return the index of the
current image. Besides functions for delimiting a critical region, CAF provides four
different forms of a barrier synchronization:

SYNC ALL(): a global barrier where every image waits for every other image.

SYNC ALL(<wait list>): a global barrier where every image waits only for the listed
images.

SYNC TEAM(<team>): a barrier where a team of images wait for every other team
member.

SYNC TEAM(<team>, <wait list>): a barrier where a team of images wait for a
subgroup of the team members.

CAF was originally developed on the Cray-T3D, and, as such, it is very efficient
on platforms that support one-sided messaging and fast barrier operations. On systems
with globally addressable memory, such as the Cray X1 or the SGI Altix 3700, these

148 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

mechanisms may be as simple as load and store memory references. By contrast, on dis-
tributed memory systems that do not support efficient Remote Direct Memory Access
(RDMA), these mechanisms can be implemented in MPI.

3 The KOJAK Measurement System

The KOJAK performance-analysis tool environment provides a complete tracing-based
solution for automatic performance analysis of MPI, OpenMP, or hybrid applications
running on parallel computers. KOJAK describes performance problems using a high
level of abstraction in terms of execution patterns that result from an inefficient use
of the underlying programming model(s). KOJAK’s overall architecture is depicted in
Figure 1. Tasks and components are represented as rectangles and their inputs and out-
puts are represented as boxes with rounded corners. The arrows illustrate the whole
performance-analysis process from instrumentation to result presentation.

user program > OPARI/TA'U instrumented
instrumentation user program

executable piler / linker

libraries

EPILOG
library
PAPI
library

instr

PMPI/ POMP/ PCAF}

EPILOG EXPERT . CUBE
>
event trace pattern search analysis result visualizer

automatic analysis

" VTF3 VAMPIR
trace conversion : .
event trace trace visualizer

Fig. 1. KOJAK overall architecture.

The KOJAK analysis process is composed of two parts: a semi-automatic multi-level
instrumentation of the user application followed by an automatic analysis of the gener-
ated performance data. The first part is considered semi-automatic because it requires
the user to slightly modify the makefile.

To begin the process, the user supplies the application’s source code, written in
either C, C++, or Fortran, to OPARI, which is a source-to-source translation tool. OPARI
performs automatic instrumentation of OpenMP constructs and redirection of OpenMP-
library calls to instrumented wrapper functions on the source-code level based on the
POMP OpenMP monitoring API [9]. In Section 4.2, we describe how we extended OPARI
for instrumentation of CAF programs with the appropriate PCAF calls.

A Performance Measurement Infrastructure for Co-array Fortran 149

Instrumentation of user functions is done either during compilation by a compiler-
supplied instrumentation interface or on the source-code level using TAU [Z]. TAU is
able to automatically instrument the source code of C, C++, and Fortran programs using
a preprocessor based on the PDT toolkit [£].

Instrumentation for MPI events is accomplished with a wrapper library based on
the PMPI profiling interface. All MPI, OpenMP, CAF and user-function instrumentation
calls the EPTLOG run-time library, which provides mechanisms for buffering and trace-
file creation. The application can also be linked to the PAPI library [3] for collection
of hardware counter metrics as part of the trace file. At the end of the instrumentation
process, the user has a fully instrumented executable.

Running this executable generates a trace file in the EPILOG format. After program
termination, the trace file is fed into the EXPERT analyzer. (See [| 3] for details of the au-
tomatic analysis, which is outside of the scope of this paper.) In addition, the automatic
analysis can be combined with a manual analysis using VAMPIR [|], which allows the
user to investigate the patterns identified by EXPERT in a time-line display via a utility
that converts the EPILOG trace file into the VAMPIR VTF3 format.

4 Performance Instrumentation and Measurement Approach

In this section, we describe the event model that we use to describe the behavior of CAF
applications, and the approach we take to instrument CAF programs and to collect the
necessary measurement data.

4.1 An Event Model of CAF

KOJAK uses an event-based approach to analyze parallel programs. A stream or trace
of events allow to describe the dynamic behavior of an application over time. If nec-
essary, execution statistics can be calculated from that trace. The events represent all
the important points in the execution of the program. Our CAF event model is based on
KOJAK’s basic model for one-sided communication [6]. We extended KOJAK’s existing
set of events, which cover describing the begin and end of user functions and MPI and
OpenMP related activities, with the following events for representing the execution of
CAF programs:

— Begin and end of CAF synchronization primitives
— Begin and end of remote read and write operations

For each of these events, we collect a time stamp and location. For CAF synchro-
nization functions, we also record which function was entered or exited. For the barrier
routines we also collect the group of images which participate in the barrier and the
group of images waited for, if applicable. Finally, for reads and writes, we collect the
amount of data which is transferred (i.e., the number of array elements) as well as the
source or destination of the transfer.

The event model is also the basis for the instrumentation and measurement. The
events and their attributes specify which elements of CAF programs need to be instru-
mented and which data has to be collected.

150 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

4.2 Performance Instrumentation

Instrumentation of CAF programs can be done on either of two levels depending on
how CAF is implemented on a specific computing platform. On systems where CAF
constructs and API calls are translated into calls to a run-time library, these calls could
easily be instrumented by traditional techniques (e.g., linking a pre-instrumented run-
time library or instrumenting the calls with a binary instrumentation tool). However,
for systems like the Cray X1, where the CAF communication is executed via hardware
instructions, this approach is not possible. Therefore, we extended OPARI, KOJAK’S
source-to-source translation tool, to also locate and instrument all CAF constructs of a
program.

As Fortran is line-oriented, it is possible for OPARI to read a program line by line.
Of course, it is also necessary to take continuation lines into account. Then, each line
is scanned for occurrences of CAF constructs and synchronization calls (but ignoring
comments and contents of strings). CAF constructs can be located by looking for pairs
of brackets ([...]). The first word of the statement determines whether it is a declaration
line or a statement containing a remote read or write operation. For CAF declarations,
OPARI collects attributes like array dimensions, and lower and upper bounds for later
use.

The handling of statements containing remote memory operations is more complex.
First, all operations are located in the line. If it is an assignment statement and the
operation appears before the assignment operator, it is a write operation. In all other
cases it is a read. OPARI determines which CAF array is referenced by the operation, the
number of elements transferred (by parsing the index specification), and the source or
destination of the transfer (determined by the expression inside the brackets). Simple
assignment statements containing a single remote memory operation are instrumented
by inserting calls to the corresponding PCAF monitoring functions before and after the
statement, which get passed in the attributes determined by OPARI. In case of more
complex statements where a remote memory operation cannot be easily separated out
and wrapped by the measurement calls, or when it is necessary to keep instrumentation
overhead low, OPARI uses the single call version of the PCAF remote memory access
monitoring functions (instead of separate begin and end calls) and inserts them either
before (for reads) or after (for writes) the statement for each identified remote memory
access operation.

Finally, OPARI scans the line for calls to CAF synchronization routines, and replaces
them by calls to PCAF wrapper functions that will execute the original call in addition
to collecting all important attributes.

Figure 2(b) shows the instrumented source code generated for the example in Fig-
ure 2(a). In this example, there is a two-dimensional array A, which is distributed on
all processors. In the CAF statement A (me, : : 2) [1left] = me, each processor up-
dates the odd entries of the row corresponding to its image in the left neighbor array
with its index, and then waits on a barrier. OPARI identifies the CAF statement, and adds
a begin and end instrumentation event. The call to indicate the beginning of the event
contains the destination of the write (normalized to the range 0 to num images () -1)
and the number of array elements being transferred; the end call only gets passed the
destination. The barrier call (sync all) is translated into a call of the corresponding
wrapper function.

A Performance Measurement Infrastructure for Co-array Fortran 151

integer :: me, num, left integer :: me, num, left
integer :: A(1024,1024) [*] integer :: A(1024,1024) [*]
me = this image () me = this image ()

num = num images () num = num images ()

left = me - 1 left = me - 1

if (left < 1) left = num if (left < 1) left = num
call PCAF rma write begin(-1l+left, &

1 * max((ubound(Aa,2)- &
lbound(A,2)+2)/2,0))
A(me, ::2) [left] = me A(me, ::2) [left] = me
call PCAF rma write end(-1l+left)
call sync all() call PCAF sync all()

(a) (b)

Fig. 2. (a) Example of a CAF source code and (b) OPARI instrumented version.

4.3 Performance Measurement

Finally, the KOJAK measurement system was extended by implementing the necessary
PCAF monitoring functions and wrapper routines and adding support for the handling
of the new remote memory access event types. We chose to implement our approach
within the KOJAK framework, as KOJAK is very portable and supports all major HPC
computing platforms. Also, this way, we could re-use many of KOJAK’s features like
event trace buffer management, generation, and conversion. Finally, it allows us not
only to analyze plain CAF applications but also hybrid programs using any combination
of MPI, OpenMP, and CAF. A separate, new instrumentor just for CAF would probably
be problematic in this respect, as the modifications done by two independent source-to-
source preprocessors could conflict.

The PCAF interface is shown in Figure 3. Since this monitoring API is open, and
OPARI is a stand-alone tool, other performance analysis projects could use this infras-
tructure to also support CAF. For example, it would be very easy to implement a version
of the PCAF monitoring library which (instead of tracing) just collects basic statistics
(number of RMA transfers, amount of data transferred) for each participating image.
Ideally, in the future, CAF compilers could support this interface directly.

5 Performance Visualization

For illustration of our performance analysis approach, we ran the Halo kernel bench-
mark on the Cray X1 system at the Oak Ridge National Laboratory, using 16 and 64
processors. The Halo benchmark simulates a halo border exchange with the four differ-
ent synchronization methods CAF provides (see Section 2). The exchange procedure is
outlined in Figure 4. During each iteration, the following events from our event model
occur: S2 a synchronization call; S3 a remote read of n elements from the north neigh-
bor; S4 a remote read of 2n elements from the south neighbor; S5 a synchronization
call; S7 another synchronization call; S8 a remote read of n elements from the west

152 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

Remote Memory Access Monitoring Routines
SUBROUTINE PCAF rma write begin(dest, nelem)
SUBROUTINE PCAF rma write end (dest)
SUBROUTINE PCAF rma write (dest, nelem)
SUBROUTINE PCAF rma read begin(src, nelem)
SUBROUTINE PCAF rma read end(src)
SUBROUTINE PCAF rma read(src, nelem)

where INTEGER, INTENT (IN) :: dest, src, nelem

CAF Synchronization Wrapper Routines
SUBROUTINE PCAF gsync all()
SUBROUTINE PCAF sync all (wait)
SUBROUTINE PCAF sync team(team)
SUBROUTINE PCAF gsync team(team, wait)
SUBROUTINE PCAF sync file (unit)
SUBROUTINE PCAF sync memory ()
SUBROUTINE PCAF start critical ()
SUBROUTINE PCAF end critical ()

where INTEGER, INTENT (IN) :: unit

INTEGER, INTENT (IN) :: wait(:), team(:)

Fig. 3. PCAF Measurement Function Interface Specification.

S1 HINS (1:3*n) = HOEW (1:3*n)

S2 CALL synchronization method

S3 HONS (1:n) = HINS(1l:n) [MYPEN]

S4 HONS (n+1:3*n) = HINS(n+l:3*n) [MYPES]
S5 CALL synchronization method

S6 HIEW(1:3*n) = HONS (1:3*n)

S7 CALL synchronization method

S8 HOEW (1:n) = HIEW(1l:n) [MYPEW]

S9 HOEW (n+1:3*n) = HIEW(n+l:3*n) [MYPEE]
S10 CALL synchronization method

Fig. 4. Pseudo-code for the halo exchange procedure.

neighbor; S9 a remote read of 2n elements from the east neighbor; and finally S10
a synchronization call. For each synchronization method, this procedure is repeated 5
times per iteration, with 10 iterations being executed with n varying from 2 to 1024 in
powers of 2.

Figure 5 (a) shows the timeline view of the Halo benchmark running with 16 pro-
cessors. The four phases of the code (marked with white lines in the figure) can easily
be identified due to the different communication behavior of each of the synchroniza-
tion methods. The communication pattern between processors, as well as the amount
of data exchanged, can be observed with the pair-wise communication statistics view,
shown in Figure 6 (left).

Figure 5 (b) and Figure 5 (c) show a section of the timeline corresponding to a
full exchange (one call to the subroutine outlined in Figure 4) for sync all and
sync team(wait) synchronization methods respectively. We observe that the re-

A Performance Measurement Infrastructure for Co-array Fortran 153

.=+ YAMPIR - Timeline

process
process
Process
process
Process
process
process
Process
process
Process
process 10
process 11
process 12
process 13
process 14
process 15

[Eessas BessTS Eael

sync all sync all(wait) sync team sync team(wait)

(a) Complete program

== VAMPIR - [=]][x]

SR

process
WCAF

process
process
Process
process
Process
process
process
Process
process
process
Process
process
Process
process
process

VAMPIR

Process
process
process
Process
process
Process
process
process
Process
process
process
Process
process
Process
process
process

(c) One exchange using sync team(wait)

Fig. 5. Timeline views of the Halo benchmark using 16 processors.

154 Bernd Mohr, Luiz DeRose, and Jeffrey Vetter

gion corresponding to the sync team(wait) synchronization method is much more
irregular (unsynchronized) than the one for the sync all, where the waiting times are
longer, due to the global synchronization.

Je2 alaZam —|J.;D:‘E E]
Je2 b ol t]J.'_!} 4@
JLER o ke _L.I é.’.i
A _all i Ape_all 0, I9=|;-z
b _alliuzit] Io.'.lzés . : Bawe_all{waiz) c.nzis
bt b i) In.mais [: harrn L 3.'_0‘3;:
T In.msis : : St nJ.d?ei o
0855 105 2.5z Stz 35z Loz LEs
(16 processor run) (64 processor run)

Fig. 6. Message statistics view of the Halo benchmark using 16 processors (left) and Summary
Chart View of Function times running on 16 and 64 processors (right).

Finally, on Figure 6 (right), we observe the time spent on each synchronization
method for the 16 and 64 processors runs respectively. We notice that with the increase
of number of processors, the sync team (wait) method performs significantly bet-
ter than the sync all method, going from about 10% faster with 16 processors to
about 30% faster with 64 processors.

6 Conclusion

The CAF parallel programming language extends Fortran 95 providing a simple tech-
nique for accessing and managing distributed data objects. This language-level abstrac-
tion hides much of the complexity of managing communication, but, unfortunately, this
also makes diagnosing performance problems much more difficult. In this paper, we
have proposed one approach to solve this problem. Our solution uses a source-to-source
translator to allow performance instrumentation, data collection, trace generation, and
performance visualization of Co-Array Fortran applications implemented as an exten-
sion of the KOJAK performance analysis toolset. We illustrated this approach with per-
formance visualization of a Co-Array Fortran version of the Halo kernel benchmark
using the VAMPIR event trace visualization tool. Our initial results are promising; we
can obtain statistical quantification and graphical presentation of CAF communication
and synchronization characteristics. We will extend KOJAK’s automated analysis to also
cover CAF constructs and determine the benefits of this approach for real applications.

References

1. E. Ayguadé, M. Brorsson, H. Brunst, H.-C. Hoppe, S. Karlsson, X. Martorell, W. E. Nagel,
F. Schlimbach, G. Utrera, and M. Winkler. OpenMP Performance Analysis Approach in
the INTONE Project. In Proceedings of the Third European Workshop on OpenMP -
EWOMP’01, September 2001.

10.

11.

12.

13.

14.

A Performance Measurement Infrastructure for Co-array Fortran 155

R. Bell, A. D. Malony, and S. Shende. A Portable, Extensible, and Scalable Tool for Parallel
Performance Profile Analysis. In Proceedings of Euro-Par 2003, pages 17-26, 2003.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming Inter-
face for Performance Evaluation on Modern Processors. The International Journal of High
Performance Computing Applications, 14(3):189-204, Fall 2000.

J. Caubet, J. Gimenez, J. Labarta, L. DeRose, and J. Vetter. A Dynamic Tracing Mechanism
for Performance Analysis of OpenMP Applications. In Proceedings of the Workshop on
OpenMP Applications and Tools - WOMPAT 2001, pages 53 — 67, July 2001.

L. DeRose, B. Mohr, and S. Seelam. Profiling and Tracing OpenMP Applications with
POMP Based Monitoring Libraries. In Proceedings of Euro-Par 2004, pages 39-46, Septem-
ber 2004.

Marc-André Hermanns, Bernd Mohr, and Felix Wolf. Event-based Measurement and Anal-
ysis of One-sided Communication. In Proceedings of Euro-Par 2005, September 2005.

S. Kim, B. Kuhn, M. Voss, H.-C. Hoppe, and W. Nagel. VGV: Supporting Performance
Analysis of Object-Oriented Mixed MPI/OpenMP Parallel Applications. In Proceedings of
the International Parallel and Distributed Processing Symposium, April 2002.

K. A. Lindlan, Janice Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, and C. Ras-
mussen. A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software
with Templates. In Proceedings of Supercomputing 2000, November 2000.

B. Mohr, A. Mallony, H.-C. Hoppe, F. Schlimbach, G. Haab, and S. Shah. A Performance
Monitoring Interface for OpenMP. In Proceedings of the fourth European Workshop on
OpenMP - EWOMP’02, September 2002.

Bernd Mohr, Allen Malony, Sameer Shende, and Felix Wolf. Design and Prototype of a Per-
formance Tool Interface for OpenMP. The Journal of Supercomputing, 23:105-128, 2002.
W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. Vampir: Visualization
and Analysis of MPI Resources. Supercomputer, 12:69—-80, January 1996.

R. W. Numrich and J. K. Reid. Co-Array Fortran for Parallel Programming. ACM Fortran
Forum, 17(2), 1998.

Felix Wolf and Bernd Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Ap-
plications. Journal of Systems Architecture, Special Issue ’Evolutions in parallel distributed
and network-based processing’, 49(10-11):421-439, November 2003.

C. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk, and W. Gropp.
From trace generation to visualization: A performance framework for distributed parallel
systems. In Proceedings of Supercomputing 2000, November 2000.

Event-Based Measurement and Analysis
of One-Sided Communication

Marc-André Hermanns!, Bernd Mohr!, and Felix Wolf2

Y Forschungszentrum Jiilich,
Zentralinstitut fiir Angewandte Mathematik,
52425 Jilich, Germany
{m.a.hermanns,b.mohr}efz-juelich.de
2 University of Tennessee, ICL
1122 Volunteer Blvd Suite 413
Knoxville, TN 37996-3450, USA
fwolf@cs.utk.edu

Abstract. To analyze the correctness and the performance of a program, infor-
mation about the dynamic behavior of all participating processes is needed. The
dynamic behavior can be modeled as a stream of events required for a later anal-
ysis including appropriate attributes. Based on this idea, KOJAK, a trace-based
toolkit for performance analysis, records and analyzes the activities of MPI-1
point-to-point and collective communication.

To support remote-memory access (RMA) hardware in a portable way, MPI-2 in-
troduced a standardized interface for remote memory access. However, poten-
tial performance gains come at the expense of more complex semantics. From
a programmer’s point of view, an MPI-2 data transfer is only completed after a
sequence of communication and associated synchronization calls.

This paper describes the integration of performance measurement and analysis
methods for RMA communication into the KOJAK toolkit. Special emphasis is put
on the underlying event model used to represent the dynamic behavior of MPI-
2 RMA operations. We show that our model reflects the relationships between
communication and synchronization more accurately than existing models. In
addition, the model is general enough to also cover alternate but simpler RMA
interfaces, such as SHMEM and Co-Array Fortran.

1 Introduction

Remote memory access (RMA) describes the ability of a process to directly access a
part of the memory of a remote process, without explicit participation of the remote
process in the data transfer. As all parameters for the data transfer are determined by one
process, it is also called one-sided or single-sided communication. This distinguishes
the one-sided communication from point-to-point messages, where explicit send and
receive statements are required on both sides. Providing one-sided in addition to two-
sided communication significantly expands the flexibility to chose a communication
scheme most suitable for a given problem on a given hardware.

On platforms with special hardware providing efficient RMA support, one-sided
communication is often made available to the programmer in the form of libraries,

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 156165, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Event-Based Measurement and Analysis of One-Sided Communication 157

for example SHMEM (Cray), LAPI (IBM), or ELAN (Quadrics). However, these libraries
are typically platform- or at least vendor-specific. The exception is SHMEM, which is
offered by a group of vendors. Since this restricts portable programming, many pro-
grammers do not utilize one-sided communication.

This is one of the reasons why the MPI forum decided to define a portable one-sided
communication interface as part of MPI-2. The Message Passing Interface (MPI) was
defined by a group of vendors, government laboratories and universities in 1994 as a
community standard [1]. This has become known as MPI-1. It is fully supported by all
freely-available and commercial MPI implementations and was quickly adopted by the
scientific computing community as a de-facto standard. As MPI also provides a stan-
dard monitoring interface (PMPI), there is a wide variety of tools for MPI performance
analysis and visualization. In 1997, a second version of the interface (MPI-2) was de-
fined, which added support for parallel I/O, dynamic process creation, and one-sided
communication [”]. However, only now, seven years after its definition, is support for
all MPI-2 features portably available for all major parallel computing platforms.

Until recently there was only rare usage of RMA features in scientific applications
and, therefore, the demand for performance tools in this area was limited. As more and
more programmers adopt the new features to improve the performance of their codes,
this is expected to change. For example, NASA researchers report a 39% improvement
in throughput after replacing MPI-1 non-blocking communication with MPI-2 one-sided
communication in a global atmospheric simulation program [3].

Currently, there are only very few tools which support the measurement and analy-
sis of one-sided communication and synchronization in a portable way on a wider range
of platforms. The well-known Paradyn tool which performs an automatic on-line bot-
tleneck search, was recently extended to support several major features of MPI-2 [4].
For RMA analysis, it collects basic, process-local, statistical data (i.e., transfer counts
and execution time spent in RMA functions). It does not take inter-process relationships
into account nor does it provide detailed trace data. Also, it does not support analysis of
SHMEM programs. The very portable TAU performance analysis tool environment [5]
supports profiling and tracing of MPI-2 and SHMEM one-sided communication. How-
ever, it only monitors the entry and exit of the RMA functions; it does not provide RMA
transfer statistics nor are the transfers recorded in tracing mode. The commercial Intel
Trace Collector tool (formerly known as VampirTrace) [0] records MPI execution traces.
When used with MPI-2, it records enter and exits of only a subset of the RMA functions.
It also traces the actual RMA transfers, but misrepresents their semantics, as defined
in MPI-2. Finally, it does not record the collective nature of MPI-2 window functions.
Besides these there are also some non-portable vendor tools with similar disadvantages.

KOJAK, our toolkit for automatic performance analysis [10], is jointly developed
by the Central Institute for Applied Mathematics of the Research Centre Jiilich and by
the Innovative Computing Laboratory of the University of Tennessee. It is able to in-
strument and analyze OpenMP constructs and MPI-1 calls. In this paper we report on
the integration of performance analysis methods for one-sided communication into the
existing toolkit. We put special emphasis on the development of a new event model
that realistically represents the dynamic behavior of MPI-2 RMA operations in the event
stream. We show that our model reflects the relationships between communication and

158 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

synchronization more accurately than existing models. In addition, the model is general
enough to also cover alternate, but simpler RMA interfaces. In our new prototype imple-
mentation, we added support for measurement and analysis of parallel programs using
MPI-2 and SHMEM one-sided communication and synchronization. In addition, we are
also able to handle Co-Array Fortran programs [9], a small extension to Fortran 95 that
provides a simple, explicit notation for one-sided communication and synchronization,
expressed in a natural Fortran-like syntax. Details of this work can be found in [1 1].

The remainder of the paper is organized as follows: In Section 2 we give a short de-
scription of the MPI-2 RMA communication and synchronization functions. In Section 3,
we present our event model, which allows the realistic representation of the dynamic
behavior of vendor-specific and MPI-2 RMA operations. The extensions to KOJAK com-
ponents allowing the instrumentation, measurement, analysis, and visualization of par-
allel programs based on one-sided communication are described in Section 4. Finally,
we present conclusions and future work in Section 5.

2 MPI-2 One-Sided Communication

The interface for RMA operations defined by MPI-2 differs from the vendor-specific
APIs in many respects. This is to ensure that it can be efficiently implemented on a wide
variety of computing platforms even if a platform does not provide any direct hardware
support for RMA. The design behind the MPI-2 RMA API specification is similar to that
of weakly coherent memory systems: correct ordering of memory accesses has to be
specified by the user with explicit synchronization calls; for efficiency, the implemen-
tation can delay communication operations until the synchronization calls occur.

MPI does not allow access to arbitrary memory locations with RMA operations,
but only to designated parts of a process’s memory, the so-called windows. Windows
must be explicitly initialized (with a call to MPT Win create) and released (with
MPI Win free) by all processes that either provide memory or want to access this
memory. These calls are collective between all participating partners and include an in-
ternal barrier operation. MPI denotes by origin the process that performs an RMA read
or write operation, and by farget the process in which the memory is accessed.

There are three RMA communication calls in MPI: MPI Put transfers data from
the caller’s memory to the target memory (remote write); MPT Get transfers data from
the target to the origin (remote read); and MPT Accumulate updates locations in the
target memory, for example, by replacing them with sums or products of the local and
remote data values (remote update). These operations are nonblocking: the call initiates
the transfer, but the transfer may continue after the call returns. The transfer is com-
pleted, both at the origin and the target, only when a subsequent synchronization call is
issued by the caller on the involved window object. Only then are the transferred values
(and the associated communication buffers) available to the user code. RMA communi-
cation falls in two categories: active target and passive target communication. In both
modes, the parameters of the data transfer are specified only at the origin, however in
active mode, both origin and target processes have to participate in the synchronization
of the RMA accesses. Only in passive mode is the communication and synchronization
completely one-sided.

Event-Based Measurement and Analysis of One-Sided Communication 159

RMA accesses to locations inside a specific window must occur only within an ac-
cess epoch for this window. Such an access epoch starts with an RMA synchronization
call, proceeds with any number of remote read, write, or update operations on this win-
dow, and finally completes with another (matching) synchronization call. Additionally,
in active target communication, a target window can only be accessed within an expo-
sure epoch. There is a one-to-one mapping between access epochs on origin processes
and exposure epochs on target processes. Distinct epochs for a window at the same pro-
cess must be disjoint. However, epochs pertaining to different windows may overlap.

MPI provides three RMA synchronization mechanisms:

Fences: The MPI Win fence collective synchronization call is used for active target
communication. An access epoch on an origin process or an exposure epoch on a
target process are started and completed by such a call. All processes who partic-
ipated in the creation of the window synchronize, which in most cases includes a
barrier. The data transfered is only accessible to user code after the fence.

General Active Target Synchronization: Here, synchronization is minimized: only
pairs of communicating processes synchronize, and they do so only when needed to
correctly order accesses to a window with respect to local accesses to that window.
An access epoch is started at an origin process by MPT Win start and is termi-
nated by acall toMPI Win complete. The start call specifies the group of targets
for that epoch. An exposure epoch is started at a target process by MPT Win post
and is completed by MPI Win wait or MPI Win test. Again, the post call
specifies the group of origin processes for that epoch. Data written is only accessi-
ble after the wait call, however data can only be read after the complete operation.

Locks: Finally, shared and exclusive locks are provided through the MPT Lock and
MPI Unlock calls. They are used for passive target communication. In addition,
they also define the access epoch for this window at the origin. Data read or written
is only accessible from user code after the unlock operation has completed.

It is implementation-defined whether some of the described calls are blocking or
nonblocking; for example, in contrast to other shared memory programming paradigms,
the lock call must not be blocking. For a complete description of MPI-2 RMA commu-
nication see [2].

3 An Event Model for One-Sided Communication

Many performance analysis tools use an event-based approach, that is, they instrument
user applications only at specific points to collect the performance data they need for
their analysis. These points, called events, are chosen in a way that they represent impor-
tant aspects in the dynamic behavior of the application on a level of abstraction suitable
for the tools’ task. Trace-based tools record the occurrence of events as a stream or trace
of event records for later analysis.

For the analysis of parallel scientific applications, events that capture the most im-
portant aspects of the parallel programming paradigm used (e.g., MPI or OpenMP) are
defined. Often, to provide a context for events representing specific actions related to
a parallel programming interface, the entering and leaving of surrounding user regions
(e.g., functions, loops or basic blocks) are also captured.

160 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

Table 1. KOJAK’s Event Types

Abstraction Event type Type specific Attributes
Entering / leaving a region (a function) ENTER region id
EXIT region id
Leaving a collective MPI MPICEXIT region id, comm id, root loc, sent, revd
or OpenMP region OMPCEXIT region id
Sending / receiving a message SEND dest loc, tag, comm id, length
RECV src loc, tag, comm id, length
Start / end of OpenMP parallel region FORK
JOIN
Acquiring / releasing an OpenMP lock ALOCK lock id
RLOCK lock id
Start / end / origin of RMA Put ITS window id, rma id, length, dest loc
one-sided transfers Put ITE window id, rma id, length, src loc

GET 1TO window id, rma id
GET ITS window id, rma id, length, dest loc
GET ITE window id, rma id, length, src loc

Leaving MPI GATS function MPIWEXIT window id, region id, group id
Leaving MPI collective RMA function MPIWCEXIT window id, region id, comm id
Locking / unlocking a MPI window WLoCK window id, lock loc, type

WUNLOCK window id, lock loc

Table 1 lists all event types used by the KOJAK performance analysis toolset. In the
upper half, the already existing events for modeling MPI-1 and OpenMP behavior are
shown. in addition to type-specific attributes for each event we also collect the times-
tamp and location which describe when and where the event occurred. For user regions,
MPI functions, and OpenMP constructs and runtime functions, we record which region
was entered or left. In the case of collective MPI functions and OpenMP constructs,
instead of “normal” EXIT events, special collective events are used to capture the at-
tributes of the collective operation. For MPI this is the communicator, the root process,
and the amounts of data sent and received during this operation. MPI-1 point-to-point
messages are modeled as pairs of SEND and RECV events with the source or destina-
tion of the message, the tag and communicator used, and the amount of data transferred
being attributes. In OpenMP applications, FORK and JOIN events mark the start and end
of parallel regions and ALOCK and RLOCK events the acquisition and release of locks.
For a complete, more detailed description of KOJAK’s event types and of its analysis
features see [/, 10]. A similar event model is also used by most other event-based tools
(e.g., by TAU).

In order to be able to also analyze RMA operations, we defined new event types
to realistically model the behavior of MPI-2 as well as Co-Array Fortran and vendor-
specific RMA operations. These new event types are shown in the bottom compartment
of Table 1. Start and end of RMA one-sided transfers are marked with PUT 1TS and
PUT 1TE (for remote writes and updates) or with GET 1TS and GET 1TE (for remote
reads). For these events, we collect the source and destination and the amount of data
transferred, as well as a unique RMA operation identifier which allows an easier map-

Event-Based Measurement and Analysis of One-Sided Communication 161

ping of # 1TE to the corresponding # 1TS events in the analysis stage later on. For all
MPI RMA communication and synchronization operations we also collect an identifica-
tion for the window on which the operation was performed. Exits of MPI-2 functions
related to general active target synchronization (GATS) are marked with a MPIWEXIT
event which also captures the groups of origin or target processors. For collective MPI-2
RMA functions we use a MPIWCEXIT event and record the communicator which de-
fines the group of processes which participate in the collective operation. Finally, MPT
window lock and unlock operations are marked with WLOCK and WUNLOCK events.
Based on these event types and their attributes, we now introduce two event models
for describing the dynamic behavior of RMA operations. For each model, we describe
its basic features and analyze its strengths and weaknesses. To illustrate the location of
events and relationships between them, we use simple time-line diagrams. In these dia-
grams, time progresses from left to right. Event instances are shown as colored circles
on different “time lines”, one for each process involved in the execution. Invocations of
functions are shown as gray boxes with the name of the function executed. Finally, re-
lationships between events are displayed as arrows with different line styles. Following
KOJAK conventions [7], relationships are always named with a suffix ptr (for pointer)
and always point from a later event back to an earlier event related to the later one. This
allows for an efficient analysis process with a single pass through the event trace.

3.1 Basic Model

In the first and simpler model, it is assumed that the RMA communication functions
have a blocking behavior, that is, the data transfer is completed before the function is
finished. Also, RMA synchronization functions are treated as if they were independent
of the communication functions.

The invocations of RMA communication and synchronization functions are mod-
eled with ENTER and EXIT events. To model the actual RMA transfer, the transfer-start
event is associated with the source process immediately after the begin of the corre-
sponding communication function. Accordingly, the end event is associated with the
destination process shortly before the exit of the function. Finally, we define a relation-
ship startptr which allows analysis tools to easily locate the matching start event from
the transfer end event. Figure | shows the model for typical usage patterns of one-sided
communication. A sequence of get and put operations is guarded by fences, barriers, or
lock/unlock operations. The message line shown in the picture is not part of the model
and only shown for clarity.

The advantage of this model is a straight-forward implementation because events
and their attributes can be recorded at exactly the place and time where they are sup-
posed to appear in the model. We use this model for analyzing SHMEM and Co-Array
Fortran programs. However, for MPI-2 this model is not sufficient because it ignores the
necessary synchronization, as described in Section 2. Since the end-of-transfer event is
placed before the end of the communication function, the transfers are recorded as com-
pleted even when, for example, in the case of a nonblocking implementation, this is not
true. Even if the implementation is blocking, it still does not reflect the user-visible be-
havior. Therefore, in case of MPI-2, we use an extended model, which is described in
the next subsection.

162 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

. Enter

O Exit

&) Get_1TS

& Get_1TE
 PUt_1TS

&Put 1TE
6 Fence/Barrier O enterptr

locations

time

(a) Get and Put Operations enclosed in Fences or Barriers

, T , @ Enter
~ ‘ Lock @O —‘@ Put O—‘ Unlock O O Exit

€2 WUnlock
THol, emmeemmea- @ Get_1TS

6 Lock @O— Get @é—‘ Unlock (5 _ |®Get 1TE
\ S Put_1TE

locations

@ pPut_1TS

enterptr

time

(b) Get and Put Operations with Locks

Fig. 1. Examples for Basic Event Model

3.2 Extended Model

The extended model observes the MPI-2 synchronization semantics and, therefore, better
reflects the user-visible behavior of MPI-2 RMA operations. Figure 2 shows the model
for the three different synchronization methods defined by MPI-2. The end of fences and
GATS calls is now modeled with MPIWEXIT or MPIWCEXIT respectively in order
to capture their collective nature. The transfer-start event is still located at the source
process immediately after the begin of the corresponding communication function (as it
is in the basic model). However, the transfer-end event is now placed at the destination
process shortly before the exit of the RMA synchronization function which completes
the transfer according to the MPI-2 standard rules. Unfortunately, this has an undesired
side effect. As one can see in the figure, this results in a separation of the data transfer
for remote reads from the corresponding MPI Get function. In order to rectify this
situation, we introduced a new event GET 1TO, which marks the origin’s location and
time, as well as a new relationship originptr associating this new event with the start of
the transfer (GET 1TS). This allows us in the analysis phase to locate all events related
to RMA transfers. The extended model removes all disadvantages of the basic model,
and for most MPI-2 implementations (which have a non-blocking behavior), it is even
closer to reality. However, the model is more complex and the events can no longer be
recorded at the location where they appear in the model. Therefore, a post-processing
of the collected event trace becomes necessary.

Event-Based Measurement and Analysis of One-Sided Communication 163

. Enter

O Exit

@) MPIWCExit
@) Get_1TS
\ & Get_1TE
6 MPI_Win_fence @@ O Get_1TO
@Put 1T
SPut 1TE

‘ MPI_Win_fence @@— enterptr

locations
-
=
]
=
:i
3
=1
8
N\

—‘ MPI_Win_fence @ ‘@ MPI_Get

time

Message

(a) MPI-2 Get and Put Operations enclosed in Fences

............................. . Enter

; O Exit

S MPIWEXit
&) Get_1TS

& Get_1TE

O Get_1TO
@ Put_1TS

EPut 1TE

—‘ MPI_Win_start ® 6@ MPI_Get O—‘ MPI_Win_complete @@— enterptr

locations

time

(b) MPI1-2 Get and Put Operations with General Active Target Synchronization Message

@ Enter
O Exit
& WLock
WUnlock
@ Get_1TS
B Get_1TE
©Get_1TO
@prut_1Ts
@& Put_1TE
enterptr

startptr -

locations

time

Message

(c) MPI-2 Get and Put Operations with Locks

Fig. 2. Examples for Extended Event Model

4 Analysis and Visualization

In this section, we outline the changes to KOJAK components that were necessary to
implement support for the event models introduced in the last section. For a detailed
description of the implementation see [3].

To record the new RMA related events, we implemented a set of wrapper functions
for all SHMEM and MPI-2 communication and synchronization functions for C/C++ and
Fortran. As MPI uses opaque types for representing windows and groups, we also had
to add code for tracking these objects to the PMPI wrappers. Since the code for tracking
the communication is only executed by the origin process, but the events for marking
the start of a remote read (GET 1TS) and for the end of a remote write (PUT 1TE) are
associated with the target process in our model, we cannot directly place the events in
the correct trace buffer, which resides in the target process, during measurement. We
solve this problem by writing temporary REMOTE PUT 1TE and REMOTE GET 1TS

164 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

events to the local trace buffer and later, during the merge phase, which generates a
global trace, replace these with the correct events. This is done by manipulating their
location and destination/source attributes. For MPI-2 remote read operations, we also
generate the additional GET 1TO event. Moreover, we adjust the timestamp of transfer-
end events in compliance with the extended event model. To do this, the merge process
places # 1TE first into queues (which we keep for each location and window), then uses
the recorded attributes of MPI RMA operations to locate the positions in the event stream
when RMA transfers are complete, and finally at that point ejects the corresponding
queued events into the stream with corrected timestamps. Performing these operations
during the merge has also the advantage of lowering the measurement overhead.

Finally, we extended our tool which converts our internal EPILOG event trace format
to VTF3 to handle the new RMA event types. This allows us to use the well-known
VAMPIR tool [&] to analyze and visualize traces of RMA applications. RMA transfers
are mapped to message lines but with special unique MPI tag values which enables us
to get VAMPIR to use different visual attributes (color and/or line style) so they can be
distinguished from normal point-to-point messages.

As a result, Figure 3 presents two time-line displays of the same simple exam-
ple program, which uses MPI Put together with general active target synchronization.
The first one shows trace recorded with the Intel Trace Collector and the second one a
trace recorded with our new prototype measurement system. The Intel library does not
measure the routines of the general active target synchronization, creating the wrong
impression that useful user calculations are done instead. Also, the message lines show
the RMA transfer as completed by the end of the put operation which does not reflect
the user-visible behavior, as specified by the MPI-2 standard.

5 Conclusion and Future Work

We defined two event models describing the dynamic behavior of parallel applica-
tions involving RMA transfers. The basic model can be used for RMA implementations

® Vampir 4.0 - Timalina

ATl=Tx: e, k7 (54,46 wn = 54465 re = 30,04 o)
5413 s F4.135 ms A F15 ms 34.155 ms
: H H)
Whpplication

R RAPL Win create

Procesx 1 (R TATY

Process 2 SRR

Process 3 SRS RFI Pus

rAP1 WIn_comp-01

PAFL WIn_start

(b) Recorded with KOJAK

Fig. 3. Time-line of MPI-2 Put Operation and General Active Target Synchronization

Event-Based Measurement and Analysis of One-Sided Communication 165

with blocking behavior, that is, vendor-specific one-sided communication libraries like
SHMEM or language extension like Co-Array Fortran and Unified Parallel C (UPC). For
MPI, we defined an extended event model that reflects the user-visible behavior as spec-
ified by the MPI-2 standard. We implemented an extension to the KOJAK performance
analysis toolset to instrument and trace applications based on one-sided communica-
tion and synchronization and to analyze the collected traces using the VAMPIR event
trace visualizer. The next step will be to extend EXPERT [|2], the automatic trace anal-
ysis component of KOJAK, to handle one-sided communication. This will include the
definition of RMA-related performance properties (i.e., event patterns which represent
inefficient behavior of RMA communication and synchronization).

Acknowledgments

We would like to thank Rolf Rabenseifner for helping us better understand MPI-2 one-
sided communication and synchronization and for many helpful suggestions to improve
our event models.

References

1. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - the Complete Refer-
ence, Volume 1, The MPI Core. 2nd ed., MIT Press, 1998.

2. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.
MPI - the Complete Reference, Volume 2, The MPI Extensions. MIT Press, 1998.

3. A. Mirin and W. Sawyer. A scalable implementation of a finite volume dynamical core in
the Community Atmosphere Model. Accepted for publication in the International Journal of
High-Performance Computing Applications.

4. K. Mohror and K.L. Karavanic. Performance Tool Support for MPI-2 on Linux. In Proceed-
ings of SC’04, Pittsburgh, PA, November 2004.

5. S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin. Portable
Profiling and Tracing for Parallel Scientific Applications using C++. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools, pp. 134-145. ACM, August
1998.

6. Pallas/Intel. The Intel Trace Collector. 2004.

— http://www.intel.com/software/products/cluster/tcollector/

7. F. Wolf. Automatic Performance Analysis on Parallel Computers with SMP Nodes. Disser-
tation, NIC Series, Vol. 17, Forschungszentrum Jiilich, 2002.

8. W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. Vampir: Visualization
and Analysis of MPI Resources. Supercomputer, 12:69-80, January 1996.

9. R. W. Numrich and J. K. Reid. Co-Array Fortran for Parallel Programming. ACM Fortran
Forum, 17(2), 1998.

10. F. Wolf and B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applica-
tions. Journal of Systems Architecture, 49(10-11):421-439, November 2003.

11. B. Mohr, L. DeRose, and J. Vetter. A Performance Measurement Infrastructure for Co-Array
Fortran. In Proceddings of of Euro-Par 2005, Springer, Lisboa, Portugal, September 2005.

12. F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces
through Successive Refinement. In Proceddings of Euro-Par 2004, Springer, LNCS 3149,
pp. 47-54, Pisa, Italy, September 2004.

13. M. -A. Hermanns. Event-based Performance Analysis of Remote Memory Access Operations
(In German). Diploma Thesis, Forschungszentrum Jiilich, 2004.

An Efficient Multi-level Trace Toolkit
for Multi-threaded Applications*

Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

LaBRI / INRIA-Futurs, Université Bordeaux 1
351, cours de la Libération
33405 Talence Cedex, France

Abstract. Nowadays, observing and understanding the behavior and
performance of a multi-threaded application is a nontrivial task, espe-
cially within a complex multi-threaded environment such as a multi-level
thread scheduler. In this paper, we present a trace toolkit that allows
programmers to precisely analyze the behavior of a multi-threaded ap-
plication. Running an application through this toolkit generates several
traces which are merged and analyzed offline. The resulting super-trace
contains not only classical information but also detailed informations
about thread scheduling at multiple levels.

1 Introduction

Bottleneck analysis, deadlock debugging, and performance understanding are
tasks which require a fine-grain analysis of the behavior of a parallel appli-
cation. The problem becomes even more tricky when dealing with multi-level
multi-threading applications. Let us recall that there are three main families of
threads: User-level threads are managed by the application, offer efficient basic
operations and, most importantly, can be tailored to the particular requirements
of the application; however as the operating system knows nothing about these
threads, they have the disadvantage of not being able to use all available sys-
tem resources, especially multi-processors resources. Lightweight processes (also
called LWPs or kernel-level threads) are managed by the kernel and have access
to kernel resources. For instance, several LWPs belonging to the same process
can be simultaneously active. The disadvantages are that they consume kernel
resources (the number of LWPs is usually limited) and tend to incur a bigger
overhead since all LWP scheduling and switching tasks require a kernel inter-
vention. Hybrid threads (multi-level threads) were introduced in order to take
advantage of the two previous techniques, the key idea is to map user-level
threads onto a pool of LWPs. This leads to a two-level scheduling: the kernel
manages LWPs which themselves manage user-level threads in a distributed fash-
ion. Although the implementation of this scheme within an operating system is
very complex [1], hybrid threads offer significant performance benefits with high
performance parallel applications involving only few I/O operations [2].

* This work has been supported by the ACI Masse de données & ACI Grid

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 166-175, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 167

Analyzing the scheduling of a multi-threaded application executed by an
hybrid-thread system, and observing the behavior of a such application in its
global context are difficult tasks which require support from the kernel, from the
(hybrid-)thread library and from the application. For this purpose, the code must
be instrumented in order to record selected events in one or several trace buffers.
This leads to multi-level instrumentation. In this framework, we may notice the
work of Shende [3] who has defined a strategy using multi-level instrumentation
in order to improve the coverage of performance measurement in layered soft-
ware. His approach, based on the node/process/thread model, was successfully
implemented in the TAU portable profiling and tracing toolkit. For instance, to
deal with Java’s multi-threaded environment [1], each thread creation is recorded
into a TAU’s performance database (this requiring mutual exclusion with other
threads) in order to create a per-thread performance data structure.

In [5], Xu et al use the dynamic environment PARADYN [0] to profile multi-
threaded applications through statistics. In their approach, each thread has its
own private copy of some performance counters or timers; locks are used to
access the minimal set of global book-keeping data structures.

However, in the framework of the parallel environment PM? [2] which is
based on an hybrid-thread library, our goal is to debug and to optimize low-
level middlewares, such as a reactive communication library [7, 8], and tricky
mechanisms like scheduler activations [9, 10]. To that effect, it is important
to consider aspects such as lock mechanisms and interruption handler routines.
When dealing with such low-level middlewares and parallel processes, there is no
secret: the instrumentation must be as less intrusive as possible. Especially, we
do not want to introduce new synchronization points within the kernel or within
the thread scheduler in order to minimize interdependent intrusion effects'. In
that respect, we have defined a lightweight multi-level instrumentation toolkit
which aims to precisely trace the behavior of a multi-threaded program. In order
to be efficient, this toolkit has to meet the following requirements:

To be the less intrusive as possible. The tracing overhead must be very small
not only to allow an accurate performance analysis but also to minimize the
intrusive effect on the global scheduling of the application (which would be the
result e.g of an excessive increasing of the execution time of a critical section,
some new synchronization points or some new context switch points). Therefore,
system calls and high-level synchronization mechanisms must be avoided.

To deal with multi-level instrumentation. Since our goal is to study multi-level
schedulers and/or high performance communication libraries, we need to record
both kernel- and user-level events. For instance, we need to record all the kernel’s
scheduler decisions and all the thread library’s scheduler decisions in order to
get a complete knowledge of the scheduling of a multi-threaded application.

To deal with a huge amount of data. The toolkit may need to record a lot of
events such as scheduler decisions, starting and termination points of functions

! Note that, Malony et al [I1] have shown that while it is possible to compensate
overhead due to the intrusion in a single process application, parallel overhead com-
pensation is a more complex problem because of interdependent intrusion effects.

168 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

executed by a thread or by the kernel. This may generate several mega bytes of
data per second.

In this paper, we propose a solution based on two independent buffer traces:
the first one containing kernel-level events, the second one containing user-level
events. We will first present the FAST KERNEL TRACE toolkit which is the basis
of our work. Then we will justify our approach and give some technical details.
Finally, we will analyze the introduced overhead on two applications.

2 From Kernel Tracing to Multi-level Tracing

2.1 The Fast Kernel Traces (FKT) Toolkit

Kernel instrumentation may be done at compilation time [12, 13] or dynamically
at run-time like in KERNINST [14]. It is worth noting that operating systems
such as LINUX 2.6.10 and SOLARIS 10 (DTRACE) already provide a dynamic
instrumentation toolkit which allows to instrument the running operating system
kernel. For our purpose, we chose to use the FKT toolkit [13] which is a simple and
efficient SMP LINUX kernel-dedicated trace toolkit. It is based on a source-level
instrumentation, which is achieved thanks to a set of macro-functions. Therefore,
the modification of a tracing call requires to recompile the source code and
to restart the kernel. Nevertheless, basic operations such as tracing start,
tracing stop or tracing store can be executed from the user-level space.
It is worth knowing that FKT uses a well-optimized storage mechanism [15]
which allows to use TLB mechanisms to directly write buffer’s pages on the
disk, avoiding useless memory copy and limiting memory consumption.

#define FKT_PROBE2(KEYMASK,CODE,P1,P2)
do {

fkt_header(((unsigned int) (CODE)),
(unsigned int)(P1), (unsigned int) (P2))
} while(0)

\
\
if (KEYMASK & fkt_active) \
\
3\

Fig. 1. A definition of a FKT macro for an event with two parameters.

Figure 1 shows the details of an FKT macro. The KEYMASK argument and the
kernel variable fkt_active allows to enable/disable the tracing. A new system
call is defined to set the variable fkt_active from the user-space. The CODE
argument denotes the recorded event. P1 and P2 are two integer arguments left
to the programmer (it is possible to record up to five integer arguments).

2.2 Meeting Hybrid Scheduling’s Requirements

In order to precisely rebuild the behavior of multi-threaded programs, it is nec-
essary to be able to determine at any time the current running user-level threads

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 169

on the SMPs. Note that a kernel view is insufficient: indeed, the kernel has no
knowledge about user-level threads which are scheduled by the LWP pool. On
the other side, an user-space’s view is also insufficient: LWPs are usually un-
aware of kernel’s context switches, so it is difficult, from the user-space point
of view, to get the identifiers of the running LWPs at a given date and to get
the processor identifier on which the user code is running. To solve these prob-
lems, new system calls might be created to request the identifier of the processor
which is recording an event, for instance, or to notify the kernel scheduler about
the user-level scheduler’s context switches. However, such a solution is too in-
trusive: system calls are expensive (see micro benchmarks given in Section 3.3)
and, moreover, this solution would introduce a higher number of context-switch
points than the uninstrumented execution would encounter. Another solution
would be to define a mechanism based on up-calls: in order to transmit the ker-
nel view to the user-space level, the kernel forces the application to call a given
function, like the POSIX signal’s mechanism does. However this solution is also
expensive since the thread state must be saved at each up-call.

Our proposition is to generate a trace from both point of views. The ker-
nel’s trace will be generated by FKT and the user-level trace will be generated
by FasT User TRACE (FUT), a tool similar to FKT. The key-points of this
solution are: (1) Dealing with hybrid scheduling, Kernel- and user-level traces
are both necessary to get a full description of a multi-threaded application run.
Both traces use the cycle counter register to stamp the events since this clock is
very accurate. (2) Dealing with SMP, the cycle counter register of each processor
is perfectly synchronized with each other registers at the hardware level. (3) All
context switches (user’s and kernel’s) are recorded, so that we will be able to
deduce what happens from a scheduling point of view within the system.

After the execution of the application, both traces are merged into a so-called
super-trace which contains the following event data: the event code, time-stamp,
size and parameters; the identifiers of the user-level thread, the LWP and the
processor which executed the recording. By reconciling the kernel- and the user-
level sides, this toolkit allows to trace multi-threaded applications and, moreover,
it allows to put the application run back into its execution context, as any kernel
event may be recorded. Hence it is possible to get an accurate analysis of low-
level middlewares such as a multi-threaded communication library.

2.3 Description of the Tracing Toolkit

The multi-level tracing toolkit FUT has been implemented on top of the MAR-
CEL/LINUX/X86 system which is the hybrid-thread library of the portable par-
allel environment PM? [2].

In order to instrument the kernel, users need to apply a given patch against
the LINUX kernel. This patch introduces instrumented points in the kernel code
allowing to record events such as context switches, starting/termination points
of hardware interruption (IRQ) and software interruptions (system calls). The
thread library MARCEL is instrumented in order to record user-thread scheduling
decisions; for instance, events such as user-level context switches, creation and

170 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

termination of LWPs are recorded. Moreover, this instrumentation allows to
trace any function call of the library MARCEL. This way, one may accurately
trace the performances of the library and determine the cause of the preemption
of a user-level thread (elapsed time-slice, unacquired lock,...).

The API of FUT is similar to the FKT’s one. Event recording is done
by FUT PROBEx () macros and some event types are already defined. A basic
code instrumentation tool is also implemented in order to automatically add at-
tributes to the starting/termination points of each function. The PROF IN() and
PROF 0UT() macros may be used to trace the call and the termination of a func-
tion. The code instrumentation may either be called directly by programmers or
be inserted automatically by compilers, like GCC does.

Once both traces have been recorded, they are merged in a super-trace in
which events are ordered with respect to the time-stamps. During the merge, the
relationship between user-level events, user-level threads, LWPs and processors
is established. However, some kernel events, such as those which are recorded
during interruption routines, are not to be associated with any user-level thread.

We have developed a tool (called sSiGMUND) which allows to apply filters to
the super-trace in order to extract a sub-trace from it. One may filter events
matching some criteria (a given kind of event, a given user-thread, a time-slice).
Some basic measures may also be computed like, for instance, the (active) exe-
cution time of a given thread or the reactivity of the communication library to
a given communication event (the elapsed time between the detection of a given
event by the kernel and its treatment by the application). Moreover, a specific
filter has been developed to translate the super-trace format into the file format
of Pajé [16], a generic graphic trace viewer.

Figure 2 shows two requests getting information about the user-level thread
15 from a given super-trace. The instrumented program was executed on a SMT
bi-processors machine (thus 4 logical processors, numbered from 0). For this
execution, 4 LWPs were defined by the 2-level thread library to execute the
user-level threads. Figure 3 shows how one may observe thread’s reactivity.

3 Implementation Details and Performance Analysis

We are addressing in this section some technical issues we encountered in order
to limit the intrusion of the tracing mechanisms. We will first detail the time-
stamping, the trace format and the concurrent recording mechanism. Then we
will discuss about the overhead introduced by the instrumentation.

3.1 About the Time-Stamping and the Trace Format

FKT and FUT use the cycle counter register as a time reference; this register
stores the number of elapsed cycles since the last time the machine was started
up. It is directly readable from the user-space. It is as accurate as possible and
it is 64 bit wide. This leads to a 136 years period (232 s) on a 4 GHz (232 Hz)
machine, moreover cycle counter registers of a SMP machine are synchronized.

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 171

$> sigmund --trace-file supertrace.log --thread 15 \
--event CONTEXT_SWITCH --list-events

type date_tick pid cpu thr code name param(s)
[...]

USER 97615576 7137
USER 97757052 7137
USER 98006248 7136
KERN 98139183 7136
KERN 98638163 2352
USER 99060185 7136
[...]
$> sigmund --trace-file supertrace.log --thread 15 --active-time
130193845 cycles

type: event level — date tick: event date — pid: LWP identifier
cpu: processor identifier — thr: user-thread level identifier
code: event code — name: event name — param(s): associated parameter values

7 23014 USER_CONTEXT_SWITCH 15
15 23014 USER_CONTEXT_SWITCH 8
6 23014 USER_CONTEXT_SWITCH 15
15 23014 KERN_CONTEXT_SWITCH 6152
? 23014 KERN_CONTEXT_SWITCH 7136
15 23014 USER_CONTEXT_SWITCH 7

N NO O - =

In this example, we can see that the user-level thread 15 was firstly scheduled on LWP
7137 on CPU 1; then it was scheduled on LWP 7136 on CPU 0. Then following the
preemption of LWP 7176 by the kernel (in order to schedule another application), it was
scheduled on CPU 2. Then the user-level scheduler preempted the thread 15 in order to
run the thread 7. Here we can see that this 2-level scheduler does not take into account
the affinity of the threads.

Fig. 2. Super-trace analysis using sigmund.

Note that only 32 bits are required to stamp the kernel events. Indeed, from the
first recording of the cycle register, there is enough kernel events (such as kernel
scheduling decisions or clock interruptions) that are recorded during a defined
period (232 cycles) to infer the 32 higher bits. However, this argument does not
hold for user-level threads which may not produce any event for several seconds.

In order to limit the intrusiveness, event buffers are created and initialized
before the real launching of the application. An initial section containing context
information (function names, running LWPs) is also recorded in both buffers.
The size of the initial section is about several hundred of kilobytes.

3.2 Mutual Exclusion Mechanism

Dealing with threads and SMP machines, we have to take care of concurrent
accesses to the trace buffers. Actually this problem of concurrency appears as
soon as we want to record asynchronous events such as hardware interrupts or
signals, even on a single processor machine. Indeed, asynchronous events may
be raised at any time and we do not want to try to block them in order to
avoid interferences with the scheduler. Therefore the instrumentation code must
be fully reentrant. The basic idea of our approach is to atomically increment
the buffer length variable. However, high-level mutual exclusion mechanisms
are forbidden. We have solved this problem using the atomic CPU instruction

172 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier
type date_tick pid cpu thr event param(s)
USER 5150163706 2732 2 8(work/6) USER_CONTEXT_SWITCH 1(daemon)
KERN 5150169922 2732 2 1(daemon) SYSTEM_CALL 142(select)
USER 5150182646 2732 2 1(daemon) USER_CONTEXT_SWITCH 11(work/9)
USER 5152816866 2733 3 9(work/7) USER_CONTEXT_SWITCH 12
KERN 5170071750 1630 0 7 IRQ 24 (eth0)
USER 5176768370 2731 1 10(work/8) USER_CONTEXT_SWITCH 5 (work/3)
USER 5179394810 2732 2 11(work/9) USER_CONTEXT_SWITCH 13(work/11)
USER 5182046038 2733 3 12(work/10)USER_CONTEXT_SWITCH 14(work/12)
USER 5205964954 2731 1 5(work/3) USER_CONTEXT_SWITCH 15(work/13)
USER 5208624942 2732 2 13(work/11)USER_CONTEXT_SWITCH 17 (work/15)
USER 5211315302 2733 3 14(work/12)USER_CONTEXT_SWITCH 18(work/16)
USER 5235191514 2731 1 15(work/13)USER_CONTEXT_SWITCH 19(work/17)
USER 5237854634 2732 2 17 (work/15)USER_CONTEXT_SWITCH 20(work/18)
USER 5240544282 2733 3 18(work/16)USER_CONTEXT_SWITCH 21(work/19)
USER 5264421734 2731 1 19(work/17)USER_CONTEXT_SWITCH 4 (work/2)
USER 5267084698 2732 2 20(work/18)USER_CONTEXT_SWITCH 2(work/0)
USER 5269736086 2733 3 21(work/19)USER_CONTEXT_SWITCH 3(work/1)
USER 5293652362 2731 1 4(work/2) USER_CONTEXT_SWITCH 6 (work/4)
USER 5296353186 2732 2 2(work/0) USER_CONTEXT_SWITCH 7 (work/5)
USER 5298968062 2733 3 3(work/1) USER_CONTEXT_SWITCH 8(work/6)
USER 5322881710 2731 1 6(work/4) USER_CONTEXT_SWITCH 1(daemon)
KERN 5322893274 2731 1 1(daemon) SYSTEM_CALL 142(select)
USER 5322907374 2731 1 1(daemon) USER_EVENT received_msg

Our tracing toolkit allows to emphasis the reactivity of multi-threaded applications. One
can compute the elapsed time between the network message arrival (a hardware interrupt
is raised by the network card) and the processing of this message by the appropriate
user-level thread in the application.

This figure shows the relevant parts of a trace of a run where 20 threads are devoted
to some computation (denoted work/0 to work/19) and one special thread (denoted
daemon) is listening to the network in order to process the incoming messages as soon
as possible. In this program, the daemon thread executes a nmon-blocking system call”
select () and calls pthread yield() to yield its execution in favor of another thread
when no message is available.

Here the considered algorithm leads to very bad latencies, as the daemon thread has to
wait for all the other threads to use their quantum before getting active even though
messages could have already been received by the OS. However, most of thread libraries
do not provide any mechanism to deal efficiently with this kind of problem. A description
of an adequate support within thread libraries to improve thread reactivity to external
asynchronous events can be found in [17].

* blocking system call must be avoided when using user-level thread library.

Fig. 3. Using our mechanisms to observe thread’s reactivity.

cmpxchgl. The idea is to store the buffer’s length value in a register, then to
store the new buffer’s length in a second register and finally to call cmpxchgl

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 173

St hoitond Lokt emites b P
] [| |
1 1 1 |

cycle counter Ib |CPU id [LWP id gize | event code parameter 1 |
Kernel trace layout (> 12 byte wide)

Tt TTAT T T TTTTrT
| 1 1 |
| 1 I |

cycle counter b |cycle counter hb | user thread id ize | event code parameter 1 |
User-level trace layout (> 16 byte wide).

Fig. 4. Kernel and user-level trace entry layout.

in order to set the new buffer’s length. This subroutine is repetitively called
until the cmpxchgl call is successful. As a result, the event trace may be not
time-stamp ordered, thus the merging tool may have to reorder the trace.

3.3 Analysis of the Tracing Overhead

In table 1, we compare the cost of recording a single trace sample with the cost of
a few other operations. Let us note that according to [1 1], the TAU measurement
overhead per (flat) event is about 1400 cycles on a XEON processor.

Table 1. Micro benchmarks (Linux 2.6.4 bi-Xeon SMT 2.8 GHz).

Function/Macro cycles
Macro PROF IN 260
System call getpid() 1900
buffered io printf(¢‘test’’) 672

We also measured the overhead and the size of generated traces. These two
values depend on the instrumentation level and on the application. Here we have
considered three instrumentation levels: no instrumentation, scheduling instru-
mentation and complete instrumentation (where system calls and all the func-
tions of the application and of the hybrid-thread library MARCEL are traced). It
is worth noting that there is no need to recompile the source code: the degree of
instrumentation is defined through the use of the global variable fkt_active.

The Sumtime program can be seen as a torture test for the hybrid-thread
library: it recursively builds a complete binary tree of threads for a given height.
As a matter of fact, this program spends most of its execution time in creating,
synchronizing and destructing user-level threads. Hence highly frequent schedul-
ing events have to be recorded. This leads to a 23% overhead for the scheduler-
level instrumentation and a 80% overhead for a complete instrumentation. This
is the worst case, clearly this is not the best way to analyze the performances of
our toolkit, however the gathered information may prove to be useful for debug-
ging purposes. The second program is a multi-threaded direct solver for sparse

174 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

Table 2. Overhead measures (Linux 2.6.4 bi-Xeon SMT 2.8 GHz).

execution time # recorded events (size) Rate (MB/s)

Sumtime program

without any profiling 230 ms - -
profiled (context switches) 288 ms (+23%) 161484 (3.72 MB) 13
profiled (all events) 430 ms (+80%) 821844 (13.4 MB) 31
SuperLU MT program
without any profiling 717 s - -
profiled (context switches) 7.30 s (+1.8%) 374 (0.007 MB) 0.001
profiled (all events) 7.50 s (+4.6%) 836054 (8.39 MB) 1.1
systems of linear equations based on the library SUPERLU [15]. As there is a

lot of computation within threads, the overhead of the instrumentation becomes
quite reasonable.

4 Conclusion

Hybrid-thread scheduling’s approach allows to efficiently exploit SMP architec-
ture, as basic operations on threads are efficient and several user-level threads
of a given application can run in a true parallel way. However, analyzing the
performance of such programs is delicate, mainly because some events occur
within the kernel and some others in user space. Thus, instrumentation of these
programs has to be carried out at both levels. Our toolkit allows to instrument
a multi-threaded program in order to conduct a precise analysis of executions
of this program. It avoids the introduction of synchronization points or system
calls during the execution, including basic thread operations such as creation,
destruction and synchronization.

Our toolkit is available on SMP x86 / ITANIUM architectures, LINUX and
the hybrid-thread library MARCEL. The required modifications of the LINUX
kernel and of the library sources are localized. Therefore thread libraries such
as NGPT, NPTL or LINUXTHREAD can easily be adapted to our toolkit. The
implementation of our toolkit onto other CPU architectures relies on the avail-
ability of an instruction similar to the instruction cmpxchgl (which usually exists
on modern processors) and on an accurate and CPU synchronized clock (such
as cycle counter registers).

We are currently implementing our toolkit on NUMA machines where cycle
counter registers are mearly synchronized. To deal with this problem, we have
to introduce calibration steps. Some other interesting improvements include the
recording of the performance of the counter registers and the translation of our
trace format into other trace format such as VAMPIR.

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 175

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Sun microsystems: Multithreading in the solaris operating environment. http:
//www.sun.com/software/whitepapers/solaris9/multithread.pdf (2002)
Namyst, R., Méhaut, J.F.: PM2: Parallel Multithreaded Machine. A computing
environment for distributed architectures. In: Parallel Computing (ParCo ’95),
Elsevier Science Publishers (1995) 279-285

Shende, S.: The Role of Instrumentation and Mapping in Performance Measure-
ment. PhD thesis, University of Oregon (2001)

Malony, A.D., Shende, S.: Performance Technology for Complex Parallel and Dis-
tributed Systems. In: Distributed and parallel systems: from instruction parallelism
to cluster computing, Kluwer Academic Publishers (2000) 3746

Xu, Z., Miller, B.P., Naim, O.: Dynamic instrumentation of threaded applica-
tions. In: PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, ACM Press (1999) 49-59

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Kar-
avanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance
measurement tool. Computer 28 (1995) 37-46

Aumage, O., Bougé, L., Méhaut, J.F., Namyst, R.: Madeleine II: A portable and
efficient communication library for high-performance cluster computing. Parallel
Computing 28 (2002) 607-626

Danjean, V., Namyst, R.: Controling Kernel Scheduling from User Space: an Ap-
proach to Enhancing Applications’ Reactivity to I/O Events. In: HiPC ’03. Volume
2913 of LNCS., Hyderabad, India, Springer-Verlag (2003) 490-499

Anderson, T., Bershad, B., Lazowska, E., Levy, H.: Scheduler Activations: Efficient
kernel support for the user-level managment of parallelism. In: Proc. 13th ACM
Symp. on Operating Systems Principles (SOSP 91). (1991) 95-105

Danjean, V., Namyst, R., Russell, R.: Integrating Kernel Activations in a Mul-
tithreaded Runtime System on Linux. In: (RTSPP ’00. Lect. Notes in Comp.
Science, Cancun, Mexico, Springer-Verlag (2000)

Malony, A.D., Shende, S.S.: Overhead Compensation in Performance Profiling. In:
Proc. Europar 2004 Conference, LNCS (2004)

Yaghmour, K., Dagenais, M.R.: Measuring and Characterizing System Behavior
Using Kernel-Level Event Logging. In: Proceeding of the 2000 USENIX Annual
Technical Conference. (2000)

Russell, R.D., Chavan, M.: Fast Kernel Tracing: a Performance Evaluation Tool
for Linux. In: Proc. 19th TASTED International Conference on Applied Informatics
(AT 2001), IASTED (2001)

Tamches, A., Miller, B.P.: Using dynamic kernel instrumentation for kernel and
application tuning. The International Journal of High Performance Computing
Applications 13 (1999) 263-276

Thibault, S.: Developping a software tool for precise kernel measurements. Master’s
thesis, University of New Hampshire (2003)

de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: an extensible environment for
visualizing multi-threaded programs executions, EuroPar2000 (2000)

Bougé, L., Danjean, V., Namyst, R.: Improving Reactivity to I/O Events in Mul-
tithreaded Environments Using a Uniform, Scheduler-Centric API. In: Euro-Par
2002. Volume 2400 of LNCS., Paderborn, Germany (2002) 605-614

Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal al-
gorithm for sparse gaussian elimination. SIAM J. Matrix Anal. Appl. 20 (1999)
915-952

Knowledge Based Automatic Scalability Analysis
and Extrapolation for MPI Programs

Michael Kluge, Andreas Kniipfer, and Wolfgang E. Nagel

Technische Universitat Dresden, Dresden, Germany
{kluge,knuepfer,nagel}0@zhr.tu-dresden.de

Abstract. The question how well a MPI program is scaling with an
increasing number of processors becomes more and more interesting, es-
pecially when these number grows to 10.000 or even 100.000 with IBM’s
‘Blue Gene’ this year. The approach presented with this paper is able
to identify locations within the source code of an application where the
communication effort does not scale well with the growing number of
processors. We show how traces for the same program generated with
different numbers of processors can be inspected and compared auto-
matically. An analytical approach will then identify the points within
the source that do not scale as expected. At the end of this article, the
benefits from this method are demonstrated on an ASCI benchmark.

1 Introduction

The number of processors available for a single application will break through
the mark of 100.000 this year with IBM’s supercomputer 'Blue Gene’. Parallel
programs today are usually developed by using either OpenMP [I] or MPI [2]
or both together. Both will generate some overhead during the program exe-
cution. Some of this additional time (compared to a serial execution) can be
considered as necessary, some can be described as overhead and maybe avoid-
able. A necessary part for MPI communication is involved when there is no extra
communication processor within the system so that the processor itself has to
do execute the MPI protocol. We will show how traces obtained with Vampir-
trace [3] for different numbers of processors can automatically be compared. We
also demonstrate how it is possible to identify MPI scalability problems. A poly-
nomial will be used to compare statistical data generated for each source code
location (either a function name or a source file/line number combination) that
calls a MPT function.

The first section gives an overview of approaches to detect MPI communi-
cation inefficiencies. The second section is dedicated to our analytical approach
that is able to find those source code locations where the time needed for MPI
communication does not scale as expected (with the numbers of processors).
Within the third section we give an overview of the architecture of a tool that
implements the ideas mentioned before. The final part of this article shows re-
sults of the new tool applied to a benchmark taken from the ASCI benchmark
collection.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 176-184, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Knowledge Based Automatic Scalability Analysis 177

2 Detection of MPI Communication Inefficiencies

The usual way to do MPI program analysis is the post-mortem analysis. All pro-
gram activities are recorded during runtime and the data generated are inspected
afterwards. On one hand, this allows to keep the overhead for analysis during
runtime low. On the other hand, it generates usually a large amount of data. An
automatic analysis should be able to provide hints for source code optimization
and should guide the user to points that are worth a manual inspection. One tool
that is able to identify MPI and OpenMP performance bottlenecks is KOJAK [1].
It is based on automatic analysis of program execution patterns (implemented
as C++ classes) that describe inefficient behavior of parallel programs.

The approach presented with this article will use a different way to identify
MPT performance problems. By assuming a concrete hard- and software stack
it can be further assumed that the execution time for a MPI function call is
roughly constant when the number of processors involved and the message size is
constant. Our approach derives from a repeated execution of a MPI function the
‘usual’” execution time for ideal circumstances for that function. The time ¢,,44
calculated this way is the maximum execution time we accept for this specific
function call for a given number of processors and a message size. The time t,,4,
is calculated for some base points, all other points are interpolated from these.
The approach has been described in [5] and [6]. An other way to define this time
is shown by the DIMEMAS [7] tool. It uses a latency/bandwidth and a point-
to-point communication model to predict the execution time for MPI functions
that transmit data.

Execution times ¢ above t,,4, can be considered as overhead. Each source
code location that calls a MPI function will be labeled with an index [=
{0,1,2,...}. Each function call recorded for this source code location will be
indexed with an index ¢ = {0,1,2,...}. For a single program execution it is
possible to calculate the total time T' spent within this MPI function

T=Yt (1)

and the overhead O wasted at this source code location with

Or =Y max(0,t— tmaz). (2)

When the O; are sorted backwardly, the first positions in the list generated
denotes the source code locations that generate most of the overhead and should
give the user some clues about the MPI communication events that are worth
to be optimized.

3 Comparing Multiple Trace Files

The metrics defined within the previous section help the user by automatically
finding problems of MPI communication within a single program trace. Scalabi-
lity investigations can only be made by comparing multiple trace files obtained
with different numbers of processors.

178 Michael Kluge, Andreas Kniipfer, and Wolfgang E. Nagel

The first thing we assume is that the MPI communication time Tp and/or
the MPI communication overhead Op is a function of the numbers of processors
P used. We will use a polynomial

f(P) = ZaiPi (3)

that fits best to the communication time (or overhead). The a; can be determined
by an optimization and will be calculated for each source code location as well
as for the whole application. For an application that is scaling well the time
each process spent within MPI has to remain constant. From this follows that
the time spent within MPI for the whole application should be at maximum a
linear function of the numbers of processors. If this assumption is violated the
scalability of the application is bound because the MPI communication time
will grow rapidly and take most of the runtime of the application. First of all
the a; are calculated for the MPI communication time as well as the overhead
for the whole application. Large values for a; for ¢ > 1 will indicate that the
application may have a scalability problem. Because we are interested in if there
is a scalability problem and not which degree greater than 1 of the polynomial
is substantial greater than 0 we set

a; =0 for all 7 > 2. (4)

That results in a quadratic polynomial f(P) = ag + a1 P+ azaP? which describes
the progression of the communication time (or the overhead). The a; will also
be ascertained for each source code location O;. Large as at the source code
locations will give hints for those locations that causes the scalability problem.

The optimization process mentioned above will finish with a set of parameters
{ap,a1,a2} and a set of errors ep, one for each used numbers of processors P.
The accuracy of the optimization can be described by the maximum of the ration
between the error ep and the values Tp (or Op) as

o ()]l ()

4 MPI Communication Time Extrapolation

The next step to reach the target of predicting the MPI communication perfor-
mance is to use the data extracted in the sections before for an extrapolation.
The goal here is to replace a program execution with a large number of processors
by some executions of the same program with smaller numbers of processors. The
advantage gained out of this is that the communication performance of a MPI
application running on large numbers of processors can be determined without
actually doing the program execution.

Knowledge Based Automatic Scalability Analysis 179

The setup we are using is the following:

1. A MPI application is executed with five or more different numbers of pro-
cessors. The used numbers of processors are labeled as p = {Py, Py, ..., Py}

2. N — 3 different subsets pg of p are built, containing { Py, Py, ..., Ps} with
S ={4,...,N — 3}. To start with the first four points and try to extra-
polate the fifth one is due to the following experience we made during the
experiments. If a program is executed with the same number of processors
multiple times all trace files generated this way will differ. Some of them will
represent a minimal total runtime and have almost the same characteristics
(total time spent within MPT etc.) but even they will still differ. The best
trace file for this number of processors will be used for the extrapolation
process. To balance the errors introduced this way we use as much trace files
with different numbers of processors as possible. Due to an usual limited time
and the costs associated with program executions on a parallel machine we
recommend to start with at least four or five different numbers of processors.

3. The a; for the MPI communication time and the MPI communication over-
head for each subset are evaluated.

After extrapolating the fifth point from the first four points we will use the
first five measured points for an extrapolation of the sixth point and so on. The
sum of all this extrapolation and the stability of the parameters a; give hints if
the extrapolation itself makes sense.

The evaluation that has been done is based on the following criteria:

1. How big is the maximum error e,,q,; of the optimization process?

2. Can the next point Psy1 be extrapolated from the subset pg? This question
can be answered by comparing the difference d between the value of f(P) at
the point Pg41 and the real value Tp (or Op) with €,q4-

3. Are the parameters a; stable?

5 Proposing a Tool Architecture

To actually implement the ideas mentioned in the sections before a tool has been
implemented. The first requirement that has driven the development of the tool
is the adaptation of the models for the MPI communication. The parameters
for the models have to be found and the maximum execution times for the MPI
functions have to be evaluated (see [5]). The next point is that the tool should
be independent from a specific trace library. Instead of that, Vampirtrace or
PARAVER [3] or even proprietary libraries should be usable. An other point
is the comparison and the analysis of multiple trace files which should be done
automatically. Results from this evaluation should be available to the user for
his own purposes, e.g. for graphical representations, for export (to Gnuplot) or
for calculation of his own derived metrics.

An overview of the architecture of the tool is given in figure 1. Basically three
different parts can be distinguished.

180 Michael Kluge, Andreas Kniipfer, and Wolfgang E. Nagel

Model Trace File
Generation Generation
Test Suite Application
N S .
Instrumentation |« Trace Library »| Instrumentation
A |
|

Tracefile

Program
Execution

y

Evaluation of 1

t_max 1 I
¥ 1
L Tracefile
Statistical —
Models | | |
»| Trace File Analysis

Comparing & I
Extrapolation |

Result
Data Export

Automatic Scalability Investigation

Fig. 1. The tool architecture

First of all, the paramters for the models for all MPI functions has to be
computed. This step has to be done just once for a given hardware and soft-
ware stack. The model will be stored permanently and can be reused as long as

Knowledge Based Automatic Scalability Analysis 181

the machine configuration with respect to the communication layer(s) does not
change.

The second part uses as input trace files of an application running using
different numbers of processors. The models created within the first part are used
to investigate each communication event, to divide the necessary communication
time from the overhead and to assign all results to their associated source code
locations.

The result is a list of source code locations and associated data that can
now be analyzed in the third part of the program. The data collected for the
same source code location but for program executions with different numbers
of processors are used to compute the parameters a;, the extrapolation and to
evaluate the quality of the fitting of f(P). Beside these results a report for the
user will be generated.

To be able to generate data with some expressiveness it is recommended to
use the same trace library to adapt the models and to trace the program execu-
tion. Usually trace libraries differ in the overhead generated. Only when using
the same library for model adaptation and trace file generation this overhead
keeps transparent.

6 Application to the Sweep3D Benchmark

We have chosen the Sweep3D benchmark [9] to demonstrate the usefulness of
the extrapolation process. This benchmark has often been used to test new tools
because its characteristics are well researched [1]. We have used a fixed global
problem size of 168 x 168 x 168 for all program executions. By cutting this cube
along the first dimension into slices of equal size and assigning each slice to a
single processor (and MPI task) we are able to execute the benchmark with
numbers of processors of 4,8,12,14,21,24 and 28. The system we used for the
benchmark is the IBM eServer pSeries 690 running at 1.7 GHz installed at the
Forschungszentrum Jiilich in Germany. One SMP node consists of 32 processors
and delivers a heterogeneous environment which also can easily be used exclu-
sively. Within this environment we can expect that the time the benchmark
spends within MPI scales linearly with the number of processors. The use of
more that one SMP node would introduce more influence parameters due to the
necessary external network.

Figure 2 shows the total execution time (over all processors) including and
excluding the communication time of the original program version. As is can
be seen the time used for calculation remains almost constant during all used
numbers of processors and the increasing part is only due to the communication.

Table 1 (and figure 3) shows the calculated parameters for the extrapolation
of the overhead generated with MPI when using the first four measurements, then
the first five, and so on. The remaining error e,,, for the fitting of the quadratic
polynomial is plotted as well as the errors for an extrapolation of those points
that have not been used for the fitting of the polynomial. These parameters as
well as e,,q. and d indicates that the benchmark does not scale linearly with the

182 Michael Kluge, Andreas Kniipfer, and Wolfgang E. Nagel

Sweep3D Benchmark
500 1 T T

] 1 L)
Sum Execution Time (incl.) m— :
Sum Execution Time (excl.)
400 [yt Tt i S Tttt
) ‘ ‘ '
© ' ' '
S : \ \
8 800 [A R oo
[0 1 '
2 [\
£ ! .
o 200 KT T 7 i [
= : !
= : :
100 gL~k T ; It | I
o . .

12 14
Number of Processors

24

Fig. 2. Sweep3D execution time including and excluding time for MPI communication,
original program version

Table 1. Sweep3D: Scalability parameters for the original source code

used executions ao a1 G2 emax(%) d
4 (4,8,12,14) 21.43 -0.00 0.41 12.58 60.93
5 (4,8,12,14,21) -11.02 9.34 -0.13 15.14 15.61
6 (4,8,12,14,21,24) -18.79 11.20 -0.22 17.80 23.22
7 (4,8,12,14,21,24,28) -2.15 7.72-0.08 1535 -

Global Extrapolation

180

160
140
120
100
80
60
40
20

Time in Seconds

Glo

T T T L)

Global MP| Time = |
bal MPI Overhead i
Time Interpolation

Number of Processors

Fig. 3. Sweep3D MPI communication time, original program version

Knowledge Based Automatic Scalability Analysis 183

Global Extrapolation

180 T T T T T T

Global MP| Time == | ; i
160 [Global MPI Overhead ' : -
140 F Time Interpolation ;

ation
120 [T

100 [ri-m-mmmmmime e ,
80 [ri--r e e
60 [
I s i] (e
20 BTk

Time in Seconds

Number of Processors

Fig. 4. Sweep3D MPI communication time, optimized program version
Table 2. Sweep3D: Scalability parameters for the optimized source code

used executions ao a1 a2 emax(%) d
4 (4,8,12,14) 3.68 4.16 0.10 2.02 6.62
5 (4,8,12,14,21) 0.15 5.17 0.04 2.32 23.35
6 (4,8,12,14,21,24) -11.48 7.96 -0.09 12.63 10.87
7 (4,8,12,14,21,24,28) -3.91 6.38 -0.03 10.89 -

numbers of processors. Anyhow, it is also clear that those numbers can considered
to be stable (when using five different numbers of processors or more) because
the approximation error e,,,, is acceptable and the communication time for
the next used number of processors can be predicted using all previous (lower)
numbers.

The extrapolations done at the source code level have shown that the non
linear part of the growth of the MPI communication time results from two source
code locations within the source code file sweep.f. Within the most inner loop
of the algorithm two vectors are sent to/received from the (virtually) adjacent
processors. To erase this non linear part we have replaced the blocking calls to
MPI Send and MPI Recv with their non blocking equivalents and a following
MPI Waitall.

As it can be seen in figure 4 the MPI communication time as well as the MPI
overhead scales now linearly with the number of used processors, a table 2 shows
that the parameter as is now almost 0. Even the quality of the fitting (emax)
has been improved as like as the quality of the prediction for the next step (d).

184 Michael Kluge, Andreas Kniipfer, and Wolfgang E. Nagel

7 Conclusion

This article describes an approach to detect scalability bottlenecks within the
MPI communication for parallel programs. It is able to investigate the MPI
communication time as well as the overhead generated by MPI on the source
code level. To be able to divide the time spent within a single MPI function
call into a necessary part and overhead the maximum execution time for this
function call has to be evaluated. This is done by looking at the execution times
for a repeated execution for this function under ideal circumstances.

By using a polynomial the extracted data can automatically be analyzed
for scalability problems. We have shown that one problem within the Sweep3D
benchmark has been identified and tracked back to the source code level. An
alteration of the source code has erased this scalability problem.

References

1. OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 2.5. http://www.openmp.org/drupal/mp-documents/draft\ spec25.pdf,
November 2004.

2. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical report, University of Tennessee, 1995.

3. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl
Solchenbach. VAMPIR: Visualization and Analysis of MPI Resources. In Supercom-
puter 63, Volume XII, Number 1, pages 69-80, 1996.

4. S. Moore, F. Wolf, J. Dongarra, and B. Mohr. Second workshop on productivity
and performance in high-end computing (p-phec) at 11th international symposium
on high performance computer architecture (hpca-2005) (submitted). 2005.

5. Michael Kluge. Statistische Analyse von Programmspuren fiir MPI-Programme.
Diploma thesis, November 2004.

6. Michael Kluge, Andreas Kniipfer and Wolfgang E. Nagel. Statistical Methods for
Automatic Performance Bottleneck Detection in MPI Based Programs In Proceed-
ings of 5th International Conference on Computational Science, pages 330-337,
2005.

7. European Center for Parallelism of Barcelona. Dimemas.
http://www.cepba.upc.es/dimemas/.

8. European Center for Parallelism of Barcelona. Paraver.
http://www.cepba.upc.es/paraver/.

9. Lawrence Livermore National Laboratory. The ASCI Sweep3D Benchmark Code.
http://www.1llnl.gov/asci\ benchmarks/asci/limited/sweep3d/asci\
sweep3d.html, 1995.

Performance Modeling: Understanding the Past
and Predicting the Future

David H. Bailey!* and Allan Snavely?

! Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
dhbailey@lbl.gov
2 University of California, San Diego, 9500 Gilman Drive, La Jolla, CA
asnavely@cs.ucsd.edu

Abstract. We present an overview of current research in performance
modeling, focusing on efforts underway in the Performance Evaluation
Research Center (PERC). Using some new techniques, we are able to
construct performance models that can be used to project the sustained
performance of large-scale scientific programs on different systems, over
a range of job and system sizes. Such models can be used by vendors
in system designs, by computing centers in system acquisitions, and by
application scientists to improve the performance of their codes.

1 Introduction

The goal of performance modeling is to gain understanding of a computer sys-
tem’s performance on various applications, by means of measurement and anal-
ysis, and then to encapsulate these characteristics in a compact formula. The
resulting model can be used to gain greater understanding of the performance
phenomena involved and to project performance to other system/application
combinations.

We will focus here on large-scale scientific computation, although many of the
techniques we describe below apply equally well to single-processor systems and
to business-type applications. Also, this paper focuses on some work being done
within the Performance Evaluation Research Center (PERC) [1], a research col-
laboration funded through the U.S. Department of Energy’s Scientific Discovery
through Advanced Computation (SciDAC) program [10]. A number of impor-
tant performance modeling activities are also being done by other groups, for
example at Los Alamos National Laboratory [0].

The performance profile of a given system/application combination depends
on numerous factors, including: (1) system size; (2) system architecture; (3)
processor speed; (4) multi-level cache latency and bandwidth; (5) interprocessor
network latency and bandwidth; (6) system software efficiency; (7) type of appli-
cation; (8) algorithms used; (9) programming language used; (10) problem size;

* This work was supported by the Director, Office of Computational and Technology
Research, Division of Mathematical, Information, and Computational Sciences of
the US DOE, under contract DE-AC03-76SF00098.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 185-195, 2005.
© Springer-Verlag Berlin Heidelberg 2005

186 David H. Bailey and Allan Snavely

(11) amount of I/O; and others. Indeed, a comprehensive model must incorporate
most if not all of the above factors. Because of the difficulty in producing a truly
comprehensive model, present-day performance modeling researchers generally
limit the scope of their models to a single system and application, allowing only
the system size and job size to vary. Nonetheless, as we shall see below, some
recent, efforts appear to be effective over a broader range of system/application
choices.

Performance models can be used to improve architecture design, inform pro-
curement, and guide application tuning. Unfortunately, the process of produc-
ing performance models historically has been rather expensive, requiring large
amounts of computer time and highly expert human effort. This has severely
limited the number of high-end applications that can be modeled and studied.
Someone has observed that, due to the difficulty of developing performance mod-
els for new applications, as well as the in-creasing complexity of new systems, our
supercomputers have become better at predicting and explaining natural phe-
nomena (such as the weather) than at predicting and explaining the performance
of themselves or other computers.

2 Applications of Performance Modeling

Performance modeling can be used in numerous ways. Here is a brief summary
of these usages, both present-day and future possibilities:

Runtime estimation. The most common application for a performance model is
to enable a scientist to estimate the runtime of a job when the input parameters
for the job are changed, or when a different number of processors is used in a
parallel computer system. One can also estimate the largest size of system that
can be used to run a given problem before the parallel efficiency drops to an
unacceptable area.

System design. Performance models are frequently employed by computer ven-
dors in their design of future systems. Typically engineers construct a perfor-
mance model for one or two key applications, and then compare future technol-
ogy options based on performance model projections. Once performance mod-
eling techniques are better developed, it may be possible to target many more
applications and technology options in the design process. As an example of
such “what-if” investigations, application parameters can be used to predict
how performance rates would change with a larger or more highly associative
cache. In a similar way, the performance impact of various network designs can
be explored. We can even imagine that vendors could provide a variety of system
customizations, depending on the nature of the user’s anticipated applications.

System tuning. One example of using performance modeling for system tuning
is given in [1]. Here a performance model was used to diagnose and rectify a
misconfigured MPI channel buffer, which yielded a doubling of network perfor-
mance for programs sending short messages. Along this line, Adolfy Hoisie of
LANL recalls that when a recent system was installed, its performance fell below
model predictions by almost a factor of two. However, further analysis uncovered

Performance Modeling 187

some system difficulties, which, when rectified, improved performance to almost
the same level the model predicted [6]. When observed performance of a system
falls short of that predicted by a performance model, it may be the system that
is wrong not the model!

Application tuning. If a memory performance model is combined with application
parameters, one can predict how cache hit-rates would change if a different cache-
blocking factor were used in the application. Once the optimal cache blocking has
been identified, then the code can be permanently changed. Simple performance
models can even be incorporated into an application code, permitting on-the-fly
selection of different program options.

Performance models, by providing performance expectations based on the
fundamental computational characteristics of algorithms, can also enable algo-
rithmic choice before going to the trouble to implement all the possible choices.
For example, in some recent work one of the present authors employed a per-
formance model to estimate the benefit of employing an “inspector” scheme to
reorder data-structures before being accessed by a sparse-matrix solver, as part
of software being developed by the SciDAC Terascale Optimal PDE Simula-
tions (TOPS) project [13]. It turned out that the overhead of these “inspector”
schemes is more than repaid provided the sparse-matrices are large and/or highly
randomized.

System procurement. Arguably the most compelling application of performance
modeling, but one that heretofore has not been used much, is to simplify the
selection process of a new computing facility for a university or laboratory. At
the present time, most large system procurements involve a comparative test of
several systems, using a set of application benchmarks chosen to be typical of the
expected usage. In one case that the authors are aware of, 25 separate application
benchmarks were specified, and numerous other system-level benchmark tests
were required as well. Preparing a set of performance benchmarks for a large
laboratory acquisition is a labor-intensive process, typically involving several
highly skilled staff members. Analyzing and comparing the benchmark results
also requires additional effort. These steps involved are summarized in the recent
HECRTF report [7].

What is often overlooked in this regard is that each of the prospective ven-
dors must also expend a comparable (or even greater) effort to implement and
tune the benchmarks on their systems. Partly due to the high personnel costs of
benchmark work, computer vendors often can afford only a minimal effort to im-
plement the bench-marks, leaving little or no resources to tune or customize the
implementations for a given system, even though such tuning and/or customiza-
tion would greatly benefit the customer. In any event, vendors must factor the
cost of implementing and/or tuning benchmarks into the price that they must
charge to the customer if successful. These costs are further multiplied because
for every successful proposal, they must prepare several unsuccessful proposals.

Once a reasonably easy-to-use performance modeling facility is available, it
may be possible to greatly reduce, if not eliminate, the benchmark tests that
are specified in a procurement, replacing them by a measurement of certain

188 David H. Bailey and Allan Snavely

performance model parameters for the target systems and applications. These
parameters can then be used by the computer center staff to project performance
rates for numerous system options. It may well be that a given center will decide
not to rely completely on performance model results. But if even part of the
normal application suite can be replaced, this will save considerable resources
on both sides.

3 Basic Methodology

Our framework is based upon application signatures, machine profiles and con-
volutions. An application signature is a detailed but compact representation of
the fundamental operations performed an application, independent of the target
system. A machine profile is a representation of the capability of a system to
carry out fundamental operations, independent of the particular application. A
convolution is a means to rapidly combine application signatures with machine
profiles in order to predict performance. In a nutshell, our methodology is to

1. Summarize the requirements of applications in ways that are not too ex-
pensive in terms of time/space required to gather them but still contain
sufficient detail to enable modeling.

2. Obtain the application signatures automatically.

3. Generalize the signatures to represent how the application would stress ar-
bitrary (including future) machines.

4. Extrapolate the signatures to larger problem sizes than what can be actually
run at the present time.

With regards to application signatures, note that the source code of an ap-
plication can be considered a high-level description, or application signature, of
its computational resource requirements. However, depending on the language
it may not be very compact (Matlab is compact, while Fortran is not). Also, de-
termining the resource requirements the application from the source code may
not be very easy (especially if the target machine does not exist!). Hence we
need cheaper, faster, more flexible ways to obtain representations suitable for
performance modeling work. A minimal goal is to combine the results of sev-
eral compilation, execution, performance data analysis cycles into a signature,
so these steps do not have to be repeated each time a new performance question
is asked.

A dynamic instruction trace, such as a record of each memory address ac-
cessed (us-ing a tool such as Dynist [3], of the Alpha processor tool ATOM) can
also be considered to be an application signature. But it is not compact-address
traces alone can run to several Gbytes even for short-running applications—and
it is not machine independent.

A general approach that we have developed to analyze applications, which
has resulted in considerable space reduction and a measure of machine inde-
pendence, is the following: (1) statically analyze, then instrument and trace an

Performance Modeling 189

application on some set of existing machines; (2) summarize, on-the-fly, the op-
erations performed by the application; (3) tally operations indexed to the source
code structures that generated them; and (4) perform a merge operation on
the summaries from each machine [4][11][12][5]. From this data, one can obtain
information on memory access patterns (namely, summaries of the stride and
range of memory accesses generated by individual memory operations) and com-
munications patterns (namely, summaries of sizes and type of communications
performed).

The specific scheme to acquire an application signature is as follows: (1) con-
duct a series of experiments tracing a program, using the techniques described
above; (2) analyze the trace by pattern detection to identify recurring sequences
of messages and loads/store operations; and (3) select the most important se-
quences of patterns. With regards to (3), infrequent paths through the program
are ignored, and sequences that map to insignificant performance contributions
are dropped.

As a simple example, the performance behavior of CG (the Conjugate Gradi-
ent benchmark from the NAS Parallel Benchmarks [2]), which is more 1000 lines
long, can be represented from a performance standpoint by one random memory
access pattern. This is because 99% of execution is spent in the following loop:

do k = rowstr(j), rowstr(j+1)-1
sum = sum + a(k)*p(colidx(k))
enddo

This loop has two floating-point operations, two stride-1 memory access pat-
terns, and one random memory access pattern (the indirect index of p). On
almost all of today’s deep memory hierarchy machines the performance cost
of the random memory access pattern dominates the other patterns and the
floating-point work. As a practical matter, all that is required to predict the
performance of CG on a machine is the size of the problem (which level of the
memory hierarchy it fits in) and the rate at which the machine can do random
loads from that level of the memory. Thus a random memory access pattern suc-
cinctly represents the most important demand that CG puts on any machine.

Obviously, many full applications spend a significant amount of time in more
than one loop or function, and so the several patterns must be combined and
weighted. Simple addition is often not the right combining operator for these
patterns, because different types of work may be involved (say memory accesses
and communication). Also, our framework considers the impact of different com-
pilers or different compiler flags in producing better code (so trace results are
not machine independent). Finally, we develop models that include scaling and
not just ones that work with a single problem size. For this, we use statistical
methods applied to series of traces of different input sizes and/or CPU counts
to derive a scaling model.

The second component of this performance modeling approach is to represent
the resource capabilities of current and proposed machines, with emphasis on
memory and communications capabilities, in an application-independent form
suitable for parameterized modeling. In particular, we use low-level benchmarks

190 David H. Bailey and Allan Snavely

to gather ma-chine profiles, which are high-level representations of the rates at
which machines can carry out basic operations (such as memory loads and stores
and message passing), including the capabilities of memory units at each level of
the memory hierarchy and the ability of machines to overlap memory operations
with other kinds of operations (e.g., floating-point or communications opera-
tions). We then extend machine profiles to account for reduction in capability
due to sharing (for example, to express how much the memory subsystem’s or
communication fabric’s capability is diminished by sharing these with compet-
ing processors). Finally, we extrapolate to larger systems from validated machine
profiles of similar but smaller systems.

To enable time tractable modeling we employ a range of simulation techniques
[1][9] to combine applications signatures with machine profiles:

1. Convolution methods for mapping application signatures to machine profiles
to enable time tractable statistical simulation.

2. Techniques for modeling interactions between different memory access pat-
terns within the same loop. For example, if a loop is 50% stride-1 and 50%
random stride, we determine whether the performance is some composable
function of the these two separate performance rates.

3. Techniques for modeling the effect of competition between different appli-
cations (or task parallel programs) for shared resources. For example, if
program A is thrashing L3 cache with a large working set and a random
memory access pattern, we determine how that impacts the performance of
program B with a stride-1 access pattern and a small working set that would
otherwise fits in L3.

4. Techniques for defining “performance similarity” in a meaningful way. For
example, we determine whether loops that “look” the same in terms of ap-
plication signatures and memory access patterns actually perform the same.
If so, we define a set of loops that span the performance space.

In one sense, cycle-accurate simulation is the performance modeling base-
line. Given enough time, and enough details about a machine, we can always
explain and predict performance by stepping through the code instruction by
instruction. However, simulation at this detail is exceedingly expensive. So we
have developed fast-to-evaluate machine models for current and proposed ma-
chines, which closely approximate cycle-accurate predictions by accounting for
fewer details.

Our convolution method allows for relatively rapid development of perfor-
mance models (full application models take 1 or 2 months now). Performance
predictions are very fast to evaluate once the models are constructed (few min-
utes per prediction). The results are fairly accurate. Figure 1 show qualitatively
the accuracy results across a set of machines and problem sizes and CPU counts
for POP, the Parallel Ocean Program.

We have carried out similar exercise for several sizes and inputs of POP
problems. And we have also modeled several applications from the DOD HPCMO
[3] work-load, including AVUS a CFD code, GAMESS a computational chemistry

Performance Modeling 191

POP Total Timings POP 1.4.3, x1 benchmark

120
Lemieux (R) Lemieux (M)

100 MI\ ——E—— Blue Horizon (R) ——&—— Blue Horizon (M)
——F—— Longhom (R) ——&—— Longhorn (M)
Seaborg (R) SeaBorg (M)
80
\ O X1 (R) . X1 (M)
60

40 S\

"\
. = —

Processors

Fig. 1. Results for Parallel Ocean Program (POP). (R) is real runtime (M) is modeled
(predicted) runtime

code, HYCOM a weather code, and OOCORE an out-of-core solver. In a stern
test of the methods we were allowed access to DOD machines only to gather
machine profiles via low-level benchmarks. We then modeled these large parallel
applications at several CPU counts ranging from 16 to 384, on Power3, Power4 in
two different flavors, Alpha, Xeon, and R16000 processor based supercomputers.
We then predicated application performance on these machines; an d only after
the predictions were issued were the application true runtimes independently
ascertained by DOD personnel.

Table 1. Results of “blind” predictions of DoD HPCMO Workload Category

Category Average Absolute Error Standard Deviation
Overall 20.5% 18.2%
AVUS std. input 15.0% 14.2%
AVUS large input 16.5% 16.2%
GAMESS std. input 45.1% 24.2%
HYCOM std. input 21.8% 16.7%
HYCOM large input 21.4% 16.9%
OOCORE std. input 32.1% 27.5%
Power3 17.4% 17.0%
Power4 p690 12.9% 9.6%
Power4 p655 15.7% 19.9%
Alpha 29.0% 17.6%
R16000 41.0% 18.5%
Xeon 28.2% 12.3%

Table 1 above gives the overall average absolute error and standard devia-
tion of absolute average error as well as breakdowns by application/input and
architecture. We conducted this *blind’ test (without knowing the performance

192 David H. Bailey and Allan Snavely

of the applications in advance) in order to subject our modeling methods to the
sternest possible test and because we think it is important to report successes
and failures in modeling in order to advance the science. The conditions of in-
dependent application runtime assessment led to some of the error above. For
example, we modeled the MPI version of GAMESS but in several cases it was
the shmem version that was run (a case of predicting an apple and getting an
orange). In the case of the Power 3, the predictions were consistently too high
which was later traced to a misconfigured system parameter that allowed pag-
ing (another case of the machine being broken rather than the model). However
some weaknesses in the models were also identified; the models do not do a good
job of modeling I/O at present, which contributed to high application error for
OOCORE (an I/O intensive code) and high machine error in the case of the
Alpha system (which has a weak I/O subsystem). Xeons were consistently over
predicted for reasons that appear to have to do with weak architectural support
for floating-point (few, shallow, pipelines). Augmentation of the models to ad-
dress systematic errors and add additional terms for I/O and enhanced accuracy
of floating-point scheduling is work in progress.

4 Performance Sensitivity Studies

Reporting the accuracy of performance models in terms of model-predicted time
vs. observed time (as in the previous section) is mostly just a validating step
for obtaining confidence in the model. A more interesting and useful exercise is
to explain and quantify performance differences and to play ”what if” using the
model. For example, it is clear from Figure 1 above that Lemeiux, the Alpha-
based system, is faster across-the-board on POP x1 than is Blue Horizon, the
Power3 system. The question is why? Lemeuix has faster processors (1GHz vs.
375 MHz), and a lower-latency network (a measured ping-pong latency of about
5 ms vs. about 19 ms), but Blue Horizon’s net-work has the higher bandwidth
(a measured ping-pong bandwidth of about 350 MB/s vs. 269 MB/s). Without
a model, one is left to conjecture “I guess POP performance is more sensitive
to processor performance and network latency than network bandwidth,” but
without solid evidence.

With a model that can accurately predict application performance based
on proper-ties of the code and the machine, we can carry out precise modeling
experiments such as that represented in Figure 2. Here we model perturbing
the Blue Horizon (BH) system (withPower3 processors and a Colony switch)
into the TCS system (with Alpha ES640 processors and the Quadrics switch) by
replacing components one by one. Figure 2 represents a series of cases modeling
the perturbing from BH to TCS, going from left to right. The four bars for
each case represent the performance of POP x1 on 16 processors, the processor
and memory subsystem performance, the network band-width, and the network
latency, all normalized to that of BH.

In Case 1, we model the effect of reducing the bandwidth of BH’s network to
that of a single rail of the Quadrics switch. There is no observable performance
effect, as the POP x1 problem at this size is not sensitive to a change in peak

Performance Modeling 193

M POP Performance

1 Processor and Memory Subsystem

[Network Bandwidth

[Network Latency

Blue Horizon Case1 Case2 Case3 Cased TCS

Fig. 2. Performance sensitivity study of POP applied to proposed Lemieux upgrade

network band-width from 350 MB/s to 269 MB/s. In Case 2, we model the
effect of replacing the Colony switch with the Quadrics switch. Here there is a
significant performance improvement, due to the 5 ms latency of the Quadrics
switch versus the 20 ms latency of the Colony switch. This is evidence that the
barotropic calculations in POP x1 at this size are latency sensitive. In Case 3,
we use Quadrics latency but the Colony band-width just for completeness. In
Case 4, we model keeping the Colony switch latency and bandwidth figures, but
replacing the Power3 processors and local memory subsystem with Alpha ES640
processors and their memory subsystem. There is a substantial improvement in
performance, due mainly to the faster memory subsystem of the Alpha. The
Alpha can load stride-1 data from its 1.2 cache at about twice the rate of the
Power3, and this benefits POP x1 significantly. The last set of bars show the
TCS values of performance, processor and memory subsystem speed, network
bandwidth and latency, as a ratio of the BH values.

The principal observation from the above exercise is that the model can
quantify the performance impact of each machine hardware component.

In these studies we find that larger CPU count POP x1 problems become
more network latency sensitive and remain not-very bandwidth sensitive.

We can generalize a specific architecture comparison study such as the above,
by using the model to generate a machine-independent performance sensitiv-
ity study. As an example, Figure 3 indicates the performance impact on the
128-CPU POP x1 pro-gram of quadrupling the speed of the CPU-memory sub-
system (lumped together we call this the processor), quadrupling the network
bandwidth, reducing network latency by four, and various combinations of these
four-fold hardware improvements. The data values are plotted in a logarithmic
scale and normalized to one, so that the solid black quadrilateral represents the
execution time, network bandwidth, network latency, CPU and memory subsys-

194 David H. Bailey and Allan Snavely

Prediction
2.50

—4—TCS
—l— Case1

200

Case2
Case3
=== Case4

—o— Blue Horizon

NW latency

i cpu ratio

NW BW

Fig. 3. A generalized performance sensitivity study

tem speed of Blue Horizon. At this size, POP x1 is quite sensitive to processor
speed (a faster CPU and memory subsystem), somewhat sensitive to latency
(because of the barotropic portion of the code is communications-bound, with
small-messages), and fairly insensitive to bandwidth. In a similar way we can
“zoom in” on the processor performance factor. In the above results for POP, the
processor axis shows modeled execution time decreasing from a four-times faster
CPU with respect to clock rate (implying a 4X floating-point issue rate), but also
quadruple bandwidth and one-quarter latency to all levels of the memory hier-
archy (unfortunately this may be hard or expensive to achieve architecturally!).

5 Conclusion

We have seen that performance models enable “what-if” analyses of the impli-
cations of improving the target machine in various dimensions. Such analyses
obviously are useful to system designers, helping them optimize system architec-
tures for the highest sustained performance on a target set of applications. They
are potentially quite useful in helping computing centers select the best system
in an acquisition. But these methods can also be used by application scientists
to improve performance in their codes, by better understanding which tuning
measures yield the most improvement in sustained performance.

Performance Modeling 195

With further improvements in this methodology, we can envision a future
wherein these techniques are embedded in application code, or even in system
software, thus enabling self-tuning applications for user codes. For example, we
can conceive of an application that performs the first of many iterations using
numerous cache blocking parameters, a separate combination on each processor,
and then uses a simple performance model to select the most favorable combi-
nation. This combination would then be used for all remaining iterations.

Our methods have reduced the time required for performance modeling, but
much work needs to be done here. Also, running an application to obtain the
necessary trace information multiplies the run time by a large factor (roughly
1000). The future work in this arena will need to focus on further reducing the
both the human and computer costs.

References

1. The Performance Evaluation Research Center (PERC),
see http://www.perc.nersc.gov.

2. Bailey, D., et. al, “The NAS Parallel Benchmarks,” International Journal of Super-
computer Applications, vol. 5 (1991), no. 3, pg. 66-73.

3. Buck, B. and J. K. Hollingsworth, “An API for Runtime Code Patching,” Journal
of Supercomputing Applications, 14(4), 2000, pg. 317-329.

4. Carrington, L., A. Snavely, X. Gao, and N. Wolter, “A Performance Prediction
Framework for Scientific Applications,” ICCS Workshop on Performance Modeling
and Analysis (PMAO03), June 2003, Melbourne, Australia.

5. Carrington, L., N. Wolter, A. Snavely, and C. B. Lee, “Applying an Automated
Framework to Produce Accurate Blind Performance Predictions of Full-Scale HPC
Applications,” UGC 2004, Williamsburgh, June 2004.

6. Hoisie, A., O. Lubeck, H. Wasserman, “Performance and Scalability Analysis of
Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applica-
tions,” The International Journal of High Performance Computing Applications,
vol. 14 (2000), no. 4, pg. 330-346.

7. Report of the High-End Computing Revitalization Task Force (HECRTF), see
http://www.sc.doe.gov/ascr /hecrtfrpt.pdf.

8. Department of Defense High Performance Computing Modernization Office
(HPCMO), see http://www.hpcmo.hpe.mil.

9. Perelman, E., G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder, “Using
SimPoint for accurate and efficient simulation,” ACM SIGMETRICS Performance
Evaluation Review, vol. 31 (2003), no. 1, pg. 318-319.

10. Scientific Discovery through Advanced Computing (SciDAC),
see http://www.science.doe.gov /scidac.

11. Snavely, A., L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha,
“A Framework for Application Performance Modeling and Prediction,” Proceed-
ings of SC2002, Nov. 2002, Baltimore, MD.

12. Snavely, A., X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gimenez, and P. Jones, “Per-
formance Modeling of HPC Applications,” Proceedings of the Parallel Computing
Conference 2003, Oct. 2003, Dresden, Germany.

13. Terascale Optimal PDE Simulations (TOPS) project,
see http://www-unix.mcs.anl.gov/scidac-tops.

An Approach to Performance Prediction
for Parallel Applications

Engin Ipek!, Bronis R. de Supinski?, Martin Schulz?, and Sally A. McKee!

! Computer Systems Lab
School of Electrical and Computer Engineering
Cornell University
{engin,sam}@csl.cornell.edu
2 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94551
{bronis,schulzm}@l1lnl.gov

Abstract. Accurately modeling and predicting performance for large-
scale applications becomes increasingly difficult as system complexity
scales dramatically. Analytic predictive models are useful, but are dif-
ficult to construct, usually limited in scope, and often fail to capture
subtle interactions between architecture and software. In contrast, we
employ multilayer neural networks trained on input data from execu-
tions on the target platform. This approach is useful for predicting many
aspects of performance, and it captures full system complexity. Our mod-
els are developed automatically from the training input set, avoiding the
difficult and potentially error-prone process required to develop analytic
models. This study focuses on the high-performance, parallel applica-
tion SMG2000, a much studied code whose variations in execution times
are still not well understood. Our model predicts performance on two
large-scale parallel platforms within 5%-7% error across a large, multi-
dimensional parameter space.

1 Introduction

With rising architecture and software complexity, it becomes increasingly diffi-
cult to accurately model and predict performance for large-scale applications.
Analytic models often fail to capture subtle interactions between architecture
and software. Furthermore, they usually must be constructed manually in a long
and often error-prone process. In this paper, we address these problems with the
help of machine learning techniques. We gather performance samples from mul-
tiple executions of an application, and use this data to automatically construct
performance models by training multilayer neural networks. Since we take input
data from executions on the target platform, we capture full system complexity,
without having to manually model architectural details. Our approach is useful
for a wide range of application performance prediction problems. Our techniques
are particularly well suited to mining performance databases or to extend fast,
parameter-specific models.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 196-205, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Approach to Performance Prediction for Parallel Applications 197

80
70 | .
-
+ v 1
z % N
o L I W
E %0 ;gj ;g§ it
L s TnEL 43 ™ %* ;,
s NIt
5 Aiétf% Hi ¢ F +
230+ Ryt n s HELh
b S L g2 §§§ £
1| e e + o+, 1
20 ¢ partl gé*i by b et
¥ : T Q&;—té***f* i
. : S *ta&i*i‘g*#ﬁ :

0 100000 200000 300000
Working Set Size (Nx*Ny*Nz)

Fig. 1. Execution times for SMG2000 for varying processor workloads (Nx,Ny,Nz) and
processor topologies (Px,Py,Pz) running on 512 nodes on BlueGene/L

Here we focus on SMG2000, a semicoarsening multigrid solver based on the
hypre library [1]. We develop application-specific performance models for par-
allel architectures, enabling prediction of runtime or other important charac-
teristics across a large input parameter space with high dimension. SMG’s six-
dimensional parameter space describes both shape of the workload per processor
and logical processor topology. These parameters have substantial impact on run-
time, as shown in Figure 1. For a fixed working set size—a fixed subvolume size
per CPU—runtime varies by up to 5x. Although SMG has been studied exten-
sively and an analytic model describing communication requirements exists [1],
the code’s variations in execution time are not well understood (partly due to
SMG’s complex, recursive algorithm). The analytic model is restricted to cu-
bic workloads and only describes communication complexity; it is not designed
to represent architectural details. Extending it for arbitrarily shaped workloads
is possible, but would be extremely complex, and the result would likely be
intractable. Worse, adding architectural features is infeasible. Our automatic,
empirical modeling approach overcomes these limitations without knowledge of
the application or algorithms.

We demonstrate how we use neural networks to construct our models, and we
identify the two major challenges of this approach: avoiding noise in the dataset,
and choosing an appropriate sampling technique for the training phase of the
neural network. The latter is necessary to avoid a bias toward short runtimes,
since those exhibit a higher relative error. To correct this skew, we develop new
functions that scale error by the runtime of the training samples. The resulting
model can predict SMG2000’s performance on two large-scale parallel platforms
within 5%-7% error across a large, multi-dimensional parameter space.

2 Approach

We use machine learning models to predict application performance across a
large, multidimensional parameter space defined by program inputs. We first

198 Engin Ipek et al.

collect a sample dataset by choosing a collection of points spread regularly across
the parameter space; we obtain performance results for these on actual hardware.
We reserve a portion of this dataset as a test to report the final performance
of our models, and never train on this data. Next, we randomly separate the
remainder of the data into training and validation sets, where the former is used
to adjust model parameters through a learning algorithm, and the latter is used
to assess the performance of the current model at each step during training.
After training, we query the final model to obtain predictions for points in the
full parameter space, and report the accuracy of our model on points not included
in our training or validation sets.

2.1 Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning models that
map a set of input parameters to a set of target values. Figure 2 shows an exam-
ple neural network architecture. The network is composed of a set of units that
process the value at their inputs and produce a single scalar value. These values
are then multiplied by a set of weights and communicated to other units within
the network. Each edge in Figure 2 represents a weight, and each node represents
a unit. The set of incoming edges at each unit indicates the set of values com-
municated to it. In this specific network architecture, the input parameters are
placed at the first (lowest) layer, and information flows from bottom to top. The
units that produce the final predictions are output units, and those that receive
input parameters are input units (input units simply pass incoming values to
all of their outgoing edges). In addition, one or more layers of hidden units may
be part of the network architecture. Hidden units process the outputs of other
units, and, in turn pass their own outputs to another set of (hidden or output)
units. The representational power of a neural network (the set of functions it
can represent) can be increased by adding hidden units and layers. Every unit
in a given layer receives values from all units in the layer below it, and hence
this type of ANN architecture is called a multilayer fully connected feedforward
neural network. Figure 2 shows a feedforward neural network with three input
units, one output unit, and a single layer of four hidden units.

At each step during training, a new example is presented at the network’s
input layer. At each layer, every unit forms a weighted sum of the incoming values
and associated weights. This sum is then processed by an activation function
that produces the output of that unit. In this study, we use fully connected
feedforward neural networks with the sigmoid function as the activation function.
Figure 3 shows the operation of the sigmoid activation function on the weighted
sum of inputs (depicted immediately right of the summation in Figure 3) to form
the unit’s result output. After a prediction on the current example, the weights
in the network are updated in proportion to their contribution to the error.

Other types of predictive models may be applied to performance (see Sec-
tion 4). Here we limit our scope to ANNs for three reasons. First, ANNs permit
target values and inputs/outputs to be discrete, continuous, or a mix, allowing
them to perform well in both regression and classification problems and to learn

An Approach to Performance Prediction for Parallel Applications 199

Output
A

Q)

PTARNN
O

OO0
Fr 7

Input 1 Input 2 Input 3

Fig. 2. A feedforward neural network with a single hidden layer

net = Sum(wi * xi) o=

O<=i<=n 1+e—net

Fig. 3. A network unit with sigmoid threshold activation function (reproduced from
Mitchell [3])

Actual and Predicted Runtimes Percentage Error Across Parameter Space
1 T T T — " T 180 T T T T T
Predicted Runtime - Percentage Error
09 r] 160
" 3
Q
: 1o
é P 100 F
T g :
B ook
£ E 60 [
2 40
20
O i 0 L 2 L P
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Experiment Number Training Set Size
(a) (b)

Fig. 4. Comparison of (a) predicted vs. actual performance and (b) percentage error

from various types of attributes describing performance prediction problems.
Second, ANNs need not know the form of the target function in advance. Third,
ANNSs tend to work well with possibly noisy data, making them ideal for training
on performance results collected in the presence of system noise.

2.2 Application to Performance Prediction

Figure 4 shows results of an initial performance prediction study consisting of
13.2K data points. A standard, fully connected feedforward neural network with
16 hidden units is trained on 10K points, and predictions are made on the re-

200 Engin Ipek et al.

maining 3.2K. Despite training on a large portion of the parameter space, in
most cases model accuracy is low. Average test error is 13.8% with a standard
deviation of 14.8% —excessively high for performance prediction purposes.

Poor accuracy of standard feedforward neural networks on this dataset re-
sults from two factors. First, system activities sharing resources with application
threads create nondeterministic variations in performance, yielding significant
noise in the dataset. Accuracy on future runs can never exceed this noise level.
This imposes a fundamental limit on model accuracy for future datasets. Second,
the training algorithm that adjusts network weights is unsuitable for reducing
percentage error. By default, the backpropagation training algorithm tries to
reduce absolute mean-squared-error. During training, examples on which the
model makes higher absolute error are given greater weight, even though this
error may be small in relative terms as a percentage of the target value. Given
two test cases t1 and to, where runtime of ¢1 is 100 seconds and of ¢, is 1 second,
an error of 0.5 seconds is given equal weight for both, even though the percentage
error varies drastically between the two examples (0.5% vs. 50%).

2.3 Required Network Refinements

Applying ANNs to application performance prediction requires both a mech-
anism for reducing noise during data collection and a technique to train the
networks for percentage error. Reducing the noise level dictates that the differ-
ence between performance results from two different runs with the same input
parameters be kept as small as possible. On certain computing platforms where
operating system activity is minimal (e.g, BlueGene/L), this problem is either
nonexistent or negligible. On other platforms, we find that reserving at least one
processor per node for system processing greatly alleviates noise.

Once noise levels are acceptably diminished, a mechanism for training the
neural network to reduce percentage error is needed. We combine a sampling
technique called stratification, and an ensemble learning mechanism called bag-
ging (bootstrap aggregation). Stratification replicates each point in the dataset
by a factor proportional to the inverse of its target value such that, during train-
ing, the network sees points with small target values many more times than it
sees those with large absolute values. As a result, the training algorithm puts
varying amounts of emphasis on different regions of the search space, making
the right tradeoffs when setting weights to minimize percentage error. We apply
bagging to train an ensemble of models from the dataset, averaging predictions
from the ensemble to reduce model variance.

3 Experiments

We present results of applying our technique to performance prediction of SMG
on the Thunder and BlueGene/L systems at Lawrence Livermore National Labo-
ratory. Architectural features of these systems on which data is taken are detailed
in Table 1. Table 2 shows program parameters. For the BlueGene/L dataset, we

An Approach to Performance Prediction for Parallel Applications 201

Actual and Predicted Runtime (Low Noise / Stratification)

1
09
0.8 |
0.7 |
0.6
05
0.4
0.3
0.2 |
0.1

Percentage Error Across Test Set

P‘ercen‘tage‘Error‘

" Predicted Runtime’

Normalized Runtime
Percentage Error

0 o L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Experiment Number

Experiment Number

(a) (b)

Fig. 5. Comparison of (a) predicted and actual performance and (b) percentage error

Table 1. Platform parameters

BlueGene/L Thunder
Processor IBM BlueGene Intel Itanium 2
Frequency 700MHz 1.4GHz
L1 ICache 32KB 32KB
L1 DCache 32KB 32KB
L2 Cache 2KB (Prefetch Buffer) 256KB
L3 Cache 4MB 4MB
SDRAM 512MB 8GB DDR266
3D Torus + Fat Tree
Network Global Combine/Broadcast Tree Network (Quadrics QsNet)
Processors Used/Node 1/2 3/4
Number of Nodes Used 512 64

Table 2. Application parameters

Parameter BlueGene/L Thunder
Nx 10-510 in steps of 20 10-250 in steps of 30
Ny 10-510 in steps of 20 10-250 in steps of 30
Nz 10-510 in steps of 20 10-250 in steps of 30
Px 1,8,64,512 1,3,4,12,16,48,64,192
Py 1,8,64,512 1,3,4,12,16,48,64,192
Pz 1,8,64,512 1,3,4,12,16,48,64,192

Px*Py*Pz 512 192

Nx*Ny*Nz 1000>Nx*Ny*Nz>343000 216000>Nx*Ny*Nz>9261000

keep 1K random samples for final testing only (we do not train on these points)
and report the accuracy of our model on this data. Similarly, we separate 1.3K
data points for testing in the Thunder dataset.

Figure 6(a) shows a learning curve that indicates how the accuracy of the
neural network changes as the size of the training set is increased for the Blue-
Gene/L dataset. At a training set size of 250 points, the average error on the

202 Engin Ipek et al.

g Learning Curves for BG/L g Learning Curves for Thunder
s 12 T T T T S 13 T T T T
= N Average Error —— = Average Error ——
ks 11| \ 3 12 Rk]
o \ o \
a 10 X a 11r \
B [B N
g \ g 10
5 0 5 °F
%) _ 5} L
g ° T R
S 7y — s 7
g S~ g 6 -
w6 i —
g s | [
8 5 8 4 I
o 0 500 1000 1500 2000 2500 @ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
< Training Set Size < Training Set Size
(a) (b)

Fig. 6. Learning curves showing how average error and standard deviation improve
with training set size for (a) BlueGene/L and (b) Thunder

test set is nearly 12.3%, and the standard deviation of error across the test set
is 8.7%. At this point, the training set is too small and contains too little in-
formation to build a highly accurate model. As training set size increases, error
decreases sharply, showing that the model benefits significantly from the addi-
tional information included in the dataset at each point. Eventually, the curves
begin to flatten, as any additional data presented to the network contains only
incremental new information. When 2.25K of the 3.25K total points are used
for training, the error rate of the of the network falls to 6.7%. Similarly, the
standard deviation of the error decreases with increasing training set size.

Thunder’s learning curves (Figure 6(b)) follow the same trends. With 500
data points, the error rate on the test set is 12.28%. The error falls sharply as
more data points are added, reaching 5.4% at a training set size of 3K. Fur-
ther increases in training set size result in diminishing improvements, and at a
training set size of 5K points, the network achieves 4.9% error. Similarly, the
standard deviation ranges from 8.4%-4.4% between 500-5K points.

The results indicate that the accuracy of our approach can be quite high given
enough training points. The size of the parameter space is much, much larger
than the total number of points we have collected. We sparsely step through
the SMG2000 parameters to obtain our dataset. Therefore, our approach is eas-
ily applicable to learning from performance databases that contain results for a
sparse sampling of parameters. In addition,the amount of time required to train
a model ranges between 1-15 minutes on a typical workstation with a 3.0GHz
Pentium 4 processor and 1GB of main memory, making it easy to build parame-
terized performance models much more efficiently than most analytical models.

4 Related Work

Other approaches to performance prediction include analytic models. Space pre-
vents our providing a full treatment of related work, but Karkhanis and Smith [7]
give an excellent review of prior work in architectural performance prediction.

An Approach to Performance Prediction for Parallel Applications 203

Marin and Mellor-Crummey [7] semi-automatically measure and model pro-
gram characteristics, predicting application behavior based on properties of the
architecture, properties of the binary, and application inputs. Their toolkit pro-
vides a set of predefined functions, and the user may add customized functions
to this library if the set of existing functions is too restrictive. In contrast to
our work, they vary the input size in only one dimension, and they cannot ac-
count for some important architectural parameters, such as cache associativity
in their memory reuse modeling. Our six-dimensional space would make use of
their approach much more difficult, significantly increasing the number of re-
quired samples as well as the search space for the best analytic function (as a
weighted sum of given base functions along each parameter dimension).

Carrington et al. [2] develop a framework for predicting performance of sci-
entific applications, demonstrating its effectiveness on LINPACK and an ocean
modeling application. The approach is built on a convolution method that repre-
sents a computational mapping of an application signature onto a machine pro-
file. Simple benchmark probes create the machine profiles, and a separate tool
generates the application signatures. Extending the convolution method allows
them to go from modeling kernels to whole benchmarks to full-scale HPC appli-
cations [3]. This automated approach relies on the generation of several traces,
delivering predictions with accuracies of between 4.6 and 8.4%, depending on the
sampling rates of those traces. Using full traces obviously gives the best perfor-
mance, but such trace generation can slow application execution by almost three
orders of magnitude. Some applications demonstrate better predictability than
others, and for these trace reduction techniques work well: prediction accuracies
range from 0.1 to 8.7% on different platforms. This work is complementary to
our own, and the two approaches may work well in combination. The analytic
models could provide the bootstrap data, and our models could give them full
application input parameter generality.

Kerbyson et al. [6] present a highly accurate, predictive analytical model
that encompasses the performance and scaling characteristics of SAGE, a mul-
tidimensional hydrodynamics code with adaptive mesh refinement. As with the
model presented here, inputs to their parametric model come from machine per-
formance information, such as latency and bandwidth, along with application
characteristics, such as problem size and decomposition. They validate the pre-
diction accuracy of the model against measurements on two large-scale ASCI
systems. In addition to predicting performance, their model can yield insight
into performance bottlenecks. Their application-centric modeling approach re-
quires static analysis of the code: a detailed model must be developed for each
application of interest.

Karkhanis and Smith [5] construct a first-order model of superscalar mi-
croprocessors. Their approach is intuitive, provides insight, and is reasonably
accurate, finding that their performance estimates are between five and 13% ac-
curate with respect to detailed simulations of the applications they study. The
model’s analytic core incorporates cache and branch predictor statistics gath-
ered from functional-level trace driven simulation. They target uniprocessors,

204 Engin Ipek et al.

and while intuitive, the approach is largely ad hoc and currently limited in the
architectural features it models. Their model is more appropriate for studying
proposed architectures, whereas we predict performance on existing platforms.

5 Conclusions and Future Work

We have presented a machine learning approach to application performance
prediction—multilayer neural networks—and have refined and adapted this ap-
proach to yield highly accurate results for SMG2000 on two different high-
performance platforms. Our approach is especially attractive for its ease of use
and its obliviousness to details of application internals. This makes it ideal for
mining performance databases to make performance predictions. While promis-
ing, this approach still presents some challenges in making it generally useful
in the absence of an existing database. The time required to gather each data
point in the training set is larger than we would like, for instance. Reducing the
number of points required in our training datasets is one promising direction of
current research.

Acknowledgments

Part of this work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48 (LLNL Document Number UCRL-
CONF-212365) and by by the National Science Foundation under award ST-
HEC 0444413. Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation, the Lawrence Livermore National
Laboratory, or the Department of Energy. The authors thank Rich Caruana and
the anonymous referees for their valuable feedback on this work.

References

1. P. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening multigrid on distributed
memory machines. SIAM J. Sci. Computing, 21:1823-1834, 2000.

2. L. Carrington, A. Snavely, X.Gao, and N. Wolter. A performance prediction frame-
work for scientific applications. In International Conference on Computational Sci-
ence Workshop on Performance Modeling and Analysis (PMA03), pages 926-935,
June 2003.

3. L. Carrington, N. Wolter, A. Snavely, and C.B. Lee. Applying an automatic frame-
work to produce accurate blind performance predictions of full-scale HPC applica-
tions. In Department of Defense Users Group Conference, June 2004.

4. R.D. Falgout and U.M. Yang. hypre: a Library of High Performance Preconditioners.
In Proceedings of the International Conference on Computational Science (ICCS),
Part III, LNCS vol. 2331, pages 632-641, April 2002.

An Approach to Performance Prediction for Parallel Applications 205

. T.S. Karkhanis and J.E. Smith. A first-order superscalar processor model. In
Proceedings of the 81st Annual International Symposium on Computer Architecture,
pages 338-349, June 2004.

. D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, A.J. Wasserman, and M. Gittings.
Predictive performance and scalability modeling of a large-scale application. In
Proceedings of IEEE/ACM Supercomputing ’01, November 2001.

. G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions for
scientific applications using parameterized models. In Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computer Systems (Sigmetrics
’04), pages 2-13, June 2004.

. T.M. Mitchell. Machine Learning. WCB/McGraw Hill, Boston, MA, 1997.

Topic 3
Scheduling and Load-Balancing

Denis Trystram, Michael Bender, Uwe Schwiegelshohn, and Luis Paulo Santos

Topic Chairs

More and more parallel and distributed systems (clusters, grid and global com-
puting) are available all over the world, opening new perspectives for devel-
opers of a large range of applications including data mining, multi-media, and
bio-computing. However, this very large potential of computing power remains
unexploited to a large degree, mainly due to the lack of adequate and efficient
software tools for managing the resources. Scheduling problems address the al-
location of those resources over time to perform tasks being parts of processes
and are the key components in resource management.

As processors are the source of computing power of parallelism, it is cru-
cial to carefully managing them in order to achieve a high efficiency of parallel
systems. In most new parallel architectures and distributed platforms, the pro-
cessors or machines are spatially distributed and communicate via various kinds
of interconnections. Therefore, the communication medium is another important
resource that must be considered during scheduling. New parameters like hetero-
geneity, the hierarchical character of memory, versatility of the context, and large
scale computing should be taken into account as well. As conventional models
and techniques cannot always be used, it is necessary to propose, implement and
validate new approaches.

Therefore, the classical topic of Scheduling and Load Balancing remains very
active in the perspective of new parallel and distributed systems. The subjects
presented in Topic 3 cover all aspects related to scheduling and load-balancing
including applications, system level techniques, theoretical foundations and prac-
tical tools. Some new trends and emerging models are also presented and dis-
cussed.

There were 31 papers submitted to this topic. Each submitted paper has been
reviewed by 4 reviewers, and finally 11 papers were chosen to be included into
the final program. They reflect the good and necessary synergy between theo-
retical approaches (models, analysis of algorithms, complexity, approximability
results, multi-criteria analysis) and practical realizations and tools (new meth-
ods, simulation results, actual experiments, specific tuning for an application).

Finally, we would like to express our thanks to our colleagues, experts in the
fields, who helped in the reviewing process.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, p. 207, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Balancing Parallel Adaptive FEM Computations
by Solving Systems of Linear Equations*

Henning Meyerhenke and Stefan Schamberger

Universitéat Paderborn,
Fakultét fiir Elektrotechnik, Informatik und Mathematik
Fiirstenallee 11, D-33102 Paderborn
{henningm, schaum}@uni-paderborn.de

Abstract. Load balancing plays an important role in parallel numer-
ical simulations. State-of-the-art libraries addressing this problem base
on vertex exchange heuristics that are embedded in a multilevel scheme.
However, these are hard to parallelize due to their sequential nature. Fur-
thermore, libraries like Metis and Jostle focus on a small edge-cut and
cannot obey constraints like connectivity and straight partition bound-
aries, which are important for some numerical solvers.

In this paper we present an alternative approach to balance the load in
parallel adaptive finite element simulations. We compute a distribution
that is based on solutions of linear equations. Integrated into a learning
framework, we obtain a heuristic that contains a high degree of paral-
lelism and computes well shaped connected partitions. Furthermore, our
experiments indicate that we can find solutions that are comparable to
those of the two state-of-the-art libraries Metis and Jostle also regarding
the classic metrics like edge-cut and boundary length.

Keywords: Parallel adaptive FEM computations, load balancing, graph
partitioning.

1 Introduction

Finite Element Methods (FEM) are used extensively by engineers to analyze a
variety of physical processes which can be expressed via Partial Differential Equa-
tions (PDE). The domain on which the PDEs have to be solved is discretized
into a mesh, and the PDEs are transformed into a set of equations defined on
the mesh’s elements (see e. g. [1]). These can then be solved by iterative methods
such as Conjugate Gradient (CG) and Multigrid. Due to the very large amount
of elements needed to obtain an accurate approximation of the original problem,
this method has become a classical application for parallel computers. The paral-
lelization of numerical simulation algorithms usually follows the Single-Program
Multiple-Data (SPMD) paradigm: Each processor executes the same code on
a different part of the data. This means that the mesh has to be split into P
sub-domains and each sub-domain is then assigned to one of the P processors.
To minimize the overall computation time, all processors should thereby roughly

* This work is supported by the German Science Foundation (DFG) project SFB-376
and by DFG Research Training Group GK-693.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 209-219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

210 Henning Meyerhenke and Stefan Schamberger

contain the same amount of elements. Since iterative solution algorithms per-
form mainly local operations, i.e. data dependencies are defined by the mesh,
the parallel algorithm mainly requires communication at the partition bound-
aries. Hence, these should be as small as possible. Depending on the application,
some areas of the simulation space require a higher resolution and therefore
more elements. Since the location of these areas is not known beforehand or can
even vary over time, the mesh is refined and coarsened during the computation.
However, this can cause imbalance between the processors’ load and therefore
delay the simulation. Hence, the element distribution needs to be rebalanced.
The application is interrupted and the at this point static repartitioning prob-
lem is solved. Though this interruption should be as short as possible, it is also
important to find a new balanced partitioning with small boundaries that does
not cause too many elements to change their processor. Migrating elements can
be an extremely costly operation since large amounts of data have to be sent
over communication links and stored in complex data structures.

The described problem can be expressed as a graph (re-)partitioning problem.
The mesh is transformed into a graph where the vertices represent the compu-
tational work and the edges their interdependencies. Due to the complexity of
the problem, the large input sizes and the given time constraints, existing li-
braries that address the graph (re-)partitioning problem are based on heuristics.
State-of-the-art implementations like Metis [2], Jostle [3] or Party [1] follow the
multilevel scheme [5]. Vertices of the graph are contracted according to a match-
ing and a new level consisting of a smaller graph with a similar structure is
generated. This is repeated, until in the lowest level only a small graph remains.
The (re-)partitioning problem is then solved for this small graph and vertices in
higher levels are assigned to partitions according to their representatives in the
next lower level. Additionally, a local improvement heuristic is applied in every
level. By exchanging vertices between partitions, it reduces the number of cut
edges or the boundary size as well as balances the partition sizes. Hence, the final
solution quality mainly depends on this heuristic. Implementations are usually
based on the Kerninghan-Lin (KL) heuristic [6], while the local refinement in
Party is derived from theoretical analysis with Helpful-Sets (HS) [7].

To address the load balancing problem during parallel computations, dis-
tributed versions of the libraries Metis and Jostle have been developed. Both of
them apply about the same multilevel techniques as their single processor ver-
sion, but special attention must be paid to the local improvement heuristic due
to its sequential nature. As an example, a coloring of the graph’s vertices assures
in the parallel library ParMetis [3] that during the KL refinement no two neigh-
boring vertices change their partition simultaneously and therefore destroy the
consistency of the data structures. In contrast to Metis, where vertices stay on
their partition until a new distribution has been computed, the parallel version
of Jostle [9] maps each sub-domain to a single processor and vertices which mi-
grate do so already during the computation of the repartitioning. Usually, Metis
is very fast while Jostle takes longer but often computes better solutions. The
HS heuristic in Party exchanges sets between partitions that sometimes contain

Balancing Parallel Adaptive FEM Computations 211

a large number of vertices. Hence, even more overhead would be necessary to
ensure data consistency in a parallel implementation.

While the global edge-cut is the classical metric that most graph partition-
ers optimize, it is not necessarily the best metric to follow because it does not
model the real communication and runtime costs of FEM computations as de-
scribed in [10]. Hence, different metrics have been implemented inside the local
refinement process modeling the real objectives more closely. In [11], the costs
emerging from vertex transfers is taken into consideration while Metis is also
capable of minimizing the number of boundary vertices.

A completely different approach is undertaken in [12]. Since the convergence
rate of the CGBI domain decomposition solver in the PadFEM environment
depends on the geometric shape of a partition, the integrated load balancer iter-
atively decreases the aspect ratios by applying a bubble like algorithm. Although
different to the multilevel-schemes, this approach also contains a strictly sequen-
tial section and suffers from some other difficulties that are described in [13].
However, the latter paper introduces an implementation that eliminates most
of these problems by replacing the sequential growing mechanism of the bubble
framework by a few iterations of the first order diffusion scheme (FOS) [14].
This leads to a graph partitioning algorithm that contains a high degree of par-
allelism and produces well shaped partitions. Unfortunately, it is unclear how
many FOS iterations must be performed. This question is overcome in [15] intro-
ducing FOS/A. This diffusion scheme does not balance the load but converges
to a state with a load distribution similar to the situation after a few FOS iter-
ations. Its drawback is the long execution time, and its fine-grain parallelism is
hard to exploit on today’s processors.

In this paper we present the (re-)partitioning heuristic MF(¢), which is based
on the same framework as the implementations from [13] and [15]. However, in
contrast to the latter that distribute the vertices of a graph according to their
load, our approach is based on the flow over the edges. The main advantage
is that the computation of a || - ||,-minimal balancing flow, which is equivalent
to solving a system of linear equations, has been studied very well and that a
variety of methods addressing it exist. Among them are faster diffusion schemes
like the second order scheme (SOS) [11] as well as algorithms that require more
global knowledge like CG solvers. Thus, one can choose the most appropriate
implementation according to the underlying hardware. The remaining part of
the paper is organized as follows. The next section briefly recaptures the bubble
framework from [12] and explains the main idea. In Sec. 3 we propose a new
growing mechanism which we integrate into this framework in Sec. 4. Afterwards,
we present our experiments in Sec. 5 before we give a short conclusion.

2 The Bubble Framework

The idea of the bubble framework is to start with an initial, often randomly
chosen vertex (seed) per partition, and all sub-domains are then grown simulta-
neously in a breadth-first manner. Colliding parts form a common border and

212 Henning Meyerhenke and Stefan Schamberger

<
>

Fig. 1. The three operations of the learning bubble framework: Init: Determination of
initial seeds for each partition (left). Grow: Growing around the seeds (middle). Move:
Movement of the seeds to the partition centers (right).

keep on growing along this border — “just like soap bubbles”. After the whole
mesh has been covered and all vertices of the graph have been assigned this
way, each component computes its new center that acts as the seed in the next
iteration. This is usually repeated until a stable state, where the movement of
all seeds is small enough, is reached. This procedure is based on the observation
that within “perfect” bubbles, the center and the seed vertex coincide. Figure 1
illustrates the three main operations.

The growing mechanisms from [13] and [15] are based on diffusion. The main
idea behind applying it in a graph partitioning heuristic is the fact that load
primarily diffuses into densely connected regions of the graph rather than into
sparsely connected ones. Following this observation one can expect to identify
seeds inside such regions and therefore small partition boundaries in less dense
areas. Additionally, since the load spreads around a seed vertex, the partitions
should be connected and well shaped.

The remaining part of this paper is based on the following thought: If load
diffuses faster into dedicated regions, then the flow over the edges directing
there must be higher than the flow over edges pointing elsewhere. Hence, a
|| - [|;-minimal flow should provide similar information as a load distribution
computed by the FOS/A scheme from [15], with the advantage that a variety of
faster methods are known to compute it.

3 A Growing Mechanism Based on Linear Equations

In this section we propose a new growing mechanism that is based on a || - ||5-
minimal flow in a network. This network G is composed of the dual graph G
corresponding to the mesh, and an extra vertex x that is connected with every
other vertex of G. All edges e € E of GG are assigned a weight of w, = 1 while
the weight of the edges incident to x are set to some constant ¢ > 0. Now,
independently for each partition p, we place a total of |V| load equally on p’s
vertices and compute a || - ||,-minimal flow f, over the edges that transports
all load to the extra vertex x. Since we minimize f, according to the || - [|2-
norm, the load will not be sent directly to x, but also makes some ‘detours’ via
other vertices in G. According to the idea mentioned in the last section, the flow
thereby prefers densely connected regions of the graph. The weight constant ¢

Balancing Parallel Adaptive FEM Computations 213

determines the spreading of the flow. If ¢ is large, it is cheaper to send most
load directly to x, while if ¢ is small, the costs of the ‘detour’ into the graph
are compensated by less utilized edges incident to x that can be chosen. In the
extreme cases, if ¢ — 0o, all load is sent directly to z, while if ¢ — 0, the || - ||5-
minimal flow will converge towards the balancing flow that distributes the load
equally in the original graph G.

The assignment of the vertices to the partitions is based on the amount of
flow over the edges incident to z. We define a height function b, : VU {z} — R
for each partition p, such that h,(v) = hy(u) + Fo(u)y - W) Vu € adj(v). Since
fp is the || - ||,-minimal flow, this function is well defined and unique except for
a constant, which we determine by setting the height of x to hy(z) = 0. Now,
we assign each vertex to that partition with the maximal height, meaning that
the new partitioning 7 is defined by w(v) = p : hyp(v) > hy(v)Vg € {1,..., P}. If
the maximum is not unique, we choose one of the eligible partitions arbitrarily.

Formally, let G = (V, E) be an undirected, connected graph and A € {—1,0,
+1HVIXIE] jits unweighted vertex-edge incidence matrix. A contains in each col-
umn corresponding to edge e = (u, v) the entries —1 and +1 in the rows u and v,
and 0 elsewhere. The unweighted Laplacian L € ZIVI*IVI is defined as L = AAT.
If we extend G by an additional vertex x and connect it to every other vertex with
an edge of weight ¢, we obtain the graph Gy = (V U {z}, EU {{v, 2} :v € V})
with edge weights we = 1 Ve € E and wy, ,3 = ¢ Vv € V. The weighted Lapla-
cian matrix Ly € RIVIFIXIVIFL of Gy is defined as Ly = AyWA,T, where Ay
denotes the unweighted vertex-edge incidence matrix of Gg, and the entries of
the diagonal matrix W € RIZITIVIXIEIHIVI are set to (wee) = we. Hence, with T
being the identity, Ly can be written as:

-9
L+ ¢l :
L, - ’ | (1)
-9
6 =6 V]ee
Our goal is to compute a || - |,-minimal flow f, from the vertices of the

partition p to the additional vertex x. By setting the vectors s,,t € RIVIFT to

)= { WV =l 2 s =p) IV v

0 : otherwise 0 : otherwise

we place |V| load equally on p’s vertices and the corresponding ‘negative’ load
on x. Then, we have to solve the quadratic minimization problem

1
min! 2prW71fp with respect to Agfp =sp — 1 . (2)

Due to [10], we know that we can find the optimal f, for (2) by first solving the
linear equation

Lgh, =sp —t . (3)

214 Henning Meyerhenke and Stefan Schamberger

o Algorithm MF(G, w, ¢, 1, i)

o1 in each loop [
02 if is undefined
03 m = determine-seeds(G) /* initial seeds */
04 else
05 parallel for each partition p /* contraction */
06 solve Ly Ap = sp — t and compute hy

_ pihp(v) > hp(u)Vu € V
o m(v) = { —1: otherwise
09 parallel for each partition p /* consolidation */
10 solve Ly, = sp — t and compute hyp
12 w(v) =p : hp(v) > he(v)Vg € {1,..., P}
13 in each iteration 1
14 parallel for each partition p /* consolidation with ... */
15 solve Ly, = sp — t and compute hyp
17 w(v) =p : hp(v) > he(v) Vg € {1,..., P}
18 scale-balance(m) /* ... scale balancing */
19 greedy-balance(r) /* greedy balancing */
20 return smooth(m) /* smoothing */

Fig. 2. Sketch of the MF(¢) heuristic.

L, is sparse and symmetric positive semidefinite. Since (s, — ¢, 1) = 0 and the
rank of Ly is [V, the solution of (3) is unique except for a constant. Neverthe-
less, we now can determine the unique || - [|,-minimal flow from the computed
potential A, as

fp(u,v) = W{u,v} ()\Pu -)\PU) . (4-)

Since we are interested in the height function h,(v), we can skip the flow com-
putation (4) and assign hy(v) = Ap, — Ap,. The new partitioning 7 can then be
determined as described above, while the new partition seed is the vertex with
the highest load according to h,.

4 The MF(¢) Heuristic

In this section we describe the integration of the proposed growing mechanism
into the bubble framework. The resulting algorithm is sketched in Fig. 2. It
can either be invoked with or without a valid partitioning =. In the latter case,
we determine initial seeds randomly (line 3). Otherwise, we contract the given
partitions (lines 5-8) applying the mechanism proposed in Sec. 3. Note that in ei-
ther case 7 only contains a single vertex for each partition when entering line 9.
Following the bubble framework, we then grow the partitions from the seeds.
However, if we determined single seeds right after the last contraction, these
would be the same ones as before and no movement would occur. Hence, it is
necessary to apply at least one consolidation (lines 9-12) between two contrac-
tions. In contrast to a contraction that determines a single vertex per partition

Balancing Parallel Adaptive FEM Computations 215

(line 8), a consolidation results in a partitioning (lines 12/17). In the following
step, the load is placed equally on the vertices of the whole partition, which
causes it to move into denser regions of the graph as mentioned before.

To further enhance the solution quality, additional consolidations can be
performed (lines 13-18). Furthermore, these are used for balancing by scaling
the height functions h,,. If a partition is too small, h,, is multiplied by a constant
b, > 1, while if it is too large, a constant b, < 1 is chosen. Although the choice
of b is limited because no partition must become empty, this approach can find
almost balanced solutions in most cases. To ensure a certain size, we perform a
greedy balancing operation (line 19), where we compute a || - ||,-minimal flow in
the partition graph and move the vertices that cause the least error according to
the height functions. The whole learning process is then repeated several times.
Before returning the partitioning 7, we migrate vertices if the number of their
adjacent vertices in another partition is larger than the number in the current
partition. This compensates numerical imprecisions that occur during the flow
computation and further smoothes the partition boundaries. However, if the
number of vertices in a partition is small compared to its boundary length, it
might also lead to a higher imbalance.

An interesting point is the lack of an explicit objective function. Except for
the balancing, the MF(¢) heuristic does not contain any directives what metric
to minimize. This is also the case for the algorithms from [13, 15].

The run-time of MF(¢) greatly depends on the linear equation solver. Cur-
rently, we apply a basic CG implementation. However, due to the special struc-
ture of Ly, several optimizations are possible. As indicated in lines 5, 9 and 14,
all P linear systems can be solved independently. Hence, even if we apply solvers
other than diffusive ones which require more global knowledge, a large amount
of parallelism remains.

5 Experiments

In this section we describe our experiments with the new heuristic MF(¢) and
compare its solutions to those of the parallel versions of the state-of-the-art
graph (re-)partitioning libraries Metis and Jostle. Furthermore, we include the
results of the Party /DB library from [15]. The benchmark instances are created
as described in [17] and are available via [18]. Each benchmark consists of 101
frames, each containing a graph of around 15000 vertices. Though the instances
are quite small, important observations can already be made. Due to space lim-
itations we only present the data of a single benchmark here. The results of the
omitted experiments are similar, however.

The libraries Metis (version 3.1) and Jostle (version 3.0) both offer a large
number of options. For the presented evaluation, we chose the recommended
values from their manual, respectively, and left the remaining parameters at
their default. This means that Metis operates with an #tr value of 1000.0 and
Jostle uses the options threshold = 20, matching = local, imbalance = 3. Note
that Jostle seems to ignore the imbalance setting and computes totally balanced

216 Henning Meyerhenke and Stefan Schamberger

Fig. 3. Partitionings in frame 50 of the ‘ring’ benchmark computed by Metis (left),
Jostle (middle) and the MF(¢) heuristic (right).

partitions, except for the initial solution where the sequential versions of the
libraries are applied. The MF(¢) heuristic is invoked with ¢ = 0.01 and performs
2 loops with 4 iterations, respectively.

We measure the partitioning quality according to a number of metrics, be-
cause it is known that the edge-cut does not necessarily model the real costs [10].
Depending on the application, some of the metrics described in the following
might be more important than others. Ezternal edges: Number of edges that
are incident to exactly one vertex of partition p. Boundary vertices: Number of
vertices of partition p that are adjacent to at least one vertex from a different
partition. Send volume: The amount of outgoing information is the sum of the
adjacent partitions different to p that each vertex residing inside partition p has.
Receive volume: The amount of incoming information is the number of vertices of
partitions different to p adjacent to at least one vertex of partition p. Diameter:
The longest shortest path between two vertices of the same partition. Infinity,
if the partition is not connected. Outgoing migration: Number of vertices that
have to be migrated to a different partition. Incoming migration: Number of
vertices that have to be migrated from a different partition. Furthermore, the
quality of a partitioning depends on its balance. A less balanced solution allows
other metrics to improve further and makes comparisons less meaningful. Please
note that we have omitted the run-times since our prototypic implementation is
some magnitudes slower than its competitors.

In addition, for the listed metrics we consider three different norms. Given
the values x1,...,2p, the norms are defined as follows: | X||; == 21 + ...+ zp,
Xy = (@2 +---+2%)Y? and || X||, := max;—1._p ;. The || - |,-norm (summa-
tion norm) is a global norm. The global edge-cut belongs into this category (it
equals half the external edges in this norm). In contrast to the [- ||;-norm, the
|| - || o-norm (maximum norm) is a local norm only considering the worst value.
This norm is favorable if synchronized processes are involved. The || - ||,-norm
(Euclidean norm) lays in between the || - [|; and the || - || -norm and reflects the
global situation as well as local peaks, but is omitted here.

Figure 3 displays a single frame from the ‘ring’ benchmark. In this bench-
mark, a circle and the refined area around it rotate through a narrow ring. One

Balancing Parallel Adaptive FEM Computations 217

104 I
GMJJMK A Aat i ”

'”TXU‘“WWWVW WMWW\r

650 1 : : t ﬂ :
I\A D 2 1 T TeY My
o fa ﬁ oAl Ml LI - 1 te | A
HE RS S it ““V“‘“WW LT b AR Al

- ; A AT G Tl t il B Tl

)

:: /\ N r..mﬂ . KM
: i'a NWWWV‘ WW V\[\/\M\W il

boundary (sum)
boundary (ma

communication (sum)

diameter (sum)

migration (sum)

Fig. 4. Numerical results of the ‘ring’ benchmark for Metis (blue triangles), Jostle (red
squares), Party/DB (green pentagons) and MF(¢) (black circles).

can see that the partitions computed by Metis have quite large fringes, while
Jostle and especially MF(¢) find smoother partition boundaries. Though the
visual display of the mesh provides a first impression of the solution quality,
the numerical data of all 101 frames listed in Fig. 4 reveals many more details.
Looking at the first row, we can see that Metis usually allows up to 3% imbal-
ance, while Jostle ignores this parameter and totally equalizes the partition sizes.
The solutions of the MF(¢) heuristic usually have an imbalance of less than 3%,
while the Party/DB library has some difficulties to maintain an equal distribu-
tion. The next three rows contain the metrics ‘external edges’, ‘boundary length’
and ‘communication volume’. Their values are similar. The right column, dis-
playing the sum for all partitions, reveals that Metis computes the worst results.

218 Henning Meyerhenke and Stefan Schamberger

The three other libraries find comparable solutions, while MF(¢) and Party /DB
show a slight advantage. This advantage is larger in the maximum norm given in
the right column. One can see that the boundaries are more equally distributed
between all partitions when using the latter heuristics. Row 5 displays the par-
tition ‘diameter’. Missing values indicate unconnected partitions, what can be
observed several times for Metis and Jostle. MF(¢) cannot reach the results from
Part/DB in the || - ||;-norm, but this might result from the different imbalance
values. Concerning the maximum norm, there is no difference between all li-
braries in this benchmark. The last row shows the ‘migration’. Metis migrates
most, and from other experiments we know that it either transfers very few or
very many vertices. The values for the other libraries are smaller, and MF(¢)
and Party /DB behave more constant than Jostle, what we could also confirm in
other benchmarks. Concerning the parameters of MF(¢), our experiments show
that the number of loops/iterations is a trade-off between the first four met-
rics ‘external edges’, ‘boundary length’, ‘communication’ and ‘diameter’, and
the ‘migration’. A good choice of ¢ depends on the amount of vertices and the
number of partitions, but more theoretical analysis is needed to determine the
optimal value, which is beyond the scope of this paper.

6 Conclusion

We have presented the new graph (re-)partitioning heuristic MF(¢), which is
based on solutions of linear equations inside a learning framework. Our experi-
ments with FEM like graphs indicate that it can find comparable or even better
partitionings than state-of-the-art libraries concerning a variety of metrics, while
important additional constraints like connectivity can be fulfilled.

However, due to its longer run-time, the current implementation of MF(¢)
cannot compete with Metis or Jostle. Nevertheless, we think that further inves-
tigations are justified since a variety of techniques like the multilevel approach,
faster diffusion schemes, optimized CG preconditioners or multigrid solvers are
known to speed up the computations.

References

1. G. Fox, R. Williams, and P. Messina. Parallel Computing Works! Morgan Kauf-
mann, 1994.

2. G. Karypis and V. Kumar. MeTis: A Software Package for Partitioning Unstrc-
tured Graphs, Partitioning Meshes, [...], Version 4.0, 1998.

3. C. Walshaw. The parallel JOSTLE library user guide: Version 3.0, 2002.

4. S. Schamberger. Graph partitioning with the Party library: Helpful-sets in practice.
In Comp. Arch. and High Perf. Comp., SBAC-PAD’0/, pages 198-205, 2004.

5. B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs. In
Supercomputing’95, 1995.

6. B. W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. Bell
Systems Technical Journal, 49:291-308, 1970.

10.

11.

12.

13.

14.

15.

16.

17.

18

Balancing Parallel Adaptive FEM Computations 219

. J. Hromkovic and B. Monien. The bisection problem for graphs of degree 4. In
Math. Found. Comp. Sci. (MFCS ’91), volume 520 of LNCS, pages 211-220, 1991.
Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes
for repartitioning of adaptive meshes. J. Par. Dist. Comp., 47(2):109-124, 1997.

. C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh
partitioning. J. Parallel Computing, 26(12):1635-1660, 2000.

B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no
clothes? In Irregular’98, number 1457 in LNCS, pages 218-225, 1998.

L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured
meshes. J. Par. Dist. Comp., 52(2):150-177, 1998.

R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-opt. mesh part.
and load bal. for par. adap. FEM. J. Parallel Computing, 26:1555-1581, 2000.

S. Schamberger. On partitioning FEM graphs using diffusion. In HPGC, Intern.
Parallel and Distributed Processing Symposium, IPDPS’04, page 277 (CD), 2004.
R. Elsésser, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems, 35:305-320, 2002.

S. Schamberger. A shape optimizing load distribution heuristic for parallel adaptive
FEM computations. Accepted at PACT 05.

Y. F. Hu and R. F. Blake. An improved diffusion algorithm for dynamic load
balancing. Parallel Computing, 25(4):417-444, 1999.

O. Marquardt and S. Schamberger. Open benchmarks for load balancing heuristics
in parallel adaptive finite element computations. Accepted at PDPTA’05.

. S. Schamberger. http://www.upb.de/cs/schaum/benchmark.html.

CISNE: A New Integral Approach for Scheduling
Parallel Applications on Non-dedicated Clusters*

Mauricio Hanzich?, Francesc Giné!, Porfidio Hernandez?,
Francesc Solsona', and Emilio Luque?

! Departamento de Informatica e Ingenieria Industrial, Universitat de Lleida, Spain
{sisco,francesc}@eup.udl.es
2 Departamento de Informatica, Universitat Autonoma de Barcelona, Spain
mauricio@aows10.uab.es, {porfidio.hernandez,emilio.luque}@uab.es

Abstract. Our main interest is oriented towards keeping both local and
parallel jobs together in a non-dedicated cluster. In order to obtain some
profits from the parallel applications, it is important to consider time
and space sharing as a mean to enhance the scheduling decisions. In this
work, we introduce an integral scheduling system for non-dedicated clus-
ters, termed CISNE. It includes both a previously developed dynamic
coscheduling system and a space-sharing job scheduler to make better
scheduling decisions than can be made separately. CISNE allows multi-
ple parallel applications to be executed concurrently in a non dedicated
Linux cluster with a good performance, as much from the point of view
of the local user as that of the parallel application user. This is possible
without disturbing the local user and obtaining profits for the parallel
user. The good performance of CISNE has been evaluated in a Linux
cluster.

1 Introduction

There are several studies in the literature whose main aim is to determine the
interaction and effects of space-sharing (S.S.) and time-sharing (T.S.) policies.
Nevertheless, most of them are focused on dedicated environments. Furthermore,
many of these studies center on Gang Scheduling [, 2], combined with some kind
of backfilling [1] policy for doing the job distribution.

In this work, we want to show a new scheduling approach focused on non-
dedicated cluster systems. The use of non-dedicated systems for parallel compu-
tation is based on various studies [3] that prove the effectiveness of making good
use of the idle CPU cycles by executing distributed applications.

In this article, we present a new system named CISNE. Our system com-
bines S.S. and T.S. scheduling techniques, in order to take advantage of the idle
computer resources available across the cluster. CISNE is set up basically of a
dynamic coscheduling technique and a job scheduler.

* This work was supported by the MCyT under contract TIC 2001-2592 and partially
supported by the Generalitat de Catalunya -Grup de Recerca Consolidat 2001SGR-
00218.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 220-230, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CISNE 221

The dynamic coscheduling system, termed CCS, is the T.S. scheduling com-
ponent. Traditional dynamic coscheduling techniques [4] rely on the commu-
nication behavior of an application, to simultaneously schedule the communi-
cating processes of a job. Unlike those techniques, CCS takes its scheduling
decisions from the occurrence of local events, such as communication, mem-
ory, Input/Output and CPU, together with foreign events received from remote
nodes. This allows CCS to assure the progress of parallel jobs without disturb-
ing local users, and even using an MultiProgramming Level (MPL) greater than
one. In addition it is possible to re-balance the resources assigned to parallel
tasks throughout the cluster. CCS was previously developed [5], and now we
present the modifications that allows it to be incorporated into an integral clus-
ter scheduling system, such as CISNE.

The job scheduler, named LoRaS$, is the S.S. scheduling component of CISNE.
It is responsible for distributing the parallel workload among the cluster nodes.
This is performed by taking into account the state of the cluster system, the char-
acteristics of applications already running and those of the waiting jobs. Based
on those considerations and the coscheduling restrictions, different techniques
for assigning jobs to processors are proposed and evaluated in this article.

CISNE was implemented in a non-dedicated Linux cluster. In this framework,
we evaluated the interaction between T.S. and S.S. techniques. This experimen-
tation shows that our proposal obtains better performance than the rest of the
evaluated techniques, as much from the point of view of the local user as that
of the parallel applications user and the system administrator.

The remainder of this paper is as follows: in section 2 we explain the main
problems to solve and our goals for this article. In section 3 the CISNE system
is presented. The efficiency measurements of CISNE are performed in Section 4.
Finally, the main conclusions and future work are explained in Section 5.

2 T.S. and S.S. Interaction Problems

The choice of a dynamic coscheduler as a T.S. system is based on the fact that
this kind of system is better suited to a non-dedicated environment than an
explicit (or gang) T.S. coscheduling schema [6]. However, this choice has some
implications for the S.S. schema, that force us to develop our own system.

The main effect could be found in the lack of an Ousterhout matrix [7],
present in every explicit coscheduling system. In such a system, the parallel
machine could be seen as a set of n parallel virtual machines (VM). The matrix
provides information about the parallel jobs and their forming tasks, as well as
the mapping onto the VMs. Every VM is synchronized to each other by means
of a global context switch. Thus, there is no interaction among the VMs, which
also means none between the parallel tasks.

On the other hand, in a T.S. system based on dynamic coscheduling tech-
niques, there is no such matrix. Thus, it is not possible to apply the S.S. tech-
niques to each row. As a consequence, and in order to improve the global per-
formance of the system, the (now existing) interaction among the running ap-

222 Mauricio Hanzich et al.

plications has to be considered [3]. Therefore, one of the main goals of this work
is to find the kind and degree of interaction between the system management
components (T.S. and S.S. schemes) to achieve the maximum performance in
distributed tasks without damaging the local ones.

The studies carried out by Choi et al. revealed the sensitivity of the implicit
coscheduling techniques in relation to the mapping and the execution order of
the parallel applications over the cluster (if the MPL is greater than one). In
addition, the type of applications (CPU or communication bound) running con-
currently over the cluster, and the global system state, can have a great influ-
ence on the coscheduling performance. Another factor to take into account in a
non-dedicated cluster is the local user activity, which has to be monitorized pe-
riodically. The control of those factors allows the S.S. system to schedule better,
while it helps the T.S. system to avoid intrusions into the local tasks.

In such a scenario, the best S.S. scheduling of a parallel workload is not
obvious and hence some questions arise including how the distribution of the
parallel applications over the cluster affects the coscheduler performance, how
the inter-arrival time affects the turnaround time of the parallel applications,
and finally, whether it is worth applying a complex scheduling policy and, if so,
which. Our main goal in this work is to shed some light on those questions.

3 CISNE: Cooperative and Integrated Scheduler
for Non-dedicated Environments

In order to provide a system that merges space and time sharing scheduling, we
propose a new integral system called CISNE. The time sharing scheduling is done
by a dynamic coscheduling technique, named CCS (Cooperating CoScheduling)
[5], developed previously by our group. Concerning about the space scheduling
problem, we present a system called LoRaS. This system is responsible for dis-
tributing parallel applications throughout the cluster using information about
the system state, the applications to be launched and the CCS characteristics.

Fig. 1 shows the integration of CCS and LoRaS into CISNE. It shows the
main components making up the virtual machine. As we can see in the fig-
ure, the interaction between the nodes follows a master-slave paradigm. There
is one server node (master with the most important control and management
functions), and the remaining ones interact with the server in a client (slave)
mode.

In the following sections, the CCS and LoRaS systems are explained sepa-
rately.

3.1 CCS (Cooperating CoScheduling) System

Our T.S. system provides an execution environment where the parallel applica-
tions could be dynamically coscheduled. Besides, the given resources are balanced
and the interactive responsiveness of the local applications is totally preserved.
In order to reach this situation, CCS uses the architecture shown in fig. 1, where
each module goal is:

CISNE 223

Node S (server)

Node | Node J |

LoRaS

N

Job Interaction N N Job Interaction || |
Mechanism Lces Mechanism

Gy ~ CISNE

Fig. 1. LoRaS-CCS Architecture

— Dynamic Coscheduling: no processes should wait for a non-scheduled pro-
cess for synchronization/communication. This is achieved by means of in-
creasing the communicating task priority, even causing CPU preemption.
(implemented inside the Linux kernel).

— Job Interaction Mechanism (JIM): preserves the local user tasks responsive-
ness. In order to reach its goal, this module manages the amount of resources
(CPU and memory) given to the parallel tasks in the node. This is done by
means of a social contract [9], which establish the amount of resources that
could be given to the parallel and local loads, when the node is not idle
(implemented inside the Linux kernel).

— Cooperating Scheme: this module collaborates with the JIM module in order
to balance the resources (memory & CPU) given to the parallel applications
throughout the cluster. It is responsible for the exchange of several events,
such as the login or logout of a local user into a specific node, or the stop-
ping (restarting) event generated by the JIM module for a specific parallel
application. This happen whenever it has to preserve the local responsiveness
(implemented in user space).

3.2 LoRaS (Long Range Scheduler) System

LoRaS implements a Job Scheduler in the user space, which provides a Space-
Sharing scheduling mechanism. The following is the description of the LoRaS
modules shown in fig.1:

— Client: sends a job execution request (JER) to the server module on behalf
of a parallel user.

— Server: the admittance of new JERs to be executed in the system is per-
formed by the server module. This JER is then forwarded to the Job Sched-
uler module.

224 Mauricio Hanzich et al.

— Job Scheduler: executes every received JER using the configured policy. It
is important to mention that JER execution is conditioned by the cluster
state. If there is no possibility of executing the job on its arrival, then the
petition has to wait in a queue for the requested resources.

— Policy (submodule): establishes the possibility of executing a JER for a given
cluster state and the JER resources request. This module is designed in
such a way that it is easy to change its functionality and hence the LoRaS
scheduling system.

— Job Dispatcher: considering that every job can have its own characteristics
(e.g. aPVM or MPT job), it is necessary to configure the job before launching
it. Hence, this module is responsible for doing these previously required tasks.

— Node Control: this module has two different functions. On one hand it
launches and controls the job execution. On the other hand, it gathers infor-
mation from the node state and informs the Job scheduler (and hence, the
policy submodule) so that it can take better scheduling decisions.

3.3 Implemented and Evaluated Policies

In this section, we propose several S.S. techniques oriented towards non-dedicated
clusters. Unlike traditional techniques oriented to dedicated cluster, all our pro-
posals are characterized by the fact of taking the cluster state into account.

The first proposed policy, named Uniform, is characterized by the following:
(a) it merges differently oriented applications (i.e. communication or compu-
tation) in the same node and (b) it runs applications one over another in an
ordered manner, whenever possible. By doing this, we expect to increase the
coscheduling probability of the CCS system. By ordering the applications we
mean to launch parallel applications in such a way that each task of a couple of
parallel applications runs in the same set of nodes. This situation is depicted in
fig. 2.a and we call it a Uniform situation.

MPL MPL

MPL: MultiProgramming Lewvel
J; = i-esim running job

Processors Processors

(a) (b)

Fig. 2. Difference between a uniform (a) and a normal (b) policy

However, the Uniform policy executes the applications in any free place if
there is no space for them in a uniform place. Besides, it is important to mention
that in every case the policy must try to help to preserve the local user activity by
not overloading nodes with some local tasks. This is done by limiting the amount
of usable memory and the MPL, respecting the established social contract.

CISNE 225

The problem of arranging different size (number of needed nodes) applica-
tions in a uniform way, was dealt with by always arranging smaller applications
over bigger ones. Therefore, little applications can start sooner, while bigger
applications do not notice to much effect from the coscheduling point of view.

The second proposed policy, termed Normal, considers the state of the system
nodes, but does not consider the running job distributions as the uniform does.
Thus, the resulting scheduling can reach a situation like the one depicted in fig.
2.b. where an application like J3 shares its nodes with a couple of applications.
This situation tends to diminish the coscheduling system performance and hence
the application execution time is increased.

In addition, both normal and uniform policies are compared against a Basic
policy where we execute the parallel workload with an MPL = 1, which means
at most one parallel task per node. Finally, and in order to compare with a well
known S.S. policy, we introduce an FEASY backfilling [10] policy in our evaluation.
The EASY policy executes a job not-at-the-head of the jobs queue, whenever
this does not delay the start of the job at the head. By including this policy,
we can show the effect of incrementing the MPL compared with the use of an
EASY policy with an MPL = 1.

It is important to note that for every evaluated policy, we use a FCFS policy
for queuing each arriving job. Doing this, we ensure the absence of starvation in
the system and a fair treatment for every job.

4 Experimentation

This experimentation is divided into two sections. The first section compares
our coscheduling system in relation to traditional coscheduling systems based
exclusively on communication events. The second set of results shows how CISNE
performs under our defined S.S. policies.

In order to simulate a non-dedicated cluster, we need two different kinds of
workloads. On one hand, we need to simulate local user activity and, on the
other hand, we need some parallel applications that arrive at some interval.

The local workload was carried out by running a synthetic benchmark. This
allowed the CPU load, memory requirements and network traffic used by the
local user to be fixed. In order to assign these values in a realistic way, we
monitored the average resources used by real users. According to this monitoring,
we defined two local user profiles. The first profile identifies 65% of the users with
high needs on inter-activeness (called X Windows user: 15% CPU, 35% Mem.,
0,5KB/sec LAN), while the other profile distinguishes 35% of the users with
web navigation needs (called Internet user: 20% CPU, 60% Mem., 3KB/sec.
LAN). This benchmark alternate CPU activity with interactivity by means of
running several system calls and different data transfers to memory. In order
to measure the level of intrusion into the local load, our benchmark provide
us with the system call latency. Besides, and according to the values observed
in the monitoring, we loaded the 25% of the nodes with local workload in our
experiments.

226 Mauricio Hanzich et al.

The parallel workload was a list of 90 NAS parallel applications with a size of
2, 4 or 8 tasks that reached the system following a Poisson distribution [2]. The
chosen NAS applications were: CG (mem: 55-120MB / CPU: 65-70% / time:
37-51 sec.), IS (mem: 70-260MB / CPU: 58-69% / time: 40-205 sec.), MG (mem:
60-220MB / CPU: 82-89% / time: 26-240 sec.) and BT (mem: 7-60MB / CPU:
85-93% / time: 90-180 sec.). The parallel jobs were merged so that the entire
workload had a balanced requirement of computation and communication (25%
of the workload composed by each application). It is important to note that the
MPL reached for the workload depended on the system state at each moment,
but in no case it surpassed an MPL = 4. This was established in order to respect
the social contract, which was set to 50% of the resources available for each kind
of load (local/parallel) [7].

Both workloads were executed in an Linux cluster composed of 16 P-IV
(1,8GHz) nodes with 512MB of memory and a fast ethernet interconnection
network.

4.1 Evaluating the Time-Sharing Systems

In this section we have compared the CCS policy in relation to the plain Linux
scheduler and two well known communication-driven coscheduling strategies: im-
plicit and (isolated) dynamic coscheduling. In implicit coscheduling, a process
waiting for messages spins for a determined time before blocking. In contrast,
dynamic coscheduling deals with all messages arrivals (like CCS, but without re-
source balancing). It works by increasing the receiving task priority, even causing
CPU preemption of the task being executed inside.

They were evaluated by running the parallel workload for several values of
MPL (1 to 4). The parallel workload was executed applying a Normal S.S. policy.
Its performance was measured by means of the slowdown. This is the response-
time ratio of a job in a non-dedicated system in relation to the time needed in
a system dedicated to this job.

From fig. 3.a, we can see that the slowdown of the parallel applications is
always better for our CCS coscheduling system. In fact, this difference increases
with the value of the MPL. This good CCS behavior is due to the interaction
of the coscheduling scheme with the adaptive and balanced resource allocation
carried out by CCS. In addition, the social contract implemented by CCS main-
tains the response time (measured by the mean of the local benchmark system
call latency in fig. 3.b) always under 400ms. This limit for the Response Time,
established by [11], is an acceptable threshold before the user can notice a lack
of inter-activeness.

These results encouraged us to use CCS to integrate a coscheduler into the
CISNE system.

4.2 Evaluating the CISNE Integrated System

In this subsection, we want to show the performance of CISNE, by applying
the described space-sharing policies to the CCS system. This interaction will be

CISNE 227

Showidown

System Call Latency (ms)

Dynamic
Impliit
CCS(50%)
Linug

Diynamic
Impliit
CCs(502)

MFLs 4 Linuk

MFL=3

L O MPLEt

a) b}

Fig. 3. Parallel applications slowdown (a) and system call latency (b) under the eval-
uated policies

quantified by measuring the turnaround time of the parallel applications com-
paring the Uniform, Normal, Basic and EASY policies. In addition, we measure
the makespan of the workloads (i.e. the executing time of the whole workload).
Doing this it is possible to evaluate CISNE from a system administrator’s point
of view.

Fig. 4.a shows the turnaround, wait and execution time for every evaluated
policy. Here we can see that the normal and backfilling policies give us almost
the same behavior, while the uniform policy performs better by reducing the
execution time and hence the waiting time of the workload. From this figure, it
is also clear that the turnaround time is dictated by the waiting time. On the
other hand, it would be desirable to evaluate the effect of the execution time
as the predominant turnaround factor. With this aim, we executed the parallel
workload doubling the inter-arrival time between applications. Fig. 4.b shows
the results obtained for the same policies.

Single Arrival Time Workload Double Arrival Time Workload
1400)
1200 = BOO |
. | DBASIC
3 ‘ﬁ B igg | | mBACKFILLNG
o - 3 200 | | ENORMAL
i o [munroRm
a ol
0 0 !
Turnaraund “Wait Tirme Exec Time Turnaround it Tirme Exec Time
a) b)

Fig. 4. Turnaround, Wait and Execution time for the exercised workloads

From those figures, it is clear that the job distribution policy has a great
impact on the underlying coscheduling system performance, considering the re-
duction in the execution time. This effect arises for two different reasons: on

228 Mauricio Hanzich et al.

one hand, the applications compete for different kinds of resource, letting them
evolve without disturbing each other. On the other hand, the fact of merging
applications with different communication patterns (under the Uniform policy),
improves the performance of the coscheduler. This is due to a CCS enhance-
ment in recognizing the communication needs. It is important to note that the
execution time for the backfilling and basic policies are better due to the MPL
restriction.

Another effect that it is important to mention is how the waiting time is
noticeably reduced when we apply a Uniform policy. This effect is not only due
to a decrease in the execution time, but due to a better resource distribution that
enhances the scheduling opportunities. Actually, this effect is not just a benefit
of the Uniform policy, but a problem of the Normal one. The main problem
is that the Normal policy tends to distribute the resources in such a way that
the total available memory throughout the cluster could be enough to execute
an application, but there are not enough nodes with enough free memory for
launching it. However the Uniform policy tends to localize the available resources
and then the scheduling possibility is enhanced in the average case. This is due
to the elevated percentage of small applications in the workloads tested. That
fact was verified in [2]| to be representative of the reality.

In order to take a closer look at the enhancement of the coscheduling per-
formance, fig. 5.a shows how the selected policy affects the jobs slowdown. This
graphic is calculated by comparing the Normal and Uniform policies with the
Basic policy (Slowdown = 1), where every job is executed in isolation (except
for some local activity). The figure shows how a uniform policy could reduce
the slowdown from 40% (1,40) to less than 15% (1,15). This demonstrates the
good performance of our coscheduling system as the close interaction with the
S.S technique and, once again, that the level of resources is enough to increase
the MPL with almost no detriment to the (parallel) application execution time.

BSingle Arusl Time
mDouble Arsival Time

HORMAL UHIFDRM BASIC BACKFILUNG MORWAL UHIFOR B
a) b)

Fig. 5. (a) Applications slowdown for the Normal and Uniform policies compared with
the Basic policy. (b) Workloads Makespan for the evaluated workloads and policies

Another aspect we want to analyze is the CISNE behavior from the system
point of view (makespan). The results for both workloads (i.e. single and double
arrival time), can be observed in fig. 5.b for the policies evaluated.

A couple of effects can be extracted from the figure. First of all, a backfilling
policy behaves better with a shorter workload arrival time than with a longer

CISNE 229

one. This is due to a longer (waiting) jobs queue that enhances the backfilling
opportunities. Considering the Normal and Uniform policies, it is clear that the
last one has some advantages. In this case, the effect is directly related to a
better resource usage and the enhancement in the application turnaround time.

5 Conclusions and Future Work

This work presents a new integral system, named CISNE, that considers both
S.S and T.S. concerns, which is applied on a non-dedicated cluster. Using this
framework, the paper analyzes how the performance of a dynamic coscheduling
system could be affected by the distribution policy over a non-dedicated clus-
ter. With this aim, we evaluated four policies oriented to non-dedicated clusters:
Uniform, Normal, Backfilling and Basic. We found that a Uniform policy (i.e. a
set of applications running on the same set of nodes), can dramatically diminish
the turnaround time of the applications (up to 76%) compared with other ap-
proaches. In addition, the performance of a uniform distribution was evaluated
considering a turnaround time limited, on one hand, by the waiting time (single
arrival time workload), and on the other hand by the execution time (double ar-
rival time workload). In both scenarios a Uniform policy was shown to perform
well, even from the system point of view (makespan). It is important to note
that those gains were obtained without disturbing the system responsiveness.

Considering our future work and taking into account that the Uniform and
EASY policies attack the scheduling problem from different points of view, they
could be combined in a schema where the MPL is greater than one and we also
apply a backfilling policy. To do this, we have to define a prediction model to
establish the execution time of a parallel application considering the cluster state
and the interaction between the running applications.

References

1. Y. Zhang, H. Franke, J. Moreira and A. Sivasubramaniam. “An Integrated Ap-
proach to Parallel Scheduling Using Gang-Scheduling, Backfilling and Migration”.
IEEE Transactions on Parallel and Distributed Systems, 14(3):236-247, March
2008.

2. D. G. Feitelson. Packing schemes for gang scheduling. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag,
1996, Lect. Notes Comput. Sci. vol. 1162, pp. 89-110.

3. T. Anderson, D. Culler, D. Patterson and the NOW team. “A case for NOW
(Network of Workstations)”. IEEE Micro, Vol. 15, pp. 54-64. 1995.

4. C. Anglano. “A Comparative Evaluation of Implicit Coscheduling Strategies for
Networks of Workstations”. In 9th International Symposium on High Performance
Distributed Computing (HPDC’2000), pp.221-228, 2000.

5. M. Hanzich, F. Giné, P. Hernandez, F. Solsona and E. Luque. "Coscheduling and
Multiprogramming Level in a Non-dedicated Cluster". FuroPVM’2004, LNCS, vol.
3241, pp. 327-336, 2004.

230

6.

10.

11.

Mauricio Hanzich et al.

F. Solsona, F. Giné, P. Hernandez, E. Luque. "Implementing Explicit and Implicit
Coscheduling in a PVM Environment". FEuroPar 2000, LNCS, Vol 1900, pp 1164-
1170. 2000.

Ousterhout, J. . “Scheduling techniques for concurrent systems”. Proceedings of the
Conference on Distributed Computing Systems. 1982.

G. Choi, S. Agarwal, J. Kim, A. Yoo and C. Das. “Impact of Allocation Strategies
on Communication-Driven Coscheduling in Clusters”. EuroPar 2003: 160-168.
R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson and D.A.
Patterson. “The Interaction of Parallel and Sequential Workloads on a Network of
Workstations”. ACM SIGMETRICS’95, pp.267-277, 1995.

A. W. Mu’alem and D. G. Feitelson. "Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling ". IEEE Trans.
Parallel & Distributed Syst. 12(6), pp. 529-543, Jun 2001.

Nielsen. “Advances in Human-Computer Interaction”. J. Nielsen, J. (ed.), Intellect
Publishers, 1995.

On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems

Maciej Drozdowski* and Marcin Lawenda?

! Institute of Computing Science, Poznan University of Technology,
ul.Piotrowo 3A, 60-965 Poznan, Poland
Maciej.Drozdowski@cs.put.poznan.pl

2 Poznan Supercomputing and Networking Center,
ul.Noskowskiego 10, 61-704 Poznan, Poland
Marcin.Lawenda@man.poznan.pl

Abstract. In this paper we study multi-installment divisible load pro-
cessing in heterogeneous distributed systems. Divisible loads are com-
putations which can be divided into parts of arbitrary sizes, and these
parts can be processed independently in parallel. In order to reduce the
waiting time during the parallel computation initialization phase, load is
sent to the processors in multiple small installments. In a heterogeneous
system the sizes of the installments should be adjusted to the communi-
cation, and computation capabilities of the processors. We propose two
algorithms that gear the load chunk sizes to different communication and
computation speeds. The first one is an optimization branch and bound
algorithm. The second algorithm is based on genetic search. The running
times of both methods and the quality of the genetic algorithm solutions
are compared. Then, we use these algorithms to analyze features of the
scheduling problem solutions.

Keywords: scheduling and load balancing, divisible load, multi-install-
ment processing, heterogeneous systems, optimization algorithms.

1 Introduction

Divisible loads are computations which can be divided into parts of arbitrary
sizes, and these parts can be processed independently in parallel. This means
that the grain of parallelism is small, and there are no data dependencies. The
sizes of the load parts should be adjusted to the speeds of communication and
computation such that processing finishes in the shortest possible time. Examples
of real divisible applications include, among others, distributed searching for
patterns in text, audio, graphic files, database and measurement processing,
data retrieval systems, some linear algebra algorithms, and simulation. Surveys
of the divisible load theory can be found in [4, 6, 11].

* This research has been partially supported by the Polish State Committee for Sci-
entific Research.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 231-240, 2005.
© Springer-Verlag Berlin Heidelberg 2005

232 Maciej Drozdowski and Marcin Lawenda

Communication delays constitute an important part of the processing time in
all distributed algorithms. To reduce the initial waiting for the data, and for ini-
tialization of the computations, load is sent in multiple small chunks rather than
in a single long message. This way of divisible load distribution and execution is
called multi-installment processing [3, 0, 8, 12]. In the earlier publications certain
assumptions were usually made on the structure of the schedule. For example,
messages of equal size were sent to processors in a round-robin fashion [0, &, 12].
It has been shown [12] that this way of multi-installment processing reduces the
length of the schedule in a homogeneous system at most egl times. Unequal
load chunk size partitioning has been also proposed [3, 6, 13], but with a tacit
assumption that the set of used processors, and their activation sequence are
given and fixed. Furthermore, it was assumed that there are no idle times, nei-
ther in the communication nor in the computations [3, 4, 6, 13]. However, to our
best knowledge, the problem of multi-installment divisible load processing with
unequal chunk sizes adjusted to the communication and computation speeds,
with selection of the set of exploited processors, and selection of their activation
sequence is open. The goals of this paper are twofold: to propose algorithms for
the multi-installment divisible load processing including selection of the set and
sequence of processors, and to study influence of the system parameters on the
quality of the scheduling problem solutions.

The rest of this paper is organized as follows. In Section 2 we formulate the
multi-installment divisible load scheduling problem for heterogeneous systems.
In Section 3 two algorithms are proposed: an optimization branch-and-bound
algorithm, and a heuristic genetic algorithm. The results of computational ex-
periments are presented and discussed in Section 4.

2 Problem Formulation

We will use the word processor to denote a processing element with CPU, mem-
ory, and communication link. In divisible load model it is classically assumed that
initially some volume of load V' (e.g. a file with data to be processed) resides on
a processor Py called originator. The originator sends the load to its neighbors
for remote processing. Each of the neighbors intercepts some part of the received
load, and immediately starts computations related with the received load. The
rest of the load is retransmitted to the still inactive neighbors. In this work we
assume a star interconnection (a.k.a. a single level tree). In the star network
the originator is located in the star center (or the root of the single level tree),

and is connected to a set Py, ..., P, of processors which perform computations.
All communications involve the originator, and there are no direct communica-
tions between processors Py, ..., P,. For simplicity of presentation we assume

that originator is communicating only. Otherwise, the computing ability of the
originator can be represented as an additional processor. Each processor P; is de-
fined by the following parameters: A; - computing rate (reciprocal of computing
speed), C; - communication rate (reciprocal of bandwidth), S; - communication
startup time. A;,C; can be expressed, e.g., in seconds per byte, and S; can be

On Optimum Multi-installment Divisible Load Processing 233

expressed in seconds. Computing = units (e.g. bytes) of load on processor P
takes £ A; units of time. Sending the same amount of load to P; lasts S; + xC;.
We assume that memory sizes of the processors are sufficiently big and do not
influence the construction of the schedule. To simplify the mathematical model
we assume that the results returning time is negligible. This simplification is not
limiting generality of our considerations because result gathering can be included
in the model (see e.g. applications [2, 5, 7, 12]). The computations start only
after receiving the whole message with load. We assume that processors have
independent communication hardware which allows for simultaneous communi-
cation and computations on the previously received load.

To reduce the initial waiting for the load, and for the start of the computa-
tions, load is sent to processors in multiple small chunks rather than in a single
long message. Let n denote the number of chunks. If the sequence of processors
receiving the load chunks is known then our problem can be reduced to a linear
program. Let «; denote size of chunk i. Let d; € {1,...,m} be the number of the
processor receiving chunk i. We will denote by H; C {i,...,n} the set of chunks
sent to processor d;, starting from chunk i. C), 4, denotes schedule length. Fig. 1
depicts an example schedule with multiple installments. The linear program can
be formulated as follows:

minimize Cp,qz

on condition that:

> (Sa, +@;Ca) + Aq, Y @ < Crga i=1,...,m (1)

Jj=1 JEH;

ZO@ =V (2)
=1

In constraint (1) sum E;Zl(de + a;Cy;) expresses communication time for
chunks 1,...,i. Ag, ZjeHi oj is computation time on processor d; starting from
chunk ¢. Thus, (1) guarantees that all processors stop computations before the
end of the schedule. All work is done by equation (2). Thus, it is possible to
find optimum distribution of the load using formulation (1)-(2) if we know the
sequence of the processor activation (i.e. values d; for i = 1,...,n).

PO S,jl +oy Cdl‘Sdz +%Cdz‘Sd3 +O('3Cd3‘ Sd4 +(X.4Cd4 ‘ commuﬂ{lications

N
P, L } oA, \L lasd,
P, computations< ’- O(QAQQ ‘ ‘ OL4Ad2 ‘
1
P; | oAy |
‘ Coa

Fig. 1. Example of load distribution pattern.

234 Maciej Drozdowski and Marcin Lawenda

P 0 P 0 communications P 0 communications

P ‘ P

Py computations

computations

gomputation:

worst case

worst case

P2 P2 computations L P 2 computations
>
0o Br 0 g B+l
2 2 B 3
. Py Py D communications Py ‘ communications
g
é Py computations Py Py computations g
9 =
15 P2 computations P2 |:| computations P2 computations 5
0o BV g 0 w g 0 2B+2
B+1 B+1.5

a) b) ¢)

Fig. 2. The worst case examples. a) ignoring heterogeneity, b) ignoring processor set
selection, ¢) ignoring sequencing of the processor activation.

Before proceeding to the further details let us consider worst cases that may
appear if scheduling decisions ignore certain information. Suppose that we ig-
nore the heterogeneity of the system, and send load parts of equal size to the
processors. For instance (Fig.2a), consider two processors P; with parameters
S1=0,C1 =0,A; = B, and P, with parameters Sy = 0,C5 = 0, Ay = 1. We di-

vide the load into two equal chunks of size ‘2/ Resulting schedule has length BQV

but processor P; is idle in interval [‘2/, BQV]. If we use sizes a; = BYH , Qg = BBJYP
then both processors stop computing simultaneously, and schedule length is 54‘-/1 .

The ratio of the two schedule lengths is B;r ! which can be arbitrarily big. Hence,

in the worst case solutions based on load equipartitioning can be arbitrarily bad
in heterogeneous systems.

Suppose that we adjust chunk sizes to the parameters A;, C;, but all proces-
sors are always used. Let us present another example (Fig. 2b). There are two
processors with parameters: S;1 = B,A; = 1,C1 = 1,5 = 0,43 = 1,Cy = 1.
ItV < g then there is no point in using processor P; because load of this size
may be processed in a shorter time than the communication activating P;. If we
use P; then the schedule has length at least B. If we don’t, then schedule has
length V(Az + Cy) = 2V. The ratio of the two lengths is at least .}, which can
be arbitrarily big. Thus, if the set of processors is always the same, the resulting
schedule can be arbitrarily bad.

Suppose that we adjust chunk sizes, and select the processors wisely, but
we always use the same sequence (Py,..., P,,) of processor activation. Let us
analyze one more instance (Fig.2¢), m =2,V =2,5,=0,C1 = B,A; =1,5; =
0,Cy = Ay = 0.5. If we use sequence (Py, P») of processor activation, then the
optimum load distribution is a; = as = 1, and schedule length is B + 1. For
sequence (P, P1) the optimum distribution is a; = 4 _:1.57012 = ?f{%, and
2B+42

B+1 :
Bils: o which can be

schedule length is The ratio of the two lengths is

arbitrarily big.

On Optimum Multi-installment Divisible Load Processing 235

Thus, the subset of processors Py, ..., P, exploited in the computations and
the targets of the communications are unknown, and must be determined. This
task has combinatorial nature. In Section 3 we propose algorithms that deter-
mine destinations for the load chunks. If one ignores proper selection of the
chunk destinations, the problem becomes easier to solve because only linear pro-
gram (1)-(2) has to be solved for some assumed chunk destinations dy, da, . . ., dy.
Then, the resulting schedules can be arbitrarily bad in the worst case, as demon-
strated in the preceding paragraph. How bad the solutions can be on average,
if we skip the combinatorial part of the problem, is unknown. We attempt an-
swering this question in Section 4.

3 Optimization Algorithms

3.1 Branch and Bound Algorithm

Two elements constitute a branch-and-bound algorithm. The first is branching
procedure which divides the solution space into disjoint subsets. These subsets
are either eliminated if they do not include the optimum solution, or are further
divided until selecting a unique solution. Partition of the solution space can be
represented as a tree. Each node is a representative of a set of solutions. Dividing
such a set is equivalent to generating successors of a node. In our problem we
have to select the sequence of the targets for n load chunks. In the root of the
tree the sequence is empty. The first chunk may be sent to one of processors
P;, for i = 1,...,m. Therefore, the root has m successors each representing
sequences starting with a message sent to processor P;. The second level of the
tree includes two-processor sequences (FP;, P;). Branching a node representing a
leading sequence of [chunk targets consists in appending one more processor
to which chunk [4+ 1 will be sent. The branching procedure is continued until
constructing a sequence of the assumed length n.

The maximum number of the search tree leaves is m™. As this number grows
exponentially with n, it is necessary to prune the search tree by eliminating nodes
representing solutions certainly not better than some already known solution.
This procedure is the bound element of the algorithm. To determine if a node
should be eliminated its lower bound of the schedule length is calculated. Suppose
the node represents a sequence of [chunks. Thus values dy, ..., d; are already
determined. The remaining n — [chunks still need to be selected. We assume
that these n — [chunks are sent to n — [ideal target processors. The ideal
target processor has parameters A’ = min",{4;},C* = min!" {C;}, 9" =
min”, {S;}, and processes only one load chunk. For such a sequence of [real
processors, and n—1 ideal ones, a linear program (1)-(2) is solved for C,,q, which
is the lower bound.

The best known solution used in comparisons with the lower bound is found
by the algorithm itself. It is the best solution found in any leaf of the search tree.
The tree is searched in the depth-first least lower bound order.

236 Maciej Drozdowski and Marcin Lawenda

3.2 Genetic Algorithm

Genetic algorithms imitate evolution of genome. Solutions are encoded as strings
of symbols analogously to the encoding of the chromosomes. Some initial popu-
lation of solutions is generated randomly. Genetic operators transform popula-
tions in a direction improving quality of the solutions. Selection, crossover, and
mutation are typical genetic operators. Selection elects better solutions for the
next population. Crossover operation generates offspring solutions by randomly
combining pieces of the parent strings. Though the offspring is constructed in
a random manner, the fragments of a string encoding an optimum solution are
indirectly discovered and combined due to the selection and crossover. Mutation
changes randomly some solutions to diversify the search, and to escape local
optima. Genetic search is a classic technique for solving combinatorial optimiza-
tion problems, including scheduling problems. We direct interested readers to
monographs [9, 10] for detailed presentation of the genetic search method.

In our implementation a chromosome is a string (di,...,d,) of chunk des-
tinations. The measure of a chromosome fitness is the value of schedule length
Cinaz Obtained from the linear program (1)-(2) formulated for the sequence of
chunk targets given in the chromosome. In the crossover operation two chro-
mosomes are randomly selected, and combined using one point crossover. For
example, let (a1, az,...,ay,), (b1,be,...,b,) be two parent solutions, and let
k denote a randomly selected crossover point. The two offspring solutions are
(b1,...,bk—1,0ak,...,a,) and (a1, ...,ak—1,bg,...,b,). The total number of new
chromosomes constructed in crossover is Gpc, where G is the size of the popu-
lation, and p¢ is a tunable algorithm parameter which will be called crossover
probability. Mutation changes Gnpys random genes (i.e. d;s) to different values.
Gn is the total number of genes, pps is a tunable algorithm parameter which
we will call mutation probability. The selection of the chromosomes for the new
population is done by a combination of elitist and roulette wheel method. The
best half of the old population is always preserved. A string is passed to the
second half of the new population with probability Cﬁ',lmx / ch‘::l Cim, where
CJ. .. is the schedule length for chromosome j. The algorithm stops after a fixed
number of iterations without an improvement in the quality of the best solution
ever found. There is also a limit on the total number of iterations.

4 Computational Experiments

4.1 Experiment Setting

All the experiments were performed on a PC computer with Pentium IV 1.8GHz,
512MB RAM memory, and Microsoft Windows XP. The executable code was
generated by Borland C++ Builder 6.0. All LP formulations were solved by a
code derived from 1p_solve [1]. Unless stated otherwise, the test instances of the
scheduling problem were generated in the following way: Processor parameters
A, C, S, were generated with uniform distribution from the range [0,1]. Problem
size was V = 1E6. The processor number was m = 4, and the number of chunks

On Optimum Multi-installment Divisible Load Processing 237

1.0030

1.00257

1.0020+

Sk

1.00157

1.00104

1.00057

107100 25250 50/500 805800 100/1E3 2002E3 3003E3 4004E3 S00/5E3

Fig. 3. Average distance from optimum Fig.4. Average distance from optimum
vs. iteration (population) number and G. vs. iteration limits.

was n = 8. Each point on the following charts is an average of at least 10
instances.

In the genetic algorithm genes of the initial population were generated with
uniform distribution from set {1,...,m}. The following procedure has been ap-
plied to tune the genetic algorithm. A set of 100 random instances were generated
as a reference benchmark. An indicator of algorithm performance was the average
quality of the best solutions obtained for these benchmark instances. Population
size G = 50 has been selected as the convergence improvement stops at this size
(cf. Fig. 3). For the fixed G crossover probability pc = 80%, and then mutation
probability pa; = 3% were selected. We used a limit of 10 iterations without
solution improvement, and an upper limit of 100 iterations in total, which give
acceptable solution quality on average (cf. Fig.4), but still result in a shorter
running time than other iteration limits combinations.

4.2 Performance of the Algorithms

Running Times. The execution times of the algorithms are collected in Fig. 5,
and 6. The running time of the branch and bound is denoted by B&B, and of the
genetic algorithm by GA. It can be seen that the branch and bound algorithm
has exponential running time in n for fixed m (cf.Fig.5). The execution time
grows slower as a function of m for fixed n (cf.Fig.6) because the maximum
number of the search tree leaves is m'™. Nevertheless, execution time of the
branch and bound algorithm allows only for solving instances with small m,
and n. Execution time of the genetic algorithm grows with n (Fig.5) because
the length of the string encoding solution is n. For m = 3,...,20 execution
time grows less than twice (Fig.6). We also tested dependence of the execution
times on size V' of the problem. For small V' execution time of the branch and
bound was shorter than for big sizes because less processors had to be activated,

238 Maciej Drozdowski and Marcin Lawenda

1E+04 1E+04
—— B&B —+— B&B
1E+03] = GA -m- GA
1E+034
1E+02 P
= e
iz .
~ —
1B+ = 1E+02
=
~
1E+001
1E+01
1E-01
n m
1E-02 1E
10 20 30 40 S 2 4 6 8 10 12 14 16 18 2
Fig. 5. Running time vs. n. Fig. 6. Running time vs. m.

and therefore the search trees were smaller. The execution time of the genetic
algorithm was independent of V.

Quality of the Solutions. The results of our study on the quality of solutions
are collected in Fig.7-8. The instances in Fig.7 had A parameter equal to a
given value on all processors. The remaining C, S parameters were generated as
described previously. Analogously, for Fig. 8 parameter C' was fixed on all pro-
cessors, and A, S were randomly generated. Fach figure represents quality of the
solutions, i.e. the relative distance from the optimum, in three cases: the average
solution of a genetic algorithm (denoted GA), the average random solution (de-
noted RND), and the worst selection of the chunk targets ever observed (denoted
Worst). Note that the worst case (Worst) has its own ’y’ axis different than RND,
and GA cases. The random solutions (RND) have random chunk destinations.
In all cases load chunk sizes were calculated by linear program (1)-(2).

These three cases demonstrate weaknesses and strengths of the two parts in
the solution of our problem: the combinatorial part which finds targets for the
chunks (d;s), and the linear programming part which calculates optimum chunk
sizes (qys) for the given destinations. It can be seen that genetic algorithm con-
structs solutions that are very close to the optimum. On average its solutions
were not further 0.2% from the optimum. The worst solution obtained by the ge-
netic algorithm was 1.1% away from the optimum. Thus, the genetic algorithm is
a practical replacement for the optimization branch and bound algorithm which
has exponential running time. The random solutions (RND) are also good on
average because their distance from the optimum is not greater than approxi-
mately 30%. This is good news because solving a complex combinatorial problem
of determining chunk targets (be it by a branch and bound or by a genetic algo-
rithm) may be too time consuming and unprofitable on average. A random, or
reasonable selection of processors and their activation sequence, supplemented
by a linear program (1)-(2) gives solutions of acceptable quality on average. This

On Optimum Multi-installment Divisible Load Processing 239

135 @ 10 135 @ 35

130 BT 130w B 130
& 18 2

1251 8 1251 S--zs
27 2

1201 ol 1201 Q1
= 16 =

1151 5 1154 115

14

1.104 110

1.05 4 1.05 1

1.00 ¢ — e 1 1.00 0——0—— o
1E3 1E2 1E 1E0 4 1EI 1IE2 1E3 IE3 1E2 1El 1E0 ¢ IEI 1E2 1E3

Fig. 7. Relative distance from the opti- Fig.8. Relative distance from the opti-
mum vs. A. mum vs. C.

tells us also about the nature of the problem we are solving. Since relatively good
results can be obtained only by adjusting chunk sizes (even for random chunk
destinations), the chunk size selection is an important element in the solution
of our problem. In other words, linear programming can compensate for some
bad decisions in combinatorial part of the algorithms. It can be said that on
average the combinatorial part of our problem (i.e. target selection) improves a
random solution by approximately 30%. Finally, the worst case really exists. In
the worst observed case of the chunk target selection a schedule 35 times worse
than optimum was constructed (cf. Fig. 8).

It is possible to infer from Fig. 7-8 on the features of the solutions and per-
formance of the algorithms. With growing A, C' the quality of the random and
the worst case is improving. When A is very big, the schedule length becomes
dominated by the computation time. The selection of the chunk destinations
is nearly meaningless because the schedule length is determined by the compu-
tation time which is approximately ﬂ/ . Similar conclusions can be drawn for
parameter C. When C'is very big, chunk target selection tends to be immaterial
because the schedule length is determined by the communication time which
is approximately VC. We also tested dependence on S in range [1E-3,1E3]. It
turned out that S constitutes at most ~ 2% of the communication time, and
hence this dependence was not strong.

5 Conclusions

In this paper we studied multi-installment divisible load processing in hetero-
geneous distributed system. The problem we analyzed consists in determining
optimum destinations for the load chunks and adjusting their sizes to the speeds
of processors and communication links. Hence, we divided solution methods into
two parts: combinatorial one which finds destinations for the load chunks, and

240 Maciej Drozdowski and Marcin Lawenda

linear programming part which finds optimum chunk sizes for the given targets.
We have shown that in the worst case solutions can be arbitrarily bad if any of
the two parts is ignored. In a set of computational experiments we demonstrated
that on average the combinatorial part improves the solution quality by approx-
imately 30 %. The linear part is a very important element in the construction of
the schedule, and to some extent it is able to compensate bad decisions in the
combinatorial part.

References

1. Berkelaar, M.: 1p_solve - Mixed Integer Linear Program solver.
ftp://ftp.es.ele.tue.nl/pub/lp_solve (1995)

2. Bharadwaj, V., Barlas, G.: Access time minimization for distributed multimedia
applications. Multimedia Tools and Applications 12 (2000) 235-256

3. Bharadwaj, V., Ghose, D., Mani, V.: Multi-installment Load Distribution in Tree
Networks With Delays. IEEE Transactions on Aerospace and Electronic Systems
31 (1995) 555-567

4. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads in
parallel and distributed systems. IEEE Computer Society Press, Los Alamitos CA
(1996)

5. Btazewicz, J., Drozdowski, M., Markiewicz, M.: Divisible task scheduling - concept
and verification. Parallel Computing 25 (1999) 87-98

6. Drozdowski, M.: Selected problems of scheduling tasks in multiprocessor computer
systems. Series: Monographs, No 321, Poznan University of Technology Press, Poz-
nan (1997). Downloadable from
http://www.cs.put.poznan.pl/mdrozdowski/txt/h.ps

7. Drozdowski, M., Wolniewicz, P.: Experiments with Scheduling Divisible Tasks
in Clusters of Workstations. In: A.Bode, T.Ludwig, W.Karl, R.Wismiiller (eds.),
Euro-Par 2000. Lecture Notes in Computer Science, Vol. 1900. Springer-Verlag,
Berlin Heidelberg New York (2000) 311-319

8. Drozdowski, M., Wolniewicz, P.: Out-of-Core Divisible Load Processing, IEEE
Trans. on Parallel and Distributed Systems 14 (2003) 1048-1056.

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, Reading, Massachusetts (1989)

10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin Heidelberg New York (1996)

11. Robertazzi, T.: Ten reasons to use divisible load theory. IEEE Computer 36 (2003)
63-68

12. Wolniewicz, P.: Divisible Job Scheduling in Systems with Limited Memory. PhD
Thesis, Poznann Univ. of Technology (2003). Downloadable from
http://www.man.poznan.pl/ pawelw/phd.pdf

13. Yang, Y., Casanova, H.: Multi-Round Algorithm for Scheduling Divisible Work-
load Applications: Analysis and Experimental Evaluation. Univ. of California, San
Diego, Dept. of Computer Science and Engineering, Tech. Rep. CS2002-0721 (2002)

A Scalable Parallel Graph Coloring Algorithm
for Distributed Memory Computers

Erik G. Boman', Doruk Bozdag?, Umit Catalyurek?*, Assefaw H. Gebremedhin®**,
and Fredrik Manne*

1 Sandia*** National Laboratories, USA
egboman@sandia.gov
2 Ohio State University, USA
bozdagdeece.osu.edu, umit@bmi.osu.edu
3 0ld Dominion University, USA
assefaw@cs.odu.edu
4 University of Bergen, Norway
Fredrik.Manne@ii.uib.no

Abstract. In large-scale parallel applications a graph coloring is often carried
out to schedule computational tasks. In this paper, we describe a new distributed-
memory algorithm for doing the coloring itself in parallel. The algorithm operates
in an iterative fashion; in each round vertices are speculatively colored based on
limited information, and then a set of incorrectly colored vertices, to be recolored
in the next round, is identified. Parallel speedup is achieved in part by reducing
the frequency of communication among processors. Experimental results on a PC
cluster using up to 16 processors show that the algorithm is scalable.

1 Introduction

In many parallel scientific computing applications computational dependencies are mod-
eled using a graph, and a coloring of the vertices of the graph is used as a subroutine
to identify independent tasks that can be performed concurrently. See [8] and the refer-
ences therein for examples. In such cases, the computational graph is often distributed
among the processors, and hence the coloring itself needs to be performed in parallel.
For these applications, fast greedy coloring algorithms that work well in practice are
often preferred over slower local improvement heuristics that might use fewer colors.

This paper deals with the parallelization of such fast greedy coloring algorithms
and presents an efficient parallel coloring algorithmic scheme designed for distributed
memory parallel computers. Several variations of the basic scheme are discussed. Our
algorithms are implemented using MPI and experiments conducted on a 16-node PC
cluster using several large graphs indicate that our approach is scalable.

* This research was supported in part by Sandia National Laboratories under Doc.No:
283793, Ohio Supercomputing Center #PAS0052.
** Supported by the U.S. National Science Foundation grant ACI 0203722.
*** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
company, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 241-251, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

242 Erik G. Boman et al.

The basic idea in the algorithm is to partition the graph among the available proces-
sors and let each processor be responsible for the coloring of the vertices assigned to it.
Every processor colors its local vertices in steps of s vertices at a time in a sequential
fashion. Between each step the processors exchange recent color information. Since
a processor colors its local vertices with incomplete color information, conflicts may
arise, and these are detected in a separate phase. The algorithm proceeds iteratively by
recoloring vertices involved in conflicts. With an appropriate choice of a value for s,
the number of ensuing conflicts can be kept low while at the same time preventing the
runtime from being dominated by the sending of a large number of small messages.

2 Previous Work

A coloring of a graph is an assignment of positive integers (called colors) to its vertices
such that no two adjacent vertices receive the same color. Finding a coloring of a general
graph that minimizes the number of colors used is an NP-hard problem [6]. Moreover,
the problem is difficult to approximate [4]. In practice, however, greedy sequential col-
oring heuristics have been found to be quite effective [3]. These greedy heuristics are
inherently sequential and hence difficult to parallelize.

A number of previously suggested parallel graph coloring algorithms rely on var-
ious ways of computing an independent set in parallel. A characteristic feature of in-
dependent set based parallel coloring algorithms is that a vertex is assigned a color
that is never changed at a later point in the algorithm. In such algorithms, while color-
ing a vertex v, the colors of already colored neighbors of v must be known, and none
of the uncolored neighbors of v can be colored at the same time as v. The works of
Jones and Plassmann [11], Gjertsen et al. [9], and Allwright et al. [1] are examples of
such approaches. All of these algorithms are designed for distributed memory parallel
computers and rely on partitioning a graph into the same number of components as
there are processors. Each component, including information about its inter- and intra-
component edges, is assigned to and colored by one processor.

To overcome the restriction that two adjacent vertices on different processors can-
not be colored at the same time, Johansson [10] proposed a distributed algorithm where
each processor is assigned exactly one vertex. The vertices are then colored simulta-
neously by randomly choosing a color from the interval [1, A + 1], where A is the
maximum vertex degree in the graph. This may lead to an inconsistent coloring, and
hence the process needs to be repeated recursively for the vertices that did not receive
permissible colors. Finocchi et al. [5] performed extensive sequential simulations of a
variant of Johansson’s algorithm where the upper-bound on the range of permissible
colors is initially set to be smaller than A + 1 and then increases only when needed.

Gebremedhin and Manne [8] developed a parallel graph coloring algorithm suitable
for shared memory computers. In this algorithm, each processor is assigned equally
many vertices to color. A processor colors its vertices in a sequential fashion, at each
step assigning a vertex the smallest color not used by any of its neighbors (both on-
or off-processor). An inconsistent coloring arises only when a pair of adjacent vertices
that reside on different processors is colored simultaneously. Inconsistencies are then
detected in a subsequent phase and resolved in a final sequential phase.

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 243

3 A New Algorithm

Here we describe a new distributed-memory parallel graph coloring algorithm. In the
spirit of the BSP model [2], the algorithm is organized as a sequence of supersteps.
A superstep has distinct, rather than intermingled, computation and communication
phases.

A partitioning of the graph among the processors classifies the vertices into inferior
and boundary vertices. An interior vertex is a vertex all of whose neighbors are located
on the same processor as itself. A boundary vertex has at least one neighbor located on a
different processor. Clearly, the subgraphs induced by interior vertices are independent
of each other and hence can be colored concurrently trivially. Coloring the remainder
of the graph in parallel requires communication and coordination among the processors
and this is the main issue in the algorithm being described.

3.1 The Basic Scheme

At the highest level, our algorithm is iterative—it operates in rounds. In each round
there are two phases, a tentative coloring and a conflict detection phase. The former is
organized into supersteps while the latter is not, since no communication is required.
In every superstep each processor colors s vertices in a sequential manner, where s is
an input parameter to the algorithm, using color information available at the beginning
of the superstep, and then exchanges recent color information with other processors.
In particular, in the communication phase of a superstep, a processor sends the colors
of its boundary vertices to other processors and receives relevant color information
from other processors. In this scenario, if two adjacent vertices located on two different
processors are colored during the same superstep, they may receive the same color and
hence cause a conflict. The purpose of the second phase of a round is to detect such
conflicts and accumulate a list of vertices on each processor to be recolored in the next
round. Since it is not necessary to recolor both endpoints of a conflict edge only one
of the involved processors will add a vertex to its list. The processor that will do the
recoloring is determined in a random fashion in order to achieve an even distribution of
the vertices to be colored in the next round.

The conflict detection phase does not require communication since every processor
has acquired a complete knowledge of the colors of the neighbors of its vertices at the
end of the tentative coloring phase. The algorithm terminates when there is no more
processor with a nonempty list of vertices to be recolored. Algorithm 1 outlines this
scheme in more detail.

The rationale for dividing the coloring phase of a round in supersteps, rather than
communicating after a single vertex is colored, is to reduce communication frequency
and thereby reduce communication time. However the number of supersteps used (equiv-
alently, the number of vertices colored in a superstep) is also closely related to the like-
lihood of conflicts and consequently the number of rounds. The lower the number of
supersteps (the higher the number of vertices colored per superstep) the higher the like-
lihood of conflicts and hence the higher the number of rounds required. Choosing a
value for s that minimizes the overall runtime is therefore a compromise between these
two contradicting requirements. An optimal value of s would depend on such factors

244 Erik G. Boman et al.

Algorithm 1 An iterative parallel graph coloring algorithm
1: procedure PARALLELCOLORING(G = (V, E), s)
2: Initial data distribution: V' is partitioned into p subsets V1, . .., V},; processor F;
owns V;, stores edges E; incident on V;, and stores the identity of processors
hosting the other endpoints of E;.

3 on each processor P;,i € P ={1,...,p}

4 U, —V; > U; is the current set of vertices to be colored
5 while 35 € P, U; # (0 do

6: if U; # () then

7: Partition U; into ¢; subsets U; 1,U; 2, . . ., Ui g,, each of size s

8 for k — 1to /; do > each k corresponds to a superstep
9: for each v € U, ;. do
10: assign v a permissible color

11: Send colors of boundary vertices in U; i, to relevant processors
12 Receive color information from other processors
13: Wait until all incoming messages are successfully received

14: R, 0 > R; is a set of vertices to be recolored
15: for each boundary vertex v € U, do

16: if 3(v,w) € E s.t. color(v) = color(w) and r(v) < r(w) then
17: R; — R; U{v} > r(v) is a random number
18: Ui — Ri

as the size and density of the input graph, the number of processors available, and the
machine architecture and network.

Note that the formulation of Algorithm 1 is general enough to encompass the algo-
rithms of Johannsson [10], Finocchi et al. [5], and Gebremedhin and Manne [§]. Setting
p = n (and s = 1) and choosing the color of a vertex in Line 10 appropriately, gives
the algorithms of Johannsson and Finocchi et al. Setting s = 1, restricting Algorithm 1
to one round, and resolving conflicts sequentially gives the algorithm of Gebremedhin
and Manne.

3.2 Variations

For the sake of generality, Algorithm 1 leaves several issues unspecified. In the sequel,
we discuss such issues, in each case pointing out available alternatives.

(i) Initial partitioning. In a parallel application, the graph is usually already distributed
among the processors in a reasonable way. However, if this is not the case, a “good” data
distribution needs to be computed. The number of conflicts in the algorithm depends on
several factors including the number of boundary vertices and the number of edges
between these. Thus using a graph partitioner such as Metis [12] should help reduce the
number of conflicts as well as the amount of communication.

(ii) Distinguishing between interior and boundary vertices. As mentioned earlier, the
subgraphs induced by interior vertices are independent of each other and can therefore

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 245

be colored concurrently without any communication. Hence, in the context of Algo-
rithm 1, the interior vertices can be colored before, after, or interleaved with boundary
vertices. Algorithm 1 is presented assuming the last option. Coloring the interior ver-
tices first may produce fewer conflicts when using a regular First-Fit coloring scheme,
since the subsequent coloring of boundary vertices is performed with a larger spectrum
of available colors. Coloring boundary vertices first may be advantageous with color
selection variants such as Staggered First-Fit (see the discussion later in this section).

(iii) Synchronous vs. asynchronous supersteps. In Algorithm 1, the supersteps can be
made to run in a synchronous fashion by introducing explicit synchronization barriers
at the end of each superstep. An advantage of this mode is that in the conflict detection
phase, the color of a boundary vertex needs to be checked only against its neighbors
colored at the same superstep. The obvious disadvantage is that the barriers, in addition
to the associated overhead, cause some processors to be idle while others complete their
supersteps. Alternatively, the supersteps can be made to run asynchronously, without
explicit barriers at the end of each superstep. Each processor would then only process
and use the color information that has been completely received when it is checking
for incoming messages. Any color information that has not reached a processor at this
stage would thus be delayed from being used until a later superstep. Due to this, in the
conflict detection phase, the color of a boundary vertex needs to be checked against all
of its off-processor neighbors. Also, it is possible that the asynchronous version results
in more conflicts than the synchronous one since a superstep on one processor now can
overlap with more than one superstep on another processor.

(iv) Choice of color. The choice of a permissible color in Line 10 of Algorithm 1 can be
made in different ways. The strategy employed affects (1) the number of colors used by
the algorithm, and (2) the likelihood of conflicts, and thus the number of rounds required
by the algorithm. Both of these quantities are desired to be as small as possible, and
a coloring strategy typically reduces one of the quantities at the expense of the other.
Here, we present two strategies: First-Fit (FF) and Staggered First-Fit (SFF). In FF each
processor chooses the smallest permissible color from the interval [1, C], where C'is the
current largest color used. If no such color exists, the new color C' + 1 is chosen. SFF
uses an initial estimate K of the number of colors needed for the input graph. Processor
P; chooses the smallest permissible color from the interval [fo 1, K]. If no such color
exists, then the smallest permissible color in [1, fo |] is chosen. If there is still no such
color, the smallest permissible color greater than /K is chosen. Unlike FF, the search for
a color in SFF starts from different “base colors” for each processor. Hence the latter is
likely to result in fewer conflicts than the former. Other color selection strategies that
have been suggested include the randomized techniques of Gebremedhin et al. [7] and
Finocchi et al. [5].

4 Experiments

In this section, we present results from experiments carried out on a 16-node PC cluster
equipped with dual 900 MHz Intel Itanium 2 CPUs and 4 GB memory. The nodes of

246 Erik G. Boman et al.

the cluster are interconnected via switched Myrinet 2000 network. Our test set consists
of 19 graphs obtained from molecular dynamics and finite element applications [§, 13].
Table 1 displays the structural properties of the test graphs, including maximum, mini-
mum, and average degree. The table also displays the number of colors and the runtime
in seconds used by a sequential FF algorithm when run on a single node of our test plat-
form. All of the results presented in this section are average performance results over
all of the graphs presented in Table 1. Each individual test is an average of 5 runs. In the
timing of the parallel coloring code, we assume the graph to be initially partitioned and
distributed among the nodes of the parallel machine. Hence, the times reported concern
only coloring.

Table 1. Properties of the test graphs

name V] |E| Degree Seq. First-Fit
max min avg #colors time

HIV-2 11,414 15270 8 1 2.68 5 0.007
HIV-4 11,414 130,332 39 6 22.84 17 0.034
HIV-6 11,414 412,623 116 13 72.30 45 0.099
HIV-10 11,414 1,655,383 454 35290.06 176 0.387
pope-br-2 24,916 31449 7 1 252 50.032

pope-br-4 24916 255,047 43 2 20.47 21 0.067
popc-br-6 24,916 850,043 125 2 68.23 49 0.206
pope-br-10 24,916 3,587,724 514 2 287.98 173 0.84
er-gre-2 36,573 53046 8 0 290 50.022
er-gre-4 36,573 451,355 42 3 24.68 19 0.116
er-gre-6 36,573 1,482,904 116 11 81.09 47 0.357
er-gre-10 36,573 6,511,122 460 79 356.06 174 1.515
apoal-2 92,224 139,351 8 1 3.02 5 0.057
apoal-4 92,224 1,131,436 43 2 2454 20 0.293
apoal-6 92,224 3,864,429 123 13 83.81 49 0.928
apoal-10 92,224 17,100,850 503 54 370.85 182 3.993

598a 110,971 741,934 26 5 13.37 12 0.310
144 144,649 1,074,393 26 4 14.86 11 0.219
auto 448,695 3,314,611 37 4 1477 13 0.984

In our experiments, we considered two ways of partitioning the vertices of a graph.
In the first case, the vertex set, with the vertices in their natural order (i.e. the order
in which the graphs were supplied), is partitioned into p contiguous blocks of (almost)
equal size. Such a block partitioning does not attempt to minimize cross-edges, though
the structure of the natural order is exploited. In the second case, the vertex set is par-
titioned into p disjoint subsets of nearly equal size such that the number of cross-edges
is small. For this we used the graph partitioning software Metis [12], with an option
known as VMetis that also attempts to minimize the communication volume and the
number of boundary vertices.

The first set of experiments, shown in Figures 1 and 2, are conducted to assess
the effects of the following three issues: block partitioning using the natural order (N)

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 247

vs. partitioning using VMetis (V); coloring interior vertices first (I), boundary vertices
first (B), or interleaved (U); and using synchronous (S) vs. asynchronous supersteps
(A). In all of these experiments we use FF for selecting the color of a vertex. A 3-letter
acronym reflecting the options discussed above is used in Figures 1 and 2.

Figure 1 displays the number of conflicts (normalized with respect to the total num-
ber of vertices) for the parallel coloring algorithm for different combinations of these
options while varying the superstep size and the number of processors. In Figure 1(a),
we show results for the case where the number of processors is 8. Similar trends were
observed for other number of processors. When varying the number of processors, the
superstep size is set to 100. In the interleaved mode the superstep size gives the number
of boundary vertices colored in each superstep.

|[-=-vBA
-6-VUA
—VIA
% NIS

o
~

o

0.08

Number of conflicts / |v|
Number of conflicts / |v|

100 200 300 400 500 600 700 800 2 4 6 8 10 12 14 16
Superstep size Number of processors

(a) (b)

Fig. 1. Number of conflicts while varying (a) superstep size s for p = 8, and (b) number of
processors for s = 100

Figure 1(a) and 1(b) shows that for all configurations the number of conflicts in-
creases as the superstep size and the number of processors, respectively, increases. The
two figures also show that asynchronous supersteps result in more conflicts than syn-
chronous supersteps, and that graph partitioning using Metis results in fewer conflicts
than block partitioning. In the case where block partitioning is used, only the combina-
tion of options (NIS) that gave the fewest conflicts is shown. When using Metis with
synchronous supersteps we also only show the configuration (VIS) that gave the least
number of conflicts. Using the boundary first and unordered options gave only slightly
worse results than the presented ones. In terms of the number of conflicts, the results in
Figures 1(a) and 1(b) suggest that the best result is obtained by partitioning the graph
using Metis and using a small superstep size while running supersteps synchronously.

As can be observed from the figure in the asynchronous case, the order in which
the boundary and interior vertices are colored has no major impact on the number of
conflicts.

In all of our experiments, the number of rounds the algorithm has to iterate was
observed to be consistently low, varying between two and five, for every configuration
we tried. This is a consequence of the fact that the number of initial conflicts is small and

248 Erik G. Boman et al.

then drops rapidly between successive rounds. As long as Metis is used the total number
of conflicts is within 10% of the total number of vertices in all of the configurations
considered. Thus more than 90% of the sequential work is performed in the first round.
This indicates that the increase in the number of vertices that need to be colored when
going from a sequential to a parallel algorithm is fairly low for the test set we use. We
also note that the number of colors used stays fairly low in all of our experiments and
on the average, it does not increase by more than 4% of that used by the (sequential) FF
coloring scheme.

3 —=VIA
-©-VUA
—H8-VBA
-%-VIS
% NIA

100 200 300 400 500 600 700 800 2 4 6 8 10 12 14 16
Superstep size Number of processors

(a) (b)

Fig. 2. Speedup while varying (a) superstep size s for p = 8, and (b) number of processors for
s =100

Figure 2(a) displays speedup values for the several variations of the parallel coloring
algorithm while varying the superstep size s for a fixed number of processors p = 8.
We show the NIA configuration (as opposed to NIS in Figure 1) as it gave the best
speedup when not using Metis to partition the graph. As can be seen from the figure,
the optimum value for s is close to 100 for all variants. Thus using s = 100 seems to be a
good compromise between balancing the conflicting issues of increased message startup
costs versus the number of conflicts. However, the manner in which the algorithm is
configured seems to be more important than the superstep size. It is always better to use
asynchronous communication than synchronous. Also, as can be seen from the figure
coloring interior vertices first is slightly better than coloring the vertices interleaved
which again is better than coloring the boundary vertices first.

In Figure 2(b) the speedup obtained as the number of processors is varied while
using a superstep size of 100 is shown. The trends observed in Figure 2(b) are sim-
ilar to those in Figure 2(a). The best average speedup, over all test cases, was about
8.5 while using 16 processors. However, for particular test cases, we have observed a
speedup value as high as 12.5 while using 16 processors. The worst result observed was
a speedup of 3.2 on 16 processors although this was a clear outlier. “Medium” dense
graphs tend to give better speedup values than very sparse or very dense graphs.

Our next set of experiments concerns the different coloring schemes as discussed in
Section 3. The results are shown in Figure 3(a) (conflicts), and Figure 3(b) (speedup).

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 249

Number of conflicts / |v|

6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of processors Number of processors

(@) (b)

Fig. 3. Effect of the color selection algorithm on (a) the number of conflicts, and (b) speedup
while using a superstep length of s = 100

In the figures the labels I and B show whether the interior vertices or the boundary
vertices are colored first, while the second letter correspond to the FF (F) and the SFF
(S) color selection scheme. In all of these experiments Metis is used for partitioning and
the communication is done asynchronously. For SFF we use the number of colors found
by sequential FF as our initial estimate of the number of colors. Coloring the vertices
in an interleaved fashion gave similar results as those in the figures and are not shown
here.

As expected, the SFF scheme gives fewer conflicts than the FF scheme. But as can
be seen from Figure 3(b) in terms of speedup this is offset by the higher overhead
associated with determining the correct color in the SFF scheme. Also, the SFF scheme
has the disadvantage of requiring an a priori estimate on the expected number of colors.

The speedup achieved by our approach stems from two sources: partitioning and
the “core” algorithm. Partitioning using Metis makes a trivial parallelization of the col-
oring of interior vertices possible. The “core” algorithm is a nontrivial way of coloring
the boundary vertices in parallel. Figure 4(a) shows the percentage of boundary vertices
for the graphs in Table 1 when using block partitioning with the natural vertex order-
ing, and when using Metis. As one can see the number of boundary vertices increases
with the number of processors being used. Thus it is difficult to measure the particular
speedup from coloring just the boundary vertices since the amount of work performed
changes with the number of processors. In order to give some indication of the perfor-
mance of the algorithm on the boundary vertices we present Figure 4(b). This shows
the speedup when coloring three random graphs each containing 32000 vertices and
with average vertex degrees 3, 20, and 70 respectively. For these experiments we used
the NIA configuration with the vertices colored according to the SFF scheme. Since
the vertices are ordered according to their natural order almost all the vertices become
boundary vertices (see the topmost curve in Figure 4(a)). Thus this can be viewed as
applying more processors while keeping the number of boundary vertices fixed. Since
we are in effect traversing the graph at least twice (for coloring and verification) we
cannot expect to get a speedup of more than p/2. Based on this the observed maximum
speedup of more than 6 when using 16 processors is quite good.

250 Erik G. Boman et al.

[o o o o

off
" 80
[
L 70
£
2 w0
=
& 50F
g
g 40 R o
m 30r _ :
2 O

20 o-

e ‘@ N on Random
10p° —»—N on Table 1
-©-Von Table 1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of processors Number of processors
(@) (b)

Fig. 4. (a) Percentage of boundary vertices for graphs in Table 1 (N = natural ordering, V =
ordering given by Metis), and random graphs. (b) Speedup for random graphs of various average
degrees

5 Conclusion

We have developed an efficient and truly scalable parallel graph coloring algorithm
suitable for a distributed memory computer. The algorithm is flexible and can easily
be tuned to suit the nature of the graph to be colored and the specifics of the hardware
being used. The scalability of the algorithm has been experimentally demonstrated. This
should be seen in light of the fact that previous distributed-memory parallel coloring
algorithms, such as the algorithm of Jones and Plassmann [11], did not give any speedup
when coloring the boundary vertices as more processors are applied.

Even though our main objective has been to achieve parallel speedup, being able to
perform coloring in a distributed setting where the graph is already partitioned among
the processors is an important functionality in itself.

In the future we plan to experiment with more sophisticated color selection schemes
that may further reduce the number of conflicts. We are also considering how to gen-
eralize the algorithm to other coloring problems such as distance-2 graph coloring and
hypergraph coloring, both of which have important applications in scientific computing.

References

1. J.R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C.L. Martin. A comparison
of parallel graph coloring algorithms. Technical Report NPAC technical report SCCS-666,
Northeast Parallel Architectures Center at Syracuse University, 1994.

2. Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP and
MPI. Oxford, 2004.

3. T. F. Coleman and J. J More. Estimation of sparse jacobian matrices and graph coloring
problems. SIAM J. Numer. Anal., 1(20):187-209, 1983.

4. Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization problems.
http://www.nada. kth.se/~ viggo/wwwcompendium/.

10.

11.

12.

13.

A Scalable Parallel Graph Coloring Algorithm for Distributed Memory Computers 251

Irene Finocchi, Alessandro Panconesi, and Riccardo Silvestri. Experimental analysis of sim-
ple, distributed vertex coloring algorithms. In Proc. 13th ACM-SIAM symposium on Discrete
Algorithms (SODA 02), 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

Assefaw Gebremedhin, Fredrik Manne, and Alex Pothen. Parallel distance-£ coloring algo-
rithms for numerical optimization. In proceedings of Euro-Par 2002, volume 2400, pages
912-921. Lecture Notes in Computer Science, Springer, 2002.

Assefaw Hadish Gebremedhin and Fredrik Manne. Scalable parallel graph coloring algo-
rithms. Concurrency: Practice and Experience, 12:1131-1146, 2000.

Robert K. Gjertsen Jr., Mark T. Jones, and Paul Plassmann. Parallel heuristics for improved,
balanced graph colorings. J. Par. and Dist. Comput., 37:171-186, 1996.

Ojvind Johansson. Simple distributed § 4 1-coloring of graphs. Information Processing
Letters, 70:229-232, 1999.

Mark T. Jones and Paul Plassmann. A parallel graph coloring heuristic. SIAM J. Sci. Comput.,
14(3):654-669, 1993.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1), 1999.

Michelle Mills Strout and Paul D. Hovland. Metrics and models for reordering transfor-
mations. In Proceedings of the The Second ACM SIGPLAN Workshop on Memory System
Performance (MSP), pages 23-34, June 8 2004.

Complexity and Approximation for the
Precedence Constrained Scheduling Problem
with Large Communication Delays

R. Giroudeau, J.C. Koénig, F.K. Moulai, and J. Palaysi

LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, UMR 5056

Abstract. We investigate the problem of minimizing the makespan for
the multiprocessor scheduling problem. We show that there is no hope
of finding a p-approximation with p < 14+1/(c+4) (unless P = N'P) for
the case where all the tasks of the precedence graph have unit execution
times, where the multiprocessor is composed of an unrestricted number
of machines, and where ¢ denotes the communication delay between two
tasks ¢ and j submitted to a precedence constraint and to be processed
by two different machines. The problem becomes polynomial whenever
the makespan is at the most (¢ 4+ 1). The (¢ + 2) case is still partially
opened.

1 Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources
to activities over time. The theory of the design of algorithms for scheduling is
younger, but still has a significiant history.

In this article we adopt the classical scheduling delay model or homogeneous
model in which an instance of a scheduling problem is specified by a set J =
{j1,.-.,Jn} of n nonpreemptive tasks, a set of U of ¢ precedence constraints
(Ji, Jk) such that G = (J,U) is a directed acyclic graphs (dag), the processing
times p;, Vj; € J, and the communication times ¢, V(j;,jx) € U.

If the task j; starts its execution at time ¢ on processor m, and if task jx is
a successor of j; in the dag, then either j, starts its execution after the time
t + pj, on processor 7, or after time ¢ + p;, + cj,;, on some other processor. In
the following we consider the case of Vji, € J, p;, = 1 and V(j;, ji) € E, ¢j,j, =
c> 2.

This model was first introduced by Rayward-Smith [13]. In this model we
have a set of identical processors that are able to communicate in a uniform
way. We want to use these processors in order to process a set of tasks that are
subject to precedence constraints. The problem is to find a trade-off between
the two extreme solutions, namely, execute all the tasks sequentially without
communication, or try to use all the potential parallelism but at the cost of
an increased communication overhead. This model has been extensively studies
these last years both from the complexity and the (non)-approximability points
of view [2].

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 252-261, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Complexity and Approximation 253

Using the three fields notation scheme proposed by Graham et al. [6], the
problem is denoted as P|prec, cij = ¢ > 2;p; = 1|Chae i.e. we have an un-
bounded number of identical processors in order to schedule a dag such that
each task has the same execution time and each pair of tasks have the same
communication time. The aim is to minimize the length of the schedule.

1.1 Complexity Results

The problems with unitary communication delay. If we consider the
problem of scheduling a precedence graph with unitary communication de-
lays and unit execution time (UET-UCT) on an unbounded number of pro-
cessors, Hoogeveen et al. [7] proved that the decision problem associated to
15|p7"ec; ¢ij = 1;p; = 1|Crmax becomes NP-complete even for Cppax > 6, and that
it is polynomial for Cy.x < 5. Their proof is based on a reduction from the N'P-
complete problem 3SAT [3]. The N'P-completeness result for Cyax = 6 implies
that there is no polynomial time approximation algorithm with ratio guarantee
better than 7/6, unless P = N'P.

Moreover, in the presence of a bounded number of processors, Hoogeveen et
al. [7] establish that whether an instance of Plprec;c;j = 1;p; = 1|Ciae has a
schedule of length of at the most 4 is N’P-complete (they use a reduction from the
NP-complete problem Clique), whereas Picouleau [11] develops a polynomial
time algorithm for the Cihax = 3. In the same way, the N'P-completeness result
for Chhax = 4 implies that there is no polynomial time approximation algorithm
with ratio guarantee better than 5/4, unless P = N'P.

The problems with large communication delay. If we consider the prob-
lem of scheduling a precedence graph with large communication delays and
unit execution time (UET-LCT), on bounded number of processors, Bampis
et al. in [1] proved that the decision problem denoted by P|prec;c;; = ¢ >
2;p; = 1|Cpaz for Cpax = ¢ + 3 is N'P-complete problem, and for Cpayx =
¢ + 2 (for the special case ¢ = 2), they develop a polynomial time algo-
rithm. Their proof is based on a reduction from the AP-complete problem
Balanced Bipartite Complete Graph, BBCG [3]. Thus, Bampis et al. [1] proved
that the P|prec; ¢;; = ¢ > 2;p; = 1|Ciyqp problem does not possess a polynomial
time approximation algorithm with ratio guarantee better than (14 —=), unless

c+3
P = NP.
Remark: Notice that in the case of an unbounded number of processors
(Plprec;cij = ¢ > 2;p; = 1|Cpag), the complexity to an associated decision
problem is unknown.

1.2 Approximation Results

The problems with unitary communication delay. The best known ap-
proximation algorithm for Plprec;c;; = 1;p; = 1|Cpqz is due to Munier and
Konig [10]. They presented a (4/3)-approximation algorithm for this problem,

254 R. Giroudeau et al.

which is based on an integer linear programming formulation. The algorithm is
based on the following procedure: an integrity constraint is relaxed, and feasible
schedule is produced by rounding.

Munier and Hanen [9] proposed a (% — %)—approximation algorithm for the
problem P|prec;c;; = 1;p; = 1|Cias. They define and study a new list schedul-
ing approximation algorithm based on the solution given on an unrestricted
number of processors. They introduce the notion of favourite successor in order
to define priorities between conflicting successors of a task. Note that, if we con-
sider large communication delays, there is no p-polynomial time approximation
algorithm known, except the trivial bound (¢ + 1), one whose first step consists
in executing the tasks and second step in initiating communication phasis and
soon ...

Concerning the case of a restricted number of processors, an only (as known)
constant 2-approximation algorithm is given by Munier [8], for the special case
where the precedence graph is tree in presence of large communication delays.

The problems with large communication delay. Contrary to the complex-
ity results, as we know, an unique approximation algorithm is given by Rapine
[12]. The author gives the lower bound O(c) for the list scheduling in presence
of large communication delays.

1.3 Presentation of the Paper

The challenge is to determinate a threshold for approximation algorithm for the
problem P|prec; ¢ij = ¢ > 2;p; = 1|Cpnaaz, to develop a non trivial approximation
algorithm, and to improve, in the presence of a restricted number of processors,
the bound given by Rapine [12].

This article is organized as follows: in the second section, we give a prelimi-
nary result. In the third section, we give the non-approximability result for the
scheduling problem with the objective func(tior; of minimizing the length of the

2(c+1

schedule. In the last section, we develop a =——-approximation algorithm based

on the notion of expansion of the makespan of a good feasible schedule.

2 Preliminary Result

In this part, we will define a variant of SAT problem [3], denoted in the following
by II;. The N'P-completeness of the scheduling problem P|prec; Cij =C2>2p; =
1|Cnaz (see section 3), is based on a reduction from this problem.

The problem II; is a variant of the well known SAT problem [3]. We will
call this variant the One-in-(2,3)SAT(2,1) problem.We denote by V, the set of
variables. Let n be a multiple of 3 and let C be a set of clauses of cardinality 2 or
3. There are n clauses of cardinality 2 and n/3 clauses of cardinality 3 so that:

— each clause of cardinality 2 is equal to (z V) for some x, y € V with x # y.
— each of the n literals « (resp. of the literals) for x € V belongs to one of
the n clauses of cardinality 2, thus to only one of them.

Complexity and Approximation 255

— each of the n literals z belongs to one of the n/3 clauses of cardinality 3,
thus to only one of them.

— whenever (z V g) is a clause of cardinality 2 for some z, y € V, then = and
y belong to different clauses of cardinality 3.

Question: Is there a truth assignment I : V — {0, 1} such that every clause in
C has exactly a true literal?

Example The following logic formula is a valid instance of I1;:

(ko Vo Va) A(xzVagVas)A(ToVas) A(TsVag)A(TgVa)A(T1Vag) A
(i‘5 V .131) A (i‘g \ .735).

The answer to I1; is yes. It suffices to choose zop =1, x3 = 1 and z; = 0 for
i =1{1,2,4,5}. This yields a truth assignment satisfying the formula, and there
is exactly one true literal in every clause. For the proof of the N'P-completeness
see [4].

3 Non-approximability Results

In this section, we show in the first part, that the problem denoted by
Plprec; ¢ij = ¢ > 3;p; = 1|Cpqp cannot be approximated by a polynomial
time approximation algorithm with ratio guarantee better than 1 + — for the
minimization of the length of the schedule.

3.1 The Minimization of Length of the Schedule

Theorem 1. The problem of deciding whether an instance of P|prec; cij =
¢;pi = 1 Chaz has a schedule of length at most (c + 4) is N'P-complete with
c> 3.

Proof. Tt is easy to see that Plprec;ci; = ¢;p; = 1|Cpaz = ¢ +4 € N'P.

Our proof is based on a reduction from I7;. Given an instance 7* of II;, we
construct an instance 7 of the problem P|prec; cij = ¢;pi = 1|Crge = c+4,in
the following way:

Remark: n designs the number of variables of 7*.

L. For all z € V, we introduce (c + 6) variables-tasks: azz, o', 7', @', 87
with j € {1,2,.. c + 2}. We add the precedence constraints: oz — o,
aﬂlilﬁf’,ﬁf% , B =T, BY — B 1W1th]€{1 oo, c+ 1}

2. For all clauses of length three denoted by C; = (y V z V t), we introduce

X (2 + ¢) clauses-tasks Cj and A?, j € {1,2,...c + 2}, with precedence
constraints: Cf — C7,, and Al — A]_H, je {1 2,...,c+ 1}. We add the
constraints C’l — lwithl e {y,2,t'} and | — AL, Wlth Le{y,).

3. For all clauses of length two denoted by C; = (z V), we introduce 2(c + 3)
clauses-tasks D! (vesp. D}), j € {1,2,...,c+3} with precedence constraints:
Di — DH_1 (resp. D} — DY) with j € {1,2,...,¢+ 2} and 2’ — D},
(resp. ' = Dilys).

256 R. Giroudeau et al.

Ci' Oé Oz+1 'g——Z
e e s 8
Al Ay Al Al
[-8 “.““.«.\
",
N v
/"(\
YieV P o\
r S 4 U
I //acp r /~";._\l\\
BT AR
sl y o

: P .l—-.;-\ \\

,BI. ﬁ% ,81.'+1)GC-P‘\Q LY
_\

- e ’ \. -
Di D} Doy N\ Dets
[— v ._\,_\.

Y P

e - | e .ﬁ. ’::+3
D J;. Dr; e+2

Fig. 1. A partial precedence graph for the J\/P-completeness of the scheduling problem
Plprec; cij = ¢ > 3;pi = 1|Cnae. Remark: " is in the clause of length two associated
toD'] - D5 —...D'tys = Diys

The above construction is illustrated in Figure 1. This transformation can
be clearly computed in polynomial time.

e Let us first assume that there is a schedule of length at most (¢ + 4). In the
following, we will prove that there is a truth assignment I : V — {0, 1} such
that each clause in C has exactly one true literal.

First we can remark that if ¢ > 3 then 2¢ + 2 > ¢+ 4 and so, each path

AL, B7, CF or DY, with j € {1,2,...,c¢+2} and j" € {1,2,...,c+ 3} must

be executed on the same processor. What’s more, two of these paths cannot

be executed on the same processor.

Notation: In the following we denote by P4 (resp. Pc) the set of the %
processors which execute a path Aj (resp. a path C7). Notice that we know
by the definition of the problem II;, that in an instance admits 5 clauses of
length three where n denotes the number of variables. In the same way, we

denote by Ps (resp. Pp) the set of the n processors which execute a path B
(resp. a path D?).

Lemma 1. For C,q; = ¢+ 4: the decision to assign the true value to the
variable x iff the variable-task ©' is executed on a processor of the path Pc
leads to a correct solution.

Proof. In order to respect the feasible schedule of length (¢ + 4), in the
first time, we can stem from the polynomial time transformation, that the

starting time of the variables-tasks I/, I’ and [, and that the processors on

which these tasks must be executed, are given by the following remarks:
VieV:

Complexity and Approximation 257

e Each variable-task I’ is executed on a processor of Pc at slot 3 or on a
processor of Pp at slot (¢ +2) or (c+ 3),
e Each variable-task [’ is executed on a processor of Pg at slot 3 or on a
processor of Pp at slot (¢4 2) or (¢ + 3),
e Each variable-task I’ is executed on a processor of Py at slot 2 or 3 or
on a processor of P4 at slot (¢ + 2) or (¢ + 3),
e The variables-tasks I’ and I’ cannot be executed together on a processor
of P3 (they have a common predecessor).
Notation and property: For each | € V, we can associate the three tasks
I, I, I'. We denote by X = {l'll € V}, X = {I'|l € V} and X = {I'|l € V}
three sets of tasks. For each subset A of X (resp. X), we can associate a
subset B of X in the following way: I’ € B if and only if I' € A (resp.
'€ A).
Let be the following sets: X7 = {I'\n(l') = n(Pc)} where w(l’) (resp.
m(P¢)) designs the processor on which the task I’ is scheduled, X, =
{\r (') = 7(Pp)}, X5 = {I\n(l) = ©(Py)}, Xa = {I\x(l') = n(Pp)},
X5 = {I'\m(I') = (Pg)}, Xo = {I'\m(l') = 7(Pa)}.
Let be z; = | X;| for i € {1,..., 6}.
We can stem from the construction of an instance of the scheduling problem
the following table,

|Pc| Bs|Pa| P
.’ﬂ’ X1 X2
' X3 X,
&’ X5| X6

From the previous table, using the variable x;, we obtain the following in-
equations system: x1 + o = n(l),23 + x4 = n(2),25 + z¢ = n(3),21 <
2(4), w6 < 22(5), w3 + x5 < n(6), 22 + 24 < (7).

We will give some details about the previous system:

e For the equations(1), (2) and (3): We must execute all the tasks of the
sets X, X and X.

e For the equation (4), on the processor which executes the path C; of
the clause C; = (y V z V t), we can execute at most one of the three
variables-tasks 73, 2’, t. Indeed, all variables-tasks I’ as a successor
which is executed on a processor of Pp. If it is executed on the processor
which scheduled the tasks from the path Pg it cannot be executed before
the slot 3 and so, the variable-task o must be executed on the same
processor which becomes saturated. So, we have | X3| < |Pc|.

e For the equation (5), each processor of the paths P4 has two free slots
and |Pa| = 3.

e For the equation (6), all the variables-tasks I’ or I’ which are executed

on a processor of the path Pz must be finished before slot 3 (it has a

successor executed on another processor). So the variable-task a;; must

be executed on the same processor which becomes saturated. Therefore,
at the most one task between the variables-tasks I’ and I’ can be executed
on a processor of the path Ps and so, | X3| + | X5| < |Pg|.

258

R. Giroudeau et al.

e For the equation (7), it is clear that, |Pp| = n and there is at the most
one free slot on each processor of Pp.

On the one hand, we have z3+x5 = n (indeed, we have z3+x4+x5+x6 = 2n
and zg < %", ry < 3,80 X3+ T5 > n) and on the other hand, VI’ only
one variable-task between the variables-tasks I’ and I’ can be executed on
a processor of Pg, thus we obtain X3 N X5 = (. Consequently, we have
X3 U X5 = X. As the set X4 (resp. Xg) is the complementary of the set
X3 (resp. X5) we have X3 U Xg = X. Moreover, if the variable-task I’ is
executed on a processor of Pc then the variable-task o is executed on
the same processor. Thus, the variable-task Z' cannot be executed before
the slot (¢ + 2), thus it is executed on a processor of Pp. We can deduce
that X7 = X4 (the two sets are the same cardinality). Finally, we have
XiUXo =X, X3UXy =X, XsUXg =X, X,UXg =X, X3UX; =X,
X1 = X, and therefore X1 = X4 = X5 and X, = X35 = X;.

We can deduce from the previous equations that 1 = z4 = x5 = % and
X9 = T3 = Tg — %

So, if we affect the value “true” to the variable [iff the variable-task I’ is
executed on a processor of P¢ it is trivial to see that in the clause of length
3 we have one and only one literal equal to “true”.

Let be ¢ = (z V §), a clause of length 2.

e If2' € X1 = ¢ € Xy = y € X;. The first implication (resp. the
second) is due to the fact that each processor of the path Pp must be
saturated (z2 + x4 = n) (resp. X7 = X4). Only the literal x is “true”
between the variables x and .

e If ' € Xo = ¢ € X3 = y € Xs. The first (resp. the second)
implication is due to the fact that there is only one free slot on each
processor executing the path Pp (resp. X3 = X5). Ouly the literal g is
“true” between the variables x and .

In conclusion, there is only one true literal per clause.This concludes the
proof of Lemma 1.

Conversely, we suppose that there is a truth assignment I : ¥V — {0,1}, such
that each clause in C has exactly one true literal.

Suppose that the true literal in the clause C; = (yV zVt) is t. Therefore, the
variable-task ¢’ (resp. y’ and z’) is processed at the slot 2 (resp. at the slot
(c+2)) on the same processor as the path Pg, (resp. as the path Pp and Ppy,
where D and D’ indicates a clause of length two where the variables y and z
occurred). The %” other variables-tasks 1’ not yet scheduled are executed at
slot 3 on processor Pg as the variable-task o,y . The variable-task t' (resp.
9’ and Z') is executed at the slot 2 (resp. ¢ + 2 and ¢+ 3) on a processor of
the path Pg (resp. Pa).This concludes the proof of Theorem 1.

In the full version of this paper [5], we proved the following results:

Corollary 1. There s no polynomial-time algorithm for the problem
Plprec;cij = ¢ > 2;p; = 1|Chyae with performance bound smaller than 1+ CJ%4

unless P # NP.

Complexity and Approximation 259

Theorem 2. There is mno polynomial-time algorithm for the problem
Plprec;cij = ¢ > 2;p; = 1 >_; Cj with performance bound smaller than 1+ 5 = 2C+5
unless P # NP.

Theorem 3. The problem of deciding whether an instance of Pl|prec; Cij =
¢;pi = 1|Car with ¢ € {2,3} has a schedule of length at most (c+2) is solvable
in polynomial time.

4 Approximation by Expansion
4.1 Introduction, Notation and Description of the Method

Notation: We denote by ¢, the UET-UCT schedule, and by o2° the UET-
LCT schedule. Moreover, we denote by ¢; (resp. t§) the starting time of the task
i in the schedule 0 (resp. in the schedule o2°).

Principle: We keep an assignment for the tasks given by a “good” feasible
schedule on an unbounded number of processors 0°°. We proceed to an expansion
of the makespan, while preserving communication delays (t; > ¢+ 1+ c) for
two tasks, ¢ and j with (4,j) € E, processing on two different processors.

Let be a precedence graph G = (V, E), we determinate a feasible schedule c*°
for the model UET-UCT, using an (4/3)—approximation algorithm proposed by
Munier and Konig [10]. This algorithm gives a couple Vi € V| (t;,7) on the
schedule 0 corresponding to: t; the starting time of the task i for the schedule
o> and 7 the processor on which the task ¢ is processed at ¢;.

Now, we determinate a couple Vi € V, (t¢,7') on the schedule

o in the

following ways: The starting time ¢ = d x ¢t — ¢ = (C;rl)ti and, 7 = 7’. The
justification of the expansion coefficient is given below. An illustration of the
expansion is given by Figure 2.

k k+1 k+2 k+3 (c+21)k (c+1)k +1 (c—l)(k+1) (L'+')(I‘ﬂ+1) 41

W P] - {,/ T [=

. 71
™ SR
T2 T & 2 -~——~'_:___ T _f__‘:___ﬁ‘ =

Model 4ET—UCT Model URTLOT | (e
communication delay communication delay

Fig. 2. Illustration of notion of an expansion

4.2 Analysis of the Method

. . . _ (c+1)
Lemma 2. The coefficient of an expansion is d = ~—5—.

Proof. Let be two tasks ¢ and j such that (i, j) € E, which are processed on two
different processors in the feasible schedule 0*°. We are interested in having a
coefficient d such that ¢f = d x¢; and t; = d x t;. After an expansion, in order to

260 R. Giroudeau et al.

respect the precedence constraints and the communication delays we must have

t5>ti+1+c,andsodxt; —dxt; >c+1, d> t‘?ftl_, d> % It is sufficient
i)

(c+1)

=

to choose d =

Lemma 3. An expansion algorithm gives a feasible schedule for the problem
denoted by Plprec;c;; = ¢ > 2;p; = 1|Cax.

Proof. 1t sufficient to check that the solution given by an expansion algorithm
produces a feasible schedule for the model UET-LCT. Let be two tasks ¢ and j
such that (i,j) € E. We denote by m; (resp. m;) the processor on which the task
i (resp. the task j) is executed in the schedule 0°°. Moreover, we denote by =,
(resp.) the processor on which the task i (resp. the task j) is executed in the
schedule o¢°. Thus,
— If m; = m; then 7 = 7. Since the solution given by Munier and Kénig [10]
gives a feasible schedule on the model UET-UCT, then we have ¢; + 1 <
ty, —pte+1< 251518+ 1 < 8§ + <EL <48,

Jr cF1vi = 1Y

— Ifm; # mj then 7] # nf. We have t;+141 < t;, 271542 < 271545+ (c+1) <
ts.
J

2(c+1)
3

Theorem 4. An expansion algorithm gives a —approzimation algorithm

for the problem P|prec; cij = ¢ > 2;p; = 1|Cax-

Proof. We denote by C" . (resp. C%P!) the makespan of the schedule computed
by the Munier and Kénig (resp. the optimal value of a schedule 0°°). In the same
way we denote by C" (resp. C%PL¢) the makespan of the schedule computed
by our algorithm (resp. the optimal value of a schedule ¢2°).

n* (e+1)
h 4 opt 1 Cma Crnas
We know that C7 ., < 3Cy7... Thus, we obtain Corte = 20;’,{’;; <
Ccn,. o SHRAom, 2Act)
Cilee = Cilea — 3 7

Remark: this expansion method can be used for another problems.

5 Conclusion

In this paper, we first proved the problem of deciding whether an instance of
Plprec;cij = ¢ > 3;p; = 1|Cynax has a schedule of length at most (c + 4) is
NP-complete. This result is to be compared with the result of [7] (resp. [1]),
which states that Plprec;c;;j = 1;p; = 1|Crnax = 6 (vesp. Plprecicij = ¢ >
3;pi = 1|Cmaz = ¢+ 3) is N'P-complete. Our result implies that there is no
p—approximation algorithm with p < 1+ ——, unless P = N'P. Secondly, we also

c+4°
propose a @—approximation algorithm based on the notion of expansion. In
the full version [5], we show that there is no hope of finding a p-approximation
algorithm with p strictly less than p < 1 + T{rs for the problem of the mini-

mization of the sum of the completion time. We established that the problem of

Complexity and Approximation 261

deciding whether an instance of P|prec; ¢ij = ¢;p; = 1|Crag with ¢ € {2,3} has
a schedule of length at most (¢ + 2) is solvable in polynomial time.

Remark: We conjecture that the problem of deciding whether an instance of
Plprec; cij = ¢;pi = 1|Crnap with ¢ > 2 has a schedule of length at most (¢ + 3)
is solvable in polynomial time.

References

1.

10.

11.

12.

13.

E. Bampis, A. Giannakos, and J.C. Konig. On the complexity of scheduling with
large communication delays. Furopean Journal of Operation Research, 94:252-260,
1996.

B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling: com-
plexity, algorithms and approximability. Technical Report Woe-29, TU Graz, 1998.
M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory
of N'P-Completeness. Freeman, 1979.

R. Giroudeau. L’%mpact des délais de communications hiérarchiques sur la com-
plexité et approximation des problémes d’ordonnancement. PhD thesis, Université
d’ Evry Val d’Essonne, 2000.

R. Giroudeau, J.C. Konig, F.K. Moulai, and J. Palaysi. Complexity and approxi-
mation for the precedence constrained scheduling problem with large communica-
tions delays. Technical Report 11903, Laboratoire d’Informatique, de Robotique
et Microélectronique de Montpellier, 2005.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministics sequencing and scheduling theory: a survey.
Ann. Discrete Math., 5:287-326, 1979.

J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the com-
plexity of scheduling with communication delays. O. R. Lett., 16(3):129-137, 1994.
A. Munier. Approximation algorithms for scheduling trees with general communi-
cation delays. Parallel Computing, 25(1):41-48, January 1999.

A. Munier and C. Hanen. An approximation algorithm for scheduling unitary tasks
on m processors with communication delays. Non publié, 1996.

A. Munier and J.C. Kénig. A heuristic for a scheduling problem with communica-
tion delays. Operations Research, 45(1):145-148, 1997.

C. Picouleau. New complexity results on scheduling with small communication
delays. Discrete Applied Mathematics, 60:331-342, 1995.

C. Rapine. Algorithmes d’approxzimation garantie pour l’ordonnancement de taches,
Application au domaine du calcul paralléle. PhD thesis, Institut National Polytech-
nique de Grenoble, 1999.

V.J. Rayward-Smith. UET scheduling with unit interprocessor communication
delays. Discr. App. Math., 18:55-71, 1987.

Batch-Scheduling Dags for Internet-Based Computing*
(Extended Abstract)

Grzegorz Malewicz!*® and Arnold L. Rosenberg?

1 Dept. of Computer Science, Univ. of Alabama, Tuscaloosa, AL 35487, USA
2 Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA 01003, USA
3 Div. of Mathematics and Computer Science, Argonne National Lab, Argonne, IL 60439, USA

Abstract. The process of scheduling computations for Internet-based computing
presents challenges not encountered with more traditional computing platforms.
The looser coupling among participating computers makes it harder to utilize
remote clients well, and raises the specter of a kind of “gridlock™ that ensues
when a computation stalls because no new tasks are eligible for execution. This
paper studies the problem of scheduling computation-dags in a manner that ren-
ders tasks eligible for execution at the maximum possible rate. Earlier work has
developed a framework for such scheduling when a new task is allocated to a
remote client as soon as it returns the results from an earlier task. The proof in
that work that many dags cannot be scheduled optimally within this paradigm
signaled the need for a companion theory that addresses the scheduling problem
for all computation-dags. A new, batched, scheduling paradigm for Internet-based
computing is developed in this work. Although optimal batched schedules always
exist, computing such a schedule is NP-Hard, even for bipartite dags. In response,
a polynomial-time algorithm is developed for producing optimal batched sched-
ules for a rich family of dags obtained by “composing” tree-structured building-
block dags. Finally, a fast heuristic schedule is developed for “expansive” dags.

1 Introduction

Earlier work [1, 13, 15] has developed the Internet-Computing (IC, for short) Pebble
Game that abstracts the problem of scheduling computations having intertask dependen-
cies for the several modalities of Internet-based computing, including Grid computing
(cf. [1, 4, 5]), global computing (cf. [2]), and Web computing (cf. [8]). This Game was
developed with the goal of formalizing the process of scheduling computations with
intertask dependencies for IC. The scheduling paradigm studied in [1, 13, 15] is that
a server allocates a task of the dag being computed to a remote client as soon as the
task becomes eligible for allocation and the client becomes available for computation.
The quality metric for schedules is to maximize the rate at which tasks are rendered
eligible for allocation to remote clients, with the dual aim of maximizing the utilization
of remote clients and minimizing the likelihood of the “gridlock” that can arise when
a computation stalls pending completion of already-allocated tasks. These sources de-
velop the framework for a theory of IC scheduling based on this paradigm.

* A portion of the research of G. Malewicz was done while visiting the Univ. of Massachusetts
Ambherst. The research of A. Rosenberg was supported in part by NSF Grant CCF-0342417.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 262-271, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Batch-Scheduling Dags for Internet-Based Computing 263

The present study is motivated by the demonstration in [I |] that there are simple
computation-dags that do not admit any optimal IC schedule. (Intuitively, any sequence
of tasks that optimizes the number of eligible tasks after the first ¢ steps of the compu-
tation is incompatible with every sequence that optimizes that number after the first ¢’
steps.) We respond here by developing a companion scheduling theory in which every
computation-dag admits an optimal schedule. This new theory is based on a batched
scheduling paradigm, which relieves the Server from the chore of selecting a new task
for allocation whenever a remote client becomes available for computation. Instead,
we now assume that the Server collects requests for new tasks and then (either peri-
odically or based on some trigger) allocates tasks for the collected requests in a batch.
(This mode of operation may be inevitable if, say, tasks take extremely long to compute
and enable many other tasks once completed.) The goal for the Server is to satisfy this
batch of requests with a set of tasks whose execution will produce a maximal number
of new eligible tasks. In contrast to the quality metric of [, 13, 15], this new step-
by-step metric can always be satisfied optimally. Moderating the news that optimality
can always be achieved in the batched paradigm is our demonstration that finding such
a schedule for an arbitrary computation-dag—even a bipartite one—is NP-Hard, hence
likely computationally intractable (Section 3). We respond to this probable computa-
tional intractability with a polynomial-time optimal algorithm for a rich family of dags
that are constructed by “composing” certain tree-structured building-block dags (Sec-
tion 5). Since the preceding timing polynomial has high degree, we also develop a fast
heuristic schedule for a more restricted family of “expansive” dags, whose eligible-task
production rate is within a factor of 4 of optimal (Section 6).

{/%f (Q

\ﬁ JWQ@\

1

0000 [0001] [1010] [1011]

Fig. 1. Clockwise from top left: an evolving (2-dimensional) mesh, the 5-level (2-dimensional)
reduction-mesh, a (binary) reduction-tree dag.

Related work. The IC Pebble Game is introduced in [13, 15], and optimal schedules
are identified for the dags of Fig. 1. A framework for a theory of scheduling for IC is de-
veloped in [1 1], building on the principles that enable the optimal schedules of [13, 15].
Central to the framework are a formal method for composing simple dags into complex
ones, together with a relation that allows one to prioritize the execution order of the con-

264 Grzegorz Malewicz and Arnold L. Rosenberg

stituent building-block dags of a composite dag. A probabilistic pebble game is used in
[6, 9, 10] to study the problem of executing tasks on unreliable clients; our proof of
the NP-hardness of batch-scheduling builds on tools from [0]. Although our goals and
methodology differ significantly from those of [3, 12, 14], we owe an intellectual debt to
those pioneering studies of pebbling-based scheduling models. Finally, the impetus for
our study derives from the many exciting systems- and/or application-oriented studies
of Internet-based computing, in sources such as [1, 2, 4, 5, 7, &, 16].

2 A Model for Executing Dags on the Internet

2.1 Computation-Dags

Basic definitions. A directed graph G is given by a set of nodes Ng and a set of arcs
(or, directed edges) Ag, each having the form (u — v), where u,v € Ng. A pathin G
is a sequence of arcs that share adjacent endpoints, as in the following path from node
up to node wuy,: (u1 — usg), (ug — uz), ..., (Up—2 — Un—1), (Un—1 — u,). A dag
(directed acyclic graph) G is a directed graph that has no cycles; i.e., in a dag, no path
of the preceding form has u; = u,,. When a dag G is used to model a computation, i.e.,
is a computation-dag:

— each node v € Ng represents a task in the computation;
- an arc (u — v) € Ag represents the dependence of task v on task u: v cannot be
executed until is.

Given an arc (u — v) € Ag, we call u a parent of v and v a child of u in G. Each
parentless node of G is called a source (node), and each childless node is called a sink
(node); all other nodes are internal. A dag G is bipartite if:

1. Ng can be partitioned into subsets X and Y such that, for every arc (u — v) € Ag,
u € Xandv €Y

2. each node of G is incident to some arc of G, i.e., is either the node u or the node v
of some arc (u — v) € Ag. (For convenience, we prohibit “isolated” nodes.)

Sums of bipartite dags play a major role in our study. Let G4, ..., G,, be bipartite dags
that are pairwise disjoint, in that Ng, N Ng, = () for all distinct 7 and j. The sum of
G1,...,Gm,denoted G + - - - + G, is the bipartite dag whose node-set and arc-set are,
respectively, the unions of the corresponding sets of G1, ..., G,,. A dag is connected if,
ignoring the orientation of its arcs, there is an undirected path between any two distinct
nodes. Every bipartite dag is a sum of connected bipartite dags.

Some basic building blocks. Our study focuses on dags that are built out of bipar-
tite building blocks by the operation of composition. We present a sampler of building
blocks that will illustrate the theory we begin to develop here; see Fig. 2.

A bipartite tree-dag 7 is a bipartite dag such that, if one ignores the orientations
of 7’s arcs, then the resulting graph is a tree. The following two special classes of
tree-dags generate important families of complex dags.

For each d > 1, the (1, d)-W-dag W1,q has one source node and d sink nodes; its d
arcs connect the source to each sink. Inductively, for positive integers a, b, the (a+b, d)-
W-dag W 4,q is obtained from the (a, d)-W-dag W, 4 and the (b, d)-W-dag Wp, 4 by

Batch-Scheduling Dags for Internet-Based Computing 265

°
A Bipartite Tree-Dag: WW\M
° [° ° [
(1,4)-W: \'ié'/ (2,4)-W: \'ié'/ \‘;?; (1,3)—% (2,3)—M
[] []
A Bipartite Expansive-Dag: W

Fig. 2. Some bipartite building-block-dags.

identifying (or, merging) the rightmost sink of the former dag with the leftmost sink of
the latter. W-dags epitomize “expansive” computations.

For each d > 1, the (1, d)-M-dag M 4 has d source nodes and 1 sink node; its d
arcs connect each source to the sink. Inductively, for positive integers a, b, the (a+b, d)-
M-dag M+ 4 is obtained from the (a, d)-M-dag M, 4 and the (b, d)-M-dag M, 4 by
merging the rightmost source of the former dag with the leftmost source of the latter.
M-dags epitomize “contractive” (or, “reductive”) computations.

A large variety of significant computation-dags are “compositions” of W-dags and
M-dags, including the dags in Fig. 1: The evolving mesh is constructed from its source
outward by “composing” a (1,2)-W-dag with a (2, 2)-W-dag, then a (3, 2)-W-dag, and
so on; the reduction-mesh is similarly constructed using (k, 2)-M-dags for successively
decreasing values of k; the reduction-tree is constructed by “composing” independent
collections of (1, 2)-M-dags.

The following additional building blocks are highlighted in Section 6.

A bipartite expansive-dags £ is a bipartite dag wherein each source v has an asso-
ciated number ¢, > 2 such that: v has ¢, children that have no parent other than v and
< ¢, other children. Easily, expansive dags need not be tree-dags (cf. Fig. 2).

Compositions of bipartite dags. The following mechanism for composing a collection
of connected bipartite dags to build complex dags is introduced in [| 1].

— Start with a base set B of connected bipartite dags.
— Given dags G1,G2 € B—which could be copies of the same dag with nodes re-
named to achieve disjointness—one obtains a composite dag G as follows.

e Let the composite dag G begin as the sum, G1 +Go, of the dags G1, G2. Rename
nodes to ensure that Ng is disjoint from Ng, and Ng,.

e Select some set S of sinks from the copy of G; in the sum G; + G2, and an
equal-size set Sy of sources from the copy of G5 in the sum. (If S; = (), then
the composition operation degenerates to the operation of forming a sum dag.)

e Pairwise identify (i.e., merge) the nodes in the sets S7 and S in some way. The

resulting set of nodes is G’s node-set; the induced set of arcs is G’s arc-set.
— Add the dag G thus obtained to the base set B.

266 Grzegorz Malewicz and Arnold L. Rosenberg

Note the asymmetry of composition: G; contributes some of its sinks, while G5 con-
tributes some of its sources. The reader should note the natural correspondence between
the node-set of G and the node-sets of G and G».

We denote the composition operation by f} and refer to the resulting dag G as a
composite dag of type [G1 1} G2]. The following lemma is of algorithmic importance, in
that it allows one to ignore the order in which compositions are performed.

Lemma 1 ([11]). The composition operation on dags is associative; i.e., a dag is com-

posite of type [[G1 1t Ga| 1 G3] if, and only if, it is composite of type [G1 1 [G2 Tt G3]]-

2.2 The Batched Idealized Internet-Computing Pebble Game

A number of so-called pebble games on dags have been shown, over the course of
several decades, to yield elegant formal analogues of a variety of problems related to
scheduling dags. Such games use tokens called pebbles to model the progress of a com-
putation on a dag: the placement or removal of the various available types of pebbles—
which is constrained by the dependencies modeled by the dag’s arcs—represents the
changing (computational) status of the dag’s task-nodes.

Our study is based on the Internet-Computing (IC, for short) Pebble Game of [13].
Based on studies of Internet-based computing in, for instance, [/, 7, |6], arguments are
presented in [13, 15] that justify studying an idealized, simplified form of the Game.
We refer the reader to these sources for both the original IC Pebble Game and for the
arguments justifying its simplification. We study an idealized form of the Game here,
adapted to a batched mode of computing.

The rules of the game. The Batched IC Pebble Game on a dag G involves one player
S, the Server, who has access to unlimited supplies of two types of pebbles: ELIGIBLE
pebbles, whose presence indicates a task’s eligibility for execution, and EXECUTED
pebbles, whose presence indicates a task’s having been executed. The following rules
of the Game simplify those of the original IC Pebble Game of [3, 15].

The Rules of the Batch-IC Pebble Game

— S begins by placing an ELIGIBLE pebble on each unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents
whose prior execution they depend on.*/

— At each step t—when there is some number, say e;, of ELIGIBLE pebbles on G’s
nodes—S ' is approached by some number, say r;, of Clients, requesting tasks. In
response, S:

e selects min{e;, r;} tasks that contain ELIGIBLE pebbles,

e replaces those pebbles by EXECUTED pebbles,

e places ELIGIBLE pebbles on each unpebbled node of G all of whose parents
contain EXECUTED pebbles.

— S’s goalis to allocate nodes in such a way that every node v of G eventually contains
an EXECUTED pebble.

/*This modest goal is necessitated by the possibility that G may be infinite.*/

Batch-Scheduling Dags for Internet-Based Computing 267

For brevity, we henceforth call a node ELIGIBLE (resp., EXECUTED) when it con-
tains an ELIGIBLE (resp., an EXECUTED) pebble. For uniformity, we henceforth talk
about executing nodes rather than tasks.

The Batch-IC Scheduling (BICSO) Problem. Our goal is to play the Game in a way
that maximizes the number of ELIGIBLE pebbles on G after every move by the Server
S. In other words: for each step ¢ of a play of the Game on a dag G under a schedule
2/, if there are currently e; ELIGIBLE nodes, and if r, Clients request tasks, then we
want the Server to select a set of min{e;, 7, } ELIGIBLE nodes to execute that will result
in the largest possible number of ELIGIBLE nodes at step ¢ + 1. We thus arrive at the
following optimization problem.

Batched IC-Scheduling (Optimization version) (BICSO)
Instance: 1= (G, X, E;r), where:
e G is a computation-dag;
e X and E are disjoint subsets of Ng that satisfy the following;
There is a step of some play of the Batched IC Pebble Game on G in which
X is the set of EXECUTED nodes and F the set of ELIGIBLE nodes on .
e risin the set' [1,|E]].
Problem: Find a set R C E of r nodes whose execution maximizes the number of
ELIGIBLE nodes on G, given that the nodes in X are already EXECUTED.

Note that solving BICSO automatically carries with it a guarantee of optimality.

The significance of BICSO—as with the IC-Scheduling Problem of [], 13, [5]—
stems from the following intuitive scenarios. (1) Schedules that produce ELIGIBLE tasks
fast may reduce the chance of the “gridlock” that could occur when remote clients are
slow in returning the results of their allocated tasks—so that new tasks cannot be allo-
cated pending the return of already assigned ones. (2) If the IC Server receives a batch
of requests for tasks at (roughly) the same time, then a Batched IC-optimal schedule
ensures that there are maximally many tasks that are ELIGIBLE at that time, hence
maximally many requests can be satisfied. This enhances the exploitation of clients’
available resources. See [13, 15] for more elaborate discussions of these scheduling
criteria.

3 The Intractability of BICSO Optimality

Viewed via its related decision problem, BICSO is NP-hard, even for bipartite dags. The
reduction is from the problem of selecting m sets whose union has cardinality at most
b from among nonempty sets Si, . .., .S, whose union is [1,n], which is known [0] to
be NP-Complete. Our reduction also uses a result that allows us to focus on a restricted
class of schedules.

Lemma 2 ([11]). Let X' be a schedule for a dag G. If X is altered to execute all of G’s
non-sinks before any of its sinks, then it produces no fewer ELIGIBLE nodes than Y.

Theorem 1. BICSO is NP-hard, even when restricted to bipartite dags.

"[a,b] = {a,a +1,...,b}.

268 Grzegorz Malewicz and Arnold L. Rosenberg
4 Scheduling Composite Dags via Bipartite Dags

The computational intractability of BICSO (assuming that P # NP) is a mandate for
seeking significant classes of dags for which one can solve BICSO efficiently. Our
experience is that this goal is achievable for many classes of bipartite dags (such as the
building blocks of Section 2). While this structural restriction is not of inherent interest,
we show in this section that we can sometimes use the operation of composition to
construct significant complex dags from bipartite building blocks. And, we can often
solve BICSO for a composite dag G by solving a restricted version of BICSO for certain
connected induced bipartite subdags of the bipartite dags that G is composed from. In
the restricted version of BICSO—call it RBISCO—the bipartite subdags are connected,
and all of their sources are ELIGIBLE, so the set F (of the instance of BICSO) comprises
all sources of the subdag, and the set X is empty. The goal is to find an r-element
subset of sources that maximizes the number of ELIGIBLE sinks—which is equivalent
to solving BICSO for the restricted problem.

Theorem 2. Let the dag G be a composition of bipartite dags G1, ... ,Gm. There is a
polynomial-time algorithm that solves BICSO for G, using as subprocedures polynomial-
time algorithms for solving RBICSO for induced connected bipartite subdags of the G;.

Proof Sketch. Consider instance 1 = (G, X, E; r) of BICSO, where G is as in the the-
orem. We can focus on the modified goal of finding R among G’s non-sinks. Using a
result of [1], we can relate the number of ELIGIBLE nodes of G to the number of sinks
of the G; that are ELIGIBLE when the only EXECUTED nodes of G, are the sources of G;
that correspond (in the natural manner emerging from the definition of composition) to
EXECUTED nodes of G. The latter number, however, can be calculated by focusing on
a certain induced subdag of G,;. This subdag is obtained by taking all sources of G; that
correspond to nodes ELIGIBLE in G, and all sinks of G; all whose parents correspond to
either ELIGIBLE or EXECUTED nodes in G and at least one whose parent corresponds
to ELIGIBLE node (These sinks are not ELIGIBLE but they may become so when we ex-
ecute nodes of the G that we choose). The subdag is a sum of (> 0) isolated nodes and
(> 0) connected bipartite dags. Let S, . . ., S, be the connected bipartite dags obtained
from the m subdags. We maximize the number of ELIGIBLE nodes by executing the r
nodes of G that correspond to the 7 sources of the connected bipartite dags that maxi-
mize the number of ELIGIBLE sinks on the dags. That latter maximum can be found by
first computing a maximum individually for each connected bipartite dag S; and each
r; at most , and then combining the maxima using a dynamic programming algorithm
resulting from an observation that the ; must sum up to 7.

Now the goal of solving BICSO for G reduces to the goal of solving BICSO for the
connected bipartite dags.

5 Tractable BICSO Optimality for Composite Trees

We develop a polynomial-time algorithm that solves BICSO for the family T of dags
that are obtained from bipartite tree-dags via composition.

Batch-Scheduling Dags for Internet-Based Computing 269

Theorem 3. There is a polynomial-time algorithm Xi,c. that solves BICSO for any
composite tree-dag T € T.

Proof. We develop a dynamic program 2pp that solves RBICSO for any bipartite tree-
dag; Theorem 2 will extend X'pp to Xiree.

Lemma 3. There is a polynomial-time algorithm Xpp that solves RBICSO for any
bipartite tree-dag.

Proof Sketch. Any bipartite tree-dag 7 arises from “folding” a (undirected, unrooted)
tree T' and orienting its edges. We label 7”s nodes “sources” and “sinks” according to
their roles in 7. The key idea of X'pp is that we can find the maximum number of
ELIGIBLE sinks for a “deep” tree inductively from shallow trees.

We recursively decompose T into subtrees by choosing some source w and letting it
act as a root, thereby producing T',,. We traverse T, breadth first, starting from w. Each
time we descend from a sink v to a source u during the traversal, we produce a subtree,
T, which is a copy of the subtree of T',, rooted at u. We use the natural correspondence
between the node-sets of T, and T, to refer to corresponding nodes by the same name.
We thus produce a sequence of subtrees (beginning with 7;,), each including shorter
ones that occur later in the sequence. X'pp processes the subtrees in the reverse order
of this sequence, computing certain values for a subtree from analogous values for
shorter ones. 2’pp chooses the nodes to execute by recursively calculating the following
functions. Pick any subtree T, with, say, s sources.

— Forany r € [1, s], let E1 (T,) be the maximum number of ELIGIBLE sinks on Ty,
when the root v and some other » — 1 of its sources are EXECUTED.

Ey (T,) is trivial to calculate when T3, has height 0 or 1.

— Forany r € [0,s — 1], let Ex(T, r) be the maximum number of ELIGIBLE sinks
on 7, when the root u is not EXECUTED but some r other of its sources are.

Eo(Ty,r) = 0 when T, has height 0 or 1. For r € [0, s], the maximum number of ELI-
GIBLE sinks in 7}, when r of its sources are EXECUTED is calculated from Ey and F.
Ypp computes Ey(Ty,,r) and Ey1(Ty,,r) for any r € [0, (the number of sources in T)],
as follows. We may consider only subtrees of heights > 2. We decompose trees as
depicted in Fig. 3. Focus on a subtree 7T, of height > 2, with s sources. Consider all
sinks of T, that are linked to u. Some of these sinks—say, vy, ..., vy—are also linked
to some other source, while some & of the sinks are not. Since T}, has height > 2, we
have k > 1; it is possible that h = 0. For any i € [1, k], sink v; is connected to some
gi > 1 sources other than u—call them w; 1, . . . , u;,4,. Consider the subtrees T, ;, for
i €[1,k], j € [1,gi]; each has height strictly smaller than T,’s. Let s; ; be the number
of sources in Ty, ,, so that s = 1 + Zle g;l si ;. We can calculate Ey and E; for
T, from Ey and E for each T, ;, because we can control which of the v; become
ELIGIBLE.
We now apply Lemma 3 in Theorem 2, to complete the proof of Theorem 3.

270 Grzegorz Malewicz and Arnold L. Rosenberg

Fig. 3. Decomposing T',: shaded nodes are sources; blank nodes are sinks.

6 Solving BICSO Efficiently for Expansive Dags

Because the timing polynomial of Y}, has high degree, we have sought nontrivial
classes of dags for which we could solve BICSO approximately optimally, but much
faster than X ,¢.. The initial result of our quest is Xy}, which approximates an optimal
solution to BICSO for the family E of composite expansive dags. Y., implements the
following natural, fast heuristic. For each source v of any £ € E, say that ¢, nodes
have v as their sole parent, and ¢, nodes have other parents also. Say that £ has |E|
ELIGIBLE nodes and that we must execute the best r of these. Yy, selects the r nodes
that have the largest associated ¢,. This ploy solves BICSO to within a factor of 4 of
optimally for the family E.

Theorem 4. For any instance 1 = (£, X, E;r) of BICSO, where £ € E, Yoy, will, in
time O(|E)), find solution to BICSO, whose increase in the number of ELIGIBLE nodes
is at least one-fourth the optimal increase.

Proof Sketch. We implement Y., by using a linear-time selection algorithm. One
notes that each node v selected by an optimal algorithm adds at most 2¢,, distinct ELI-
GIBLE nodes, while each node w selected by the heuristic adds at least éww such nodes.

References

—

. R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for service
oriented Grid computing. /0th Heterogeneous Computing Wkshp.

2. W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters into a meta-

computer. /3th Intl. Parallel Processing Symp., 160-166.

S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst. Scis. 9, 308-316.

4. 1. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing Infras-
tructure (2nd edition), Morgan-Kaufmann, San Francisco.

5. L Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable virtual
organizations. Intl. J. Supercomputer Applications.

6. L. Gao and G. Malewicz (2004): Internet computing of tasks with dependencies using unre-

liable workers. 8th Intl. Conf. on Principles of Distributed Systems, 315-325.

bt

10.

11.

12.

13.

14.

15.

16.

Batch-Scheduling Dags for Internet-Based Computing 271

D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling guidelines for
global computing applications. Intl. Parallel and Distr. Processing Symp.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI@home: mas-
sively distributed computing for SETIL. In Computing in Sci. and Engr. (P.F. Dubois, Ed.)
IEEE Computer Soc. Press, Los Alamitos, CA.

G. Malewicz (2005): Parallel Scheduling of Complex Dags under Uncertainty. 17th ACM
Symposium on Parallelism in Algorithms and Architectures, to appear.

G. Malewicz (2005): Implementation and Experiments with an Algorithm for Parallel
Scheduling of Complex Dags under Uncertainty. Submitted for publication.

G. Malewicz, A.L. Rosenberg, M. Yurkewych (2005): On Scheduling Complex Dags for
Internet-Based Computing. [EEE Intl. Parallel and Distr. Processing Symp., 66.

M.S. Paterson, C.E. Hewitt (1970): Comparative schematology. Project MAC Conf. on Con-
current Systems and Parallel Computation, ACM Press, 119-127.

A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-based
computing. I[EEE Trans. Comput. 53, 1176-1186.

A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing 31, 115—
139.

A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some common
computation-dags for Internet-based computing. IEEE Trans. Comput. 54, 428-438.

X.-H. Sun and M. Wu (2003): GHS: A performance prediction and task scheduling system
for Grid computing. IEEE Intl. Parallel and Distributed Processing Symp.

Scheduling Workflow Distributed Applications
in JavaSymphony*

Alexandru Jugravu! and Thomas Fahringer?

1 University of Vienna, Institute for Software Science, Liechtensteinstr. 22,
A-1090 Wien, Austria
2 University of Innsbruck, Institute for Software Science, Technikerstr. 25/7,
A-6020 Innsbruck, Austria

Abstract. JavaSymphony is a high-level programming model for performance-
oriented distributed and parallel Java applications, which allows the programmer
to control parallelism, load balancing, and locality at a high level of abstrac-
tion. Recently, we have introduced new features to support the development and
the deployment of workflow distributed applications for JavaSymphony. We have
built a formal model of a workflow, which allows a graphical representation of
the associated workflow. In this paper, we give further details about the workflow
model and introduce a new theoretical framework for scheduling JavaSymphony
workflow applications.

1 Introduction

Distributed heterogeneous computing has emerged as a cost-effective solution to high-
performance computing on expensive parallel machines. In addition, Grid computing
has been recently introduced as a worldwide generalization of distributed heteroge-
neous computing, which has undergone a number of significant changes in a brief time.
Supporting grid middleware has expanded significantly from simple batch-processing
front-ends to complex tools that provide advanced features like scheduling, reservation
and information sharing.

Many complex distributed applications are today structured as workflows that con-
sist of off-the-shelf software components, which are usually applications to be run on
individual sequential or parallel machines. The specification and management of work-
flows is complex and currently the subject of many research projects. Typically, much
of the existing work focuses on workflow languages which describe component inter-
connection features, on the architecture of the enactment engine which coordinates the
workflow execution, or on the optimization of the execution by using complex mapping
and scheduling techniques.

JavaSymphony is a programming paradigm for wide classes of heterogeneous sys-
tems that allows the programmer to control the locality, parallelism, and load balancing
at a high level of abstraction without dealing with error-prone and low-level middleware

* This research is partially supported by the Austrian Science Fund as part of Aurora Project
under contract SFBF1104.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 272-281, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Scheduling Workflow Distributed Applications in JavaSymphony 273

details, like creating and handling remote proxies for Java/RMI or socket communica-
tion. The JavaSymphony middleware consists of distributed objects and remote method
invocations that run on distributed computing resources like workstation networks and
SMP clusters. Moreover, JavaSymphony offers high level features [] like migration, a
distributed event mechanism, and distributed synchronization mechanisms, which are
highly useful for developing distributed applications.

Recently, we have built new features on top of the JavaSymphony programming
paradigm and runtime system, to support the widely popular workflow paradigm, which
include a high-level tool that allows the graphical composition of a workflow, an ex-
pressive, yet simple workflow specification language, and an automatic scheduler and
enactment engine for workflow applications. In previous work [?], we have presented
a formal workflow model consisting of basic elements like activities, control and data
flow links, loops, and branches. In this paper, we introduce a theoretical framework for
scheduling and propose a scheduling technique for dynamic workflow applications with
loops and conditional branches.

The paper is organized as follows. The next section discusses the elements of the
workflow model used in JavaSymphony. Section 3 describes the framework for schedul-
ing JavaSymphony workflow applications. Section 4 discusses related work. Finally,
some concluding remarks are made and the future work is outlined in Section 5.

2 Workflow Model

A workflow consists of several interconnected computing activities. Between two com-
puting activities there may be: (1) a control flow dependency, which means that one
activity cannot start before its predecessors finished or (2) a data dependency, which
means that one activity needs input data that is produced by the other. We use the ter-
minology and specifications proposed by the Workflow Management Coalition[3] to
define the workflow model and its elements. A graphical representation based on the
UML Activity diagram ([4]) is associated with each workflow. In JavaSymphony work-
flow model, each workflow application is associated with a workflow graph defined by:
WF = (Nodes, CEdges, DEdges, Loops, P Loops, istate, fstate).

Nodes = Act U DAct U Init U Final U Branches comprises the vertices of the
graph associated with 5 types of workflow basic elements: activities, dummy activities,
initial states, final states and branches. There are 4 types of edges for the workflow
graph: C'Edges, DEdges, Loops, respectively P Loops are the sets of the control links,
data links, respectively loops and parallel loops of the graph. These basic workflow
elements are shortly explained below.

Activities are represented as elements of the Act set. The workflow activities are
placed onto computing resources and perform specific computation.

Dummy activities are represented as elements of the D Act set. As a special type of
activities, they evaluate complex conditional expressions that may influence the work-
flow schedule. On the other hand, they require only minimal computing power and
therefore they run locally within the scheduler, instead of being placed onto distributed
computing resources.

Control links correspond to the elements of the C' Edges set. A control-link be-
tween two activities means that the second activity cannot start before the first one

274 Alexandru Jugravu and Thomas Fahringer

finishes. The control-precedence relation, denoted by <, is defined over the elements
of the Nodes set, as the transitive closure of C'Edges.

Data links define the data-precedence relation (denoted by <) over the set of
the activities of a workflow. A data-link between two activities means that the second
activity requires output data from the first one.

Initial and final states correspond to the elements in the sets Init, respectively
Final. Each workflow has one entry and one exit point, which we call initial state,
respectively final state. These are used for synchronization of activities and to mark the
body of the so-called sub-workflows. They are not associated with computation.

A sub-workflow unit is delimited by a unique pair of an initial state (entry point)
and a final state (exit point): (¢, f) € Init x Final.

Conditional branches are represented as elements of the Branches set. Due to
the conditional branches, the execution plan of a workflow changes dynamically. The
successors of the conditional branch correspond to the entry points (i.e. initial states) of
sub-workflows. Each conditional branch exit (control link) is associated with a Boolean
expression. When the execution reaches the conditional branch, the Boolean expres-
sions are evaluated and the successors for which this expression evaluates to false will
not be executed.

(Sequential) Loops are represented as the elements of Loops C Final x Init
and may be attached only to entire (sub) workflow units. The body of a (sub)workflow
which has a loop associated with it, is executed repeatedly for a fixed number of times
(for-loops), or until an associated condition is satisfied (until-loops).

Parallel Loops are represented as the elements of PLoops C F'inal x Init . They
are similar with the regular loops, but model a different behaviour of the associated
sub-workflow: For each parallel loop, the number of iterations n is specified, and n
identical copies of the associated sub-workflow will be created and executed in parallel.
A parallel loop can be replaced with n identical copies of the associated sub-workflow,
but in this case a significantly more complex workflow graph is necessary.

3 Scheduling Workflow Applications

To build a JavaSymphony workflow application, one has to first design the workflow
graph, by using the specialized graphical user interface. The developer puts together
workflow activities, dummy activities, initial and final states, and connects them using
control links, data links, loops and parallel loops, according to the model described in
the Section 2. The result is an easy-to-understand workflow graphical representation,
based on the UML Activity Diagram, which can be stored in a file by using the specific
XML-based specification language. Behind the graphical representation, each element
(vertices and edges of the graph) is associated with relevant workflow information.
Within the same scheduling process, the workflow specification is analyzed, a resource
broker determines which resources are suitable for each workflow activity, a scheduler
computes the workflow execution plan, and a enactment engine manages the execution
of the activities according to the execution plan. In this section, we present a theoretical
framework to describe the scheduling process, and propose a scheduling technique for
workflows with branches and loops.

Scheduling Workflow Distributed Applications in JavaSymphony 275

3.1 Scheduling Workflows Without Branches and Loops

We consider first the case of scheduling workflows with no loops and branches. The
graph associated with a workflow with no loops and branches becomes a static DAG.
Therefore, we call such workflows DAG-based workflows. Scheduling DAGs of tasks
is a problem that has been intensively studied, and consequently we can easily use one
of the many already existing algorithms [5—8] for scheduling DAG-based workflows. In
this section, we introduce several basic definitions and notations related to the schedul-
ing of DAG-based workflows.

If WF is a workflow with Loops = PLoops = () and Branches = (), then a
schedule for W F' would be a function sched : Act U DAct — M x R, where M is
the set of computing resources and R is the set of positive real numbers. sched(T) =
(mr, starty) means that the activity T is started on machine mr at the time startr.

The execution time of an activity 7' on machine m is denoted by exec(T/m).
We assume that the task runs exclusively on that machine. The communication time
to send data from activity 7% running on m; to activity 75 running on my is denoted
by comm(T1/mj, T2/mg2). Note that if ' € D Act, we may assume my is always
a dedicated or local machine mg (where the scheduler is running) and we consider
exec(T /mr) to be 0. We also assume that communication time for two activities run-
ning on the same machine is 0: comm/(T1/m,Ta/m) =0

For a DAG-based workflow W F', a schedule sched is constrained by the workflow
control- and data-dependencies:

Ty < Ty implies starty, + exec(Th/mr,) < startr,

Ty <q4 To implies starty, +exec(Th/mrp,)+comm(Ty /my,, To/mrp,) < startr,

The goal of the scheduler is to find a schedule for each workflow application, which
optimize a specific performance function, under certain constraints. Such functions
are: makespan (execution time of the whole workflow application), total cost of the
resources (when the resources are associated with computation/communication cost) or
the throughput of the entire system.

3.2 Scheduling Workflows with Branches and Loops

The conditional branches and the loops in the workflow model enforce dynamic changes
in the structure of the execution task graph associated with the application. Subsets of
the activities which make up the application may be executed repeatedly several times or
may not be executed at all, based on data that is available only at runtime. Consequently,
scheduling techniques for static DAG-based workflows cannot be applied in this case.

Our strategy is to transform the workflow associated with the application into one
with no conditional branches and loops and recursively find a schedule in the conditions
of Section 3.1.

We first define two types of activities: Unsettled activities are the activities for
which the scheduling/execution decision is taken based on data that is not (yet) avail-
able. Such activities are, for example, the activities subsequent to a conditional branch,
for which the associated condition cannot be evaluated, because the parameters in the
Boolean expression have not been calculated yet. Therefore, it is not sure at this point
that these activities will ever be scheduled for execution. The rest of the activities are

276 Alexandru Jugravu and Thomas Fahringer

called settled activities. These are the activities that are planned for execution or have
been executed at a specific time of the scheduling/execution process. All the activities
for which it is sure that they will be scheduled for execution are considered settled.
The two sets of activities of a workflow application are dynamically changing during
execution, according to the following transformations:

Parallel loop elimination is performed before the scheduling actually starts if the
number of the iterations is determined at design time. Otherwise, if the number of it-
erations depends on the value of workflow relevant data (e.g. variables values), the
transformation is applied upon reaching the loop entry (i.e. associated initial state). The
body of the parallel loop construct (i.e. the associated sub-workflow) is simply replaced
with n identical copies (see Fig. 4(c)).

“ ‘\ r"?,, / ’i‘

|”‘°"'T’“"J "A.ctivity\J [:Activit:‘&;ﬂ.ii\liv,ly:] ﬁm;vityj :>I,‘ X] “An:ti:it\m}:[‘ﬂcjrity‘][‘ﬂ;jviblj

7

! _‘?,,/ cond==true 4\?,:

Fig. 1. Branch elimination

\’

Branch elimination is applied when the conditions for the conditional branches are
evaluated. This transformation takes place at runtime and is illustrated in Fig. 1. Note
that the successors of a conditional branch are unsettled activities (uncoloured in the
picture) before the evaluation of the condition, and become settled activities (coloured
in the picture) after that. The branches for which the associated condition evaluates to
false are not executed. They are replaced by dummy activities (marked as X in the
figure), which do not perform any computation.

Transformation of for-loops. The for-loops have a fixed number of iterations. This
transformation may take place anytime during the scheduling process. For each itera-
tions of the loop, clones of the activities (i.e. new activities with the same properties as
the original ones) in the body of the loop and associated control/data links are added
to the graph. The new activity clones preserve the settled state, if the original activities
have been settled activities before the transformation.

Transformation of until-loops. The until-loops terminate when a specific condi-
tion is fulfilled. The evaluation of the condition can be performed only at runtime. This
transformation is illustrated in Fig. 2. For each iteration of the loop, clones of the activi-
ties in the body of the loop and associated control/data links are added to the graph. The
activities in the first iteration remain settled after the transformation if they have been
settled, but the clone activities in the consequent iterations are unsettled. Any activity
subsequent to an until-loop preserves its unsettled state until all the iterations of the
loop are executed.

Elimination of initial and final states. The initial and final states are simply re-
placed by dummy activities, not associated with computation. If all their (direct) prede-
cessors are settled activities, these become settled dummy activities.

Scheduling Workflow Distributed Applications in JavaSymphony 277

%\ ‘ [cond==halss?] ¥
3 - F’! —
A # N, e [cond==true?]
7 ¥y -
o M Batieity | et N

— ¢ B¢ igw)

[Ackivity | | Activite] ey N
5 pls
AY

+ [ermination_cond] PR S T
s oo [Activity 1]ctiviey 1) |
\ff,{: // \\J@" - N 7)([r:nnd]
-—'' —_— B 'J.r /
-)
(o) L: Next |
3

3 -

Fig. 2. Until-loops transformation

We use the notation W F' —— W F} to express that W F; is obtained from W F' ap-
plying the above-mentioned transformations. We iteratively build a transformed work-
flow as follows: Initially (pre-scheduling), all possible transformations, except branch
elimination, are applied. The workflow application is scheduled/executed until a con-
ditional branch is reached (i.e. all predecessors of a conditional branch finished their
execution). Upon this event the branch elimination is applied, followed by all the other
possible transformations. The sets of settled, respectively unsettled activities are recal-
culated after each transformation step as following.

For B € Branches a branch node, we denote by Next(B) the set of direct suc-
cessors of B, which comprises all activities directly dependent via control edges on
B and all the activities of the sub-workflows directly dependent via control edges on
B. According to this definition, Next(B) comprises all the activities that may be can-
celled after reaching the conditional branch B. Note that the decision to cancel or not
an activity from Next(B) set can be taken only when the execution reaches B and all
conditions associated with the subsequent branches are evaluated.

Consequently, the set of unsettled activities is U(W F;) = Uy U Us, where U =
UBgeBranches Next(B) and Uy = {N € Act U DAct|3M € Uy, M < N}. The set
of settled activities is therefore S(WF;) = Act U DAct — U(W F;). We denote by
DAG(WE;) = (S(WE,), (Edges(WFy) U Loops(WFy)) N S(WF;) x S(WF)),
the graph which has S (W F}) as vertices, and all the control links, and loops from W F;
that have both the targets and sources in S(W F}) as edges.

For a workflow W F', we define a control path as a series of activities Ay, Ao, ... Ag,
where each pair (A;, A;11) is either a control link or a sequential loop. Using the
above-mentioned notations and definitions, we demonstrate the following property of
DAG(WF):

Lemma 1. DAG(W F}) is a DAG which preserves the control paths of the initial work-
flow WEF.

Proof:

DAG(W F;) has no loops. According to the transformation of while loops, the
body of a loop in W F} has only unsettled activities. Therefore, the final state associated
with a loop is not in D AG (W F;) and accordingly, the loop is not edge in DAG(W F}).

DAG(W Fy) preserves the control paths of W F' means that for each control path
A1, Ao, . A of WF, with all 4; in S(W F}), there is a corresponding control path in
DAG(W F}). First, the control edges of the initial workflow are preserved by all trans-
formations, so if A;,4;,11 € S(WF};) and (A;, Ai+1) € CEdges, implies (A;, Aiy1)

278 Alexandru Jugravu and Thomas Fahringer

is also edge in DAG(W F}). On the other hand, if (A;, A;41) is a for-loop, this means
that a for-loop transformation has been applied, followed by an elimination of initial
and final states. In this case the loop is transformed into a control link between A; and a
clone of A; 1, both dummy activities in W F;. If (A;, A;+1) is an until-loop, this means
that a until-loop transformation has been applied, followed by a branch elimination and
then by an elimination of initial and final states. In this case the loop is transformed into
2 control links: (A;, B) and B, A}, |, where B is a new branch and A; , is a clone of
A;4+1 in WF; and all of them are (newly created) dummy activities.

1. Apply all possible transformations to the initial workflow W F' —— W F}, and compute
U(WEF), S(WFy) and DAG(W Fy).

2. A scheduling algorithm for DAG-based workflows (no conditional branches and loops) is
applied to DAG(W Fy).

3. At each scheduling event, U(W F}), S(W F;) and DAG(W F;) are recalculated. Note
that termination of activities may imply adding their successors to S(W Fy). Changes in
DAG(W Fy) automatically imply scheduling/rescheduling of unfinished activities.

4. When the execution reaches a conditional branch a branch elimination transformation is
applied, followed by all the other possible transformations.

5. The result is a new W F}, and new U(W F), S(W F;) and DAG(W F;) are calculated.
The scheduling algorithm is now applied to the new DAG (W F}).

6. The iterative scheduling/execution process finishes when all activities (in all iterations of
all loops) are processed. At this point U (W F;) =), and S(W F}) comprises all the activ-
ities of W F, including the new created clones of activities (for each additional iteration of
a loop) and all new created dummy activities.

Fig. 3. Strategy for scheduling workflows with loops and branches

Consequently, the dynamic scheduling strategy in Fig. 3 is adopted for workflows
with conditional branches and loops.

3.3 A Sample Workflow Application

We have tested our dynamic scheduling strategy with a real-life application. WIEN2k
[9] is a program package for performing structure calculations of solids using den-
sity functional theory, based on the full-potential (linearised) augmented plane-wave
((L)APW) and local orbitals (lo) method.

The components of the WIEN2k package can be organized as a workflow (Fig. 4).
The lapw! and lapw2 TOT tasks can be solved in parallel by a fixed number of so-called
k-points. This is modelled by two parallel loops in the workflow graph. Without the
parallel loops, the workflow graph becomes quite complex (Fig. 4(c)). Various files are
sent from one workflow activity to another, which determine complex data dependen-
cies between the activities (Fig. 4(b)). At the end of the main sequence of the activities,
a dummy activity festconv performs a convergence test to determine if the calculation
needs to be repeated. This is modelled by the main sequential loop.

Scheduling Workflow Distributed Applications in JavaSymphony 279

b
&—
7

4

| sumgara 4 lesme) | sumpan == leore |

[teateane - mirer) | deteomy fe wier
I _
® 3
e _
é @:
(a) Control flow (b) Data dependecies (c) Parallel loop elimination

Fig. 4. Wien2k workflow

We have successfully built a JavaSymphony workflow application on top of the
WIEN2k package. We have used HEFT (Heterogeneous Earliest Finish Time) [5] list
scheduling algorithm combined with the dynamic scheduling strategy described in
Fig. 3, to schedule and run this application onto a set of workstations. Due to space
limitations, in this paper we do not investigate the workflow scheduling performance.
We intend to implement several other real-life distributed applications and to investigate
several other scheduling algorithms in future work.

4 Related Work

Workflow applications have become very popular in Grid community and many re-
search and industry groups have proposed language standards to model and develop
workflow applications [10—13]. We do not intend to compete with highly complex
workflow definition languages [10, 13]. Instead, the JavaSymphony specific XML-
based specification language for workflow applications is simple, in order to allow
an easy manipulation of the workflow structure by a scheduler. The same is valid for
the workflow graphical representation. Activity Diagrams or Petri Nets have been ex-
tensively studied as alternatives for the representation of the workflows ([14, 15]). In
[15] diverse workflow patterns are analyzed. However complex workflow specification
languages or complex workflow patters are not commonly associated with advanced
scheduling techniques for distributed workflow applications. We prefer to use a simpli-
fied graphical workflow application representation (a reduced set of workflow patterns),
in order to be able to investigate such advanced scheduling techniques.

280 Alexandru Jugravu and Thomas Fahringer

On the other hand, most systems for allocating tasks on grids, (e.g. DAGMan [12],
Pegasus [16]), currently allocate each task individually at the time it is ready to run,
without aiming to globally optimise the workflow schedule. In addition, they assume
that workflow applications have a static DAG-based graph, which may be seen as a too
restrictive constraint.

The DAG scheduling problem has been intensively studied in the past, mostly in
connection with parallel application compiling techniques. A parallel application is
represented by a DAG in which nodes represent application tasks (computation) and
edges represent inter-task data dependencies (communication). Numerous scheduling
techniques and scheduling heuristics have been developed for both homogeneous and
heterogeneous systems [5—8]. However, these heuristics assume a static application
graph and they statically compute the schedule before the execution is started. Static
scheduling of static DAG structures is, however, too restrictive for the new generation
of Grid workflow applications. We, therefore, propose a new approach that includes
loops and conditional branches to the workflow model and extends the static schedul-
ing with novel dynamic scheduling techniques to accommodate these new constructs.

5 Conclusions and Future Work

JavaSymphony is a system designed to simplify the development of parallel and dis-
tributed Java applications on heterogeneous computing resources ranging from small-
scale clusters to large scale Grid systems.

In this paper, we have presented a formal model to describe workflow applications,
which allows a user-friendly graphical workflow representation based on the UML Ac-
tivity Diagram, and a novel framework for scheduling workflow applications.

JavaSymphony introduces a mechanism to control loops and conditional branches
in workflow applications, which is not supported by many other workflow frameworks.
Furthermore, we describe a new scheduling technique for workflows which have loops
and conditional branches.

We plan to evaluate this technique with several DAG-scheduling heuristics [5—5],
and compare their performance with several workflow applications. We also plan to
further investigate new scheduling techniques for various types of distributed applica-
tions and programming paradigms (e.g. meta-tasks, master/slave applications, etc..) and
support them in JavaSymphony.

References

1. Jugravu, A., Fahringer, T.: JavaSymphony: A new programming paradigm to control and to
synchronize locality,parallelism, and load balancing for parallel and distributed computing.
Concurency and Computation, Practice and Experience (2003)

2. Jugravu, A., Fahringer, T.: JavaSymphony, A Programming Model for the Grid. Future
Generation Computer Systems (FGCS) 21 (2005) 239-246

3. WIMC: Workflow Management Coalition: http://www.wfmc.org/ (2003)

4. Dumas, M., Hofstede, A.: UML Activity Diagrams as a Workflow Specification Language.
In: 4th International Conference on UML, LNCS 2185, Toronto, Canada, Springer Verlag
(2001)

10.

11.

12.

13.

14.

15.

16.

Scheduling Workflow Distributed Applications in JavaSymphony 281

Topcuoglu, H., Hariri, S., Wu, M.Y.: Task scheduling algorithms for heterogeneous proces-
sors. In: Eighth Heterogeneous Computing Workshop, IEEE C.S. Press (1999) 3-14

Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling algo-
rithms. Journal of Parallel and Distributed Computing 59 (1999) 381-422

Baskiyar, S., SaiRanga, P.C.: Scheduling directed a-cyclic task graphs on heterogeneous
network of workstations to minimize schedule length. In: Proc. of International Conference
on Parallel Processing Workshops,Kaohsiung, Taiwan. (2003)

Radulescu, A., van Gemund, A.J.C.: Fast and effective task scheduling in heterogeneous
systems. In: Heterogeneous Computing Workshop. (2000) 229-238

P.Blaha, K.Schwarz, G.Madsen, D.Kvasnicka, J.Luitz: WIEN2k: An Augmented Plane Wave
plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Tech-
nology (2001)

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Systems, S., Thatte, S., Trickovic, 1., Weerawarana, S.: Business process
execution language for web services (bpel4ws). Specification version 1.1, Microsoft, BEA,
and IBM (2003)

Erwin, D.W., Snelling, D.F.: UNICORE: A Grid computing environment. Lecture Notes in
Computer Science 2150 (2001) 825-7?

The Condor Team: Dagman (directed acyclic graph manager) (2003)
http://www.cs.wisc.edu/condor/dagman/.

Krishnan, S., Wagstrom, P., von Laszewski, G.: GSFL : A Workflow Framework for Grid
Services. Technical Report, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne,
IL 60439, U.S.A. (2002)

Eshuis, R., Wieringa, R.: Comparing Petri Net and Activity Diagram Variants for Workflow
Modelling - A Quest for Reactive Petri Nets. Lecture Notes in Computer Science 2472
(2003) 321-351

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Dis-
tributed and Parallel Databases 14(3) (2003) 5-51

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Laz-
zarini, A., Arbree, A., Koranda, S.: Mapping abstract complex workflows onto grid environ-
ments. Journal of Grid Computing 1 (2003) 25-39

Tasks Mapping with Quality of Service
for Coarse Grain Parallel Applications

Patricia Pascal, Samuel Richard, Bernard Miegemolle, and Thierry Monteil

LAAS-CNRS, 7 Avenue du Colonel Roche 31077 Toulouse France
{ppascal,srichard,bmiegemo,monteil }@laas.fr

Abstract. Clusters and computational grids are opened environments
on which a great number of different users can submit computational
requests. Some privileged users may have strong Quality of Service re-
quirements whereas others may be less demanding. Common mapping
algorithms are not well suited to guarantee a defined quality of service,
they propose at best priority systems in order to favour some appli-
cations without any guaranty. We propose a new mapping algorithm,
dealing with the notion of quality of service for scheduling applications
over clusters and grids over different classes of service.

This algorithm uses information on the application to map, all the un-
finished applications previously mapped, the state of the execution sup-
port, and the processor access model (round robin model) to suggest a
mapping which guarantees all the expressed constraints. The mapping
decision is taken on-line based on the release date of all applications
and the memory space used. To finish, the validation of the algorithm is
performed with real log files entries simulated with Simgrid.

Keywords: scheduling, quality of service, resource manager, grid, clus-
ters

1 Introduction

In distributed environments, resource management is very important in order
to take advantage of multiple hosts and to optimize resource use. The shedul-
ing policy commonly used on distributed systems is best effort with priorities.
Different queues are created: short jobs, long jobs, high parallel jobs, etc with
FIFO or more elaborated policies. This system of queues can be used to allow the
differentiation of users by assigning a priority to each queue but does not guar-
antee any quality of service. This limitation is due to historical reasons because
batch schedulers have been created for parallel computers which are generally
used by few users. Clusters are more opened and also complicated environments.
Due to their low cost, they can be accessed by a lot of different users that have
different needs and expectations; they are also connected with network on which
different policies of quality of service can be used. For this reason, batch sched-
ulers are not well suited to ensure different qualities of service to many users
using the same execution environment. In this article, a scheduling algorithm,
used in distributed systems like clusters or aggregation of clusters (grid), and

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 282-291, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tasks Mapping with Quality of Service 283

which implements different classes of service, is presented. This algorithm is im-
plemented in a tool called AROMA (scAlable ResOurces Manager and wAtcher)
[1]. AROMA integrates a resource management system, an application launcher,
a scheduler, a statistic module and an accounting system.

In the first section, a state of the art is presented; then the context of the
study, the notion of quality of service and AROMA are detailed. After that, the
optimization problem that has been solved is explained. To conclude, first results
validating the proposed algorithm are given. The originality of this work is to
mix different processes from different classes of service on the same processor at
the same time.

2 Related Work

Batch and dynamic schedulings are difficult problems to solve because resources
needed by an application may not be known. Resources are heterogeneous and
their availability is not completely known. Moreover, the mapping algorithm
must run quickly, therefore heuristics with good properties are used. Henri
Casanova in [5] studies deadline scheduling on computational grid. His goal is to
minimize the overall occurrences of deadline misses as well as their magnitude.

Rajkumar Buyya in [0] proposes a deadline and budget constrained cost-
time optimization algorithm for scheduling on grids. The algorithm is called
DBC (Deadline and Budget Constrained).

Mechanisms have been created to improve the mapping. The first one con-
cerns resource reservation. Different types of resource reservation algorithms are
studied in [1]. They evaluate the performance with or without preemption. The
reservation insures that all the resources necessary to run the applications will
be free. A second mechanism is the gang-scheduling. It creates time slices, that is
to say parts of time that are allocated to the parallel and sequential applications
[2]. With this solution, all applications progress simultaneously. Nevertheless, it
could create a problem of overload and memory saturation. Finally, the backfill-
ing [3] allows the insertion of jobs into scheduler queue. The insertion is possible
if it does not perturb the other jobs. It is a way to remove the holes in resources
utilization.

This article proposes a way to mix jobs requirements with different qualities of
service (deadline, immediate execution, dedicated resources).

3 Mapping Algorithm

As the context of the study is ASP (Application Service Provider), the hypoth-
esis that all the applications consuming resources are known is made : that is to
say, hosts are considered dedicated to computation. All the jobs are submitted
through AROMA and system tasks influence is neglected. AROMA daemons
are also able to monitor running applications; this information is used to re-
fresh estimated completion date of running jobs. The second hypothesis made

284 Patricia Pascal et al.

is that applications are regular coarse grain parallel applications for which the
time spent in communication is small and the execution time can be roughly
predicted. The problem is to find the mapping of a new application knowing all
the previously mapped applications that are still consumming resources in the
system. The proposed mapping has to guarantee that the quality of service is
respected for all applications (running and currently scheduled applications).

3.1 Quality of Service and Mapping Problem
Applications are grouped into four application classes (in order of importance):

— Deadline applications (class 1): this class of service guarantees that
the execution will end before the deadline. Execution can be immediate or
deferred.

— High priority applications (class 2): this class of service guarantees that
the execution will be immediate.

— Applications with dedicated resources (class 3): this class of service
guarantees that each application will be the only one to use resources during
its execution. Execution can be immediate or deferred.

— Applications without constraint (class 4): this class of service cor-
responds to applications which will be executed as soon as possible with
available resources. This class is also named “Best Effort”.

Application Resources
model access model

Application classes

Computers

O

-
o O

O

Deadline
applications

High priority
applications

£| Dedicated
7| resources
applications

Observation Prediction
Best effort
applications

Fig. 1. The mapping problem

The mapping problem inputs are (figure 1):

— Application model:
Some information describing the application needs and requirements has to
be supplied to the scheduler in order to take a good mapping decision. Some
elements are inputs of the algorithm while others express constraints for the
mapping. Inputs are an estimation of the cpu time required by each task,
the number of tasks and the size of exchanged data between the different
tasks of the application. Those values can be given by the user or retrieve

Tasks Mapping with Quality of Service 285

from a database containing information on previous runs for the same type
of application. The application model can express additional constraints like
the fact that all the tasks must begin at the same date or temporal relations
between the tasks (classical description in graph theory).
Software or specific hardware requirements add constraints on the execution
hosts. Class 1 induces a constraint on the ending date of the application,
class 2 induces a constraint on the starting date of the application and class
3 induces a constraint on the execution hosts.
All the constraints are verified by the algorithm.

— Resources access model:
According to the resources access policy, equations are deduced and used to
predict the utilization time of the resources and the end of execution. Models
developed in this article are deterministic, nevertheless models which take
care of random perturbation (arrival of uncontrolled jobs, for example a
direct login on the host) have been developed in [12]. The difficulty is to mix
different applications from different classes of service on the same host while
respecting all the constraints: several tasks may share the same host during
the same period of time.

— Observations:
The processors and network load (percentage of processors utilization, band-
width used), idle memory space and number of processes are monitored.
They are used to refresh information used for mapping.

— Mapping:
Different queues exist, each corresponding to a priority level (figure 1). When
several applications have to be mapped, the jobs of the highest priority queue
will be treated first. If no mapping respecting the constraints is found, three
cases are studied:

e the algorithm try to move a job with a weaker priority : it looks for an
application in a lower priority queue which has been planned to be run
in the future, then it removes it and try to map it again after the current
mapping.

e if the previous case is impossible, the algorithm can stop a running ap-
plication and try to find a new mapping for this application. In this case,
a new constraint is created to express that this application must go on
later on the same host. There is no migration.

e if the two previous cases are impossible, the mapping request is rejected.

3.2 Mathematical Expression of the Problem
The Variables

— to: initial date of the mapping research.

— tp(a, p,m) : execution starting date of the task p of the application a on the
host m.

— tfwn(a,p,m) : end of execution of the task p of the application a on the host
m when the network is neglected.

286 Patricia Pascal et al.

— ts(a,p,m) : end of execution of the task p of the application a on the host
m when an estimation of time spent on communication is done.

— te(a, p,m) : processor time requested by the task p of the application a on the
host m. Coarse grain applications are considered, so “small” communication
time is taken into account and the synchronization time is neglected.

— t¥(a,p,m) : remaining processor time for the task p of the application a after
the event number k on the host m (events are a beginning or the end of a
task).

— D, (a,p) estimation of the size of data sent and received by the task p of the
application a.

— C(m) : coefficient to take care of heterogeneous processors.

— te(a, p,m) = te(a, p) * C(m) : equivalence of processor time requested by the
task p of the application a for the host m.

— B(i,j) : estimation of bandwidth of the network between host ¢ and host j.

— M : number of hosts. A : number of applications to map.

— N : number of tasks of application a.

— X (t) : number of processes on the host m at time t.

— tF . a beginning event or an ending event of a process on the host m. It is
the date of the event number k.

— P(a) : set of possible mapping for application a.

— ts(m, s): the end of all the tasks mapped on the machine m after the mapping
s of application a with s € P(a).

— M(a, p): the machine on which the task p of the application a is executed.

— U(m): number of processors available on host m.

— M, (m): total memory used on host m. M;(m): total memory on host m.

— My: constant to modify the weight of the memory criteria.

The Optimization Criteria: The mapping problem is an optimization prob-
lem, criterion has to be chosen. Several criteria are well known ([7][8][9][10]) :
makespan (minimizing the termination date of an application), sum-flow (min-
imizing the quantity of resources used), max-stretch (it expresses that a task
has been slowed compared to what its execution would have been on an idle
server). The objective here is to optimize the use of the providers resources and
to guarantee the level of quality of service required. So it has been chosen to
liberate all the resources as soon as possible. Applications already mapped may
be influenced by the mapping found. By consequence, all the applications (the
currently mapped and the previously mapped) must finish as soon as possible.

The date of the end of resources utilization is optimized. Moreover a sec-
ond criteria consists in moderating with memory space used: hosts which have
the most free memory space are privileged first. The choice has been made to
introduce memory in criteria because the exact amount of memory requested
by an application is often unknown by users. The problem is multi-criteria by
using a linear combination of different criteria (1). The first part of the addi-
tion (t(m, s)) refers to the release date of the machine. The second part of the
addition t¢(m, s) * My (m) * My/M,(m) penalizes machines which have less free

Tasks Mapping with Quality of Service 287

memory. M, (m)/M;(m) gives an idea of memory utilization on this host. The
coefficient My influences the weight of this part of criterion. The multiplication
with ty(m, s) puts the value into the same order of value as the first part of the
criterion.

auin (max(t(m,5) + £ (m,5) « Ma(m) « My /My () (1)

The Mapping Algorithm: A list algorithm for applications, tasks and ma-
chines is used to reduce the combinatorial. The mapping of an already studied
task of an application a is revised only if it is impossible to find a mapping for
this application. Moreover, in order to reduce the time used by the algorithm,
for each host, release date is saved and hosts are ordered to study which of them
will give the best mapping first.

The quality of service is already respected, all the constraints induced are
verified by the algorithm. If it is impossible to find a mapping corresponding to
the demand, the request is refused.

The computation of ty(a,p,m) and ty(a,p, m) will now be explained. The
equations are found considering that the processor access follows a round robin
policy.

The Starting Date of a Task: t,(a,p,m) is computed with an iterative
algorithm (at the beginning it is tg). If, at this date, no mapping can be found,
another date is searched.

t9(a,p,m) = to

t, " (a,p,m) = min tr(i, 4, m)
with i € [I,a—1], j € [1,N?] and t4(i, j,m) > t§(a,p,m) (only the tasks that
can end after the last t;, studied, are considered). The idea is to search a new
starting date when the system is less loaded: when a job finishes.

The End of a Task: tf(a,p,m) is computed with an iterative algorithm. Each
date is studied when there is a creation or a termination of a job. t9, corresponds
to the arrival of the first process on the host.

for all tasks (a goes from 1 to A and p from 1 to N*, on m)
if X, (tk)) > U(m) (is there more processes than processors ?)
thtl = min, , (ty(a,p,m), t¥(a,p,m)*X,, (tE,)/U(m)+ tk) (nexst
event corresponds to a creation or a death of a process)
else
th = min, , (ty(a, p,m), tF(a,p,m)+ tF) (next event corresponds
to a creation or a death of a process)
if ty(a, p,m) > t&, and if X, (tF,) > U(m)
th*t1(a, p,m) =tF(a,p,m) - U(m)*(t5- t5) /X, (t5) (estimation
of the new requested time of processor for this task after this short execution on
processor: it is the time sharing policy)

288 Patricia Pascal et al.

if tb(avpv m) = tin
te(a, p,m) =tc(a,p,m)
(it is case of an insertion of a new process in the recurrence)

Estimation of the finished date of process without the network:
if t**1(a, p,m) =0, tpyn(a,p,m) = thtt
Time spent in communication are put inside the estimation of the end of
process to advantage location of tasks on the same cluster or on the same site
because the bandwidth will be better. The unmapped tasks are ignored in the
estimation of the worst bandwidth used for the application a.

tf(a7p7 m) = tf’wn(aap7 m) + Dr(aap)/minie[l,NG[B(M(aa 7’)7 m)
The iterations continue until all the tasks of the host finish. In fact, the

mapping algorithm quickly simulates the execution of jobs and can mix the
different classes of service.

4 Validation

To validate the algorithm, Simgrid ([11]) simulator has been used. Real jobs
submission log files have been used to estimate the behavior of the algorithm
with Simgrid. Nevertheless, it is difficult to compare the algorithm to others
because algorithms found do not define classes of service and do not execute
processes of the different classes at the same time on the same processors.

4.1 Comparison with NQS

Feitelson logs (real logs) have been used. These logs give : the submission date
of jobs, the required cpu time, the number of tasks. The log file [sdsc sp2.swf
[13] is used. This Job Trace Repository is brought by the HPC Systems group of
the San Diego Supercomputer Center (SDSC), which is the leading-edge site of
the National Partnership for Advanced Computational Infrastructure (NPACT)
[14], [15]. The real system has 128 nodes and is scheduled with NQS [16]. Jobs
submissions are reproduced, the mapping research is done with the algorithms
on 128 nodes and their execution is simulated with Simgrid. The mean waiting
times given by the logs are compared to the mean waiting times of the algo-
rithms with quality of service. So, 10000 and 35000 jobs are simulated. Each job
was synchronized, this means that all the tasks of the same parallel application
must begin at the same date and belong to the dedicated resources class. This
class seems to be the nearest from NQS policy. The simulation of 10000 jobs is
equivalent to an activity on the supercomputer during 112 days. The simulation
of 35000 jobs is equivalent to an activity on the supercomputer during 249 days.
There is no information about the communications, so they are neglected. The
results show that, with the proposed algorithm, a better waiting time than NQS
is obtained. In fact, with the proposed algorithm, an application can be mapped
between two others because the processor time required is known and the pre-
diction of the end of each task mapped can be done. This reduces significantly

Tasks Mapping with Quality of Service 289

the waiting times. NQS sorts the applications into queues (based on required
cpu time) and mixes the applications when a mapping is researched. This can
increase the waiting time of short jobs which can be slowed by long ones. This
problem is avoided with the proposed algorithm because the applications are
considered in the order of submission and classes. The second reason is that the
proposed algorithm uses more precise values for the requested time of cpu than
NQ@QS; by consequence, the mapping is more accurate. The comparison would be
more fair if NQS had as much queues than the different times of processor re-
quested. The results are presented in the table 1. The times are given in seconds

(s)-

Table 1. Comparison of the waiting time between NQS and the proposed algorithm

10000 events 35000 events
mean waiting time with NQS(s) 10796 8979
mean waiting time with the algorithm(s) 4008 4202

4.2 Influence of Quality of Service

The same log file as previously has been used. In this log file, it is specified
that there are four queues (low, normal, high, express), and for each job the
queue of submission is known. So this information is used to make an arbitrary
correspondence with the proposed classes of applications. The logs are used
only to have an approximation of a realistic incoming rate of applications and
a good sample of applications requested cpu time. So queue low corresponds to
best effort class (class 4), queue normal corresponds to deadline class (class 1),
queue high corresponds to dedicated resources class (class 3) and queue ezpress
corresponds to high priority class (class 2). For deadline applications (class 1),
the deadline is : submission date + 5*cpu time required. For high priority
applications (class 2), the starting date that must be respected is : submission
date 4+ 5 seconds. Four cases have been simulated:

— case 1 (10000 events using the four classes) : the waiting time for each class,
the global waiting time, the mapping time for each class and the global
mapping time are computed.

— case 2 (10000 events in the best effort class) : the global waiting time and
the global mapping time are computed.

— case 3 (35000 events using the four classes) : the waiting time for each class,
the global waiting time, the mapping time for each class and the global
mapping time are given.

— case 4 (35000 events in the best effort class) : the global waiting time and
the global mapping time are evaluated.

Doing so, case 1 can be compared with case 2 and then case 3 can be com-
pared with case 4 to see the influence of the quality of service on the mapping

290 Patricia Pascal et al.

Table 2. Influence of the quality of service on the performance of the algorithm

Case 1 Case 2 Case 3 Case 4

waiting time class 1 (s) 30.51 30.7

waiting time class 2 (s) 0.0036 0.003

waiting time class 3 (s) 4845 5182

waiting time class 4 (s) 4.55 30.5

global waiting time (s) 710.5 64.68 396 70.3
mapping time class 1 (ms) 20.22 21.1
mapping time class 2 (ms) 3.6 3
mapping time class 3 (ms) 269.3 334.4
mapping time class 4 (ms) 7.2 28.6

global mapping time (ms) 50.3 13 491 764

performances. The results are presented in the table 2. The waiting times are
given in seconds (s) and the mapping times in milliseconds (ms).

The introduction of the quality of service increases the mapping times and
waiting times but the algorithm still has good performances (mapping time is
inferior to 80 ms). The mapping time increases because there are more con-
straints to verify. It takes many iterations before finding the good t;,. Globally
the increase of waiting time is due to class 3 applications (dedicated resources
applications) which have to wait a long time before being alone on the ma-
chines. The economical or political criteria, which define important jobs, could
depreciate the global utilization of resources. In case 1, there are 21 rejects of
applications belonging to class 1 (deadline). In case 3, there are 154 rejects of
applications belonging to class 1 (deadline). In those cases the machines are full.
Because of the constraints of deadline, the tasks can not start later like in clas-
sical batch schedulers. Applications of class 2 can be refused but a mapping has
always been found. Applications of class 3 and 4 can never be refused, they will
only be slowed down.

5 Conclusion

This article presents a scheduling algorithm with quality of service usable in
distributed systems like clusters or grids. It is implemented in AROMA : a
resource management system used in ASP model. The validation shows that the
proposed algorithm is better than NQS, nevertheless, the comparison is difficult
because NQS does not implement classes of service and has not access to the
same information.

The algorithm always respects the quality of service required for accepted
applications. When different applications are mixed, the mapping and the wait-
ing times are more important than when there are only best effort applications.
The performances of the algorithm are still very good (mapping time inferior to
80 ms). The communication weight are introduced to favour the execution of an
application in the same network area.

Tasks Mapping with Quality of Service 291

Future work will be to improve the notion of communication model and

its use into the application model. The theoretical complexity of the mapping
algorithm will be studied. The main difficulty will be to explore the complexity
of the estimation of the end of a task. More comparisons with other mapping
algorithms will be done. Real execution of a set of jobs during many weeks will
be done on a small grid over 3 different sites.

References

1.

10.

11.

12.

13.
14.
15.
16.

Warren Smith, Ian Foster and Valerie Taylor. Scheduling with advanced reserva-
tions. Proceeding of the IPDPS Conference, May 2000.

. Dror G. Feitelson and Morris A. Jette. Improved utilization and responsiveness

with gang scheduling. Proceeding JSSPP 1997 : 238-261. Job scheduling strategies
for parallel processing, IPPS’97 workshop, Geneva, Switerlang.

. Dmitry Zotkin and Peter J. Keleher. Job-length estimation and performance in

backfilling schedulers. 8th Intl Symp. High Performance Distributed Comput.,
august 1999.

. P.Bacquet, O.Brun, J.M.Garcia, T.Monteil, P.Pascal, S.Richard. Telecommuni-

cation network modeling and planning tool on ASP clusters. Proceedings of the
International Conference on Computational Science (ICCS’2003) Melbourne, Aus-
tralia, June 2-4, 2003.

. Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, Francine Berman. A study of

deadline scheduling for client-server systems on the computational grid. Proceed-
ings of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10) San Francisco, California, August 7-9, 2001.

. Rajkumar Buyya. Economic-based distributed resource management and scheduling

for grid computing. Thesis, April 2002.

. T.L. Casavant and J.G. Kuhl. Effects of Response and Stability on scheduling in

distributed computing systems. IEEE Transactions on software engineering, vol.
14, No 11, pp. 1578-1588, november 1988.

. Y.C. Chow, W.H. Kohler. Models for dynamic load balancing in a heterogemneous

multiple processor system. IEEE Transactions on computers, vol. ¢-28, No 5, pp.
354-361, 1979

. C.Y. Lee. Parallel machines scheduling with non simultaneous machine available

time. Discrete Applied Mathematic North-Holland 30, pp 53-61, 1991.

F. Bonomi and A. Kumar. Adaptative optimal load balancing in a non homogeneous
multiserver system with a central job scheduler. IEEE Transactions on computers,
vol. 39, No 10, pp. 1232-1250, october 1990.

Henri Casanova, Arnaud Legrand and Loris Marchal Scheduling Distributed Ap-
plications: the SimGrid Simulation Framework. Proceedings of the third IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’03).
Patricia Pascal and Thierry Monteil. Influence of Deterministic Customers in
Time Sharing Scheduler. ACM Operating Systems Review, 37(1):34-45, January
2003.

http://www.cs.huji.ac.il/labs/parallel /workload /logs.htmlsdscsp2
http://joblog.npaci.edu/

http://www.cs.huji.ac.il/labs/parallel /workload /

B. Kingsbury. The network queuing system. 16 May 1998. http://pom.ucsf.edu/
srp/batch/sterling/ READMEFIRST .txt.

Initiating Load Balancing Operations

Marta Beltran, Jose L. Bosque, and Antonio Guzmén

DIET, ESCET, Rey Juan Carlos University, 28933 Méstoles, Madrid, Spain
{mbeltran, jbosque, aguzman}@escet.urjc.es

Abstract. The initiation rule of a load balancing algorithm determines when to
begin a new load balancing operation. Therefore, it is critical to achieve the de-
sired system performance. This paper proposes a generalized procedure for de-
riving initiation mechanisms or rules based on different objectives for the load
balancing algorithm. A new metric, the initiation efficiency, is defined in order to
evaluate the initiation performance and to compare the different alternatives.

1 Introduction

Load balancing is critical for achieving high performance in clusters and Grid systems
because it enables an effective and efficient utilization of all the available resources
(['L,[2]). Dynamic load balancing algorithms can be decomposed in different rules or
policies ([3], [4], [5]). But all these decompositions have something in common: it is
necessary an initiation mechanism to decide on each system node when to begin a load
balancing operation. This mechanism must be efficient, scalable, low overheading, and
must be capable of deciding about load balancing operations taking into consideration
the available system and workload information.

Different solutions have been proposed for the initiation rule. There are sender-
initiated ([5], [6], [7]), receiver-initiated ([%]), symmetric ([?]) and periodic ([10]) rules.
On the other hand, some of these solutions are completely local ([5], [7], [I]), i.e, each
node evaluates only its own state to determine if a load balancing operations is necessary
or not, while other are global ([12]), taking into consideration the global system state.

An exhaustive analysis of all these alternatives allows to conclude that they are de-
signed for a particular load balancing algorithm. The main contributions of this paper
are a procedure for deriving initiation mechanisms from general objectives for load
balancing algorithms and a performance metric for the initiation rule, the initiation ef-
ficiency (¢). It has been defined in order to evaluate the initiation mechanisms perfor-
mance and to compare the different solutions. For illustration, three example objectives
have been proposed to derive their correspondent initiation mechanisms and to compare
their performance using the new defined metric.

The rest of this paper is organized as follows. Section 2 proposes the general method-
ology for obtaining initiation policies from the objectives of the load balancing algo-
rithms. Section 3 illustrates this methodology with three different examples of load bal-
ancing objectives. Section 4 defines the initiation efficiency necessary to evaluate these
initiation mechanisms performance and to establish comparisons. Section 5 presents
some experimental results for the example cases and finally, Section 6 with conclu-
sions.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 292-301, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Initiating Load Balancing Operations 293

2 Generalized Procedure for Deriving Initiation Rules

To implement the initiation mechanism for a load balancing algorithm, it is necessary to
decide when a load balancing operation should be requested, considering both its pos-
sible benefits, and on the other hand, the overhead it will cause. This section proposes
a general procedure for designing initiation mechanisms for load balancing algorithms
taking into account their general objectives. The steps of this procedure are the follow-
ing:

1. Describe quantitatively the requirements for the load balancing algorithm. Let w
be the objective that should be achieved with the algorithm to ensure that these
requirements are met.

2. Identify an objective function to quantify the achievement of this objective. Let
@ be the objective function for w. This objective function must depend on the
available information about the local and the global state. Mathematically, it should
be expressed as ¢ (I) where I is a vector composed of the system nodes load
indexes (these load indexes quantify the system nodes computing capabilities and
must be updated in all the system nodes with some kind of information policy).

3. Incorporate this objective function to the initiation mechanism in the load balancing
algorithm. For this last step two kind of objective functions can be distinguished:

— Boundary functions: In this case the objective function defines an upper or
lower bound to a certain magnitude. This condition can be directly transferred
to the initiation mechanism.

— Optimization functions: The objective function requires the optimization of a
certain magnitude. Even though this kind of functions can be sometimes easily
incorporated to the initiation rule, they usually introduce too much overhead in
the algorithm. To evaluate the load balancing operation it is necessary to solve
an optimization problem and such computation may be very expensive for a
dynamic load balancing algorithm. In such cases the optimization objective
should be transformed to a boundary one, defining an upper or lower bound for
the magnitude that was initially supposed to be optimized.

3 Some Initiation Rule Examples

3.1 Objective 1: Maximize System Load Balance

In this first example the aim of the algorithm is to maximize the balance among the
system nodes. This is usually the main objective of any load balancing algorithm but it
is not the only one as it will be seen later. Once this objective is identified (step 1 of the
proposed procedure), an objective function can be defined for the step 2. Let b denote
the system balance, therefore, the objective function is:

o - max(b) (1)

The larger the b value, the more balanced is the load of the system. This balance can
be quantified at a given instant as the ratio of the minimum load index to the maximum.

294 Marta Beltran, Jose L. Bosque, and Antonio Guzmén

That is, it can vary from O to 1. With this definition, the objective function can be
denoted:

o' (1) : max (Imin) (2)
Imaz

But this is an optimization function, so every time a new task arrives to a system
node, its initiation mechanism must evaluate the b value for each possible allocation for
this task, searching in each case the minimum and the maximum load indexes in the
system. This process can suppose a great overhead for the load balancing algorithm,
specially in systems with a large number of nodes. To overcome this scalability limita-
tion, the objective function is transformed to a boundary one. This function is:

o'(I) : f””" > 3)

Where 7 is the algorithm tolerance value, which defines the threshold desired for

the system balance. With this objective function, the step 3 of the general procedure

is immediate. The initiation rule must try to allocate all the new tasks achieving this

objective: the system balance must be always above the 7 value after the allocation.

This boundary condition can be directly transferred to the load balancing algorithm
with a very simple evaluation, without solving the maximization problem.

3.2 Objective 2: Maximize System Throughput

Here the aim of the algorithm is to maximize the system throughput, that is, to minimize
the individual processes elapsed time to finish as many tasks per time unit as possible.
This objective is typically identified during the step 1 in systems executing independent
tasks for high performance computing. It must be achieved using a load balancing algo-
rithm, therefore, assigning each task to the system node in which its elapsed time will
be the shortest. Let ¢; be the elapsed time of th ith task, therefore the objective function
proposed in the step 2 is:

®? min(t;) Vi 4)

But again ¢? is an optimization function that implies evaluating the new task elapsed
time for each possible allocation before assigning it to the best system node in terms of
this time requirement. Therefore, this objective function is transformed to a boundary
one. In this case the bound is referred to the elapsed time of the new task in its home
node, that is, the node to which this task is initially assigned. The objective function is:

¢2:ti<7'£i Vi (5)

Where #; is the elapsed time of the izh task in its home node and 7 is the algorithm
tolerance to define the threshold desired for this objective. For the step 3, this objective
function implies that the initiation rule tries to allocate new tasks to nodes where their
elapsed time will not be more than 7 times greater than in their home nodes. In this
paper the DYPAP monitor ([| 3]) is used to provide local and global state information to
the load balancing algorithm, so the objective function can be based on the load indexes
values provided by this tool. The load index provided by the DYPAP monitor is based

Initiating Load Balancing Operations 295

on the CPU assignment, defined as the percentage of CPU time that would be available
for a new task on a system node, and on the nodes computational powers.
In the home node the objective function is achieved if the CPU assignment for the

new task is:)
a= (6)

r

This CPU assignment is the minimum necessary to accomplish the elapsed time
requirements for the new task on this node, but due to system heterogeneity, this may
not be the minimum in another node (for example, on a node with more computational
power). Therefore, the objective function is based on the load indexes values, which
take into account the nodes computational powers. The minimum index necessary to
achieve the objective is :

Phome _ 1 Phome

Imin = Qmyin *
Pz T P

(N

Where Pome is the computational power of the home node and P, is the com-
putational power of the most powerful system node. That is:

1 Phome
T Pha

¢*(1): 1> (8)
The initiation mechanism of the load balancing algorithm must look for a node
which fulfill this bound to allocate the new task.

3.3 Objective 3: Minimize the Application Elapsed Time

In this last example the aim of the algorithm is to obtain the best elapsed time for the
application executing on the system. Once the objective is identified in the step 1, the
objective function must be proposed in the step 2. Let 1" denote this elapsed time:

¢ = min(T))

Again this objective must be accomplished using a load balancing algorithm, i.e.,
allocating new tasks in the best way for this objective function. In this case, this function
can be easily implemented in the initiation mechanism despite it is an optimization
function:

> (I) : mazx(I) or min(I) (10)

That is, in the step 3, new tasks are always assigned to the system node with the
lowest or greatest load index, depending on this index meaning. For example, assuming
again the utilization of the DYPAP monitoring tool, the index maximization should be
used because the system node with the greatest load index is the one which offers the
best compromise between computational power and CPU assignment and can be easily
found by the initiation mechanism without evaluating any expression or predicting the
system behavior. In this example the optimization only implies the search of the system
node with the greatest index value and this does not introduce too much overhead in the
algorithm. Therefore, it may not be necessary to transform it into a boundary function.

296 Marta Beltran, Jose L. Bosque, and Antonio Guzmén

4 Initiation Efficiency

In order to evaluate the different initiation rules performance and to compare the differ-
ent alternatives, an initiation performance metric is needed. In this paper, the initiation
efficiency (¢) is defined considering two important issues: the ratio of accepted load
balancing operations to the requested operations (R) and the degree of achievement for
the load balancing algorithm objective (A). Therefore, the efficiency definition is:

e=R-A (1)

The first factor must be taken into account because a good initiation mechanism
should begin load balancing operations only when they are going to be accepted. The
rejected operations imply an unnecessary overhead to the system, specially to the net-
work. If the mechanism is not efficient or if it is, but it does not have updated informa-
tion to decide about load balancing operations, some load balancing operations might
be rejected in the target node. The ratio of the accepted operations to the requested
operations quantifies the efficiency of the initiation rule in this sense (the largest value
being 1 in the best case):

Oacep

Oreq

Where Ogcep is the number of accepted load balancing operations and O, the
number of requested operations.

On the other hand, an efficient initiation rule should comply with the objective of
the load balancing algorithm. Due to inaccuracies in the state information, to wrong
initiation mechanisms or to very demanding requirements this objective might not be
achieved. The degree of achievement of the load balancing algorithm objective is quan-
tified in a different way for the boundary and optimization functions:

R= (12)

— Boundary objective function: The degree of achievement of the objective can be
measured with the ratio of tasks which are assigned accomplishing the proposed
objective to the total number of assigned tasks:

e tasks accomplishing the objective (13)
N
Where N denotes the total number of tasks composing the executed application.
— Optimization objective function: In this case, the magnitude or attribute that has
to be optimized (M) gives the degree of achievement of the objective. Its value can
be referred to its optimal value (M,,) to quantify how near is the system to the

optimal situation:
M, M
A=""Por A= 14
o i, (14)
Depending on the kind of optimization the first equation (for a minimization) or the
second equation (for a maximization) must be used.

Initiating Load Balancing Operations 297

Anyway, the A value is always normalized, varying from O in the worst case to 1
in the best case. With these definitions, for the initiation rules proposed in the previous
section, the initiation efficiency can be measured as:

— Objective 1:
o Ogcep . tasks assigned with b > 7 (15)
Oreq N
— Objective 2:
. Oqcep . tasks assigned with t < 7 - i (16)
Oreq N
— Objective 3:
Oacep Top
= . 17
€ Opeg T (17

To evaluate the application elapsed time in the optimum or perfect situation, when
all the system load is perfectly balanced, only some information must be known
([14]): the number of tasks that compose the executed application (/V), the number
of system nodes (g) and their computational powers (P; with ¢ = 1,...,¢). The
optimum time value can be obtained supposing that all the workload is sequentially
executed on a system with computational power equal to the total computational
power of the system (Pr), therefore:

N N
. P Pr

i=1

Top = (18)

With the given definition, a perfect initiation rule would obtain ¢ = 1. It would
request load balancing operations only when they are necessary and can be performed,
that is, when they are going to be accepted. And in addition, it would completely achieve
the load balancing objective, assigning all the tasks to accomplish this objective or
obtaining the desired optimum situation.

S Experimental Results

This section presents some experimental results to show the influence of the initiation
mechanism on the load balancing algorithm performance and to establish the utility of
the initiation efficiency in selecting the best initiation rule. These experiments have been
performed on a 32 nodes heterogeneous cluster called Medusa. In all the experiments
an application composed by 320 tasks is executed on this system. For simplicity, these
tasks are independent, i.e. there are no communications between them. In addition it is
assumed that they arrive periodically to the cluster, and that they are initially assigned
to system nodes between nl7 and n31. These assumptions have been made only to
simplify the experiments but they are not part of the general formulation presented in
previous sections. The computational power (P) for the different system nodes has been
computed as the inverse of the elapsed time for this application tasks on each kind of
node, being Pr=2.47 the global system computational power.

298 Marta Beltran, Jose L. Bosque, and Antonio Guzmén

The elapsed time for the selected application is 436 s without the load balancing
algorithm, and with equation 18, the elapsed time with an optimum balance would be
T,,=129.38 s. In this context, the implemented load balancing algorithm must dynami-
cally balance the system workload. This load balancing is based on the DYPAP model
([13]), therefore, it includes the DYPAP monitoring tool to periodically characterize the
system nodes state. An event-driven information policy has been used to exchange this
state information between the system nodes. And to evaluate the three proposed initia-
tion mechanisms, different implementations of the load balancing algorithms have been
used. But the only difference between all these implementations is the initiation rule, in
order to establish fair comparisons and to draw general conclusions from the obtained
results.

The implemented load balancing algorithm is based on non-preemptive tasks as-
signment, thus, the objective functions proposed in equations 3, 8 and 10 have been
directly translated to the initiation mechanism:

— Objective 1: When a new task arrives to a cluster node, it must be assigned to
obtain a balance greater than the algorithm tolerance (7) after its allocation.

— Objective 2: In this case, it is required that the new task allocation achieves an
elapsed time for this task no more than 7 times its elapsed time in its home node
(the node to which it was initially assigned when it arrived to the cluster).

— Objective 3: For this last objective function, the new task is always allocated to the
node with the largest I value in order to minimize the application elapsed time: it
is assumed that this kind of allocation always obtains the best elapsed time for the
individual tasks and, thereby, for the global application.

In these three implementations, after checking the local and remote execution of
the task, if the achievement of the initial objective is not possible, this requirement is
relaxed to avoid blocking a task execution, for example, if it is impossible to comply
with this objective in some environment. That is why the algorithm objective achieve-
ment not always equals 1. For the objectives 1 and 2, boundary functions have been
used, thus, the algorithm tolerance is in both cases an implementation parameter. Ta-
bles 1, 2 and 3 show the results obtained for the three proposed initiation mechanisms,
and for the two first objectives, different tolerance values have been considered. Each
table shows the number of accepted (Ogcep), requested (Oyq) and rejected operations
(Orej), the application elapsed time (1), the A and R values, and finally, the initiation
efficiency (¢) for the different algorithm implementations.

In table 1, results for the first objective are shown. The larger the value of the al-
gorithm tolerance, the more restrictive is the initiation mechanism: more load balance
is required in the system. This is why for the largest 7 values, more load balancing op-
erations are requested, because they are needed to achieve these exigent load balance
requirements. But it can be seen that the increase of 7 leads to a decrease of both A and
R, due to the difficulty in finding a proper allocation to achieve the algorithm objective.
Therefore, the initiation efficiency decreases when the 7 value increases. The intuitive
explanation for this behavior is that the more difficult is to find a good allocation the
less efficient becomes the initiation mechanism. The best elapsed time for the applica-
tion is obtained with the medium tolerance values. With low 7 values, the load balance

Initiating Load Balancing Operations 299

Table 1. Experimental results with the objective 1

T Oagcep Oreq Ore;j T(s) R A €
0.20 291 328 37 304 0.890.96 0.85
0.30 286 335 49 289 0.850.860.74
0.40 313 395 82 276 0.79 0.82 0.65
0.45 318 403 85 272 0.79 0.80 0.63
0.50 325 402 77 269 0.81 0.74 0.60
0.60 318 410 92 286 0.78 0.63 0.49
0.70 315 419 104 297 0.75 0.55 0.41

Table 2. Experimental results with the objective 2

T Oacep Oreq Orej T(s) R A €

1 315 423 108 372 0.74 0.92 0.68
2 313 420 107 311 0.750.98 0.73
3 240 332 92 259 072 1 0.72
4 197 286 89 292 0.69 0.69
5 184 263 79 316 0.70 0.70
6 163 234 71 329 0.70 0.70
0 142 210 68 359 0.68 0.68
5 121 177 56 388 0.68 0.68

—_

Table 3. Experimental results with the objective 3

Version Ouacep Oreq Ore; T(s) R A ¢

Simple 300 340 40 323 0.88 0.40 0.35
Modified,F'=1.2 288 318 30 320 0.91 0.40 0.37
Modified, F'=1.8 258 315 57 280 0.82 0.46 0.38

required in the system is too low to give good elapsed times, but with the largest values,
the tasks assignment becomes too complicated and this has a negative influence on the
elapsed times.

For the second objective (table 2), similar conclusions can be derived. But in this
case low tolerance values imply more restrictive requirements, therefore, more requested
load balancing operations. The main difference with the first objective is that in this case
the influence of the 7 value on the A, R and ¢ values is not so significant. Similar effi-
ciency values can be obtained with all the considered algorithm tolerances. This is due
to the specific features of the performed experiment, that is, with this system-application
combination, it is easier to achieve the objective 2 than the objective 1 even with the
more restrictive requirements.

Finally, in table 3 the results for the objective 3 are shown . The ’simple’ implemen-
tation is based on the objective function proposed in equation 10. But this optimization
function leads to a poor system performance, in terms of elapsed time and initiation
efficiency. So, an easy modification is proposed (the *'modified’ version), to assign new
tasks to the system node with the largest load index only when this index is F' times
greater than in the local node. The utilization of this threshold does not affect the objec-

300 Marta Beltran, Jose L. Bosque, and Antonio Guzmén

tive achievement and allows to avoid unnecessary load balancing operations, improving
the algorithm performance specially for F' values significantly different from 1.

In the proposed context, the three implementations can obtain similar elapsed time
values: 269, 259 and 280 s respectively. But the third objective must be rejected due
to its efficiency value, only 0.38 for this best elapsed time. For the first and second
objectives, similar initiation efficiencies can be obtained, 0.60 and 0.72, therefore both
objective functions could be used for this algorithm, being a little best the second ob-
jective performance for this experiment.

6 Conclusions

This paper proposes a general procedure to methodically obtain initiation mechanisms
for load balancing algorithms. This methodology implies choosing a general objective
for the load balancing algorithm. This objective is mathematically expressed with an
objective function, which can be an optimization or a boundary one, depending on the
available system state information. And finally, this function is directly translated into
an initiation mechanism for the load balancing algorithm. In addition, a performance
metric for this mechanism, the initiation efficiency, has been defined.

For illustration, three example objectives have been presented to derive their initi-
ation mechanisms using the proposed methodology and to evaluate their performance
with the defined metric. The presented experiments for these three objectives show the
utility of the proposed procedure in implementing initiation policies and of the initiation
efficiency in selecting the best alternative.

All these results highlight the fact that it is possible to find different tasks allo-
cations with similar elapsed times values but very different values for the initiation
efficiency. And in this situation, the implementation with the best initiation efficiency
must be always selected because it implies a better resources utilization (less rejected
load balancing operations) and a better degree of the algorithm objective achievement.
And of course, it can be seen with the different examples that the best elapsed time
does not necessary imply the best initiation efficiency for the algorithm, because for
this performance metric the important issue is the degree of achievement for the algo-
rithm objective and the resources utilization efficiency to obtain this degree, and not the
elapsed time.

Furthermore, a general observation can be made based on all the performed experi-
ments: the boundary objectives are the best solution for load balancing algorithms, their
performance always improve the obtained with optimization objectives. The explana-
tion for this behavior is that the optimization objectives always introduce more over-
head in the initiation mechanism and are not scalable, while a good selected boundary
objective can obtain better results without causing this overhead due to its simplicity.
An example of this behavior is that the mechanism 3 achieves a worse elapsed time
for the global application although it is its main objective, due to the utilization of an
optimization function.

On the other hand, for these boundary objective functions the algorithm tolerance
must be tuned, taking into account that too demanding requirements can have a negative
influence on the system performance.

Initiating Load Balancing Operations 301

References

10.

11.

12.

13.

14.

. Rajkumar Buyya. High Performance Cluster Computing: Architecture and Systems, Volume

1. 1999. Prentice-Hall.

Gregory Pfister. In search of clusters: The Ongoing Battle in Lowly Parallel Computing.
1998. Prentice-Hall.

Jerrell Watts; Mark Rieffel and Stephen Taylor. Dynamic management of heterogeneous
resources. In High Performance Computing: Grand Challenges in Computer Simulation,
pages 151-156, 1998.

Chengzhong Xu and Francis C. M. Lau. Load Balancing in Parallel Computers: Theory and
Practice. 1997. Kluwer Academic Publishers.

Ashok Rajagolapan and Salim Hariri. An agent based dynamic load balancing system. In
Proceedings of the International Workshop on Autonomous Decentralized Systems, pages
164-171, 2000.

Manish Arora; Sajal K. Das and Rupak Biswas. A de-dentralized scheduling and load bal-
ancing algorithm for heterogeneous grid environments. In Proceedings of the International
Conference on Parallel Processing Workshops, 2002.

Ron Lavi and Ammon Barak. The home model and competitive algorithms for load bal-
ancing in a computing cluster. In Proceedings of the 21st International Conference on Dis-
tributed Computing Systems, pages 127-134, 2001.

L.M. Ni; C. Xu and T.B. Gendreau. A distributed drafting algorithm for load balancing.
IEEE Transactions on Software Engineering, 11(10):1153-1161, 1985.

Raymond Chowkwanyun and Kai Hwang. Multicomputer load balancing for LISP execu-
tion. In Parallel Processing for Supercomputers and Artificial Intelligence, pages 325-360,
1989. McGraw-Hill.

Rami G. Melhem; Kirk R. Pruhs and Taieb F. Znati. Using spanning-trees for balancing dy-
namic load on a multiprocessor. In Proceedings of the Sixth Distributed Memory Computing
Conference, pages 233-237, 1991.

M. Beltran; A. Guzman and J.L. Bosque. Dynamic tasks assignment for real heterogeneous
clusters. Parallel Processing and Applied Mathematics:5th International Conference, Lec-
ture Notes in Computer Science, 3019/2004:888-895. Springer Verlag.

Michael Mitzenmacher; Balaji Prabhakar and Devavrat Shah. Load balancing with memory.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
2002.

M. Beltran and J.L. Bosque. Estimating a workstation CPU assignment with the DYPAP
monitor. In Proceedings of the 3rd IEEE International Symposium on Parallel and Dis-
tributed Computing, 2004.

Luis Pastor and Jose L. Bosque. Efficiency and scalability models for heterogeneous clusters.
In Proceedings of the 3rd IEEE International Conference on Cluster Computing,, pages 427—
434. IEEE Computer Society Press, 2001.

Hierarchical Scheduling for Moldable Tasks

Pierre-Francois Dutot

Laboratoire ID-IMAG
38330 Montbonnot St-Martin, France
Pierre-Francois.Dutot@imag. fr

Abstract. The model of moldable task (MT) was introduced some years ago and
has been proven to be an efficient way for implementing parallel applications. It
considers a target application at a larger level of granularity than in other models
(typically corresponding to numerical routines) where the tasks can themselves be
executed in parallel on any number of processors. Clusters of SMPs (symmetric
Multi-Processors) are a cost effective alternative to parallel supercomputers. Such
hierarchical clusters are parallel systems made from m identical SMPs composed
each by k identical processors. These architectures are more and more popular,
however designing efficient software that take full advantage of such systems
remains difficult. This work describes approximation algorithms for scheduling
a set of tree precedence constrained moldable tasks for the minimization of the
parallel execution time, with a scheme which is first used for two multi-processors
and several bi-processors and then extended to the general case of any number of
multi-processors. The best known approximations of competitive ratios for trees
in the homogeneous case is 2.62, and although the hierarchical problem is harder
our results are close as we obtain a ratio of 3.41 for two multi-processors, 3.73 for
several bi-processors and 5.61 for the general case of several SMPs with a large
number of processors. To our knowledge, this is the first work on precedence
constrained moldable tasks on hierarchical platforms.

1 Introduction

In recent years computer hardware became increasingly affordable. This trends led to
a greater number of parallel computers. However, a fast interconnection network is
still very expensive. A solution to this problem is to use several processors on each
motherboard connected by the network. This introduces a large difference in the time
needed for on-board communications and for communications between two different
motherboards.

In the case of Parallel Tasks (PT), where a task has to be processed by a fixed number
of processors, the execution time of a task cannot be easily predicted on such hierarchi-
cal architectures unless some very restrictive hypothesis are made such as tasks have
to be executed on one board only, or all communications are considered as long com-
munications. We consider in this paper the related Moldable Task (MT) model, where
the execution time of a task depends on the number of processors used to compute the
task. However, in a hierarchical system knowing the number of processors used is not
enough to predict the execution time, as communications can be local or distant. In [1],
we provided a new hypothesis to deal with this problem. This placement hypothesis is

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 302-311, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Scheduling for Moldable Tasks 303

recalled in Section 2. With this additional rule, the MT model is well suited to hierar-
chical systems.

Scheduling precedence constrained MT tasks is a NP-hard problem [], and there-
fore approximation algorithms were developed to provide efficient schedules in poly-
nomial time. The first approximation algorithm for the homogeneous case has been
introduced by Lepere et al [3] with a ratio of 2.62 for tree based precedence constraints
and a ratio of 5.24 for general graphs. This scheme has been recently improved by
Hu Zhang in his PhD thesis [4—0] (under supervision of Pr. Jansen) achieving a 4.73
approximation ratio. In this paper, we adapted this scheduling technique of Lepere et
al. in the case of tree precedence constrained moldable tasks, as a first step towards
scheduling general graphs. To obtain ratios for general graphs without the improve-
ments designed by Hu Zhang, the results presented here can be simply multiplied by a
factor of 2. The recent improvements were not taken into consideration here due to the
length limitation.

In the next section, we will recall the definitions of the Moldable Task model and its
adaptation to hierarchical platforms. We will then briefly recall the scheduling scheme
used for the homogeneous case. This scheme (and improvements by Zhang) will then be
adapted for the two extremal cases of scheduling on two multi-processors and schedul-
ing for several bi-processors. Finally a general scheme for scheduling on several multi-
processors is proposed in Section 6.

2 The Moldable Tasks Model on Hierarchical Platforms

In the MT model a processor can compute only one task at a time, and the number of
processors allocated to a task is constant during its whole execution. The execution time
of a task depends on the number of processors allotted to it.

We consider an instance composed of n moldable tasks {77, ..., T}, } to be sched-
uled on a cluster of m identical SMPs composed each of k identical processors. The
tasks are linked with precedence constraints, in the form of trees (each node has at most
one predecessor). The execution time of the moldable task 7; when allotted to p pro-
cessors will be denoted by ¢;(p). Its computational area (or work) is defined as usually
as the time space product W;(p) = pt;(p). For a given allocation, we call critical path
the maximum sum of execution times over a chain of the graph, and work of the graph,
the sum of all the work of the tasks. The total work W = Y W;(1) divided by mk, and
the critical path L,,,, are straightforward lower bounds of the optimal makespan.

Using more than one processor to compute a task will cost some penalty for manag-
ing the communications and synchronizations. According to the usual behavior of the
execution of parallel programs, we assume that the tasks are monotonic. This means
that allocating more processors to a task will decrease its execution time and increase
its computational area.

There exists a difficulty inherent to hierarchical systems due to the fact that commu-
nications inside the same SMP are faster than between processors belonging to different
SMPs. In this case, the number of processors allotted to a task does not give all the in-
formations needed to determine the execution time of a task: a task will be scheduled
faster using processors inside the same SMP than using processors of different SMPs.
In order to avoid this problem, we introduce below a dominant rule:

304 Pierre-Francois Dutot

Definition (Best placement rule). For a given number of processors, we say that a
task is in its best placement if the penalty with this number of processors is the lowest
possible.

This definition is not very useful in the sense where many placements may verify
the best placement condition, and from the definition we cannot decide where it is best
to schedule the task. However, we can usually make the assumption that a task which
runs on less than k processors will be in its best placement if all the processors allotted
to the task are into the same SMP.

For tasks allotted to more than &k processors, we need an additional hypothesis which
is the following:

Hypothesis (Minimal penalty). We assume in the rest of the paper that a task T; allot-
ted to a;k+b; processors (with a; € [0;m] and b; € [0; k—1]) is in its best placement if
exactly a; SMPs are dedicated to it during its execution and the remaining b; processors
are within the same SMP.

This hypothesis is clearly verified for clusters of bi-processors, as it avoids the cases
where a task is sharing more than one bi-processor with other tasks. For larger values of
k, this placement minimizes the number of clusters used by a task for a given allocation,
therefore it is probably not far from the optimal placement.

Remark that we do not ask the processors to be contiguous. For instance, Figure |
represents two tasks verifying the minimal penalty hypothesis. The third one does not.

time
Kk f f [] Task 1
I ' ' [Task 2
B Task 3
, : - processors
1 mk

Fig. 1. Tasks 1 and 2 are in their best placement, whereas task 3 is not (m = 4).

In the rest of the paper, we will build algorithms whose output verify this best place-
ment rule. However, the competitive ratios given are with respect to an optimal schedule
which can use any kind of placement as long as the minimal penalty hypothesis holds,
as the proof is based on the total workload.

3 Previous Results with Precedence Constraints

The schemes used in this paper are mainly inspired from the scheduling algorithm for
the homogeneous case [3] (in this case m = 1). In this section, we will recall the basics
of this algorithm.

In the homogeneous case, there is no placement problem (k = 1). The algorithm
is composed of two phases. The first phase is a search for a good allocation for the

Hierarchical Scheduling for Moldable Tasks 305

moldable tasks, i.e. an allocation which realizes a trade-off between the workload and
the length of the critical path in the precedence graph. This problem is related to the
general class of time-cost problems where the time needed to perform a task depends
on the budget allotted to it. This problem has been solved by Skutella [7] very efficiently
in the case of tree precedence constraints leading to an optimal trade-off, and also has
good solutions for general graphs (leading to a 2 approximation on both the work and
the critical path).

Once this allocation is known, all allocations greater than a parameter p (i.e. all
tasks using more than p processors) are reduced to p and then the second phase is a
classic list scheduling algorithm. The analysis of the algorithm is similar to the classic
proof of Graham’s list scheduling algorithm, and for the best possible y: the performance
ratio is (3 + 1/5)/2 =~ 2.62 for trees and 3 4 /5 ~ 5.24 for general graphs [3].

4 Scheduling with Two Multi-processors (m = 2,k > 1)

Schedules produced by the homogeneous algorithm are usually inadequate in a multi-
processor setting, because of the placement rule. For a first view of the problem, we
will consider in this section the restricted case of scheduling on two multi-processors.

To keep the same construction scheme as in the homogeneous case, we have to
consider how the placement rule interferes in the list scheduling. As the parameter p is
less or equal to mk /2 in the homogeneous case, a task in its best placement cannot use
processors in both multi-processors. We now distinguish two cases depending on the
value of p.

In the first case, for 2’? 1 < 1 < k, the schedule produced by the list algorithm can
be split into two kinds of time intervals. The first kind (of total length I;) is composed
of all the time intervals during which at most 2(k — u) + 1 processors are used. During
these intervals, there are enough idle processors on at least one of the multi-processor to
schedule a task. If those processors are idle there is no available tasks, which means that
as in the original proof from Graham, a precedence constrained chain of tasks which
covers all these intervals can be found. As 2(k —) + 1 < p, the tasks in this chain did
not have their allocation reduced to p processors. The other kind of interval (of total
length I5) is composed of all the other time intervals. We denote by w the length of the
schedule.

With these two kinds of intervals defined, we can write the following (in)equalities:

w = Il + IQ (1)
w*>LEo>1 (2)
2kw* >W* > 1 +2(k—pu+ 1)l (3)

where w* is the optimal makespan. The first one states that the total schedule length is
the sum of all the time intervals, the second states that the critical path (and therefore
the optimal schedule length) is greater than the length of the first kind of interval, and
the third one is a lower bound on the workload in the optimal schedule.

A straightforward calculation proves that the ratio “, is at most equal to

w*

4k—2p+1
2(k—p+1)
which takes its minimum when g is smallest, i.e. p < ngr 4. The ratio is therefore

bounded by 4 + 2(,3_1).

306 Pierre-Francois Dutot

In the second case, for i < 2’“; 1 the schedule can be split into three different kinds
of time intervals. The first kind (of total length 77) is when less than y processors are
used, the second kind (of length I5) when between p and 2(k — p) 4+ 1 processors are
used, and the third when at least 2(k — 1 + 1) processors are used.

In the first and second kind of intervals, there is enough idle processors to schedule
any tasks, therefore a chain of tasks covering all these intervals is again constructible.
However this time, the tasks executed during intervals of the second kind may have
been reduced from their original allocation to an allocation of size .

The previous (in)equalities are now:

w211+12+13 (4)
* * /1/
> L > 1T I
w2 Lyue 2 1+2k2 (5)
2kw* > W* > I + puly +2(k — p+ 1)1I3 (6)

To find the best upper bound for the performance ratio ., we can consider these

inequalities as a set of linear programming constraints, where w has to be maximized,
and I1, I» and I3 are the variables. The dual problem is easier to solve, as there are only
two variables. It is composed of the following (in)equalities:

z =Wy + 2kw*ys (7

1<yi+y2 (3)
1

1< 9

S oYLt HY2 C)

1< 20k — p+ ys (10)

With the new objective of minimizing z. Combining equality 7 and inequality 9 we have
- e and adding 2(k— p+1) times inequality 8 to 2k — 1 time inequality 10, we get
j* >1+ o ,?f;il) To minimize z we have to minimize the maximum of Q;f and 1 +
o lff;il) . The first quantity decreases when p increases while the second quantity has
the opposite behavior. The real minimum is therefore achieved when the two are equal,
and the best p is one of the two integers closest to the solution of Qf =1+ 2 ,ff;il),
8k+1_\/(8k+41)2_32k(k+1) ~ (2—2)k+ 2;:/‘22. As k grows without bounds,
this minimum gets close to 272 V2 = 3.41. The value of the performance ratio for small
values of k is given in Figure 2. With the exception of £k = 2 where the ratio is 4, all
the obtained performance ratio are less than 2_2 2 the minimum being 2.75 for k equal
to four. Therefore it is always better to choose 1 lower or equal to (2k + 1)/3 for two
multiprocessors.

Remark that if 25 > 1+ o k?f;}rl) , the ratio is reached by a schedule of a single

task. Let 7 be a highly parallel task such as ¢1(p) = tlél), its optimal execution time

t1(1)
2k

tlﬁl) , leading to the ratio 2;

which is

would be and the schedule produced with our algorithm has an execution time of

Hierarchical Scheduling for Moldable Tasks 307

4

3.8 \

3.6 \

34 \ AV AP

32 32

AR WL
28 \vl 28 ,
2.6 2.6)
0 5 10 15 20 25 30 35 40 510 15 20 25 30 35 40

Fig. 2. Best performance ratio for two multi- Fig. 3. Best performance ratio for up to 40
processors of sizes up to 40 processors each. bi-processors. The dotted line is for p <

1 and the solid line for 74" < .

5 Scheduling on Bi-processors (m > 2, k = 2)

The second restricted case which is interesting to consider before addressing the gen-
eral case, is scheduling on a large number of bi-processors. In this case, restricting the
allocation to a portion of a bi-processor as we did previously makes no sense. The solu-
tion we considered is to directly use the homogeneous algorithm, with a different value
for p, and try to prove that the placement constraint with bi-processors is generally
satisfiable.

Let m be the number of available bi-processors. As previously, we restrict the al-
locations of the first phase which are greater than p to p. The placement rule states
that to place a task of allocation a, we need to have at least LgJ idle bi-processors plus
eventually a processor if a is odd. As we did in the previous section, we will consider
two cases depending on the value of .

For 2’”3“ < p < m, the schedule can be split into two kinds of time intervals of
respective length /; and I». The first kind of time intervals is when at most m — [gJ
processors are used. In these intervals, there is enough idle processors to schedule a
task using p processors. All other time intervals are counted in the other kind of time
interval.

As previously, we can write some inequalities on the length w of the schedule pro-
duced by the algorithm:

w=5LH+1 (11)
w*>Lr o >1 (12)
2mw*zw*zh+(m—wJ+1)12 (13)

From these (in)equalities, it is straightforward to prove that:
3m— |4
w* T om— LgJ +1

which means that the best ratio is obtained for the smallest possible value of p, which
is L2m3+1J + 1. This ratio is lower than 4 and tends to 4 for large values of m.

308 Pierre-Francois Dutot

For smaller values of p, i.e. u < 2"3“ , we again have to distinguish three kinds of
time intervals, of respective length I, Is and I3, depending on the number of processors
used. The first kind is made of intervals where less then p processors are used, the
second kind is composed of intervals with a number of processors between p and m —
L”J and the third of time intervals with more than m — L“ J busy processors.

2 2
Again, there is a set of (in)equalities describing the length of the schedule:

w211+12+13 (15)

WL >h+ L (16)
2m

Imwt > W* > I, —I—ulg—i-(m— V;J +1) I (17)

Which can be seen as a linear programming set of equations, and the dual is this
time:

z=wy; + 2mw*ys (18)
L<wyi+u2 (19)
1< ;nyl + 1y2 (20)
1g(m—wJ+1)y2 1)

As before, some straightforward rewriting yields to:

2
w* 1%
2m — 1
M (23)
w* m—LgJ—l—l

Again, we have to find the p which will minimize the maximum of the two lower
bounds. This time, the best i can be bounded between two functions of m:

[4m—1—\/12m2+4m+1]—1gﬂ (24)
u< L4m— V12m? — st +1 (25)

The obtained performance ratio is presented in Figure 3, with a dotted line for small
values of 1 and a solid line for large values of p. When the number of bi-processors
is lower than ten, the best solution is achieved with a large u, whereas for more bi-
processors, 1 has to be smaller. As m grows without bounds, /' gets close to (4 — 2v/3)
and the performance ratio of the algorithm tends to 271 V3 = 3.73.

6 A General Framework (m > 2,k > 2)

The algorithms of the two previous sections cannot easily be extended to an arbitrary
number of multi-processors with a large number of processors. The number of multi-
processors m is a lower bound on the ratio of the first algorithm, as u is always lower
than k, while k is a lower bound of the ratio of the second one as m sequential tasks

Hierarchical Scheduling for Moldable Tasks 309

can prevent the execution of tasks allotted to at least k£ processors. A closer look shows
that the first algorithm corresponds to ;¢ < k, and the second one to p > k.

To design efficient schedules for the general case, we have to take the best of the
two previous algorithms, considering both the tasks with a large allocation and the tasks
with a small allocation. The main idea is to use different values p for small and large
tasks, and then restrict the execution of the small tasks on a specific part of the platform.

For the rest of the paper, we consider m multi-processors, having k processors each.
Let y be an integer between 1 and m, y sets the threshold between “small” and “large”
tasks. Tasks allotted to less than vk processors are “small”, while other tasks are “large”.
As we will need two different values of 1 for small and large tasks, we will keep the p
notation for small tasks, and denote by ¢k the largest allotment allowed (hence 6k plays
the same role for large task as p does for small tasks).

After the first allotment phase, the allotment of the tasks is reduced in the following
way:

— Tasks allotted to a processors, with a < p are kept in their original allotment.

— Tasks allotted to a processors, with . < a < ~k are reduced to . processors.

— Tasks allotted to a processors, with vk < a < §k are reduced to LZJ k processors.
— Tasks allotted to a processors, with §k < a are reduced to §k processors.

Once this allotment is determined, the schedule is produced by a list scheduling al-
gorithm, with always at most § multi-processors' filled with small tasks. However, the
large tasks can fill more than (m—6) multi-processors if there is not enough small tasks.
As previously, we can split the resulting schedule in several kind of time intervals, de-
pending on ocCgmqn and occqrge Which are the number of processors used respectively
by small and large tasks:

— 51 is the set of intervals such as 1 < occoman < pt and occigrge = 0. In all the time
intervals of this set, there is always a task which is part of the constructed critical
path, and whose allocation has not been reduced.

— S5 is the set of intervals such as y < occsman < 0(k — p + 1) and occiarge =
0. In all the time intervals of this set, there is always a task which is part of the
constructed critical path, and whose allocation may have been reduced to (.

- S is the set of intervals such as vk < occiarge < 0k and occeman = 0. In all
the time intervals of this set, there is always a task which is part of the constructed
critical path, and whose allocation has been reduced to the nearest multiple of k.

— Sy is the set of intervals such as 0k < occigrge < (m — § + 1)k and occgman =
0. In all the time intervals of this set, there is always a task which is part of the
constructed critical path, and whose allocation may have been reduced to dk.

— Seritical 18 the set of intervals which are not in the previous sets, and where you
can still schedule a task, either small or large. Mathematically, the occupations are
either occiarge < (m — 6 — 6 + 1+ a)k and occoman < 6 — a for a between 1
and 0, or occigrge < (M — 6 — & + 1)k and occoman < 0(k — p + 1). We can
redistribute all the time intervals from this set to sets S to Sy, depending on the
task of the interval which is considered for building the critical path.

! Please note that these # SMPs are not fixed. If a small task is ready and less than # SMPs are
used by small tasks, any available SMP can be partially used by the small task.

310 Pierre-Francois Dutot

— S5 is the set of intervals such as 8(k — 1 + 1) < 0cCsmair- In these time intervals,
if a task of size p is available, it may be impossible to schedule it.

— Se is the set of intervals such as (m —§ — 6 + 1)k < occigrge and m +1 — 6 —
OeClarae < 0CComau. In these time intervals, if there is an available task of size ok,
it may be impossible to schedule it.

Remark that some of these intervals may be empty, and some are overlapping. De-
pending on the values of 6, k£ and u, So can be empty. If this is the case, the upper
bound on occgqy of S1 is reduced to meet the upper bound of S5. In the same way,
depending on the values of m and §, S; may be empty. Again, if this is the case, the
upper bound of S5 must be reduced to the upper bound of S4. Time intervals which can
be in S5 and Sg are put in the set S5 if O(k — p+1) > (m —0 — 60 + 1)k + 6 and in
set Sg otherwise.

As previously, denoting I, the total length of the intervals in set S, we can bound
the length of the intervals with the total workload and the critical path:

w211+12+13+14+15+16 (26)
. Iz vk 4
>1 I I L 27
w_1+'yk—12+(~y+1)k—13+m4 (27)
mkw* > I 4+ uly + kI3 + 0kIy + 9(k —u+ 1)[5
4 ((m—6—0+1)k+0) I (28)

And from these equations, we can write the dual problem:

z = W'y + mkw*ys (29)
1<y +y (30)
1
<
1< 'yk—lyl + py2 (3D
vk
< k 32
_(7+1)k—1y1+7 Y2 (32)
0
1< Y1 +5k1j2 (33)
m
1<0(k—p+1)y, (34)
1<((m=-6—0+1)k+0)y: (35)

Although it may seem much more complicated, this problem is still two dimensional
and the extremal point of the polytope can be found. Due to the restrictions on the
paper length the case analysis will not be presented here, but is instead provided in an
extended version of this paper [8]. Unsurprisingly the guarantees for the general case
are not as good as in the two special cases studied in the previous sections. These results
are summarized in Figure 4 and Figure 5.

We can see in these figures that the performance ratio is quickly worse than 4, and
does not get bigger than 5.5 for small values of k£ and m. For very large values of £ and
m, this ratio tends to 5.61.

Hierarchical Scheduling for Moldable Tasks 311

40
35

0 5 10 15 20 25 30 35 40
m

Fig. 4. Performance ratios for up to 40 SMPs Fig. 5. Projections of the iso-levels 4 and 5
having each up to 40 processors. of Figure 4.

7 Conclusion

The algorithms presented in this paper are (to our knowledge) the first to address the
problem of scheduling moldable tasks on hierarchical platforms. The next step is to add
the improvements from Hu Zhang. In the longer run, we should implement the resulting
algorithms in operational resource management systems. This implementation has to be
preceded by a simulation phase, as the behavior of the algorithms on real workloads can
be quite different from expected.

References

1. Dutot, P.F,, Trystram, D.: Scheduling on hierarchical clusters using malleable tasks. In: Pro-
ceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures,
ACM Press (2001) 199-208

2. Du, J., Leung, J.T.: Complexity of scheduling parallel tasks systems. SIAM Journal on
Discrete Mathematics 2 (1989) 473487

3. Lepere, R., Trystram, D., Woeginger, G.: Approximation algorithms for scheduling malleable
tasks under precedence constraints. In Springer-Verlag, ed.: 9th Annual European Symposium
on Algorithms - ESA 2001. Number 2161 in LNCS (2001) 146-157

4. Zhang, H.: Approximation Algorithms for Min-Max Resource Sharing and Malleable Tasks
Scheduling. PhD thesis, University of Kiel, Germany (2004)

5. Jansen, K., Zhang, H.: Scheduling malleable tasks with precedence constraints. In: 17th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2005), Las Vegas (2005)

6. Jansen, K., Zhang, H.: An approximation algorithm for scheduling malleable tasks under
general precedence constraints (2005) submitted.

7. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem. Mathe-
matics of Operations Research 23 (1998) 909-929

8. Dutot, P.E.: Hierarchical scheduling for moldable tasks — extended version. Technical report,
Laboratory ID-IMAG (2005) www-id. imag. fr/~pfdutot/perso.html.

On-Line Bicriteria Interval Scheduling

Fabien Baille, Evripidis Bampis, Christian Laforest, and Nicolas Thibault

LaMI, CNRS UMR 8042, Université d’Evry,
Tour Evry 2, 523, Place des Terrasses 91000 Evry, France
{fbaille,bampis,laforest,nthibaul }@lami.univ-evry.fr

Abstract. We consider the problem of scheduling a sequence of intervals
revealed on-line one by one in the order of their release dates on a set of k
identical machines. Each interval ¢ is associated with a processing time p;
and a pair of arbitrary weights (11){47 w?) and may be scheduled on one of
the k identical machines or rejected. The objective is to determine a valid
schedule maximizing the sum of the weights of the scheduled intervals
for each coordinate. We first propose a generic on-line algorithm based
on the combination of two monocriteria on-line algorithms and we prove
that it gives rise to a pair of competitive ratios that are function of the
competitive ratios of the monocriteria algorithms in the input. We apply
this technique to the special case where wi* = 1 and w? = p; for every
interval and as a corollary we obtain a pair of constant competitive ratios.

We consider the problem of scheduling in an on-line context a set of n intervals
on k identical machines. An interval 7 is defined as a tuple of five positive real
numbers (r;, p;, d;, wlA,wZB), where r; denotes the release date, p; the processing
time, d; = r; + p; the deadline and wf and wZB two arbitrary weights. We
consider the following on-line context: Intervals arrive (are revealed) one by one
in increasing order of their release dates, i.e. 11 < 79 < --- < 71; < --+, and
they are not known before they are revealed. A revealed interval must either be
served or rejected. An interval i is said to be served or accepted if it is alloted
exclusively and without interruption (preemption is not allowed) to one of the
k machines from date r; to date d;. Note that the acceptance of an interval
may lead to the interruption of already scheduled intervals. A schedule O is
valid if every served interval is scheduled at most once and if at each date every
machine schedules at most one interval. There are two objective functions that
we call the weight W4 (0), defined as the sum of the first-coordinate-weights w;!
of the accepted intervals, and the weight Wg(O), corresponding to the sum of
the second-coordinate-weights w? of the accepted intervals in O. Note that if
an interval is rejected or scheduled and interrupted later before its deadline, it
is definitely lost and no gain is obtained from it for none of the metrics. In this
model, we search for a solution/schedule that simultaneously maximizes the two
objectives W, and Wg. The particular weight function w* = 1 (resp. w? = p;)
corresponds to the well known SIZE (resp. PROPORTIONAL WEIGHT) problems.

Competitive ratio. In order to analyze the performance of an on-line algorithm,
we use the notion of competitive ratio [1, 7]. Let o1, ,0, be any on-line se-
quence. For every i, 1 <i <n,let A(o1,---,0;) be the schedule returned by the

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 312-322, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On-Line Bicriteria Interval Scheduling 313

algorithm A at step i, i.e. when the first ¢ intervals are revealed, and let O be
an optimal schedule of the set {01, ,0;} for some metric C. Then A is said to
be p-competitive for the metric C if, for all 4, 1 < i < n, this inequality holds:

pC(A(or,---,0:)) > C(O;)

For our bicriteria problem, an algorithm A is said to be (p, u)-competitive if it
is stimultaneously p-competitive for W and u-competitive for Wgp.

Previous works. To the best of our knowledge, this is the first work considering
the simultaneous maximization of two different weight functions in an on-line
context. Nevertheless, the off-line version of the bicriteria problem has been
treated in [2] where a (¥, *)-approximation algorithm (1 < r < k) has been
proposed. On the contrary, the monocriteria problems have been extensively
studied for both the off-line and the on-line versions. In particular, the off-line
versions are polynomial (see Faigle and Nawijn [0] for the siZE and Carlisle
and Lloyd [5] or Arkin and Silverberg [!] for the WEIGHT problems). In the
on-line context, the algorithm GOL of Faigle and Nawijn [0] is optimal for the
SIZE problem. For the WEIGHT problem, there is a series of works going from
the paper of Woeginger, in [3], who proposed a 4-competitive algorithm for the
PROPORTIONAL WEIGHTS problem in a single machine system, to the paper of
Bar-Noy et al. [3] who proposed the LR algorithm which is 1_22 s-competitive for
the PROPORTIONAL WEIGHT problem in a different model than ours (instead of
k machines, they consider a continuous channel where an interval requires less
than a portion § of the total channel).

Outline of the paper. In Section 1, we describe a generic on-line algorithm for the
simultaneous maximization of two weight functions W4 and Wg. We prove that
it is a (’:p, kau)—competitive algorithm, for 1 < r < k, where p and u are the
competitive ratios of the corresponding monocriteria algorithms. However, up to
our knowledge, no on-line algorithm is available for the general WEIGHT problem.
So, we focus, in Section 2, on the special case of the size and proportional weights
metrics. We combine the algorithms GOL of [0] for the size criterion and of LR of
[3] for the proportional weights criterion in our generic method. We thus propose
a bicriteria on-line algorithm and we prove that it induces a pair of constant
competitive ratios for this bicriteria case. Finally, we prove in the appendix the
competitiveness of LR.

1 Our Generic Bicriteria Algorithm

In this section, we describe our generic bicriteria on-line algorithm. It uses as
subroutines two on-line monocriteria algorithms having the following structure.

Structure of the monocriteria algorithms. At the release date r; of a new interval
o, any on-line monocriterion algorithm can be split into two main stages. In the
first one, called the interrupting stage, a set of already scheduled intervals are
selected to be interrupted at time r;. This set can potentially be empty meaning
that no interval is interrupted when the algorithm considers ;. The second stage

314 Fabien Baille et al.

is the scheduling stage. Here, the algorithm can either reject the interval o; or
schedule it on one of the available machines.

The rough idea of our generic algorithm is the following: it simulates the
execution of two algorithms, say A for the maximization of the weight W4 and
B for the maximization of the weight Wx on r and k — r machines, respectively.
By doing this, it builds its own interrupting (resp. scheduling) stage from the
corresponding interrupting (resp. scheduling) stage of the input algorithms.

1.1 The Algorithm AB¥

We consider the i-th step of an arbitrary algorithm for the WEIGHT problem,
i.e. the step at which interval o; is released. For any algorithm ALG and for
every execution step 4 of this algorithm, let O;, (ALG) (resp. O;,(ALG)) be the
schedule given by ALG after the execution of its interrupting (resp. scheduling)
stage of step 1.

Given two algorithms A for the maximization of the weight W4 and B for
the weight Wg, our generic algorithm AB¥ is constructed as follows: AB* builds
the final schedule by combining the schedu