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Preface

This volume contains the papers presented at the 30th Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2005) held in Gdansk, Poland
from August 29th to September 2nd, 2005. Taking place alternately in the Czech
Republic, Slovakia and Poland, this year the conference was organized by the
Institute of Mathematics of Gdansk University.

From the first meeting in 1972 to this year’s 30th event, the MFCS series
has provided a basis for theoretical computer scientists to present their latest
research results. The scope of the conference, consequently, covers all branches
of theoretical computer science ranging from automata, algorithms, data struc-
tures, models of computation to complexity theory, also including artificial in-
telligence, computational biology, computational geometry and cryptography.

The 137 submissions from 22 countries revealed a continued strong interest
in the conference as well as the high-quality research results the MFCS series
stands for. The Program Committee carefully selected 62 papers for presention
at the conference complemented by 7 invited talks.

The meeting took place at a conference hotel located on Sobieszewo Island,
15 km from Gdansk, offering both a beautiful landscape with sandy beaches and
forests and the possibility to explore the old Hanseatic city of Gdansk with its
interesting history of over 1000 years.

Last but not least we have the pleasure to thank all the people involved in
making the meeting a success: the authors for showing their interest by sub-
mitting their research results, the invited speakers for agreeing to attend the
conference and for presenting their insights, the members of the Program Com-
mittee for thorough discussions during the selection process, and the referees for
the effort of reading all the submissions. We would also like to thank the Organiz-
ing Committee for the excellent preparation and realization of the symposium,
Springer for a smooth cooperation, and of course all the conference participants
for creating an inspiring atmosphere.

June 2005 Joanna Jȩdrzejowicz
Andrzej Szepietowski
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Page Migration in Dynamic Networks�

Marcin Bienkowski1 and Friedhelm Meyer auf der Heide2

1 International Graduate School of Dynamic Intelligent Systems,
University of Paderborn, Germany
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2 Heinz Nixdorf Institute and Computer Science Department,

University of Paderborn, Germany
fmadh@upb.de

1 Introduction

In the last couple of decades, network connected systems have gradually replaced
centralized parallel computing machines. To provide smooth operation of net-
work applications, the underlying system has to provide so-called basic services.
One of the most crucial services is to provide a transparent access to data like
variables, databases, memory pages, or files, which are shared by the instances
of programs running at nodes of the network.

The traditional approach of storing the shared data in one or a few central
repositories does not scale up well with the increase of the network size and is
therefore inherently inefficient.

In this paper, we survey data management strategies that try to exploit
topological locality, i.e., try to migrate the shared data in the network in such
a way that a node accessing a data item finds it “nearby” in the network. This
problem can be modeled as an online problem; several such models are discussed
and will be presented in this survey. We will mainly deal with the classical, most
basic of these data management problems, called Page Migration.

Our main focus will be on very recent results on page migration in a dynamic
scenario: Here we assume that the network is no longer static, but it behaves like
a mobile ad-hoc network, i.e., the nodes are allowed to move. Thus, we have to
deal with two sources of online events, namely the requests from nodes to data
items and the movements of the nodes. The new challenges both for modelling
and for algorithm design and analysis arising from these two adversaries will be
the main topic of this paper.

2 Static Networks

In many applications, access patterns to a shared object change frequently. This
is common for example in parallel pipelined data processing, where the set of
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processors accessing shared variables changes in the runtime. In these cases, any
static placement of the object copies is inefficient. Moreover, the knowledge of
the future accesses to the objects is in reality either partial or completely non-
existing, which renders any solution based on static placement infeasible. Instead,
a data management strategy should migrate the copies, to further exploit the
locality of accesses. kkeeping overhead small, it is often required that only one
copy of each object is stored in the system. Additionally, in a typical situation
in the parallel environments, shared objects are usually bigger than the part
of their data that is being accessed at one time. Usually, processors want to
read or change only one single unit of data from the object, or one record from
a database. On the other hand, the data of one object should be kept in one
place to reduce the maintenance overhead. This leads to a so-called non-uniform
model, where migrating or copying the whole object is much more expensive than
accessing one unit of data from it.

2.1 Page Migration

This traditional paradigm, called Page Migration (PM) was introduced by Black
and Sleator [16]. It models an underlying network as a connected, undirected
graph, where each edge e has an associated cost c(e) of sending one unit of
data over the corresponding communication channel. In case of wired networks,
this cost might represent the load generated by sending a data through this
communication link. The cost of sending one unit of data between two nodes va

and vb is defined as the sum of costs of edges on the cheapest path between va

and vb. There is one copy of one single object of size D, which is further called
a (memory) page, stored initially at one fixed node in the network.

A PM problem instance is a sequence of nodes (σt)t, which want to access
(read or write) one unit of data from the page. In one step t, one node σt issues
a request to the node holding the page and appropriate data is sent back. For
such a request, an algorithm for PM is charged a cost of sending one unit of
data between σt and the node holding the page. Then the algorithm may move
the page to an arbitrary node. Such a transaction incurs a cost which is greater
by D, the page size factor, than the cost of sending one unit of data between
these two nodes.

The goal is to compute a schedule of page movements to minimize the total
cost. Furthermore, computing the optimal schedule offline, i.e. on the basis of
the whole input sequence I = (σt)t is an easy task, which can be performed
in polynomial time. Thus, the main effort was placed on constructing online
algorithms, i.e. ones which have to make decision in time step t solely on the
part of the input up to step t.

Competitive Analysis. To evaluate any online strategy, we use competitive
analysis [35,17], i.e. we compare the cost of an online solution to the cost of the
optimal offline strategy. In the following we assume that an optimal solution is
denoted by Opt, and for any algorithm Alg, CALG(I) denotes the cost of this
algorithm on input sequence I = (σt)t.
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An online deterministic algorithm Alg is R-competitive, if there exists a
constant A, s.t. for any input sequence I holds

CALG(I) ≤ R · COPT(I) + A . (1)

For a randomized algorithm Alg, we replace its cost in the definition above
by its expectation E[CALG(I)]. The expected value is taken over all possible
random choices made by Alg. Additionally, we have to distinguish between the
three adversary types: oblivious, adaptive-online, adaptive-offline (see e.g. [10]),
depending on their knowledge of the random bits used by Alg.

Results. The PM problem was thoroughly investigated for different types of
adversaries. While we shortly state the results below, for a gentle introduction to
the algorithms mentioned here, we refer the reader to the survey by Bartal [7].

First randomized solutions presented by Westbrook [36] were a memoryless
algorithm which was 3-competitive against an adaptive-online adversary, and a
phase-based algorithm whose competitive ratio against an oblivious adversary
tends to 2.618 as D goes to infinity. The former result was proven to be tight by
Bartal et al. [9,7]. The lower-bound construction was a slight modification of the
analogous lower-bound for deterministic algorithms by Black and Sleator [16].
On the other hand, the exact competitive ratio against an oblivious adversary is
not a completely settled issue. The currently best known lower-bound, 2 + 1

2D ,
is due to Chrobak et al. [18]. It is matched only for certain topologies, like trees
or uniform networks (see [18] and [22], respectively).

The first deterministic, phase-based, 7-competitive algorithm Move-To-Min
was given by Awerbuch et al. [3]. The result was subsequently improved by
the Move-To-Local-Min algorithm [8] attaining competitive ratio of 4.086. On
the other hand, Chrobak et al. [18] showed a network with a lower bound of
approximately 3.148.

2.2 Data Management

In this subsection we give a brief overview of extensions of Page Migration that
allow more flexible data management in networks. Let n denote the number of
nodes of the network. One of the possible generalizations of PM is allowing more
than one copy of an object to exist in the network. This poses new interesting
algorithmic questions which have to be resolved by a data management scheme.

– How many copies of shared objects should be created?
– Which accesses to shared objects should be handled by which copies?

A basic version of this problem, where only one shared object is present in the
system, called file allocation, was first examined in the framework of competitive
analysis by Bartal et al. [9]. They present a randomized strategy that achieves
an optimal competitive ratio of O(log n) against an adaptive-online adversary,
by a reduction to the online Steiner tree problem. Additionally, they show how
to get rid of the central control (which is useful for example for locating the
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nearest copy of the object) and create O(log4 n)-competitive algorithm which
works in a distributed fashion. Awerbuch et al. [3] show that the randomization is
not crucial by constructing deterministic algorithms (centralized and distributed
ones) for file allocation problem attaining asymptotically the same ratios.

For uniform topologies Bartal et al. [9] showed an optimal 3-competitive
deterministic algorithm. Lund et al. [22] gave a 3-competitive algorithm for trees
based on work functions technique.

Memory Constraints. If multiple objects are present in the network and the
local memory capacity at nodes is limited, then running file allocation scheme
for each single object in the network might encounter some problems. Above
all, it is not possible to copy an object into node’s memory, if it is already full.
Possibly, some other objects’ copies have to be dropped, which induces problems
if they were the last copies present in the network. This leads to a so called
distributed paging problem, where file allocation solutions have to be combined
with schemes known from uni-processor paging (see for example [1,19,24,35]).

For uniform networks, Bartal et al. [9] presented the deterministic O(m)-
competitive Distributed-Flush-When-Full algorithm, where m denotes the total
number of copies that can be stored within the network. They also proved that
this bound is tight by showing Ω(m) lower bound for competitiveness against an
adaptive-online adversary. Awerbuch et al. [4] used randomized uni-processor
paging algorithms [1,19,24] to get an up to a constant factor optimal algo-
rithm Heat & Dump, which is O(max{log(m− f), log k})-competitive against
an oblivious adversary. In this context, f is the number of different objects in
the network, and k is the maximum number of files that can be stored at any
node. If we again restrict the number of copies of object to one, it results in
a problem called page migration with memory constraints. Albers and Koga [2]
presented deterministic and randomized algorithms for this problem, which are
much simpler than their distributed paging counterparts, and attain competitive
ratios O(n) and O(log n), respectively.

For general networks Awerbuch et al. [5] adopted the model suggested pri-
marily for uniprocessor paging [35], which goes beyond pure competitive analysis.
In order to compensate the optimal offline algorithm advantage of knowing the
future, Sleator and Tarjan [35] proposed limiting the memory capacity that the
optimal algorithm has at its disposal. This extension, which is sometimes re-
ferred to as resource augmentation, allowed authors of [5] to present a determin-
istic O(polylog n)-competitive algorithm, under the assumption that the online
algorithm has O(polylog n) times more memory than the optimal algorithm.

Optimizing Congestion. In case of wired networks the communication cost
between a pair of nodes might be measured in terms of the load generated by
sending the data through a communication link. All the algorithms presented
above were designed to minimize the total communication load. A more chal-
lenging task it to derive fine-grained algorithms, whose objective is to minimize
congestion, i.e. the maximum load on each single link.
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Maggs et al. [23] developed a distributed data management strategy for tree
networks, which was 3-competitive for the uniform model (the size of object
equal to 1). The aforementioned 3-competitive algorithm for trees by Lund et al.
[22] was proven to be also competitive with respect to congestion minimization,
and worked for the non-uniform model. However, as it was based on computing
work-functions, it was inherently centralized. Meyer auf der Heide et al. [25] fixed
this deficiency, presenting the deterministic 3-competitive distributed strategy
for trees.

However, the main result of [23] was bisimulation technique. It was shown
that for some regular networks like meshes of clustered networks, the original
problem instance can be, without enlarging congestion, mapped into a virtual
network, a so called access tree. As mentioned above, solving the problem on a
tree is relatively easy. Finally, the virtual tree was randomly mapped into the
original network, so that, with high probability (w.h.p.), the congestion increases
at most by a factor of O(log n). This yields a randomized algorithm, which is
O(log n)-competitive against an oblivious adversary. Similar results for fat trees
and hypercubic networks, as well as O(1)-competitive algorithms for uniform
networks, were presented in [26,37] and experimentally evaluated in [21]. Finally,
Räcke [27,28] showed that it is possible to construct access trees for any network
topology, showing an O(log3 n)-competitive algorithm. This was subsequently
improved to O(log2 n · log log n) by Harrelson et al. [20].

Furthermore, Meyer auf der Heide et al. [26] and later Westermann [37]
showed how to extend these strategies to respect the capacity constraints on
the local memory modules. Their algorithms also exploit the paradigm of re-
source augmentation, giving the online algorithm O(log n) times more memory
than to the offline strategy. The competitive ratios are asymptotically the same
as in the case without memory capacity restrictions.

3 Dynamic Networks

Basic services for mobile wireless networks and dynamically changing wired net-
works are a relatively new area. Some results have been achieved for topology
control and routing in dynamic networks (see surveys by Rajaraman [29], and
Scheideler [33], as well as the paper of Awerbuch et al. [6]). In comparison, data
management solutions in dynamically changing networks are still in their in-
fancy. Till recently, neither theoretical analysis was present in this area, nor a
reasonable model of network changes was proposed. In particular, any model
similar to described in [6], where we assume adversarial link failures, would give
no chance to any data management scheme.

Hence, for theoretical modelling dynamics of networks, we assume that an
adversary may modify the costs of point-to-point communication arbitrarily, as
long as the pace of these changes is restricted by, say, an additive constant per
step. Intuitively, this gives the data management algorithm time to react to the
changes. Such a model can be motivated by a reality-close pedestrian model by
Schindelhauer et al. [34].
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The model of slow changes in the communication costs, formally defined in
the next section, tries also to capture slow changes in available bandwidth in
wired networks, which are inherently induced by other programs running in the
network.

In our considerations we do not take into account the dynamics induced by
nodes joining and leaving the network. In fact, a model where nodes may become
active and inactive was already investigated by Awerbuch et al. [5] in context of
file allocation.

3.1 Models and Results

To model the Page Migration problem in dynamic networks we make the follow-
ing assumptions. The network is modelled as a set of n mobile nodes (processors)
labelled v1, v2, . . . , vn. These nodes are placed in a metric space (X , d), where
the distance between any pair of points from X is given by the metric d.

Time is discrete and slotted into time steps t = 0, 1, 2, . . .. To model dynamics
we assume that the position of each node is a function of t, i.e. pt(v) denotes
the position of v in time step t. As a natural consequence, the distance between
a pair of nodes may also change with time. The distance between any pair of
nodes va and vb in time step t is denoted by

dt(va, vb) := d(pt(va), pt(vb)) . (2)

Note that such a distance can be equal to zero in two different cases. The first
one occurs, if va and vb are different nodes occupying the same position in X .
The second one is when a = b, in which case we are dealing with a single node
(and we write va ≡ vb).

A tuple describing the positions of all the nodes in time step t is called
configuration in step t, and is denoted by Ct. A configuration sequence (Ct)T

t=0

contains the configurations in the first T +1 time steps, beginning with the initial
configuration C0.

The changes in nodes’ positions over time are arbitrary, as long as the nodes
move with a bounded speed, as mentioned in the previous section. Formally, for
any node vi, its positions in two consecutive time steps t and t + 1 cannot be
too far apart, i.e.

d(pt(vi), pt+1(vi)) ≤ δ , (3)

for some fixed constant δ. Furthermore, if X is a bounded metric space, then let
λ denote its diameter, i.e. the maximum possible distance between two points
from X . For an unbounded space, λ =∞.

Any two nodes are able to communicate directly with each other. The cost
of sending a unit of data from node va to vb at time step t is defined by a cost
function ct(va, vb), defined as

ct(va, vb) = dt(va, vb) + 1 , (4)

if va and vb are different nodes. Obviously, the communication within one node
is free, i.e. if va ≡ vb, then ct(va, vb) = 0. Essentially, the communication cost is
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proportional to the distance between these two nodes, plus a constant overhead.
This overhead represents the startup cost for establishing connection.

Naturally, the changes in the network themselves (described by (Ct)T
t=0 se-

quence) do not constitute a problem of its own. According to the described model
of Page Migration, a copy of memory page of size D is stored at one of the net-
work’s nodes, initially at v1. In each time step t, exactly one node, denoted by
σt, tries to access one unit of data from the page. Since the model assumes that
there is only one copy of the object stored in the system, there is no need of
making distinction between between read and write accesses. Further, we refer
to them as accesses or requests. The requests σt create the sequence (σt)T

t=1,
complementary to the configuration sequence (Ct)T

t=0.1

In each step an algorithm for the Page Migration in dynamic networks has
to serve the request, and then to decide, whether it wants to migrate the page to
some other node. Precisely, for any algorithm Alg the following stages happen
in time step t ≥ 1.

1. The positions of the nodes in the current step are defined by Ct.
2. A node σt wants to access one single unit of data from the page. It sends

a write or a read request to PALG(t), the node holding Alg’s page in the
current step.

3. Alg serves this request, i.e. it sends a confirmation in case of write, or
a requested unit of data in case of read. This transaction incurs a cost
ct(PALG(t), σt).

4. Alg optionally moves the page to another node of its choice. A movement
to P ′

ALG(t) incurs a cost D · ct(PALG(t), P ′
ALG(t)).

In fact, the only part which Alg may influence is choosing a new node P ′
ALG(t) in

the fourth stage. The problem, to which we further refer Dynamic Page Migration
(DPM) is to construct a schedule of page movements to minimize the total cost
of communication for any pair of sequences (Ct)t, (σt)t.

3.2 Competitive Analysis in Different Scenarios

Like in the Page Migration case, the problem of minimizing the total cost in-
curred is relatively easy, if both (Ct)t and (σt)t are given in offline setting, i.e. if
an algorithm may read the whole input beforehand. In fact, an easy algorithm
using dynamic programming approach is able to find an optimal schedule of page
movements for any instance of the DPM problem consisting of T steps, using
O(T · n2) operations and O(T · n) additional space.

However, as mentioned earlier, DPM has to be primarily solved in an online
scenario, where an algorithm must make its decisions (where to move the page)
in time step t solely on the basis of the initial part of the input up to step t, i.e. on
the sequence C0, C1, σ1, C2, σ2, . . . , Ct, σt. To evaluate any online strategy for the
DPM problem, we use competitive analysis. Since the input sequence consists
1 Note that nodes issue requests from the first step. The initial configuration in time

step 0 is introduced for simplifying notation only.
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of two practically independent streams, one describing the request patterns and
one reflecting the changes in network topology, it is reasonable to assume that
they are created by two separate adversarial entities, the request adversary and
the configuration/network adversary. This separation yields different scenarios
depending on ways in which these adversaries interact.

Adversarial (Cooperative) Scenario. The most straightforward modelling, which
also creates the most difficult task to solve, arises when both adversaries may co-
operate to create the combined input sequence. In fact, this is equivalent to hav-
ing one adversary capable of constructing the whole input sequence and brings
the problem back to the classical formulation of online analysis.

For this scenario, Bienkowski et al. [13] constructed a deterministic strategy,
which is O(min{n ·√D, D, λ})-competitive. Recall that λ denotes the maximum
distance that can be achieved between two nodes. Their algorithm is up to a
constant factor optimal, due to the matching lower bound for adaptive-online
adversaries, given in [15]. Further, they show how to randomize this strategy to
get a competitive ratio of O(

√
D · log n, D, λ}) against an oblivious adversary.

This result is up to a O(
√

log n) factor optimal in the common case D ≥ log3 n,
due to the lower bound of Ω(min{√D · log n, D2/3, λ}) from [13]. All the pre-
sented competitive ratios are strict, which means that the constant A occurring
in (1) is equal to zero.

The competitive ratios of the best possible algorithms for DPM problem
are large, even against the weakest, oblivious adversaries. It can be inferred
that the poor performance of algorithms for this scenario is caused by the fact
that the network and request adversaries might combine their efforts in order
to destroy our algorithm. If cooperation between them was forbidden, then one
might hope for a provably better performance. However, it is semantically not
clear what non-cooperativeness means. Therefore, it was proposed in [11,14,15]
that the DPM problem could be analyzed in another extreme case, where one
of the adversaries is replaced by a stochastic process. This leads to another two
scenarios.

Brownian Motion Scenario. In this scenario the mobile nodes perform a ran-
dom walk on a bounded area of diameter B, and the request adversary dictates
which nodes issue requests during runtime. However, the adversary is “oblivi-
ous”, i.e. it has to create the whole request sequence (σt)t in advance, without
knowledge of the actual configuration sequence (Ct)t induced by a random walk.
The definition of competitiveness has to be adapted appropriately to reflect the
fact that the input sequence is created both by an adversary and a stochastic
process. A deterministic algorithm Alg is R-competitive with probability p, if
there exists a constant A, s.t. for all request sequences (σt)t holds

Pr(Ct)t

[
CALG((Ct)t, (σt)t) ≤ R · COPT((Ct)t, (σt)t) + A

]
≥ p , (5)

where the probability is taken over all possible configuration sequences generated
by the random movement.
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The main result of [14], based on the preliminary result of [15] is an algorithm
Maj, which is O(min{ 4

√
D, n} · polylog(B, D, n))-competitive. This result holds

for 1-dimensional areas if B ≤ Õ(
√

D), or for any constant-dimensional areas if
B ≥ Õ(

√
D). The ratio is achieved w.h.p., i.e. the probability p occurring in (5)

can be amplified to 1−D−α by setting A = α ·A0 for a fixed constant A0.

Stochastic Requests Scenario. This is the scenario symmetric to the Brownian
motion one. It is assumed that requests appear with some given frequencies, i.e. in
step t, σt is a node chosen randomly according to a fixed probability distribution
π. Analogously, a deterministic algorithm Alg is R-competitive with probability
p, if there exists a constant A, s.t. for all possible network topology changes
(configuration sequences) (Ct)t and all possible probability distributions π holds

Pr(σt)t

[
CALG((Ct)t, (σt)t) ≤ R · COPT((Ct)t, (σt)t) + A

]
≥ p , (6)

where the probability is taken over all possible request sequences (σt)t generated
according to π.

The Move-To-First-Request algorithm presented in [11] achieves strict O(1)-
competitive ratio, w.h.p. In this context, high probability means that one can
achieve probability 1−D−α, if the input sequence is sufficiently long. Moreover,
the algorithm can be slightly modified to handle also the following cost function

ct(va, vb) = (dt(va, vb))
β + 1 , (7)

for any constant β, still remaining O(1)-competitive. For the case of wireless
radio networks, one can choose the parameter β to respect a propagation exponent
of the medium (see for example [31]). For example by setting β = 2, the cost
definition reflects the energy consumption used the send the message in the
ideally free space along a given distance. Thus, this result minimizes, up to a
constant factor, the total energy used in the system.

4 Algorithms and Lower Bounds

In this section we give some technically interesting results for the DPM model.
First, we present Mark, the main building block of the O(min{n · √D, D, λ})
upper bound for competitiveness in the adversarial scenario. Later, we show
that this ratio is inherently high by showing a lower bound of Ω(min{√D, λ})
(which works even in two-node networks) for a randomized algorithm against
an oblivious adversary. Finally, we present a simple majority algorithm, which is
O(log n)-competitive, w.h.p., in a very restricted version of the Brownian motion
scenario.

4.1 Algorithm MARK

TheO(n·√D)-competitive deterministic Mark algorithm [13] for the adversarial
scenario of the DPM problem was inspired by the Move-To-Min algorithm [3]
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for the regular Page Migration problem. Move-To-Min divides the whole input
sequence works into chunks of length D. In any chunk, it serves all the requests,
and move the page at the end of the chunk to a so called gravity center. A gravity
center is a node, which would be the best place for a page in this chunk.

Mark works in chunks of length
√

D. This length constitutes a tradeoff – it
has to be long enough to amortize the movement of the page against the cost
of serving the requests in the chunk, and short enough to make the adversarial
network changes negligible. However, it can be shown that any algorithm, which
considers only gravity centers as candidates for the nodes holding the page, has
no chance to be better than Ω(D)-competitive.

On the other hand, keeping the page close to the gravity center is, generally, a
desirable thing. Hence, we consider the following marking scheme, which depends
only on the input sequence. Chunks are grouped in epochs, each epoch begins
with all nodes unmarked. First epoch starts with the beginning of the input. In
each epoch we track Ai counters for the part of the epoch seen so far. Ai counter
is the cost of an algorithm, which remains at vi, and does not move. If such a
counter exceeds D, then the corresponding node becomes marked. At the end
of a chunk, in which all nodes are already marked, the current epoch ends, the
scheme unmarks all nodes, and a new epoch begins.

Mark uses this scheme in the following way. It remains in a node till the
end of chunk, in which this node gets marked, and then moves to any not yet
marked node. Additionally, at the end of the last chunk in epoch, it moves to
the gravity center associated with this chunk.

It can be proven, that even considering the adversarial movement of the
nodes, if a node remains far away from the gravity center, Ai counter increases
rapidly, which leads to marking the node.

Lemma 1 ([13]). If at the end of a chunk I a node is not marked, then its
distance to the gravity center is at most O(

√
D).

Thus, if Mark moves, it moves to the neighborhood of the gravity center.
Denoting the sequence of chunks between two movements of Mark by phase,
and using similar kind of amortized analysis (with adequately chosen potential
function) as for Move-To-Min algorithm, the following can be shown.

Lemma 2 ([13]). In each phase the amortized cost of Mark is not greater than
the cost of Opt times O(

√
D), plus an additive term of O(D · √D)

However, we may eradicate this additive term by resorting to the properties
of the marking scheme. First, since in each phase at least one new node gets
marked, the number of phases in one epoch is at most n. Second, the Opt’s cost
in one epoch is at least D. It follows from the case analysis: if Opt moves then
it is charged at least D, otherwise it remains in one node vi, and thus its cost is
equal to Ai ≥ D. Hence, the additive terms in one epoch amount to O(n·D·√D),
which is at most O(n · √D) times the optimal cost. This concludes the proof of
Mark’s competitiveness.

Straightforward generalization of Mark, i.e. choosing not any, but a random
not yet marked node, reduces the number of phases to log n and the competitive
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ratio to O(
√

D · log n). Choosing different chunks’ length and a refined ran-
domization presented in [12] yields a competitive ratio of O(

√
D · log n) against

oblivious adversary.

4.2 A Lower Bound Against an Oblivious Adversary

Let Bexp = min{√D, λ}. We construct a probability distribution π over inputs
of arbitrary length and prove that for any deterministic algorithm Det, which
knows this distribution, holds Eπ[CDET(I)] ≥ Ω(Bexp) · Eπ[COPT(I)]. Then,
the lower bound of Ω(Bexp) for any randomized algorithm against oblivious
adversary follows directly from the Yao min-max principle [38,17].

We divide input into phases, each of length D + 2 · Bexp steps. Each phase
consists of expanding part, (Bexp steps), main part (D steps), and contracting
part (also Bexp steps). Each phase begins with v1 and v2 occupying the same
point in the space. Then within the expanding part, nodes are moved apart,
so that in the t-th step of the expanding part the distance between them is
t − 1. Throughout the whole main part the distance amounts to Bexp. Finally,
in the contracting part nodes are moved closer to each other, so that at the end
of the phase they meet again. Note that the movement of the nodes is fixed
deterministically.

In the expanding part all the requests are issued at v1, and all the requests
of the contracting one occur at v2. Further, in the main part, with probability
1/2, all the requests are issued at v1, and, with probability 1/2, all the requests
are issued at v2.

We concentrate on one single phase P . It is relatively easy to show that Opt
pays at most O(D) in each phase. On the other hand, a deterministic online
algorithm Det can base its decisions only on the past requests. In particular,
in the last step of the expanding part it has to decide whether to end this step
at v1 or v2. Independently of Det’s choice, with probability 1/2, all the next D
requests in the main part are given at the opposite node. In this case Det has
two options. If it moves the page within the main part, then it pays D · Bexp.
Otherwise, it pays D ·Bexp for serving the requests during this part. Hence, the
expected cost of Det in one phase is at least 1

2 ·D · Bexp.
Thus, Eπ[CDET(P )] = Ω(Bexp)·COPT(P ). Since we may construct arbitrarily

long input sequences, the lower bound follows by linearity of expected value.

4.3 The Majority Algorithm

We analyze the Brownian motion scenario in a simplified setting, where only two
nodes perform a random walk on a discrete ring of size B =

√
D. In each time

step the coordinate of a node, with probability 1/3, increases by 1, decreases by
1, or remains the same.

Algorithm Maj simply divides the input into phases P1, P2, P3, . . ., each of
length B2 = D. At the end of each phase, it moves to the node which issued
majority of requests in this phase.
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We sketch a proof that Maj is O(log n)-competitive, w.h.p. We neglect the
cost of Maj in the first two phases, putting it into additive constant A, occurring
in (5). The remaining phases are divided into three disjoint, alternating sets
Mi = {Pj : j ≡ i (mod 3)}. Naturally, there exists a set Mχ, which incurs at
least 1/3 of the total cost, hence we need to bound CMAJ(Mχ) only.

The crucial part is relating CMAJ(Pj) to COPT(Pj−1 	Pj), for any phase Pj .
We charge Maj O(B) for any request issued not at the node holding its page,
and O(D · B) for moving its page.

Lemma 3 ([15,14]). For each phase Pj there exists a critical subphase P ′
j ⊆

Pj−1 	 Pj , of length Θ( 1
log D ) ·D, s.t. P ′

j is similar to Pj.

Similarity means that, under the assumption that within P ′
j the distance be-

tween nodes is Ω(B), the cost of any algorithm Alg is CALG(P ′
j) = Ω(1/ log D) ·

CMAJ(Pj). The key observation helping to prove the lemma above is that even
if Maj is at node v1 within Pj , and all the requests are given at v2 (and thus
CMAJ(Pj) = Ω(B ·D)), then in the previous phase Pj−1 the majority of requests
must have been issued at v1. Thus, we are able to find a subphase with roughly
the same number of requests of v1 and v2.

Naturally, in the subphase nodes might by at a distance of o(B). The following
lemma assures that this is frequently not the case.

Lemma 4 ([14]). Let P ′
j−3 and P ′

j be two consecutive critical subphases. For
any configuration at the end of P ′

j−3, with a constant probability, within P ′
j nodes

are at the distance Ω(B).

The proof utilizes two facts. First, at least B2 steps separate P ′
j−3 and P ′

j .
The Markov chain induced by nodes’ random walks converges relatively quickly
(see [32]), i.e. after B2 steps the position of nodes are almost uniform. Thus,
with a constant probability nodes are at distance Ω(B) at the beginning of P ′

j .
Moreover, if their initial distance is Ω(B), then during O(B2/ logB) steps, they
approximately maintain this distance.

By Lemma 4 we get CMAJ(Pj) ≤ O(log D) · E[COPT(P ′
j)]. Moreover, the

expected value of this bound on Opt is taken only on the random walk in phases
Pj−2, Pj−1, and Pj , and thus for different Pj ∈ Mχ, COPT(P ′

j) are independent
random variables. Hence, we may use Hoeffding inequality [30] to show that∑

Pj∈Mχ
COPT(P ′

j) is sharply concentrated around its mean value.
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26. F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Caching in networks.
In Proc. of the 11th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
430–439, 2000.
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Abstract. Knot theory emerged in the nineteenth century for needs
of physics and chemistry as these needs were understood those days.
After that the interest of physicists and chemists was lost for about
a century. Nowadays knot theory has made a comeback. Knot theory
and other areas of topology are no more considered as abstract areas of
classical mathematics remote from anything of practical interest. They
have made deep impact on quantum field theory, quantum computation
and complexity of computation.

1 Introduction

Scott Aaronson writes in [Aa 05]: ”In my (unbiased) opinion, the showdown that
quantum computing has forced - between our deepest intuitions about computers
on the one hand, and our best-confirmed theory of the physical world on the
other - constitutes one of the most exciting scientific dramas of our time.

But why did this drama not occur until so recently? Arguably, the main
ideas were already in place by the 1960’s or even earlier. First, many scientists
see the study of ”speculative”models of computation as at best a diversion from
more serious work; this might explain why the groundbreaking papers papers by
Simon [Si 94] and Bennett et al. [BBBV 97] were initially rejected from the major
theory conferences. And second, many physicists see computational complexity
as about as relevant to the mysteries of Nature as dentistry or tax law.

Today, however, it seems clear that there is something to gain from resisting
these attitudes.

We would do well to ask: what else about physics might we have overlooked
in thinking about the limits of efficient computation? The goal of this article is to
encourage the serious discussion of this question. For concreteness, I will focus on
a single sub-question: can NP-complete ”problems be solved in polynomial time
using the resources of the physical universe?”

The rest of my paper is rather far from the topic of S. Aaronson’s paper
but the problem stays: can NP-complete problems be solved in polynomial time
using the resources of the physical universe? We will see that unexpected help
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to understand this problem comes from one of the most abstract parts of the
classical mathematics, namely, from topology.

2 Knots

A knot is just such a knotted loop of string, except that we think of the string as
having no thickness, its cross-section being a single point. We do not distinguish
between the original closed knotted curve and the deformations of that curve
through space that do not allow the curve to pass through itself. All of these
deformed curves are considered to be the same knot. We think of the knot as
if it were made of easily deformable rubber. The simplest knot of all is just the
unnknotted circle, which we call the unknot. The next simplest knot is called a
trefoil knot.

Why knots are interesting? Much of the early interest in knot theory came
from from chemistry. Lord Kelvin (William Thomson) hypothesized that atoms
were merely knots in the fabric of ether [Th 1867, Th 1869]. Different knots
would then correspond to different elements. This convinced the Scottish physi-
cist Peter Guthrie Tait that if he could list all of the possible knots, he would
be creating a table of the elements. He spent many years tabulating knots.

Unfortunately, Kelvin was wrong. In 1887, the Michelson-Morley experiment
demonstrated that there was no such thing as ether. A more adequate model of
atomic structure appeared at the end of the nineteenth century and chemists lost
interest in knots. But in the meantime the mathematicians developed a mathe-
matical theory of knots.According to Tait [Ta 1898], a knot, being a closed curve
in space, could be represented by a planar curve obtained by projecting it per-
pendicularly on the horizontal plane. This projection could have crossings, where
the projection of one part of the curve crossed another; the planar representation
shows the position in space of two strands that cross each other by interrupting
the line that represents the lower strand at the crossing.

Luckily for Tait, he learned that another amateur mathematician, the Rev-
erend Thomas Penyngton Kirkman, had already classified planar curves with
minimal crossings [Ki 1883], and all that remained was to eliminate the dupli-
cations systematically. For a curve with 10 crossings, for example, there were
210, or, 1024 possibilities for making a knot. Tait decided to list only alternat-
ing knots, that is, those in which overpasses and underpasses alternate along
the curve. In this way, exactly two alternating knots corresponded to each pla-
nar curve. Nonetheless, Tait spent the rest of his life to this task. Nonalternating
knots with 10 or fewer crossings were classified by C.N.Little [Li 1900]. A difficult
problem arose. How one can find out whether or not two knots are equivalent.
Even two projections of the same knot may look very much differently. However,
equivalence of two knots can be more complicated. Parts of the knot can be
pushed and twisted into many topologically equivalent forms. The existence of
innumerable versions of the given knot gives rise to a mathematical problem.
Two knots are called (topologically) equivalent if it is possible to deform one
smoothly into the other so that all the intermediate stages are loops without
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self intersections. The key result that makes it possible to begin a (combina-
torial) theory of knots is the theorem of Reidemeister [Re 32] that states that
two diagrams represent equivalent knots if and only if one diagram can be ob-
tained from the other by a finite sequence of special deformations called the
Reidemeister moves. There are three types of Reidemeister moves:

1. Allows us to put in/take out a twist.
2. Allows us to either add two crossings or remove two crossings.
3. Allows us to slide a strand of the knot from one side of a crossing to the

other.

3 Knot Invariants

A link is a set of knotted loops all tangled together. Two links are considered to
be the same if we can deform the one link to the other link without ever having
any one of the loops intersect itself or any of the other loops in the process.
If we have two loops knotted with each other, we say that it is a link of two
components. It is easy to see that no Reidemeister move changes the number of
components in a link. Hence the number of components is an invariant of the
link. Unfortunately, it is not true that two links are equivalent if and only if their
numbers of components are the same. If we wish to distinguish knots by their
invariants, we need more invariants.

3.1 Linking Number

The linking number is a way of measuring numerically how linked up two com-
ponents are. If there are more than two components, add up the link numbers
and divide by two. The crossing is called positive if you rotate the under-strand
clockwise they line up. The crossing is called negative if you rotate the under-
strand counterclockwise they line up. You go along the strand and add +1 if you
meet a positive crossing and add -1 if you meet a negative crossing.

The linking number is unaffected by all three Reidemeister moves. Therefore
it is an invariant of the oriented link.

3.2 Alexander Polynomial

An early example of a successful knot invariant is the Alexander polynomial,
discovered by J. W. Alexander [AL 28]. The Alexander polynomial for the knot
called trefoil is −(txt) + t− 1 and the polynomial for the knot called the figure-
eight is -(txt)+3t-1.

3.3 Topology Comes in

So the search was on for more sensitive knot invariants that would detect when
two knots were different. This led to alternate understandings of the notion of
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sameness. In particular, it is possible that to a topologist there is no difference
between two loops but what is different is the space away from these loops, that
is the complement of the knot. Let R3 be the space in which a knot K sits.
Then the space ”around” the knot, i.e., everything but the knot itself, is denoted
R3 −K and is called the knot complement of K.

Understanding that the principle object of study is the knot complement
places knot theory inside the larger study of 3-manifolds. A 3-manifold is a space
which locally (assume you are near sighted) looks like standard xyz-space and
knot complements are readily seen as examples of 3-manifolds. It was through the
study of 3-manifolds that in the 1970’s knot theory began returning to its ances-
toral roots in physics. To understand this we have to flashback to the 1860’s work
of Bernhard Riemann. Riemann was interested in relating geometric structures
to the forces in physics. Building on Gauss’ work, Riemann investigated three
different geometric structures for 3-dimensional spaces—elliptic, Euclidean, and
hyperbolic. (Einstein’s Theory of Relativity was built on Riemannian geometry.)

Each of these distinct structures can be characterized by the behavior of tri-
angles in planes. In elliptic 3-space, the interior angles of a triangle in a plane
have a sum greater than 180 degrees. In Euclidean 3-space, the sum is 180 de-
grees and in hyperbolic 3-space the sum is less than 180 degrees. In 1977 William
Thurston [Thu 77] established sufficient conditions for when a 3-manifold pos-
sesses a hyperbolic structure. Surprisingly, except for a well understood subclass
of knots, all knot complements possess a complete hyperbolic structure.

Thurston’s work on hyperbolic structures firmly re-established knot theory’s
connections with physics. In the 1980’s, through some totally unexpected routes,
knot theory made further connections with its ancestral roots. In 1987 Vaughan
Jones [Jo 89] discovered a totally different polynomial invariant from that of
Alexander using the theory of operator algebras. Within a short period of time,
more than five new polynomial invariants generalizing the Jones polynomial were
discovered. Moreover, Jones polynomial quickly led to the proofs that established
all of Tait’s original conjectures on knot projections.

3.4 Kauffman Bracket Polynomial

Kauffman bracket polynomial of the knot (or link) K is denoted as < K >.
This will be a Laurent polynomial, i.e. it will contain both positive and negative
degrees of the variable. Kauffman’s first rule says that the bracket of the trivial
knot (unknot) is equal to 1. Second, we want a method for obtaining the bracket
polynomial of a link in terms of the bracket polynomials of simpler links. We
use the following skein relation. Given a crossing in our link projecton, we split
it open vertically and horizontally, in order to obtain two new link projections,
each of which has one fewer crossing. We make the bracket polynomial of our
link projection a linear combination of the bracket polynomials of our two new
link projections, where we have not decided on the coefficients, so we just call
them A andB.We consider here two equations. The second equation here is just
the first equation looked at from a perpendicular view. If you bend your neck so
that your head is horizontal and look at the first tangle of the second equation,
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it will appear the same as the first tangle in the first equation. Finally, we would
like a rule for adding in a trivial component to a link (the result of which will
always be a split link). So we say

< L ∩O >= C < L >

Each time we add in an extra trivial component that is not tangled up with the
original link, we just multiply the entire polynomial by C. As with A and B, we
consider C a variable in the polynomial.

In order to show that a given polynomial is in fact knot/link invariant, it is
necessary and sufficient to show that the invariant in question is unchanged under
each of the three Reidemeister moves. We need a following notion. Planar isotopy
is the motion of a diagram in the plane that preserves the graphical structure
of the underlying projection. A knot or a link is said to be ambient isotopic to
another if there is a sequence of Reidemeister moves and planar equivalences
between them.

Luckily, the Kauffman bracket is invariant under Reidemeister moves II and
III i.e. is an invariant of regular isotopy. Unluckily, the ”naive”Kauffman bracket
is not an invariant under Reidemeister I. The next task is to find a way to make
it work.

Kauffman found a way to add some terms to the bracket, and this solved the
problem.

3.5 The Jones Polynomial

The Jones polynomial was discovered by Vaughan F.R. Jones in 1984. Unlike the
Alexander polynomial, the Jones polynomial distingushes between a knot and
its mirror image. The Jones polynomial is essentially the same as the Kauffman
bracket polynomial. In fact, they can be derived from each other through the
equation

VL(t) = f [L]t−
1
4

where VL(t) is the Jones polynomial and f [L] is the Kauffman polynomial.
The Jones polynomial is derived from an oriented knot diagram through two

basic rules:

1. VU (t) = 1
2. t−1Vpos(t)− tVneg(t) = (t

1
2 − t−

1
2 )Vzero(t)

It was already said above that the Kauffman bracket is invariant under Rei-
demeister moves II and III but not under Reidemeister move I. To overcome this
obstacle Kauffman invented simple but surprising trick that altered his bracket.
Let K be a knot or link.Let |K| be the nonoriented diagram obtained from the
oriented diagram of K by forgetting its orientation. Let < . > be the Kauffman
bracket. Kauffman introduced

X(K) = (−a)−3w(K) < |K| >
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This little additional factor changed everything. Now the modified Kauffman
bracket polynomial turns out to be invariant under all the Reidemeister moves.
Moreover, this invariant is equivalent to Jones polynomial.

4 New Invariants

Alexander polynomial was the only polynomial invariant of knots for over 50
years. But when Jones discovered his polynomial, many mathematicians intro-
duced their polynomial invariants. The first one in this series was so called
HOMFLY polynomial. This is not the name of the inventor. Rather this is
an acronym for 6 independent inventors. They are H= Hoste, O=Ocneanu,
M=Millet, F=Freyd, L=Lickorish and Y=Yetter. Later several more letters
were added to this acronym. The HOMFLY polynomial is a polynomial of two
variables.

Vladimir Vassiliev [Va 90] invented a whole class of polynomial invariants.
His approach to knots could be called sociological (as Vaughan Jones does). He
considers the space of all knots in which knots are only points a nd therefore
have lost their intrinsic properties. Moreover, Vassiliev does not go looking for
one invariant - he wants to find all of them, to define the entire space of invariants.
In the same way that classical sociology makes an abstraction of the personality
of the people it studies, focusing only on their position in the social, economic or
other stratification. This approch is a trademark of the catastrophe theory but
it was used much earlier by David Hilbert, and it is characteristic for category
theory.

5 Statistical Mechanics

It is instructive to see how V.Jones discovered his polynomial invariant. The
discovery came indirectly by way of a branch of quantum mechanics called Von
Neumann algebras. These were developed to handle quantum mechanical ob-
servables such as energy, position and momentum. The capacity of the operators
representing such quantities to be added or multiplied results in them having
the structure of an algebra. Von Neumann algebras can be built out of simpler
structures called factors which have the intriguing property that they can have
”continuous dimensions” i.e. real numbers such as g or 1

27 . Jones was studying
subfactors when he discovered that, rather than having continuous dimensions
the only dimensions less than 4 were 4cos2 g

n .
While showing the proof to some friends at Geneva, it was remarked that

sections resembled the group of a braid, which is like a knot except that it is a
series of threads beginning at the top which are woven over and under before
being realigned at the bottom. A braid can be converted into a knot by joining
its ends together. But the reverse process is not so easy.

Vaughan Jones ended up having a meeting at Columbia University with knot
theorist Joan Birman to see if his work might have some application in knot
theory. When the two sat down together, the discovery was almost instantaneous.
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Jones proved that Von Neumann algebras are related to knot theory and provide
a way to tell very complicated knots apart.

6 Jones Polynomial and Quantum Computing

The Jones polynomial involves a complicated mathematical formula, and al-
though calculating it is easy for simple knots, it is enormously difficult for big
knots. Mathematicians have found evidence that the difficulty of computing
Jones polynomials rises exponentially with the size of the knot.

Just for the comparison ,we consider several invariant polynomials for the
same knot (whatever it is).

Alexander polynomial is: 3t2 − 11t−1 + 17− 11t + 3t2.

Convay polynomial of the same knot is: 1 + z2 + 3z4.

HOMFLY-PT polynomial is: −a−2−2a−2z2+3+4z2+2z4−a2+a2z4−a4z2.

Kauffman polynomial is: −2a−3z+3a−3z3+a−2−6a−2z2+4a−2z4+a−2z6−
5a−1z +10a−1z3− 6a−1z5 +3a−1z7 + 3− 9z2 + 8z4− 3z6 + 2z8− 5az + 16az3−
17az5 + 7az7 + a2 − 3a2z4 − a2z6 + 2a2z8 − 2a3z + 7a3z3 − 10a3z5 + 4a3z7 +
3a4z2 − 7a4z4 + 3a4z6 − 2a5z3 + a5z5.

However, the Jones polynomial is: 2q−15 − 3q−14 + q−13 + 9q−12 − 14q−11 −
5q−10+30q−9−21q−8−24q−7+52q−6−17q−5−46q−4+62q−3−7q−2−57q−1+
56+4q−50q2+35q3+11q4−29q5+12q6+8q7−8q8+3q10−q−30+3q−29−q−28−
5q−27− q−26 + 14q−25 + 7q−24− 28q−23− 22q−22 + 38q−21 + 52q−20− 38q−19−
92q−18 + 21q−17 + 132q−16 + 16q−15− 163q−14− 70q−13 + 184q−12 + 124q−11−
184q−10 − 182q−9 + 177q−8 + 229q−7 − 160q−6 − 265q−5 + 140q−4 + 286q−3 −
109q−2−301q−1+82+290q−38q2−276q3 +7q4 +229q5 +36q6−184q7−53q8 +
121q9+65q10−72q11−51q12+28q13+36q14−5q15−21q16+q17+3q18+4q19−2q20+
4q−50−3q−49 +q−48 +5q−47−3q−46 +q−45−17q−44 +5q−43 +31q−42 +3q−41 +
5q−40−81q−39−33q−38+80q−37+78q−36+105q−35−170q−34−204q−33−11q−32+
149q−31 +424q−30−46q−29−381q−28−378q−27−76q−26 +765q−25 +413q−24−
219q−23−780q−22−682q−21+775q−20+932q−19+323q−18−898q−17−1358q−16+
442q−15+1218q−14+939q−13−744q−12−1820q−11+26q−10+1269q−9+1389q−8−
505q−7 − 2034q−6 − 327q−5 + 1193q−4 + 1657q−3 − 246q−2 − 2039q−1 − 635 +
972q+1746q2+98q3−1771q4−896q5+529q6+1568q7+485q8−1180q9−939q10−
17q11 + 1046q12 + 664q13− 456q14− 643q15− 333q16 + 404q17 + 480q18 + 4q19 −
221q20−268q21 +26q22 +168q23 +77q24−6q25−80q26−31q27 +16q28 +18q29 +
12q30−5q31−6q32+q345−q−75+3q−74−q−73−5q−72+3q−71+3q−70+2q−69+
5q−68−7q−67−26q−66−7q−65 +28q−64 +42q−63 +39q−62−17q−61−102q−60−
127q−59−17q−58+149q−57+250q−56+183q−55−105q−54−419q−53−474q−52−
114q−51 + 460q−50 + 842q−49 + 622q−48 − 218q−47 − 1144q−46 − 1349q−45 −
434q−44 + 1098q−43 + 2104q−42 + 1544q−41− 517q−40− 2612q−39− 2898q−38−
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691q−37 + 2578q−36 + 4209q−35 + 2408q−34− 1847q−33− 5178q−32− 4376q−31 +
507q−30 +5563q−29 +6246q−28 +1318q−27− 5366q−26− 7815q−25− 3267q−24 +
4681q−23+8900q−22+5146q−21−3692q−20−9584q−19−6731q−18+2623q−17+
9897q−16 + 8002q−15− 1618q−14− 9989q−13− 8957q−12 + 737q−11 +9940q−10 +
9698q−9+10q−8−9816q−7−10229q−6−747q−5+9557q−4+10715q−3+1495q−2−
9169q−1 − 10991 − 2384q + 8414q2 + 11191q3 + 3386q4 − 7379q5 − 10965q6 −
4454q7 + 5826q8 + 10402q9 + 5405q10− 4024q11− 9195q12− 6043q13 + 1987q14 +
7564q15 +6145q16− 186q17− 5470q18− 5652q19− 1263q20 +3434q21 + 4596q22 +
1988q23− 1583q24− 3245q25− 2134q26 + 325q27 + 1932q28 + 1728q29 + 354q30−
874q31−1136q32−553q33 +252q34 +604q35 +404q36 +41q37−212q38−248q39−
96q40+69q41+79q42+56q43+12q44−30q45−23q46−q47+3q48+2q49+4q50−2q51.

Calculating Jones polynomial for complicated knots is considrered beyond the
reach of even the fastest computers. However in the late 1980s physicist Edward
Witten [Wi 89] described a physical system that should calculate information
about the Jones polynomial. The idea of a physical system calculating something
about knots or other loops may sound strange, but in fact examples of such
systems exist. In an electrical transformer two loops of wire are coiled around
an iron core. The electric current passing through on of the wires generates
voltage in the other wire that is proportional to the number of times the second
wire twists around the core. Thus, even if you cannot see the wire, you can
figure out its number of twists simply measuring the voltage. Witten proposed,
in a similar way, that it should be possible to obtain approximate information
about the Jones polynomial of a knot by taking appropriate measurements in a
more complicated physical system. Topological quantum field theory was created,
and this lead to creation of topological quantum computation by Michael H.
Freedman, Alexei Kitaev, Michael J.Larsen and Zhenghan Wang [FKLW 01].

Witten gave a heuristic definition of the Jones polynomial in terms of a
topological quantum field theory, following the outline of a program proposed
by M.Atiyah [At 88]. Specifically, he considered a knot in a 3-manifold and a
connection A on some principal G-bundle, with G a simple Lie group. The
Chern-Simons functional associates a number CS(A) to A, but it is well-defined
only up to an integer, so the quantity exp(2πikCS(A)) is well-defined. Also, the
holonomy of the connection around the knot is an element of G well-defined
up to conjugation, so the trace of it with respect to a given representation is
well-defined. Multiplying these two gives a number depending on the knot, the
manifold, the representation and the connection. The magic comes when we av-
erage over all the connections and all principal bundles. Of course, this makes
no sense, since there is no apparent measure on the infinite-dimenional space of
connections. But proceeding heuristically, such an average should depend only
on the manifold, representation and the isotopy type of the knot. Witten argued
using a close correspondence with conformal field theory, that when the manifold
is S3 and the representation is the fundamental one, this invariant had combi-
natorial properties that forced it to be the analogue of the Jones polynomial
for the given group. Needless to say, a long physics tradition of very successful
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heuristic reasoning along these lines suggested to Witten that this ill-defined
average should make sense in this case.

Strangely enough, Freedman had ideas about relations between knot theory
and quantum field theory as early as in 1980. No theory of quantum computing
existed then. His colleagues physicists considered his ideas too abstract that time.
Freedman postponed his reasearch in that direction, got Fields Medal for knot
theory, and returned to this topic only after the results by A.Kitaev [FKW 02,
FKLW 01]. Topological quantum computer would not be able to provide the
exact value of the Jones polynomial, only approximation. However, it would be
no less efficient rather than the well-known qubit quantum computer.

More can be said about the possibilities of topological quantum computers.
When practically built, they will be able to compute approximate values of
Jones polynomials. Hence, computation of Jones polynomial becomes an etalon
problem for topological quantum computation. If there is problem for which
topological quantum computers can compute in a polynomial time a function
not computable in polynomial time by classical computers, then computation of
Jones polynomial is also such a problem.

7 Back to NP

Outside of theoretical computer science, parallel computers are sometimes dis-
cussed as they were fundamentally more powerful than serial computers. But of
course, anything that can be done with 1020 processors in time T can also be
done with one processor in time 1020T . When quantum computing came along,
it was hoped that we might have a type of parallelism commeasurate with the
difficulty of NP -complete problems. For in quantum mechanics, we need a vector
of 2n complex numbers called ”amplitudes” just to specify the state of an n-bit
computer. Surely, we could exploit this exponentiality inherent in Nature to try
out all 2n possible solutions to an NP -complete problems in parallel.

Unfortunately, we do not know whether this is possible. Let BQP denote the
class of problems solvable in polynomial time by a quantum computer. We still
do not know whether NP = BQP . Moreover, Bennett, Bernstein, Brassard,and
Vazirani proved in [BBBV 97] that it is not so for a specific oracle. We have seen
advantages in size of quantum finite automata [AF 98] but we do not know what
happens in the case of larger memory.

What are the real advantages of quantum computation? This is a challeng-
ing problem. Quantum skeptics sometimes argue that we do not really know
whether quantum mechanics itself will remain valid in the regime tested by
quantum computing. Leonid Levin [Le 03] writes: ”The major problem [with
quantum computing] is the requirement that basic quantum equations hold to
multi-hundredth if not millionth decimal positions where the significant digits
of the relevant quantum amplitudes reside. We have never seen a physical law
valid to over a dozen decimals.”

Scott Aaronson answers to him in [Aa 05]: ”The irony is that most of the
specific proposals for how quantum mechanics could be wrong suggest a world
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with more, not less, computational power than BQP . For, as we saw in [· · ·], the
linearity of quantum mechanics is what prevents one needle in an exponentially
large haystack from shouting above the others.”

Who is right, who is wrong? Only the future will show. But today we see
that Jones polynomial has something to say in this challenging discussion.
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Abstract. A sequential algorithm just follows its instructions and thus
cannot make a nondeterministic choice all by itself, but it can be in-
structed to solicit outside help to make a choice. Similarly, an object-
oriented program cannot create a new object all by itself; a create-a-
new-object command solicits outside help. These are but two examples
of intra-step interaction of an algorithm with its environment. Here we
motivate and survey recent work on interactive algorithms within the
Behavioral Computation Theory project.

1 Introduction

In 1982, the University of Michigan hired this logician on his promise to become a
computer scientist. The logician eagerly wanted to become a computer scientist.
But what is computer science? Is it really a science? What is it about?

After thinking a while, we concluded that computer science is largely about
algorithms. Operating systems, compilers, programming languages, etc. are all
algorithms, in a wide sense of the word. For example, a programming language
can be seen as a universal algorithm that applies the given program to the given
data. In practice, you may need a compiler and a machine to run the compiled
program on, but this is invisible on the abstraction level of the programming
language.

A problem arises: What is an algorithm? To us, this is a fundamental problem
of computer science, and we have been working on it ever since.

But didn’t Turing solve the problem? The answer to this question depends on
how you think of algorithms. If all you care is the input-to-output function of the
algorithm, then yes, Turing solved the problem. But the behavior of an algorithm
may be much richer than its input-to-output function. An algorithm has its
natural abstraction level, and the data structures employed by an algorithm are
intrinsic to its behavior. The parallelism of a parallel algorithm is an inherent
part of its behavior. Similarly, the interactivity of an interactive algorithm is an
inherent part of its behavior as well.

Is there a solution à la Turing to the problem what an algorithm is? In other
words, is there a state-machine model that captures the notion of algorithm up to
behavioral equivalence? Our impression was, and still is, that the answer is yes.
In [13], we defined sequential abstract state machines (ASMs) and put forward a
sequential ASM thesis: for every sequential algorithm, there is a sequential ASM
with the same behavior. In particular, the ASM is supposed to simulate the given
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algorithm step-for-step. In [14], we defined parallel and distributed abstract state
machines and generalized the ASM thesis for parallel and distributed algorithms.
Parallel ASMs gave rise to a specification (and high-level programming) language
AsmL [2] developed by the group of Foundations of Software Engineering of
Microsoft Research.

At this point, the story forks. One branch leads to experimental evidence
for the ASM thesis and to applications of ASMs [1,2,12]. Another branch leads
to behavioral computation theory. We take the second branch here and restrict
attention to sequential time algorithms that compute in a sequence of discrete
steps.

In § 2 we discuss a newer approach to the explication of the notion of algo-
rithm. The new approach is axiomatic, but it also involves a machine character-
ization of algorithms. This newer approach is used in the rest of the article.

In § 3 we sketch our explication of sequential (or small-step) algorithms [15].
We mention also the explication of parallel (or wide-step) algorithms in [3] but
briefly. In either case, the algorithms in questions are isolated step algorithms
that abstain from intra-step interaction with the environment. They can interact
with the environment in the inter-step manner, however.
§ 4 is a quick introduction to the study of intra-step interaction of an al-

gorithm with its environment; much of the section reflects [5]. We motivate
the study of intra-step interaction and attempt to demonstrate how ubiquitous
intra-step interaction is. Numerous disparate phenomena are best understood as
special cases of intra-step interaction. We discuss various forms of intra-step in-
teraction, introduce the query mechanism of [5] and attempt to demonstrate the
universality of the query mechanism: the atomic interactions of any mechanism
are queries. In the rest of the article, we concentrate on intra-step interaction; by
default interaction means intra-step interaction. To simplify the exposition, we
consider primarily the small-step (rather than wide-step) algorithms; by default
algorithms are small-step algorithms.
§ 5 is devoted to the explication of ordinary interactive algorithms [5,6,7].

Ordinary algorithms never complete a step until all queries from that step have
been answered. Furthermore, the only information from the environment that
an ordinary algorithm uses during a step is answers to its queries.
§ 6 is devoted to the explication of general interactive algorithms [8,9,10].

Contrary to ordinary interactive algorithms, a general interactive algorithm can
be impatient and complete a step without waiting for all queries from that step
to have been answered. It also can be time sensitive, so that its actions during a
step depend not only on the answers to its queries but also on the order in which
the answers have arrived. We mention also the explication of general wide-step
algorithms [11] but briefly.
§ 7 is a concluding remark.
Much of this article reflects joint work with Andreas Blass, Benjamin Ross-

man and Dean Rosenzweig.
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2 Explication of Algorithms

The theses mentioned in the introduction equate an informal, intuitive notion
with a formal, mathematical notion. You cannot prove such a thesis mathemat-
ically but you can argue for it. Both Church and Turing argued for their theses.
While their theses are equivalent, their arguments were quite different [4]. The
ASM theses, mentioned in the introduction, have the following form.

ASM Thesis Form

1. Describe informally a class A of algorithms.
2. Describe the behavioral equivalence of A algorithms. Intuitively two algo-

rithms are behaviorally equivalent if they do the same thing in all circum-
stances. Since A is defined informally, the behavioral equivalence may be
informal as well.

3. Define a class M of abstract state machines.
4. Claim that M ⊆ A and that every A ∈ A is behaviorally equivalent to some

M ∈M.

The thesis for a class A of algorithms explicates algorithms in A as abstract state
machines in M. For example, sequential algorithms are explicated as sequential
ASMs. The thesis is open to criticism. One can try to construct an ASM in M
that falls off A or an algorithm in A that is not behaviorally equivalent to any
ASM in M.

Since the ASM thesis for A cannot be proven mathematically, experimental
confirmation of the thesis is indispensable; this partially explains the interest in
applications of ASMs in the ASM community. But one can argue for the thesis,
and we looked for the best way to do that. Eventually we arrived at a newer and
better explication procedure.

Algorithm Explication Procedure

1. Axiomatize the class A of the algorithms of interest. This is the hardest part.
You try to find the most convincing axioms (or postulates) possible.

2. Define precisely the notion of behavioral equivalence. If there is already an
ASM thesis T for A, you may want to use the behavioral equivalence of T
or a precise version of the behavioral equivalence of T .

3. Define a class M of abstract state machines. If there is already an ASM
thesis T for A, you may want to use the abstract state machines of T .

4. Prove the following characterization theorem for A: M ⊆ A and every A ∈
M is behaviorally equivalent to some M ∈M.

The characterization provides a theoretical programming language for A and
opens a way for more practical languages for A. Any instance of the explication
procedure is open to criticism of course. In particular, one may criticize the
axiomatization and the behavioral equivalence relation.
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If an explication procedure for A uses (a precise version of) the behavioral
equivalence and the machines of the ASM thesis for A, then the explication
procedure can be viewed as a proof of the thesis given the axiomatization.

A priori it is not obvious at all that a convincing axiomatization is possible.
But our experience seems to be encouraging. The explication procedure was used
for the first time in [15] where sequential algorithms were axiomatized and the
sequential ASM thesis proved; see more about that in the next section. In [3],
parallel algorithms were axiomatized and the parallel ASM thesis was proved,
except that we slightly modified the notion of parallel ASM. Additional uses of
the explication procedure will be addressed in § 4–6.

In both, [15] and [3], two algorithms are behaviorally equivalent if they have
the same states, initial states and transition function. It follows that behaviorally
equivalent algorithms simulate each other step-for-step. We have been criticized
that this behavioral equivalence is too fine, that step-for-step simulation is too
much to require, that appropriate bisimulation may be a better behavioral equiv-
alence. We agree that in some applications bisimulation is the right equivalence
notion. But notice this: the finer the behavioral equivalence, the stronger the
characterization theorem.

3 Isolated-Step Algorithms

As we mentioned above, sequential algorithms were explicated in [15]. Here we
recall and motivate parts of that explication needed to make our story self-
contained.

Imagine that you have some entity E. What does it mean that E is a sequen-
tial algorithm? A part of the answer is easy: every algorithm is a (not necessarily
finite-state) automaton.

Postulate 3.1 (Sequential Time). The entity E determines

– a nonempty collection of states,
– a nonempty collection of initial states, and
– a state-transition function.

The postulate does not say anything about final states; we refer the interested
reader to [15, § 3.3.2] in this connection. This single postulate allows us to define
behavioral equivalence of sequential algorithms.

Definition 3.2. Two sequential algorithms are behaviorally equivalent if they
have the same states, initial states and transition function.

It is harder to see what else can be said about sequential algorithms in full
generality. Of course, every algorithm has a program of one kind or another,
but we don’t know how to turn this into a postulate or postulates. There are so
many different programming notations in use already, and it is bewildering to
imagine all possible programming notations.
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Some logicians, notably Andrey A. Markov [17], insisted that the input to
an algorithm should be constructive, like a string or matrix, so that you can
actually write it down. This excludes abstract finite graphs for example. How
would you put an abstract graph on the Turing machine tape? It turned out,
however, that the constructive input requirement is too restrictive. Relational
databases for example represent abstract structures, in particular graphs, and
serve as inputs to important algorithms.

Remark 3.3. You can represent an abstract graph by an adjacency matrix. But
this representation is not unique. Note also that it is not known whether there
is a polynomial-time algorithm that, given two adjacency matrices, determines
whether they represent the same graph.

A characteristic property of sequential algorithms is that they change their
state only locally in any one step. Andrey N. Kolmogorov, who looked into this
problem, spoke about “steps whose complexity is bounded in advance” [16]. We
prefer to speak about bounded work instead; the amount of work done by a
sequential algorithm in any one step is bounded, and the bound depends only
on the algorithm and not on the state or the input. But we don’t know how to
measure the complexity of a step or the work done during a step. Fortunately we
found a way around this difficulty. To this end, we need two additional postulates.

According to the abstract state postulate, all states of the entity E are struc-
tures (that is first-order structures) of a fixed vocabulary. If X is an (initial)
state of A and a structure Y is isomorphic to X then Y is an (initial) state
of A. The abstract state postulate allows us to introduce an abstract notion of
location and to mark locations explored by an algorithm during a given step.
The bounded exploration postulate bounds the number of locations explored by
an algorithm during any step; the bound depends only on the algorithm and not
on the state or the input. See details in [15].

Definition 3.4. A sequential algorithm is any entity that satisfies the
sequential-time, abstract-state and bounded-exploration postulates.

A sequential abstract state machine is given is by a program, a nonempty
isomorphism-closed collection of states and a nonempty isomorphism-closed sub-
collection of initial states. The program determines the state transition function.

Like a Turing machine program, a sequential ASM program describes only
one step of the ASM. It is presumed that this step is executed over and over
again. The machine halts when the execution of a step does not change the state
of the machine. The simplest sequential ASM programs are assignments:

f(t1, . . . , tj) := t0

Here f is a j-ary dynamic function and every ti is a ground first-order term. To
execute such a program, evaluate every ti at the given state; let the result be ai.
Then set the value of f(a1, . . . , aj) to a0. Any other sequential ASM program
is constructed from assignments by means of two constructs: if-then-else and
do-in-parallel. Here is a sequential ASM program for the Euclidean algorithm:
given two natural numbers a and b, it computes their greatest common divisor d.
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Example 3.5 (Euclidean Algorithm 1).

if a = 0 then d := b
else do in-parallel

a := b mod a
b := a

The do-in-parallel constructs allows us to compose and execute in parallel two or
more programs. In the case when every component is an assignment, the parallel
composition can be written as a simultaneous assignment. Example 3.5 can be
rewritten as

if a = 0 then d := b
else a, b := b mod a, a

A question arises what happens if the components perform contradictory actions
in parallel, for example,

do in-parallel
x := 7
x := 11

The ASM breaks down in such a case. One can argue that there are better
solutions for such situations that guarantee that sequential ASMs do not break
down. In the case of the program above, for example, one of the two values, 7
or 11, can be chosen in one way or another and assigned to x. Note, however,
that some sequential algorithms do break down. That is a part of their behavior.
If sequential ASMs do not ever break down, then no sequential ASM can be
behaviorally equivalent to a sequential algorithm that does break down.

In the Euclidean algorithm, all dynamic functions are nullary. Here is a
version of the algorithm where some of dynamic functions are unary. Initially
mode = s = 0.

Example 3.6 (Euclidean Algorithm 2).

if mode = 0 then a(s), b(s), mode := Input1(s), Input2(s), 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

Theorem 3.7 (Sequential Characterization Theorem). Every sequential
ASM is a sequential algorithm, and every sequential algorithm is behaviorally
equivalent to a sequential ASM.

We turn our attention to parallel algorithms and quote from [4]: “The term
‘parallel algorithm’ is used for a number of different notions in the literature.
We have in mind sequential-time algorithms that can exhibit unbounded paral-
lelism but only bounded sequentiality within a single step. Bounded sequentiality
means that there is an a priori bound on the lengths of sequences of events within
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any one step of the algorithm that must occur in a specified order. To distinguish
this notion of parallel algorithms, we call such parallel algorithms wide-step. In-
tuitively the width is the amount of parallelism. The ‘step’ in ‘wide-step’ alludes
to sequential time.” Taking into account the bounded sequentiality of wide-step
algorithms, they could be called “wide and shallow step algorithms”.

4 Interaction

4.1 Inter-step Interaction

One may have the impression that the algorithms of the previous section do
not interact at all with the environment during the computation. This is not
necessarily so. They do not interact with the environment during a step; we
call such algorithm isolated step algorithms. But the environment can intervene
between the steps of an algorithm. The environment preserves the vocabulary of
the state but otherwise it can change the state in any way. It makes no difference
in the proofs of the two characterization theorems whether inter-step interaction
with the environment is or is not permitted.

In particular, Euclidean Algorithm 2 could be naturally inter-step interac-
tive; the functions Input1 and Input2 do not have to be given ahead of time.
Think of a machine that repeatedly applies the Euclidean algorithm and keeps
track of the number s of the current session. At the beginning of session s, the
user provides numbers Input1(s) and Input2(s), so that the functions Input1(s)
and Input2(s) are external. The inter-step interactive character of the algorithm
becomes obvious if we make the functions Input1, Input2 nullary.

Example 4.1 (Euclidean Algorithm 3).

if mode = 0 then a(s), b(s), mode := Input1, Input2, 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

4.2 Intra-step Interaction

In applications, however, much of the interaction of an algorithm with its envi-
ronment is intra-step. Consider for example an assignment

x := g(f(7))

where f(7) is a remote procedure call whose result is used to form another remote
procedure call. It is natural to view the assignment being done within one step.
Of course, we can break the assignment into several steps so that interaction is
inter-step but this forces us to a lower abstraction level. Another justification of
intra-step interaction is related to parallelism.
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Example 4.2. This example reflects a real-world AsmL experience. To paint a
picture, an AsmL application calls an outside paint applications. A paint agent
is created, examines the picture and repeatedly calls the algorithm back: what
color for such and such detail? The AsmL application can make two or more
such paint calls in parallel. It is natural to view parallel conversations with paint
agents happening intra-step.

Proviso 4.3. In the rest of this article, we concentrate on intra-step interaction
and ignore inter-step interaction. By default, interaction is intra-step interaction.

4.3 The Ubiquity of Interaction

Intra-step interaction is ubiquitous. Here are some examples.

– Remote procedure calls.
– Doing the following as a part of expression evaluation: getting input, receiv-

ing a message, printing output, sending a message, using an oracle.
– Making nondeterministic choices among two or more alternatives.
– Creating new objects in the object-oriented and other paradigms.

The last two items require explanation. First we address nondeterministic
choices. Recall that we do not consider distributed algorithms here. A sequential-
step algorithm just follows instructions and cannot nondeterministically choose
all by itself. But it can solicit help from the environment, and the environment
may be able to make a choice for the algorithm. For example, to evaluate an
expression

any x | x in {0, 1, 2, 3, 4, 5} where x > 1

an AsmL program computes the set {2, 3, 4, 5} and then uses an outside pseudo-
random number generator to choose an element of that set. Of course an imple-
mentation of a nondeterministic algorithm may incorporate a choosing mecha-
nism, so that there is no choice on the level of the implementation.

Re new object creation. An object-oriented program does not have the means
necessary to create a new object all by itself: to allocate a portion of the memory
and format it appropriately. A create-a-new-object command solicits outside
help. This phenomenon is not restricted to the object-oriented paradigm. We
give a non-object-oriented example. Consider an ASM rule

import v
NewLeaf := v

that creates a new leaf say of a tree. The import command is really a query to
the environment. In the ASM paradigm, a state comes with an infinite set of
so-called reserve elements. The environment chooses such a reserve elements and
returns it as a reply to the query.
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4.4 Interaction Mechanisms

One popular interaction form is exemplified by the Remote Procedure Call
(RPC) mechanism. One can think of a remote procedure call as a query to
the environment where the caller waits for a reply to its query in order to
complete a step and continue the computation. This interaction form is often
called synchronous or blocking. Another popular interaction form is message
passing. After sending a message, the sender proceeds with its computation;
this interaction form is often called asynchronous or nonblocking. The syn-
chronous/asynchronous and blocking/nonblocking terminologies may create an
impression that every atomic intra-step interaction is in one of the two form. This
is not the case. There is a spectrum of possible interaction forms. For example, a
query may require two replies: first an acknowledgment and then an informative
reply. One can think of queries with three, four or arbitrarily many replies.

Nevertheless, according to [5], there a universal form of atomic intra-step
interaction: not-necessarily-blocking single-reply queries. In the previous para-
graph, we have already represented a remote procedure call as a query. Sending
a message can be thought of as a query that gets an immediate automatic reply,
an acknowledgment that the query has been issued. Producing an output is
similar. In fact, from the point of view of an algorithm issuing queries, there is
no principal difference between sending a message and producing an output; in a
particular application of course messages and outputs may have distinct formats.

What about two-reply queries mentioned above? It takes two single-reply
queries to get two answers. Consider an algorithm A issuing a two-reply query
q and think of q as a single-reply query. When the acknowledgment comes back,
A goes to a mode where it expects an informative answer to q. This expectation
can be seen as implicitly issuing a new query q′. The informative reply ostensibly
to q is a usual reply to q′. In a similar way, one can explain receiving a message.
It may seem that the incoming message is not provoked by any query. What
query is it a reply to? An implicit query. That implicit query manifests itself
in A’s readiness to accept the incoming message. Here is an analogy. You sleep
and then wake up because of the alarm clock buzz. Have you been expecting the
buzz? In a way you were, in an implicit sort of way. Imagine that, instead of
producing a buzz, the alarm clock quietly produces a sign “Wake up!” This will
not have the desired effect, would it?

In general we do not assume that the query issuer has to wait for a reply to
a query in order to resume its computation. More about that in § 6.

What are potential queries precisely?This question is discussed at length in [5].
It is presumed that potential answers to a query are elements of the state of the
algorithm that issued the query, so that an answer makes sense to the algorithm.

5 Ordinary Interactive Small-Step Algorithms

Proviso 5.1. To simplify the exposition, in the rest of the paper we speak
primarily about small-step algorithms. By default, algorithms are small-step
algorithms.
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Informally speaking, an interactive algorithm is ordinary if it has the follow-
ing two properties.

– The algorithm cannot successfully complete a step while there is an unan-
swered query from that step.

– The only information that the algorithm receives from the environment dur-
ing a step consists of the replies to the queries issued during the step.

Ordinary interactive algorithms are axiomatized in [5]. Some postulates of [5]
refactor those of [15]. One of the new postulates is this:

Postulate 5.2 (Interaction Postulate). An interactive algorithm deter-
mines, for each state X, a causality relation X between finite answer functions
and potential queries.

Here an answer function is a function from potential queries to potential replies.
An answer function α is closed under a causality relation X if every query
caused by α or by a subfunction of α is already in the domain of α. Minimal
answer functions closed under X are contexts at X .

As before, behaviorally equivalent algorithms do the same thing in all cir-
cumstances. To make this precise, we need a couple of additional definitions.
Given a causality relation X and an answer function α, define an α-trace to be
a sequence 〈q1, . . . , qn〉 of potential queries such that each qi is caused by the
restriction αi of α to {qj : j < k} or by some subfunction of αi. A potential
query q is reachable from α under X if it occurs in some α-trace. Two causal-
ity relations are equivalent if, for every answer function α, they make the same
potential queries reachable from α.

Definition 5.3. Two ordinary interactive algorithms are behaviorally equiva-
lent if

– they have the same states and initial states,
– for every state, they have equivalent causality relations, and
– for every state and context, they both fail or they both succeed and produce

the same next state. ��
We turn our attention to ordinary abstract state machines. Again, a machine

is given by a program, a collection of states and a subcollection of initial states.
We need only to describe programs.

The syntax of ordinary ASM programs is nearly the same as that of isolated
state algorithms, the algorithms of [15]. The crucial difference is in the semantics
of external functions. In the case of isolated step algorithms, an invocation of
an external function is treated as a usual state-location lookup; see Euclidean
Algorithm 2 or 3 in this connection. In the case of interactive algorithms, an
invocation of an external function is a query.

The new interpretation of external functions gives rise to a problem. Suppose
that you have two distinct invocations f(3) of an external function f() in your
program. Should the replies be necessarily the same? In the case of an isolated-
step program, the answer is yes. Indeed, the whole program describes one step of



36 Y. Gurevich

an algorithm, and the state does not change during the step. Two distinct lookups
of f(3) will give you the same result. In the case of an interactive program, the
replies don’t have to be the same. Consider

Example 5.4 (Euclidean Algorithm 4).

if mode = 0 then a, b, mode := Input, Input, 1
elseif mode = 1 then

if a = 0 then d, mode := b, 0
else a, b := b mod a, a

The two invocations of Input are different queries that may have different results.
Furthermore, in the object-oriented paradigm, two distinct invocations of the
same create-a-new-object command with the same parameters necessarily result
in two distinct objects. We use a mechanism of template assignment to solve the
problem in question [6,7].

The study of ordinary interactive algorithms in [5,6,7] culminates in

Theorem 5.5 (Ordinary Interactive Characterization Theorem). Every
ordinary interactive ASM is an ordinary interactive algorithm, and every ordi-
nary interactive algorithm is behaviorally equivalent to an ordinary interactive
ASM.

6 General Interactive Algorithms

Call an interactive algorithm patient if it cannot finish a step without having the
replies to all queries issued during the step. While ordinary interactive algorithms
are patient, this does not apply to all interactive algorithms. The algorithm

Example 6.1 (Impatience).

do in parallel
if α or β then x:=1
if ¬α and ¬β then x:=2

issues two Boolean queries α and β. If one of the queries returns “true”while the
other query is unanswered, then the other query can be aborted.

Call an interactive algorithm time insensitive if the only information that
it receives from the environment during a step consists of the replies to the
queries issued during the step. Ordinary algorithms are time insensitive. Since
our algorithms interact with the environment only by means of queries, it is not
immediately obvious what information the algorithm can get from the environ-
ment in addition to the replies. For example, time stamps, reflecting the times
when the replies were issued, can be considered to be parts of the replies.

The additional information is the order in which the replies come in. Consider
for example an automated financial broker with a block of shares to sell and two
clients bidding for the block of shares. If the bid of client 1 reaches the broker
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first, then the broker sells the shares to client 1, even if client 2 happened to
issue a bid a tad earlier.

An algorithm can be impatient and time sensitive at the same time. Consider
for example a one-step algorithm that issues two queries, q1 and q2, and then
does the following. If qi is answered while q2−i is not, then it sets x to i and
aborts q2−i. And if the queries are answered at the same time, then it sets x
to 0.

The following key observation allowed us to axiomatize general interactive
algorithms. Behind any sequential-step algorithm there is a single executor of
the algorithm. In particular, it is the executor who gets query replies from the
environment, in batches, one after another. It follows that the replies are linearly
preordered according to the time or arrival. In [8], we successfully execute the al-
gorithm explication procedure of § 2 in the case of general interactive algorithms.

Theorem 6.2 (Interactive Characterization Theorem). Every interactive
ASM is an interactive algorithm, and every interactive algorithm is behaviorally
equivalent to an interactive ASM.

A variant of this theorem is proved in [9]. The twist is that, instead of inter-
active algorithms, we speak about their components there.

Patient (but possibly time sensitive) interactive algorithms as well as time
insensitive (but possibly impatient) interactive algorithms are characterized
in [10].

These variants of the interactive characterization theorem as well as the the-
orem itself are about small-step algorithms. The interactive characterization the-
orem is generalized to wide-step algorithms in [11].

7 Finale

The behavioral theory of small-isolated-step algorithms [15] was an after-the-fact
explanation of what those algorithms were. Small-isolated-step algorithms had
been studied for a long time.

The behavioral theory of wide-isolated-step algorithms was developed in [3].
Wide-isolated-step algorithms had been studied primarily in computational com-
plexity where a number of wide-isolated-step computation models had been
known. But the class of wide-isolated-step algorithms of [3] is wider. The the-
ory was used to develop a number of tools [1], most notably the specification
language AsmL [2]. Because of the practical considerations of industrial environ-
ment, intra-step interaction plays a considerable role in AsmL. That helped us
to realize the importance and indeed inevitability of intra-step interaction.

The behavioral theory of intra-step interactive algorithms is developed in [5]–
[11]. While intra-step interaction is ubiquitous, it has been studied very little if
at all. We hope that the research described above will put intra-step interaction
on the map and will give rise to further advances in specification and high-level
programming of interactive algorithms.
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Abstract. Membrane computing is a branch of molecular computing that aims
to develop models and paradigms that are biologically motivated. It identifies an
unconventional computing model, namely a P system, from natural phenomena
of cell evolutions and chemical reactions. Because of the nature of maximal par-
allelism inherent in the model, P systems have a great potential for implementing
massively concurrent systems in an efficient way that would allow us to solve
currently intractable problems (in much the same way as the promise of quantum
and DNA computing) once future bio-technology (or silicon-technology) gives
way to a practical bio-realization (or chip realization). Here we report on recent
results that answer some interesting and fundamental open questions in the field.
These concern computational issues such as determinism versus nondeterminism,
membrane and alphabet-size hierarchies, and various notions of parallelism.

1 Introduction

There has been a great deal of research activity in the area of membrane computing (a
branch of natural computing) initiated by Gheorghe Paun six years ago in his seminal
paper [23] (see also [24]). Membrane computing identifies an unconventional comput-
ing model, namely a P system, from natural phenomena of cell evolutions and chemical
reactions. It abstracts from the way the living cells process chemical compounds in
their compartmental structure. Thus, regions defined by a membrane structure contain
objects that evolve according to specified rules. The objects can be described by sym-
bols or by strings of symbols, in such a way that multisets of objects are placed in
regions of the membrane structure. The membranes themselves are organized as a Venn
diagram or a tree structure where one membrane may contain other membranes. By us-
ing the rules in a nondeterministic, maximally parallel manner, transitions between the
system configurations can be obtained. A sequence of transitions shows how the system
is evolving. Various ways of controlling the transfer of objects from a region to another
and applying the rules, as well as possibilities to dissolve, divide, or create membranes
have been studied. P systems were introduced with the goal to abstract a new comput-
ing model from the structure and the functioning of the living cell (as a branch of the
general effort of Natural Computing – to explore new models, ideas, paradigms from
the way nature computes).
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Membrane computing has been quite successful: many models have been intro-
duced, most of them Turing complete and/or able to solve computationally intractable
problems (NP-complete, PSPACE-complete) in polynomial time, by trading space for
time. In fact, the Institute for Scientific Information (ISI) has selected membrane com-
puting as a fast “Emerging Research Front” in Computer Science (http://esi-topics.com/
erf/october2003.html. See also the P system website at http://psystems.disco.unimib.it
for a large collection of papers in the area, and in particular the monograph [25].) Due to
the built-in nature of maximal parallelism inherent in the model, P systems have a great
potential for implementing massively concurrent systems in an efficient way that would
allow us to solve currently intractable problems (in much the same way as the promise
of quantum and DNA computing) once future bio-technology (or silicon-technology)
gives way to a practical bio-realization (or chip-realization).

In this paper, we report on recent results that answer some interesting and funda-
mental open questions in the area of membrane computing. These concern computa-
tional issues such as determinism versus nondeterminism, membrane and alphabet-size
hierarchies, and various notions of parallelism.

2 Determinism Versus Nondeterminism

In the standard semantics of P systems [24,25,27], each evolution step of a system G is
a result of applying all the rules in G in a maximally parallel manner. More precisely,
starting from the initial configuration, w, the system goes through a sequence of config-
urations, where each configuration is derived from the directly preceding configuration
in one step by the application of a multiset of rules, which are chosen nondeterministi-
cally. For example, a catalytic rule Ca → Cv in membrane m is applicable if there is
a catalyst C and an object (i.e., symbol) a in the preceding configuration in membrane
m. The result of applying this rule is the evolution of v from a. The catalyst C remains
in membrane m, but each symbol in v has an associated target indicating the membrane
where the symbol is to be transported to (of course, if the system has only one mem-
brane, each symbol in v remains in the membrane). If there is another occurrence of C
and another occurrence of a, then the same rule or another rule with Ca on the left hand
side can be applied. Thus, in general, the number of times a particular rule is applied at
anyone step can be unbounded. We require that the application of the rules is maximal:
all objects, from all membranes, which can be the subject of local evolution rules have
to evolve simultaneously. Configuration z is reachable (from the starting configuration)
if it appears in some execution sequence; z is halting if no rule is applicable on z.

An interesting class of P systems acceptors with symport/antiport rules was studied
in [10] – each system is deterministic in the sense that the computation path of the sys-
tem is unique, i.e., at each step of the computation, the maximal multiset of rules that
is applicable is unique. It was shown in [10] that any recursively enumerable unary lan-
guage L ⊆ o∗ can be accepted by a deterministic 1-membrane symport/antiport system.
Thus, for symport/antiport systems, the deterministic and nondeterministic versions are
equivalent. It also follows from the construction in [31] that for communicating P sys-
tems, the deterministic and nondeterministic versions are equivalent as both can accept
any unary recursively enumerable language. The deterministic-versus-nondeterministic
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question was left open in [10] for the class of catalytic systems, where the proofs of
universality involve a high degree of parallelism [31,8]. In particular, it was an open
problem [1] whether there is a class of (universal or nonuniversal) P systems where the
nondeterministic version is strictly more powerful than the deterministic version. For a
discussion of this open question and its importance, see [1,26].

In this section, we look at three popular models of P systems (catalytic system,
symport/antiport system, and communicating P system), and report on recent results
that answer some open questions concerning determinism versus nondeterminism.

2.1 Catalytic Systems

First we look at 1-membrane catalytic systems (CSs). A CS has rules of the forms:
Ca → Cv or a → v, where C is a catalyst, a is a noncatalyst symbol, and v is a
(possibly null) string of noncatalyst symbols. (Note that we are only interested in the
multiplicities of the symbols.) A CS whose rules are only of the form Ca → Cv is
called purely CS.

For a catalytic system serving as a language acceptor, the system starts with an
initial configuration wz, where z = an1

1 ...ank

k with {a1, ..., ak} (the input alphabet) a
distinguished subset of noncatalyst symbols, n1, ..., nk are nonnegative integers, and
w is a fixed string of catalysts and noncatalysts not containing ai (1 ≤ i ≤ k). At
each step, a maximal multiset of rules are nondeterministically selected and applied in
parallel to the current configuration to derive the next configuration (note that the next
configuration is not unique, in general). The string z is accepted if the system eventually
halts. A CS is deterministic if at each step, there is a unique maximally parallel multiset
of rules applicable.

Before we state the results, we recall the definition of a semilinear set [13]. Let N
be the set of nonnegative integers and k be a positive integer. A subset R of Nk is a
linear set if there exist vectors v0, v1, . . . , vt in Nk such that

R = {v | v = v0 + m1v1 + . . . + mtvt, mi ∈ N}.

The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred to as the
periods) are called the generators of the linear set R. The set R ⊆ Nk is semilinear if
it is a finite union of linear sets. The empty set is a trivial (semi)linear set, where the set
of generators is empty. Every finite subset of Nk is semilinear – it is a finite union of
linear sets whose generators are constant vectors. It is also clear that the semilinear sets
are closed under union. It is also known that they are closed under complementation
and intersection. A (bounded) language L ⊆ a∗

1...a
∗
k is semilinear if its Parikh map,

P (L) = {(n1, ..., nk) | an1
1 ...ank

k ∈ L}, is a semilinear set.
Unlike nondeterministic 1-membrane catalytic system acceptors (with 2 catalysts)

which are universal [8], we were able to show in [19] using a graph-theoretic approach
the following:

Theorem 1. Any language L ⊆ a∗
1...a

∗
k accepted by a deterministic catalytic system

is effectively semilinear. In fact, L is either empty, or an1
1 ....ank

k , where ni = ∗ or 0,
1 ≤ i ≤ k.
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Corollary 1. Deterministic catalytic systems are not universal.

The corollary above gives the first example of a P system for which the nondeter-
ministic version is universal, but the deterministic version is not.

For deterministic 1-membrane purely catalytic systems (i.e., the rules of are of the
form Ca → Cv), the set of all reachable configurations from a given initial configura-
tion is effectively semilinear. In contrast, the reachability set is no longer semilinear in
general if rules of type a → v are also used.

We also considered in [19] deterministic catalytic systems which allow rules to be
prioritized. We investigated three such systems, namely, totally prioritized, strongly pri-
oritized and weakly prioritized catalytic systems. For totally prioritized systems, rules
are divided into different priority groups, and if a rule in a higher priority group is ap-
plicable, then no rules from a lower priority group can be used. For both strongly prior-
itized and weakly prioritized systems, the underlying priority relation is a strict partial
order (i.e., irreflexive, asymmetric, and transitive). Under the semantics of strong pri-
ority, if a rule with higher priority is used, then no rule of a lower priority can be used
even if the two rules do not compete for objects. For weakly prioritized systems, a rule
is applicable if it cannot be replaced by a higher priority one. For these three prioritized
systems, we obtained contrasting results: deterministic strongly and weakly prioritized
catalytic systems are universal, whereas totally prioritized systems only accept semilin-
ear sets.

Finally, we note that the results above generalize to multi-membrane catalytic sys-
tems where now, in the rules Ca → Cv or a → v, each symbol in v is associated with
a target membrane.

2.2 Symport/Antiport Systems

Another popular model of a P system is called a symport/antiport system, first in-
troduced in [22]. It is a simple system whose rules closely resemble the way mem-
branes transport objects between themselves in a purely communicating manner. Sym-
port/antiport systems (S/A systems) have rules of the form (u, out), (u, in), and
(u, out; v, in) where u, v ∈ Σ∗. Again, u and v are strings representing multisets. A
rule of the form (u, out) in membrane i sends the symbols in u from membrane i out to
the membrane directly enclosing i. A rule of the form (u, in) in membrane i transports
the symbols in u from the membrane enclosing i into membrane i. Hence this rule can
only be used when the symbols in u exist in the outer membrane. A rule of the form
(u, out; v, in) simultaneously sends u out of the membrane i while transporting v into
membrane i. Hence this rule cannot be applied unless membrane i contains the sym-
bols in u and the membrane surrounding i contains the symbols in v. Formally an S/A
system is defined as

G = (V, H, μ, w1, . . . , w|H|, E, R1, . . . , R|H|, io)

where V is the set of objects (symbols) the system uses. H is the set of membrane
labels. The membrane structure of the system is defined in μ. The initial multiset of
objects within membrane i is represented by wi, and the rules are given in the set Ri.
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E ⊆ V is the set of objects that occur abundantly (i.e., each object in E has infinite
copies) in the environment; other objects in V −E can occur in the environment, but in
bounded number. The designated output membrane is io. (When the system is used as
a recognizer or acceptor, there is no need to specify io.)

A large number of papers have been written concerning symport/antiport sys-
tems. In particular, it is known that every (unary) recursively set L ⊆ o∗ can be
accepted by a deterministic 1-membrane S/A system (hence, such a system is uni-
versal) [10].

Small Universal Deterministic S/A Systems

There has been much interest in finding “small” systems (in terms of the number of ob-
jects, weights of the rules, etc) that are universal. For a discussion of minimal universal
S/A systems, see [28,26]. Here we look at deterministic S/A system acceptors with 1 or
2 membranes and 1, 2, or 3 objects.

Let G be an m-membrane S/A system with alphabet V and E ⊆ V be the set of
objects that occur abundantly in the environment. Each object in V − E has bounded
number of copies in the environment. If |E| = k, then we say the system is an m-
membrane k-symbol S/A system.

Let o be a distinguished symbol in E. There is a fixed w ∈ (V − E)∗ such
that at the start of the computation, a multiset won for some nonnegative integer n,
is placed in the skin membrane. We say that on is accepted if the system halts. A
deterministic m-membrane k-symbol S/A system is defined as before. We can show
the following:

Theorem 2. Let L ⊆ o∗.

1. L is accepted by a deterministic 1-membrane 1-symbol S/A system if and only if it
is semilinear.

2. Let (m, k) ∈ {(1, 3), (3, 1), (2, 2)}. Then L is accepted by a deterministic m-
membrane k-symbol S/A system if and only if it is recursively enumerable.

3. There are recursive sets that cannot be accepted by deterministic 1-membrane 2-
symbol S/A systems and deterministic 2-membrane 1-symbol S/A systems.

One can show that Theorem 2 part 1 holds for the nondeterministic case. Obviously,
part 2 holds for the nondeterministic version as well. We believe that part 3 also holds
for the nondeterministic case, but we have no proof at this time.

Restricted (Nonuniversal) S/A Systems

In [18], we studied some restricted versions of S/A systems. One model, called bounded
S/A system, has only one membrane and has rules of the form (u, out; v, in) with the
restriction that |u| ≥ |v|. The environment has an infinite supply of every object in V .
An input z = an1

1 ...ank

k (each ni a nonnegative integer) is accepted if the system when
started with wz, where w is a fixed string not containing ai (1 ≤ i ≤ k) eventually
halts. We showed the following:
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Theorem 3. Let L ⊆ a∗
1...a

∗
k. Then the following statements are equivalent:

1. L is accepted by a bounded S/A system.
2. L is accepted by a log n space-bounded Turing machine.
3. L is accepted by a two-way multihead finite automaton.

This result holds for both deterministic and nondeterministic versions.

The next result follows from Theorem 3 and the following result in [30]: Deter-
ministic and nondeterministic two-way multihead finite automata over a unary input
alphabet are equivalent if and only if deterministic and nondeterministic linear bounded
automata (over an arbitrary input alphabet) are equivalent.

Theorem 4. Deterministic and nondeterministic bounded S/A systems over a unary
input alphabet are equivalent if and only if deterministic and nondeterministic linear-
bounded automata (over an arbitrary input alphabet) are equivalent. The latter problem
is a long-standing open question in complexity theory [29].

We also considered multi-membrane S/A systems, called special S/A systems,
which are restricted in that only rules of the form (u, out; v, in), where |u| ≥ |v|, can
appear in the skin membrane (there are no restrictions on the rules in the other mem-
branes). Thus, the number of objects in the system during the computation cannot in-
crease. The environment does not contain any symbol initially. Only symbols exported
from the skin membrane to the environment can be retrieved from the environment.
(Note that in the bounded S/A system, the environment has an infinite supply of every
object in V .)

Theorem 5. Let L ⊆ a∗
1...a

∗
k. Then the following statements are equivalent:

1. L is accepted by a special S/A system.
2. L is accepted by a bounded S/A system.
3. L is accepted by a log n space-bounded Turing machine.
4. L is accepted by a two-way multihead finite automaton.

This result holds for both deterministic and nondeterministic versions.

We also studied in [18] a model of a (one-membrane) bounded S/A system whose
alphabet of symbols V contains a distinguished input alphabet Σ. We assume that Σ
contains a special symbol $, the (right) end marker. The rules are restricted to be of the
forms:

(1) (u, out; v, in)
(2) (u, out; vc, in)

where u, v are in (V − Σ)∗ with |u| ≥ |v|, and c is in Σ. The second type of rule
is called a read-rule. There is an abundance (i.e., infinite copies) of each symbol from
V −Σ in the environment. The only symbols from Σ available in the environment are
in the input string z = a1...an (where ai is in Σ − {$} for 1 ≤ i < n, and an = $),
which is provided online externally.

There is a fixed string w in (V − Σ)∗, which is the initial configuration of the
system. Maximal parallelism in the application of the rules is assumed as usual. Hence,
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in general, the size of the multiset of rules applicable at each step can be unbounded. In
particular, the number of instances of read-rules (i.e., rules of the form (u, out; vc, in))
applicable in a step can be unbounded. However, if a step calls for reading k input
symbols (for some k), these symbols must be consistent with the next k symbols of
the input string z that have not yet been processed. Note that rules of first type do not
consume any input symbol from z.

The input string z = a1...an (with an = $) is accepted if, after reading all the input
symbols, the system eventually halts. The language accepted is {a1...an−1 | a1...an is
accepted } (we do not include the end marker).

We call the system above a bounded S/A string acceptor. As described above, the
system is nondeterministic. Again, in the deterministic case, the maximally parallel
multiset of rules applicable at each step of the computation is unique. In [18] we showed
the following:

Theorem 6. Deterministic bounded S/A string acceptors are strictly weaker than non-
deterministic bounded S/A string acceptors. An example of a language accepted by
the nondeterministic version that cannot be accepted by the deterministic version is
L = {x#y | x, y ∈ {0, 1}∗, x �= y}.

2.3 Communicating P Systems

There is another model that also works on a purely communicating mode, called com-
municating P system (CPS), first introduced and studied in [31]. It has multiple mem-
branes labeled 1, 2, ..., where 1 is the skin membrane. The rules are of the form:

1. a → ax

2. ab → axby

3. ab → axbyccome

where a, b, c are objects, x, y (which indicate the directions of movements of a and
b) can be here, out, or inj . The designation here means that the object remains in
the membrane containing it, out means that the object is transported to the membrane
directly enclosing the membrane that contains the object (or to the environment if the
object is in the skin membrane). The designation inj means that the object is moved
into the membrane, labeled j, that is directly enclosed by the membrane that contains
the object. A rule of the form (3) can only appear in the skin membrane. When such a
rule is applied, c is imported through the skin membrane from the environment and will
become an element in the skin membrane. As usual, in one step, all rules are applied in
a maximally parallel manner.

An RCPS [15] is a restricted CPS where the environment does not contain any ob-
ject initially. The system can expel objects into the environment but only expelled ob-
jects can be retrieved from the environment. Hence, at any time during the computation,
the objects in the system (including in the environment) are always the same.

Let a1, ..., ak be the symbols in the input alphabet Σ ⊆ V . Assume that an RCPS
G has m membranes, with a distinguished input membrane. We say that G accepts
z = an1

1 ...ank

k if G, when started with z in the input membrane initially (with no ai’s
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in the other membranes), eventually halts. Note that initially (at the start of the com-
putation), each membrane contains a multiset from (V − Σ)∗. At any time during the
computation, the number of each object b ∈ (V − Σ) in the whole system (includ-
ing the environment) remains the same, although the distribution of the b’s among the
membranes may change at each step. The language accepted by G is L(G) = {z | z is
accepted by G}.

A nondeterministic (deterministic) RCPS is one in which there may be more than
one (at most one) maximally parallel multiset of rules that is applicable at each step.

We showed in [16] that RCPSs are equivalent to two-way multihead finite automata
(in both the deterministic and nondeterministic cases). Thus, we have:

Theorem 7. Let L ⊆ a∗
1...a

∗
k. Then the following statements are equivalent:

1. L is accepted by an RCPS.
2. L is accepted by a special S/A system.
3. L is accepted by a bounded S/A system.
4. L is accepted by a log n space-bounded Turing machine.
5. L is accepted by a two-way multihead finite automaton.

This result holds for both deterministic and nondeterministic versions.

Corollary 2. Deterministic and nondeterministic RCPSs over a unary input alphabet
are equivalent if and only if deterministic and nondeterministic linear-bounded au-
tomata (over an arbitrary input alphabet) are equivalent.

3 Hierarchies

Various models of P systems have been investigated and have been shown to be uni-
versal, i.e., Turing machine complete, even with a very small number of membranes
(e.g., 1 or 2 membranes). Not much work has been done on investigating P systems
that are nonuniversal. The question of whether there exists a model of P systems where
the number of membranes induces an infinite hierarchy in its computational power had
been open since the beginning of membrane computing. Clearly, for models that are
universal, there cannot be a hierarchy. So the hierarchy question makes sense only for
non-universal systems. We resolved this question in the affirmative in [18], where we
proved the following result:

Theorem 8. For every r, there exist an s > r and a unary language L (i.e., subset
of o∗) accepted by an s-membrane special S/A system that cannot be accepted by any
r-membrane special S/A system. The result holds for both deterministic and nondeter-
ministic versions.

The proof Theorem 8 reduces the membrane hierarchy to a result in [21] that shows
that there is an infinite hierarchy of two-way (non)deterministic multihead finite oper-
ating on unary input in terms of the number of heads. We note that the theorem also
holds for RCPSs [16].

Similary, the number of symbols in the alphabet V of a bounded S/A system induces
an infinite hierarchy [18].
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Theorem 9. For every r, there exist an s > r and a unary language L accepted by
a bounded S/A system with an alphabet of s symbols that cannot be accepted by any
bounded S/A system with an alphabet of r symbols. This result holds for both determin-
istic and nondeterministic versions.

4 The Power of Maximal Parallelism

As already mentioned above, in the standard semantics of P systems, each evolution
step of the system is a result of applying the rules in a nondeterministic maximally
parallel manner.

Current digital and bio technologies do not permit a direct implementation of a P
system (under the parallel semantics). Also, because of the highly parallel and nonde-
terministic nature of the computation in a P system, simulation and analysis (such as
reachability between configurations) are mostly undecidable (i.e., no algorithms exist
or combinatorially intractable). Let G be a P system and R = {r1, ..., rk} be the set of
(distinct) rules in all the membranes. Note that ri uniquely specifies the membrane the
rule belongs to. We say that G operates in maximal parallel mode if at each step of the
computation, a maximal subset of R is applied, and at most one instance of any rule
is used at every step (thus at most k rules are applicable at any step). For example, if
ri is a catalytic rule Ca → Cv in membrane q and the current configuration has two
C’s and three a’s in membrane q, then only one a can evolve into v. Of course, if there
is another rule rj , Ca → Cv′, in membrane q, then the other a also evolves into v′.
In [17], we investigated the computing power of P systems under three semantics of
parallelism. For a positive integer n ≤ k, define:

n-Max-Parallel: At each step, nondeterministically select a maximal subset of at
most n rules in R to apply (this implies that no larger subset is applicable).
≤ n-Parallel: At each step, nondeterministically select any subset of at most n

rules in R to apply.
n-Parallel: At each step, nondeterministically select any subset of exactly n rules

in R to apply.

In all three cases, if any rule in the subset selected is not applicable, then the whole
subset is not applicable. When n = 1, the three semantics reduce to the Sequential or
Asynchronous mode.

Before proceeding further, we need the definition of a vector addition system. An
n-dimensional vector addition system (VAS) is a pair G = 〈x, W 〉, where x ∈ Nn is
called the start point (or start vector) and W is a finite set of vectors in Zn, where Z is
the set of all integers (positive, negative, zero). The reachability set of the VAS 〈x, W 〉
is the set R(G) = {z | for some j, z = x + v1 + ... + vj , where, for all 1 ≤ i ≤ j,
each vi ∈W and x+ v1 + ...+ vi ≥ 0}. An n-dimensional vector addition system with
states (VASS) is a VAS 〈x, W 〉 together with a finite set T of transitions of the form
p → (q, v), where p and q are states and v is in W . The meaning is that such a transition
can be applied at point y in state p and yields the point y + v in state q, provided that
y+v ≥ 0. The VASS is specified by G = 〈x, W, T , p0〉, where p0 is the starting state. It
is known that n-dimensional VASS can be effectively simulated by (n+3)-dimensional
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VAS [14]. The reachability problem for a VAS (VASS) G is to determine, given a vector
y, whether y is in R(G).

In [17], we studied catalytic systems, symport/antiport systems, and communicating
P systems with respect to the three modes of parallelism defined above. We showed that
for these systems, n-Max-Parallel mode is strictly more powerful than any of the fol-
lowing three modes: Sequential, ≤ n-Parallel, or n-Parallel. For example, it follows
from a result in [9] that a maximally parallel communicating P system is universal for
n = 2. However, under the three limited modes of parallelism, the system is equivalent
to a vector addition system (VAS), which are equivalent Petri nets (PN). VAs and PNs
are well-known models of concurrent and parallel systems. They are used extensively to
analyze properties (e.g. reachability) in concurrent and parallel systems. A fundamental
result is that there is a decision procedure for the reachability problem (given two con-
figurations w and w′, is w′ reachable from w?). Thus, we can decide reachability for
the three P systems mentioned operating under the three notions of parallelism. These
results show that “maximal parallelism" is key for the model to be universal.

5 Sequential (Asynchronous) P Systems

Note that in a P system operating in sequential mode, at every step, only one nonde-
terministically chosen rule instance is applied. Sequential P systems (also called asyn-
chronous P systems) have been studied in various places in the literature (see, e.g.,
[2,3,6,7,11,17]). In a recent paper [20], we showed the following results that comple-
ment these earlier results:

1. Any sequential P system with rules of the form u → v (where u, v are strings of
symbols) with rules for membrane creation and membrane dissolution can be sim-
ulated by a vector addition system (VAS), provided the rules are not prioritized and
the number of membranes that can be created during the computation is bounded by
some fixed integer. Hence the reachability problem (deciding if a configuration is
reachable from the start configuration) is decidable. Interestingly, if such coopera-
tive systems are allowed to create an unbounded number of new membranes during
the course of the computation, then they become universal.

2. A sequential communicating P system language acceptor (CPA) is equivalent to a
partially blind multicounter machine (PBCM) [12]. Several interesting corollaries
follow from this equivalence, for example:
(a) The emptiness problem for CPAs is decidable.
(b) The class of CPA languages is a proper subclass of the recursive languages.
(c) The language {anbn | n ≥ 1}∗ cannot be accepted by a CPA.
(d) For every r, there is an s > r and a language that can be accepted by a quasi-

realtime CPA with s membranes that cannot be accepted by a quasi-realtime
CPA with r membranes. (In a CPA, we do not assume that the CPA imports an
input symbol from the environment at every step. Quasi-realtime means that
the CPA has to import an input symbol from the environment with delay of
no more than k time steps for some nonnegative integer k independent of the
computation.)
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(e) A quasi-realtime CPA is strictly weaker than a linear time CPA. (Here, linear
time means that for some constant c, the CPA accepts an input of length n
within cn time.)

(f) The class of quasi-realtime CPA languages is not closed under Kleene + and
complementation.

We note that the relationship between PBCMs and sequential symport/antiport P
systems (similar to communication P systems) has been studied recently in [11],
but only for systems with symbol objects and not as language acceptors. Thus, the
results in [11] deal only with tuples of nonnegative integers defined by P systems
and counter machines. For example, it was shown in [11] that a set of tuples of
nonnegative integers that is definable by a partially blind counter machine can be
defined by a sequential symport/antiport system with two membranes. Our results
cannot be derived from the results in [11].

3. The results for CPA above generalize to cooperative system acceptors with mem-
brane dissolution and bounded creation rules. Hence, the latter are also equivalent
to PBCMs.

4. The reachability problem for sequential catalytic systems with prioritized rules is
NP-complete.

6 Some Problems for Future Research

Limited Parallelism in Other P Systems: We believe the results in the previous section
concerning sequential P systems can be shown to hold for other more general P systems.
We also think that, in fact, similar results hold for ≤ n-Parallel and n-Parallel modes
of computation.

Characterizations: It would be of interest to study various classes of nonuniversal P
systems and characterize their computing power in terms of well-known models of se-
quential and parallel computation: Investigate language-theoretic properties of families
of languages defined by P systems that are not universal (e.g., closure and decidable
properties), find P system models that correspond to the Chomsky hierarchy, and in
particular, characterize the “parallel” computing power of P systems in terms of well-
known models like alternating Turing machines, circuit models, cellular automata, par-
allel random access machines, develop useful and efficient algorithms for their decision
problems.

Reachability Problem in Cell Simulation: Another important research area that has
great potential applications in biology is the use of P systems for the modeling and
simulation of cells. While previous work on modeling and simulation use continuous
mathematics (differential equations), P systems will allow us to use discrete mathemat-
ics and algorithms. As a P system models the computation that occurs in a living cell,
an important problem is to develop tools for determining reachability between configu-
rations, i.e., how the system evolves over time. Specifically, given a P system and two
configurations α and β (a configuration is the number and distribution of the different
types of objects in the various membranes in the system), is β reachable from α? Un-
fortunately, unrestricted P systems are universal (i.e., can simulate a Turing machine),
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hence all nontrivial decision problems (including reachability) are undecidable. There-
fore, it is important to identify special P systems that are decidable for reachability.
Some results along this lines have appeared in [4,5].
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1 Introduction and Main Result

A substantial amount of research in graph theory continues to concentrate on
the existence of hamiltonian cycles and perfect matchings. A classic theorem of
Dirac states that a sufficient condition for an n-vertex graph to be hamiltonian,
and thus, for n even, to have a perfect matching, is that the minimum degree is
at least n/2. Moreover, there are obvious counterexamples showing that this is
best possible.

The study of hamiltonian cycles in hypergraphs was initiated in [1] where,
however, a different definition than the one considered here was introduced.
Given an integer k ≥ 2, a k-uniform hypergraph is a hypergraph (a set system)
where every edge (set) is of size k.

By a cycle we mean a k-uniform hypergraph whose vertices can be or-
dered cyclically v1, . . . , vl in such a way that for each i = 1, . . . , l, the set
{vi, vi+1, . . . , vi+k−1} is an edge, where for h > l we set vh = vh−l . A hamil-
tonian cycle in a k-uniform hypergraph H is a spanning cycle in H , that is, a
sub-hypergraph of H which is a cycle and contains all vertices of H . A k-uniform
hypergraph containing a hamiltonian cycle is called hamiltonian.

This notion and its generalizations have a potential to be applicable in many
contexts which still need to be explored. An application in the relational database
theory can be found in [2]. As observed in [5], the square of a (graph) hamiltonian
cycle naturally coincides with a hamiltonian cycle in a hypergraph built on top
of the triangles of the graph. More precisely, given a graph G, let Tr(G) be the
set of triangles in G. Define a hypergraph HTr(G) = (V (G), Tr(G)). Then there
is a one-to-one correspondence between hamiltonian cycles in HTr(G) and the
squares of hamiltonian cycles in G. For results about the existence of squares of
hamiltonian cycles see, e.g., [6].

As another potential application consider a seriously ill patient taking 24
different pills on a daily basis, one at a time every hour. Certain combinations
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of three pills can be deadly if taken within 2.5 hour. Let D be the set of deadly
triplets of pills. Then any safe schedule corresponds to a hamiltonian cycle in
the hypergraph which is precisely the complement of D.

A natural extension of Dirac’s theorem to k-graphs, k ≥ 2, has been con-
jectured in [5], where as a sufficient condition one demands that every (k − 1)-
element set of vertices is contained in at least �n/2� edges. The following con-
struction of a k-uniform hypergraph H0, also from [5], shows that the above
conjecture, if true, is nearly best possible (best possible for k = 3).

Let V = V ′ ∪{v}, |V | = n. Split V ′ = X ∪Y , where, |X | = �n−1
2 � and |Y | =

�n−1
2 �. The edges of H0 are all k-element subsets S of V such that |X∩S| �= �k

2 �
or v ∈ S. It is shown in [5] that H0 is not hamiltonian, while every (k−1)-element
set of vertices belongs to at least �n−k+1

2 � edges.
In [9] we proved an approximate version of the conjecture from [5] for k = 3,

and in [11] we give a generalization of that result to k-uniform hypergraphs for
arbitrary k.

Theorem 1 ([11]). Let k ≥ 3 and γ > 0. Then, for sufficiently large n, every
k-uniform hypergraph on n-vertices such that each (k−1)-element set of vertices
is contained in at least (1/2 + γ)n edges is hamiltonian.

2 The Idea of Proof

The idea of the proof is as follows. As a preliminary step, we find in H a powerful
path A, called absorbing which has the property that every not too large subset
of vertices can be “absorbed” by that path. We also put aside a small subset of
vertices R which preserves the degree properties of the entire hypergraph.

On the sub-hypergraph H ′ = H−(A∪R) we find a collection of long, disjoint
paths which cover almost all vertices of H ′. Then, using R we “glue” them and
the absorbing path A together to form a long cycle in H . In the final step, the
vertices which are not yet on the cycle are absorbed by A to form a hamiltonian
cycle in H .

The main tool allowing to cover almost all vertices by disjoint paths is a
generalization of the regularity lemma from [12].

Given a k-uniform hypergraph H and k non-empty, disjoint subsets Ai ⊂
V (H), i = 1, . . . , k, we define eH(A1, . . . , Ak) to be the number of edges in H
with one vertex in each Ai, and the density of H with respect to (A1, . . . , Ak) as

dH(A1, . . . , Ak) =
eH(A1, . . . , Ak)
|A1| · · · |Ak| .

A k-uniform hypergraph H is k-partite if there is a partition V (H) = V1 ∪
· · · ∪ Vk such that every edge of H intersects each set Vi in precisely one vertex.
For a k-uniform, k-partite hypergraph H , we will write dH for dH(V1, . . . , Vk)
and call it the density of H .

We say that a k-uniform, k-partite hypergraph H is ε-regular if for all
Ai ⊆ Vi with |Ai| ≥ ε|Vi|, i = 1, . . . , k, we have

|dH(A1, . . . , Ak)− dH | ≤ ε.
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The following result, called weak regularity lemma as opposed to the stronger
result in [4], is a straightforward generalization of the graph regularity lemma
from [12].

Lemma 1 (Weak regularity lemma for hypergraphs). For all k ≥ 2, every
ε > 0 and every integer t0 there exist T0 and n0 such that the following holds. For
every k-uniform hypergraph H on n > n0 vertices there is, for some t0 ≤ t ≤ T0,
a partition V (H) = V1 ∪ · · · ∪ Vt such that |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1
and for all but at most εtk sets of partition classes {Vi1 , . . . , Vik

}, the induced
k-uniform, k-partite sub-hypergraph H [Vi1 , . . . , Vik

] of H is ε-regular.

The above regularity lemma, combined with the fact that every dense ε-
regular hypergraph contains an almost perfect path-cover, yields an almost per-
fect path-cover of the entire hypergraph H .

3 Results for Matchings

A perfect matching in a k-uniform hypergraph on n vertices, n divisible by k,
is a set of n/k disjoint edges. Clearly, every hamiltonian, k-uniform hypergraph
with the number of vertices n divisible by k contains a perfect matching.

Given a k-uniform hypergraph H and a (k−1)-tuple of vertices v1, . . . , vk−1,
we denote by NH(v1, . . . , vk−1) the set of vertices v ∈ V (H) such that {v1, . . . ,
vk−1, v} ∈ H . Let δk−1(H) = δk−1 be the minimum of |NH(v1, . . . , vk−1)| over
all (k − 1)-tuples of vertices in H .

For all integer k ≥ 2 and n divisible by k, denote by tk(n) the smallest integer
t such that every k-uniform hypergraph on n vertices and with δk−1 ≥ t contains
a perfect matching.

For k = 2, that is, in the case of graphs, we have t2(n) = n/2. Indeed, the
lower bound is delivered by the complete bipartite graph Kn/2−1,n/2+1, while
the upper bound is a trivial corollary of Dirac’s condition [3] for the existence of
Hamilton cycles.

In [10] we study tk for k ≥ 3. As a by-product of our result about hamiltonian
cycles in [11] (see Theorem 2 above), it follows that tk(n) = n/2 + o(n). Kühn
and Osthus proved in [7] that

n

2
− k + 1 ≤ tk(n) ≤ n

2
+ 3k2

√
n logn.

The lower bound follows by a simple construction, which, in fact, for k odd yields
tk(n) ≥ n/2− k + 2. For instance, when k = 3 and n/2 is an odd integer, split
the vertex set into sets A and B of size n/2 each, and take as edges all triples of
vertices which are either disjoint from A or intersect A in precisely two elements.

In [10] we improve the upper bound from [7].

Theorem 2. For every integer k ≥ 3 there exists a constant C > 0 such that
for sufficiently large n,

tk(n) ≤ n

2
+ C log n.
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It is very likely that the true value of tk(n) is yet closer to n/2. Indeed, in [5] it
is conjectured that δk−1 ≥ n/2 is sufficient for the existence of a Hamilton cycle,
and thus, when n is divisible by k, the existence of a perfect matching. Based
on this conjecture and on the above mentioned construction from [7], we believe
that tk(n) = n/2−O(1). In fact, for k = 3, we conjecture that t3(n) = �n/2�−1.

Our belief that tk(n) = n/2−O(1) is supported by some partial results. For
example, we are able to show that the threshold function tk(n) has a stability
property, in the sense that hypergraphs that are “away” from the “extreme case”
H0, described in Section 1, contain a perfect matching even when δk−1 is smaller
than but not too far from n/2.

Interestingly, if we were satisfied with only a partial matching, covering all
but a constant number of vertices, then this is guaranteed already with n/2+o(n)
replaced by n/k, that is, when δk−1 ≥ n/k.

We have also another related result, about the existence of a fractional perfect
matching, which is a simple consequence of Farkas’ Lemma (see, e.g.,[8]). A
fractional perfect matching in a k-uniform hypergraph H = (V, E) is a function
w : E → [0, 1] such that for each v ∈ V we have∑

e�v

w(e) = 1.

In particular, it follows from our result that if δk−1(H) ≥ n/k then H has a
fractional perfect matching, so, again, the threshold is much lower than that for
perfect matchings.
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Abstract. In the k-party simultaneous message model, k − 1 parties
holding respectively x1, x2, · · · , xk−1 wish to compute the value of some
boolean function f(x1, x2, . . . , xk−1), by each sending a stochastically
chosen message to a k-th party, the referee, who then decides on the
value of f with probability at least 2/3 of being correct. Let R‖(f) be
the minimum number of total communication bits needed to compute f
by any such algorithm.

The (k, n)-Co-Linearity Problem is defined by CLk,n(x1, x2, . . . , xk−1)
= 1, if and only if ⊕1≤i≤k−1xi = 0n (where xi are n-bit strings). It is
well known that, for any fixed k ≥ 3, R‖(CLk,n) = O(n(k−2)/(k−1)),
and that the bound is tight for k = 3. It is an interesting open question
whether the bound is tight for k > 3. In this talk we present some new
results on this question. Specifically, we prove that the above bound is
tight in the linear model, in which all the transmitted message bits are
linear functions of the input bits. We also discuss CLk,n’s quantum com-
munication complexity, which also has received considerable attention in
recent years.
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Abstract. Parity games and their subclasses and variants pop up in
various contexts: μ-calculus, tree automata, program verification [3,1,8].
Such games provide only binary information indicating the winning
player. However, in classical games theory [12] the emphasis is rather
on how much we win or lose. Can we incorporate the information about
the profits and losses into parity games?

1 Games

Our games oppose two players, player 1 and player 2. At each moment the game
is in some state s and the player controlling s chooses an action available at
s which results in issuing an immediate reward r and changing the state to a
new one s′. Both the reward and the new state depend deterministically on the
executed action, i.e. we can assume without loss of generality that the set of
actions A is just a subset of S×�×S, where S is the set of all states and � is a
set of (immediate) rewards. If a = (s1, r, s2) ∈ A then the state s1 = source(a) is
the source of the action a indicating the state where a is available, s2 = target(a)
is the target state where the game moves upon the execution of a and finally
r = reward(a) ∈ � is the reward associated with a.

The set S of states is partitioned onto two sets, the set S1 of states controlled
by player 1 and the set S2 of states controlled by player 2. For each state s the
set A(s) = {a ∈ A | source(a) = s} is the set of actions available at s and we
assume that this set is always non-empty for each state s.

The tuple A = (S1, S2, A) satisfying the conditions above is called an arena
over the set � of rewards. Unless otherwise stated, we assume always that an
“arena” means in fact a finite arena, i.e. an arena with finite state and action
spaces.

A history in arena A is a finite or an infinite sequence h = a1a2 . . . of actions
such that ∀i, target(ai) = source(ai+1). The source of the first action a0 is the
source, source(h), of history h. If h is finite then the target of the last action is
the target, target(h), of h.

It is convenient to assume that for each state s there is an empty history 1s

with the source and the target s.
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We start the play by putting a token at some initial state s1 and the players
play by moving the token from state to state: at each stage if the token is at
a state s ∈ Si controlled by player i than player i chooses an action a ∈ A(s)
available at s and moves the token to the state target(a).

Starting from an initial state s1, the infinite sequence of actions p = a1a2 . . .
executed by the players is called a play in the arena A, i.e. plays are just infinite
histories in A.

Upon the termination of a play p player 1 receives from player 2 a payoff. In
this paper we assume that the payoff depends uniquely on the infinite sequence
of rewards occurring in the play p.

An infinite sequence r = r1r2 . . . of elements of � is said to be finitely gener-
ated if there exists a finite subset X of � such that all ri belong to X .

A payoff mapping u over � maps finitely generated infinite sequences of
rewards r = r1r2 . . . into R, u : r �→ u(r) ∈ R. Since we are concerned only with
plays over finite arenas we do not need to specify what is the payoff for those
infinite reward sequences which are not finitely generated.

A game over � is just a couple G = (A, u) consisting of an arena and a payoff
mapping. A play p = a0a1 . . . in the game G is a play in the underlying arena.
Upon completing p player 1 receives from player 2 the amount u(reward(p)),
where reward(p) := reward(a1), reward(a2), . . . is the sequence of rewards occur-
ring in p. To avoid clutter we abuse the notation and we write systematically
u(p) to denote u(reward(p)) (this can be seen as an extension of payoff mapping
to plays).

Parity Games. For parity games the set of rewards � is the set N of non-negative
integers and following the tradition we call the elements of � = N priorities rather
than rewards.

For any infinite finitely generated sequence of priorities n = n1n2 . . . let

priority(n) = lim sup
i→∞

ni (1)

be the maximal priority occurring infinitely often in n. The payoff mapping in
the parity games is given by

u(n) =

{
1 if priority(n) is odd,
0 if priority(n) is even.

(2)

Two remarks are in order. Usually in parity games we speak about the winning
and the losing player, however it is clear that this is equivalent to the binary
payoff formulation given above and we prefer payoffs since subsequently we will
be interested in profits or losses and not just in the mere information who wins.
Secondly, in parity games we usually attach priorities to states not to actions
but this has no influence on the game analysis and game theoretists prefer to
associate rewards with actions [11].

Discounted and Mean-Payoff Games. Let us compare briefly parity games with
other similar games studied in game theory rather than in computer science.
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Two types of games are particularly popular, discounted and mean-payoff games
[11,4]. In both these games � = R, i.e. the rewards are real numbers.

In mean-payoff games the payoff for an infinite sequence of real numbers r =
r1r2 . . . is calculated through the formula mean(r) = limsupn→∞

1
n

∑n
i=1 ri .

Instead of taking limsup it is possible to consider the games with the payoff
mean(r) = lim infn→∞ 1

n

∑n
i=1 ri.

In the case of discounted games player 1 receives from 2 the amount discλ(r)=
(1− λ)

∑∞
i=0 λiri, where λ ∈ (0, 1) is a discount factor.

The striking difference between the parity games on the one hand and the
mean-payoff or the discounted games on the other hand is that in the later
the emphasis is put on the amount of profit/loss while for the parity games the
information is just binary, indicating the winner without any attempt to quantify
his profit. Obviously for games inspired by economic applications to be able to
quantify the profit is essential, after all, the difference between winning or losing
10$ is hardly noticeable (and both events in themselves are of little interest)
while the difference between winning 10$ and winning 106$ is formidable and of
great interest to the player.

Can parity games be adapted to provide a pertinent information about the
player’s profits/losses instead of just a plain indication who wins? It turns out
that in fact several such extensions are possible for parity games and moreover
these games preserve the most appealing property of parity games: the existence
of optimal memoryless strategies for both players.

1.1 Strategies

A strategy of a player is his plan of action, it tells him which action to take when
it is his turn to move. The choice of the action to be executed can depend on
the whole sequence of previous moves. Thus a strategy for player 1 is a mapping

σ : {h | h a finite history with target(h) ∈ S1} −→ A (3)

such that if s = target(h) then σ(h) ∈ A(s).
A strategy σ of player 1 is said to be positional or memoryless if the chosen

action depends only on the last state in the history. It is convenient to view a
positional strategy as a mapping

σ : S1 → A (4)

such that σ(s) ∈ A(s), ∀s ∈ S1.
Strategies and positional strategies for player 2 are defined in the similar way

with S2 replacing S1.
In the sequel, σ and τ , possibly with subscripts or superscripts, will always

denote strategies for players 1 and 2 respectively.
A finite or infinite history h = a1a2 . . . is said to be consistent with a strategy

σ of player 1 if for each i such that target(ai) ∈ S1, ai+1 = σ(a0 . . . ai). Moreover,
if s = source(a1) ∈ S1 then we require that a1 = σ(1s) (recall that 1s is a special
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play of zero length with the source and target s). The consistency with strategies
of player 2 is defined similarly.

Given a pair of strategies σ and τ for both players and a state s, there exists
in arena A a unique infinite play p, denoted pA(s, σ, τ), consistent with σ and τ
and such that s = source(p).

Strategies σ
 and τ 
 of players 1 and 2 are optimal in the game G = (A, u)
if for any state s ∈ S and any strategies σ and τ

u(pA(s, σ, τ 
)) ≤ u(pA(s, σ
, τ 
)) ≤ u(pA(s, σ
, τ)) . (5)

Thus if both strategies are optimal the players do not have any incentive to
change them unilaterally.

Note that for zero sum games that we consider here, where the profit of one
player is equal to the loss of his adversary, we have the exchangeability property
for optimal strategies: for any other pair of optimal strategies τ‡, σ‡, the couples
(τ‡, σ
) and (τ 
, σ‡) are also optimal and u(pA(s, σ
, τ 
)) = u(pA(s, σ‡, τ‡)); this
last quantity is called the value of the game G = (A, u) at the state s.

The basic problem of game theory is to determine for a given payoff mapping
u if for every game G = (A, u) both players have optimal strategies.

In computer science we prefer positional strategies since they are particularly
easy to implement. For this reason the question that we ask in this paper for
every payoff u is whether for each game G = (A, u) over a finite arena A both
players have positional optimal strategies.

2 From Parity Games to Games with Profits

2.1 Simple Priority Games

The simplest adjustment of parity games enabling any real-valued payoff consists
in associating with each priority a real number by means of a mapping α : N → R,
we call α a priority valuation. Let n = n1n2 . . . be any finitely generated infinite
sequence of elements of N.

Then the payoff mapping of simple priority games is given by

uα(n) = α(priority(n)), (6)

where priority(n) is defined as in (1). Clearly for different priority valuations α we
have different simple priority games, in particular for α that maps even numbers
to 0 and odd numbers to 1 we recover the parity game. In fact simple priority
games are still very close to parity games. Let α(N) = {x1 < . . . < xk} be all
priority values taken in the increasing order1. Then to establish if player 1 has a
strategy allowing him to win at least xi in the game with the priority valuation
α we solve the game with the binary priority valuation βi defined by βi(l) = 1 if
α(l) ≥ xi and βi(l) = 0 if α(l) < xi. Games with binary valuations are obviously
equivalent to parity games thus both players have optimal positional strategies
1 We can assume without loss of generality that α(N) is finite.
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σ

i , τ



i in the game with the valuation βi (in fact this is true even for infinite

arenas [3,10]). These strategies can used to build optimal positional strategies
σ
, τ 
 in the game with the valuation α. For a given state s ∈ S define the rank
of s to be the maximal l such that the strategy βl of player 1 allows him to win
1 in the binary priority game with the valuation βl when the initial state is s.
Then, for s ∈ S1, we set σ
(s) = σ


l (s) while for s ∈ S2 we set τ 
(s) = τ 

l+1(s),

where l is the rank of s. Clearly the strategies σ
 and τ 
 are positional. Moreover,
it is easy to see that in (A, uα) for plays starting at a state s with the rank l the
strategy σ
 assures for player 1 that he will win at least xl while the strategy τ 


assures for player 2 that he will pay no more than xl. This proves the optimality
of strategies σ
 and τ 
 (also for infinite arenas).

2.2 Mean-Payoff Priority Games

To generalize yet further our games set � = N × R as the set of rewards.
Each couple (n, r) ∈ � consists now of a non-negative priority n and a real
valued reward r ∈ R. For an infinite finitely generated reward sequence x =
(n1, r1), (n2, r2), . . . we calculate now the payoff in the following way. Let n =
priority(n1n2 . . .) be the maximal priority appearing infinitely often in x and let
x(n) = (ni1 , ri1), (ni2 , ri2 ), . . . be the subsequence of x consisting of the elements
with priority n, n = ni1 = ni2 = · · · . Then

mean(x) = limsup
k→∞

ri1 + · · ·+ rik

k
(7)

defines the payoff for mean-payoff priority games. Thus, intuitively, we calculate
here mean-payoff of rewards but limited to the subsequence of the maximal
priority occurring infinitely often. Note that if there is only one priority then
this payoff mapping reduces to the payoff of mean-payoff games (and for this
reason we keep the same name). But, on the other hand, if we limit ourselves to
reward sequences such that ni = nj implies ri = rj for all i, j, i.e. to sequences
where the reward is constant for each priority, then mean reduces to a simple
priority payoff of Sect. 2.1 with an appropriate priority valuation. Thus mean-
payoff priority games combine the principal characteristics of mean-payoff and
parity games.

Are these games positional?
If the arena is controlled by player 1, i.e. S = S1, then player 1 has an obvious

optimal positional strategy that can be found in the following way (we do not
pretend that the method given below is the most efficient one). First note that
for any play of the form p = xyω, where x is a finite history, y = a1a2 . . . ak is a
simple cycle2 in the arena A and yω = yy . . . is the infinite concatenation of y,
we can calculate mean(p) in the following way:
let for 1 ≤ i ≤ k, reward(ai) = (ni, ri), let l = max{ni | 1 ≤ i ≤ k} be the
maximal priority occurring in y, and let M = {i | 1 ≤ i ≤ k and ni = l} be
the occurrences of l in y, then mean(p) = 1

|M|
∑

m∈M rm.

2 That means that source(y)= target(y) and source(ai) �=source(aj) for 1≤ i < j≤ k.



An Invitation to Play 63

Let y be a simple cycle such that mean(yω) is maximal. It is easy to see
that for any other play p in A, mean(p) ≤ mean(yω). Thus to maximize his
gain player 1 should arrive at this cycle y, which can be done with a positional
strategy, and then he should turn round y forever which is obviously positional.
If there are states in A from which the cycle y of the maximal payoff is not
accessible then in the subarena consisting of such states we repeat the procedure
described above.

For arenas controlled by player 2 (which means that S = S2) the optimal
positional strategy of player 2 can be found in the similar way by finding the
simple cycle minimizing the payoff.

The main result of Sect. 3 (Theorem 3) states that the existence of opti-
mal positional strategies for one-player games implies the existence of optimal
positional strategies for two-player games and thus we can conclude

Proposition 1. For all priority mean-payoff games over finite arenas both play-
ers have optimal positional strategies.

This result above was first established by other methods in [7].

2.3 Weighted Reward Games

Yet another extension of parity games can be obtained in the following way.
Suppose that for an infinite finitely generated sequence of priorities n = n1n2 . . .,
the priorities ne and no are respectively the greatest even and the greatest odd
priority occurring infinitely often in n. Then player 1 wins the parity game iff
the quantity no − ne is positive. However, intuitively, no − ne gives us a more
detailed information of how much the winning player outperforms the losing
player in parity games, and we can as well consider the game where no−ne is the
payoff obtained by player 1, i.e. the game where player 1 tries now to maximize
this value. It is convenient then to replace even priorities by their negatives, i.e.
consider finitely generated sequences m1m2 . . . of integers and then the payoff
for player 1 takes the form limsupi→∞ mi + lim infi→∞ mi. However, we can
then go a step further and take as the set of rewards the set R of real numbers
and for a fixed parameter λ ∈ [0; 1] and a finitely generated sequence r1r2 . . . of
real numbers define a weighted reward payoff mapping

uwr
λ (r1r2 . . .) = (1− λ) lim inf

i→∞
ri + λ limsup

i→∞
ri . (8)

Note that for λ = 1 the definition above gives just the classical gambling payoff
[2,9] while λ = 1/2 can be used, as explained above, to generalize parity games.
In the same way as for mean-payoff priority games one can verify that weighted
reward one-player games have optimal positional strategies which implies by
Theorem 3 the following result obtained first in [6]:

Proposition 2. For all weighted reward games over finite arenas both players
have optimal positional strategies.
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3 From One-Player Games to Two-Player Games

It turns our that to assure that a payoff mapping u allows optimal positional
strategies for all two-player games it suffices to verify whether one-player games
with payoff u have optimal positional strategies. In fact a similar result holds
also for perfect information stochastic games [5] and the proof below is just an
adaptation of the one of [5].

This result is useful in practice since, as we have seen, the verification if
a given payoff mapping admits optimal positional strategies can be trivial for
one-person games but can require a bit of dexterity for two-person games.

An arena A = (S1, S2, A) is said to be controlled by player i if for each state
s ∈ Sj controlled by his adversary j, j �= i and i, j ∈ {1, 2}, there is only one
action a ∈ A with source s. Thus essentially the adversary player j has never
any choice, in particular he has only one strategy and this strategy is positional.
In this case we can as well put all the states of j under the control of player i
and remove player j altogether from our game. A one-player arena is just an
arena controlled by one of the two players and a one-player game is a game on a
one-player arena. Note that in one-player games it suffices to exhibit an optimal
strategy for the controlling player since the unique strategy of his adversary is
trivial.

Theorem 3. Let u be a payoff mapping over a set � of rewards. If for each finite
one-player arena A over � the player controlling A has an optimal positional
strategy in the game G = (A, u) then for all two-person games over finite arenas
with payoff u both players have optimal positional strategies.

Proof. Suppose that u satisfies the conditions of the theorem. In the sequel
whenever we speak about games over arenas A the payoff u is tacitly assumed.

For any arena A = (S1, S2, A) we call the value |A| − |S| the rank of A (|X |
denotes the cardinality of X). Since for each state there is at least one available
action the rank is always non-negative. If the rank is 0 then for each state s there
is exactly one available action and therefore each player has only one possible
strategy and these strategies are positional and optimal.

We shall continue the proof of Theorem 3 by induction over the rank value.
Let A = (S1, S2, A) be an arena with rank k > 0 and suppose that both

players have optimal positional strategies for all games over the arenas with the
ranks smaller than k. We shall construct a pair of optimal strategies σ
, τ 
 for
the game over A, the strategy σ
 of player 1 will be positional but the strategy
τ 
 of player 2 will use some finite memory. In the next step we shall show that
also player 2 has an optimal positional strategy.

If one of the players controls A then both of them have optimal positional
strategies and there is nothing to do.

Thus we can assume that there exists a state x ∈ S1 controlled by player
1 such that the set A(x) = {a ∈ A | source(a) = s} of actions available at x
contains more than one element. Let us fix such a state x which we shall call
the pivot. We fix also a partition of the set A(x) onto two non-empty sets AL(x)
and AR(x), A(x) = AL(x) ∪AR(x), AL(x) ∩AR(x) = ∅.
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We define two subarenas AL and AR of A which we call respectively the left
and the right (sub)arena. In AL and AR we keep the same states as in A. Also
the actions with the source in the states s �= x are the same in AL, AR and A.
The only difference concerns the actions with the source x, in the left arena AL

we keep only the actions of AL(x) while in the right arena only the actions of
AR(x) removing all the other actions with source x.

Since the ranks of the arenas AL and AR are smaller than the rank of A,
by the induction hypothesis, there exist optimal positional strategies σ


L and
τ 

L in the game (AL, u) and optimal positional strategies σ


R and τ 

R in the

game (AR, u).
We pretend that one of the two strategies σ


L or σ

R is also optimal for player

1 in the initial game over A. The situation is more complicated for player 2,
usually neither τ 


L nor τ 

R is optimal for him in the game over A. However, it

turns out to be possible to intertwine in some way the strategies τ 

L and τ 


R to
obtain an optimal strategy for player 2 on A.

Using the arena AL and the strategy τ 

L of player 2 we construct an arena

AL[τ 

L] that has the same states as AL but we restrict the actions available to

player 2: for each state s ∈ S2 controlled by 2 we leave in AL[τ 

L] only one action

with the source s, namely the action τ 

L(s) provided by the strategy τ 


L. We do
not restrict the moves of player 1, he can take exactly the same actions as in AL.

In a similar way we construct from the arena AR and the optimal strategy
τ 

R of player 2 in the game on AR an arena AR[τ 


R] by restricting the actions
player 2 to those that are provided by the strategy τ 


R.
Notice that arenas AL[τ 


L] and AR[τ 

R] are controlled by player 1.

Next we rename in AL[τ 

L] and AR[τ 


R] all the states that are different from
the pivot state x.

Let
U = S \ {x} (9)

be the set of states that are different from the pivot x. Let UL, UR be two disjoint
copies of the set U and let

SL := UL ∪ {x} and SR := UR ∪ {x} . (10)

For a state s ∈ U its left and right copy are denoted respectively sL and sR.
It is convenient to assume that the pivot x is the only state that is a copy of
itself, i.e. xL = x = xR. By πL we shall denote the natural bijections

πL : S → SL and πR : S → SR (11)

πL : s �→ sL = πL(s) and πR : s �→ sR = πR(s), for all s ∈ S . The renaming
mappings πL and πR are extended in a natural way to actions

πL((s, r, t)) = (πL(s), r, πL(t)) and πR((s, r, t)) = (πR(s), r, πR(t)) (12)

for actions (s, r, t) respectively on the left and the right subarena.



66 W. Zielonka

The arenas obtained from AL[τ 

L] and AR[τ 


R] by applying the correspond-
ing renaming mappings are denoted πL(AL[τ 


L]) and πR(AR[τ 

R]). Note that

πL(AL[τ 

L]) and πR(AR[τ 


R]) have only one common state x and the only common
actions are eventually the actions of the form (x, r, x) if such actions with source
and target x exist in A. Finally we construct the arena ALR = πL(AL[τ 


L]) ∪
πR(AR[τ 


R]), where the union means that we take simply the union of state sets
and the union of action sets of πL(AL[τ 


L]) and πR(AR[τ 

R]). Let us note that

since the only state common to πL(AL[τ 

L]) and πR(AR[τ 


R]) is the pivot x the
arena ALR can be seen informally as the arena obtained from AL[τ 


L] and AR[τ 

R]

by gluing them together at x.
Obviously, ALR is a one-player arena controlled by player 1. Intuitively, for

each state ofALR controlled by player 1 he has at his disposition the same actions
as in A. On the other hand, player 2 is compelled to use either the strategy τ 


L

or the strategy τ 

R depending on whether the current position is in the left or in

the right subarena of ALR. Each time the pivot x is visited player 1 can choose
if he prefers to play till the next visit to x against the strategy τ 


L or against the
strategy τ 


R by choosing either a left or a right action at x.

Example 4. Figure 1 illustrates different stages of the construction of ALR. To
avoid clutter the rewards associated with actions are omitted. The states con-
trolled by players 1 and 2 are represented respectively by circles and squares.
The pivot state x has three outgoing actions and we fix the following left/right
partition of A(x): AL(x) = {(x, s2)}, AR(x) = {(x, s1), (x, s3)}. Suppose now
that for the state s4 the optimal positional strategy τ 


L for player 2 in (AL, u)
chooses the action (s4, s1) while in (AR, u) the optimal positional strategy τ 


R for
the same player chooses the action (s4, s3) (for the other state s2 both strategies
choose the only available action (s2, s4)). The bottom part of Fig. 1 presents the
resulting arenas AL[τ 


L] and AR[τ 

R]. Finally, the upper left part of Fig. 1 shows

the arena ALR. Note that in ALR at the pivot state x player 1 has again three
available actions, as in the initial arena A.

Since the game (ALR, u) is controlled by player 1 he has in this game an
optimal positional strategy σ


LR. Now let us look which action is chosen by σ

LR

at the pivot state, we can have either target(σ

LR(x)) ∈ SL or target(σ


LR(x)) ∈
SR. Exchanging if necessary “left” and “right”, we can assume without loss of
generality that

target(σ

LR(x)) ∈ SL . (13)

Under condition (13) it turns out that the strategy

σ
 := σ

L (14)

is optimal for player 1 in the game (A, u)
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Fig. 1. Construction of ALR

It remains to define an optimal strategy τ 
 for player 2 on A. Let h be a
finite history in A with target(h) ∈ S2, then

τ 
(h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ 

L(target(h)) if either h does not contain any action with source x

or the last such action belongs to AL(x),
τ 

R(target(h)) if h contains at least one action with source x

and the last such action belongs to AR(x).
(15)

Thus player 2 applies in τ 
 either the strategy τ 

L or τ 


R and which of the two
strategies is chosen depends on the action taken by player 1 at the last passage
through the pivot state. To implement the strategy τ 
 one needs a memory, albeit
a finite memory taking two values L and R is sufficient. The initial memory value
is L. Every time the play traverses the pivot state x player 2 observes the action
taken by player 1 and updates his memory either to L or to R depending on
whether this action belongs to AL(x) or to AR(x).

Up to the next visit to x player 2 uses either the strategy τ 

L or τ 


R depending
on the memory value.

We shall show that strategies σ
 and τ 
 defined by (13) and (15) are optimal
in the game over A.

Let s ∈ S and consider the play pA(s, σ
, τ 
). From (13) it follows that player 1
chooses during this play at each passage through x the same left hand side action
from AL(x), however in this case player 2 plays all the time using the strategy τ 


L,
thus

pA(s, σ
, τ 
) = pA(s, σ

L, τ 


L) = pAL(s, σ

L, τ 


L) . (16)
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Let τ be any strategy of player 2 onA and let τ ’ be the restriction of this strategy
to histories in AL. Obviously, τ ’ is a valid strategy on AL and pAL(s, σ


L, τ ′) =
pA(s, σ


L, τ) = pA(s, σ
, τ). On the other hand, u(pAL(s, σ

L, τ 


L)) ≤ u(pAL(s, σ

L,

τ ′)) by optimality of σ

L, τ 


L on AL. These facts and (16) imply

u(pA(s, σ
, τ 
)) ≤ u(pA(s, σ
, τ)) . (17)

Now let σ be any strategy of player 1 on A. This strategy can be transformed
to a strategy σLR on ALR in the following way.

Let
π : SL ∪ SR → S

be the mapping from the states of ALR to the states of A such that π(sL) =
π(sR) = s for all s ∈ S. This mapping can be extended to actions by putting
π((y′, r, y′′)) = (π(y′), r, π(y′′)) for any states y′, y′′ ∈ SL ∪SR and next to finite
and infinite histories, for a history h = a1a2 . . . in ALR, π(h) = π(a1)π(a2) . . .
is a history in A. Now for any history h = a1 . . . an in ALR with the target
y := target(h) controlled by player 1 we define

σLR(h) =

{
πL(σ(π(h))) if target(h) ∈ SL = UL ∪ {x},
πL(σ(π(h))) if target(h) ∈ UR,

(18)

where πL and πR were defined in (11). Thus, intuitively, when playing according
to σLR player 1 takes the projection π(h) of the history h onto A, applies the
strategy σ which gives him an action (s, r, t) := σ(π(h)) in A. The target state of
h, target(h), is either the state sL ∈ UL ∪ {x} or the state sR ∈ UR. In the first
case player 1 executes the action πL((s, r, t)) = (sL, r, tL), in the second case he
executes πR((s, r, t)) = (sR, r, tR).

Let pALR(sL, σLR, ·) be the play in ALR starting at a left hand side state
sL ∈ SL and consistent with σLR (we left out here the strategy of player 2
since he has only one strategy on ALR and therefore it is useless to specify it
explicitly). From the construction of ALR and definitions (18) and (15) of σLR

and τ 
 it follows that for any strategy σ of player 1 on A

pA(s, σ, τ 
) = π(pALR(sL, σLR, ·)), (19)

Since σ

LR is an optimal positional strategy for player 1 in (ALR, u) we have

u(pALR(sL, σLR, ·)) ≤ u(pALR(sL, σ

LR, ·)). (20)

The play pALR(sL, σ

LR, ·) starts in the left hand side state sL and is consistent

with the strategy σ

LR that, according to (13), chooses at the pivot state x a

left hand side action, therefore this play traverses uniquely the left hand side
states SL. We can define for player 1 a positional strategy π ◦ σ


LR ◦ πL on AL

that corresponds to the left hand side part of the strategy σ

LR: for s ∈ S1,

π ◦σ

LR ◦πL(s) = π(σ


LR(sL)). That we have defined in this way a valid strategy
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for player 1 on AL is guaranteed by (13). Since player 2 is constrained in ALR

to play on SL according to the strategy τ 

L we can see that applying the strategy

σ

LR for a play starting at sL in ALR gives, modulo the renaming, the same

result as applying the strategies π ◦ σ

LR ◦ πL and τ 


L in AL for a play staring at
s, formally

π(pALR(sL, σ

LR, ·)) = pAL(s, π ◦ σ


LR ◦ πL, τ 

L). (21)

Eq. (19) and (21) imply the equality of corresponding rewards sequences, i.e.
also the equality of corresponding payoffs while by optimality σ


L and τ 

L in AL

we have u(pAL(s, π ◦ σ

LR ◦ πL, τ 


L)) ≤ u(pAL(s, σ

L, τ 


L)).
Putting together the last inequality and (16), (19), (20), (21) we deduce

u(pA(s, σ, τ 
)) ≤ u(pA(s, σ
, τ 
).

This and (17) imply the optimality of strategies σ
 and τ 
 in the game (A, u).
Our problem is that the optimal strategy of player 2 constructed above is not

positional, however, the remedy is simple. Consider the game with the payoff
mapping −u and where the roles of players 1 and 2 are permuted, i.e. it is
player 1 that pays to player 2 the amount −u(p) after a play p. Thus player
2 wants to maximize the payment while player 2 tries to minimize it. In the
new game choose as the pivot a state controlled by player 2 with at least two
available actions, then the construction above repeated in this new setting will
provide optimal strategies σ‡ and τ‡ for players 1 and 2 in the new game with
τ‡ being positional. However optimal strategies in the new and the old games
are the same thus τ‡ is an optimal positional strategy for player 2 in (A, u). By
exchangeability property for optimal strategies, σ
 and τ‡ constitute a pair of
optimal positional strategies in the game (A, u). ��

4 Final Remarks

In Sect. 3 and in Theorem 3 instead of payoff mappings we could use, without any
substantial modification, preference relations [12] over infinite reward sequences.
Such a relation � is a binary complete transitive relation (where “complete”
means that a � b or b � a for all a, b in the domain of �). Obviously each
payoff mapping u defines a preference relation �u, for infinite finitely generated
sequences of rewards r and r′, r �u r′ iff u(r) ≤ u(r′). Although, at least in
principle, preference relations can be represented by real valued payoffs, this
representation is not always natural and therefore it may be advantageous to
reformulate Sect. 3 and trade payoffs for preference relations.

4.1 Nash Equilibria

Suppose that we have a finite set {1, . . . , N} of players and the set of states is
partitioned onto N disjoint sets S = S1∪ . . .∪SN , Si being the states controlled
by player i. Again, if the current state is s then the player controlling s chooses



70 W. Zielonka

and executes an action available at s. Now each player i has his own payoff
mapping ui that gives for each infinite finitely generated sequence of rewards r
the payoff ui(r) of player i. A strategy profile σ = (σ1, . . . , σN ) is an N -tuple of
strategies, where σi is a strategy of player i. Fixing a strategy profile σ and an
initial state s ∈ S we have exactly one play pA(s, σ) starting at s and consistent
with all strategies σ. For a strategy profile σ and a strategy σ′

i of player i by
(σ−i, σ′

i) we denote the strategy profile obtained from the profile σ by replacing
σi by σ′

i.
A strategy profile σ is in Nash equilibrium if for each i, 1 ≤ i ≤ N , and each

strategy σ′
i of player i, ui(pA(s, (σ−i, σ′

i))) ≤ ui(pA(s, σ)) . From the result of
Sect. 3, using the trigger strategy described in [12], we can deduce that

Proposition 5. Suppose that for all i, 1 ≤ i ≤ N , for one-player games over
finite arenas with payoffs ui and −ui there exist optimal positional strategies.
Then for each N -person game with payoff profile (u1, . . . , uN) over a finite arena
there exists a Nash equilibrium profile σ where the strategy σi of each player i is
a finite memory strategy.
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Abstract. Schaefer proved in 1978 that the Boolean constraint satis-
faction problem for a given constraint language is either in P or is NP-
complete, and identified all tractable cases. Schaefer’s dichotomy theorem
actually shows that there are at most two constraint satisfaction prob-
lems, up to polynomial-time isomorphism (and these isomorphism types
are distinct if and only if P �= NP). We show that if one considers AC0

isomorphisms, then there are exactly six isomorphism types (assuming
that the complexity classes NP, P,⊕L, NL, and L are all distinct).

1 Introduction

In 1978, Schaefer classified the Boolean constraint satisfaction problem and
showed that, depending on the allowed relations in a propositional formula, the
problem is either in P or is NP-complete [Sch78]. This famous “dichotomy theo-
rem” does not consider the fact that different problems in P have quite different
complexity, and there is now a well-developed complexity theory to classify dif-
ferent problems in P. Furthermore, in Schaefer’s original work (and in the many
subsequent simplified presentations of his theorem [CKS01]) it is already appar-
ent that certain classes of constraint satisfaction problems are either trivial (the
0-valid and 1-valid relations) or are solvable in NL (the bijunctive relations) or
⊕L (the affine relations), whereas for other problems (the Horn and anti-Horn
relations) he provides only a reduction to problems that are complete for P.
Is this a complete list of complexity classes that can arise in the study of con-
straint satisfaction problems? Given the amount of attention that the dichotomy
theorem has received, it is surprising that no paper has addressed the question
of how to refine Schaefer’s classification beyond some steps in this direction in
Schaefer’s original paper (see [Sch78, Theorem 5.1]).

� Supported in part by DFG grant Vo 630/5-1.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 71–82, 2005.
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Our own interest in this question grew out of the observation that there
is at least one other fundamental complexity class that arises naturally in the
study of Boolean constraint satisfaction problems that does not appear in the
list (AC0, NL,⊕L, P) of feasible cases identified by Schaefer. This is the class SL
(symmetric logspace) that has recently been shown by Reingold to coincide with
deterministic logspace [Rei05]. (Theorem 5.1 of [Sch78] does already present ex-
amples of constraint satisfaction problems that are complete for SL.) Are there
other classes that arise in this way? We give a negative answer to this question. If
we examine constraint satisfaction problems using AC0 reducibility ≤AC0

m , then
we are able to show that the following list of complexity classes is exhaustive:
Every constraint satisfaction problem not solvable in coNLOGTIME is isomor-
phic to the standard complete set for one of the classes NP, P,⊕L, NL, or L
under isomorphisms computable and invertible in AC0.

Our proofs rely heavily on the connection between complexity of constraint
languages and universal algebra (in particular, the theory of polymorphisms and
clones) which has been very useful in analyzing complexity issues of constraints.
An introduction to this connection can be found in [Pip97b], and we recall some
of the necessary definitions in the next section. One of the contributions of this
paper is to point out that, in order to obtain a complete classification of con-
straint satisfaction problems (up to AC0 isomorphism) it is necessary to go
beyond the partition of constraint satisfaction problems given by their polymor-
phisms, and examine the constraints themselves in more detail.

2 Preliminaries

An n-ary Boolean relation is a subset of {0, 1}n. For a set V of variables, a
constraint application C is an application of an n-ary Boolean relation R to an
n-tuple of variables (x1, . . . , xn) from V . An assignment I : V → {0, 1} satisfies
the constraint application R(x1, . . . , xn) iff (I(x1), . . . , I(xn)) ∈ R. In this paper
we use the standard correspondence between Boolean relations and propositional
formulas: A formula ϕ(x1, . . . , xn) defines the relation Rϕ = {(α1, . . . , αn) |
ϕ(α1, . . . , αn) = 1}. The meaning should always be clear from the context.

A constraint language is a finite set of Boolean relations. The Boolean Con-
straint Satisfaction Problem over a constraint language Γ (CSP(Γ )) is the ques-
tion if a given set ϕ of Boolean constraint applications using relations from Γ is
simultaneously satisfiable, i.e. if there exists an assignment I : V → {0, 1}, such
that I satisfies every C ∈ ϕ. It is easy to see that the Boolean CSP over some
language Γ is the same as satisfiability of conjunctive Γ -formulas. A well-known
restriction of the general satisfiability problem is 3SAT, which can be seen as
the CSP problem over the language Γ3SAT = {(x1∨x2 ∨x3), (x1 ∨x2∨x3), (x1 ∨
x2 ∨ x3), (x1 ∨ x2 ∨ x3)}.

There is a very useful connection between the complexity of the CSP problem
and universal algebra, which requires a few definitions:

A class of Boolean functions is called closed or a clone, if it is closed under
superposition. (As explained in the surveys [BCRV03, BCRV04] being closed
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under superposition is essentially the same thing as containing all projections
(in particular, the identity) and being closed under arbitrary composition.) Since
the intersection of clones is again a clone, we can define, for a set B of Boolean
functions, 〈B〉 as the smallest clone containing B.

It is clear that 〈B〉 is the set of Boolean functions that can be calculated by
Boolean circuits using only gates for functions from B [BCRV03, Pip97a].

It is easy to see that the set of clones forms a lattice. For the Boolean case,
Emil Post identified all clones and their inclusion structure (Figure 1). A de-
scription of the clones and a list of bases for each one can be found in Table 1.
The clones are interesting for the study of the complexity of CSPs, because the
complexity of CSP(Γ ) depends on the closure properties of the relations in Γ ,
which we will define next.

Definition 2.1. A k-ary relation R is closed under an n-ary Boolean func-
tion f , or f is a polymorphism of R, if for all x1, . . . , xn ∈ R with xi =
(xi[1], xi[2], . . . , xi[k]), we have

(f(x1[1], . . . , xn[1]), f(x1[2], . . . , xn[2]), . . . , f(x1[k], . . . , xn[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R), and for a set Γ of
Boolean relations we define Pol(Γ ) = {f | f ∈ Pol(R) for every R ∈ Γ}. For a
set B of Boolean functions, Inv(B) = {R | B ⊆ Pol(R)} is the set of invariants
of B.

It is easy to see that every set of the form Pol(Γ ) is a clone. The operators
Pol and Inv form a “Galois connection” between the lattice of clones and cer-
tain sets of Boolean relations, which is very useful for complexity analysis of the
CSP problem. The concept of relations closed under certain Boolean functions is
interesting, because many properties of Boolean relations can be equivalently for-
mulated using this terminology. For example, a set of relations can be expressed
by Horn-formulas if and only if every relation in the set is closed under the binary
AND function. Horn is one of the properties that ensures the corresponding sat-
isfiability problem to be tractable. More generally, tractability of formulas over
a given set of relations only depends on the set of its polymorphisms. A proof of
the following theorem can be found in e.g. [JCG97] and [Dal00]:

Theorem 2.2. If Pol(Γ2) ⊆ Pol(Γ1), then every R ∈ Γ1 can be expressed by a
formula

R(x1, . . . , xn) ⇐⇒ ∃y1, . . . , ymR1(z1,1, . . . , z1,n1) ∧ · · · ∧Rk(zk,1, . . . , zk,nk
)

∧(xi1 = xi2 ) ∧ (xi3 = xi4) ∧ · · · ∧ (xir−1 = xir )

for some Ri ∈ Γ2 (where zi,j ∈ {x1, . . . , xn, y1, . . . , ym}).
Therefore:

Theorem 2.3. Let Γ1 and Γ2 be sets of Boolean relations such that Γ1 is finite
and Pol(Γ2) ⊆ Pol(Γ1). Then CSP(Γ1)≤p

mCSP(Γ2).
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Fig. 1. Graph of all closed classes of Boolean functions

Trivially, the binary equality predicate = is closed under every Boolean func-
tion. Thus, = is contained in every set Inv(B) for a clone B (these sets often
are called co-clones). On the other hand, every relation is closed under the pro-
jection function, φn

i (x1, . . . , xn) = xi. It is clear that when a set of relations
is “big”, the set of its polymorphisms is “small”. So the most general case is a
constraint language Γ such that Pol(Γ ) only contains the projections, and these
cases of the CSP are NP-complete. An example for this is the language Γ3SAT

from above: It can be shown that Pol(Γ3SAT) only contains the projections, and
therefore 3SAT is NP-complete.
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Table 1. List of all closed classes of Boolean functions, and their bases (for definitions
of these properties, see e.g. [BCRV03])

Name Definition Base
BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotonic } {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {→, dual(hn)}

S0 {f ∈ BF | f is 0-separating } {→}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}

S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01 Sn

0 ∩ M {dual(hn), 1}
S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(hn)}
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ z), hn}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11 Sn

1 ∩ M {hn, 0}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩ M {x ∧ (y ∨ z), hn}
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f |f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩ M {xy ∨ yz ∨ xz}
L {f |f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V {f | f is constant or a n − ary OR function}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f | f is constant or a n − ary AND function}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

The function hn is defined as:

hn(x1, . . . , xn+1) =
n+1∨
i=1

x1 ∧ x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1

As we have seen in the above theorem, the complexity of the CSP problem
for a given constraint language is determined by the set of its polymorphisms. At
least this is the case when considering gross classifications of complexity (such
as whether a problem is in P or is NP-complete). However, when we examine
finer complexity classifications, such as determining the circuit complexity of a
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constraint satisfaction problem, then the set of polymorphisms of a constraint
language Γ does not completely determine the complexity of CSP(Γ ), as can
easily be seen in the following important example:

Example 2.4. Let Γ1 = {x, x}, Γ2 = Γ1 ∪ {=}. It is obvious that Pol(Γ1) =
Pol(Γ2); the set of polymorphisms is the clone R2. Formulas over Γ1 only contain
clauses of the form x or x for some variable x, whereas in Γ2, we additionally have
the binary equality predicate. We will now see that CSP(Γ1) has very different
complexity than CSP(Γ2).

Satisfiability of a Γ1-formula ϕ can be decided in coNLOGTIME. (Such a
formula is unsatisfiable if and only if for some variable x, both x and x are
clauses.)

In contrast, CSP(Γ2) is complete for L under ≤AC0

m reductions: The comple-
ment of the graph accessibility problem (GAP) for undirected graphs, which is
known to be complete for L [Rei05], can be reduced to CSP(Γ2). Let G = (V, E)
be a finite, undirected graph, and s, t vertices in V . For every edge (v1, v2) ∈ E,
add a constraint v1 = v2. Also add s and t. It is obvious that there exists a path
in G from s to t if and only if the resulting formula is not satisfiable. In fact, it
is easy to see that CSP(Γ2) is not only hard for L, but it also lies within L so it
is complete for L under ≤AC0

m reductions.

The lesson to learn from this example is that the usual reduction among
constraint satisfaction problems arising from the same co-clone is not an ≤AC0

m

reduction. The following lemma summarizes the main relationships.

Lemma 2.5. Let Γ1 and Γ2 be sets of relations over a finite set, where Γ1 is
finite and Pol(Γ2) ⊆ Pol(Γ1). Then CSP(Γ1)≤AC0

m CSP(Γ2 ∪ {=})≤log
m CSP(Γ2).

Proof. Since the local replacement from Theorem 2.2 can be computed in AC0,
this establishes the first reducibility relation (note that variables are implicitly
existentially quantified and therefore the quantifiers do not need to be written).

For the second reduction, we need to eliminate all of the =-constraints. We
do this by identifying variables xi1 and xi2 if there is an =-path from xi1 to xi2

in the formula. By [Rei05], this can be computed in logspace. ��

3 Classification

Theorem 3.1. Let Γ be a finite set of Boolean relations.

– If I0 ⊆ Pol(Γ ) or I1 ⊆ Pol(Γ ), then every constraint formula over Γ is
satisfiable, and therefore CSP(Γ ) is trivial.

– If Pol(Γ ) ∈ {I2, N2}, then CSP(Γ ) is ≤AC0

m -complete for NP.
– If Pol(Γ ) ∈ {V2, E2}, then CSP(Γ ) is ≤AC0

m -complete for P.
– If Pol(Γ ) ∈ {L2, L3}, then CSP(Γ ) is ≤AC0

m -complete for ⊕L.
– If S00 ⊆ Pol(Γ ) ⊆ S2

00 or S10 ⊆ Pol(Γ ) ⊆ S2
10 or Pol(Γ ) ∈ {D2, M2}, then

CSP(Γ ) is ≤AC0

m -complete for NL.
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– If Pol(Γ ) ∈ {D1, D}, then CSP(Γ ) is ≤AC0

m -complete for L.
– If S02 ⊆ Pol(Γ ) ⊆ R2 or S12 ⊆ Pol(Γ ) ⊆ R2, then either CSP(Γ ) is in

coNLOGTIME, or CSP(Γ ) is complete for L under ≤AC0

m . There is an al-
gorithm deciding which case occurs.

Theorem 3.1 is a refinement of Theorem 5.1 from [Sch78] and Theorem 6.5
from [CKS01]. It is immediate from a look at Figure 1 that this covers all cases.
The proof follows from the lemmas in the following subsections. First, we mention
a corollary:

Corollary 3.2. For any set of relations Γ , CSP(Γ ) is AC0-isomorphic either to
0Σ∗ or to the standard complete set for one of the following complexity classes:
NP, P,⊕L, NL, L.

Proof. It is immediate from Theorem 3.1 that if CSP(Γ ) is not in AC0, then it
is complete for one of NP, P, NL, L, or ⊕L under ≤AC0

m reductions. By [Agr01]
each of these problems is AC0-isomorphic to the standard complete set for its
class. On the other hand, if CSP(Γ ) is solvable in AC0 then it is an easy matter
to reduce any problem A ∈ AC0 to CSP(Γ ) via a length-squaring, invertible
AC0 reduction (by first checking if x ∈ A, and then using standard padding
techniques to map x to a long satisfiable instance if x ∈ A, and mapping x to a
long syntactically incorrect input if x �∈ A). AC0 isomorphism to the standard
complete set now follows by [ABI97] (since the standard complete set is complete
under invertible, length-squaring reductions). ��

3.1 Upper Bounds: Algorithms

First, we state results that are well-known; see e.g. [Sch78, BCRV04]:

Proposition 3.3. Let Γ be a Boolean constraint language.

1. If Pol(Γ ) ∈ {I2, N2}, then CSP(Γ ) is NP-complete. Otherwise, CSP(Γ ) ∈ P.
2. L2 ⊆ Pol(Γ ) implies CSP(Γ ) ∈ ⊕L.
3. D2 ⊆ Pol(Γ ) implies CSP(Γ ) ∈ NL.
4. I0 ⊆ Pol(Γ ) or I1 ⊆ Pol(Γ ) implies every instance of CSP(Γ ) is satisfiable

by the all-0 or the all-1 tuple, and therefore CSP(Γ ) is trivial.

Lemma 3.4. Let Γ be a constraint language.

1. If S02 ⊆ Pol(Γ ) or S12 ⊆ Pol(Γ ), then CSP(Γ ) ∈ L.
2. If S00 ⊆ Pol(Γ ) or S10 ⊆ Pol(Γ ), then CSP(Γ ) ∈ NL.

Proof. First we consider the cases S00 and S02. The following algorithm is based
on the proof for Theorem 6.5 in [CKS01]. Observe that there is no finite set Γ
such that Pol(Γ ) = S00 (Pol(Γ ) = S02, resp.). Therefore, Pol(Γ ) ⊇ Sk

00 (Pol(Γ ) ⊇
Sk

02, resp.) for some k ≥ 2. Note that Pol({ORk, x, x,→, =}) = Sk
00 (ORk

refers to the k-ary OR relation) and Pol({ORk, x, x, =}) = Sk
02 ([BRSV05]),
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and therefore by Lemma 2.5 we can assume w.l.o.g. Γ = {ORk, x, x,→, =}
(Γ = {ORk, x, x, =}, resp.).

Now the algorithm works as follows: For a given formula ϕ over the relations
mentioned above, consider every positive clause xi1 ∨ · · · ∨ xik

. The clause is
satisfiable if and only if there is one variable in {xi1 , . . . , xik

} which can be set
to 1 without violating any of the x and x → y clauses (without violating any of
the x, resp.). For a variable y ∈ {xi1 , . . . , xik

}, this can be checked as follows:
For each clause x, check if there is an →-=-path (=-path, resp.) from y to

x, by which we mean a sequence yR1z1, z1R2z2, . . . , zm−1Rmx for Ri ∈ {→, =}
(Ri ∈ {=}, resp.). (This is just an instance of the GAP problem on directed
graphs (undirected graphs, resp.), which is the standard complete problem for
NL (L, resp.).) If one of these is the case, then y cannot be set to 1. Otherwise, we
can set y to 1, and the clause is satisfiable. If a clause is shown to be unsatisfiable,
reject. If no clause is shown to be unsatisfiable in this way, accept.

The S10- and S12-case are analogous; in these cases we have NAND instead
of OR. ��

Our final upper bound in this section is combined with a hardness result, and
thus serves as a bridge to the next two sections.

Lemma 3.5. Let Γ be a constraint language. If Pol(Γ ) ∈ {D1, D}, then CSP(Γ )
is ≤AC0

m -complete for L.

Proof. Note that Pol({⊕}) = D and Pol({R}) = D1, where R = x1 ∧ (x2 ⊕ x3).
Thus by Lemmas 2.5 and 3.7, and Proposition 3.6, we can restrict ourselves to
the cases where Γ consists of these relations only. The satisfiability problem for
formulas that are conjunctions of clauses of the form x or y ⊕ z is complete
for L by Problem 4.1 in Section 7 of [AG00], which proves completeness for the
case Pol(Γ ) = D1 and thus proves membership in L for the case Pol(Γ ) = D. It
suffices to prove hardness in the case Pol(Γ ) = D.

This can easily be shown by introducing a new variable f and replacing
clauses x with x⊕ f (observe that ⊕ is closed under negation). ��

3.2 Removing the Equality Relation

Lemma 2.5 reveals that polymorphisms completely determine the complexity of a
given constraint satisfaction problem only if the equality relation is contained in
the corresponding constraint language. In Example 2.4 we saw that this question
does lead to different complexity results. We now show that for most constraint
languages, we can get equality “for free” and therefore the question of whether
we have equality directly or not does not make a difference.

We say a constraint language Γ can express the relation R(x1, ..., xn) if
there is a formula R1(z1

1 , . . . , z1
n1

) ∧ · · · ∧ Rl(zl
1, . . . , z

l
nl

), where Ri ∈ Γ and
zi

j ∈ {y1, . . . , yn, w1, . . . , wr} (the zi
j ’s need not be distinct) such that for each

assignment of values (c1, . . . , cn) to the variables y1, . . . , yn, R(c1, ..., cn) evalu-
ates to TRUE if and only if there is an assignment of values to the variables
w1, . . . , wr such that all Ri-clauses, with yi replaced by ci, evaluate to TRUE.
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The following proposition is immediate.

Proposition 3.6. Let Γ be a constraint language. If Γ can express the equality
relation, then CSP(Γ ∪ {=}) ≤AC0

m CSP(Γ ).

Lemma 3.7. Let Γ be a finite set of Boolean relations where Pol(Γ ) ⊆ M2,
Pol(Γ ) ⊆ L, or Pol(Γ ) ⊆ D. Then Γ can express the equality relation.

Proof. The relation “x → y” is invariant under M2. Thus given any such Γ , by
Theorem 2.2 we can construct “x→ y” with help of new existentially quantified
variables that do not appear anywhere else in the formula. Equality clauses
between the variables x and y do not appear, since x = y does not hold for every
element of the relation (equality involving existentially quantified variables does
not appear in the construction given in Theorem 2.2). Hence Γ can express x = y
with x→ y ∧ y → x.

For the L-case, apply an analogous argument for the relation R4
even, which

consists of all 4-tuples with an even number of 1’s. Note that x = y is expressed
by R4

even(z, z, x, y). If Pol(Γ ) ⊆ D, then we can express x⊕y, and thus we express
equality by x = y ⇐⇒ (x⊕ z) ∧ (z ⊕ y). ��

As noted in Example 2.4, for some classes, the question whether equality is
contained in the constraint language or not does lead to different complexities,
namely complete for L or contained in coNLOGTIME. We now show that there
are no intermediate complexity classes arising in these cases. As we saw in the
lemmas above, this only concerns constraint languages Γ such that Pol(Γ ) ⊇ Sm

02

or Pol(Γ ) ⊇ Sm
12 holds for some m ≥ 2.

Lemma 3.8. Let R be a relation such that Pol(R) ⊇ S02 (Pol(R) ⊇ S12,
resp.). Let S = ORm (S = NANDm, resp.). Then either CSP({x, x, S, R}) ∈
coNLOGTIME or R can express equality (in which case CSP({x, x, S, R}) is
complete for L under AC0 reductions). There is an algorithm deciding which of
the cases occurs.

Proof. If Pol(R) ⊇ S02, then as in the proof of Lemma 3.4 we know that Pol(R) ⊇
Sm

02 for some m ≥ 2. Thus we know from Theorem 2.2 that R can be expressed
using equality, literals, and the m-ary OR predicate, since Pol({x, x, ORm}) =
Sm

02 ([BRSV05]). Let ϕ be a representation of R in this form. We simplify ϕ as
follows (without loss of generality, assume that R is not the empty relation):

1. For any clause x1 = x2 where x1 or x2 appears as a literal, remove this
clause and insert the corresponding literals for x1 and x2. Repeat until no
such clause remains.

2. Remove variables from OR-clauses which appear as negative literals.
3. For an OR-clause containing variables connected with =, remove all of them

except one.

Note that this does not change the relation represented by the formula. If
no =-clause remains, then R can be expressed using only OR and literals and
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therefore leads to a CSP solvable in coNLOGTIME (a CSP-formula using only
these relations is unsatisfiable iff there appear two contradictory variables or an
OR-clause containing only variables which also appear as a negative literal).

Otherwise, let x1 = x2 be a remaining clause. We existentially quantify all
variables in R except x1 and x2, and call the resulting relation R′. We that
claim R′ is the equality relation. Let (x1, x2) ∈ R′. Since x1 = x2 appears in the
defining formula, x1 = x2 holds. For the other direction, let x1 = x2. We assign
the value 0 to every existentially quantified variable that appears as a negative
literal, the same value as x1 to every variable connected to x1 via an =-path, and
the value 1 to all others. Obviously, all literals are satisfied this way: Remember
x1 and x2 do not appear as literals due to step 1, and there are no contradictory
literals since R is nonempty. All equality clauses are satisfied because none of
the variables appearing here also appear as literals. Let (x1 ∨ · · · ∨ xj) be a
clause. None of these variables appear as negative literals due to step 2, and at
most one of them can be =-connected to x1 and x2 due to step 3. Therefore,
the assignment constructed above assigns 1 to at least one of the occurring
variables, thus satisfying the formula. Hardness for L now follows with the same
construction as in Example 2.4.

It is decidable which of these cases occurs: Since the only way to obtain
equality is by existentially quantifying all variables except two, this is a finite
number of combinations which can be easily verified by an algorithm. An anal-
ogous argument can be applied to the dual case Pol(R) ⊇ Sm

12. ��

3.3 Lower Bounds: Hardness Results

One technique of proving hardness for constraint satisfaction problems is to re-
duce certain problems related to Boolean circuits to CSPs. In [Rei01], many
decision problems regarding circuits were discussed. In particular, the “Satisfia-
bility Problem for B Circuits” (SATC(B)) is very useful for our purposes here.
SATC(B) is the problem of determining if a given Boolean circuit with gates
from B has an input vector on which it computes output “1”.

Lemma 3.9. Let Γ be a constraint language such that Pol(Γ ) ∈ {E2, V2}. Then
CSP(Γ ) is ≤AC0

m -hard for P.

Proof. It is well-known that the satisfiability problem for Horn and anti-Horn
formulas is complete for P. To show that this hardness results holds under AC0

reductions, it is easy to construct a reduction from SATC(S11), by just simulating
every gate in the circuit as an anti-Horn clause. The result then follows from
[Rei01]. The dual case for Horn-formulas is analogous. ��
Lemma 3.10. Let Γ be a constraint language such that Pol(Γ ) ∈ {L2, L3}.
Then CSP(Γ ) is ≤AC0

m -hard for ⊕L.

Proof. Assume that Γ contains =. The proof of the general case then follows from
Lemmas 2.5 and 3.7, and Proposition 3.6. For the L2-case, we show SATC(L0)
≤AC0

m CSP(Γ ) for a constraint language Γ with Pol(Γ ) = L2. The result then
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follows with [Rei01]. Since we can express xout and x1 = x2⊕ x3 as L2-invariant
relations, we can directly reproduce the given L0-circuit.

This does not work for L3, since we cannot express x or x in L3. However,
since L3 is basically L2 plus negation, we can “extend” a given relation from
Inv(L2) so that it is invariant under negation, by simply doubling the truth-table.
More precisely, given a constraint language Γ such that Pol(Γ ) = L2, we show
that there is a constraint language Γ ′ such that Pol(Γ ′) = L3 and CSP(Γ ) ≤AC0

m

CSP(Γ ′). For an n-ary relation R ∈ Γ , let R = {(x1, . . . , xn) | (x1, . . . , xn) ∈ R},
and let R′ be the (n + 1)-ary relation R′ = ({0} ×R) ∪ ({1} ×R). It is obvious
that R′ is closed under N2 and under L2, and hence under L3. Let ϕ be an

instance of CSP(Γ ). Let Γ ′ = {R′ | R ∈ Γ}. Let ϕ =
n∧

i=1

Rn(xi1 , . . . , xini
). We

set ϕ′ =
n∧

i=1

R′
n(t, xi1 , . . . , xini

) for a new variable t.

Let ϕ ∈ CSP(Γ ), I |= ϕ. Then I ∪ {t = 0} |= ϕ′.
Let ϕ′ ∈ CSP(Γ ), I ′ |= ϕ′. Without loss of generality, let I ′(t) = 0 (otherwise,

observe I ′ |= ϕ′ holds as well), therefore I ′{t = 0} |= ϕ, and thus CSP(Γ ) ≤AC0

m

CSP(Γ ′) holds. ��
With the same technique as in Example 2.4, we can examine the complexity

of CSPs invariant under M2. The relation x → y is invariant under M2, and thus
we can model search in directed graphs here.

Lemma 3.11. Let Γ be a constraint language such that Pol(Γ ) ⊆ M2. Then
CSP(Γ ) is ≤AC0

m -hard for NL.

4 Conclusion and Further Research

We have obtained a complete classification for constraint satisfaction problems
under AC0 isomorphisms, and identified six isomorphism types corresponding
to the complexity classes NP, P, NL,⊕L, L, and AC0. One can also show that
all constraint satisfaction problems in AC0 are either trivial or are complete for
coNLOGTIME (under logtime-uniform projections).

One natural question for further research concerns constraint satisfaction
problems over larger domains. In particular, it would be interesting to see if the
dichotomy theorem of Bulatov [Bul02] over three-element domains can be refined
to obtain a complete classification up to AC0-isomorphism.
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[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean
blocks, part II: Constraint satisfaction problems. SIGACT News, 35(1):22–
35, 2004.
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Universitat Politécnica de Catalunya, 2000.

[JCG97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of con-
straints. Journal of the ACM, 44(4):527–548, 1997.

[Pip97a] N. Pippenger. Pure versus impure Lisp. ACM Transactions on Program-
ming Languages and Systems, 19:223–238, 1997.

[Pip97b] N. Pippenger. Theories of Computability. Cambridge University Press,
Cambridge, 1997.

[Rei01] S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich
Mathematik und Informatik, Universität Würzburg, 2001.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In STOC ’05:
Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 376–385, New York, NY, USA, 2005. ACM Press.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings
10th Symposium on Theory of Computing, pages 216–226. ACM Press,
1978.



On the Number of Random Digits Required in
MonteCarlo Integration of Definable Functions
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Abstract. Semi-algebraic objects are subsets or functions that can be
described by finite boolean combinations of polynomials with real coef-
ficients. In this paper we provide sharp estimates for the the precision
and the number of trials needed in the MonteCarlo integration method
to achieve a given error with a fixed confidence when approximating the
mean value of semi-algebraic functions. Our study extends to the func-
tional case the results of P. Koiran ([7]) for approximating the volume of
semi-algebraic sets.

Keywords: MonteCarlo algorithms, discrepancy bounds, learning
theory, Chebyshev inequalities, semi-algebraic geometry.

1 Introduction

Numerical methods that are known as MonteCarlo methods can be loosely de-
scribed as statistical simulation methods, where statistical simulation is defined
in quite general terms to be any method that uses sequences of random numbers
to perform the simulation. MonteCarlo methods have been used for centuries,
but only in the past several decades has the technique gained the status of a
full-fledged numerical method capable of addressing the most complex applica-
tions in a wide field of areas, including many subfields of physics, like statistical
physics, high energy physics, biology or analysis of financial markets.

In a MonteCarlo method many simulations must be performed (multiple
“trials” or “histories”) and the desired result is taken as an average over the
number of observations (which may be a single observation or perhaps millions
of them). In many practical applications, one wishes to predict the error in this
average result, and hence an estimate of the number of MonteCarlo trials that
are needed to achieve a given error is necessary. More precisely, a major goal
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whilist studying the theoretical performance of some MonteCarlo method is to
estimate as a function of ε > 0 and δ > 0 how large the number of trials m needs
to be in order to obtain an ε- approximation of the approximating object with
confidence at least 1− δ.

The random numbers used in computer implementations of basic MonteCarlo
integration (described in Sect. 2) are usually referred to as pseudo-random num-
bers, since they are not truly random. Pseudo-random numbers are produced
by the computer deterministically by simple algorithms that generate integer
numbers up to a range N . To obtain real numbers in the interval [0, 1] one di-
vides therefore by N . After this reduction they work directly with floating point
numbers. In these algorithms (see [20] for a survey exposition) pseudo-random
numbers are generated within a given fixed precision depending on character-
istics like the programming language used, the computer platform, and other
implementation features. On the other hand the theoretical study of the number
of MonteCarlo trials needed to achieve a given error bound based on quantitative
estimates of the convergence of stochastic processes as Central Limit Theorem
or Chebyshev-like estimates, assumes, in general, infinite precision generation of
random numbers. This feature has been pointed out in [7] when approximating
the volume of semi-algebraic sets and it is mimetic while studying the size of the
sample in many learning situations. In the learning context a learning machine
is supposed to learn from randomly drawn examples and infinite precision gen-
eration of the sample is implicit in the core of the results of learning theory (see
[17], [18] and [3]).

Hence, there is a gap between theoretical studies (assuming infinite precision
generation of random points) and real-life computer limitations (where only fi-
nite precision can be achieved). The aim of this paper is to go inside this gap,
providing new mathematical tools to grasp the theoretical analysis of the error
and the number of random points needed in MonteCarlo integration and other
learning problems taking into account that only finite precision generation of
random samples can be assumed.

Our main results (Theorem 2 and Corollary 4) study the convergence of
stochastic processes predicting the mean value of a semi-algebraic function. We
take as starting point Chebyshev and Hoeffding-like inequalities. We provide
sharp estimates not only for the number of examples but also for the minimal
precision with which examples must be generated to ensure an approximation
of a given error with high confidence. Both lower bounds, on the number of
examples and the precision, are given as a function of some suitable parameters:
dimension, degree and number of polynomials involved in the description of the
semi-algebraic object. The paper is organized as follows. Section 2 describes
basic MonteCarlo integration and the statement of the main results. Section 3
and Section 4 develop the main technical tools used in this paper, that is, they
provide sharp discrepancy bounds for semi-algebraic subsets of the hypercube
[0, 1]n. Section 5 contains the proof of our main results.

As a main conclusion our results (Corollary 4) suggest the idea that even
if learning processes involving semi-algebraic objects can require an exponen-
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tial number of examples in the desired learning precision, these examples can
be drawn within a polynomial (linear) precision in the error and confidence
precision.

2 Basic MonteCarlo Integration and Statement of Main
Results

In this paper we shall be mainly concerned with the MonteCarlo integration
method that can be seen as an early instance of learning (see [3]). Suppose
that f : [0, 1]n → IR is a Lebesgue measurable function and that there exists a
constant M ≥ 0 such that |f(x)− ∫

[0,1]n
f | ≤ M almost everywhere. Let E[f ] :=∫

[0,1]n
f be the mean value of f and σ2(f) its variance. A way of approximating

the integral E[f ] consists in randomly drawing points x1, ..., xm ∈ [0, 1]n and
then, computing

Im(f) =
1
m

∑
1≤i≤m

f(xi) (1)

This method of approximating the value E[f ] relies on the following well
known fact: Im(f)→ E[f ] in probability; i.e for all ε > 0

limm→∞ prob{(x1, ..xm) ∈ [0, 1]n.m : | Im(f)− E[f ] |≤ ε} = 1 (2)

Remark 1. Using any quantitative version of the property expressed in Equation
2 above, as for instance Chebyshev inequality

prob {(x1, ..xm) ∈ [0, 1]n.m : | Im(f)− E[f ] |< ε} > 1− σ2(f)
mε2

(3)

or exponential Chebyshev-like inequalities like Hoeffding inequality (see [14])

prob {(x1, ..xm) ∈ [0, 1]n.m : | Im(f)− E[f ] |< ε} > (1− 2e−
mε2

2M2 ), (4)

it is possible to estimate how large m needs to be to ensure that the value Im(f)
defined in Equation 1 is an ε-approximation of E[f ] with confidence at least 1−δ.

Given ε ∈ (0, 1) the precision of ε is defined by pr(ε) := �− log10 ε�. Our main re-
sult combines the following Chebyshev and Hoeffding inequalities with precision.

Theorem 2. Let f : [0, 1]n → R be a measurable semi-algebraic function whose
graph can be defined by at most s real polynomials of degree at most d. Assume
that |f(x)−E[f ]| ≤ M a. e.. Let L := nm and K(n, m, s, d) := mn(4(s+2)d+1)8.
Let P be the probability that a random choice of m rational numbers x1, . . . , xm ∈
Qn ∩ [0, 1]n given with precision p > 0 satisfies∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− E[f ]

∣∣∣∣∣ < ε.

Let δ ∈ (0, 1) be any positive real number. Then
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(1) For L big enough (depending on δ), if p ∈ N is a positive integer that satisfies
the following inequality:

p ≥ log10K(n, m, s, d)− log10 δ +4log10ε+2signum(σ2(f)−1)log10(σ2(f)) (5)

it holds [C-inequality]

P > 1− (1 + δ)
σ2(f)
mε2

(6)

(2) For L big enough if p ∈ N is a positive integer that satisfies the following
inequality:

p ≥ log10K(m, n, s, d)− logδ +
mε2

M2
(7)

it holds [H-inequality]

P > (1− 2(1 + δ)e−
mε2

2M2 ) (8)

Remark 3. The reader should observe that the probability measure in Theorem 2
is defined by the uniform distribution on the finite set of rational numbers x ∈
Qn ∩ [0, 1]n given with precision p while the probability in Equations 3 and 4 is
just the Lebesgue Borel probability measure.

From Theorem 2 we get the following Corollary.

Corollary 4. Let ε, δ ∈ (0, 1) be positive real constants. Let f : [0, 1]n → R be
a measurable semi-algebraic function whose graph can be defined by at most s
real polynomials of degree at most d. Assume that |f(x) − E[f ]| ≤ M almost
everywhere. Let L := nm and K(m, n, s, d) := mn(4(s + 2)d + 1)8. Let P be the
probability that a random choice of m rational numbers x1, . . . , xm ∈ Qn∩ [0, 1]n

given with precision p > 0 satisfies∣∣∣∣∣ 1
m

m∑
i=1

f(xi)− E[f ]

∣∣∣∣∣ < ε.

Then there exit universal constants k1 and k2 such that for L big enough it holds

(1) A sufficient condition for Im(f) to be an ε -approximation of E[f ] with
confidence at least 1− δ is that

m > σ2(f)10k1(pr(ε)+pr(δ))

and

p > k2

(
signum(σ2(f)− 1)log10σ

2(f) + log10(nsd) + pr(ε) + pr(δ)
)

(2) A sufficient condition for Im(f) to be an ε -approximation of E[f ] with con-
fidence at least 1− δ is that

m > pr(δ)10k1pr(ε)M2

and
p > k2 (pr(ε) + pr(δ)log10M + log10(nsd))
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Remark 5. Note that the analysis in Corollary 4 implies that the number of
examples needed in a MonteCarlo trial to achieve error less than ε and confidence
at least 1− δ can be exponential in the error precision (pr(ε)) while the minimal
precision p of the examples x = (x1, · · · , xm) ∈ [0, 1]n × · · · × [0, 1]n is at most
linear in pr(ε) and in pr(δ).

3 Notions from Real Algebraic Geometry

A semi-algebraic set is a subset W ⊂ IRn given by a first order formula in the
theory of real closed fields. From Tarski’s Principle (c.f. [15]), a subset W ⊂ Rn

is semi-algebraic if and only if it is given by a boolean combination of polynomial
sign conditions. A semi-algebraic function is a function f :W ⊂ Rn → R whose
graph Gr(f) ⊂ Rn+1 is a semi-algebraic set. Note that the domain of definition
W of a semi-algebraic function f :W ⊂ Rn → R has to be a semi-algebraic set.
Next we expose the necessary notions needed to achieve the proof of our main
results.

Definition 6. Let s, d ∈ N be two positive integer numbers. Assume that d ≥ 2
and s ≥ 1. Let F := {f1, . . . , fs} ⊂ R [x1, . . . , xn] be a finite set of s polynomials
of degree at most d. A semi-algebraic subset W ⊂ Rn is said to be F-definable
if and only if there are positive integers u, v ∈ N and sign conditions εi,j ∈ {>
, =, <}, 1 ≤ i ≤ u, 1 ≤ j ≤ v such that the following equality holds.

W :=
u⋃

i=1

{x ∈ Rn : fi,1(x)εi,10, . . . , fi,v(x)εi,v0} , (9)

where fi,j ∈ F for all i, j, 1 ≤ i ≤ u, 1 ≤ j ≤ v.

Definition 7. A semi-algebraic subset W ⊂ Rn is said to be an (s,d)-definable
semi-algebraic set if there is a finite set F ⊂ R [x1, . . . , xn] of at most s polyno-
mials of degree at most d such that W is an F-definable semi-algebraic set.

Definition 8. We say that a semi-algebraic subsetW ⊂ Rn is the M -projection
of some (s,d)-definable semi-algebraic set if there is M ≥ 0 and an (s,d)-definable
semi-algebraic subset W ′ ⊂ RM+n such that

W := {x ∈ Rn : ∃y1 ∈ R, . . . , ∃yM ∈ R (x, y1, . . . , yM ) ∈ W ′}

.

Definition 9. A semi-algebraic function f : W ⊂ Rn → R is called an (s,d)-
definable semi-algebraic function if its graph Gr(f) ⊂ Rn+1

Gr(f) :=
{
(x, y) ∈ Rn+1 : x ∈ W, y − f(x) = 0

}
is an (s,d)-definable semi-algebraic set.
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Definition 10. Let f : [0, 1]n → R be an (s,d)-definable semi-algebraic func-
tion. Let H ∈ R be a positive real number. We define the following functions

(1) f (H) : [0, H ]n → R the function given by

f (H)(x) := f

(
1
H
· x
)

, ∀x ∈ [0, H ]n (10)

(2) Im(f) : ([0, 1]n)m → R given by

Im(f)(x1, x2, . . . , xm) :=
1
m

m∑
i=1

f(xi) (11)

(3) and the function Im(fH) : ([0, H ]n)m → R,

Im(f (H))(x1, x2, . . . , xm) :=
1
m

m∑
i=1

f (H)(xi) (12)

(4) Let a ∈ R be any real number and let ε > 0 be a positive real number. We
defineW(m, f, H, a, ε) ⊂ ([0, H ]n)m as the set given by the following identity:

W(m, f, H, a, ε) :=
{
(x1, . . . , xm) ∈ Rn·m : |Im(f (H))(x1, . . . , xm)− a| < ε

}
(13)

We say that W(m, f, H, a, ε) is a Chebyshev set.

Next Lemma is an easy consequence of the previous definitions.

Lemma 11. If f is an (s,d)-definable semi-algebraic function then

(1) f (H) is an (s,d)-definable semi-algebraic function
(2) Im(f) and Im(fH) are (sm,d)-definable
(3) W(m, f, H, a, ε) is the m-projection of an (sm+2, d)-definable semi-algebraic

set.

The following statement gives a precise estimate for the number of connected
components of a semi-algebraic set. It is a consequence of the estimates in [8],
[16], [11],[12], and [19] for the homology of semi-algebraic sets and the fact that
projections do not increase the number of connected components. A detailed
proof is given in [9] (see also [13]).

Proposition 12. Let W ⊂ Rn be the M-projection of an (s,d)-definable semi-
algebraic set. Then,

β0(W) ≤ (2sd + 1)2(4sd + 1)2(n+M+1) (14)

Here β0(W) denotes the number of connected components (0-th Betti number)
of W.
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4 Lattices, Rational Points of Given Denominator and
Discrepancy Bounds

A lattice L ⊂ Rn is the free abelian subgroup of the additive group (Rn, +)
generated by a basis of Rn as real vector space. Among a large class of lattices we
discuss here the lattice Zn

[
1
H

] ⊂ Rn of all rational points with denominator H .
Namely,

Zn

[
1
H

]
:=

{(a1

H
, . . . ,

an

H

)
: ai ∈ Z, 1 ≤ i ≤ n

}
(15)

Remark 13. Assume that H := 10p. In this case, the intersection

Zn

[
1
H

]
∩ [0, 1]n (16)

represents all points x = (x1, . . . , xn) ∈ [0, 1]n in base 10 where the mantissa is
given up to precision p. Namely,

Zn

[
1
H

]
∩ [0, 1]n = {(x1, . . . , xn) : xi = 0.a1 . . . ap, ai ∈ {0, . . . , 9}} (17)

Note that �log10 H� is the number of digits of the mantissa.

Let W ⊂ [0, 1]n be a semi-algebraic subset and let H ∈ R be a positive real
number. We denote by N(W , H) the following quantity:

N(W , H) := #
(
W ∩ Zn

[
1
H

])
=

∑
x∈Zn[ 1

H ]
χW(x), (18)

where χW : Rn → {0, 1} is the characteristic function of W . Namely,

χW(x) :=
{

1, if x ∈ W
0, otherwise

We denote by W(H) ⊂ [0, H ]n the following semi-algebraic set:

W(H) :=
{

(x1, . . . , xn) ∈ [0, H ]n :
(x1

H
, . . . ,

xn

H

)
∈ W

}
(19)

Let μL on [0, 1]n denote the Lebesque measure. Next Lemma is an immediate
consequence of the definitions.

Lemma 14. Let W ⊂ [0, 1]n be a semi-algebraic set then:

(1) if W is an (s,d)-definable semi-algebraic set, also W(H) is an (s,d)-definable
semi-algebraic set.

(2) ifW is the projection of an (s,d)-definable semi-algebraic set, then alsoW(H)

is the projection of an (s,d)-definable semi-algebraic set.
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(3) μL(W(H)) = μL(W) ·Hn

(4) N(W , H) = #(Zn ∩ W(H))

The following technical statement provides sharp estimates for the quantity
|N(W , H) − μL(W(H))| where W is the M -projection of some (s,d)-definable
semi-algebraic set. This quantity is usually call discrepancy. Results about dis-
crepancies where initiated by Erdos and Turan in [5] and [6]. The proof technique
follows the general guidelines in [4] and the refinements obtained in [1] and [2]
for discrepancies of semi-algebraic cones in closed balls B(0, H) of projective
spaces. The affine case with M = 1 has been studied in [7], Theorem 3.

Lemma 15. Let W ⊂ [0, 1]n be the M -projection of some (s,d)-definable semi-
algebraic set. Then, for any natural number H > 0 the following holds:

|N(W , H)− μL(W(H))| ≤ T (M, s, d) · n · (H + 1)n−1, (20)

where T (M, s, d) ≤ (2sd + 1)2(4sd + 1)2(M+2).

Next statement estimates the discrepancy of the Chebyshev set associated to
a (s,d)-definable function. It represents the main technical contribution of this
paper. We briefly sketch its proof.

Proposition 16. Let f : [0, 1]n → R be an (s,d)-definable semi-algebraic func-
tion. Let H > 0 and m > 0 be positive integers and let ε > 0 be a positive real
number. Let N(f, m, H, ε) be the number of rational points x = (x1, . . . , xm) ∈
(Zn[ 1

H ])m that satisfy the following in equality

|Im(f)(x) − E[f ]| < ε.

Then, the following holds

|N(f, m, H, ε)− V ·Hmn| ≤ m · n (4(s + 2)d + 1)8 (H + 1)m·n−1 (21)

where
V = μL({x ∈ [0, 1]n·m : |Im(f)(x) − E[f)]| < ε})

is the Lebesgue measure of the Chebyshev set

{x ∈ [0, 1]n·m : |Im(f)(x)− E[f ]| < ε}

Proof. With the same notations as in Section 3, let a ∈ R be a real number
and let W be the Chebyshev set given by W := W(m, f, H, a, ε) ⊂ ([0, H ]n)m

(see Definition 10, item 4). Let W (a) := W(m, f, 1, a, ε) ⊂ ([0, 1]n)m. Note that
W = W (a)(H). According to Lemma 14, items 3 and 4, we have |N(f, m, H, ε)−
V ·Hmn| = |N(W (E[f ]), H)−HnmμL(W (E[f ]))|. Let δ(m, f, H, a, ε) be defined
as follows:

δ(m, f, H, a, ε) :=
1

(H + 1)n·m |N(W (a), H)− μL(W)| (22)
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Let %(m, s, d, H, a, ε) be the supremo of all the quantities δ(m, f, H, a, ε) when
f range over the set of all (s,d)-definable semi-algebraic function.

We start with the case m = 1. In this case, according to lemma 11, item (3),
W(m, f, H, a, ε) is the 1-projection of an (s + 2,d)-definable semi-algebraic set
and the result follows from Lemma 15.

We proceed by induction on m. Suppose now m ≥ 2. We introduce the
following two auxiliary quantities:

S1(m, f, H, a, ε) :=

1
(H + 1)n·m |N(W (a), H)−

∑
x∈Zn∩[0,H]n

∫
[0,H]n(m−1)

χWx(y)dy| (23)

where

Wx := {(x1, . . . , xm−1) ∈ ([0, H ]n)m−1 : (x1, . . . , xm−1, x) ∈ W} (24)

and
S2(m, f, H, a, ε) :=

1
(H + 1)n·m |

∑
x∈Zn∩[0,H]n

∫
[0,H]n(m−1)

χWx(y)dy − μL(W)| (25)

We obviously have

δ(m, f, H, a, ε) ≤ S1(m, f, H, a, ε) + S2(m, f, H, a, ε).

We then estimate both quantities separately. First note that S1(m, f, H, a, ε) is
less than or equal to:

1
(H + 1)n·(m−1)

maxx∈Zn∩[0,H]n |
∑

y∈(Z∩[0,H])n(m−1)

χWx(y)−
∫

[0,H]n(m−1)
χWx(y)dy|

(26)
Let f1(x) := m−1

m f(x) ∀x ∈ [0, 1]n. We clearly have that f1 is an (s,d)-definable
semi-algebraic function. Define ax := a − 1

mf (H)(x) ∈ R. Thus, we conclude
Wx =W(m− 1, f1, H, ax, ε). Hence there is some a1 ∈ R s.t.

S1(m, f, H, a, ε) ≤ %(m− 1, s, d, H, a1, ε) (27)

On the other hand, we have that S2(m, f, H, a, ε) is less than or equal to

1
(H + 1)n(m−1)

∫
[0,H]n(m−1)

|
∑

x∈(Z∩[0,H])n

χWy(x)−
∫

[0,H]n
χWy(x)dx|dy, (28)

where for every y ∈ Zn(m−1) ∩ [0, H ]n(m−1):

Wy := {x ∈ Rn : (x, y) ∈ W(m, f, H, a, ε)} (29)
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Defining f2(x) := 1
m f(x) and for each y := (y1, . . . , ym−1) ∈ ([0, H ]∩Z)n(m−1),

ay := a − 1
m

∑m−1
i=1 f (H)(yi) we conclude that S2(m, f, H, a, ε) is less than or

equal to

(
H

H + 1
)n(m−1) max{δ(1, f2, H, ay, ε) : y ∈ ([0, H ] ∩ Z)n(m−1)} (30)

Since f2 is an (s,d)-definable semi-algebraic function, we conclude that there
exist real numbers a1, a2 ∈ R such that

%(m, , s, d, H, a, ε) ≤ %(m− 1, s, d, H, a1, ε) +%(1, s, d, H, a2, ε) (31)

Since %(1, s, d, H, a, ε) is bounded by a function which is independent of a and
ε it follows that:

%(m, s, d, H, a, ε) ≤ %(m− 1, s, d, H) +
nT (1, s + 2, d)

(H + 1)
(32)

where T (1, s + 2, d) ≤ (4(s + 2)d + 1)8 is the quantity introduced in Lemma 15
and the result follows by induction.

Now, combining Proposition 16 with Chebyshev and Hoeffding inequalities
(Equations 3 and 4 respectively), one easily gets the following result.

Proposition 17. Let f : [0, 1]n → R be a measurable semi-algebraic function
whose graph can be defined by at most s real polynomials of degree at most d.
Assume that |f(x)− E[f ]| ≤M almost every where. Let ε > 0 be a real positive
constant. Let K(m, n, s, d) := mn(4(s + 2)d + 1)8. Let P be the probability that
a random choice of m rational numbers x1, . . . , xm ∈ Qn ∩ [0, 1]n given with
precision p > 0 verifies ∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− E[f ]

∣∣∣∣∣ < ε

For every natural number p ≥ 1 it holds
it holds
[C-inequality]

P > (1− σ2(f)
mε2

)(1− 1
10p + 1

)mn − K(m, n, s, d)
10p + 1

(33)

[H-inequality]

P > (1− 2e−
ε2
2M )(1 − 1

10p + 1
)mn − K(m, n, s, d)

10p + 1
(34)

5 Proof of Theorem 2

In this section we sketch the proof of Theorem 2.We shall make use of the
following technical statement which reflects well known properties of limits.
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Lemma 18.
(1) For every positive real number θ ∈ (0, 1) it holds:

limL→∞

(
− L

lnθ

(
1− θ1/L

))
= 1 (35)

(2) For every real constant θ �= 0 it holds:

limL→∞

(
−L

θ
ln

(
1− θ

L

))
= 1 (36)

Lemma 19. For every positive real constant δ ∈ (0, 1) there exists L0 ∈ N such
that if L ≥ L0 the following property holds: for every natural number p ∈ N
satisfying

p ≥ log10L + log102− log10 (−ln(1− δ)) (37)

it holds (
10p

1 + 10p

)L

> 1− δ (38)

Proof. Let H := 10p. Given δ ∈ (0, 1) condition (38) is equivalent to

H + 1 >
1

1− (1− δ)1/L
(39)

Due to property (35) , for every t ∈ (0, 1) it holds that for L big enough and
H satisfying

H >
1

1− t

(
− L

ln(1− δ

)
(40)

condition (38) is satisfied. Finally set t := 1
2 in inequality (40) and take

logarithms.

Let δ1, δ2 ∈ (0, 1) be positive real numbers. As a direct consequence of
Lemma 19 and Proposition 17, with the hypothesis of Theorem 2, the following
holds: for L big enough if p ∈ N is a positive integer number such that

p ≥ max {log10L + log102− log10(−ln(1− δ1)), log10K(m, n, s, d)− log10δ2}
(41)

it holds
[C-inequality]

P > (1− σ2(f)
mε2

)(1− δ1)− δ2 (42)

[H-inequality]

P > (1− 2

e
ε2

2M2

)(1 − δ1)− δ2 (43)

Now we can finish the proof of Theorem 2. We proceed as follows. For the [C-
inequality] in Equation 42 take δ2 := δ1σ2(f)

mε2 and δ1 := δ σ2(f)
mε2 . Using Equation

36 to simplify Equation 41 one gets the desired bound on p. For the [H-inequality]

in Equation 43 take δ2 := 2δ1e−
mε2

2M2 and δ1 := 2δe−
mε2

2M2 . Using again Equation
36 to simplify Equation 41 one gets the desired bound on p.
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Abstract. We study the computational complexity of deciding the ex-
istence of a Pure Nash Equilibrium in multi-player strategic games. We
address two fundamental questions: how can we represent a game? and
how can we represent a game with polynomial pay-off functions? Our re-
sults show that the computational complexity of deciding the existence
of a pure Nash equilibrium in a strategic game depends on two param-
eters: the number of players and the size of the sets of strategies. In
particular we show that deciding the existence of a Nash equilibrium in
a strategic game is NP-complete when the number of players is large and
the number of strategies for each player is constant, while the problem
is Σp

2-complete when the number of players is a constant and the size
of the sets of strategies is exponential (with respect to the length of the
strategies).

Keywords: Strategic games, Nash equilibria, complexity classes.

1 Introduction

The question that motivates the present work is which is the complexity of de-
ciding whether a strategic game has a pure Nash equilibrium? A strategic game
is defined by a set of players, each player has a set of possible actions to play and
a pay-off function that measures their benefit depending on the actions adopted
by each one of the players. A pure Nash equilibrium describes a situation in
which each player has selected an action from their set of actions (this is their
strategy) and no individual player can derive any benefit from deviating from
their strategy. In this context each player chooses to play an action in a deter-
ministic way. Contrasting with this a mixed Nash equilibrium can be defined in
a similar way, but now each player chooses a distribution on their set of actions.

The focus of our study is inspired in one of the fundamental open problems
in Theoretical Computer Science: Which is the complexity of finding a Nash
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equilibrium?. This question was posed by Papadimitriou [19] and it has initiated
a line of research towards understanding the complexity of computing a pure or
a mixed Nash equilibrium [17,14,12,4,5,9,10,8,13,6,11].

There have been some results in determining the complexity of Nash equilib-
ria and related questions for particular cases. In the context of strategic games
Conitzer et al. in [6] demonstrate the NP-hardness of determining whether a
Nash equilibrium with certain natural properties exists. Gottlob et al. in [13]
show that determining whether a strategic game has a pure Nash equilibrium is
NP-hard in the case that each player of the game has a polynomial-time com-
putable pay-off function. In the case of congestion games Fabrikant et al. in [8]
show that a pure Nash equilibrium can be computed in polynomial time in the
symmetric network case, while the problem is PLS-hard in general. Fotakis et
al. in [9] study several algorithmic problems related to the computation of Nash
equilibria for a certain game that models selfish routing over a network consisting
of parallel links. However, in any of those references there is a lack of uniformity
in the representation of games.

How Can We Represent a Game? To answer this question we have to take
into account the main elements that form part of a strategic game. We note
that, for any problem on games to be computationally meaningful, the number
of players or the number of actions of each player or both should be large,
furthermore the set of actions or the payoff functions should be given in some
implicit way. For example in [6,13] the set of possible actions of each player is
given explicitly by enumerating each of their elements. In [8,10] the set of actions
are given implicitly, they are the set of s− t paths of a given network. And with
respect to the pay-off functions in general it is assumed that they are polynomial
time computable but there is no discussion about how can they be described.

We propose a framework that allow us to represent a strategic game with dif-
ferent levels of succinctness, reflecting the constraints of the natural components.
We consider three natural ways of describing a game depending of the succinct-
ness of their representation (see Table 1). We consider explicit descriptions for
any of those elements defining a strategic game, by means of listing the set of
actions and tabulating the pay-off functions, what we call the explicit form. We
also consider more succinct representations in which the set of actions and/or the
pay-off functions are described in terms of Turing machines. When considering
a Turing machine as part of a description, an additional element is needed in it,
the computation time allowed to the machine. In this way we obtain succinct
descriptions of games that are non-uniformly described from Turing machines.
We can further describe the actions explicitly, by giving the list of the actions
allowed to each player, what we call the general form, or succinctly, by giving the
length of the actions, what we call the implicit form. Observe that the players
are not represented in a succinct way, that means in practice“one bit for player”.
This is a reasonable assumption because any strategy profile a = (a1, . . . , an)
has one strategy for player, therefore we need at least n bits. If we describe the
number of players using log n bits any strategy profile will be exponential in that
quantity and that seems an unreasonable additional constraint.
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What Means a Game with Polynomial Pay-off Functions? Even though
in many papers studying the computational complexity of some specific games, it
is assumed that the utilities are computable in polynomial time. This assumption
has had different interpretations (see for example [8,13,9,10,11]).

For instance, Gottlob et al. in [13] consider that “each player has a poly-
nomial time computable real valued utility function” however a machine com-
puting such function is not given as part of the description of a game [13].
Fabrikant et al. [8] consider congestion games with a different representation.
A congestion game is defined by n players, a set E of resources, and a de-
lay function d mapping E × {1, . . . , n} to the integers. The action for each
player are subsets of E. Setting f(a1, . . . , an, e) = |{i | e ∈ ai}|, the pay-off
are ui(a1, . . . , an) = −(

∑
e∈ai

d(e, f(a1, . . . , an, e))), and thus can be computed
in polynomial time. In this case, they consider a uniform family of games in the
sense that the different instances are given by considering different number of
players, action sets and delay functions, but in each of them the pay-off functions
can be computed by a dtm which works in polynomial time with respect to n
and m, being m the maximum length of the actions ai.

This notion leads us to consider families of games that can be defined uni-
formly in the sense that there is a dtm that gives the way of computing the
utilities when the game is played with different number of players and/or differ-
ent sets of actions. Hence, each dtm defines a uniform family of games. As in the
non-uniform representation of games, in this case we also consider uniform fam-
ilies defined in general form or in implicit forms depending on the succinctness
of the representation of their action sets.

Once we have defined carefully how to represent a strategic game, we study
the computational complexity of deciding the existence of a pure Nash equilib-
rium (the spn problem) for strategic games. In the case of non-uniform game
families we show that the spn problem for games given in implicit and in general
form is hard (Table 1 summarises the results). The spn problem is Σp

2-complete
in the case of implicit form description, while it is NP-complete in the the case
of general form descriptions. Contrasting with this, when the game is given in
explicit form the spn problem is tractable.

When we consider families of games defined uniformly and implicitly from a
polynomial time deterministic Turing machine M , we show that the spn problem
is in Σp

2. Furthermore we show that there are Turing machines for which the
problem is Σp

2-hard. Contrasting with this, when the representation of games is
in general form the positive and hardness results are for the NP class instead of
Σp

2. (Table 2 summarises the results).

Table 1. Degrees of succinctness in non-uniform strategic games description and as-
sociated complexity results

Non-uniform Succinctness Exist pne?
representation actions utilities n-players k-players (k ≥ 2)

implicit yes yes Σp
2-complete Σp

2-complete
general no yes NP-complete P-complete
explicit no no AC 0 AC 0
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Table 2. Degrees of succinctness in uniform strategic games described by a polynomial
time Turing machine M with associated complexity results

Uniform Succinctness Exist pne?
representation actions any M some M

M -implicit yes Σp
2 Σp

2-complete
M -general no NP NP-complete

Hence we solve the fundamental question of classifying the complexity of the
spn problem. Under the best of our knowledge, all the previous results presented
in the literature concerning to this question only solve the problem for restricted
cases.

We wish to mention that recently several researchers have independently ob-
tained results related to ours: Daskalakis and Papadimitriou [7] studied the com-
plexity of concisely represented graphical games, and Schoennebeck and Vadhan
[20] studied the complexity of circuit games.

Finally, we consider two function problems related to game theory concepts.
The first one is that of computing a best response for a player to the actions of the
other players. The second one is the computation of a mixed Nash equilibrium.
We show that for games given in implicit form both problems can not be solved
in polynomial time unless P = NP. Our result hold even in case of two players
and even when only one of the two players has a large number of actions. For
games in explicit or general form the first problem can be trivially solved in
polynomial time while the complexity of the second one remains open. Hence,
we show for the first time a fairly general class of games in which the computation
of a mixed Nash equilibrium is hard. We also consider two decision version of the
above problems. Deciding whether an action is a best response is coNP-hard and
deciding whether an action is in the support of some mixed Nash equilibrium is
NP-hard.

The paper is organised as follows: Section 2 contains basic definitions. In
Section 3 we study the spn problem for non-uniform families of games. Sec-
tion 4 contains the results for uniform families of games. Section 5 consider the
additional computational problems.

2 Strategic Games

The following definition of a strategic game is borrowed from [16]. A strategic
game Γ is defined by the following components:

– A set of n players denoted by N = {1, . . . , n}.
– A finite set of actions Ai for each player i ∈ N . The elements of A1× . . .×An

are the strategy profiles.
– An utility (or payoff ) function ui for each player i ∈ N mapping A1×. . .×An

to the rationals.

Given a strategy profile a ∈ A1×. . .×An and given any action ai ∈ Ai, we de-
note by (a−i, ai) the strategy profile obtained by replacing the i-th component of
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a by ai. For any player i, we denote the set of player i’s best actions when the pro-
file of the other player’s is a−i as Bi(a−i). A strategy profile a∗ = (a∗

1, a
∗
2, . . . , a

∗
n)

is a strategic pure Nash (pne) equilibrium if, for any player i and any ai ∈ Ai

we have ui(a∗) ≥ ui(a∗
−i, ai).

We define a strategic game associated to a given property P . Our game has
a pne only in the case that the property is true.
Gadget(P ). It has two players whose action sets are the same, A1 = A2 =
{0, 1}. Given the following functions f1, f2 defined on {0, 1}×{0, 1}, the pay-off
functions are the following.

f1 0 1
0 1 4
1 2 3

f2 0 1
0 4 3
1 1 2

u1(a1, a2) u2(a1, a2)
P is true 5 5
P is false f1(a1, a2) f2(a1, a2)

Note that when P is true, the players play a game such that all the strategy
profiles are Nash equilibria. When P is false, no strategy profile is a pure Nash
equilibrium because (0, 0) <1 (1, 0) <2 (1, 1) <1 (0, 1) <2 (0, 0), where a <i a′

denotes ui(a) ≤ ui(a′).

Proposition 1. Given a property P , the game Gadget(P ) has a pne if and only
if the property P is true.

Determining whether a pure Nash equilibrium exists is a problem that have
attracted much research in computer science (see [19]). This problem can be
stated as follows:
Strategic Pure Nash (spn). Given a strategic game Γ , decide whether Γ has a Pure
Nash equilibrium.

Now we turn our attention to mixed equilibria. A mixed strategy is a proba-
bility distribution over the player’s actions. We use σi to denote mixed strategy
for player i such that σi(ai) is the probability assigned by player i to ai. A mixed
strategy profile σ = (σ1, . . . σn) is a list of mixed strategies, one for each player.
The utility functions are extended as usual taking the expected pay-off. The
mixed strategy profile σ∗ is a mixed Nash equilibrium if, for each player i and
every mixed strategy σi of player i, we have Ui(σ∗) ≥ Ui(σ∗

−i, σi).
By the theorem of Nash [15] we know that every strategic game in which

each player has a finite set of actions has a mixed Nash equilibrium. Therefore
the decision version of the problem is trivial and the interesting question is the
complexity of computing one.

All through the paper we use standard notation for computational complexity
classes. See for example [3,2,18].

3 Non-uniform Families of Games

In the context of computational complexity it is very important to define how an
input game Γ is represented. In order to define an instance of the spn problem
we have to make clear how to describe the set of players, and for each player
their set of actions and pay-off functions.
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All the tms appearing in the description of games are deterministic. We use
the following convention: there is a pre-fixed interpretation of the contents of
the output tape of a tm so that, both when the machine stops or when the
machine is stopped, it always computes a value. Let us assume that Σ is a pre-
fixed alphabet. Hence we can describe the pay-off functions of a game by giving
a tuple 〈M, 1t〉 where M is a deterministic tm (dtm) and t is a natural number
bounding its computation time. The interpretation is that given a strategy profile
a and a natural number i, the output of M on input 〈a, i〉 is the value of the
pay-off function of the i-th player on input a.

First, we consider a way of describing the set of actions so that they are
not given explicitly and directly, by listing all their actions, but succinctly and
implicitly. We are interested in descriptions whose length does not depend dra-
matically on the number of the actions, but depends on the length of the actions.
Such descriptions are exponentially more succinct than the sets they describe.
The following definition captures this idea.

Strategic Games in Implicit Form 1. A game is a tuple Γ = 〈1n, 1m, M, 1t〉.
This game has n players. For each player i, their set of actions is Ai = Σm and
〈M, 1t〉 is the description of the pay-off functions.

The second family of games is defined by considering that the set of actions
of each player is given explicitly.

Strategic Games in General Form. A game Γ = 〈1n, A1, . . . , An, M, 1t〉
has n players, for each player i, their set of actions Ai is given by listing all its
elements. The description of their pay-off functions is given by 〈M, 1t〉.

Finally, we consider a less succinct description of games. This is the usual
description adopted in basic books giving us a complete description in form of a
bimatrix or trimatrix (set of bimatrices).

Strategic Games in Explicit Form. A game is a tuple Γ = 〈1n, A1, . . . ,
Am, T 〉. It has n players, and for each player i, their set of actions Ai is given
explicitly. T is a table with an entry for each strategy profile a and a player i.
In this case ui(a) = T (a, i).

We analyse the complexity of the spn problem in the different representations
of games answering in this way the question posed by Papadimitriou in [19] for
the case of strategic games.

First we study the complexity of deciding whether a game in implicit form
has a pne. We show that this problem is really hard since it is complete for the
second level of the Polynomial Time Hierarchy. Observe that the proof of Theo-
rem 3.4 of [13] can be rewritten to show that the problem of deciding whether a
1 In the games in implicit form we assume Ai = Σm, this is not a major restriction

because we can also consider Ai ⊆ Σ≤m with just small modifications. In this case
Γ = 〈1n, 1m, M1, . . . Mn, M, 1t〉 with M1, . . . , Mn, M being dtm. The game is played
by n players. For each player i, Mi is a succinct description of their set of actions
Ai ⊆ Σ≤m. We say that ai ∈ Ai iff Mi accepts ai in at most t steps. Given a and i,
ui(a) is the output of M(a, i) after at most t steps.
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given strategy (of a game given in implicit form) is a Nash equilibrium is coNP-
complete. At first glance this fact seems to imply that the hardness of the spn
problem follows trivially from the coNP-completeness and the additional existen-
tial quantification. It is worth noticing that this approach is false in general as
it is known that the equivalence problem for circuits is coNP-complete while the
isomorphisms for circuits is not Σp

2-hard unless the Polynomial Time Hierarchy
collapses to the third level [21].

Theorem 1. The spn problem for strategic games in implicit form isΣp
2-complete.

Proof. Let Γ = 〈1n, 1m, M, 1t〉 be a strategic game in implicit form, the problem
of deciding whether Γ has a pne can be formalised as follows:

Γ ∈ spn⇔ ∃a∗
1 ∈ A1 . . .∃a∗

n ∈ An ∀a1 ∈ A1 . . .∀an ∈ An

u1(a∗
−1, a1) ≤ u1(a∗

−1, a
∗
1) ∧ . . . ∧ un(a∗

−n, an) ≤ un(a∗
−n, a∗

n).

Hence we can define an Alternating Turing machine that guesses the strategy
profile (a∗

1, . . . , a
∗
n) and then using a universal state it can verify that this strategy

profile is a Nash equilibrium. Since the length of any action is bounded by m,
and for each player i, ui can be computed in time t, then the computation time
of this Alternating Turing machine is bounded by a polynomial with respect to
max{n, m, t}. Then spn ∈ Σp

2.
In order to prove the hardness of the spn problem let us consider a restricted

version of the Quantified Boolean Formula, the Q2SAT problem, which is Σp
2-

complete.
Q2SAT. Given Φ = ∃α1, . . . , αn1∀β1, . . . βn2F where F is a Boolean formula over the

boolean variables α1, . . . , αn1 , β1, . . . , βn2 , decide whether Φ is valid.
For each Φ we define the following game: Γ (Φ). There are four players:

– Player 1, the existential player, assigns truth values to α1, . . . , αn1 . Their set of
actions is A1 = {0, 1}n1 and a1 = (α1, . . . αn1) ∈ A1.

– Player 2, the universal player, assigns truth values to β1, . . . , βn2 and then their
set of actions is A2 = {0, 1}n2 and a2 = (β1, . . . , βn2) ∈ A2.

– Players 3 and 4 avoid entering into a Nash equilibrium when the actions played by
players 1 and 2 do not satisfy F . Their set of actions are A3 = A4 = {0, 1}.

Let us denote by F (a1, a2) the truth value of F under the assignment given
by a1 and a2. Now it only remains to define the utility functions in such a way
that they guarantee that Φ is valid if and only if Γ (Φ) has a Nash equilibrium.
Given a strategy profile a = (a1, a2, a3, a4) the utilities ui(a) as defined as follow:

u1(a) u2(a) u3(a) u4(a)
F (a1, a2) = 1 1 0 5 5
F (a1, a2) = 0 0 1 f1(a3, a4) f2(a3, a4)

We claim: Φ is valid ⇔ Γ (Φ) has a pne. Note that players 3 and 4 play
the Gadget game associated to F (a1, a2) = 1. Furthermore a description of the
above game in implicit form can be obtained in polynomial time. �
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In the previous proof, for the sake of clarity, we use a game with four players,
but a similar game with only two players can also be used.

Corollary 1. The spn problem for games in implicit form with k players is
Σp

2-complete, for any k ≥ 2.

Contrasting with the previous results, when we allow to describe the set of
actions explicitly, although the spn problem remains hard, it is not as hard as
the spn problem for games where the set of actions are described implicitly.

Theorem 2. The spn problem for strategic games in general form isNP-complete,
even in the case that the number of actions of each a player is some constant k, for
any k ≥ 2.

Proof. Consider Γ = 〈1n, A1, . . . , An, M, 1t〉, We can conjecture a strategy pro-
file (a∗

1, . . . , a
∗
n) and then check that for any i and any ai ∈ Ai ui(a∗) ≥

ui(a∗
−i, ai). Each computation of M takes time at most t and the overall number

of tests to be performed is at most
∑n

i=1 |Ai|. As the sets of actions are given
explicitly the Nash equilibrium property can be checked in time polynomial in
the input size.

In order to prove the hardness let us reduce the Satisfiability of boolean
formulae problem to the spn problem in general form. Given a formula F in
conjunctive normal form on n variables, we consider the following game:

Γ (F ). We have n + 2 players, for each 1 ≤ i ≤ n + 2, Ai = {0, 1}. Therefore the
set of strategy profiles coincides with the set of truth assignments with two additional
bits. The utilities are defined as follows, where a = (a1, . . . , an) and 1 ≤ j ≤ n:

uj(a, an+1, an+2) un+1(a, an+1, an+2) un+2(a, an+1, an+2)
F (a) = 1 5 5 5
F (a) = 0 1 f1(an+1, an+2) f2(an+1, an+2)

We can show that F is satisfiable iff Γ (F ) has a pne. Here players n + 1
and n + 2 play the Gadget game associated to F (a) = 1. Moreover, Γ (F ) can
be represented in general form by 〈1n+2, {0, 1} . . .{0, 1}, MF , 1(n+2+|F |)3〉 where
MF is a tm that on input (a, an+1, an+2, i), evaluates the formula F on input
a. Afterwards it implements the utility function of the i-th player. Since we can
construct MF in polynomial time and its computation time is also polynomial,
always respect to |F |, we have that the representation of Γ (F ) in general form
can be constructed in polynomial time with respect to |F |. �

Contrasting with the previous hardness results, in the following two cases the
spn problem becomes tractable.

Theorem 3. For any k ≥ 2, the spn problem for strategic games in general
form with k-players is P-complete. Furthermore, the spn problem for strategic
games in explicit form is in AC0.
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4 Uniform Families of Strategic Games with Polynomial
Time Computable Utilities

In the previous section we have analysed the representations of the strategic
games as potential inputs of the spn problem. Here we are interested in fami-
lies of strategic games that arise when the utility functions are computable in
polynomial time. Thus we are interested in families of games defined uniformly
by Turing machines. Following the ideas of Fabrikant et al. in [8], for each dtm
M we define uniform families of strategic games in such a way that the pay-off
functions of each game in the family are computed by M . Moreover, as in the
previous section, we consider further refinements according to the input repre-
sentation. Let M be a dtm and let us assume that an alphabet Σ is fixed. We
define the following uniform families of games associated to M :

M-Implicit Form Family 2. It is an implicit description of the family of games
in which the pay-off functions are computed by the dtm M . Each instance of the
family specifies the number of players n and their set of actions in an succinct
way. We consider that a description of a set is succinct when the length of the
description is at most polynomial with respect to its length. Formally, the M -
implicit form family is {〈1n, 1m1 , . . . , 1mn〉 | n, m1, . . . , mn ∈ N}. In the game
described by 〈1n, 1m, M1, . . . , Mn〉, if a is a strategy profile of such game, and
1 ≤ i ≤ n, then the utility of the i-th player on a is defined as ui(a) = M(a, i).

M-General Form Family. It is a general form description of the family of
games in which the pay-off functions are computed by M . Each instance of the
family describes a game by giving the number of players n and the set of actions
of each player. Here, every set of actions is given by listing all its elements.
Formally, the M -general form family is {〈1n, A1, . . . , An〉 | n, m ∈ N} where, for
all i, Ai is given by listing all its elements. As in the M -implicit form, in the
game described by 〈1n, A1, . . . , An〉, if a is a strategy profile of such game, and
1 ≤ i ≤ n, then the utility of the i-th player on a is defined as ui(a) = M(a, i).

Hence, given a family of games defined from a polynomial time dtm M , we
can also pose the question of determining whether a game of this family has a
Nash equilibrium.

M -Strategic Pure Nash (M -spn). Given a strategic game Γ whose pay-off functions are
defined by M , decide whether Γ has a Pure Nash equilibrium.

As we have seen in the previous section, depending on whether the games are
described in implicit or general form we obtain different hardness results. The
following results are obtained by a modification of the corresponding result for
non-uniform families. We only have to consider, in the reductions, an additional
player whose set of actions is the input formula.

2 In the games in implicit form we assume Ai = Σ≤mi . We can also consider Ai ⊆
Σ≤mi . In this case the machine M has to be able to recognise whether a given action
ai belongs to Ai.
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Theorem 4.

(i) For any polynomial time dtm M , the M -spn problem for games in the M -
implicit form family is in Σp

2.
(ii) There exists a polynomial time dtm M for which the M -spn problem for

games in the M -implicit form family is Σp
2-complete.

Theorem 5.

(i) For any polynomial time dtm M , the M -spn problem for games in the M -
general form family is in NP.

(ii) There exists a polynomial time dtm M for which the M -spn problem for
games in the M -general form family is NP-complete.

If we consider the results presented in [13], they propose to study, among
many other problems, the complexity of the spn problem for games in⋃

M∈polyTM

M-general form family,

where polyTM is the class of tm working in polynomial time. They assume
that the utility functions of their games are polynomially computable functions
and they show that deciding whether a game in general form has a pne is NP-
complete. To prove the membership in NP, they strongly need to make use of the
assumption that the utilities are polynomial time computable. However, in their
hardness result, they construct polynomial time computable utilities, but the
utilities are non-uniform in the sense that for each instance they get a different
utility function.

Our contribution is different, for the uniform families our reduction produces
a Turing machine for all the game instances. Furthermore, in the previous section,
for non-uniform families of games, we give a general way of describing all the
games with“computable utilities”. In order to prove our complexity results, we do
not have to assume that the description of the pay-off functions can be given as
polynomial time dtm, we represent any ’computable’ pay-off function by giving
a dtm and a natural number t (in unary) bounding its computation time.

5 Other Computational Problems Related to Games

In this section we consider two function problems related to game theory con-
cepts. The first one is that of computing a best response for a player given the
actions of the other players. The second one is the computation of a mixed Nash
equilibrium. For games in explicit or general form the first problem can be triv-
ially solved in polynomial time while the complexity of the second one remains
open.

Theorem 6. Given a game in implicit form, a player i, and a list of the other
player’s actions a−i, computing a best response of player i to a−i can not be
done in polynomial time unless P = NP . This is so even in the case of k-players
when k ≥ 2.
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Proof. Given a boolean cnf formula F on n variables we consider the following
game:

Γ (F ). There are two players, player 1 has A1 = {0, 1}n and player 2 has A2 = {0, 1}.
For any α ∈ {0, 1}n and β ∈ {0, 1}, the utility functions are the following

u1(α, β) u2(α, β)
F (α) = β 1 F (α)
F (α) �= β 0 F (α)

Notice that when F is satisfiable, B1(1) = {α ∈ {0, 1}n | F (α) = 1}, but
when F is not satisfiable B1(1) = {0, 1}n and F (α) = 0 for any α. Therefore,
given α ∈ B1(1) we have F (α) = 1 ⇐⇒ F is satisfiable.

Using similar arguments as the one presented in Theorem 1, given a formula
F , we can construct in polynomial time the implicit representation of the game
Γ (F ). Therefore if we could compute α in B1(1) in polynomial time, asking for
the truth of F (α) we could decide the satisfiability of F in polynomial time. �

Theorem 7. Given a strategic game Γ in implicit form, a mixed Nash equilib-
rium for Γ can not be computed in polynomial time unless P = NP . This is so
even in the case of k-players when k ≥ 2.

Proof. Given a boolean cnf formula F on n variables we consider the following
two players game Γ (F ).
Γ (F ). There are two players whose sets of actions are A1 = {0, 1}n and A2 = {0, 1}
respectively. For any α ∈ {0, 1}n and β ∈ {0, 1}, the utility functions are the following:

u1(α, β) u2(α, β)
F (α) = β F (α) 1
F (α) �= β F (α) 0

When F is not satisfiable, for any σ1 the payoff of player 2 is maximised
when their action is 0. Therefore, σ = (σ1, σ2) is a mixed Nash equilibrium iff (i)
σ1 is any probability distribution on {0, 1}n and (ii) σ2(1) = 0 and σ2(0) = 1.

When F is satisfiable, the payoff of player 1 is maximised when their strategy
σ1 assigns positive probability only to satisfying assignments. In such a case, the
best response of player 2 is to play 1. Therefore, σ = (σ1, σ2) is a mixed Nash
equilibria iff (i) σ1 is any distribution on the set {α ∈ {0, 1}n | F (α) = 1} and
(ii) σ2(1) = 1 and σ2(0) = 0.

Therefore, if σ is a mixed Nash equilibrium of Γ the strategy for player 2
is σ2(1) = 1 and σ2(0) = 0 if and only if F is satisfiable. As before an im-
plicit representation of Γ (F ) can be obtained in polynomial time, and the result
follows. �

We also analyse the complexity of the following problems:

Best Response (br). Given a strategic game Γ , a player i, and strategy profile a =
(a−i, ai) decide whether ai ∈ Bi(a−i).

Mixed Nash Support (mns). Given a strategic game Γ , a player i and ai ∈ Ai decide
whether there is a mixed Nash equilibrium σ such that σi(ai) > 0.
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Theorem 8. The br problem is coNP-complete and the mns problem is NP-
hard.
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Abstract. The paper investigates the complexity of depth-two circuits
with threshold gates and consisting of two parts.

First, we develop a method for deriving a lower bound on the size of
depth two circuits with a threshold gate at the top and a certain type
of gates at the bottom. We apply the method for circuits with symmet-
ric gates at the bottom that compute the “inner product mod 2”, and
obtain a lower bound of 1.3638n . Although our lower bound is slightly
weaker than the best known lower bound of Ω(2n/2/n), which was re-
cently proved by Forster et al. [5,6], our method has unique features: A
lower bound is obtained by solving a certain linear program, and solving
larger linear programs yield higher lower bounds. We also discuss the
generalization of the proposed method.

Second, we develop a simplified simulation of a depth-one threshold
circuit with unbounded weights by a depth-two threshold circuit with
small weights. Precisely, we give an explicit construction of depth-two cir-
cuits with small weights consist of Õ(n5) gates that compute an arbitrary
threshold function. We also give the construction of such circuits with
O(n3/ log n) gates computing the COMPARISON and CARRY func-
tions, and that with O(n4/ log n) gates computing the ADDITION func-
tion. These improve the previously known constructions on its size and
simplicity.

1 Introduction

Threshold circuits of depth two are the current borderline for circuit lower
bounds. We have strong lower bounds on the size of depth-two circuits consist-
ing of threshold gates with polynomial weights [10], but we have no super-linear
lower bounds for depth-two circuits with threshold gates of unbounded weights
(see, e.g., [14,20] for surveys). This motivates us to investigate the computational
power of various types of depth-two circuits containing threshold gates.

In the first half of the paper (Section 2), we mainly deal with depth-two
circuits with a threshold gate of unbounded weights at the top and a certain
type of gates at the bottom. Studying this type of circuits is interesting for
several reasons. If we place PARITY gates at the bottom, the minimum size of a
� Supported in part by Grant-in-Aid for Scientific Research on Priority Areas “New

Horizons in Computing” from MEXT of Japan.
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circuit that computes a Boolean function f is equal to the minimum number of
terms in a polynomial over GF (2) that sign represents f . Such a representation
is known as the polynomial threshold representation, and has been extensively
studied (e.g., [13,15,17,18,21]). If we place threshold gates at the bottom, proving
a good lower bound for an explicit function turns out to be quite hard. Hanjal
et al. [10] introduced the “discriminator lemma” and proved that the size of a
depth-two circuit with unbounded-weight threshold gates at the bottom and a
polynomial-weight threshold gate at the top that computes the inner product
mod 2 is at least 2(1/3−ε)n. Recently, Forster et al. [5,6] proved that the size of
a depth-two circuit with polynomial-weight threshold gates at the bottom and
an unbounded-weight threshold gate at the top that computes the inner product
mod 2 is at least 2(1/2−o(1))n. However, for unrestricted weights, there are no
strong lower bounds on the size of a depth-two circuit for an explicit function.

Recently, Basu et al. [3] introduced a new method for deriving lower bounds
on the size of depth-two threshold of ANDs circuits. Their method is based on
the fact that the minimum size of a threshold of ANDs circuit that computes a
function f equals the minimum number of terms in a polynomial over a certain
basis that sign represents f . Interestingly, the method is quite simple but yields
stronger lower bounds than previously known bounds for several functions. These
include a lower bound of 1.5n for the parity function, and a lower bound of 2n

for the inner product mod 2.
In this paper, inspired by their results, we develop a new method for deriv-

ing a lower bound on the size of a certain type of depth-two circuits. We apply
our method for depth-two circuits in which the top gate is a threshold gate of
unrestricted weights and the bottom level has symmetric gates. Such circuits
have been previously considered by, for example, Krause and Pudlák [12], and
Forster et al. [6]. We demonstrate that we can obtain a lower bound of 1.3638n

(and possibly higher) on the size of such a circuit that computes the inner prod-
uct mod 2. Although our lower bound is slightly weaker than the best known
lower bound of Ω(2n/2/n), which was recently obtained by using an algebraic
method by Forster et al. [5,6], our method has unique features: A lower bound
is obtained by solving a certain linear program, and solving larger linear pro-
grams yield higher lower bounds. These results together with the discussion of
the generalization of the proposed method are described in Section 2.

In the second half of the paper (Section 3), we develop a new and simplified
simulation of a depth one threshold circuit with unbounded weights (i.e., a linear
threshold function with possibly exponential weights) by a depth two threshold
circuit with polynomial weights.

Goldmann, H̊astad and Razborov showed in [8] that any linear threshold
function can be computed by a depth two threshold circuit of polynomial size
and polynomial weights. Goldmann and Karpinski [9] gave an explicit construc-
tion of such a circuit. The construction was then simplified by Hofmeister [11].
Unfortunately, the size of the constructed circuit is still quite large. (It seems
that their circuit consists of Õ(n4) subcircuits each having O(n2p2) gates where
p is the Õ(n3)-th prime number.) In this paper, we further simplify the con-



On the Complexity of Depth-2 Circuits with Threshold Gates 109

struction of such a circuit. Precisely, we give an explicit construction of depth
two threshold circuit with polynomial weights and Õ(n5) gates that computes
an arbitrary linear threshold function. Here we use the “Õ” (soft O) notation,
which ignores the polylogarithmic factors.

In this paper, we also give explicit constructions of depth two threshold cir-
cuits with polynomial weights that compute the “comparison” and “addition”
functions. The comparison function is the Boolean function of two n-bit integers
X and Y whose output is 1 iff X > Y . Note that the comparison function can
be computed by a single threshold gate with exponential weights, but not by a
gate with polynomial weights. The addition function outputs all the bits of the
sum of two n-bit numbers.

Siu and Bruck [22] showed that both functions can be computed by a depth
two threshold circuit with polynomial size and polynomial weights. Alon and
Bruck [1] presented the constructions of such circuits. In fact, they constructed
depth two circuits with a threshold gate at the top, and parity gates at the
bottom. The size of their circuit for the comparison is O(n4), and that for the
addition is O(n5). Since a parity gate can be replaced by O(n) threshold gates
with unit weights, their construction yields a depth two threshold circuit of size
O(n5) for the comparison, and that of size O(n6) for the addition. Subsequently,
Bohossian et al. [4] presented a construction of depth two threshold circuit with
Õ(n4) gates for the comparison.

In this paper, we further improve these constructions on its size and simplic-
ity. The size of our circuit for the comparison is O(n3/ log n) and that for the
addition is O(n4/ log n).

2 Getting Lower Bounds on Circuit Size by LP

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two binary vectors of length n.
The inner product mod 2 function, denoted by IPn(X, Y ), is defined to be ⊕ixiyi

where ⊕ denotes the exclusive-OR operation. In what follows, we consider the
size of depth-two circuits with a threshold gate at the top and symmetric gates
below that compute IPn.

Definition 1. A linear threshold function f(X) is a Boolean function with input
X = (x1, . . . , xn) ∈ {0, 1}n such that

f(X) = sgn[F (X)] =
{

1, if F (X) ≥ 0;
0, otherwise,

where F (X) = w0 +
∑n

i=1 wixi. The coefficients wi are called the weights of the
threshold function. A gate that computes a threshold function is called a threshold
gate. A function f : {0, 1}X → R is called symmetric if the value of f depends
only on the number of inputs that are 1. A gate that computes a symmetric
function is called a symmetric gate.

Note that a symmetric gate is usually defined as a binary gate, i.e., it com-
putes a symmetric function f : {0, 1}X → {0, 1}. The reason why we extend
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the domain from {0, 1} to reals is to make the set of symmetric functions closed
under linear combinations, which we state below as Fact 1.

Fact 1. Any linear combination of two (or more) symmetric functions over the
same set of variables is also a symmetric function.

Let TH◦SYM denote a circuit of depth two where threshold gate is the top
and symmetric gates are the bottom. For a Boolean function f , the minimum
number of gates in a TH◦SYM circuit that computes f is denoted by s(f).

In what follows, we consider a polynomial P of the form

P (X, Y ) =
∑

S⊆X∪Y

wShS(X, Y ), (1)

where wS is a real number and hS denotes a symmetric function over the set of
variables S. The support of a polynomial P , denoted by supp(P ), is defined to
be supp(P ) = {S ⊆ X ∪ Y | wS �= 0}. We denote the size of the support of P
by �(P ), i.e., �(P ) = |supp(P )|. We say that a polynomial P sign represents a
Boolean function f if P (X) > 0 whenever f(X) = 1 and P (X) < 0 whenever
f(X) = 0. (Without loss of generality, we can assume that P (X) �= 0 for every
input X .) Note that s(f) is equal to the minimum size of the support of a
polynomial of the form (1) that sign represents f .

2.1 Basic Step

Let f be a (not necessarily Boolean) function on a set of variables X and ρ be a
partial assignment of the variables, i.e., ρ is a map from X to the set {0, 1, ∗}. For
a partial assignment ρ on X , res(ρ) denotes the set of variables that mapped
to 0 or 1 by ρ, i.e., res(ρ) = {v ∈ X | ρ(v) �= ∗}. The restriction of f by ρ,
denoted by f |ρ, is the function obtained by setting xi to be ρ(xi) if xi ∈ res(ρ)
and leaving xi as a variable otherwise.

We also define the restriction of a polynomial P of the form (1) by ρ, denoted
by P |ρ as follows: First, replace each hS in P by hS |ρ. Note that hS |ρ is a
symmetric function on S − res(ρ). Then, for every S1 and S2 such that hS1 |ρ
and hS2 |ρ are on the same set of variables S′, then replace wS1hS1 |ρ+ wS2hS2 |ρ by
an equivalent symmetric function h′

S′ . Fact 1 guarantees that such a replacement
is always possible.

Consider a polynomial P that sign represents IPn and two partial assignments
ρ1 and ρ2 such that res(ρ1) = res(ρ2) = {x1, y1}, ρ1(x1) = 0, ρ1(y1) = 1, and
ρ2(x1) = ρ2(y1) = 1. It is obvious that P |ρ1 sign represents IPn−1, and P |ρ2 sign
represents the complement of IPn−1. This implies that the polynomial P |ρ1−P |ρ2

sign represents IPn−1. The key observation is that if the polynomial P |ρ1 −P |ρ2

has fewer terms than P , then we can obtain a recursive formula on the minimum
size of the support of a polynomial for IPn.

Now we describe the method in detail. Given a polynomial P that sign rep-
resents IPn, we decompose P into PT s for each T ⊆ {x1, x2, y1, y2} as
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PT (X, Y ) =
∑

S∈supp(P )
S∩{x1,x2,y1,y2}=T

wShS(X, Y ).

The following fact is easy to prove.

Fact 2. Let ρ1 and ρ2 be two restrictions such that res(ρ1) = res(ρ2). Then,

(i) �(PT |ρ1 − PT |ρ2) ≤ �(PT ) for every T ,
(ii) if

∑
v∈T∩res(ρ1) ρ1(v) =

∑
v∈T∩res(ρ2) ρ2(v), then PT |ρ1 − PT |ρ2 = 0.

Proof. First, we show the statement (i). Consider a term wShS that ap-
pears in PT . Then a corresponding formula wShS |ρ1 − wShS |ρ2 is appearing
in PT |ρ1 − PT |ρ2 . Since both of hS |ρ1 and hS |ρ2 are symmetric functions on
the set S − res(ρ1) of variables, we can simplify this formula to a single term
wSh′ with a certain symmetric function h′ on S − res(ρ1) by Fact 1. This com-
pletes the proof of (i). The statement (ii) is now obvious since hS |ρ1 ≡ hS |ρ2 if∑

v∈T∩res(ρ1) ρ1(v) =
∑

v∈T∩res(ρ2) ρ2(v). �

We consider the two types of a pair (ρ1, ρ2) of restrictions:
Type 1. Choose i ∈ {1, 2} and v ∈ {xi, yi}. The unchosen variable in {xi, yi}
is denoted by u. Let res(ρ1) = res(ρ2) = {xi, yi}, (ρ1(v), ρ1(u)) = (0, 1) and
(ρ2(v), ρ2(u)) = (1, 1).
Type 2. Choose v1 ∈ {x1, y1} and v2 ∈ {x2, y2}. Let u1 and u2 be the uncho-
sen variables in {x1, y1} and in {x2, y2}, respectively. Let res(ρ1) = res(ρ2) =
{x1, y1, x2, y2}, (ρ1(v1), ρ1(u1), ρ1(v2), ρ1(u2)) = (0, 1, 1, 0) and (ρ2(v1), ρ2(u1),
ρ2(v2), ρ2(u2)) = (1, 1, 0, 0).

Note that we can obtain 4 pairs of restrictions of Type 1 and 4 pairs of Type
2. For an arbitrary pair (ρ1, ρ2) of restrictions of Type 1, we have IP|ρ1 ≡ IPn−1

and IP|ρ2 ≡ IPn−1. This implies that P |ρ1−P |ρ2 sign represents IPn−1. Similarly,
for an arbitrary pair (ρ1, ρ2) of restrictions of Type 2, we have IP|ρ1 ≡ IPn−2

and IP|ρ2 ≡ IPn−2. This implies that P |ρ1 − P |ρ2 sign represents IPn−2.
By combining the above argument with Fact 2, we obtain the following.

Fact 3. For every polynomial P that sign represents IPn, the following are true:
For each v ∈ {x1, y1, x2, y2},

∑
T :v∈T �(PT ) ≥ s(IPn−1). For each v1 ∈ {x1, y1}

and v2 ∈ {x2, y2},
∑

T :|{v1,v2}∩T |=1 �(PT ) ≥ s(IPn−2).

If P is an optimal polynomial for IPn, then s(IPn) =
∑

T �(PT ). It is obvious
that s(IPn−1) ≥ s(IPn−2). Putting them altogether, we have :

Fact 4. Let z be the minimum value of the objective function of the following
linear program. Then s(IPn) ≥ z · s(IPn−2).

Minimize
∑

T⊆{x1,x2,y1,y2}
qT

subject to
∑

T :v∈T

qT ≥ 1 (v ∈ {x1, x2, y1, y2})
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∑
T :|{v1,v2}∩T |=1

qT ≥ 1 (v1 ∈ {x1, y1}, v2 ∈ {x2, y2}),

qT ≥ 0 (T ⊆ {x1, x2, y1, y2}).
(2)

LP (2) has 24 = 16 variables and 4 + 4 = 8 constraints, and is easy to solve.
The minimum value of the objective function is 1.5, and this implies s(IPn) ≥
1.5n/2 ∼ 1.2247n.

2.2 Incremental Step

It seems natural to expect that we can obtain better lower bounds if we consider a
larger collection of restrictions. In this subsection, we show that the incremental
use of LP methods yields higher lower bounds.

Let k ≥ 3 be an integer whose value will be chosen later. We now consider a
set of restrictions ρ such that res(ρ) ⊆ {x1, y1, . . . , xk, yk}. More specifically, we
consider the following two types of pairs of restrictions:

Type 1. Choose i ∈ {1, . . . , k} and v ∈ {xi, yi}. The unchosen variable in
{xi, yi} is denoted by u. Let res(ρ1) = res(ρ2) = {xi, yi}, (ρ1(v), ρ1(u)) = (0, 1)
and (ρ2(v), ρ2(u)) = (1, 1).
Type 2. Choose i, j ∈ {1, . . . , k} such that i �= j. Choose v1 ∈ {xi, yi} and v2 ∈
{xj , yj}. Let u1 and u2 be the unchosen variables in {xi, yi} and in {xj , yj}, re-
spectively. Let res(ρ1) = res(ρ2) = {xi, yi, xj , yj}, (ρ1(v1), ρ1(u1), ρ1(v2),
ρ1(u2)) = (0, 1, 1, 0) and (ρ2(v1), ρ2(u1), ρ2(v2), ρ2(u2)) = (1, 1, 0, 0).

Let P be a polynomial that sign represents IPn. It is obvious that P |ρ1−P |ρ2

sign represents IPn−i for a pair (ρ1, ρ2) of restrictions of Type i ∈ {1, 2}. Thus, by
arguments analogous to those in the last subsection, we can obtain the following.

Fact 5. Suppose that k ≥ 3. Let zk−1 and zk−2 be real numbers such that
s(IPn) ≥ zk−1 · s(IPn−(k−1)) and s(IPn) ≥ zk−2 · s(IPn−(k−2)) for every n. Let zk

be the minimum value of the objective function of the following linear program.
Then s(IPn) ≥ zk · s(IPn−k).

Minimize
∑

T⊆{x1,y1,...,xk,yk}
qT

subject to
∑

T :v∈T

qT ≥ zk−1 (v ∈ {x1, y1, . . . , xk, yk})

∑
T :|{v1,v2}∩T |=1

qT ≥ zk−2

(
i, j ∈ {1, . . . , k}, i �= j
v1 ∈ {xi, yi}, v2 ∈ {xj, yj}

)
qT ≥ 0 (T ⊆ {x1, y1, . . . , xk, yk}).

(3)

Note that the constraint matrix of LP (3) is a (2k+4
(
k
2

)
)×22k binary matrix

and is almost balanced, i.e., there is about the same number of 1s and 0s. This
matrix is easy to generate by a simple computer program. In addition, if the
value of k is relatively small, then we can solve this LP by a LP solver program.
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Solving LP (3) for k = 3 with z1 = 1 and z2 = 1.5 yields z3 = 2. This implies
s(IPn) ≥ 2n/3 ∼ 1.2599n, which is slightly better than the lower bound obtained
by solving LP (2). Solving LP (3) again for k = 4 with z2 = 1.5 and z3 = 2 yields
z4 ∼ 2.8333, which implies better lower bound of s(IPn) ≥ 2.8333n/4 ∼ 1.2974n.
By repeating this procedure, we can obtain z5 ∼ 4.0277, z6 ∼ 5.7500, z7 ∼ 8.2541
and z8 ∼ 11.9700. These imply the lower bounds on s(IPn) of 1.3213n, 1.3384n,
1.3519n and 1.3638n, respectively. We have not succeeded to compute the value
of zk for k ≥ 9 at the time of writing the paper.

The best possible lower bound obtained by applying Fact 5 may be s(IPn) ≥
zn
∞ where z∞ = limk→∞ z

1/k
k . So the problem of determining the value of z∞

seems to be interesting. Note that s(IPn) ≤ 2n since IPn(X, Y ) = sign(
∑

S⊆[n]

(−2)|S|+1XSYS), whe re XS and YS denote
∏

i∈S xi and
∏

i∈S yi, respectively.

2.3 Discussions

In this subsection, we generalize the arguments in the last subsection in order
to analyze the potential of the proposed method.

Let f be a collection of Boolean functions f = {fn : {0, 1}n → {0, 1}}n.
Let H = {h : {0, 1}n → {0, 1}} be a certain set of functions and let sH(fn)
be the size of a smallest subset K ⊆ H such that fn can be represented as the
sign of a weighted sum of functions in K. Our objective is to lower bound the
value of sH(fn). Let P (X) =

∑
h∈K whh(X) be an optimal polynomial that sign

represents fn, i.e., sH(fn) = |K|. Let k be an arbitrary but fixed integer. Let
S be a set consisting of restrictions ρ with res(ρ) ⊆ {x1, . . . , xk} and pairs of
restrictions (ρ1, ρ2) with res(ρ1), res(ρ2) ⊆ {x1, . . . , xk}. For a restriction ρ or a
pair of restrictions (ρ1, ρ2) of S, define

Vρ = {h ∈ H : h|ρ is a constant.}, if f |ρ ≡ fn−k or f |ρ ≡ fn−k,

V(ρ1,ρ2) = {h ∈ H : h|ρ1 ≡ h|ρ2}, if f |ρ1 ≡ f |ρ2 ≡ fn−k or fn−k,

V(ρ1,ρ2) = {h ∈ H : h|ρ1 ≡ h|ρ2}, if f |ρ1 ≡ f |ρ2 ≡ fn−k or fn−k,
Vρ, V(ρ1,ρ2) = ∅, otherwise.

Let zk denotes the optimal value of the objective function of the program:

Minimize
∑
h∈H

qh

subject to
∑
h∈H

Mβ,hqh ≥ 1, (β ∈ S),

qh ≥ 0, (h ∈ H),

(4)

where Mβ,h = 0 if h ∈ Vβ and Mβ,h = 1 if h �∈ Vβ .
By the arguments analogous to those in the last subsection, we have sH(fn) ≥

zk · sH(fn−k), which implies sH(fn) ≥ z
n/k
k . Introducing variables rβ for the

constraint corresponding to β ∈ S, we get the dual program of (4):
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Maximize
∑

β

rβ

subject to
∑

β

Mβ,hrβ ≤ 1, (h ∈ H),

rβ ≥ 0, (β ∈ S).

(5)

The LP-duality theorem says that the optimal values of objective functions
of LPs (4) and (5) are identical. We define

α = min
DS

max
h∈H

Pr
γ∼DS

[h �∈ Vγ ],

where DS denotes a distribution on S. Let D�
S be the distribution that attains

the minimum value of α. Then rβ = α−1D�
S(β), for each β, is a feasible solution

of LP (5). This guarantees that the optimal value of the objective function of
LP (5) is at least α−1, which implies sH(fn) ≥ (α−1)n/k.

Intuitively, the above argument says that if the value of α is shown to be
strictly smaller than 1 for a base set H and for reasonable k, then our technique
can yield a good lower bound on the size of depth-two circuits where a threshold
gate with unbounded weights is the top and gates that can compute a function
in H are the bottom. Examples of such base sets are symmetric functions and
threshold functions with very small weights. It seems that we need more ideas
in order to obtain a good lower bound for depth-two threshold circuits with
threshold gates of unbounded weights in this line of work.

3 Simulation of Exponential Weights by Polynomial
Weights

In this section, we describe a simplified simulation of a depth one threshold
circuit with unbounded weights by a depth two threshold circuit with polynomial
weights1.

3.1 Construction for General Threshold Functions

For two integers a ≤ b, [a, b] denotes the set of integers {a, a + 1, . . . , b}. The
set [1, n] is simply denoted by [n]. Given a linear combination F (X) = w0 +∑

i∈[n] wixi with wi ∈ Z and |wi| ≤ 2O(n log n). In the following, we describe the
construction of depth two threshold circuit with small weights that computes the
sign of F (X). It is well known that the weights of a threshold function can be
restricted to integers with absolute values less than 2O(n log n) without changing
the set of realizable functions [16] (or see [19, Theorem 3.3.9]).

Let L be the minimum integer such that |wi| < 2L for every i. Note that
L = O(n log n). Define F (0)(X) = F (X). For l ∈ [L], define a linear combinations
F (l) and E(l) as follows:
1 In this section, many proofs are omitted due to the space limitation. A technical

report [2] describes the results in this section and includes all the proofs.
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w
(l)
i =

{ �wi/2l�, if wi ≥ 0,
�wi/2l�, otherwise,

F (l)(X) = w
(l)
0 +

∑
i∈[n]

w
(l)
i xi,

E(l)(X) = F (l−1)(X)− 2F (l)(X).

Note that if we represent the weight wi by a binary sequence si, wi,1, . . . , wi,L

such that wi = (−1)si
∑

j∈[L] wi,j2j−1, then E(l) can also be represented by

E(l)(X) = (−1)s0w0,l +
∑
i∈[n]

(−1)siwi,lxi. (6)

Let Emax = |maxl∈[L] maxX∈{0,1}n E(l)(X)|. From Eq. (6), it is obvious that
Emax ≤ n+1. For simplicity of presentation, we assume that |F (X)| ≥ Emax +1
for every input X . (The other case can be dealt with easily.) The construction
due to Hofmeister [11] is based on the following equality:

F (X) ≥ 0 ⇔
∨

l∈[L]

(F (l)(X) ∈ [0, Emax] ∧ F (l−1)(X) �∈ [−Emax, Emax]).

The following lemma, which is the key to our construction, shows that the
sign of F (X) can be computed more efficiently.

Lemma 2. F (X) is positive iff F (l)(X) ∈ [Emax + 1, 3Emax] for some l ∈
[0, L− 1]. �

The proof of the lemma is omitted and can be found in [2]. The rest of
the construction is similar to that of Hofmeister [11]. The following lemma is a
slight modification from the lemma used in their construction. This can easily
be proved by using the Chinese Remainder Theorem.

Lemma 3. [11, Lemma 2] Let a ≤ b be two non-negative integers. Let b < p1 <
p2 < · · · be prime numbers and let s be the minimum integer which satisfies
p1 · · · ps ≥ 2 · Zmax + 1. Then for every Z ∈ Z with |Z| ≤ Zmax, it holds that:

1. Z ∈ [a, b] ⇒ Z mod pi ∈ [a, b] for all pi,
2. Z �∈ [a, b] ⇒ Z mod pi ∈ [a, b] for less than s · ((b − a) + 1) many pi. �

Let p1 < . . . < pr be r consecutive prime numbers. The value of r will be
chosen later. We choose p1 such that 3Emax < 4n < p1 in order to guarantee
that no distinct integers in [Emax + 1, 3Emax] can be equivalent modulo pi for
every i. Let s be the smallest integer such that p1 · · · ps > (n + 1)2L. Note that
s = O(n).

For l ∈ [0, L− 1] and i ∈ [r], we define a linear combination F
(l)
i as follows:

F
(l)
i (X) = (w(l)

0 mod pi) +
∑
j∈[n]

(w(l)
j mod pi)xj .
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Let TESTl,i(X) be a Boolean function that outputs 1 iff F
(l)
i (X) mod pi ∈

[Emax + 1, 3Emax]. By Lemmas 2 and 3, we have

F (X) ≥ 0⇒
∑

l∈[0,L−1]

∑
i∈[r]

TESTl,i(X) ≥ r,

F (X) < 0⇒
∑

l∈[0,L−1]

∑
i∈[r]

TESTl,i(X) ≤ 2Emax · L · s.

If we choose r such that r > 2Emax · L · s, e.g., r = O(Emax · n2 log n) will
suffice, then F (X) is positive if and only if the sum of the values of rL =
O(Emax ·n3 log2 n) test functions is at least r. Since F

(l)
i (X) < (n+1)pi for every

input X , TESTl,i(X) can be represented as the sum of O(n) linear threshold
functions∑

k∈[0,n]

(“F
(l)
i (X) ≥ (Emax + 1) + kpi” + “F

(l)
i (X) ≤ 3Emax + kpi”− 1).

Here and hereafter, we use the notation of the form “F (X) ≥ a” that denotes the
Boolean function whose value is 1 if F (X) ≥ a holds and is 0 otherwise. Putting
them all together, we can construct a depth two threshold circuit with at most
O(nrL) = O(Emax ·n4 log2 n) = Õ(n5) gates that computes f(X) = sgn[F (X)].
Remark that the total number of wires in the resulting circuit is Õ(n6) and the
weight of each wire is at most O(npr) = O(Emax · n3 log2 n) = Õ(n4). Here we
use the prime number theorem, which says that pr = O(r log r).

3.2 More Economical Construction for Simple Functions

For X = (xn, . . . , x1) ∈ {0, 1}n, we consider X as the integer
∑

i∈[n] 2
i−1xi.

The CARRY function is a Boolean function with two n-bit inputs X and Y
that outputs 1 iff X + Y ≥ 2n, or equivalently

∑
i∈[n](xi + yi)2i−1 ≥ 2n. The

COMPARISON function is a Boolean function with two n-bit inputs X and Y
that outputs 1 iff X > Y , or equivalently

∑
i∈[n](xi− yi)2i−1 > 0. Since Emax =

O(1) for both functions, the construction described in the previous section yields
circuits with Õ(n4) gates. In the following, we show that the number of gates in
circuits for these functions can be further reduced to O(n3/ logn).

First, we describe a construction of a circuit for the CARRY function. Let
n < p1 < . . . < pr be r consecutive prime numbers. The value of r will be
chosen later. Let s be the smallest integer such that p1 · · · ps > 2n+1. Note that
s = O(n/ log n).

For l ∈ [n] and i ∈ [r], let ml,i be an integer satisfying∑
j∈[l,n]

(2j−l mod pi) + 1− (2n+1−l mod pi) = ml,ipi.

Such an integer always exists since
∑

j∈[l,n] 2
j−l + 1 − 2n+1−l = 0. For i ∈ [r]

and l ∈ [n], let CHKl,i(X, Y ) be a Boolean function that outputs 1 iff∑
j∈[l,n]

(2j−l mod pi)(xj + yj)− (2n+1−l mod pi) = ml,ipi.
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Then the following are true (see [2] for the proofs).

CARRY(X, Y ) = 1 ⇒
∑
l∈[n]

∑
i∈[r]

CHKl,i(X, Y ) ≥ r,

CARRY(X, Y ) = 0 ⇒
∑
l∈[n]

∑
i∈[r]

CHKl,i(X, Y ) ≤ sn.

If we choose r such that r > sn, e.g, some r = O(n2/ log n) will suffice, then
CARRY(X, Y ) = 1 if and only if the sum of the values of rn = O(n3/ log n)
test functions is at least r. Since a Boolean function of the form “F (x) = y” is
equal to “F (x) ≥ y” + “F (x) ≤ y”− 1, we can construct a depth two threshold
circuit of size O(n3/ logn) that computes CARRY. The total number of wires
in the resulting circuit is O(n4/ logn) and the weight of each wire is at most
O(npr) = O(n3). The construction for the COMPARISON function is almost
analogous and is omitted (see [2] for details).

Finally, we sketch the construction of circuit that computes the addition
of two n-bit integers based on our circuit for the carry function. For X =
(xn, . . . , x1) and Y = (yn, . . . , y1), ADDITION(X,Y) outputs Z = (zn+1, . . . , z1)
such that X + Y = Z, or equivalently

∑
i∈[n](xi + yi)2i−1 =

∑
i∈[n+1] zi2i−1.

The k-th bit of the output of ADDITION is given by zk = xk ⊕ yk ⊕ ck

where ck denotes the output of CARRY(xk−1 · · ·x1, yk−1 · · · y1). To compute zk,
we slightly modify the definition of our test functions for CARRY. For t ∈ [0, 2],
l ∈ [k−1] and i ∈ [r], let CHKl,i,t(X, Y ) be a Boolean function that outputs 1 iff∑
j∈[l,k−1]

(2j−l mod pi)(xj + yj)−(2k−l mod pi) + 4kpi(xk + yk)=ml,ipi + 4kpit,

where ml,i is an integer satisfying∑
j∈[l,k−1]

(2j−l mod pi) + 1− (2k−l mod pi) = ml,ipi.

Note that if xk + yk �= t, then CHKl,i,t(X, Y ) = 0 for every l and i. It is easy to
check that the k-th bit of the output of ADDITION is 1 iff∑

t∈[0,2]

∑
l∈[k−1]

∑
i∈[r]

(−1)tCHKl,i,t(X, Y ) + (r + sn)“xk + yk = 1” ≥ r.

Hence, each bit of the output of ADDITION can be computed by a depth two
threshold circuit with polynomial weights and O(n3/ logn) gates. Thus, the total
number of gates in our circuit for ADDITION is O(n4/ logn).
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Abstract. We study the isomorphic implication problem for Boolean
constraints. We show that this is a natural analog of the subgraph iso-
morphism problem. We prove that, depending on the set of constraints,
this problem is in P, NP-complete, or NP-hard, coNP-hard, and in PNP

|| .
We show how to extend the NP-hardness and coNP-hardness to PNP

|| -
hardness for some cases, and conjecture that this can be done in all cases.

1 Introduction

One of the most interesting and well-studied problems in complexity theory is the
graph isomorphism problem (GI). This is the problem of determining whether
two graphs are isomorphic, i.e., whether there exists a renaming of vertices such
that the graphs become equal. This is a fascinating problem, since it is the most
natural example of a problem that is in NP, not known to be in P, and unlikely
to be NP-complete (see [KST93]).

The obvious analog of graph isomorphism for Boolean formulas is the formula
isomorphism problem. This is the problem of determining whether two formulas
are isomorphic, i.e., whether we can rename the variables such that the formulas
become equivalent. This problem has the same behavior as the graph isomor-
phism problem one level higher in the polynomial hierarchy: The formula iso-
morphism problem is in Σp

2 , coNP-hard, and unlikely to be Σp
2 -complete [AT00].

Note that graph isomorphism can be viewed as a special case of Boolean
isomorphism, since graph isomorphism corresponds to Boolean isomorphism for
2-positive-CNF formulas, in the following way: Every graph G (without iso-
lated vertices) corresponds to the (unique) formula

∧
{i,j}∈E(G) xi ∨ xj . Then

two graphs without isolated vertices are isomorphic if and only if their corre-
sponding formulas are isomorphic.

� Supported in part by grants NSF-CCR-0311021 and DFG VO 630/5-1.
�� Work done in part while visiting the Laboratory for Applied Computing at

Rochester Institute of Technology.
� � � Work done in part while on sabbatical at the University of Rochester.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 119–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



120 M. Bauland and E. Hemaspaandra

One might wonder what happens when we look at other restrictions on the
set of formulas. There are general frameworks for looking at all restrictions on
Boolean formulas: The most often used is the Boolean constraint framework
introduced by Schaefer [Sch78]. Basically (formal definitions can be found in the
next section) we look at formulas as CNF formulas (or sets of clauses) where
each clause is an application of a constraint (a k-ary Boolean function) to a
list of variables. Each finite set of constraints gives rise to a new language, and
so there are an infinite number of languages to consider. Schaefer studied the
satisfiability problem for all finite sets of constraints. He showed that all of these
satisfiability problems are either in P or NP-complete, and he gave a simple
criterion to determine which of the cases holds.

The last decade has seen renewed interest in Schaefer’s result, and has seen
many dichotomy (and dichotomy-like) theorems for problems related to the sat-
isfiability of Boolean constraints. For example, such results were obtained for the
maximum satisfiability problem [Cre95], counting satisfying assignments [CH96],
the inverse satisfiability problem [KS98], the unique satisfiability problem
[Jub99], approximability problems [KSTW01], the minimal satisfying assignment
problem [KK01], and the equivalence problem [BHRV02]. For an excellent survey
of dichotomy theorems for Boolean constraint satisfaction problems, see [CKS01].

Most of the results listed above were proved using methods similar to the one
used by Schaefer [Sch78]. A more recent approach to proving results of this form
is with the help of algebraic tools [Jea98, JCG97, BKJ00]. This approach uses the
clone (closed classes) structure ofBoolean functions calledPost’s lattice, afterEmil
Post, who first identified these classes [Pos44]. A good introduction of how this can
be used to obtain short proofs can be found in [BCRV04]. However, this approach
does not work for isomorphismproblems,because it uses existential quantification.

For the case of most interest for this paper, the Boolean isomorphism problem
for constraints, Böhler et al. [BHRV02, BHRV04, BHRV03] have shown that this
problem is in P, GI-complete, or GI-hard, coNP-hard, and in PNP

|| (the class of
problems solvable in polynomial time with one round of parallel queries to NP).
As in Schaefer’s theorem, simple properties of the set of constraints determine
the complexity.

A problem closely related to the graph isomorphism problem is the subgraph
isomorphism problem. This is the problem, given two graphs G and H , to deter-
mine whether G contains a subgraph isomorphic to H . In contrast to the graph
isomorphism problem, the subgraph isomorphism problem can easily be seen to
be NP-complete (it contains, for example, CLIQUE, HAMILTONIAN CYCLE,
and HAMILTONIAN PATH).

To further study the relationship between the isomorphism problems for
graphs and constraints, we would like to find a relation R on constraints that is
to isomorphism for constraints as the subgraph isomorphism problem is to graph
isomorphism.

Such a relation R should at least have the following properties:

1. A graph G is isomorphic to a graph H if and only if G contains a subgraph
isomorphic to H and H contains a subgraph isomorphic to G. We want the
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same property in the constraint case, i.e., for S and U sets of constraint
applications, S is isomorphic to U if and only if SRU and URS.

2. The subgraph isomorphism problem should be a special case of the decision
problem induced by R, in the same way as the graph isomorphism problem
is a special case of the constraint isomorphism problem. In particular, for G
and H graphs, let S(G) and S(H) be their (standard) translations into sets
of constraint applications of λxy.(x∨y), i.e., S(G) = {xi∨xj | {i, j} ∈ E(G)}
and S(H) = {xi∨xj | {i, j} ∈ E(H)}. For G and H graphs without isolated
vertices, G is isomorphic to H if and only if S(G) is isomorphic to S(H). We
want G to have a subgraph isomorphic to H if and only if S(G)RS(H).

Borchert et al. [BRS98, p. 692] suggest using the subfunction relations (v

and (cv as analogs of subgraph isomorphism. These relations are defined as
follows. For two formulas φ and ψ, φ(v ψ if and only if there exists a function
π from variables to variables such that π(φ) is equivalent to ψ. φ (cv ψ if and
only if there exists a function π from variables to variables and constants such
that π(φ) is equivalent to ψ [BR93]. Borchert and Ranjan [BR93] show that these
relations satisfy our first desirable property, i.e., S is isomorphic to U if and only
if S (v U and U (v S, and that S is isomorphic to U if and only if S (cv U and
U (cv S. They also show that the problem of determining whether φ (v ψ and
the problem of determining whether φ(cv ψ, for unrestricted Boolean formulas,
are Σp

2 -complete.
But Borchert et al.’s subfunction relations will not give the second desirable

property. Consider, for example, the graphs G and H such that V (G) = V (H) =
{1, 2, 3}, E(G) = {{1, 2}, {1, 3}, {2, 3}}, and E(H) = {{1, 2}, {1, 3}}. Clearly, G
contains a subgraph isomorphic to H , but (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) �(cv

(x1 ∨ x2) ∧ (x1 ∨ x3).
How could the concept of a subgraph be translated to sets of constraint ap-

plications? As a first attempt at translating subgraph isomorphism to constraint
isomorphism one might try the following: For sets of constraint applications S
and U , does there exist a subset Ŝ of S that is isomorphic to U . Certainly, such
a definition satisfies the second desired property. But this definition does not
satisfy the first desired property, since it is quite possible for sets of constraint
applications to be equivalent without being equal.

We show that isomorphic implication satisfies both desired properties, and
is a natural analog of the subgraph isomorphism problem. For S and U sets
of constraint applications over variables X , we say that S isomorphically im-
plies U (notation: S ⇒̃ U) if and only if there exists a permutation π on X
such that π(S) ⇒ U . In Section 4, we show that, depending on the set of con-
straints, the isomorphic implication problem is in P, NP-complete, or NP-hard,
coNP-hard, and in PNP

|| . Our belief is that the isomorphic implication prob-
lem is PNP

|| -complete for all the cases where it is both NP-hard and coNP-hard.
In Section 5, we prove this conjecture for some cases. Because of space limi-
tations, most of the proofs are omitted; please refer to the full version of this
paper [BH04].
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2 Preliminaries

We will mostly use the constraint terminology from [CKS01].

Definition 1.

1. A constraint C (of arity k) is a Boolean function from {0, 1}k to {0, 1}.
2. If C is a constraint of arity k, and z1, z2, . . . , zk are (not necessarily distinct)

variables, then C(z1, z2, . . . , zk) is a constraint application of C.
3. If C is a constraint of arity k, and for 1 ≤ i ≤ k, zi is a variable or

a constant (0 or 1), then C(z1, z2, . . . , zk) is a constraint application of C
with constants.

4. If S is a set of constraint applications [with constants] and X is a set of
variables that includes all variables that occur in S, we say that S is a set of
constraint applications [with constants] over variables X.

Definition 2. Let C be a k-ary constraint.

– C is 0-valid if C(0, . . . , 0) = 1.
– C is 1-valid if C(1, . . . , 1) = 1.
– C is Horn (or weakly negative) if C(x1, . . . , xk) is equivalent to a CNF for-

mula where each clause has at most one positive literal.
– C is anti-Horn (or weakly positive) if C(x1, . . . , xk) is equivalent to a CNF

formula where each clause has at most one negative literal.
– C is bijunctive if C(x1, . . . , xk) is equivalent to a 2CNF formula.
– C is affine if C(x1, . . . , xk) is equivalent to an XOR-CNF formula.
– C is 2-affine (or affine of width 2) if C(x1, . . . , xk) is equivalent to an XOR-

CNF formula, such that every clause contains at most two literals.
– C is complementive (or C-closed) if for every s∈{0, 1}k, C(s)=C(s), where

s∈{0, 1}k =def (1, . . . , 1)− s, i.e., s is obtained by flipping every bit of s.

Let C be a finite set of constraints. We say C is 0-valid, 1-valid, Horn, anti-
Horn, bijunctive, affine, 2-affine, or complementive, if every constraint C ∈ C
has this respective property. We say that C is Schaefer if C is Horn, anti-Horn,
affine, or bijunctive.

Definition 3 ([BHRV02]). Let C be a finite set of constraints.

1. ISO(C) is the problem, given two sets S and U of constraint applications of C
over variables X, to decide whether S is isomorphic to U (denoted by S ∼= U),
i.e., whether there exists a permutation π of X such that π(S) ≡ U ; Here
π(S) is the set of constraint applications that results when we simultaneously
replace every variable x in S by π(x).

2. ISOc(C) is the problem, given two sets S and U of constraint applications of
C with constants, to decide whether S is isomorphic to U .

Theorem 4 ([BHRV02, BHRV04, BHRV03]). Let C be a finite set of
constraints.
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1. If C is not Schaefer, then ISO(C) and ISOc(C) are coNP-hard, GI-hard, and
in PNP

|| .
2. If C is Schaefer and not 2-affine, then ISO(C) and ISOc(C) are polynomial-

time many-one equivalent to GI.
3. Otherwise, C is 2-affine and ISO(C) and ISOc(C) are in P.

The isomorphic implication problem combines isomorphism with implication
in the following way.

Definition 5. Let C be a finite set of constraints.

1. ISO-IMP(C) is the problem, given two sets S and U of constraint applica-
tions of C over variables X, to decide whether S isomorphically implies U
(denoted by S ⇒̃ U), i.e., whether there exists a permutation π of X such
that π(S) ⇒ U ; Here π(S) is the set of constraint applications that results
when we simultaneously replace every variable x in S by π(x).

2. ISO-IMPc(C) is the problem, given two sets S and U of constraint applica-
tions of C with constants, deciding whether S isomorphically implies U .

Definition 6.

1. The graph isomorphism problem is the problem, given two graphs G and
H, to decide whether G and H are isomorphic, i.e., whether there exists a
bijection π from V (G) to V (H) such that π(G) = H. π(G) is the graph such
that V (π(G)) = {π(v) | v ∈ V (G)} and E(π(G)) = {{π(v), π(w)} | {v, w} ∈
E(G)}.

2. The subgraph isomorphism problem is the problem, given two graphs G and
H, to decide whether G contains a subgraph isomorphic to H, i.e., whether
there exists a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G) and G′

is isomorphic to H.

Theorem 7 ([GJ79, Coo71]). The subgraph isomorphism problem is NP-
complete.

Corollary 8. The subgraph isomorphism problem for graphs without isolated
vertices is NP-complete.

3 Subgraph Isomorphism and Isomorphic Implication

The following lemma, whose proof can be found in the full version, shows that the
isomorphic implication problem is a natural analog of the subgraph isomorphism
problem, in the sense explained in the introduction.

Lemma 9.

1. Let S and U be sets of constraint applications of C with constants. Then
S ∼= U if and only if S ⇒̃ U and U ⇒̃ S.

2. For graphs G and H without isolated vertices, G contains a subgraph isomor-
phic to H if and only if S(G) ⇒̃ S(H), where S is the “standard” translation
from graphs to sets of constraint applications of λxy.x∨y, i.e., for Ĝ a graph,
S(Ĝ) = {xi ∨ xj | {i, j} ∈ E(Ĝ)}.
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4 Complexity of the Isomorphic Implication Problem

The following theorem gives a trichotomy-like theorem for the isomorphic impli-
cation problem.

Theorem 10. Let C be a finite set of constraints.

1. If every constraint in C is equivalent to a constant or a conjunction of literals,
then ISO-IMP(C) and ISO-IMPc(C) are in P.

2. Otherwise, if C is Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are NP-
complete.

3. If C is not Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are NP-hard, coNP-
hard, and in PNP

|| .

The proofs of the upper bounds and of the coNP lower bound are reasonably
straightforward and can be found in the full version. It remains to show the NP
lower bounds.

When proving dichotomy or dichotomy-like theorems for Boolean constraints,
the proofs of some of the lower bounds are generally most involved. In addition,
proving lower bounds for the case without constants is often a lot more involved
than the proofs for the case with constants. This is particularly true in the case
for isomorphism problems, since here, we cannot introduce auxiliary variables.

The approach taken in [BHRV02, BHRV04, BHRV03], which examine the
complexity of the isomorphism problem for Boolean constraints, is to first prove
lower bounds for the case with constants, and then to show that all the hardness
reductions can be modified to obtain reductions for the cases without constants.

In contrast, in this paper we prove the lower bounds directly for the case with-
out constants. We have chosen this approach since careful analysis of the cases
shows that proving the NP lower bounds boils down to proving NP-hardness for
ten different cases (far fewer than in the isomorphism paper).

It should be noted that our NP lower bound results do not at all follow from
the lower bound results for the isomorphism problem. This is also made clear by
comparing Theorems 4 and 10: In some cases, the complexity jumps from P to
NP-complete, in other cases we jump from GI-hard to NP-complete.

Lemma 11. Let C be a k-ary constraint such that C(x1, . . . , xk) is not equiva-
lent to a conjunction of literals. Then there exists a set of constraint applications
of C that is equivalent to one of the following ten constraint applications:

– t ∧ (x ∨ y), f ∧ t ∧ (x ∨ y), f ∧ (x ∨ y), f ∧ t ∧ (x ∨ y),
– x ↔ y, t ∧ (x↔ y), f ∧ (x ↔ y), f ∧ t ∧ (x ↔ y),
– x⊕ y, or f ∧ t ∧ (x⊕ y).

The proof of this lemma can be found in the full version.
To prove the NP lower bounds of Theorem 10 it suffices to show that the

isomorphic implication problem is NP-hard for each of the ten constraints from
Lemma 11.
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As shown in Lemma 9(2), the NP-complete subgraph isomorphism problem
is closely related to the isomorphic implication problem for sets of constraint
applications of λxy.x∨ y. We use this observation to prove NP-hardness for the
constraints from Lemma 11 that are similar to λxy.x ∨ y, namely, we reduce
the subgraph isomorphism problem to the isomorphic implication problems for
λtxy.t∧ (x∨ y), λftxy.f ∧ t∧ (x∨ y), λfxy.f ∧ (x∨ y), and λftxy.f ∧ t∧ (x∨ y).
The actual reductions and the proofs of their correctness can be found in the
full version of this paper.

The remaining six constraints from Lemma 11 behave differently. In these
cases, the isomorphism problem is in P. Thus, GI does not reduce to these iso-
morphism problems (unless GI is in P), and there does not seem to be a simple
reduction from the subgraph isomorphism problem to the isomorphic implication
problem. In these cases, we prove NP-hardness by reduction from a suitable par-
titioning problem, namely, the unary version of the problem 3-Partition [GJ79,
Problem SP15]. Both 3-Partition and the unary version of 3-Partition are NP-
complete [GJ79]. The actual reductions and the proofs of their correctness can be
found in the full version of this paper. This completes the proof of Theorem 10.

5 Toward a Trichotomy Theorem

The current main theorem (Theorem 10) is not a trichotomy theorem, since for
C not Schaefer, it states that ISO-IMP(C) is NP-hard, coNP-hard, and in PNP

|| .
The large gap between the lower and upper bounds is not very satisfying. We
conjecture that the current lower bounds for ISO-IMP(C) for C not Schaefer
can be raised to PNP

|| lower bounds, which would give the following trichotomy
theorem.

Conjecture 12. Let C be a finite set of constraints.

1. If every constraint in C is equivalent to a constant or a conjunction of literals,
then ISO-IMP(C) and ISO-IMPc(C) are in P.

2. Otherwise, if C is Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are NP-
complete.

3. If C is not Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are PNP
|| -complete.

We believe this conjecture for two reasons. First of all, it is quite common
for problems that are NP-hard, coNP-hard, and in PNP

|| to end up being PNP
|| -

complete. (For an overview of this phenomenon, see [HHR97].) Secondly, we will
prove PNP

|| lower bounds for some cases in Theorem 16.
To raise NP and coNP lower bounds to PNP

|| lower bounds, the following
theorem by Wagner often plays a crucial role, which it will also do in our case.

Theorem 13 ([Wag87]). Let L be a language. If there exists a polynomial-time
computable function h such that

||{i | φi ∈ SAT}|| is odd iff h(φ1, . . . , φ2k) ∈ L

for all k ≥ 1 and all Boolean formulas φ1, . . . , φ2k such that φi ∈ SAT⇒ φi+1 ∈
SAT, then L is PNP

|| -hard.
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Wagner’s theorem can be used to prove the following lemma, which shows
situations in which an NP lower bound and a coNP lower bound can be turned
into a PNP

|| lower bound.

Lemma 14. Let L be a language. If L is NP-hard and coNP-hard, and (L has
polynomial-time computable and- and ω-or-functions or L has polynomial-time
computable or- and ω-and-functions), then L is PNP

|| -hard.1

Agrawal and Thierauf [AT00] proved that the formula isomorphism problem
has polynomial-time computable ω-and- and ω-or-functions. Since the formula
isomorphism problem is trivially coNP-hard, we obtain the following corollary.

Corollary 15. If the formula isomorphism problem is NP-hard, then it is PNP
|| -

hard.

Unfortunately, Agrawal and Thierauf’s ω-or-function does not work for iso-
morphic implication. Their ω-and-function seems to work for isomorphic impli-
cation, but since this function or’s two formulas together, it will not work for
sets of constraint applications.

To prove the PNP
|| lower bound of the following theorem, we need to come up

with a completely new construction.

Theorem 16. Let D be a set of constraints that is 0-valid, 1-valid, not com-
plementive, and not Schaefer. Let C = D ∪ {λxy.x ∨ y}. Then ISO-IMP(C) is
PNP
|| -complete.

Proof. By Theorem 10, ISO-IMP(C) is in PNP
|| . Thus it suffices to show that

ISO-IMP(C) is PNP
|| -hard. Let k ≥ 1 and let φ1, . . . , φ2k be formulas such that

φi ∈ SAT ⇒ φi+1 ∈ SAT. We will construct a polynomial-time computable
function h such that

||{i | φi ∈ SAT}|| is odd iff h(φ1, . . . , φ2k) ∈ ISO-IMP(C).
By Theorem 13, this proves that ISO-IMP(C) is PNP

|| -hard.
Note that ||{i | φi ∈ SAT}|| is odd if and only if there exists an i such that

1 ≤ i ≤ k, φ2i−1 �∈ SAT, and φ2i ∈ SAT. This is a useful way of looking at it,
and we will prove that there exists an i such that 1 ≤ i ≤ k, φ2i−1 �∈ SAT and
φ2i ∈ SAT if and only if h(φ1, . . . , φ2k) ∈ ISO-IMP(C).

From Theorem 10 we know that ISO-IMP(C) is NP-hard and coNP-hard,
and thus there exist (polynomial-time many-one) reductions from SAT to
ISO-IMP(C) and from SAT to ISO-IMP(C).

Let f be a polynomial-time computable function such that for all φ, f(φ) is
a set of constraint applications of D and

φ ∈ SAT iff f(φ) ⇒̃
⋃

1≤j,�≤n

{xj → x�}.

1 An or-function for a language L is a function f such that for all x, y ∈ Σ∗, f(x, y) ∈ L
iff x ∈ L or y ∈ L. An ω-or-function for a language L is a function f such that for all
x1, . . . , xn ∈ Σ∗, f(x1, . . . , xn) ∈ L iff xi ∈ L for some i; and-functions are defined
similarly [KST93].



Isomorphic Implication 127

Here x1, . . . , xn are exactly all variables in f(φ). Such a function exists, since
SAT is reducible to CSP�=0,1(D) (CSP �=0,1(D) is the problem of deciding whether
a set of constraint applications of D has a satisfying assignment other than 0 and
1), which is reducible to ISO-IMP(D) via a reduction that satisfies the properties
above. (See the proofs of the coNP lower bound from Theorem 10 and [BHRV02,
Claims 19 and 14].)

Let g be a polynomial-time computable function such that for all φ, g(φ) is a
set of constraint applications of λxy.x∨y without duplicates (i.e., if z∨z′ ∈ g(φ),
then z �= z′) and

φ ∈ SAT iff g(φ) ⇒̃ {yj ∨ yj+1 | 1 ≤ j < n}.
Here y1, . . . , yn are exactly all variables occurring in g(φ). Such a function
exists, since SAT is reducible to HAMILTONIAN PATH, which is reducible
to ISO-IMP({λxy.x ∨ y}) via a reduction that satisfies the properties above.
(Basically, use the standard translation from graphs to sets of constraint ap-
plications of λxy.x ∨ y: For G a connected graph on vertices {1, . . . , n}, let
g(G) = {yi ∨ yj | {i, j} ∈ E(G)}.)

Recall that we need to construct a polynomial-time computable function h
with the property that there exists an i such that 1 ≤ i ≤ k, φ2i−1 �∈ SAT, and
φ2i ∈ SAT if and only if h(φ1, . . . , φ2k) ∈ ISO-IMP(C).

In order to construct h, we will apply the coNP-hardness reduction f on φi

for odd i, and the NP-hardness reduction g on φi for even i. It will be important
to make sure that all obtained sets of constraint applications are over disjoint
sets of variables.

For every i, 1 ≤ i ≤ k, we define Oi to be the set of constraint applications
f(φ2i−1) with each variable xj replaced by xi,j . Clearly,

φ2i−1 �∈ SAT iff Oi ⇒̃
⋃

1≤j,�≤ni

{xi,j → xi,�},

where ni is the n from f(φ2i−1).
For every i, 1 ≤ i ≤ k, we define Ei to be the set of constraint applications

g(φ2i) with each variable yj replaced by yi,j . Clearly,

φ2i ∈ SAT iff Ei ⇒̃ {yi,j ∨ yi,j+1 | 1 ≤ j < n′
i},

where n′
i is the n from g(φ2i).

Note that the sets that occur to the right of Oi ⇒̃ are almost isomorphic
(apart from the number of variables). The same holds for the sets that occur
to the right of Ei ⇒̃ . It is important to make sure that these sets are exactly
isomorphic. In order to do so, we simply pad the sets Oi and Ei.

Let n = max{ni, n
′
i + 2 | 1 ≤ i ≤ k}. For 1 ≤ i ≤ k, let

Ôi = Oi ∪ {xi,1 → xi,j , xi,j → xi,1 | ni < j ≤ n}.
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Ôi is a set of constraint applications of D, since there exists a constraint
application A(x, y) of D that is equivalent to x → y (see [BHRV02, Claim 14]).
It is immediate that

Ôi ⇒̃
⋃

1≤j,�≤n

{xi,j → xi,�} iff Oi ⇒̃
⋃

1≤j,�≤ni

{xi,j → xi,�}.

For 1 ≤ i ≤ k, let

Êi = Ei ∪ {yi,j ∨ yi,n′
i+1 | 1 ≤ j ≤ n′

i} ∪ {yi,j ∨ yi,j+1 | n′
i + 1 ≤ j < n}.

Then

Êi ⇒̃ {yi,j ∨ yi,j+1 | 1 ≤ j < n} iff Ei ⇒̃ {yi,j ∨ yi,j+1 | 1 ≤ j < n′
i}.

The right-to-left direction is immediate. The left-to-right to direction can easily
be seen if we think about this as graphs. Since n ≥ n′

i + 2, any Hamiltonian
path in Êi contains the subpath n′

i+1, n
′
i+2, . . . , n, where n is an endpoint. This

implies that there is a Hamiltonian path in the graph restricted to {1, . . . , n′
i},

i.e., in Ei.
So, our current situation is as follows. For all i, 1 ≤ i ≤ k, Ôi is a set of

constraint applications of D such that

φ2i−1 �∈ SAT iff Ôi ⇒̃
⋃

1≤j,�≤n

{xi,j → xi,�}

and Êi is a set of constraint applications of λxy.x ∨ y without duplicates such
that

φ2i ∈ SAT iff Êi ⇒̃ {yi,j ∨ yi,j+1 | 1 ≤ j < n}.
Our reduction h is defined as follows

h(φ1, . . . , φ2k) = 〈S, U〉,
where

S =
k⋃

i=1

⎛⎝Ôi ∪ Êi ∪
⋃

1≤j,�≤n

{xi,j → yi,�}
⎞⎠

and

U =
⋃

1≤j,�≤n

{xj → x�} ∪
n−1⋃
j=1

{yj ∨ yj+1} ∪
⋃

1≤j,�≤n

{xj → y�}.

The proof that h is the desired reduction can be found in the full version of
this paper. �

We can modify the proof of Theorem 16 to show that ISO-IMP(D ∪ {C})
is PNP

|| -hard for various other constraints C. Note however that the proof of
Theorem 16 crucially uses the fact that D is 0-valid, 1-valid, and complementive.
Thus, new insights and constructions will be needed to obtain PNP

|| -hardness for
all non-Schaefer cases.
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6 Open Problems

The most important question left open by this paper is whether Conjecture 12
holds. In addition, the complexity of the isomorphic implication problem for
Boolean formulas is still open. This problem is trivially in Σp

2 , and, by Theo-
rem 16, PNP

|| -hard. Note that an improvement of the upper bound will likely
give an improvement of the best-known upper bound (Σp

2 ) for the isomorphism
problem for Boolean formulas, since that problem is 2-conjunctive-truth-table
reducible to the isomorphic implication problem.

Schaefer’s framework is not the only framework to study generalized Boolean
problems. It would be interesting to study the complexity of isomorphic impli-
cation in other frameworks, for example, for Boolean circuits over a fixed base.

Acknowledgments. The authors thank Henning Schnoor, Heribert Vollmer,
and the anonymous referees for helpful comments.
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Abstract. An abstract numeration system is a triple S = (L, Σ, <)
where (Σ, <) is a totally ordered alphabet and L a regular language over
Σ; the associated numeration is defined as follows: by enumerating the
words of the regular language L over Σ with respect to the induced ge-
nealogical ordering, one obtains a one-to-one correspondence between N
and L. Furthermore, when the language L is assumed to be exponential,
real numbers can also be expanded. The aim of the present paper is to
associate with S a self-replicating multiple tiling of ăthe space, under
the following assumption: the adjacency matrix of the trimmed minimal
automaton recognizing L is primitive with a dominant eigenvalue being a
Pisot unit. This construction generalizes the classical constructions per-
formed for Rauzy fractals associated with Pisot substitutions [16], and
for central tiles associated with a Pisot beta-numeration [23].

1 Introduction

To any infinite regular language L over a totally ordered alphabet (Σ, <), an
abstract numeration system S = (L, Σ, <) is associated in the following way [10].
Enumerating the words of L by increasing genealogical order gives a one-to-one
correspondence between N and L, the non-negative integer n being represented
by the (n + 1)-th word of the ordered language L. Nonnegative integers as well
as positive real numbers (under some natural assumptions on L) can thus be
expanded in such a numeration system [10,11,12]. In this latter situation, a real
number is represented by an infinite word which is the limit of a converging
sequence of words in L. These systems generalize in a natural way classical
positional systems like the k-ary numeration, the Fibonacci numeration, more
generally, the numeration scales built on a sequence of integers satisfying a linear
recurrence relation, including the beta-numeration when β is a Parry number
[13], as well as the Dumont-Thomas numeration associated with a substitution
[6,7]. Many classical properties of such numerations extend in a natural way to
abstract numeration systems: see for instance [3,9,11,12,17,18,19].

The aim of this paper is to introduce a self-replicating multiple tiling of the
space that can be associated with an abstract numeration system with some pre-
scribed algebraic properties: these systems are built upon an exponential regular
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language such that the adjacency matrix of the trimmed minimal automaton
recognizing L is primitive with a dominant eigenvalue being a Pisot unit. We
recall that a Pisot number is an algebraic integer whose other conjugates have
modulus smaller than 1; a Pisot number is a unit if its norm is equal to 1, that is,
the constant term in its minimal polynomial equals ±1. The basic tiles are com-
pact sets that are the closure of their interior, that have non-zero measure and a
fractal boundary; they are attractors of some graph-directed Iterated Function
System. By tiling, we mean here tilings by translation having finitely many tiles
up to translation (a tile is assumed to be the closure of its interior); we assume
furthermore that each compact set intersects a finite number of tiles. By multi-
ple tiling, we mean arrangements of tiles such that almost all points are covered
exactly p times for some positive integer p.

The multiple tiling we propose here is directly inspired by the tilings of the
space that can be associated with beta-numeration [23] and with substitutions
(see e.g., Chap. 7 in [15]). It is conjectured that the corresponding multiple tiling
is indeed a tiling in the Pisot case. This conjecture is known as the Pisot con-
jecture and can also be reformulated in spectral terms: the associated dynamical
systems have pure discrete spectrum. Notice that the existence of such tilings
has applications in Diophantine approximation, or in the study of mathematical
quasicrystals, for instance.

Our main motivation for this work is the following. The central tiles in the
beta-numeration framework are defined in a natural way [1,2,23]; one can con-
sider the formalism introduced in the substitutive case as a first generalization
of the beta-numeration formalism [5]. Indeed the underlying substitutions and
automata have a very particular shape in the beta-numeration case. We develop
here a further generalization by working directly on the automaton. In particular
final acceptance states play a crucial rôle in our study. We thus wish to put to
the test the Pisot conjecture in a more general context.

This paper is organized as follows. We first recall in Section 2 a few basic
definitions and properties. We focus on the representation of real numbers in
abstract number systems in Section 3. We respectively introduce in Section 4
and in Section 5 the central tile and our multiple tiling. We illustrate these
notions in Section 6 with two examples. We conclude this paper by mentioning
a few natural prospects concerning this work in Section 7.

2 Definitions

An abstract numeration system is a triple S = (L, Σ, <), where L is an infinite
regular language over the totally ordered alphabet (Σ, <).

Let Σ = {s0 < s1 < · · · < sk} be a finite and totally ordered alphabet.
Since Σ is totally ordered, we can order the words of Σ∗ using the genealogical
ordering. Let u, v ∈ Σ∗. We say that u < v if |u| < |v| or if |u| = |v| and there
exist p, u′, v′ ∈ Σ∗, s, t ∈ Σ, s < t such that u = psu′ and v = ptv′.

The trimmed minimal automaton of L is denoted ML = (Q, q0, Σ, δ, F )
where Q is the set of states, q0 is the initial state, F ⊆ Q is the set of final
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states and δ : Q×Σ → Q is the (partial) transition function. As usual, δ can be
extended to Q×Σ∗. In this paper L ⊂ Σ∗ will always denote an infinite regular
language having the property that ML is such that

δ(q0, s0) = q0. (1)

In other words, ML has a loop of label s0 in the initial state q0. In particular,
this implies that L has the following property: s∗0L ⊆ L.

The entry of index (p, q) ∈ Q2 of the adjacency matrix ML of the automaton
ML is given by the cardinality of the set of letters s ∈ Σ such that δ(p, s) = q. An
abstract numeration system is said primitive if the matrix ML is primitive, that
is, there exists a nonnegative integer n such that Mn

L has only positive entries.
According to Perron-Frobenius theorem, the adjacency matrix of a primitive
abstract numeration system admits a simple dominating eigenvalue β > 0.

For any state q ∈ Q, we denote by Lq the regular language accepted by
ML from state q, by uq(n) the number of words of length n in Lq, and by
v(n) the number of words of length at most n in L. In particular, L = Lq0 and
uq(n) = eqMn

LeF for appropriate row (resp. column) vector eq (resp. eF ).
Let us introduce several sets of right-sided and left-sided infinite words built

upon the abstract numeration system S. We use here the topology induced by
the infinite product topology on ΣN, ΣN

∗

and NΣ respectively, where N∗ denotes
the set of positive integers, and NΣ the set of left-infinite words over Σ. We use
the following notation for elements of NΣ: v = · · · v2v1v0.

We first define Lω ⊂ ΣN
∗

as the set of right-infinite words w = (wi)i∈N∗ for
which there exists a sequence of words (Wn)n∈N in L converging to w, that is,
for all �, there exists N� such that for all n ≥ N�, a prefix of length at least �

of Wn is a prefix of w. Notice that a main difference with the set
−→
L classically

encountered in the literature (we refer for instance to [22]) is that if w belongs to
Lω then it does not necessarily imply that infinitely many prefixes of w belongs
to L (see [11]).

Definition 1. We define the set Kω ⊂ (Σ×Q)N by (w, r) = (w0w1 · · · , r0r1 · · · )
belongs to Kω if and only if the following conditions hold

1. there exists a sequence of words (Wn)n∈N in ∪q∈QLq converging to w1w2 · · · ,
2. for all i ≥ 0, δ(ri, wi+1) = ri+1.

For a given q ∈ Q, the subset Kω
q ⊂ Kω is defined as the set of elements (w, r) ∈

Kω such that r0 = q. One has Kω = ∪q∈QKω
q .

Definition 2. We similarly define the set ωK ⊂ N(Σ × Q). A pair (v, p) =
(· · · v2v1v0, · · · p2p1p0) belongs to ωK if and only if the following conditions hold

1. there exists a sequence (Vn)n∈N of words in L converging to v, i.e., v0v1v2 · · ·

is the limit of the sequence of words (Ṽn)n∈N, where W̃ denotes the mirror
image of the word W ,

2. for all i ≥ 0, δ(pi+1, vi) = pi.
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Definition 3. Finally, ωKω ⊂ (Σ × Q)Z is defined as the set of two-sided se-
quences ((· · · v2v1v0 · w1w2 · · · ), (· · · p2p1p0 · r1r2 · · · )) (denoted ((v, w); (p, r)))
that satisfy

1. (· · · v2v1v0, · · · p2p1p0) belongs to ωK,
2. (v0w1w2 · · · , p0r1r2 · · · ) belongs to Kω.

These three sets are easily shown to be nonempty, by a classical compactness
argument; they have the rôle played by the beta-shift in the beta-numeration
case [13, Chap. 7].

3 Expansions of Real Numbers

The abstract numeration system S = (L, Σ, <) gives a one-to-one correspon-
dence between N and L [10]: the representation of the integer n is defined as
the (n + 1)-th word w of L. We conversely define val : L → N, which maps the
(n + 1)-th word of L onto n.

We want now to expand real numbers. Let us assume that S is a primitive
abstract numeration system. Let β > 1 denote its dominating eigenvalue. Con-
sequently, L is an exponential regular language (i.e., uq0(n) ≥ Cβn, for infinitely
many n and some C > 0) and thanks to [11, Prop. 3], we deduce that the set
Lω is uncountable.

We assume moreover that L is a language for which there exist P ∈ R[X ],
and some nonnegative real numbers aq, q ∈ Q, which are not simultaneously
equal to 0, such that for all state q ∈ Q

lim
n→∞

uq(n)
P (n)βn

= aq. (2)

The coefficients aq are defined up to a scaling constant; in fact, the vector (aq)q∈Q

is an eigenvector of ML [12]; by Perron-Frobenius theorem, all its entries aq are
positive; we normalize it so that aq0 = 1 − 1/β, according to [19].

For q ∈ Q and s ∈ Σ, set

αq(s) :=
∑
q′∈Q

aq′ · Card{t < s | δ(q, t) = q′} =
∑
t<s

(q,t)∈dom(δ)

aδ(q,t).

One has for all q ∈ Q, 0 ≤ αq(s) ≤ βaq, since (aq)q∈Q is a positive eigenvector
of ML. Notice also that if s < t, s, t ∈ Σ, then αq(s) ≤ αq(t).

For any sequence of words (Wk)k∈N converging to a word w ∈ Lω , let us
recall that the limit

lim
k→∞

val(Wk)
v(|Wk |)

only depends on w, belongs to [1/β, 1], and is equal to

(1 + αq0(w1))β−1 +
∞∑

j=2

αδ(q0,w1···wj−1)(wj)β−j ,
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according to [11,19]. Hence it is natural to introduce the map

ϕω : Kω → [0, max(aq)], (w, r) = (w0w1 · · · , r0r1 · · · ) 	→
∞∑

j=1

αrj−1(wj)β−j .

Conversely, let us expand real numbers by introducing a suitable dynamical sys-
tem analogous to the β-transformation Tβ : x ∈ [0, 1] 	→ {βx}, where {z}
denotes the fractional part of z. The corresponding transformation for abstract
dynamical systems has been introduced in [19]. The underlying dynamics de-
pends on each interval [0, aq), and is defined as follows: we first set for y ∈ R+,


y�q = max{αq(s) | s ∈ Σ, αq(s) ≤ y};

let us recall that (aq)q∈Q is an eigenvector of ML of eigenvalue β, hence

βaq =
∑
r∈Q

ar · Card{s ∈ Σ | δ(q, s) = r},

and one checks that for y ∈ [0, aq), then βy−
βy�q ∈ [0, aq′), with 
βy�q = αq(s)
and δ(q, s) = q′. Furthermore, s may be not uniquely determined since αq is
nondecreasing. We define

TS : (∪q∈Q[0, aq]) × Q → (∪q∈Q[0, aq]) × Q,
(x, q) 	→ (βx − 
βx�q , q

′)

where q′ is determined as follows: let s be the largest letter such that αq(s) =

βx�q; then q′ = δ(q, s). To retrieve this information given by the largest letter
s, we thus set

ρS : (∪q∈Q[0, aq]) × Q → Σ,
(x, q) 	→ s.

We thus can expand any real number x ∈ [0, aq0) = [0, 1 − 1/β) as follows. Let
(xi, ri)i≥1 := (T i

S(x, q0))i≥1 ∈ ((∪q∈Q[0, aq]) × Q)N
∗

. Moreover, set (w0, r0) :=
(s0, q0) and for every i ≥ 1, set wi := ρS(xi−1, ri−1) where it is assumed that
x0 := x. According to [11], one has x =

∑∞
j=1 αrj−1(wj)β−j . So we have the

following definition.

Definition 4. Let S be a primitive abstract numeration system satisfying (1)
and (2). Every real number x ∈ [0, 1 − 1/β) can be expanded as

x =
∑
i≥1

αri−1(wi)β−i,

where (w, r) belongs to Kω and satisfies for every i ≥ 1, wi = ρS(xi−1, ri−1),
with (xi, ri)i≥1 = (T i

S(x, q0))i≥1, (w0, r0) = (s0, q0) and x0 = x. We call (w, r) =
(wi, ri)i∈N ∈ Kω the S-expansion of x and denote it dS(x).
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Similarly, one can expand every real positive number by rescaling. Indeed let
x ≥ aq0 . Let k be the smallest positive integer such that β−kx ∈ [0, aq0) and
let us set (wi, ri)i∈N := dS(β−kx). One has β−kx =

∑
j≥1 αrj−1(wj)β−j . Let

(v, p) ∈ ωK, with v = (· · · s0 · · · s0vk−1vk−2 · · · v0), p = (· · · q0 · · · q0pk−1 · · · p0),
and vk−1 · · · v0 = w1 · · ·wk, pk−1 · · · p0 = r1 · · · rk. (Notice that we have explicitly
used (1) to define (v, p).) One thus gets

x = αq0(vk−1)βk−1 + αpk−1(vk−2)βk−2 + · · · + αp1(v0)
+αrk

(wk+1) 1
β

+ · · · + αrk+1(wk+2) 1
β2 + · · ·

with (v · wk+1wk+2 · · · , p · rk+1rk+2 · · · ) ∈ ωKω .

Definition 5. Let S be a primitive abstract numeration system and x be a pos-
itive real number. If x ∈ [0, aq0) = [0, 1 − 1/β), then the S-fractional part of
x is simply dS(x). Otherwise, let k be the smallest positive integer such that
β−kx ∈ [0, aq0). Using the same notation as above, the S-fractional part of x is
(wkwk+1wk+2 · · · , rkrk+1rk+2 · · · ) ∈ Kω. We denote it FracS(x).

4 The Central Tile

We have given in Section 3 a geometric representation of the set Kω thanks to
the map ϕω . The aim of the present section is to provide a similar representation
for the set ωK. We follow here the formalism of [1,2,5].

We assume now that S is a primitive abstract numeration system satisfying
(1) and (2), whose dominant eigenvalue β is a Pisot unit. Let β(2), . . . , β(r)

denote the real conjugates of β, and let β(r+1), β(r+1), . . . , β(r+s), β(r+s) be
its complex conjugates. If d denotes the degree of β, then d = r + 2s. We set
β(1) = β. Let K(k) be equal to R if 1 ≤ k ≤ r, and to C, if k > r. We furthermore
denote by Kβ the representation space

Kβ := Rr−1 × Cs � Rd−1.

Let us note that, according to [19, Lemma 4.1], aq belongs to Q(β) for all q ∈ Q.
Let us consider now the following algebraic embeddings:

– The canonical embedding on Q(β) maps a polynomial to all its conjugates

Φβ : Q(β) → Kβ, P (β) 	→ (P (β(2)), . . . , P (β(r)), P (β(r+1)), . . . , P (β(r+s))).

– For any (v, p) ∈ ωK, the series

lim
n→∞

Φβ

(
n∑

i=0

αpi+1(vi)βi

)
=
∑
i≥0

Φβ(αpi+1(vi))Φβ(βi)

are convergent in Kβ . The representation map of ωK is then defined as

ωϕ : ωK → Kβ, (v, p) 	→ lim
n→+∞

Φβ

(
n∑

i=0

αpi+1(vi)βi

)
.
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Definition 6. Let S be a primitive abstract numeration system satisfying (1)
and (2) whose dominant eigenvalue β is a Pisot number. We define the central
tile TS as

TS :=ωϕ(ωK).

The central tile can be naturally divided into Card(Q) pieces, called basic
tiles, as follows:

for q ∈ Q, TS(q) :=ωϕ

(
{(v, p) ∈ ωK | p0 = q}

)
.

5 A Self-replicating Multiple Tiling

We introduce the following countable set

FS := FracS(Z[β]>0) ⊂ Kω.

Let (w, r) = (wi, ri)i∈N ∈ FS. By definition of FS , we can apply Φβ to
ϕω(w, r) which belongs to Q(β). We define the tile T(w,r) as

T(w,r) = Φβ ◦ ϕω(w, r) +ωϕ

(
{(v, p) ∈ω K | ((v, w); (p, r)) ∈ω Kω}

)
.

One checks that the tiles T(w,r) are finite unions of translates of the basic tiles
TS(q) for q ∈ Q by considering the minimal automaton ML; furthermore, one
proves similarly as in [2] that there are finitely many such tiles.

Definition 7. The primitive abstract numeration system S for which (1) and
(2) hold is said to satisfy the strong coincidence condition if for any pair of
states (q, q′) ∈ Q, there exist a state q′′ ∈ Q, a positive integer n and two words
w1 · · ·wn, w′

1 · · ·w
′
n ∈ Σn such that{∑

1≤i≤n αδ(q,w1···wi−1)(wi)βn−i =
∑

1≤i≤n αδ(q′,w′

1···w
′

i−1)
(w′

i)β
n−i

δ(q, w1 · · ·wn) = δ(q′, w′
1 · · ·w

′
n) = q′′.

We have now gathered all the required tools to be able to state and prove
the main theorem of the present paper. This theorem and its proof are directly
inspired by the corresponding statements in the beta-numeration case [1,2,5],
and in the substitutive case [21].

Theorem 1. Let S be a primitive abstract Pisot numeration system for which
(1) and (2) hold and whose dominant eigenvalue β is a Pisot number. The finite
(up to translation) set of tiles T(w,r), for (w, r) ∈ FS, covers Kβ, that is,

Kβ =
⋃

(w,r)∈FS

T(w,r). (3)

For each (w, r), the tile T(w,r) has non-empty interior. Hence it has non-zero
measure.
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We denote by hβ : Kβ → Kβ the β-multiplication map that multiplies the
coordinate of index i by β(i), for 2 ≤ i ≤ d. The basic tiles of the central tile TS

are solutions of the following graph-directed self-affine Iterated Function System:

∀q ∈ Q, TS(q) =
⋃

p∈Q, s∈Σ,
δ(p,s)=q

hβ(TS(p)) + Φβ(αp(s)). (4)

If S satisfies the strong coincidence condition, then the basic tiles have dis-
joint interiors and they are the closure of their interior.

Furthermore, there exists an integer k ≥ 1 such that the covering (3) is almost
everywhere k-to-one.

Proof. We first notice that there exists C > 0 such that if

Φβ ◦ ϕω(FracS(P (β))) �= Φβ ◦ ϕω(FracS(P ′(β))),

with FracS(P (β)) �= FracS(P (β)), then

||Φβ ◦ ϕω(FracS((P (β)))) − Φβ ◦ ϕω(FracS((P ′(β))))|| > C, (5)

where || · || denotes a given norm in Kβ. Indeed Φβ ◦ϕω(FracS(P − P ′)(β)) is an
algebraic integer: this a direct consequence of the fact that β is a unit and that
aq ∈ Q(β), for all q. We now conclude by using the fact that for any C′ > 0, there
exist only finitely many algebraic integers x in Q(β) such that |x| < max(aq)
and ||Φβ(x)|| < C′.

Let us prove now (3). From β being a Pisot number, we first deduce that
Φβ(Z[β]≥0) is dense in Kβ, according to [1, Prop. 1]. Let x ∈ Kβ . There thus
exists a sequence (Pn)n∈N of polynomials in Z[X ] with Pn(β) ≥ 0, for all n, such
that (Φβ(Pn(β)))n∈N tends towards x. For all n, Φβ(Pn(β)) ∈ T(w,r)(n) , with
(w, r)(n) = FracS(Pn(β)). We deduce from (5) that there exist infinitely many
n such that Φβ ◦ϕω((w, r)(n)) take the same value, say, Φβ ◦ϕω(w, r). Since the
tiles are closed, x ∈ T(w,r). We now deduce from Baire’s theorem that the tiles
have non-empty interior.

Let q ∈ Q be given. Let (v, p) ∈ ωK with p0 = q. One has:

ωϕ(v, p) ωϕ((vk, pk)k≥1) + Φβ(αp1(v0))
= hβ ◦ ωϕ ((vk−1, pk−1)k≥1) + Φβ(αp1(v0)).

One deduces (4) by noticing that (vk−1, pk−1)k≥1 belongs to ωK.
We deduce from the uniqueness of the solution of the IFS [14], that the basic

tiles are the closure of their interior, since the interiors of the pieces are similarly
shown to satisfy the same IFS equation (4).

We assume that S satisfies the strong coincidence condition. We deduce from
this strong coincidence condition that there exist q′′ ∈ Q, w1 · · ·wn, w′

1 · · ·w
′
n ∈

Σn such that TS(q) contains

hn
β(TS(q)) + Φβ

( ∑
1≤i≤n

αδ(q,w1···wi−1)(wi)βn−i

)
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and

hn
β(TS(q′)) + Φβ

( ∑
1≤i≤n

αδ(q′,w′

1···w
′

i−1)
(w′

i)β
n−i

)
with ∑

1≤i≤n

αδ(q′,w1···wi−1)(wi)βn−i =
∑

1≤i≤n

αδ(q′,w′

1···w
′

i−1)(w′
i)β

n−i,

according to (4), when iterated n times. Indeed TS(q′′) is equal to the union on
the states p ∈ Q for which there exists a path a1 · · · an of length n in ML from
p to q′′, of

hn
β(TS(p)) + Φβ(

∑
1≤i≤n

αδ(p,a1···ai−1)(ai)βn−i).

We denote by μ the Lebesgue measure of Kβ : for every Borelian set B of Kβ ,
one has μ(hβ(B)) = 1

β
μ(B), according to [20]: we have used here the fact that

β is a Pisot unit. One has for a given q ∈ Q according to (4)

μ(TS(q)) ≤
∑

p:δ(p,a)=q μ(hβ(TS(p)))
≤ 1

β

∑
p:δ(p,a)=q μ(TS(p)). (6)

Let m = (μ(TS(q)))q∈Q denotes the vector in Rd of measures in Kβ of the basic
tiles; we have proved above that m is a non-zero vector. Since m has further-
more nonnegative entries, according to Perron-Frobenius theorem the previous
inequality implies that m is an eigenvector of the primitive matrix ML, and thus
of Mn

L. In particular

μ(TS(q)) =
∑
p∈Q

Mn
L[p, q] · μ(TS(p)),

which implies that TS(q) and TS(q′) have disjoint interiors. We thus have proved
that the Card(Q) basic tiles are disjoint up to sets of zero measure.

Finally, one deduces from the statement below ([5], Lemma 1) that there
exists an integer k such that this covering is almost everywhere k-to-one:

Let (Ωi)i∈I be a collection of open sets in Rk such that ∪i∈IΩi = Rk and
for any compact set K, Ik := {i ∈ I; Ωi ∩ K �= ∅} is finite. For x ∈ Rk, let
f(x) := Card{i ∈ I; x ∈ Ωi}. Let Ω = Rk \ ∪i∈Iδ(ωi), where δ(Ωi) denotes the
boundary of Ωi. Then f is locally constant on Ω.

6 Some Examples

Example 1. Let us consider the automaton depicted in Fig. 1. It defines an ab-
stract numeration system over Σ = {0, 1, 2}. Its adjacency matrix is

ML =

⎛⎝1 1 0
1 0 1
2 1 0

⎞⎠ .
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Fig. 1. A trimmed minimal automaton

It is primitive, its characteristic polynomial is X3 − X2 − 2X − 1. The unique
real root of the characteristic polynomial is β � 2, 148 and one of its complex
root is β(2) � −0, 573+0, 369 i, with |β(2)| < 1, hence β is a Pisot unit. We have
Kβ = C. We assume that q1 and q2 are final states. One can check that⎧⎨⎩αq0(0) = 0, αq1(1) = aq0 ,

αq1(0) = 0, αq1(1) = aq0 ,
αq2(0) = 0, αq2(1) = aq0 , αq2(2) = 2aq0 .

Let us note that on this particular example, the value taken by αqi
(j) does

only depend on the letter j ∈ {0, 1, 2}. Let us recall that aq0 = 1 − 1/β, hence
Φβ(aq0) = 1− 1

β(2) . We represent the basic tiles (the one associated to q0, q1 and
q2 is coloured in red, green and blue respectively) in Fig. 2.

Fig. 2. The basic tiles

Let M̃L denote the automaton obtained by reversing in ML the direction of
the arrows. The basic tiles satisfy for i = 0, 1, 2:

TS(qi) =
{

(1 − 1
β(2) ) ·

(∑
i≥0 vi · (β(2))i

)
| (v0v1 · · · ) being the label

of an infinite path in the automaton M̃L starting from state qi

}
.

The strong coincidence condition is satisfied: for any pair of states (qi, qj), the
transitions δ(qi, 0) = q0, and δ(qj , 0) = q0 are suitable. The graph-directed IFS
equation satisfies
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TS(q0) = (β(2) · TS(q0)) ∪ (β(2) · TS(q1)) ∪ (β(2) · TS(q2))

∪(β(2) · TS(q2) + (1 − 1
β(2) ))

TS(q1) = (β(2) · TS(q0)) ∪ (β(2) · TS(q2) + (2 − 2
β(2) ))

TS(q2) = β(2) · TS(q1)) + (1 − 1
β(2) ).

The multiple tiling of Theorem 1 is indeed a tiling (up to a set of zero
measure). This result can be proved by using the same ideas as in [1,2]: it can be
checked in an effective way that every element of Z[β] admits a finite fractional
part; this classical property for beta-numeration is called Finiteness Property [8],
and implies that the covering (3) is a tiling.

Example 2. Let us consider another example given by the automaton depicted
in Fig 3. Again we fulfill the Pisot type assumption. Here β � 2, 324 and β(2) �

Fig. 3. Another minimal automaton and the corresponding basic tiles

0, 338 + 0, 526i. When considering q2 as the unique final state, all the αq’s are
vanishing except for

αq0 (1) = αq2(2) = 1 −
1
β

, αq0(2) = 1 −
1
β

+
1
β2

.

The corresponding three basic tiles are represented in Fig. 3.

7 Conclusion

All the theory developed in the substitutive and in the beta-numeration case
can now be extended in the present framework; mutual insight will by no doubt
be brought by handling this more general situation. To mention just but a few
prospects, we are planning to study the topological properties of the tiles (con-
nectedness, disklike connectedness), to work out some sufficient tiling conditions
in the flavour of the finiteness properties, to define p-adic tiles according to
[20], to characterize purely periodic expansions in abstract numeration systems
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thanks to the central tile as in [4], and to study the geometric representation of
the underlying dynamical systems, such as the odometer introduced in [3]: for
instance, an exchange of pieces can be performed on the central tile by exchang-
ing the basic tiles; the action of this exchange of pieces can be factorized into a
rotation of the torus when the covering (3) is a tiling.
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Abstract. In this paper we start the study of generalizing the Adver-
sarial Queueing Theory (aqt) model towards a continuous scenario in
which the usually assumed synchronicity of the evolution is not required
anymore. We consider a model, named continuous AQT (caqt), in which
packets can have arbitrary lengths, and the network links may have dif-
ferent speeds (or bandwidths) and propagation delays. We show that,
in such a general model, having bounded queues implies bounded end-
to-end packet delays and vice versa. From the network point of view,
we show that networks with directed acyclic topologies are universally
stable, i.e., stable independently of the protocols and the traffic patterns
used in it, and that this even holds for traffic patterns that make links
to be fully loaded. Concerning packet scheduling protocols, we show that
the well-known lis, sis, ftg and nfs protocols remain universally stable
in our model. We also show that the caqt model is strictly stronger than
the aqt model by presenting scheduling policies that are unstable under
the former while they are universally stable under the latter.

1 Introduction

The Adversarial Queueing Theory (aqt) model [2,3] has been used in the latest
years to study the stability and performance of packet-switched networks. The
aqt model, (like other adversarial models) allows to analyze the system in a
worst-case scenario, since it replaces traditional stochastic arrival assumptions
in the traffic pattern by worst-case inputs. In this model, the arrival of packets to
the network (i.e., the traffic pattern) is controlled by an adversary that defines,
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for each packet, the place and time in which it joins the system and, additionally
it might decide the path it has to follow. In order to study non-trivial overloaded
situations, the adversary is restricted so that it can not overload any link (in an
amortized sense). Under these assumptions, we study the stability of network
systems (G,P ,A), which are represented by three elements: the network topology
G, the protocol P used for scheduling the packets at every link, and the adversary
A, which defines the traffic pattern. Stability is the property that at any time
the maximum number of packets present in the system is bounded by a constant
that may depend on system parameters.

The original aqt model assumes a synchronous behavior of the network,
that evolves in steps. In each step at most one packet crosses each link. Implic-
itly, this assumption means that all the packets have the same size and all the
links induce the same delay in each packet transmission. There have been gen-
eralizations of the aqt model to dynamic networks, like networks with failures
[4,5,6,7] and networks with links with different and possibly variable capacities
or delays [8,9,10]. These works still assume a synchronous network evolution,
to the point that, for instance in [8] all capacities and slow-downs must have
an integral value. To the best of our knowledge, the work included in [11] is the
only generalization of the aqt model considering packets of arbitrary lengths
(up to a maximum) or links of arbitrary (not integral) speeds and propagation
delays. In that model the adversary is more powerful than in the aqt model,
and a sufficient condition on the adversary injection rate for assuring network
stability is presented.

In this paper we propose a generalization of the aqt model allowing arbitrary
packet lengths, link speeds (bandwidths), and link propagation delays. The net-
work traffic flow is considered to be continuous in time. Since we do not restrict
a synchronous system evolution anymore, we call this model continuous aqt
(caqt). Note that all the results for the aqt model which are concerned with
instability, also hold for our caqt model, e.g., the instability of the fifo protocol
at any constant rate [12]. The caqt model is inspired in the traffic conditions
of the session oriented model proposed by Cruz [13], which is widely studied
in the communication networks literature. The synchronous assumptions of the
aqt model limit the capacity of the adversary as well. In the caqt model the
adversary is more powerful, and any instability result shown in the aqt model
can be reproduced in ours.

We show that several results from the aqt model still hold in the caqt
model. First, we show that having bounded queue size implies having bounded
packet end-to-end delays and vice versa. Then, we show that networks with a
directed acyclic graph (DAG) topology are always stable even if the links are fully
loaded. Concerning packet scheduling protocols, we show that the well-known
lis, sis, ftg and nfs protocols remain universally stable in our model. Finally,
we show that some protocols whose policies are based on criteria concerning the
length of the packets, the bandwidth of the links or their propagation delay, can
configure unstable systems.
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2 System Model

Like aqt, the caqt model represents a network as a finite directed graph G
in which the set of nodes V (G) represent the hosts, and the set of edges E(G)
represent the links between those hosts. Each link e ∈ E(G) in this graph has
associated a positive but not infinite transmission speed (a bandwidth), denoted
as Be. The bandwidth of a link establishes how many bits can be transmitted
in the link per second. Instead of considering the bandwidth as a synonym for
parallel transmission, we relate the bandwidth to the transmission velocity. We
consider that only one bit can be put in a link e ∈ E(G) at each time, and that
conceptually the sender puts the associated signal level to the corresponding bit
for 1/Be seconds for each bit. This means that a bit can be partially transmitted
or partially received at a given time. Let us denote as Bmin = mine∈E(G) Be and
as Bmax = maxe∈E(G) Be the minimum and maximum bandwidth, respectively,
of the edges in G.

Each link e ∈ E(G) has also associated a propagation delay, denoted here as
Pe, being Pe ≥ 0. This delay, measured in seconds, establishes how long it takes
for a signal (the start of a bit, for instance) to traverse the link. This parameter
has to do with the propagation speed of the changes in the signal that carry
the bits along the physical medium used for the transmission. We will denote
as Pmin = mine∈E(G) Pe and Pmax = maxe∈E(G) Pe the minimum and maximum
propagation delay, respectively, of the edges in G.

Like in the aqt model, we assume the existence of an adversary that defines
the traffic pattern of the system by choosing when and where to inject packets
into the system, and the path to be followed by each of them. We assume that a
packet path is edge-simple, in the sense that it does not contain the same edge
more than once (it can visit the same vertex several times, though). Again, we
restrict the adversary so that it can not trivially overload any link. To do so, we
also define two system-wide parameters: the injection rate r (with 0 < r ≤ 1),
and the burstiness b (with b ≥ 1). For every link e ∈ E(G), if we denote by Ne(I)
the total size (in bits) of the packets injected by the adversary in the interval I
whose path contains link e, it must be satisfied that

Ne(I) ≤ r|I|Be + b.

We call an adversary A that satisfies this restriction an (r, b)-adversary. The
injection rate r is sometimes expressed alternatively as (1− ε), with ε ≥ 0.

Regarding packet injections, we assume that the adversary injects packets
instantaneously. From the above restriction, this implies that packets have a
maximum size of b bits. In general, we will use Lp to denote the length (in bits)
of a packet p, and Lmax = maxp Lp ≤ b to denote the maximum packet length.
Once a packet p starts being transmitted through a link e ∈ E(G), it will only
take Pe + Lp/Be units of time more until it crosses it completely.

Let us now look at the packet switching process. We assume that each link
has associated an output queue, where the packets that have to be sent across
the link are held. The still unsent portion of a packet that is being transmitted
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Fig. 1. Elements involved in the nodes and links of the network in the caqt model

is also held in this queue. In fact, if a bit has only been partially sent, we assume
that the still unsent portion of the bit still resides in this queue. A packet can
arrive to a node either by direct injection of the adversary or by traversing some
incoming link. In the latter case we assume that only full packets are dispatched
(moved to an output queue). Hence, we assume that each link has a reception
buffer in the receiving node where the portion of a partially received packet is
held. As soon as the very last bit of a packet is completely received, the packet is
dispatched instantaneously (by a packet dispatcher) to the corresponding output
queue (or removed, if this is the final node of the packet). Figure 1 shows these
network elements.

The definition of stability in the caqt model is analogous to the definitions
stated under other adversarial models.

Definition 1. Let G be a network with a bandwidth and a propagation delay
associated to each link, P be a scheduling policy, and A an (r, b)-adversary, with
0 < r ≤ 1 and b ≥ 1. The system (G,P ,A) is stable if, at every moment, the
total number of packets (or, equivalently, the total number of bits) in the system
is bounded by a value C, that can depend on the system parameters.

We also use common definitions of universal stability. We say that a schedul-
ing policy P is universally stable if the system (G,P ,A) is stable for each network
G and each (r, b)-adversary A, with 0 < r < 1 and b ≥ 1. Similarly, we say that
a network G is universally stable if the system (G,P ,A) is stable for each greedy
scheduling policy1 P and each (r, b)-adversary A, with 0 < r < 1 and b ≥ 1.

Some additional notation is needed to describe the state of the queues and
the packets at a specific time step. We will use Qt(e) to denote the queue size
(in bits) of edge e ∈ E(G) at time t, and define Qmax(e) = maxt Qt(e). Similarly,

1 Greedy (or work-conserving) protocols are those forwarding a packet across a link e
whenever there is at least one packet waiting to traverse e. Three types of packets
may wait to traverse a link in a particular instant of time: the incoming packets
arriving from adjacent links, the packets injected directly into the link, and the
packets that could not be forwarded in previous steps. At each time step, only one
packet from those waiting is forwarded through the link; the rest are kept in a queue.
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we will use Rt(e) to denote the number of bits at time t that are crossing link e,
or already crossed it but are still in its reception buffer at the target node of e.
Then, we define Rmax(e) = maxt Rt(e). Observe that Rmax(e) < PeBe + Lmax

and is hence bounded. At(e) will denote the number of bits in the system that
require to cross e and still have to be transmitted across link e at time t. The
bits in Qt(e) are included in At(e), but those in Rt(e) are not.

3 General Results

We point out some general results that apply to every system (G,P ,A) in the
caqt model, independently of which is the network topology, the protocol used
and the traffic pattern.

3.1 Relation Between Maximum Queue Size and Maximum Delay

We show that for injection rate r < 1, having bounded queues is equivalent to
having bounded end-to-end packet delay. This generalizes a result from the aqt
model to the stronger caqt model.

Theorem 1. Let G be a network, P a protocol, and A an (r, b)-adversary with
r ≤ 1 and b ≥ 1. If the maximum end-to-end delay is bounded by D in the system
(G,P ,A), then the maximum queue size of an edge e is bounded by (D−Pe)Be.

Theorem 2. Let G be a network with m = |E(G)| links, P a greedy protocol, and
A an (r, b)-adversary, with r = 1− ε < 1 and b ≥ 1. If the maximum queue size
is bounded by Q in the system (G,P ,A), then the end-to-end delay of a packet p
with path e1, ...., ed is bounded by

d∑
i=1

mQ +
∑

e∈E(G) Rmax(e) + b

εBei

+ Pei .

Then, the following corollary follows from the above two lemmas.

Corollary 1. Let G be a network, P a greedy protocol, and A an (r, b)-adversary,
with r < 1 and b ≥ 1. In the system (G,P ,A) the maximum end-to-end delay
experienced by any packet is bounded if and only if the maximum queue size is
bounded.

3.2 Initial Configurations

The moment in which a system (G,P ,A) starts its dynamics is usually denoted
as t0, and usually t0 = 0. The system can start either with no packet placed at
any element of the network or with some kind of initial configuration. Usually,
an initial configuration C0 consists of a set S of packets located in the output
queues of the network links. Trivially, any such initial configuration for a system
(G,P ,A) can be built from an empty initial configuration at time 0 if we allow
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a large enough burstiness. Thus, any system (G,P ,A) that starts with a non-
empty initial configuration as described can be simulated by another system
(G,P ,A′) that starts with an empty one.

Theorem 3. Let AS = maxe A0(e) be the maximum number of bits that have
to be transmitted across any given edge in the paths of the set S of packets. A
system (G,P ,A), where G is a network, P a greedy protocol, and A an (r, b)-
adversary with r ≤ 1 and b ≥ 1, that starts with an initial configuration C0

consisting of a set S of packets in the network output queues can be simulated
by a system (G,P ,A′) starting from an empty configuration, where A′ is an
(r, AS + b)-adversary.

Corollary 2. A policy or network that is universally stable for systems with
empty initial configurations is also universally stable for initial configurations in
which there are initially packets in the network output queues.

4 Stability of Networks

We focus first on the study of stability of networks. We show that networks with
a directed acyclic graph topology are universally stable, even when the traffic
pattern can fully load the links, i.e., even for the injection rate r = 1. Note
that this proof is not a direct adaptation of the one in [2] for the corresponding
analogous result in the aqt model.

Theorem 4. Let G be a directed acyclic graph, P any greedy protocol, and A
any (r, b)-adversary with r ≤ 1 and b ≥ 1. The system (G,P ,A) is stable.

Proof: Let us first denote with Te the node at the tail of link e (i.e., the node
that contains the output queue of e), for every edge e ∈ E(G). Let us also denote
with in(v) the set of incoming links to node v, for all v ∈ V (G). Let us define
the function Ψ on the edges of G as

Ψ(e) = Q0(e) + b + Rmax(e) +
∑

e′∈in(Te)

Ψ(e′).

If we call nodes without incoming links sources, we will show that At(e)+Rt(e) is
bounded by Ψ(e), for all e and all t ≥ 0, by induction on the maximum distance
of Te to a source (i.e., the length of the longest directed path from any source
to Te). Then, stability follows.

The base case of the induction is when Te is a source. In this case, At(e) =
Qt(e) and Ψ(e) = Q0(e)+b+Rmax(e). Let us fix a time t and consider two cases,
depending on whether in the interval [0, t] the output queue of e was empty at
any time. If it was never empty, then by the restriction on the adversary and the
fact that P is greedy we have that

Qt(e) ≤ Q0(e) + rtBe + b− tBe ≤ Q0(e) + b.
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Otherwise, if time t′ was the last time in interval [0, t] that the queue of e was
empty (i.e., Qt′(e) = 0), by the same facts,

Qt(e) ≤ Qt′(e) + r(t − t′)Be + b− (t− t′)Be ≤ b.

Clearly, in either case,

At(e) + Rt(e) ≤ Qt(e) + Rmax(e) ≤ Q0(e) + b + Rmax(e) = Ψ(e).

Now, let us assume that the maximum distance of Te to any source is
k > 0. Note that for any edge e′ ∈ in(Te), the maximum distance of Te′

to a source is at most k − 1. Then, by induction hypothesis, we assume that
(At(e′) + Rt(e′)) ≤ Ψ(e′) for all t ≥ 0 and all e′ ∈ in(Te). Note that At(e) ≤
Qt(e) +

∑
e′∈in(Te) (At(e′) + Rt(e′)). Again, we fix t and consider separately the

case when the output queue of e was never empty in the interval [0, t] and the
case when it was. In the first case we have that

At(e) ≤ Q0(e) + rtBe + b− tBe +
∑

e′∈in(Te)

(A0(e′) + R0(e′))

≤ Q0(e) + b +
∑

e′∈in(Te)

Ψ(e′).

In the second case, if time t′ was the last time in interval [0, t] that the queue of
e was empty (i.e., Qt′(e) = 0), we have that

At(e) ≤ Qt′(e) + r(t− t′)Be + b− (t− t′)Be +
∑

e′∈in(Te)

(At′(e′) + Rt′(e′))

≤ b +
∑

e′∈in(Te)

Ψ(e′).

In either case, we have that

At(e) + Rt(e) ≤ Q0(e) + b + Rmax(e) +
∑

e′∈in(Te)

Ψ(e′) = Ψ(e).

5 Stability of Queueing Policies

Stability can also be studied from the point of view of the protocols. Unstable
protocols in the aqt model are also unstable in the caqt model. In the following,
we show that the so-called lis, sis, ftg and nfs protocols are universally stable
in the caqt model, as they were in the aqt model [3].

5.1 Universal Stability of LIS

The lis (longest-in-system) protocol gives priority to the packet which was ear-
liest injected in the system. Independently of the network topology and the
(r, b)-adversary, any system (G, lis,A) is stable.
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Theorem 5. Let G be a network, A an (r, b)-adversary with r = 1− ε < 1, and
d the length of the longest simple directed path in G. Then all packets spend less
than ( b

Bmin
+ Pmax)/(rεd) time in the system (G, lis,A).

Corollary 3. Let G be a network, A an (r, b)-adversary with r = 1 − ε < 1,
and d the length of the longest edge-simple directed path in G. Then, the system
(G, lis,A) is stable, and there are always less than ( b

Bmin
+ Pmax) ε−dBmax + b

bits trying to cross any edge e.

5.2 Universal Stability of SIS

The sis (shortest-in-system) protocol gives priority to the packet which was
injected the latest in the system. In the case of the sis protocol, bounding the
size of the packets recently injected is related to bounding the time that a packet
packet p requires to cross the edge e. The following lemma provides us with such
a bound:

Lemma 1. Let p be a packet that, at time t, is waiting in the queue of edge
e ∈ E(G). At that instant, let k − 1 be the total size in bits of the packets in
the system that also require e and that may have priority over p (i.e., that were
injected later in the system). Then p will start crossing e in at most (k + b)/(εBe)
units of time.

Observe that, once the packet p starts being transmitted through the link e,
it will only take Pe + Lp/Be units of time more until it crosses it completely.
Using the bound obtained in Lemma 1 in a recursive way, we can derive more
general bounds, thus proving the universal stability of the sis protocol.

Theorem 6. Let G be a network, A an (r, b)-adversary with r = 1− ε < 1 and
b ≥ 1, and d the length of the longest edge-simple directed path in G. The system
(G,sis,A) is stable and, moreover:

– no queue ever contains kd + Lmax bits, and
– no packet spends more than (d(b + εLmax) +

∑d
i=1 ki)/(εBmin)+dPmax time

in the system.

where ki is defined according to the following recurrence:

ki =

{
b for i = 1
ki−1 + (1− ε)

(
ki−1+b
εBmin

+ Lmax
Bmin

+ Pmax

)
Bmax + b for 1 < i ≤ d

5.3 Universal Stability of FTG

The ftg (farthest-to-go) protocol gives priority to the packet which still has to
traverse the longest path until reaching its destination. We show that ftg is
universally stable by using the fact that all the packets have to traverse at least
one edge, and that all the packet go at most d edges further.
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Theorem 7. Let G be a network with m = |E(G)| links, A an (r, b)-adversary
with r < 1 and b ≥ 1, and d the length of the longest edge-simple directed path
in G. The system (G,ftg,A) is stable and:

– there are never more than k1 bits in the system,
– no queue ever contains more than k2 + b bits, and
– no packet spends more than dPmax +(d(b + εLmax) +

∑d
i=2 ki)/(εBmin) time

in the system.

where ki is defined according to the following recurrence:

ki =

{
0 for i > d
mki+1 + mb +

∑
e∈E(G)

Rmax(e) for 1 ≤ i ≤ d

5.4 Universal Stability of NFS

The nfs (nearest-from-source) protocol gives priority to the packet which is
closest to its origin, i.e., which has traversed the less portion of its whole path.
We show that nfs is universally stable by using a similar argument as the one
used for ftg; however the bounds will be provided now taking the length of the
longest path as a reference point.

Theorem 8. Let G be a network with m = |E(G)| links, A an (r, b)-adversary
with r < 1 and b ≥ 1, and d the length of the longest edge-simple directed path
in G. The system (G,nfs,A) is stable and:

– there are never more than kd bits in the system,
– no queue ever contains more than kd−1 + b bits, and
– no packet spends more than dPmax+(d(b + εLmax) +

∑d−1
i=1 ki)/(εBmin) time

in the system.

where ki is defined according to the following recurrence:

ki =

{
0 for i = 0
mki−1 + mb +

∑
e∈E(G)

Rmax(e) for 1 ≤ i ≤ d

6 Instability of Queueing Policies

In this section we introduce some new protocols that base their policies in
the main features of the caqt model, namely, the length of the packets, the
edge bandwidths and the edge propagation delays. We show that the caqt
model is strictly stronger than the aqt model by presenting scheduling poli-
cies that are unstable under the former while they are universally stable un-
der the latter.
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Fig. 2. Baseball network GB presented in [3]

6.1 Instability by Difference in Packet Length

Consider the lpl (longest-packet-length) protocol which gives priority to the
packet with longest length. Let us denote as lpl-lis the same protocol when ties
are broken according to the lis policy. Note that lpl-lis is universally stable
under the aqt model, since in this model all packets have the same length
and hence the policy simply becomes lis [3]. However, we show here that lpl-
lis is unstable in an extension of aqt with multiple packet lengths just by
considering two different packet lengths (1 and 2). For simplicity we will assume
that time advances in synchronous steps (as in aqt). Packets of length 2 take
2 steps to cross each link. In the lpl-lis protocol, these double packets will
have priority over the single packets. Note that this model is trivially included
in caqt. To show the instability of the lpl-lis protocol, we use the baseball
network presented in [3] (see Figure 2).

Theorem 9. Let GB be the graph with nodes V (GB) = {v0, v1, w0, w1}, and
edges E(GB) = {(v0, w0), (v1, w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. All the
edges in E(GB) have bandwidth 1 and null propagation delay. For r > 1/

√
2

there is an (r, b)-adversary A that makes the system (GB , lpl-lis,A) to be un-
stable only with packets of length 1 and 2.

6.2 Instability by Difference in Bandwidth

Consider the spl (slowest-previous-link) protocol which gives priority to the
packet whose last crossed link was the slowest, i.e., had the smallest bandwidth.
This policy aims to equilibrate the lost in transmission velocity suffered in previ-
ous links. Let us denote as spl-nfs this protocol, when ties are broken according
to the nfs protocol. Observe that the spl-nfs protocol is equivalent to nfs in
the aqt model and thus universally stable [3]. However, we show that in a sim-
ilar way as shown for the lpl-lis protocol, the spl-nfs protocol can be made
unstable in the caqt model.
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Theorem 10. Let GB be the graph with nodes V (GB) = {v0, v1, w0, w1} and
edges E(GB) = {(v0, w0), (v1, w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. Let G be
the graph obtained from GB whose set of nodes is V (G) = V (GB) ∪ {v′0, v′1, w′0,
w′1}, and whose set of edges is E(G) = E(GB) ∪ {(v′0, v0), (v′1, v1), (w′0, w0),
(w′1, w1)}. Those edges inciding to v0 and v1 have bandwidth 2, while the rest
have bandwidth 1. All the edges have null propagation delays. For r > 1/

√
2 there

is an (r, b)-adversary A that makes the system (G, spl-nfs,A) to be unstable.

6.3 Instability by Difference in Propagation Delays

Consider the spp (smallest-previous-propagation) protocol which gives priority to
the packet whose previously traversed edge had smallest propagation delay, and
combine it with nfs to break ties. Let us denote this protocol as spp-nfs. Observe
that the spp-nfs protocol is equivalent to nfs in the aqt model and thus univer-
sally stable [3]. However, we show with the spp-nfs protocol as example, that just
the fact of considering propagation delays can make a policy unstable in caqt.

Theorem 11. Let GB be the graph with nodes V (GB) = {v0, v1, w0, w1} and
edges E(GB) = {(v0, w0), (v1, w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. Let G be
the graph obtained from GB whose set of nodes is V (G) = V (GB)∪{v′0, v′1, w′0, w′1},
and whose set of edges is E(G) = E(GB) ∪ {(v′0, v0), (v′1, v1), (w′0, w0), (w′1, w1)}.
Those edges inciding to v0 and v1 have propagation delay 1, while the rest have
null propagation delay. All the edges have unary bandwidth. For r > 1/

√
2 there

is an (r, b)-adversary A that makes the system (G, spp-nfs,A) to be unstable.

7 Conclusions and Open Questions

We consider a networking scenario in which packets can have arbitrary lengths,
and the network links may have different speeds and propagation delays. Taking
into account these features, we have presented a generalization of the well-known
Adversarial Queueing Theory (aqt) model which does not assume anymore syn-
chronicity in the evolution of the system, and makes it more appropriate for more
realistic continuous scenarios. We called it the caqt model.

We have shown that, in the caqt model having bounded queues is equivalent
to having bounded packet end-to-end delays. From the network point of view, we
show that networks with a directed acyclic topologies are universally stable even
when the traffic pattern fully loads the links. From the protocol point of view,
we have also shown that the well-known lis, sis, ftg and nfs protocols remain
universally stable in the caqt model. New protocols have also been proposed
which are universally stable in the aqt model but unstable in the caqt model.

Many interesting questions remain still open in the caqt model. More results
are needed concerning the stability of networks, starting from simple topologies
like the ring, to finally tackle the universal stability of networks. It would be of
interest to know the queue sizes to be expected (as is was studied in [3,14] for
the aqt model), as well as which conditions guarantee that all the packets are
actually delivered to destination (as it was studied in [15] for aqt).
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Abstract. Feige and Kilian [5] showed that finding reasonable approx-
imative solutions to the coloring problem on graphs is hard. This mo-
tivates the quest for algorithms that either solve the problem in most
but not all cases, but are of polynomial time complexity, or that give a
correct solution on all input graphs while guaranteeing a polynomial run-
ning time on average only. An algorithm of the first kind was suggested
by Alon and Kahale in [1] for the following type of random k-colorable
graphs: Construct a graph Gn,p,k on vertex set V of cardinality n by
first partitioning V into k equally sized sets and then adding each edge
between these sets with probability p independently from each other.
Alon and Kahale showed that graphs from Gn,p,k can be k-colored in
polynomial time with high probability as long as p ≥ c/n for some suf-
ficiently large constant c. In this paper, we construct an algorithm with
polynomial expected running time for k = 3 on the same type of graphs
and for the same range of p. To obtain this result we modify the ideas
developed by Alon and Kahale and combine them with techniques from
semidefinite programming. The calculations carry over to general k.

1 Introduction

The coloring problem on graphs remains one of the most demanding algorith-
mic tasks in graph theory. Since it is one of the classical NP-hard problems
(see [7]) it is unlikely that efficient coloring algorithms exist. If no exact answer
to a problem can be found within a reasonable amount of time, one alternative
is to search for approximation algorithms. However, for the coloring problem
even this suboptimal approach fails. While the standard greedy heuristic with
high probability does not use more than 2χ(G) colors on a random input graph
G, guaranteeing a similar performance ratio for all graphs is intractable under
reasonable computational assumptions. In fact, Feige and Kilian [5] proved that
for all ε > 0 it is impossible to approximate the coloring problem within n1−ε,
provided ZPP �= NP , where n is the number of vertices of the input graph.
Moreover, Khanna, Linial, and Safra [9] showed that coloring 3-colorable graphs
with 4 colors is NP-hard.

Accordingly, different approaches must be pursued. One possibility is to ask
for algorithms that work with high probability. While finding algorithms of this

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 156–167, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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type is not too difficult for dense k-colorable graphs [4,11,13], it turns out to
be harder for sparse k-colorable graphs. For constructing such sparse graphs set
p = c/n for a constant c in the following process: Partition the vertex set V
into k sets Ci of equal size and allow only edges between these sets, taking each
one independently with probability p. We denote graphs obtained in this way by
Gn,p,k. The sets Ci are also called the color classes of Gn,p,k.

In 1997, Alon and Kahale [1] established the following result for Gn,p,k.

Theorem 1 (Alon and Kahale [1]). Let p > c/n for some sufficiently large
constant c. Then there is a polynomial time algorithm for k-coloring Gn,p,k with
high probability.

But an algorithm that works with high probability has one drawback: For some
inputs it does not provide any solution at all. Alternatively, we could require
that the algorithm always gives a correct answer to the problem under study but
performs well only on average: An algorithmA with running time tA(G) on input
G has polynomial expected running time on Gn,p,k if

∑
G tA(G) · P[Gn,p,k = G ]

remains polynomial. Here, the sum ranges over all graphs on n vertices. Observe
that this is a stronger condition than to work correctly with high probability: An
algorithm that k-colors Gn,p,k in polynomial expected running time also solves
the k-coloring problem with high probability in polynomial time.

In this paper we present an algorithm for coloring sparse 3-colorable graphs
with 3 colors in polynomial expected time.

Theorem 2. If p > c/n for some sufficiently large constant c, then there is an
algorithm COLOR that 3-colors Gn,p,3 in polynomial expected time.

This improves on results of Subramanian [12] and Coja-Oghlan [2] and answers
a question of Subramanian [12] and Krivelevich [10]. The calculations carry over
to general k. The best known previous algorithm is due to Coja-Oghlan [2] and
k-colors graphs from Gn,p,k in polynomial expected time if np ≥ c·max

(
k lnn, k2

)
for a sufficiently large constant c.

The main philosophy of COLOR can be described as follows. On input G, we
start by executing a polynomial time algorithm A: In the first step A determines
an initial coloring of G which colors all but a constant fraction of G correctly
with high probability. A then refines this initial coloring by using different com-
binatorial methods which are modifications of the methods used by Alon and
Kahale. With high probability this results in a valid coloring of G. However,
since we are interested in returning a valid coloring for all graphs, COLOR also
has to take care of exceptional cases. In the case that A does not produce a valid
coloring of G, we therefore proceed by removing a set Y of vertices from G, rerun
A on G \ Y and treat Y with brute force coloring methods. In the beginning, Y
contains only a single vertex. We repeat this procedure and gradually increase
|Y | until G is finally properly colored. We verify that COLOR has polynomial
expected running time by showing that A can handle all but a small number of
vertices for most graphs from Gn,p,3.

In addition, and in contrast to Alon and Kahale, we apply the concept of
semidefinite programming in order to obtain a good initial coloring of Gn,p,3 in
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the first stage of COLOR. To this end we use the semidefinite program SDP3

introduced by Frieze and Jerrum [6]. The value of SDP3 on Gn,p has been inves-
tigated by Coja-Oghlan, Moore, and Sanwalani [3]. We use their result to show
that SDP3 behaves similarly on Gn,p,3. This will then allow us to construct a
coloring of Gn,p,3 from a solution of SDP3 that already colors all but a small
linear fraction of the input graph correctly. Similar methods have been used by
Coja-Oghlan [2].

The remainder of this paper is structured as follows: In Section 2 we investigate
the behaviour of SDP3 on Gn,p,3, in Section 3 we give the details of our coloring
algorithm, in Section 4 its analysis and in Section 5 some concluding remarks.

2 The Value of SDP3 on Graphs from Gn,p,3

Recall that a k-cut of a graph G is a partition of V (G) into k disjoint sets
V1, . . . , Vk, its weight is the total number of edges crossing the cut, and that
MAX-k-CUT is the the problem of finding a k-cut of maximum weight.

In the algorithm COLOR we make use of the following SDP relaxation SDP3

of MAX-3-CUT due to Frieze and Jerrum [6] which provides an upper bound
for MAX-3-CUT:

max
∑

vw∈E(G)

2
3

(1− 〈xv |xw〉)

s.t. ‖xv‖ = 1 ∀v ∈ V,

〈xv |xw〉 ≥ −1
2

∀v, w ∈ V.

Here, the maximum runs over all vector assignments (xv)v∈V (G) obeying xv ∈
IR|V |. Observe that, if G1 is a subgraph of G2, then SDP3(G1) ≤ SDP3(G2).
One way to realize a feasible solution of SDP3 corresponding to a 3-cut V1, V2, V3

of G is to assign the same vector si to each vertex in Ci in such a way that
〈si |sj〉 = −1/2 for i �= j.

Moreover, there is an obvious connection between maximum 3-cuts and 3-
colorings: In the case of a 3-colorable graph G a maximum 3-cut simply contains
all edges. Then, we know that each edge contributes exactly 1 to the value
of SDP3. In this case, the special feasible solution to SDP3 discussed above
is optimal. Conversely, if the optimal solution of SDP3(G) has this structure,
then it is clearly easy to read off a proper 3-coloring of G from this solution.
Unfortunately, the position of the vectors xv can get “far away” from this ideal
picture in general. In this section we show however that with high probability
such a scenario does not occur in the case of random 3-colorable graphs from
Gn,p,3. Although for such graphs the vectors corresponding to vertices of one
color class do not necessarily need to be equal, most of them will be comparably
close. Similar techniques were used in [2].

In [3] Coja-Oghlan, Moore, and Sanwalani studied the behaviour of SDP3

on Gn,p. They obtained the following result, which will be the key ingredient to
our analysis of SDP3 on graphs from Gn,p,3.
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Theorem 3 (Coja-Oghlan, Moore & Sanwalani [3]). If p ≥ c/n for suffi-
ciently large c then

SDP3(Gn,p) ≤ 2
3

(
n

2

)
p +O

(√
n3p(1− p)

)
(1)

with probability at least 1− exp(−3n).

Note that 2
(
n
2

)
p/3 is also the size of a random 3-cut in Gn,p. So Theorem 3 es-

timates the difference of the sizes of a maximum 3-cut and a random 3-cut in Gn,p.
Let G = (V,E) ∈ Gn,p,3. We can construct a random graph G∗ ∈ Gn,p from

G by inserting additional edges with probability p within each color class. The
following lemma investigates the effect of this process on the value of SDP3.

Lemma 1. Consider a graph G∗ = (V,E∗) from Gn,p with V = [n] and let
G = (V,E) be the subgraph of G∗ with edges E = E∗ ∩ {vw | 3v/n� �= 3w/n�}.
Then for some constant c′ not depending on d

SDP3(G∗)− SDP3(G) ≤ c′
√

n3p (2)

with probability at least 1− exp(−5n/2).

Proof. In order to establish this result we prove that

2
3

(
n

2

)
p− c′

2

√
n3p ≤ SDP3(G) ≤ SDP3(G∗) ≤ 2

3

(
n

2

)
p +

c′

2

√
n3p

holds with the same probability. In fact, the second inequality holds by con-
struction since G is a subgraph of G∗ and the third inequality is asserted by
Theorem 3 if we choose c′ accordingly. Thus it remains to show the first inequal-
ity. This is obtained by a straightforward application of the Chernoff bound and
the fact that SDP3(G) = |E| as mentioned earlier.

Equation (2) asserts that the values of SDP3 for G and G∗ are not likely to
differ much, if the additional edges within the color classes Ci of G are chosen at
random. It follows that in an optimal solution to SDP3(G), most of the vectors
corresponding to vertices of Ci for a particular i can not be far apart. This is
shown in the next lemma.

If not stated otherwise, we consider SDP3 on input G from now on. Let
(xv)v∈V (G) be an optimal solution to SDP3(G). Then we call

Nμ(v) := {v′ ∈ V | 〈xv |xv′ 〉 > 1− μ}
the μ-neighborhood of v.

Lemma 2. For fixed ε with 0 < ε < 1/2 there is a constant 0 < μ < 1/2 such
that for any μ′ with μ ≤ μ′ < 1/2 the following holds with probability greater
than 1 − exp(−7n/3): For each i ∈ {1, 2, 3} there is a vertex vi ∈ Ci such that
the set Nμ(vi) contains at least (1− ε)n/3 vertices of the color class Ci and the
set Nμ′

(vi) contains at most εn/3 vertices from other color classes Cj (j �= i).
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For proving this lemma, we first observe that the edges uv of G∗ with u, v
in one color class Ci of G and 〈xu |xv〉 small, form a random subgraph of G∗.
From Lemma 1 we can then deduce the first statement of Lemma 2. The second
statement follows since Nμ′

(v) induces an empty graph in G for μ′ < 1/2. We
omit the details.

In the following we will call a vertex v ∈ Ci obeying the properties asserted
by Lemma 2 an (ε, μ, μ′)-representative for color class Ci. In the case μ′ = μ we
omit the parameter μ′.

3 The Algorithm

Roughly speaking, there are two basic principles underlying the mechanisms
of COLOR. On the one hand a number of steps, also called the main steps,
aim at constructing a valid 3-coloring of the input graph with sufficiently high
probability. These are the initial step, the iterative recoloring step, the uncoloring
step and the extension step. However, on atypical graphs this approach might
fail. For guaranteeing a valid output for each input, COLOR also has to handle
this case; possibly by using computationally expensive methods. Accordingly, the
purpose of the remaining operations is to fix the mistakes of the main steps on
such atypical graphs. This constitutes the second principle, the so-called recovery
procedure of COLOR.

The details of COLOR are given in Algorithm 1. We now briefly describe the
main steps and then turn to the recovery procedure.

The Initial Step: (Steps 1, 5, and 6) This step is concerned with finding
an initial coloring Υ0 of the input graph G = (V,E) such that Υ0 fails on at
most εn vertices of G. Here, ε is small but constant. To obtain Υ0 we apply the
SDP relaxation SDP3 of MAX-3-CUT. An optimal solution of this semidefinite
program can efficiently be computed within any numerical precision (cf. [8]). This
solution gives rise to the coloring Υ0 by grouping vertices whose corresponding
vectors have large scalar product into the same color class. In the algorithm
COLOR we use a randomized method for this grouping process.

The Iterative Recoloring Step: (Step 8) This step refines the initial coloring
in order to find a valid coloring of a much larger vertex set by repeating the
following step at most a logarithmic number of times: Assign to each vertex in G
the color that is the least favorite among its neighbors. In Section 4 we will show
that this approach is indeed successful, in the sense that with sufficiently high
probability at most α0n vertices are still colored incorrectly after the iterative
recoloring step, where α0 is of order exp(−np).

The Uncoloring Step: (Step 9) This step proceeds iteratively as well. In
each iteration, the uncoloring step uncolors all vertices that have less than np/6
neighbors of some color other than their own. Observe that in a “typical” graph
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Algorithm 1: COLOR(G)
Input: a graph Gn,p,3 = G = (V, E)
Output: a valid coloring of Gn,p,3

begin
let (xv)v∈V (G) be an optimal solution of SDP3(G) ;1

for 0 ≤ y ≤ n do2

foreach Y ⊂ V with |Y | = y and each valid 3-coloring ΥY of Y do3

for O(n) times do4

/∗∗ The initial step ∗∗/
Randomly choose three vectors x1,x2, x3 ∈ {xv|v ∈ V (G)} ;5

Extend ΥY to a coloring Υ0 of G by setting Υ0(v) := i for all6

v ∈ G− Y where i is such that 〈xv |xi〉 is maximal ;
for t = log n downto t = 0 do7

/∗∗ The iterative recoloring step ∗∗/
for 0 ≤ s < t do8

Construct a coloring Υs+1 of G with Υs+1(v) := ΥY (v) for
v ∈ Y and Υs+1(v) := i for v �∈ Y where i minimizes
|N(v) ∩ Υ−1

s (i)| ;
Set Υ ′ := Υt ;
/∗∗ The uncoloring step ∗∗/
while ∃v ∈ G− Y with Υ ′(v) = i and9

| {w|w ∈ N(v) , Υ ′(w) = j} | < np/6 for some j �= i do
uncolor v in Υ ′ ;

/∗∗ The extension step ∗∗/
if each component of uncolored vertices is of size at most α0n10

then
Extend the partial coloring Υ ′ to a coloring Υ of G by
exhaustively trying each coloring of each component in the
set of uncolored vertices ;
if Υ is a valid coloring of G then11

return Υ (G) and stop;

end

from Gn,p,3 a “typical” vertex and its neighbors will not have this property if
they are colored correctly.

The Extension Step: (Step 10) Here, an exact coloring method is used to
extend the partial coloring obtained to the whole graph Gn,p,3. In this process
the components induced on the uncolored vertices are treated seperately. On
each such component K, the algorithm tries all possible colorings until it finds
one that is compatible to the coloring of the rest of G.

The main steps are all we need for 3-coloring Gn,p,3 with high probability
This will be formally proven in Section 4; the analysis of the recoloring, the
uncoloring and the extension step is similar to that of Alon and Kahale [1].
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If the main steps do not produce a valid coloring of G the recovery procedure
(the loops in Steps 2 to 7) comes into play. The concept is as follows. Assume
that for an input graph G the main steps of COLOR produce a correct coloring
on the subgraph induced by V \ Y for some Y ⊂ V but “fail” on Y . Then an
easy way of “repairing” the coloring obtained is to exhaustively test all valid
colorings of Y . Of course, we neither know this set Y nor its size |Y |. To deal
with these two problems, COLOR proceeds by trying all possible subsets Y of V
with |Y | = y. Here, we start with y = 0 and then gradually increase the value of
y until a valid coloring of G is determined. This is performed in Steps 2 and 3 of
the recovery procedure. We also call Step 3, where all colorings of all vertex sets
of size y are constructed, the brute force coloring method or repair mechanism
for these sets.

Since the size of Y in the recovery procedure (Step 3) is increased until a
valid coloring is obtained, the correctness of Algorithm 1 is inherent (ultimately,
a proper coloring will be found in the last iteration, when Y contains all vertices
of G) . An analysis of the expected running time of Algorithm 1 will be presented
in the next section.

4 Analysis of the Algorithm

In the following we assume that G is a graph sampled from Gn,p,3 where d :=
np > c for some sufficiently large constant c. Moreover, let 3-COL (x) := 3x be
the time needed to find all 3-colorings of a graph of order x.

4.1 The Initial Step

Lemma 2 guarantees that, given an optimal solution of SDP3(G), we can con-
struct a reasonably good initial coloring Υ0 via the sets Nμ(vi) by choosing an
appropriate representative vi for each color class Ci and setting Υ0(v) := i for
all v ∈ Nμ(vi). Here, ties are broken arbitrarily and vertices not appearing in
any of the sets Nμ(vi) get assigned an arbitrary color.

Thus it remains to determine appropriate representatives. The easiest way
is to simply try all different triples of vertices from G as representatives. This,
however, introduces an extra factor of n3 in the running time. In order to reduce
this factor to a linear one, Algorithm 1 proceeds differently. Let v1, v2 and v3

be (ε′, μ, μ′)-representatives of the color classes C1, C2, and C3, respectively. We
will make use of the following lemma.

Lemma 3. If vi is a (ε′, μ, μ′)-representative for Ci and μ′ > 4μ +
√

2μ, then
each vertex v ∈ Nμ(vi) is an (ε′, 4μ)-representative of color class Ci.

By choosing μ′ > 4μ +
√

2μ (and μ sufficiently small such that μ′ < 1/2) we
therefore get at least (1 − ε′) · n/3 representatives per color class. But then the
probability of obtaining a set of representatives for G by picking three vertices
r1, r2, r3 from V at random is at least (1−3 · ε′)/9. Repeating this process raises
the probability of success. More specifically, the probability that in c′n trials
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none yields a triple of (ε′, 4μ)-representatives is smaller than (8/9 + ε′/3)c′n.
Here, c′ > 0 is an arbitrary constant. Observe additionally that if r1, r2, r3 form
a triple of (ε′, 4μ)-representatives for G, then 〈xv |xri〉 >

〈
xv

∣∣xrj

〉
for at least

(1 − 2ε′)n/3 vertices v ∈ Ci if i �= j. Let 2 · ε′ = ε. This guarantees a coloring
Υ0 of G that colors at least εn vertices of G correctly by assigning each vertex v
the color i such that 〈xv |xri〉 is maximal.

The strategy just described is applied in Step 4 of Algorithm 1. We conclude
that this randomized approach gives rise to a valid coloring of an (1− ε)-fraction
of the graph with probability at least

1− exp
(
−7

3
n

)
− (8/9 + 2ε/3)c′n ≥ 1− 2 exp

(
−7

3
n

)
≥ 1− 10−n (3)

for c′ and n sufficiently large and ε small enough, e.g. c′ = 30 and ε < 1/10.
Here, the probability is taken with respect to the input graphs Gn,p,k and to the
random choices of representatives.

Now, consider the coloring Υ0 constructed in Step 6 of Algorithm 1 and let
FSDP be a vertex set of minimal cardinality such that Υ0 colors at most εn/3
vertices incorrectly in each set Ci \FSDP . The following lemma is an immediate
implication of Equation (3) and Lemma 2.

Lemma 4. For all y > 0 the following relation holds: P[ |FSDP | ≥ 1 ] ≤ 10−n.

4.2 The Iterative Recoloring Step

After the initial coloring Υ0(G) is constructed, Step 8 of Algorithm 1 aims at
improving this coloring iteratively. We show that this attempt is indeed successful
on a large subgraph H of G with high probability.

Let H be the subgraph of G obtained by the following process:

1. Delete all vertices in H
+

:=
{
v ∈ V

∣∣∣ v ∈ Ci, ∃j �= i : degCj
(v) > (1 + δ)d

3

}
2. Delete all vertices in H

−
:=

{
v ∈ V

∣∣∣ v ∈ Ci, ∃j �= i : degCj
(v) < (1− δ)d

3

}
3. Iteratively delete all vertices having more than δd/3 neighbors that were

deleted earlier in Ci for some i, i.e., delete all vertices in
⋃

0<l H
l
, where

H
0

:= H
+ ∪H

−
and

H
l
:

{
v ∈ V

∣∣∣∣∣ ∃i : N(v) ∩ Ci ∩
⋃
l′<l

H
l′
> δ

d

3

}

for l > 0.

We also denote G − H by H. The lemma below shows that H spans a large
subgraph of G with high probability.

Lemma 5. Let 0<α< 1
2 and 0<δ< 1

2 be constant in the definition of H. Then

P
[ |H | ≥ αn

] ≤ exp(− (logα + Ω (d)) · αn) + exp(Ω (d · logα · αn)) . (4)
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This lemma follows from the observation that it is unlikely that many vertices
are deleted in the first two steps of the construction of H . But then it is also
unlikely that many vertices are deleted in the iterative step.

Now, we can use the structural properties of H to show that the algorithm
succeeds on H with high probability. For this, we prove that with high probability
the number of vertices in H that are colored incorrectly decreases by more than
a factor of 2 in each of the iterations of the recoloring step. If this performance is
actually achieved, we call the corresponding iteration successful, otherwise we say
that it fails. Algorithm 1 performs at most logn of these iterations. Afterwards,
either the entire graph H is colored correctly or one of the iterations failed. In
the latter case Algorithm 1 runs the iterative recoloring step until just before
the iteration, say iteration t, when it fails for the first time. The algorithm then
proceeds by exhaustively trying all colorings on all subsets of G of size y and thus
fixes the coloring of H in this way. However, since Algorithm 1 can not discover
whether a particular iteration of the recoloring step succeeds or fails another
iteration is necessary at this point. Algorithm 1 applies the strategy of simply
trying to repair each of the iterations of the recoloring step subsequently, starting
with the last one and proceeding until it reaches iteration t. This explains the
innermost loop of the recovery procedure (Step 7 of Algorithm 1). Once the
recovery procedure repaired iteration t, all vertices of H are colored correctly.

Lemma 6. Consider the first iteration of the recoloring step that fails and let
FH ⊆ H denote the set of vertices of H that were colored incorrectly in H before
this iteration. Then

P[ |FH | = αn ] ≤ exp(Ω (d · logα · αn))

for δ sufficiently small but constant in the definition of H.

This follows from the fact that H has good expansion properties and that vertices
in H do not have many neighbors outside of H .

4.3 The Uncoloring Step

Note that, if H is colored correctly before the application of the uncoloring step,
no vertex of H gets uncolored by this procedure. Indeed, since each vertex v in H
has at least (1− δ)d/3 neighbors in Ci∩H for each i such that v �∈Ci and all these
neighbors are colored with color i, v does not get uncolored as long as δ<1/2.

The following Lemma shows that vertices v �∈H that were not colored correctly
by the iterative recoloring step are likely to get uncolored in the uncoloring step.

Lemma 7. Let FΥ ⊂ G − H be the set of vertices that are colored incorrectly
and remain colored after the execution of the uncoloring step. Then

P[ |FΥ | = αn ] ≤ exp(Ω (d · logα · αn))

for 0 < α < 1
2 .
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Proof. If a vertex v in Ci is colored incorrectly, say with color j, and remains
colored after the uncoloring step, v must have at least d/6 neighbors of color i.
Since v is not adjacent to any vertex in its own color class Ci, all these neighbors
are elements of FΥ as well. Hence, the lemma follows from an estimation of the
probability that there is some set Y ⊂ V (G) with |Y | = αn and minimum degree
at least d/6.

4.4 The Extension Step

Knowing that the uncoloring step succeeds in uncoloring all vertices of wrong
color with high probability, we are now left with the task of assigning a new color
to these uncolored vertices. In Algorithm 1 this is taken care of by the extension
step (Step 10). Using similar techniques as those developed by Alon and Kahale
in [1], we show that all components induced on the set of uncolored vertices are
likely to be rather small. Recall that α0 = exp(−O(d)).

Lemma 8. For α < α0,

P
[
there is a component of order αn in H

] ≤ (
d

exp(Ω (d))

)αn

.

From this lemma it follows that with high probability a valid coloring of H can
indeed be extended to the whole graph G by Step 10 of Algorithm 1 as long as
H does not get too large.

Lemma 9. The extension step (Step 10) of Algorithm 1 has polynomial expected
running time.

Proof. As explained, in Step 10 of Algorithm 1 an exact coloring method is used
to extend the partial coloring obtained in earlier steps to the whole graph G. In
this process the components induced on the vertices uncolored by the uncoloring
step are considered independently. On each such component the algorithm tries
all possible colorings until it finds one that is compatible to the coloring of the
rest of G. Trivially there are at most n components in the set of uncolored vertices
and so it suffices to show that the probability that a component of G −H has
αn vertices multiplied by 3-COL (αn) remains small for all α < α0 since the
extension step is only executed for α < α0:

P[ there is a component of order αn in G−H ] · 3-COL (αn)

≤
(

d

exp(Ω (d))

)αn

· 3αn ≤
(

3d
exp(Ω (d))

)αn

= O(1) .

4.5 The Expected Running Time of COLOR

All main steps of Algorithm 1, i.e., the construction of the initial coloring, the
recoloring step, and the uncoloring step are executed in polynomial time.
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Moreover, Lemma 8 guarantees that the extension step of COLOR has poly-
nomial expected running time. It therefore remains to investigate the recovery
procedure consisting of the loops in Steps 2, 3, 4 and 7 of Algorithm 1.

The results derived in the last few subsections estimate the probabilities that
one of the main steps of Algorithm 1 fails on a vertex set Y of size y. As explained
in Section 3, these vertex sets are taken care of by the recovery procedure. The
polynomial expected running time of Algorithm 1 is a consequence of the expo-
nentially small probabilities in the previous lemmas. This is shown in Lemma 10
and it immediately implies Theorem 2.

Lemma 10. The recovery procedure (i.e., Steps 2, 3, 4and 7) of Algorithm 1
has polynomial expected running time.

Proof. Consider the vertex set Y from Algorithm 1 that is colored correctly in
Step 3 of the recovery procedure and let t(y) be the time the algorithm needs
to execute this step in the case |Y | = y. Further, denote by F the set Y used in
the iteration when the algorithm finally obtains a valid coloring. The expected
running time E[ t ] of the repair mechanism can then be written as

E[ t ]
∑
y≤n

P[ |F | = y ] · t(y)

≤ O(n)
∑
y≤n

P[ |F | = y ] ·
(
n

y

)
3-COL (y) .

Recall the definition of H in subsection 4.2 and that FH are those vertices in H
which are colored incorrectly after the recoloring step. FSDP are those vertices
that need to be assigned a different color for obtaining a valid coloring on an
(1 − ε)-fraction of G after the inital phase and FΥ are those that are colored
incorrectly after the uncoloring step. Moreover, α0 = exp(−O(d)).

We bound P[ |F | = y ] by rewriting F as sum of FSDP , FH , FΥ and possibly
H . For this, observe that F = FSDP ∪FH∪FΥ . However, we use this partitioning
of F only in the case that |H | ≤ α0n. If |H | > α0n we use F ⊂ FSDP ∪FH ∪H .
Since all probabilities involved are monotone decreasing, we get

P[ |F | = y ] ≤
∑

y1+y2+y3=y

y3≤α0n

P[ |FSDP | = y1, |FH | = y2, |FΥ | = y3 ]

+
∑

y1+y2+y3=y
y3>α0n

P
[ |FSDP | = y1, |FH | = y2, |H | = y3

]
.

One of the vertex sets involved in the conjunctions of this sum certainly contains
more than y/3 vertices and so

P[ |F | = y ]

≤ n3

{
max

(
P
[ |FSDP | = y

3

]
,P

[ |FH | = y
3

]
,P

[ |FΥ | = y
3

])
if y

3 ≤ α0n,

max
(
P
[ |FSDP | = y

3

]
,P

[ |FH | = y
3

]
,P

[ |H | = y
3

])
otherwise.

The lemma then follows from Lemmas 4, 5, 6, and 7. We omit the details.
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5 Concluding Remarks

We proved that random 3-colorable graphs taken from Gn,p,3 can be 3-colored in
polynomial expected time if p ≥ c/n, where c is some sufficiently large constant.
The same methods can be used for obtaining a similar result for Gn,p,k with
values of k other than 3. More precisely, the calculations carry over directly to
arbitrary k for pn ≥ ck where ck is a constant depending on k.

One remaining question is whether it is possible to design an algorithm for
coloring Gn,p,k in polynomial expected time for all values of p. In particular, it is
not clear how to deal with the case that pn is constant but much smaller than ck.
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Regular Sets of Higher-Order Pushdown Stacks
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Abstract. It is a well-known result that the set of reachable stack con-
tents in a pushdown automaton is a regular set of words. We consider the
more general case of higher-order pushdown automata and investigate,
with a particular stress on effectiveness and complexity, the natural no-
tion of regularity for higher-order stacks: a set of level k stacks is regular
if it is obtained by a regular sequence of level k operations. We prove
that any regular set of level k stacks admits a normalized representation
and we use it to show that the regular sets of a given level form an effec-
tive Boolean algebra. In fact, this notion of regularity coincides with the
notion of monadic second order definability over the canonical structure
associated to level k stacks. Finally, we consider the link between regu-
lar sets of stacks and families of infinite graphs defined by higher-order
pushdown systems.

1 Introduction

Higher-order pushdown automata (hopdas for short) were introduced as a gen-
eralization of pushdown automata [Aho69, Gre70, Mas76]. Whereas a pushdown
automaton works on a stack of symbols, a pushdown automaton of level 2 (or
2-hopda) works with a stack of level 1 stacks. In addition to the ability to push
and to pop a symbol on the top-most level 1 stack, a 2-hopda can copy or remove
the entire top-most level 1 stack. The k-hopdas are similarly defined for all level
k and have been extensively studied as language recognizers [Dam82, Eng83].

Recently, the infinite structures defined by hopdas have received a lot of
attention. First, in [KNU02, Cau02], the families of infinite terms defined by k-
hopdas were shown to correspond to the solutions of safe higher-order recursive
schemes. This study was later extended to the transition graphs of k-hopdas in
[CW03]. Several characterizations of this hierarchy of families of infinite graphs
were obtained. In particular, it was shown to coincide with a hierarchy defined
using graph transformations by Caucal in [Cau96b] (see [Tho03] for a survey on
this hierarchy).

The transition graphs of hopdas are defined in [CW03] by ε-closure of the
reachability graphs. The vertices of the reachability graph of an hopda are the
configurations reachable by the automaton from the initial configuration, and
the edges represent the transition rules of the hopda. A major drawback of this
definition is that it does not provide a direct description of the relations defining
the edges of the transition graphs.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 168–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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At level 1, the set of edges of the transition graph of a pushdown automaton can
be given by prefix-recognizable relations [Cau96a, Cau03]. This characterization
essentially uses the fact that the set of stack contents reachable by a pushdown
automaton is regular. At level 2, due to the introduction of the copy operation,
the set of words representing the stacks of stacks reachable by a 2-hopda is not
a regular set of words. Hence, in order to obtain an internal representation of
the transition graphs of k-hopdas, it is necessary to define a notion of regularity
for sets of stacks of level k (k-stacks for short).

In this article, we study the notion of regularity for k-stacks induced by k-
hopdas: a set of k-stacks is regular if it is obtained by a regular sequence of level k
operations applied to the empty k-stack. In Section 3, we study the algebraic and
algorithmic properties of this notion. We define a normal form for regular sets of
k-stacks and use it to prove that they are closed under complementation. From
the algorithmic point of view, the complexity of the normalization algorithm
presented in Section 3.3 is a lower bound. We also show that the k-regular sets
correspond to the sets definable by monadic second order logic over the canonical
infinite structure associated with k-stacks. Finally, in Section 4, we use the notion
of k-regularity to define an internal representation of the transition graphs of k-
hopdas.

A complete version of this work including proofs can be found in [Car05].

2 Preliminary Definitions

2.1 Regular Parts of a Monoid

A monoid is given by a set M together with an associative internal product
operation written · that admits a neutral element 1M . The product operation is
extended to subsets of M by P ·Q = {p · q | p ∈ P and q ∈ Q}. For any subset
N of M , Nn is defined by N0 = {1M} and Nn+1 = N · Nn . The iteration of
N written N∗ is equal to ∪i∈NN

i. Similarly, N+ is defined as ∪i>0N
i. The set

of regular parts of a monoid M noted Reg(M) is the smallest set containing the
finite subsets of M and closed under union, product and iteration.

A common example of monoid is the set of words over a finite alphabet Γ .
A finite sequence of symbols (also called letters) in Γ is a word and the set of
all words is written Γ ∗. The empty word is noted ε.

2.2 Infinite Graphs and Transformations

Infinite Graphs. Given a finite set Σ of edge labels and a countable set V , a
Σ-labeled graph G is a subset of V ×Σ × V . An element (s, a, t) of G is an edge
of source s, target t and label a, and is written s

a−→
G

t or simply s
a−→ t if G

is understood. The set of all sources and targets of a graph is its support VG. A
sequence of edges s1

a1−→ t1, . . . , sk
ak−→ tk with ∀i ∈ [2, k], si = ti−1 is a path

starting from s1. We write s1
u=⇒ tk, where u = a1 . . . ak is the corresponding

path label.
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The unfolding Unf(G, r) of a Σ-labeled graph G from a vertex r ∈ VG is the
Σ-labeled tree T satisfying for any a ∈ Σ that π

a−→ π′ ∈ T if and only if π and
π′ are two paths in G starting from r and π′ = π s

a−→ t.

Inverse Mappings. Let Σ̄ be a set of symbols disjoint from but in bijection
with Σ. For any x ∈ Σ, we write x̄ the corresponding symbol in Σ̄. We extend
every Σ-labeled graph G to a (Σ ∪ Σ̄)-labeled graph Ḡ by adding reverse edges
(i.e. Ḡ = G ∪ {s x̄−→ t | t x−→ s ∈ G}). Let Γ be a set of edge labels, a rational
mapping is a mapping h : Γ → Reg((Σ ∪ Σ̄)∗) which associates to every symbol
from Γ a regular subset of (Σ ∪ Σ̄)∗. If h(a) is finite for every a ∈ Γ , we also
speak of a finite mapping. We apply a rational mapping h to a Σ-labeled graph

G by the inverse to obtain a Γ -labeled graph h−1(G) = {s a−→ t | s h(a)
=⇒̄

G
t}.

Monadic Second Order Logic. We define the monadic second-order logic
(MSO for short) over Σ-labeled graphs as usual (see e.g. [EF95]). For any
monadic second order formula ϕ(x1, . . . , xn) whose free-variables are first-order
variables in {x1, . . . , xn} and for any vertices u1, . . . , un ∈ VG, we write G |=
ϕ(u1, . . . , un) the fact that the graph G satisfies the formula ϕ when xi is inter-
preted as ui for all i ∈ [1, n].

2.3 Higher-Order Stacks and Operations

Stacks. A stack over a finite alphabet Γ is a word over Γ . We write Stacks1(Γ ) =
Γ ∗ for the set of all stacks of level 1 and note [ ]1 the empty level 1 stack ε. For
all k > 1, a level k stack over Γ (or simply a k-stack) is a non-empty sequence
of (k − 1)-stacks over Γ . We write Stacksk(Γ ) = (Stacksk−1(Γ ))+ the set of all
k-stacks or simply Stacksk if Γ is understood. The empty stack of level k is the
k-stack containing only the empty (k − 1)-stack and is written [ ]k. The stack
[ [AB ] [ABC ] [BA ] ]2 designates a 2-stack whose top most 1-stack is [BA ]1.
The set of all stacks over Γ is written Stacks(Γ ) =

⋃
k∈N

Stacksk(Γ ).

Operations. An operation on higher-order stacks is a (partial) function from
Stacks(Γ ) to Stacks(Γ ) which preserves the level of the stack (i.e. the image of
a k-stack is a k-stack). The level |ρ| of an operation ρ is the smallest k such that
Dom(ρ) ∩ Stacksk �= ∅. The only operation for which the level is not defined is
the empty function ∅. Note that for any two functions f and g, f · g designates
the mapping associating to x the value g(f(x)).

The operations, we consider, respect the access mode of higher-order stacks
that is to say, in a level k + 1 stack only the top most level k stack can be
accessed. It implies that for any level k operation ρ and for all k′ > k, we
have: ρ([w1, . . . , wn]k′) = [w1 . . . ρ(wn)]k′ . Hence, it is only necessary to define a
level k operation on Stacksk, its definition for level of stacks greater than k is
implicit.

The operations of level 1 for stacks over Γ are the well known pushx and
popx for all x ∈ Γ . The operations added at level k + 1 are the copy of the
top most k-stack written copyk and the inverse operation which is usually the
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destruction of the top most k-stack written popk. We consider a more symmetric
operation copyk that only destroys the top most k-stack if it is equal to previous
one1. These operations are formally defined by:

pushx([x1 . . . xn ]1) = [x1 . . . xnx ]1
popx([x1 . . . xnx ]1) = [x1 . . . xn ]1
copyk([w1 . . . wn ]k+1) = [w1 . . . wnwn ]k+1

popk([w1 . . . wn+1 ]k+1) = [w1 . . . wn ]k+1

copyk([w1 . . . wnwn ]k+1) = [w1 . . . wn ]k+1

In addition for each level k, we consider an operation written Ek to test
whether the top most k-stack is empty (i.e Ek([ ]k) = [ ]k and is undefined
otherwise). This operation is usually avoided by considering a bottom symbol
in the definition of the stacks but we wish to remain as general as possible.
Moreover, we write idk the identity seen as a level k operation.

We define Ops1 = {pushx, popx | x ∈ Γ} ∪ {E1}. and Opsk+1 = Opsk ∪
{copyk, copyk, Ek+1}. The set Ops∗k = {ρ | |ρ| = k, ρ = ρ1 · · · ρn for ρ1, . . . , ρn ∈
Opsk} ∪ {∅} is a monoid for composition of functions with neutral element idk.

Instructions. In order to work in a symbolic manner, we associate to each
operation in Opsk a symbol in an alphabet Γk called an instruction. Let Γ be a
finite alphabet disjoint from but in bijection with Γ , we write x̄ the letter of Γ̄
corresponding to x ∈ Γ . The set of instructions of level k written Γk is defined by:
Γ1 = Γ ∪ Γ̄ ∪ {⊥1} and Γk+1 = Γk ∪ {⊥k+1, k, k̄}. We write Γ t

k = {⊥1, . . . ,⊥k}
and Γ o

k = Γk − Γ t
k. For all sequence w ∈ Γ ∗k , we designate by Last(w) (resp.

First(w)) the last (resp. first) element of Γ o
k appearing in w.

We define a morphism2 of monoid O from Γ ∗k to Ops∗k associating to any
sequence of instruction w ∈ Γ ∗k the corresponding operation O(w) ∈ Ops∗k as
follows: O(ε) = idk,O(x) = pushx and O(x̄) = popx for all x ∈ Γ , O(i) =
copyi, O(̄i) = copyi, and O(⊥i) = Ei for all i ∈ [1, k]. The morphism O is
extended to Γ ∗k in the canonical way. For example, the sequence of instruc-
tions m = abb̄a1ā is evaluated to O(m) = pushapushbpopbpushacopy1popa =
pushapushacopy1popa. For any subset R of Γ ∗k , we write O(R) the corresponding
set of operations in Ops∗k and S(R) = O(R)([ ]k) the corresponding set of stacks
in Stacksk(Γ ).

For each k-stack s, there exists a minimal sequence of instructions w ∈ Γ ∗k
such that S(w) = s. It is easy to see that if k = 1, w belongs to Γ ∗ and if k > 1,
w does not contain k̄. In fact, a sequence of instructions w ∈ (Γ o

k ∪ {k})∗ (such
that S(w) �= ∅ ) is the minimal sequence of some level k + 1 stack if and only if
it does not contain xx̄, ll̄ or l̄l for any x ∈ Γ ∪ Γ or any l < k. A sequence of
instructions that does not contain such sub-sequences will be called loop-free. A

1 It is already known from [CW03] that hopdas defined using copyk recognize the same
languages as the ones defined using popk (see. Proposition 4.1).

2 The definition is such that we always obtain a level k operation. So strictly speaking,
there should be one evaluation mapping for each level.
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k-stack s is a prefix of a k-stack s′ (written s � s′) if the minimal sequence of s
is a prefix of the minimal sequence of s′.

Higher-Order Pushdown Automata. An higher-order pushdown automaton
P over Stacksk(Γ ) (k-hopda for short) with Σ as an input alphabet is a tuple
(Q, i, F, δ) where Q is a finite set of states, i is the initial state, F is the set
of final states and δ ⊂ Q × Σ ∪ {ε} × Γ ∗k × Q. The set of configurations of
P noted CP is Q × Stacksk(Γ ). For each x ∈ Σ ∪ {ε}, P induces a transition
relation x−→⊂ CP × CP defined by (p, w) x−→ (q, w′) if (p, x, ρ, q) belongs to δ

and w′ = O(ρ)(w). For any word u ∈ Σ∗, we write c
u=⇒ c′ if there exists a

sequence c
x1−→ c1 . . . cn−1

xn−→ c′ and u = x1 . . . xn. A word u ∈ Σ∗ is accepted
by P if (i, [ ]k) u=⇒ (f, w) for some f ∈ F .

3 Regular Set of Higher-Order Stacks

We consider the notion of regularity for sets of higher-order stacks that naturally
extends what is known at level 1. A set of k-stack is k-regular if it is the set
of stacks appearing in the reachable final configurations of a k-hopda. In other
terms, a k-regular set is obtained by applying a regular set of operations in Ops∗k
to the empty stack of level k. The set of all k-regular subsets of Stacksk(Γ ) is
written Regk(Γ ) = Reg(Ops∗k(Γ ))([ ]k) = S(Reg(Γ ∗k )).

A normal form for k-regular sets is presented in Section 3.1 and it is proved
in Section 3.2 that every k-regular set admits a normalized representation. Com-
plexity related issues are dealt with in Section 3.3. Finally, Section 3.4 establishes
that k-regular sets correspond to MSO-definable sets in the canonical infinite
structure associated to k-stacks.

3.1 Normal Forms

A regular set of instructions is not per se a useful representation of a set of
stacks. We therefore define a normal form that gives a forward representation of
the set of stacks in the sense that the set of instructions produced are loop-free.

At level 1, such a normal form is easily achieved: the set of minimal sequences
of a 1-regular set is also regular [Büc64]. Hence, any 1-regular set admits a
normalized representation in Norm1 = Reg(Γ ∗). At level 2, a loop-free set of
instruction does not contains 1̄. As illustrated by the following example, it is not
possible to describe all sets in Reg(Γ ∗2 ) without 1̄.

Example 3.1. The regular set of instructions R = {a, b}∗1{ā, b̄}∗b̄1(āā)+b̄ba∗1̄
represents the set of stacks S(R) = {[ [wba2nbw′ ][wba2n ] ]2 | w ∈ Γ ∗, w′ ∈
Γ ∗ and n ≥ 0}. It can be proved that R is not equivalent to any set in
Reg( (Γ1 ∪ {1})∗ ). The problem is that the set 1(āā)+b̄ba∗1̄ correspond to the
operation id2|A where A = {[w1 . . . wn ]2 | wn ∈ Γ ∗b(aa)+} which tests, in a
non-destructive manner, that the top-most 1-stack belongs to A.
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Hence, in order to give a forward presentation of sets in Reg(Γ ∗k ), we need to
introduce k-regular tests as a new operation. Theorem 3.1 will prove that we do
not need additional operations. For any set Q of k-stacks, idk|Q designates the
identity function restricted to the set of k′-stack whose top-most k-stack is in Q
for all k′ > k.

Definition 3.1 (Regular tests of level k). Let Tk be an countable set of sym-
bols with one symbol written TR for each R ∈ Reg(Γk). We extend the evaluation
mapping to (Γk ∪ Tk)∗ by defining O(TR) = idk|S(R).

A subset R of Reg((Γk ∪Tk)∗) is loop-free is the set of obtained by removing
the tests from R is.

In order to normalize a 2-regular set of stacks, it is necessary to give a normal
form for sets of operations in O(Reg((Γk ∪Tk)∗)). At level 1, a normal form was
obtained in [Cau96a, Cau03]. It is proved that any R ∈ Reg((Γ1 ∪ T1)∗), there
exists a finite union R′ = ∪i∈I Ui ·TWi ·Vi where Ui ∈ Reg(Γ

∗
), Vi,Wi ∈ Reg(Γ ∗)

for some finite set I with Last(Ui) ∩ First(Vi) = ∅3 such that O(R) = O(R′).
We write Rew1 the set all R ∈ Reg((Γ1 ∪ T1)∗) than can be expressed as such a
finite union.

We now define Normk and Rewk for level k > 1 as a straightforward extension
of what is known at level 1:

– Normk+1 is the set of all finite union of elements in Normk ·Reg((k Rewk)∗),
– Popk+1 and Pushk+1 designate respectively the sets Rewk ·Reg((k̄ Rewk)∗)

and Rewk ·Reg((k Rewk)∗),
– Rewk+1 is the set of all finite unions of sets of the form U · TW · V where

W ∈ Normk+1, U ∈ Popk+1 and V ∈ Pushk+1 with Last(U) ∩ First(V ) = ∅
and Last(W ) ∩ (Last(U) ∪ First(V )) = ∅.
An equivalent characterization of the sets in Normk+1 is through finite au-

tomata A = (Q, i, F, δ) labeled by a finite subset Normk ∪ k ·Rewk such the only
edges labeled by an element of Normk are starting from the initial state i and
such that no transition comes back to i. We will call such an automaton a (k+1)-
automaton. It is obvious that L(A) belongs to Normk+1 and that conversely, all
R ∈ Normk is accepted by a k-automaton. By a slight abuse of language, we will
say that a set R of k-stacks is accepted by A if R = S(L(A)).

The interest of this notion is that a deterministic version can be defined : a
(k+1)-automaton labeled by {N1, . . . , Nn} ⊂ Normk and {R1, . . . , Rm} ⊂ Rewk

is deterministic if S(Ni)∩ S(Nj) = ∅ for i �= j, O(Ri)∩O(Rj) = ∅ for i �= j and
A is deterministic. In a deterministic k-automaton, if two k-stacks are produced
by two different executions (not necessarily successful) then they are different.

Proposition 3.1. For all level k, any set in S(Normk) can be accepted by
a deterministic k-automaton. Moreover, S(Normk) and O(Rewk) are effective
Boolean algebras4.
3 This corresponds to the right-irreducible prefix-recognizable relations in [Cau03].
4 This result was already obtained in [Cau96a] for O(Rew1).
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3.2 Normalization

In this part, we prove by induction on the level k that for any set in R ∈ Reg(Γ ∗k ),
there exists a set N ∈ Normk such that S(R) = S(N).

Characterization of Loop Languages. Let B = (Q, i, F, δ) be an automaton
labeled by Γk+1. For any two states p and q ∈ Q, the automaton B loops
on a (k + 1)-stack w starting in p and ending in q if there exists a sequence
(p, w) x1−→

B
(p1, w1) . . .

xn−→
B

(pn, wn) such that q = pn, wn = w and for all

i ∈ [1, n], w � wi.
It follows from the definition that ”looping” behavior of an automaton only

depends on the top-most k-stack. Hence, we define the loop language Lp,q to be
the set of k-stacks such that w ∈ Lp,q if and only if for any (k + 1)-stack w′

with top-most k-stack w, B loops on w starting in p and ending in q. The loop
languages allow us to define a loop-free equivalent of L(A).

Proposition 3.2. For any automaton A labeled by Γk, L(A) is equivalent to a
loop-free set in Reg((Γk ∪ {TLp,q | p, q ∈ Q})∗).

The Loop Languages Are Regular. In order to simulate the copyk+1 and
copyk+1 operations on a level k stack, we use alternation to simultaneously
perform the computation taking place on different copies of the stack.

Definition 3.2. An alternating automaton A over Γk is a tuple (Q, i,Δ) where
Q is a finite set of states, i is the initial state and Δ ⊂ Q× Γ t

k ∪ {ε}× 2Q×Γ o
k is

the set of transitions.

A transition (p, t, {(q1, a1), . . . , (qn, an)}) ∈ Δ is written p, t −→ (q1, a1) ∧
. . . ∧ (qn, an). An execution of A is a finite tree T with vertices VT whose edges
are labeled by Γk and whose vertices are labeled by Q × Stacksk(Γ ). We write
c the labeling mapping from VT to Q × Stacksk(Γ ). An execution satisfies the
following conditions:

– x
a−→ y ∈ T implies c(x) = (q, w) and c(y) = (p, w′) and w′ = O(a)(w).

– for all x ∈ VT with children y1, . . . , yn (i.e x
a1−→ y1, . . . , x

an−→ yn), if
c(yi) = (qi, wi) then there exists q, t −→ (q1, a1) ∧ . . . ∧ (qn, an) ∈ Δ such
that O(t)(w) is defined5.

An execution T of A is accepting a stack w if the root of T is labeled by (i, w).
We write S(A) ⊂ Stacksk(Γ ) the set of stacks accepted by A.

The following lemma states that the loop languages defined in the previous
part are accepted by alternating automata labeled by Γk.

Lemma 3.1. For any automaton B labeled by Γk+1, there exists an alternating
automaton labeled by Γk accepting Lp,q.

5 The set of final states is implicitly given by transitions of the form q, t −→ ∅.
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In order to prove that the language accepted by an alternating automaton
over Γk is k-regular, we define a normal form for alternating automata in which
at most one execution can be sent for a given instruction in Γ o

k and such that
no execution contains two vertices labeled by the same stack. More formally,
a normalized alternating automaton over Γk is an alternating automaton with
transitions of the form q, t −→ (q1, b1) ∧ . . . (qn, bn) with bi �= bj for i �= j for
which no execution tree T contains x aā−→

T
y for a ∈ Γ o

k . The following proposition

establishes that any alternating automaton can be transformed into an equivalent
normalized alternating automaton.

Proposition 3.3. For any alternating automaton A labeled by Γk, an equiv-
alent normalized alternating automaton B labeled by Γk can be constructed in
O(2p(|B|)) for some polynomial p.

We can now establish that the languages accepted by alternating automata
labeled by Γk are k-regular languages.

Proposition 3.4. The sets of k-stacks accepted by alternating automaton la-
beled by Γk are k-regular sets.

Proof (Sketch). First, we establish that the languages accepted by normalized
alternating automaton over Γk+1 are loop-free languages in Reg((Γ o

k∪{k}∪TA
k )∗)

where TA
k designates the tests by languages accepted by alternating automaton

over Γk. The result follows by induction on the level k combining the above
property and Proposition 3.3.

��
Normalization Result. We proceed by induction on the level k of stacks. It
follows from the Proposition 3.2, Lemma 3.1 and Proposition 3.4, that any set of
instructions in R ∈ Reg(Γ ∗k ) is equivalent to a loop-free subset of Reg((Γk∪Tk)∗).

Proposition 3.5. For all loop-free set R in Reg((Γk∪Tk)∗) with tests languages
in S(Normk), there exists a R′ ∈ Normk such that S(R) = S(R′).

Note that to achieve this normalization we need to determinize the languages
appearing in the tests. However, if the languages appearing in the tests are
already determinize the transformation is polynomial. The normalization result
is obtained by a straightforward induction.

Theorem 3.1 (Normalization). Every k-regular set can be accepted by a k-
automaton. Hence, Regk =S(Reg(Γ ∗k ))=S(Reg(Normk)) is an effective Boolean
algebra.

3.3 Complexity and Lower Bounds

In order to evaluate the complexity of the normalization algorithm, we need a
notation for towers of exponentials. We define 2↑0(n)=n and 2 ↑k+1 (n)=22↑k(n).

The complexity of the algorithm obtained in the previous section when ap-
plied to a k-regular set of stacks is O(2↑2k+1(p(n))) where p is a polynomial. This
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complexity can be improved by transforming directly an alternating automaton
over Γk into a deterministic k-automaton.

Theorem 3.2 (Lower bound).

1. For any alternating automaton A labeled by Γk, there exists a deterministic
k-automaton accepting S(A) which can be computed in time O(2↑k (p(n)))
for some polynomial p.

2. For any automaton A labeled by Γk, there exists a k-automaton accepting
S(A) which can be computed in time O((2↑k−1(p(n))))

It is easy to see that normalization can be used to test the emptiness of
a regular set of k-stacks. In fact, for any set R ∈ Reg(Γ ∗k ), the normalized
representation of R · Γ ∗k · ⊥k contains [ ]k if and only if S(R) is not empty.
Therefore, the normalization can be used to test the emptiness of the language
accepted by a k-hopda (i.e it is equivalent to the emptiness of the set of reachable
final configurations).

In [Eng83], the author proves that O(2↑k−1(p(n))) is a lower bound for the
emptiness problem of k-hopda. It follows the complexity of the normalization
algorithm obtained in Theorem 3.2 is a lower bound.

3.4 MSO-Definability Over Δn
2

In this part, we fix Γ = {a, b}. The canonical infinite structure associated to
words in Γ ∗ is the infinite binary tree Δ2. A set X ⊂ VG (resp. Y ⊂ VG × VG)
is MSO-definable in G if there exists a formula ϕ(x) (resp. ϕ(x, y)) such that
X (resp. Y ) is the set of u ∈ VG (resp. (u, v) ∈ VG × VG) such that G |= ϕ(u)
(resp. G |= ϕ(u, v)). It is well known that the MSO-definable sets in Δ2 are the
regular sets of words. Moreover, Blumensath [Blu01] proved that the relations
MSO-definable in Δ2 are the prefix-recognizable relations (i.e O(Rew1)).

In order to investigate the notion of MSO-definable set of k-stacks, we con-
sider the canonical structure Δk

2 associated to k-stacks (see Figure 1). The graph
Δk

2 is labeled by Σk = {a, b, 1, . . . , k}, its set of vertices is Stacksk(Γ ) and
it edges are defined by: w

i−→ w′ if w′ = O(i)(w) for i ∈ Σk. For instance,
the set of k-stacks whose top-most 1-stack is empty is defined by the formula
ϕ(x) = ¬(∃y.y a−→ x) ∧ ¬(∃y.y b−→ x).

Proposition 3.6. The set of k-stacks MSO-definable in Δk
2 are the k-regular

sets and the sets of relations MSO-definable in Δk
2 are the relation in O(Rewk).

4 Higher-Order Pushdown Graphs

In this section, we consider infinite graphs associated to hopdas and we show
how the notion of k-regularity can be used to study their structure.
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Fig. 1. The canonical structure associated to level 2 stacks

4.1 Reachability Graphs

The most natural way to associate an infinite graph to a k-hopda is to consider
its reachability graph: the set of vertices is the set of configurations reachable
from the initial configuration and the edges are given by the k-hopda. Due to
the restriction by reachability, it is possible to encode in the stack a finite infor-
mation corresponding to rational tests. The idea behind this encoding is taken
from [Cau02] and was used in [CW03] to simulate the copyk operation using
popk.

Proposition 4.1. The reachability graphs of k-hopdas enriched with k-regular
tests and the reachability graphs of the k-hopda defined only with the popk oper-
ation instead of copyk coincide up to isomorphism.

From a structural point of view however, this approach is limited as the
graphs obtained are necessarily directly connected. For instance, Δk

2 is not the
reachability graph of any hopda.

4.2 Configuration and Transition Graphs

The configuration graph of a k-hopda P is obtained by restricting the transition
relation induced by P to a k-regular set of configurations R:

{w x−→ w′ | x ∈ Σ ∪ {ε}, w x−→
P

w′ and w,w′ ∈ R}

As the set of k-stacks reachable from the initial configuration is a k-
regular set, the reachability graph is a particular case of configuration graph.
The following property gives a structural characterization of configurations
graphs.
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Proposition 4.2. The configuration graphs of k-hopdas are the graphs obtained
by a k-fold iteration of unfolding and finite inverse mapping starting from a finite
graph.

The transition graphs are defined as the ε-closure of the configuration graphs:

{w x−→ w′ | x ∈ Σ,w
x=⇒
P

w′ and w,w′ ∈ R}

for some k-regular set of configurations R. The following proposition summarizes
various equivalent characterization of the transition graphs of k-hopda.

Proposition 4.3 ([CW03]). The family of transition graphs of k-hopdas is
equal up-to isomorphism to the families of:

– graphs whose edges are defined by relations in O(Rewk),
– graphs obtained by a k-fold iteration of unfolding and inverse rational map-

ping starting from a finite graph,
– graphs MSO-definable in Δk

2 .

5 Conclusion

We define a natural notion of regularity for higher-order pushdown stacks shares
some of the most important properties of regular sets of words. In fact, we
proved that they can be accepted by a deterministic machine and form an ef-
fective Boolean algebra. Furthermore, in the same way as regular set of words
corresponds to the MSO-definable sets of words over the infinite binary tree,
regular sets of k-stacks correspond to the MSO-definable sets over the canonical
infinite structure associated to k-stacks. From the algorithmic point of view, we
provided a normalization algorithm whose complexity is in fact a lower bound.
To demonstrate the usefulness of this notion to work with hopdas, we used it to
give a simple characterization of transitions graphs of hopdas similar to prefix-
recognizable graphs for level 1.

From the model checking point of view, this notion could be used to extend
the work done on pushdown automaton [BEM97] or on sub-families of hopdas
[BM04]. From the structural point of view, it would be interesting to obtain an
internal characterization of the transition graphs of k-hopdas of bounded degree.
At level 1, the prefix recognizable graphs of bounded degree correspond to the
configuration graphs of pushdown automata. It would be interesting to know
how this property extends to higher-order.
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Abstract. Linearly bounded Turing machines have been mainly studied
as acceptors for context-sensitive languages. We define a natural family of
canonical infinite automata representing their observable computational
behavior, called linearly bounded graphs. These automata naturally ac-
cept the same languages as the linearly bounded machines defining them.
We present some of their structural properties as well as alternative char-
acterizations in terms of rewriting systems and context-sensitive trans-
ductions. Finally, we compare these graphs to rational graphs, which are
another family of automata accepting the context-sensitive languages,
and prove that in the bounded-degree case, rational graphs are a strict
sub-family of linearly bounded graphs.

1 Introduction

One of the cornerstones of formal language theory is the hierarchy of languages
introduced by Chomsky in [Cho59]. It rests on the definition of four increas-
ingly restricted families of grammars, which respectively generate the recursively
enumerable, context-sensitive, context-free and regular languages. All were exten-
sively studied, and were given several alternative characterizations using different
kinds of formalisms (or acceptors). For instance, pushdown systems characterize
context-free languages, and linearly bounded Turing machines (LBMs) charac-
terize context-sensitive languages. More recently, several authors have related
these four families of languages to families of infinite graphs (see for instance
[Tho01]). Given a fixed initial vertex and a set of final vertices, one can asso-
ciate a language to a graph by considering the set of all words labeling a path
between the initial vertex and one of the final vertices. In [CK02], a summary of
four families of graphs accepting the four families of the Chomsky hierarchy is
presented. They are the Turing graphs [Cau03b], rational graphs [Mor00, MS01],
prefix-recognizable graphs [Cau96, Cau03a] and finite graphs.

Several approaches exist to define families of infinite graphs, among which
we will cite three. The first one is to consider the finite acceptor of a language,
and to build a graph representing the structure of its computations: vertices
represent configurations, and each edge reflects the observable effect of an input
on the configuration. One speaks of the transition graph of the acceptor. An
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interesting consequence is that the language of the graph can be deduced from
the language of the acceptor it was built from. A second method proposed in
[CK02] is to consider the Cayley-type graphs of some families of word rewriting
systems. Each vertex is a normal form for a given rewriting system, and an edge
between two vertices represents the addition of a letter and re-normalization by
the rewriting system. Finally, a third possibility is to directly define the edge
relations in a graph using automata or other formalisms. One speaks of deriva-
tion, transduction or computation graphs. In this approach, a path no longer
represents a run of an acceptor, but rather a composition of binary relations.

Both prefix-recognizable graphs and Turing graphs have alternative defini-
tions along all three approaches. Prefix-recognizable graphs are defined as the
graphs of recognizable prefix relations. In [Sti00], Stirling presented them as the
transition graphs of pushdown systems. It was also proved that they coincide
with the Cayley-type graphs of prefix rewriting systems. As for Turing graphs,
Caucal showed that they can be seen indifferently as the transition and computa-
tion graphs of Turing machines [Cau03b]. They are also the Cayley-type graphs
of unrestricted rewriting systems. Rational graphs, however, are only defined as
transduction graphs (using rational transducers) and as the Cayley-type graphs
of left-overlapping rewriting systems, and lack a characterization as transition
graphs. In this paper, we are thus interested in defining a suitable notion of
transition graphs of linearly bounded Turing machines, and to determine some
of their structural properties as well as to compare them with rational graphs.

As in [Cau03b] for Turing machines, we define a labeled version of LBMs,
called LLBMs. Their transition rules are labeled either by a symbol from the
input alphabet or by a special symbol denoting an unobservable transition. Fol-
lowing an idea from [Sti00], we consider that in every configuration of a LLBM,
either internal actions or inputs are allowed, but not both at a time. This way,
we can distinguish between internal and external configurations. The transition
graph of a LLBM is the graph whose vertices are external configurations, and
whose edges represent an input followed by a finite number of silent transitions.
This definition is purely structural and associates a unique graph to a given
LLBM. For convenience, we call such graphs linearly bounded graphs. To our
knowledge, the notion of transition graph of a LBM was never considered. A
similar work was proposed in [KP99, Pay00], where the family of configuration
graphs of LBMs up to weak bisimulation is studied. However, it provides no for-
mal definition associating LBMs to a family of real-time graphs (without edges
labeled by silent transitions) representing their observable computations.

To further illustrate the suitability of our notion, we provide two alterna-
tive definitions of linearly bounded graphs. First, we prove that they are iso-
morphic to the Cayley-type graphs of length-decreasing rewriting systems. The
second alternative definition directly represents the edge relations of a linearly
bounded graph as a certain kind of context-sensitive transductions. This allows
us to straightforwardly deduce structural properties of linearly bounded graphs,
like their closure under synchronized product (which was already known from
[KP99]) and under restriction to a context-sensitive set of vertices. To conclude
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this study, we show that linearly bounded graphs and rational graphs form in-
comparable families, even in the finite degree case. However, bounded degree
rational graphs are a strict sub-family of linearly bounded graphs.

A more complete study of this family of graphs, including the proofs of the
results stated in this article can be found in [CM05b].

2 Preliminary Definitions

A labeled, directed and simple graph is a set G ⊆ V ×Σ × V with Σ is a finite
set of labels and V a countable set of vertices. An element (s, a, t) of G is an
edge of source s, target t and label a, and is written s

a−→
G

t or simply s
a−→ t

if G is understood. The set of all sources and targets of a graph is its support
VG. A sequence of edges s1

a1−→ t1, . . . , sk
ak−→ tk with ∀i ∈ [2, k], si = ti−1 is a

path. It is written s1
u−→ tk, where u = a1 . . . ak is the corresponding path label.

A graph is deterministic if it contains no pair of edges with the same source and
label. One can relate a graph to a languages by considering its path language,
defined as the set of all words labeling a path between two given sets of vertices.

Definition 2.1. The (path) language of a graph G between two sets of vertices
I and F is the set L(G, I, F ) = { w | s w−→

G
t, s ∈ I, t ∈ F}.

Linearly Bounded Turing Machines. We now recall the definition of
context-sensitive languages and linearly bounded Turing machines. A context-
sensitive language is a set of words generated by a grammar whose production
rules are of the form α → β with |β| ≥ |α|. Such grammars are called context-
sensitive.

A more operational definition of context-sensitive languages is as the family
of languages accepted by linearly bounded Turing machines (LBMs). Informally,
a LBM is a Turing machine accepting each word w of its language using at most
k.|w| tape cells, where k is a fixed constant. Without loss of generality, one usually
considers k to be equal to 1. Note that, contrary to unbounded Turing machines,
it is sufficient to only consider linearly bounded machines which always termi-
nate, also called quasi-real time machines. An interesting open problem raised
by Kuroda [Kur64] concerns deterministic context-sensitive languages, which are
the languages accepted by deterministic LBMs. It is not known whether they
coincide with non-deterministic context-sensitive languages, as is the case for
recursively enumerable or rational languages.

Rational Graphs. Consider the product monoid Σ∗×Σ∗, whose elements are
pairs of words (u, v) in Σ∗, and whose composition law is defined by (u1, v1) ·
(u2, v2) = (u1u2, v1v2). A finite transducer is an automaton over Σ∗ ×Σ∗ with
labels in (Σ∪{ε})×(Σ∪{ε}). Transducers accept the rational subsets of Σ∗×Σ∗,
which are seen as binary relations on words and called rational transductions. We
do not distinguish a transducer from the relation it accepts and write (w,w′) ∈ T
if the pair (w,w′) is accepted by T . Graphs whose vertices are words and whose
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edge relations is defined by transducers (one per letter in the label alphabet) are
called rational graphs.

Definition 2.2 ([Mor00]). A rational graph labeled by Σ with vertices in Γ ∗

is given by a tuple of transducers (Ta)a∈Σ over Γ . For all a ∈ Σ, (u, a, v) ∈ G
if and only if (u, v) ∈ Ta.

For w ∈ Σ+ and a ∈ Σ, we write Twa = Tw ◦ Ta, and u
w−→ v if and only if

(u, v) ∈ Tw. In general, there is no bound on the size difference between input and
output in a transducer (and hence between the lengths of two adjacent vertices in
a rational graph). Interesting subclasses are obtained by enforcing some form of
synchronization. The most well-known was defined by Elgot and Mezei [EM65]
as follows. A transducer over Σ with initial state q0 is (left-)synchronized if for

every path q0
x0/y0−→ q1 . . . qn−1

xn/yn−→ qn, there exists k ∈ [0, n] such that for
all i ∈ [0, k − 1], xi and yi belongs to Σ and either xk = . . . = xn = ε or
yk = . . . = yn = ε. A rational graph defined by synchronized transducers will
simply be called a synchronized (rational) graph.

3 Linearly Bounded Graphs

3.1 LBM Transition Graphs

Following [Cau03b], we define the notion of labeled linearly bounded Turing ma-
chine (LLBM). As in standard definitions of LBMs, the transition rules can only
move the head of the LLBM between the two end markers [ and ]. In addition,
a silent step can decrease the size of the configuration (without removing the
markers) and a Σ-transition can increase the size of the configuration by one
cell. This ensures that while reading a word of length n, the labeled LBM uses
at most n cells.

Definition 3.1. A labeled linearly bounded Turing machine is a tuple M =
(Γ,Σ, [, ], Q, q0, F, δ), where Γ is a finite set of tape symbols, Σ ⊆ Γ is the
input alphabet, [ and ] /∈ Γ are the left and right end-marker, Q is a finite set
(disjoint from Γ ) of control states, q0 ∈ Q is the unique initial state, F ⊆ Q is
a set of final states and δ is a finite set of labeled transition rules of one of the
forms:

pA
ε−→qB± p[ ε−→q[+ p] ε−→q]−

pB
a−→qAB p] a−→qA] pA

ε−→q

with p, q ∈ Q, A,B ∈ Γ , ± ∈ {+,−} and a ∈ Σ.

The set of configurations CM of M is the set of words uqv such that q ∈ Q,
v �= ε and uv ∈ [Γ ∗]. For all x ∈ Σ ∪ {ε}, the transition relation x−→

M
is a subset

of CM × CM defined as
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x−→
M

= { (upAv, uBqv) | pA x−→ qB+ ∈ δ }
∪ { (uCpAv, uqCBv) | pA x−→ qB− ∈ δ}

∪
{
{ (upAv, uqv) | pA x−→ q ∈ δ} with x = ε

{ (upAv, uqBAv) | pA x−→ qBA ∈ δ} with x ∈ Σ.

We will simply write x−→ when M is understood. As usual, we define wx−→ as
( w−→ ◦ x−→) for all w ∈ (Σ ∪ {ε})∗. The unique initial configuration is [q0] and
a final configuration cf is a configuration containing a terminal control state. A
word w is accepted by M if [q0]

w−→ cf where cf is a final configuration. Quite
naturally, M is deterministic if, from any configuration, either all possible moves
are labeled by distinct letters of Σ, or there is only one possible move. Formally,
it means that for all configurations c, c1, c2 with c1 �= c2, if c a−→ c1 and c

b−→ c2
then a �= b, a �= ε and b �= ε.

Remark 3.1. For convenience, one may consider LBMs whose initial configura-
tion is not of the form [q0] but is any fixed configuration c0. This does not add
any expressive power, as can be proved by a simple encoding of c0 into the control
state set of the machine.

Let M = (Q,Σ, Γ, δ, q0, F, [, ]) be a LLBM, we define its configuration graph

CM =
{
(c, a, c′) | c a−→

M
c′ for a ∈ Σ ∪ {ε}}.

The vertices of this graph are all configurations of M , and its edges denote
the transitions between them, including ε-transitions. One may wish to only
consider the behavior of M from an external point of view, i.e. only looking at
the sequence of inputs. This means one has to find a way to conceal ε-transitions
without changing the accepted language or destroying the structure. One speaks
of the transition graph of an acceptor, as opposed to its configuration graph.

In [Sti00], Stirling mentions a normal form for pushdown automata which
allows him to consider a structural notion of transition graphs, without relying
on the naming of vertices. We first recall this notion of normalized systems
adapted to labeled LBMs. A labeled LBM is normalized if its set of control
states can be partitioned in two subsets: one set of internal states, noted Qε,
which can always and only perform ε-rules, and a set of external states noted
QΣ, which can only perform Σ-rules. More formally:

Definition 3.2. A labeled LBM M = (Q,Σ, Γ, δ, q0, F, [, ]) is normalized if there
are disjoint sets QΣ and Qε such that Q = Qε ∪QΣ, F ⊆ QΣ, and

pB
a−→ qAB ∈ δ =⇒ p ∈ QΣ,

pA
ε−→ qB± ∈ δ =⇒ p ∈ Qε,

p ∈ Qε =⇒ ∃ pA
ε−→ qB± ∈ δ.
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This definition implies in particular that a control states from which there
exists no transition must belong to QΣ. A configuration is external if its control
state is in QΣ , and internal otherwise. This makes it possible to structurally
distinguish between internal vertices, which have one or more outgoing ε-edges,
and external ones which only have outgoing Σ-edges or have no outgoing edges.
Given any labeled LBM, it is always possible to normalize it without changing
the accepted language.

From this point on, unless otherwise stated, we will only consider normalized
LLBMs. We can now define our notion of LLBM transition graph as the ε-
closure of its configuration graph, followed by a restriction to its set of external
configurations (which happens to be a rational set).

Definition 3.3. Let M = (Γ,Σ, [, ], Q, q0, F, δ) be a (normalized) LLBM, and
CΣ be its set of external configurations. The transition graph of M is

GM =
{
(c, a, c′) | c, c′ ∈ CΣ , a ∈ Σ, ∧ c

aε∗−→
M

c′
}
.

We now define the family of linearly bounded graphs as the closure under
isomorphism of transition graphs of labeled LBMs, i.e. as the set of all graphs
which can be obtained by renaming the vertices of a LLBM transition graph.

3.2 Alternative Definitions

This section provides two alternative definitions of linearly bounded graphs.
In [CK02], it is shown that all previously mentioned families of graphs can be
expressed in a uniform way in terms of Cayley-type graphs of certain families of
rewriting systems. We show that it is also the case for linearly bounded graphs,
which are the Cayley-type graphs of length-decreasing rewriting systems. The
second alternative definition we present changes the perspective and directly
defines the edges of linearly bounded graphs using incremental context-sensitive
transductions. This variety of definitions will allow us to prove in a simpler way
some of the properties of linearly bounded graphs.

Cayley-Type Graphs of Decreasing Rewriting Systems. We first give
the relevant definitions about rewriting systems and Cayley-type graphs. A word
rewriting system R over alphabet Γ is a subset of Γ ∗×Γ ∗. Each element (l, r) ∈ R
is called a rewriting rule and noted l → r. The words l and r are respectively
called the left-hand and right-hand side of the rule. The rewriting relation of R
is the binary relation {(ulv, urv) | u, v ∈ Γ ∗, l → r ∈ R} which we also denote
by R, consisting of all pairs of words (w1, w2) such that w2 can be obtained by
replacing (rewriting) an instance of a left-hand side l in w1 with the correspond-
ing right-hand side r. The reflexive and transitive closure R∗ of this relation is
called the derivation of R. Whenever for some words u and v we have uR∗v,
we say R rewrites u into v. A word which contains no left-hand side is called a
normal form. The set of all normal forms of R is written NF(R).

One can associate a unique infinite graph to any rewriting system by consid-
ering its Cayley-type graph defined as follows:
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Definition 3.4. The Σ-labeled Cayley-type graph of a rewriting system R over
Γ , with Σ ⊆ Γ , is the infinite graph

GR = {(u, a, v) | a ∈ Σ, u, v ∈ NF(R), uaR∗v}.
The family of rewriting systems we consider is the family of finite length-

decreasing word rewriting systems, i.e. rewriting systems with a finite set of
rules of the form l → r with |l| ≥ |r|, which can only preserve or decrease the
length of the word to which they are applied. The reason for this choice is that
the derivation relations of such systems coincide with arbitrary compositions of
labeled LBM ε-rules.

Theorem 3.1. The two families of linearly bounded graphs and of Cayley-type
graphs of decreasing rewriting systems are equal up to isomorphism.

Incremental Context-Sensitive Transduction Graphs. The notion of com-
putation graph was first introduced in early versions of [Cau03b] and systemati-
cally used in [CK02]. It corresponds to the graphs defined by the transductions
(i.e. binary relations on words) associated to a family of finite machines. These
works prove that for pushdown automata and Turing machines, the classes of
transition and computation graphs coincide. We show that it is also the possible
to give a definition of linearly bounded graphs as the computation graphs of a
certain family of LBMs, or equivalently as the graphs defined by a certain family
of context-sensitive transductions.

A relation R is recognized by a LBM M if the language {u#v | (u, v) ∈ R}
where # is a fresh symbol is accepted by M . However, this type of transductions
generates more than linearly bounded graphs. Even if we only consider linear
relations (i.e relations R such that there exists c and k ∈ N such that (u, v) ∈ R
implies |v| ≤ c · |u|+ k), we obtain graphs accepting the languages recognizable
in exponential space (EXPSPACE) which strictly contain the context-sensitive
languages [Imm88]. We need to consider relations for which the length difference
between a word and its image is bounded by a certain constant. Such relations
can be associated to LBMs.

Definition 3.5. A k-incremental context-sensitive transduction T over Γ is de-
fined by a LBM recognizing a language L = {u#v | u, v ∈ Γ ∗ and |v| ≤ |u|+ k}
where # does not belong to Γ . The relation T is defined as {(u, v) | u#v ∈ L}.

The following proposition states that incremental context-sensitive transduc-
tions form a boolean algebra.

Proposition 3.1. For all k-incremental context-sensitive transductions T and
T ′ over Γ ∗, T ∪T ′, T ∩T ′ and T = E−T (where E is {(u, v) | 0 ≤ |v| ≤ |u|+k})
are incremental context-sensitive transductions.

The canonical graph associated to a finite set of transductions is called a
transduction graph. Relating graphs to a family of binary relations on words was
already used to define rational graphs and their sub-families.
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Definition 3.6. The Σ-labeled transduction graph GT of a finite set of incre-
mental context-sensitive transductions (Ta)a∈Σ is

GT = {(u, a, v) |a ∈ Σ and (u, v) is recognized by Ta}.

Length-preserving context-sensitive transductions have already been exten-
sively studied in [LST98]. In the rest of this presentation, unless otherwise stated,
we will only consider 1-incremental transductions without loss of generality re-
garding the obtained family of graphs.

Theorem 3.2. The families of linearly bounded graphs and of incremental con-
text-sensitive transduction graphs are equal up to isomorphism.

3.3 Structural Properties

Languages. It is quite obvious that the language of the transition graph of a
LLBM M between the vertex representing its initial configuration and the set
of vertices representing its final configurations is the language of M . In fact, the
choice of initial and final vertices has no importance in terms of the family of
languages one obtains.

Proposition 3.2. The languages of linearly bounded graphs between an initial
vertex i and a finite set F of final vertices are the context-sensitive languages.

Remark 3.2. When a linearly bounded graph is explicitly seen as the transi-
tion graph of a LLBM, as a Cayley-type graph or as a transduction graph, i.e.
when the naming of its vertices is fixed, considering context-sensitive sets of final
vertices does not increase the accepted family of languages.

Closure Properties. Linearly bounded graphs enjoy several good properties,
which will be especially important when comparing this class to other families
of graphs related to LBMs or context-sensitive languages (see Section 4).

Proposition 3.3. The family of linearly bounded graphs is closed under restric-
tion to reachable vertices from any vertex and under restriction to a context-
sensitive set of vertices.

Since all rational languages are context-sensitive, linearly bounded graphs
are also closed under restriction to a rational set of vertices. This shows that
it is not necessary to allow arbitrary rational restrictions in the definition of
transition graphs of linearly bounded machine, since such a restriction can be
directly applied to the set of external configurations of a machine. By a slight
adaptation of the proofs used in [KP99], one also gets the result below.

Proposition 3.4 ([KP99]). Linearly bounded graphs are closed under synchro-
nized product.
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Deterministic Linearly Bounded Graphs. It is straightforward to notice
that there exist non-deterministic labeled LBMs whose transition graphs are
deterministic, and we do not know whether, for all non-deterministic labeled
LBM whose transition graph is deterministic, it is possible to build an equivalent
deterministic labeled LBM, possibly having the same transition graph. In fact,
we can show that, for any context-sensitive language, it is always possible to
build a deterministic linearly bounded graph accepting it.

Proposition 3.5. For all context-sensitive language L, there exists a determin-
istic linearly bounded graph G, a vertex i and a rational set of vertices F of G
such that L = L(G, {i}, F ).

We are of course not able to conclude that the languages of deterministic
transition graphs of labeled LBMs are the deterministic context-sensitive lan-
guages, because it would imply that deterministic and non-deterministic context-
sensitive languages coincide. However, if we only consider quasi real-time linearly
bounded machines, which have no infinite run on any given input word, the fam-
ily of transition graphs we obtain faithfully illustrates the determinism of the
languages.

Proposition 3.6. The languages of deterministic transition graphs of quasi
real-time LBMs are the deterministic context-sensitive languages.

4 Comparison with Rational Graphs

We will now give some remarks about the comparison between linearly bounded
graphs and several different sub-families of rational graphs. First note that since
linearly bounded graphs have by definition a finite degree, it is more relevant to
only consider rational graphs of finite degree. However, even under this structural
restriction, rational and linearly-bounded graphs are incomparable, due to the
incompatibility in the growth rate of their vertices degrees.

In a rational graph the out-degree at distance n from any vertex can be ccn

,
whereas in a linearly bounded graph is at most cn for some c.

Lemma 4.1. For any linearly bounded graph L and any vertex x, there exists
c ∈ N such that the out-degree of L at distance n > 0 of x is at most cn.

Figure 1 shows a rational graph whose vertices at distance n from the root
A have out-degree 22n+1

. This graph is thus not linearly bounded.
Conversely, in a rational graph of finite degree, the in-degree at distance n

from any vertex is at most ccn

for some c ∈ N, in a linearly bounded graph it
can be as large as f(n) for any mapping f from N to N recognizable in linear
space (i.e. such that the language {0n1f(n) | n ∈ N} is context-sensitive).

Lemma 4.2. For any mapping f : N �→ N recognizable in linear space, there
exists a linearly bounded graph L with a vertex x such that the in-degree at
distance n > 0 of x is f(n).
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T :

A/AA

A/AB
A/BA
A/BB

B/AA

B/AB
B/BA
B/BB

A

AA AB BA BB

AAAA . . . ABAA . . . BBBB

AAAAAAAA . . . AAABBABB . . . BBBBBBBB

Fig. 1. A finite degree rational graph (together with its transducer) which is not iso-
morphic to any linearly bounded graph

An instance of such a mapping is f : n �→ 222n

, which is more than the
in-degree at distance n of a vertex in any rational graph of finite degree. From
these two observations, we get the result below.

Proposition 4.1. The families of finite degree rational graphs and of linearly
bounded graphs are incomparable.

Since finite-degree rational graphs and linearly bounded graphs are incom-
parable, we investigate more restricted sub-families of rational graphs. For syn-
chronized graphs of finite out-degree, we have the following result.

Proposition 4.2. The synchronized graphs of finite degree form a strict sub-
family of linearly bounded graphs (up to isomorphism).

Proof (Sketch). Synchronized transducers of finite image can only map together
words whose length difference is at most some constant k. It can thus very
easily be seen that synchronized rational relations of finite image are incremental
context-sensitive transductions.

For the even more restricted family of bounded-degree rational graphs, we
show the following comparison.

Theorem 4.1. The rational graphs of bounded degree form a strict sub-family
of linearly bounded graphs of bounded degree (up to isomorphism).

Proof (Sketch). The inclusion is based on a uniformization result for rational
relations of bounded image due to Weber [Web96], which states that they can
be decomposed into a finite union of functional transductions. This allows us to
propose a coding of the rational graph’s vertices such that the edge relation of
the obtained graph is a 1-incremental context-sensitive transduction. The idea of
this coding is to identify a vertex either by its name in the rational graph, or by
a unique path from another vertex, whichever is shortest. This allows to express
the edge relation of the graph as a 1-incremental context-sensitive transduction.

As rational graphs are closed under edge reversal, an equality between the
two families would imply that linearly bounded graphs of bounded degree are
also closed under edge reversal, which can be proved wrong. ��
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It may be interesting at this point to recall that all existing proofs that the
rational graphs accept the context-sensitive languages break down when the out-
degree is bounded. It is thus not at all clear whether rational graphs of bounded
degree accept all context-sensitive languages. However, as noted in 3.5, it is
still the case for bounded degree linearly bounded graphs, and in particular for
deterministic linearly bounded graphs.

5 Conclusion

This paper gives a natural definition of a family of canonical graphs associated to
the observable computations of labeled linearly bounded machines. It provides
equivalent characterizations of this family as the Cayley-type graphs of length-
decreasing term-rewriting systems, and as the graphs defined by a subfamily of
context-sensitive transductions which can increase the length of their input by
at most a constant number of letters. Although of a sensibly different nature
from rational graphs, we showed that all rational graphs of bounded degree are
linearly bounded graphs of bounded degree, and that this inclusion is strict.
This leads us to consider a more restricted notion of infinite automata, closer to
classical finite automata (as was already observed in [CM05a]), and to propose a
hierarchy of families of infinite graphs of bounded degree accepting the families
of languages of the Chomsky hierarchy (see Fig. 2).

Finite graphs
Rational language

Bounded-degree regular graphs
Context-free languages

Bounded-degree rational graphs
?

Bounded-degree linearly bounded graphs
Context-sensitive languages

Bounded-degree Turing graphs
Recursively enumerable languages

Fig. 2. A Chomsky-like hierarchy of bounded-degree infinite graphs
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Abstract. We prove several results about the relations between injec-
tivity and surjectivity for sand automata. Moreover, we begin the ex-
ploration of the dynamical behavior of sand automata proving that the
property of ultimate periodicity is undecidable. We believe that the proof
technique used for this last result might turn out to be useful for many
other results in the same context.

Keywords: sand automata, reversibility, undecidability, ultimate
periodicity.

1 Introduction

Self-organized criticality (SOC) is a notion which tries to explain the peculiar
behavior of many natural and physical phenomena. These systems evolve, ac-
cording to some law, to a“critical state”. Any perturbation, no matter how small,
of the critical state generates a deep spontaneous re-organization of the system.
Thereafter, the system evolves to another critical state and so on.

Examples of SOC systems are: sandpiles, snow avalanches, star clusters in
the outer space, earthquakes, forest fires, load balance in operating systems
[1,2,3,4,5].

Sandpiles models are a paradigmatic formal model for SOC systems [6,7].
In [8], the authors introduced sand automata as a generalization of sandpiles
models and transposed them in the setting of discrete dynamical systems. A
key-point of [8] was to introduce a suitable topology and study the dynamical
behavior of sand automata w.r.t. this new topology. This resulted in a funda-
mental representation theorem similar to the well-known Hedlund’s theorem for
cellular automata [8,9].

This paper continues the study of sand automata starting from basic set
properties like injectivity and surjectivity. The decidability of those two last
properties is still an open question. In order to simplify the decision problem we
study the relations between basic set properties. We prove that many relations
between set properties that are true in cellular automata are no more true in
the context of sand automata. This allows to conclude that sand automata are
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a completely new model and not a peculiar “sub-model” of cellular automata as
it might seem at a glance.

In particular, we show that injective sand automata are not necessarily re-
versible but they might have a right inverse automaton which is not a left in-
verse. This is a completely new situation w.r.t. cellular automata which we think
is worthwhile future studies.

Understanding the dynamical behavior of sand automata is in general very
difficult. Hence we started from very “simple”behavior: ultimate periodicity. We
have proved (Theorem 2) that the problem of establishing if a given automaton
is ultimately periodic is undecidable (when considering spatial periodic or finite
configurations).

We believe that the proof technique developed for Theorem 2 might be used
for proving many other similar results.

The paper is structured as follows. The next section introduces the topology
on sandpiles and related known results. Section 3 recalls the definition of sand
automata and their representation theorem. Very interesting and useful examples
of sand automata are presented in Sect. 4. The main results are in Sect. 5 and 6.
In Sect. 7 we draw our conclusions.

Remark that, due to lack of space, some results have no proof. Their proofs
can be found in the appendix.

2 The Topology on Sandpiles

A configuration represents a set of sand grains, organized in piles and distributed
all over a d-dimensional grid. Every point of the grid ZZd is associated with the
number of grains i.e. an element of Z̃Z = ZZ ∪ {−∞,+∞}. The value −∞
represents a sink and +∞ a source of sand grains. Hence a configuration is an

element of Z̃Z
ZZd

. We denote by ci1,...,id
or ci the number of grains in the column

of c indexed by the vector i = (i1, . . . , id). Denote C the set of all configurations.
Finally, for i ∈ Z̃Z, Ei is the set of configurations whose sand amount at position
(0, . . . , 0) is i. A configuration c is finite if ∃k ∈ IN such that for any vector
i ∈ ZZd, |i| ≥ k, ci = 0 (we denote by | · | the infinite norm). The set of
finite configurations is noted F. For any finite configuration c, the size of c
is |c| = max

i,j∈ZZd {|i− j| , ci �= 0 and cj �= 0}. A configuration c is (spatially)

periodic if there is a vector p ∈ ZZd such that for any vector i ∈ ZZd and any
integer t ∈ ZZ, ci = ci+tp; P denotes the set of (spatially) periodic configurations.

In the remainder of the section, definitions are only given for dimension 1.
The generalization to higher dimensions is straightforward.

In [8], the authors equipped C with a metric topology defined in two steps.
First, one fixes a reference point (for example the column of index 0); then the
metric is designed in such a way that two configurations are at small distance if
they have“the same”number of grains in a (finite) neighborhood of the reference
point. Of course, one should make more precise the meaning of the sentence“have
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the same grains content”. The differences in the number of grains is quantified
by a measuring device of precision l ∈ IN and reference height m ∈ ZZ

βm
l (n) =

⎧⎨⎩ +∞ if n > m + l ,
−∞ if n < m− l ,

n−m otherwise.

If the difference (in the number grains) between the measured height n and
the reference height m is too high (resp. too low), then it is declared to be +∞
(resp. −∞). We assume ∞−∞ = 0.

For any configuration c ∈ Z̃Z
ZZ

, l ∈ IN, l �= 0 and i ∈ ZZ, define the following
sequence of differences:

di
l(c) =

{
(βci

l (ci−l), . . . , βci

l (ci−1), βci

l (ci+1), . . . , βci

l (ci+l)) if |ci| �=∞ ,

(β0
l (ci−l), . . . , β0

l (ci−1), β0
l (ci+1), . . . , β0

l (ci+l)) if ci = ±∞ .

For l = 0, define di
0(c) as the singleton (ci). Finally, the distance between two

configurations x and y is defined as follows: d(x, y) = 2−l, where l is the smallest
integer such that d0

l (x) �= d0
l (y).

From now on, C is equipped with the metric topology induced by d. The
following propositions prove that the structure of the topology on C is rich enough
to justify the study of dynamical systems on it.

Proposition 1 ([8]). The space C is perfect ( i.e. it has no isolated point) and
locally compact ( i.e. for any point x there is a neighborhood of x whose closure
is compact).

Proposition 2 ([8]). The space C is totally disconnected ( i.e. for any points
x, y there are two open sets U and V such as x ∈ U , y ∈ V , U ∩ V = ∅ and
U ∪ V = C).

Proposition 3 ([8]). For any i ∈ Z̃Z, the set Ei is compact.

The following result completes the characterization of the topological struc-
ture of C.

Proposition 4. The space C is complete.

3 Sand Automata

A sand automaton (SA) is a deterministic automaton acting on configurations. It
essentially consists in a local rule which is applied synchronously to each column
of the current configuration. The local rule describes how many grains are lost
or gained in each column according to the grain content of its neighborhood.

In the sequel, we give the formal definition of sand automaton in dimension 1.
Its generalization to higher dimensions is straightforward.
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Formally, a sand automaton is a structure A ≡ 〈r, λ〉 where λ : ˜[[−r, r]]
2r

�→
[[−r, r]] is the local rule and r is the precision (sometimes also called the radius)
of the measuring device. The global function fA : C �→ C of A is defined as follows

∀c ∈ C ∀i ∈ ZZ, fA(c)i =
{
ci if ci = ±∞ ,
ci + λ(di

r(c)) otherwise.

In [8], the authors show that sand automata can easily simulate all sandpile
models known in literature and even cellular automata. They also obtained the
fundamental representation result given in Theorem 1; but let us first introduce
a few more useful definitions.

We need two special functions: the shift map σ : C �→ C defined by ∀c ∈
C, ∀i ∈ ZZ, σ(c)i = ci+1 ; and the raising map ρ : C �→ C defined by ∀c ∈
C, ∀i ∈ ZZ, ρ(c)i = ci + 1. A function f : C �→ C is shift-invariant (resp.
vertical-invariant) if f ◦ σ = σ ◦ f (resp. f ◦ ρ = ρ ◦ f). A function f : C �→ C is
infiniteness conserving if

∀c ∈ C ∀i ∈ ZZ,

⎧⎨⎩f(c)i = +∞⇔ ci = +∞
and

f(c)i = −∞⇔ ci = −∞ .

Theorem 1 ([8]). A function f : C �→ C is the global function of a sand au-
tomaton if and only if f is continuous, shift-invariant, vertical-invariant and
infiniteness conserving.

By an abuse of terminology, we will often confuse a sand automaton A ≡
〈r, λ〉 with its global function fA. For example, we claim that A is surjective
(resp. injective) if fA is surjective (resp. injective). For U ⊆ C, fA is said to
be U-surjective (resp. injective) if the restriction of f to U is surjective (resp.
injective).

4 Examples

In this section we introduce a series of worked examples with a twofold pur-
pose: illustrate basic behavior of sand automata and constitute a set of counter-
examples for later use. Some examples might seem a bit technical but the un-
derlaying ideas are very useful in the sequel.

Example 1. The automaton S .
This automaton is the simulation of SPM (Sand Pile Model) in dimension 1:
S = 〈1, λS〉, where

∀x, y ∈ ˜[[−1, 1]], λS(x, y) =

⎧⎨⎩+1 if x = +∞ and y �= −∞ ,
−1 if x �= +∞ and y = −∞ ,

0 otherwise.

Remark the basic grain movement of S: a grain falls to the column on its
right when the height difference is bigger than 2.
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Example 2. The automaton Sr .
This automaton is defined similarly to S, but grains climb the cliffs instead of
falling down. Let Sr = 〈1, λSr 〉 where

∀x, y ∈ ˜[[−1, 1]], λSr (x, y) =

⎧⎨⎩−1 if x = +∞ and y �= −∞ ,
+1 if x �= +∞ and y = −∞ ,

0 otherwise.

Proposition 5. The SA S is U-surjective for U = C,F,P. The SA Sr is U-
injective for U = C,F,P.

Proof. It is not difficult to see that S ◦ Sr = id, but Sr ◦ S �= id (just use
the configuration c defined by ci = 2 if i = 0 and ci = 0 otherwise). The first
equation implies that S is surjective and Sr is injective. Moreover, since the pre-
image by S of a configuration is computed by Sr, another SA, the pre-image of
a finite configuration is finite, and periodic if the initial configuration is periodic.
Hence we have the first part of the thesis. The second part is a consequence of
the injectivity of Sr. ��
Proposition 6. The SA S is not U-injective for U = C,F,P.

Proposition 7. The SA Sr is not U-surjective for U = C,F,P.

Example 3. The automaton L.
Consider an automaton L = 〈1, λL〉 where

∀x, y ∈ ˜[[−1, 1]], λL(x, y) =

⎧⎨⎩−1 if x < 0 ,
+1 if x > 0 ,

0 otherwise.

Remark the basic behavior of L: each column tries to reach the height of its left
neighbor.

Proposition 8. The SA L is not F-surjective.

Proposition 9. The SA L is both C-surjective and P-surjective.

Proof. Choose an arbitrary configuration c, we are going to build one of its pre-
image c′. There is a unique sequence of strictly increasing indices (in)n∈N , N ⊂
ZZ, such that ∀i ∈ [[in, in+1[[, ci = cin and cin �= cin−1 (every in corresponds to
a variation of height in c). The idea is to work on these intervals, amplifying the
difference at the border so that an application of the rule corrects it. Formally, for
every n ∈ N , suppose that cin−1 < cin (if it is not the case then the symmetrical
operations have to be performed). For every in ≤ i < in+1, let c′i = ci + 1 if
i− in is even, c′i = ci − 1 if i− in is odd. There are two little subtleties if N is
not bi-infinite. First if n0 = minN exists, then let c′i = ci for all i < n0. Second,
if n1 = maxN exists, then the ± operation has to be performed forever on the
right. Note that it is why a finite configuration may not have a finite pre-image.
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It is not difficult to see that fL(c′) = c. For every i ∈ ZZ, first suppose that
there is a n ∈ N such that i = in. We have fL(c′)i = c′i + λL(di

1(c
′)). Supposing

that ci−1 < ci (again, if it is the opposite then the operations are symmetrical),
we have c′i = ci + 1 > ci−1 + 1, hence c′i > c′i−1 since |ci−1 − c′i−1| ≤ 1 . So
λL(di

1(c
′)) = −1, and fL(c′)i = ci +1− 1 = ci. Otherwise if i �= in for all n ∈ N ,

then by construction we have either:

– c′i = ci + 1 and c′i−1 = ci−1 − 1 = ci − 1, because c is constant between the
in’s. Hence c′i−1 = c′i − 2, and then fL(c′)i = ci + 1− 1 = ci ;

– or c′i = ci − 1 and c′i−1 = ci−1 + 1, the same method gives the result.

Therefore L is surjective. Finally, as the operations we perform on the con-
figuration are deterministic, a periodic configuration would have a periodic pre-
image (same transformation of the period everywhere). Hence L is also surjective
over periodic configurations. ��

The next example is a bit less intuitive since it uses a special neighborhood:
the two nearest left neighbors.

Example 4. The automaton X .
Consider the sand automaton X = 〈2, λX 〉 where

∀x, y, z ∈ ˜[[−2, 2]], λX (+∞, x, y, z) = −1 ,
λX (2, x, y, z) = −1 ,
λX (1,−1, x, y) = −1 ,
λX (1,−2, x, y) = −1 ,
λX (1,−∞, x, y) = −1 ,
λX (0,−2, x, y) = −1 ,
λX (0,−∞, x, y) = −1 ,

and any other value gives 0. The evolutions of X on arbitrary configurations
seem quite hard to describe. Anyway, in the sequel we will need to study its
evolutions only on special (simple) configurations.

Proposition 10. The SA X is F-injective but not C- or P-injective.

Example 5. The automaton Y.
Consider the following SA Y = 〈2, λY〉, where

∀x, y, z ∈ ˜[[−2, 2]], λY(+∞, x, y, z) = −1 ,
λY(2, x, y, z) = −1 ,
λY(1, x, y, z) = −1 ,
λY(0, x, y, z) = −1 ,
λY(−1,−∞, x, y) = −1 ,

and everything else returns 0.

Proposition 11. The SA Y is F- and P-injective, but not injective.
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Proof. Consider the two configurations c and c′ defined as follows

∀i ∈ ZZ,

{
c2i = i
c2i+1 = i + 2 ,

{
c′2i = i
c′2i+1 = i + 3 .

It is not difficult to see that fY(c) = fY(c′) = c Hence Y is not injective. In
order to show that Y is injective over finite and periodic configurations, we need
an intermediate result: if c, c′ are two distinct configurations such that fY(c) =
fY(c′), then there are infinitely many differences, of infinitely many different
values. Practically, we show that if ci > c′i then ci−2 > c′i−2 and ci−2 < ci.

Assume ci > c′i for some i, and let f(c) = f(c′). Then, without loss of
generality, one can choose ci = c′i +1 (the difference cannot be greater than one,
because λY only returns −1 or 0). Therefore, a rule which returns 0 is applied
to c′ at position i, which means that c′i−2 ≤ c′i − 1 (since λY(x,−,−,−) returns
0 only if x ≤ −1). For the same reason, one of the five rules which returns −1 is
applied to c at position i, hence ci−2 ≥ ci − 1. So it holds that

ci−2 ≥ ci − 1 = c′i ≥ c′i−2 + 1 > c′i−2 . (1)

The first consequence of this inequality is that if there is a difference somewhere,
there are infinitely many differences, hence Y is F-injective. Indeed two finite
configurations cannot have infinitely many differences, so two different finite
configurations have a different image.

Moreover, ci−2 = c′i−2 + 1 to ensure fY(c) = fY(c′). So the inequalities (1)
above are in reality equalities, in particular ci−2 = ci − 1. Therefore it holds
· · · < ci−4 < ci−2 < ci, which proves that two different periodic configurations
also have different images (a periodic configuration contains a finite number of
different columns, which is contradicted by the above inequality). As a conse-
quence, Y is P-injective. ��

5 Basic Set Properties

This section deals with the relations between surjectivity and injectivity, w.r.t.
all, finite and periodic configurations, in the same way it was done in [10] for cel-
lular automata. In particular the relation between F-injectivity and surjectivity
was interesting, as for cellular automata it can be used to prove undecidabil-
ity of surjectivity [11]. Unfortunately, no such relation holds between those two
properties in the context of SA (see Propositions 5, 6, 7). In this section we try
to analyze these relations deeper hoping this might help for the proof of the
decidability result about surjectivity or injectivity.

Proposition 12. F-surjectivity implies surjectivity.

Proof. For any configuration c, let c0n be such that ∀i ∈ ZZ, (c0n)i = ci if
−n ≤ i ≤ n and (c0n)i = 0 otherwise. Consider a sand automaton f that is
F-surjective and choose an arbitrary configuration c ∈ C. For any n ∈ IN, let
cn = f−1(c0n). The pre-images cn are contained in some set Ei for i ∈ I, with
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I ⊂ [[c0 − r, c0 + r]] where r is the precision of f . Since ∪i∈IEi is compact and
(cn)n∈IN ⊂ ∪i∈IEi, (cn)n∈IN contains a converging sub-sequence (cni)i∈IN. Let
c∗ = limi→∞ cni . By contradiction, assume that f(c∗) �= c. Then there exists
j ∈ ZZ such that f(c∗)j �= cj but f(cni)j = cj for ni big enough. ��

Remark that the result of Proposition 12 is true in any dimension but the
converse is false (even in dimension 1), since L is surjective but not F-surjective
(see Propositions 8 and 9).

Proposition 13. P-surjectivity implies C-surjectivity.

Proposition 14. In dimension 1, C-surjectivity implies P-surjectivity.

Proof. Let A be a surjective sand automaton in dimension 1, of radius r, and
c0 a periodic configuration of period p ∈ ZZ. Let c be a pre-image of c0 by
A. We build a periodic configuration from c, whose image is c0. Let X =
{(ck−r, . . . , ck+r−1) | ∃α ∈ ZZ, k = αp}. Since for every i ∈ ZZ, |ci − c0i | ≤ r
(as λ returns an element of [[−r, r]]), and because c0 is p-periodic, there are at
most 2r · (2r + 1) elements in X . Let k1 = α1p and k2 = α2p, k1 < k2 such
that (ck1−r, . . . , ck1+r−1) = (ck2−r, . . . , ck2+r−1). Let the (k2 − k1)-periodic con-
figuration c′ where the period is defined by (see Fig. 1 for the construction)
c′k1+i = ck1+i for all 0 ≤ i < k2 − k1 . It is easy to see that f(c′) = c0, because
for every configuration of the period of c′, the automaton sees the same neigh-
borhood as for c (due to the construction of c′), so it acts in the same correct
way. And as k2 − k1 is a multiple of p, each period of c′ coincides with a period
of c0, so the image of c′ is equal to c everywhere: A is P-surjective. ��

In dimensions greater than 1, the above problem is currently open, we have
no direct proof nor counter-example. The problem is due to the fact that in
dimension 2 and above, the size of the perimeter of a ball (the 2r sequence we

c

k2

c′

k2 − k1

k1

2r 2r

Fig. 1. Construction of c′ using c
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used in X for the proof in dimension 1) is linked to the size of the ball. Therefore
we cannot say that there is a finite number of perimeters, and then stick them
together to build the periodic configuration.

Corollary 1. In dimension 1, F-surjectivity implies P-surjectivity.

The question whether the above corollary is true in dimension 2 and above
is still open and its solution appears to be quite difficult.

Note that the opposite implication of Corollary 1 is false in any dimension,
thanks to L which is P-surjective but not F-surjective (see Propositions 8 and 9).

Clearly injectivity implies F-injectivity and P-injectivity, but the opposite
implications are not true. In fact, because of X , F-injectivity does not imply
injectivity (Proposition 10); and Y shows that P-injectivity does not mean global
injectivity (Proposition 11). The following proposition completes these results.

Proposition 15. P-injectivity implies F-injectivity.

Proof. This is proved using the contrapositive. Let A be an automaton not F-
injective. Let x1, x2 be the two distinct finite configurations which lead to the
same image c. Let k ∈ IN such that for all i ∈ ZZd, |i| > k, x1

i = x2
i = 0. We are

going to build two distinct periodic configurations by surrounding the non-zero
part of x1 and x2 with a crown of zeros, of thickness r, and repeat this pattern.

For α ∈ {1, 2}, let yα be the (2k + 2r + 1)-periodic configuration defined by

∀i ∈ ZZd, |i| ≤ k + r,

{
yα

i = xα
i if |i| ≤ k ,

yα
i = 0 if k < |i| ≤ k + r .

We have f(y1) = f(y2). For every configuration, we can consider the trans-
lated configuration whose index is lower in norm than k + r because of the
periodicity. This configuration reacts as it did in x1 and x2 because its neigh-
borhood is the same : inside the k “circle”, it is obvious. If it is inside the crown
of 0’s, then the only non-zero values it can see are the values located inside the
initial pattern. So its behavior is equivalent to the one of the point at the border
of the initial finite configuration, and A is not P-injective. ��

The opposite implication of Proposition 15 is false since X is F-injective
but not P-injective (Proposition 10). Figure 2 summarizes the relations between
basic set properties.
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Fig. 2. Relations between basic set properties. I means injectivity and S surjectivity.
IU (resp. SU) means injectivity (resp. surjectivity) restricted to U. The symbol 1=⇒
means that the implication it true in dimension 1 and open in higher dimensions.



Basic Properties for Sand Automata 201

6 Ultimate Periodicity

Understanding the dynamical behavior of SA seems very difficult. This is con-
firmed by the main result of this section: ultimate periodicity, one of the simplest
dynamical behavior, is undecidable for sand automata.

Recall that given a SA f , a configuration c is ultimately periodic if ∃p, t ∈ IN
such that ∀i, k ∈ IN, fpk+i+t(c) = f i+t(c). A SA f is U-ultimately periodic if for

all c ∈ U, c is ultimately periodic for f . Define F = F∩ZZZZd

and P = P∩ZZZZd

,
in other words we remove sources and sinks in F and P.

Problem ULT(U)
instance: a SA A = 〈λ, r〉;
question: is every configuration in U ultimately periodic for A?

Details of the proof of the following result are given in the Appendix.

Theorem 2. Both problems ULT(P) and ULT(F) are undecidable.

Proof (Sketch). First of all, remark that it is enough to prove the thesis on F.
In fact, from any finite configuration one can obtain a periodic configuration
by repeating periodically the non-zero pattern surrounded by a suitable border
of zeroes (if necessary). Moreover, we provide the proof for dimension 1 only,
since a similar construction can be done for other dimensions. We reduce these
problems to the halting problem of a two registers machine with finite control
started with both registers at 0.

Each two registers machineM is associated with a SA SM such that SM is
ultimately periodic if and only if M halts when started with both registers at
zero. The idea is that SM uses a certain number of grain stacks for the registers
(R) and for the finite control (Q) in order to simulate the iterations of M.
For technical reasons we also need a counter (C) which counts the number of
iterations ofM. Figure 3 illustrates the general “architecture” of SM.

CV L C qV L R R 1 R V
1 R 2 R V

2

Q

C q

C R

Fig. 3. Simulation of a two registers machine by a SA
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Each iteration ofM can be simulated by SM in three main steps:
S. simulation of one iteration ofM;
V. verification from the beginning to the current iteration, in the verification

columns (with a V superscript);
C. comparison between the results of the first two steps, to ensure that the

simulation is correct.

These three steps are necessary since not all initial configurations of SM
represent valid computations of M. For this reason, SM is equipped with a
verification part that is able to simulate M when started with both registers
at zero. Then SM compares the current state with the one obtained in the
verification part. If they coincide, the counter (C) is increased by one and a new
iteration ofM is simulated; otherwise SM evolves to a periodic configuration.

In the sequel, a configuration of SM is valid if it represents a computation
ofM when started with both registers at 0.

If M halts when started with both registers at 0, then SM evolves to a
periodic point when started with a valid configuration. In fact, when the control
of SM reaches a halting state, all the other parts freeze in the current value.

A configuration is malformed if it does not respect the “architecture” of SM
i.e., for example, the value of the counter is negative etc. All these situations are
easily checkable by using a suitable (large) radius for SM and very simple rules.
If SM detects that the current configuration is malformed then it evolves to a
periodic configuration in a finite number of steps.

Finally, ifM does not halt when started with both registers at 0, SM keeps
on simulating iterations ofM and at each iteration the counter (C) is increased
by one. This fact ensures that the evolution of SM is not periodic.

This last remark concludes the proof. More details are given in the appendix.
��

7 Conclusions

In this paper we have seen that the quest for decidability results for basic set
properties like injectivity and surjectivity is hardened by the lack of relations
between them and their restriction to“easy”computable subsets of configurations
(such as P or F). This fact can be considered as a first evidence that the study
of dynamical behavior of SA might reveal very difficult.

The second evidence is given by Theorem 2. A very simple dynamical behav-
ior like ultimate periodicity over F or P is undecidable. Remark that, in the case
of cellular automata, the undecidability of the ultimate periodicity is a powerful
tool for proving the undecidability of many other problems in cellular automata
theory. We think that this property can play a similar role for sand automata.
The authors are currently investigating this subject.
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Appendix. Proofs of Remaining Results

Proofs of Section 2

Proof (of Proposition 4). Let (cn)n∈IN be a Cauchy sequence of CIN. There is a
N ∈ IN such that for all m,n ≥ N , d(cm, cn) < 1, in other words for all n ≥ N ,
cn
0 = cN

0 . Every element of the sequence (cN+n)n∈IN is in EcN
0

, which is compact
and hence complete. As this is a Cauchy sequence, it has a limit c in EcN

0
⊂ C.

c is obviously the limit of the initial sequence (cn), which gives the result. ��

Proofs of Section 4

Proof (of Proposition 6). Consider the following finite configurations c, c′ where
ci = 0 for i ∈ ZZ, c′i = 0 for i ∈ ZZ \ {0, 1}, c′0 = 1, and c′1 = −1. Clearly,
fS(c) = fS(c′) = c. Now, consider the periodic configuration c′′ with c′′2i = 1 and
c′′2i+1 = −1 for every i ∈ ZZ, again fS(c) = fS(c′′) = c. ��
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Proof (of Proposition 7). Consider the following finite configuration c, where
ci = 2 if i = 0; ci = 0 otherwise. Assume that c has a pre-image c′. There are
only three possibilities for the value of c′0:

c′0 = 3 : then the local rule has to return −1, which implies that c′−1 ≥ 5. But
fSr(c′)−1 = 0, this value cannot be reached from 5;

c′0 = 2 : the column is unchanged, which means that (c′−1 ≤ 3 or c′1 ≤ 0) and
(c′−1 ≥ 4 or c′1 ≥ 1). For the same reason as before, c′−1 cannot be greater
than 4, hence c′1 ≥ 1. This means that the local rule applied at position 1
returns−1, in other words that c′0 ≥ 3, which contradicts the first hypothesis;

c′0 = 1 : λSr returns +1, so c1 ≤ −1. Hence at position 1, λSr also returns +1.
That means, in particular, that c′2 ≤ −3, which is impossible if one has to
obtain fSr(c′)2 = 0.

We have found a finite configuration with no pre-image, which means that Sr

is not surjective both on C and on F. To show that Sr is not P-surjective, one can
consider the configuration c where c4i+1 = 2 for every i ∈ ZZ, and everywhere
else ck = 0. The proof is similar to the previous part, since the 4 elements of
the period act as if the configuration was finite (radius 1, so they do not “see”
farther than one column ahead and one column back). ��
Proof (of Proposition 8). Consider the finite configuration c where ci = 2 if i = 0
and ci = 0 otherwise. By contradiction assume that c′ is the pre-image of c and
that c′ ∈ F. Let i be the greatest integer such that c′i �= 0. Then since c′i �= 0 and
c′i+1 = 0, it holds that fL(c′)i+1 = ci+1 �= 0. This implies that i = −1 because
c0 is the only non-zero value in c. But in that case, we have c′0 = 0, and as λL
cannot return more than 1, c0 = 2 cannot be reached. This is a contradiction. ��
Proof (of Proposition 10). Consider the two periodic configurations c and c′

defined as follows :

∀i ∈ ZZ,

{
c2i = 0
c2i+1 = 1 ,

{
c′2i = 0
c′2i+1 = 2 .

It can be easily verified that fX (c) = fX (c′) = c. Hence X is not P-injective
and, of course, it is not injective.

Let us prove that X is F-injective. Let c and c′ be two distinct finite configura-
tions, and suppose that their image by fX is identical. As the two configurations
are finite, we can define i ∈ ZZ being the least integer such that ci �= c′i. As
λX returns only 0 or −1, we know that |ci − c′i| = 1, and we can suppose that
ci = c′i + 1. That means that the local rule applied to c at position i is one of
the seven rules which return −1:

– if the neighborhood is (+∞,−,−,−) (to make the notations clearer, − rep-
resents any value), then since c′i = ci − 1 and c′i−2 = ci−2, the same rule is
applied to c′, which means that fX (c)i �= fX (c′)i which is a contradiction;

– if the neighborhood is (2,−,−,−), for the same reason the rule for the neigh-
borhood (+∞,−,−,−) is applied to c′, which raises the same contradiction;
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– again, if the neighborhood is (1,−1,−,−), (1,−2,−,−) or (1,−∞,−,−), the
rule for the neighborhood (2,−,−,−) is applied to c′, making c′i decrease by
1: same contradiction;

– if the neighborhood is (0,−2,−,−) or (0,−∞,−,−), because c′i−2 = ci−2,
c′i−1 = ci−1 and c′i = ci − 1, one of the rules corresponding to the neigh-
borhoods (1,−1,−,−), (1,−2,−,−) or (1,−∞,−,−) is applied to c′. There
again, we have fX (c)i �= fX (c′)i. ��

Proof (of Proposition 13). Nearly exactly the same proof as for Proposition 12
can be made. The only change is that it starts with c0n defined as the (2n +
1, . . . , 2n+1)-periodic configuration with ∀i ∈ ZZd, |i| ≤ n, (c0n)i = ci. Everything
else is unchanged. ��

Proofs of Section 5

Proof (of Corollary 1). F-surjectivity implies surjectivity (Proposition 12), which
implies in dimension 1 P-surjectivity (Proposition 14). ��

Proofs of Section 6

The sketch of the proof of Theorem 2 given in Section 6 ommits several technical
but fundamental details.

The reduction is made from a two registers machine M defined by M =
〈Q, q0, qf , δ〉, where Q is a finite set of states, q0 ∈ Q is the initial state, qf ∈ Q
the final state. The registers R1 and R2 always contain positive integer values.
In our case,M is always started with both registers at 0.

The function δ : Q×{0, 1}×{0, 1} �→ Q×{1, 2}×{−1, 0,+1} is the transition
function. The second and third arguments of δ indicate whether or not the
registers are 0 (hence a 1 means that the register contains a value strictly greater
than 0). δ returns the new state, the number of the register which is modified (1
or 2), and its modification (decrease by 1, increase by 1, no change). For clarity
we denote these transitions by the expression δ(q, b1, b2) = (q′, Ri + j).

For example, the rules⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ(q0, 0, 0) = (q1, R1 + 1)
δ(q1, 0,−) = (qf , R1 + 0)
δ(q1, 1,−) = (q2, R1 − 1)
δ(q2,−,−) = (q3, R2 + 1)
δ(q3,−,−) = (q1, R2 + 1)

define a machine which first initializes R1 to 1, then multiplies it by 2 and puts
the result in R2.

A two registers machine M (started with both registers at 0) is associated
with a SA SM. Before describing SM we need the following “tips and tricks”
which will be fundamental in the construction.
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The Lifts. The control has to send commands both to the registers (R) and to
the counters (C). The point is that the radius of the local rule is finite and the
difference of height between the control and the registers or the counters could
be much bigger than the radius. Hence, the control cannot deliver commands
directly to the registers or to the counters. This problem can be solved by in-
troducing two more columns which we call lifts : LC delivers commands to the
counters and LR delivers commands to the registers (see Fig. 3).

Knowing Themselves. The local rule of SM is formed by several sub-rules. Each
sub-rule concerns the evolution of a single column of the simulation zone of
SM. The point is that each column must know “which it is” in order to apply
the right sub-rule. This problem is solved by splitting each column c into two
columns (l, r) and the “identity”of the original column is coded by the difference
of height between l and r. For example, a difference of 1 says that c is the counter
C, 2 stands for CV and so on. We also use a height difference to code an error
symbol E whose meaning will be explained later.

In the sequel, when speaking of height of a column c = (l, r) we will always
mean the height of r since l is simply the height of r plus the “identity” number.

Finally, the height of qr is used as (relative) zero height by all other columns
when needed.

Commands, Colors and States. The idea used to code “identity” information in
the difference between pairs of successive columns can be used to store additional
information which will be useful for the simulation. For example, one can code
the following commands for the lifts: C+1 which increases the counter C by one;
CV→0 that resets CV ; R1,−1 which decreases R1 by one; L↘ which instruct the lift
to go down and so on. Remark that lifts are colored S, V0, V and C to indicate
the current simulation step as described at page 202; V0 is the initialization step
of V. Clearly, colors can be coded using the height difference as well.

Finally, we need to code the state of the control q (or qV ). Once more, this
piece of information can be coded into the height difference.

bl bral ar

"1" = 2   +1

"2" = 2*(2   +1)

"0" = 0

N

N

>N

Fig. 4. How to distinguish “the left side from the right side”
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Removing Ambiguities. Let N be the biggest difference used to code objects (or
actions, see above) needed in the simulation. In the sequel, in order to maintain
a strict correspondence between the two registers machine and the simulated
model, we prefer to say that “a column c = (l, r) is increased by t ∈ IN” even if in
reality in SM, r is increased by (2N + 1) · t and l is increased by (2N + 1) · t+α
where α ∈ {−N + 1, . . . , 0, . . . , N − 1} is meant to code the modification of the
state of the column or its color. This trick avoids ambiguities in the “identity” of
the columns as can be seen in Fig. 4. All rightmost columns with a r subscript
are located at levels k · (2N + 1), while the leftmost columns avoid the cross-
hatched zone and remains between the line k · (2N + 1) and k · (2N + 1) + N .
As a consequence, the difference between any consecutive ar and bl exceeds N
and cannot be mistaken for a code: ar is guaranteed to be the right column of a
pair, and bl the left column of another.

Malformed Configurations. In view of the previous considerations, the notion
of malformed configuration has to be extended by adding the case in which a
column cannot decide if it is a left part or a right part. When the local rule
cannot determine if a given column is a right part or a left part then it does add
0 to the current value of the column.

The Beginning. At the beginning of the simulation, C contains the number of
simulation steps (w.r.t.M) since the beginning, q = (ql, qr) contains the current
state of M, the registers R1 and R2 contain some value. The lifts LC and LR

are at 0 (relatively to qr). Moreover, the lifts are in color S.
All other columns contain arbitrary values. They will be reset later on when

necessary.

S. Simulation Step. In this step, SM simulates a single iteration of M. For
example, assume that R1 and R2 contain a strictly positive value and that
δ(q1, 1, 1) = (q2, Ri + j) for some i ∈ {1, 2} and j ∈ {−1, 0,+1}. Then, SM
changes q1 into q2 in column q and at the same time fires LC with the command
C+1 and LR with the command Ri,j . Below we give the local rules of SM for
this transition which perform the update of q.⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ
(
. . . ,LC, αq1

∣∣∣ −,−︸︷︷︸,LR,R1,−,−︸︷︷︸,R2, . . .
)

= 0 (right)

qV RV
1

λ
(
. . . ,L′C

∣∣∣ − αq1 ,
︷︸︸︷
−,−,L′R,R′1,

︷︸︸︷
−,−,R′2, . . .

)
= αq2 − αq1 (left)

with

LC = αLC ,S, 0︸ ︷︷ ︸ , LR = αLR,S, 0︸ ︷︷ ︸ ,

LC at 0, S-colored LR at 0, S-colored

L′C =
︷ ︸︸ ︷
αLC ,S − αq1 ,−αq1 , L′R =

︷ ︸︸ ︷
αLR,S − αq1 ,−αq1 ,
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and

R1 = > αR1 , > 0︸ ︷︷ ︸ , R2 = > αR2 , > 0︸ ︷︷ ︸ ,

R1 �= 0 R2 �= 0

R′1 =
︷ ︸︸ ︷
> (αR1 − αq1), > −αq1 , R′2 =

︷ ︸︸ ︷
> (αR2 − αq1), > −αq1 ,

where 0 < αc ≤ N represents the difference used to code all the characteristics of
column c (identity, state, color, etc.). In the above formulas, thenotation>xmeans
any number greater than x, while−means any number. Moreover, the | symbol is
used as a delimiter between the neighborhood on the left and on the right.

Surely, the reader has remarked how involved are the formulas for the local
rule of SM. For this reason we prefer to describe them by words in the sequel.
We stress that translating the descriptions into rules is not difficult.

The next iterations are for the lifts to reach their destination height and
deliver the command. As a result, C finally increases by 1 and if necessary one
of the registers can also have its value modified. Then, LC and LR go down (this
can be done by turning into the command L↘), changing their color to V0.

The step S ends when both lifts have reached the reference height, and are
colored in V0.

V0. Initialization of the Verification Step. Before starting the verification
step one should reset the verification columns (i.e. those with the V superscript
in Fig. 3). In SM this is performed by sending CV

→0 command to LC and RV
→0

to LR. Finally, qV is set to q0.
The RV→0 command starts a sequence of actions. First, LR goes up until it

is above both registers. Then it goes down forcing the registers to go down with
it. The same holds for CV

→0.
Finally, when the lifts reach the reference height (i.e. the height of qr), they

turn into color V to indicate that the initialization step is complete, and that
the verification step can begin.

V. Verification Step. Each time both lifts are on the ground, colored in V,
C iterations ofM (started with both registers at 0) are performed in the verifi-
cation columns. This is done exactly like in step S: the lifts LV

C and LV
R deliver

commands to the counter CV and to the registers RV
i (i ∈ {1, 2}), while the

current state qV is modified according to the rules of M.
Moreover, LC has to detect when C = CV , which corresponds to the end of

the verification step. In that case it goes down with color C. When it reaches
height 0 (i.e. the height of qr), LR checks the color of LC and turns into the
same color. At this point, C = CV , q,R1, R2 should be equal to qV , RV

1 , RV
2 (the

next step will determine if this is really the case), and LC and LR are at the
reference height colored C.

C. Comparison Step. The lift LC is launched and it goes up until it reaches
the highest among C,CV , R1, R

V
1 , R2, R

V
2 . Then, it starts going down, comparing

columns two by two when it reaches their height.
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If everything is correct i.e. LC reaches 0, then it changes its color into S. At
this point LR become S-colored also and the comparison step is finished.

If LC finds that the comparison failed, it changes into the error state E,
and does not move anymore: the simulation is blocked forever, since all other
columns are waiting for the LC to go down. Remark that in this last case, SM
is in an ultimately periodic point.

Concluding the Construction. For all neighborhoods that were not considered
above, the local rule of SM returns 0. This assumption is essential for several
proofs that will follow.

Halting on Errors

When running on a malformed configuration, the sand automaton has to reach
a periodic state. To force this, our simulation will freeze after a few iterations
when it finds an error.

There are two main categories of errors for a particular column. First, neigh-
borhood errors which are not due to the column itself, but to its global situation.
For example, a pair of columns which code a register, but containing a negative
value. Or any misplaced pair of columns, such as 2 state columns in the same
configuration. Another neighborhood error is when two consecutive columns code
for the error symbol.

Second, when a pair of consecutive columns do not code for anything, or there
is an ambiguity in the coding, the configuration is also invalid. This is called an
identity error.

Neighborhood Errors. When this type of error occurs one has to prevent any
further movement. When a pair of columns finds unexpected values in its neigh-
borhood it changes into the error symbol E. In terms of the local rule, this
means that any sub-rule concerning a particular type of column c = (l, r) with
an incorrect neighborhood returns 0 for column r, and for l it returns the height
difference coding E minus the current identity number.

Identity Errors. For identity errors the local rule returns 0. This concerns both
columns whose neighbors do not code for anything (in this case we have that
λ(. . . , x | y, . . .) = 0, with x > N or x ≤ 0, and y < −N or y ≥ 0, see Fig. 5(a))
and columns which cannot decide which column they are paired with (in this case
we have λ(. . . , x | y, . . .) = 0, with 0 < x ≤ N and 0 ≥ y > −N , see Fig. 5(b)).

From now on, fix a two registers machine M and let SM be the associated
SA given by the above construction. Let f be the global rule of SM.

Lemma 1. For any finite configuration c and for any t ∈ IN, |f t(c)| ≤ |c|+ 1.

Proof. Let c ∈ F and i be its leftmost non-zero value. By construction, we have
that λ(−, . . . ,−, 0 | −, . . . ,−) = 0 and hence ∀j ∈ ZZ ∀t ∈ IN, j < i⇒ f t(c)j = 0.

Now, let k be the rightmost non-zero value of c. Remark that f t(c)k+1 is
always a multiple of 2N + 1. Since ck+1 is either an identity error or the right
column of a pair coding for something then, by construction, either it does not
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y>0x>N

(a) Column coding for nothing.

0<x   N

0>y   −N

(b) Identity ambiguity.

Fig. 5. Typical identity errors

increase at all (in the case of an identity error) or it changes by multiples of
2N + 1. Again, by construction, for any j > k + 1, one finds ∀t ∈ IN, f t(c)j = 0
since λ(−, . . . ,−, x | 0,−, . . . ,−) = 0 for x �= αRV

2
, where αRV

2
is the height

difference coding for RV
2 . Remark that if x = αRV

2
then the rule corresponding

to the register RV
2 has to be applied and may not return 0. Anyway, in the

present case, if j = k + 2 then cj−1 is a multiple of 2N + 1 and hence x �= αRV
2
.

If j > k + 2 then cj−1 = 0, x = 0 �= αRV
2
. ��

Lemma 2. Consider a configuration c ∈ F. If c is such that the columns (ci,
ci+1) code for an identity I then for all t ∈ IN, the columns (f t(c)i, f

t(c)i+1)
code for the same identity I.

Proof. Let c ∈ F be a configuration containing a symbol I at position (i, i + 1).
During a valid simulation, this pair evolves according to the local rules which
may change its state or color, but preserve its identity I.

The only problem which could occur to change the identity of ci or ci+1 is when
a column comes“too close”on the left or on the right of the pair (see Fig. 6).

c i+1c ia

Fig. 6. The identity of (ci, ci+1) is not modified

When this happens, then ci becomes an identity error and do not evolve
anymore (for instance, in the Fig. 6, this happens when 0 < a − ci ≤ N). To
prevent ci+1 from moving and hence maintain the identity I, one should just
add the constraint that a local rule returns a non-zero value if and only if both
members of the pair do not have ambiguity in their code. This is easy to check,
for example λ(. . . ,− |αI , x,−, . . .) = 0 whenever 0 < x − αI ≤ N for the left
column. This new constraint does not affect the simulation, as such a situation
should not happen in a valid configuration. ��
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Lemma 3. Consider a malformed configuration c ∈ F. If SM does not halt on
c, then there is a lift whose color changes infinitely often.

Proof. Assume c ∈ F is malformed, and SM does not halt when started from
c. Because of Lemma 1, ∀t ∈ IN, |f t(c)| is bounded independently from t. So
the infinite behavior is due to “vertical” movement in c, i.e. there is a column
whose content changes infinitely often. Because of the conservation of the identity
shown in Lemma 2, this column is in fact a pair of columns, as its identity cannot
be modified. Hence there is a lift in c which evolves infinitely often (otherwise
the configuration cannot change, since pairs of columns move only when they
have a lift in their neighborhood, at most once every time the lift moves).

Moreover, there are no infinite columns in configurations taken from F, which
prevents this lift from keeping increasing or decreasing (lifts never go higher than
the maximal value in their neighborhood, nor lower than the minimal one). As
a consequence, its color changes infinitely often, otherwise the lift would have
either stopped or gone to ±∞. Indeed, if the color does not change, the lift has
no other choice but go towards the same direction after a finite number of steps.

��
Proposition 16. Consider a configuration c ∈ F. If c contains an error (either
identity or neighborhood error) then c is ultimately periodic for SM.

Proof. Let c ∈ F. By contradiction, assume that c contains an error (no matter
if identity or neighborhood error) and is aperiodic.

First of all, Lemma 3 implies that there is a lift in the configuration, whose
color changes infinitely often. Hence there are infinitely many simulation steps
S-V-C, which leads to infinitely many correct comparison steps C.

In this step, LC checks the validity of all columns C, CV , q, qV , R1, RV
1 , R2,

RV
2 . If one of them contains an error, either identity or neighborhood error, the

simulation stops. This contradicts the aperiodicity of c. The same holds for LR.
It has to be valid, otherwise the next S step cannot be started and the simulation
is blocked forever. ��
Proof (of Theorem 2). By construction, if c represents a valid computation of
M whenM is started with both registers at 0, then c is ultimately periodic for
SM if and only ifM halts (when started with both registers at 0).

If c is malformed then, by Proposition 16, c is ultimately periodic for SM. ��
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1 Introduction

A distributed system is a collection of processes that can interact. Three major
process interaction models in distributed systems have principally been con-
sidered: - the message passing model, - the shared memory model, - the local
computation model. In each model the processes are represented by vertices of
a graph and the interactions are represented by edges. In the message pass-
ing model and the shared memory model, processes interact by communication
primitives: messages can be sent along edges or atomic read/write operations
can be performed on registers associated with edges. In the local computation
model interactions are defined by labelled graph rewriting rules; supports of rules
are edges or stars. These models (and their sub-models) reflect different system
architectures, different levels of synchronization and different levels of abstrac-
tion. Understanding the power of various models, the role of structural network
properties and the role of the initial knowledge enhances our understanding of
basic distributed algorithms. This is done with some typical problems in dis-
tributed computing: election, naming, spanning tree construction, termination
detection, network topology recognition, consensus, mutual exclusion. Further-
more, solutions to these problems constitute primitive building blocks for many
other distributed algorithms. A survey may be found in [FR03], this survey
presents some links with several parameters of the models including synchrony,
communication media and randomization. An important goal in the study of
these models is to understand some relationships between them. This paper is
a contribution to this goal; more precisely we establish a bridge between tools
and results presented in [YK96] for the message passing model and tools and
results presented in [Ang80, BCG+96, Maz97, CM04, CMZ04, Cha05] for the
local computation model.

In the message passing model studied by Yamashita and Kameda in [YK96],
basic events are: send events, receive events, internal events and transmission
events. They have obtained characterizations of graphs permitting a leader elec-
tion algorithm, a spanning tree construction algorithm and a topology recogni-
tion algorithm. For this, they introduced the concept of view. The view from a
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vertex v of a graph G is an infinite labelled tree rooted in v obtained by consid-
ering all labelled walks in G starting from v. The characterizations use also the
notion of symmetricity. The symmetricity of a graph depends on the number of
vertices that have the same view. The local computation model has been studied
intensively since the pioneer work of Angluin [Ang80]. A basic event changes the
state attached to one vertex or the states of a group of neighbouring vertices. The
new state depends on the state of one neighbour or depends on the states of a
group of neighbours (some examples are presented in [RFH72, BV99, BCG+96]).
Characterizations of graphs, for the existence of an election algorithm, have been
obtained using classical combinatorial material like the notions of fibration and
of covering: special morphisms which ensure isomorphism of neighbourhoods of
vertices or arcs. Some effective characterizations of computability of relations in
anonymous networks using fibrations and views are given in [BV01]. The new
state of a vertex must depend on the previous state and on the states of the
in-neighbours.

The Election Problem and the Naming Problem. The election problem is
one of the paradigms of the theory of distributed computing. It was first posed by
LeLann [LeL77]. A distributed algorithm solves the election problem if it always
terminates and in the final configuration exactly one process is marked as elected
and all the other processes are non-elected. Moreover, it is supposed that once a
process becomes elected or non-elected then it remains in such a state until the end
of the algorithm. Election algorithms constitute a building block of many other
distributed algorithms. The naming problem is another important problem in the
theory of distributed computing. The aim of a naming algorithm is to arrive at a
final configurationwhere all processes have unique identities. Being able to give dy-
namically and in a distributed way unique identities to all processes is very impor-
tant since many distributed algorithms work correctly only under the assumption
that all processes can be unambiguously identified. The enumeration problem is a
variant of the naming problem. The aim of a distributed enumeration algorithm is
to assign to each network vertex a unique integer in such a way that this yields a
bijection between the set V (G) of vertices and {1, 2, . . . , |V (G)|}.
The Main Results. In Section 3 we introduce a new labelled directed graph
which encodes a network in which processes communicate by asynchronous mes-
sage passing with a symmetric port numbering. The basic events (send, receive,
internal, transmission) are encoded by local computations on arcs. From this
directed graph, we deduce necessary conditions for the existence of an election
(and a naming) algorithm on a network (Proposition 4). The conditions are also
sufficient (Theorem 1): we give a naming (and an election) algorithm in Sec-
tion 5 (Algorithm 1). This algorithm is totally asynchronous (the Yamashita
and Kameda algorithm needs a pseudo-synchronization). Furthermore, our algo-
rithm does not need the FIFO property of channels (i.e., it does not require that
messages are received in the same order as they have been sent). The size of the
buffer does not interfere in the impossibility proof for the election. Moreover, we
present a fully polynomial algorithm. Given a graph G with n vertices and m
edges, in Yamashita and Kameda algorithm the size of each message can be 2n
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whereas in our algorithm the size is bounded by O(m log n) and the number of
messages is O(m2n). Another consequence of this bridge between these models is
a direct characterization of graphs having a symmetricity equal to 1 in the sense
of Yamashita and Kameda using the notion of covering. The same techniques
can be applied to some other problems such as spanning tree computation or the
topology recognition problem. We can note also that our algorithm may elect
even if the necessary condition is not verified: in this case an interesting problem
is the study of the probability of this event.

2 Preliminaries

The notations used here are essentially standard. The definitions and main prop-
erties are presented in [BV02]. We consider finite, undirected, connected graphs
having possibly self-loops and multiple edges, G = (V (G), E(G),Ends), where
V (G) denotes the set of vertices, E(G) denotes the set of edges and Ends is a map
assigning to every edge two vertices: its ends. A symmetric digraph (V,A, s, t) is
a digraph endowed with a symmetry, that is, an involution Sym : A → A such
that for every a ∈ A : s(a) = t(Sym(a)). Labelled graphs will be designated
by bold letters like G, H, ... If G = (G, λ) is a labelled graph then G denotes
the underlying graph and λ denotes the labelling function. The labelling may
encode any initial process knowledge. Examples of such knowledge include: (a
bound on) the number of processes, (a bound on) the diameter of the graph,
the topology, identities or partial identities, distinguished vertices. The notion
of fibration and of of covering are fundamental in this work.

Definition 1. A fibration between the digraphs D and D′ is a morphism ϕ from D
toD′ such that for eacharca′ ofA(D′)and for eachvertex v ofV (D) such thatϕ(v) =
v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v and ϕ(a) = a′.

The arc a is called the lifting of a′ at v, D is called the total digraph and
D′ the base of ϕ. We shall also say that D is fibred (over D′). In the sequel
directed graphs are always strongly connected and total digraphs non empty
thus fibrations will be always surjective.

Definition 2. Anopfibration between the digraphs D andD′ is amorphismϕ from
D to D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such that
ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v and
ϕ(a) = a′. A covering projection is a fibration that is also an opfibration.

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via
ϕ. Covering projections verify:

Proposition 1. A covering projection ϕ : D → D′ with a connected base and
a nonempty covering is surjective; moreover, all the fibres have the same cardi-
nality. This cardinality is called the number of sheets of the covering.

A digraph D is covering prime if there is no digraph D′ not isomorphic to D such
that D is a covering of D′ (i.e., D is a covering of D′ implies that D is isomorphic
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to D′). Let D and D′ be two digraphs such that D is a surjective covering of
D′ via ϕ. If D′ has no self-loop then for each arc a ∈ A(D) : ϕ(s(a)) �= ϕ(t(a)).
Finally the following property is a direct consequence of the definitions and it is
fundamental in the sequel of this paper :

Proposition 2. Let D and D′ be two digraphs such that D′ has no self-loop
and D is a surjective covering of D′ via ϕ. If a1 �= a2 and a1, a2 ∈ ϕ−1(a′)
(a′ ∈ A(D′)) then Ends(a1) ∩ Ends(a2) = ∅.
The notions of fibrations and of coverings extend to labelled digraphs in an
obvious way: the morphisms must preserve the labelling. Examples of coverings
are given in Figures 1 and 2.

Local Computations on Arcs. In this paper we consider labelled digraphs
and we assume that local computations modify only labels of vertices. Digraph
relabelling systems on arcs and more generally local computations on arcs satisfy
the following constraints, that arise naturally when describing distributed com-
putations with decentralized control: -(C1) they do not change the underlying
digraph but only the labelling of vertices, the final labelling being the result of
the computation (relabelling relations), -(C2) they are local, that is, each rela-
belling step changes only the label of the source and the label of the target of an
arc, -(C3) they are locally generated, that is, the applicability of a relabelling rule
on an arc only depends on the label of the arc, the labels of the source and of the
target (locally generated relabelling relation). The relabelling is performed until
no more transformation is possible, i.e., until a normal form is obtained. Let R
be a locally generated relabelling relation, R∗ stands for the reflexive-transitive
closure of R . The labelled digraph D is R-irreducible (or just irreducible if R
is fixed) if there is no D1 such that D R D1.

G

Dir(G)

H

1 1

11

(
↔

G, κG, NumG)

1

1
(
↔

H, κH , NumH)

↔

ϕ

ϕ

Fig. 1. We adopt the following notation conventions for vertices of (
↔

G, κG, NumG)

and (
↔

H, κH , NumH). A black-circle vertex corresponds to the label process, a square
vertex corresponds to the label send, a diamond vertex corresponds to the label
transmission, and a square-dot vertex corresponds to the label receive. The digraph
(
↔

G, κG, NumG) is a covering of (
↔

H, κH , NumH) and the port numbering is symmetric.
Thus there is no election algorithm for G.
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G′

Dir(G′)

H ′

2 1

12

1 2

21

1

22

1 2

11

2

(
↔

G′, κG′ , NumG′ )

1

2 2

1
(
↔

H ′, κH′ , NumH′)

↔

ϕ′

ϕ′

Fig. 2. With the notation conventions of Figure 1, we deduce from the covering relation
and the symmetry of the port numbering that there is no election algorithm for the
graph G′. With the same argument the same result is obtained for any ring.

3 From Asynchronous Message Passing to Local
Computations on Arcs

The Model. Our model follows standard models for distributed systems given
in [AW98, Tel00]. The communication model is a point-to-point communica-
tion network which is represented as a simple connected undirected graph where
vertices represent processes and two vertices are linked by an edge if the cor-
responding processes have a direct communication link. Processes communicate
by message passing, and each process knows from which channel it receives a
message or it sends a message. An edge between two vertices v1 and v2 rep-
resents a channel connecting a port i of v1 to a port j of v2. We consider the
asynchronous message passing model: processes cannot access a global clock and
a message sent from a process to a neighbour arrives within some finite but
unpredictable time.

From Undirected Labelled Graphs to Labelled Digraphs. A first ap-
proximation of a network, with knowledge about the structure of the underlying
graph, is a simple labelled graph G = (V (G), E(G)). We associate to this undi-
rected labelled graph a labelled digraph

←→
G = (V (

←→
G ), A(

←→
G )) defined in the

following way. (This construction is illustrated in Figure 1 and in Figure 2).
Let u and v be two vertices of G such that u and v are neighbours, we asso-

ciate to the edge {u, v} the set V{u,v} of 6 vertices denoted {outbuf(u, v), t(u, v),
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inbuf(u, v), outbuf(v, u), t(v, u), inbuf(v, u)}, and the set A{u,v} of 8 arcs de-
fined by: {(u, outbuf(u, v)), (outbuf(u, v), t(u, v)), (t(u, v), inbuf(u, v)), (inbuf
(u, v), v), (v, outbuf(v, u)), (outbuf(v, u), t(v, u)), (t(v, u), inbuf(v, u)),
(inbuf(v, u), u)}.

Finally, V (
←→
G ) = V (G) ∪ (

⋃
{u,v}∈E(G)

V{u,v}) and A(
←→
G ) =

⋃
{u,v}∈E(G)

A{u,v}.

The arc (u, outbuf(u, v)) is denoted out(u, v), receiver(out(u, v)) is the ver-
tex v, and the arc (inbuf(v, u), u) is denoted by in(v, u).

If G = (G, λ) then
←→
G = (

←→
G , λ←→

G
) where λ←→

G
(v) = λ(v) for each v ∈ V (G).

In the sequel we consider digraphs obtained by this construction; in general
networks are anonymous: vertices have no name. Nevertheless we need to mem-
orize the meaning (semantic) of vertices thus we label vertices of

←→
G with a la-

belling function κ, the set of labels is: {process, send, receive, transmission},
- if a vertex x of V (

←→
G ) corresponds to a vertex u of V (G) then κ(x) = process,

- if a vertex x of V (
←→
G ) corresponds to a vertex of the form outbuf(u, v) then

κ(x) = send, - if a vertex x of V (
←→
G ) corresponds to a vertex of the form

inbuf(u, v) then κ(x) = receive, - if a vertex x of V (
←→
G ) corresponds to a ver-

tex of the form t(u, v) then κ(x) = transmission. Using a new label neutral, κ
is extended to (V (

←→
G ), A(

←→
G )). We denote by E the map which associates to a

labelled graph G the labelled digraph E(G) = (
←→
G , κ) described above.

Two adjacent vertices of E(G) = (
←→
G , κ) have different labels thus if the

digraph E(G) = (
←→
G , κ) is a covering of a digraph D then D has no self-loop.

Remark 1. By the insertion of special vertices in arcs and the labelling of vertices,
we define a transformation E ′ such that (

←→
G , κ) can be obtained directly from

Dir(G), i.e., E ′(Dir(G)) = (
←→
G , κ). Furthermore if Dir(G) is a covering of a

labelled digraph D then (
←→
G , κ) is a covering of E ′(D).

Port Numbering and Symmetric Port Numbering. We can notice, that
for a digraph E(G) = (

←→
G , κ), if we consider a vertex x labelled process then

deg+(x) = deg−(x). Each process knows from which channel it receives a mes-
sage or it sends a message, that is, each process assigns numbers to its ports.
Thus we consider a labelling Num of arcs of E(G) coming into or going out
of vertices labelled process such that for each vertex x labelled process the
restriction of Num assigns to each outgoing arc a unique integer of [1, deg+(x)]
and assigns to each arc coming into a unique integer of [1, deg−(x)], such a la-
belling is a local enumeration of arcs incident to process vertices and it is called
a port numbering. In a message passing system the communication is done over
communication channels. A channel provides a bidirectional connection between
two processes. Finally, the topology is encoded by an undirected graph G where
an edge corresponds to a channel. Let v be a vertex of G, the port numbering
for the vertex v is defined by an enumeration of edges incident to the vertex
v, this enumeration induces an enumeration of the arcs of (

←→
G , κ). This enu-

meration is symmetric, i.e., Num verifies for each arc of the form out(u, v) :
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Num(out(u, v)) = Num(in(v, u)); this condition is called the symmetry of the
port numbering (or equivalently of Num). Such a port numbering is said sym-
metric. Again, using the special label neutral, Num is considered as a labelling
function of E(G). The graph (

←→
G , κ,Num) is denoted by H(G). The hypothesis

of the symmetry of the port numbering is done in [YK96] and it corresponds to
the complete port awareness model in [BCG+96].

Basic Instructions. As in [YK96] (see also [Tel00] pp. 45-46), we assume
that each process, depending on its state, either changes its state, or receives
a message via a port or sends a message via a port. Let Inst be this set
of instructions. This model is equivalent to the model of local computations
on arcs with respect to the initial labelling as it is depicted in the following
remark.

Remark 2. Let G be a labelled graph, let H(G) = (
←→
G , κ,Num) be the labelled

digraph obtained from G. The labelled digraph H(G) enables to encode the
following events using local computations on arcs: - an internal event “a process
changes its state” can be encoded by a relabelling rule concerning a vertex la-
belled process, - a send event “the process x sends a message via the port i”
can be encoded by a relabelling rule concerning an arc of the form (x, y) with
κ(x) = process, κ(y) = send and Num((x, y)) = i, - a receive event “the
process y receives a message via the port i” can be encoded by a relabelling
rule concerning an arc of the form (x, y) with κ(x) = receive, κ(y) = process
and Num((x, y)) = i, - an event concerning the transmission control can be
encoded by a relabelling rule concerning an arc of the form (x, y) or (y, z) with
κ(x) = send, κ(y) = transmission and κ(z) = receive.

The Election and the Naming Problems. Consider a network G with
a symmetric port numbering Num. An algorithm A is an election algorithm
for (
←→
G , κ,Num) if each execution of A on G with the port numbering Num

successfully elects a process. We are particularly interested in characterizing
the networks that admit an election algorithm whatever the symmetric port
numbering is. We say that an algorithm A is an election algorithm for a graph
G if for each symmetric port numbering Num, A is an election algorithm for
(
←→
G , κ,Num). We will use the same conventions for the naming problem.

4 A Necessary Condition for the Election Problem and
the Naming Problem

First, we present a fundamental lemma which connects coverings and locally
generated relabelling relations on arcs. It is the natural extension of the Lifting
Lemma [Ang80] and it is a direct consequence of Proposition 2.

Lemma 1 (Lifting Lemma). Let R be a locally generated relabelling relation
on arcs and let D1 be a covering of the digraph D′

1 via the morphism γ; we
assume that D′

1 has no self-loop. If D′
1 R∗ D′

2 then there exists D2 such that
D1 R∗ D2 and D2 is a covering of D′

2 via γ.
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As a direct consequence of this lemma and of Proposition 1, if D2 is a proper
covering of D′

2, each label that appears in D′
2 appears at least twice in D2 and

therefore, we have the following result.

Proposition 3. Let G be an undirected labelled graph. Let Num be a port num-
bering of G. If the labelled digraph (

←→
G , κ,Num) is not covering prime then there

is no election algorithm and no naming algorithm for the graph G with Num as
port numbering using Inst as set of basic instructions.

The election algorithm must work whatever the symmetric port numbering
is. Let (

←→
G , κ) be a covering of (

←→
G ′, κ′), and let Num be a local enumeration of

arcs incident to vertices labelled process in the graph (
←→
G ′, κ′). The labelling

Num induces a port numbering of (
←→
G , κ) which is not necessarily symmetric

(see the example in Figure 3).
Before the next propositions we need two definitions [BV02]:

Definition 3. Let D1 and D2 be two symmetric labelled digraphs, let Sym1

and Sym2 be symmetric relations of D1 and D2, D1 is a covering of D2 modulo
Sym1 and Sym2 if there exists a morphism ϕ such that D1 is a covering of D2

via ϕ and ϕ ◦ Sym1 = Sym2 ◦ ϕ.

Definition 4. Let D1 be a symmetric digraph, D1 is symmetric covering prime
if whenever there exists a symmetric relation Sym1 of D1, a symmetric digraph
D2 with a symmetric relation Sym2 of D2 such that D1 is a covering of D2

modulo Sym1 and Sym2 then D1 is isomorphic to D2.

From these definitions, there exists a symmetric port numbering Num of G such
that (

←→
G , κ,Num) is not covering prime if and only if Dir(G) is not symmetric

covering prime. Finally:

Proposition 4. Let G be an undirected graph. If the labelled digraph Dir(G) is
not symmetric covering prime then there is no election algorithm and no naming
algorithm for the graph G using Inst as set of basic instructions.

K

B3

Fig. 3. There exists exactly one digraph B3 such that Dir(K) is a covering of B3 :
it is the 3-bouquet (the digraph with one node and three self-loops [BV02]). Thus
E ′(Dir(K)) is a covering of E ′(B3) (Remark 1). It is easy to verify that no lifting of a
local enumeration of arcs of E ′(B3) gives a symmetric port numbering of E ′(Dir(K)).
Thus Dir(K) is symmetric covering prime although it is not covering prime (see Defi-
nition 4). It follows from Theorem 1 that a naming algorithm exists for the graph K.
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As immediate consequences of this result we deduce two classical results:
there exists no deterministic election algorithm in an anonymous network of
two processes that communicate by asynchronous message passing ([Tel00] p.
316) and more generally there exists no deterministic algorithm for election in
an anonymous ring of known size ([Tel00] Theorem 9.5 p. 317) (sketches of the
proofs are given in Figure 1 and in Figure 2).

5 A Mazurkiewicz-Like Algorithm

The aim of this section is to prove the main result of this work:

Theorem 1. Let G be a graph. There exist an election algorithm and a naming
algorithm for G if and only if Dir(G) is symmetric covering prime.

The necessary part is Proposition 4, the following algorithm proves the other
part. In [Maz97] Mazurkiewicz presents a distributed enumeration algorithm for
non-ambiguous graphs (see also [GMM04]). The computation model in [Maz97]
allows relabelling of all vertices in balls of radius 1. In the following we adapt
Mazurkiewicz algorithm to graphs with port numbering and using Inst as set of
basic instructions. We shall denote our algorithmM.

Description of M. We first give a general description of the algorithm M
applied to a labelled graph G equipped with a port numbering Num. We
assume that G is connected. Let G = (G, λ) and consider a vertex v0 of G,
and the set {v1, ..., vd} of neighbours of v0. During the computation, each
vertex v0 will be labelled by a pair of the form (λ(v0), c(v0)), where c(v0) is
a triple (n(v0), N(v0),M(v0)) representing the following information obtained
during the computation (formal definitions are given below): n(v0) ∈ N is
the number of the vertex v0 computed by the algorithm, N(v0) ∈ N is the
local view of v0, this view can be either empty or it is a set of the form:
{((n(vi), ps,i, pr,i), λ(vi))|1 ≤ i ≤ d}, M(v0) ⊆ L × N × N is the mailbox of
v0 containing the whole information received by v0 at previous computation
steps. Let (((n(vi), ps,i, pr,i), λ(vi))1 ≤ i ≤ d) be the local view of v0. For each
i, (n(vi), ps,i, pr,i)) encodes a neighbour vi of v0, where: n(vi) is the number
of vi, vi has sent its number to v0 via the port ps,i, and v0 has received this
message via the port pr,i. Each vertex v gets information from its neighbours
via messages and then attempts to calculate its own number n(v), which will
be an integer between 1 and |V (G)|. If a vertex v discovers the existence of
another vertex u with the same number, then it compares its own label and
its own local view with the label and the local view of u. If the label of u
or the local view of u is “stronger”, then v chooses another number. Each
new number, with its local view, is broadcasted again over the network. At
the end of the computation, it is not guaranteed that every vertex has a
unique number, unless the graph (

←→
G , κ,Num) is covering prime. However,

all vertices with the same number will have the same label and the same
local view.
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Algorithm 1: The algorithmM
Var : n(v0) : integer init 0 ;

N(v0) : set of local view init ∅;
N : set of local view ;
M(v0) : mailbox init ∅;
M,Ma : mailbox;
λ(v0), ca, l : element of L;
i, x, p, q, na : integer;

I0 : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1;
M(v0) := {(λ(v0), 1, ∅)};
for i := 1 to deg(v0) do send< (n(v0),M(v0)), i > via port i ;

end

R0 : {A message < mes= (na,Ma) , p > has arrived at v0 from port q}
begin

M := M(v0);
M(v0) := M(v0) ∪Ma;
if ((x, p, q) /∈ N(v0) for some x) then

N(v0) := N(v0) ∪ {(na, p, q)};
if ((x, p, q) ∈ N(v0) for some x < na) then

N(v0) := (N(v0) \ {(x, p, q)}) ∪ {(na, p, q)};
if (n(v0) = 0) or (n(v0) > 0 and there exists (l, n(v0), N) ∈M(v0)
such that (λ(v0) <L l) or ((λ(v0) = l) and (N(v0) ≺ N)))) then

n(v0) := 1 + max{n ∈ N | (l, n,N) ∈M(v0) for some l, N};
M(v0) := M(v0) ∪ {(λ(v0), n(v0), N(v0))};

if (M(v0) �= M)) then
for (i := 1 to deg(v0)) do send < (n(v0),M(v0)), i > via port i;

end

AnOrderonLocalViews. We assume for the rest of this paper that the set of la-
belsL is totally ordered by<L. Consider a vertex v such that the local viewN(v)∈
N is the set {(n1, ps,1, pr,1), (n2, ps,2, pr,2), . . . , (nd, ps,d, pr,d)}. We assume that for
each i < d, (ni+1, ps,i+1, pr,i+1) <Lex (ni, ps,i, pr,i) where <Lex denotes the usual
lexical order. We say that ((n1, ps,1, pr,1), (n2, ps,2, pr,2), . . . , . . . (nd, ps,d, pr,d)) is
the ordered representation N>(v0) of the local view of v0. Let N> be the set of
such ordered tuples. We define a total order≺ onN> using the alphabetical order
that induces naturally a total order on N . This order can also be defined on N as
follows:N1≺N2 if the maximal element for the lexical order<Lex of the symmetric
difference N1"N2 =N1∪N2\N1∩N2 belongs to N2. If N(u)≺N(v), then we say
that the local view N(v) of v is stronger than the one of u.

The Final Labelling. Let G = (G, λ) be a connected labelled graph with the
port numbering Num. If v is a vertex of G then the label of v after a run ρ ofM
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is denoted (λ(v), cρ(v)) with cρ(v) = (nρ(v), Nρ(v),Mρ(v)) and (λ, cρ) denotes
the final labelling. FinallyM verifies:

Proposition 5. Any run ρ ofM on G = (G, λ), a connected labelled graph with
the port numbering Num, terminates and yields a final labelling (λ, cρ) verifying
the following conditions for all vertices v, v′ of G:

1. there exists an integer k ≤ V (G) such that {nρ(v) | v ∈ V (G)} = [1, k].
2. Mρ(v) = Mρ(v′).
3. (λ(v), nρ(v), Nρ(v)) ∈Mρ(v′).
4. Let (l, n,N) ∈ Mρ(v′). Then λ(v) = l, nρ(v) = n and Nρ(v) = N for some

vertex v if and only if there is no triple (l′, n,N ′) ∈ Mρ(v′) with l <L l′ or
(l = l′ and N ≺ N ′).

5. nρ(v) = nρ(v′) implies (λ(v) = λ(v′) and N(v) = N(v′)).

Consider a graph G that is symmetric covering prime. For each port number-
ing Num, the graph (

←→
G , κ,Num) is covering prime and then from Proposition

5, at the end of the computation, each vertex v ∈ V (G) has a unique number
n(v). Moreover, once a vertex gets a number n(v) = |V (G)|, it knows that all the
vertices have a unique identifier, it can take the label elected and broadcast the
information. Theorem 1 follows from Proposition 5 and the impossibility results
of the previous section.

Remark 3. The proof of this proposition uses increasing properties and invari-
ant properties as in [Maz97]. In particular, the number n(v) (resp. the mail-
box M(v)) can only increase for the order ≤ (resp. for ⊆) during the compu-
tation. Consequently, if a message m1 = (n1(v),M1(v), p) has been sent before
m2 = (n2(v),M2(v), p) by a vertex v to a node w is such that m2 arrives be-
fore m1, then when the message m1 is read by w, M1(v) � M2(v) ⊆ M(w)
and n1(v) ≤ n2(v). Consequently, this message does not modify the state of
the vertex w and can be considered as ignored by the vertex w. We can there-
fore deduce that Algorithm 1 does not require ordering of messages, that is,
it does not require that messages are received in the same order that they
have been sent.

Remark 4. Note that not all the elements of M(v) are useful during the whole
computation. In fact, for all (n, l1, N1), (n, l2, N2) ∈ M(v), if l1 <L l2 or l1 = l2
and N1 ≺ N2, we can remove (n, l1, N1) from M(v). Consequently, if we remove
all such elements of M(v), we get for each number n exactly one element in M(v).
If we can encode the labels l of L with O(log |V (G)|) bits, then the size of the
mailbox of v is O(|E(G)| log |V (G)|) and therefore, the size of the messages is also
O(|E(G)| log |V (G)|). Moreover, we can show that the total number of messages
sent during the computation is O(|E(G)|2|V (G)|) and therefore the amount of
information sent all over the network during the computation is polynomial in
the size of the network.
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Abstract. Given a distance matrix M that specifies the pairwise evolu-
tionary distances between n species, the phylogenetic tree reconstruction
problem asks for an edge-weighted phylogenetic tree that satisfies M , if
one exists. We study some extensions of this problem to rooted phylo-
genetic networks. Our main result is an O(n2 log n)-time algorithm for
determining whether there is an ultrametric galled network that satis-
fies M , and if so, constructing one. In fact, if such an ultrametric galled
network exists, our algorithm is guaranteed to construct one contain-
ing the minimum possible number of nodes with more than one parent
(hybrid nodes). We also prove that finding a largest possible subma-
trix M ′ of M such that there exists an ultrametric galled network that
satisfies M ′ is NP-hard. Furthermore, we show that given an incomplete
distance matrix (i.e., where some matrix entries are missing), it is also
NP-hard to determine whether there exists an ultrametric galled network
which satisfies it.

1 Introduction

A phylogenetic network is a generalization of a phylogenetic tree which can be
used to describe the evolutionary history of a set of species that is non-treelike,
for example, due to recombination events such as hybrid speciation or horizontal
gene transfer [8, 14, 15, 17] or to represent several conflicting phylogenetic trees
at once in order to identify parts where the trees disagree [2, 10].

To develop efficient methods for inferring phylogenetic networks is an im-
portant topic in computational biology. In particular, one promising category of
methods which includes methods such as Neighbor-Net [2] and several others
(see [15] for a survey) is known as distance-based. Here, the input consists of a
(symmetric and non-negative) distance matrix which specifies the pairwise evo-
lutionary distances between the species. To infer a phylogenetic tree from such
a matrix is a well-studied problem [3, 5, 6, 16, 18], the basic objective being
to construct an edge-weighted phylogenetic tree such that for any two species,
the length of the path between them in the tree equals the corresponding entry
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Fig. 1. The (galled and ultrametric) phylogenetic network on the left satisfies the
distance matrix M on the right. There are two evolutionary paths (a, n3, n4, n5, c) and
(a, n3, n1, n2, n5, c) with lengths 6 and 10, respectively, connecting a and c. The entry
M(a, c) corresponds to the first path. Note that there does not exist any phylogenetic
tree that satisfies M .

in the matrix. Note that in a phylogenetic tree, the path between two specified
leaves is always unique. On the other hand, due to recombination events, for
any two species in a phylogenetic network, there can be more than one path
connecting them with different path lengths. The entry in the input matrix may
correspond to one of these paths only. Hence, in some cases, there may exist a
phylogenetic network that satisfies the given distance matrix (see the definition
below) while no such phylogenetic tree exists. See Figure 1 for an example. In
this paper, we consider some natural extensions of the distance-based variant
of the phylogenetic tree reconstruction problem to phylogenetic networks and
present a new algorithm.

Problem Definitions: A rooted phylogenetic network for a set S of species
is a rooted, connected, directed acyclic graph such that: (1) exactly one node
(the root) has indegree 0 and all other nodes have indegree 1 or 2; (2) any
node with indegree 2 (called a hybrid node) has outdegree 1 and all other nodes
have outdegree 0 or 2; and (3) each node with outdegree 0 (a leaf ) is labeled
with a distinct species from S. A rooted phylogenetic network is called a galled
phylogenetic network, or galled network for short1, if all cycles in the underlying
undirected graph (i.e., where edge orientations are ignored) are node-disjoint. For
example, the phylogenetic network in Figure 1 and the network N1 in Figure 2
are galled networks. From here on, we only consider phylogenetic networks that
are edge-weighted, i.e., where each edge has a positive length. In analogy with
the standard usage of the term “ultrametric” for phylogenetic trees, we say that
a galled network is ultrametric if every directed path from the root to a leaf has
the same length.

1 Galled networks are also known in the literature as topologies with independent re-

combination events [17], galled-trees [8], gt-networks [14], and level-1 phylogenetic

networks [13].
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N1 N2

Fig. 2. N1 is a galled network, while N2 is not (The leaf labels are omitted for clarity.)

For any rooted phylogenetic network N , an evolutionary path between two
leaves a and b is a simple path which goes up (i.e., moving in a child-to-parent
direction) from a to a common ancestor u of a and b, and then down (i.e.,
moving in a parent-to-child direction) from u to b. Observe that even if N is
galled and ultrametric, there can be more than one evolutionary path between a

and b, and moreover, these paths may have different lengths (again, see Figure 1).
However, in an ultrametric galled network, there can exist at most two different
evolutionary path lengths between each pair of leaves.

A distance matrix for a set S of n species is a symmetric, non-negative (n×n)-
matrix M such that M(a, a) = 0 for every a ∈ S. Intuitively, for each a, b ∈ S,
M(a, b) contains the measured evolutionary distance between a and b. A rooted
phylogenetic network N for S satisfies M if, for every a, b ∈ S, it holds that N

contains an evolutionary path between a and b of length equal to M(a, b). In
this case, we also say that M is satisfied by N . We are now ready to define the
problem which is the main focus of this paper.

Problem Statement: Given a distance matrix M for a set S of n species,
return an ultrametric galled network for S satisfying M , if one exists; otherwise,
return fail.

Motivation: The rationale behind the way we define the problem is as follows.
There are a number of methods to estimate the evolutionary distance between
two species. One common approach is to align the DNA sequences for some re-
lated genes from the species. The alignment score usually provides a reasonable
estimation on the evolutionary distance between the species. However, if recom-
bination events had occurred, there may exist more than one common ancestor
(at different evolutionary distances) for a pair of species. Thus, depending on
which common ancestor the selected genes were inherited from, the measured
evolutionary distance may reflect only one of the possible evolutionary paths.
Therefore, for any two species in the phylogenetic network, we only require one
of their evolutionary paths to satisfy the matrix entry.

If there are no restrictions on the topological structure of the constructed
phylogenetic network, it may not make sense from a biological point of view.
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We therefore concentrate on galled networks, a very useful class of rooted phy-
logenetic networks which despite their simple structure are powerful enough
to describe evolutionary history when the frequency of recombination events is
moderate or when most of the recombination events have occurred recently [8].
See [8] for a discussion on the importance of galled networks. Also, the biological
meaning of the ultrametric assumption is that the species have evolved according
to a constant rate; see, e.g., [3, 5, 6, 18] and the references therein for justification
of this assumption.

Finally, there may be more than one ultrametric galled network that satisfies
an input matrix. From the biological point of view, it is more reasonable if we
could find the simplest explanation that is consistent with the observed distances.
So, although recombination events (corresponding to hybrid nodes) may occur, a
more reasonable network is the one with the minimum number of hybrid nodes.

Our Contributions: Our main result in this paper is an exact O(n2 logn)-time
algorithm to construct an ultrametric galled network (if one exists) that satisfies a
givendistancematrixM . When a solution exists, our algorithm alwaysoutputs one
having as few hybrid nodes as possible. On the other hand, we prove that finding a
largest possible submatrixM ′ofM such that there exists an ultrametric galled net-
work that satisfies M ′ is an NP-hard problem. We also show that given an incom-
plete distance matrix (i.e., where some matrix entries are missing), it is NP-hard
to determine whether there exists an ultrametric galled network which satisfies it.

Related Works: In the context of reconstructing a phylogenetic network from
distance data, the most related work is the Neighbor-Net method, developed
by Bryant and Moulton [2], which outputs a planar, unrooted phylogenetic net-
work from a given distance matrix. Neighbor-Net is based on the well-known
Neighbor-Joining method for trees [16]. Earlier proposed distance-based meth-
ods for reconstructing phylogenetic networks include [4] and others described
in [15]. However, all of these approaches are heuristics-based and there is no
guarantee that the output is a phylogenetic network that satisfies the given ma-
trix exactly, even when a galled network exists. Also, Neighbor-Net runs in O(n3)
time, which is slower than the method we present here.

Some other models of computation for reconstructing phylogenetic networks
(i.e., assuming other types of input) are reviewed in [15]. Recently, in addition
to distance-based methods, researchers have also studied character-based [7, 8,
17] and supertree-based [9, 10, 11, 12, 14] methods for inferring phylogenetic
networks.

To reconstruct a phylogenetic tree with n species consistent with a given
distance matrix (if one exists) can easily be done in O(n2) time (see [5, 6]). Note
however, that when an exact solution does not exist, obtaining a tree that is
as “close” as possible to the matrix has been shown to be NP-hard on several
closeness metrics [3, 5, 18].
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2 Preliminaries

Let N be a galled network. In the rest of this paper, we will use the following
terminology. A node h in N is a hybrid node if the indegree of h is equal to 2.
Let s be an ancestor of h such that there are two edge-disjoint paths from s

to h. Then s is called the split node of h. In a galled network, each split node is
a split node of exactly one hybrid node, and each hybrid node has exactly one
split node (see Lemma 1 in [13]). The two paths from s to h are the merge paths
of h, and they form a galled loop rooted at s. The galled loop rooted at s is skew
if one of its two merge paths consists of a single edge from s to h; otherwise, it
is non-skew. Nodes other than h and s on the merge paths of h are called side
nodes, and a node is called a tree node if it is not on any galled loop. For any
node u in N , the subnetwork rooted at u is the minimal subgraph of N including
all nodes and directed edges reachable from u, and is denoted by Nu. Finally,
Nu is a side network if the parent of u belongs to a merge path P in N but u

itself is not on P .
In a galled network, the smallest possible galled loop is skew and consists

of exactly three nodes (a split node, a hybrid node, and a side node). A simple
induction can show that a galled network with n leaves contains at most 3n− 3
internal nodes. This property is useful to our algorithm.

For any internal node u of an ultrametric galled network N , every directed
path from u to a leaf under u has the same length. We call this length the height
of u and denote it by height(u). For any leaf a, height(a) = 0. Note that the
length of any edge (a, b) can be calculated from height(a) and height(b). Thus,
to find a network for M , we only need to determine the heights of all internal
nodes and the parent-child relations between nodes.

3 Framework of the Algorithm

Given an n×n distance matrix M for a set S of n species, we first analyze some
properties for the ultrametric galled network satisfying M . For simplicity, we
say a network to refer to an ultrametric galled network. M is satisfiable if there
exists a network satisfying it. For any S′ ⊆ S, if a network N for S′ satisfies the
submatrix of M induced by the species in S′, we say that N satisfies S′.

Consider any two species a and b in S. To satisfy M , the network contains
an evolutionary path between a and b with length equal to M(a, b). We notice
that this path starts from a, goes up to a common ancestor of height M(a, b)/2,
and then goes down to b. Let DS be the maximum distance between two species
in S as specified by M . If M is satisfiable, then there is a network satisfying M

whose root has height DS/2.
Also, we have the following observation about the internal nodes of N .
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Observation 1. Assume that M can be satisfied by a network N . For any node
u that is a tree node or a split node, let Nu be the subnetwork rooted at u, and
let Su be the set of species in Nu.

– For any two species a, b ∈ Su, M(a, b) = 2×height(v) for some internal node
v in Nu, and hence M(a, b) ≤ 2× height(u).

– For any species a ∈ Su and c ∈ S − Su, M(a, c) > 2× height(u).

Observation 1 motivates us to consider the following definition.

Definition 1. For any set of species S′ ⊆ S, S′ is called a cluster if there exists
a value x such that for any two species a, b ∈ S′, M(a, b) ≤ x and for any species
a ∈ S′ and c ∈ S − S′, M(a, c) > x.

S itself is the biggest cluster. Note that clusters are nested, i.e., two clusters
are always either disjoint or one is a subset of the other. Observation 1 states
that every tree node and split node in N corresponds to a cluster. In fact, the
reverse is also true.

Lemma 1. Assume that M can be satisfied by some network. Then there exists
one such network N such that, for every cluster S′ ⊆ S, N has a tree node or a
split node u such that all species in S′ are in the subnetwork Nu, and no species
in S − S′ are in Nu.

To prove Lemma 1, we let N be any network satisfying M . If N does not
satisfy Lemma 1, we can modify it to obtain a network satisfying Lemma 1.
Details will be given in the full paper.

We call a network satisfying Lemma 1 a well-structured network, which has
a very nice property as follows. Consider any S′ ⊆ S that is a cluster. Let
S1, S2, . . . , St be all the maximal clusters which are proper subsets of S′. We call
S1, S2, . . . , St the side clusters of S′. Note that S′ = S1 ∪ S2 ∪ . . . ∪ St.

Lemma 2. Let S′ be a cluster with side clusters S1, . . . , St. Let N be any well-
structured network satisfying S′ (w.r.t. the submatrix of M induced by S′). N
consists of a root node u, with the networks satisfying S1, . . . , St attached to u,
or attached to a galled loop rooted at u.

Proof. As N is well-structured, for each side cluster Si, there is a tree node or
a split node v whose subnetwork contains exactly all species in Si. We notice
that on the path from v to the root u, there is no tree node or split node other
than u or v (otherwise, let v′ be that intermediate node; the species under the
subnetwork rooted at v′ form a cluster S′′ and Si ⊂ S′′ ⊂ S′, meaning that Si is
not a side cluster of S′). Thus, v is directly attached to u or a galled loop rooted
at u. It means that N is formed by attaching the networks for S1, . . . , St to u,
or to a galled loop rooted at u. �
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The Algorithm

Lemma 2 states that we can construct a network for a cluster by connecting the
networks for its side clusters. Thus, our algorithm takes a bottom-up approach,
which continuously identifies subsets of S that are clusters, starting from smaller
ones to bigger ones. It maintains an invariant that as soon as a cluster S′ is found,
a subnetwork satisfying S′ is constructed. For the base case, a set containing only
a single species is a cluster, and the corresponding network is a single leaf for
this species. Since S is the biggest cluster, the algorithm will eventually find a
network satisfying S.

To ease the finding of clusters, our algorithm constructs a graph G as follows.
Initially, G has n isolated nodes, each representing a species in S. Edges which
represent the distance among the species are added in rounds, where two nodes
u, v will be connected by an edge of length M(u, v). In the i-th round, all edges
with the i-th shortest length are added. Suppose that after the i-th round, a
connected component of G becomes a clique. Then the species inside this con-
nected component form a cluster for which a network is built immediately. The
algorithm is shown below. Details of Step 2c will be given in the next section.

Algorithm 1. GalledNet
Step 1. Sort the entries in M and let m1 < m2 < ... < mr be the distinct positive

values in M . If r > 3n− 3, return failure.
Step 2. Build the networks while constructing a graph G. Initially, G contains n iso-

lated nodes representing the n species. For i = 1, 2, . . . , r,

a. Add all edges of length mi to G.
b. Identify all connected components that become a new clique.
c. For each new clique, let S′ ⊆ S be the corresponding cluster. Run the procedure

ConnectingSideClusters (shown in the next section) which constructs a network
satisfying S′, if S′ is satisfiable. This is done by creating a new root u, and
attaching the networks for the side clusters of S′ to u, or to a galled loop rooted
at u.

Note that any galled network for n species can contain at most 3n−3 internal
nodes, and the length of any evolutionary path is 2×height(u) for some internal
node u. Thus, if there are more than 3n − 3 distinct positive values in M , no
network can satisfy M .

We analyse the running time of GalledNet as follows. Step 1 takes O(n2 logn)
time. Step 2a takes O(n2) time over the whole algorithm. With some straight-
forward bookkeeping (which takes O(1) time for each edge added), Step 2b can
be done in O(n) time in each iteration and O(n2) time in total. We will show in
the next section that Step 2c, which calls ConnectingSideClusters, takes totally
O(n2) time. Thus, the whole algorithm takes O(n2 logn) time.
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Theorem 1. Algorithm GalledNet runs in O(n2 logn) time.

4 Attaching Side Clusters to a Galled Loop

This section explains how Step 2c of GalledNet is performed. Let S be a satisfi-
able cluster with side clusters S1, S2, · · · , St. Suppose that we have constructed
side networks for these side clusters. Below we overload Si to also denote the
corresponding side network. To build a network for S, we need to determine how
these side clusters (more precisely, their side networks) are attached to a new
root or to a galled loop, and compute the height of the new root and nodes on
the loop.

We skip the simple case of t = 2 and we consider only the general case that
t ≥ 3, i.e., S has three or more side clusters. We need to build a galled loop to
accommodate the corresponding side networks Si’s. We focus on the network N

that satisfies S and we show that the structure of N can be determined from
the relations between the side clusters. Recall that N has a galled loop at the
top. Let Sh be the side cluster attached to the hybrid node. Let LEFT(Sh) be
the group of side clusters attached to the side nodes on the left merge path.
Define RIGHT(Sh) similarly. The following lemma tells how to identify the side
clusters in the two groups. For simplicity, we say a species a is in LEFT(Sh) (resp.
RIGHT(Sh)) if a belongs to some side cluster in LEFT(Sh) (resp. RIGHT(Sh)).

Lemma 3 (Partitioning the side clusters to the two merge paths).
Let DS be the maximum distance between two species in S. (i) For any two
species a, b in LEFT(Sh), M(a, b) < DS; similarly, for any two species a, b in
RIGHT(Sh), M(a, b) < DS ; and (ii) for any species a in LEFT(Sh) and c in
RIGHT(Sh), M(a, c) = DS .

Assume that LEFT(Sh) contains � side clusters and their side networks are
attached to side nodes v1, v2, · · · , v� on the left merge path of N , where vi is the
i-th node next the hybrid node. Let r be the root. Denote the side cluster (as
well as the side network) attached to vi as S(vi). That is, LEFT(Sh) = {S(vi) |
1 ≤ i ≤ �}.

The following lemmas provide some structural characteristics of each side
network S(vi), which allow us to identify each of them easily. For each side
cluster S′ of S, let inter dist(S′) denote the minimum distance M(x, y) between
a species x in S′ and a species y in S − S′.

Lemma 4 (Identifying the order of side clusters). (i) inter dist(S(v1)) ≤
inter dist(S(v2)), and inter dist(S(v2)) < inter dist(S(v3)) < · · · < inter dist

(S(v�)); (ii) height(vi) = inter dist(S(vi))/2 for i = 2, · · · , �.
Lemma 4(i) allows us to identify which side cluster in LEFT(Sh) is attached

to each vi, except when inter dist(S(v1)) = inter dist(S(v2)). In this case, we
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exploit the relationship with Sh to distinguish the side clusters attached to v1

and v2. Note that a species x in S(v2) and a species y in Sh are connected by
two evolutionary paths, with the root r and v2 as the highest node, respectively.
Since N satisfies S, the distance of x and y (i.e., M(x, y)) must equal the length
of either path, i.e., 2×height(r) or 2×height(v2). The latter value is strictly less
than 2× height(r) = DS .

Lemma 5 (Resolving ambiguity). (i) If inter dist(S(v1)) = inter dist

(S(v2)), then S(v2), but not S(v1), contains a species x whose distance to
some species y in Sh (i.e., M(x, y)) is less than DS , and height(v1) can be
any value in the range (height(Sh), height(v2)). (ii) Otherwise, height(v1) =
inter dist(S(v1))/2.

The above lemmas explain how the side clusters are attached to the merge
paths, once the side cluster under the hybrid node is known. The following lemma
shows that we can in fact find the side cluster attached to the hybrid node easily.

Lemma 6 (Finding Sh). (i) inter dist(Sh) ≤ inter dist(Si) for any side clus-
ter Si of S; and (ii) there can be at most five side clusters Si of S such that
inter dist(Si) = inter dist(Sh).

Based on the above lemmas, we can construct a galled loop to connect the
side clusters for S, as follows. By Lemma 6, there are at most five candidates for
the side cluster attached to the hybrid node. We try to build the network using
each of the candidate according to Lemma 3, 4 and 5. We verify each network
constructed and return the one that satisfies S. Details of the algorithm are
shown in Algorithm 2. It builds a network for S if and only if S is satisfiable.

Algorithm 2. ConnectingSideClusters (S, S1, S2, . . . , St), t ≥ 3.
Find inter dist(Si) for each side cluster Si and sort the side clusters according to
the inter dist value. If there are more than five side clusters having the minimum
inter dist value, return failure. Otherwise, for each side cluster Sh with the mini-
mum inter dist value, try to build a network which attaches Sh to the hybrid node,
as follows.

a. Divide the remaining side clusters into two groups LEFT(Sh) and RIGHT(Sh) that
satisfy Lemma 3.

b. Sort the side clusters in LEFT(Sh) according to the inter dist value and attach
the side clusters to the left merge path according to Lemma 4 and 5. Repeat it for
the side clusters in RIGHT(Sh).

c. Let hl and hr be the height of the lowest side node on the left and right merge
path, respectively. Set height(h) to any value in (height(Sh), min{hl, hr}).

d. Verify that for any two species a, b ∈ S, there is an evolutionary path between a

and b with length equal to M(a, b). Return the network if it is true.
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Runtime of ConnectingSideClusters. It is straightforward to implement
the procedure ConnectingSideClusters in O(tS log tS +#S) time, where tS is the
number of side clusters in S and #S is the number of species pair (x, y) where
x and y are species belonging to two different side clusters of S.

Over the whole execution of GalledNet,
∑

tS ≤ 2n− 1 and
∑

#S ≤ n(n−1)
2 .

Thus, the total runtime for ConnectingSideClusters is
∑

O(tS log tS + #S) =
O(n log n + n(n−1)

2 ) = O(n2).

The Minimality of Number of Hybrid Nodes. Given a satisfiable matrix
M , the network produced by GalledNet has the minimum number of hybrid
nodes among all networks satisfying M . Proofs will be given in the full paper.

5 NP-Hardness Results

In the following, we say that a distance matrix M admits an ultrametric galled
network if there exists such a network which satisfies M . We first prove that
finding a maximum submatrix M ′ of a given distance matrix M such that M ′

admits an ultrametric galled network is an NP-hard problem. Our proof consists
of a reduction from the NP-hard independent set problem.

The Independent Set Problem

Instance: An undirected graph G = (V,E) and a positive integer I ≤ |V |.
Question: Is there a subset V ′ of V with |V ′| = I such that V ′ is an independent

set, i.e., such that no two vertices in V ′ are joined by an edge in E?

The Maximum Submatrix Admitting an Ultrametric Galled Network
Problem, Decision Problem Version (MSGN-d)

Instance: A set S, a distance matrix M for S, and a positive integer K ≤ |S|.
Question: Is there a subset S′ of S with |S′| = K such that M restricted to S′

admits an ultrametric galled network?

The following shows the reduction of the independent set problem to MSGN-d.
Let (G, I) be any given instance of the independent set problem. For convenience,
write n = |V | and V = {v1, v2, . . . , vn}. Construct an instance (S,M,K) of
MSGN-d as follows. Let S = V ∪ P ∪ Q, where P = {p1, p2, . . . , pn} and Q =
{q1, q2, . . . , qn} are two disjoint sets of elements not in V , and set K = I + 2n.
Next, let M be a distance matrix for S satisfying, for every i, j ∈ {1, 2, . . . , n}:
M(pi, pj) = max{i, j}; M(qi, qj) = max{i, j}; M(pi, qj) = n + 1; M(vi, vj) =
max{i, j} if the edge {i, j} does not belong to E and M(vi, vj) = n+1 if the edge
{i, j} belongs to E; M(vi, pj) = n + 1; and M(vi, qj) = n + 1.

Lemma 7. M has a submatrix of size K×K which admits an ultrametric galled
network if and only if G has an independent set of size I.
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Theorem 2. MSGN is NP-hard.

Next, we prove that it is NP-hard to determine whether a given incomplete
distance matrix admits an ultrametric galled network. The proof consists of a
reduction from the NP-hard 3-coloring problem.

The 3-Coloring Problem

Instance: An connected undirected graph G = (V,E).
Question: Can G be 3-colored, i.e., can V be partitioned into three disjoint

subsets in such a way that E contains no edge between two vertices in the
same subset?

The Incomplete Distance Matrix Admitting an Ultrametric Galled
Network Problem (IDGN)

Instance: A set S and an incomplete distance matrix M (i.e., where some
entries are missing) for S.

Question: Is there an ultrametric galled network which satisfies all of the
nonempty entries in M?

Let G be any given instance of 3-coloring with at least two vertices. Construct
an instance (S,M) of IDGN by setting S = V and defining the (|S| × |S|)-
matrix M as follows: for every i ∈ V , let M(i, i) = 0; and for every edge
{i, j} ∈ E, let M(i, j) = M(j, i) = 1. For every pair of vertices i, j in V such
that {i, j} �∈ E, leave the matrix entries M(i, j) and M(j, i) empty.

Lemma 8. G is 3-colorable if and only if there exists an ultrametric galled net-
work which satisfies all of the nonempty entries in M .

Theorem 3. IDGN is NP-hard.

Acknowledgement. We thank Wing-Kin Sung for introducing this problem to
us and for his useful comments.
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[10] D. H. Huson, T. Dezulian, T. Klöpper, and M. Steel. Phylogenetic super-networks

from partial trees. In Proceedings of the 4 th Workshop on Algorithms in Bioin-

formatics (WABI 2004), pages 388–399, 2004.
[11] T. N. D. Huynh, J. Jansson, N. B. Nguyen, and W.-K. Sung. Constructing a

smallest refining galled phylogenetic network. In Proceedings of the 9 th Annual

International Conference on Research in Computational Molecular Biology (RE-
COMB 2005), pages 265–280, 2005.

[12] J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted
triplets into a galled phylogenetic network. In Proc. of the 16 th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2005), pages 349–358, 2005.
[13] J. Jansson and W.-K. Sung. The maximum agreement of two nested phylogenetic

networks. In Proceedings of the 15 th International Symposium on Algorithms and

Computation (ISAAC 2004), pages 581–593, 2004.
[14] L. Nakhleh, T. Warnow, and C. R. Linder. Reconstructing reticulate evolution

in species – theory and practice. In Proceedings of the 8 th Annual International

Conference on Research in Computational Molecular Biology (RECOMB 2004),
pages 337–346, 2004.

[15] D. Posada and K. A. Crandall. Intraspecific gene genealogies: trees grafting into
networks. TRENDS in Ecology & Evolution, 16(1):37–45, 2001.

[16] N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

[17] L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombi-
nation. Journal of Computational Biology, 8(1):69–78, 2001.

[18] B. Y. Wu, K.-M. Chao, and C. Y. Tang. Approximation and exact algorithms
for constructing minimum ultrametric trees from distance matrices. Journal of

Combinatorial Optimization, 3(2–3):199–211, 1999.



New Resource Augmentation Analysis
of the Total Stretch of SRPT and SJF

in Multiprocessor Scheduling

Wun-Tat Chan1, Tak-Wah Lam1,
Kin-Shing Liu1, and Prudence W.H. Wong2

1 Department of Computer Science, University of Hong Kong
{wtchan, twlam, ksliu}@cs.hku.hk

2 Department of Computer Science, University of Liverpool
pwong@csc.liv.ac.uk

Abstract. This paper studies online job scheduling on multiprocessors
and, in particular, investigates the algorithms SRPT and SJF for min-
imizing total stretch, where the stretch of a job is its flow time (re-
sponse time) divided by its processing time. SRPT is perhaps the most
well-studied algorithm for minimizing total flow time or stretch. This
paper gives the first resource augmentation analysis of the total stretch
of SRPT, showing that it is indeed O(1)-speed 1-competitive. This pa-
per also gives a simple lower bound result that SRPT is not s-speed
1-competitive for any s < 1.5.

This paper also makes contribution to the analysis of SJF. Extending
the work of [4], we are able to show that SJF is O(1)-speed 1-competitive
for minimizing total stretch. More interestingly, we find that the compet-
itiveness of SJF can be reduced arbitrarily by increasing the processor
speed (precisely, SJF is O(s)-speed (1/s)-competitive for any s ≥ 1). We
conjecture that SRPT also admits a similar result.

1 Introduction

We study the problem of online job scheduling for minimizing total stretch.
There is a pool of m ≥ 1 processors. Jobs arrive at arbitrary times, and their
processing times are known when they arrive. Jobs are sequential in nature and
can be scheduled on at most one processor at a time. Preemption is allowed.
The flow time (or response time) of a job is the amount of time the job spent
before it is completed, and the stretch of the job is the ratio of its flow time to
its required processing time (see the survey by Pruhs et al. [21]). We are inter-
ested in scheduling algorithms that minimize the total stretch (or equivalently
the average stretch) of the jobs. Roughly speaking, if the average stretch is λ,
a job on average takes λ times the required processing time to complete, i.e., it
appears to be processed by a 1

λ -speed processor1. Stretch is a useful indicator of
system performance, and has received a lot of attention in recent years (see, e.g.,

1 A speed-s processor, where s > 0, can process s units of work in one unit of time.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 236–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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[3, 5–7, 11, 12, 19]). Competitive analysis is often used to measure the perfor-
mance of an online algorithm with respect to total stretch (or any other objective
function). An online scheduling algorithm A is said to be c-competitive for any
number c > 0 if for any input job sequence, the total stretch of the jobs as
defined by A is at most c times that of the optimal offline algorithm.

SRPT (Shortest Remaining Processing Time First) is a popular online al-
gorithm when the concern is the total flow time or total stretch. With re-
spect to total flow time, SRPT is 1-competitive for a single processor [2]. But
for multiprocessors (m ≥ 2), Leonardi and Raz [17] have shown that SRPT
is Θ(min(logP, logn/m))-competitive, where n is the number of jobs and P
is the ratio of the maximum possible processing time to the minimum possi-
ble processing time. To obtain better performance guarantee for multiprocessor
scheduling, Phillips et al. [20] applied resource augmentation analysis (which
was pioneered by Kalyanasundaram and Pruhs [16]) to SRPT, showing that
SRPT is 1-competitive when using processors that are two times faster, or in
short, 2-speed 1-competitive. This result means that a modest increase in the
processor speed of the online scheduler can compensate its lack of future informa-
tion. Recently, McCulloguh and Torng [18] further showed that SRPT is s-speed
(1

s )-competitive for any s ≥ 2 − 1
m . In a wider context, resource augmentation

analysis has been found useful in a number of difficult scheduling problems (see,
e.g., [8–10, 13–16, 20]).

Muthukrishan et al. [19] were the first to study total stretch. They showed
that SRPT is 2-competitive on a single processor and 14-competitive on mul-
tiprocessors, and no online algorithm can be 1-competitive. Chekuri et al. [12]
proposed a different algorithm (called SG) that is 9.81-competitive on multipro-
cessors. Existing resource augmentation results are actually based on algorithms
like SJF (Shortest Job First), which assigns fixed priorities to jobs independently
of the schedule. On a single processor, the work of Phillips (on weighted flow
time) [20] implies that an algorithm called Preemptively-Schedule-by-Halves as
well as SJF are 2-speed 1-competitive for minimizing total stretch. For multi-
processors, there are two algorithms known to be O(1)-speed O(1)-competitive
(namely, SJF is (2+2ε)-speed (1+ 1

ε )-competitive [4], and IMD [1] is (1+ε)-speed
O(1+ 1

ε )-competitive [11]). Though SRPT is believed to perform well, it is gener-
ally agreed that SRPT is more difficult for resource augmentation analysis (see,
e.g., [21]). In this paper we show that SRPT is indeed 2-speed 1-competitive for
minimizing total stretch on a single processor. A more elaborate analysis further
reveals that SRPT is 5-speed 1-competitive on multiprocessors. This is the first
result on exploiting extra speed to achieve 1-competitiveness. Table 1 gives a
summary of the performance of SRPT and SJF. We also derive a simple lower
bound that for any s < 1.5, SRPT is not s-speed 1-competitive.

Technically speaking, our analysis of SRPT is based on an observation that
the optimal offline algorithm, at any time, has no more finished jobs than SRPT
does, and more interestingly, each finished job of the optimal offline algorithm
can be mapped to a unique finished job of SRPT with same or smaller processing
time.
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Table 1. SRPT and SJF using faster processors can be 1-competitive (or even better)
for minimizing total stretch. Results given in this paper are marked with asterisks.

Single processor Multiprocessors
2-competitive [19] 14-competitive [19]SRPT

2-speed 1-competitive * 5-speed 1-competitive *
(1 + ε)-speed (1 + 1

ε
)-competitive [4] (2 + 2ε)-speed (1 + 1

ε
)-competitive [4]SJF

2-speed 1-competitive [20,4] (24s)-speed ( 1
s
)-competitive, for s ≥ 1 *

This paper also makes contribution to the analysis of SJF. It has been known
that based on the result on weighted flow time, SJF is 2-speed 1-competitive
for minimizing total stretch on a single processor, and (2 + 2ε)-speed (1 + 1

ε )-
competitive on multiprocessors [4,20]. We improve the analysis of SJF on mul-
tiprocessors to show that SJF is indeed 24-speed 1-competitive and, in general,
(24s)-speed (1

s )-competitive for any s ≥ 1, for minimizing total stretch. We
conjecture that SRPT also admits a similar result.

Before moving on to the analysis of SRPT and SJF, we give a definition
of these two algorithms. Suppose there are m ≥ 1 processors. At any time, if
there are at most m unfinished jobs, SRPT and SJF both schedule each job to a
distinct processor; otherwise, SJF gives priority to the m jobs with the shortest
processing times, and SRPT schedules the m jobs with the shortest remaining
processing times. A tie is simply broken by job ID.

Formally speaking, we say that SRPT (or SJF) is s-speed c-competitive if
for any job sequence, SRPT (or SJF) using m s-speed processors incurs a total
stretch at most c times of that of the optimal offline algorithm using m unit-speed
processors.

Organization of the Paper: Section 2 gives three useful properties of an SRPT
schedule regardless of processor speed. Section 3 presents a resource augmen-
tation analysis of SRPT on multiprocessors, revealing that SRPT is 5-speed
1-competitive for minimizing total stretch. Section 4 shows a lower bound of
SRPT. Section 5 analyzes the performance of SJF. Section 6 discusses some
future work. The proof of the result that SRPT is 2-speed 1-competitive on a
single processor will be given in the full paper.

2 Preliminaries

In this section we give some basic definitions and three useful properties of an
SRPT schedule regardless of processor speed. Let I be an input sequence of jobs
to be scheduled on m ≥ 2 processors. For any job J ∈ I, let p(J) and r(J)
denote the processing time and release time of J , respectively. Let x > 0 be any
number. A job J is said to be x-large if p(J) > x, and x-small if p(J) ≤ x. For
any set K of jobs, p(K) is defined to be

∑
J∈K p(J). Consider a schedule S for

I on m processors. We assume that jobs can be preempted and later resumed at
the point of preemption. The following notations are concerned with a particular
time t in the schedule S.
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– Let wS
t (J) and rwS

t (J) denote the processed work and the remaining work,
respectively, of a job J in S at time t. Note that wS

t (J) + rwS
t (J) = p(J). A

job J is said to be partially processed if 0 < rwS
t (J) < p(J).

– Let QS
t denote the set of jobs released at or before time t and unfinished at

time t, and let QS
t (x) ⊆ QS

t denote the set of x-small jobs in QS
t .

– Let ShrinkS
t (x) denote the set of x-large jobs J in QS

t such that rwS
t (J) ≤ x

(note that any job J in ShrinkS
t (x) is partially processed because p(J) > x).

– Let FS
t denote the set of jobs finished at or before time t, and let FS

t (x) ⊆ FS
t

denote the set of x-small jobs in FS
t .

When the context is clear, we will omit the superscript S in the above nota-
tions, which become wt(J), rwt(J), Qt, Qt(x), Ft, and Ft(x). Using the above

definitions, the stretch of a schedule S can be expressed as
∫ ∞

0

∑
J∈Qt

1
p(J)

dt.

To ease our discussion, we use c-speed SRPT, for any c ≥ 1, to denote an online
scheduler running SRPT on m c-speed processors, and we let OPT denote an
optimal schedule for I on m unit-speed processors. To compare the stretch of
c-speed SRPT and OPT, we focus on analyzing the corresponding Qt and Ft.
Hereafter, we use the notations Q∗t , Q

∗
t (x), F ∗t and F ∗t (x) to denote the above

concepts for OPT.
Before we move on to the analysis of 5-speed SRPT, we show in the rest of

this section three useful properties of an SRPT schedule regardless of processor
speed. Precisely, let S denote the schedule defined by c-speed SRPT for any
c ≥ 1. The properties are concerned with three categories of jobs defined at any
time in S as follows.

– There are at most m unfinished x-large jobs with remaining work at most x
(Lemma 1).

– While there is an x-small job J waiting (i.e., not being processed by an
processor), jobs that can be scheduled only include x-small jobs or jobs in
Shrinkr(J)(x) (Lemma 2).

– The accumulated work on all unfinished x-small jobs is less than mx
(Lemma 3).

Lemma 1. At any time t ≥ 0 and for any x > 0, |Shrinkt(x)| ≤ m.

Proof. We prove the lemma by contradiction. Suppose that Shrinkt(x) = {J1, J2,
· · · , Jm′}, for some m′ > m. By definition, rwt(Ji) ≤ x < p(Ji). Let y be a
number such that x < y < minJ∈Shrinkt(x){p(J)}. For each job Ji ∈ Shrinkt(x),
let ti < t be the latest time such that rwti(Ji) = y. Note that Ji must be
processed by some processor at time ti and its remaining work is strictly less
than y immediately after ti. Without loss of generality, we assume that t1 ≤
· · · ≤ tm′ < t.

Suppose that tm′−k < tm′−k+1 = · · · = tm′ for some integer k ∈ [1,m]. At
tm′ , the jobs Jm′−k+1, · · · , Jm′ are each being processed by a processor. And,
for 1 ≤ i ≤ m′ − k, rwtm′ (Ji) < y = rwtm′ (Jm′), which implies that all these Ji

are also being processed at time tm′ (because SRPT always processes jobs with
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smallest remaining work first). This leads to a contradiction that m′ > m jobs
are being processed at the same time. ��

Lemma 2. Let J be any x-small job. Whenever J is waiting, S can only schedule
other x-small jobs or jobs in Shrinkr(J)(x).

Proof. Any x-large job J ′ �∈ Shrinkr(J)(x) has rwr(J)(J ′) > x ≥ p(J). Starting
from r(J), whenever J ′ is being processed, J is also being processed. Therefore,
the remaining work of J is always less than that of J ′. Thus, whenever J is
waiting, J ′ also needs to wait as J ′ has more remaining work. ��

Lemma 3. At any time t ≥ 0 and for any x > 0, wt(Qt(x)) < mx, where
wt(Qt(x)) =

∑
J∈Qt(x) wt(J).

Intuitively, at any time t, there may be many unfinished x-small jobs, but the
above lemma states that their total processed work up to time t is less than mx.
To prove the lemma, we let L be the set of jobs in Qt(x) that are partially
processed. Notice that wt(Qt(x)) = wt(L). Assume that L = {J1, J2, · · · , J|L|}
where p(J1) ≥ p(J2) ≥ · · · ≥ p(J|L|).

Below we show that jobs in L can be partitioned into m disjoint sets Y1, Y2,
· · · , Ym such that for 1 ≤ k ≤ m, wt(Yk) < x. Then wt(Qt(x)) =

∑m
k=1 wt(Yk) <

mx and the upper bound follows. We construct the partition by adding the jobs
in L one by one into the m sets. Denote by last(Yk) the last job added to Yk.

– Initially, set Y1 = {J1}, Y2 = {J2}, · · · , Ym = {Jm}.
– For i = m + 1 to |L|, add Ji to the set Yk with the largest rwt(last(Yk))

value.

The following lemma gives a property on rwt(last(Yk)).

Lemma 4. Whenever a job Ji is added to a set Yk, p(Ji) ≤ rwt(last(Yk)).

Proof. Suppose on the contrary that rwt(last(Yk)) < p(Ji). Notice that for all
1 ≤ z ≤ m, we have (1) rwt(last(Yz)) ≤ rwt(last(Yk)) because Ji is added to
Yk; and (2) p(Ji) ≤ p(last(Yz)). Therefore, all the m + 1 jobs including Ji and
last(Y1), · · · , last(Ym) have processing time at least p(Ji) but remaining work
at time t less than p(Ji). So letting x = max{rwt(Ji),max1≤h≤m rwt(last(Yh))},
we have x < p(Ji) and |Shrinkt(x)| ≥ m + 1 > m, which is a contradiction to
Lemma 1. ��

Consider any Yk. Suppose J ′1(= Jk), J ′2, · · · , J ′h, for some h ≥ 1, are the
jobs added to Yk (in that order). Then by Lemma 4, wt(Yk) =

∑
1≤i≤h wt(J ′i) =∑

1≤i<h(p(J ′i)−rwt(J ′i))+wt(J ′h) ≤∑
1≤i<h(p(J ′i)−p(J ′i+1))+wt(J ′h) = p(J ′1)−

p(J ′h) + wt(J ′h) < p(J ′1) ≤ x. The second last inequality holds because J ′h is not
finished at time t. Therefore, we have wt(Qt(x)) =

∑
1≤k≤m wt(Yk) < mx and

Lemma 3 follows.
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3 Resource Augmentation Analysis of SRPT

In this section we show that SRPT is 5-speed 1-competitive for minimizing total
stretch on multiprocessors. We analyze the schedule of 5-speed SRPT, denoted
by S5 below, against OPT on a given input sequence, and in particular, we
show in Lemma 6 that at any time t, S5 outperforms OPT on finished jobs;
precisely, for any x > 0, p(Ft(x)) ≥ p(F ∗t (x)). Then we show in Lemma 7
(Section 3.2) that there is a one-to-one mapping from F ∗t to Ft such that each
job J∗ ∈ F ∗t can be mapped to a unique job J ∈ Ft with p(J∗) ≥ p(J). In other
words, at any time t, we have

∑
J∈Ft

1/p(J) ≥ ∑
J∗∈F∗

t
1/p(J∗), implying that∑

J∈Qt
1/p(J) ≤ ∑

J∗∈Q∗
t
1/p(J∗). It is then easy to see that the total stretch

of S5 is no more than that of OPT (Theorem 1).

3.1 Outperforming the Optimal Schedule on Finished Jobs

In this section we show that 5-speed SRPT outperforms OPT on finished jobs.
Consider the schedule S5 defined by 5-speed SRPT. For any x > 0, a time
interval is said to be a λ(x)-interval if at any time within the interval, there is
an x-small job waiting.

Lemma 5. Let J be a job with p(J) = x. Suppose that S5 does not complete J
at time t ≥ r(J) + x.

– Then during [r(J), t], S5 schedules at least 3m(t − r(J)) units of work on
x-small jobs; and p(Ft(x)) ≥ p(Fr(J)(x)) + 2m(t− r(J)).

– Furthermore, if r(J) is inside a λ(x)-interval starting from t′ ≤ r(J), then
during [t′, t], the work scheduled by S5 on x-small jobs is at least 3m(t− t′);
and p(Ft(x)) ≥ p(Ft′(x)) + 2m(t− t′).

Proof. J is not finished in S5 at time t ≥ r(J) + x. During [r(J), t], J incurs a
waiting time longer than t−r(J)− x

5 ≥ 4
5 (t−r(J)), and S5 must process at least

5m · 4
5 (t− r(J)) = 4m(t− r(J)) units of work. By Lemma 2, while J is waiting,

S5 can only process other x-small jobs or jobs in Shrinkr(J)(x). By Lemma 1,
|Shrinkr(J)(x)| ≤ m. Each job in Shrinkr(J)(x), by definition, has remaining
work at most x at time r(J). Thus, during [r(J), t], the work scheduled by S5

on x-small jobs is at least 4m(t− r(J)) −mx ≥ 3m(t− r(J)).
Since, by Lemma 3, wt(Qt(x)) < mx, during [r(J), t], the work scheduled by

S5 on x-small jobs that are completed by time t is at least 3m(t− r(J))−mx ≥
2m(t − r(J)). Consider jobs in Ft(x) but not in Fr(J)(x). They are all x-small
jobs scheduled by S5 to completion during [r(J), t], and their total processing
time is at least the work scheduled by S5 on them during [r(J), t], i.e., at least
2m(t− r(J)). Thus, p(Ft(x)) ≥ p(Fr(J)(x)) + 2m(t− r(J)).

Furthermore, if r(J) is inside a λ(x)-interval starting from t′ ≤ r(J), we have
Shrinkr(J)(x) ⊆ Shrinkt′(x). During [t′, r(J)] and the waiting time of J , S5 can
only process x-small jobs or jobs in Shrinkt′(x). Using the same argument above,
we can conclude that during [t′, t], the work scheduled by S5 on x-small jobs is
at least 3m(t− t′), and p(Ft(x)) ≥ p(Ft′(x)) + 2m(t− t′). ��
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Lemma 6. At any time t ≥ 0 and for any x > 0, p(Ft(x)) ≥ p(F ∗t (x)).

Proof. Let Ψu(x) denote the set of x-small jobs released before time u. We will
use a property of F ∗t (x) that for any time u < t, p(F ∗t (x)) ≤ p(Ψu(x))+m(t−u).

We prove the lemma by contradiction. Suppose that t ≥ 0 is the earliest time
such that at time t, there is a smallest x > 0 such that p(Ft(x)) < p(F ∗t (x)).
Then there must be an x-small job J with p(J) = x such that at time t, J
finishes in OPT but J is unfinished in S5. Note that t− r(J) ≥ x.

We consider two cases. First, if r(J) is not within a λ(x)-interval in S5, then
at time r(J) in S5, no x-small jobs are waiting, and there are at most m un-
finished x-small jobs. Thus, p(Ψr(J)(x)) ≤ p(Fr(J)(x)) + mx, and p(F ∗t (x)) ≤
p(Fr(J)(x)) + mx + m(t − r(J)) ≤ p(Fr(J)(x)) + 2m(t − r(J)). By Lemma 5,
p(Ft(x)) ≥ p(Fr(J)(x)) + 2m(t− r(J)), and thus p(Ft(x)) ≥ p(F ∗t (x)). A contra-
diction occurs.

Second, if r(J) is within a λ(x)-interval starting from time t′ ≤ r(J) in
S5, then we can upper bound p(Ψt′(x)) by p(Ft′(x)) + mx. Then p(F ∗t (x)) ≤
p(Ft′(x)) + 2m(t − t′). Using Lemma 5, we can again derive the contradiction
that p(Ft(x)) ≥ p(F ∗t (x)). ��

3.2 5-Speed SRPT is 1-Competitive

Based on Lemma 6, we can prove that 5-speed SRPT is 1-competitive. First, we
show that at any time t, there is a one-to-one mapping between F ∗t and Ft.

Lemma 7. Consider any time t ≥ 0. Assume that p(Ft(x)) ≥ p(F ∗t (x)) for
any x > 0. Then there is a one-to-one mapping from F ∗t to Ft such that each
job J∗ ∈ F ∗t is mapped to a unique job J ∈ Ft with p(J∗) ≥ p(J).

Proof. Suppose that the processing times of the jobs in F ∗t have d distinct val-
ues, denoted by x1 < x2 < · · · < xd. We construct a mapping from F ∗t to Ft

incrementally, each time we consider jobs in F ∗t with the same processing time.
Consider all jobs in F ∗t that have the smallest processing time (i.e., equal to

x1). Given that p(Ft(x1)) ≥ p(F ∗t (x1)), Ft(x1) must contain at least as many
jobs as F ∗t (x1). Thus, each job in F ∗t (x1) can be mapped to a unique job in
Ft(x1) with processing time at most x1.

Assume that for some k ≥ 1, we have constructed a mapping from F ∗t (xk) to
Ft as required by Lemma 7. Next, we consider jobs in F ∗t with processing time
xk+1. Let Y ⊂ Ft be the set of jobs in Ft to which jobs in F ∗t (xk) are mapped.
As each job in F ∗t (xk) is mapped to a job with the same or shorter processing
time, we have p(F ∗t (xk)) ≥ p(Y ). The number of jobs in F ∗t with processing time
xk+1 is exactly (p(F ∗t (xk+1))− p(F ∗t (xk)))/xk+1. The number of unmapped jobs
in Ft(xk+1) is at least (p(Ft(xk+1))−p(Y ))/xk+1, which is at least (p(F ∗t (xk+1))−
p(F ∗t (xk)))/xk+1. Thus, each job in F ∗t with processing time xk+1 can be mapped
to a unique job in Ft with the same or shorter processing time. ��

We are now ready to show our main theorem.

Theorem 1. SRPT is 5-speed 1-competitive for minimizing total stretch.
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Proof. For any time t ≥ 0, let Φt denote the set of jobs released at or before time
t. (Note that Φt equals the union of the set of jobs released at time t and Ψt, the
set of jobs released before time t.) The set of unfinished jobs in S5 is Qt = Φt−Ft;
and the set of unfinished jobs in OPT is Q∗t = Φt − F ∗t .

Total stretch of 5-speed SRPT=
∫ ∑

J∈Qt

1
p(J)

dt =
∫ ∑

J∈Φt

1
p(J)

dt−
∫ ∑

J∈Ft

1
p(J)

dt

By Lemma 7, each job J∗ in F ∗t is mapped to a unique job in Ft with processing
time at most p(J∗), so we have∫ ∑

J∈Ft

1
p(J)

dt ≥
∫ ∑

J∗∈F∗
t

1
p(J∗)

dt

Thus,

total stretch of 5-speed SRPT ≤
∫ ∑

J∈Φt

1
p(J)

dt−
∫ ∑

J∗∈F∗
t

1
p(J∗)

dt

=
∫ ∑

J∗∈Q∗
t

1
p(J∗)

dt,

which is equal to the stretch of OPT. Hence, 5-speed SRPT is 1-competitive. ��

3.3 Remark

The analysis given in Sections 3.1 and 3.2 can be easily generalized to show that
for any m′ ≥ 1, SRPT using m′ processors that are (m/m′ + 4)-speed gives a
total stretch no more than an optimal schedule with m unit-speed processors. In
particular, we can generalize Lemma 5 to show that if SRPT (using m′ (m/m′+
4)-speed processors) does not complete a job J with p(J) = x at time t ≥
r(J) + x, then p(Ft(x)) ≥ p(Fr(J)(x)) + (m + m′)(t − r(J)). And all the other
lemmas remain true.

4 Speed Requirement for SRPT to Be 1-Competitive

In this section we give a lower bound on the speed requirement for SRPT to be
1-competitive.

Theorem 2. For minimizing total stretch, SRPT is not c-speed 1-competitive
for any c < 1.5.

Proof. Let c = 1.5 − ε where 0 < ε < 1.5. We construct a sequence of jobs
such that the total stretch of c-speed SRPT schedule is larger than that of
OPT. At time 0, m jobs J1, J2, · · · , Jm of equal processing time are released.
(The processing time p will be fixed shortly.) Each job is processed in a distinct
processor at time 0. Just after c-speed SRPT has started the last unit of work,
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i.e., at time (p−1)/c+δ, for some small 0 < δ < 1/c, m more jobs J ′1, J
′
2, · · · , J ′m,

all of which have processing time equal to 1, are released. In this case, c-speed
SRPT continues processing Ji, and starts processing J ′i only after finishing all Ji.

We analyze the total stretch of c-speed SRPT and OPT. For c-speed SRPT,
the stretch of Ji is 1/c. Since J ′i is processed after Ji finishes, J ′i finishes at p/c+
1/c and thus with stretch 2/c− δ. Therefore, the total stretch of c-speed SRPT
is m(3/c− δ). On the other hand, a unit-speed schedule can start processing J ′i
immediately after the job is released and then resume processing Ji; the stretch
of J ′i and Ji is 1 and (p+ 1)/p, respectively. Therefore, the total stretch of OPT
is at most m(2 + 1/p). We can fix the value of p > 1/(4ε/(3− 2ε)− δ), then we
have 3/c− δ = 3/(3/2 − ε) − δ > 2 + 1/p. (Notice that 0 < ε < 3/2 and if we
choose δ < 4ε/(3− 2ε), then we can ensure p to be positive.) The total stretch
of c-speed SRPT is greater than that of OPT and thus the theorem follows. ��

5 Resource Augmentation Analysis of SJF

In this section we analyze the performance of SJF for scheduling m ≥ 2 proces-
sors. We show that the total stretch of the schedule of (24c)-speed SJF is at most
1/c times the total stretch of an optimal schedule using unit-speed processors.
Recall that SJF gives higher priority to jobs with shorter processing times, with
tie broken by job ID.

Our analysis makes use of the result by Becchetti et al. [4] that HDF (Highest
Density First) is (2 + 2ε)-speed (1 + 1/ε)-competitive for minimizing weighted
flow time. If we define the weight of a job J to be 1/p(J), then the stretch of J
is equal to the weighted flow time of J . Furthermore, HDF is equivalent to SJF
(since the density of a job is defined to be its weight divided by its processing
time). Thus, the work of Becchetti et al. [4] implies that SJF is (2 + 2ε)-speed
(1 + 1/ε)-competitive for minimizing total stretch.

The framework of our analysis of SJF is as follows. Let τ = (2 + 2ε), and
let c ≥ 1 be any number. We compare the schedules of (cτ)-speed SJF and τ -
speed SJF. We show that the flow time of each job in the former schedule is
at most 3/c times of the flow time in the latter schedule. Combining with the
result of Becchetti et al., we conclude that SJF is c(2+ 2ε)-speed (3/c)(1+1/ε)-
competitive, or equivalently, (24c)-speed ((2 + 2ε)(1 + 1/ε)/(8c))-competitive.
Putting ε = 1 (so as to minimize (2 + 2ε)(1 + 1/ε)), we obtain the result that
SJF is (24c)-speed (1/c)-competitive.

Lemma 8. Consider any real numbers z ≥ z′ ≥ 1. Given an input job sequence,
denote the schedules of z-speed SJF and z′-speed SJF as S and S′, respectively.
At any time t ≥ 0 and for any job J , we have rwS

t (J) ≤ rwS′
t (J).

Proof. We prove the lemma by contradiction. Let t be the earliest time such
that there is a job J with rwS

t (J) > rwS′
t (J). If there are more than one such J ,

then we pick the one with the highest priority. Since z ≥ z′, we can assume that,
at time t, J is processed by some processor in S′ but not by any processor in
S. By the definition of SJF, as J is processed in S′ at time t, there are at most
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m− 1 unfinished jobs with priority higher than J . On the other hand, since J is
not processed in S at time t, there are at least m unfinished jobs with priority
higher than J , and one of these m jobs must be finished in S′. It contradicts the
assumption that t is the earliest time and J is the job with highest priority that
rwS

t (J) > rwS′
t (J). ��

Corollary 1. Assume that z ≥ z′ ≥ 1. For any job J , the flow time of J in the
schedule of z-speed SJF is at most that of J in the schedule of z′-speed SJF.

Lemma 9. Consider a schedule S of (any speed) SJF. At the time when a job J
finishes, the total remaining work of the unfinished jobs arrived before J finishes
and with priority higher than J is at most (m− 1)p(J).

Proof. At the time when J finishes, there are at most m − 1 unfinished jobs
arrived before r(J) and with priority higher than J . Otherwise, J will be pre-
empted and cannot finish at the time. Since a job with priority higher than J
has processing time at most p(J), the total remaining work of those jobs is at
most (m− 1)p(J). ��

Let Sτ denote the schedule of τ -speed SJF. We denote the flow time of a
job J in Sτ as flowτ (J), which can be divided into two parts, waitτ (J) and
busyτ (J), corresponding to the amount of time J is waiting for a processor and
J is being processed by a processor, respectively. Similarly, we use the notations
Scτ , flowcτ (J), waitcτ (J) and busycτ (J) for the schedule of (cτ)-speed SJF.

Consider any job J . Our goal is to show that flowcτ (J) ≤ 3
c flowτ (J). This is

done by proving busycτ (J) ≤ 1
c flowτ (J) and waitcτ (J) ≤ 2

c flowτ (J). The former
is straightforward because busycτ (J) = p(J)/(cτ) = busyτ (J)/c ≤ flowτ (J)/c.

The rest of this section is devoted to showing that the work scheduled by
Scτ while J is waiting, denoted W below, is upper bounded by 2mτflowτ (J).
Then it follows that waitcτ (J) ≤ W/(mcτ) ≤ 2

c flowτ (J). Let G be the set of
jobs that have ever been scheduled by Scτ while J is waiting. Note that jobs in
G must arrive before r(J) + flowcτ (J), and they all have priority higher than J .
We partition G into two subsets G1 and G2 such that G1 contains jobs arriving
before r(J) and G2 the rest. The work scheduled by Scτ while J is waiting, i.e.,
W , is at most

∑
J′∈G1

rwScτ

r(J)(J
′) + p(G2). To relate W with the flow time of J

in Sτ , we consider two sets of jobs H1 and H2 in the schedule Sτ .

• H1 contains jobs with priority higher than J that arrive before r(J) and are
unfinished at r(J) in Sτ .
• H2 contains jobs J ′ with priority higher than J such that r(J) ≤ r(J ′) <

r(J) + flowτ (J).

It is not difficult to see that G1 ⊆ H1 and G2 ⊆ H2 (see Lemma 10), and hence
W can be bounded by the remaining work of H1 in Sτ at r(J) plus the processing
time of H2.

Lemma 10. G1 ⊆ H1 and G2 ⊆ H2. Furthermore, rwScτ

r(J)(G1) ≤ rwSτ

r(J)(H1),
where rwS

t (K) =
∑

J′∈K rwS
t (J ′) for any schedule S, any time t, and any set K

of jobs.



246 W.-T. Chan et al.

Proof. Consider any job J ′ in G1. By definition, J ′ is unfinished in Scτ at r(J)
and has priority higher than J . By Corollary 1, J ′ is also unfinished in Sτ at r(J).
Therefore, we have J ′ ∈ H1. Furthermore, by Lemma 8, rwScτ

r(J)(J
′) ≤ rwSτ

r(J)(J
′).

Together with G1 ⊆ H1, we have rwScτ

r(J)(G1) ≤ rwSτ

r(J)(H1).
Consider any job J ′′ in G2. J ′′ arrives at or after r(J). Furthermore, J ′′ must

arrive before J finishes in Scτ . That is, r(J) ≤ r(J ′′) < r(J) + flowcτ (J). By
Corollary 1, flowcτ (J) ≤ flowτ (J), and hence r(J ′′) < r(J)+flowτ (J). Therefore,
G2 ⊆ H2. ��
Corollary 2. W ≤ rwSτ

r(J)(H1) + p(H2).

Lemma 11 further shows that the upper bound of W is 2mτ flowτ (J).

Lemma 11. rwSτ

r(J)(H1) + p(H2) ≤ 2mτ flowτ (J).

Proof. Let us consider how Sτ schedules the work in H1 and H2 starting from
time r(J). First, we note that the total amount of such work is exactly rwSτ

r(J)(H1)
+p(H2). During [r(J), r(J) + flowτ (J)], the work scheduled by Sτ is at most
mτ flowτ (J). At time r(J) + flowτ (J), Sτ may not complete all work in H1 and
H2; yet, by Lemma 12, at the time when J finishes, all unfinished jobs arriving
before J finishes and with priority higher than J have a total remaining work
at most (m− 1)p(J), and thus, from r(J) + flowτ (J) onwards, Sτ can schedule
at most (m− 1)p(J) units of work on H1 and H2. In conclusion, rwSτ

r(J′)(H1) +
p(H2) ≤ mτ flowτ (J)+ (m− 1)p(J) ≤ 2mτ flowτ because p(J) ≤ τ flowτ (J). ��

The waiting time of the job J in Scτ (i.e., waitcτ (J)) is at most W/mcτ ,
which, by Corollary 2 and Lemma 11, is at most 2

c flowτ (J).

Corollary 3. flowcτ (J) ≤ 3
c flowτ (J).

Proof. By definition, flowcτ (J) = waitcτ (J) + busycτ (J). The corollary follows
from the facts that waitcτ (J) ≤ 2

c flowτ (J) and busycτ (J) ≤ 1
c flowτ (J). ��

The following theorem follows from Corollary 3 and that SJF is (2+2ε)-speed
(1 + 1/ε)-competitive.

Theorem 3. SJF is (24c)-speed (1/c)-competitive, for any c ≥ 1.

6 Future Work

In this paper we have studied online job scheduling on multiprocessors and
showed that, with respect to total stretch, SRPT is 5-speed 1-competitive and
SJF is (24c)-speed (1/c)-competitive, for any c ≥ 1. We conjecture that SRPT
also admits a similar result as SJF, i.e., SRPT is also O(c)-speed
(1/c)-competitive for any c ≥ 1. It is also interesting to analyze the performance
of SRPT and SJF when the online algorithm is given extra processors instead
of extra speed, and to determine whether 1-competitiveness can be achieved.
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Another open question is to derive a c-speed 1-competitive online algorithm for
minimizing weighted flow time on multiprocessors. Note that both SRPT and
SJF require job migration. Another direction is to consider non-migratory algo-
rithms, i.e., once a job is assigned to a processor, it cannot be migrated to other
processors, though it may be preempted.
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Abstract. We propose a method to approximate a polygonal object by
a deformable smooth surface, namely the t-skin defined by Edelsbrunner
for all 0 < t < 1. We guarantee that they are homeomorphic and their
Hausdorff distance is at most ε > 0. Such construction makes it possible
for fully automatic, smooth and robust deformation between two polyg-
onal objects with different topologies. En route to our results, we also
give an approximation of a polygonal object with a union of balls.

1 Introduction

Geometric deformation is a heavily studied topic in disciplines such as computer
animation and physical simulation. One of the main challenges is to perform
deformation between objects with different topologies, while at the same time
maintaining a good quality mesh approximation of the deforming surface.

Edelsbrunner defines a new paradigm for the surface representation to solve
these problems, namely the skin surface [5] which is a smooth surface based
on a finite set of balls. It provides a robust way of deforming one shape to
another without any constraints on features such as topologies [2]. Moreover, the
skin surfaces possess nice properties such as curvature continuity which provides
quality mesh approximation of the surface [3].

However, most of the skin surface applications are still mainly on molecular
modeling. The surface is not widely used in other fields because general geometric
objects cannot be represented by the skin surfaces easily. This leaves a big gap
between the nicely defined surfaces and its potential applications. We are trying
to fill this gap in this paper.

1.1 Motivation and Related Works

One of the main goals of the work by Amenta et. al in [1] is to convert a polygonal
object into a skin surface. We can view our work here as achieving this goal and
the purpose of doing so is to perform deformation between polygonal objects.
As noted earlier in some previous works [2,5], deformation can be performed
robustly and efficiently if the object is represented by the skin surface.

Moreover, our work here can also be viewed as a step toward converting an
arbitrary smooth object into a provably accurate skin surface. In this regard,
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previous work has been done by Kruithof and Vegter [8]. For input their method
requires a so-called r-admissible set of balls B which approximate the object well.
Then, it expands all the weights of the balls by a carefully computed constant
t, before taking the 1

t -skin of the expanded balls to approximate the smooth
object.

However, we observe that there are at least two difficulties likely to occur
in such approach. First, such an r-admissible balls are not trivial to obtain.
Furthermore, when the computed factor t is closed to 1, the skin surface is
almost the same as the union of balls, thus, does not give much improvement
from the union of balls. On the other hand, the approach discussed here allows
the freedom to choose any constant 0 < t < 1 for defining the skin surface.

On top of the skin approximation, we also give an approximation of a polyg-
onal object with a union of balls. Such approximation has potential applications
in computer graphics such as collision detection and deformation [7,9,10]. Ranjan
and Fournier [9] proposed using a union of balls for object interpolation. Sharf
and Shamir [10] also proposed using the same representation for shape match-
ing. Those algorithms require a union of balls which accurately approximate the
object as an input and to provide such a good set of balls at the beginning is
still not trivial.

A comparison with our Previous Work. In [4], we proposed a method to construct
a set of weighted points whose alpha shape is the same as the input simplicial
complex in Rd, which we call the subdividing alpha complex. Given such alpha
complex it is quite straightforward to obtain a set of balls which can be used to
approximate the object. However, to construct the subdividing alpha complex,
we need to make the assumption that the constrained triangulation of the input
is given too.

In this paper the input is a piecewise linear complex which constitutes the
boundary of the object. To avoid assuming we are given the constrained trian-
gulation, we make use of the notion of local gap size(lgs) in the construction of
the subdividing alpha complex.

1.2 Approach and Outline

The first step is to construct a set of balls whose alpha shape is the same as the
boundary of the polygonal object, namely, the subdividing alpha complex. The
radii of the balls constructed are at most ε, for a given real number ε > 0.

In the second step we fill the interior of the object with balls according to
the Voronoi complex of the balls constructed in the first step, namely, the balls
that make up the subdividing alpha complex. Specifically, we consider all the
Voronoi vertices which are inside the object. Each Voronoi vertex determines an
orthogonal ball. We use the set of all such orthogonal balls to approximate the
object. It is shown that that the union of such balls is homeomorphic to the
object and furthermore, the Hausdorff distance between them is at most ε.

To obtain the skin approximation, we invert the weights of the balls that
make up the subdividing alpha complex of the boundary. Those inverted balls,
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together with the balls in the interior of the object(computed in the second step),
generate a skin surface which is homeomorphic to the object. It is also shown
that the Hausdorff distance between them is at most ε.

Outline. This paper is organized as follows. In the next section we introduce some
basic terminologies on piecewise linear complex(PLC) and alpha complex. In
Section 3 we describe our method in constructing the subdividing alpha complex
of a given PLC and the approximation of a polygonal object with a union of balls.
Then we briefly review the definition of the skin surface in Section 4. The object
approximation by the skin surface is described in Section 5. Finally, we end with
some discussions in Section 6.

2 Notations and Basic Definitions

In this section we introduce a few basic definitions that we use throughout this
paper: polygonal objects, piecewise linear complexes and alpha complexes.

Polygonal Objects. A polygonal object O ⊆ R3 is a compact 3-manifold whose
boundary is a piecewise linear 2-manifold. Our algorithm takes as an input a
piecewise linear complex(PLC) which constitutes the boundary of O.

Piecewise Linear Complexes. In R3, a piecewise linear complex is a set P of
vertices, line segments and polygons with the following conditions:
i) all elements on the boundary of an element in P also belong to P , and,
ii) if two elements intersect, the intersection is a lower dimensional element in P .

The underlying space of P is denoted by |P| = ⋃
σ∈P σ.

The local gap size is a function lgs : |P| �→ R where lgs(x) is the radius of the
smallest ball centered on x that intersects an element of P that does not contain
x. We remark that lgs is continuous on the interior of every element σ ∈ P.

Alpha Complexes. We describe a weighted point b ∈ R3×R by its location zb ∈ R3

and its weight wb ∈ R, written also as b = (zb, wb). A weighted point b can also
be viewed as a ball with center zb and radius

√
wb, that is, the set of points

{p ∈ R3 | ‖p − zb‖2 ≤ wb}. If wb is negative then b is an imaginary ball, which
is, an empty set. In this paper, we will use the terms ball and weighted point
interchangeably.

The weighted distance of a point p ∈ R3 to a ball b is defined as

πb(p) = ‖p− zb‖2 − wb.

Two balls b1 and b2 are orthogonal to each other if ‖zb1 − zb2‖2 = wb1 + wb2 .
Given a finite set of balls B, each ball b ∈ B defines a Voronoi cell νb which

consists of the points in R3 with weighted distance to b less than or equal to any
other ball in B. For X ⊆ B, the Voronoi cell of X is

νX =
⋂

b∈X

νb.

If νX consists of only one point then it is called a Voronoi vertex.
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Let νX ={p} be a Voronoi vertex. We can associate νX with the ball b′ where
zb′ = p and wb′ = πb(p) for some b∈X . Note that b′ is orthogonal to every ball
b ∈X . For this reason, we call b′ the associated orthogonal ball of the Voronoi
vertex νX .

The collection of all Voronoi cells is called the Voronoi complex of B,

VB = {νX | X ⊆ B and νX �= ∅}.
In this paper, we make an important but standard assumption regarding VB :

General Position Assumption. Let B ⊆ R3 ×R be a finite number of set of
balls and let X ⊆ B. Suppose νX �= ∅ with respect to the Voronoi complex VB.
Then 1 ≤ card(X) ≤ 4 and the dimension of νX is 4− card(X).

Such assumption can be achieved by small perturbation on either one of the
weights or positions of the balls in X . (See, for example, [6])

For a set of balls X , we abuse the notation zX to denote the set of the ball
centers of X . The Delaunay complex of B is the collection of simplices,

DB = {conv(zX) | νX ∈ VB}.
Note that by the general position assumption, the number of tetrahedra in DB

is the same as the number of Voronoi vertices in VB .
The alpha complex of B is a subset of the Delaunay complex DB which is

defined as follow,

KB = {conv(zX) | (⋃X
) ∩ νX �= ∅}.

The alpha shape of B is the underlying space of KB, namely, |KB|. Note that if
conv(zX) ∈ KB then

⋂
X �= ∅. Conversely, if

⋂
X = ∅ then conv(zX) /∈ KB.

3 Subdividing Alpha Complex

Given a PLC P and a set of balls B, we say KB subdivides P if |KB| = |P|.
In this section, we show how to construct B such that KB subdivides P . For
this we need the following Lemma 1 which is a straightforward generalization of
Theorem 1 in [4]. The proof is very similar, thus, we omit it.

Lemma 1. Let P be a PLC. If B is a set of balls that satisfies the following two
conditions:

C1. For X ⊆ B, if
⋂

X �= ∅ then conv(zX) ⊆ σ for some σ ∈ P, and,
C2. For each σ ∈ P, define B(σ) = {b ∈ B | b ∩ σ �= ∅}.

Then we have: zB(σ) ⊆ σ ⊆ ⋃
B(σ),

then KB subdivides P.

We call KB a subdividing alpha complex, or in short SAC, of P . Furthermore,
if all the weights in B are less than a real value ε, then KB is called an ε-SAC
of P .
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The aim is to construct a set of balls B that satisfies Conditions C1 and C2
in Lemma 1 and at the same time all the weights of the balls are bounded above
by an input real number ε > 0. In the first step we fix a real number 0 < γ < 0.5.
Then we construct the set of balls B(σ) for each σ ∈ P , starting with those of
dimension 0, then dimension 1 and ending with those of dimension 2. Algorithm 1
outlines the sequence of computational steps.

Algorithm 1. Construction of a set of balls B such that KB subdivides P
1: Fix a real number 0 < γ < 0.5
2: for i = 0, 1, 2 do
3: Construct B(σ) for all σ ∈ P of dimension i.
4: end for
5: Output B =

⋃
σ∈P B(σ).

The construction of B(σ) where dim(σ) = 0 is trivial. For each vertex v in
P, we add a ball with center v and radius r = min(γ · lgs(v),√ε). So, B(v) =
{(v, r2)}. For completeness, we present it as Algorithm 2.

Algorithm 2. To construction B(σ) for all σ ∈ P with dimension 0
1: for each vertex σ ∈ P do
2: r := min(γ · lgs(v),

√
ε)

3: B(σ) := {(v, r2)}
4: end for

To describe the construction of B(σ) with σ is of dimension 1 or 2, we need
the notations of restricted Voronoi complex. The restricted Voronoi complex of
a set of balls X on σ ∈ P, denoted by VX(σ), is the complex which consists of
νX ∩ σ, for all νX ∈ VX . A Voronoi vertex u in VX(σ) is called a positive vertex
if πb(u) > 0, for all b ∈ X . Note that such a vertex is outside every ball in X .
To determine whether a vertex is positive, it suffices to compute πb′ (u) where u
is the Voronoi vertex in the Voronoi cell of b′.

We construct B(σ) where dim(σ) = 1 according to Algorithm 3. The basic
idea is to add a ball to a positive vertex in an edge until the edge is covered
by the balls. To avoid unwanted elements other than the edge itself, we set the
radius of every ball to be less than both

√
ε and γ times the lgs of the ball center.

The construction of B(σ) where σ is of dimension 2 is similar. For completeness,
we present it as Algorithm 4 here.

We claim that our algorithms terminate and the output B =
⋃

σ∈P B(σ)
satisfies both Conditions C1 and C2. It should be clear that all weights in B are
at most ε. Since every ball with center p has radius less than 0.5 × lgs(p), it is
obvious that Condition C1 is satisfied. Condition C2 follows from Proposition 1
below. Theorem 2 establishes the termination of our algorithm.

Proposition 1. Let X be a set of balls. Suppose zX ⊆ σ. Then σ ⊆ ⋃
X if and

only if there is no positive vertex in VX(σ).
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Algorithm 3. To construct B(σ) for all σ ∈ P with dimension 1
1: for all the edge σ ∈ P do
2: Let v1, v2 be the two vertices of σ.
3: X := B(v1) ∪B(v2)
4: while there exists a positive vertex u in VX(σ) do
5: r := min(γ · lgs(u),

√
ε)

6: X := X ∪ {(u, r2)}
7: end while
8: B(σ) := X
9: end for

Algorithm 4. To construct B(σ) for all σ ∈ P with dimension 2
1: for all each polygon σ ∈ P do
2: Let τ1, . . . , τm be the edges of σ.
3: X := B(τ1) ∪ · · · ∪ B(τm)
4: while there exists a positive vertex u in VX(σ) do
5: r := min(γ · lgs(u),

√
ε)

6: X := X ∪ {(u, r2)}
7: end while
8: B(σ) := X
9: end for

Proof. The“only if”part is immediate. We will show the“if”part. Suppose there
is no positive Voronoi vertex in VX(σ). We claim that νb(σ) ⊆ b for all b ∈ X .
This claim follows from the fact that νb(σ) is the convex hull of its Voronoi
vertices and bounded. Thus, by our assumption that all the Voronoi vertices are
not positive, it is immediate that νb(σ) ⊆ b for any b ∈ X . Since σ is partitioned
into νb(σ) for all b ∈ X , it follows that σ ⊆ ⋃

X .

To establish the termination of the algorithm, we need the following fact.

Proposition 2. Let ρ ∈ P. Suppose Γ ⊂ σ is a closed region such that it does
not intersect the boundary of σ. Then there exists a constant c > 0 such that for
every point p ∈ Γ , lgs(p) > c.

Proof. We observe that lgs is a continuous function on Γ . Moreover, Γ is com-
pact. Thus, there exists p0 ∈ Γ such that lgs(p0) = minp∈Γ lgs(p). The value
lgs(p0) �= 0 since p0 is in the interior of σ. Thus, we can choose c = 1

2 lgs(p0) to
establish our proposition.

Lemma 2. Both algorithms 3 and 4 terminate.

Proof. We prove that Algorithm 3 terminates. It suffices to show that the while-
loop does not iterate infinitely many times. The proof is by contradiction and it
follows from the fact that each element ρ in P is compact.

Assume to the contrary that for some edge σ = (v1, v2) ∈ P the while-loop
iterates infinitely many times. That is, it inserts infinitely many balls to B(σ)
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whose centers are in the region σ − (b1 ∪ b2) where bi ∈ B(vi) for i = 1, 2. The
region σ− (b1∪b2) is a closed region which does not intersect with the boundary
of σ. By Proposition 2, there exists a constant c > 0 such that all the radii of
the balls are greater than c.

Moreover, σ− (b1 ∪ b2) is compact, so if B(σ) contains infinitely many balls,
then there are two balls b and b′ whose centers are at the distance less than
c. Without loss of generality, we assume that b was inserted before b′. This is
impossible, because at the time b′ was inserted, its center would be a negative
vertex. Therefore, the while-loop iterates only finitely many times. The proof
of the termination of Algorithm 4 is similar.

3.1 Approximating Polygonal Object with a Union of Balls

LetO be a polygonal object and P be its boundary, given in the form of piecewise
linear complex. Our method to approximate the object O with a union of balls
can be summarized as follows.

1. Construct a set of balls B such that KB is an ε2-SAC of P.
2. Compute the Voronoi complex of B.
3. Denote by T , the set of all the Voronoi vertices which are located inside the

object O.
4. Let B⊥ be the set of all orthogonal balls associated with all the Voronoi

vertices in T .
5. Output B⊥.

Remark 1. We remark that every ball in B⊥ has positive weight, thus, is a real
ball. The reasoning is as follows. Because |KB| = |P|, there is no tetrahedron
in KB. This means each Voronoi vertex is not inside any ball b ∈ B, thus,
has positive weighted distance to the each ball in B. Therefore, the associated
orthogonal ball of each Voronoi vertex has positive weight.

We claim that
⋃

B⊥ can be used to approximate the object O well.

Theorem 1. The union of balls
⋃

B⊥ is contained inside the object O and
homeomorphic to O. Moreover, the Hausdorff distance between them is at most ε.

Proof. (Sketch) Consider the Delaunay complex DB. Let Δ be the set of all
Delaunay tetrahedra which are located inside the object O. The object O is
decomposable into the tetrahedra of Δ. By the general position assumption,
card(Δ) = card(B⊥).

Furthermore,
⋃

B⊥ is decomposable into conv(zX) ∩ b where b is the associ-
ated orthogonal ball of νX for all conv(zX) ∈ Δ. We can establish a homeomor-
phism between b ∩ conv(zX) and conv(X) for each conv(zX) ∈ Δ. By combining
all such homeomorphisms, we obtain a homeomorphism between

⋃
B⊥ and O.

The Hausdorff nearness part can be established via the fact that each b ∈ B⊥

is contained inside the object O. Furthermore, the ball b is orthogonal to some
balls b′ ∈ B and all the weights of the balls in B are less than or equal to ε.
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4 Skin Surface

In this section we briefly review both the algebra of balls and the definition of
the skin surface which is based on the algebra of balls [5].

Algebra of Balls. The algebra of balls is based on a bijection φ : R3 × R �→ R4

defined as
φ(b) = (zb, ‖zb‖2 − wb).

The space R4 together with the usual componentwise addition and scalar multi-
plication forms a vector space. The addition and scalar multiplication operations
are defined on R3×R in such a way that φ is a vector space isomorphism, that is,

φ(b1 + b2) = φ(b1) + φ(b2),
φ(γ · b) = γ · φ(b),

where b1, b2, b ∈ R3 × R and γ ∈ R. One can easily verify that

b1 + b2 = (zb1 + zb2 , wb1 + wb2 + 2〈zb1 , zb2〉), (1)
γb = (γzb, γwb + (γ2 − γ)‖zb‖2). (2)

By the two operations above, the convex hull of a set of balls B = {b1, . . . , bn} is
the set of balls conv(B) = {∑i γibi |

∑
i γi = 1 and γi ≥ 0 for all i = 1, . . . , n}.

It is straightforward to verify that if a ball b is orthogonal to every ball bi ∈
{b1, . . . , bn}, then b is orthogonal to every ball b′ ∈ conv(b1, . . . , bn).

Skin Surfaces. Let b be a weighted point and t ∈ R, we define bt = (zb, twb). For
a set of balls B, Bt is defined as Bt = {bt | b ∈ B}.

For 0 ≤ t ≤ 1, the skin body of a set of balls B is defined as

bodyt(B) =
⋃

conv(B)t,

that is, the set of points obtained by shrinking all balls in the convex combination
of B. The skin surface is the boundary of the skin body of B, denoted by skint(B).
Note that

⋃
B = body1(B). We cite here an important relation between a union

of balls
⋃

B and the skin body that it generates.

Theorem 2. [5] The union of balls
⋃
B is homeomorphic to bodyt(B), for 0<

t<1.

5 Approximating a Polygonal Object with the Skin
Surface

To approximate a polygonal object with a union of balls, we start by constructing
a set of balls B such that KB is an ε2-SAC of the boundary of the object. Then
we use the associated orthogonal balls B⊥ to approximate the object O.

In this section we will show that the set of balls B⊥ ∪ B−1 will generate a
skin body that approximates the object well too, as stated in Theorem 3 below.
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Theorem 3. For all 0 ≤ t ≤ 1, the skin body bodyt(B⊥∪B−1) is homeomorphic
to the object O. Moreover, the Hausdorff distance between them is at most ε.

Proof. All balls in B−1 have negative weights, thus,
⋃

(B⊥∪B−1) =
⋃

B⊥. By
Theorem 1,

⋃
B⊥⊆O, thus, it follows that skint(B⊥ ∪B−1)⊆⋃(B⊥ ∪B−1) =⋃

B⊥ ⊆ O.
The homeomorphism follows from Theorem 2 that skint(B⊥∪B−1) is home-

omorphic to
⋃

(B⊥ ∪ B−1) =
⋃

B⊥ which is homeomorphic to O(Theorem 1).
The proof for the Hausdorff nearness part is presented in the next subsection.

5.1 Proof of the Hausdorff Nearness in Theorem 3

Note that for every point p in the object O, there is a weighted point b ∈
conv(B⊥ ∪ B−1) such that zb = p. In other words, O ⊆ Z where Z = {zb | b ∈
conv(B⊥ ∪B−1). In view of this, it suffices to prove the following lemma.

Lemma 3. For every ball b ∈ conv(B⊥ ∪ B−1) where zb ∈ O, if wb < 0 then
there exists a ball b′ ∈ conv(B⊥ ∪B−1) such that wb′ > 0 and ‖zb − zb′‖ ≤ ε.

We note that the object O can be partitioned into tetrahedra of Delaunay
complex DB⊥∪B

1. We made a few simple observations concerning the tetrahedron
of DB⊥∪B which is contained inside O.

Fact 1. Let X = {b1, . . . , b4} such that conv(zX) is a tetrahedron in DB⊥∪B

and is contained inside O. Then,

1. At least one of the balls in X is a ball in B⊥.
2. If bi ∈ X ∩B⊥ and bj ∈ X ∩B then bi and bj are orthogonal to each other.
3. The simplex conv(zB∩X) is a simplex in KB, i.e. conv(zB∩X) ⊆ |P|.

Statements 1 and 2 are pretty straightforward. The intuition of Statement 3 is
as follows. Let X ′ = X ∩B. It is clear when card(X ′) = 1. For card(X ′) = 2 or
3, assume to the contrary that conv(zX′) /∈ KB. Since |KB| = |P|, the simplex
conv(zX′) is in the interior of O. Then, there exist at least 5− card(X ′) balls of
B⊥ which are orthogonal to every ball in X ′2. These balls of B⊥ make νX = ∅,
thus, yields a contradiction that conv(zX) is a Delaunay tetrahedron. Therefore,
conv(zX′) ∈ KB, where X ′ = X ∩B.

In view of Statement 3 in Fact 1, we categorize the tetrahedra of DB⊥∪B

within O into four types according to card(X ∩B). We illustrate it in Figure 1.

1. Tetrahedron type I is a tetrahedron where card(X ∩B) = 1.
In Figure 1, b1 ∈ B and b2, b3, b4 ∈ B⊥.

1 Note that DB⊥∪B may not be the same as DB⊥∪B−1 . The object O may not be
partitioned into tetrahedra of DB⊥∪B−1 .

2 That is, if card(X ′) = 2, then dim(conv(zX′)) = 1. So, conv(zX′) is incident to at
least three tetrahedra in DB and each tetrahedron corresponds to one ball in B⊥.
Similarly, if card(X ′) = 3, then conv(zX′) is incident to two tetrahedra in DB and
each tetrahedron correspond to one ball in B⊥.
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Fig. 1. The bold point in type I, the bold edge in type II and the the shaded triangle
in the type III indicate that they are in KB, thus in the boundary of the object. None
of the vertices in the type IV tetrahedron belongs to B.

2. Tetrahedron type II is a tetrahedron where card(X ∩B) = 2.
In Figure 1, b1, b2 ∈ B and b3, b4 ∈ B⊥.

3. Tetrahedron type III is a tetrahedron where card(X ∩B) = 3.
In Figure 1, b1, b2, b3 ∈ B and b4 ∈ B⊥.

4. Tetrahedron type IV is a tetrahedron where card(X ∩B) = 0.
In Figure 1, all b1, b2, b3, b4 ∈ B⊥.

In view of this, to prove Lemma 3 it is sufficient to prove the following.

Claim. Let conv(zX) ∈ DB⊥∪B and located inside O. For every ball b ∈ conv(X),
if wb < 0 then there exists a ball b′∈conv(X) such that wb′ >0 and ‖zb−zb′‖≤ε.

We divide the proof of the claim according to card(X ∩B), that is, the type of
the tetrahedron that contains zb. If card(X ∩B) = 4 then all balls b ∈ conv(X)
have weights wb > 0.

The following Lemma 4 states that all points in conv(b−1
1 , b2, b3, b4) (i.e. in

tetrahedron type I) with negative weights are located within the ε-neighborhood
of zb−1

1
. This immediately implies the validity of claim for tetrahedron type I.

Lemma 4. Let (p, w) ∈ conv(b−1
1 , b2, b3, b4). If w ≤ 0 then ‖p− zb−1

1
‖ ≤ ε.

Proof. Let

(p, w) = γ1b
−1
1 + γ2b2 + γ3b3 + γ4b4

= γ1b
−1
1 + (1− γ1)b′,

where b′ = 1
1−γ1

∑4
i=2 γibi and

∑
γi = 1 and γi ≥ 0, for i = 1, . . . , 4. Since

b2, b3, b4 are all orthogonal to b1, then b′ is also orthogonal to b1, i.e. wb′ +wb1 =
‖zb1 − zb′‖2. We apply the formula of combination of weighted points:

w = (1− γ1)wb′ + γ1wb−1
1

+ (γ2
1 − γ1)‖zb′ − zb−1

1
‖2.
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Since w ≤ 0, we arrange the terms into

(γ2
1 − γ1)‖zb′ − zb−1

1
‖2 − γ1(wb′ + wb1) + wb′ ≤ 0 (3)

γ2
1‖zb′ − zb−1

1
‖2 − 2γ1‖zb′ − zb−1

1
‖2 ≤ −wb′ (4)

γ2
1‖zb′ − zb−1

1
‖2 − 2γ1‖zb′ − zb−1

1
‖2 + ‖zb′ − zb−1

1
‖2 ≤ ‖zb′ − zb−1

1
‖2 − wb′ (5)

(γ1 − 1)2‖zb′ − zb−1
1
‖2 ≤ wb1 (6)

(1− γ1)2‖zb′ − zb−1
1
‖2 ≤ ε2 (7)

‖p− zb−1
1
‖ ≤ ε (8)

From Inequality 3 to Inequality 4 and Inequality 5 to Inequality 6, we apply
wb′ +wb1 = ‖zb1−zb′‖2. From Inequality 7 to Inequality 8, we apply ‖p−zb−1

1
‖ =

(1− γ1)‖zb′ − zb−1
1
‖.

The validity of the claim for tetrahedra types II and III is presented as
Lemmas 5 and 6 below. Lemma 5 states that all points in conv(b−1

1 , b−1
2 , b3, b4)

(i.e. in tetrahedron type II) with negative weights are located within the ε-
neighborhood of conv(zb−1

1 ,b−1
2

). Similarly, Lemma 6 states that all points in
conv(b−1

1 , b−1
2 , b−1

3 , b4) (i.e. in tetrahedron type III) with negative weights are
located within the ε-neighborhood of conv(zb−1

1 ,b−1
2 ,b−1

3
). Both proofs are just a

slight twist of the proof of Lemma 4 and we omit them.

Lemma 5. Let (p, w) = conv(b−1
1 , b−1

2 , b3, b4). If w ≤ 0 then there exists b′ ∈
conv(b−1

1 , b−1
2 ) such that ‖p− zb′‖ ≤ ε.

Lemma 6. Let (p, w) = conv(b−1
1 , b−1

2 , b−1
3 , b4). If w ≤ 0 then there exists b′ ∈

conv(b−1
1 , b−1

2 , b−1
3 ) such that ‖p− zb′‖ ≤ ε.

6 Discussion

One future direction is to implement the same idea in approximating smooth
objects with skin surfaces. Amenta et.al [1] showed that given a sufficiently
dense sample points on a smooth surface, the set of polar balls obtained can be
used to approximate the object well. There is an analogy between such approach
with our method here. We can view the ε-SAC constructed as the sample points
and B⊥ as the polar balls.

By appropriately assigning certain weights to the sample points and taking
the polar balls, we hope to be able to approximate the smooth object by a skin
surface. At this point, the usefulness of this idea is still under investigation.
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Basis of Solutions for a System of Linear Inequalities
in Integers: Computation and Applications

D. Chubarov and A. Voronkov

The University of Manchester

Abstract. We define a basis of solutions of a system of linear inequalities and
present a general algorithm for finding such a basis. Our algorithm relies on an al-
gorithm for finding a Hilbert basis for the set of nonnegative solutions of a system
of linear inequalities and can be used in conjunction with any such algorithm.

1 Introduction

It is a classical combinatorial fact that the set of integral solutions of a system of linear
inequalities can be represented as the set of nonnegative linear combinations of a finite
number of vectors. For instance, the set of nonnegative integral solutions of a system of
linear inequalities can be represented by the Hilbert basis as defined in [9].

In this paper we consider bases for the set of all integral solutions of a system of
linear inequalities.

Definition 1 (Basis of Solutions). A set of vectors H generates the set of vectors S
if S is the set of all linear combinations of vectors from H with nonnegative integer
coefficients. Let S be the set of integral solutions of a system of linear inequalities
Ax ≥ 0. A set of vectors H ⊂ S is a basis of solutions of Ax ≥ 0 if H generates S
and S is not generated by any proper subset of H .

When the system has only non-negative solutions (for example, when it contains the
subsystem x ≥ 0), the basis of solutions is unique and usually called the Hilbert basis.

A number of algorithms for finding the Hilbert basis have been considered in the
literature. We are interested in the problem of finding bases of solutions over integers.
This problem has a number of applications, for example in infinite-state model checking
or constraint satisfaction over integers.

In this paper we define a general algorithm for finding a basis of solutions. Our
algorithm relies on an algorithm for finding the Hilbert basis and can be used in con-
junction with any such algorithm. It can also be used in conjunction with an algorithm
for finding the basis for systems with a matrix of full column rank [12] or in conjunction
with an incremental basis finding algorithm [25].

2 Related Work

Hilbert bases were introduced in computer science in the context of automated reason-
ing by Stickel [29], and by Giles and Pulleyblank [9] in the context of combinatorial
� Supported by an ORSAS grant.

J. Jędrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 260–270, 2005.
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optimization. Giles and Pulleyblank were also the first to introduce the name, which
stems from Hilbert’s result on the existence of a finite generating set for the set of non-
negative integral solutions of a system of linear equations [16]. Since their introduction
the Hilbert bases gave rise to several theoretical questions, such as the question of find-
ing an integral analogue of Carathéodory theorem initially posed by Sebő [4,28] and
the question of upper bounds on the elements of a Hilbert basis [13,18,23].

Two major classical results regarding Hilbert bases are the existence of a finite
Hilbert basis for the set of solutions of any system of linear inequalities [10] and the
uniqueness of the Hilbert basis for any system of linear inequalities in nonnegative in-
tegers [30]. The latter is generalized to systems of linear inequalities with a matrix of
full column rank.

Recently Hilbert bases found several new applications in computer science. Hilbert
bases serve as a representation for the complete solution of the unification problem
for terms with associative and commutative function symbols (AC-unification) [29].
Hilbert bases are used in integer programming as test sets [1,27]; in model checkers for
infinite state systems to speed up computations [25]; in CLP framework a solver based
on Hilbert bases can serve as a truly incremental solver for linear inequality constraints
with unbounded integer variables [2]. The main advantage of a solver based on Hilbert
bases in CLP setting and in model checking is the way it can be used to specialize
entailment tests for systems of non-homogeneous linear inequalities.

Most of the existing algorithms for computing Hilbert bases are defined for com-
puting the Hilbert basis of the set of nonnegative integral solutions of a system of linear
equations or inequalities. There are several algorithms available for this case starting
from the algorithm for a single linear equation proposed by Huet [17], there is an al-
gorithm for systems of linear equations by Domenjoud [5] and algorithms for finding
Hilbert bases for systems of linear inequalities directly without introducing slack vari-
ables by Ajili and Contejean [2], Pasechnik [22], Tomas and Filgueiras [7,8]. The algo-
rithm by Hemmecke [12] finds the basis of solutions of a system with a matrix of full
column rank. A recent survey of algorithms for Hilbert basis computation can be found
in [3].

One reason why nonnegative integral solutions are important comes from applica-
tions to AC-unification where integral vectors represent monomials. On the contrary,
the systems of linear inequalities that model checkers need to solve do not always have
this restriction.

In this paper we present an algorithm for computing a Hilbert basis of the set of
integral solutions of a system of linear inequalities with a matrix with nonzero column
defect. We show that the bases of solutions can be used to solve the entailment prob-
lem for systems of non-homogeneous linear inequalities in integers and therefore are
suitable for applications in CLP framework and in model checking.

The algorithm presented in the paper relies significantly on the use of the Hermite
normal form theorem. By using it, we avoid introducing new variables and show how
existing algorithms for the nonnegative case can be generalised to finding the Hilbert
basis of a system of inequalities with a matrix of full column rank.
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3 Preliminaries

Unless otherwise stated we use notation and terminology from Schrijver [26].
If a is an integral vector and b is a number, then ax ≥ b is called a linear inequality

and ax = b is called a linear equation. If A is an m × n matrix and b is a vector of
dimension m, then Ax ≥ b is called a system of linear inequalities. A linear inequality
ax ≥ b is called homogeneous if b = 0 and non-homogeneous otherwise.

We only consider integral matrices here, that is matrices such that all their entries
are integer numbers. If a matrix A has m rows and n columns, we say that A is an m×n
matrix. The rank of a matrix A is the number of linearly independent columns in A. If
r is the rank of an m × n matrix A then the number d = n − r is called the column
defect of A. A matrix such that its column defect is zero is also called a matrix of full
column rank.

It is sometimes convenient to look at a system of linear inequalities as a conjunction
of individual inequalities. Given a system of linear inequalities Ax ≥ b and a new
inequality ax ≥ b on the same variables, we write Ax ≥ b ∧ ax ≥ b for the system
of linear inequalities with a matrix obtained by adding the row a to A and the right
hand side obtained by inserting a new component b into the vector b at corresponding
position.

If S is a set of vectors of the same dimension and A is a matrix of corresponding
dimensions then by AS we denote the set {As | s ∈ S}.

By Er we denote the r×r identity matrix and by Om,n we denote the m×n matrix
of zeros.

Non-decomposable Solutions

Let H be a set of vectors. In the rest of this paper we denote the set that the set H
generates by Z+(H).

Definition 2 (directed set). A set B of integral vectors is a directed set if no nontrivial
linear combination with nonnegative rational coefficients of vectors from B is equal
to 0.

Let S be a set of integral vectors. A vector v ∈ S is called non-decomposable in
S if v cannot be represented as a sum of two nonzero vectors from S. In particular, if
S is the set of integral solutions of a system of linear inequalities Ax ≥ 0, and v is
non-decomposable in S then v is called non-decomposable solution of the system of
linear inequalities.

If the set of solutions of a system of linear inequalities is not a directed set then it
does not contain any non-decomposable solutions. Note that if the system of linear in-
equalities has a matrix with a nonzero column defect then all solutions are
decomposable.

On the other hand, in the case of a system of linear inequalities with a full column
rank we have the following result due to van der Corput.

Lemma 1 (van der Corput’s lemma). Let Ax ≥ 0 be a system of linear inequalities
with a matrix A of full column rank, then it has a unique basis of solutions which
consists of all non-decomposable solutions.
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Lattices

Our solution to the problem of finding Hilbert bases is based on some classical results
from the theory of integral lattices.

A set of integral vectors Λ is called a lattice of dimension d if there exist linearly
independent integral vectors a1, ..., ad in Zn such that

Λ =

{
d∑

i=1

λiai

∣∣∣λi ∈ Z

}
.

The set {a1, ...,ad} is called a lattice basis of the lattice lambda Λ.
Let Ax = 0 be a system of linear equations with a matrix A of column defect d. It

is a classical result of 19th century number theory that the set of all integral solutions of
the system of linear equations forms a lattice of dimension d (for modern presentation
see [26]).

Lemma 2. A basis of solutions of a system of linear equations can be found in polyno-
mial time.

Proof. A lattice basis of a lattice given by a system of linear equations can be found in
polynomial time ([26], Chapter 4).

Let Ax = 0 be a system of equations with a matrix A of column defect d and let Λ
denote the corresponding lattice.

Let {a1, ...,ad} be a lattice basis of L. Every vector in L can be represented as a lin-
ear combination of vectors a1, ...,ad with integral coefficients, therefore it can also be
represented as a nonnegative linear combination of the vectors a1, ...,ad,−a1, ...,−ad.
Since the vectors in the lattice basis are linearly independent, these 2d vectors form a
basis of solution of the system of linear equations.

Observe that there also exists a basis of solutions that consists of only d+1 vectors.
One can consider, for instance, the set {a1,..., ad, −a1, ...,−ad}. ��

Hermite Normal Form

The algorithmic aspect of the proposed solution to the problem of finding Hilbert bases,
as will be seen later, is based on the existence of a polynomial algorithm for transform-
ing a matrix into a lower triangular form by elementary column operations. Existence
of such an algorithm is the essence of the following Hermite normal form theorem.

Schrijver ([26], Section 4.1) gives a definition of Hermite normal form only for
matrices of full row rank. In this paper we will need a definition of Hermite normal
form for matrices with arbitrary row defect. We assume the following definition of
Hermite normal form as given by Micciancio and Warinschi [20]. If a matrix is of full
row rank, then this definition coincides with the definition of Schrijver.

Definition 3 (Lower triangular matrix, Hermite normal form). An m×n matrix T
of rank r is called a lower triangular matrix if Tpq = 0 for every entry Tpq in row p and
column q, such that p < q.

A lower triangular matrix T is in Hermite normal form if all entries are nonnegative
and there exists a sequence of indices 1 ≤ j1 < ... < jr ≤ m such that the following
conditions are satisfied:
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a) A row with the index ji has a unique maximal entry located in ith column.
b) If p < ji and q ≥ i then the entry in row p and column q is equal to zero.

An elementary column operation on a matrix is either adding an integral multiple
of one column to another column or multiplying a column by -1.

Any sequence of elementary column operations on an m×n matrix is equivalent to
right multiplication by an integral square matrix in a specific form (see Schrijver [26],
Theorem 4.3). Such integral square matrices are called unimodular.

Here we state the Hermite normal form theorem in a generalised form correspond-
ing to the above definition of Hermite normal form.

Theorem 1 (Hermite normal form theorem). For any integral matrix A there exists
a unimodular matrix U and a unique matrix T in Hermite normal form such that AU =
T . The matrix T and the matrix U can be found in polynomial time.

Complexity

The complexity of the problem of computing a basis of solutions can be assessed with
at least two complexity measures. One is the time complexity of the algorithm, which
outputs the basis in some order, another is the cardinality of the resulting basis.

For Hilbert bases these complexity measures were studied before. The cardinality
of the Hilbert basis can be doubly exponential in the number of variables of the system
[19]. Hermann, Juban and Kolaitis [15] show that the problem of counting the cardinal-
ity of the Hilbert basis is in the counting class #NP.

The problem of testing if a given vector belong to the Hilbert basis is coNP-complete
[15] and the problem of recognizing the Hilbert basis is coNP-complete even if the
coefficients of the system are given in unary [6].

The above complexity results represent the worst case. There are nontrivial classes
of systems of linear inequalities with lower complexity of the problems related to find-
ing the Hilbert basis. One example is the class of systems of linear inequalities with
totally unimodular matrices[26].

4 Basis of Solutions. The Case of Nonzero Column Defect

Let A be an m × n integral matrix and Ax ≥ 0 be a system of linear inequalities. Let
T be the Hermite normal form of A and U be a unimodular matrix such that T = AU .
From the definition of Hermite normal form it follows that if A is of nonzero column
defect d then the last d columns of T are vectors of zeros.

Let r = n− d be the rank of A. Let A∗ be the matrix formed by the first r columns
of T , Q be the n × r matrix formed by the first r columns of U and X be the n × d
matrix formed by the last d columns of U .

This can be presented in a more compact form by the following equations:

T = AU U = [Q X ] A∗ = AQ AX = Om,d T = [A∗ Om,d].

The matrix A∗ is of full column rank, therefore by van der Corput’s lemma the basis
of solutions of A∗x ≥ 0 is the set of all non-decomposable solutions. Let H∗ denote
this basis of solutions.
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This theorem splits the problem of finding a basis of solutions of an arbitrary system
of linear inequalities into a problem of finding a basis of solutions HL of a system of
linear equations and a problem of finding a basis of solutions H∗ of a system of linear
inequalities with a matrix of full column rank.

Theorem 2. Let Q and H∗ be as defined above and let HL be a basis of solutions of
the system of linear equations Ax = 0. The set H = HL ∪QH∗ is a basis of solutions
for the system of linear inequalities Ax ≥ 0.

The proof reduces to routine checking of the two conditions in the definition of the basis
of solutions.

Observe, that the columns of the matrix X form a lattice basis of Ax = 0, therefore
a basis of solutions HL for this system of linear equations can be found immediately by
Lemma 2.

Essentially, this theorem can be considered as an algorithm for computing a basis of
solutions which relies on an algorithm for finding a basis of solutions in a special case
of a system of linear inequalities with a matrix of full column rank.

A number of algorithms is available in the literature for computing the Hilbert basis
of the set of nonnegative solutions of a system of linear inequalities. In the next section
we consider the problem of finding a basis of solutions of a system of linear inequalities
with a matrix of full column rank.

5 Basis of Solutions. The Case of a Full Column Rank

A Hilbert basis of the set of nonnegative solutions of a system of a linear inequalities
Ax ≥ 0 is the basis of solutions of a system of linear inequalities

Ax ≥ 0, x ≥ 0.

This system of linear inequalities is a system with a matrix of full column rank.
With the following theorem any algorithm for finding the Hilbert basis of the set of

nonnegative solutions of a system of linear inequalities can be used to find the basis of
solutions of a system of linear inequalities of full column rank.

Theorem 3. Let A be a matrix of full column rank, then there exists an unimodular
matrix B such that a vector y is a non-decomposable solution of ABy ≥ 0, y ≥ 0
if and only if By is a non-decomposable solution of Ax ≥ 0.

Proof. To prove the theorem we find a matrix B such that the columns of B generate a
superset of the set of solutions of Ax ≥ 0. If B is such a matrix, then every solution to
Ax ≥ 0 is a linear combination of columns of B with nonnegative integral coefficients
and therefore can be represented as x = By for some integral vector y ≥ 0. The
one-to-one correspondence between the sets of solutions follows.

Without loss of generality we may assume that A is initially in Hermite normal
form, otherwise we can compute the normal form T and the unimodular matrix U , such
that T = AU , and let A = T and B = UB. We may further assume that the elements
in each row of A are co-prime. For simplicity we also assume that A is of full row rank.
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Then the first two inequalities are of the form x1 ≥ 0 ax1 + bx2 ≥ 0, where
0 ≤ a < b.

Consider a system of linear inequalities A′x ≥ 0, where all inequalities are the
same, but the second inequality is replaced by ax1 + x2 ≥ 0. Since b ≥ 1, it follows
that if x is a solution of the original system, then bax1+bx2 ≥ ax1+bx2 ≥ 0. Therefore
the set of solutions of A′x ≥ 0 is a superset of solutions of the original system. Let U1

be a unimodular matrix such that A′U1 is in the Hermite normal form. Note that U1

corresponds to adding the second column to the first column with coefficient−a.
We can repeat this process of widening the set of solutions of the original system as

follows. Let Ak be an m × n matrix in Hermite normal form such that its first k rows
are of the form [Ek Ok,(n−k)] and let a1x1 + ...+ akxk + bxk+1 ≥ 0 be the inequality
defined by the row k + 1. Let A′k be the matrix of a system of linear inequalities where
all inequalities are the same, but the inequality defined by row k + 1 is replaced by
a1x1 + ... + akxk + xk+1 ≥ 0. As in the case of two inequalities, the special form of
the first k rows guarantees that the set of solutions of this system is a superset of the set
of solutions of Akx ≥ 0. Let Uk be a unimodular matrix such that A′kUk is in Hermite
normal form and let Ak+1 = A′kUk. Note that Uk corresponds to adding column k + 1
to each of the first k columns with coefficient−ak.

Starting with A1 = A, this process terminates with the matrix An = E and a
sequence of unimodular matrices Un−1, ..., U1.

Observe that if V is a unimodular matrix, A and B are such that AV = B and the
vectors g1, ...,gn generate the set of solutions of Bx ≥ 0 then the vectors V g1, ..., V gn

generate the set of solutions of Ax ≥ 0. Using this observation we can see that the non-
negative unit vectors e1, ..., en generate the set of solutions of Anx ≥ 0 and therefore
Un−1e1, ..., Un−1en generate the set of solutions of a system of linear inequalities with
the matrix A′n−1. By construction, these vectors generate a superset of the set of solu-
tions of An−1x ≥ 0.

Let B = U1 · . . . ·Un−1. It follows that the columns of B generate a superset of the
set of solutions of Ax ≥ 0. ��

Note that Theorem 3 provides a polynomial algorithm for finding the matrix B. If A
is a matrix of rank r then to find the matrix B it is necessary to multiply r unimodular
matrices of a special form. Each unimodular matrix has ones on its diagonal and with
the exception of the diagonal contains nonzero entries only in one row.

With the help of theorem 3 any algorithm for computing the Hilbert basis of a
system of linear inequalities can be used to compute the basis of solutions of a system
of linear inequalities with a matrix of full column rank.

It must be noted that this is not the only available method of computing the basis of
solutions. First, there are algorithms capable of computing the set of non-decomposable
solutions of a system of linear inequalities with a matrix of full column rank by defi-
nition. One example of such algorithms is the algorithm by Hemmecke [12]. For such
algorithms Theorem 3 is not necessary.

Among other algorithms we distinguish algorithms that we call incremental. The
input of an incremental algorithm for finding a Hilbert basis is a directed set of vectors
B and a system of linear inequalities Ax ≥ 0. The algorithm finds all vectors non-
decomposable in the set {v | v ∈ Z+(B) and Av ≥ 0}. To find the Hilbert basis of the
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set of nonnegative solutions of a system of linear inequalities an incremental algorithm
takes as input the set of nonnegative unit vectors and a system of linear inequalities.
Incremental algorithms are described in [2] and in [25].

In order to apply an incremental algorithm to find a basis of solutions of a system
of linear inequalities with a matrix of full column rank one can find the matrix B as
in Theorem 3 and give its columns and the system of linear inequalities as input to the
algorithm.

The remaining algorithms are black box algorithms for computing the Hilbert basis
for the set of solutions of a system of linear inequalities of the form

Ax ≥ 0, x ≥ 0.

With such algorithms Theorem 3 is applied directly.

6 Non-homogeneous Inequalities

Basis of solutions is defined for systems of homogeneous linear inequalities.
For system of non-homogeneous linear inequalities a basis of solutions as defined

above does not exist, since the sum of two nonzero solutions to a homogeneous in-
equality may not itself be a solution. In the case of non-homogeneous inequalities we
can define a basis of the set of solutions that consists of two parts.

Definition 4 (Basis of solutions for a system of nonhomogeneous inequalities). A
pair of sets 〈H0, H1〉 is a basis of solutions for a system of non-homogeneous linear
inequalities Ax ≥ b if the following two conditions hold.

a) An integral vector v satisfies Av ≥ b if and only if v can be represented as

v = v0 + v1,

where v0 is a nonnegative integral linear combination of vectors from H0 and v1 ∈
H1.

b) If a vector v in H1 is such that Av ≥ 0, then v = 0.

The algorithm for computing a basis of solutions for a system of homogeneous
linear inequalities can be applied to find a basis of a system of non-homogeneous linear
inequalities.

Given a system of non-homogeneous linear inequalities

Ax ≥ b (1)

with an m× n matrix A, consider a system of homogeneous linear inequalities

A′y ≥ 0, (2)

with the matrix

A′ =
[

1 0 . . . 0
−b A

]
(3)
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Let H be a basis of solutions for the system of linear inequalities in (3). Let π :
Zn+1 → Zn denote the function that takes the last n components of its argument and
let ρ : Zn+1 → Z denote the function that takes the first component of its argument.

Define
H0 = {π(h) | h ∈ H and ρ(h) = 0}

and
H1 = {π(h) | h ∈ H and ρ(h) = 1}.

The pair of sets 〈H0, H1〉 is a basis of the system of non-homogeneous inequalities
as the following lemma shows.

Theorem 4. A vector v is a solution to (2) if and only if it can be represented as v =
v0 +v1, where v0 is a linear combination of vectors from H0 with nonnegative integral
coefficients and v1 ∈ H1.

The proof is standard.

7 Entailment Problem

To conclude the paper we would like to present an example of the use of bases of
solutions in applications. In this section we consider the use of bases of solutions to
obtain a specialized algorithm for checking entailment for systems of linear inequalities.

The entailment problem for systems of linear inequalities is to check if the set of
integral solutions of one system is contained in the set of solutions of another system.
We say that the system of linear inequalities A1x ≥ b1 entails the system of linear
inequalities A2x ≥ b2 if every integral solution of the second system is a solution to
the first system. It easily follows from the result of Papadimitriou [21] on the complexity
of the integer programming problem that the entailment problem is co-NP complete.

Let the sets 〈H0, H1〉 be a basis for the system of linear inequalities A2x ≥ b2. In
[24] the following criterion for the entailment problem is stated.

Corollary 1. The system A1x ≥ b1 entails A2x ≥ b2 if

a) A1h ≥ b1 for every h in H1

b) A1h ≥ 0 for every h in H0

It follows that with the knowledge of a basis, the entailment problem becomes easy.
In a situation where many instances of the entailment problem have to be solved

where the second system remains the same, computing a basis once and using this
criterion may be more efficient then solving each instance separately. When the number
of instances grows, the effect of economy of scale comes into play.

Essentially, specialization of entailment tests based on the use of bases of solutions
allows one to perform a linear time (in the size of the basis) computation instead of solv-
ing instances of a co-NP complete problem. Rybina and Voronkov [24] use this method
in the nonnegative case and present empirical evidence confirming that the method per-
forms much better then other ways of solving instances of entailment problem during
the run of a model checker. A related technique is used in model checkers for transition
systems with variables that range over the reals [11] and is implemented in state of the
art tools like HyTech [14]. Using the results presented in this paper this approach can be
applied to systems of linear inequalities that have matrices with nonzero column defect.
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Abstract. Two mobile agents (robots) having distinct labels and located
in nodes of an unknown anonymous connected graph, have to meet. We
consider the asynchronous version of this well-studied rendezvous prob-
lem and we seek fast deterministic algorithms for it. Since in the asyn-
chronous setting meeting at a node, which is normally required in ren-
dezvous, is in general impossible, we relax the demand by allowing meet-
ing of the agents inside an edge as well. The measure of performance of a
rendezvous algorithm is its cost: for a given initial location of agents in a
graph, this is the number of edge traversals of both agents until rendezvous
is achieved. If agents are initially situated at a distance D in an infinite
line, we show a rendezvous algorithm with cost O(D|Lmin |2) when D is
known and O((D + |Lmax|)3) if D is unknown, where |Lmin| and |Lmax|
are the lengths of the shorter and longer label of the agents, respectively.
These results still hold for the case of the ring of unknown size but then we
also give an optimal algorithm of cost O(n|Lmin |), if the size n of the ring
is known, and of cost O(n|Lmax|), if it is unknown. For arbitrary graphs,
we show that rendezvous is feasible if an upper bound on the size of the
graph is known and we give an optimal algorithm of cost O(D|Lmin |) if
the topology of the graph and the initial positions are known to agents.

1 Introduction

The Problem. Two mobile agents (robots) initially located in nodes of a net-
work, modeled as an undirected connected graph, have to meet. This task is
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known in the literature as the rendezvous problem in graphs. It was mostly
studied in the synchronous setting and meeting was required at a node. In this
paper we study the asynchronous version of the rendezvous problem. In this set-
ting meeting at a node may be impossible even in the two-node graph, as the
adversary can desynchronize the agents and make them visit nodes at different
times. Thus we have to relax the requirement and allow agents to meet either
in a node or inside an edge. Such a definition of meeting is natural, e.g., when
agents are robots traveling in a labyrinth. We seek efficient deterministic algo-
rithms to solve this asynchronous rendezvous problem.

If nodes of the graph are labeled then agents can decide to meet at a predeter-
mined node and the rendezvous problem reduces to graph exploration. However,
in many applications, when rendezvous is needed in a network of unknown topol-
ogy, such unique labeling of nodes may be unavailable, or agents may be unable
to perceive such labels. Hence it is important to design rendezvous algorithms
for agents operating in anonymous graphs, i.e., graphs without unique labeling
of nodes. Clearly, the agents have to be able to locally distinguish ports at a
node: otherwise, an agent may even be unable to visit all neighbors of a node
of degree 3 (after visiting the second neighbor, the agent cannot distinguish the
port leading to the first visited neighbor from that leading to the unvisited one).
Consequently, agents initially located at two nodes of degree 3, might never be
able to meet. Hence we make a natural assumption that all ports at a node are
locally labeled 1,...,d, where d is the degree of the node. No coherence between
those local labelings is assumed. When an agent leaves a node, it is aware of the
port number by which it leaves and when it enters a node, it is aware of the
entry port number and of the degree of the node. Unless otherwise stated, we do
not assume any knowledge of the topology of the graph or of its size. Likewise,
agents are unaware of the distance separating them.

The Model. The network. The network is modeled as an undirected connected
graph. Since we allow meetings inside an edge, we have to avoid unwanted cross-
ings. Thus, for simplicity, we consider an embedding of the underlying graph in
the three-dimensional Euclidean space, with nodes of the graph being points of
the space and edges being pairwise disjoint line segments joining them. For any
graph such an embedding exists. Mobile agents are modeled as points moving
inside this embedding.

Adversarial Decisions, Definition of Rendezvous and Its Cost. An agent, cur-
rently located at a node, does not know the other endpoints of yet unexplored
incident edges. If the agent decides to traverse such a new edge, the choice of the
actual edge belongs to the adversary, as we are interested in the worst-case per-
formance. This choice given to the adversary captures the fact that the topology
and the orientation of the network are unknown to agents. Clearly, sometimes
an agent may decide to traverse an already known edge, e.g., when it traverses
an edge, goes back and then traverses it again. An algorithm for agent with
label L depends on L and causes the agent to make the following decision at any
node of the graph: either take a specific already explored incident edge, or take
a yet unexplored incident edge (in which case the choice of the edge is made by
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the adversary). There is another important choice given to the adversary, this
one capturing the asynchronous characteristics of the process. When the agent,
situated at a node v at time t0 has to traverse an edge modeled as a segment
[v, w], the adversary performs the following choice. It selects a time point t1 > t0
and any continuous function f : [t0, t1] −→ [v, w], with f(t0) = v and f(t1) = w.
This function models the actual movement of the agent inside the line segment
[v, w] in the time period [t0, t1]. Hence this movement can be at arbitrary speed,
the agent may go back and forth, as long as it does not leave the segment and
the movement is continuous. We say that at time t ∈ [t0, t1] the agent is in point
f(t) ∈ [v, w]. Moreover, the adversary chooses the starting time of the agent.
Hence an agent’s trajectory is represented by the concatenation of the functions
chosen by the adversary for consecutive edges that the agent traverses. (Recall
that the choice of the edge incident to a current node also belongs to the adver-
sary, whenever the edge is yet unexplored.) For a given algorithm, given starting
points of agents and a given sequence of adversarial decisions in an embedding
of a graph G, a rendezvous occurs if both agents are at the same point at the
same time. We say that rendezvous is feasible in a given graph, if there exists
an algorithm for agents such that for any embedding of the graph, any starting
points and any sequences of adversarial decisions, the rendezvous does occur.
The cost of rendezvous is defined as the worst-case number of edge traversals
by both agents (the last partial traversal counted as a complete one for both
agents), where the worst case is taken over all decisions of the adversary.
Labels and Local Knowledge. If agents are identical, i.e., they do not have dis-
tinct identifiers, and execute the same algorithm, then deterministic rendezvous
is impossible even in the oriented ring: the adversary will make the agents move
in the same direction at the same speed, thus they will never meet. Hence we
assume that agents have distinct identifiers, called labels, which are two different
nonempty binary strings, and that every agent knows its own label. If both agents
knew both labels, the problem could be again reduced to that of graph explo-
ration: the agent with smaller label does not move, and the other agent searches
the graph until it finds it. (This strategy is sometimes called “wait for mommy”.)
However, the assumption that agents know each other may often be unrealistic:
agents may be created in different parts of the network in a distributed fashion,
oblivious of each other. Hence we assume that each agent knows its own label
but does not know the label of the other. The only initial input of a (determinis-
tic) rendezvous algorithm executed by an agent is the agent’s label. During the
execution of the algorithm, an agent learns the local port number by which it
enters a node and the degree of the node.
Notation. Lmin denotes the shorter label and Lmax the longer one, with ties
broken arbitrarily. If L is a label, |L| denotes its length. n denotes the number of
nodes in the graph, and D the distance between initial positions of the agents.

1.1 Our Results

We first look at the case of rendezvous in an infinite line. Besides its intrinsic
interest, this case is important, as the results for the infinite line carry over to
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the case of the ring of unknown size and the cost depends on the initial distance
between agents rather than on the size of the ring. For agents initially situated
at a distance D in an infinite line, we show a rendezvous algorithm with cost
O(D|Lmin|2) when D is known and O((D + |Lmax|)3) if D is unknown, where
|Lmin| and |Lmax| are the lengths of the shorter and longer label of the agents,
respectively. These results still hold for the case of the ring (even of unknown
size) but then we also give an algorithm of cost O(n|Lmin|) (and this is optimal),
if the size n of the ring is known, and of cost O(n|Lmax|), if it is unknown. In
both these algorithms the knowledge of the initial distance D between agents is
not assumed, and for D of the order of n, their complexity is better than that
of infinite line algorithms. On the other hand, for small D and small labels of
agents, the opposite is true. For arbitrary graphs, we show that rendezvous is
feasible if an upper bound on the size of the graph is known, and we give an
optimal algorithm of cost O(D|Lmin|) if the topology of the graph and the initial
positions are known to agents.

It should be noted that asynchronous rendezvous techniques significantly
differ from the synchronous case. An important ingredient in synchronous ren-
dezvous algorithms in graphs is the insertion of idle periods for each of the agents
(depending on its label) during which the other agent walks in the graph and
has the chance of meeting the standing agent. This is, of course, impossible in
the asynchronous setting, as the adversary controls waiting time of the agents.
Instead, the algorithm should be designed to force the agents to move on the
same path in opposite directions sufficiently far to guarantee meeting. This is
complicated by the fact that agents do not have any sense of direction and do
not know each other’s labels which serve as the algorithm’s parameters.

1.2 Related Work

The rendezvous problem has been introduced in [24]. The vast literature on ren-
dezvous (see the book [4] for a complete discussion and more references) can be
divided into two classes: papers considering the geometric scenario (rendezvous in
the line, see, e.g., [11,12,19], or in the plane, see, e.g., [9,10]), and those discussing
rendezvous in graphs, e.g., [2,5]. Most of the papers, e.g., [2,3,7,11,20] consider
the probabilistic scenario: inputs and/or rendezvous strategies are random. In
[20] randomized rendezvous strategies are applied to study self-stabilized token
management schemes. Randomized rendezvous strategies use random walks in
graphs, which have been widely studied and applied also, e.g., in graph travers-
ing [1], on-line algorithms [14] and estimating volumes of convex bodies [17]. A
natural extension of the rendezvous problem is that of gathering [18,20,23,25],
when more than 2 agents have to meet in one location.

Deterministic rendezvous with anonymous agents working in unlabeled
graphs but equipped with tokens used to mark nodes was considered e.g., in [22].
In [26] the authors considered rendezvous of many agents with unique labels. In
[16,21] deterministic rendezvous in graphs with labeled agents was considered.
However, in all the above papers, the synchronous setting was assumed. While
asynchronous rendezvous under geometric scenarios has been studied, e.g., in
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[18], the present paper is, to the best of our knowledge, the first to consider
deterministic asynchronous rendezvous in graphs.

Due to space limitations, proofs are deferred to the journal version.

2 Rendezvous in the Infinite Line

We first observe that a simple modification of the (synchronous) rendezvous
algorithm proposed in [16] can be used to perform asynchronous rendezvous in
an n-node tree in time O(n). Trees have a convenient feature from the point of
view of rendezvous. Every tree has either a central node, defined as the unique
node minimizing the distance from the farthest leaf, or a central edge, defined
as the edge joining the only two such nodes. This suggests the following natural
rendezvous algorithm: explore the tree, find the central node or the central edge,
and try to meet there. Each agent can explore the tree by DFS, keeping a stack
for used port numbers. At the end of the exploration, the agent has a map of
the tree, can identify the central node or the central edge, and can find its way
either to the central node or to one endpoint of the central edge, in the latter case
knowing which port corresponds to the central edge. In the first case, rendezvous
is accomplished after the other agent gets to the central node. In the second case,
both agents traverse the central edge once and they have to meet by the time
the later agent performs this traversal.

However, the above method uses the possibility of exploring the entire tree in
order to construct a map of it. This is impossible, e.g., in the case of the infinite
line. In this section we consider the case when the two agents are initially situated
in an infinite line at distance D. The case of the infinite line is also important
because the obtained results carry over to a ring of arbitrary unknown size and
do not depend on this size.

2.1 Distance D Known to Agents

In this section, we present a rendezvous algorithm with cost O(D|Lmin|2). The
algorithm assumes that the agents know D and it is formulated for an agent
with label L. Each agent has an initial local orientation left-right and these ori-
entations of both agents may be the same or different.

Algorithm Rendezvous-in-Infinite-Line(D) The algorithm consists of two
parts: Label Transformation and Label Execution.
Label Transformation. The Label Transformation part takes the label L of an agent
and produces the label L∗ consisting of a string of |L| zeros, followed by a 1 and then
followed by the string L.
Label Execution. For a given agent, we define the execution of the i-th bit of L∗ as
performing 2iD steps left, (4i + 1)D steps right and (2i + 1)D steps left (resp. 2iD

steps right, (4i + 1)D steps left and (2i + 1)D steps right) if L∗(i) = 0 (resp. if
L∗(i) = 1), according to the agent’s initial local orientation. For an agent with label
L, the Label Execution part consists of consecutive executions of all bits of L∗ from
left to right. The algorithm stops when rendezvous is achieved.
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The following fact is straightforward.

Fact 2.1.

1. The label execution of L∗ requires
∑|L∗|

i=1 (8i + 2)D =
∑2|L|+1

i=1 (8i + 2)D =
O(|L|2D) steps;

2. For any labels L1, L2, if L1 �= L2 then none of the L∗1, L
∗
2 is a prefix of the

other;

The execution of the p-th bit of L∗ can be divided into three segments: the
first segment consists of the first 2pD steps, the second segment is formed by the
next (4p + 1)D steps and finally the last segment consists of the last (2p + 1)D
steps. Let sH(p) be the time when agent H finishes executing the p-th bit of its
transformed label.

Correctness and Analysis. Fix a global left-right orientation of the line.
Below we use the terms “left” and “right” according to this fixed orientation. We
define the direction of an agent H on bit position p as left (resp. right) if the
execution of the first segment of p for H consists of 2pD consecutive steps to the
left (resp. right) from its initial position. It is clear that depending on their local
orientations and on the values of the p-th bit of their transformed labels, the
agents may have either the same or different directions on a given bit position.
When the directions of the agents differ on a given bit position, two situations are
possible during the execution of the first segment of p, depending on the agents’
initial positions: either in the first step the agents move approaching each other
(in this case, we say that the directions are convergent), or they move receding
farther from each other (in this case, we say that the directions are divergent).

Lemma 1. If the agents have different directions on a given bit position p, they
meet by time min{sA(p), sB(p)}.
Proof. Two cases may happen: either (a) the directions are convergent or (b)
they are divergent.

Case (a). Let X be the agent that first completes the execution of the first
segment of the p-th bit of its transformed label. At this time, if Y is already
executing the p-th bit, then they have to meet because they are at distance D and
move approaching each other for more than D steps. If Y is still executing some
previous bit q ≤ p− 1, then it can be at a distance of at most (2(p− 1)+ 1)D =
(2p−1)D steps from its initial position (in some direction), while the first segment
of the pth bit executed by X carries it at distance 2pD, starting towards the
initial position of Y . Again, recalling that their initial positions are at distance
D, they have to meet.

Case (b). Let X be the agent that first completes the execution of the second
segment of the p-th bit of its transformed label. During the second segment, agent
X moves (2p+1)D steps from its initial position, towards Y ’s initial position. As
in the previous case, if Y is still executing some bit q ≤ p− 1 when X completes
the last segment, then Y can be at most (2(p− 1) + 1)D = (2p− 1)D steps (in
any direction) from its initial position: the agents have to meet.
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Assume now that at the time τ when X completes the second segment of the
p-th bit, Y is already executing the p-th bit. In this case, we can observe that dur-
ing the execution of the second segment of their p-th bit, the two agents move
approaching each other. It follows that at time τ , agent Y can be as far from its
initial position as permitted by the execution of the first segment of p, i.e., at most
2pD steps in some direction. Recalling that X and Y ’s initial positions are D steps
apart one from the other, and thatX moves (2p+1)D steps from its initial position
towards Y ’s initial position, agents have to meet by time min{sX(p), sY (p)}.
Theorem 2 (Correctness). Let q be the length of the shortest tranformed label.
Agents must meet by time min{sA(q), sB(q)}.
Proof. In view of Lemma 1, it is enough to show that there exists a bit position
1 ≤ p ≤ q on which the agents have different directions. In fact, if the orientations
of the agents differ, then p = 1; otherwise, in view of part 2 of Fact 2.1, there is
a bit position d ≤ q where the transformed labels differ. In this case, p = d.

Theorem 3 (Analysis). Assume the agents are initially at distance D and D
is known to both of them. Then the cost of Algorithm Rendezvous-in-Infinite-
Line(D) is O(D|Lmin|2).
Proof. Each agent runs the algorithm proceeding from left to right on the trans-
formed label, executing bit by bit. By Theorem 2 we have that the agents must
meet by time min{sA(d), sB(d)}, where d is the first bit position where their
transformed labels differ. Since d = O(|Lmin|), by part 1. of Fact 2.1, the agents
must meet after O(D|Lmin|2) steps.

2.2 Distance D Unknown to Agents

In this section, we present a rendezvous algorithm with cost O((D + Lmax)3).
The algorithm does not assume the knowledge of D. It is formulated for an agent
with label L. Each agent has an initial local orientation left-right.

Algorithm Rendezvous-in-Infinite-Line The algorithm consists of two parts:
Label Transformation and Label Execution.
Label Transformation. The Label Transformation part takes the label L of an agent
and produces the label L∗ in the following way.
Step 1. Produce label L′ as follows: insert a new bit before every bit of L, alternating
0 and 1 (e.g., if L is the string 110, we obtain the new string 101100).
Step 2. Produce label L′′ by adding the pattern 11110 at the end of L′.
Step 3. Finally, label L∗, called the transformed label of the agent, is obtained as an
infinite concatenation of copies of L′′.
Label Execution. For a given agent, we define the execution of the i-th bit of L∗

as performing i2 steps left, 2i2 + i steps right and i2 + i steps left (resp. i2 steps
right, 2i2 + i steps left and i2 + i steps right), if L∗(i) = 0 (resp. if L∗(i) = 1)
according to the agent’s initial local orientation. For an agent with label L, the Label
Execution part consists of consecutive executions of all bits of L∗, from left to right,
until rendezvous is achieved.
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As in the previous subsection, the execution of the p-th bit of L∗ can be divided
into three segments: the first p2 steps form the first segment of p, the next 2p2 + p
form the second segment of p and the last p2 + p steps of p form the last segment.

Denote by L∗(a, b) the substring of L∗ contained between bit positions a and
b, extremities included. The following fact is straightforward.

Fact 2.2.

1. L∗ does not contain the substring 0000;
2. The only place in L∗ where the substring 11110 occurs is at the end of a copy

of L′;
3. For any bit position b of L∗, the execution of L∗(1, b) requires

∑b
i=1(4i

2 +
2i) = O(b3) steps;

4. For any labels L1, L2, if L1 �= L2 then L′1 �= L′2;

Correctness and Analysis. Directions of agents on a given bit position are de-
fined analogously as in Section 2.1. Also the notions of convergent and divergent
directions on a given bit position are similar.

Lemma 4. Let X and Y be the two agents. For any p > 1, there exists a q > p
such that q − p = O(|Lmax|) and the direction of X on L∗X(q) is different from
that of Y on L∗Y (q).

As before, the integer sH(p) denotes the time when agent H finishes executing
the p-th bit of its transformed label.

Lemma 5. If the agents have different directions on a given bit position p ≥ D,
they meet by time min{sA(p), sB(p)}.
Theorem 6 (Correctness and analysis). Assume the agents are initially at
distance D. Algorithm Rendezvous-in-Infinite-Line achieves the rendezvous in
O((D + |Lmax|)3) steps.

Proof. Each agent runs the algorithm proceeding from left to right on the trans-
formed label, executing bit by bit. By Lemma 5 the agents must meet by time
min{sA(d), sB(d)}, where d ≥ D is the first bit position on which they have
different directions. By Lemma 4, there exists a bit position d ≥ D on which the
agents have different directions. This proves the correctness of the algorithm.

Moreover, Lemma 4 also guarantees that d = D+O(|Lmax|) = O(D+|Lmax|).
Hence, from part 3 of Fact 2.2, the cost of the algorithm is

∑d
i=1(4i

2 + 2i) =
O((D + |Lmax|)3).

3 Optimal Rendezvous in the Ring

Our results for the infinite line carry over to the case when agents are situated
in a ring of unknown size n. However, for the ring there is no danger of “infinite



Asynchronous Deterministic Rendezvous in Graphs 279

escape” by going in divergent directions: in this case the agents can still meet
“on the other side” of the ring. Consequently, for the ring we get rendezvous
algorithms whose cost depends on n (which is also an upper bound on the initial
distance between agents) and on the size of the labels. The knowledge of D is
not assumed and for D of the order of n the bound on the cost of rendezvous is
better than that previously established.

We present a rendezvous algorithm with cost of optimal order of magnitude
O(n|Lmin|), working on an arbitrary unoriented ring of known size and an al-
gorithm with cost O(n|Lmax|), when the size of the ring is unknown. Since the
ring is unoriented, each of the agents has a local right/left orientation and these
orientations for the two agents may differ.

Algorithm Rendezvous-in-Ring The algorithm consists of two parts: Label
Transformation and Label Execution. The Label Transformation part takes the label
L of an agent and produces the label L∗ in the following way. First produce label L′

consisting of a string of |L| zeros, followed by a 1 and then followed by the string L.
The label L∗, called the transformed label of the agent, is obtained by replacing in L′

each 0 by 01 and each 1 by 10.
The Label Execution part is divided into phases numbered 1,2,... For a given agent,
we define the execution of bit 0 (resp. 1) in phase a as performing 3a steps left (resp.
right), according to the agent’s local orientation. For an agent with label L, phase a

consists of consecutive executions of all bits of L∗ from left to right. Since the agents
do not know the size of the ring, the number of phases is unbounded. The algorithm
stops when rendezvous is achieved.

The following fact is straightforward.

Fact 3.1.

1. |L∗| = O(|L|);
2. For any labels L1, L2, if L1 �= L2 then none of the L∗1, L

∗
2 is a prefix of the

other;
3. There are no more than two consecutive equal bits in L∗;

Correctness and Analysis. In order to show the correctness of Algorithm
Rendezvous-in-Ring, we need to prove that for any size of the ring, any initial
position of the agents and any behavior of the adversary, the agents will even-
tually meet. Let n be the size of the ring and x = log3 n�+ 1. Consider agents
A and B. Let LA and LB be the labels of agents A and B, respectively. Let P
be the longest common prefix of L∗A and L∗B. For the b-th bit of L∗A , we denote
by L∗A(b) the value of this bit. Similarly for L∗B(b). If the b-th bit of L∗A is still in
P then we use notation P (b) to denote L∗A(b) = L∗B(b). For an agent H and bit
position b, let t′H(b) be the time when agent H starts executing the b-th bit of
its transformed label in phase x. Analogously, let t′′H(b) be the time when agent
H finishes executing the b-th bit of its transformed label in phase x.
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The following fact is straightforward.

Fact 3.2. If during a time interval [t1, t2] one of the agents does at least c + n
consecutive steps in one direction and the other agent does at most c steps in
this direction, for any c ≥ 0, then they must meet by time t2.

We first state two lemmas and then we prove the correctness and the time
complexity of Algorithm Rendezvous-in-Ring.

Lemma 7. Let X be the agent that first starts the execution of phase x and let
Y be the other agent (i.e. t′X(1) ≤ t′Y (1)).

1. If the agents don’t meet by time min{t′′X(1), t′′Y (1)}, then t′Y (1) < t′′X(1).
2. If the orientations of the agents differ, they meet by time min{t′′X(1), t′′Y (1)}.

The next lemma shows that if agents have the same orientation then they
are “almost” synchronized in phase x on the common prefix P .

Lemma 8. Suppose that both agents have the same orientation. Let P be the
longest common prefix of L∗A and L∗B. Consider the b-th bit of P . Let Xb be the
agent that first starts executing this bit in phase x and let Yb be the other agent
(i.e., t′Xb

(b) ≤ t′Yb
(b)). Then t′Yb

(b) ≤ t′′Xb
(b), unless the agents meet by time

t′′Xb
(b + 1).

Theorem 9 (Correctness). Let n be the size of the ring. Let d be the first
position where the transformed labels of the agents differ. Agents must meet by
time min{t′′A(d), t′′B(d)}.

Theorem 10 (Analysis). The Algorithm Rendezvous-in-Ring has
O(n|Lmax|) cost, for the n-node ring. Moreover, if the size n of the ring is known
to the agents, then Algorithm Rendezvous-in-Ring can be modified to have time
complexity O(n|Lmin|), which is optimal.

Proof. It follows from Theorem 9 that by the meeting time none of the agents
completed phase x = log3 n�+1. Hence the cost of the algorithm is O(n(|LA|+
|LB|)) = O(n|Lmax|).

Suppose that both agents know n. Then they can start executing Algorithm
Rendezvous-in-Ring at the beginning of phase x. By the proof of Theorem 9,
agents must meet by time min{t′′A(d), t′′B(d)}, where d is the first position where
their transformed labels differ. Clearly, d ≤ |Lmin|. Hence both agents execute
at most |Lmin| bits before meeting, which implies that the cost is O(n|Lmin|).1
The optimality of this cost follows from a result in [16], applied to the case when
the distance between agents is Θ(n).

1 The reader may wonder why the bound of O(n|Lmin|) does not hold also in the case
of n unknown. This is due to the fact that the work done by the agents through
phases 1 to x− 1, where meeting is not yet assured, is already Θ(n(|LA|+ |LB |)).
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4 Rendezvous in Arbitrary Graphs

We start with the following observation.

Proposition 11. If a map of the graph with labeled ports and indicated initial
positions of agents is available to both of them then deterministic asynchronous
rendezvous can be done at cost O(D|Lmin|), which is optimal.

Proof. Each agent computes the distance D between them and finds the lexico-
graphically smallest path of length D from its own position to the position of the
other agent (paths are viewed as sequences of port numbers). Thus both agents
identify the same cycle of length 2D on which their both initial positions are sit-
uated. (Notice that the cycle need not be simple, some edges may be repeated,
it may even degenerate to one path considered in both directions.) Then agents
apply the modified version of Algorithm Rendezvous-in-Ring to this cycle. The
size of the cycle is known, so rendezvous can be achieved at cost O(D|Lmin|).

We conclude this section with a feasibility result in the case when an upper
bound on the size of the graph is known to agents.

Theorem 12. Suppose that a bound M on the number of nodes in the graph is
known to both agents. Then deterministic asynchronous rendezvous is feasible.

5 Conclusion

The results that we presented for the asynchronous deterministic rendezvous in
graphs contribute to understanding the feasibility and complexity of this prob-
lem which seems far more complex than its synchronous counterpart. In fact, it
remains open if asynchronous deterministic rendezvous is at all feasible in ar-
bitrary graphs of unknown size. Our solution heavily uses the knowledge of the
upper bound on the size.

As far as complexity is concerned, the optimal cost of rendezvous remains
open even in an infinite line. Our algorithm for known D has time complex-
ity O(D|Lmin|2), while the lower bound, following from [16], is Ω(D|Lmin|).
In the case of the n-node ring, we established upper bounds O(n|Lmin|) and
O(n|Lmax|), for the known and unknown size, respectively. Is rendezvous with
cost O(n|Lmin|) possible for the ring of unknown size? Finally, our algorithm
showing feasibility of rendezvous for arbitrary graphs with known upper bound
M on the size is not efficient. Is there a rendezvous algorithm polynomial in the
bound M and in the lengths of the agents’ labels?
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Abstract. The zeta-dimension of a set A of positive integers is

Dimζ(A) = inf{s | ζA(s) < ∞},

where
ζA(s) =

∑
n∈A

n−s.

Zeta-dimension serves as a fractal dimension on Z+ that extends natu-
rally and usefully to discrete lattices such as Zd, where d is a positive
integer.

This paper reviews the origins of zeta-dimension (which date to the
eighteenth and nineteenth centuries) and develops its basic theory, with
particular attention to its relationship with algorithmic information the-
ory. New results presented include a gale characterization of zeta-
dimension and a theorem on the zeta-dimensions of pointwise sums and
products of sets of positive integers.

1 Introduction

Natural and engineered complex systems often produce structures with fractal
properties. These structures may be explicitly observable (e.g., shapes of neu-
rons or patterns created by cellular automata), or they may be implicit in the
behaviors of the systems (e.g., strange attractors of dynamical systems, Brown-
ian trajectories in financial data, or Boolean circuit complexity classes). In either
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case, the choice of appropriate mathematical models is crucial to understanding
the systems.

Many, perhaps most, fractal structures are best modeled by classical fractal
geometry [15], which provides top-down specifications of many useful fractals
in Euclidean spaces and other manifolds that support continuous mathematical
methods and attendant methods of numerical approximation. Classical fractal
geometry also includes powerful quantitative tools, the most notable of which are
the fractal dimensions (especially Hausdorff dimension [19,15], packing dimen-
sion [39,38,15], and box dimension [15]). Theoretical computer scientists have
recently developed effective fractal dimensions [28,26,27,10,4] that work in com-
plexity classes and other countable settings, but these, too, are best regarded as
continuous, albeit effective, mathematical methods.

Some fractal structures are inherently discrete and best modeled that way.
To some extent this is already true for structures created by cellular automata.
For the nascent theory of nanostructure self-assembly [1,33], the case is even
more compelling. This theory models the bottom-up self-assembly of molecular
structures. The tile assembly models that achieve this cannot be regarded as dis-
crete approximations of continuous phenomena (as cellular automata often are),
because their bottom-level units (tiles) correspond directly to discrete objects
(molecules). Fractal structures assembled by such a model are best analyzed
using discrete tools.

This paper concerns a discrete fractal dimension, called zeta-dimension, that
works in discrete lattices such as Zd, where d is a positive integer. Curiously,
although our work is motivated by twenty-first century concerns in theoreti-
cal computer science, zeta-dimension has its mathematical origins in eighteenth
and nineteenth century number theory. Specifically, zeta-dimension is defined in
terms of a generalization of Euler’s 1737 zeta-function [14] ζ(s) =

∑∞
n=1 n

−s,
defined for nonnegative real s (and extended in 1859 to complex s by Riemann
[32], after whom the zeta-function is now named). Moreover, this generalization
can be formulated in terms of Dirichlet series [12], which were developed in 1837,
and one of the most important properties of zeta-dimension (in modern terms,
the entropy characterization) was proven in these terms by Cahen [8] in 1894.

Our objectives here are twofold. First, we present zeta-dimension and its
basic theory, citing its origins in scattered references, but stating things in a
unified framework emphasizing zeta-dimension’s role as a discrete fractal dimen-
sion in theoretical computer science. Second, we present several results on zeta-
dimension and its interactions with classical fractal geometry and algorithmic
information theory.

Our presentation is organized as follows. In section 2, we give an intuitive
development of zeta-dimension in the positive integers. In section 3, we extend
this development in a natural way to the integer lattices Zd, for d ≥ 1. In addition
to reviewing known properties of zeta-dimension, we prove discrete analogs of
two theorems of classical fractal geometry, namely, the dimension inequalities for
Cartesian products and the total disconnectivity of sets of dimension less than 1.
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In section 4, we discuss relationships between zeta-dimension and classical
fractal dimensions. Many discrete fractals in Zd have been observed to “look
like” corresponding fractals in Rd. The most famous such correspondence is the
obvious resemblance between Pascal’s triangle modulo 2 and the Sierpinski tri-
angle [36]. We define a version of discrete self similar fractal and its continuous
counterpart and use result from [6] to show that the zeta-dimension of the dis-
crete fractal is always the Hausdorff dimension of its continuous version. We will
further discuss issues along these lines [6,7,37] in the full version of this paper.
We also prove a result relating zeta-dimension in Z+ to Hausdorff dimension in
the Baire space.

Section 5 concerns the relationships between zeta-dimension and algorithmic
information theory. We review the Kolmogorov-Staiger characterization [43,35] of
the zeta-dimensions of computably enumerable and co-computably enumerable
sets in terms of the Kolmogorov complexities (algorithmic information contents)
of their elements. We prove a theorem on the zeta-dimensions of sets of positive
integers that are defined in terms of the digits, or strings of digits, that can occur
in the base-k expansions of their elements. Most significantly, we prove that zeta-
dimension, like classical and effective fractal dimensions, can be characterized in
terms of gales. Finally, we prove a theorem on the zeta-dimensions of pointwise
sums and products of sets of positive integers that may have bearing on the
question of which sets of natural numbers are definable by McKenzie-Wagner
circuits [29].

Note: Researchers have considered other fractal dimensions in Zd that are
not equivalent to zeta-dimension, but nevertheless of interest [5,6,16,21]. These
will be discussed further in the full version of this paper.

Throughout this paper, log t = log2 t, and ln t = loge t.

2 Zeta-Dimension in Z+

A set of positive integers is generally considered to be “small” if the sum of the
reciprocals of its elements is finite [2,18]. Easily verified examples of such small
sets include the set of nonnegative integer powers of 2 and the set of perfect
squares. On the other hand, the divergence of the harmonic series means that
the set Z+ of all positive integers is not small, and a celebrated theorem of Euler
[14] says that the set of all prime numbers is not small either.

If a set is small in the above qualitative (yes/no) sense, we are still entitled to
ask, “Exactly how small is the set?”This section concerns a natural, quantitative
answer to this question. For each set A ⊆ Z+ and each nonnegative real number
s, let

ζA(s) =
∑
n∈A

n−s. (2.1)

Note that ζZ+ is precisely ζ, the Riemann zeta-function [32] (actually, Euler’s
original version [14] of the zeta-function, since we only consider ζA(s) for real s).
The zeta-dimension of a set A ⊆ Z+ is then defined to be

Dimζ(A) = inf{s|ζA(s) <∞}. (2.2)
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Since ζZ+(s) <∞ for all s > 1, we have 0 ≤ Dimζ(A) ≤ 1 for every set A ⊆ Z+.
By the results cited in the preceding paragraph, the set of all positive integers
and the set of all prime numbers each have zeta-dimension 1. Every finite set
has zeta-dimension 0, because ζA(0) is the cardinality of A. It is easy to see
that the set of nonnegative integer powers of 2 also has zeta-dimension 0. For
a deeper example, Wirsing’s nO( 1

ln ln n ) upper bound on the number of perfect
numbers not exceeding n [42] implies that the set of perfect numbers also has
zeta-dimension 0.

The zeta-dimension of a set of positive integers can also lie strictly between
0 and 1. For example, if A is the set of all perfect squares, then ζA(s) = ζ(2s),
so Dimζ(A) = 1

2 . Similarly, the set of all perfect cubes has zeta-dimension 1
3 ,

etc. In fact, this argument can easily be extended to show that, for every real
number α ∈ [0, 1], there exist sets A ⊆ Z+ such that Dimζ(A) = α.

Intuitively, we regard zeta-dimension as a fractal dimension, analogous to
Hausdorff dimension [19,15] or (more aptly, as we shall see) upper box dimen-
sion dimension [39,38,15], on the space Z+ of positive integers. This intuition
is supported by the fact that zeta-dimension has the following easily verified
functional properties of a fractal dimension.

1. Monotonicity: A ⊆ B implies Dimζ(A) ≤ Dimζ(B).
2. Stability: Dimζ(A ∪B) = max{Dimζ(A),Dimζ(B)}.
3. Translation invariance: For each k ∈ Z+, Dimζ(k + A) = Dimζ(A), where

k + A = {k + n|n ∈ A}.
4. Expansion invariance: For each k ∈ Z+, Dimζ(kA) = Dimζ(A), where kA =
{kn|n ∈ A}.
Equation (2.1) can be written as a Dirichlet series

ζA(s) =
∞∑

n=1

f(n)n−s (2.3)

in which f is the characteristic function of A. In the terminology of analytic
number theory, (2.2) then says that the zeta-dimension of A is the abscissa
of convergence of the series (2.3) [23,18,2,3]. In this sense, zeta-dimension was
introduced in 1837 by Dirichlet [12]. The following useful characterization of
zeta-dimension was proven in this more general setting in 1894.

Theorem 2.1 (entropy characterization of zeta-dimension – Cahen [8];
see also [22,23,18,2,3]). For all A ⊆ Z+,

Dimζ(A) = lim sup
n→∞

log |A ∩ {1, . . . , n}|/ logn. (2.4)

Example 2.2. The set C′, consisting of all positive integers whose ternary ex-
pansions do not contain a 1, can be regarded as a discrete analog of the Cantor
middle thirds set C, which consists of all real numbers in [0, 1] who ternary
expansions do not contain a 1. Theorem 2.1 implies immediately that C′ has
zeta-dimension log 2

log 3 ≈ 0.6309, which is exactly the classical fractal (Hausdorff,
packing or box) dimension of C. We will see in section 4 that this is not a
coincidence, but rather a special case of a general phenomenon.
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By Theorem 2.1 and routine calculus, we have

Dimζ(A) = lim sup
n→∞

log |A ∩ {1, . . . , 2n}|/n (2.5)

and
Dimζ(A) = lim sup

n→∞
log |A ∩ {2n, . . . , 2n+1 − 1}|/n (2.6)

for all A ⊆ Z+. The right-hand side of (2.6) has been called the (channel) capacity
of A, the (topological) entropy (rate) of A, and the upper (fractal/mass) dimension
of A [34,24,17,13,9,11,20,35,7,30,31,5,6]. In particular, Staiger [35] (see also [20])
rediscovered (2.6) as a characterization of the entropy of A.

The following section shows how to extend zeta-dimension to the integer
lattices Zd, for d ≥ 1.

3 Zeta-Dimension in Zd

For each �n = (n1, . . . , nd) ∈ Zd, where d is a positive integer, let ‖�n‖ be the
Euclidean distance from the origin to �n, i.e.,

‖�n‖ =
√

n2
1 + · · ·+ n2

d. (3.1)

For each A ⊆ Zd, define the A-zeta-function ζA : [0,∞)→ [0,∞] by

ζA(s) =
∑

�0�=�n∈A

‖�n‖−s (3.2)

for all s ∈ [0,∞), and define the zeta-dimension of A to be

Dimζ(A) = inf{s | ζA(s) <∞}. (3.3)

Note that, if d = 1 and A ⊆ Z+, then definitions (3.2) and (3.3) agree with
definitions (2.1) and (2.2), respectively. The zeta-dimension that we have defined
in Zd is thus an extension of the one that was defined in Z+.

Observation 3.1. For all d ∈ Z+ and A ⊆ Zd, 0 ≤ Dimζ(A) ≤ d.

We next note that zeta-dimension has key properties of a fractal dimension
in Zd. We state the invariance property a bit more generally than in section 2.

Definition. A function f : Zd → Zd is bi-Lipschitz if there exists α, β ∈ (0,∞)
such that, for all �m, �n ∈ Zd, α‖�m− �n‖ ≤ ‖f(�m)− f(�n)‖ ≤ β‖�m− �n‖.
Observation 3.2 (fractal properties of zeta-dimension). Let A,B ⊆ Zd.

1. Monotonicity: A ⊆ B implies Dimζ(A) ≤ Dimζ(B).
2. Stability: Dimζ(A ∪B) = max{Dimζ(A),Dimζ(B)}.
3. Lipschitz invariance: If f : Zd → Zd is bi-Lipschitz, then Dimζ(f(A)) =

Dimζ(A).
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For A ⊆ Zd and I ⊆ [0,∞), let AI = {�n ∈ A | ‖�n‖ ∈ I}. Then the Dirichlet
series

ζD
A (s) =

∞∑
n=1

|A[n,n+1)|n−s =
∑

�0�=�n∈A

$‖�n‖%−s
, (3.4)

converges exactly when ζA(s) converges, so equation (3.3) says that Dimζ(A) is
the abscissa of convergence of this series. Cahen’s 1894 characterization of this
abscissa thus gives us the following extension of Theorem 2.1.

Theorem 3.3 (entropy characterization of zeta-dimension in Zd –
Cahen [8]). For all A ⊆ Zd,

Dimζ(A) = lim sup
n→∞

log|A[1,n]|/ logn. (3.5)

As in Z+, it follows immediately by routine calculus that

Dimζ(A) = lim sup
n→∞

log|A[1,2n]|/n (3.6)

and
Dimζ(A) = lim sup

n→∞
log|A[2n,2n+1)|/n (3.7)

for all A ⊆ Zd. Willson [40] has used (a quantity formally identical to) the
right-hand side of (3.6) as a measure of the growth-rate dimension of a cellular
automaton.

We next note that “subspaces” of Zd have the “correct” zeta-dimensions.

Theorem 3.4. If �m1, . . . , �mk ∈ Zd are linearly independent (as vectors in Rd)
and S = {a1 �m1 + · · ·+ ak �mk | a1, . . . , ak ∈ Z}, then Dimζ(S) = k.

By translation invariance, it follows that “hyperplanes” in Zd also have the
“correct” zeta-dimensions.

The Euclidean norm (3.1) is sometimes inconvenient for calculations. When
desirable, the L1 norm, ‖�n‖1 = |n1| + · · ·+ |nd|, can be used in its place. That
is, if we define the L1 A-zeta-function ζL1

A by ζL1

A (s) =
∑

�0�=�n∈A‖�n‖−s
1 , then

2−sζA(s) ≤ ζL1

A (s) ≤ ζA(s) holds for all s ∈ [0,∞), so Dimζ(A) = inf{s |
ζL1

A (s) < ∞}. The entropy characterizations (3.5), (3.6), and (3.7) also hold
with each set AI replaced by the set AL1

I = {�n ∈ A | ‖�n‖1 ∈ I}. Note that other
norms can be used to define zeta dimension too.

Example 3.5 (Pascal’s triangle modulo 2). Let A = {(m,n) ∈ N2 | (m+n
m

)
≡ 1 mod 2}. Then it is easy to see that |AL1

[1,2n]| = 3n for all n ∈ N, whence the
L1 version of (3.6) tells us that Dimζ(A) = log 3 ≈ 1.5850. This is exactly the
fractal (Hausdorff, packing or box) dimension of the Sierpinski triangle that A so
famously resembles [36]. This connection will be further illuminated in section 4.
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In order to examine the zeta-dimensions of Cartesian products, we define the
lower zeta-dimension of a set A ⊆ Z+ to be

dimζ(A) = lim inf
n→∞ log|A[1,n]|/ logn. (3.8)

By Theorem 3.3, dimζ(A) is a sort of dual of Dimζ(A). By routine calculus, we
also have

dimζ(A) = lim inf
n→∞ log|A[1,2n]|/n, (3.9)

i.e., the dual of equation (3.6) holds. Note, however, that the dual of equation
(3.7) does not hold in general.

The following theorem is exactly analogous to a classical theorem on the
Hausdorff and packing dimensions of Cartesian products [15].

Theorem 3.6. For all A ⊆ Zd1 and B ⊆ Zd2 , dimζ(A) + dimζ(B) ≤ dimζ(A×
B) ≤ dimζ(A) + Dimζ(B) ≤ Dimζ(A×B) ≤ Dimζ(A) + Dimζ(B).

Although connectivity properties play an important role in classical fractal
geometry, their role in discrete settings like Zd will perforce be more limited.
Nevertheless, we have the following. Given d, r ∈ Z+, and points �m,�n ∈ Zd, an
r-path from �m to �n is a sequence π = (�p0, . . . , �pl) of points �pi ∈ Zd such that
�p0 = �m, �pl = �n, and ‖�pi− �pi+1‖ ≤ r for all 0 ≤ i < l. Call a set A ⊆ Zd boundedly
connected if there exists r ∈ Z+ such that, for all �m,�n ∈ A, there is an r-path
π = (�p0, . . . , �pl) from �m to �n in which �pi ∈ A for all 0 ≤ i ≤ l.

A result of classical fractal geometry says that any set of dimension less
than 1 is totally disconnected. The following theorem is an analog of this for
zeta-dimension.

Theorem 3.7. Let d ∈ Z+ and A ⊆ Zd. If Dimζ(A) < 1, then no infinite subset
of A is boundedly connected.

The next section examines the relationships between zeta-dimension and classical
fractal dimensions in greater detail.

4 Zeta-Dimension and Classical Fractal Dimension

The following result shows that the agreement between zeta-dimension and Haus-
dorff dimension noticed in Examples 2.2 and 3.5 are instances of a more general
phenomenon: Given any discrete fractal with enough self similarity, its zeta-
dimension is equal to the Hausdorff dimension of its classical version. In earlier
investigations along these lines, discrete self similar fractals were defined using
additive cellular automata [40,41], reverse iterative function system [5,6,37], etc.
Here we give a slightly different definition of self similarity.

Definition. Let c, d ∈ N, F ⊂ Nd. F is a c-discrete self similar fractal, if there
exists a function S : {1, 2, · · · , c}d → {no, R0, R1, R2, R3} such that S(1, · · · , 1)
= R0, and for every integer k and every (i1, · · · , id) ∈ {1, 2, · · · , c}d,

F ∩ Ck
i1,i2,··· ,id

{
Rj(Ck

1,··· ,1) if S(i1, · · · , id) = Rj ,

∅ if S(i1, · · · , id) = no
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where Rj (j = 0, · · · , 3) is a rotation of angle jπ/2, and Ck
i1,i2,··· ,id

is a d-
dimensional cube of side c is defined by [(i1− 1)ck + 1, i1ck]× · · · × [(id − 1)ck +
1, idck].

Given any c-discrete self similar fractal F ⊂ Nd, we construct its continuous
analogue F ⊂ [0, 1]d recursively, via the following contraction T : x �→ 1

cx.
F0 = [0, 1] and Fk = T (k)(F ∩ [1, ck]d), where T (k) = T ◦ · · · ◦ T , denotes k
iterations of T . The fractal F = limk→∞ Fk obtained by this construction is a
self-similar continuous fractal with contraction ratio 1/c. The following result
shows that the zeta-dimension of the discrete fractal is equal to the Hausdorff
dimension of its continuous counterpart. See Barlow and Taylor [6] for their more
general result that implies this theorem.

Theorem 4.1. If c, d, F,F are as above, then Dimζ(F ) = dimH(F).

The following result gives a relationship between zeta-dimension and dimen-
sion in the Baire space. We consider the Baire space N∞ representing total func-
tions from N to N in the obvious way. Given w ∈ N∗, let Cw = {z ∈ N∞|w � z}.
We define real : N∞ → [0, 1] by real(z) =

1

(z0 + 1) +
1

(z1 + 1) + · · ·
. The cylinder

generated by w is the interval Δ(w) = {x ∈ [0, 1]|x = real(z), w � z}.
A subprobability supermeasure on N∞ is a function p : N∗ → [0, 1] such that

p(λ) ≤ 1 and for each w ∈ N∗, p(w) ≥∑
n p(wn).

For each subprobability supermeasure p we can define a Hausdorff dimension
and a packing dimension on N∞, dimp and Dimp, using the metric ρ defined as
ρ(z, z′) = p(w) for w ∈ N∗ the longest common prefix of z, z′ ∈ N∞.

Gauss measure is defined on each E ⊆ R as γ(E) = 1/ ln 2
∫

E
(1+ t)−1dt. We

will abuse notation and use γ(w) = γ(real(Cw)) for each w ∈ N∗. Notice that
γ(λ) = 1 and therefore γ is a probability measure on N∞.

Define FA = {f : N → N|f(N) ⊆ A and limn→∞ f(n) = ∞}, for each
A ⊆ Z+. The following result relates zeta-dimension to Gauss-dimension.

Theorem 4.2. Dimζ(A) = 2 · dimγ(FA) = 2 ·Dimγ(FA).

5 Zeta-Dimension and Algorithmic Information

The entropy characterization of zeta-dimension (Theorem 3.3) already indicates
a strong connection between zeta-dimension and information theory. Here we
explore further such connections. The first concerns the zeta-dimensions of sets
of positive integers that are defined in terms of the digits, or strings of digits,
that can appear in the base-k expansions of their elements. We write repk(n)
for the base-k expansion (k ≥ 2) of a positive integer n. Conversely, given a
nonempty string w ∈ {0, 1, · · · , k − 1}∗ that does not begin with 0, we write
numk(w) for the positive integer whose base-k expansion is w.
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A prefix set over an alphabet Σ is a set B ⊆ Σ∗ such that no element of B
is a proper prefix of another element of B. An instantaneous code is a nonempty
prefix set that does not contain the empty string.

Theorem 5.1. Let Σ = {0, 1, · · · , k − 1}, where k ≥ 2. Assume that ∅ �= Δ ⊆
Σ − {0} and that B ⊆ Σ∗ is a finite instantaneous code, and let A = {n ∈
Z+|repk(n) ∈ ΔB∗}. Then Dimζ(A) = s∗, where s∗ is the unique solution of the
equation

∑
w∈B k−s∗|w| = 1.

Corollary 5.2. Let Σ = {0, 1, · · · , k − 1}, where k ≥ 2. If Γ ⊆ Σ and Γ �⊆ {0}
and A = {n ∈ Z+|repk(n) ∈ Γ ∗}, then Dimζ(A) = ln|Γ |

ln k .

Example 5.3. Corollary 5.2 gives a quantitative articulation of the “paradox
of the missing digit”[18]. If A is the set of positive integers in whose decimal
expansions some particular digit, such as 7, is missing, then a naive intuition
might suggest that A contains “most” integers, but A has long been known to
be small in the sense that the sum of the reciprocals of its elements is finite
(i.e., ζA(1) < ∞). In fact, Corollary 5.2 says that Dimζ(A) = ln 9

ln 10 ≈ 0.9542,
a quantity somewhat smaller than, say, the zeta-dimension of the set of prime
numbers.

The main connection between zeta-dimension and algorithmic information
theory is a theorem of Staiger [35] relating entropy to Kolmogorov complexity.
To state Staiger’s theorem in our present framework, we define the Kolmogorov
complexity K(�n) of a point �n ∈ Zd to be the length of a shortest program
π ∈ {0, 1}∗ such that, when a fixed universal self-delimiting Turing machine U
is run with (π, d) as its input, U outputs �n (actually, some straightforward en-
coding of �n as a binary string) and halts after finitely many computation steps.
Detailed discussions of Kolmogorov complexity’s definition, fundamental prop-
erties, history, significance, and applications appear in the definitive textbook
by Li and Vitanyi [25]. As we have already noted, K(�n) is a measure of the
algorithmic information content of �n.

For �0 �= �n ∈ Zd, we write l(‖�n‖) for the length of the standard binary
expansion (no leading zeroes) of the positive integer $‖�n‖%.

If f : Zd → [0,∞) and A ⊆ Zd, then the limit superior of f on A is
lim sup�n∈A f(�n) = limk→∞ sup f(A[k,∞]). Note that this is 0 if A is finite.

Theorem 5.4 (Kolmogorov [43], Staiger [35]). For every A ⊆ Zd, Dimζ(A)
≤ lim sup�n∈A

K(�n)
l(‖�n‖) , with equality if A or its complement is computably

enumerable.

In the case where d = 1 and A ⊆ Z+, Theorem 5.4 says that, if A is Σ0
1

or Π0
1 , then Dimζ(A) = lim supn∈A

K(n)
l(n) , where l(n) is the length of the bi-

nary representation of A. Kolmogorov [43] proved this for Σ0
1 sets, and Staiger

[35] proved it for Π0
1 sets. The extension to A ⊆ Zd for arbitrary d ∈ Z+ is

routine.
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As Staiger has noted, Theorem 5.4 cannot be extended to Δ0
2 sets, because

an oracle for the halting problem can easily be used to decide a set B ⊆ Z+

such that, for each k ∈ Z+, B[2k,2k+1] contains exactly one integer n, and this n
also satisfies K(n) ≥ k. Such a set B is a Δ0

2 set satisfying Dimζ(B) = 0 < 1 =
lim supn∈B

K(n)
l(n) .

Classical Hausdorff and packing dimensions were recently characterized in
terms of gales, which are betting strategies with a parameter s that quantifies
how favorable the payoffs are [26,4]. These characterizations have played a cen-
tral role in many recent studies of effective fractal dimensions in algorithmic
information theory and computational complexity theory [28]. We show here
that zeta-dimension also admits such a characterization.

Briefly, given s ∈ [0,∞), an s-gale is a function d : {0, 1}∗ → [0,∞) satisfying
d(w) = 2−s[d(w0) + d(w1)] for all w ∈ {0, 1}∗. For purposes of this paper, an
s-gale d succeeds on a positive integer n if d(w) ≥ 1, where w is the standard
binary representation of n.

Theorem 5.5 (gale characterization of zeta-dimension). For all A ⊆ Z+,
Dimζ(A) = inf{s | there is an s-gale d that succeeds on every element of A}.

Our last result is a theorem on the zeta-dimensions of pointwise sums and
products of sets of positive integers. For A,B ⊆ Z+, we use the notations A+B =
{a+ b | a ∈ A and b ∈ B}, A ∗B = {ab | a ∈ A and b ∈ B}. The first equality in
the following theorem is due to Staiger [35].

Theorem 5.6. If A,B ⊆ Z+ are nonempty, then Dimζ(A∗B) = max{Dimζ(A),
Dimζ(B)} ≤ Dimζ(A+B) ≤ Dimζ(A)+Dimζ(B), and the inequalities are tight
in the strong sense that, for all α, β, γ ∈ [0, 1] with max{α, β} ≤ γ ≤ α+β, there
exist A,B ⊆ Z+ with Dimζ(A) = α, Dimζ(B) = β, and Dimζ(A + B) = γ.

We close with a question concerning circuit definability of sets of natural
numbers, a notion introduced recently by McKenzie and Wagner [29]. Briefly,
a McKenzie-Wagner circuit is a combinational circuit (finite directed acyclic
graph) in which the inputs are singleton sets of natural numbers, and each gate
is of one of five types. Gates of type ∪, ∩, +, and ∗ have indegree 2 and compute
set union, set intersection, pointwise sum, and pointwise product, respectively.
Gates of type − have indegree 1 and compute set complement. Each such circuit
defines the set of natural numbers computed at its designated output gate in
the obvious way. The fact that 0 is a natural number is crucial in this model.
Interesting sets that are known to be definable in this model include the set
of primes, the set of powers of a given prime, and the set of counterexamples
to Goldbach’s conjecture. Is there a zero-one law, according to which every set
definable by a McKenzie-Wagner circuit has zeta-dimension 0 or 1? Such a law
would explain the fact that the set of perfect squares is not known to be definable
by such circuits. Theorem 5.6 suggests that a zero-one law, if true, will not be
proven by a trivial induction on circuits.
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Abstract. We study online interval coloring problems with bandwidth.
We are interested in some variants motivated by bin packing problems.
Specifically we consider open-end coloring, cardinality constrained color-
ing, coloring with vector constraints and finally a combination of both
the cardinality and the vector constraints. We construct competitive al-
gorithms for each of the variants. Additionally, we present a lower bound
of 24/7 for interval coloring with bandwidth, which holds for all the above
models, and improves the current lower bound for the standard interval
coloring with bandwidth.

1 Introduction

We study variants of the online interval coloring problem with bandwidth. In
these coloring problems, the intervals are presented one by one and the online
algorithm must assign each interval a color before the next interval arrives. In the
classical problem the intervals have no bandwidth and two intersecting intervals
can not be colored by the same color. We are interested in the case where every
interval has an associated bandwidth in (0,1]. This problem (standard coloring of
intervals with bandwidth) was introduced by Adamy and Erlebach [1]. A set of
intervals can be assigned the same color c, if for any point p on the real line, the
sum of the bandwidths of intervals colored c and containing p, does not exceed
1. We refer to a coloring satisfying the above condition as a proper coloring.

Online coloring of intervals with bandwidth is a simultaneous generalization
of two major problems. The first one Online bin packing, the study of which
dates back to the works of Johnson and Ullman in the early 1970’s [11,20], see
[6] for a survey. If all the presented intervals intersect, colors correspond to bins.
The second problem is the classical Online coloring of interval graphs, introduced
by Kierstead and Trotter [14].

As mentioned in [1], the problem of coloring intervals with bandwidth arises
in many applications. Most of these applications come from the field of net-
works. Consider a network with a line topology that consists of links, where
each link has channels of constant capacity. This can be either an all-optical
� Research supported by Israel Science Foundation (grant no. 250/01).
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WDM (wavelength-division multiplexing) network or an optical network sup-
porting SDM (space-division multiplexing). A connection request is from one
network node a to another node b has a bandwidth associated with it. The set
of requests assigned to a channel must not exceed the capacity of the channel
on any of the links on the path [a, b]. Another network related application is
one where requests have constant duration c, and we have to serve all requests
as fast as possible. With respect to our online coloring intervals with bandwidth
problem, the colors correspond to time slots, and the total number of colors
corresponds to the schedule length. The last example comes from scheduling, a
requested job has a duration and resource requirement during its execution. Jobs
(intervals) arrive online and must be assigned to a machine (color) immediately.
All the machines have the same capabilities and the objective is to minimize the
number of machines used.

The unweighted (classical) problem is equivalent to coloring an interval graph,
where each interval corresponds to a node and an edge between two nodes ap-
pears if the corresponding intervals intersect. Interval graphs are perfect, there-
fore the chromatic number of the graph is the maximum clique size [10], which
represents a point where the most intervals intersect. It can be elaborated for the
bandwidth case, if we refer to the maximum clique size as the maximum weighted
clique. Each node has the weight of the related interval, i.e., its bandwidth, and
the clique size is the sum of the weights of the corresponding intervals of the
clique. We study online coloring problems in terms of the asymptotic competitive
ratio. Thus we compare an online algorithm to an optimal offline algorithm OPT
that knows the complete sequence of intervals in advance.

Let B(σ) (or B, if the sequence σ is clear from the context), be the cost
of algorithm B on the request sequence σ. An algorithm A is R-competitive
(with respect to the absolute competitive ratio) if for every sequence σ, A(σ) ≤
R·OPT (σ). The absolute competitive ratio of an algorithm is the infimum value
of R such that the algorithm is R-competitive.

The asymptotic competitive ratio for an online algorithm A is defined to be

R∞A = lim supn→∞ supσ

{
A(σ)

OPT (σ)

∣∣∣∣∣OPT (σ) = n

}
. All results given in this paper

apply to both the absolute and the asymptotic competitive ratios.
Coloring interval graphs has been intensively studied, Kierstead and Trotter

[14] gave an upper and lower bounds of 3 on the competitive ratio. Much research
has been done analyzing the performance of the simple First Fit algorithm for
the unweighted problem. Upper bounds on the competitive ratio of 40, 25.72
and 10 were given in [12,13,19] respectively. Chrobak and Slusarek [5] showed a
lower bound close to 4.5 on the competitive ratio of First Fit.

Coloring intervals with bandwidth was first posed in 2003 in [1] by Adamy
and Erlebach, they presented an online algorithm with a competitive ratio of
195. Narayanaswamy [18] presented a new algorithm with a competitive ratio of
10. In [7] we studied several extensions of this problem including coloring unit
length intervals.
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Motivated by the well known bin packing problem, we investigate four vari-
ants studied in the past with respect to bin packing. Namely, Open-end bin
packing, Vector packing, Cardinality constrained packing and Vector packing
with cardinality constraints. Open-end online bin packing (also called the Or-
dered open-end problem) was introduced by Young and Leung [21]. Online vector
packing was studied by Garey et al. as a scheduling problem with resource con-
straints [9], this problem was studied also in [15,8,3]. Cardinality constrained
bin packing was first studied by Krause, Shen and Schwetman [16,17]. It was
also studied in [2]. The vector packing problem with cardinality constraints was
mentioned in [4]. In that paper it is treated as a special case of the vector packing
problem.

We make adjustments to these variants to suit the interval coloring with
bandwidth problem in the following way.

Open-End Interval Coloring: Given a point p and color c, we remove the
restriction that all intervals intersecting point p colored with c should have total
bandwidth of at most 1. Instead, we require that if the last interval which re-
ceived color c and intersects p is removed, then the total bandwidth of all such
other intervals, is strictly less than 1. A possible application of this model is the
situation where the decision on the color of a new interval does not depend on
the exact value of its bandwidth, but on the current load of each color. This is
consistent with our algorithms which use a partition into classes of bandwidth
rather than using the exact bandwidth to classify a new interval and to assign
it a color.

Interval Coloring with Vector Constraints: Instead of one dimensional
bandwidths, the intervals are associated with d-dimensional vectors. This is a
generalization of the standard interval coloring with bandwidth problem. Here
each interval has d distinct weights and each color has d corresponding unit
capacities. An interval can receive color c if the assignment is valid according to
all d components. This variant models a multiple number of available resources
that each request needs and all requests must share, rather than a single resource
as in the standard problem.

Cardinality Constrained Interval Coloring: The cardinality constrained
coloring, or the k-bounded interval coloring with bandwidth problem, addition-
ally imposes the constraint that at each point p, at most k intersecting intervals
are allowed to use one color. This variant models applications where only a lim-
ited number of requests can be satisfied simultaneously, a restriction that occurs
in addition to the bandwidth constraints.

Cardinality and Vector Constrained Interval Coloring: This is a combina-
tion of the two previous variants. Each interval is associated with a d-dimensional
vector of d distinct bandwidths and each color has d corresponding capacities.
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Additionally at most k intersecting intervals are allowed in one color at each
point.

Our Results: We present competitive online algorithms for each of the variants.
For the open-end coloring model we present an algorithm with competitive ratio
of at most 12. For the cardinality constrained variant we suggest an algorithm
with competitive ratio of min{10+ 2 · k

k−1 , k + 3}, for odd k and min{12, k+ 3},
for even k.

A 10d competitive algorithm is presented for the vector constrained model
and a competitive ratio of min{10d+2, 3k}, for even k and min{10d+2 k

k−1 , 3k},
for odd k for the combined model of both vector and cardinality constraints. The
description of these results is omitted from this version and can be found in the
full version of the paper.

We also present a lower bound of 24
7 ≈ 3.428571, an improvement of the

previously known lower bound of 3.26 for standard interval coloring with band-
width presented in [7]. The latter lower bound does not apply for cardinality
constrained coloring (a simplification of that lower bound can be applied to large
values of k) and to the open-end model. However the lower bound of Kierstead
and Trotter [14] can be used in both models. By using intervals of bandwidth 1,
as done in the construction of [14], two intersecting intervals can not receive the
same color in both models. Therefore the best lower bound known for these mod-
els is 3. Our lower bound can be easily modified by a simple change of parameter
to all the variants considered in this paper.

2 Preliminaries

A weighted interval graph G of a set of intervals S, is a graph where each node
corresponds to an interval. The weight of the node is the bandwidth of the
interval in S related to it. If two intervals intersect, there is an edge between
their related nodes in G. Recall that we denote the optimal coloring of the offline
algorithm by OPT .

Let ω(G) or ω(S) denote the size of the maximum cardinality clique in G (ω
for short), i.e., ignoring the weights. Let ω∗(G) or ω∗(S) (ω∗ for short) denote the
largest weighted clique in G. A weighted clique is the sum of the weights of the
vertices in a clique. Note that for the interval coloring problem with bandwidth
we have OPT ≥ ω∗�

Below we give the generalized presentation of the algorithm of Kierstead and
Trotter [14] presented in [7]. For convenience we include the full presentation
and list three relevant lemmas from [7]. We refer the reader to [7] for the proofs
of these lemmas.

Let σ = v1, . . . , vn be the list of vertices of G, in the order of arrival. Al-
gorithm KTl,b is defined for inputs σ such that, b(vi) ∈ (0, b]. The algorithm
partitions the intervals (i.e. the vertices of G) into sets Am (for integer values of
m, such that m ≥ 1). We use Cm to denote the set of colors dedicated to Am.
Every set Am is colored using First Fit, independently of other sets. Therefore
the colors have the property Cx ∩ Cy = ∅ for x �= y.
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Algorithm 1. KTl,b

On a new interval vi:
1: For every integer m ≥ 1, let Vm(vi) and Em(vi)be the following subsets of V (G)

and E(G) respectively.
Vm(vi) = {vj ∈ V (G) : j < i, m(vj) ≤ m};
Em(vi) = {(u, v) ∈ E(G) : u, v ∈ Vm(vi)};
Gm(vi) ∪ {vi} = G(Vm(vi) ∪ vi, Em(vi) ∪ {(u, vi) ∈ E(G) : u ∈ Vm(vi)})
ω∗

i (H) = The maximum weighted clique in graph H that contains the interval vi

2: Let Gm(vi) = G(Vm(vi), Em(vi))
3: m(vi) = the smallest m such that ω∗

i (Gm(vi) ∪ {vi}) ≤ m · l.
4: Am(vi) ⇐ Am(vi) ∪ {vi}
5: Color vi considering only the intervals of Am(vi) using First Fit on colors of Cm(vi).

Lemma 1. For every m, ω∗(Am) ≤ 2(b + l).

Lemma 2. If all intervals have the same bandwidth, b, and l is divisible by b,
for every m, ω∗(Am) ≤ 2l.

Lemma 3.

(i) The largest value of m ever used in KTl,b is ω∗
l �

(ii) The coloring of KTl,b is at most ω∗
l �(maxm FF (Am)), where FF (Am) de-

notes the coloring of the First Fit algorithm on the set Am of intervals that
were presented online.

Note that KT1,1 without bandwidth is equivalent to the original algorithm
of Kierstead and Trotter [14]. In their algorithm every layer can be colored by
First Fit with at most 3 colors. The number of layers equals to the size of the
maximum cardinality clique. Therefore the coloring is at most 3OPT .

3 Upper Bounds

In this section we present algorithms for different models. We denote the optimal
offline algorithm for a specific variant A, by OPTA, i.e., for the open-end model
we denote the optimal offline algorithm that follows the restrictions of the model
by OPTOpen−End.

Open End Coloring

In the Open End version, colors can consist of intersecting intervals with a total
bandwidth of more than 1. However, for any given point, the removal of the last
interval colored with a specific color must bring the color’s level back to strictly
below 1 at that point.

Theorem 1. There exists an online algorithm with competitive ratio 12 for the
open-end interval coloring.
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Proof. Algorithm: Perform an online partition of the intervals into three dis-
joint subsequences S1, S2, and S3 according to the bandwidth of the intervals.
The subsequences are defined as follows. For every interval I, I ∈ S1 if b(I) ≤ 1

4 ,
I ∈ S2 if 1

4 < b(I) < 1 and I ∈ S3 if b(I) = 1. Each subsequence is colored
by a different set of colors. The colors to be assigned are split into three disjoint
classes C1, C2, and C3. Each class is designated to intervals of one subsequence,
i.e., C1 for S1, C2 for S2 and C3 for S3.

The classes of colors are built dynamically, when a new color is required, the
first unused color is assigned. When a color is assigned to one of the three classes
it can no longer be assigned to any of the other classes.
Run in parallel (i.e., independently) the following three sub algorithms:

SubAlgorithm AS1 : Use KT 1
4 , 14

on the intervals of S1 ignoring the open-end
option.

SubAlgorithm AS2: Use a variant of KT1,1 without bandwidth on S2. In lines
1-4 of the algorithm KT1,1, treat all intervals as if they have bandwidth of exactly
1. The change is made in line 5 of the algorithm. Instead of using at most 3 colors
for each Am, use only one color.

SubAlgorithm AS3 : Use the Algorithm of Kierstead and Trotter, i.e., KT1,1

without bandwidth.

Analysis of the Competitive Ratio:
We show the following properties. (i) AS1 uses at most 5 · OPTOpen−End(S1)
colors; (ii) AS2 uses at most 4 ·OPTOpen−End(S2) colors; (iii) AS3 uses at most
3 ·OPTOpen−End(S3) colors.

SubAlgorithm AS1 : According to Lemma 3 part (i), the coloring of KT 1
4 , 14

is ω∗
1
4
�maxm FF (Am), where FF (Am) denotes the coloring of the First Fit

algorithm on the set Am of intervals that were presented online. By Lemma 1
For every m, ω∗(Am) ≤ 1. Therefore maxm FF (Am) = 1 and we get a coloring of
at most 4ω∗�. In the open-end version, the total bandwidth for each color may
exceed 1. Since all the intervals in S1 have a maximum bandwidth of 1

4 , OPT
can use each color for a total bandwidth of at most 5

4 . Therefore it needs at least
4
5ω
∗ colors. Hence, we get, AS1(S1) ≤ 4ω∗� = 5 · 45ω∗� ≤ 5OPTOpen−End(S1).

SubAlgorithm AS2 : Note that in this variant of KT1,1 without bandwidth,
all the sets of intervals Am should contain the same intervals as if we had used
the regular KT1,1 without bandwidth. The only difference is the coloring of the
intervals within these sets.

First we claim that this variant results in a proper coloring. By Lemma 2,
the cardinality clique is at most 2 in each Am. In the Open End variant two
intersecting intervals of bandwidth strictly less than 1 can be colored by the
same color. Since every interval I ∈ S2 satisfies 1

4 < b(I) < 1 every Am can be
colored by a single color and the claim is proved.

Next we show that the coloring of AS2(S2) is at most 4 ·OPTOpen−End(S2).
Algorithm AS2 uses at most ω colors, where ω is the cardinality clique and not
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the weighted clique. Since for every I ∈ S2, b(I) > 1
4 , OPTOpen−End(S2) can use

at most four intersecting intervals in a single color. Therefore OPTOpen−End(S2)
uses at least ω

4 colors. Thus we get that AS2 uses at most
4 ·OPTOpen−End(S2).

SubAlgorithm AS3: According to the analysis of the algorithm of Kierstead
and Trotter, the coloring of AS3(S3) ≤ 3OPT (S3). Since for every I ∈ S3,
b(I) = 1, every two intersecting intervals can not receive the same color. Thus
OPT (S3) = OPTOpen−End(S3).

By combining the competitive ratios of the subalgorithms of AS1 , AS2 and
AS3 we get a total of 12 competitive ratio for the complete algorithm.

Coloring with Cardinality Constraints

In the cardinality constrained, or the k-bounded interval coloring with bandwidth
problem there is an additional restriction. In this variant at most k intersecting
interval are allowed in one color at each point.

Theorem 2. There exists an online algorithm for cardinality constrained in-
terval coloring with a competitive ratio min{10 + 2 · k

k−1 , k + 3} for odd k and
min{12, k + 3} for even k, where k is the cardinality constraint.

Proof. Algorithm: If min{10 + 2 · k
k−1 , k + 3} = 10 + 2 · k

k−1 for odd k or
min{12, k+3} = 12 for even k, use the algorithm described in case 1. Otherwise
use case 2.

Case 1: Perform an online partition of the intervals into two disjoint subse-
quences S1 and S2 according to the bandwidth of the intervals. The subsequences
are defined as follows:
For every interval I, I ∈ S1 if b(I) ≤ 1

k and I ∈ S2 if 1
k < b(I) < 1.

SubAlgorithm AS1 : For even k, take the bandwidth of every interval in S1 to
be exactly 1

k and use algorithm KT 1
2 , 1

k
. For odd k, take the bandwidth of every

interval in S1 to be exactly 1
k−1 and use algorithm KT 1

2 , 1
k−1

SubAlgorithm AS2: Use the algorithm presented in [18] on S2. We provide the
details of this algorithm in the full version of the paper.

Case 2: Perform an online partition of the intervals into two disjoint subse-
quences R1 and R2 according to the bandwidth of the intervals. The subse-
quences are defined as follows:
For every interval I, I ∈ R1 if b(I) ≤ 1

2 and I ∈ R2 if 1
2 < b(I) < 1.

SubAlgorithm AR1 : Use a variant of KT1,1 without bandwidth on R1. In
lines 1-4 of the algorithm KT1,1, treat all intervals as if they have bandwidth
of exactly 1. The change is made in line 5 of the algorithm. Instead of using at
most 3 colors for each Am, use only one color.

SubAlgorithm AR2 : Use KT1,1 without bandwidth, treating every interval as
if its bandwidth is exactly 1.
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Analysis of the Competitive Ratio:
Case 1: SubAlgorithm AS1 :
Since each color can be used for a total of k intersecting intervals, we can treat all
interval in S1 as if they have bandwidth of exactly 1

k . The value ω∗ is computed
using this assumption.

Even k. The coloring of KT 1
2 , 1

k
is ω∗

1
2
�maxm FF (Am), according to Lemma

3 part (ii). Since now all intervals have the same bandwidth 1
k , and since 1

2 is
divisible by 1

k , by Lemma 2, we get that for every m, ω∗(Am) ≤ 1. Therefore
maxm FF (Am) = 1 and we get a coloring of at most 2ω∗� ≤ 2ω∗�.
Odd k. Similarly to the previous case, we get a competitive ratio of 2 if OPT
can use only k−1 intersecting intervals for every color. However OPTK−Bounded

can use k intersecting intervals for each color. Therefore the OPTK−Bounded uses
at least k−1

k ω∗ colors. Hence we get a competitive ratio of 2 · k
k−1 .

SubAlgorithm AS2 : The algorithm presented in [18] has a competitive ratio
of 10 on intervals in (0,1]. Since for every I ∈ S2, b(I) in (0,1], the competitive
ratio for this part is also at most 10.

Combining the competitive ratio of this case we get 10 + 2k
k−1 for odd k and

12 for even k.

Case 2: SubAlgorithm AR1 : Note that in this variant of KT1,1 without band-
width, all the sets of intervals Am contain the same intervals as if we had used
the regular KT1,1 without bandwidth. The only difference is the coloring of the
intervals within these sets.

First we claim that this variant results in a proper coloring. By Lemma
2, the cardinality clique is at most 2 in each Am. Since every interval I ∈ R1

satisfies b(I) ≤ 1
2 every Am can be colored by a single color and the claim is

proved.
We next show that the coloring of AR1(R1) is at most k ·OPTK−Bounded(R1).

Algorithm AR1 uses at most ω colors, where ω is the cardinality clique of
the set R1 and not the weighted clique. In the cardinality constraint variant
OPTK−Bounded can only color k intersecting intervals with the same color.
Therefore uses at least ω

k colors. Thus we get that AR1(R1) uses at most k ·
OPTK−Bounded(R1) colors.

SubAlgorithm AR2 : The coloring of AR2(R2) ≤ 3OPT (R2). Since for every
I ∈ R2, b(I) > 1

2 , every two intersecting intervals can not receive the same color.
Thus OPT (R2) = OPTK−Bounded(R2).
Combining the competitive ratio of this case we get k + 3.

To complete the analysis, since k is known in advance, the algorithm uses
the best case for a specified k, thus getting the minimum competitive ratio out
of the two cases.
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4 Lower Bound

In this section we prove the following theorem, using a single type of construc-
tion for all models, that can be achieved by choosing appropriate parameters.
The theorem holds for all models studied in this paper. The variant with vec-
tor constraints is a generalization of standard coloring with bandwidth, where
the vector has dimension 1. Additional dimensions can be added trivially by
adding zero components. Similarly, the variant with both vector and cardinality
constraints is a generalization of cardinality constrained coloring.

Theorem 3. Any deterministic online algorithm for interval coloring with band-
width in the standard model, open-end model, and cardinality constrained model,
has competitive ratio of at least 24

7 ≈ 3.428571.

The general structure of the input sequence is as follows. In the first part of
the construction, all intervals have bandwidth α and in the second (optional) part
all intervals have bandwidth β > α. The values of α and β are picked depending
on the exact problem. The choice is such that it is possible to give the same color
to two intersecting intervals of bandwidth α, or even to one interval of bandwidth
α and one of bandwidth β, which are intersecting. However, we need to make
sure that it is impossible to give the same color to two intersecting intervals of
bandwidth β, or to any three intersecting intervals of bandwidth at least α.

Such choices can be e.g. α = 0.4 and β = 0.6 for the standard problem, or to
the cardinality constrained problem (for any k ≥ 2). For the open-end problem,
we can take α = 0.6 and β = 1.

Given an integer value s, the first part of the sequence is built so that the
largest clique size (ignoring the bandwidth) is 2s. Therefore it is possible to color
the input using s colors, as follows. First, we greedily distribute 2s colors so that
no two intersecting intervals receive the same color. Then we can partition colors
into pairs, and unite every two colors into one. This can be done since at every
point there will be at most two intersecting intervals of bandwidth α.

The second part of the sequence is built in a way that the largest clique size
(again, ignoring the bandwidth) of intervals introduced in this part is 2s. The
complete sequence can be colored using 2s colors, similarly to the explanation
above, by coloring each part of the sequence using 2s colors. The same palette
of 2s colors can be used for both parts.

Consider a subset of the input, usually this is a subset of input intervals
contained in some mega-interval. A color which was used for at least one interval
in the subset is called a “used color”. Next, we define the notion of “full colors”
and “partial colors” in a the coloring of this subset as follows. If there exists a
point p and a color c such that two distinct intervals X and Y such that p ∈ X
and p ∈ Y received both the color c, or a single interval from the second part,
i.e., with bandwidth β then c is a full color. Otherwise, if this does not hold, but
c is a used color, then it is a partial color.

The construction of the two parts of the sequence are adaptations of the
lower bound in [14]. The first part of the sequence uses intervals of bandwidth
α and therefore two intersecting intervals may receive the same color. This is
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a main difference with the proof in [14], since we need to deal with such a
situation, whereas in [14] all intervals have bandwidth 1. Another difference,
that we already used in the construction in [7] is the assumption that some
information on the optimal cost (which is either s or 2s in our case) is known in
advance.

The construction of each part works in phases, after a phase we shrink some
parts of the line into single points. Given a point p, that is a result of shrinking
an interval [a, b]. Every interval presented in the past which is contained in [a, b]
is also shrunk into p and therefore such a point inherits a list of used (partial
and full) colors that some interval received. A partial color can be used again
exactly once in some interval containing p. A full color cannot be assigned to
any interval that contains the point p. This is done for simplification. In practice
it means that for a given point p that is the result of shrinking, every future
interval either contains this point or not, i.e., it either contains all intervals that
were shrunk into this point, or has no overlap with any of them.

We would like to show that either the number of colors used in the first part
is at least 24s−2

7 , or the number of colors used after the second step is at least
48s−4

7 . This would imply the lower bound. Therefore, the sequence construction
can clearly stop once 7s colors have been used. Therefore we may assume that
we are initially given a palette of 7s colors, 1, . . . , 7s, that can all be used by the
algorithm. The ith color ever used is called color number i. As soon as color 7s
is used, the proof is complete. This is just one stopping condition, we may stop
the sequence earlier as well.

The first part of the sequence has intervals of bandwidth α and starts with
introducing S(0) non-intersecting intervals, this is phase 1. A bound on the value
S(0) is fixed later.

Since the algorithm is using at most 7s colors, this means that there exists
a set of S(0)

7s intervals that share the exact same color c. We shrink all intervals
into single points. Later phases result in additional points. Since there are no
intersecting intervals, color c is partial in all points colored with it.

We now define phase i. The phases are constructed in a way that in the
beginning of phase i there is a set of at least S(i− 1) points that contain a two
given subsets of the 7s colors. The first subset is of P (i − 1) partial colors and
the second is of F (i − 1) full colors. These points are called points of interest.
Note that after phase 1 we have P (1) = 1 and F (1) = 0.

There exist some other points containing other subsets of full and partial
colors. All these points are called void points. At this time, we partition the
points of interest into consecutive sets of four. At most three points of interest
that do not participate in this become void points.

We next define additional intervals, increasing the size of the largest cardi-
nality clique (with respect to the number of intervals, i.e., ignoring bandwidth)
by exactly one. Given a set of four points listed from left to right a1, a2, a3, a4,
let b be the leftmost void point on the right hand side of a1, between a1 and
a2. If no such point exists, then let b = a1+a2

2 , i.e., the point which is halfway
between a1 and a2. Similarly, let d be the rightmost void point between a3 and
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a4, and if no such point exists then d = a3+a4
2 . Let f be a point between a2

and a3 that is not a void point. We introduce the intervals I1 = [a1,
a1+b

2 ] and
I2 = [d+a4

2 , a4].
If they both receive the same color (used or unused at points a1 and a4),

we introduce the intervals I3 = [a1+b
2 , f ] and I4 = [f, d+a4

2 ]. The interval I3
intersects with a2, and with I1. The second interval I4 intersects I3, a3 and I2.
If at most two distinct colors were used, then there exists a point in the range
[a1, a4] where two intersecting intervals received the same color, and therefore
there is at least one new full color in this interval. If a color that is partial in
the point a1, a2, a3, a4 was used, then this color becomes full in [a1, a4]. If three
unused colors were used, then these colors become additional partial colors in
[a1, a4].

If I1, I2 receive distinct colors (used or unused), we introduce the interval
I5 = [a1+b

2 , d+a4
2 ]. Interval I5 intersects with I1, I2, a2, a3. If it gets the same

color as I1 or I2 this color becomes full in [a1, a4]. If a color that is partial in
the point a1, a2, a3, a4 was used, then this color becomes full in [a1, a4]. If three
unused colors were used, then these colors become additional partial colors in
[a1, a4].

We shrink every such interval [a1, a4] into a single point. Each of the new
shrunk points received either three new partial colors, or one full (not necessarily
new) color.

Note that we do not use more than 7s colors, and each new shrunk point re-
ceives a number of full and partial colors, which is at most three colors in total.
Four intervals are introduced only if the first two received the same color. If the
point has no new full colors, then it has exactly three new partial colors. Oth-
erwise, it has at least one new full color, and possibly one or two new partial or
full colors. Before the phase, all points of intervals had the exact same subsets of
partial and full colors. This gives seven options for the type of new colors (or col-
ors which changed status from partial to full). Let “f”denote full and “p”denote
partial, then the options are (p, p, p), (f, p, p), (f, f, p), (f, f, f), (f, p), (f, f), (f).
There are less than (7s)3 options for each type, and thus in total, there are less
then 7 · (7s)3 choices for the updated subsets given the previous ones. We can
choose at least S(i) = S(i−1)

4·7·(7s)3 points having the same sets of full and partial col-
ors. The points containing these exact sets of colors become the points of interest
of the next phase, and the others become void points of the next phase. Points
that are void points of previous phases and are not contained in shrunk intervals
remain void points. Note that the only points where the new intervals intersect
are points with no previous intervals, and therefore the clique size increases by
exactly 1.

After the first 2s phases, the sequence may continue with the second part.
If P (2s) + F (2s) ≥ 24s−2

7 the sequence stops since the lower bound is obtained.
Otherwise, the second part goes on for 2s phases, however the intervals have
bandwidth β, therefore no new partial colors are introduced, and every phase
results in three new full colors. To verify this, it can be checked that in both
construction cases, the new intervals must receive three distinct colors, that are
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either unused or partial. The number of full colors after all phases is at least
F (2s) + 6s. Let A be the number of phases among the first 2s which increased
the number of partial colors by 3. Therefore P (2s) + F (2s) ≥ 3A + 1. In all
other phases except the first one and up to phase 2s, the number of full colors
increased. Therefore F (2s) ≥ 2s−1−A. We get 2s−1−F (2s) ≤ A < 24s−9

21 and
therefore F (2s) > 6s−4

7 and F (2s) + 6s > 48s−4
7 , which proves the lower bound

in this case.
Note that in each phase, the number of intervals which can be used for

the next phase decreases by a factor of at most 28 · (7s)3. To complete the
construction, we need S(4s) ≥ 1. If the initial amount of intervals introduced is
S(0) = (28 · (7s)3)4s, this holds and we are done.
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Abstract. Recently Glaßer et al. have shown that for many classes C
including PSPACE and NP it holds that all of its nontrivial many-one
complete languages are autoreducible. This immediately raises the ques-
tion of whether all many-one complete languages are Turing self-reducible
for such classes C.

This paper considers a simpler version of this question—whether all
PSPACE-complete (NP-complete) languages are length-decreasing self-
reducible. We show that if all PSPACE-complete languages are length-
decreasing self-reducible then PSPACE = P and that if all NP-complete
languages are length-decreasing self-reducible then NP = P.

The same type of result holds for many other natural complex-
ity classes. In particular, we show that (1) not all NL-complete sets
are logspace length-decreasing self-reducible, (2) unconditionally not
all PSPACE-complete languages are logpsace length-decreasing self-
reducible, and (3) unconditionally not all EXP-complete languages are
polynomial-time length-decreasing self-reducible.

1 Introduction

Self-reducibility [1,2] and autoreducibility [3,4] are among the most frequently
used central concepts in complexity theory. Intuitively, these notions refer to the
situations in which the membership question about a word in a language can be
answered by asking the membership question in the same language about other
strings. While autoreducibility essentially permits querying about any word other
than the input (within a certain resource constraint), self-reducibility permits
querying only those words preceding the input with respect to some partial or-
der (the exact definition of the partial order changes the characteristic of the
self-reducibility). It is well-known that the NP-complete problem SAT possesses
such a property: given a non-trivial formula ϕ as input, one can decide whether
ϕ is satisfiable by asking whether at least one of the two formulas constructed
by setting the value of the first variable of ϕ to 0 and to 1 is satisfiable. This is
called the disjunctive-self-reducibility of SAT. A rich theory of self-reducibility
and autoreducibility has been established by studying the structure of the reduc-
tions, that is, how “easier” the queries should be and how powerful the under-
lying computation is. The theory encompasses such concepts as coherence [5],
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logspace-self-reducibility [6], random-self-reducibility [7], and word-decreasing
self-reducibility [6].

Like SAT, many concrete complete sets are known to be self-reducible or
autoreducible. In many cases, their self-reductions or autoreductions are length-
decreasing, in the sense that the query strings are shorter than the input. It is easy
to see that the disjunctive-self-reduction of SAT presented in the above is indeed
length-decreasing. The standard complete language QBF for PSPACE has a
similar self-reduction in which the membership is queried about the formulas
constructed by fixing the first variable to 0 and to 1. This self-reduction is length-
decreasing too.

One might then ask whether every complete problem is indeed length-
decreasing self-reducible for NP and for PSPACE. This paper shows that that is
unlikely to be the case. We show that for a wide variety of classes C, including
PSPACE and NP, it holds that if all complete sets for C are length-decreasing
self-reducible then C ⊆ P.

The above result about NP can be contrasted with the results about autore-
ducibility of NP-complete languages. Formally, a language A is autoreducible
if it is accepted by a polynomial-time oracle Turing machine M with A as the
oracle and for no input x M queries x to the oracle. Beigel and Feigenbaum [8]
showed that all languages complete for NP with respect to polynomial-time
Turing reductions are (Turing) autoreducible. More recently, Glaßer et al. [9]
show that all NP-complete sets and all PSPACE-complete sets are many-one
autoreducible. So, from our new result it follows that under the assumption
that P �= PSPACE there are languages that are autoreducible but not length-
decreasing self-reducible.

Buhrman and Torenvliet [10] gave evidence that general self-reducibility (as
defined by Meyer and Paterson in [1]) differs from autoreducibility on NP. Our re-
sult does not follow from their result, since the length-decreasing self-reducibility
is a special case of the Meyer–Paterson self-reducibility. Indeed, our results are
stronger than the result of Buhrman and Torenvliet.

Our results can be obtained by using a single, simple technique. For each
class we are concerned with, we construct a complete language with the prop-
erty that the language is length-decreasing self-reducible if and only if the lan-
guage is easy. Here by “easy” we mean that the language is polynomial-time
decidable in the case where the self-reductions are polynomial-time and that the
language is logarithmic-space decidable in the case where the self-reductions are
logarithmic-space. With simple modifications, our technique applies to logspace
length-decreasing self-reducibility, obtaining collapses to L.

Note that in complexity theory there is no agreement on the definition of self-
reducibility. In this paper, following Balcázar [6], we use length-decreasing Turing
self-reducibility. However, a more general notion of Meyer and Paterson [1] has
been widely used. Köbler and Watanabe [11] use an even more generic notion
of self-reducibility, which can be applied beyond PSPACE (all length-decreasing
self-reducible sets, and all sets self-reducible with respect to the Meyer–Paterson
self-reducibility, are in PSPACE). One may consider our result as an argument
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against the use of length-decreasing self-reducibility, since we show that sets that
are unlikely to be length-decreasing self-reducibility can be easily constructed.

Finally, we note here that the work presented in this paper was motivated
by Problem 5.15 in the book by Bovet and Crescenzi [12]. The problem asks to
prove that SAT is length-decreasing self-reducible and then asks whether this
fact is enough for us to conclude that all NP-complete sets are length-decreasing
self-reducible. This paper gives a solution to this problem.

The paper is organized as follows. In Section 2 we give basic definitions that
will be useful throughout the paper. Section 3 presents our main results along
with some simple, but interesting, corollaries.

2 Preliminaries

Throughout this paper we use standard definitions of complexity theory, as
in [13,12]. Class PSPACE is the set of all languages that can be decided us-
ing polynomial amount of space. L and NL are sets of languages than can be
decided using logarithmic amount of space by a deterministic and a nondeter-
ministic Turing Machine respectively. Without the loss of generality, we assume
that all languages we consider are over the alphabet Σ = {0, 1}. All polynomials
we consider here have nonnegative integer coefficients so for all n ≥ 0 their value
is nonnegative.

We define autoreducible sets as follows:

Definition 1. A language A is autoreducible if there exists a polynomial-time
oracle Turing machine M such that

– L(MA) = A and
– for all inputs x, M does not query x to its oracle.

It is easy to see that SAT is autoreducible by the reduction provided in the
introduction: On input formula ϕ, if ϕ is trivial, that is, it contains no variable,
accept or reject according to whether ϕ is true or false; otherwise, construct two
formulas, ϕ0 and ϕ1, by setting the value of the first variable of ϕ to 0 and
1, respectively, and then accept if and only if either ϕ0 or ϕ1 belongs to SAT.
In this reduction the queries are disjunctive and the query strings are shorter
than the input, so it is actually a disjunctive length-decreasing self-reduction.
Formally, we define length-decreasing self-reductions as follows:

Definition 2. We say that a language A is length-decreasing self-reducible if
there exists a polynomial-time autoreduction M such that for all x, M on input
x does not query a string whose length is greater than or equal to |x|.

The above two definitions are with respect to polynomial-time Turing ma-
chines. The logarithmic-space versions of those reducibility notions are defined
simply by requiring that the machine M runs in logarithmic space. The loga-
rithmic bound does not apply to the oracle tape, the queries can be of up to
polynomial size.
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Let f be a function from N to itself. We say that f is a padding-length
function if for all n ≥ 0 f(n) > n. We say that f is polynomially bounded if
there exists a polynomial p such that for all n ≥ 0 it holds that f(n) ≤ p(n).
We say that f is logspace computable if the mapping 1n �→ 1f(n) is computable
in logarithmic space.

Definition 3. We say that a class C is closed under logspace padding if for
every nontrivial (neither {0, 1}∗ nor emptyset) A ∈ C and for every polynomially
bounded, logspace computable padding-length function f it holds that the language
A′ defined by:

A′ = {x10m | x ∈ A ∧ 1 + |x|+ m = f(|x|)}

belongs to C.

It is easy to see that classes L, NL, NP and PSPACE are all closed under
logspace padding.

Definition 4. We say that a complexity class C is normal if it has complete
sets (polynomial-time many-one complete sets for classes known to contain P
and logspace many-one complete sets for the others) and is closed under logspace
padding.

It is easy to see that all classes that have complete sets and are closed under
many-one reductions are normal.

Lemma 1. Let C be a normal class. Let f be an arbitrary polynomially bounded,
logspace computable padding-length function. Let A be an arbitrary C-complete
set. Then A′ = {x10m | x ∈ A ∧ |x|+ 1 + m = f(|x|)} is C-complete.

Proof. Let C, f , and A be as in the hypothesis of the lemma. Since C is normal,
A′ belongs to C. To show that A′ is hard for C, define g(x) = x10|f(x)|−|x|−1.
This function g is logspace computable: our machine simulates the machine for
computing f on input x and replaces its first |x|+ 1 bits by x1. It is easy to see
that g many-one reduces A to A′. So, A′ is hard for C. This proves the lemma.

��
Note that if A in the lemma above is logspace C-complete then so is its padded
version A′.

3 Main Results

In this section we prove our two main results regarding length-decreasing self-
reducibility and logspace length-decreasing self-reducibility.

Theorem 1. Let C be a normal class. If all C-complete languages under
polynomial-time many-one reductions are length-decreasing self-reducible then
C ⊆ P.
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Proof. Let A be an arbitrary C-complete language under polynomial-time many-
one reductions. Let k ≥ 2 be an integer. Let f be the function from N to itself
defined for all n ≥ 0 by: f(n) = the smallest integer 2ki

such that i is an integer
and 2ki

> n. Define B as follows:

B = {x10m | x ∈ A ∧ |x|+ 1 + m = f(|x|)}.

Note that B is simply a padded version of A, in which the length of each member
of A is inflated to an integer of the form 2ki

. The function f is clearly a padding-
length function. Also, f is polynomially bounded because for all n ≥ 0 it holds
that f(n) ≤ 2 + nk. Furthermore, f is logspace computable: On input x, f(x)
can be computed by successively calculating in binary 2, 2k, (2k)k, ((2k)k)k, · · ·
until the value exceeds |x|. Thus, by Lemma 1, B is C-complete. Then by our
assumption B is length-decreasing self-reducible.

Since B is length-decreasing self-reducible, there is a deterministic Turing
machine M such that:

– M runs in polynomial time;
– L(MB) = B;
– On input x, M queries its oracle only about strings shorter than x.

We now describe a polynomial-time algorithm for B that does not need the
oracle. On input x our algorithm behaves as follows: If |x| is not of the form 2ki

,
then by definition x is clearly a non-member of B, so we immediately terminate
the simulation (or return from the simulation if we are dealing with a recursive
call) by asserting that x �∈ B. Otherwise, we simulate M on input x replacing
each oracle query by a recursive call to M . Nontrivial simulations of M take
place only when the length of the input is of the form 2ki

for some integer i.
Since M is length-decreasing self-reducible, we can assume that on inputs of
appropriate length all oracle queries regard strings of length at most |x| 1k . We
also modify M to use a look-up table to decide strings of length at most 2.

Now we are ready to prove that our algorithm runs in polynomial time. Let
p be a polynomial such that for all x, the running time of M on input x is p(|x|)
assuming that the cost of each oracle query is 1. Note that all polynomials we
are concerned with have nonnegative coefficients, so p is strictly increasing and
for all nonnegative n it holds that p(n) > 1. What is the time complexity of
our algorithm? In the recursion tree, there are at most log log n� levels because
strings of length at most n

1
k�log log n� are of length at most 2, and we have a

look-up table to decide whether we accept them or not. For each level i ≥ 0
of the recursion tree, let Pi be the number of computational steps other than
processing of recursive calls required to simulate all the level-i simulations. It
holds that:

P0 ≤ p(n)

P1 ≤ p(n) · p(n 1
k )

P2 ≤ p(n) · p(n 1
k ) · p(n 1

k2 )



Separating the Notions of Self- and Autoreducibility 313

and so on. This is because at the 0-th level we just have one call to M with input
of length n. At this level M can make at most p(n) oracle queries, each of length
at most n

1
k , thus at the first level we need to execute at most p(n) · p(n 1

k ) basic
steps. The same analysis applies to P2, P3, and so on, up to P�log log n�.

Let us now estimate the value of Pj for some arbitrary j. We can assume
without the loss of generality that p(n) ≤ nd for some nonnegative integer d. It
holds that:

Pj ≤
j∏

i=0

p(n
1

ki ) ≤
j∏

i=0

n
d

ki = n
∑ j

i=0
d

ki ≤ n
∑∞

i=0
d

ki = n
dk

k−1

Note that the final result does not depend on j so the time complexity of the
whole algorithm is bounded by:

log log n� · n dk
k−1 ∈ O(nh),

where h is some nonnegative integer such that h ≥ dk
k−1 +1. Thus, we have shown

that B is decidable in polynomial time. Since B is complete for C, it holds that
all languages in C are decidable in polynomial time. This proves the theorem.

��
For all C’s other than some pathological cases (C = {∅} or C = {Σ}) we
have, by the above theorem, that if C is closed under many-one reductions and
all C-complete sets are length-decreasing self-reducible (and C has at least one
complete set) then C = P. Thus, we have the following corollaries:

Corollary 1. If all NP-complete languages are length-decreasing self-reducible,
then P = NP.

Corollary 2. If all PSPACE-complete languages are length-decreasing self-
reducible then P = PSPACE.

A similar theorem holds for length-decreasing self-reducibility in logarithmic
space.

Theorem 2. Let C be a normal complexity class. If C has complete languages
with respect to logspace many-one reduction and all its complete languages are
logspace length-decreasing self reducible then C ⊆ L.

Proof. The proof is essentially the same as the proof of Theorem 1. The only
difference is that now we need to make sure that we do not use more than a
logarithmic amount of space for our recursive calls.

Let A, k, f , B, and M be as defined in the proof of Theorem 1 with the
exception that A is logspace many-one complete for C, and that M is an oracle
Turing Machine witnessing that A is logspace length-decreasing self-reducible.
We need to implement the following space-preserving strategy. We cannot gen-
erate the input for the recursive calls on the tape because that would use more
than a logarithmic amount of space. Instead, after each recursive call that com-
pleted, we store the contents of the tape and the position of the head (replacing
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the previously stored one) and run the machine—without writing out the next
query string—until finally a subsequent query is to be asked (recursive call is
to be performed). Then, in that recursive call we only pass the stored tape so
that the recursive call can recreate any of the bits of its input string on demand
(using an at most logn bit counter).

By definition of logspace length-decreasing self-reducibility, excluding the
recursive calls, our machine uses at most logarithmic amount of space. Thus, if
the input string has length n then for the recursive calls at the first level we
only need at most c logn bits, where c is some constant. Consequently, the total
amount of space that we need to handle each branch of recursion is:

�log log n�∑
i=0

c log
(
n

1
ki

)
≤

∞∑
i=0

c log
(
n

1
ki

)
= c logn

∞∑
i=1

1
ki

= c

(
k

k − 1

)
logn.

Since we handle recursion branches one at a time, this means that our algorithm
requires at most logarithmic space. As B is C-complete (with respect to logspace
many-one reductions) it holds that all languages in C can be decided in loga-
rithmic space. ��

The above theorem yields the following corollary.
Corollary 3. If all NL sets complete with respect to logspace many-one reduc-
tions are logspace length-decreasing self-reducible then L = NL.
By the Time and Space Hierarchy Theorems, it holds that
– L �= PSPACE and
– P �= EXP.

Now by Theorems 1 and 2, it holds that there is a PSPACE-complete language
that is not logspace length-decreasing self-reducible, and that there exists an
EXP-complete language that is not length-decreasing self-reducible.

We conclude the paper by noting that it follows from Theorem 1 that if P �=
PSPACE then there are PSPACE-complete sets that are not length-decreasing
self-reducible. However, it was proved by by Beigel and Feigenbaum [8] (see
also the work of Glaßer et al. [9]) that all PSPACE-complete languages are
autoreducible. Thus, if P �= PSPACE then the notions of length-decreasing self-
reducibility and autoreducibility are different.
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Abstract. In this paper we propose a probabilistic analysis of the fully
asynchronous behavior (i.e., two cells are never simultaneously updated,
as in a continuous time process) of elementary finite cellular automata
(i.e., {0, 1} states, radius 1 and unidimensional) for which both states
are quiescent (i.e., (0, 0, 0) �→ 0 and (1, 1, 1) �→ 1). It has been exper-
imentally shown in previous works that introducing asynchronism in
the global function of a cellular automaton may perturb its behavior,
but as far as we know, only few theoretical work exist on the subject.
The cellular automata we consider live on a ring of size n and asyn-
chronism is introduced as follows: at each time step one cell is selected
uniformly at random and the transition rule is applied to this cell while
the others remain unchanged. Among the sixty-four cellular automata
belonging to the class we consider, we show that fifty-five other converge
almost surely to a random fixed point while nine of them diverge on all
non-trivial configurations. We show that the convergence time of these
fifty-five automata can only take the following values: either 0, Θ(n ln n),
Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of
these cellular automata can be guessed by simply reading its code.

1 Introduction

The aim of this article is to analyze theoretically the asynchronous behavior of
unbounded finite cellular automata. During the last two decades, several em-
pirical studies [3,12,9,1,13,4] have shown that certain cellular automata behav-
ior change drastically under asynchronous behavior. In particular, [1,5] observe
that finite size Game of Life space-time diagrams under synchronous and asyn-
chronous updating differ qualitatively. For instance, fixed size Game of Life ex-
hibits convergence to cycles of arbitrary length under synchronous updating,
while appears to converge towards a random fixed point under asynchronous
dynamics [1].

Cellular automata are widely used to model systems involving a huge number
of interacting elements such as agents in economy, particles in physics, proteins

J. J drzejowicz and A. Szepietowski (Eds.): MFCS 200 , LNCS 3618, pp. 316–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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in biology, etc. In most of these applications, in particular in many real system
models, agents are not synchronous. Interestingly enough, in spite of this lack
of synchronism, real living systems are very resilient over time. One might then
expect the cellular automata used to model these systems to be robust to asyn-
chronism and other kind of failure as well (such as misreading the state of the
neighbors). Surprisingly enough, it turns out that the resilience to asynchronism
widely varies from one automata to another (e.g., [1,4]). In particular, the aspect
of asynchronous space-time diagrams of cellular automata may differ radically
from their synchronous ones.

As far as we know, the question of the importance of perfect synchrony on
the behavior of a cellular automaton is not yet understood theoretically. To our
knowledge, only Gács shows in [8] undecidability results on the invariance with
respect to the update history. Studies have also been led in the more general con-
text of probabilistic cellular automata regarding the question of the existence of
stationary distribution on infinite configurations (see [10] for a state of the art).

In this paper, we quantify the convergence time and describe the space-time
diagrams for a class of cellular automata under fully asynchronous updating,

Table 1. Behavior of DQECA under fully asynchronous dynamics. WECT stands for
worst expected convergence time. See Section 2 for explanations.

Behavior ECA (#) Rule 010101 101010 010010010 101101101 WECT

Identity 204 (1) ∅ · · · · 0

Coupon collector
200 (2) E · · + ·

Θ(n ln n)232 (1) DE · · + +

Monotonic

206 (4) B ← · · ·

Θ(n2)

222 (2) BC ← → · ·
234 (4) BDE ← · + +
250 (2) BCDE ← → + +
202 (4) BE ← · + ·
192 (4) EF → · + ·
218 (2) BCE ← → + ·
128 (2) EFG → ← + ·

Biased Random Walk
242 (4) BCDEF � → + +
130 (4) BEFG � ← + ·

Random Walk

226 (2) BDEF � · + +

Θ(n3)

170 (2) BDEG ← ← + +
178 (1) BCDEFG � � + +
194 (4) BEF � · + ·
138 (4) BEG ← ← + ·
146 (2) BCEFG � � + ·

Biased Random Walk 210 (4) BCEF � → + · Θ(n2n)

Divergent

198 (2) BF � · · ·

Divergent
142 (2) BG ← ← · ·
214 (4) BCF � → · ·
150 (1) BCFG � � · ·
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where two cells are not updated simultaneously. This asynchronous regime, also
known as step-driven asynchronous dynamics [13], arises for instance in continu-
ous time updating processes. We focus on double-quiescent elementary automata.
We show that among these sixty-four automata, nine diverge on all non-trivial
configurations (see Theorem 13), and the fifty-five other converge almost surely
to a random fixed point (see Theorem 1). Furthermore, the convergence time

(a) DE 232 (b) BEFG 130

(c) BDEG 170 (d) BCEFG 146

(e) BCEF 210 (f) BCFG 150

Fig. 1. Examples of space-time diagrams under fully asynchronous and synchronous
dynamics for each type of convergence, with n = 50. For each automaton, the larger
left and the smaller right diagrams are respectively examples of asynchronous and
synchronous dynamics. White and black pixels respectively stand for states 0 and 1.
The k-th line from bottom is the configuration at time t = 50 k for the asynchronous
dynamics, and at time t = k for the synchronous one. Note that automata (a) and (c)
are respectively the classic Majority and Shift rules. Each automata is described by
two codes: a number, which is the classic Wolfram’s number, and a sequence of letters,
which will be introduced later in the paper.
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of these fifty-five automata on (spatially) periodic configurations, can only take
the following values: either 0, Θ(n lnn), Θ(n2), Θ(n3), or Θ(n2n), where n is
the size of the configurations. One of the most striking results is that the fully
asynchronous global behavior of double quiescent elementary automata is ob-
tained simply by reading the code of their local transition rules (see Tab. 1),
which is known to be a difficult problem in general. Moreover, the asynchronous
behavior of all automata is in a certain sense characterized by this convergence
time: all automata within the same convergence time present the same kind of
space-time diagrams (see Tab. 1 and Fig. 1). Remark that the asynchronous
behavior of some very simple automata like the shift (Wolfram rule code 170)
actually simulates intricate stochastic processes that are currently under investi-
gation in mathematics and physics, such as annihilating random walks, studied
for instance in [11]. Our results rely on coupling the automata with a proper
random process.

Definitions and our main result are given in Section 2. In section 3, we present
basic but useful properties of the automata we consider. Section 4 is a technical
section that develops probabilistic tools used to analyze the automata. Section 5
finally analyzes in details the asynchronous behavior of each automaton.

2 Definitions, Notations and Main Results

In this paper, we consider two-state cellular automata on finite size configura-
tions.

Definition 1. An Elementary Cellular Automata (ECA) is given by its transi-
tion function δ : {0, 1}3 → {0, 1}. We denote by Q = {0, 1} the set of states. A
state q is quiescent if δ(q, q, q) = q. An ECA is double-quiescent (DQECA) if
both states 0 and 1 are quiescent.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic
boundary conditions x ∈ QU is a word indexed by U with letters in Q. For a
given pattern w ∈ QU , we denote by |x|w = #{i ∈ U : xi+1 . . . xi+|w| = w} the
number of occurrences of w in configuration x.

We consider two kinds of dynamics for ECAs: the synchronous dynamics
and the fully asynchronous dynamics. The synchronous dynamics is the classic
dynamics of cellular automata, where the transition function is applied at each
(discrete) time step on each cell simultaneously.

Definition 2 (Synchronous Dynamics). The synchronous dynamics
Sδ : QU → QU of an ECA δ, associates to each configuration x the configuration
y, such that for all i in U , yi = δ(xi−1, xi, xi+1).

The asynchronous regime studied here can be seen as the most extreme
asynchronous regime as two cells are never updated simultaneously.

Definition 3 (Fully Asynchronous Dynamics). The fully asynchronous dy-
namics ASδ of an ECA δ associates to each configuration x a random config-
uration y, such that yj = xj for j �= i, and yi = δ(xi−1, xi, xi+1), where i is
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uniformly chosen at random in U . ASδ could equivalently be seen as a function
with two arguments, the configuration x and the random index i ∈ U . For a given
ECA δ, we denote by xt the random variable for the configuration obtained by
t applications of the asynchronous dynamics function ASδ on configuration x,
i.e., xt = (ASδ)t(x).

Definition 4 (Fixed point). We say that a configuration x is a fixed point
for δ under fully asynchronous dynamics if ASδ(x) = x whatever the choice of i
(the cell to be updated) is. Fδ denotes the set of fixed points for δ.

The set of fixed points of the asynchronous dynamics is clearly identical to
{x : Sδ(x) = x} the set of fixed points of the synchronous dynamics. Note that
every DQECA admits two trivial fixed points, 0n and 1n.

Definition 5 (Worst Expected Convergence Time). Given an ECA δ and
a configuration x, we denote by Tδ(x) the random variable for the time to reach a
fixed point from configuration x under fully asynchronous dynamics, i.e., Tδ(x) =
min{t : xt ∈ Fδ}. The worst expected convergence time Tδ of ECA δ is :

Tδ = max
x∈QU

E[Tδ(x)].

We can now state our main theorem.

Theorem 1 (Main result). Under fully asynchronous dynamics, among the
sixty-four DQECAs,

– fifty-five converge almost surely to a random fixed point on any initial
configuration, and the worst expected convergence times of these fifty-five
convergent DQECAs are 0, Θ(n lnn), Θ(n2), Θ(n3), and Θ(n2n);

– the nine others diverge almost surely on any initial configuration that is
neither 0n, nor 1n nor, when n is even, (01)n/2.

Furthermore, the behaviors of the different DQECAs are similar within each
class, and are obtained by simply reading its code as illustrated in Tab. 1.

Figure 1 gives examples of the asynchronous space-time diagrams of a represen-
tative of each class (but Identity). It is interesting to notice that except for the
first diagram (Fig. 1(a)), the asynchronous space-time diagrams (the larger ones)
considerably differ from the corresponding synchronous ones (the smaller ones).

3 Basic properties of DQECAs

The transition function δ of an ECA is given by the set of its eight transitions

δ(000), δ(001), . . . , δ(111), traditionally written 000
δ(000) , . . . ,

111
δ(111) . The follow-

ing code describes each ECA by its differences to the Identity automaton. We
use this notation rather than the classic Wolfram’s one [14] since it is not im-
mediate to infer the local behavior of the cellular automaton just by looking at
its Wolfram code. In order to allow comparison with other work we still indicate
the classic Wolfram number in Tab. 1.
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Notation 1. We say that a transition is active if it changes the state of the cell
where it is applied. Each ECA is fully determined by its active transitions. We
label each active transition by a letter as follow:

A B C D E F G H
000 001 100 101 010 011 110 111
1 1 1 1 0 0 0 0

We label each ECA by the set of its active transitions.

Note that with these notations, the DQECAs are exactly the ECAs having
a label containing neither A nor H. By 0/1 and horizontal symmetries of config-
urations, we shall w.l.o.g. only consider the 24 DQECAs listed in Tab. 1 among
the 64 DQECAs. For each of these 24 DQECAs, the number of the equivalent
automata under symmetries is written within parentheses after their classic ECA
code in the table.

From now on, we only consider the fully asynchronous dynamics (with uni-
form choice); this will be implicit in all the following propositions. Our results
rely on the study of the evolution of the “regions” in the space-time diagram
(i.e., of the intervals of consecutive 0s or 1s in configuration xt). The key obser-
vation is that for DQECAs, under fully asynchronous dynamics, the number of
regions is non-increasing since no new region can be created; furthermore, only
regions of length one can disappear (see Fig. 1). We denote by Z(x) = |x|01
(= |x|10) the number of alternations from 0 to 1 in configuration x, which will
be our counter for the number of regions.

Fact 2. For any DQECA, Z(xt) is a non-increasing function of time. Further-
more, Z(xt+1) < Z(xt) if and only if xt+1 is obtained from xt by applying a
transition D or E at time t, and then Z(xt+1) = Z(xt)− 1.

On the one hand, transitions D and E are thus responsible for decreasing the
number of regions in the space-time diagram: D “erases” the 1-regions and E the
0-regions. On the other hand, transitions B and F act on patterns 01. Intuitively,
transition B moves a pattern 01 to the left, and transition F moves it to the right.
In particular, patterns 01 perform a kind of random walk for DQECA with both
transitions B and F. Similarly, transitions C and G act on patterns 10. Transition
C moves a pattern 10 to the right, and transition G moves it to the left. The
arrows in Tab. 1 represent the different behavior of the patterns:← or→, for left
or right moves of the patterns 01 or 10; �, for random walks of these patterns.

The following lemma characterizes the fixed points of a given DQECA ac-
cording to its code.

Fact 3. If a DQECA δ admits a non-trivial fixed point x, then:
– if δ contains transition B or C, then all 0s in x are isolated;
– if δ contains transition F or G, then all 1s in x are isolated;
– if δ contains transition D, then none of the 0s in x is isolated;
– if δ contains transition E, then none of the 1s in x is isolated.

The next section is devoted to analyzing particular random walk-like pro-
cesses that will be used as tools to obtain our bounds on the convergence time.
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4 Probabilistic Toolbox

Notation 2. For a given random sequence (Xt)t∈N, we denote by (ΔXt)t>0 the
random sequence ΔXt = Xt −Xt−1.

Quadratic DQECA Toolbox. Consider ε > 0, a non-negative integer m,
and (Xt)t∈N a sequence of random variables with values in {0, . . . ,m} given
with a suitable filtration (Ft)t∈N. In probability theory, Ft represents intuitively
the σ-algebra (the “set”) of the events that happened up to time t and is the
formal tool to condition relatively to the past (see [7, Chap. 7]). In the sequel,
Ft will either be the values of the previous random variables X0, . . . , Xt, or
in some cases, the set of past configurations x0, . . . , xt. The following lemma
bounds the convergence time of a random variable that decreases by a constant
on expectation.

Lemma 4. Assume that if Xt > 0, then E[ΔXt+1|Ft] � −ε. Let T = min{t :
Xt � 0} denote the random variable for the first time t where Xt � 0. Then, if
X0 = x0,

E[T ] � m + x0

ε
.

Cubic DQECA Toolbox. Let ε > 0 and (Xt)t∈N a sequence of random vari-
ables with values in {0, . . . ,m}, given with a suitable filtration (Ft)t∈N.

Definition 6. The following two types of process will be extensively used in the
next section:
– We say that (Xt)t∈N is of type I if for all t:
• E[Xt+1|Ft] = Xt (i.e., (Xt) is a martingale), and
• if 0 < Xt < m, then Pr{ΔXt+1 � 1} = Pr{ΔXt+1 � −1} � ε.

– We say that (Xt)t∈N is of type II if for all t:
• if Xt < m, then E[Xt+1] = Xt (i.e., (Xt) behaves as a martingale when

Xt < m), and
• if 0 < Xt < m, then Pr{ΔXt+1 � 1} = Pr{ΔXt+1 � −1} � ε, and
• if Xt = m, then Pr{Xt+1 � m− 1} � ε (i.e., Xt “bounces on m”).

Note that when (Xt) is of type I, if for some t, Xt ∈ {0,m}, then Xt′ = Xt for
all t′ � t, because (Xt) is a martingale bounded between 0 and m. Thus, {0,m}
are the (only) fixed points of any type I sequence. When (Xt) is of type II, if for
some t, Xt = 0, then Xt′ = Xt for all t′ � t, because (Xt) is a martingale lower
bounded by 0. Thus, 0 is the (only) fixed point of any type II sequence.

Definition 7. The convergence time of a type I sequence (Xt) is defined as the
random variable T = min{t : Xt ∈ {0,m}}. The convergence time of a type II
sequence (Xt) is similarly defined as the random variable T = min{t : Xt = 0}.

The following lemmas bound the convergence time of these two types of
random processes.
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Lemma 5. For sequence (Xt), if X0 = x0, the expectation of T satisfies:

E[T ] � x0(m− x0)
2ε

if (Xt) is of type I,

E[T ] � x0(2m + 1− x0)
2ε

if (Xt) is of type II.

5 Convergence

In this section, we evaluate the worst expected convergence time for each of
the twenty-four representative automata in Tab. 1. Our results rely on studying
the evolution of quantities computed on the random configurations (xt), whose
convergence implies the convergence of the automaton. The upper bounds on
the convergence time of these quantities are obtained by coupling them with
one of the integer random processes analyzed in the previous section. The lower
bounds are obtained by analyzing the exact expected convergence time for a
particular initial configuration (most of the time, a configuration with a single 0-
region and a single 1-region). This involves building suitable variants measuring
progress towards fixed points. One of the main difficulties is to handle correctly
the mergings of the regions, i.e., the applications of transitions D and E.

We introduce the following convenient functions that simplify the evaluation
of the quantities that are used to bound the convergence time. These function
will spare us tedious parsings of the patterns in the configurations. For a given
configuration x, we denote by a(x), . . . , h(x) the number of cells where transitions
A, . . . ,H are applicable, i.e.:

a(x) = |x|000, b(x) = |x|001, c(x) = |x|100, d(x) = |x|101,
e(x) = |x|010, f(x) = |x|011, g(x) = |x|110, h(x) = |x|111.

For instance, consider rule BCG. For convenience, we denote by p = 1/n the
probability that a given cell is updated under fully asynchronous dynamics.
Applying the transitions A, . . . ,D increases the number of 1s by one and applying
E, . . . ,H decreases it by one. The expected variation of the number of 1s for
configuration x in one step is then immediately p · (b(x) + c(x) − g(x)). When
the context is clear, the argument x will be omitted. Clearly, parsing properly
configuration x gives the following useful relationships.

Fact 6. For all configurations x ∈ QU , the following equalities hold:

|x|01 = b + d = e + f = c + d = e + g = |x|10,
|x|001 = b = c = |x|100,
|x|011 = f = g = |x|110.

Let us now analyze the worst expected convergence time for DQECAs. Due
to space constraints, most of the proofs are omitted and can be found in [6].
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5.1 “Coupon collector” DQECAs

The behavior of the DQECAs in this class (see Fig. 1(a)) is similar to the classic
Coupon Collector random process (e.g., [7]).

Theorem 7. Under fully asynchronous dynamics, DQECAs E and DE converge
a.s. to a fixed point on any initial configuration. Their worst expected convergence
time is Θ(n lnn). The fixed points for E and DE respectively are the configurations
without isolated 1 and the configurations without isolated 0 and 1.

Proof. These rules simply erase either isolated 0s, isolated 1s or both. They
never create any of them (by Fact 2), and reach a fixed point as soon as no more
0 or 1 are isolated (by Fact 3). These processes are then similar to a coupon
collector process that has to collect all the isolated 0s or 1s, by drawing at each
time step a random location uniformly in {1, . . . , n} (see e.g., [7]). If the number
of remaining isolated 0s and 1s is i, the probability to draw one of them is i/n,
and then, one of them is drawn on expectation after n/i steps. The expected
convergence time is then bounded by n(1 + 1

2 + · · ·+ 1
n ) = O(n lnn).

Finally, configuration (010)�n/3�0n mod 3, which is a proper coupon collector
process, provides a lower bound of Ω(n lnn) for both rules.

5.2 Quadratic DQECAs

Figure 1(b) illustrates the typical space-time diagram in this class. All the results
of this section are obtained by finding a proper variant whose convergence implies
the convergence of the DQECA, and which decreases by more than a given
constant on expectation.

Lemma 8. Given an initial configuration x, for each DQECA B, BC, BDE,
BCDE, BCDEG, BE, EF, BCE, EFG, BCEFG, and BEFG, there exists a sequence
(Xt) of random variables with values in {0, . . . , n} (the variant), such that:
(a) if Xt = 0, then xt is a fixed point.
(b) for all t such that xt is not a fixed point, E[ΔXt+1|Xt] � −p.
Proof. Rules B and BC. Set Xt = |xt|0 the number of 0s in xt. (a) is
clear since Xt = 0 implies that xt = 1n. We obtain (b) by noticing that
each application of transitions B or C decreases Xt by one, and that for any
non fixed-point configuration, an active transition is performed with proba-
bility greater or equal to p. Similarly, Xt = |xt|1 is suitable for rules EF and EFG.

Remaining Rules. We need to take into account the presence of isolated 0s
and 1s. We set Xt = |xt|0 +Z(xt) for rules BDE, BCDE, BE, BCE, and BCDEG;
and Xt = |xt|1 + Z(xt) for rule BEFG. Consider automaton BEFG. Clearly,
Xt ∈ {0, . . . , n}, and we have (a) Xt = 0 implies that xt = 0n. For this rule,

E[ΔXt+1|xt] = p · (b− e− f − g)(xt)− p · e(xt),

since only transition E acts on Z(xt). By Fact 6, one can rewrite

E[ΔXt+1|xt] = −p · (d + e + g)(xt).
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Second, if x is not a fixed point, then (b + e + f + g)(x) > 0. But by Fact 6, if
d + e = 0, then b = f = g. Thus, b + e + f + g > 0 implies d + e + g > 0. We
conclude that if xt is not a fixed point, we have (b). The proof is similar for all
the remaining automata. We can now state the theorem.

Theorem 9. Under fully asynchronous dynamics, DQECAs B, BC, BDE,
BCDE, BCDEG, BE, EF, BCE, EFG, BCEFG, and BEFG converge almost surely
to a fixed point on any initial configuration. Their worst expected convergence
time is Θ(n2). Only the DQECAs B, BC, BE, and BCE have non-trivial fixed
points, which are the configurations where all the 0s are isolated.

Proof. The property on the fixed points is a direct application of Fact 3. Consider
now one of the rules. Let Xt be the variant given by Lemma 8. Xt does not exactly
verify the hypotheses of Lemma 4: Xt needs to be extended beyond a fixed point
if it is reached before Xt = 0. We consider the random sequence X ′

t defined as
follow: X ′

t = Xt if xt is not a fixed point, and X ′
t = 0 otherwise. Thus, X ′

t = 0 if
and only if xt is a fixed point, and we can now apply Lemma 4 with m = n and
ε = p and we obtain E[T ] � X0/p = O(n2).

The lower bound Ω(n2) on the convergence time is simply given by consid-
ering the following initial configuration x = 0�n/2�1�n/2�. Note that Xt = |xt|1
works for all the rules on initial configuration x and its exact expected conver-
gence time is straightforward to compute by first step analysis (see [2]).

Observe that we can divide this class into two subcategories: the automata
that are monotonic, for which the variant is a non-increasing function of time,
and the non-monotonic, for which the variant follows a biased random walk
(see Tab. 1). Interestingly enough, this distinction is observed on the space-time
diagrams.

5.3 Cubic DQECAs

Figure 1(c) and 1(d) illustrate the typical behaviors in this class: one can ob-
serve that the dynamics of the regions in the space-time diagram are similar to
unbiased random walks. Furthermore, one can observe that the process of the
frontiers between regions is similar to annihilating random walks (e.g.,[11]): each
frontier follow a random walk and two frontiers vanish when they meet.

All the results of this section are obtained by coupling the process with a
suitable unbiased bounded random walk, such that the DQECA is guaranteed
to reach a fixed point before the walk reaches a (or one distinguished) boundary.

The upperbounds in Theorem 11 are straightforward applications of the fol-
lowing lemma 10 in combination with the probabilistic lemma 5. The lower
bounds are again obtained by analyzing the expected convergence time on the
initial configuration x = 0�n/2�1�n/2� with variant Xt = |xt|1.
Lemma 10. Given an initial configuration x,

– for each DQECA BDEF, BDEG, and BCDEFG, there exists an integer m � 2n
and a random integer sequence (Xt) of type I (see section 4) with values in
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{0, . . . ,m}, such that: for all t, if Xt = 0 or Xt = m, then xt is a fixed point.

– for each DQECA BEF, BEG, and BCEFG, there exists an integer m � 2n
and a random integer sequence (Xt) of type II (see section 4) with values in
{0, . . . ,m}, such that for all t, if Xt = 0, then xt is a fixed point.

Theorem 11. Under fully asynchronous dynamics, DQECAs BDEF, BDEG,
BCDEFG, BEF, BEG, and BCEFG converge almost surely to a fixed point on
any initial configuration. Their worst expected convergence time is Θ(n3). All of
them admit only 0n and 1n as fixed point.

For DQECAs BDEF, BDEG, and BCDEFG, the fixed points 0n and 1n can
be reached from any configuration (respectively distinct from 1n and 0n). For
DQECAs BEF, BEG, and BCEFG, any configuration distinct from 1n converges
almost surely to 0n.

5.4 Exponential DQECA

Figure 1(e) illustrates the typical behavior of this class. The illustrated process
will eventually converge to 0n. The trajectory of the 0-regions is similar to a coa-
lescing random walk : the 0-regions follow a kind of coalescing random walk and
merge when they meet, until only one 0-region remains. The size of the remain-
ing 0-region then follows a random walk, biased towards 1, that will eventually
converge to n after an exponential time (note that a 0-region cannot disappear
for rule BCEF). This result is obtained by coupling the process with a process
applying the same rule on a suitable single 0-region configuration. The follow-
ing lemma analyzes the latter process first, from which we deduce the theorem.
Note that the expected convergence time is independent of the initial (non-fixed
point) configuration, up to a multiplicative constant.

Theorem 12. The fixed points of DQECA BCEF are 0n and 1n. From any non-
fixed point initial configuration, DQECA BCEF converges almost surely to 0n

and its expected convergence time is exactly Θ(n2n).

5.5 Diverging DQECAs

Figure 1(f) illustrates the typical behavior of a divergent DQECA: the number
of regions is conserved, and all reachable configurations from a given initial
configuration are accessed an infinite number of times almost surely. The proof
of the following result relies essentially on applying Fact 3.

Theorem 13. Under fully asynchronous dynamics, the DQECAs BF, BG, BCF,
and BCFG diverge almost surely on any initial configuration that is not one of
the three following fixed points 0n, 1n and, if n is even, (01)n/2. Furthermore,
given an initial configuration, all reachable configurations are accessed an infinite
number of times almost surely.
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Abstract. In the context of comparative analysis of protein-protein in-
teraction graphs, we use a graph-based formalism to detect the preserva-
tion of a given protein complex G in the protein-protein interaction graph
H of another species with respect to (w.r.t.) orthologous proteins. Two
problems are considered: the Exact-(μG, μH)-Matching problem and the
Max-(μG, μH)-Matching problem, where μG (resp. μH) denotes in both
problems the maximum number of orthologous proteins in H (resp. G) of
a protein in G (resp. H). Following [FLV04], the Exact-(μG, μH)-Matching
problem asks for an injective homomorphism of G to H w.r.t. orthologous
proteins. The optimization version is called the Max-(μG, μH)-Matching
problem and is concerned with finding an injective mapping of a graph G
to a graph H w.r.t. orthologous proteins that matches as many edges of G
as possible. For both problems, the emphasis here is clearly on bounded
degree graphs and extremal small values of parameters μG and μH .

1 Introduction

High-throughput analysis makes possible the study of protein-protein interac-
tions at a genome-wise scale [Gav02, HG02, Uet00], and comparative analysis
tries to determine the extent to which protein networks are conserved among
species. Indeed, mounting evidence suggests that proteins that function together
in a pathway or a structural complex are likely to evolve in a correlated fash-
ion, and, during evolution, all such functionally linked proteins tend to be either
preserved or eliminated in a new species [PMT+99].

Protein interactions identified on a genome-wide scale are commonly visu-
alized as protein interaction graphs, where proteins are vertices and interac-
tions are edges [TSU04]. Experimentally derived interaction networks can be

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 328–339, 2005.
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extremely complex, so that it is a challenging problem to extract biological func-
tions or pathways from them (even if some global features have been found).
However, biological systems are hierarchically organized into functional mod-
ules. Several methods have been proposed for identifying functional modules in
protein-protein interaction graphs. As observed in [PLEO04], cluster analysis is
an obvious choice of methodology for the extraction of functional modules from
protein interaction networks. Comparative analysis of protein-protein interaction
graphs aims at finding complexes that are common to different species. Kelley
et al. [KSK+03] developed the program PathBlast, which aligns two protein-
protein interaction graphs combining topology and sequence similarity. Sharan
et al. [SIK+04] studied the conservation of complexes1 that are conserved in
Saccharomyces cerevisae and Helicobacter pylori, and found 11 significantly con-
served complexes (several of these complexes match very well with prior ex-
perimental knowledge on complexes in yeast only). They actually recasted the
problem of searching for conserved complexes as a problem of searching for heavy
subgraphs in an edge- and node-weighted graph, whose vertices are orthologous
protein pairs. A promising computational framework for alignment and compar-
ison of more than one protein network together with a three-way alignment of
the protein-protein interaction networks of Caenorhabditis elegans, Drosophila
melanogaster and Saccharomyces cerevisae is presented in [SSK+05].

Following the line of research presented in [FLV04], we consider here the
problem of finding an occurrence of a given complex in the protein-protein in-
teraction graph of another species. Notice that we do not make any assumption
about the topology of the complex, such as clique-like structure. In [FLV04],
this is formulated as the problem of searching for a list injective homomorphism,
i.e., an injective homomorphism with respect to orthologous links, of the complex
(viewed as a graph) to a protein-protein interaction graph. Roughly speaking,
the rationale of this is as follows. First, graph homomorphism only preserves
adjacency, and hence can deal with interaction datasets that are missing many
true protein interactions. Second, injectivity is required in order to establish a
bijective relationship between proteins in the complex and proteins in the oc-
currence. Finally, graph homomorphism with respect to orthologous links can
be easily recasted as list homomorphism: a list of putative orthologs is associ-
ated to each protein (vertex) of the complex, and each such protein can only
be mapped by the homomorphism to a protein occurring in its list. In the con-
text of comparative analysis of protein-protein interaction graphs, we need to
impose drastic restrictions on the size of the lists. We will make the following
important assumption (referred hereafter as the parameters μG and μH): no pro-
tein has an unbounded number of orthologs in the other species, i.e., each list
has a constant size (upper bounded by parameter μG) and each protein has a
constant number of occurrences among the lists (upper bounded by parameter
μH). The present paper is devoted to analyzing the complexity of this problem
(the Exact-(μG, μH)-Matching problem) together with its natural optimization

1 They focused on dense, clique-like interaction patterns.
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version (the Max-(μG, μH)-Matching problem) in case of bounded degree graphs
and extremal small values of parameters μG and μH .

The paper is organized as follows: Section 2 introduces formally the two prob-
lems. We prove in Section 3 new tight complexity results for the Exact-(μG, μH)-
Matching problem for bounded degree graphs. In Section 4, it is shown that
the Exact-(μG, μH)-Matching for bounded degree graphs is APX-hard. That re-
sult is complemented in Section 5 by showing that the Exact-(μG, μH)-Matching
problem for bounded degree graphs is in APX. Finally, we prove in Section 6
that the Exact-(μG, μH)-Matching problem for bounded degree graphs param-
eterized by the number of matched edges is fixed-parameter tractable. Due to
space constraints, several details and proofs are not presented in this paper.

2 Preliminaries

Let G be a graph. We write V(G) for the set of vertices and E(G) for the set of
edges edges, and abbreviate #V(G) to n(G) and #E(G) to m(G). The maximum
degree Δ(G) of a graph G is the largest degree over all vertices. Let G and H
be two graphs. For any injective mapping θ : V(G) → V(H), let us denote
by Match(G,H, θ) the edges of G that are matched by θ, i.e., Match(G,H, θ)=
{{u, v}∈E(G) : {θ(u), θ(v)}∈E(H)}. An homomorphism of G to H is a mapping
θ : V(G)→V(H) such that {u, v}∈E(G) implies {θ(u), θ(v)} ∈ E(H). Clearly,
an injective mapping θ is a homomorphism of G to H if #Match(G,H, θ)=m(G).
Given lists L(u)⊆V(H), u∈V(G), a list homomorphism of G to H with respect
to the lists L(u), u∈V(G), is a homomorphism θ with the additional constraint
that θ(u)⊆L(u) for all u∈V(G). Mappings of G to H with respect to the lists
L(u), u∈V(G), are defined in a similar way. For simplicity of notation, given lists
L(u)⊆V(H), u∈V(G), we abbreviate {u : v∈L(u)} to L−1(v), v∈V(H). Let G
and H be two graphs. Lists L(u)⊆V(H), u ∈ V(G), are called (μG, μH)-bounded
if the two following conditions hold true: (1) max{#L(u) : u∈V(G)}≤μG and
(2) max{#L−1(v) : v∈V(H)}≤μH .

We consider here the problem of finding an occurrence of a given complex in
the protein-protein interaction graph of another species. Finding an occurrence
with respect to orthologous links can easily be reformulated as a list injective
homomorphism problem: a list of putative orthologs is associated to each protein
(vertex) of the complex, and each such protein can only be mapped by the
homomorphism to a protein occurring in its list. The problem, called the Exact-
(μG, μH)-Matching problem, is defined formally as follows.

Exact-(μG, μH)-Matching
Input : Two graphs G and H , and (μG, μH)-bounded lists L(u) ⊆ V(H),
u ∈ V(G).
Question : Is there an injective list homomorphism of G to H w.r.t. lists L(u),
u ∈ V(G) ?

In the context of comparative analysis of protein-protein interaction graphs,
we need to impose strong restrictions on the size of the lists we consider. We
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thus assume, throughout the paper, that both μG and μH are constant, i.e.,
μG = O(1) and μH = O(1).

It is proved in [FLV04] that the Exact-(2, μH)-Matching problem is linear-time
solvable for any constant μH ≥ 1, and that the Exact-(3,1)-Matching problem
is NP-complete even if both G and H are bipartite graphs or split graphs. A
first contribution in this paper is to complete the determination of the precise
border between tractable and intractable cases for the Exact-(μG, μH)-Matching
problem. Moreover, we begin here the analysis of optimization versions of the
problem. Indeed, requiring an injective homomorphism, i.e., an injective map-
ping that preserves all edges of G, might result in an over-constrained problem,
though it may exist good approximate solutions, i.e., solutions that match many
edges of G. This suggests the following maximization problem for practical ap-
plications.

Max-(μG, μH)-Matching
Input : Two graphs G and H , and (μG, μH)-bounded lists L(u) ⊆ V(H),
u ∈ V(G).
Solution : An injective mapping θ : V(G) �→ V(H) w.r.t. lists L(u), u ∈ V(G).
Measure : #Match(G,H, θ), i.e., #{{u, v} ∈ E(G)} : {θ(u), θ(v)} ∈ E(H).

Of particular importance is the fact that θ is no longer required to be a ho-
momorphism in the Max-(μG, μH)-Matching problem. Furthermore, the present
paper mainly focuses on a particular case of the optimization problem, i.e., the
Max-(μG, 1)-Matching problem.

Let (G,H,L) be an instance of the Max-(μG, μH)-Matching. An edge {u, v} ∈
E(G) is called a bad edge if there does not exist distinct u′ ∈ L(u) and v′ ∈ L(v)
such that {u′, v′} ∈ E(H). Clearly, if we remove from G its bad edges, this does
not affect the optimal solutions for the Max-(μG, μH)-Matching problem, since
bad edges can never be matched. Notice that we can tell bad edges apart in
O(μG

2 m(G)) = O(m(G)) time, provided μG is a constant. Furthermore, by
resorting on classical bipartite matching techniques, we can check in O(n(H) +
m(G)

√
n(G)) time whether there exists at least an injective mapping of G to H

w.r.t. lists L(u), u ∈ V(G). Moreover, before solving the problem, we can surely
remove from H all those nodes u′ with #L−1(u′) = 0. Therefore, throughout the
paper, we will consider only trim instances as defined in the following.

Definition 1 (Trim instance). An instance (G,H,L) of the Max-(μG, μH)-
Matching problem is a trim instance provided that (i) there exists an injective
mapping of G to H w.r.t. lists L(u), u ∈ V(G), (ii) #L−1(u′) > 0 for all u′ ∈
V(H) and (iii) G does not contain any bad edges.

3 Exact Matching

This section is devoted to completing the determination of the precise bor-
der between tractable and intractable cases for the Exact-(μG, μH)-Matching
problem [FLV04]. We begin by giving an easy algorithm for the Exact-(μG, 1)-
Matching problem in case Δ(G) ≤ 2.
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Proposition 1. The Exact-(μG, 1)-Matching problem for Δ(G) ≤ 2 is solvable
in O(n(G)) time for any constant μG.

One may argue that the above proposition is too constrained to be of interest.
Unfortunately, despite the simplicity of Proposition 1, the result is quite tight -
taking into consideration both Δ(G) and Δ(H) - as shown in the two following
propositions (recall also that the Exact-(2, μH)-Matching problem is polynomial-
time solvable for any constant μH [FLV04]).

Proposition 2. The Exact-(3, 2)-Matching problem is NP-complete even if both
G and H are bipartite graphs with Δ(G) = 1 and Δ(H) = 2.

Proof. The reduction is from the 3-Sat problem. We assume the additional re-
striction that each variable appears in at most 3 of the clauses, counting together
both positive and negative occurrences. It is known that the 3-Sat problem is
NP-complete even when restricted as above [GJ79]. Notice furthermore that we
can always assume that each negated literal and each positive literal occurs at
most twice, since otherwise there would be a variable without positive or with-
out negative occurrences, and hence a self-reduction would apply. Assume given
an input φ to the 3-Sat problem. Let X = {x1, . . . , xn} denote the set of vari-
ables and C = {c1, . . . , cm} denote the set of clauses. We now describe how to
construct the corresponding instance of the Exact-(3, 2)-Matching problem.

To φ we associate a bipartite graph, denoted Gφ - which in fact is a matching -
as follows. For each variable xi ∈ X , we introduce two vertices xG

i [1] and xG
i [2],

and one edge {xG
i [1], xG

i [2]}. For each clause cj ∈ C, we introduce two vertices
cG
j [1] and cG

j [2], and one edge {cG
j [1], cG

j [2]}. To φ we also associate a second
bipartite graph, denoted Hφ, as follows. For each variable xi ∈ X , we intro-
duce four vertices xH

i [T, 1], xH
i [T, 2], xH

i [F, 1] and xH
i [F, 2], and the two edges

{xH
i [T, 1], xH

i [T, 2]} and {xH
i [F, 1], xH

i [F, 2]}. For each clause cj ∈ C, we intro-
duce three vertices cH

j [1], cH
j [2] and cH

j [3], and also three edges defined as follows.
For � ∈ {1, 2, 3}, let x̂i be the �-th literal of the clause cj . Assume x̂i is the p-th
positive (or, resp., negative) occurrence of variable xi, where p ∈ {1, 2}. Then
we introduce the edge {cH

j [�], xH
i [T, p]} (or, resp., {cH

j [�], xH
i [F, p]}). Notice that

for each j ∈ {1, 2, . . . ,m} and � ∈ {1, 2, 3}, vertex cH
j [�] has a unique neighbor

in Hφ. For ease of exposition, we denote by N(cH
j [�]) this unique neighbor. We

now turn to describing the associated lists. To each xG
i [p] ∈ V(G), 1 ≤ p ≤ 2,

we associate the list L(xG
i [p]) = {xH

i [T, p], xH
i [F, p]}. To each cG

j [2] ∈ V(G), we
associate the list L(cG

j [2]) = {cH
j [�] : 1 ≤ � ≤ 3}. Finally, to each cG

j [1] ∈ V(G),
we associate the list L(cG

j [1]) = {N(cH
j [�]) : 1 ≤ � ≤ 3}.

Clearly, μG = 3, μH = 2, Δ(Gφ) = 1, i.e., Gφ is a matching, and Δ(Hφ) = 2
(Hφ is indeed made of paths of length at most 3). We claim that there exists
a satisfying truth assignment for φ if and only if there exists an injective list
homomorphism of Gφ to Hφ w.r.t. lists L(u), u ∈ V(Gφ).

Let f : X �→ {true, false} be a truth assignment for φ that satisfies all clauses.
If f(xi) = true, then define θ(xG

i [1]) = xH
i [F, 1] and θ(xG

i [2]) = xH
i [F, 2], else

define θ(xG
i [1]) = xH

i [T, 1] and θ(xG
i [2]) = xH

i [T, 2]. For every clause cj , take an
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� ∈ {1, 2, 3} such that the �-th literal of cj evaluates to true under f , and define
θ(cG

j [2]) = cH
j [�] and θ(cG

j [1]) = N(cH
j [�]). It can be easily verified that θ is an

injective homomorphism of Gφ to Hφ w.r.t. lists L(u), u ∈ V(Gφ).
Conversely, suppose that there is an injective list homomorphism θ of Gφ to

Hφ w.r.t. lists L(u), u ∈ V(Gφ). We first observe that, by construction, we must
have θ(xG

i [1]) = xH
i [T, 1] and θ(xG

i [2]) = xH
i [T, 2], or θ(xG

i [1]) = xH
i [F, 1] and

θ(xG
i [2]) = xH

i [F, 2], for all 1 ≤ i ≤ n, since {xG
i [1], xG

i [2]} ∈ E(Gφ). Define a
truth assignment f : X �→ {true, false} as follows: If θ(xG

i [1]) = xH
i [F, 1] then

f(xi) = true, else define f(xi) = false, for all 1 ≤ i ≤ n. We claim that f is a
satisfying truth assignment for φ. Indeed, for any clause cj , let � ∈ {1, 2, 3} be
such that cH

j [�] = θ(cG
j [1]). Clearly, the �-th literal of φ evaluates to true under

the truth assignment f . ��
Proposition 3. The Exact-(3, 1)-Matching problem is NP-complete even when
Δ(G) = 3 and Δ(H) = 4.

The remainder of this section is devoted to the Exact-(μG, 1)-Matching prob-
lem. For each trim instance (G,H,L) of the Exact-(μG, 1)-Matching problem,
define the correspondence number C(G,H,L) of (G,H,L) by

C(G,H,L) = min
{u,v}∈E(G)

#{{u′, v′} : u′ ∈ L(u) ∧ v′ ∈ L(v) ∧ {u′, v′} ∈ E(H)}
#L(u) #L(v)

Clearly, 0 ≤ C(G,H,L) ≤ 1. Furthermore, if C(G,H,L) = 1, then there exists
an injective homomorphism θ of G to H w.r.t. lists L(u), u ∈ V(G); any injective
mapping of G to H w.r.t. lists L(u), u ∈ V(G), is indeed a solution. We now
turn to proving a better lower bound for the correspondence number (the proof
is by the Lovasz local lemma [AS92]).

Proposition 4. Let (G,H,L) be a trim instance of the Exact-(μG, 1)-Matching
problem. If

C(G,H,L) >
2Δ(G)− 1− e−1

2Δ(G)− 1

then there exists an injective homomorphism θ of G to H w.r.t. lists L(u),
u ∈ V(G).

4 Hardness of the Max-(μG, μH)-Matching Problem

The present and following sections are concerned with the optimization version
of the problem. First, it follows from Proposition 2 that the Max-(3, 2)-Matching
problem is NP-complete even if both G and H are bipartite graphs with Δ(G) =
1 and Δ(H) = 3. Moreover, by Proposition 3, we know that the Max-(3, 1)-
Matching problem is NP-complete even when Δ(G) = 3 and Δ(H) = 4. In this
section, we strengthen these results by showing that the Max-(2, 1)-Matching
problem for bounded degree graphs G and H is APX-complete (membership to
APX is in fact deferred to the next section). This has to be compared with the
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Exact-(2, μH)-Matching problem, which is linear-time solvable for any constant
μH [FLV04].

We propose a reduction from the Max-2-Sat-3 problem. The input to the
Max-2-Sat-3 problem is a boolean formula φ in conjunctive normal form in which
each clause contains at most 2 literals and each variable appears in at most 3
of the clauses, counting together both positive and negative occurrences. The
optimization problem calls for a truth assignment that satisfies as many clauses
as possible. It is known that the Max-2-Sat-3 problem is APX-hard [BK99,
ACG+99]. Notice furthermore that we can always assume that each negated
literal and each positive literal occurs at most twice, since otherwise there would
be a variable without positive or without negative occurrences, hence a self-
reduction would apply.

Assume given an input φ to the Max-2-Sat-3 problem. Let X = {x1, x2, . . . ,
xn} denote the set of variables and C = {c1, c2, . . . , cm} the set of clauses.
We now detail the construction of the corresponding instance of the Max-(2, 1)-
Matching problem. To φ, we associate a first bipartite graph Gφ defined as fol-
lows. The set of vertices is V(Gφ) = V G

X ∪ V G
C where V G

X = {xG
i : 1 ≤ i ≤ n}

and V G
C = {cG

j : 1 ≤ j ≤ m}, and {xG
i , cG

j } is an edge in E(Gφ) if and only if the
clause cj contains a literal on xi. To φ, we also associate a second bipartite graph
Hφ defined as follows. The set of vertices is V(Hφ) = V H

X [T ]∪ V H
X [F ]∪ V H

C [1]∪
V H

C [2] where V H
X [T ] = {xH

i [T ] : 1 ≤ i ≤ n}, V H
X [F ] = {xH

i [F ] : 1 ≤ i ≤ n},
V H

C [1] = {cH
j [1] : 1 ≤ j ≤ m} and V H

C [2] = {cH
j [2] : 1 ≤ j ≤ m}. Now,

{xH
i [T ], cH

j [�]} is an edge in E(Hφ) if and only if the (3 − �)-th literal of cj

is a literal of xi or the �-th literal of cj is the positive literal xi (� ∈ {1, 2}).
Similarly, {xH

i [F ], cH
j [�]} is an edge in E(Hφ) if and only if the (3 − �)-th

literal of cj is a literal of xi or the �-th literal of cj is the negative literal
xi. We now turn to defining the associated lists. To each xG

i ∈ V G
X we asso-

ciate the list L(xG
i ) = {xH

i [T ], xH
i [F ]}. To each cG

j ∈ V G
C we associate the list

L(cG
j ) = {cH

j [1], cH
j [2]}. Clearly, μG = 2, μH = 1, Δ(G) = 3, Δ(H) = 5 (since

each variable has both positive and negative occurrences), and both Gφ and Hφ

are bipartite graphs. We now turn to proving correctness of the approximation-
preserving reduction.

Lemma 1. Every truth assignment for φ that satisfies k clauses can be trans-
formed, in polynomial-time, into an injective mapping θ : V(Gφ) �→ V(Hφ)
w.r.t. lists L(u), u ∈ V(Gφ), such that #Match(Gφ, Hφ, θ) = m + k.

It follows from Lemma 1 that, for any injective mapping θ : V(Gφ) �→ V(Hφ)
w.r.t. lists L(u), u ∈ V(Gφ), we have #Match(Gφ, Hφ, θ) ≥ m.

Lemma 2. Given an injective mapping θ : V(Gφ) �→ V(Hφ) w.r.t. lists L(u),
u ∈ V(Gφ), such that #Match(Gφ, Hφ, θ) = m + k, we can construct, in
polynomial-time, a truth assignment for φ that satisfies k clauses.

Combining Lemma 1 and Lemma 2, we obtain the following proposition.

Proposition 5. The Max-(2, 1)-Matching problem is APX-hard even if both G
and H are bipartite graphs with Δ(G) ≤ 3 and Δ(H) ≤ 5.
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By slightly complicating the proof, we can strengthen the above proposition.

Proposition 6. The Max-(2, 1)-Matching problem is APX-hard even if both G
and H are bipartite graphs with Δ(G) ≤ 3 and Δ(H) ≤ 3.

5 Approximating the Max-(μG, 1)-Matching Problem

We proved in the preceding section that the Max-(2, 1)-Matching problem is
APX-hard even if both G and H are bipartite graphs with Δ(G) ≤ 3 and
Δ(H) ≤ 3. We show in this section that the Max-(μG, 1)-Matching problem for
bounded degree graphs G belongs to APX for any constant μG, thereby proving
that the Max-(2, 1)-Matching problem is APX-complete. In addition, we give a
fast randomized algorithm for the Max-(μG, 1)-Matching problem that achieves
a ratio μG

2 for any constant μG.
Recall first that a matching in a graph G is a subset of pairwise vertex disjoint

edges of G. The matching number ν(G) of G is the size of a largest matching
of G. A linear forest is a forest, i.e., an acyclic simple graph, in which every
connected component is a path. The linear arboricity la(G) of a graph G is the
minimum number of linear forests in G, whose union is the set of all edges of G.

Conjecture 1 (The linear arboricity conjecture [AEH81]). The linear arboricity
of every d-regular graph is (d + 1)/2�.

This conjecture was shown to be asymptotically correct as d → ∞ [Alo88].
Although the linear arboricity conjecture received a considerable amount of at-
tention, the best general result concerning it is that la(G) ≤ 3Δ(G)/5� for even
Δ(G) and that la(G) ≤ (3Δ(G) + 2)/5� for odd Δ(G) [AS92].

Lemma 3. Let G be a graph. Then, ν(G) ≥m(G)(2 la(G))−1.

Lemma 4. For any trim instance, the Max-(μG, 1)-Matching problem is approx-
imable within ratio 2 la(G) in O(n(G) + m(G)

√
n(G)) time for any constant

μG ≥ 1.

Proof. Let (G,H,L) be a trim instance of the Max-(μG, 1)-Matching problem.
Now, let M ⊆ E(G) be any maximum matching in G. Consider the mapping
θ : V(G) �→ V(H) defined as follows. For each edge {u, v} ∈ M, let u′ ∈ L(u)
and v′ ∈ L(v) be two vertices of H such that {u′, v′} ∈ E(H) (such vertices exist
since the instance is supposed to be trim). We then set θ(u) = u′ and θ(v) = v′.
For any vertex u ∈ V(G) which is not incident to any edge inM (in caseM is
not a perfect matching), we set θ(u) = v, where v is any vertex in L(u). Clearly,
θ is well-defined and is injective since μH = 1.

So, if we let θ be our solution mapping, it is a simple matter to check that
#Match(G,H, θ) ≥ #M, and hence

opt(G,H,L)
#Match(G,H, θ)

≤ opt(G,H,L)
#M
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Combining this with opt(G,H,L) ≤ m(G) and #M = ν(G) ≥ m(G)(2 la(G))−1

(Lemma 3), we obtain

opt(G,H,L)
#Match(G,H, θ)

≤m(G)
2 la(G)
m(G)

= 2 la(G)

and the approximation ratio is proved. We now turn to proving the time com-
plexity. For simplicity, let us assume that (G,H,L) is a trim instance. Finding a
maximum matching in G is an O(m(G)

√
n(G)) time procedure [MV80]. Since

constructing θ is an O(μG
2 ν(G)+n(G)− 2 ν(G)) = O(m(G)+n(G)) time pro-

cedure, the algorithm, as a whole, runs in O(n(G) + m(G)
√

n(G)) time. ��

Proposition 7. The Max-(μG, 1)-Matching problem is approximable within ra-
tio 2 3Δ(G)/5� for even Δ(G) and ratio 2 (3Δ(G) + 2)/5� for odd Δ(G), for
any Δ(H) and any constant μG.

Corollary 1. The Max-(2, 1)-Matching problem is APX-complete even if both
G and H are bipartite graphs with Δ(G) ≤ 3 and Δ(H) ≤ 3.

Corollary 2. If the linear arboricity conjecture is true, then the Max-(μG, 1)-
Matching problem is approximable within ratio Δ(G) + 1 if Δ(G) is odd, and
Δ(G) + 2 if Δ(G) is even, for any Δ(H) and any constant μG.

We now turn to giving a fast randomized algorithm for the Max-(μG, 1)-
Matching problem. The proof makes use of the probabilistic method [AS92], a
powerful tool for demonstrating the existence of combinatorial objects.

Lemma 5. Let (G,H,L) be a trim instance of the Max-(μG, 1)-Matching prob-
lem. For any μG, there exists an injective mapping θ : V(G) �→ V(H) w.r.t. lists
L(u), u ∈ V(G), such that #Match(G,H, θ) ≥ μG

−2 m(G).

Proof. The proof is by the probabilistic method [AS92]. For each u ∈ V(G) with
L(u) = {v1, v2, . . . , vq}, q ≤ μG, suppose that θ(u) is set to v1, v2, . . . , or vq

independently and equiprobably. Since μH = 1, it follows that θ is an injective
mapping from V(G) to V(H) w.r.t. lists L(u), u ∈ V(G). For each {u, v} ∈
E(G), let E({u, v}) = 1 if {θ(u), θ(v)} ∈ E(H), and 0 otherwise. For any edge
{u, v} ∈ V(G), the probability that {u, v} is matched by the injective mapping θ
is at least μG

−2 (since (G,H,L) is a trim instance), implying Exp[E({u, v})] ≥
μG

−2. The expected number of edge matches by this random injective mapping
θ is

∑
{u,v}∈E(G) Exp[E({u, v})] ≥ μG

−2m(G). Thus, there exists at least one
injective mapping θ : V(G) �→ V(H) w.r.t. lists L(u), u ∈ V(G), such that∑
{u,v}∈E(G) E({u, v}) ≥ μG

−2m(G), and hence #Match(G,H, θ) ≥ μG
−2 m(G).

��

Corollary 3. There is linear-time randomized algorithm that achieves a per-
formance ratio μG

2 for the Max-(μG, 1)-Matching problem restricted to trim in-
stances with unbounded degree graphs G and H.
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6 Fixed-Parameter Tractability

Parameterized complexity [DF99] is an approach to complexity theory which of-
fers a means of analyzing algorithms in terms of their tractability. For many hard
problems, the seemingly unavoidable combinatorial explosion can be restricted
to a small part of the input, the parameter, so that the problems can be solved
in polynomial-time when the parameter is fixed. The parameterized problems
that have algorithms of f(k) nO(1) time complexity are called fixed-parameter
tractable, where k is the parameter, f can be an arbitrary function depending
only on k, and n denotes the overall input size. In the last decade, parameter-
ized complexity has proved to be extremely useful in computational molecular
biology, see for example [BDF+95, GGN02, AGGN02].

We follow here this trend by showing in this section that the Max-(μG, 1)-
Matching problem for bounded degree graph G is fixed-parameter tractable pa-
rameterized by the number of matched edges, i.e. #Match(G,H, θ). For this, we
adopt here a two-step procedure: we first define a new graph representation of
the problem, and next use that graph to derive fixed-parameter tractability. At
the heart of the algorithm is the incompatibility graph of any instance (G,H,L)
which is later shown to be a compact representation of the problem.

Definition 2 (Incompatibility graph). Let (G,H,L) be a trim instance of
the Max-(μG, 1)-Matching problem and < be an arbitrary total order on V(G).
The incompatibility graph of (G,H,L), denoted briefly by I[G,H,L], is de-
fined by V(I[G,H,L]) = {(u, v, u′, v′) : u < v ∧ {u, v} ∈ E(G) ∧ {u′, v′} ∈
E(H) ∧ u′ ∈ L(u) ∧ v′ ∈ L(v)} and E(I[G,H,L]) =

⋃
1≤i≤5 Ei where E1 =

{{(u, v, u′, v′), (x, y, x′, y′)} : u = x ∧ v = y ∧ (u′ �= x′ ∨ v′ �= y′)}, E2 =
{{(u, v, u′, v′), (x, y, x′, y′)} : u = x ∧ v �= y ∧ u′ �= x′}, E3 = {{(u, v, u′, v′),
(x, y, x′, y′)} : u �= x ∧ v = y ∧ v′ �= y′}, E4 = {{(u, v, u′, v′), (x, y, x′, y′)} : u =
y ∧ u′ �= y′} and E5 = {{(u, v, u′, v′), (x, y, x′, y′)} : v = x ∧ v′ �= x′}

Observe that in E4 (resp. E5), u = y (resp. v = x) implies v �= x (resp.
u �= y) since x < y = u < v (resp. u < v = x < y) by definition of V(I[G,H,L]).
Most of the interest in I[G,H,L] stems from the following lemma.

Lemma 6. Let (G,H,L) be a trim instance of the Max-(μG, 1)-Matching prob-
lem. There exists an injective mapping θ : V(G) → V(H) w.r.t. lists L(u),
u ∈ V(G), such that #Match(G,H, θ) ≥ k if and only if there exists an indepen-
dent set of size at least k in the incompatibility graph I[G,H,L].

Thus, finding an injective mapping θ of G to H w.r.t. L(u), u ∈ V(G),
that maximizes the number of matched edges (i.e., #Match(G,H, θ)) reduces
to finding a maximum independent set in I[G,H,L]. This equivalence gains in
interest if we realize that, for any constant μG, if G is a bounded degree graph,
then so is the incompatibility graph I[G,H,L].

Lemma 7. Let (G,H,L) be an instance of the Max-(μG, 1)-Matching problem.
Then, I[G,H,L] has maximum degree at most (μG − 1)(2μGΔ(G)− μG + 1).



338 G. Fertin, R. Rizzi, and S. Vialette

It follows from the above lemma that Δ(I[G,H,L]) = O(Δ(G)) when μG =
O(1), and hence if G is a bounded degree graph, then so is I[G,H,L]. Having
disposed of these preliminaries steps, we now turn to proving fixed-parameter
tractability of the Max-(μG, 1)-Matching problem.

Proposition 8. The Max-(μG, 1)-Matching problem is solvable in O(m(G)(D+
1)k) time, where k is the number of matched edges, i.e., #Match(G,H, θ), and
D = Δ(I[G,H,L]) = (μG − 1)(2μGΔ(G) − μG + 1) = O(Δ(G)), and hence is
fixed-parameter tractable for parameter k, provided that G is a bounded degree
graph and μG is a constant.

7 Conclusion

In the context of comparative analysis of protein-protein interaction graphs,
we considered the problem of finding an occurrence of a given complex in the
protein-protein interaction graph of another species. We proved the Exact-(3, 2)-
Matching problem and the Max-(2, 1)-Matching problem for bounded degree bi-
partite graphs to be NP-complete and APX-complete, respectively. The latter
problem was shown to be fixed-parameter tractable parameterized by the num-
ber of matched edges.

We mention here some possible directions for future works. First, an in-
teresting line of research is to further investigate the approximation of the
Max-(μG, μH)-Matching problem for bounded degree graphs G and H . For exam-
ple, is the Max-(2, 2)-Matching problem for bounded degree graphs G and H in
APX ? Parameterized complexity of the Max-(μG, μH)-Matching problem is al-
most unexplored in the case μH > 1. In particular, is the Max-(μG, μH)-Matching
problem for bounded degree graphs G and H fixed-parameter tractable for any
constant μG and μH ?
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Abstract. We consider three types of locally constrained graph homo-
morphisms: bijective, injective and surjective. We show that the three
orders imposed on graphs by existence of these three types of homomor-
phisms are partial orders. We extend the well-known connection between
degree refinement matrices of graphs and locally bijective graph homo-
morphisms to locally injective and locally surjective homomorphisms by
showing that the orders imposed on degree refinement matrices by our
locally constrained graph homomorphisms are also partial orders. We
provide several equivalent characterizations of degree (refinement) ma-
trices, e.g. in terms of the dimension of the cycle space of a graph related
to the matrix. As a consequence we can efficiently check whether a given
matrix M is a degree matrix of some graph and also compute the size of
a smallest graph for which it is a degree matrix in polynomial time.

1 Introduction

By graph homomorphisms we mean edge-preserving mappings, i.e. vertex map-
pings where images of two adjacent vertices are also adjacent in the target graph.
Relating pairs of graphs by the existence of a graph homomorphism defines a
quasi-order on the class of all graphs, which can be further factorized into a
partial order. For a comprehensive survey of these structures see the recent
monograph [15].

In this paper we study similar structural properties derived from locally con-
strained graph homomorphisms [9], where for any vertex u the mapping f induces
a function from the neighborhood of u to the neighborhood of f(u) which is re-
quired to be either bijective [5,17], injective [8,9], or surjective [18,12]. See [18]
for a more general model of locally constrained conditions.
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Locally bijective homomorphisms (also known as local isomorphisms or full
covers) have important applications, for example in distributed computing [5],
in recognizing graphs by networks of processors [1,2], or in constructing highly
transitive regular graphs [4]. Locally injective homomorphisms (local epimor-
phisms or partial covers) are used in distance constrained labelings of graphs [10]
and as indicators of the existence of homomorphisms of derivate graphs (line
graphs) [20]. Locally surjective homomorphisms (role assignments) are of inter-
est in social network theory where individuals of the same social role relate to
other individuals in the same way [7]. Just as in a graph isomorphism, a locally
bijective homomorphism maintains vertex degrees and degrees of neighbors and
degrees of neighbors of neighbors and so on. The existence of such a mapping
from G to H therefore implies equality of the so-called degree refinement matri-
ces of G and H . Since these are easy to compute, they provide both an important
necessary condition and a heuristic for the graph isomorphism problem (cf. [19]).

Our Results

Degree refinement matrices belong to the class of degree matrices corresponding
to degree partitions of the vertex set of a graph. Degree partitions of graphs are
also known under the name of equitable partitions [14,3]. In Sect. 3 we present
four equivalent characterizations of degree matrices, e.g. by conditions on the
dimension of the cycle space of some matrix-related graph. Given the rather
long history and fame of the graph isomorphism problem it is surprising that no
characterization of degree (refinement) matrices had been shown previously. As
a consequence we can efficiently check whether a given matrix M is a degree ma-
trix or not. We also prove that the size of a smallest graph corresponding to some
degree matrix can be computed in polynomial time. In Sect. 4 we prove that the
problem whether a given (degree) matrix M is a degree refinement matrix can
be solved in polynomial time. In Sect. 5 we introduce three orderings, in which
a graph H is smaller than a graph G if a homomorphism from G to H exists,
locally constrained to be respectively bijective, injective or surjective. We prove
that these are partial orderings and in Sect. 6 we show that these partial orders
can be further extended to degree matrices of graphs. These results generalize
the use of degree refinement matrices to locally injective and locally surjective
homomorphisms. We emphasize that such a relationship was not originally ex-
pected, since such degree conditions are not obvious for the non-bijective local
constraints.

2 Preliminaries

If not stated otherwise graphs considered in this paper are finite and simple, i.e.
without loops and multiple edges. For graph terminology not defined below we
refer to [6].

For a function f : VG → VH and a set S ⊆ VG we use the shorthand notation
f(S) to denote the image set of S under f , i.e., f(S) = {f(u) | u ∈ S}. For any
x ∈ VH , the set f−1(x) is equal to {u ∈ VG | f(u) = x}.
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For a vertex u ∈ VG we denote its neighborhood by NG(u) = {v | (u, v) ∈ EG}.
A k-regular graph is a graph, where all vertices have k neighbors (i.e. are of degree
k). A (k, l)-regular bipartite graph is a bipartite graph where vertices of one class
of the bi-partition are of degree k and all others are of degree l.

A graph homomorphism from G = (VG, EG) to H = (VH , EH) is a vertex
mapping f : VG → VH satisfying the property that for any edge (u, v) in EG,
we have (f(u), f(v)) in EH as well, i.e., f(NG(u)) ⊆ NH(f(u)) for all u ∈ VG.
Two graphs G and G′ are called isomorphic, denoted by G ( G′, if there exists a
one-to-one mapping f : VG → VG′ , where both f and f−1 are homomorphisms.

Definition 1. For graphs G and H we denote:

• G B−→ H if there exists a so-called locally bijective homomorphism
f : VG → VH satisfying:

for all u ∈ VG : f(NG(u)) = NH(f(u)) and |f(NG(u))| = |NG(u)|.

• G I−→ H if there exists a so-called locally injective homomorphism
f : VG → VH satisfying:

for all u ∈ VG : |f(NG(u))| = |NG(u)|.

• G S−→ H if there exists a so-called locally surjective homomorphism
f : VG → VH satisfying:

for all u ∈ VG : f(NG(u)) = NH(f(u)).

Note that a locally bijective homomorphism is both locally injective and sur-
jective. Hence, any result valid for locally injective or for locally surjective ho-
momorphisms is also valid for locally bijective homomorphisms. We provide an
alternative definition of these three kinds of mappings via subgraphs induced
by preimages of edges. As far as we know this quite natural definition has not
previously appeared in the literature.

Observation 1. Let f : G → H be a graph homomorphism. For every edge
(u, v) of H, the subgraph of G induced by f−1(u) ∪ f−1(v) is a

• perfect matching if and only if f is locally bijective,
• matching and possibly isolated vertices if and only if f is locally injective,
• bipartite graph without isolated vertices if and only if f is locally surjective.

Note that for locally bijective homomorphisms the preimage classes all have the
same size and for locally surjective homomorphisms all the preimage classes have
size at least one. This yields the following observation:

Observation 2. If G S−→ H, for H connected and finite, then either |VG| > |VH |
or else G ( H.
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For a connected graph G the universal cover is defined in [1] as the only (possibly
infinite) tree TG that allows a locally bijective homomorphism TG

B−→ G. The
vertices of TG can be represented as walks in G starting in a fixed vertex u that do
not traverse the same edge in two consecutive steps. Edges in TG connect those
walks that differ in the presence of the last edge. The mapping f0 : TG

B−→ G
sending a walk in VTG to its last vertex is a locally bijective homomorphism.

Proposition 1 ([11]). Let G and H be two connected graphs. From any func-
tion f : G I−→ H a locally injective homomorphism f ′ : TG → TH can be derived.
From any function g : G S−→ H a locally surjective homomorphism g′ : TG → TH

can be derived.

In the sequel we consider all isomorphism classes of connected simple graphs.
We assume that each of these classes is represented by one of its elements, and
these representatives form the set C, called the set of connected graphs.

3 Degree Matrices

Any locally bijective graph homomorphism, with graph isomorphism as a special
case, preserves not only vertex degrees but also degrees of neighbors and degrees
of neighbors of these neighbors and so on. To capture this property the following
notions have been defined (cf. [14,19]).

Definition 2. A degree partition of a graph G is a partition of the vertex set
VG into blocks B = {B1, . . . , Bk} such that whenever two vertices u and v belong
to the same block Bi, then for any j ∈ {1, . . . , k} we have |NG(u) ∩ Bj | =
|NG(v) ∩ Bj | = mi,j. The k × k matrix M such that (M)i,j = mi,j is a degree
matrix.

Observe that a graph G can allow several degree matrices, with an adjacency
matrix itself being the largest one. Degree refinement matrices, which will be
considered in the next section, are on the other extreme.

Observation 3. The vertex set VG of any graph G that has a k × k matrix M
as one of its degree matrices can be partitioned into B1 ∪ . . . ∪ Bk such that
mi,j |Bi| = mj,i|Bj | holds for all 1 ≤ i < j ≤ k.

This immediately implies that for any degree matrix M of size k,

mi,j > 0 if and only if mj,i > 0 for all 1 ≤ i < j ≤ k.

We call integer matrices that have the above property well-defined. It is easy to
see that there exist well-defined matrices that are not degree matrices of a finite
graph. This makes the following decision problem interesting.

Degree Matrix Determination (DMD)
Instance: A square matrix M .
Question: Is M a degree matrix of a finite graph G?



344 J. Fiala, D. Paulusma, and J.A. Telle

To determine the complexity of DMD we introduce the following definitions. A
directed graph D = (VD, ED) is called symmetric if there exists an arc (j, i) ∈ ED

whenever there exists an arc (i, j) ∈ ED. Let w : ED → N be a positive weight
function defined on the arc set of D. We call such a graph with positive arc
weights a symmetric directed product graph (sdp-graph). We say that a cycle
v0, v1, . . . , vc, v0 in an sdp-graph D has the cycle product identity if

1 =
c∏

i=0

w(vi, vi+1)
w(vi+1, vi)

,

where the subscript of vi+1 is computed modulo c+1. In other words, a cycle has
the cycle product identity if the product of arc weights going clockwise around
the cycle is the same as the product counter-clockwise. We say that the sdp-
graph D has the cycle product identity if every cycle of D has the cycle product
identity. Using induction on the cycle length immediately yields:

Observation 4. An sdp-graph D has the cycle product identity if and only if
every induced cycle of D has the cycle product identity.

For a square matrix M we define the weighted directed graph FM as follows. Its
vertex set VFM consists of vertices {1, . . . , k}. There is an arc from i to j �= i
with weight mi,j if and only if mi,j ≥ 1. Note that FM is an sdp-graph if and
only if M is well-defined.

Let F ′M be the underlying undirected graph of FM , i.e., VF ′
M

= VFM =
{1, . . . , k} and (i, j) is an undirected edge of F ′M , whenever both (i, j) and (j, i)
are directed arcs of FM . We define the weighted incidence matrix IM to be the
|EF ′

M
| × k matrix whose rows are indexed by edges e = (i, j) ∈ EF ′

M
, i < j and

its only non-zero entries in the e-th row are (IM)e,i = mi,j and (IM)e,j = −mj,i.
The kernel and rank of a matrix M are denoted by ker(M) and rank(M)

respectively. The transpose of a matrix M is denoted by MT . We represent each
e ∈ EG by a unit vector in the vector space R|EG|, called the edge space EG
of a graph G. The cycle space SG of G is the linear subspace of EG generated
by all cycles in G. We denote the dimension of a linear subspace D by dim(D).
For every edge e not in a spanning tree T of G there is a unique cycle Ce in
the graph T + e. Since there are |EG| − |VG| + 1 of these edges, it is clear that
dim(SG) = |EG| − |VG|+ 1.

We now present our characterization of degree matrices.

Theorem 1. The following statements are equivalent:

(i) M is a degree matrix of a graph G ∈ C.
(ii) FM is a connected sdp-graph satisfying the cycle product identity.
(iii) M is well-defined and dim(ker(IM)) = 1.
(iv) M is well-defined and dim(ker(IMT )) = dim(SF ′

M
).

Proof. (i) ⇒ (ii) Since M is a degree matrix, M is well-defined. Hence, FM

is an sdp-graph. Obviously, FM is connected. Let C = i0, . . . , ic, i0 be a cycle
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in FM , where vertex vi corresponds to block Bi. Use Observation 3 for pairs
(i0, i1), . . . , (ic, i0) to show that C satisfies the cycle product identity.

(ii)⇒ (iii) Since FM is an sdp-graph, M is well-defined. Consider a path P1i

in FM from the vertex 1 to any vertex i corresponding to the i-th row of M .
We apply Observation 3 for consecutive pairs on P1i. Combining these equalities
yields a rational bi > 0 such that |Bi| = bi|B1| for the blocks Bi and B1 of any
possible graph G with degree matrix M . Because FM satisfies the cycle product
identity, taking another path P ′1i between vertices 1 and i would lead to exactly
the same equality |Bi| = bi|B1|. Define b1 = 1. Then any solution of ker(IM) is
a multiple of the vector b = (b1, . . . , bk).

(iii) ⇒ (i) We first determine the block sizes of a candidate graph G. We do
this with respect to the following two facts. (1) For p ≥ 1 there exists a p-regular
graph on n vertices if and only if n ≥ p + 1 and np is even. (2) There exists a
(p, q)-regular bipartite graph with the degree-p side having m vertices and the
degree-q side having n vertices if and only if m ≥ q, n ≥ p and mp = nq. We
now choose an integer solution s of ker(IM) such that

• si ≥ mi,i + 1 for all i.
• simi,i is even for all i. (∗)
• si ≥ mj,i for all i and all j �= i.

Then the following graph G has M as one of its degree matrices. Its vertex set
VG can be partitioned into blocks B1 ∪ · · · ∪Bk with |Bi| = si for all 1 ≤ i ≤ k.
Its edge set EG can be chosen such that:

• The subgraph induced by Bi is mi,i-regular for 1 ≤ i ≤ k.
• The induced bipartite subgraph between vertices of blocks Bi and Bj is

(mi,j ,mj,i)-regular for all 1 ≤ i < j ≤ k.

(iii)⇔ (iv) Note that dim(ker(IM)) = 1 if and only if rank(IMT ) = rank(IM)
= k − 1 if and only if dim(ker(IMT )) = |EF ′

M
| − rank(IMT ) = |EF ′

M
| − k + 1 =

dim(SF ′
M

). ��
Corollary 1. The DMD problem can be solved in polynomial time.

Proof. First we check whether the matrix M is well-defined. If it is, we construct
the graph FM . Let M1, . . . ,Mp be the submatrices of M corresponding to the
components of FM . For each Mi we compute ker(IMi) and use Theorem 1. ��
In this paper we only consider matrices that are the degree matrix of some finite
connected graph. If we allow infinite graphs, then we only have to check whether
a matrix M is finite and has connected FM . This is since for any such matrix M
we can construct its universal cover TM by taking as root of the (possibly infinite)
tree TM a vertex corresponding to row 1, thus of row-type 1, and inductively
adding a new level of vertices while maintaining the property that each vertex
of row-type i has exactly mi,j neighbors of row-type j.

Theorem 1 and Corollary 1 immediately imply that for examining whether an
sdp-graph has the cycle product identity we do not have to check all (induced)
cycles explicitly.
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Corollary 2. The problem whether a symmetric directed graph with positive
edge weights has the cycle product identity can be solved in polynomial time.

Corollary 3. For any degree matrix M the block sizes of a smallest graph G
that has M as one of its degree matrices can be computed in polynomial time.

Proof. Let m = max{mi,j | 1 ≤ i, j ≤ k}. Let 〈m〉 be the number of bits required
to encode m. Then the input size of a k× k matrix M can be defined as k2〈m〉.

If we compute coefficients bi as in the proof of Theorem 1, then we find that
both nominator and denominator of each bi have size at most k〈m〉. Let α be
the product of all denominators of elements bi. Let b′ be a solution of ker(IM)
with entries b′i = αbi for all 1 ≤ i ≤ k. We divide each b′i by the greatest
common divisor of b′1, . . . , b

′
k. This way we have obtained the smallest integer

solution b∗ of ker(IM) in polynomial time. Now we choose the integer γ such
that γ ≥ max1≤i,j≤k{mi,i+1

b∗i
,

mj,i

b∗i
}, where γ is required to be even if for some i

the product b∗imi,i is odd. Then b = γb∗ satisfies all three conditions (∗), i.e.,
it yields the block sizes of a smallest graph G in the same way as in the proof of
Theorem 1. (The size of G itself might be exponential in 〈b〉.) ��

4 Degree Refinement Matrices

For many pairs of graphs (G,H) we can easily determine that a locally bijective
homomorphism from G to H does not exist.

Definition 3. The degree refinement matrix drm(G) of G is the degree matrix
corresponding to the canonical (as explained below) coarsest degree partition of
G, i.e., with the fewest number of blocks.

If drm(G) �= drm(H) then no locally bijective homomorphism exists between G
and H , and this condition can be checked by computing both minimum degree
partitions by procedure MDP Construction that runs in O(n3) time (cf. [1]).

MDP Construction
Input: A graph G.
Output: The minimal degree partition B.
0. Set B0 = {B0

1} = {VG}, t = 1.
1. For each vertex u compute the degree vector−−→

d(u) :=
(
|N(u) ∩Bt

1|, |N(u) ∩Bt
2|, . . .

)
.

2. Set t := t + 1 and define the new partition Bt of VG such that
• u, v ∈ Bt

i if and only if
−−→
d(u) =

−−→
d(v),

• u ∈ Bt
i , v ∈ Bt

i′ with i < i′ if and only if
∗ either u ∈ Bt−1

j , v ∈ Bt−1
j′ with j < j′,

∗ or u, v ∈ Bt−1
j and

−−→
d(u) >Lex

−−→
d(v),

where >Lex is the lexicographic order on integer sequences.
3. If Bt = Bt−1 then set B = Bt and stop,

otherwise continue by step 1.
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We modify this procedure into the efficient algorithm DRM Construction.
Given a degree matrix M it computes a matrix M ′ such that M ′ = drm(G) for
any graph G with degree matrix M . Moreover, given a graph G it computes the
degree refinement matrix of G when we take an adjacency matrix of G as its
input. Note that in steps 2 and 3 the canonical order of the blocks is defined.

DRM Construction
Input: A degree partition matrix M .
Output: A degree refinement matrix M ′ that encodes all graphs with degree
matrix M .

0. Set R0 = {R0
1} = {1, . . . , k}, t = 1.

1. For each row r = 1, . . . , k compute the row-degree vector−−→
d(r) :=

(∑
i∈Rt

1
mr,i,

∑
i∈Rt

2
mr,i, . . .

)
.

2. Set t := t + 1 and define the new partition Rt of {1, . . . , k} such that
• r, s ∈ Bt

i if and only if
−−→
d(r) =

−−→
d(s),

• r ∈ Bt
i , s ∈ Bt

i′ with i < i′ if and only if
∗ either r ∈ Bt−1

j , s ∈ Bt−1
j′ with j < j′,

∗ or r, s ∈ Bt−1
j , and

−−→
d(r) >Lex

−−→
d(s).

3. If Rt = Rt−1 then set M ′ =

⎛⎜⎜⎝
−−→
d(r) : r ∈ Rt

1−−→
d(r) : r ∈ Rt

2
...

⎞⎟⎟⎠ and stop,

otherwise continue by step 1.

By applying the above algorithm and Corollary 1 we immediately obtain the
following.

Theorem 2. Checking if a given matrix M is a degree refinement matrix can
be done in polynomial time.

5 Partial Orders on Graphs

It is well-known that graph homomorphisms define a quasiorder on the class
of all graphs, which can be factorized into a partial order. For an overview of
these results see the recent monograph [16]. We show that a similar interesting
structure exists on the class of connected graphs C for locally constrained ho-
momorphisms. For this purpose we will view B−→, I−→ and S−→ as binary relations
on C, denoted by (C, ∗−→) if necessary, where ∗ will indicate the appropriate local
constraint. We show that (C, ∗−→) is a partial order for any of the three local
constraints ∗ = B, I, S.

Observe first that for any G ∈ C the identity mapping i : VG → VG clarifies
that all three relations ∗−→ are reflexive.

The composition of two graph homomorphisms of the same kind of local
constraint (B, I, S) is again a graph homomorphism of the same kind. Hence
each ∗−→ is also transitive.
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For antisymmetry, suppose for G,H ∈ C that f : G ∗−→ H , g : H ∗−→ G, where
f, g are of the same local constraint. For ∗ = B,S we can invoke Observation 2
to conclude that G ( H . For ∗ = I we use the following result.

Theorem 3 ([11]). Let G be a (possibly infinite) graph and let H be a graph in
C. If G allows both a locally injective and a locally surjective homomorphism to
H, then both these homomorphisms are locally bijective.

For ∗ = I we have g ◦f : G I−→ G and G S−→ G by the identity mapping. By Theo-
rem 3 the mapping g◦f is locally bijective. Since G is connected, (g◦f)(VG) = VG

implying that f is (globally) injective. By the same kind of arguments we deduce
that g is injective. This means that f is surjective, and hence f is a graph isomor-
phism from G to H . Hence, all three relations are antisymmetric. We would like
to mention that the antisymmetry of I−→ also follows from an iterative argument
of [20].

Combining the results above with Theorem 3 yields the following.

Theorem 4. All three relations (C, B−→), (C, I−→) and (C, S−→) are partial orders
with (C, B−→) = (C, I−→) ∩ (C, S−→).

6 Partial Orders on Degree Refinement Matrices

We again recall the fact that a locally bijective homomorphism from a graph
G to a graph H may exist only if G and H have the same degree refinement
matrix.

Theorem 5 ([19]). Two graphs G,H ∈ C have a common degree refinement
matrix if and only if their universal covers are isomorphic as well as if and only
if there exists a graph F ∈ C allowing locally bijective homomorphisms to both G
and H.

In view of this theorem we can also define the universal cover TM associated
with a degree refinement matrix M as the universal cover TG = TM of any
graph G with drm(G) = M . This implies that the symmetric and transitive
closure of the partial order (C, B−→) is an equivalence relation whose classes can
be naturally represented by degree refinement matrices. It is natural to ask if the
other two kinds of locally constrained homomorphisms are also conditioned by
the existence of a well-defined relation on the degree refinement matrices. Here,
we prove that such a relation exists and moreover, that it is a partial order.

Definition 4. We denote the set of all degree refinement matrices of graphs in
C byM. We define three relations B−→, I−→, and S−→ respectively, onM as follows.
For two matrices M,N ∈ M we have M

∗−→ N if there exist graphs G ∈ C with
drm(G) = M and H ∈ C with drm(H) = N such that G

∗−→ H holds for the
appropriate local constraint.

As stated above (M, B−→) is a trivial order where no two distinct elements are
comparable. For the other two relations, the reflexivity of the relation follows
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directly from the existence of the identity mapping on any underlying graph.
Antisymmetry and transitivity require more effort.

For proving antisymmetry we involve the notion of universal cover. Assume
that M I−→ N and N I−→ M . By Proposition 1, there exist locally injective
homomorphisms f ′ : TM → TN and g′ : TN → TM . Recall from Sect. 2 that
there exist a locally bijective homomorphism f0 : TM → G1. As in the previous
section we now invoke Theorem 3 to conclude that f0 ◦ g′ ◦ f ′ : TM

I−→ G1

is locally bijective. This implies that both f ′ and g′ are locally bijective, and
consequently the universal covers TM and TN are isomorphic. Hence M = N
due to Theorem 5. The antisymmetry of S−→ can be proven according to exactly
the same arguments.

The transitivity property of I−→ follows directly from the next lemma.

Lemma 1. Let G1, G2, H1, H2 ∈ C be such that G1
I−→ H1 and G2

I−→ H2, where
H1 and G2 share the same degree refinement matrix. Then there exists a graph
F ∈ C such that F I−→ H2 and F B−→ G1.

Proof. Using Theorem 5 we first construct a finite graph F ′ such that F ′ B−→ H1

and F ′ B−→ G2. The projection π2 : F ′ B−→ G2 composed with the locally injective
homomorphism g : G2

I−→ H2 gives that F ′ I−→ H2. See Fig. 1.

F
f ′

� F ′

G1

π

� f � H1

π1

�
G2

g �

π
2

�

H2

drm : M N . . . N Q

Fig. 1. Commutative diagram for transitivity of I−→ where horizontal mappings are
injective and others are bijective

As F ′ B−→ H1 via projection π1, by Observation 1 the preimage π−1
1 (x) has

the same size for all vertices x ∈ VH1 , say k. We assume that all vertices of F ′

that map onto a vertex x are labeled {x1, x2, . . . , xk}.
The vertex set of the desired graph F is the Cartesian product VG1 ×{1, . . . ,

k}. For simplicity we abbreviate (u, i) as ui. Define the edges of F as follows:

(ui, vj) ∈ EF ⇔ (u, v) ∈ EG1 and (f(u)i, f(v)j) ∈ EF ′ .

We define two mappings f ′ : ui → f(u)i and π : ui → u. According to Observa-
tion 1, f ′ is a locally injective homomorphism from F to F ′ and π is a locally
bijective homomorphism from F to G1. The mapping g ◦ π2 ◦ f ′ is a locally in-
jective homomorphism F I−→ H2. ��



350 J. Fiala, D. Paulusma, and J.A. Telle

The same assertion can be proven for the order S−→ with exactly the same argu-
ments, the only difference is that the preimage in F of any edge (xi, yj) ∈ EF ′

is a spanning bipartite graph.

Theorem 6. For any constraint ∗ = B, I, S the relation (M,
∗−→) is a partial

order. It arises as a factor of the order (C, ∗−→), when we unify the graphs that
have the same degree refinement matrices.

Any locally injective homomorphism G I−→ H can be extended to a locally bi-
jective homomorphism G′ B−→ H , where G ⊆ G′ [17]. This yields an alternative
definition of the order (M, I−→): For matrices M,N holds M I−→ N if and only if
there exists graphs G and H with degree refinement matrices M and N , respec-
tively, such that G is a subgraph of H . This straightforwardly implies the first
claim of the observation below. The second claim (and the first claim as well)
follows by Proposition 1 and a simple inductive argument on the two trees TM

and TN .

Observation 5. For any degree refinement matrices M,N ∈ M it holds that if
M I−→ N then TM ⊆ TN , and if M S−→ N then TN ⊆ TM .

The reverse is not true: for S−→ take M = drm(P4) and N = drm(P3). The
counterexample for I−→ requires a bit more effort (see [13]).

Theorem 3 can now be translated to matrices. If M I−→ N and M S−→ N , then
M B−→ N , i.e., M = N .

Corollary 4. (M, B−→) = (M, I−→) ∩ (M, S−→) = (M, {(M,M) : M ∈ M}).
Proof. Suppose G1

I−→ H1 and G2
S−→ H2 hold with drm(Gi) = M and drm(Hi)

= N (i = 1, 2). By Observation 5, we have that TM ⊆ TN and TN ⊆ TM . We
represent these inclusions by locally injective homomorphisms f ′ : TM → TN

and g′ : TN → TM . Then we may conclude M = N by the same arguments as
in the proof of antisymmetry of I−→. ��

7 Conclusion

We have proved that graph homomorphisms with local constraints between fi-
nite graphs impose interesting orders on the class of degree matrices. We have
also shown that such matrices can be easily detected and, moreover, a canonical
representative of a class of equivalent matrices can be computed by an efficient
algorithm. The generalization of these concepts beyond the class of degree ma-
trices of finite graphs and their applications in theoretical computer science is
subject of further study.
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Abstract. We consider the problem of packing a set of weighted rectan-
gles into a unit size square frame [0, 1]× [0, 1] so as to maximize the total
weight of the packed rectangles. We present polynomial time approxi-
mation schemes (PTASs) that, for any ε > 0, find (1 − ε)-approximate
solutions for two special cases of the problem. In the first case we pack a
set of squares whose weights are equal to their areas. In the second case
we pack a set of weighted rectangles into an augmented square frame
[0, 1 + 3ε]× [0, 1 + 3ε].

1 Introduction

Two-dimensional packing problems have attracted much attention in the lit-
erature since the 80s. A series of approximation results have been obtained for
strip packing [10,11,13], 2-dimensional bin packing [3,4,5,12], and rectangle pack-
ing [1,2,7,9]. These problems play an important role in a variety of applications
in Computer Science and Operations Research, e.g. cutting stock, VLSI design,
image processing, and multiprocessor scheduling, just to name a few.

In this paper we address the problem of packing a set of weighted rectangles
into a unit size square frame. That is, given a set of weighted rectangles we
wish to pack a subset of them into a unit size square frame [0, 1] × [0, 1] so
that the total weight of the packed rectangles is maximized. In contrast to the
above mentioned strip and 2-dimensional bin packing problems, there are only
a few known approximation results for our problem. For a long time the only
known result was an asymptotic (4/3)-approximation algorithm for packing unit-
weight squares into a rectangle [2]. Only very recently [9], several approximation
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algorithms have been presented for the general problem. The best algorithm in
[9] finds packings with weight (1/2− ε) times the optimum, for any ε > 0. In [7],
we considered the problem of packing a set of weighted squares into a unit size
square frame, and presented an algorithm which outputs a packing of the squares
within an augmented square region [0, 1 + ε]× [0, 1 + ε] whose weight is at least
(1− ε) times the maximum weight that can be achieved by packing squares into
the original unit size square frame [0, 1]× [0, 1]. We call this the square packing
problem with augmentation. In [8] the problem of packing weighted rectangles
into a rectangular frame of width 1 and height at least ε−4 was studied and a
(1− ε)-approximation algorithm for the problem was presented.

Here we present algorithms for two special cases of the problem of packing
weighted rectangles. First, we consider the case of packing a set of squares when
their weights and areas coincide. Then, we consider the problem of packing a set
of weighted rectangles with augmentation, i.e., we are allowed to increase the
size of the enclosing frame to [0, 1 + O(ε)] × [0, 1 + O(ε)], for ε > 0.

The problem of packing a set of rectangles into the minimum number of unit
size square bins was studied by Correa and Kenyon [6]. They give an algorithm
that packs the rectangles into the minimum number of square bins, assuming
that the size of each bin can be slightly augmented to [0, 1 + ε] × [0, 1 + ε].
Note that this algorithm cannot be used to pack weighted rectangles into an
augmented square frame since the algorithm in [6] does not consider weighted
rectangles, and in our problem not all rectangles need to be packed. It is not easy
to find a set of rectangles of nearly optimal weight and which can be packed into
the augmented square frame, but we show that this can be done in polynomial
time. Once this set of rectangles has been found, we can use a slight modification
of the algorithm in [6] to find a packing for them.

The problem of finding near-optimal, (1 − ε)-approximate solutions for the
general problem of packing a set of weighted rectangles into a square frame
without augmentation remains a challenging open problem. However, we make
some progress towards solving it.

1.1 Our Results

Covering the Maximum Area by Squares. In this problem we wish to pack a set of
squares whose weights and areas are the same, i.e. we are interested in covering
the maximum area with a subset of squares. Formally, we are given a set Q of n
squares Si (i = 1, . . . , n) with side lengths si ∈ (0, 1]. For a given subset Q′ ⊆ Q,
a packing of Q′ into a unit size square frame [0, 1]× [0, 1] is a positioning of the
squares in Q′ within the frame such that their interiors are disjoint. The goal is
to find a subset Q′ ⊆ Q, and a packing of Q′ within [0, 1]× [0, 1] of maximum
area,

∑
Si∈Q′(si)2. Our first main result can be stated as follows.

Theorem 1. For any set Q of n squares and any accuracy ε > 0, there exists
an algorithm Aε which finds a subset of Q and its packing within the unit square
frame [0, 1]× [0, 1], with area
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Aε(Q) ≥ (1− ε)OPT,

where OPT is the maximum area that can be covered by packing any subset of
Q. The running time of Aε is polynomial in n for fixed ε.

This result can be extended to the case of packing d-dimensional cubes into a
unit d-dimensional square cube, for d ≥ 2.

Packing Weighted Rectangles. In this problem the goal is to pack a set of
weighted rectangles into a unit size square frame. Formally, we are given a set
R of n rectangles Ri (i = 1, . . . , n) with widths ai ∈ (0, 1], heights bi ∈ (0, 1],
and weights wi ≥ 0. For a given subset R′ ⊆ R, a packing of R′ into a unit size
square frame [0, 1]× [0, 1] is a positioning of the rectangles in R′ within the frame
such that their interiors are disjoint. The goal is to find a subset R′ ⊆ R, and
a packing of R′ within the frame of maximum weight,

∑
Ri∈R′ wi. Our second

main result can be stated as follows.

Theorem 2. For any set R of n rectangles and any accuracy ε > 0, there is an
algorithm Wε which finds a subset of R and its packing within the augmented
unit square frame, [0, 1 + 3ε]× [0, 1 + 3ε], with weight

Wε(R) ≥ (1− ε)OPT,

where OPT is the maximum weight that can be obtained by packing any subset
of R into a unit size square frame [0, 1] × [0, 1]. The running time of Wε is
polynomial in n for fixed ε.

By scaling, this algorithm can be used for packing a set of rectangles into a
rectangular frame. The techniques that we use for designing our algorithms have
been used before for solving other problems. The contribution of this work is to
show how to combine these techniques with a few new ideas to obtain our results.
Some of our lemmas (or close variations of them) have been already proven in
the literature.

In the following sections we give our proofs for Theorems 1 and 2. Section 2
describes the algorithm for packing squares and Section 3 describes our algorithm
for packing rectangles.

2 Packing Squares

Let Q be a set of n squares Si (i = 1, . . . , n) with side lengths si ∈ (0, 1]. The
goal is to find a subset Q′ ⊆ Q, and a packing of Q′ within [0, 1] × [0, 1], of
maximum area,

∑
Si∈Q′(si)2.

If all squares Si in Q are small (their side lengths si are at most ε, for some
small ε > 0), then we can apply the Next-Fit-Increasing-Height (NFIH) heuristic
to pack the squares of Q within a unit square frame [0, 1]×[0, 1] (see Section 2.1);
the total area covered by this solution is at least min{area(Q), 1− 4ε− 2ε2} for
any ε > 0. That is, we either pack all squares or obtain a packing which covers
at least a fraction (1− 6ε) of the total area of the frame.



Packing Weighted Rectangles into a Square 355

For the case of squares of arbitrary sizes, we partition Q into two sets formed
by small and large squares, respectively. If we define these set properly, then
any feasible packing of the squares in [0, 1]× [0, 1] will only contain O(1) large
squares. So, in O(1) time we can enumerate all possible tight packings for the
large squares, where a tight packing does not allow a large square to move to
the left or down. For each tight packing of the large squares, we then try to fill
up all empty gaps with small squares: we take the small squares one by one in
non-decreasing order of size si, and use the NFIH heuristic. Among all packings
found we select one with the maximum area. The main problem is to define the
sets of large and small squares so that the area covered is nearly optimal.

For a subset of squares Q′ ⊆ Q, we use area(Q′) to denote its area,
∑

Si∈Q′ s2
i .

In addition, we use Qopt to denote an optimal subset of Q that can be packed
in the unit square [0, 1]× [0, 1]. So, area(Qopt) = OPT and area(Qopt) ≤ 1. For
the rest of the paper, we assume w.l.o.g. that the value of 1/ε is integral.

2.1 The NFIH Heuristic

We consider the following simplified version of the square packing problem: given
a positive value β, a set S of squares Si with side lengths si ≤ εβ, and a rectan-
gular frame [0, a] × [0, b] (a, b ∈ [0, 1]), pack a subset of S into the frame such
that the area covered by the squares is maximized.

First, we sort the squares Si ∈ S non-decreasingly by size. Then, we place the
squares within [0, a]×[0, b] by using NFIH; this packs the squares into a sequence
of sublevels. The first sublevel is the bottom of the frame. Each subsequent
sublevel is defined by a horizontal line drawn at the top of the largest square
placed on the previous sublevel. The squares are packed one by one in a left-
justified manner, until the next square cannot fit within the current sublevel.
At that moment, the current sublevel is closed and a new one is started. The
packing procedure runs as above until there are no more squares in S or the next
square in the sequence would cross the top b of the frame. For an illustration see
Fig. 1.

The following result is a slightly tighter bound on the performance of NFIH
than the one that can be derived from [6].

Lemma 1. Let S be any set of squares Si with sizes si ≤ εβ, and let [0, a]× [0, b]
(a, b ∈ [0, 1]) be a rectangular frame. The NFIH heuristic, which selects squares
Si in non-decreasing size, outputs a packing of a subset of S whose area is at
least min{area(S), ab− 2εβ(a + b)− 2ε2β}.
Proof. Let q be the number of sublevels and let hi be the height of the first
square on the ith sublevel.. Let H be the height of the packing. If no square in
S is left unpacked, then the area covered is area(S). Hence, assume that some
squares in S are left unpacked. Since all side lengths si ≤ εβ, then b −H ≤ εβ .
Furthermore, on each sublevel i, i = 1, . . . , q−1, the area covered by the squares
is at least (a − εβ)hi. Thus, since hq ≤ εβ , the total area covered is at least
(H − hq)(a− εβ) ≥ (b − 2εβ)(a− εβ) ≥ a · b− 2εβ(a + b)− 2ε2β. ��
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Fig. 1. NFIH for small squares

Corollary 1. If all squares Si in Q have sizes si at most ε, then the NFIH
heuristic packs a subset of Q within [0, 1] × [0, 1] of total area at least (1 −
6ε)OPT(Q). The running time of the algorithm is O(n log n).

2.2 Partitioning the Squares

We define the group Q(0) of squares Si ∈ Q with side lengths si in (ε4, 1], and
for j ∈ Z+ we define the group Q(j) of squares with side lengths in (ε2j+1+3, ε2j

].
Then,

∪∞j=0Q
(j) = Q and Q(�) ∩Q(j) = ∅, for|�− j| > 1.

Lemma 2. There is a group Q(k) with 0 ≤ k ≤ 2/ε2−1 such that its contribution
to the optimum is

area(Qopt ∩Q(k)) ≤ ε2OPT,

where Qopt is an optimal subset of squares.

Proof. Each square belongs to at most two consecutive groups. Therefore,

∪2/ε2−1
k=0 area(Qopt ∩Q(k)) ≤ 2OPT,

and so, there must be a group Q(k) as indicated in the lemma. ��

Let Q(k) be a group such that area(Qopt ∩ Q(k)) ≤ ε2OPT . We drop the
squares Q(k) from consideration. Then, an optimal packing for Q \ Q(k) must
cover area at least (1 − ε2)OPT, i.e. this makes a loss of at most a factor of ε2

in the optimum.
Next, we partition the squares in Q\Q(k) into two groups: L = {Si | si > ε2k}

and S = {Si | si ≤ ε2k+1+3}. The squares in L and S are called large and small,
respectively.
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2.3 Outline of the Algorithm

Here we give a high level description of the algorithm. The individual steps of
the algorithm are analyzed in the next section.

Algorithm Aε:
Input: Set Q of squares, accuracy ε > 0.
Output: A packing of a subset of Q within [0, 1]× [0, 1].

1. For each k ∈ {0, 1 . . . , 2/ε2 − 1} form the group Q(k) as described above.
(a) Let α = 2k and β = 2k+1 + 3.
(b) Partition Q \Q(k) into L and S, the sets of large and small squares with

sides larger than εα and at most εβ, respectively.
(c) Compute the set FEASIBLE, containing all subsets of L with at most

1/ε2α large squares.
(d) For every set in FEASIBLE, find all possible tight packings of its large

squares. For each tight packing use the modified NFIH to pack the small
squares in the empty gaps left by the large squares until no further small
squares can be packed.

2. Among all packings produced, output one with the maximum area covered.

2.4 Analysis of Algorithm Aε

Large Squares. The set FEASIBLE which contains all subsets of at most 1/ε2α

large squares has polynomial size, O(nε−2α

). Observe also that the optimal set
L ∩Qopt of large squares belongs to FEASIBLE.

Lemma 3. For any set L′ ∈ FEASIBLE of large squares, we can find in O(1)
time all possible tight packings of its large squares.

Small Squares. We sort the small squares non-decreasingly by size. Assume that
we have a tight packing of some set L′ ∈ FEASIBLE. We define a sliced struc-
ture for this packing as follows. We draw a vertical line at each position where a
large square starts or ends.The space between any two consecutive vertical lines
is called a slice. Looking into each slice we can see that the horizontal boundaries
of the large squares cut some slices out. We work with the empty rectangular
gaps inside the slices.

We place the small squares from S in the gaps by using the NFIH heuristic:
we consider slices one by one, filling the gaps in a bottom-up manner using small
squares. To fill a gap, we take the small squares Si ∈ S in order of non-decreasing
size, and apply the NFIH heuristic. We can prove the following result.

Lemma 4. For any feasible set L′ ∈ FEASIBLE which has a tight packing
within the frame [0, 1] × [0, 1], the modified NFIH heuristic adds small squares
to the packing in such a way that the area covered is at least min{area(L′) +
area(S), 1− ε2}, for any 0 < ε ≤ 1/16.
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Proof. Recall that α = 2k, β = 2k+1 +3, and |L′| ≤ 1/ε2α. The number of slices
in a packing of L′ is at most 2|L|. The widths of all slices add up to 1. The
heights of all empty gaps in each slice add up to at most 1.

Assume that some small squares are left unpacked. Let q be the number of
gaps, and let x1 ∗ y1, x2 ∗ y2, . . . , xq ∗ yq be their areas. Then, q ≤ (2|L|)2,

q∑
j=1

xj ∗ yj = 1− area(L′),
q∑

j=1

yj ≤ 2|L| and
q∑

j=1

xj ≤ 2|L|.

To see that
∑q

j=1 yj ≤ 2|L|, note that all rectangular gaps are inside the slices,
so the sum of the lengths of their vertical boundaries is at most 2|L|, the total
length of all the slices. The last inequality follows from a symmetry argument,
i.e., if we draw horizontal slices instead of vertical ones, we obtain a similar figure
but with respect to the widths xj .

Remember that each small square in S has side length at most εβ. Thus,
using Lemma 1, we can bound the area covered by the small squares as follows

AREA =
q∑

j=1

(xj ∗ yj − 2εβ(xj + yj)− 2ε2β)

≥ (1− area(L′))− 2εβ(4|L|)− 2ε2βq

≥ (1− area(L′))− 2εβ(4/ε2α)− 2ε2β(4/ε4α)

≥ (1− area(L′))− 8εβ−2α − 8ε2β−4α

≥ (1− area(L′))− 8ε3 − 8ε6 ≥ (1− area(L′))− ε2

since 8ε3 − 8ε6 ≤ ε2 for ε ∈ (0, 1/16].

2.5 Proof of Theorem 1

Algorithm Aε considers all values k ∈ {0, 1 . . . , 2/ε2 − 1} and groups Q(k). By
Lemma 2 at least for one of these groups Q(k),

area(Qopt \Q(k)) ≥ (1− ε2)OPT.

Consider one such group Q(k) and let α = 2k and β = 2k+1+3. Partition Q\Q(k)

into the sets of large and small squares, L and S, where the side length of each
large square is larger than εα and the size of each small square is at most εβ .

We know that Qopt ∩ L belongs to the set FEASIBLE, which consists of
all sets with at most 1/ε2α large squares. Since Qopt can be packed within the
frame [0, 1] × [0, 1], there exists a tight packing for Qopt ∩ L as well. For each
such a tight packing, the NFIH heuristic adds small squares to the packing such
that the total area covered by the squares is at least

min{area(Qopt ∩ L) + area(S), 1− ε2}.
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Since OPT ≤ 1, 1 − ε2 ≥ (1 − ε2)OPT. On the other hand, since area(Q(k)) ≤
ε2OPT, then

area(Qopt ∩ L) + area(S) ≥ area(Qopt \Q(k)) ≥ (1− ε2)OPT.

We also know that the set FEASIBLE and all possible tight packings of
large squares can be found in O(nO(1)) time. The NFIH heuristic runs in time
polynomial in the number of squares, n. Hence, the overall running time of the
algorithm is polynomial in n for fixed ε.

2.6 Packing d-Dimensional Cubes

Our algorithm can be easily extended to the problem of packing d-dimensional
cubes into a unit d-dimensional cubic frame so as to maximize the total volume
of the cubes packed. As in the 2-dimensional case, we partition the set of cubes
into two sets L and S containing large and small cubes, respectively. Since only a
constant number of large cubes can be packed into the frame, we can enumerate
all feasible subsets of L that can be packed in the frame in polynomial time. We
can prove the following generalization of Lemma 1 (see also [6]).

Lemma 5. Let S be any set of d-dimensional cubes Si with sizes si ≤ εβ, and
let [0, a1]× [0, a2]×· · ·× [0, ad] (ai ∈ [0, 1]) be a parallelepiped. The generalization
of the NFIH heuristic to d dimensions outputs a packing of a subset of S whose
volume is at least min{volume(S), (a1 − εβ)(a2 − 2εβ) · · · (ad − 2εβ)}.

This lemma shows that the generalization of NFIH to d dimensions can be
used to pack the small cubes in the empty space left by a tight packing of the
large cubes so that the total empty space left is only an ε fraction of the total
volume of the frame.

3 Packing Weighted Rectangles with Augmentation

Let R be a set of n rectangles, Ri (i = 1, . . . , n) with widths ai ∈ (0, 1], heights
bi ∈ (0, 1], and weights wi ≥ 0. The goal is to find a subset R′ ⊆ R, and a
packing of R′ within [0, 1]× [0, 1] of maximum weight,

∑
Ri∈R′ wi.

We partition the rectangles R into four sets: L, H, V , and S. The rectangles
in L have large widths and heights, so only O(1) of them can be packed in the
unit square frame. The rectangles in H (V ) have large width (height). We round
the sizes of these rectangles in order to reduce the number of distinct widths
and heights. Then, we use enumeration and a fractional strip-packing algorithm
to select the best subsets of H and V to include in our solution. The rectangles
in S have very small width and height, so as soon as we have selected near-
optimal subsets of rectangles from L ∪H ∪ V we add rectangles from S to the
set of rectangles to be packed in a greedy way. Once we have selected the set
of rectangles to be packed into the frame, we use a slight modification of the
algorithm of Correa and Kenyon [6] to pack them.



360 A.V. Fishkin et al.

For a subset of rectangles R′ ⊆ R, we use weight(R′) to denote its weight,∑
Ri∈R′ wi. We use Ropt to denote an optimal subset of R that can be packed

into the unit square frame [0, 1]× [0, 1]. So,

weight(Ropt) = OPT and area(Ropt) ≤ 1.

3.1 Partitioning the Rectangles

We define the group G(0) of rectangles Ri ∈ R with either widths ai ∈ (ε3, 1]
or heights bi ∈ (ε3, 1]. For j ∈ Z+ we define the group G(j) of rectangles Ri

with either widths ai ∈ [ε3(j+1), ε3j) or heights bi ∈ [ε3(j+1), ε3j). Each rectangle
belongs to at most 2 groups.

Lemma 6. There is a group G(k) with 0 ≤ k ≤ 2/ε2 − 1 such that

weight(G(k) ∩Ropt) ≤ ε2 ·OPT,

where Ropt is the subset of rectangles selected by an optimum solution.

We drop the rectangles in group G(k), as described in Lemma 6, from con-
sideration. Then, an optimal packing for Ropt \ G(k) must have weight at least
(1− ε2)OPT, i.e. this causes a loss of at most a factor of ε2 in the optimum. We
partition R into four groups according to their side lengths, as follows:

L = {Ri | ai ≥ ε3k and bi ≥ ε3k}
S = {Ri | ai < ε3k+3 and bi < ε3k+3}
H = {Ri | ai ≥ ε3k and bi < ε3k+3}
V = {Ri | ai < ε3k+3 and bi ≥ ε3k}

Lemma 7. The subset Ropt \G(k) of rectangles can be packed within the frame
[0, 1 + 2ε]× [0, 1 + 2ε] in such a way that

– each rectangle Ri ∈ H ∪L is positioned so that its upper left corner is at an
x-coordinate that is a multiple of ε3k+1,

– each rectangle Ri ∈ V ∪ L is positioned so that its upper left corner is at a
y-coordinate that is a multiple of ε3k+1,

Furthermore, any width ai ≥ ε3k or height bi ≥ ε3k can be rounded up to the
nearest multiple of ε3k+1 without affecting the feasibility of the packing.

Due to space limitations we do not include the proof of the lemma.

3.2 Outline of the Algorithm

Algorithm Wε:
Input: Set R of rectangles, accuracy ε > 0.
Output: A packing of a subset of R within [0, 1 + 3ε]× [0, 1 + 3ε].
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1. For each k ∈ {0, 1 . . . , 2/ε2 − 1}, form the group G(k) as described above.
2. Let α = 1/ε3k+1.

(a) Partition R \G(k) into sets L, S, H, and V as described above.
(b) Round the sizes of the rectangles L ∪H ∪ V as indicated in Lemma 7.
(c) Compute the set FL containing all subsets of L with at most 1/(ε3k)2

rectangles.
(d) Compute the set FH containing all feasible subsets of H with profiles

(h1, h2, . . . , hα) where each entry hq ≤ 1 (q = 1, . . . , α) is a multiple of
ε3k+2. (See next section for details.)

(e) Compute the set FV containing all feasible subsets of V with profiles
(v1, v2, . . . , vα) where each entry vq ≤ 1 (q = 1, . . . , α) is a multiple of
ε3k+2. (See next section for details.)

3. For each set L′ ∈ FL, H ′ ∈ FH , and V ′ ∈ FV do:
(a) Try all possible packings for L′ in the frame [0, 1 + 2ε] × [0, 1 + 2ε],

positioning the rectangles as indicated in Lemma 7.
(b) For each packing of L′ try to pack the rectangles in H ′ and V ′ by solving

a fractional strip-packing problem as described in the next section.
(c) Find a subset S′ ⊆ S which is feasible for L′, H ′ and V ′(see next section).
(d) Increase the size of the frame to [1 + 3ε]× [1 + 3ε] and use the Next Fit

Increasing Height algorithm to pack the rectangles S′ with the empty
gaps left by L′ ∪H ′ ∪ V ′.

4. Among all packings produced, output one having maximum weight.

3.3 Analysis of the Algorithm Wε

Computing FL. Recall that for each rectangle Ri ∈ L∩Ropt, both sides, ai, bi ∈
(ε3k, 1]. Since area(L ∩ Ropt) is at most 1, there cannot be more than (1/ε3k)2

rectangles in L ∩Ropt.

Lemma 8. In O(nε−6k

) time we can find the set FL consisting of all subsets of
L with at most ε−6k squares. The optimal subset, L ∩Ropt, belongs to FL.

Computing FH. Recall that for each rectangle Ri ∈ H , its width, ai ∈ (ε3k, 1]
was rounded to a multiple of ε3k+1. Hence, there are at most α = 1/ε3k+1 distinct
widths, ā1, ā2, . . . , āα, in H . We use H(āq) to denote the subset of H consisting
of all rectangles with width āq. Let H ′ ⊆ H . The profile of H ′ is an α-tuple
(h1, h2, . . . , hα) such that each entry hq ∈ (0, 1] (q = 1, . . . , α) is the total height
of the rectangles in H ′ ∩H(āq).

Consider the profile (h∗1, h
∗
2, . . . , h

∗
α) of H ∩Ropt. Note that if each value h∗i is

rounded up to the nearest multiple of ε/α, this might increase the height of the
frame where the rectangles are packed by at most α(ε/α) = ε. The advantage
of doing this, is that the number of possible values for each entry of the profile
of H ∩Ropt is only constant, i.e. α/ε. Therefore, the total number of profiles is
also constant, αα/ε.

By trying all possible profiles with entries that are multiples of (ε/α) we
ensure to find one that is identical to the rounded profile for H ∩Ropt. However,
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the profile itself does not yield the set of rectangles in H∩Ropt. Fortunately, we do
not need to find this set, since any set of rectangles with the same rounded profile
as H∩Ropt can be packed in a frame of height 1+ε by solving a fractional strip-
packing problem: the strips are the empty rectangular gaps left by the rectangles
in L ∩ Ropt, and inside these strips we try to pack rectangles of width ai and
height h∗i . Rounding the solution for the fractional strip-packing problem to get
an integral solution, increases the height of the packing by at most (ε/α)α = ε.
(For a more detailed explanation, the reader is referred to [6].)

Thus, we just need to find a set of rectangles from H with nearly-maximum
weight and with the same rounded profile as H ∩Ropt.

We say that a subset of H ′ ⊆ H is feasible if

– each entry hq ∈ (0, 1] (q = 1, . . . , α) in the profile of H ′ is a multiple of
ε/α = ε3k+2, and

– each subset H ′ ∩H(āq) (q = 1, . . . , α) is a (1 − ε)-approximate solution of
an instance of the knapsack problem where hq is the knapsack capacity and
each rectangle Ri ∈ H(āq) is an item of size bi and profit wi.

Lemma 9. In O(n log n) time we can find the set FH consisting of all feasible
subsets of H.

Computing FV . We use similar ideas as above to define profiles and to find the
set FV consisting of all feasible subsets of V .

Selecting the Small Rectangles. Assume that we are given feasible subsets L′ ∈
FL, H ′ ∈ FH , V ′ ∈ FV such that area(L′∪H ′∪V ′) is at most (1+2ε)2. A subset
S′ ⊆ S is feasible for the selection L′, H ′, V ′, if S′ is a (1−ε)-approximate solution
for the instance of the knapsack problem where (1 + 2ε)2 − area(L′ ∪H ′ ∪ V ′)
is the knapsack’s capacity, and each rectangle Ri ∈ S is an item of size aibi and
profit wi.

Proposition 1. Given sets L′ ⊆ FL, H ′ ⊆ FH, and V ′ ⊆ FV , a feasible subset
S′ of S can be found in O(n log n) time.

3.4 Proof of Theorem 2

Lemma 10. There exist a selection of feasible subsets L′ ∈ FL, H ′ ∈ FH,
V ′ ∈ FV , and S′ ⊆ S, such that

– weight(L′ ∪H ′ ∪ V ′ ∪ S′) is at least (1 − ε)OPT,
– algorithm Wε outputs a packing of (L′ ∪H ′ ∪ V ′ ∪ S′) within an augmented

unit size square frame [0, 1 + 3ε]× [0, 1 + 3ε].

Due to space limitations we do not include the proof of this lemma. Algorithm
Wε considers all values k ∈ {0, 1 . . . , 2/ε2 − 1}. For at least one of these values
it must find a group G(k) such that

weight(Ropt \G(k)) ≥ (1 − ε2)OPT.
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For this group, the rest of the rectangles R\G(k) is partitioned into sets L, S, H,
and V .

By Lemma 10 there exist a selection of feasible subsets L′ ∈ FL, H ′ ∈ FH ,
V ′ ∈ FV , and S′ ⊆ S, such that

weight(L′ ∪H ′ ∪ V ′ ∪ S′) ≥ (1 − ε)OPT,

and such that algorithm Wε outputs a packing of (L′ ∪H ′ ∪ V ′ ∪ S′) within an
augmented unit size square frame [0, 1 + 3ε] × [0, 1 + 3ε]. Since algorithm Wε

tries all feasible sets in FL, FH , and FV , and all packing for them, Wε must
find the required solution.

All feasible subsets can be found in O(n log n) time. The algorithm in [6] for
fractional strip-packing also runs in time polynomial in n. Furthermore, there is
only a constant number of possible packings for any set of large rectangles from
FL. Hence, the running time of algorithm Wε is polynomial in n for fixed ε.
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91405 Orsay, France
{pierre, nisse}@lri.fr

Abstract. We introduce nondeterministic graph searching with a con-
trolled amount of nondeterminism and show how this new tool can be
used in algorithm design and combinatorial analysis applying to both
pathwidth and treewidth. We prove equivalence between this game-
theoretic approach and graph decompositions called q-branched tree de-
compositions, which can be interpreted as a parameterized version of tree
decompositions. Path decomposition and (standard) tree decomposition
are two extreme cases of q-branched tree decompositions. The equiva-
lence between nondeterministic graph searching and q-branched tree de-
composition enables us to design an exact (exponential time) algorithm
computing q-branched treewidth for all q ≥ 0, which is thus valid for
both treewidth and pathwidth. This algorithm performs as fast as the
best known exact algorithm for pathwidth. Conversely, this equivalence
also enables us to design a lower bound on the amount of nondetermin-
ism required to search a graph with the minimum number of searchers.

Keywords: treewidth, pathwidth, graph searching.

1 Introduction

Treewidth and pathwidth are among the most key parameters in graph algo-
rithms, also playing important roles in structural graph theory. Both parameter
serve as the important tools in Robertson and Seymour’s Graph Minors project
[17]. Many intractable problems can be solved in polynomial time when the input
is restricted to graphs of bounded treewidth. (See Bodlaender’s survey [4] for a
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comprehensive overview.) Treewidth also plays a crucial role in Downey & Fel-
lows parameterized complexity theory (Chapter 6 in [9]). Moreover, treewidth is
the basic ingredient for many applications in artificial intelligence, databases and
logical-circuit design. To mention just a few of these applications: Exact inference
in Bayesian networks, reasoning with structured constraint-satisfaction problems,
propositional satisfiability and first-order logic. See [1] for further references.

In this paper we introduce the new notion of q-branched treewidth which
can be interpreted as a parameterized version of treewidth. Loosely speaking, a
rooted tree decomposition is q-branched if every path from the root of the tree to
a leaf contains at most q branching nodes (nodes with at least two children). This
notion is a natural generalization of path and tree decompositions: For q = ∞,
q-branched treewidth is equivalent to the treewidth, and, for q = 0, q-branched
treewidth is equivalent to the pathwidth of a graph.

Both parameters, pathwidth and treewidth, have nice game-theoretic inter-
pretations. (See a survey of Bienstock [3].) Pathwidth can be described as a
search game where searchers, looking for a fugitive, are successively placed to
and removed from vertices of the graph. (Kirousis and Papadimitriou [13] called
this version of searching by node searching.) The purpose of searching is to cap-
ture the fugitive that is invisible and moves arbitrarily fast along paths in the
graph. The fugitive is not allowed to run through the vertices currently occupied
by searchers. So the fugitive is caught when a searcher is placed on the vertex
it occupies, and it has no possibility to leave the vertex because all the neigh-
bors are occupied (guarded) by searchers. The goal of search games is to find a
search strategy that guarantees the fugitive’s capture. The pathwidth of a graph
G is equal to the minimum number of searchers needed for a successful search
strategy on G, minus one.

Treewidth also can be described as a search game, where a team of searchers
are trying to catch a visible fugitive. It was shown by Seymour and Thomas [18]
that the minimum number of searchers required to catch the fugitive on a graph
G in this game is equal to the treewidth of G plus one. (An alternative game-
theoretic interpretation of treewidth in terms of searching was given by Dendris
et al. [6] who restrict the ability of the (called inert) fugitive to move only when
a searcher is placed at the vertex where the fugitive currently stands.)

Game theoretic interpretation of width parameters is interesting not only in
its own. Very often it provides a deeper insight to the problem yielding new struc-
tural and algorithmic results. Good examples are proofs of min-max theorems on
treewidth by Seymour and Thomas [18], the polynomial time algorithm comput-
ing branch-width of a planar graph in [19], the linear time algorithm on trees for
computing cutwidth in [15], as well as the computation of the topological band-
width in [14], and the vertex separation number in [7]. It is therefore natural to
ask if there is a game theoretic interpretation of the q-branched treewidth.

Our Results. To answer the question above, we introduce a new game model
providing a unique approach to both search models of Kirousis-Papadimitriou,
and Seymour-Thomas. In our search game the searchers can query an oracle
which possesses information about the position of the fugitive. However the
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number of times the searchers can query the oracle is limited. This situation can
be interpreted as using powerful but expensive intelligence service with limited
resources. More formally, q-limited graph searching is a graph searching game in
which the search program is allowed to perform nondeterministic search steps.
In the same spirit as in the field of complexity theory addressing limited nonde-
terminism (cf., e.g., [11] for a survey), the number of nondeterministic steps of
the search program is however limited. The parameter q limits the program to
at most q nondeterministic steps.

We first show a formal equivalence between q-limited graph searching and
q-branched treewidth. Precisely, we prove that a graph G has a q-branched
treewidth ≤ k if and only if it can be searched with at most k + 1 searchers
by a search strategy using at most q nondeterministic steps. Moreover, we estab-
lish a one-to-one correspondence between the q-branched tree decompositions of
G of width ≤ k and the q-limited search strategies using ≤ k + 1 searchers.

Then we use q-limited graph searching todesign an exact (exponential-time) al-
gorithm computing the q-branched treewidth of a graph. The interest in exact and
fast exponential-time algorithms solving hard problems dates back to the sixties
and seventies [12,20]. The last decade has led to much research in fast exponential-
time algorithms. We refer to Woeginger’s survey [21] for an overview. However de-
spite of the importance of treewidth and pathwidth, and despite the fact that much
progress on exponential-time solutions to other graph problems have been made,
the only worst-case bound known so far for finding pathwidth is 2n ·nO(1). This can
be obtained by adopting classical TSP dynamic programming approach [12]. For
treewidth, the fastest known exponential algorithm is an O(1.96n) algorithm due
to Fomin et al. [10]. In this paper we design an algorithm computing q-branched
treewidth of a graph on n vertices in time 2n · nO(1) for any q ≥ 0.

Finally, the equivalence between q-limited graph searching and q-branched
tree decomposition enables us to design a lower bound on the amount of non-
determinism required to search a graph with the minimum number of searchers.
Precisely, we prove that, for any graph G of treewidth tw(G) = k, the smallest
q ≥ 0 such that G can be searched by k + 1 searchers using a q-limited search
program is at least log2(pw(G)/tw(G)) where pw(G) is the pathwidth of G.

2 Formal Definitions

In this section, we formally define the two notions of q-branched treewidth
and q-limited graph searching. Later on, these two notions will be shown to
be equivalent.

Branched Treewidth. A tree decomposition of graph G is a pair (T,X ) where
T is a tree of node set I, and X = {Xi, i ∈ I} is a collection of subsets of V (G)
satisfying the following three conditions:

1. V (G) = ∪i∈IXi;
2. For any edge e of G, there is a set Xi ∈ X containing both end-points of e;
3. For any triple i1, i2, i3 of nodes of T , if i2 is on the path from i1 to i3 in T ,

then Xi1 ∩Xi3 ⊆ Xi2 .
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The width of a tree decomposition is defined as width(T,X ) = maxi∈I |Xi| − 1.
A rooted tree decomposition of a graph G is a tree decomposition (T,X ) of G
where T is rooted at some node r ∈ I. It is denoted by (T,X , r). A branching
node of a rooted tree decomposition is a node with at least 2 children.

For any q ≥ 0, a q-branched tree decomposition of a graph G is a rooted tree
decomposition (T,X , r) of G such that every path in T from the root r to a leaf
contains at most q branching nodes.

Thus a path decomposition rooted at one of its extremities is a 0-branched
tree decomposition, and a (standard) tree decomposition is a ∞-branched tree
decomposition.

For any graph G, the q-branched treewidth twq(G) of G is the minimum
width of over all q-branched tree-decomposition of G.

Therefore, pw(G) = tw0(G) and tw(G) = tw∞(G). Figure 1 displays the
“spectral width” of a graph G, i.e., the graph of the function fG : N → N such
that fG(q) = twq(G). In this figure, τ(G) = min{q ≥ 0 | twq(G) = tw(G)} and
π(G) = max{q ≤ τ(G) | twq(G) = pw(G)}.

tw  (G)

tw(G)

pw(G)

q

q
(G) (G)π τ

Fig. 1. Spectral width of graph G

2.1 Graph Searching

Search games are games between a fugitive and searchers in a graph. The fugitive
and the searchers occupy vertices of the graphs. The goal of the fugitive is to
escape from the searchers. It is caught when a searcher is placed on the vertex
currently occupied by the fugitive. The fugitive permanently knows where the
searchers are, and moves arbitrarily fast, but it cannot meet a searcher without
being caught. The searchers do not know the position of the fugitive.

More formally, a search program is a (deterministic) program that takes as
input a graph G and an integer k ≥ 1, and returns an ordered sequence of search
steps. This sequence is called the search strategy for G. Each step is an operation
that consists in either “placing a searcher at v ∈ V (G)” or “removing a searcher
from v ∈ V (G)”. After a searcher s has been placed at v, and before s is removed
from v, vertex v is said to be occupied by searcher s. When a vertex has been
occupied by a searcher, it becomes clear. Vertices that have not been cleared yet
are called contaminated. The search program is correct if it satisfies the following
constraints:
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1. no more than k searcher are simultaneously occupying vertices of G;
2. a step “place a searcher at v” occurs at most once, for every vertex v;
3. when a searcher is removed from a vertex v, for any path P between v and

contaminated vertices, there is a searcher occupying a vertex of P .

A fugitive program in a graph G is a deterministic automaton F whose states
are all possible triples (S,X, v) where S ⊂ V (G), X ⊆ S, and v ∈ V (G) \ S.
If the automaton is in state (S,X, v), then the fugitive is currently occupying
vertex v, the searchers are occupying vertices in X , and S is the set of clear
vertices. Given a state (S,X, v) of the automaton, the transition function of the
fugitive program returns a new state (S,X, v′) where v and v′ are constrained
to be in the same connected component of G \ S. Then the fugitive moves in G
from vertex v to vertex v′. The initial state of the fugitive program is the state
(∅, ∅, v0) for some v0 ∈ V (G).

A search game is then a game between the fugitive program and the search
program. A configuration of the game is a tripple (S,X, v) where S is the set
of clear vertices, X is the set of vertices occupied by searchers, and v is the
position of the fugitive. From constraint 3 of the search program, we always
have δ(S) ⊆ X , where δ(S) denotes the set of vertices in S that have a neighbor
in G \ S. Initially, the fugitive is placed in v0, where (∅, ∅, v0) is the initial state
of the fugitive program. I.e., the initial configuration of the game is (∅, ∅, v0).
Then the search program and the fugitive program play alternatively. Each step
of the search program transforms the current configuration (S,X, v) of the game
into a configuration (S ∪ {u}, X ∪ {u}, v) (in case of a step “place a searcher at
u”), or into a configuration (S,X \ {u}, v) (in case of a step “remove a searcher
from u”).

The search program wins the game if the game reaches a configuration in
which v ∈ X . Otherwise the fugitive wins. If the search program wins, then the
fugitive is said to be caught. Note that the fugitive wins if the search program
cannot carry on without violating one of its three constraints.

The search program that places a different searcher on every vertex of the
graph wins against any fugitive. It however requires n searchers in n-node graphs.

Definition 1. The search number of G, denoted by s(G), is the minimum num-
ber of searchers required by a search program to win against any fugitive in G.

2.2 Nondeterministic Graph Searching

A nondeterministic search program is a search program that can do nondeter-
ministic steps. Each nondeterministic step consists in a query operation. Given
the set S ⊂ V (G) of clear vertices, a query returns a connected component C of
G \ S, and all vertices in G \C are cleared. The choice of C is nondeterministic.
Alternatively, it can be viewed as given by an oracle answering on a query by
letting the searchers know in which component is the fugitive. A nondetermin-
istic search program is thus a nondeterministic program that takes as input a
graph G and an integer k ≥ 1, and returns an ordered sequence of search steps,
each of them being one of the following three operations:
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– place a searcher at v ∈ V (G);
– remove a searcher from v ∈ V (G);
– query the oracle.

Of course, the program must satisfy the same three constraints as any (deter-
ministic) search program.

A nondeterministic search program wins the game against a fugitive F if there
exists an execution of the program which results in clearing the node currently
occupied by the fugitive.

We are interested in the tradeoff between the number of searchers used by a
search program and the number of query steps performed by the program. For
any q ≥ 0, a q-limited nondeterministic search program is a nondeterministic
search program that performs at most q query steps. Therefore, a q-limited non-
deterministic search program wins the game against a fugitive F if it can catch
the fugitive by querying at most q times an oracle that returns the connected
component where is currently hidden the fugitive.

Definition 2. The q-limited nondeterministic search number sq(G) of a graph
G, or simply the q-limited search number of G, is the minimum number of
searchers required by a q-limited nondeterministic search program to win against
any fugitive in G.

Therefore, the 0-limited nondeterministic search number of a graph is its
search number, i.e., s0(G) = s(G). We will prove in the next section that the
∞-limited nondeterministic search number s∞(G) of a graph G is equal to its
visible-search number.

3 Branched Treewidth vs. Limited Graph Searching

In this section, we show that the q-branched treewidth and the q-limited search
number are actually the same, up to 1. This equality will be later shown to be
useful for the design of algorithms and for the computation of combinatorial
bounds.

Theorem 1. For any q ≥ 0, for any graph G, twq(G) = sq(G)− 1.

Proof. Let (T,X , r) be a q-branched decomposition of width k. For a node i of T
let d(i) be the set of descendants of i in T . We define the search program of k+1
searchers querying the oracle at most q times as follows. Initially the searchers
are placed on the vertices of Xr. Suppose that, at some step of searching, for
some node i of T the searchers are on vertices Xi and the set of contaminated
vertices is ∪j∈d(i)Xj \Xi. Note that if i is a leaf, G is cleared. Let i be a non-leaf
node of T . Depending on the number of children of i we choose different strategy
for the searchers.

Case A. i has only one child l. We remove first the searchers from Xi \ Xl

and then place searchers to Xl. Since the cardinality of Xi and Xl is at most
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k + 1 we use at most k + 1 searchers. By properties of tree decompositions, for
every contaminated vertex v ∈ ∪j∈d(i)Xj \Xi and every cleared vertex u, every
(u, v)-path contains a vertex from Xi ∩ Xl. Thus after removing the searchers
from Xi \Xl no recontamination occurs and we arrive at the situation when the
searchers are at Xl and the set of contaminated vertices is ∪j∈d(l)Xj \Xl.

Case B. i has more than one child. In this case the searchers query the oracle.
Let C be the connected component of G[∪j∈d(i)Xj \Xi] returned by the oracle.
Then there is a unique child l of i such that C∩Xl �= ∅. We remove the searchers
from Xi \Xl and then place searchers to Xl. Again, in this case we arrive at the
situation when the searchers are at Xl and the set of contaminated vertices is
∪j∈d(l)Xj \Xl.

Eventually, the searchers reach the situation when they are placed on the
vertices Xi where i is leaf of T and thus the whole graph is cleared. The number
of searchers used is at most maxj∈V (T ) |Xj | ≤ k + 1. Since for every leaf i, the
path from r to i contains at most q branches, the case B occurs at most q times,
thus the searchers query the oracle at most q times. Hence sq(G) ≤ twq(G)+1.

We prove twq(G) ≤ sq(G)− 1 by proving a slightly stronger claim.

Claim. Suppose that there is a search program of k + 1 searchers on G with at
most q queries and such that, initially, searchers are placed on vertices X ⊆
V (G). Then there is a q-branched tree decomposition (T,X , r) with Xr = X and
of width ≤ k.

To prove the claim we proceed by induction on q. For q = 0, the required
path decomposition P = (X0, X1, . . . , Xm) is constructed by taking X0 = X ,
and, for i ≥ 1, Xi to be the vertex set occupied by searchers after the ith step.
To check that P is the path decomposition we observe that every vertex should
be at some step occupied by a searcher and thus is contained in some node of
P . Every pair of adjacent vertices {u, v} is contained in some node of P because
otherwise fugitive can avoid capture by choosing u or v at every step of searching.
The third property of tree decompositions follows from the constraints 2 and 3
of graph searching.

Let q ≥ 1 and suppose that for all q′ < q, the claim is correct. Consider a
winning search program of k + 1 searchers with at most q queries to the oracle.
Suppose that the first time the searchers query the oracle occurs at step t ≥ 0.
Let X be the set of vertices occupied by the searchers and S be the cleared
vertices at this step. Let G1, G2, . . . , Gp be the subgraphs of G obtained from
the connected components of G \ S by adding X . Each of these subgraphs is
searchable by k+1 searchers with at most q− 1 queries with the search starting
from X . By induction assumption, for each 1 ≤ i ≤ p, there is a rooted tree
decomposition (T (i),Y(i), ri) of Gi with at most q − 1 branches and with the
root ri of T (i) satisfies Yri = X .

We construct a tree decomposition (T,Y, r) of G as follows. Let X1, . . . , Xt

be the vertices occupied by the searchers at the first t steps of searching. In
particular Xt = X . We construct the path decomposition (X1, . . . , Xt) rooted
at X1. Then we add the tree decompositions (T (i),Y(i), ri), 1 ≤ i ≤ p, and
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identify every ri to the node t of the path decomposition. The resulting tree
decomposition is a q-branched tree decomposition of width ≤ k. ��

4 Exact Exponential Algorithm

For any q ≥ 0, the decision problem that takes as input a graph G and an
integer k ≥ 1, and returns whether or not twq(G) ≤ k, is NP-complete. In-
deed, it is known [2] that the problem of deciding whether tw(G) ≤ k is NP-
complete, even when restricted to the co-bipartite graphs, i.e., the complements
of bipartite graphs. Since, for any co-bipartite graph G, tw(G) = pw(G), the
NP-completeness of deciding twq(G) ≤ k follows from the fact that tw(G) ≤
twq(G) ≤ pw(G) for any q ≥ 0. It is known [5] that tw can be approximated
up to multiplicative factor O(log tw), in polynomial time. (This bound has been
recently improved to O(

√
log tw), cf. [8].) However, for pathwidth, no approxi-

mation algorithm is known (except by combining the ones for treewidth with the
fact that pw(G) ≤ O(log n)·tw(G) for any n-node graph G). On the other hand,
as mentioned in the introduction, several exact (exponential) algorithms have
been designed for treewidth, and for pathwidth as well. In this section, we show
that one can design an exact algorithm that applies to q-branched treewidth, for
all q ≥ 0. This algorithm uses the correspondence between q-branched treewidth
and q-limited search number.

Theorem 2. There exists an algorithm that, for any n-node graph G, computes
twq(G) and an optimal q-branched tree decomposition of G, in time O(2nn logn).

Proof. Based on Theorem 1, we design an algorithm that computes sq(G), and
an optimal q-limited search strategy for G. This startegy can be then trans-
formed into a q-branched tree decomposition using the arguments in the proof
of Theorem 1. Let G be a graph, and fix k ≥ 1. We define the configuration
digraph H as follows.

V (H) = {S ⊆ V (G) s.t. |δ(S)| ≤ k}.

A set S of clear vertices for which |δ(S)| > k are unreachable by a search program
using k searchers, and thus it is not included in V (H). The nodes in H are
called H-configurations, to avoid confusion with the configurations of the search
game. The edge-set of H has two types of directed edges: place edges, and query
edges. A place edge, or simply p-edge, is an edge (S, S′) where |δ(S)| < k and
S′ = S∪{v}, v /∈ S. Clearly, a p-edge corresponds to the placement of a searcher
at node v. A query edge, or simply q-edge, is an edge (S, S′) where S′ = G \ C
and C is a connected component of G \ S. It is assumed that there is a q-edge
(S,G \C) only if G \ S has at least two connected components (i.e., there is no
self-loop in H). Thus, a q-edge (S,G\C) corresponds to a query to the oracle that
returns C. The objective of our algorithm is to find a path in the configuration
digraph H from S = ∅ to S = V (G) that can be put in correspondence with a
search strategy.
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For the purpose of finding such a path, we label every node of V (H) by a non-
negative integer. The labeling starts from the H-configuration V (G) and goes
backwards. The H-configuration V (G) is labeled 0. All the other H-
configurations are labeled ∞. All the H-configurations without any outgoing
edge are declared finished. (In particular V (G) is finished.) All the other H-
configurations are declared pending. We proceed as long as there is at least one
pending H-configuration S satisfying one of the two following conditions:

Case 1. S has an outgoing p-edge e connecting to an H-configuration S′ that is
finished. (Informally, this case occurs if the labeling has not yet considered
the game configuration (S, δ(S), v), v /∈ S, from which the next search step
is: place a searcher at S′ \ S.)

Case 2. S has all its outgoing q-edges e1, . . . , ed connecting to H-configurations
S′1, . . . , S′d that are finished. (Informally, this case occurs if the labeling has
not yet considered the game configuration (S, δ(S), v), v /∈ S, from which
the next search step is: query the oracle.)

In case 1, we update the label of S by:

label(S) = min{label(S), label(S′)}
and the edge e is removed from H . In case 2, we update the label of S by:

label(S) = min{label(S), 1 + max
1≤i≤d

label(S′i)}

and all the edges e1, . . . , ed are removed from H . In both cases, if the pending
H-configuration S has no more outgoing edges because of the edge(s) removal,
then S is declared finished.

Claim. The labeling process terminates.

To prove the claim, notice that H is a directed acyclic graph because every
edge goes from an H-configuration S to another H-configuration S′ with |S′| >
|S| (recall that we did not allowed self-loops in H). Removing edges from H
preserves this property. Therefore every node becomes eventually finished and
thus the labeling process terminates.

Claim. The H-configuration ∅ is labeled q < ∞ if and only if q is the smallest
number of queries required to clear G using ≤ k searchers. The H-configuration
∅ is labeled ∞ if one cannot clear G using ≤ k searchers, independently of the
number of queries to the oracle.

We prove that claim by proving a slighly more general result: for any H-
configuration S �= V (G), S is finished and labeled label(S) ≤ q �= ∞ if and
only if one can clear G starting from S with ≤ k searchers and performing ≤ q
queries. By starting from S, it is meant that we assume an initial configuration
of the search game in which S is clear, |δ(S)| searchers are placed at the vertices
of δ(S), and the fugitive is at some vertex of G \ S. We proceed by induction on
q = label(S).
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If q = 0, then there is a path P in H from S to V (G) using only p-edges. Let
(S′, S′′) ∈ P , with S′′ = S′∪{v}. The portion of the search strategy correspond-
ing to that edge consists in removing one by one all searchers occupying vertices
/∈ δ(S′), and placing a searcher at v. Hence one can catch the fugitive without
performing queries by starting from S and following the edges of P until one
reaches the configuration V (G). Conversely, if one can clear G starting from S
with ≤ k searchers and performing no queries, then there is a path in H from S
to V (G) composed on only p-edges. These edges are defined by placement steps
in the search strategy.

Assume now that the result holds for q, and consider S such that label(S) =
q+1. We define a good edge as a p-edge (S′, S′′) such that label(S) = label(S′) =
label(S′′). From S, start traveling in H by using good edges only, until one
reaches a configuration S∗ with

label(S) = label(S∗) = 1 + max
i=1,...,d

label(S∗i )

where the edges (S∗, S∗i ), i = 1, . . . , d, are all the q-edges out-going from S∗. This
configuration S∗ exists because (1) a good edge (S′, S′′) satisfies |S′′| > |S′|, and
(2) label(S′) = label(S′′) = label(S) < ∞. Therefore, if a configuration S∗ as
specified above would not be met, then, by (1) an H-configuration with out-
degree 0 would eventually be reached, and by (2) this H-configuration could
only be V (G) since otherwise its label would be ∞. Since label(S) = q + 1 > 0,
by induction this would contradict the fact that there is no path from S to V (G)
composed of p-edges only. So S∗ is well defined.

For all i = 1, . . . , d, label(S∗i ) ≤ q. Therefore, by induction hypothesis, one
can clear G starting from any S∗i using ≤ k searchers, and quering ≤ q times the
oracle. The search strategy from S starts by performing place and remove steps
according to the path in H from S to S∗. The search then queries the oracle
at S∗, and gets into one of the configurations S∗i . The rest of the search follows
from the induction hypothesis.

Conversely, assume that one can clear G starting from S with ≤ k searchers
and performing q + 1 queries. Consider a corresponding search strategy in G,
and assume that the first query to the oracle occurs at step t. The t − 1 first
steps can be put in correspondence with a path P in H starting at S, and
that contains good edges only. Let (S∗, X∗, v∗) be the configuration of the game
after step t − 1. P connects S with the H-configuration S∗. The query at step
t corresponds to the outgoing q-edges (S∗, S∗i ), i = 1, . . . , d, of S∗. From each
of the S∗i s, the search proceeds with at most q queries. Hence, by induction,
label(S∗i ) ≤ q. Therefore, label(S∗) ≤ q + 1. Since P is a path of good edges, we
get label(S) = label(S∗) ≤ q + 1.

For each k, the running time of the labeling procedure is linear in the number
of edges of H , which is O(2nn). Thus by binary search we can find the search
number and twq(G) in O(2nn logn). ��
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5 Bounding the Nondeterminism

In this section, we compute a lower bound on the number of nondeterministic
steps a search program must perform in a graph G in order to clear the graph
with the minimum possible number of searchers, i.e., tw(G) + 1 searchers.

Theorem 3. For any q ≥ 1, for any graph G, twq−1(G) ≤ 2 twq(G).

Due to the space restrictions the proof of this theorem is omitted.
Note that the bound of Theorem 3 is tight, as witnessed by the graphs con-

sisting in a complete binary tree (all non-leaf vertices, including the root, are of
degree 3) of depth q, in which every vertex u is replaced by a complete graph Ku

of k vertices, and every edge {u, v} is replaced by a perfect matching between
the two complete graphs Ku and Kv. Theorem 3 has important corollaries:

Corollary 1. For any graph G, the smallest q ≥ 0 such that twq(G) = tw(G)
satisfies τ(G) ≥ log2(pw(G)/tw(G)).

Remark. There exist n-node graphs G such that tw(G) = pw(G) + 1 and the
greatest q ≥ 0 such that twq(G) = pw(G) satisfies π(G) ≥ Ω(n).

Rephrasing Corollary 1, we get:

Corollary 2. For any graph G, the smallest number of nondeterministic steps
of a nondeterministic search program that clears G with tw(G) + 1 searchers is
at least log2(pw(G)/tw(G)).

6 Conclusion

In this paper, we introduced a nondeterministic graph searching game, with a
controlled amount of nondeterminism. The objective of this concept was to unify
pathwidth and treewidth, at least as far as the design of algorithms, and the com-
putation of combinatorial bounds in concerned. We believe that this is a promis-
ing field of investigations, as illustrated by the design of an exact algorithm for
q-branched treewidth, valid for any q ≥ 0. Still, a lot of work has to be done before
being able to design common tools for both pathwidth and treewidth.

In particular, it would be particularly interesting to design a polynomial-time
algorithm computing the q-limited search number (or equivalently the q-branched
treewidth) of trees. As far as algorithm design is concerned, it would also be quite
interesting to design an O(cn)-time exact algorithm for the q-branched treewidth
of arbitrary graphs, with c < 2. Such an algorithm is known [10] in the case of
treewidth (i.e., q =∞), but not for pathwidth (i.e., q = 0). Last but not least, it
is known that, for node-search (i.e., 0-limited graph searching) and visible-search
(i.e., ∞-limited graph searching), removing constraint 3 of the search program
does not enable to decrease the number of searchers. It would be important to
know whether this is true for any q ≥ 0, i.e., whether or not “recontamination
helps” for q-limited graph searching, for any q ≥ 0.
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Abstract. Horn⊃ is a logic programming language which extends usual
Horn clauses by adding intuitionistic implication in goals and clause bod-
ies. This extension can be seen as a form of structuring programs in logic
programming. Restricted to the propositional setting of this language,
we prove that any goal in Horn⊃ can be translated into a monotone
Boolean circuit which is linear in the size of the goal.

1 Introduction

In logic programming, some approaches for extending Horn clauses consider to
incorporate into the language a new implication symbol,⊃, with the aim of struc-
turing logic programs in some blocks with local clauses [2,5,7,8,12,13,14,15,16].
These extensions can also be seen as a sort of inner modularity in logic program-
ming (see [4] for a survey on modularity).

We consider a particular extension named Horn⊃. This programming lan-
guage has been formally studied in [8,7,2,10,16]. In [2] a natural extension of clas-
sical first order logic FO with the intuitionistic implication (⊃), named FO⊃,
was presented as the underlying logic of the programming language Horn⊃.

Model semantics of FO⊃ is based on Kripke structures consisting of a non-
empty partially ordered set of worlds, each world associated to an interpretation.
However, to deal with Horn⊃ programs, Kripke structures can be restricted to
those with (1) Herbrand interpretations associated to their worlds, (2) a unique
minimal world and (3) closure with respect to superset. Moreover, each interpre-
tation I univocally determines a Kripke structure (formed with all the supersets
of I) and, conversely, each Kripke structure satisfying conditions (1), (2) and (3)
is univocally determined by (the interpretation associated to) its minimal world.

Other “good properties” that verify Horn clauses (as a programming lan-
guage) with respect to its underlying logic FO are also conserved by Horn⊃

clauses with respect to FO⊃: each program has a canonical model, the opera-
tional semantics is an effective subcalculus of a complete calculus for FO⊃ and
the goals satisfied in the canonical model are the goals that can be derived from
the program in such calculus. The formalization about what are“good properties

� This work has been partially supported by the projects TIN2004-07925-C03-03 and
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of a programming language” is borrowed from [11] and a complete calculus for
FO⊃ is introduced in [10].

More related to implementation issues, a way to proceed is to translate the
extended logic programs into the language of some well-known logic ([15,7,3,16]).
In particular, [16] introduces a translation preserving the operational semantics
from Horn⊃ programs into Horn programs. To be efficient, this translation
needs to obtain the Horn program in an extended signature with new predicate
symbols. In fact, if we want to preserve the model semantics any translation from
a Horn⊃ program into an equivalent Horn program obtains, in general, a Horn
program with an exponential number of clauses [6]. Our aim is to study possible
correct and efficient translations from Horn⊃ programs into some representation
type that, preserving the model semantics, allows a suitable implementation.

It is well-known that boolean circuits are data structures for representing
boolean functions. In general, the description of a boolean formula should be
rather short and efficient; support the evaluation and manipulation of the func-
tion; make particular properties of the function visible; suggest ideas for a tech-
nical realization. The boolean circuit is a representation type which satisfies all
the properties above, but mainly the first one: the fact that the outdegree of the
gates in the boolean circuits can be greater than 1, often allows very compact
representation.

The study made in this paper shows, in the propositional setting of Horn⊃

language, that clauses and goals can be represented efficiently by boolean cir-
cuits. The paper is organized as follows: In Section 2 the programming language
Horn⊃ (restricted to the propositional case) is introduced. In Section 3 some
preliminary notions about boolean circuits are given. The core of the paper is
Section 4 where we introduce a translation from Horn⊃ goals to monotone cir-
cuits and we prove that this transformation is correct and efficient. We conclude,
in Section 5, by summarizing our results and by showing further work to do.

2 The Programming Language Horn⊃

In this section we introduce the programming language Horn⊃ by showing its
syntax and its model semantics. Although the language is in general a first order
language (see [8,2]), in this paper we shall restrict our presentation only to this
language in the propositional setting.

2.1 The Syntax

The syntax is an extension of the (propositional) Horn clause language by adding
the intuitionistic implication ⊃ in goals and clause bodies. Let Σ be a fixed set
of propositional variables (or signature). The clauses, named D, and the goals,
named G, are recursively defined as follows (where v stands for any propositional
variable in Σ):

G ::= v | G1 ∧G2 | D ⊃ G D ::= v | G→ v | D1 ∧D2
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A Horn⊃ program is a finite set (or conjunction) of clauses. The main difference
with respect to Horn clauses is the use of a “local” clause set D in goals of the
kind D ⊃ G (and therefore also in clause bodies).

Example 1. The following set with three clauses is a Horn⊃ program over sig-
nature Σ = {a, b, c, d}
{((b→ c) ⊃ c)→ a, b, ((a ∧ (b→ c)) ⊃ (((b→ c) ∧ (a→ d)) ⊃ a))→ d}

The second clause is simply b. The first and the third program clauses are of
the form G → v. In the first clause, the goal G is (b → c) ⊃ c. That is, it
contains a local set with one clause. In the third clause, the goal G is of the form
D1 ⊃ (D2 ⊃ G3), where D1 = a ∧ (b→ c) and D2 = (b→ c) ∧ (a→ d) are both
local sets with two clauses, and G3 = a.

2.2 The Model Semantics

Definition 1. Given a signature Σ, the model semantics for the propositional
Horn⊃ language is given by the set of all Σ-interpretations Mod(Σ)={I|I⊆Σ}.

In the underlying logic of propositional Horn⊃ language, well-formed for-
mulas are built from propositional variables in Σ, using constants (True and
False), classical connectives (¬, ∧, ∨, and →) and the intuitionistic implication
(⊃). The satisfaction relation (or forcing relation) �Σ (or simply � if there is no
confusion about the signature) between an interpretation I and a formula ϕ in
the underlying logic is given below. Clauses and goals are particular formulas in
this logic.

Definition 2. Let I ∈ Mod(Σ) and ϕ a formula. We say that

(a) I is a model of ϕ (or ϕ is forced in I) if I � ϕ
(b) The binary forcing relation � is inductively defined as follows:

I �� False
I � v iff v ∈ I for v ∈ Σ
I � ¬ϕ iff I �� ϕ
I � ϕ ∧ ψ iff I � ϕ and I � ψ
I � ϕ ∨ ψ iff I � ϕ or I � ψ
I � ϕ→ ψ iff if I � ϕ then I � ψ
I � ϕ ⊃ ψ iff for all J ⊆ Σ such that I ⊆ J : if J � ϕ then J � ψ

Note that the satisfaction of a formula ϕ ⊃ ψ depends on the satisfaction of
ψ in all the interpretations J containing I that satisfy ϕ. If the formula does not
contain the connective ⊃, then the usual satisfaction relation in classical logic,
denoted |=, coincides with �.

Example 2. Let ϕ be the formula (in this case a goal) ((a ∧ c) → b) ⊃ (c ∧ b).
I � ϕ for I = {a, b, c}, I = {a, c} and I = {b, c}. I �� ϕ for I = {a, b}, I = {a},
I = {b}, I = {c} and I = ∅. Note, for instance, that {a, b} � (a ∧ c) → b and
{a, b} �� (c ∧ b).
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2.3 Persistency and Equivalence of Formulas

Mod(Σ) is partially ordered by the inclusion relation. The forcing relation does
not behave monotonically with respect to this relation.
For instance, a → b is forced in the interpretation I = ∅ but it is not forced
in J = {a}. We say that a formula is persistent whenever the forcing relation
behaves monotonically for it.

Definition 3. A formula ϕ is persistent when for each interpretation I, if I � ϕ
then J � ϕ for any interpretation J such that I ⊆ J .

Proposition 1. [2] Any v ∈ Σ is persistent. Any formula ϕ ⊃ ψ is persistent.
If ϕ and ψ are persistent then ϕ ∨ ψ and ϕ ∧ ψ are persistent.

Proof. For variables and formulas of the form ϕ ⊃ ψ the property is a trivial
consequence of the forcing relation (Definition 2). The other two cases are easily
proved, by induction, using the forcing relation definition for ∧ and ∨.

From this proposition we obtain the two following results. The second one is a
consequence of the former and can be proved by induction on definition of D.

Corollary 1. Any goal G is a persistent formula.

Corollary 2. For any clause D and interpretations I1, I2, if I1 � D and I2 � D
then I1 ∩ I2 � D.

Definition 4. Two formulas ϕ and ψ are (semantically) equivalent if both have
the same meaning in each I in Mod(Σ). In other words, if both are forced in the
same interpretations.

The properties given below will be useful in next sections.

Proposition 2. The formula True ⊃ G is equivalent to the formula G.

Proof. I � True ⊃ G ⇔ for all J ⊇ I, J � G ⇔ I � G. The last step uses the
persistency of G.

Proposition 3. The formula ((G1 → v)∧D) ⊃ G2 is equivalent to the formula
((D ⊃ G1)→ v) ⊃ (D ⊃ G2).

Proof. (⇒) If I �� ((D ⊃ G1) → v) ⊃ (D ⊃ G2) then there exists J such that
J ⊇ I , J � (D ⊃ G1)→ v and J �� D ⊃ G2. Moreover, there exists J1 such
that J1 ⊇ J , J1 � D and J1 �� G2. We distinguish two cases:
– If v ∈ J also v ∈ J1. Then J1 � (G1 → v) ∧D and J1 �� G2. Therefore

I �� ((G1 → v) ∧D) ⊃ G2

– If v �∈ J then J �� D ⊃ G1. That is, there exists J2 such that J2 ⊇ J ,
J2 � D and J2 �� G1. By using Corollaries 1 and 2, it is easy to prove
that the interpretation J3 = J1 ∩ J2 verifies: J3 � D, J3 �� G1 and
J3 �� G2. Then J3 � (G1 → v) ∧ D, J3 �� G2 and J3 ⊇ I. Therefore
I �� ((G1 → v) ∧D) ⊃ G2.
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(⇐) If I �� ((G1 → v) ∧ D) ⊃ G2 then there exists J such that J ⊇ I ,
J � (G1 → v), J � D and J �� G2. Again two cases:

– If v ∈ J then trivially J � (D ⊃ G1) → v and J �� D ⊃ G2. Therefore
I �� ((D ⊃ G1)→ v) ⊃ (D ⊃ G2).

– If v �∈ J then J �� G1. Since J � D then J �� D ⊃ G1 and from here
trivially J � (D ⊃ G1) → v. Also we have J �� D ⊃ G2. Therefore
I �� ((D ⊃ G1)→ v) ⊃ (D ⊃ G2).

3 Boolean Circuits

In this section we revise from [17] the notion of Boolean circuit.

3.1 The Syntax

A Boolean circuit over signature Σ is a graph C = (V,E), where the nodes V =
{1, 2, . . . , n} are called the gates of C. Graph C has a rather special structure.
First, there are no cycles in the graph, so we can assume that all edges are of
the form (i, j) where i < j. All nodes in the graph have indegree equal to 0, 1
or 2. Also, each gate i ∈ V has a sort s(i) associated with it, where s(i) ∈
{1, 0,∧,∨,¬} ∪Σ.

If s(i) ∈ {1, 0} ∪ Σ, then the indegree of i is 0, that is, i must have no
incoming edges. Gates with no incoming edges are called the inputs of C. If
s(i) = ¬ then i has indegree one. If s(i) ∈ {∧,∨}, then the indegree of i must be
two. Finally, node n (the largest numbered gate in the circuit, which necessarily
has no outgoing edges) is called the output gate of the circuit.

Circuits without gates of the sort ¬ are called monotone Boolean circuits.

3.2 The Semantics

Given a signature Σ, each I ⊆ Σ can be seen as a Σ-interpretation where, for
every v ∈ Σ, I(v) = True if and only if v ∈ I.

The semantics of a circuit C = (V,E) specifies a truth value I(C) for each
interpretation I ⊆ Σ. The truth value of gate i ∈ V , I(i), is defined by induction
as follows: If s(i) = 1 then I(i) = True and similarly if s(i) = 0 then I(i) =
False. If s(i) ∈ Σ then I(i) = I(s(i)). If s(i) = ¬ then there is a unique gate
j < i such that (j, i) ∈ E. By induction we know I(j), and then I(i) = True if
and only if I(j) = False. If s(i) = ∨ then there are two edges (j, i) and (j′, i)
entering i. I(i) is then True if and only if at least one of I(j), I(j′) is True. If
s(i) = ∧, then I(i) = True if and only if both I(j), I(j′) are True, where (j, i)
and (j′, i) are the incoming edges. Finally, the value of the circuit I(C) is I(n),
where n is the output gate.

Given a Boolean circuit C (over Σ), a Σ-interpretation I is a Σ-model of C,
denoted I |=Σ C or I |= C for short, if the value I(C) is True.
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Fig. 1.

3.3 Notation and Properties

Given two circuits C1 = (V1, E1) and C2 = (V2, E2) over the same signature Σ
and given v ∈ Σ, the new circuit C1|C2

v is obtained by changing C2 for v in C1.
That is, C1|C2

v is a pair (V,E) which is the result of combining C1 and C2 as
follows: V is an adequate enumeration for the union of V1 and V2. The edges
of the new circuit are the union of E1 and E2, according to such enumeration,
except those outgoing edges from v in E1 that now come out from the output
gate of C2. Figure 1 shows C1|C2

v from two given circuits C1 and C2.
Note that many circuits can compute the same Boolean function, but we are

interested in those circuits that have minimum size. Therefore we can assume
that the input gates only appear once in the Boolean circuits.

We use some properties on the circuits that are described in the next lemmas.
From now on, we consider Boolean circuits over signature Σ.

Lemma 1. Given two monotone Boolean circuits C1 and C2, I ⊆ Σ, and v ∈ Σ.
The following holds:

a. (Monotonicity) I |= C1 =⇒ for every J ⊇ I, it holds J |= C1

b. I |= C1 =⇒ I |= C1|C2∨v
v

Lemma 2. Given a Boolean circuit C, I ⊆ Σ, and v ∈ Σ. The following holds:

a. I ∪ {v} |= C ⇐⇒ I |= C|1v
b. I − {v} |= C ⇐⇒ I |= C|0v

4 A Translation from Goals to Monotone Circuits

We present here how to transform a goal into a monotone Boolean circuit by
means of the following function f . Its definition is given by induction on definition
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Fig. 2.

of G (on the three cases v, G1 ∧G2, and D ⊃ G), but splitting as well the third
case D ⊃ G depending on D.

f(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if G = v (1)

f(G1) ∧ f(G2) if G = G1 ∧G2 (2)

f(G2)|1v if G = v ⊃ G2 (3)

f(G2)|f(G1)∨v
v if G = (G1 → v) ⊃ G2 (4)

f(D ⊃ G2)|1v if G = (v ∧D) ⊃ G2 (5)

f(D ⊃ G2)|f(D⊃G1)∨v
v if G = ((G1 → v) ∧D) ⊃ G2 (6)

Figure 2 shows the transformation of the goal ((a ∧ c)→ b) ⊃ (c ∧ b) by f .
This transformation is correct, in the sense that both formulas are equivalent,

and efficient, since it obtains a circuit whose size is linear with respect to the goal.
In the next sections we prove, respectively, the correctness and the efficiency of
the transformation.

4.1 The Correctness of the Transformation

Theorem 1. Let G be a goal. G is equivalent to f(G), that is, for all I ⊆ Σ:

I � G⇐⇒ I |= f(G)

Proof. By structural induction on G. Case (1) is trivial and so is case (2) by
using induction on G1 and G2. Also note that (3) and (5) are respectively par-
ticular cases of (4) and (6) because v is equivalent to True→ v. Let us see cases
(4) and (6).

case (4) G = (G1 → v) ⊃ G2

(⇒) Let I � (G1 → v) ⊃ G2.
– If I � G2 then, by induction hypothesis on G2, I |= f(G2) and then,

by Lemma 1 b, I |= f(G2)|f(G1)∨v
v .
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– If I �� G2 then I � G1 , I �� v and I∪{v} � G2. By induction hypoth-
esis on G1 and G2: I |= f(G1) and I∪{v} |= f(G2). Now by Lemma 2
a, I |= f(G2)|1v and then also I |= f(G2)|f(G1)∨v

v since I |= f(G1) ∨ v.
(⇐) Let I �� (G1 → v) ⊃ G2. There exists J such that J ⊇ I, J � G1 → v

and J �� G2. By induction hypothesis on G2: J �|= f(G2).
– If v ∈ J then, by Lemma 2 a, J �|= f(G2)|1v . Then J �|= f(G2)|f(G1)∨v

v

since J |= f(G1) ∨ v. And, by monotonicity (Lemma 1 a), I �|=
f(G2)|f(G1)∨v

v .
– If v �∈ J then J �� G1. By induction hypothesis on G1, J �|= f(G1)

and then J �|= f(G1) ∨ v . On other hand, by Lemma 2 b, J �|=
f(G2)|0v. Then J �|= f(G2)|f(G1)∨v

v and as before, by monotonicity,
I �|= f(G2)|f(G1)∨v

v .
case (6) G = ((G1 → v) ∧D) ⊃ G2

By Proposition 3, G is equivalent to the formula

G′ = ((D ⊃ G1)→ v) ⊃ (D ⊃ G2)

which is a formula (G′1 → v) ⊃ G′2, in case (4), for G′1 = D ⊃ G1 and
G′2 = D ⊃ G2. Then for all I ⊆ Σ: I � G′ ⇔ I |= f(G′). But, by defini-
tion of f , f(G′) = f((G′1 → v) ⊃ G′2) = f(G′2)|f(G′

1)∨v
v = f(D ⊃ G2)|f(D⊃G1)∨v

v

= f(G). Then for all I ⊆ Σ: I � G⇔ I |= f(G).

4.2 The Complexity of the Transformation

Now we show that the size of any monotone Boolean circuit f(G) with respect
to the size of its original goal G is linear. The size of a Boolean circuit is defined
as the number of its gates. Respectively, the size of a goal is the number of its
connectives (∧,→,⊃) and variables.

Theorem 2. Let G be a goal. The size of f(G) is linear in the size of G.

Proof. The proof is by induction on the construction of f(G). The cases (1), (2),
(3), (4), and (5) are trivial. The case (4) can be seen in figure 3 which shows the
transformation of f(G2) when v is changed by f(G1) ∨ v.

We study the transformation in the case (6) and give a sketch of the proof. We
have the easiest nontrivial situation depending on D when the goal to transform
is the following:

G = ((G11 → v1) ∧ (G12 → v2)︸ ︷︷ ︸
D

) ⊃ G2

Applying Proposition 3,

((G11 → v1) ∧ (G12 → v2)) ⊃ G2︸ ︷︷ ︸
G

≡ ([(G12 → v2) ⊃ G11]︸ ︷︷ ︸
G′

→ v1) ⊃ [(G12 → v2) ⊃ G2]︸ ︷︷ ︸
G′′
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Fig. 3.

Fig. 4.

and using the case (4) of f ,

f(G) = f(G′′)|f(G′)∨v1
v1

= f((G12 → v2) ⊃ G2)|f(G′)∨v1
v1

= f(G2)|f(G12)∨v2
v2

|f(G′)∨v1
v1

= f(G2)|f(G12)∨v2
v2

|f((G12→v2)⊃G11)∨v1
v1

= f(G2)|f(G12)∨v2
v2

|f(G11)|f(G12)∨v2
v2

∨v1
v1

Let us see this circuit graphically. Figure 4 represents three Boolean circuits
f(G11), f(G12), and f(G2).

From these three Boolean circuits, the corresponding f(G) is shown in
figure 5. Since the substitution |f(G12)∨v2

v2 is shared by f(G2) and by f(G11),
the size of the circuit f(G) is linear with respect to the size of G.

This reasoning can be extended to any D in the goal ((G1 → v) ∧ D) ⊃
G2. The idea is that D always induces a substitution σD such that f(G) =
f(G2)σD|f(G1)σD∨v

v and σD is shared by f(G2) and by f(G1).
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Fig. 5.

5 Conclusions and Open Problems

We have presented an efficient transformation from goals in the propositional
Horn⊃ language into monotone Boolean circuits. Since the representation of
Boolean formulas by Boolean circuits is well established, our transformation
allows to work with Horn⊃ clauses in an easy and compact way.

On the other hand, in [6] is proved that learning the class of propositional
Horn⊃ clauses (denoted by DHorn⊃) is at least as difficult as learning Boolean
formulas, which is a hard problem in the usual learning models (see [1,9]). In the
same paper is left open whether both problems of learning are equivalent.

A corollary of our transformation is the fact that learning Boolean circuits
is at least as difficult as learning DHorn⊃. Therefore, the problem of learning
DHorn⊃ yields between learning Boolean formulas and Boolean circuits.

A way to prove the equivalence of the three learning problems consists of
showing that goals can be transformed into monotone Boolean formulas of poly-
nomial size. In fact, this is a stronger result, because it would mean that the open
question of whether Boolean circuits have equivalent polynomial size Boolean
formulas would be positively solved for the subclass of formulas DHorn⊃.
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Abstract. We show the following results regarding complete sets.
– NP-complete sets and PSPACE-complete sets are many-one autore-

ducible.
– Complete sets of any level of PH, MODPH, or the Boolean hierarchy

over NP are many-one autoreducible.
– EXP-complete sets are many-one mitotic.
– NEXP-complete sets are weakly many-one mitotic.
– PSPACE-complete sets are weakly Turing-mitotic.
– If one-way permutations and quick pseudo-random generators exist,

then NP-complete languages are m-mitotic.
– If there is a tally language in NP ∩ coNP−P, then, for every ε > 0,

NP-complete sets are not 2n(1+ε)-immune.
These results solve several of the open questions raised by Buhrman

and Torenvliet in their 1994 survey paper on the structure of complete
sets.

1 Introduction

We solve several open questions identified by Buhrman and Torenvliet in their
1994 survey paper on the structure of complete sets [12]. It is important to study
the computational structure of complete sets, because they, by reductions of all
the sets in the class to the complete sets, represent all of the structure that a class
might have. For this reason, complete sets might have simpler computational
structure than some other sets in the class. Here we focus attention primarily on
autoreducibility, mitoticity, and immunity.
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Trakhtenbrot [26] introduced the notion of autoreducibility in a recursion
theoretic setting. A set A is autoreducible if there is an oracle Turing machine
M such that A = L(MA) and M on input x never queries x. Ladner [21] showed
that there exist Turing-complete recursively enumerable sets that are not au-
toreducible. Ambos-Spies [2] introduced the polynomial-time variant of autore-
ducibility, where we require the oracle Turing machine to run in polynomial time.
Yao [30] introduced the notion of coherence, which coincides with probabilistic
polynomial-time autoreducibility. In this paper, we assume that all reductions
are polynomial-time computable. In particular, we write“autoreducible”to mean
“polynomial-time autoreducible.”

The question of whether complete sets for various classes are autoreducible
has been studied extensively [30,7,10], and is currently an area of active re-
search [15]. Beigel and Feigenbaum [7] showed that Turing complete sets for the
classes that form the polynomial-time hierarchy, ΣP

i , Π
P
i , and ΔP

i , are Turing
autoreducible. Thus, all Turing complete sets for NP are Turing autoreducible.
Buhrman et al. [10] showed that Turing complete sets for EXP and ΔEXP

i are
autoreducible, whereas there exists a Turing complete set for EESPACE that
is not Turing auto-reducible. They showed that answering questions about au-
toreducibility of intermediate classes results in interesting separation results.
Regarding NP, Buhrman et al. [10] showed that all truth-table complete sets for
NP are probabilistic truth-table autoreducible. Thus, all NP-complete sets are
probabilistic truth-table autoreducible.

Buhrman and Torenvliet [12] asked whether all NP-complete sets are many-
one autoreducible and whether all PSPACE-complete sets are many-one au-
toreducible. We resolve these questions positively: all NP-complete sets and
PSPACE-complete sets are (unconditionally) many-one autoreducible. We gen-
eralize these two results to show that for each class in MODPH [18] (the hi-
erarchy constructed by applying to P a constant number of operators chosen
from {∃·, ∀·}∪{MODk·, coMODk· | k ≥ 2}), all of its nontrivial m-complete sets
are m-autoreducible. We obtain as a corollary that for each class C chosen from
{NP,PSPACE}∪MODPH it holds that no m-complete sets for C are 2n-generic.

Autoreducible sets can be thought of as sets having some redundant informa-
tion. For example, if A is m-autoreducible by the reduction f , then x and f(x)
both contain the same information concerning whether x belongs to A. How
much redundancy is there in complete sets? Informally, an infinite set is mitotic
if it can be partitioned into two equivalent parts. Thus, both parts contain the
same information as the original set. Ladner [21] introduced and studied mitotic-
ity of recursively enumerable sets. Ambos-Spies [2] formulated two notions in the
polynomial time setting, mitoticity and weak mitoticity. Also, he showed that
every mitotic set is autoreducible. Here we settle some questions about mitoticity
that Buhrman and Torenvliet raised in their 1994 survey paper. First, Buhrman,
Hoene, Torenvliet [11] proved that all EXP-complete sets are weakly many-one
mitotic, and showed a partial result concerning mitoticity of NEXP-complete
sets. Here we strengthen these two results. We prove that all EXP-complete sets
are many-one mitotic. This result was also obtained independently by Kurtz [15].



Autoreducibility, Mitoticity, and Immunity 389

We also prove that all NEXP complete sets are weakly many-one mitotic. In ad-
dition, we show that PSPACE-complete sets are weakly Turing mitotic. Also, we
show that if one-way permutations and quick pseudo-random generators exist,
then NP-complete sets are many-one mitotic.

In Section 5, we study the question of whether NP-complete sets have easy
subsets. Berman [9] showed that EXP-complete sets are not P-immune, and
Tran [27] showed that NEXP-complete sets are not P-immune. However, we
do not have such unconditional results for NP-complete sets. Glaßer et al. [17]
showed that if one-way permutations exist, then NP-complete sets are not 2nε

-
immune. Here we provide another partial result in this direction. In Section 5
we show that if there exists a tally language in NP ∩ coNP − P, then every
NP-complete set includes an infinite subset that is recognizable in time 2n(1+ε).

We conclude this paper with results on a few additional properties of com-
plete sets. In Section 6 we show, under a reasonable hypothesis about the
complexity class UP, that every NP-complete set is exponentially-honest com-
plete. Exponentially-honest reductions were defined and studied by Ganesan and
Homer [16]. Section 7 studies robustness of complete sets. We prove that if a set
A is Turing complete for NP and S is a log-dense set, then A−S remains Turing
complete for NP. This result is easier to prove than Buhrman and Torenvliet’s
[14] result about EXP.

2 Preliminaries

We use standard notation and assume familiarity with standard reductions.
Words are considered in lexicographic order. All used reductions are polynomial-
time computable.

Definition 1 ([2]). A set A is polynomially T-autoreducible (T-autoreducible,
for short) if there exists a polynomial-time-bounded oracle Turing machine M
such that A = L(MA) and for all x, M on input x never queries x. A set
A is polynomially m-autoreducible (m-autoreducible, for short) if A≤p

mA via a
reduction function f such that for all x, f(x) �= x.

Definition 2 ([2]). A recursive set A is polynomial-time m-mitotic (T-mitotic)
(m-mitotic and T-mitotic, for short) if there exists a set B ∈ P such that
A ≡p

m(T ) A ∩ B ≡p
m(T ) A ∩ B. A recursive set A is polynomial-time weakly m-

mitotic (T-mitotic) (weakly m-mitotic and weakly T-mitotic, for short) if there
exist disjoint sets A0 and A1 such that A0∪A1 = A, and A ≡p

m(T ) A0 ≡p
m(T ) A1.

In general, for a reducibility type r, r-autoreducible sets are sets that are autore-
ducible with respect to ≤p

r-reductions. The same convention is used for mitotic
sets.

A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n))
almost everywhere; that is, every Turing machine M that accepts L runs in time
greater than T (|x|), for all but finitely many words x. A language L is immune
to a complexity class C, or C-immune, if L is infinite and no infinite subset of
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L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-
immune, if both L and L are C-immune. Balcázar and Schöning [6] proved that
for every time-constructible function T , L is DTIME(T (n))-complex if and only
if L is bi-immune to DTIME(T (n)).

3 Autoreducibility

Since EXP-complete sets are complete with respect to length-increasing reduc-
tions [9], they are m-autoreducible. Ganesan and Homer [16] showed that NEXP-
complete sets are complete under 1-1 reductions. This implies that all NEXP-
complete sets are also m-autoreducible. To see this, consider a 1-1 reduction
from 0L ∪ 1L to L, where L is the given NEXP-complete set. These techniques
cannot be applied to NP-complete sets, as we do not know any unconditional re-
sult on the degree structure of NP-complete sets. Some partial results are known
for NP-complete sets. Beigel and Feigenbaum [7] showed that Turing complete
sets for NP are T -autoreducible. Buhrman et al. [10] showed that all truth-table
complete sets for NP are probabilistic tt-autoreducible. It has not been known
whether NP-complete sets are m-autoreducible. Buhrman and Torenvliet raised
this question in their survey papers [12,13]. Below, we resolve this question.

Note that neither singletons nor their complements can be m-autoreducible.
Therefore, in connection with m-autoreducibility, a set L is called nontrivial if
|L| > 1 and |L| > 1.

The following theorem is our first main result, which shows that every non-
trivial NP-complete set is m-autoreducible. The proof used the left-set technique
of Ogihara and Watanabe [22].

Theorem 1. All nontrivial NP-complete sets are m-autoreducible.1

Proof. Let L be NP-complete and let M be a nondeterministic machine that
accepts L. For a suitable polynomial p we can assume that on input x, all com-
putation paths of M have length p(|x|). Since L is nontrivial, there exist different
words y1, y2 ∈ L and y1, y2 ∈ L. By way of the left set technique [22], let

Left(L) df= {〈x, u〉 ∣∣ |u| = p(|x|) and ∃v, |v| = |u|, such that
u ≤ v and M(x) accepts along path v}.

Left(L) ∈ NP and L is NP-complete. Let f ∈ PF reduce Left(L) to L. The
algorithm below defines function g which is an m-autoreduction for L. Let x be
an input. Define n

df= |x| and m
df= p(|x|).

1 if f(〈x, 0m〉) �= x then output f(〈x, 0m〉)
2 if f(〈x, 1m〉) = x then
3 if M(x) accepts along 1m then
4 output a string from {y1, y2} − {x}
5 else

1 Note that all NP-complete sets are nontrivial, unless P = NP.
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6 output a string from {y1, y2} − {x}
7 endif
8 endif
9 // here f(〈x, 0m〉) = x �= f(〈x, 1m〉)
10 determine z of length m such that f(〈x, z〉) = x �= f(〈x, z+ 1〉)
11 if M(x) accepts along z then output a string from {y1, y2} − {x}
12 else output f(〈x, z+ 1〉)

Note that step 10 can be achieved by simple binary search: Start with z1 :=
0m and z2 := 1m. Let z′ be the middle element between z1 and z2. If f(z′) = x
then z1 := z′ else z2 := z′. Again, choose the middle element between z1 and
z2, and so on. This shows g ∈ PF. Clearly, g(x) �= x, so it remains to show
L≤p

mL via g.
If the algorithm stops in step 1, then

x ∈ L⇔ 〈x, 0m〉 ∈ Left(L)⇔ g(x) = f(〈x, 0m〉) ∈ L.

If the algorithm stops in step 4 or step 6, then f(〈x, 0m〉) = f(〈x, 1m〉). Hence

x ∈ L⇔ 〈x, 1m〉 ∈ Left(L)⇔M(x) accepts along 1m ⇔ g(x) ∈ L.

Assume we reach step 9. There it holds that f(〈x, 0m〉) = x �= f(〈x, 1m〉). If the
algorithm stops in step 11, then x ∈ L and g(x) ∈ L. Assume we stop in step 12.
So M(x) does not accept along z.

x ∈ L⇔ f(〈x, 0m〉) = f(〈x, z〉) ∈ L⇔ g(x) = f(〈x, z + 1〉) ∈ L.

�

Using the same technique we obtain the following results:

Corollary 1. For every k ≥ 1, all nontrivial ≤p
k-dtt -complete sets for NP are

≤p
k-dtt -autoreducible.

Corollary 2. All nontrivial ≤p
dtt-complete sets for NP are ≤p

dtt-autoreducible.

Corollary 3 below is the analog of Corollaries 1 and 2 for ≤p
1-tt-reductions.

It is not known whether the analog holds for ≤p
2-tt-reductions, even for ≤p

2-ctt-
reductions.

Corollary 3. All nontrivial ≤p
1-tt-complete sets for NP are ≤p

1-tt-autoreducible.

By extending the left-set-based proof of Theorem 1, we can show that the
same result holds for PSPACE.

Theorem 2. All nontrivial m-complete sets for PSPACE are m-autoreducible.

We generalize the above two results using the concept of polynomial-time bit-
reductions [18]. We show that every class that is polynomial-time bit-reducible
to a regular language has the property that all of its nontrivial m-complete sets
are m-autoreducible. As a corollary to this, we show that for every class in the
MODPH hierarchy [18], all of its nontrivial m-complete sets are m-autoreducible.
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Definition 3. [18] A language A is polynomial-time bit-reducible to a language
B if there exists a pair of polynomial-time computable functions, (f, g), f : Σ∗×
N+ → Σ, g : Σ∗ → N, such that for all x, x ∈ A⇔ f(x, 1) · · · f(x, g(x)) ∈ B.

Theorem 3. Let B �∈ {∅, Σ∗} be a regular language recognized by a finite au-
tomaton M = (Q, {0, 1}, δ, q0, qf ). Let C be the polynomial-time bit-reduction
closure of B. Then each nontrivial m-complete set for C is m-autoreducible.2

Definition 4. [25,29] Let C be a language class. Define ∃ · C (and analogously
∀ · C) to be the set of all languages L for which there exist a polynomial p and
an A ∈ C such that for all x,

x ∈ L⇔ (∃y, |y| = p(|x|))[〈x, y〉 ∈ A].

Definition 5. [8,24] Let k ≥ 2 be an integer. Define MODk · C to be the set of
all languages L for which there exist a polynomial p and a language A ∈ C such
that for all x,

x ∈ L⇔ ‖{y | |y| = p(|x|) ∧ 〈x, y〉 ∈ A}‖ �≡ 0 (mod k).

Definition 6. [18] MODPH is the hierarchy consisting of the following classes:

– P belongs to MODPH.
– If C is a class belonging to MODPH then ∃ · C and ∀ · C belong to MODPH.
– For each integer k ≥ 2, if C is a class belonging to MODPH then MODk · C

and coMODk · C belong to MODPH.

Proposition 1. [18] Each class in MODPH is the polynomial-time bit-reduction
closure of some regular language.

Combining Theorem 3 with the above proposition, we obtain the following
result.

Theorem 4. For every class in MODPH it holds that all of its nontrivial m-
complete sets are m-autoreducible.

Corollary 4. Every nontrivial set that is m-complete for one of the following
classes is m-autoreducible.

– the levels ΣP
k , ΠP

k , and ΔP
k of the polynomial-time hierarchy

– 1NP 3

– the levels of the Boolean hierarchy over NP

2 In terms of leaf languages, this theorem reads as follows: If B is a nontrivial regular
language, then m-complete sets for Leafp

b(B) are m-autoreducible. (The latter denotes
the balanced leaf-language class defined by B [18,28].)

3 The set of languages accepted by nondeterministic polynomial-time-bounded Turing
machines that accept an input if and only if there exists exactly one accepting path.
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Now we obtain corollaries about the genericity of complete sets. The notion
of resource bounded genericity was defined by Ambos-Spies, Fleischhack, and
Huwig [3]. We use the following equivalent definition [5,23].

Definition 7. Let t be a polynomial. A set L is t(n)-generic if for every oracle
Turing machine M , if ML|x(x) = L(x) for all x, then the running time of M is
at least t(2|x|) for all but finitely many x. Recall that L|x = {y ∈ L

∣∣ y < x}.
We obtain the following corollary regarding genericity of NP-complete sets.

Earlier, it was known that there exists a k > 0, such that NP-complete sets are
not O(nk)-generic. This follows from the work on small span theorems [20,4].
Below we improve this.

Corollary 5. NP-complete sets are not 2n-generic.

Corollary 6. Let C be either PSPACE or a class belonging to MODPH. Then
no m-complete sets for C are 2n-generic.

3.1 Relativization

We show relativized separation results in this section.

Theorem 5. For any k ≥ 2, there is an oracle A such that relative to A there
is a set B that is ≤p

k-dtt complete for NP but not ≤p
(k−1)-T autoreducible.

This result suggests that it may not be possible to improve Corollary 1. The
theorem immediately yields the following result, which is of interest on its own.

Corollary 7. There is an oracle A such that relative to A there exists a ≤p
2-dtt -

complete set for NP that is not m-mitotic.

Corollary 7 gives a relativized, partial negative answer to an open ques-
tion of Buhrman and Torenvliet [12] as to whether all T -complete sets for NP
are (weakly) m(T )-mitotic. It remains open whether there is an oracle rela-
tive to which not all NP-complete sets are m-mitotic. Another related question
raised by Buhrman and Torenvliet is whether all tt-complete sets for NP are
tt-autoreducible. The following theorem gives a partial answer to this question
in a relativized world.

Theorem 6. For each k ≥ 2, there is an oracle A relative to which a set exists
that is ≤p

dtt -complete for NP but not ≤p
btt-autoreducible.

4 Mitoticity

Buhrman, Hoene, and Torenvliet [11] showed that all EXP-complete sets are
weakly m-mitotic. We improve this to show that all EXP-complete sets are m-
mitotic. We note here that Kurtz independently obtained the same result, which
is reported in a recent survey by Buhrman and Torenvliet [15].
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Theorem 7. All EXP-complete sets are m-mitotic.

The proof of the above theorem, which appers in the full paper version, actu-
ally shows that for any class C, if L is complete with length-increasing reductions,
then L is m-mitotic. Agrawal [1] shows that if one-way permutations and quick
pseudo-random generators exist, then every NP-complete language is complete
with respect to length increasing reductions. Thus, we have:

Corollary 8. If one-way permutations and quick pseudo-random generators ex-
ist, then NP-complete languages are m-mitotic.

If L is NP-complete with respect to honest many-one reductions, then L is
complete with respect to length increasing reductions. Thus, we have:

Corollary 9. If L is NP-complete with respect to honest reductions, then L is
m-mitotic.

Buhrman, Hoene, and Torenvliet [11] showed that every NEXP-complete
set can be partitioned into infinitely many sets such that each one of them is
NEXP-complete. They asked whether this can be improved to show that every
NEXP-complete set is weakly m-mitotic. Theorem 9 below resolves this question
affirmatively. The proof uses the following result by Ganesan and Homer [16],
which shows that all NE-complete sets are complete with respect to 1-1 reduc-
tions. It is easy to see that their proof works for NEXP-complete sets too.

Theorem 8 ([16]). All ≤p
m-complete sets for NEXP are complete under 1-1

reductions.

Now we are ready to prove the affirmative resolution.

Theorem 9. All ≤p
m -complete sets for NEXP are weakly m-mitotic.

Proof. Let K be the standard NEXP-complete set. Let L be any given NEXP-
complete set. We show that L is weakly m-mitotic.

K ′ df= 0K ∪ 1K

is NEXP-complete. K ′ reduces to L via some f ∈ PF. L reduces to K (really
K, not K ′) via some g ∈ PF. Choose k such that f and g can be computed in
time O(nk). By Theorem 8, we can assume f and g to be 1-1.

L0
df= {y ∣∣ ∃x, |x| ≤ |y|k, f(0x) = y}

L1
df= {y ∣∣ ∃x, |x| ≤ |y|k, f(1x) = y}

Observe that L0, L1 ∈ EXP. Define the following function:

f0(x) df=

⎧⎨⎩ f(0x) : if |f(0x)|k ≥ |x|,
f0(g(f(0x))) : otherwise.
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Note that if |f(0x)|k < |x| then |g(f(0x))| ≤ |f(0x)|k < |x|. So, for some y,
|y| < |x|, f0(x) = f0(y). So, the recursion terminates. Thus, f0 ∈ PF. Note that
for every x there exists some y such that f0(x) = f(0y) and |f(0y)|k ≥ |y|. This
implies that for all x, f0(x) ∈ L0.

Similarly define f1 as

f1(x) df=

⎧⎨⎩ f(1x) : if |f(1x)|k ≥ |x|,
f1(g(f(1x))) : otherwise.

By following an argument similar to the one above we can show that f1 ∈ PF
and that f1(Σ∗) ⊆ L1.

We first show K≤p
mL via reduction f0. This is done by induction on the

number of recursion steps r in the definition of f0(x). If r = 0, then f0(x) = f(0x)
and therefore,

x ∈ K ⇔ 0x ∈ 0K ⇔ 0x ∈ K ′ ⇔ f0(x) = f(0x) ∈ L.

If r ≥ 1 then f0(x) = f0(g(f(0x))). Let y = g(f(0x)). By our induction hypoth-
esis, y ∈ K ⇔ f0(y) ∈ L. So we obtain

x ∈ K ⇔ 0x ∈ 0K ⇔ 0x ∈ K ′ ⇔ f(0x) ∈ L

⇔ y = g(f(0x)) ∈ K ⇔ f0(y) = f0(g(f(0x))) = f0(x) ∈ L.

Thus, K≤p
mL via f0. Analogously we show K≤p

mL via f1.
Since K≤p

mL via f0 and f0(Σ∗) ⊆ L0 we have K≤p
m(L ∩ L0) via f0. Since

f is 1-1, L0 and L1 are disjoint. Since f1(Σ∗) ⊆ L1, we have f1(Σ∗) ⊆ L0.
Combining this with K≤p

mL via f1, we have K≤p
m(L ∩ L0) via f1. Therefore

(L∩L0) and (L∩L0) are each NEXP-hard. Both sets are NEXP-complete since
L0 ∈ EXP and L ∈ NEXP. �

Note that the above proof actually shows that each NEXP-complete set can
be split into m-equivalent NEXP-complete m-mitotic parts with a set in EXP.

The following theorem settles another question raised by Buhrman and
Torenvliet [12].

Theorem 10. Every ≤p
m-complete set for PSPACE is weakly T -mitotic.

5 Immunity

In Glaßer et al. [17], the authors proved immunity results for NP-complete sets
under the assumption that certain average-case hardness conditions are true. For
example, they show that if one-way permutations exist, then NP-complete sets
are not 2nε

-immune. Here we obtain a non-immunity result for NP-complete sets
under the assumption that the following worst-case hardness hypothesis holds.
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Hypothesis T: There is an NP machine N that accepts 0∗ and no P-machine
can compute its accepting computations. This means that for every polynomial-
time machine M there exist infinitely many n such that M(0n) is not an accept-
ing computation of N(0n).

Though the hypothesis looks verbose, we note that it is implied by a simply
stated and believable hypothesis.

Observation 1. If there is a tally language in NP∩coNP−P, then Hypothesis T
is true.

Theorem 11. If Hypothesis T holds, then, for every ε > 0, NP-complete lan-
guages are not 2n(1+ε)-immune.

Corollary 10. If there is a tally language in NP ∩ coNP − P, then, for every
ε > 0, NP-complete languages are not 2n(1+ε)-immune.

Next we consider the possibility of obtaining an unconditional result regard-
ing non-immunity of NP-complete languages. We show that for certain type of
NP-complete languages we get an unconditional result.

Definition 8. A language L does not have superpolynomial gaps, if there exists
k > 0 such that for all but finitely many n, there exists a string x in L such that
n ≤ |x| ≤ nk.

We show that NP-complete languages that have no superpolynomial gaps are
not immune.

Theorem 12. If L is an NP-complete language that has no superpolynomial
gaps, then for every ε > 0, L is not 2n(1+ε)-immune.

The above theorem prompts the following question: Are there NP-complete
languages with superpolynomial gaps? We have the following result. Given two
complexity classes A and B, we say A ⊆ io-B, if for every language A ∈ A, there
exists a language B ∈ B such that for infinitely many n, An = Bn.

Theorem 13. If NP has a complete language with superpolynomial gaps, then
for every ε > 0, NP ⊆ io-DTIME(2nε

).

Combining Theorems 12 and 13 we have the following corollary.

Corollary 11. If for some δ > 0, NP �⊆ io-DTIME(2nδ

), then for every ε > 0,
no NP-complete language is 2n(1+ε)-immune.

6 Exponentially Honest Reductions

In the previous section we showed that if NP ∩ coNP − P has a tally language,
then there exist reductions from 0∗ to NP-complete sets that are infinitely often
exponentially honest. In this section, we consider a stronger hypothesis and show
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that if this hypothesis holds, then every NP-complete set is complete with respect
to exponentially honest reductions. We consider the following hypothesis.

UP-machine Hypothesis: For some ε > 0, there is a UP-machine M that
accepts 0∗ such that no 2nε

-time-bounded machine can compute infinitely many
accepting computations of M .

We first make the following observation.

Observation 2. If the UP-machine hypothesis holds, then, there exists a UP-
machine M that accepts 0∗ such that no 22n-time-bounded machine can compute
infinitely many accepting computations of M .

Theorem 14. Assume the UP-machine hypothesis holds. Let L be any NP-
complete language. For every S ∈ NP and every k > 0, there is a many-one
reduction f from S to L such that for every x, |f(x)| > k log |x|.

7 Robustness

Recently Buhrman and Torenvliet [14] proved that Turing-complete sets for EXP
are robust against log-dense sets in P. Using similar ideas, we can prove the same
for NP. The proof is easier though, due to the fact that search reduces to decision
for all Turing-complete sets for NP [19, Corollary 7.3, p.152]. A set S is log-dense
if there is a constant c > 0 such that for all n, ‖S≤n‖ ≤ c logn.

Theorem 15. If a set A is Turing-complete for NP and S is a log-dense set in
P, then A− S is Turing-complete for NP.
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6. J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical
Systems Theory, 18(1):1–18, 1985.

7. R. Beigel and J. Feigenbaum. On being incoherent without being very hard. Com-
putational Complexity, 2:1–17, 1992.

8. R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods, and fewness.
Theoretical Computer Science, 103:3–23, 1992.



398 C. Glaßer et al.

9. L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell
University, Ithaca, NY, 1977.

10. H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using autore-
ducibility to separate complexity classes. SIAM Journal on Computing, 29(5):1497–
1520, 2000.

11. H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure of
complete sets. SIAM Journal on Computing, 27:637–653, 1998.

12. H. Buhrman and L. Torenvliet. On the structure of complete sets. In Proceedings
9th Structure in Complexity Theory, pages 118–133, 1994.

13. H. Buhrman and L. Torenvliet. Complete sets and structure in subrecursive classes.
In Proceedings of Logic Colloquium ’96, pages 45–78. Springer-Verlag, 1998.

14. H. Buhrman and L. Torenvliet. Separating complexity classes using structural
properties. In Proceedings of the 19th IEEE Conference on Computational Com-
plexity, pages 130–138, 2004.

15. H. Buhrman and L. Torenvliet. A Post’s program for complexity theory. Bulleting
of the EATCS, 85:41–51, 2005.

16. K. Ganesan and S. Homer. Complete problems and strong polynomial reducibili-
ties. SIAM Journal on Computing, 21:733–742, 1992.

17. C. Glaßer, A. Pavan, A. Selman, and S. Sengupta. Properties of NP-complete sets.
In Proceedings of the 19th Annual IEEE Conference on Computational Complexity,
pages 184–197, 2004.

18. U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner.
On the power of polynomial time bit-reductions. In Proceedings 8th Structure in
Complexity Theory, pages 200–207, 1993.

19. S. Homer and A. Selman. Computability and Complexity Theory. Texts in Com-
puter Science. Springer, New York, 2001.

20. D. W. Juedes and J. H. Lutz. The complexity and distribution of hard problems.
SIAM Joutnal on Computing, 24:279–295, 1995.

21. R. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

22. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibil-
ity of NP sets to sparse sets. SIAM Journal of Computing, 20(3):471–483, 1991.

23. A. Pavan and A. Selman. Separation of NP-completeness notions. SIAM Journal
on Computing, 31(3):906–918, 2002.
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Abstract. We prove that every disjoint NP-pair is polynomial-time,
many-one equivalent to the canonical disjoint NP-pair of some propo-
sitional proof system. Therefore, the degree structure of the class of
disjoint NP-pairs and of all canonical pairs is identical. Secondly, we
show that this degree structure is not superficial: Assuming there exist
P-inseparable disjoint pairs, there exist intermediate disjoint NP-pairs.
That is, if (A,B) is a P-separable disjoint NP-pair and (C, D) is a P-
inseparable disjoint NP-pair, then there exist P-inseparable, incompara-
ble NP-pairs (E, F ) and (G, H) whose degrees lie strictly between (A, B)
and (C, D). Furthermore, between any two disjoint NP-pairs that are
comparable and inequivalent, such a diamond exists.

1 Introduction

One reason it is important to study the class DisjNP of all disjoint NP-pairs is
its relationship to the theory of proof systems for propositional calculus. Specif-
ically, Razborov [Raz94] defined the canonical disjoint NP-pair, (SAT∗,REFf ),
for every propositional proof system f , and he showed that if there exists an
optimal propositional proof system f , then its canonical pair is a complete pair
for DisjNP. (We will explain this notation later.) In the same paper he asked for
evidence of existence of a propositional proof system whose canonical disjoint
NP-pair is not separable by a set belonging to the complexity class P, and, relat-
edly, he asked whether it is possible to reduce to canonical pairs (SAT∗,REFf ),
another disjoint NP-pair that we believe to be hard (i.e., not separable by a set
in P). We answer these questions in the strongest possible way. We prove that
every disjoint NP-pair is polynomial-time, many-one equivalent to the canoni-
cal disjoint NP-pair of some propositional proof system. It follows immediately
that every disjoint NP-pair we believe to be P-inseparable (cannot be separated
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by a set in P) is many-one equivalent to some pair (SAT∗,REFf ) that is also
P-inseparable.

The interest in knowing whether a canonical pair of a propositional proof
system f is P-separable or P-inseparable arises from the following considerations.
First, if the canonical pair is P-inseparable, then f is not trivial (i.e., there exist
infinitely many tautologies that have subexponential proofs in f). In other words,
for infinitely many inputs, the proof system f beats the brute force algorithm
in proving tautologies. Second, as shown by Razborov [Raz94], if the canonical
pair is P-separable, then (under the assumption P �= NP) it follows that f is not
polynomial bounded.

This paper does not address the question of whether P-inseparable disjoint
NP-pairs exist, but we mention that there is evidence for their existence, for
example, if P �= UP or if P �= NP ∩ coNP. On the other hand, the hypothesis
that P �= NP does not seem to be sufficient to obtain P-inseparable disjoint NP-
pairs. Homer and Selman [HS92] constructed an oracle relative to which P �= NP
and all disjoint NP-pairs are P-separable.

It is easy to see that if proof system f simulates proof system g, then the pair
(SAT∗,REFg) is many-one reducible to the pair (SAT∗,REFf ). A proof system
is optimal if it simulates every other propositional proof system. Although it
is an open question whether optimal proof systems exist, as we stated above,
Razborov showed that if there exists an optimal propositional proof system f ,
then its canonical pair is a complete pair for DisjNP. We obtain this result of
Razborov as a corollary of our result above.

Glaßer et al. [GSSZ04] constructed an oracle relative to which the converse
of Razborov’s result does not hold; i.e., relative to this oracle, using our current
result, there is a propositional proof system f whose canonical pair is complete,
but f is not optimal. Hence, there is a propositional proof system g such that
the canonical pair of g many-one reduces to the canonical pair of f , but f does
not simulate g. Our theorem presents a tight connection between disjoint NP-
pairs and propositional proof systems. Nevertheless, relative to this oracle, the
relationship is not as tight as we might hope for.

In light of our result above, by examining the degree structure of the class
DisjNP, we can understand the degree structure of canonical pairs (SAT∗,
REFf ). Thus, we should try to understand the degree structure of DisjNP.
We prove that between any two comparable and inequivalent disjoint NP-pairs
(A,B) and (C,D) there exist P-inseparable, incomparable NP-pairs (E,F ) and
(G,H) whose degrees lie strictly between (A,B) and (C,D). Our result is an
analogue of Ladner’s result for NP [Lad75], and our proof is based on Schöning’s
formulation [Sch82]. Thus, assuming that P-inseparable disjoint NP-pairs exist,
the class DisjNP has a rich, dense, degree structure—and each of these degrees
contains a canonical pair.

2 Preliminaries

A disjoint NP-pair is a pair (A,B) of nonempty sets A and B such that A,B ∈
NP and A ∩B = ∅. Let DisjNP denote the class of all disjoint NP-pairs.
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Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S
and B ⊆ S; we say that S separates (A,B). Let Sep(A,B) denote the class
of all separators of (A,B). For disjoint NP-pairs (A,B), the fundamental ques-
tion is whether Sep(A,B) contains a set belonging to P. In that case the pair
is P-separable; otherwise, the pair is P-inseparable. The following proposition
summarizes known results about P-separability.

Proposition 1 ([GS88]).

1. P �= NP ∩ coNP implies DisjNP contains P-inseparable pairs.
2. P �= UP implies DisjNP contains P-inseparable pairs.
3. If DisjNP contains P-inseparable pairs, then DisjNP contains P-inseparable

pairs of NP-complete sets.

While it is probably the case that DisjNP contains P-inseparable pairs, there
is an oracle relative to which P �= NP and P-inseparable pairs do not exist [HS92].
So P �= NP probably is not a sufficiently strong hypothesis to show existence of
P-inseparable pairs in DisjNP.

We review the natural notions of reducibilities between disjoint pairs. The
original notions are nonuniform [GS88]. Here we state only the known equivalent
uniform versions [GS88, GSSZ04].

Definition 2. Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D),(A,B)≤pp
m (C,D),

if there exists a polynomial-time computable function f such that f(A) ⊆ C
and f(B) ⊆ D.

2. (A,B) is Turing reducible in polynomial-time to (C,D), (A,B)≤pp
T (C,D), if

there exists a polynomial-time oracle Turing machine M such that for every
separator S of (C,D), L(M,S) is a separator of (A,B).

If (A,B)≤pp
m (C,D) and (C,D)≤pp

m (A,B), then we write (A,B)≡pp
m (C,D); if

(A,B)≤pp
T (C,D) and (C,D)≤pp

T (A,B), then we write (A,B)≡pp
T (C,D). Since

we are interested only in comparing disjoint NP-pairs, it is convenient for us to
define the Turing-degree of a pair (A,B) ∈ DisjNP as follows:

d(A,B) = {(C,D) ∈ DisjNP | (A,B)≡pp
T (C,D)}.

Let TAUT denote the set of tautologies. Cook and Reckhow [CR79] defined
a propositional proof system (proof system for short) to be a function f : Σ∗ →
TAUT such that f is onto and f ∈ PF, where PF denotes the class of polynomial-
time computable functions. The canonical pair of f [Raz94, Pud01] is the disjoint
NP-pair (SAT∗,REFf ) where

SAT∗ = {(x, 0n)
∣∣x ∈ SAT} and

REFf = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Let f and f ′ be two propositional proof systems. We say that f simulates
f ′ if there is a polynomial p and a function h : Σ∗ → Σ∗ such that for every
w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). A proof system is optimal if it
simulates every other proof system.
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3 Canonical Pairs of Proof Systems

Now we state the main result of this paper. We show that for every disjoint NP-
pair (A,B) there exists a proof system f such that (SAT∗,REFf )≡pp

m (A,B).
This shows that disjoint NP-pairs and canonical pairs of proof systems have
identical degree structures.

Theorem 3. For every disjoint NP-pair (A,B) there exists a proof system f
such that (SAT∗,REFf )≡pp

m (A,B).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible
pairing function such that |〈v, w〉| = 2|vw|. Choose g that is polynomial-time
computable and polynomial-time invertible such that A≤p

mSAT via g. Let M be
an NP-machine that accepts B in time p. Define the following function f .

f(z) df=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
¬g(x) : if z = 〈x,w〉, |w| = p(|x|), M(x) accepts along path w

x : if z = 〈x,w〉, |w| �= p(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise

The function is polynomial-time computable, since in the second case, |z| is
large enough so that x ∈ TAUT can be decided in deterministic time O(|z|2).
In the first case of f ’s definition, x ∈ B and so g(x) /∈ SAT. It follows that
f : Σ∗ → TAUT. The mapping is onto, since for every tautology y,

f(〈y, 02|y|〉) = y.

Therefore, f is a propositional proof system.

Claim 4. (SAT∗,REFf )≤pp
m (A,B).

Choose elements a ∈ A and b ∈ B. The reduction function h is as follows.

1 input (y, 0n)
2 if n ≥ 2|y| then
3 if y ∈ SAT then output a else output b
4 endif
5 if g−1(y) exists then output g−1(y)
6 output a

The exhaustive search in line 3 is possible in quadratic time in n. So h ∈ PF.
Assume (y, 0n) ∈ SAT∗. If we reach line 3, then we output a ∈ A. Otherwise

we reach line 5. If g−1(y) exists, then it belongs to A. Therefore, in either case
(output in line 5 or in line 6) we output an element from A.

Assume (y, 0n) ∈ REFf (in particular ¬y ∈ TAUT). So there exists z such
that |z| ≤ n and f(z) = ¬y. If we reach line 3, then we output b. Otherwise
we reach line 5 and so it holds that |z| ≤ n < 2|y| and ¬y syntactically differs
from the expression true. Therefore, f(z) = ¬y must be due to line 1 in the
definition of f . It follows that g−1(y) exists. So we output g−1(y) which belongs
to B (again by line 1 of f’s definition). This shows Claim 4.
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Claim 5. (A,B)≤pp
m (SAT∗,REFf ).

The reduction function is h′(x) df=(g(x), 02(|x|+p(|x|))). If x ∈ A, then g(x) ∈
SAT and therefore, h′(x) ∈ SAT∗. Otherwise, let x ∈ B. Let w be an accepting
path of M(x) and define z

df=〈x,w〉. So |w| = p(|x|) and |z| = 2(|x| + p(|x|)).
By line 1 in f’s definition, f(z) = ¬g(x). Therefore, h′(x) ∈ REFf . This proves
Claim 5 and finishes the proof of Theorem 3. �

Corollary 6. Disjoint NP-pairs and canonical pairs for proof systems have
identical degree structures.

The following easy to prove proposition also states a strong connection be-
tween proof systems and disjoint NP-pairs:

Proposition 7. Let f and g be propositional proof systems. If g simulates f ,
then

(SAT∗,REFf )≤pp
m (SAT∗,REFg).

Proof. By assumption there exists a total function h : Σ∗ → Σ∗ and a poly-
nomial p such that for all x, g(h(x)) = f(x) and |h(x)| ≤ p(|x|). We claim
that (SAT∗,REFf )≤pp

m (SAT∗,REFg) via reduction r where r(x, 0n) df=(x, 0p(n)).
Clearly, if (x, 0n) ∈ SAT∗, then (x, 0p(n)) ∈ SAT∗ as well. Let (x, 0n) ∈ REFf ,
i.e., ¬x is a tautology and there exists y such that |y| ≤ n and f(y) = ¬x. So for
y′ df=h(x) it holds that |y′| ≤ p(n) and g(y′) = ¬x which shows (x, 0p(n)) ∈ REFg.

�

The following result of Razborov [Raz94] is an immediate consequence of
Theorem 3 and Proposition 7.

Corollary 8 (Razborov). If there exists an optimal propositional proof system
f , then (SAT∗,REFf ) is a complete NP-pair.

We remind the reader that it is known neither whether there exists an optimal
propositional proof system nor whether there exist complete NP-pairs. Now it
is appropriate to repeat a comment we stated in the introduction. Glaßer et al.
[GSSZ04] constructed an oracle relative to which the converse of Corollary 8 does
not hold; i.e., relative to this oracle, by Theorem 3, there is a propositional proof
system f whose canonical pair is complete, but f is not optimal. Hence, there
is a propositional proof system g such that the canonical pair of g many-one
reduces to the canonical pair of f , but f does not simulate g. The results of this
section present tight connections between disjoint NP-pairs and propositional
proof systems. Nevertheless, relative to this oracle, the relationship is not as
tight as one might hope for.

4 Degree Structure of Disjoint NP-Pairs

Let {Mi}i be a standard effective enumeration of Turing machines. We require
the following definition and theorems:
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Definition 9. We define a class C of nonempty disjoint NP-pairs to be effec-
tively presentable if there exists a total computable function f : N→ N×N such
that

1. for all (i, j) ∈ range(f), Mi and Mj halt on all inputs, and
2. C = {(L(Mi), L(Mj)) | (i, j) ∈ range(f)}.

Note that in item 1 we do not demand halting in polynomial-time.

Theorem 10. For all (A,B), (C,D) ∈ DisjNP, the following classes are effec-
tively presentable.

C1 df= {(X,Y ) ∈ DisjNP
∣∣ (C,D)≤pp

T (X ⊕A, Y ⊕B)}
C2 df= {(X,Y ) ∈ DisjNP

∣∣ (X,Y )≤pp
T (A,B)}

A disjoint pair (A′, B′) is called a finite variation of the pair (A,B) if ‖(A"
A′)∪(B"B′)‖ is finite. A class C of disjoint pairs is closed under finite variations
if for all disjoint pairs (A,B) and (A′, B′) it holds that if (A,B) ∈ C, A′ and B′

are nonempty, and (A′, B′) is a finite variation of (A,B), then (A′, B′) ∈ C.
For any function, define fn(x) to be the n-fold iteration of f on x (f0(x) = x,

f1(x) = f(x), and fn+1(x) = f(fn(x))). For any function f defined on the set
of natural numbers, define

G[f ] = {x ∈ Σ∗ | there exists an even n such that fn(0) ≤ |x| < fn+1(0)}.

The following theorem is a version of Schöning’s method [Sch82] for uniform
diagonalization, applied to disjoint NP-pairs.

Theorem 11. Let A, B, C, and D be infinite decidable sets such that (A,B)
and (C,D) are disjoint pairs. Let C1 and C2 be classes of disjoint pairs with the
following properties:

– (A,B) �∈ C1 and (C,D) �∈ C2;
– C1 and C2 are effectively presentable; and
– C1 and C2 are closed under finite variations.

Then there exists a set T ∈ P such that the disjoint pair (E,F ), where E =
(T ∩A) ∪ (T ∩ C) and F = (T ∩B) ∪ (T ∩D), has the following properties:

– T ∩A, T ∩A, T ∩B, T ∩B, T ∩C, T ∩ C, T ∩D, T ∩D are infinite,
– (E,F ) �∈ C1 ∪ C2, and
– if (A,B) is P-separable, then (E,F )≤pp

m (C,D).

Proof. Since C1 and C2 are effectively presentable, there exist total computable
functions f1 and f2 such that

– for all (i, j) ∈ range(f1) ∪ range(f2), Mi and Mj halt on all inputs,
– C1 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f1)}, and
– C2 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f2)}.
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Define the following functions:

g1(n) = max
{∣∣∣min{z ∣∣ (i, j) = f1(k), |z| ≥ n, and

z ∈ L(Mi)"A∪L(Mj)"B}
∣∣∣ ∣∣ k ≤ n

}
g2(n) = max

{∣∣∣min{z ∣∣ (i, j) = f2(k), |z| ≥ n, and
z ∈ L(Mi)"C ∪L(Mj)"D}

∣∣∣ ∣∣ k ≤ n
}

g3(n) = min{m ∣∣m ≥ n and ∃u, v, w, x ∈ Σ≥n ∩ Σ≤m such that
u ∈ A, v ∈ B, w ∈ C, and x ∈ D}

We prove that g1, g2, and g3 are total computable functions. Since (A,B) �∈ C1,
for all (i, j) ∈ range(f1), (A,B) �= (L(Mi), L(Mj)). As C1 is closed under finite
variations, L(Mi)"A∪L(Mj)"B is an infinite set. Thus, for all k, and for all
n ≥ k, there is a string z such that |z| ≥ n and z ∈ L(Mi)" A ∪ L(Mj)" B,
where (i, j) = f1(k). Observe that the relation defined by “z ∈ L(Mi)" A ∪
L(Mj)"B and (i, j) = f1(k)” is decidable, because both A and B are decidable,
both Mi and Mj halt on all inputs and f1 is total computable. So the minimal
such z is computable and hence g1 is computable. Similar arguments show that
g2 and g3 are total and computable (for g3 we need A, B, C, and D to be
infinite).

Since max(g1, g2, g3) + 1 is a total computable function, there exists a fast
function1 g such that for all n, g(n) > max(g1(n), g2(n), g3(n)) (We refer to
Proposition 7.3 of the text by Homer and Selman [HS01].) Also, G[g] ∈ P
(Lemma 7.1, [HS01]). Now take T = G[g]. We prove that the pair (E,F ), where
E = (T ∩A) ∪ (T ∩ C) and F = (T ∩B) ∪ (T ∩D), has the desired properties.

Suppose T ∩ A is finite. Choose an even integer n such that all words in
T ∩A are of length less than gn(0). Substituting gn(0) for n in the definition of
g3 implies that there exists a word u ∈ A such that gn(0) ≤ |u| ≤ g3(gn(0)) <
gn+1(0). So u ∈ A ∩ T which contradicts the choice of n. Hence T ∩A must be
infinite. Similar arguments show that T ∩A, T ∩B, T ∩B, T ∩C, T ∩C, T ∩D,
T ∩D are infinite.

We turn to the second consequence. The definition of g1 implies the following:

k ≤ n⇒ ∃z[n ≤ |z| ≤ g1(n) and z ∈ L(Mi)"A∪L(Mj)"B,
where f1(k) = (i, j)]

(1)

Suppose (E,F ) ∈ C1. Then, there exists k such that (E,F ) = (L(Mi), L(Mj)),
where f1(k) = (i, j). Select n to be an even positive integer such that gn(0) ≥ k.
Substituting gn(0) for n in Equation (1), there is a string z such that gn(0) ≤
|z| ≤ g1(gn(0)) < gn+1(0) and z ∈ L(Mi) " A ∪ L(Mj) " B. Thus, z ∈ T
and z ∈ L(Mi)"A ∪ L(Mj)"B, which implies, using the definition of (E,F ),
that z ∈ L(Mi) " E ∪ L(Mj) " F . This is a contradiction. We conclude that
(E,F ) �∈ C1. A similar argument shows that (E,F ) �∈ C2.
1 A function g : N → N is called fast if (i) for all n ∈ N, f(n) > n, and (ii) there is a

Turing machine M that computes f in unary notation such that M writes a symbol
on its output tape every move of its computation.
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Now we show that the third consequence holds. Suppose (A,B) is P-separa-
ble. Let S be a separator of (A,B) that belongs to P. Let c and d be fixed words
that belong to C and D, respectively. Consider the following function h:

h(x) =

⎧⎨⎩x if x ∈ T ,
c if x ∈ T and x ∈ S,
d if x ∈ T and x �∈ S.

We claim that (E,F )≤pp
m (C,D) via h. First it is clear that h is polynomial time

computable since both T and S belong to P . Now suppose x ∈ E. If x ∈ T , then
x ∈ C. Hence, h(x) = x ∈ C. Otherwise x ∈ A ⊆ S. Hence, h(x) = c ∈ C. So in
either case we have h(x) ∈ C. Therefore, h(E) ⊆ C. Similarly we can show that
h(F ) ⊆ D. �

Now we apply Theorem 11 to obtain the following result about the degree
structure of disjoint NP-pairs. Observe that the premise of the following theorem
is true as long as there exist P-inseparable disjoint NP-pairs. For under this
hypothesis, we can take (A,B) to be P-separable and (C,D) to be P-inseparable.
We obtain the full generality of the theorem, in which we do not assume that
(A,B) is P-separable, by using a technique of Regan [Reg83, Reg88].

Theorem 12. Suppose there exist disjoint NP-pairs (A,B) and (C,D) such that
A, B, C, and D are infinite, (A,B)≤pp

T (C,D), and (C,D) �≤pp
T (A,B). Then there

exist incomparable, strictly intermediate disjoint NP-pairs (E,F ) and (G,H)
between (A,B) and (C,D) such that E, F , G, and H are infinite. Precisely, the
following properties hold:

– (A,B)≤pp
m (E,F )≤pp

T (C,D) and (C,D) �≤pp
T (E,F ) �≤pp

T (A,B);
– (A,B)≤pp

m (G,H)≤pp
T (C,D) and (C,D) �≤pp

T (G,H) �≤pp
T (A,B);

– (E,F ) �≤pp
T (G,H) and (G,H) �≤pp

T (E,F ).

Proof. Define

C1 = {(X,Y ) ∈ DisjNP
∣∣ (C,D)≤pp

T (X ⊕A, Y ⊕B)} and

C2 = {(X,Y ) ∈ DisjNP
∣∣ (X,Y )≤pp

T (A,B)}.

Clearly, (A,B) /∈ C1 and (C,D) �∈ C2. By Theorem 10, both C1 and C2 are
effectively presentable. Also, it is obvious that C1 and C2 are closed under finite
variations. Thus by Theorem 11, there exists a set T ∈ P such that (E′, F ′) �∈
C1 ∪ C2, where E′ = (T ∩ A) ∪ (T ∩ C) and F ′ = (T ∩B) ∪ (T ∩D) are infinite
sets. Clearly, (E′, F ′) ∈ DisjNP, since both (A,B) and (C,D) belong to DisjNP
and T ∈ P. Define E = E′⊕A and F = F ′⊕B. It is straightforward to see that
(E,F ) also belongs to DisjNP and (A,B)≤pp

m (E,F ). By the definition of C1 and
C2, (C,D) �≤pp

T (E,F ) and (E,F ) �≤pp
T (A,B). In addition, we have the following

claim:

Claim 13. (E,F )≤pp
T (C,D).
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Proof. Let S be a separator of (C,D). Since (A,B)≤pp
T (C,D), there is a separa-

tor S1 of (A,B) such that S1≤p
TS. Then S2 = (S1 ∩ T ) ∪ (S ∩ T ) is a separator

of (E′, F ′) and S2≤p
TS1 ⊕ S≤p

TS. Thus S3 = S2 ⊕ S1 is a separator of (E,F )
and S3≤p

TS. �

The following summarizes the properties we proved so far:

– (A,B)≤pp
m (E,F )≤pp

T (C,D);
– (C,D) �≤pp

T (E,F ) �≤pp
T (A,B).

Now we define the pair (G,H). It follows from the proof of Theorem 11 that
if we take T ′ = T = G[g], then all the consequences of the theorem are satisfied
as well. So we define

G′ = (T ′ ∩A) ∪ (T ′ ∩ C) = (T ∩A) ∪ (T ∩ C)

and
H ′ = (T ′ ∩B) ∪ (T ′ ∩D) = (T ∩B) ∪ (T ∩D).

Then we have (G′, H ′) �∈ C1 ∪ C2. Similarly we define G = G′ ⊕ A and
H = H ′⊕B. By the same arguments as above, the following properties hold for
(G,H):

– (A,B)≤pp
m (G,H)≤pp

T (C,D);
– (C,D) �≤pp

T (G,H) �≤pp
T (A,B).

It remains to show (E,F ) �≤pp
T (G,H) and (G,H) �≤pp

T (E,F ). We show only
that (E,F ) �≤pp

T (G,H) since the proof of the latter is identical. The proof follows
from the following two claims:

Claim 14. (C,D)≤pp
m (E ⊕G,F ⊕H).

Proof. We define the reduction f as follows: On input x, if x ∈ T , then
f(x) = 10x, and, if x �∈ T , then f(x) = 00x. We need to prove that f(C) ⊆ E⊕G
and f(D) ⊆ F ⊕H . Suppose that x ∈ C. Consider the case that x ∈ T . By def-
inition of G′, x ∈ G′. So 0x ∈ G. Hence, f(x) = 10x ∈ E ⊕ G. In the case
that x �∈ T , we have x ∈ E′. So 0x ∈ E. Hence, f(x) = 00x ∈ E ⊕ G. Thus,
f(C) ⊆ E ⊕G. The proof that f(D) ⊆ F ⊕H is similar. �

Claim 15. If (E,F )≤pp
T (G,H) then (E ⊕G,F ⊕H)≤pp

T (G,H)

Proof. Let S be a separator of (G,H). By the hypothesis, there is a separator
S′ of (E,F ) such that S′≤p

TS. Then S′ ⊕ S is a separator of (E ⊕ G,F ⊕ H)
and S′ ⊕ S≤p

TS. �

Now we see that if (E,F )≤pp
T (G,H), then (C,D)≤pp

m (E ⊕ G,F ⊕ H)≤pp
T

(G,H), which is a contradiction. �
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Corollary 16. Suppose there exists a P-inseparable disjoint NP-pair (C,D). Let
(A,B) be a P-separable disjoint NP-pair such that A and B are infinite. Then
there exist incomparable, P-inseparable, strictly intermediate disjoint NP-pairs
(E,F ) and (G,H) between (A,B) and (C,D) that satisfy all of the consequences
of Theorem 12, and in addition, satisfy the following conditions:

– (A,B)≤pp
m (E,F )≤pp

m (C,D), and
– (A,B)≤pp

m (G,H)≤pp
m (C,D).

The proof follows readily.
From Corollary 16, Theorem 3, and Proposition 7 it follows that if there exist

P-inseparable disjoint NP-pairs, then there exist propositional proof systems
f and g so that f does not simulate g and g does not simulate f . However,
Messner [Mes00, Mes02] unconditionally proved the existence of propositional
proof systems f and g such that f does not simulate g and g does not simulate
f . Messner further shows that the simulation order of propositional proof systems
is dense. However, as the following argument shows, these results do not replace
our study of the degree structure of disjoint NP-pairs. There exist infinite, strictly
increasing chains of propositional proof systems (using simulation as the order
relation ≤) such that all canonical pairs of these proofs systems belong to the
same many-one degree of disjoint NP-pairs.

First, observe that for every non-optimal propositional proof system f there
is a proof system g such that g simulates f , but f does not simulate g (i.e.,
f < g). (For example, for some h that is not simulated by f , let g(x) = f(x/2) if
x is even and g(x) = h((x−1)/2) otherwise.) Glaßer et al. [GSSZ04] constructed
an oracle O2 relative to which many-one complete disjoint NP-pairs exist, but
optimal propositional proof systems do not exist. So relative to this oracle, there
is a proof system f0 whose canonical pair is complete, but optimal proof systems
do not exist. By our observation, there exists an infinite, strictly increasing chain
of proof systems f0 < f1 < · · · . However, by Proposition 7, the canonical pair
of each fi is many-one complete.

Acknowledgements. The authors thank Jochen Messner and Kenneth W. Re-
gan for informing them of the methods in their papers [mes00, mes02, reg83,
reg88].
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Abstract. We investigate the complexity of finding prime implicants
and minimal equivalent DNFs for Boolean formulas, and of testing equiv-
alence and isomorphism of monotone formulas. For DNF related prob-
lems, the complexity of the monotone case strongly differs from the ar-
bitrary case. We show that it is DP-complete to check whether a mono-
mial is a prime implicant for an arbitrary formula, but checking prime
implicants for monotone formulas is in L. We show PP-completeness of
checking whether the minimum size of a DNF for a monotone formula
is at most k. For k in unary, we show the complexity of the problem to
drop to coNP. In [Uma01] a similar problem for arbitrary formulas was
shown to be Σp

2-complete. We show that calculating the minimal DNF
for a monotone formula is possible in output-polynomial time if and only
if P = NP. Finally, we disprove a conjecture from [Rei03] by showing that
checking whether two formulas are isomorphic has the same complexity
for arbitrary formulas as for monotone formulas.

1 Introduction

Monotone formulas are Boolean formulas that contain only conjunction and dis-
junction as connectives, but no negation. To solve the satisfiability problem for
monotone formulas is trivial. Every satisfiable monotone formula is satisfied by
the assignment that sets all variables to true. Hence, the computational com-
plexity of the satisfiability problem for monotone formulas is very much simpler
than the NP-complete satisfiability problem for arbitrary formulas. On the other
hand, counting the number of satisfying assignments has the same complexity for
monotone and for arbitrary formulas [Val79]. Hence, it is interesting to compare
the complexity of problems for arbitrary and for monotone formulas.

In the first part of this paper, we investigate the complexity of calculat-
ing smallest equivalent Disjunctive Normal Forms (DNF). The smallest equiv-
alent DNF for a formula consists of prime implicants of the formula. For arbi-
trary formulas, it is hard to find the smallest choice of prime implicants. It is
still open whether a smallest equivalent DNF can be calculated in polynomial
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space. For monotone formulas, the smallest DNF consists of all prime implicants.
We consider problems of checking and finding prime implicants (Section 3). We
show that checking whether a monomial is a prime implicant for a formula is
DP-complete for arbitrary formulas, whereas it is in L for monotone formulas.
DP [PY84] contains both NP and coNP and is contained in Σp

2 in the Polynomial
Time Hierarchy. The question, whether a prime implicant of a certain size exists
for a given formula, was shown to be Σp

2-complete in [Uma01]. We show that
the same question is only NP-complete for monotone formulas. The complexity
of calculating the size of a smallest DNF depends on the representation of the
problem. Umans [Uma01] showed that given a formula ϕ in DNF and an integer
k, it is Σp

2-complete to decide whether ϕ has a DNF of size at most k. Notice that
the length of the input DNF is greater than the size of the DNF that is searched
for (except trivial cases). This seems necessary to allow the problem to be de-
cided within a non-deterministic polynomial time bound, because the smallest
DNF of a (monotone) formula may have size exponential in the length of the
formula. The exact complexity of this problem for arbitrary formulas is open. It
is Σp

2-hard (which follows from [Uma01]) and in EXPTIME. For monotone for-
mulas, we exactly characterize the complexity of this problem by showing it to
be PP-complete. If one encodes the upper bound of the DNF length in unary
instead — i.e. given formula ϕ and string 1k, decide whether ϕ has a DNF of
size ≤ k — we prove the problem to be Σp

2-complete for arbitrary formulas, and
coNP-complete for monotone formulas.

In Section 4 we consider the hardness of calculating the smallest DNF for
a monotone formula. It is clear that the smallest DNF is not polynomial time
computable. Therefore, we consider the notion of output-polynomial time. A
function is in output-polynomial time if it can be computed in time polynomial
in the length of the input plus the length of the function value [Pap97]. We show
that the DNF for a monotone formula is output-polynomial time computable if
and only if P = NP. Even calculating the size of a minimal DNF is shown to be
PP-complete. In Section 5 we consider equivalence and isomorphism problems.
The problem of deciding whether monotone formulas ϕ and ψ are equivalent is
known to be coNP-complete [Rei03]. For arbitrary formulas the same complete-
ness holds. If ϕ is in Conjunctive Normal Form (CNF) and ψ is in DNF, the equiv-
alence problem remains coNP-complete for arbitrary formulas, but for monotone
formulas an upper bound between P and coNP-complete was settled in [FK96]. In
the case that one of the input formulas consists only of terms of bounded length,
we give an L-algorithm improving results from [EG95, BEGK00]. Finally, we
refute a conjecture from [Rei03], by showing that checking whether two given
formulas are isomorphic has exactly the same complexity for arbitrary as for
monotone formulas.

2 Definitions

We consider Boolean formulas with connectives ∧ (conjunction), ∨ (disjunction),
and ¬ (negation). We assume that the negations appear directly in front of
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variables. (Other connectives are used as abbreviations, whereas we use the ↔
only once because of the doubling of the formula length.) Actually this is no
limitation because every formula may be transformed in polynomial time to fulfill
these assumptions. A monotone formula is a Boolean formula without negations.
A term is a conjunction or a disjunction of literals, i.e. of variables and negated
variables; a conjunction is called monomial, and a disjunction is called clause.
The empty clause is unsatisfiable, and the empty monomial, denoted λ, is valid.
A monotone term is a term without negations. Terms are also considered as sets
of literals. Term T1 covers term T2 if T1 ⊆ T2.

An assignment A for a formula ϕ is a mapping of the variables of ϕ to the
truth values true and false. An assignment A is said to satisfy formula ϕ if ϕ
evaluates to true under A. For monotone formulas we regard A also as a set Am

where variable x is in Am if and only if x gets value true under A. Notice that
in this way every monotone monomial can also be interpreted as an assignment.

An implicant of a formula ϕ is a monomial C such that C → ϕ is valid. A
monomial C is a prime implicant of ϕ iff (1) C is an implicant of ϕ and (2) for
every proper subset S ⊂ C holds that S is not an implicant of ϕ. Notice that in
order to check condition (2) it suffices to check for C = {�1, �2, . . . , �k} whether
for each �i ∈ C it holds that C − {�i} is not an implicant of ϕ. Every proper
subset S of C is a subset of C − {�i} for some i. For S ⊆ C − {�i} holds that
(C−{�i})→ S is valid. If S is an implicant of ϕ, then S → ϕ is valid. Both valid
formulas together yield that (C −{�i})→ ϕ is valid too, inducing that C −{�i}
is an implicant of ϕ. Hence, if no C − {�i} is an implicant of ϕ, then no proper
subset of C is an implicant of ϕ.

A formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses. Similarly a formula is in disjunctive normal form (DNF) if it is a disjunc-
tion of monomials. It is said to be in k-CNF (k-DNF), if all clauses (monomials)
consist of at most k literals. A monotone formula ϕ in normal form is irredundant
if and only if no term of ϕ covers another term of ϕ. For a monotone formula,
the disjunction of all its prime implicants yields an equivalent monotone DNF.
On the other hand, every prime implicant must appear in every equivalent DNF
for a monotone formula. Hence, the smallest DNF for a monotone formula is
unique and equals the disjunction of all its prime implicants. This is not the case
for non-monotone formulas, where the smallest DNF is a subset of the set of all
prime implicants. It is NP-hard to select the right prime implicants [Mas79]. See
also [Czo99] for an overview on the complexity of calculating DNFs.

We use complexity classes L (logarithmic space), P, NP, coNP, DP (difference
polynomial time, which appears to be the class for “exact cost” optimization),
Σp

2 (NP with NP oracle), PP (probabilistic polynomial time), and PSPACE. The

inclusion structure is L ⊆ P ⊆ NP
coNP

⊆ DP ⊆ Σp
2

PP
⊆ PSPACE. All considered

classes except L are closed downwards under ≤p
m-reduction, and PP is closed

under complement. Closely related to PP is the function class #P. See [Pap94]
for definitions of these classes. As natural complete problems for NP, coNP and
PP we consider Sat (is the Boolean formula ϕ satisfiable?), Unsat (is ϕ un-
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satisfiable?), and MajSat (do at least half of the assignments satisfy ϕ?). We
assume that the input formulas for these problems contain only ∧, ∨, and ¬
(placed right in front of variables) as connectives.

3 Size of Disjunctive Normal Forms

In this section we concentrate on computing the size of minimal DNFs. Therefore
we first analyze the complexity of finding prime implicants.

A valid formula has the empty monomial λ as its only prime implicant. An
unsatisfiable formula has no prime implicant at all. In general, a formula ϕ has a
prime implicant if and only if ϕ is satisfiable. Therefore, the question of whether
a formula has a prime implicant is NP-complete, and it is in L for monotone
formulas.

Next we consider the problem of deciding whether a monomial is a prime
implicant of a formula.

IsPrimi : instance: Boolean formula ϕ and monomial C
question: is C a prime implicant of ϕ ?

The complexity of IsPrimi is intermediate between NP ∪ coNP and Σp
2.

Theorem 3.1. IsPrimi is DP-complete.

Proof. The standard DP-complete problem is Sat-Unsat = {(ϕ, ψ) | ϕ ∈
Sat, ψ ∈ Unsat}. We show that Sat-Unsat ≤p

m IsPrimi. The reduction func-
tion is the mapping (ϕ, ψ) �→ (¬ϕ ∨ (¬ψ ∧ z), z), where z is a new variable that
neither appears in ϕ nor in ψ. It is clear that this mapping is polynomial time
computable.

If (ϕ, ψ) ∈ Sat-Unsat, then ¬ψ is valid, and therefore ¬ψ ∧ z has z as
prime implicant. Hence z is an implicant of ¬ϕ∨ (¬ψ ∧ z). Because ϕ ∈ Sat, its
negation ¬ϕ is not valid. Therefore, the empty monomial λ is not an implicant
of ¬ϕ. Hence, z is a prime implicant of ¬ϕ∨ (¬ψ∧ z). Next we consider the case
that (ϕ, ψ) �∈ Sat-Unsat. If ϕ �∈ Sat, then ¬ϕ ∨ (¬ψ ∧ z) is valid and λ is the
only prime implicant of this formula. If ϕ ∈ Sat and ψ �∈ Unsat, then ¬ψ is
not valid and therefore z is not an implicant of ¬ψ ∧ z. Because ¬ϕ is not valid,
it follows that z is neither an implicant of ¬ϕ ∨ (¬ψ ∧ z).

This proves the DP-hardness of IsPrimi. We now show that IsPrimi is in
DP, by proving IsPrimi ≤p

m Sat-Unsat. Let (ϕ,C) be an instance for IsPrimi,
where C = {�1, �2, . . . , �k} is a monomial. Let C(i) = C−{�i}. First, a necessary
condition for C being a prime implicant for ϕ is that no proper subset of C is an
implicant for ϕ (C is called prime in this case). This condition is equivalent to
every C(i) being not an implicant for ϕ (as argued in Section 2). I.e., for every i,
C(i)→ ϕ is not valid, and equivalently ¬(C(i)→ ϕ) is in Sat. Summarized, if C
is a prime implicant for ϕ, then p(ϕ,C) =

∧k
i=1 ¬(C(i)→ ϕ) is in Sat. Second,

the other necessary condition for C being a prime implicant for ϕ is that C is
an implicant for ϕ. I.e. C → ϕ is valid, and equivalently n(ϕ,C) = ¬(C → ϕ) is
in Unsat.



414 J. Goldsmith, M. Hagen, and M. Mundhenk

C is a prime implicant for ϕ if and only if C is prime and C is an impli-
cant for ϕ. This is equivalent to p(ϕ,C) ∈ Sat and n(ϕ,C) ∈ Unsat. Even-
tually, this yields that (ϕ,C) ∈ IsPrimi if and only if (p(ϕ,C), n(ϕ,C)) ∈
Sat-Unsat. Since p and n are both polynomial time computable, the function
f with f(ϕ,C) = ((p(ϕ,C), n(ϕ,C)) is a polynomial time reduction function for
IsPrimi ≤p

m Sat-Unsat. Since DP is closed downwards under polynomial time
many-one reduction, IsPrimi ∈ DP follows. ��

For monotone formulas, the same problem is much easier. A monomial is an
implicant of a monotone formula, if and only if the assignment that corresponds
to the monotone monomial satisfies the formula. It can be checked in logarithmic
space whether an assignment satisfies a monotone formula.

IsPrimimon : instance: monotone formula ϕ and monotone monomial C
question: is C a prime implicant of ϕ ?

Theorem 3.2. IsPrimimon is in L.

The problem of checking whether a formula ϕ has a prime implicant of size at
most k was shown to be Σp

2-complete [Uma01]. We show, that the same problem
for monotone formulas is NP-complete only.

PrimiSizemon : instance: monotone Boolean formula ϕ and integer k
question: does ϕ have a prime implicant consisting of at

most k variables?
In the following, we will define reductions that transform formulas into mono-

tone formulas, such that satisfying assignments of the basic formula are similar
to prime implicants of the monotone formula.

Definition 3.3. Let ϕ be a Boolean formula with connectives ∧, ∨ and ¬, and
variables x1, . . . , xn. Remember that all negation signs appear directly in front of
variables. Then r(ϕ) denotes the formula obtained by replacing all appearances
of ¬xi in ϕ by the new variable yi (for i = 1, 2, . . . , n). Let c(ϕ) denote the
conjunction

∧n
i=1(xi ∨ yi) and d(ϕ) denote the disjunction

∨n
i=1(xi ∧ yi). The

formulas ϕc and ϕcd are defined as ϕc = r(ϕ) ∧ c(ϕ) and ϕcd = ϕc ∨ d(ϕ) =
(r(ϕ) ∧ c(ϕ)) ∨ d(ϕ).

Since ϕc and ϕcd do not contain any negation signs, they are monotone
formulas. Let A be an assignment for ϕ. Then A′m denotes the assignment A′m =
{xi | A maps xi to true}∪{yi | A maps xi to false}. Such an assignment, which
contains exactly one from xi and yi, is called conform. Notice that there is a
one-to-one relation between assignments to ϕ and conform assignments to ϕc

and ϕcd.

Theorem 3.4. PrimiSizemon is NP-complete.

Proofsketch: PrimiSizemon is easily seen to be in NP. NP-hardness follows from
a reduction Sat ≤p

m PrimiSizemon. The reduction function maps every Sat
instance ϕ with variables x1, . . . , xn to (ϕc, n). This reduction is polynomial
time computable. ��
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Since minimal DNFs of a formula are disjunctions of prime implicants, a
natural question arises. How hard is it to calculate the size of a minimal DNF?
The respective problem

MinDnfSizednf : instance: Boolean formula ϕ in DNF and integer k
question: does ϕ have a DNF with at most k occurences

of variables?
for arbitrary DNF formulas was shown to be Σp

2-complete in [Uma01].
The monotone version — input is a monotone DNF-formula ϕ — is in L since

counting the length of the irredundant part of ϕ suffices and testing irredundancy
can be managed in logarithmic space.

If the input is an arbitrary formula, the problem is Σp
2-hard (which follows

from the latter result from [Uma01]). It is clear that the problem is in EXPTIME,
but it is even not known whether the problem is in PSPACE. We show PP-
completeness when the input is monotone.

MinDnfSizemon : instance: monotone Boolean formula ϕ and integer k
question: does ϕ have a DNF with at most k occurences

of variables?

Theorem 3.5. MinDnfSizemon is PP-complete.

Proof. A set A is in PP, if there exists a polynomial time bounded non-determin-
istic machine M that on input x has at least as many accepting as rejecting
computation paths iff x ∈ A. The machine M is allowed to have accepting,
rejecting, and non-deciding computation paths. Our polynomial time machine
M that decides MinDnfSizemon roughly works as follows. Consider input (ϕ, k).
Let l be the maximum length of a monomial with variables from ϕ. Then M
guesses a sequence w of l + 1 bits. If the first bit of w equals 0, then it accepts,
if the remaining bits encode an integer < k — otherwise it halts non-deciding.
In this way, k accepting computation paths are produced. If w = 1v has first
bit 1, then M checks in polynomial time (Theorem 3.2) whether v encodes a
prime implicant (with variables in increasing order) for ϕ. If not, then it halts
undecided. If yes, then this computation path splits in that many rejecting paths
as the monomial v has variables. The smallest DNF of a monotone formula
consists of all prime implicants of the formula. Hence, M on input (ϕ, k) has at
least as many accepting as rejecting computation paths if and only if ϕ has a
DNF with at most k occurences of variables. This shows that MinDnfSizemon

is in PP.
To show PP-hardness, we give a reduction MajSat ≤p

m MinDnfSizemon.
Consider an instance ϕ of MajSat where ϕ has n variables, and let ϕcd be as in
Definition 3.3. Observe that every prime implicant of ϕcd either is conform and
hence consists of n variables, or it is not conform and consists of two variables
xi, yi. If ϕ ∈ MajSat, then there are at least 2n−1 satisfying assignments to
ϕ. Every satisfying assignment of ϕ induces a conform prime implicant of ϕcd.
Every i ∈ {1, 2, . . . , n} induces the non-conform prime implicant xi ∧ yi. Hence,
there are at least 2n−1 conform and n non-conform prime implicants of ϕcd.
Because the minimum DNF consists exactly of all prime implicants, it follows
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that the minimum DNF of ϕcd has size at least n · 2n−1 + 2 · n. If ϕ �∈MajSat,
then the minimum DNF of ϕcd has size at most n ·(2n−1−1)+2 ·n. The function
that maps ϕ to (ϕcd, n · (2n−1 − 1) + 2 · n) is polynomial time computable, and
by the above observations it reduces MajSat to MinDnfSizemon. Since PP is
closed under complement, the PP-hardness of MinDnfSizemon follows. ��

Accordingly, we can show that the function that on input a monotone formula
ϕ outputs the size of the smallest DNF of ϕ is #P-complete. In [Val79] it is shown
that computing the number of prime implicants of a monotone formula is #P-
complete. Our result extends the latter since it additionally takes the size of the
prime implicants into account.

Using a similar approach, one can show that counting satisfying assignments
for monotone formulas and counting prime implicants for monotone formulas
both are PP-complete. Notice that in [Val79] it is shown that given a monotone
formula in 2CNF (all clauses consist of at most two variables) the function that
calculates the number of satisfying assignments is #P-complete. From this result,
it only follows that the problem to decide whether a monotone formula in 2CNF
with n variables has at least 2n−1 satisfying assignments is PP-complete under
polynomial time Turing reductions. Our approach yields PP-completeness under
the stronger polynomial time many-one reduction.

One of the main reasons that an analogue to Theorem 3.5 for arbitrary for-
mulas is unknown is the fact that polynomial time does not allow on input ϕ, k
to guess a candidate for a DNF of length k. Therefore, we consider a variant of
MinDnfSize where k is given in unary.

MinDnfSize′ : instance: Boolean formula ϕ and string 1k

question: does ϕ have a DNF with at most k occurences
of variables?

Theorem 3.6. MinDnfSize′ is Σp
2-complete.

Proof. MinDnfSizednf reduces to MinDnfSize′ by the following function f .
Let |ϕ| denote the number of occurences of variables in ϕ. If k ≥ |ϕ|, then
(ϕ, k) ∈MinDnfSizednf and f(ϕ, k) is some fixed element in MinDnfSize′. If
k < |ϕ|, then f(ϕ, k) = (ϕ, 1k). Clearly, f is polynomial time computable and
reduces the problem MinDnfSizednf to MinDnfSize′. MinDnfSize′ ∈ Σp

2 can
be shown using the standard guess-and-check approach. ��

If we restrict the input to be monotone the complexity is lower.
MinDnfSize′mon : instance: monotone Boolean formula ϕ and string 1k

question: does ϕ have a DNF with at most k occurences
of variables?

Theorem 3.7. MinDnfSize′mon is coNP-complete.

Proof. MinDnfSize′mon is coNP-hard: A formula ϕ is unsatisfiable if and only if
ϕcd has (xi∧yi) as its only prime implicants (where i = 1, 2, . . . , n for x1, . . . , xn

are the variables of ϕ). Hence, ϕ is unsatisfiable if and only if (ϕcd, 12n) ∈
MinDnfSize′mon. This shows that MinDnfSize′mon is coNP-hard.
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MinDnfSize′mon ∈ coNP: Consider the problem A = {(ϕ, 1k)| the monotone
formula ϕ has a minimal DNF of size > k}. Note that A is the complement of
MinDnfSize′mon. A is in NP since one has to guess a disjunction D of monomials
of size greater than k and less than k + |ϕ| and check that all are different
prime implicants for ϕ. If so, then the minimal DNF for ϕ has at least the size
of D. Both the guess and the check are polynomial time computable. Hence,
MinDnfSize′mon ∈ coNP. ��

4 Computing DNFs

A DNF of a formula is a disjunction of (prime) implicants. For monotone formu-
las, the minimal DNF is unique and it is the disjunction of all prime implicants.
In order to investigate the complexity of the search for all prime implicants, we
use the following problem MorePrimimon. It has instances (ϕ, S), where ϕ is a
formula and S is a set of monomials. A pair (ϕ, S) belongs to MorePrimimon

if S is a proper subset of a minimal DNF of ϕ. I.e., every monomial in S is a
prime implicant for ϕ, but there is at least one more prime implicant for ϕ that
must be added to S in order to make S a DNF for ϕ.

MorePrimimon :
instance: monotone Boolean formula ϕ and set S of monomials
question: is S a set of prime implicants of ϕ and ϕ �≡ S ?

Theorem 4.1. MorePrimimon is NP-complete.

There are monotone formulas whose minimal DNF have size exponential in
the size of the formula. Therefore it is clear that the DNF cannot be computed
in time polynomial in the length of the input. For such problems one would like
to have algorithms that run in time polynomial in the length of the input plus
the length of the output.

Definition 4.2. [Pap97] A function f can be computed in output-polynomial
time, if there is an algorithm A that for all x on input x outputs f(x) and there is
a polynomial q such that for all x, A on input x has running time q(|x|+ |f(x)|).

An algorithm that cycles through all monomials and outputs those that are
prime implicants of the monotone input formula, eventually outputs the minimal
DNF of its input. For the special case of formulas that have long DNFs, this
algorithm can be seen to have running time polynomial in the length of the
output. For formulas with short DNFs, the running time of this straightforward
algorithm is exponential in the length of the output. Anyway, we show that we
cannot expect to find an algorithm that behaves significantly better than this
straightforward approach.

Theorem 4.3. The function that on input a monotone formula ϕ outputs the
smallest DNF for ϕ is in output-polynomial time if and only if P = NP.
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Proof. Assume that A is an output-polynomial time algorithm for the consid-
ered problem, and let q be the polynomial bounding the run time of A. We
show how to solve MorePrimimon in polynomial time. For an instance (ϕ, S)
of MorePrimimon, first check whether S is a set of prime implicants for ϕ, and
reject if this is not the case. Then start A on input ϕ for q(|ϕ|+ |S|) steps. If A
does not halt after q(|ϕ|+|S|) steps, then S does not contain all prime implicants
of ϕ, and our algorithm accepts. If A halts after q(|ϕ|+ |S|) steps, then accept if
and only if S is a proper subset of the output of A. It is clear that this algorithm
decides MorePrimimon. Its run time is bounded by the polynomial q, plus some
polynomial overhead. Since MorePrimimon is NP-complete (Theorem 4.1), it
solves an NP-complete problem in polynomial time, and therefore P = NP.

For the other proof direction, assume that P = NP. The set V = {(w, S, ϕ) |
w is a prefix of a prime implicant C for ϕ and C �∈ S } is in NP. Our algorithm
that computes a minimal DNF of a monotone input formula ϕ starts with S
being the empty set, and uses V as an oracle to make S the set of all prime
implicants of ϕ — and hence the minimal DNF of ϕ — using a prefix search
technique. Intuitively spoken, every query to V yields one bit for the output.
From P = NP it then follows that the algorithm runs in output-polynomial time.

��
Notice that a similar result is not known for arbitrary formulas.
As a final remark we return to the complexity of MorePrimimon (Theo-

rem 4.1). We have seen that the complexities of IsPrimimon (Theorem 3.2) and
MorePrimimon differ. This is not the case for the corresponding non-monotone
problems IsPrimi (Theorem 3.1) and MorePrimi.

Theorem 4.4. MorePrimi is DP-complete.

5 Equivalence and Isomorphism of Monotone Formulas

Deciding equivalence for arbitrary Boolean formulas is coNP-complete. The same
holds for monotone formulas [Rei03]. However, if the monotone input formulas
are given in k-CNF and DNF it is known that the problem is in P [EG95], even
in RNC [BEGK00]. We improve these results by showing that logarithmic space
suffices.

Moneconst: instance: irredundant, monotone Boolean formulas ϕ in
k-CNF for a constant k and ψ in DNF

question: are ϕ and ψ equivalent?

Theorem 5.1. Moneconst ∈ L.

Two Boolean formulas ϕ and ψ are isomorphic if and only if there exists a
permutation — a bijective renaming — π of the variables such that ϕ and π(ψ)
are equivalent. Two Boolean formulas are congruent if they are isomorphic after
negating some of the variables. For example x1 ∧x2 and ¬x3 ∧x4 are congruent.
Such a negation of some variables with the bijective renaming of the variables is
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called n-permutation. A witness for the congruence of the above example is the
n-permutation π that exchanges ¬x3 and x1 as well as x4 and x2.

We want to compare the problem of testing isomorphism for monotone Bool-
ean formulas to the case of abitrary Boolean formulas. This provides a negative
answer to a conjecture from [Rei03].

BoolIsomon: instance: monotone Boolean formulas ϕ and ψ
question: are ϕ and ψ isomorphic?

BoolIso: instance: Boolean formulas ϕ and ψ
question: are ϕ and ψ isomorphic?

BoolCon: instance: Boolean formulas ϕ and ψ
question: are ϕ and ψ congruent?

Note that BoolCon is polynomially equivalent to BoolIso [BRS98].

Theorem 5.2. BoolIsomon ≡p
m BoolIso.

Proof. To show BoolIsomon ≤p
m BoolIso we can choose the identy function

as reduction function. We now show BoolIso ≤p
m BoolIsomon. In [BRS98] it

was shown that BoolIso ≤p
m BoolCon. Therefore, it suffices to show that

BoolCon ≤p
m BoolIsomon. The reduction function maps the instance (ϕ, ψ)

of BoolCon to the pair (ϕcd, ψcd) (cf. Definition 3.3). We have to show (ϕ, ψ) ∈
BoolCon⇔ (ϕcd, ψcd) ∈ BoolIsomon.

(ϕ, ψ) ∈ BoolCon⇒ (ϕcd, ψcd) ∈ BoolIsomon: Let (ϕ, ψ) ∈ BoolCon by
an n-permutation π. Hence, ϕ and π(ψ) are equivalent. We derive a permutation
π̃ for (ϕcd, ψcd) from the n-permutation π in an elementary way. If π exchanges
xi with xj , then π̃ exchanges xi with xj as well as yi with yj. And if π exchanges
xi with ¬xj , then π̃ exchanges xi with yj as well as yi with xj . Note that π̃
does not make any remarkable changes on the c(ψ)- and d(ψ)-part of ψcd other
than rearranging the terms in c(ψ) and d(ψ). We have to prove that ϕcd and
π̃(ψcd) are equivalent and proceed by case differentiation of all possible monotone
assignments.
∃i[xi, yi ∈ Am]: Such assignments satisfy ϕcd and π̃(ψcd) by satisfying the

conjunction (xi ∧ yi).
(¬∃i[xi, yi ∈ Am]) ∧ (∃j[xj , yj /∈ Am]): None of the conjunctions of d(ϕ) and

d(ψ) are satisfied by Am. Furthermore the disjunction (xj ∨yj) in c(ϕ) and c(ψ)
is not satisfied by Am and consequently ϕcd and π̃(ψcd) are not satisfied.

It remains to verify the conform assignments: These are assignments that
contain only one of the variables xi and yi for every i ≤ n. They do not satisfy
d(ϕ) and d(ψ) but do satisfy c(ϕ) and c(ψ). It remains to check r(ϕ) and π̃(r(ψ)).
From the facts that ϕ and π(ψ) are equivalent and a conform assignment for ϕcd

and π̃(ψcd) just simulates an assignment for ϕ and π(ψ) it follows that the truth
tables of ϕcd and π̃(ψcd) are identical in this case. Thus the truth tables of ϕcd

and π̃(ψcd) are identical with respect to all possible assignments and therefore
ϕcd and ψcd are isomorphic.

(ϕ, ψ) ∈ BoolCon ⇐ (ϕcd, ψcd) ∈ BoolIsomon: A permutation π̃ for
(ϕcd, ψcd) ∈ BoolIsomon is called proper if and only if (1) whenever xi and
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xj are exchanged, then so are yi and yj , and (2) whenever xi and yj are ex-
changed, then so are yi and xj .

Claim. For all (ϕcd, ψcd) ∈ BoolIsomon with more than two x-variables there
is a proper permutation π̃p that ensures the equivalence of ϕcd and π̃p(ψcd).

Proof. Suppose that the proposition of the claim does not hold. Then there exists
a pair of formulas (ϕcd

im, ψcd
im) ∈ BoolIsomon with more than two x-variables for

which no proper permutation exists. As a consequence ϕcd
im and π̃im(ψcd

im) are
equivalent for some improper permutation π̃im. We distinguish between the two
cases of π̃im being improper.
∃i[π̃im exchanges xi with xj but not yi with yj ]: Hence, π̃im exchanges yi

with b ∈ {xk : k ≤ n, k �= j} ∪ {yk : k ≤ n, k �= j}. We examine the assignment
Am = {xj , b}. The conjunction (xj ∧ b) in π̃im(d(ψ)) is satisfied by Am and so
is π̃im(ψcd

im). But Am does not satisfy ϕcd
im. Note that the conjunction (xj ∧ b)

is not present in d(ϕ) and therefore Am cannot satisfy d(ϕ). Furthermore not
all of the disjunctions of c(ϕ) contain xj or b because there are more than two
x-variables in ϕcd

im and ψcd
im. Thus the two formulas ϕcd

im and π̃im(ψcd
im) cannot

be equivalent. This is a contradiction to our assumption.
∃i[π̃im exchanges xi with yj but not yi with xj ]: An analogous argumentation

as above shows that the formulas ϕcd
im and π̃im(ψcd

im) cannot be equivalent. This
is a contradiction to our assumption. Hence, the claim follows.

As a consequence, there is a proper permutation π̃p for every (ϕcd, ψcd) ∈
BoolIsomon. A proper permutation only works on the r(ψ)-part of the ψcd-
formula and only rearranges the terms in c(ψ) and d(ψ). Given a proper per-
mutation π̃p we can easily derive an n-permutation π for (ϕ, ψ). If π̃p exchanges
xi with xj as well as yi with yj , then π exchanges xi with xj . And if π̃p ex-
changes xi with yj as well as yi with xj , then π exchanges xi with ¬xj . Since
the y-variables are placeholders for the negative literals, we see that π ensures
(ϕ, ψ) ∈ BoolCon. This concludes the proof of BoolCon ≤p

m BoolIsomon.
Thus we have established BoolIso ≡p

m BoolIsomon. ��
In [AT00] it is shown that BoolIso is not complete for Σp

2 unless the Poly-
nomial Time Hierarchy collapses. As a consequence of Theorem 5.2, this holds
for BoolIsomon as well.

6 Concluding Remarks

We compared the complexity of problems related to the construction of Disjunc-
tive Normal Forms for non-monotone and monotone formulas. We proved that
finding an algorithm that computes a minimal DNF for a monotone formula in
output-polynomial time is the same as solving P = NP. A similar result for arbi-
trary formulas is still open. Anyway, we assume that at least P = PSPACE is the
consequence. Although we proved that calculating the size of a minimal DNF for
a monotone formula is PP-complete (resp. #P-complete), even a PSPACE upper
bound for the non-monotone case is open.
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Some problems for formulas are easier to decide in the monotone case than
for arbitrary formulas. Among them are finding prime implicants (NP- vs. Σp

2-
complete) and calculating the size of a smallest equivalent DNF (PP-complete
vs. unknown). On the other hand, there are problems whose complexity stays the
same for monotone formulas. We could show this polynomial time equivalence
for isomorphism testing and counting satisfying assignments.

Deciding equivalence for monotone formulas is coNP-complete [Rei03] like it
is for Boolean formulas. Nevertheless we were able to prove a log-space upper
bound for the special case Moneconst of equivalence testing. The complexity of
the general problem Mone without a constant bound for the clause size (which
is equivalent to MorePrimimon for instances (ϕ, S) with ϕ in CNF) remains
open.
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Abstract. The present paper gives a classification of the expressive
power of two-variable least fixed-point logics. The main results are:

1. The two-variable fragment of monadic least fixed-point logic with
parameters is as expressive as full monadic least fixed-point logic
(on binary structures).

2. The two-variable fragment of monadic least fixed-point logic without
parameters is as expressive as the two-variable fragment of binary
least fixed-point logic without parameters.

3. The two-variable fragment of binary least fixed-point logic with pa-
rameters is strictly more expressive than the two-variable fragment
of monadic least fixed-point logic with parameters (even on finite
strings).

1 Introduction

In the fields of mathematical logic and finite model theory it has always been
an important issue to compare the expressive power of different logics. Among
the logics that received particular attention in theoretical computer science, ex-
tensions of first-order logic by mechanisms that allow to define relations by in-
duction play a prominent role. Formalising such inductive definitions in a logical
language usually involves some kind of fixed-point construction. In particular,
least fixed-point logic, LFP, is the extension of first-order logic by least fixed-point
operators, whereas M-LFP is the fragment of LFP where fixed-point operators are
monadic, i.e., have arity at most 1.

From a well-known theorem due to Immerman and Vardi [13,19] it is known
that on ordered finite structures the logic LFP precisely characterises the com-
plexity class Ptime. Apart from describing complexity classes, logics – and in
particular fixed-point logics – are used, e.g., as languages for hardware and
process specification and verification, and as query languages for expressing
queries against databases. As observed, e.g., in [2,18], the size of intermedi-
ate results that occur while evaluating a query (i.e., a logical formula) over a
database (i.e., a finite structure) crucially depends on the number of first-order
variables that occur in the formula. If the number of such variables is bounded
by a constant k, the size of intermediate results remains polynomial in the size of
the input structure. Therefore, the combined complexity of the model checking
problem apparently is much smaller when considering the k-variable fragment of
a logic instead of the entire logic.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 422–434, 2005.
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The research community’s considerable interest in bounded variable logics
(cf., e.g., [3,12,18,4,6,14,16,10,9,8]) can partly be explained by the comparably
low combined complexity of the model checking problem for these logics. Further
motivations for studying, in particular, two-variable logics are the decidability of
FO2 and the fact that modal logics can be embedded into two-variable logics. For
example, plain modal logic ML can be embedded into the two-variable fragment
of first-order logic, FO2, the modal iteration calculus MIC [5] can be embedded
into the two-variable fragment of monadic inflationary fixed-point logic, and
the modal μ-calculus Lμ can be embedded into the two-variable fragment of
monadic least fixed-point logic, M-LFP2, which, in turn, can be embedded into
two-variable infinitary logic L2∞ω. In particular the logics FO2 and M-LFP2 have
received a lot of attention in the past (cf., [9,8,16]) in an attempt to explain the
nice model-theoretical and computational properties of modal logics such as ML
and Lμ. An overview of what is known about bounded variable logics and, in
particular, two-variable logics, can be found in [8,16].

The present paper’s aim is to study the expressive power of two-variable
fragments of least fixed-point logic LFP. As observed in [6,9], defining these frag-
ments requires some care, because allowing or forbidding the use of parameters
(i.e., free first-order variables) in least fixed-point operators crucially changes the
expressive power of the logic under consideration. In the literature, LFPk usually
refers to the parameter-free fragment of LFP where k first-order variables and
second-order variables of arity at most k are available, cf. [8].
The logics we consider are

– M-LFP2
param and LFP2

param, the two-variable fragments of monadic and binary
least fixed-point logic, respectively, where the use of parameters is allowed in
fixed-point operators, and

– M-LFP2 and LFP2, the two-variable fragments of monadic and binary least
fixed-point logic, respectively, where least fixed-point operators are not al-
lowed to have parameters.

We only consider fixed-point operators of arity at most two, since fixed-point
definitions of higher arity already syntactically involve more than just two first-
order variables. The presence of only two first-order variables furthermore ren-
ders it reasonable to restrict attention to binary structures, i.e., structures over
a signature that consists of constant symbols and of relation symbols of arity at
most two.

The logics M-LFP, M-LFP2 and M-LFP2
param, in particular, have explicitly been

considered before [6,8,9,17,11]. E.g., M-LFP2 coincides with the logic called FP2

in [8,9] and F̂P2 in [6], whereas M-LFP2
param coincides with the logic called FP2

in [6].
It is known that on finite structures (or, more generally, on classes of struc-

tures of bounded cardinality), LFP2 can be embedded into infinitary logic L2
∞ω

[9,16]. Furthermore, it has been observed in various places (cf., e.g., [16,7]) that
M-LFP2

param can express the transitive closure of a binary relation and therefore
cannot be embedded into L2

∞ω. Consequently, one obtains that already on the
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class of finite graphs, M-LFP2 � M-LFP2
param and M-LFP2

param �≤ LFP2. (Here we
write L � L′ to denote that a logic L is strictly less expressive than a logic L′,
and we write L �≤ L′ to denote that there are problems that can be expressed in
L, but not in L′.)

From [6] it is known that the combined complexity of the model checking
problem for M-LFP2

param and LFP2
param is Pspace-complete, whereas the combined

complexity of the model checking problem for LFP2 is closely related to that of
the modal μ-calculus and therefore belongs to NP ∩Co-NP and is Ptime-hard.

When restricting attention to the class of finite strings, one obtains an entirely
different picture. Due to Büchi’s theorem (cf., e.g., [7]), monadic second-order
logic MSO can describe exactly the regular string languages which, in turn, can
already be described by the modal μ-calculus Lμ. Consequently, on finite strings
the logics MSO, M-LFP, M-LFP2

param, and Lμ all have the same expressive power.
Furthermore, it is known (cf., [9,7]) that the two-variable fragment of monadic
inflationary fixed-point logic, M-IFP2, is capable of describing non-regular string-
languages, and therefore M-LFP2 � M-IFP2.

The present paper’s contribution is to complete the picture of the expressive
power of the two-variable fragments of least fixed-point logics.Our main results are

1. M-LFP2
param = M-LFPparam on binary structures. I.e. the two-variable frag-

ment of monadic least fixed-point logic with parameters is as expressive as
full monadic least fixed-point logic with parameters. Here, of course, the
restriction to binary structures is crucial, as M-LFP contains full first-order
logic.

2. LFP2 = M-LFP2, i.e., parameter-free two-variable binary least fixed-point
logic has the same expressive power as parameter-free two-variable monadic
least fixed-point logic.

3. M-LFP2
param � LFP2

param, and the inclusion is strict already on the class of finite
strings. We prove this result by showing that the non-regular string-language
{anbn | n ∈ N} is expressible in LFP2

param.

Altogether this leads to the following inclusion structure of the expressive
power of the two-variable fragments of least fixed-point logic:

The paper is organised as follows: After fixing some basic notation in sec-
tion 2, we formally introduce the two-variable fragments of least fixed-point logic
in section 3. The equivalence of M-LFP2

param and M-LFPparam is proved in section 4.

M-LFP2 = LFP2 � M-LFP2
param = M-LFPparam � LFP2

param

on the class of binary structures,

and

M-LFP2 = LFP2 = M-LFP2
param = M-LFPparam � LFP2

param

on the class of finite strings.

Fig. 1. Expressive power of the two-variable fragments of least fixed-point logic
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Afterwards, in section 5 we show that LFP2 is equivalent to M-LFP2 and that
LFP2

param can express non-regular string-languages and therefore is strictly more
expressive than M-LFP2

param. Detailed proofs of the results presented here can be
found in the full version of the paper.

2 Preliminaries

As usual, we write Ord for the class of ordinals and ω for the set of finite ordinals
(i.e., non-negative integers). By Pow(S) we denote the power set of a set S. A
signature is a finite set of relation and constant symbols. We call a signature τ
binary if the arity of every relation symbol occurring in τ is at most two. Thus,
structures of a binary signature are essentially coloured graphs.

In this paper we deal primarily with two-variable logics – logics that only al-
low for two distinct first-order variables. As with only two variables we cannot
take advantage of relations of higher arity, we will only consider binary signatures
throughout this paper. In most cases, this restriction has no impact on the validity
of our statements. In the few places where it does, we will state this explicitly.

We use German letters A, B, . . . to denote structures and the corresponding
Roman letters A, B, . . . to denote their universes.

We assume that the reader is familiar with first-order logic (FO). We use
FO(τ) to denote the class of all first-order formulae of signature τ . Besides
first-order variables we also allow free second-order variables in the formulae
(but no second-order quantification). We write ϕ(R1, . . . , Rk,x1, . . . , xn) to in-
dicate that the free first-order variables of the formula ϕ are x1, . . . , xn and the
free relation variables are R1, . . . , Rk. We use x̄ and R̄ as abbreviations for se-
quences x1, . . . , xn and R1, . . . , Rk of variables. Finally, we write ϕ(R1, . . . , Rk,
x̄1, . . . , x̄k, z̄) to indicate that the free first-order variables of ϕ are the variables
in the tuples x̄i and z̄ and that the arity of a tuple x̄i is the same as the arity of
the relation variable Ri.

3 Finite Variable Fragments of Least Fixed-Point Logic

In this section we give a brief introduction to least fixed-point logic and its
two-variable fragments. For a detailed exposition see [7].

Least and greatest fixed points of monotone operators. Let τ be a
signature and let ϕ(R, x̄) be a formula of signature τ which is positive in the
k-ary relation variable R, i.e. every atom of the form Rt̄ in ϕ occurs within the
scope of an even number of negation symbols. ϕ defines for every τ -structure A
a monotone operator1 FA,ϕ : Pow(Ak) → Pow(Ak) via FA,ϕ(P ) := {ā ∈ Ak :
(A, P ) |= ϕ[ā]}, for every P ⊆ Ak. In cases where A is understood from the
context, we simply write Fϕ for FA,ϕ.

A set P is called a fixed point (a pre fixed point) of ϕ in A if, and only if,
FA,ϕ(P ) = P (FA,ϕ(P ) ⊆ P ). P is called the least fixed point of ϕ if P is a fixed
point of ϕ and P ⊆ Q for every fixed point Q of Fϕ. We write lfp(FA,ϕ) for the
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least fixed point of FA,ϕ. Further, as the intersection of all pre fixed points is
itself a fixed point, we get the following characterisation of least fixed points:

lfp(FA,ϕ) =
⋂
{Q : FA,ϕ(Q) = Q} =

⋂
{Q : FA,ϕ(Q) ⊆ Q} (1)

There is also the corresponding notion of a greatest fixed point of ϕ which is
the fixed point that contains all other fixed points. Least and greatest fixed
points are dual to each other, in the sense that for every monotone operator
F : Pow(M) → Pow(M) we have lfp(F ) = gfp(F ), where F is defined as
F (U) := (F (U c))c (where U c denotes the complement of U).

Least (and also greatest) fixed points of monotone operators can also be built
up inductively. For this we define for all ordinals α sets Rα

A,ϕ ⊆ Ak inductively
as R0

A,ϕ := ∅, Rα+1
A,ϕ := FA,ϕ(Rα

A,ϕ), and Rλ
A,ϕ :=

⋃
γ<λ Rγ

A,ϕ for infinite limit
ordinals λ. In cases where A and ϕ are understood, we simply write Rα. Since
FA,ϕ is monotone we have Rα ⊆ Rα+1 for all α. Hence the sequence (Rα)α∈Ord

eventually reaches a fixed point, i.e. there is an ordinal α such that Rα = Rα+1 =
Rγ for all γ > α. We refer to this fixed point as R∞. It is easily seen that if the
structure A is finite then α is finite too. A theorem due to Knaster and Tarski
establishes the equivalence R∞A,ϕ = lfp(FA,ϕ) for all structures A and formulae
ϕ positive in the variable R. Thus, the sequence (Rα

A,ϕ)α∈Ord approximates the
least fixed point of FA,ϕ from below. The sets Rα

A,ϕ are called the stages of
the least fixed-point induction on ϕ in A. A similar induction can be used to
define greatest fixed points, where we start with R0 := Ak and take intersections
instead of unions to define the higher stages.

Least fixed-point logic. The logic LFP(τ) is the extension of FO(τ) by
least fixed-point operators. Precisely: LFP(τ) contains FO(τ) and is closed un-
der Boolean connectives and first-order quantification; and if ϕ(R, x̄, z̄, Q̄) is
an LFP(τ)-formula which is positive in the k-ary relation variable R then for
every k-tuple t̄ of terms [lfpR,x̄ ϕ](t̄) is an LFP(τ)-formula such that for every(
τ ∪̇ {z̄, Q̄})-structure A and every tuple ā ∈ Ak we have A |= [lfpR,x̄ ϕ](ā) if,

and only if, ā ∈ lfp(FA,ϕ). Similarly, we allow formulae [gfpR,x̄ ϕ](t̄) defining
the greatest fixed point of FA,ϕ. The variables in z̄ that are not contained in x̄ are
called the parameters of the fixed-point induction. They will play an important
role in later sections.

Due to the above mentioned duality of least and greatest fixed points, gfp-
operators can easily be replaced by lfp-operators with additional negation sym-
bols. On the other hand, the use of lfp- and gfp-operators allows to transform
every formula into a formula in negation normal form, i.e., a formula where
negation symbols only occur directly in front of atomic sub-formulae.

We continue with the definition of some important fragments of least fixed-
point logic. The monadic least fixed-point logic (M-LFP) is defined as the fragment
of LFP where all fixed-point variables are unary, i.e. of arity ≤ 1. Analogously

1 An operator F : Pow(M) → Pow(M) is monotone iff F (A) ⊆ F (B) for all A ⊆
B ⊆ M .
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we define binary least fixed-point logic (Bin-LFP) as the fragment of LFP where
all fixed-point variables are of arity ≤ 2.

We are primarily interested in fragments of M-LFP and Bin-LFP where the
number of available first-order variables is restricted to two. Recall from above
that the variables z̄ occurring free in ϕ(R, x̄, z̄) other than x̄ are called parameters
of the fixed-point formula [lfpR,x̄ ϕ](t̄). It is well know in finite model theory that
parameters can be eliminated by increasing the arity of the fixed-point variables,
i.e. for every LFP-formula [lfpR,x̄ ϕ(R, x̄, z̄)](t̄) there is an equivalent LFP-formula
[lfpR′,x̄′ ϕ′(R′, x̄′)](t̄′) which is parameter-free. However, this translation does not
only require fixed-point variables of higher arity, it also requires the introduction
of fresh first-order variables. Thus the standard translation of formulae with
parameters into formulae without parameters does not apply to the two-variable
fragments defined above. And indeed, as we will see later on, in this restricted
setting, parameters increase the expressive power of the logics. We therefore
introduce a separate notation for logics with and without parameters.

The logics M-LFP2 and LFP2 are defined as the parameter-free fragment of
M-LFP and Bin-LFP resp. where only two distinct first-order variables may be
used in the formulae. Analogously, the logics M-LFP2

param and LFP2
param are defined

as the fragment of M-LFP and Bin-LFP resp. where only two distinct first-order
variables may be used in the formulae but where the fixed-point operators may
have parameters.

Simultaneous fixed-point inductions. Simultaneous inductions can simplify
the formalisation of properties significantly, but as we will see below, they do
not add to the expressive power of the logics.

Definition 1 (Simultaneous least fixed-point logic). Let R1, . . . , Rk be
relation symbols of arity r1, . . . , rk, respectively. Simultaneous formulae are for-
mulae of the form ψ(x̄) := [lfp Ri : S](x̄), where

S :=

⎧⎪⎨⎪⎩
R1x̄1 ← ϕ1(R1, . . . , Rk, x̄1)

...
Rkx̄k ← ϕk(R1, . . . , Rk, x̄k)

is a system of LFP-formulae ϕi which are positive in all variables R1, . . . , Rk. On
any structure A, the system S induces an operator

FS : Pow(Ar1)× · · · × Pow(Ark) → Pow(Ar1)× · · · × Pow(Ark)

defined as FS(P1, . . . , Pk) = (Fϕ1(P̄ ), . . . , Fϕk
(P̄ )), where Fϕi is the operator

induced by ϕi in S defined as

Fϕi : Pow(Ar1)× · · · × Pow(Ark) −→ Pow(Ari)
(R1, . . . , Rk) �−→ {ā : (A, R1, . . . , Rk) |= ϕi[ā]}.

The stages Sα of an induction on such a system S of formulae are k-tuples of
sets (Rα

1 , . . . , Rα
k ) defined as R0

i := ∅, Rα+1
i := Fϕi(Rα

1 , . . . , Rα
k ), and Rλ

i :=⋃
ξ<λ Rξ for infinite limit ordinals λ.
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For every structure A and any tuple ā from A, A |= ψ[ā] if, and only if,
ā ∈ R∞i , where R∞i denotes the i-th component of the simultaneous least fixed
point of S.

Let S-LFP denote the class of LFP-formulae with simultaneous inductions.
We show next that allowing simultaneous fixed points does not increase the

expressive power of LFP, i.e. S-LFP = LFP.

Theorem 2. For any parameter-free system S of formulae in LFP, positive in
their free fixed-point variables, ϕ := [lfp Ri : S](t̄) is equivalent to a formula
ϕ∗in LFP (without simultaneous inductions). Further, ϕ and ϕ∗ use the same
set of first and second-order variables. In particular, the arity of the involved
fixed-point operators does not increase.

The theorem follows immediately from the following lemma – sometimes
called the Bekič-principle – which is part of the folklore of the community. (See
e.g. [1, Lemma 1.4.2], [15, Lemma 10.9].)

Lemma 3. Let

S :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1x̄1 ← ϕ1(R1, . . . , Rk, x̄1)

...
Rk−1x̄k−1 ← ϕk−1(R1, . . . , Rk, x̄k−1)
Rkx̄k ← ϕk(R1, . . . , Rk, x̄k)

be a system of formulae in LFP such that [lfp R1 : S](x̄1) is parameter-free.
Then [lfp R1 : S] is equivalent to the parameter-free formula [lfp R1 : T ], where

T :=

⎧⎪⎨⎪⎩
R1x̄1 ← ϕ′1(R1, . . . , Rk−1, x̄1)

...
Rk−1x̄k−1 ← ϕ′k−1(R1, . . . , Rk−1, x̄k).

Here ϕ′i := ϕi(R1, . . . , Rk−1, Rkū/[lfpRk,x̄k
ϕk](ū), x̄1) is obtained from ϕi by

replacing every occurrence of an atom Rkū by the formula [lfpRk,x̄k
ϕk](ū).

Note that this lemma cannot be applied in cases where parameters are allowed.

4 Monadic Two-Variable Fixed-Point Logic

As already mentioned in section 1, it is known that M-LFP2 is strictly less ex-
pressive than M-LFP2

param on the class of finite graphs. In fact, M-LFP2 can be
embedded into two-variable infinitary logic L2∞ω, whereas M-LFP2

param can not.
Due to this, it has been claimed by several authors that allowing parameters in
a two-variable fixed-point logic does not yield a logic that behaves as a “proper
two-variable logic”(cf., [9,8,6]) . The next theorem gives additional backup to this
claim by showing that – subject to the obvious restriction to binary structures
– the two-variable fragment of monadic least fixed-point logic with parameters
is as expressive as full monadic least fixed-point logic.
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Theorem 4. M-LFP2
param = M-LFPparam on binary structures. That is, for every

binary signature τ the following is true: For every M-LFP(τ)-sentence ϕ there is
an M-LFP2

param(τ)-sentence ϕ′ that is equivalent to ϕ on all τ-structures.

The proof is based on the simple idea of replacing every first-order quantification
by a new monadic second-order variable and a fixed point construction.

5 Binary Two-Variable Fixed-Point Logic

In this section we concentrate on the expressive power of two-variable binary least
fixed-point logic with and without parameters, respectively. First we show that
parameter-free two-variable binary least fixed-point logic is no more expressive
than parameter-free two-variable monadic least fixed-point logic. Afterwards,
we prove that (already on the class of finite strings) two-variable binary least
fixed-point logic with parameters is strictly more expressive than two-variable
monadic least fixed-point logic with parameters.

Parameter-free two-variable binary least fixed-point logic.
Theorem 5. LFP2 = M-LFP2 on binary structures. That is, for every binary
signature τ the following is true: For every LFP2(τ)-formula ϕ there is an
M-LFP2(τ)-formula ϕ′ that is equivalent to ϕ on all τ-structures.

Proof. By definition, every M-LFP2-formula is also a valid formula in LFP2.
Hence, M-LFP2 ≤ LFP2. Towards the converse, we show by induction on the
number n of binary fixed-point operators that every formula in LFP2 is equiva-
lent to a formula in M-LFP2. For n = 0 this is trivial. Let λ′ be a formula with
n > 0 binary fixed-point operators and let λ(x, y) be a sub-formula of λ′ of the
form λ(x, y) := [lfpR,x,y ϕ](t1, t2) such that ϕ is in M-LFP2. ϕ can be decomposed
into a positive Boolean combination of the following formulae:

– A quantifier-free formula θ(x, y) with free variables x and y. Here, by “quan-
tifier-free” we mean absence of fixed-point operators too.

– Formulae ψ1(x), . . . , ψs(x) where x and only x occurs as a free variable.
– Formulae χ1(y), . . . , χr(y) where y and only y occurs as a free variable.
– A formula ϑ without any free variables

The crucial observation is that as ϕ is in M-LFP2 and we do not allow parameters
to the fixed-point operators, the only sub-formulae with two free variables are
atoms or negated atoms.

The formula ϕ is a positive Boolean combination of the sub-formulae de-
scribed above and all sub-formulae are positive in the fixed-point variable R.
Hence, the system

S :=

⎧⎪⎪⎨⎪⎪⎩
Rxy ← ϕ̂(R, x, y, X̄, Ȳ , T )
Xix ← ψi(x) for all i ∈ {1, . . . , s}
Yiy ← χi(y) for all i ∈ {1, . . . , r}

T ← ϑ
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is positive in all fixed-point variables. Here ϕ̂ is obtained from ϕ by replacing
the sub-formulae ψi(x) by Xix, the χi(y) by Yiy and ϑ by T . Note that T is a
nullary second-order variable, i.e. it can only take the values ∅ or {()}. A simple
induction on the stages of the fixed-point induction establishes the next lemma.

Lemma 6. λ(x, y) ≡ [lfp R : S](x, y). ��
Now we can treat [lfpR,x,y ϕ̂](x, y) as a fixed-point formula over the extended
signature τ ∪̇ {X̄, Ȳ , T} and consider the formulae ϕ̂α of the unravelling of
ϕ̂ defined as ϕ̂0(x) := ¬x = x and ϕ̂n+1(x) := ϕ̂(Rt1t2/ϕ̂n(t1, t2)). Here,
ϕ̂(Rt1t2/ϕ̂n(t1, t2)) is the formula obtained from ϕ̂ by replacing every occur-
rence of an atom Rt1t2 by the result of substituting in ϕ̂n x by t1 and y by t2.
As ϕ̂ is quantifier-free the formulae ϕ̂n are quantifier-free as well. Further, there
are (up to equivalence) only finitely many quantifier-free formulae for a fixed
(and finite) relational signature. Thus, there is an n < ω which only depends
on the signature and not on a particular interpretation of the relation variables
Xi, Yi, and T such that ϕ̂n ≡ ϕ̂n+1. (Precisely, there are n, q < ω such that
ϕ̂n ≡ ϕ̂n+q. But as ϕ̂ is monotone in R, this implies ϕ̂n ≡ ϕ̂n+1.) Consequently,
for ˆ̂ϕ := ϕ̂n,

[lfpR,x,y ϕ̂](x, y) ≡ ˆ̂ϕ (∗)
on all structures over the signature τ ∪̇ {Xi, Yi, T }. Note that in ˆ̂ϕ the variable
R does no longer occur.

The next step is to (a) eliminate in S the rule Rxy ← ϕ̂ by applying the
construction of Lemma 3 and (b) to replace every occurrence of [lfpR,x,y ϕ̂](t1, t2)
by ˆ̂ϕ(t1, t2). This construction yields the system

S′ :=

⎧⎨⎩
Xix ← ψi(Rt1t2/ ˆ̂ϕ(t1, t2)) for all i ∈ {1, . . . , s}
Yix ← χi(Rt1t2/ ˆ̂ϕ(t1, t2)) for all i ∈ {1, . . . , r}

T ← ϑ(Rt1t2/ ˆ̂ϕ(t1, t2))

where ψi(Rt1t2/ ˆ̂ϕ(t1, t2)) denotes the formula obtained from ψi by replacing
every occurrence of an atom Rt1t2 by the formula ˆ̂ϕ(t1, t2) – the result of sub-
stituting in ˆ̂ϕ t1 for x and t2 for y. By Lemma 3 and the equivalence (∗), the
systems S and S′ are equivalent in the sense that for all i ∈ {1, . . . , s} we have

[lfp Xi : S](x) ≡ [lfp Xi : S′](x) (∗∗)

and likewise for T and all Yi. Let (R∞, X∞
i , Y∞i , T∞) be the simultaneous least

fixed point of FS . Further, (∗∗) implies that (X∞
i , Y∞i , T∞) is also the simultane-

ous least fixed point of FS′ . By definition, R∞={(a, b) :(A, R∞, X∞
i , Y∞i , T∞) |=

ϕ̂(a, b)}. We claim that

R∞ = {(a, b) : (A, X∞
i , Y∞i , T∞) |= [lfpR,x,y ϕ̂](a, b)}. (∗∗∗)

We let R′∞ := {(a, b) : (A, X∞
i , Y∞i , T∞) |= [lfpR,x,y ϕ̂](a, b)}. Clearly, R′∞ ⊆

R∞, as R∞ is a fixed point of ϕ̂ (with the given interpretation X∞
i , Y∞i , T∞ of



The Expressive Power of Two-Variable Least Fixed-Point Logics 431

the other free variables) and R′∞ is its least fixed point. Conversely, the sequence
(R′∞, X∞

i , Y∞i , T∞) is a fixed point of FS and thus R∞ ⊆ R′∞.
Now we can put the various parts together to obtain the following chain of

equalities:

R∞ = {(a, b) : (A, X∞
i , Y∞i , T∞) |= [lfpR,x,y ϕ̂](a, b)} ( by (∗∗∗) )

= {(a, b) : (A, X∞
i , Y∞i , T∞) |= ˆ̂ϕ(a, b)} ( by (∗) )

= {(a, b) : A |= ϕ∗(a, b)},

where ϕ∗ is the formula derived from ˆ̂ϕ by replacing every occurrence of an atom
Xit by [lfp Xi : S′](t) and likewise for the relations Yi and T . By construction,
the formula ϕ∗ only contains monadic fixed-point operators and is equivalent
to the formula λ(x, y) from the beginning of the proof. Thus, we can replace
the occurrence of λ in λ′ by ϕ∗. The resulting formula has fewer binary fixed-
point operators as λ′ and, by induction hypothesis, is therefore equivalent to a
formula without any binary fixed-point operators. This concludes the proof of
the theorem. ��
Remark. The theorem naturally extends to the k-variable fragment of LFP,
that is, every parameter-free formula of LFP with at most k distinct first-order
variables and k-ary fixed-point operators is equivalent to a parameter-free k-
variable formula of LFP with fixed-point relations of arity at most k − 1.

Two-variable binary least fixed-point logic with parameters. We show
next that LFP2

param is strictly more expressive than M-LFP2
param. We prove this by

showing that the non-regular string-language {anbn | n ∈ N} can be defined by
an LFP2

param-sentence. In order to give a detailed proof, we need some additional
notation: A non-empty string w over an alphabet Σ is represented by a structure
W over the binary signature τΣ := {min,max, succ, <} ∪ {Qσ | σ ∈ Σ} in the
usual way: If w = w1 · · ·wn with wi ∈ Σ, then W is the τΣ-structure with
universe W = {1, . . , n}, minW = 1, maxW = n, succW = {(i, i+1) | i < n}, <W

is the natural linear order on {1, . . , n}, and QW
σ = {i ≤ n | wi = σ}. We say that

a string-language L ⊆ Σ∗ is expressible in a logic L, if there is an L(τΣ)-sentence
ϕL such that for all non-empty strings w ∈ Σ∗ we have w ∈ L ⇐⇒ W |= ϕL .

Lemma 7. (i) {anbn | n ∈ N} is expressible in LFP2
param.

(ii) {anbncn | n ∈ N} is expressible in LFP2
param. In particular, LFP2

param is capable
of defining a non-context-free string-language.

Proof. We use x and y to denote the two first-order variables available in the
logic LFP2

param.
A binary relation E over {1, . . , n} is called a pairing iff the following is true

for all (i, j), (i′, j′) ∈ E: (1) i < j, (2) i = i′ ⇐⇒ j = j′, and (3) i < i′ ⇐⇒
j′ < j.

Let ϕy(x, y, R) be the following M-LFP2
param-formula

ϕy(x, y, R) :=
[
lfpX,x succ(y, x) ∨ ∃y (Xy ∧R(x, y)

) ∨
∃y (Xy ∧ succ(y, x) ∧ ∃x (Xx ∧R(y, x))

) ]
(x) .
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Claim 1. For every n ∈ N, every pairing E ⊆ {1, . . , n}2, and all i, j ∈
{1, . . , n} the following is true: 〈{1, . . , n}, succ〉 |= ϕy(i, j, E) if, and only if,
i ∈ {j+1, i′, i′+1 | (i′, j+1) ∈ E}. (An illustration is given in Figure 2.)

Due to space limitation, we have to omit the proof of this and the following
two claims.

i’ i’+ nj j+11 1

Fig. 2. The unary least fixed-point de-
fined by the formula ϕy in case that y
is interpreted by some j for which there
exists an i′ such that (i′, j+1) ∈ E. The
nodes that belong to this fixed-point are
marked by black circles.

ni j’i− j’−1 11

Fig. 3. The unary least fixed-point de-
fined by the formula ϕx in case that x
is interpreted by some i for which there
exists a j′ such that (i−1, j′) ∈ E. The
nodes that belong to this fixed-point are
marked by black circles.

Analogously to the formula ϕy(x, y, R) we define an M-LFP2
param-formula

ϕx(x, y, R) as follows:

ϕx(x, y, R) :=
[
lfpY,y succ(y, x) ∨ ∃x (Y x ∧R(x, y)

) ∨
∃x (Y x ∧ succ(y, x) ∧ ∃y (Y y ∧R(y, x))

) ]
(y) .

Claim 2. For every n ∈ N, every pairing E ⊆ {1, . . , n}2, and all i, j ∈
{1, . . , n} the following is true: 〈{1, . . , n}, succ〉 |= ϕx(i, j, E) if, and only if,
j ∈ {i−1, j′, j′−1 | (i−1, j′) ∈ E}. (An illustration is given in Figure 3.)

Finally, we define the LFP2
param-formulae χ(x, y, R) := x < y ∧ ((

x = min ∧
y = max

) ∨ (
ϕx(x, y, R) ∧ ϕy(x, y, R)

))
and ψ(x, y) :=

[
lfpR,xy χ(x, y, R)

]
(x, y) .

Claim 3. For every n ∈ N and all i, j ∈ {1, . . , n}, the following is true:
〈{1, . . , n},min,max, succ, <〉 |= ψ(i, j) ⇐⇒ i < j and j = n− i + 1 .

We are now ready to present the LFP2
param-sentence ϕanbn that defines the string-

language {anbn | n ∈ N} via

ϕanbn := ∃x∃y ψ(x, y) ∧ succ(x, y) ∧ Qa(x) ∧ Qb(y)∧
∀y (y < x → Qa(y)

) ∧ ∀x (y < x → Qb(x)
)
.

Using Claim 3 it is straightforward to see that ϕanbn indeed defines the language
{anbn | n ∈ N}. Thus, the proof of part (i) of Lemma 7 is complete.

The proof of part (ii) of Lemma 7 uses a similar construction. Now, however,
the formula ϕanbncn defining the string-language {anbncn | n ∈ N} is given via
ϕanbncn := ϕa∗b∗c∗ ∧ ϕanbnc∗ ∧ ϕa∗bncn where

– ϕa∗b∗c∗ is an FO2-sentence expressing that the underlying string belongs to
the language defined by the regular expression a∗b∗c∗.
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– ϕanbnc∗ is a LFP2
param-sentence which, for an underlying string of the form

a∗b∗c∗ expresses that the number of as is equal to the number of bs. This
sentence can be obtained in a similar way as the sentence ϕanbn from the
proof of part (i) of Lemma 7.

– ϕa∗bncn is a LFP2
param-sentence which, for an underlying string of the form

a∗b∗c∗ expresses that the number of bs is equal to the number of cs. Again,
this sentence can be obtained in a similar way as the sentence ϕanbn from
the proof of part (i) of Lemma 7. ��

Using Lemma 7, one easily obtains

Theorem 8. M-LFP2
param � LFP2

param on finite strings. That is, already on the
class of finite strings, the two-variable fragment of binary least fixed-point logic
where parameters are allowed is strictly more expressive than the two-variable
fragment of monadic least fixed-point logic where parameters are allowed.

Proof. It is well-known that the string-language {anbn | n ∈ N} is not regular,
i.e., due to Büchi’s theorem, not expressible in monadic second-order logic MSO.
As M-LFP2

param ≤ MSO, we therefore obtain that {anbn | n ∈ N} is not expressible
in M-LFP2

param. From Lemma 7 we obtain that {anbn | n ∈ N} is expressible in
LFP2

param. ��
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Abstract. In this paper we study the properties of undirected vertex-
labeled graphs and the limitations on the languages that they represent.
As a main result of this paper we define the necessary and sufficient
conditions for the languages to be representable by a class of undirected
vertex-labeled graphs and its subclasses. We assume that all obtained
results and techniques are transferable to the case of undirected edge-
labeled graphs and might give us similar results. The simplicity of nec-
essary conditions emphasizes the naturalness of the result. The proof
of their sufficiency is quite non-trivial and it is based on a new notion
of quasi-equivalence, that is significantly different from Myhill-Nerode
equivalence and might not be reduced to it.

1 Introduction

A formal language is a set of finite-length words that can be specified in a great
variety of ways and be associated with different combinatorial objects [2,4,6,7].
For example we can consider a set of paths in a labeled graph that define a
language in an alphabet of graph labels. Actually, different classes of labeled
graphs can place different limitations on the languages that they represent. It
is a well known fact that the necessary and sufficient condition for the language
to be representable by finite edge-labeled graphs, is its regularity. The vertex-
labeled graphs place another structural limitation:

Theorem 1. [6]. A language L can be represented by a vertex-labeled graph iff
the following two base properties hold:

1) all words in L start from the same symbol and
2) language L is closed under all nonempty prefixes.

It is also known from [6] that a language L can be represented by finite
vertex-labeled graph iff L satisfies to the base properties and it is regular.
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In this paper we study the properties of undirected vertex-labeled graphs
with one initial vertex and all final vertices and the limitations on the languages
that they represent. The language that we consider is just a set of labels for
all paths (in a graph) starting from the initial vertex. As a main result of this
paper we define the necessary and sufficient conditions for the languages to be
representable by a class of undirected vertex-labeled graphs and its subclasses.
In principal the presented results and techniques are transferable to the case of
undirected edge-labeled graphs as well and it is most likely that they can give
us similar results.

The simplicity of necessary conditions emphasizes the naturalness of the re-
sult. The proof of their sufficiency is quite non-trivial and it is based on a new
notion of quasi-equivalence of vertices, that is significantly different from Myhill-
Nerode equivalence and might not be reduced to it. An example of a graph with
three quasi-equivalent vertices (labeled by “b”) is shown on the Figure 1.

b

b

b

c

a b

d a d

c

(a) (b)

Fig. 1. An example of undirected graph with the initial vertex “a” (before and after
the gluing of three quasi-equivalent vertices)

The only common property of equivalent and quasi-equivalent vertices in an
undirected vertex-labeled graph is that the gluing of equivalent as well as quasi-
equivalent vertices does not change the language (representable by this graph).

This paper is organised as follows. Next section contains preliminaries. In
the third section we give a technical proofs of intermediate results about graph
modifications, that we use in Section 4 and 5. Next we introduce a new notion of
quasiequivalent vertices and prove some of their properties, which are the core
elements of proofs from Section 5. The Section 5 contains the main results of
this paper. We present here the characterization theorems for classes of languages
representable by finite undirected graphs, infinite undirected graphs and finite
undirected deterministic graphs. The paper ends with some conclusions.

2 Preliminaries

Let X be a finite alphabet and X∗ be a free monoid on the set X . We denote an
empty word by e and X∗ − {e} by X+. The length of a word w = x1x2 . . . xk,
where xi ∈ X , 1 ≤ i ≤ k, is denoted by |w| and wrev is the reverse word
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xkxk−1 . . . x1. We also introduce a partial binary associative operation of splicing
on a set X+ denoted by ◦.
Definition 1. The splicing of two words is defined as follows:

wx ◦ yu
{

wxu, x = y
undefined, x �= y

where x, y ∈ X and w, u ∈ X∗.

Now we define other notations in terms of splicing. Let w be a word that
can be represented as u1 ◦ u2 ◦ u3, where u1, u2, u3 ∈ X+. We call u1 as a prefix
of the word w and u3 as a suffix of w. A language L ⊆ X+ is closed under all
non-empty prefixes if u ∈ L follows from u ◦ w ∈ L, where u,w ∈ X+.

Definition 2. Let L,L′ ⊆ X+. The basic language operations of splicing and
prefix contraction are defined as follows:

– a splicing of two languages: L ◦ L′ = {w ◦ u|w ∈ L, u ∈ L′}
– a prefix contraction of a word w from a language L: w−1 ◦L = {u|w ◦u ∈ L}
– a prefix contraction of a language L′ from a language L: (L′)−1 ◦ L =
∩w∈L′w−1 ◦ L

Definition 3. Let G = (S,E,X, μ) be a simple (i.e without multiple edges),
directed vertex-labeled graph, where S is a (possibly infinite, but counted) set of
vertices, E is a set of directed edges, X is a finite set of labels, μ : S → X is a
mapping from set of vertices to the set of labels and μ(s) is a label of a vertex
s ∈ S.

The vertices s and t are adjacent if they are connected by an edge in G that
we denote by st or (s, t). A graph G is undirected if for any edge st ∈ E there is
the edge ts ∈ E. A pair of edges st and ts is an undirected edge that we denote
by {s, t}. A graph G is called initial if in the set of vertices there is the initial
vertex s0. In order to indicate that a vertex s0 is the initial vertex in a graph G
we denote it by G(s0). From now on we only consider initial graphs and assume
that intersection of set of vertices for different graphs is empty.

A finite sequence of vertices p = s1s2 . . . sk such that sisi+1 ∈ E, 1 ≤ i < k
is a path of length k − 1 in a graph G. Let us say that the path p begins in the
vertex s1 and ends in sk. Then the distance between two vertices in a graph is
the length of the shortest path between them.

The label μ(p) of a path p = s1s2 . . . sk in a graph is a word

μ(s1)μ(s2) . . . μ(sk),

that is concatenation of vertex labels on p.

Definition 4. Let P and Q are two subsets of the set of vertices S, i.e. P,Q ⊆ S.
By P−1Q we denote the set of labels for each paths in a graph G that begins in
a vertex from the set P and ends in a vertex from the set Q.
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Now we introduce several special cases for the notation P−1Q. Let us consider
the case where P = {s} and Q = {t} then we have that P−1Q = s−1t. If s is the
initial vertex in a graph G then we denote s−1t by t. Thus, the notation t in an
initial graph corresponds to the set of labels of all paths from the initial vertex
to the vertex t. The notation s−1 stands for the set P−1Q, where P = {s} and
Q = S. The notation s−1 denotes a set of labels of all paths from a vertex s that
we call a language generated by the vertex s ∈ S in a graph G.

Definition 5. By L(G) we denote a language generated from the initial vertex
s0 in an initial graph G, i.e. L(G) = s0−1.

By sw, where s ∈ S, w ∈ X+, we denote the set of all reachable vertices from
a vertex s by any path with a label w, i.e. sw = {t ∈ S|∃p = s1s2 . . . sk ∈ S∗ :
s1 = s, sk = t, μ(p) = w}.

Definition 6. Two vertices s, t ∈ S are equivalent, if s−1 = t−1. This equiva-
lence relation is denoted as ε.

Definition 7. A graph G is reduced if it does not contain any equivalent vertices.

Definition 8. A graph G is deterministic if any vertex s ∈ S does not have any
two adjacent vertices with the same label.

Let us given some equivalence relation ρ ⊆ S × S (reflexive, transitive and
symmetric relation), such that two vertices s1 and s2 have the same labels if
they are in the same equivalence class generated by ρ. By ρ(s), where s ∈ S, we
denote a set {t|(s, t) ∈ ρ}.
Definition 9. The graph G/ρ = (G′, E′, X ′, μ′) is a factor graph of a graph G
if G′ = {ρ(s)|s ∈S}, ρ(s)ρ(s′) ∈ E′ for all edges ss′ ∈ E, μ′(ρ(s)) = μ(s), ρ(s0)
and s0 are initial vertices in G/ρ and G, respectively.

A graph G/ρ from G can be constructed by gluing all vertices in equivalence
class ρ(s) for each s ∈ S. In particular we say that G′ is constructed from G by
gluing two vertices s and t if G′ and G/ρ are isomorphic and the equivalence
relation ρ partitions the set of vertices of a graph G into one-element equivalence
classes excepting a single two-element equivalence class ρ(s) = {s, t}.

Now we define two kind of simple graphs that we call Line and Y arn. Let
w = x1x2 . . . xk is a word of a length k. By Line(w) we denote an undirected
graph with k vertices s1, ..., sk, where s1 is the initial vertex, {{si, si+1}|1 ≤ i <
k} is a set of edges and each vertex si has a label xi, 1 ≤ i ≤ k. An example for
a graph Line(w) where w = abcbb is shown on the Figure 2.

Definition 10. By Y arn(L) for a language L, in which all words start from
the same symbol, we denote an undirected graph that is constructed from graphs
{Line(w)|w ∈ L} by their direct sum and by gluing the initial vertices of all
graphs Line(w) into one initial vertex of Y arn(L).
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a b c b b

Fig. 2. An example for a Line(w) where w = abcbb

a

b

b c

b c b

Fig. 3. An example for a Y arn(L), where L = {ab, abc, abcb}

An example for Y arn(L), where L = {ab, abc, abcb}, is shown on the Figure 3.
A class of regular languages we denote by Reg. We say that a language

L ⊆ X+ is representable by a graph (that is denoted by L ∈ Graph) if there
exist an initial graph G, such that L(G) = L.

We also use the following notations for languages generated by different
classes of graphs: FGraph is a class of languages generated by finite graphs,
DGraph is a class of languages generated by deterministic graphs, UGraph is a
class of languages generated by undirected graphs, FUGraph is a class of lan-
guages generated by finite undirected graphs, FUDGraph is a class of languages
generated by finite undirected deterministic graphs. For example, L ∈ FUGraph
means that there is a finite undirected graph G such that L(G) = L.

3 Intermediate Results

In this section we show a number of intermediate results that we use for char-
acterization of classes UGraph, FUGraph and FUDGraph. Note, that the lan-
guages and graph labels are defined in the same finite alphabet X .

Lemma 1. Let G be a directed vertex-labeled graph and s, t are two vertices in
G with labels x and y, respectively and the following two properties:

– an edge ts does not belong to the graph G and
– (yx)−1 ◦ t−1 ⊇ s−1.

If G′ is a graph constructed from G by adding an edge ts then the language
generated by G′ does not differ from a language generated by G, i.e. L(G) =
L(G′).

Proof. Let us add one edge ts to a directed vertex-labeled graph G, that is
obviously can only extend language L(G). Thus, it is enough to show that for
any path p which goes via an edge ts from the initial vertex we can find a path
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p′ with the same label that also starts from the initial vertex without passing an
edge ts, i.e. μ(p) = μ(p′).

Let us consider a path p = s1s2 . . . sk from the initial vertex such that passes
an edge ts in a graph G′. Let s1s2, s2s3, . . . , sk−1sk be a sequence of edges that
corresponds to the path p and contains an edge ts. Let i be a maximum number,
such that ts = sisi+1. According to the initial condition (yx)−1◦t−1 ⊇ s−1 there
is a path sis

′
i+1s

′
i+2 . . . s

′
k with a label xixi+1xi+2 . . . xk, where xixi+1 = yx, but

which does not pass an edge ts. Thus there is a path r = s1 . . . sis
′
i+1s

′
i+2 . . . s

′
k

in G′ with a label x1x2 . . . xk such that a number of ts-edges in r is less than
in p by one. From it follows that for any path p in G′ we can construct a path
p′ in G′, that does not contain any ts edges, by repeating the above reduction a
finite number of times. In such case we have that for any path p in G there is a
path p′ in G such that μ(p) = μ(p′) and therefore L(G) = L(G′).

Lemma 2. For any (finite or infinite) graph G the identity L(G) = L(G/ε)
holds.

Proof. Let G be an initial vertex-labeled graph and let s and t be an equivalent
vertices in G. Let us assume that for some vertex s′ there is an edge ss′ and there
is no edge ts′ in a graph G. In this case we meet initial condition of Lemma 1,
so the language represented by a graph G would not be changed by extending G
with an edge ts′. Moreover, a language generated by any vertex in the extended
graph would not be changed as well.

Let us extend the graph G in the following way: for any equivalent vertices
s and t (i.e. (s, t) ∈ ε) and some vertex s′ we add an edges ts′ iff an edge ss′

belongs to the graph.
From it follows that the sequence of vertices ε(s1), ε(s2), . . . , ε(sk) is path

starting from the initial vertex in a factor graph G/ε iff there exist a sequence
of vertices r1, r2, . . . , rk, where ri ∈ ε(si), 1 ≤ i ≤ k, that is a path in a graph G
and r1 is its initial vertex. Above facts show that for any graph G the equality
L(G) = L(G/ε) holds.

4 Quasiequivalent Vertices

Let us define a quasi-equivalence relation that is significantly different from ε.

Definition 11. Given a graph G that generates a language L. Two vertices s
and t from a graph G are quasiequivalent if (s)−1 ◦ L = (t)−1 ◦ L.

Let us denote the quasiequivalence relation of vertices by α.

Definition 12. A graph G is irreducible if it does not contain any quasiequiva-
lent vertices.

It is clear that equivalence and quasiequivalence relations coincide in deter-
ministic graphs. Lemma 4 shows us another property of quasiequivalence relation
that L(G) = L(G/α).
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Lemma 3. Given a graph G and a language L with the following base properties

- all words in L start from the same symbol and
- language L is closed under all nonempty prefixes.

The language L(G) ⊆ L iff we have that s−1 ⊆ (s)−1 ◦ L for any vertex s in a
graph G.

Proof. Let us remind, that in expression “(s)−1” from “s−1 ⊆ (s)−1 ◦L” by s we
denote the set of labels of all paths that start from the initial vertex of a graph
G and end in the vertex s, which are words from X+. The above lemma follows
from the fact that s−1 ⊆ (s)−1 ◦ L is equivalent to s ◦ s−1 ⊆ L.

Lemma 4. For any (finite or infinite) graph G the identity L(G) = L(G/α)
holds.

Proof. Let G be an initial vertex-labeled graph. Note that the operation of gluing
any two vertices in a vertex-labeled graph can only extend the language that it
represents. Let us assume that:

– L = L(G),
– s and t are quasiequivalent vertices and
– W = (s)−1 ◦ L = (t)−1 ◦ L.

From Lemma 3 follows that s−1 ⊆W and t−1 ⊆W .
Let us construct an extension of graph G by adding new vertices and edges

in such a way that s−1 = t−1 = W in an extended graph holds. In particular
we can do it as follows. Let us add by direct sum a graph Line(w) to a graph
G for the vertex s and each word w ∈ W and glue a vertex s with the initial
vertex of Line(w). Next we can repeat the same construction with the vertex
t. According to the Lemma 3 the language represented by a graph G after its
extension is not changed.

Since a pair of vertices s and t are now equivalent in the extended graph G
we can glue it without changing the language represented by this graph. Now we
can delete all introduced edges and nodes to get a graph that can be constructed
by just gluing quasiequivalent vertices s and t.

Lemma 5. If G be infinite graph and L(G) be a language such that L(G) ∈
FGraph then a graph G/α is finite.

Proof. Since the power of a set {(W )−1 ◦ L(G)|W ⊆ L(G)} is bounded by a
number 2N , where N = |{w−1 ◦ L(G)|w ∈ L(G)}| we have a finite number of
classes with quasiequivalent vertices.

Note, that the proposition in Lemma 5 does not hold for the relation ε.
The example of an infinite directed graph G with quasiequivalent vertices is

shown on the Figure 4. It is clear that L(G) = a(aa)∗b. The vertices with the
same pattern in the Figure 4 are quasiequivalent. This graph has no equivalent
vertices except those that labeled with b. The graph G/ε on the Figure 5, is
infinite and the graph G/α on the Figure 6 is finite. However it follows from
Lemma 2 and Lemma 5 that L(G) = L(G/ε) = L(G/α).
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Fig. 4. An example of quasiequivalent vertices. The vertices with the same pattern are
quasiequivalent, but not equivalent.
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Fig. 5. The graph G/ε, where G is shown on Figure 4

a a

b

Fig. 6. The graph G/α, where G is shown on Figure 4

5 Characterization of Graph Representable Languages

In this section we present our main results about characterization of languages
that can be represented by undirected graphs.

Definition 13. Symmetric closure of a language L ∈ Graph is a minimal lan-
guage [L] ∈ UGraph such that L ⊆ [L] (note that L ∈ UGraph iff L = [L]).
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Theorem 2. L(Y arn(L)) = [L].

Proof. By Definition 10, Y arn(L) is an undirected graph that represents a lan-
guage that include all words from a language L. From it follows that [L] ⊆
L(Y arn(L)). Let us prove the inverse proposition L(Y arn(L)) ⊆ [L].

Let G be a graph such that L(G) = [L] and p = s1s2 . . . sk is a path from
G, that starts in the initial vertex and μ(p) = w. Let a graph Line(w) has a
set of vertices {t1, t2, . . . , tk}, and set of edges {titi+1}, 1 ≤ i < k and t1 is the
initial vertex. Now we define a mapping φ such that φ(ti) = si, 1 ≤ i ≤ k, which
is a homomorphism of graph Line(L) to G. From the above mapping and the
definition of Y arn(L) follow that there is a homomorphism from Y arn(L) to G.
Thus, we have that L(Y arn(L)) ⊆ [L].

Now we have a straightforward but useful corollary.

Corollary 1. L ∈ UGraph iff L = L(Y arn(L)).

Theorem 3. A language L can be represented by undirected graph, i.e. L ∈
UGraph, iff it satisfies to the following properties:

1) all words of the language L are starting from the same symbol
2) the language L is closed under prefixes
3) if w, u ∈ L then w ◦ wrev ◦ u ∈ L

4) if w ◦ u ◦ v ∈ L then w ◦ u ◦ urev ◦ u ◦ v ∈ L.

Proof. The straightforward check of the above four properties give us the ne-
cessity of conditions. Let us prove that these four properties are also sufficient.
Namely we prove that L = L(Y arn(L)) follows from the properties 1-4.

In the first part of the proof we show that if w = x1x2 . . . xk ∈ L then
L(Line(w)) ⊆ L. A graph Line(w) has k vertices (be definition) that we denote
by si, 1 ≤ i ≤ k, with initial vertex s1 and a set of edges {{si, si +1}|1 ≤ i < k},
where si has a label xi. We will also say that i is the coordinate of a vertex si.

Let p be a path from a vertex s1 in a graph Line(w) which differs from
s1s2 . . . sk. Let us prove that the label of the path p belongs to the language L,
i.e. μ(p) ∈ L. From property 2 of this theorem follows that if extension of any
path belongs to a language L the original path also belongs to L, so without loss
of generality we can assume that p ends in a vertex sk. Let us represent p in the
form

r1 ◦ l1 ◦ r2 ◦ l2 ◦ . . . ◦ rn−1 ◦ ln−1 ◦ rn,

where li is a path in Line(w) with decreasing coordinates (movement to the left)
and ri is a path in Line(w) with increasing coordinates (movement to the right).
Now we can show that there exist a path p′ in Line(w), where p′ starts and ends
at the same vertex as p and |p′| < |p|, such that from μ(p′) ∈ L follows μ(p) ∈ L.
Note that we can get p′ from p by deleting some of its subpaths. If we continue
the process of deletion we show that from μ(s1s2 . . . sk) ∈ L follows μ(p) ∈ L.
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Let a path ri, 1 ≤ i ≤ n starts and ends in vertices with coordinates ui and
oi, respectively. Actually there are only two cases: either u1 < u2 < . . . < un or
ui+1 ≥ ui+2 for some i, 0 < i < n− 1.

Case 1. Let us assume that u1 < u2 < . . . < un for a set of subpaths r1, . . . , rn

in path p. It is obvious that the property o1 > o2 > . . . > on does not hold
for p since rn ends with a maximal coordinate k, i.e. on = k. Thus, there is i,
1 ≤ i < n, such that oi ≤ oi+1. From it follows that a path ri can be represented
as ri = r ◦ lrev

i and ri+1 as ri+1 = lrev
i ◦ r′. Thus we have that

p = r1 ◦ l1 ◦ . . . ◦ r ◦ lrev
i ◦ li ◦ lrev

i ◦ r′ ◦ . . . ◦ rn,

and therefore
p′ = r1 ◦ l1 ◦ . . . ◦ r ◦ lrev

i ◦ r′ ◦ . . . ◦ rn.

is a path in Line(w). It is easy to check that μ(p) ∈ L if μ(p′) ∈ L, since we can
construct μ(p) from μ(p′) by applying the property 4 of the theorem.

Case 2. Let us assume that ui+1 ≥ ui+2 for some i, 0 ≤ i < n − 1. There are
also two subcases: oi ≤ oi+1 and oi > oi+1. In the proof of the first subcase we
mimic the case 1 argumentation. So we consider here only the second subcase.

If oi > oi+1 then a subpath li can be represented as li = l◦rrev
i+1 and a subpath

li+1 can be represented as li+1 = rrev
i+1 ◦ l′. From it follows that

p = r1 ◦ . . . ◦ l ◦ rrev
i+1 ◦ ri+1 ◦ rrev

i+1 ◦ l′ ◦ . . . ◦ rn

and therefore there is a path p′ in a graph Line(w) such that

p′ = r1 ◦ . . . ◦ l ◦ rrev
i+1 ◦ l′ ◦ . . . ◦ rn.

So we have that μ(p) ∈ L if μ(p′) ∈ L, since we can construct μ(p) from
μ(p′) by applying the property 4 of the theorem. Now we can apply the same
method a number of times to transfer path p into a path s1s2 . . . sk, that has a
label from a language L. Thus μ(p) ∈ L and L(Line(w)) ⊆ L.

It is clear that the deletion of all incoming edges for the initial vertex of
a graph Y arn(L) give us a graph that generate L. In the second part of the
proof we show that the property 3 allows us to restore the deleted edges without
any changes in a language generated by that graph. It implies the fact that
L = L(Y arn(L)).

Let us consider a graph G that generates a language L and let a vertex t be
an adjacent to the initial vertex s. It follows from the property 3 of the Theorem
that any vertex t satisfies to Lemma 1. It means that any edge, outgoing from the
initial vertex in a graph G can be transformed into undirected edges without any
changes of the language that G generates. Now we can come to the conclusion
that L = L(Y arn(L)), since we can restore all edges (incoming to the initial
vertex) that we deleted from Y arn(L).

The Theorem 3 shows the characterization of languages generated by undi-
rected vertex-labeled graphs (i.e UGraph). Now we consider the class FUGraph,
which is a subclass of UGraph.
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Theorem 4. FUGraph=FGraph ∩ UGraph

Proof. Let L be a language, such that FGraph ∩ UGraph. From Lemma 5 fol-
lows that any infinite undirected graph has a finite number of quasiequivalent
classes. By gluing all quasiequivalent vertices in each class we have a finite graph
that generates L. Since the graph obtained from an undirected graph by glu-
ing quasiequivalent vertices is undirected, we have that FUGraph=FGraph ∩
UGraph.

Since FUGraph = FGraph ∩ UGraph is equivalent to FUGraph = Reg ∩
UGraph we have the following corollary:

Corollary 2. The langauge L is representable by a finite undirected graph, i.e
L ∈ FUGraph iff L satisfies to the properties of Theorem 3 and L ∈ Reg.

Since Lemma 5 gives us an upper bound on a number vertices in any irre-
ducible graph that generate a language L ∈ FUGraph, the following corollary
holds:

Corollary 3. The membership problem for FUGraph, i.e. checking whether a
language L belongs to the class FUGraph, is decidable.

Proof. From Lemma 5 follows that the number of quasieqivalent vertices is
bounded by a constant k. Thus we can run over the whole set of undirected
detrministic and nondetrministic graphs with a number of verices less then k
and check if the language L can be represented by some of these graphs, which
is just the comparison of regular languages. If we can find at least one such graph
then the language L is in FUGraph and L /∈ FUGraph otherwise.

As a last result of this section we present a characterization of languages
generated by finite undirected deterministic graphs.

Theorem 5. Given a reduced deterministic graph G which generates a language
L. The language L ∈ FUDGraph iff G is undirected.

Proof. If a reduced deterministic graph G, which generates L, is undirected
then L ∈ FUDGraph by definition. Let us prove the necessary part of this
proposition.

Let G be a finite undirected deterministic graph, which generates a language
L. Since L ∈ FUDGraph we can state that such graph exists. Since equivalence
and quasiequivalent relations coincide in deterministic graphs we have that G/α
is a deterministic graph, which generates L. On the other hand G/α is undirected
graph, which required to be proved.

Theorem 6. The langauge L is representable by a finite undirected determinis-
tic graph, i.e L ∈ FUDGraph iff L satisfies to the following properties:

1) L ∈ Reg;
2) all words in L starting from the same symbol;
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3) language L is closed under all nonempty prefixes;
4) if wxy ∈ L, where x, y ∈ X and w ∈ X+ then (wxyx)−1 ◦ L = (wx)−1 ◦ L.

Proof. The necessity of the above properties is obvious, so we only prove that
they are sufficient. Let G be a irreducible graph and L = L(G). Then we have
that the set {s−1|s ∈ G} is equal to the set {w−1 ◦ L|w ∈ L}. From property 4
of this Theorem follows that if from a vertex s to a vertex t in G there exist an
edge st then there exist an edge from t to s. Thus, the graph G is undirected,
q.e.d.

6 Conclusion

In this work we gave a characterization of languages that can be represented by
different types of undirected graphs. Note that all results are ultimate in terms
that both necessary and sufficient propositions were proved. The topic is also
related to exploration of graphs by software entity (i.e. finite automata, mobile
robots, software agents etc.) and map validation problems that have received a
widespread attention in recent years [1,5,7,8].
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Abstract. We prove that it is #P -hard to compute the mixed discrim-
inant of rank 2 positive semidefinite matrices. We present poly-time al-
gorithms to approximate the ”beast”. We also prove NP-hardness of two
problems related to mixed discriminants of rank 2 positive semidefinite
matrices. One of them, the so called Full Rank Avoidance problem, had
been conjectured to be NP-Complete in [23] and in [25]. We also present
a deterministic poly-time algorithm computing the mixed discriminant
D(A1, .., AN) provided that the linear (matrix) subspace generated by
{A1, .., AN} is small and discuss randomized algorithms approximating
mixed discriminants within absolute error.

1 Introduction

1.1 Mixed Discriminant, Permanent and Mixed Volume

Permanent:
Let A = (aij) be an n× n matrix. The number

per(A) =
∑

σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the symmetric group on n elements, is called the permanent of A.
For a 0, 1 matrix A, per(A) counts the number of perfect matchings in G, the
bipartite graph represented by A.

It is #P -hard to compute the permanent of a nonnegative (even 0, 1) matrix
[22], and so it is unlikely to be efficiently computable exactly for all matrices. The
realistic goal, then, is to try and approximate the permanent efficiently as well as
possible, for large classes of matrices. Efficient poly-time probabilistic algorithms
that approximate the permanent extremely tightly ((1+ε)-factor) were devel-
oped first for several classes of graphs (e.g. [16]). Eventually, a fully-polynomial
probabilistic algorithm that approximate the permanent up to (1+ε)-factor was
developed in [17].

The decade between [16] and [17] produced many remarkable results. First,
the technique from [16] (Markov Chain Monte Carlo Method together with
conductance-based upper bounds on the second eigenvalue) was used to ap-
proximate volume of convex sets. This line of research naturally led to mixed
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volumes and mixed discriminants (to be defined below) [9]. Both mixed volumes
and mixed discriminants can be viewed as “noncommutative” versions of per-
manents and have fundamental importance as in convex geometry as well in
combinatorics.

In order to partially solve one open problem from [9], A. Barvinok ([3]) devel-
oped a probabilistic polynomial algorithm to approximate mixed discriminants of
positive-definite n by n matrices up to a factor cn, with constant being improved
in [5].

Let us recall some basic definitions. Let A1...An be n × n real symmetric
matrices. It is well known (and easily seen) that the value of det(x1A1+· · ·xnAn)
is a homogeneous polynomial of degree n in variables x1...xn. The number

D(A1...An) =
∂n

∂x1...∂xn
det(x1A1 + · · ·xnAn) (1)

is called the mixed discriminant of A1...An.
The mixed discriminant is known [2] to be monotone, that is, 0 . Ai . Bi,

for i = 1...n implies D(A1...An) ≤ D(B1...Bn). 1 In particular, if the matrices
A1...An are positive semidefinite, the mixed discriminant D(A1...An) is nonneg-
ative.

From now on, we will be interested in the special case where the matrices
A1...An are positive semidefinite. The number

V (K1...Kn) =
∂n

∂x1...∂xn
V ol(x1K1 + · · ·xnKn)

is called the mixed volume of convex sets K1...Kn. Mixed discriminants and
mixed volumes generalize permanents: If the matrices A1...An are diagonal,
namely Aj = diag(b1j...bnj), for j = 1...n, let B = (bij). Then per(B) =
D(A1...An). If entries of matrix B are nonnegative then per(B) can be realized
as a mixed volume of the corresponding ”boxes”. It follows that the computation
of a mixed discriminant of n positive semidefinite matrices is #P -hard, since it
is at least as hard as computing the permanent of a nonnegative matrix. On the
other hand, the first efficient probabilistic algorithm that provides a 2O(n)-factor
approximation for permanents of arbitrary positive matrices was obtained by
Barvinok in [3] via mixed discriminants of positive definite matrices. We recall
that the idea (observation) to look at permanents as mixed discriminants was the
only new step in Egorychev’s proof of van der Waerden conjecture [11]. It is clear
in view of Barvinok’s inequality ([3]), which connects mixed volumes of ellipsoids
with mixed discriminants of their matrices, that if one can approximate mixed
discriminants within a multiplicative constant which depends only on dimension,
then it is possible to approximate mixed volumes of ellipsoids ( and thus so called
well presented convex bodies) within a multiplicative constant depending only
on dimension. The question whether exists such deterministic approximating al-
gorithm was posed in [9]. Barvinok results provided such probabilistic algorithm.
1 Here and henceforth the sign � denotes the partial ordering induced by the cone of

positive semidefinite matrices, namely A � B iff B − A is positive semidefinite.
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Finally, in [18] a deterministic polynomial algorithm that computes the mixed
discriminant of an n-tuple of positive semidefinite matrices to within a multi-
plicative factor of en has been developed. Surprisingly, this is the same bound
which was achieved in [21] for permanents of arbitrary nonnegative matrices.

Anyway, it might seem that computing mixed discriminants is almost the
same as computing permanents. We will try to indicate in this paper that it is
not so. We don’t say though that it is impossible to get for mixed discriminants
the same result as for permanents in [17].

Recall that if Ai =
∑

j xi,jx
∗
i,j(1 ≤ i, j ≤ n) then

D(A1...An) =
∑

j1,...,jn

Det(x1,j1x
∗
i,j1 + ... + xn,jnx

∗
i,jn

). (2)

There exists a poly-time algorithm to decide whether exist j1, ..., jn such that

Dj1,...,jn =: Det(x1,j1x
∗
1,j1 + ... + xn,jnx

∗
i,jn

) > 0. (3)

This algorithm is just a particular case of a standard two matroids intersec-
tion problem [14]. It is analogous to checking whether per(B) of nonnegative
matrix B is nonzero.

But for the permanents the following problems are easy.

P1. To compute maximum over all permutations of B(1, π(i))...B(n, π(n)).
P2. To compute minimum over all permutations of B(1, π(i))...B(n, π(n)).
P3. To compute per(B) provided each row of B has at most two nonzero entries.
P4. To compute per(B) provided rank(B) is ”small”.

Natural generalizations of these problems to mixed discriminants are:

D1. To compute maximum over all choices of j1, ..., jn of Dj1,...,jn .
D2. To compute minimum over all choices of j1, ..., jn of Dj1,...,jn , or to check

whether there exist j1, ..., jn such that Dj1,...,jn = 0.
D3. To compute D(A1...An) provided that Rank(Ai) ≤ 2, i.e. ji ≤ 2(1 ≤ i ≤

n).
D4. To compute D(A1...An) provided that the linear (matrix) space spanned

by {A1, ..., An} has ”small” dimension.

We will show in the following sections that problems D1 and D2 are NP-
HARD and that D3 is #P-HARD even for rank 2 matrices ; and that problem D4
is ”easy” for an arbitrary matrices. Notice that if D1 were easy it would produce
a deterministic poly-time algorithm to approximate mixed discriminants within
nn multiplivative bound and this is sufficient to answer positively the question
from [9]. Before our proof in [15] of Bapat’s conjecture [2] the (unpublished)
bound was about nn2

.
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2 Basic Formulas for Mixed Discriminants of Rank 2
Matrices

Let A1...An be n×n positive semidefinite matrices of rank 2. I.e., Ai = xi,0x
∗
i,0 +

xi,1x
∗
i,1, 1 ≤ i ≤ n.

As we recalled above, it is “easy” to check whether D(A1...An) > 0. Thus
let us assume wlog that the vectors {x1,0, ..., xn,0} form a basis ( are linearly
independent).

Then xi,0 = C(ei) for corresponding nonsingular matrix C and a standard
canonical basis {e1, ..., en}. Therefore

D(A1...An) = Det(C)2D(e1e
∗
1 + y1y

∗
1 , ..., ene

∗
n + yny

∗
n), yi = C−1(xi,1). (4)

Definition 1. Let A be n × n matrix. For a subset S ⊂ {1, .., n} we define the
principal submatrix AS = {AS(i, j) : i, j ∈ S}.

φ(A, k,m) =
∑
|S|=k

Det(AS)m, ψ(A, k,m) =
∑
|S|=k

|Det(AS)|m. (5)

Correspondingly assuming that φ(A, 0,m) = ψ(A, 0,m) ≡ 1 we define

φ(A,m) =
∑

0≤k≤n

φ(A, k,m), ψ(A,m) =
∑

0≤k≤n

ψ(A, k,m). (6)

We also define AS,T = {AS,T (i, j) : i ∈ S, j ∈ T }.
We recall that if the characteristic polynomial

Det(A− xI) =
∑

0≤k≤n(−1)ka(k)xn−k

then a(k) = φ(A, k, 1). Also, φ(A, 1) = Det(I + A).

Proposition 1. Let A be a n× n matrix with ith column equal to yi. Then

D(e1e
∗
1 + y1y

∗
1 , ..., ene

∗
n + yny

∗
n) = φ(A, 2). (7)

The mixed volume V (P1, ..., Pn) = ψ(A, 1), where Pi is a 2-dimensional parallel-
ogram with axis ei and yi.

The proof is based on the following observation : associate with an n-dimens-
ional boolean vector b = (b1, .., bn) (a subset S) n vectors (z1, .., zn), where zi = ei

if bi = 0 and zi = yi if bi = 1. Then Det([z1|..|zn]) = Det(AS).
A particular instance of problem D2 for rank two matrices is to compute

min|Det(AS)| over all subsets S. In [25] what we call ”problem D2” for rank k
matrices is called Full Rank Avoidance Problem for n blocks consisting of
k n-dimensional vectors.

Consider A = I − xeT , where x is n × 1 matrix and e is 1 × n matrix of all
ones. It follows that

Det(AS) = 1−
∑
i∈S

x(i). (8)
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Thus to check whether min|Det(AS)| over all subsets S is equal to zero is
equivalent to the KNAPSACK PROBLEM. We just proved the NP-hardness
of D2 even for rank two matrices.

In other words , we proved that given n pairs {(Xi,0, Xi,1) : 1 ≤ i ≤ n} of
integer n-dimensional vectors it is NP-HARD to decide if there exist b(1), ..., b(n)
such that the vectors X1,b(1), X2,b(2), ..., Xn,b(n) are linearly dependent : Full
Rank Avoidance Problem for n blocks consisting of 2 n-dimensional vectors
is NP-HARD over the field Q of rational numbers . (It had been proved in [27]
that the same problem is ”easy” for the field GF (2) .)

To prove NP-hardness of D1 is also not difficult. We use a reduction from
the exact covering by 3-sets. Consider the following symmetric block matrix:

D =
(

0 X∗

X 0

)
,

where X is some rectangular matrix. It is easy to see that max|Det(DS)|
over all subsets S is equal to Max(1,M(X)), where M(X) = max|S1|=|S2|≥1

|Det(XS1,S2)|2.
Consider a family F = {F1, ..., Fk} of 3-subsets of {1, 2, ..., n} : Fi = {1 ≤

ji,1 < ji,2 < ji,3 ≤ n}. For a 3-dimensional vector z = (z1, z2, z3) and a subset
Fi define a n-dimensional vector

(fz,i(1), ..., fz,i(n)) : fz,i(ji,l) = zl(1 ≤ l ≤ 3) and zero otherwise .

Notice that if Fi ∩ Fj = ∅ then for any two 3-dimensional vectors u and v
vectors fu,i and fv,j are orthogonal. We need three orthogonal 3-dimensional
vectors z(1), z(2), z(3) satisfying the following property :

fz(r),i is orthogonal to fz(d),j(1 ≤ r, d ≤ 3; i �= j) iff Fi ∩ Fj = ∅.

The following vectors satisfy the condition :

z(1) = (1, 1, 1), z(2) = (1, 2, 3), z(3) = (5,−4,−1).

Put u(r) = arz
(r) in such a way that ‖u(r)‖ = 2(1 ≤ r ≤ 3) . Consider

now the folowing n × 3k matrix X = [X1, X2, X3], where Xr is n × k matrix
(1 ≤ r ≤ 3) and the ith column of Xr is equal to fu(r),i(1 ≤ i ≤ k; 1 ≤ r ≤ 3).

Notice that all columns of matrix X have norm equal to 2. Using Hadamard’s
determinantal inequality we get that

maxS |Det(DS)| = 2n

if and only if there exists an exact covering of {1, 2, ..., n} by somen
3 subsets

from F . As this problem is known to be NP-Complete, we have proven that the
problem D1 is NP-HARD.

Lemma 1.

φ(A, 2) = E(det(D + A))2 = E(det(I + DA))2 = E(det(I + AD))2. (9)
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Here D is Diag(ξ1, ..., ξn), ξi are independent symmetric random variables with
first moment equal to zero, and second moment equal to 1.

Proof: We adopt to this rank two situation the formula ( a straightforward
generalization of Godzil-Gutman formula) from [3] :

φ(A, 2) = D(e1e
∗
1 + y1y

∗
1 , ..., ene

∗
n + yny

∗
n) =

E(Det([μiei + ξiyi|...|μnen + ξnyn])2 (10)

Here (μ1, ..., μn) is a random vector independent of (ξ1, ..., ξn) and uniformly
distrubuted on {1,−1}× ...×{1,−1} ( a Rademacher sequence) ; A = [y1|...|yn].

It follows from symmetricity and independence that

E(Det([μiei + ξiyi|...|μnen + ξnyn])2 =

E(Det([ei + μiξiyi|...|en + μnξnyn])2 =

E(Det([ei + ξiyi|...|en + ξnyn])2.

This proves that φ(A, 2) = E(det(I + AD))2. The other identities are proved in
the same way.

We will use below only the identity φ(A, 2) = E(det(D+A))2 for Rademacher
sequences. Our first proof of this identity was based on the “boolean” Fourier
transform (Walsh-Hadamard transform) . Indeed, define the following function
on the boolean cube :

f(S) = Det(AS).

Then its Walsh-Hadamard transform F (ω) =
√

2
−n

Det(I + Diag(ω)A), where
ω is (+1,−1) vector.

It remains to use the unitarity of the Walsh-Hadamard transform. As we
explained above, φ(A, k, 1) and φ(A, 1) can be computed in polynomial time
and they depend only on the characteristic polynomial of the matrix A. If all
Det(AS) have the same sign for fixed cardinality of S then also as ψ(A, k, 1) as
well ψ(A, 1) can be computed in poly-time. But if all Det(AS) have the same
sign for fixed cardinality of S then

|φ(A, k, 1)|2 n!
k!(n− k)!

≤ φ(A, k, 2) ≤ |φ(A, k, 1)|2. (11)

We conclude that if all Det(AS) have the same sign for fixed cardinality of S then
there is a strongly polynomial deterministic algorithm to approximate φ(A, 2)
within a multiplicative bound 2n√

n
.

We will prove in the next section that even in this case φ(A, 2) is #P -hard
to compute.

This is a bit of an unusual situation: in all papers on the subject mixed
volumes are approximated via corresponding mixed discriminants. We just de-
scribed above a case where it might be better to proceed in the opposite order.
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3 Proof of #P -Hardness

Let B be a n×n nonsingular matrix and α a real scalar. We define the following
block n + 1× n + 1 matrix G(B,α), with each block being a n× n matrix:

G(B,α)(k, l) = 0 if 1 ≤ k, l ≤ n;

G(B,α)(n + 1, l) = B−1 if 1 ≤ l ≤ n and G(B,α)(n + 1, n + 1) = 0;

G(B,α)(k, n + 1) = αBeke
∗
k.

G(B,α) =

⎛⎜⎜⎜⎜⎝
0 0 . . . 0 αBe1e

∗
1

0 0 . . . 0 αBe2e
∗
2

. . . . . . . . . . . . . . .
0 0 . . . 0 αBene

∗
n

B−1 B−1 . . . B−1 0

⎞⎟⎟⎟⎟⎠
Definition 2. For two permutations π1 and π2 we define I(π1, π2) =: |{i :
π1(i) = π2(i)}|. For a n × n matrix B and integer r = 0, 1, ..., n − 2, n we
define

γ(B, r) =:
∑

I(π1,π2)=r(−1)sign(π1)(−1)sign(π2)∏n
i=1 B(i, π1(i))

∏n
i=1 B(i, π2(i)).

Notice that γ(B,n) = Per({B(i, j)2}). The main technical result of this section
is the following theorem.

Theorem 1. Let B be a n× n matrix. Then the following identity holds

φ(G(B,α), 2) =
∑

r=0,1,...,n−2,n

(1 + α2)rγ(B, r)Det(B)−2. (12)

Proof: We use the first identity in formula (9) with Rademacher diagonal matrix
D, i.e. D = Diag(μ(i, j); γ(k) : 1 ≤ i, j, k ≤ n). Using the specially designed
structure of G(B,α), we get that

φ(G(B,α), 2) = E(Det(D + G(B,α))2) =
= E(Det(Diag(γ)−B−1C)2)

where (n×n) matrix C = {μ(i, j)B(i, j) : 1 ≤ i, j ≤ n}, {μ(i, j)} is a Rademacher
(n × n) matrix, {γ(j)} is a Rademacher (n) -dimensional vector ; and γ and μ
are independent.

As E(Det(Diag(γ)−B−1C)2) = Det(B)−2E(Det(BDiag(γ)−C)2) and all
random variables involved are symmetric, it follows that

φ(G(B,α), 2) = Det(B)−2E(Det({B(i, j)(γ(j) + αμ(i, j))})2).
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But

E(Det({B(i, j)(γ(j) + αμ(i, j))}))2) =
Eγ(Eμ(Det({B(i, j)(γ(j) + αμ(i, j))})2)).

Again using symmetricity we get that Eμ(Det({B(i, j)(γ(j) + αμ(i, j))}))2) =
E(Det({B(i, j)(1 + αμ(i, j))})2) for any (non-random) (+1,−1) vector γ. Thus

φ(G(B,α), 2) = Det(B)−2Eμ(Det({B(i, j)(1 + αμ(i, j))})2).

After that we get the final identity using the additivity of the first moment.

Remark 1. Notice that we used above the adapted “Godzil-Gutman” formula
(9) not for a computation (as it usually used) but rather as a convenient tool to
prove the formula (12).

Now everything is ready to prove that φ(A, 2) (and thus mixed discriminants of
rank 2 matrices) are #P-hard to compute.

Let A = (B(i, j)2) be a n×n matrix with nonnegative entries. It is “easy” to
check whether Per(A) is positive and to find out a “positive permutation”. We
can assume therefore WLOG that Per(A) > 0 and A(i, i) ≡ 1.

We need nonsingularity of B. Though the matrix B can be singular but
B + λI is nonsingular for all sufficiently large λ. As Per(A + λI) is a monic
polynomial of degree n, we can do everything for nonsingular case and “return”
to possibly singular situation via a standard (and easy) interpolation.

So, suppose that B is nonsingular. Also, assume that we have an oracle
which can compute φ(G(B,α), 2). We run this oracle n times to obtain βi =
φ(G(B,αi), 2), 1 ≤ i ≤ n for distinct positive (rational,integer) α1 < ... < αn.
As a result we get the following nonsingular system of linear equations:∑

r=0,1,...,n−2,n

(1 + α2
i )

rγ(B, r)Det(B)−2 = βi(1 ≤ i ≤ n). (13)

We solve it, say in O(n3), operations. But γ(B,n) = Per({B(i, j)2}) = Per(A).
This proves our main theorem.

Theorem 2. Computing φ(A, 2) and thus mixed discriminants of rank 2 matri-
ces is #P -hard .

Corollary 1. Computing φ(A, 2) is #P -hard even when Det(AS) > 0 for all
subsets S.

Proof: We will use the same interpolational argument as above. It is clear that
φ(A + λI, 2) is a monic polynomial of degree 2n. For large λ we have that
Det((A + λI)S)) > 0 for all subsets S. Taking n2 − 1 distinct large λ will allow
to interpolate in poly time. Thus at least one of them is hard.
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4 Polynomial Time Algorithm Computing
Hyperdeterminants of Small Prank

Suppose the linear (matrix) space spanned by {A1, ..., AN} has dimension m =:
Rank(A1, ..., AN ) ; Ai is N ×N complex matrix, 1 ≤ i ≤ N .

Let us consider 4-dimensional tensor ρ(i1, i2, i3, i4), 1 ≤ i1, i2, i3, i4 ≤ N .
Define its 4-dimensional Pascal’s determinant as

QP (ρ) =
1
N !

∑
τ1,τ2,τ3,τ4∈SN

(−1)sign(τ1τ2τ3τ4)

N∏
i=1

ρ(τ1(i), τ2(i), τ3(i), τ4(i)). (14)

(See more on those hyperdeterminants in [26] and in numerous refs. from [26].) It
is clear that permuting indices of ρ does not change QP (ρ). Partitioning 4 indices
of ρ into into 2 groups of two, we get 6 N2 ×N2 matrices. Define Prank(ρ) as
the minimal rank of those N2 ×N2 matrices.

(The Schmidt Rank, used in Quantum information literature [20], is equal to
the maximal rank of those N2 ×N2 matrices.)

Let us associate with the tuple {A1, ..., AN} the following 4-dimensional
tensor:

ρA(i1, i2, i3, i4) = I(i3, i4)Ai3(i1, i2),

where {I(i, j) : 1 ≤ i, j ≤ N} is the identity matrix. It is easy to see that
QP (ρA) = D(A1...AN ) and Prank(ρA) ≤ m = Rank(A1, ..., AN ).

Theorem 3. There exists a deterministic algorithm computing QP (ρ) in
O(N2m) multiplications and additions.

Proof: (Sketch). Suppose that without loss of generality that (standard) rank
of N2 × N2 matrix ρ(i1, i2; i3, i4) = Prank(ρ) = m (here the corresponding
partition is (1, 2) ∪ (3, 4) ). Thus there exist two m-tuples of N × N matrices
(A1, ..., Am) and (B1, ..., Bm) such that

ρ(i1, i2, i3, i4) =
∑

1≤l≤m

Al(i1, i2)Bl(i3, i4) (15)

Consider the following two determinantal polynomials :

PA(x1, ..., xm) = Det(
∑

1≤l≤m

xlAl),

PB(x1, ..., xm) = Det(
∑

1≤l≤m

xlBl) (16)

Then
PA(x1, ..., xm) =

∑
r1+...+rm=N

ar1,..,rmxr1
1 ...xrm

m ,
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where ar1,..,rm = D(Ar)
r1!r2!...rk! and the N -tuple Ar consists of rl copies of Al, 1 ≤

l ≤ m.

It follows from [7], [4] that

QP (ρ) =
∑

r1+...+rm=N

D(Ar)D(Br)(r1!r2!...rm!)−1 (17)

Now each mixed discriminant D(Ar), D(Br) can be computed as a sum of
O(Nm) determinants [3] ; finally, we can compute the right-hand side of (17) in
O(N2m) multiplications and additions.

5 Randomized Algorithms Computing Mixed
Discriminants Within Absolute Error

Let us consider a norm ||(x1, x2, .., xN )|| in CN . Assume that this norm is per-
mutation invariant and ||(|x1|, |x2|, .., |xN |)|| = ||(x1, x2, .., xN )|| for all vectors
in CN . Call such a norm ”good”. It is well known that such ”good”norms induce
matrix norms in M(N), i.e. define for complex N × N matrix A its norm as
||A|| = ||(σ1, σ2, ..., σN )||, where σi, 1 ≤ i ≤ N are singular values of A, i.e. posi-
tive square roots of eigenvalues of AA∗. Associate with an N -tuple (A1, ..., AN )
of complex N ×N matrices the following linear operator

TA : CN →M(N),
TA(x1, x2, .., xN ) =:

∑
1≤i≤N xiAi .

We define ||TA|| = max||x||=1 ||TA(x)||. The following simple proposition is easily
proved using the arithmetic/geometric means inequality.

Proposition 2. Consider a norm ||(x1, x2, .., xN )|| in CN . Assume that it is
invariant respect to some transitive subgroup of permutations ,||(1, 1, ..., 1)|| =
1 ,and ||(|x1|, |x2|, .., |xN |)|| = ||(x1, x2, .., xN )|| for all vectors in CN . Then
|x1x2...xN | ≤ ||(x1, x2, .., xN )||N .

Theorem 4. If the norm ||.|| in CN is ”good” then the mixed discriminant
|D(A1, ..., AN )| ≤ ||TA||N . Moreover there exists computable in poly-time unbi-
ased estimator F (b1, .., bN ), where (b1, .., bN ) is uniformly distributed on {−1, 1}N,
such that

Eb(F (b1, .., bN)) = D(A1, ..., AN )

and |F (b1, .., bN )| ≤ ||TA||N .

Proof: One such estimator is F (b1, .., bN ) = Det(
∑

1≤i≤N )biAi)b1b2...bN .

Corollary 2. If ||TA|| ≤ 1 + O( log(N)
N ) then there is a randomized polynomial

in N and ε−1 algorithm computing D(A1, ..., AN ) + δ with |δ| ≤ ε.
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6 Conclusion and Acknowledgments

We hope that this work will stimulate new approaches to compute/approximate
mixed discriminants of rank 2 matrices. As we noticed above, the quantity
ψ(A, 1) =

∑
S |Det(AS)| is equal to the mixed volume V (P1, ..., Pn), where Pi is

a 2-dimensional parallelogram with axis ei and yi. We indicated that in certain
cases this mixed volume can be computed in polynomial time, say when A / 0
or −A / 0. We conjecture that, in general, this problem is also #P -hard.

Recall that a tuple (A1, ..., An) of n× n matrices called doubly stochastic if

Ai / 0, tr(Ai) = 1(1 ≤ i ≤ n);A1 + ... + An = I.

It was proved in [15] that mixed disciminant D(A1...An) ≥ n!
nn for doubly

stochastic tuples and the corresponding minimum n!
nn is uniquely attained at

the tuple ( 1
nI, ...,

1
nI).

This result and many other things led to a deterministic polynomial algo-
rithm in [18] to approximate mixed discriminants of positive semidefinite matri-
ces within multiplicative factor nn

n! .

Conjecture 1. Suppose that (A1, ..., An) is doubly stochastic tuple and Rank(Ai)
= 2, 1 ≤ i ≤ n. Then D(A1...An) ≥ 2(−n+1).

This conjecture is very easy to prove when matrices (A1, ..., An) commute, i.e.
for permanents of doubly stochastic matrices with only two nonzero entries in
each column. The conjecture would imply, using scaling algorithm from [18],
that the mixed discriminant of positive semidefinite n×n rank two matrices can
be approximated in deterministic polynomial time within multiplicative factor
2(n−1), which is almost the same as via using inequality (11) for special cases.

Theorem 4 was motivated by a quantum algorithm due to Vwani Roychowd-
hury and Farrokh Vatan which computes in poly-time |per(A)|2 for complex
matrices which are contractions respect to l2 norm. Theorem 4 allows to do it
classically.
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Abstract. We introduce and study certain classes of optimization prob-
lems over the real numbers. The classes are defined by logical means,
relying on metafinite model theory for so called R-structures (see [9],
[8]). More precisely, based on a real analogue of Fagin’s theorem [9] we
deal with two classes MAX-NPR and MIN-NPR of maximization and
minimization problems, respectively, and figure out their intrinsic logi-
cal structure. It is proven that MAX-NPR decomposes into four natural
subclasses, whereas MIN-NPR decomposes into two. This gives a real
number analogue of a result by Kolaitis and Thakur [10] in the Turing
model. Our proofs mainly use techniques from [13]. Finally, approxima-
tion issues are briefly discussed.

1 Introduction

Many important problems in mathematics and computer science appear as op-
timization problems. In the framework of complexity theory a huge number of
such problems is studied in relation with the class NPO of combinatorial opti-
mization problems with an exponential search space.

There are at least two directions with respect to studying problems in NPO.
The first deals with the study of approximability properties of NP -hard problems
in NPO, leading to the consideration of important subclasses of NPO such
as APX,PTAS, FPTAS, see [1]. The other direction is descriptive complexity
theory [11]. Here, optimization problems are studied from a logical definability
standpoint. Concerning combinatorial optimization this line was started in a
paper by Papadimitriou and Yannakakis [15]. They defined a subclass MAX-NP
of NPO by logical means and studied (among other things) this class with
respect to approximation algorithms.

A main aspect of all these problems dealt with in Turing (descriptive) com-
plexity theory is that the space of feasible solutions for a given problem instance
has at most exponential cardinality and thus is finite. However, many important
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optimization problems involving real numbers have an uncountable search space.
A typical example is given by determining from a given set of real multivariate
polynomials the maximal number of polynomials that share a common real zero.
This problem, for example, plays a crucial role in fundamental algorithms for
semi-algebraic problems like quantifier elimination, see [16,2].

It is natural to ask whether a similar logical framework to the one mentioned
above can be developed for such real number problems. A real number model of
computation together with a complexity theory was developed by Blum, Shub
and Smale, see [3]. A descriptive complexity theory for the Blum-Shub-Smale
(shortly: BSS) model was studied in [9] and further in [6]. It is based on so-
called meta-finite model theory introduced in [8]. Most of the fundamental real
number complexity classes have been expressed logically using that approach.
On the other side, a real number analogue of the class NPO has not been studied
thoroughly so far (see some related remarks in [14]).

In this paper we start such an investigation from a logical point of view. We
define a class NPOR of certain real optimization problems. Then we focus on the
definition and analysis of real number analogues of the hierarchies given in [10].
The techniques and problems we use to separate the different classes in these
hierarchies are closely related to those used for the study of real number counting
problems in [13]. Let us mention that the complexity of such counting problems
in the BSS model recently was analyzed in a series of papers by Bürgisser and
Cucker, see [4].

Our paper is organized as follows. Section 2 gives a short introduction of
the BSS model and meta-finite model theory for R-structures. A real number
version of NPO is defined. Using descriptive complexity theory over R we then
introduce the central logical problem classes of this paper: MAX-Σi,R,MAX-Πi,R

for maximization problems and MIN-Σi,R,MIN-Πi,R for minimization problems
(i = 0, 1, 2). Some basic properties of these classes are listed. Sections 3 and 4
build the main part of the paper. We consider several natural real number opti-
mization problems, express them in a logical manner and use them to separate
the classes of our hierarchies. In Section 3 this is done for maximization prob-
lems, in Section 4 for minimization. Finally, we discuss briefly approximization
issues for some of the problem classes.

2 Basic Definitions and Results

In this section we introduce the problem classes we are interested in together
with some of their basic properties.

2.1 The BSS Model; R-Structures and Their Logics

We assume the reader to be familiar with the BSS model of computations over
the real numbers and descriptive complexity for that model.

In the BSS model over R real numbers are considered as entities. The basic
arithmetic operations +,−, ∗, : can be performed at unit costs, and there is a
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test-operation“is x ≥ 0?” reflecting the underlying ordering of the reals. Decision

problems now are subsets L ⊆ R∞ :=
∞⋃

n=1
Rn. The (algebraic) size of a point

x ∈ Rn is n. Having fixed these notions it is easy to define real analogues PR

and NPR of the classes P and NP as well as the notion of NPR-completeness.
For more details on the BSS model we refer to [3].

Descriptive complexity for the BSS model over R was introduced in [9]. It
gives a logical presentation of decision problems via so called R-structures and
characterizes real number complexity classes in terms of logics for these struc-
tures.

For the characterization of our class MAX-NPR introduced below we need
the following extension of Fagin’s theorem to R-structures.

Theorem 1 ([9]). Let (F, F+) be a decision problem of R-structures. Then
(F, F+) ∈ NPR iff there is an ∃SOR-formula ψ such that F+ = {D ∈ F |D |= ψ}.

2.2 The Classes NPOR,max and NPOR,min

The problems we deal with in this paper are certain optimization problems
over R-structures. As a starting point we consider the well known definition of
combinatorial optimization problems in class NPO. We extend this definition in
order to introduce a similar class in the BSS model. The main additional aspect of
this new class NPOR is a potentially uncountable set of feasible solutions among
which the optimum is searched for. This makes some changes in the definitions
necessary, one of which is the lacking requirement of explicitly computing a
feasible solution. Moreover, we consider functions with integer values in order
to avoid (numerical) approximation issues. Though interesting in its own, the
latter is expected to result in completely different issues, see [5].

Let us start with introducing a real analogue of the class NPO of combina-
torial optimization problems. Note that generalizations of NPO to arithmetical
structures (i.e. metafinite structures with the natural numbers as infinite part)
were studied in [12].

The definition below is tailored for the logical framework we study thereafter.
It can easily be re-translated to a purely complexity theoretic definition.

Definition 1. a) A maximization problem P := (I, {Sol(D)}D∈I ,m) in class
NPOR,max is a problem over R-structures that consists of three parts:

i) A set I of R-structures (over a fixed vocabulary) as instances for the problem;
ii) for every instance D ∈ I a set Sol(D) of feasible solutions. Elements in

Sol(D) are tuples S = (S1, . . . , Sr) of functions from the universe A of D to
the reals. Each Si has a fixed arity di ∈ N, so Si : Adi �→ R;

iii) a measure function m : {(D,S)|D ∈ I,S ∈ Sol(D)} → N. The value
m(D,S) is called the value of the feasible solution S;

iv) for any input D ∈ I and for any arbitrary S ∈ R∞ of size at most p(|D|)
(for a fixed polynomial p) it is decidable in polynomial time in the BSS model
whether S ∈ Sol(D);
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v) the function m is computable in polynomial time with respect to |D| in the
BSS model.

We are looking for the maximal solution value max
S∈Sol(D)

m(D,S). Finally, we

require that the maximum always exists.

b) The class NPOR,min of minimization problems is defined similarly.

Remark 1. a) An important NPR-hard problem is the minimization of a poly-
nomial p, over all possible variable assignments x ∈ R. Notice that given the
remarks before the previous definition this problem is not in class NPOR,min as
the value of m is not integer.

b) The logical framework we use to define NPOR guarantees that a feasible
solution has a polynomial (algebraic) size. Note that the set of feasible solutions
can be uncountable. In many examples of such problems it might be impossible
to even compute a feasible solution; therefore, we do not require it.

c) Due to the structure of classes we consider in this paper it is natural to
require the measure function m to yield values in N. This is done because below
we define classes via the number of satisfying assignments in some Au for certain
formulas. For a general theory of a class NPOR of optimization problems over
R not inspired by a logical framework it certainly makes sense to remove this
condition. We refer to [14] for some further ideas on a more general definition.

d) For sake of simplicity in many of our proofs we consider NPOR problems
where S consists of a single function, only. For all proofs it can easily be seen
that this is no serious restriction. An extension to the general case can always
be done (almost) word by word and just increases the notational complexity.

Definition 2. An optimization problem P in classes NPOR,max or NPOR,min

is polynomially bounded if for all D the value m(D,S) is bounded by a polyno-
mial p(|D|) for all feasible solutions S.

2.3 The Classes MAX-NPR and MIN-NPR

We next define a class MAX-NPR as a subclass of problems in NPOR,max that
is defined by certain logical conditions. These classes are extensions of the cor-
responding discrete ones introduced in [15].

Definition 3. a) Let P be an optimization problem in NPOR,max whose in-
stances are given as R-structures over a fixed vocabulary V. Then P belongs to
MAX-NPR iff for every instance D of P having universe A the maximum can
be expressed as

max
S∈Sol(D)

|{x ∈ Au | D |= φ(x,S)}|.

Here, S is a finite sequence of functions each of some fixed arity from the uni-
verse to R and φ is a first-order formula over V ∪ {S};u ∈ N is some fixed
natural number.
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b) We obtain the subclasses MAX-Σ0,R,MAX-Σ1,R,MAX-Π1,R,MAX-Σ2,R

and MAX-Π2,R, respectively, by restricting φ above to be of the corresponding
format. For example, MAX-Σ1,R is the class of maximization problems whose
maximum is expressible via

max
S∈Sol(D)

|{x ∈ Au | D |= ∃y ∈ As such that ψ(x, y,S)}|,

where ψ is first-order quantifier free.
c) In the same way the MIN classes are defined.

Example 1. Let us consider a typical optimization problem in our framework
and express it logically. The input are natural numbers n,m together with m
polynomials p1, . . . , pm ∈ R[x1, . . . , xn]. Each pi has degree 2 and depends on
precisely three variables among {x1, . . . , xn}. The task is to compute the maximal
number of pi’s that have a common zero in Rn. This task is NPR-hard. We give
a logical description that places the problem (or better: its used logical version)
in MAX-Σ0,R.

As vocabulary we choose a nullary function 0, a unary relation Pol and a
function C : A3 �→ R (where A is the universe). For an R-structure representing
a polynomial system as above the interpretations of these symbols are as follows:
The universe A splits into two parts. The first part A1 = {0, . . . , n} represents
the variables x1, . . . , xn plus an additional one x0 used for homogenization; the
second part A2 := {n+ 1, . . . , n+m} represents the indices for the polynomials
pi (i.e. n + i stands for pi). If � ∈ A satisfies Pol(�), then � is the index of a
polynomial p�−n. The nullary function 0 represents 0 ∈ A. Finally, C : A2

1×A2 ⊂
A3 �→ R stands for the coefficients of the pi; for (i, j) ∈ A2

1, � ∈ A2 the coefficient
of xi · xj in p�−n is C(i, j, �). Here, we use x0 = 1 as homogenization variable.
Note that C is supposed to be symmetric in the first two components. For other
arguments not mentioned above we define C to be 0.

The maximal number of polynomials having a common zero can be described
as follows: A root is coded via a function X : A1 �→ R. Then we look for

max
X:A1 �→R

|{(i, j, k, �)|Pol(�) ∧X(0) = 1 ∧ φ1(i, j, k, �) ∧ φ2(i, j, k, �)}| .

Here, φ1(i, j, k, �) is a formula guaranteeing that xi, xj , xk are the three variables
p�−n depends on, i.e.

φ1(i, j, k, �) ≡ {C(i, 0, �) �= 0 ∨ C(i, i, �) �= 0 ∨ C(i, j, �) �= 0 ∨ C(i, k, �) �= 0}
∧ {C(j, 0, �) �= 0 ∨ C(j, j, �) �= 0 ∨C(j, i, �) �= 0 ∨ C(j, k, �) �= 0}
∧ {C(k, 0, �) �= 0 ∨ C(k, k, �) �= 0 ∨ C(k, i, �) �= 0 ∨ C(k, j, �) �= 0}

Similarly, φ2(i, j, k, �) expresses that the evaluation of p�−n in the point repre-
sented by X will give result 0. Note that the knowledge coded in φ1 can be used
to design φ2 as quantifier free formula:

φ2(i, j, k, �) ≡ C(0, 0, �) + C(i, 0, �) ·X(i) + C(j, 0, �) ·X(j)
+C(k, 0, �) ·X(k) + C(i, i, �) ·X(i)2 + . . . = 0

Altogether, we see that the problem lies in MAX-Σ0,R.
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Next, we list some basic properties of problems in MAX-NPR. They mir-
ror the corresponding properties over finite structures [10] and can basically be
shown by similar techniques using additional results for R-structures in [9].

First, it is clear that the objective function m of a problem P in MAX-NPR

or in MIN-NPR is polynomially bounded. Vice versa, the following proposition
shows that the converse holds as well. It can be proved along the similar line
of the corresponding results for the Turing model in [10] using the extension of
Fagin’s theorem to the BSS model in [9].

Proposition 1. a) If P is a polynomially bounded problem in NPOR,max, then
P ∈ MAX-NPR.

b) MAX-NPR = MAX-Π2,R and MAX-Σ2,R = MAX-Π1,R.
c) If P is a polynomially bounded problem in NPOR,min, then P ∈ MIN-NPR.
d) MIN-NPR = MIN-Σ2,R,MIN-Π1,R = MIN-Σ2,R,MIN-Π0,R = MIN-Σ1,R.

3 The 4-Level Maximization Hierarchy

We turn to the main results of this paper. First we prove that MAX-NPR can
be decomposed into a hierarchy of four distinct levels. More precisely:

Theorem 2.MAX-Σ0,R � MAX-Σ1,R � MAX-Π1,R�MAX-Π2,R = MAX-NPR

The theorem is a real number version of Theorem 2 in [10]. However, the
problems we use (as well as our proofs) to establish it are different since they have
to involve meta-finite structures. Consider the following real number problems.

Definition 4. a) For fixed d ∈ N the MAX-HNSR(d) problem (maximal Hilbert
Nullstellensatz) is given as:

Input: n,m ∈ N, polynomials p1, . . . , pm of degree ≤ d in variables x1, . . . , xn.
Question: What is the maximal number of polynomials pi, 1 ≤ i ≤ m that have
a common zero x ∈ Rn?
b) The sign-changes problem is given as:
Input: n ∈ N together with a sequence of n ordered reals (x1, . . . , xn).
Question: Find the number of components i with xi �= 0 for which there exists
a j such that xj �= 1 and xi · xj < 0.

The above problems in our framework first become interesting after we for-
malize them as problems for meta-finite structures. There are several ways to
do so depending on which information we include in the structure. This will in
particular have impact on the question to which MAXR-classes the problems
belong. Moreover, it will be crucial for our separation results.

3.1 The Non-ordered Version of the MAX-HNSR(d) Problem

Let us start with MAX-HNSR(d), d ∈ N. In the first formalization we take,
similar as in Example 1, an R-structure with universe A := {0, . . . , n} ∪ {n +
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1, . . . , n + m}. The vocabulary includes one unary relation Pol ⊆ A indicating
whether an x ∈ A is a polynomial or a variable. It as well includes a function C :
Ad+1 �→ R that is interpreted as representing the coefficients of the monomials
in the corresponding polynomials. Thus, we consider a polynomial system given
as R-structure D = (A,Pol, C), where A = {0, . . . , n + m}, Pol(i) ⇔ i ∈ {n +
1, . . . , n + m} and

C(i1, . . . , id, k) =
{

0 if ¬Pol(k)
coefficient of xi1 · xi2 · . . . · xid

in equation k if Pol(k).

In order to also represent monomials of degree strictly less than d we again
guarantee in all our formulas x0 := 1.

Most important, we do not include a linear ordering on A in the vocabu-
lary. We therefore denote this formalization of the Hilbert-Nullstellensatz prob-
lem by NORD-MAX-HNSR(d). To see that NORD-MAX-HNSR(d) belongs to
MAX-NPR, and thus by Proposition 1 to MAX-Π2,R, is almost straightforward.

Theorem 3. NORD-MAX-HNSR(4) �∈ MAX-Π1,R.

Proof. Suppose the claim were false. Then for a corresponding input structure
D = (A,Pol, C) of the problem NORD-MAX-HNSR(4) the maximum can be
expressed as

max
S:At �→R

|{x ∈ Au | D |= ∀ y ∈ As φ(x, y, C, Pol, S)}|, (1)

where φ is first-order quantifier free, s, t, u ∈ N fixed. For an even n consider the
following polynomials fi, 1 ≤ i ≤ n

2 in variables x1, . . . , xn and of degree 4 which
will be important for constructing an appropriate input-structure:

f1(x1, x2) = (x1 · x2 − 1)2 + x2
1 , f2(x3, x4) = (x3 · x4 − 1)2 + x2

3
...

fi(x2i−1, x2i) = (x2i−1 · x2i − 1)2 + x2
2i−1

...
fn

2
(xn−1, xn) = (xn−1 · xn − 1)2 + x2

n−1

Define a new polynomial p(x1, . . . , xn) :=
n
2∑

i=1

fi(x2i−1, x2i)− ε of degree four,

where ε is an arbitrary, fixed real number in (0, 1). It is the (single) polynomial
equation p = 0 that we now consider as input for NORD-MAX-HNSR(4). As
input R-structure it is represented as D = (A,Pol, C) with A := {0, 1, . . . , n} ∪
{n+1}, Pol(i)⇔ i = n+1 and C(i, j, k, �, n+1) gives the coefficient of xi·xj ·xk·x�

in p, where x0 := 1 once again is used to represent monomials of degree less than
four. For example, the constant part n

2 − ε is given as C(0, 0, 0, 0, n + 1).
We claim that p has a real zero for any choice ε > 0. In order to see this note

that each of the polynomials fi satisfies fi(x2i−1, x2i) > 0. Non-negativity is ob-
vious by definition whereas strict positivity follows from the fact that x2i−1 := 0
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results in the function value = 1. Moreover, inf
x2i−1,x2i

fi(x2i−1, x2i) = 0 by choos-

ing x2i−1 := x−1
2i for x2i > 0 and now considering the limit lim

x2i→∞
fi( 1

x2i
, x2i).

For any ε > 0 if we choose the x2i’s large enough such that fi( 1
x2i

, x2i) < 2ε
n we

get a negative function value for p. Since p clearly has positive values continuity
implies the claim.

Thus, the above formula (1) has to give the result 1. Let X∗ : At �→ R, x∗ ∈
Au be an assignment such that D |= ∀y ∈ Asφ(x∗, y,X∗, Pol, C). We construct
a substructure D′ of D that still gives a result of at least 1 for (1) but codes a
polynomial without real zeros.

Let i0 be such that the particular x∗ ∈ Au chosen above does not depend
on x2i0 . For n large enough (f.e. n > 2u + 1) such an i0 exists since u is fixed
(independent of n). Define a new input structure D′ by deleting 2i0 from the
universe (and identifying the other elements of A with those in the new uni-
verse A′ correspondingly). Furthermore, Pol′ and C′ are defined as for D on the
remaining arguments. The related polynomial p′ then is given by

p(x1, . . . |︸︷︷︸
�=x2i0

. . . , xn) =

n
2∑

i=1,

i�=2i0

fi − ε + (−1)2 + x2
2i0−1 .

The universal formula ∀y ∈ (A′)s φ(x∗, y,X ′∗, Pol′, C′) still is satisfied by the
substructure D′, therefore

max
X′:(A′)t �→R

|{x ∈ (A′)u|∀y ∈ (A′)s φ(x, y,X ′, Pol′, C′)}| ≥ 1 .

But p(x1, . . . |︸︷︷︸
�=x2i0

. . . , xn) ≥︸︷︷︸
fi≥0

x2
2i0−1 + 1− ε ≥ 1− ε > 0.

Thus, p has no real zero but formula φ counts at least one. Contradiction. ��

3.2 The Ordered Version of the MAX-HNSR(d) Problem

In order to separate MAX-Σ1,R from MAX-Π1,R we represent instances from
MAX-HNSR(d) in a different manner as R-structures. This will push the prob-
lem into class MAX-Π1,R. For a system p1, . . . , pm over x1, . . . , xn the universe
again is A1 ∪ A2, where A1 = {0, . . . , n} and A2 = {n + 1, . . . , n + m}. A
unary relation Pol again identifies the polynomials: Pol(i)⇔ i ∈ A2. As before,
C : Ad+1 �→ R denotes the coefficients of the pi’s. In addition, the vocabulary
will contain a linear ordering ρ : A1 �→ {0, . . . , n} ⊂ R as well as nullary relations
0 and n giving the first and the last element in A1 (w.r.t. ρ). Note that 0 and n
as well as extensions ρ4,04,n4 of ρ,0 and n to A4

1 can be defined by a universally
quantified first-order formula, see [6].

The presence of this linear ordering is the reason why the proof of Theorem
3 cannot be applied in this setting: If we remove an element from the universe,
the ordering will be invalid.
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Representing the MAX-HNSR(d) problem that way we obtain its ordered
version which we denote by ORD-MAX-HNSR(d).

Theorem 4. ORD-MAX-HNSR(4) ∈ MAX-Π1,R \MAX-Σ1,R.

Proof. Concerning membership in MAX-Π1,R let ρ4,04,n4 denote the above
mentioned extensions of the ranking ρ and 0,n to A4 (see [6] for expressibility
in Π1,R). For an input R-structure D(A,Pol, C, ρ,0,n) of ORD-MAX-HNSR(4)
the maximal number of polynomials having a common real zero is given as

max
X:A1 	→R,

Y :A4
1×A2 �→R

|{i ∈ A2 | D |= Pol(i) ∧ φ1 ∧ φ2 ∧ φ3}| ,where

φ1 ≡ Y (04, i) = C(04, i) , φ2 ≡ Y (n4, i) = 0 and
φ3 ≡ ∀u, v ∈ A4

{
ρ4(u) = ρ4(v) + 1

=⇒ Y (u, i) = Y (v, i) + C(u, i) ·X(u1) ·X(u2) ·X(u3) ·X(u4)}
Here, X is interpreted as a zero giving the maximum, Y (•, i) describes the inter-
mediate sum when evaluating polynomial i in X by cycling through all mono-
mials given by u ∈ A4

1 (expressed by φ3). Finally, φ1 and φ2 guarantee to start
and finish the evaluation process with the correct values.

In order to establish non-expressibility within class MAX-Σ1,R assume to the
opposite that the maximum is computed by

max
S:At �→R

|{x ∈ Au | D |= ∃y ∈ Asφ(x, y, S)}| , (2)

where φ is first-order quantifier free. Consider once more the polynomial sys-
tem (consisting of a single polynomial) used to prove Theorem 3. This time
we represent the system by an ordered R-structure D = (A,Pol, C, ρ,0,n). Let
x∗ ∈ Au, y∗ ∈ As, S∗ : At �→ R satisfy D |= φ(x∗, y∗, S∗) according to our
assumption that formula (2) works correctly and the earlier proven fact that
polynomial p has a real zero. φ is quantifier-free, so φ(x∗, y∗, S∗) contains at
most r elements from A, where r is a constant independent from D. Choose the
size n of universe A such that n is even and r < n

2 . Then there is a variable
among {x2, x4, . . . , xn} which does not occur in φ(x∗, y∗, S∗). Without loss of
generality let xn be that variable. Now define a new structure D′representing a
polynomial p′ which is generated as before by the polynomials fi, 1 ≤ i ≤ n

2 .
The only difference between p and p′ is the polynomial fn

2
which now has the

form fn
2
(xn−1, xn) := (xn−1 · xn − 1)2 + x2

n−1 + x2
n . Therefore, contrary to p

the polynomial p′ contains the monomial x2
n with coefficient 1, whereas in p the

coefficient was 0. The other f ′is remain unchanged.
Since xn was not occuring in φ(x∗, y∗, S∗) the new structure D′ as well

satisfies D′ |= φ(x∗, y∗, S∗) . This implies max
S:At �→R

|{x ∈ Au | D′ |= ∃y ∈
As φ(x, y, S)}| ≥ 1. But

p′ =
n
2−1∑
i=1

fi(x2i−1, x2i) + (xn−1 · xn − 1)2 + x2
n−1 + x2

n − ε

> x2
n−1 · x2

n − 2xn−1 · xn + 1 + x2
n−1 + x2

n − ε ≥ (xn−1 − xn)2 + 1− ε > 0.

That is p′ has no real zero and (2) does not give the correct result. ��
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3.3 Separation Between MAX-Σ0,R and MAX-Σ1,R

The separation will be established using the sign-changes problem introduced in
part b) of Definition 4. We represent its instances as R-structures D = (A,C),
where A = {1, . . . , n}, C : A �→ R. The number we are looking for is given as

|{i ∈ A | ∃� C(�) �= 1 ∧ C(i) · C(�) < 0}|. (3)

We express this problem a bit artificially as a problem in MAX-Σ1,R by noting
that the value given in (3) equals

max
S:At �→R

|{i ∈ A | ∃� C(�) �= 1 ∧C(i) · C(�) < 0}| (4)

(since the Σ1,R-formula does not at all depend on S). However, the particu-
lar form of the problem is useful for separating the two lowest classes of our
hierarchy.

Theorem 5. MAX-Σ0,R � MAX-Σ1,R.

4 The 2-Level Minimization Hierarchy

In this section we show that the hierarchy of polynomially bounded minimization
problems consists of the two classes remaining from Proposition 1.

Definition 5. We define the problem MIN QPS VALUES as follows:
Input: n,m ∈ N and polynomials p1, . . . , pm each of degree 2, and each depends
on precisely 3 of the variables x1, . . . , xn.
Question: Minimizing over x ∈ Rn what is the minimal number of different
function values we can obtain when we evaluate the polynomials pi, 1 ≤ i ≤ m
in x?
We present polynomial systems by R-structures as done in Example 1.

The problem is NPR-hard: Given a system from Example 1 together with
the additional variables x, y and z and additional polynomials x2 + y2 + z2 and
−(x2 + y2 + z2), the new system yields result 1 for MIN QPS VALUES iff the
original system has a zero. The problem trivially is polynomially bounded and
thus belongs to class MIN-Π1,R using Proposition 2. The interested reader might
try to design a corresponding formula directly without using that proposition.
The following is a real number version of Theorem 4 in [10].

Theorem 6. MIN QPS VALUES �∈ MIN-Π0,R

Proof. Let H1 be an instance with optimal value opt(H1) = k, where k ≥ 2.
We denote the corresponding interpretations of relation and function symbols by
01, Pol1, C1, compare Example 1. LetH2 with 02, Pol2, C2 be an isomorphic copy
of H1. Clearly opt(H2) = k as well. We define a new structure H representing
a polynomial system consisting of the original set of polynomials and its copy
(in new variables). An R-structure H is obtained as follows. The universe A of
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H is the disjoint union of the universes of H1 and H2 except that we identify
the elements 01 and 02 in the new structure (we use the same homogenization
variable). The interpretation of the relation Pol as well as of the function C
in H is by using the obvious extension of the corresponding interpretations in
H1,H2. At those points where C1, C2 are undefined we define C to have the
value 0. Clearly opt(H) = k since the two sets of polynomials in the union have
no variables in common and each set has optimal value k.

Assume there is a quantifier free formula over R-structures, ψ, which gives the
optimal value of MIN QPS VALUES by minimizing over a real valued function
S. For the structure H let X denote an assignment to this function that realizes
the minimal value k : k = |{w ∈ At|(H, X) |= ψ(w,X)}| .

Let X1, X2 be the restriction of X to the structures H1,H2, respectively.
For both structures the minimal value is k and we obtain

k ≤ |{w ∈ At
H1
|(H1, X1) |= ψ(w,X1)}|, k ≤ |{w ∈ At

H2
|(H2, X2) |= ψ(w,X2)}| .

Since AH1 and AH2 contain only the element 0 in common, at most one element
w (namely the one with all components 0) can occur as satisfying assignment in
both above formulas. All the others are different when considered as elements in
the disjoint union At.

Now ψ is quantifier free; therefore, all w satisfying the formula in one of
the two structures H1,H2 yield (with respect to X) a satisfying assignment in
H as well, and at most a single w can occur twice. Because k ≥ 2 it follows
k < 2k − 1 ≤ |{w|(H, X) |= ψ(w,X)}|. We arrive at a contradiction. ��

5 Conclusions

In this paper we introduced and studied from a logical point of view classes of
optimization problems over the reals. Using tools from descriptive complexity
theory over the reals two logical hierarchies of such problems were obtained.
One for maximization problems consisting of four distinct levels and one for
minimization problems containing two levels. Our results provide a real number
analogue of corresponding results for the Turing model given in [10].

A most interesting future way to continue in our opinion is to study the
relation between the logical description of real number maximization problems
and approximation issues. For the Turing setting this line of research was started
in [15] by showing that all problems in the discrete version of MAX-Σ1,R have
approximation algorithms in class APX. However, in the real number model no
serious investigation of approximation classes has been performed so far. Some
initial ideas can be found in [14] in relation with probabilistically checkable
proofs, but a concise theory is waiting to be developed here. At a first sight, the
techniques used in [15] to combine descriptive complexity with approximation
seems far from being transferable to the real number world. The same seems to
be the case for the techniques used in [12]. The reason might be that on the
real number side fixing certain values for variables in a formula results in much
stronger backtracking problems than on finite structures. We consider it to be an
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interesting future research area to develop approximation concepts in the BSS
model as well as its relation to descriptive complexity theory for real number
maximization problems. For minimization problems we can show a result which,
however, is a negative one (compare with the discrete analogue in [10]).

Theorem 7. There exist problems in MIN-Π0,R that cannot be approximated in
polynomial time by any constant factor unless PR = NPR.
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Abstract. We start investigating set algebras from a knowledge theo-
retical point of view. To this end, we suit hybrid logic to the context of
knowledge. The common modal approach is extended in this way, which
gives us the necessary expressive power. The main issues of the paper are
a completeness and a decidability result for the arising logic of knowledge
on algebras.
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1 Introduction

In this paper, we look upon set spaces (S,O), where S is a non-empty set and
O ⊆ P(S) a subset of the powerset of S, as knowledge structures. This view is in
accordance with the common description of knowledge in terms of modal logic;
cf [1], or [2], Ch. 5. In fact, S is to represent the set of all states of the world an
agent considers possible, whereas O is intended to model the knowledge states
of the agent, i.e., the sets of states indistinguishable to the agent by its own
knowledge at a time.

The question comes up naturally now, in which way time is really visible from
such knowledge structures. Presumably, a common answer will be: not at all; if
one wants to speak about the change of knowledge in the course of time, then
the latter notion has to be added explicitly. This was done for the usual logic of
knowledge by means of certain mappings from the domain of time into the set
of all states, so-called runs; cf [1]. But, actually, time is present in knowledge
structures, although only implicitly. To see this, note that gaining knowledge
means that fewer states are indistinguishable to the agent, i.e., the knowledge
state of the agent has been shrunk. In other words, the set inclusion relation on
O can serve the modelling of time in knowledge structures, at least as far as
knowledge acquisition is concerned.

This is the starting point of the paper [3] (and of the one at hand as well). In
that paper, Moss and Parikh designed a bi-modal system, of which one operator
corresponds with knowledge and the other with computational effort; the latter
models some knowledge acquisition procedure thus. Interestingly enough, they
called their system topologic, as it makes perspicuous the spatial content of the

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 471–482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



472 B. Heinemann

concept of knowledge. In fact, knowledge comes along with certain elementary
properties of points in space since knowledge states can be viewed as neighbour-
hoods, measuring qualitatively the amount of closeness to complete knowledge.
That is why gaining knowledge means approximating points (viz states of com-
plete knowledge). Thus, notions from topology enter the realm of knowledge in
a natural way.

Several basic classes of spaces have been investigated from this topological
view of knowledge, eg, ordinary topological ones, cf [4], as well as ‘treelike’ and
‘directed’ ones, cf [5] and [6], respectively. However, more powerful tools are
needed to capture other spatial structures arising in computer science or artifi-
cial intelligence here and there. In the paper [7], a preliminary formal system was
developed, supporting corresponding topological reasoning to some extent. Sub-
sequently, this system is considerably modified and extended in order to make
it applicable to algebras.

An algebra is a set space (S,O) satisfying the following properties: 1. S ∈ O,
and 2. O is closed under the formation of complements and unions; see [8],
Theorem 1.4. (We take this characterization as a definition because it is most
appropriate for our purposes.) The ubiquitous Boolean algebras provide the best-
known examples of such structures in computer science. In addition, σ–algebras,
which are fundamental to measure theory, have been investigated with regard
to effectivity quite recently; see [9], in particular, Definition 2.2. We take this
computational interest in algebras as a justification for studying these also from
a knowledge theoretical point of view. (Another motivating example, which may
convince the reader even more, follows in the next section.)

To this end, we have to enrich the language of knowledge (as we mentioned
already above). We do this in a way that preserves the usual modal approach
for the most part, viz by means of hybrid logic.

Hybrid logic partly makes up for the ‘internal, local perspective’ of modal
logic on relations between states (cf [10], Preface), by allowing among other
things naming and jumping to named objects; see [11] for a dedicated introduc-
tion to the subject and an overview of the state of the art. We suit the hybrid
methodology to the specific appearance of the semantics of topologic, where both
points and sets are taken into account. In accordance with this, a new hybrid
operator for algebras comes into play, leading us to a system which we obtain
some nice meta-theorems for.

We give now an overview of the content of this paper. In the next section, we
define the just indicated hybrid language for algebras precisely. Afterwards, in
Section 3, we introduce the accompanying logic. The main result of this part of
the paper is a soundness and completeness theorem for a corresponding logical
system. The most important issue of the whole paper is the decidability of the
hybrid logic of knowledge on algebras. This result and an outline of its proof are
contained in Section 4. In the concluding Section 5 we summarize and assess the
outcome of the paper.

Finally, it should be remarked that hybrid logics for knowledge or topology
(and, in particular, algebras) have hardly been considered up to now. At least
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a standard hybridization of the classical topological semantics of modal logic
(going back to [12] and having been revitalized recently; cf [13]), was briefly
studied in [14] with regard to expressiveness.

2 Defining the Language

In this section, we define first a new hybrid language for set algebras. Then we
quote a couple of valid formula schemata. Finally, we present a ‘generic’ example.

We extend the language of topologic by two sets of nominals on the one hand,
and two further modalities on the other hand. The denotation of every nomi-
nal is either a unique state or a distinguished knowledge state. The additional
connectives are the global modality, cf [10], Sec. 7.1, and a new one modelling
complementation.

Let PROP = {p, q, . . .}, Nstat = {a, b, . . .} and Nsets = {X,Y, . . .} be three
mutually disjoint denumerable sets of symbols called proposition letters, names
of states, and names of sets, respectively. We define the set WFF of all well-
formed formulas by the rule

α ::= p | a | X | ¬α | α ∧ β | Kα | �α | Aα | Dα.

Here K represents knowledge and � effort, as it is usual for topologic. A is
the global modality, and D is called the complementation operator. The global
modality will really reveal the power of names. The missing boolean connectives
0,⊥,∨,→,↔ are treated as abbreviations, as needed. The duals of K, �, A and
D are denoted L, �, E and C, respectively.

We now turn to semantics. To begin with, we define the domains where
formulas will be interpreted in. We let P(S) designate the powerset of a given
set S.

Definition 1 (Set algebras with names).

1. Let S be a non-empty set and O ⊆ P(S) a set of subsets of S such that
A := (S,O) is an algebra (as defined in Sec. 1). The set of all neighbourhood
situations of A is defined by NA := {(s, U) | s ∈ U and U ∈ O}.1

2. Let A be an algebra as above. An A–valuation is a mapping

V : PROP ∪Nstat ∪Nsets −→ P(S)

such that
– V (p) ⊆ P(S) for all p ∈ PROP,
– V (a) is a singleton subset of S for all a ∈ Nstat , and
– V (X) ∈ O for all X ∈ Nsets .

3. A set algebra with names (or, in short, an SAN) is a tripleM := (S,O, V ),
where A := (S,O) is an algebra and V an A–valuation; M is then called
based on A.

1 Neighbourhood situations are always written without brackets below.



474 B. Heinemann

Note that the denotation of a set name may be empty. – In Proposition 1
below, we state some formulas which are characteristically valid in every SAN.

As it is common for topologic, cf [3], the relation of satisfaction is now defined
between neighbourhood situations and formulas.

Definition 2 (Satisfaction and validity). LetM = (S,O, V ) be an SAN and
s, U a neighbourhood situation of A = (S,O). Then

s, U |=M p :⇐⇒ s ∈ V (p)
s, U |=M a :⇐⇒ s ∈ V (a)
s, U |=M X :⇐⇒ V (X) = U

s, U |=M ¬α :⇐⇒ s, U �|=M α

s, U |=M α ∧ β :⇐⇒ s, U |=M α and s, U |=M β

s, U |=M Kα :⇐⇒ t, U |=M α for all t ∈ U

s, U |=M �α :⇐⇒ ∀U ′ ∈ O : (s ∈ U ′ ⊆ U ⇒ s, U ′ |=M α)
s, U |=M Aα :⇐⇒ t, U ′ |=M α for all t, U ′ ∈ NA
s, U |=M Dα :⇐⇒ ∀ t ∈ S \ U : t, S \ U |=M α,

where p ∈ PROP, a ∈ Nstat , X ∈ Nsets and α, β ∈WFF. In case s, U |=M α is
true we say that α holds in M at the neighbourhood situation s, U. – A formula
α is called valid in M (‘M |= α’) iff it holds in M at every neighbourhood
situation of A.

The following comments may light up this definition in some respects.

Remark 1 (Peculiarities of the just defined language).

1. The meaning of both proposition letters and names of states is independent
of neighbourhoods by definition, thus ‘stable’ with respect to �. This fact is
reflected in two special axioms below (Axioms 6 and 11).

2. The just defined language is fairly expressive. In fact, the formulas of the form
a ∧X, where a ∈ Nstat and X ∈ Nsets , can be taken as names for elements
of NA. And having the global modality on hand, the hybrid satisfaction
operator @... associated with such a name (cf [10], Sec. 7.3) reads then E(a∧
X ∧ . . .). (Note that E is the dual of A.) I.e., pairs of the form (a,X) act
like ‘proper’ nominals in set algebras with names. It follows from this, in
particular, that several important frame properties can be captured by the
new language; cf [15].

3. The last clause of Definition 2 explains how the modality D operates: D forces
a jump outside the actual neighbourhood U for evaluating α with respect to
the complement of U . Note that this cannot be captured with the aid of A
on its own.

We express now the characteristic properties of algebras by suitable formula
schemata of our hybrid language.
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Proposition 1 (Algebra formulas). LetM be any SAN based on some alge-
bra A = (S,O). Then we have that

M |= X ∧ EY → E (�X ∧ L�Y ) ,
M |= �X ∧ L�Y → � (�X ∧ L�Y ∧K�(X ∨ Y )) , and
M |= �C(a ∧X) ∧ C(a ∧ Y )→ @a∧X�Y,

for all a ∈ Nstat and X,Y ∈ Nsets .

The abbreviation @a∧X is taken as in Remark 1.2. – In Proposition 1, the
first formula schema holds due to the property ‘S ∈ O’, the second corresponds
to the closure under unions, and the third is valid because O is closed under
complementation. The proof of this proposition is straightforward and, therefore,
omitted.

In the following, we give an example arising quite naturally from potentially
infinite computations.

Example 1 (A subalgebra of the Cantor space). Let C be the set of all infinite
0–1–sequences. A basis B for the distinguished topology on C is determined by
the set of all finite initial segments of elements of C. Let

O :=
{⋃
A | A ⊆ B finite

}
.

Then, A := (C,O) is an algebra, actually. Note that (C,B) can be depicted as
the full infinite binary tree such that every U ∈ B is associated with the node
by which it is determined. With the aid of suitable formulas of our language
we can now specify certain properties of programs computing binary streams.
For example, if a procedure P computes some real number ρ (i.e., the output of
P encodes a fast-converging Cauchy sequence having limit ρ; cf [16]) and ρ is
different from, eg, π, then one will know this eventually (and forever afterwards).
Thus the formula �KCπ is valid in a suitable SAN based on A.

Concluding this section, we comment on the relevance of names and accom-
panying hybrid operators to the context of knowledge. We confine ourselves to
names of sets here since the general usefulness of names of states has been suffi-
ciently demonstrated elsewhere; cf, above all, [11]. As mentioned in the introduc-
tion already, the elements of O can be viewed as knowledge states of an agent,
for any correspondingly given set space (S,O). Thus the new language supplies
one with names of knowledge states. And the hybrid operator D allows to switch
over to a complementary knowledge state. This additional means of expression
is, therefore, quite in accord with the common ‘external’ view of knowledge in
multi-agent systems, where knowledge is ‘ascribed’ to the agents; cf [1], Ch. 4.

3 A Hybrid Logic for Algebras

Our starting point to this section is a system of axioms for set spaces. Following,
some comments on these formulas are given. Then we add suitable schemata for
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names and the complementation operator D, respectively. The resulting axiom-
atization leads us to a logical system which turns out to be sound and complete
with respect to the class of all set algebras with names. We point to some crucial
steps of the completeness proof in the second part of this section.

The usual axioms for arbitrary set spaces read as follows:

1. All instances of tautologies. 6. (p→ �p) ∧ (�p→ p)
2. K(α→ β)→ (Kα→ Kβ) 7. � (α→ β)→ (�α→ �β)
3. Kα→ α 8. �α→ α
4. Kα→ KKα 9. �α→ ��α
5. Lα→ KLα 10. K�α→ �Kα,

where p ∈ PROP and α, β ∈WFF. In this way, it is expressed that

– the accessibility relation K−→ belonging to the knowledge operator is an
equivalence,

– the accessibility relation �−→ belonging to the effort operator is reflexive and
transitive,

– proposition letters are stable with respect to �−→ (see Remark 1.1 above),
and

– knowledge and effort commute as described by Axiom 10.

The latter schema, which is characteristic of every logic of knowledge and effort,
is usually called the Cross Axiom; cf [3]. – The next group of axioms concerns
names:

11. (a→ �a) ∧ (�a→ a) 14. A (X ∧ Lα→ Lβ) ∨ A (X ∧ Lβ → Lα)
12. a ∧ α→ K(a→ α) 15. K(�Y → �X) ∧ L�Y → � (X → L�Y )
13. X → KX 16. K�X → X,

where a ∈ Nstat , X, Y ∈ Nsets and α, β ∈WFF. The meaning of the formulas of
this group is not easy to understand at first glance. Actually, these provide for
both the right behaviour of names and the necessary properties of the relation
K−→ ◦ �−→ on the canonical model so that really a structure of set space can be

ensured there; cf [17]. (Axiom 14 had to be suited to the present case.)
Apart from the schemata 14 and 20 (see below), the global modality is clearly

involved in further axioms as well. These say that A−→ is an equivalence relation,
too, which includes each of the relations belonging to the other modalities; cf
[10], p 417. We do not explicitly list the corresponding formulas here.

The complementation operator is axiomatized by the schemata of the third
group:

17. D(α→ β)→ (Dα→ Dβ) 18. La ∨ Ca 19. ¬ (La ∧ Ca) ,

where α, β ∈WFF and a ∈ Nstat . Note that Axiom 18 expresses that K−→ ∪ D−→
is exhaustive in a sense, and Axiom 19 that both relations mutually exclude each
other.
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The final group of axioms goes together with the structure of algebra. In fact,
this block consists of the schemata from Proposition 1.

20. X ∧ EY → E (�X ∧ L�Y )
21. �X ∧ L�Y → � (�X ∧ L�Y ∧K�(X ∨ Y ))
22. �C(a ∧X) ∧ C(a ∧ Y )→ @a∧X�Y,

where X,Y ∈ Nsets and a ∈ Nstat . Note that the interplay between D and � is
settled by Axiom 22.

A logical system called KA (designating knowledge on algebras), is now ob-
tained from this list by adding appropriate proof rules. Apart from the standard
rules from modal logic (modus ponens and necessitation) we have also some un-
orthodox ones which are typical of hybrid logic.

Definition 3 (The logic). Let KA be the smallest set of formulas containing
all of the above axiom schemata and closed under application of the following
rules:

(modus ponens)
α→ β, α

β
(Δ–necessitation)

α

Δα

(namestat)
b→ β

β
(namesets)

Y → β

β

(E∇–enrichment)
E (a ∧X ∧∇(b ∧ Y ∧ α))→ β

E (a ∧X ∧∇α)→ β
,

where α, β ∈ WFF, a, b ∈ Nstat , X,Y ∈ Nsets , Δ is contained in {K,�,A,D},
∇ ∈ {L,�,E,C}, and b, Y are new each time (i.e., do not occur in any other
syntactic building block of the respective rule).

The effect of the name and enrichment rules, respectively, will soon become
apparent. – The following result is the first of the main issues of this paper.

Theorem 1 (Completeness). A formula α ∈WFF is valid in all SANs, iff it
is KA–derivable.

We cannot present a detailed proof of this theorem here, due to limited space.
And we want to put the major emphasis on decidability besides; see Sec. 4. But
we fix the starting point and give the broad outlines so that the reader can
imagine how the machinery developed so far is working.

The soundness part of Theorem 1 is easy to prove. Towards completeness, the
properties of the canonical model MKA of the system KA have to be exploited.
Starting from a given non-derivable formula γ which we want to find a model
for, the part of MKA accessible from some fixed maximal consistent set deter-
mined by γ has to be named first. And second, all demands for the existence of
points realizing ∇–formulas have to be fulfilled. To this end, we call a maximal
consistent set s of formulas
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– named iff s contains some a ∈ Nstat and some X ∈ Nsets , and
– enriched iff, for every ∇ ∈ {L,�,E,C}, we have that

E (a ∧X ∧∇α) ∈ s⇒ ∃ b ∈ Nstat , Y ∈ Nsets : E (a ∧X ∧∇(b ∧ Y ∧ α)) ∈ s,

where a ∈ Nstat , X ∈ Nsets , and α ∈WFF.

Let N′stat and N′sets be two denumerable sets of new symbols, and WFF′ the
set of formulas extended accordingly. Then, we obtain the following Modified
Lindenbaum Lemma.

Lemma 1. Every maximal consistent set s ⊆WFF can be extended to a named
and enriched maximal consistent set s′ ⊆WFF′.

As it is clear from the definition of a named and enriched set, the hybrid
rules for naming and enrichment are used decisively in the proof of the Modified
Lindenbaum Lemma.

Furthermore, the following Existence Lemma can be proved for the structure
M′ of which the domain D consists of all named points that are reachable (via
the canonical accessibility relations) from s′ and the relations are the induced
ones.

Lemma 2. Let ∇ ∈ {L,�,E,C}. Assume that s ∈ D contains the formula ∇α.
Then there exists some t ∈ D which is accessible from s with respect to Δ−→ ,
where Δ is the dual of ∇, and contains α.

Now, for every s ∈ D we let [s] := {t ∈ D | s K−→ t} be the K−→–equivalence
class of s (see Axioms 3 – 5 above), and we consider the set Q := {[s] | s ∈ D} of
all such classes. Particularly the axioms of the second group enable us to define
a set space structure on a suitable space of partial functions f : Q −→ D. The
axioms of the last two groups make sure that this set space is an algebra, even an
SAN, actually. (Clearly, all the other axioms are needed as well.) All in all, it can
be guaranteed that the modal operators behave correctly as set space modalities
(according to Definition 2) on the model we have just pointed to. Thus we obtain
in fact completeness of the system KA, via an appropriate Truth Lemma.

4 Decidability

In this section, we show that KA is a decidable set of formulas. This is done by
proving the finite model property (fmp) for KA. Unfortunately, this property does
not hold with respect to the intended class of structures; cf [3], Sec. 1.3. But the
fmp will be established for a suitable subclass of the class of all Kripke models
instead. To this end, we define first certain auxiliary structures occurring at an
intermediate step of our proof and realizing already a large part of the above list
of axioms.

Definition 4 (KA–models). A quintupel M :=
(
W,

K−→ ,
�−→ ,

A−→ , V
)

is called
a KA–model, iff the following conditions are satisfied:
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1. W is a non-empty set,
2. the relation K−→ ⊆ W ×W (belonging to the knowledge operator K) is an

equivalence,
3. the relation �−→ ⊆ W ×W (belonging to the effort operator �) is reflexive

and transitive,
4. for all u, v, w ∈ W such that u

�−→ v
K−→ w there exists t ∈ W such that

u
K−→ t

�−→w,

5. the relation A−→ ⊆W ×W (belonging to the global modality A) is universal,

6. there is some u0 ∈ W such that W = {v | (u0, v) ∈ ( K−→◦ �−→ )∗} (i.e., in

particular, W is generated by u0 with respect to K−→◦ �−→),
7. V : PROP ∪Nstat ∪Nsets −→ P(W ) is a mapping satisfying

(a) for all c ∈ PROP ∪ Nstat and u, v ∈ W : if u
�−→v, then u ∈ V (c) ⇐⇒

v ∈ V (c),
(b) for all a ∈ Nstat and u ∈ W there is at most one v ∈ W such that u K−→v

and v ∈ V (a),
(c) for all X ∈ Nsets , the set V (X) equals either ∅ or a unique K−→ –

equivalence class.

We give a couple of comments on this definition. First, note that the fourth
item above corresponds to the aforementioned Cross Axiom and is, therefore,
called the Cross Property. This property can be taken as a certain diagram
property of the relations K−→ and �−→ , actually. Second, item 7 suits the notion
of A–valuation from Definition 1 to KA–models. And finally, the reader might
wonder why Definition 4 does not refer to the relation D−→ ; the reason for this is

that the crucial properties of D−→ are not passed to filtrations; see below. Thus
this relation requires an extra treatment.

KA–models are closely related to SAN s. In fact, by taking neighbourhood
situations as points and defining the accessibility relations and the valuation in
a way suggesting itself (in accordance with the proceeding for topologic, cf [3],
Section 2.3), every SAN induces a KA–model.

Unfortunately, not every KA–model validates necessarily all of the above
axioms. But, for a start, we get at least the following partial result.

Proposition 2. Apart from, at most, Axioms 15 – 19 and 21 – 22, each of the
above schemata is valid in every KA–model.

The proof of Proposition 2 is rather straightforward. – We introduce now an
ad hoc notation by calling a KA–model M faithful, iff all the axioms except those
containing D (i.e., 17 – 19 and 22) are valid in M. We want to show next that
the D–free fragment of KA satisfies the Strong Finite Model Property (cf [10],
Def. 6.6) with respect to the class of all faithful KA–models.

To establish this finite model property we use the method of filtration, fol-
lowed by an appropriate model surgery. So, let α ∈WFF be a consistent formula
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for which we want to find a model of size at most f(|α|), where f is some com-
putable function and |α| denotes the length of α. Let us assume temporarily that
α is D–free. In the following, we have to consider the set sf(α) of all subformulas
of α. We construct a suitable filter set Σ from sf(α) as follows. We first let

Σ0 := sf(α) ∪ {�¬X | X ∈ Nsets occurs in α},
and secondly Σ¬ := {¬β | β ∈ Σ0}. Then we take the set Σ′ of all finite
conjunctions of pairwise distinct elements of Σ0 ∪ Σ¬. Afterwards, we close
Σ′ under single applications of the operator L and take, finally, the set of all
subformulas of the formulas contained in the resulting set. Let Σ be the union of
all these intermediate sets of formulas. Then Σ is subformula closed, and 2c·|α|

is an upper bound of the cardinality of Σ (for some constant c).
Let C be the submodel of the canonical model of KA generated by a maximal

consistent set realizing α. Moreover, let a Kripke model

M =
(
W,

K−→ ,
�−→ ,

A−→ , V
)

be obtained from C as follows:

– W is the filtration of the carrier set C of C with respect to Σ,

– K−→ , �−→ and A−→ are the smallest filtrations (cf [10], 2.40) of the accessibility
relations of C belonging to the respective modalities, and

– V is induced by the canonical valuation.

Then we have the following lemma.

Lemma 3. The just defined structure M is a KA–model.

And we get even more, by exploiting the structure of the filter set Σ and the
fixings for the filtrations of the relations to a greater extent.

Proposition 3. The model M can be turned into a faithful KA–model M′ which
is semantically equivalent to M with respect to α.

Proof. The valuation V has to be altered suitably, and Axioms 15, 16 and 21
have to be verified accordingly. A detailed reasoning for Axioms 15 and 16 can
be found in [7], proof of Proposition 3. As to Axiom 21, we can argue in a similar
manner. Note that K�(X ∨ Y ) is really an element of the filter set Σ, if both
X and Y occur in α (otherwise there is nothing to prove).

Now we drop our intermediate assumption that the complementation opera-
tor D does not occur in α. This will result in a change of the filter set. But since
the ‘building plan’ of this set will be retained, Proposition 3 remains valid.

The following treatment of D reminds one of the handling of the modal
difference operator in [10], proof of Theorem 7.8.2 That is, D will be replaced
temporarily and reinserted after carrying out the filtration.
2 The complementation operator can, in fact, be viewed as a generalized difference

operator: it enables one to jump to points outside the equivalence class of the actual
one for evaluating a given formula there (instead of jumping to a point different from
the actual one for the same purpose).
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Let Σ be defined as above. We have to take a closer look at the filtration
relation induced by Σ on the domain C of C. Let ∼Σ denote this relation, and s̄
the equivalence class with respect to ∼Σ of a point s ∈ C. We choose an injective
mapping ι from the (finite) set of all such classes into the set of all proposition
letters not occurring in Σ. Furthermore, a new proposition letter pβ is assigned
to every formula Dβ ∈ Σ0 in such a way that pβ �= pγ whenever β �= γ. For every
δ ∈ Σ0, let δ′ be the result of replacing every subformula Dβ of δ with pβ . Then
we define

Σ̃0 := {δ′ | δ ∈ Σ0} ∪ {pι(s̄),Kpι(s̄) | s ∈ C} ∪ {pβ | Dβ ∈ Σ0},
and we let Σ̃ be built from Σ̃0 as Σ was built from Σ0; see above. Obviously, Σ̃
is D–free.

Σ̃ will be used as a new filter set in a moment. However, the model C has
to be modified beforehand to the effect that the valuation makes pι(s̄) true at
exactly one point of s̄, and pβ at exactly the points where Dβ is true in model
C. Let this variant of C be designated C′.

Now, C′ is filtrated through Σ̃. Let ∼Σ̃ denote the filtration relation induced
by Σ̃ on C. Then every equivalence class with respect to ∼Σ is divided into
exactly two equivalence classes with respect to ∼Σ̃ (if the former class consists of
more than one point). Moreover, one can prove that these two smaller classes are
not K−→–connected. This gives us quite a good behaviour of D−→ when interpreted
appropriately in the filtrated model, denoted M̃. In particular, Axioms 17 – 19
are forced to be valid there.

Furthermore, it can be shown by a suitable induction that M̃ is semantically
equivalent to C with respect to Σ. This is almost that what we would like to
have. Only Axiom 22 has still to be established. To this end, all the formulas
contained in the set

{�D¬(a ∧X) | a ∈ Nstat and X ∈ Nsets occur in α}
have to be added to the source set Σ0. Then one can in fact continue as described
above.

All in all, we conclude that α is satisfiable in a finite model of the axioms, of
which the size is in O

(
22c·|α|

)
(where c ∈ N is some constant). This yields the

main result of this section.

Theorem 2 (Decidability). The hybrid logic KA for knowledge on algebras is
decidable.

We do not know whether or not it is possible to improve the arising upper
bound for the complexity of the logic KA.

5 Summary

In the present paper, we developed the fundamental matters of a two-sorted hy-
brid logic, KA, for set algebras with names, which can be viewed as appropriate
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knowledge structures in various contexts. A new operator expressing comple-
mentation was introduced for this purpose, in particular. We obtained a Com-
pleteness as well as a Decidability Theorem for KA. These results may be taken
as an indication that our approach to knowledge on algebras is a promising one,
which must, however, still prove to be suitable for practical use.
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Abstract. A partial information algorithm for a language A computes,
for some fixed m, for input words x1, . . . , xm a set of bitstrings contain-
ing χA(x1, . . . , xm). E.g., p-selective, approximable, and easily countable
languages are defined by the existence of polynomial-time partial infor-
mation algorithms of specific type. Self-reducible languages, for different
types of self-reductions, form subclasses of PSPACE.

For a self-reducible language A, the existence of a partial information
algorithm sometimes helps to place A into some subclass of PSPACE.
The most prominent known result in this respect is: P-selective languages
which are self-reducible are in P [9].

Closely related is the fact that the existence of a partial information
algorithm for A simplifies the type of reductions or self-reductions to A.
The most prominent known result in this respect is: Turing reductions
to easily countable languages simplify to truth-table reductions [8].

We prove new results of this type. We show:
1. Self-reducible languages which are easily 2-countable are in P. This

partially confirms a conjecture of [8].
2. Self-reducible languages which are (2m − 1, m)-verbose are truth-

table self-reducible. This generalizes the result of [9] for p-selective
languages, which are (m + 1, m)-verbose.

3. Self-reducible languages, where the language and its complement are
strongly 2-membership comparable, are in P. This generalizes the
corresponding result for p-selective languages of [9].

4. Disjunctively truth-table self-reducible languages which are 2-mem-
bership comparable are in UP.

Topic: Structural complexity.

1 Introduction

A partial information algorithm for a language A computes on input of m
words x1, . . . , xm some information on membership of these words in A. It ex-
cludes some of the 2m bitstrings a priori possible for χA(x1, . . . , xm), where
χA is the characteristic function for A, by computing a set D ⊂ {0, 1}m with
χA(x1, . . . , xm) ∈ D. We call such sets D m-pools. Sets D of m-pools that may

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 483–494, 2005.
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occur as outputs of a specific partial information algorithm are called m-families.
In the following we only treat polynomially time bounded partial information
algorithms. This line of research started in the seventies with the introduction
of p-selective languages (due to [28], see [16]). Many other types of partial infor-
mation have been studied since then, most prominently cheatability (due to [5]),
and membership comparability (due to [2,12], also known as approximability or
non-superterseness, see [8,27]); as well as verboseness, strong membership com-
parability, frequency computations, easily countable languages, multi-selectivity
and sortability (for detailed definitions see e.g. [2,3,7,8,15,17,18]). A general the-
ory for polynomial-time partial information classes was developed in [22,23]. For
a recent survey on partial information see [26].

From the start the interplay of partial information with reducibility and
self-reducibility was investigated. Languages positively Turing reducible to a p-
selective language are in fact many-one reducible to that language [10], and
therefore are p-selective, as well. But for non-positive reductions the reduction
closures of p-selective sets form a strict hierarchy [30,14]. For recent results on
reductions and polynomial-time partial information classes see [25,6,4].

A language A is self-reducible if membership for a word x in A can be deter-
mined by computing membership for smaller words in A. This property is quite
typical for many computational problems. E.g., natural NP-complete problems
like SAT are self-reducible. The question whether SAT has partial information
algorithms has been studied extensively in the literature, see e.g., [1,8,27,29].

Self-reducible languages are in PSPACE. In some cases, if a self-reducible
language additionally has a certain type of polynomial-time partial information
algorithm, one can show a better complexity bound than PSPACE. Self-reducible
p-selective languages are in P [9]. Similar results hold for p-cheatable languages
[13] and frequency computations [8]. We look for new and more general results
of that type. A general solution for all types of partial information seems out
of reach: An unconditional negative answer would imply P �= PSPACE; on the
other hand there are relativized worlds where the answer is negative for some
types of partial information [8].

For two types of partial information we show that in combination with self-
reducibility one gets membership in P. Moreover, we give an interesting ex-
ample where the combination of partial information with a restricted type of
self-reduction places languages not into P, but into the class UP.

In particular, we prove the following:
– Easily 2-countable self-reducible languages are in P. In [8] it was conjectured

that this even holds for easily m-countable languages for every m ≥ 2. We
think that similar ideas that we use to prove the conjecture for m = 2 may
turn out helpful to attack the general conjecture.

– If a self-reducible language and its complement are strongly 2-membership
comparable, then the language is in P. This is a strict improvement on the
result of [9] for self-reducible p-selective languages.

– If a language is 2-membership comparable and disjunctively truth-table self-
reducible, then it is in UP. This is especially interesting since there is a
relativized world where this cannot be improved to membership in P [8].
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In proofs that place self-reducible languages with partial information algo-
rithms into P one often starts as follows: One shows that for languages in the
partial information class a certain reducibility simplifies to a more restricted
type of reducibility. This is e.g. the case in our proof for easily 2-countable lan-
guages. In [9] the essential proof step is to simplify self-reductions to truth-table
self-reductions for p-selective languages. We address the question to which types
of partial information this simplification result can be extended. We show:

– Self-reducible languages where the m-fold characteristic function is (2m−1)-
enumerable are truth-table self-reducible.

This generalizes the result for p-selective languages of [9]. Note that for p-
selective languages the m-fold characteristic function is (m + 1)-enumerable.
We will apply this result in our proof for languages where the language and its
complement are strongly 2-membership comparable.

2 Basics on Partial Information and Self-reducibility

Languages, Bitstrings, Complexity Classes. Languages are subsets of Σ∗ =
{0, 1}∗. The characteristic function χA : Σ∗ → {0, 1} for a language A is de-
fined by χA(x) = 1 ⇐⇒ x ∈ A. We extend χA to tuples by χA(x1, . . . , xm) :=
χA(x1) · · ·χA(xm). A denotes the complement of A. #1(b) denotes the number
of 1’s in a bitstring b, b[i] is the i-th bit of b, and b[i1, . . . , ik] := b[i1] · · · b[ik]. For
background on Turing machines and complexity classes see e.g. [11]. FP denotes
the class of polynomial-time computable functions. A nondeterministic Turing
machine is called unambiguous if for every input x there is at most one accepting
computation. A language A is in UP if there is an unambiguous polynomial time
bounded nondeterministic Turing machine that accepts A.

Reducibility, Self-reducibility. We define several types of reductions and self-
reductions:

1. A language A is polynomial-time Turing reducible to a language B if there
is a deterministic polynomial-time oracle Turing machine M with A =
L(M,B).

2. If the machine is non-adaptive, we say that A is polynomial-time truth-table
(or tt, for short) reducible to B. Equivalently, tt-reducibility can be defined
in terms of generator and evaluator: A is polynomial-time tt-reducible to
B if there exists a generator g ∈ FP and an evaluator α ∈ FP such that
on input x, g(x) is a tuple 〈q1, . . . , qs〉 and χA(x) = α(x, χA(q1, . . . , qs)). If
we define αx(b1, . . . , bs) := α(x, b1, . . . , bs), αx is the boolean function that
evaluates the oracle answers on input x.

3. For k ∈ N, A is k-tt-reducible if on every input x there are at most k words
in g(x). We say that A is dtt-reducible if for every x the boolean function
αx is a disjunction. A is nor-nand-reducible to B if for every x the boolean
function αx is either a nor- or a nand-function. (Note that one can decide
which of the two cases for αx holds without knowing the oracle answers.)
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4. A language A is self-reducible if A is polynomial-time reducible to A by some
machine M such that all words queried by M on input x are shorter than x.
Corresponding to each restricted type of reducibility we also have a restricted
type of self-reducibility.

We use here self-reducibility in the narrower sense where queries have to be
smaller than the input word with respect to the word length. All our results also
hold for the more liberal definition of self-reducibility in [21]. The following facts
are due to Ko [19].

Fact 1.

1. Every self-reducible language is in PSPACE.
2. Every dtt-self-reducible language is in NP.
3. Every 1-tt-self-reducible language is in P.

Partial information classes. We now introduce the concept of partial information
classes. We state facts from [24] (see also [26]).

Definition 1 (Pool, Family, Partial Information Class). Let m � 1.

1. A subset D ⊆ {0, 1}m is called an m-pool.
2. A set D = {D1, . . . , Dr} of m-pools is called an m-family if

(a) D covers {0, 1}m, that is
⋃r

i=1 Di = {0, 1}m, and
(b) D is closed under subsets, that is D1 ∈ D and D2 ⊆ D1 implies D2 ∈ D.

3. For an m-family D, a language A is in P[D] if and only if there is an f ∈ FP
such that f(x1, . . . , xm) ∈ D and χA(x1, . . . , xm) ∈ f(x1, . . . , xm) for all
words x1, . . . , xm.

In general, different m-families may yield the same partial information class.
However, to produce all partial information classes we need only consider families
in so called normal form. Such families are closed under permuting positions in
bitstrings of pools in the family, replacing bits of some bitstring position by
constant 0 (or 1), and copying bits from one bitstring position to another. For
every m-family there is a unique m-family in normal form that produces the
same partial information class. Given m-pools D1, . . . , Ds, 〈D1, . . . , Ds〉 denotes
the minimal m-family in normal form that contains these pools. Inclusion of
partial information classes corresponds to inclusion of families in normal form.

We next give names and informal descriptions to several pools which we will
use to describe types of partial information. We define several families as well,
mostly by listing a set of pools generating them.

Definition 2 (Some Pools).

1. equ2 := {00, 11} The words are equivalent wrt. membership in A.
2. xor2 := {01, 10} Exactly one of the words is in A.
3. sel2 := {00, 01, 11} If the first word is in A, then also the second.
4. selm := {0i1m−i | i = 0, . . . ,m} If xi is in A, then also xi+1.
5. bottomm := {b | |b| = m,#1(b) ≤ 1} At most one word is in A.
6. topm := {b | |b| = m,#1(b) ≥ m− 1} At least (m−1) words are in A.
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3-Size2

4-Size2

Smc2 ∩CoSmc2

Sel2

Smc2 CoSmc2

〈equ2〉

1-Size2

2-Size2

〈bottom2〉

2-Card2

〈top2〉

Fig. 1. Inclusion structure of all 2-families in normal form. Arrows stand for strict
inclusion.

Definition 3 (Some Families).

1. k-Sizem := {D ⊆ {0, 1}m | |D| � k}
2. Sel2 := 〈sel2〉
3. m-Cardm := {D ⊆ {0, 1}m | ∃i ∈ {0, . . . ,m} ∀b ∈ D : #1(b) �= i}
4. Smcm :=

〈{0, 1}m \ {1m}, {0, 1}m \ {01m−1}〉
5. CoSmcm :=

〈{0, 1}m \ {0m}, {0, 1}m \ {10m−1}〉
Languages in P[m-Sizem] are called m-cheatable, as defined in [8]. Languages

in P[Sel2] are called p-selective, as defined in [28]. Languages in P[m-Cardm]
are called easily m-countable, as defined in [18]. Languages in P[(2m − 1)-Sizem]
are called m-approximable or m-membership comparable, as defined in [5]. Lan-
guages in P[k-Sizem] are called (k,m)-verbose. Languages in P[Smcm] are called
strongly m-membership comparable, as defined in [20].

We close this section with Figure 1 that shows the inclusion structure of
all 2-families in normal form, and hence the inclusion structure of all partial
information classes produced by 2-families.

3 Self-reducible Easily 2-Countable Languages Are in P

Beigel, Kummer, and Stephan ask in [8] whether every self-reducible easily m-
countable language is in P. In this section, we show that this holds at least for
the case of easily 2-countable languages:



488 A. Hernich and A. Nickelsen

Theorem 1. Every self-reducible language in P[2-Card2] is in P.

For the proof of Theorem 1 we use a result from [8] on simplification of
reductions:

Fact 2. Every language A reducible to an easily m-countable language B is tt-
reducible to B.

Because in the proof of Fact 2 the truth-table queries are a subset of the
queries in the Turing reduction tree, that result also tells us that self-reducible
languages in P[2-Card2] are tt-self-reducible. Furthermore, we apply the follow-
ing two lemmas. The first one breaks tt-self-reducibility down to nor-nand-self-
reducibility, whereas the second one shows membership in P.

Lemma 1. Every tt-self-reducible language in P[2-Card2] is nor-nand-self-re-
ducible.

Proof. Let A be tt-self-reducible via M , and let A ∈ P[2-Card2] via f ∈ FP.
Without loss of generality, f(x, y) ∈ {bottom2, equ2, top2} for all words x, y.
The following algorithm decides A in a nor-nand-self-reducing fashion.

On input x, let Q be the set of queries of M(x). If there is a word q ∈ Q with
f(x, q) = equ2, then χA(x) = χA(q). Replace Q with the set of queries of M(q).
Iterate the above process until there is no word q ∈ Q with f(x, q) = equ2, or
until M accepts or rejects (in which case we accept or reject x).

Assume we end up with a set Q with f(x, q) ∈ {bottom2, top2} for all q ∈ Q.
Then the following procedure computes sets IN, OUT and X such that IN ∪
OUT ∪X = Q, IN ⊆ A, OUT ⊆ A and either for all q ∈ X , f(x, q) = bottom2

or for all q ∈ X , f(x, q) = top2. At the beginning, set IN = OUT = ∅ and
X = Q. While there are two words q1, q2 ∈ X such that f(x, q1) = bottom2

and f(x, q2) = top2, compute D = f(q1, q2). If D = bottom2, we have q1 /∈ A
(otherwise x /∈ A and q2 /∈ A which contradicts f(x, q2) = top2) and we move
q1 from X into OUT. If D = top2, we have q2 ∈ A (otherwise x ∈ A and
q1 ∈ A which contradicts f(x, q1) = bottom2) and we move q2 from X into IN.
If D = equ2, then x ∈ A if and only if q1 /∈ A. In this case, the algorithm stops
and χA(x) is determined by querying q1.

Now we have to deal with the two cases

– f(x, q) = bottom2 for all q ∈ X , or
– f(x, q) = top2 for all q ∈ X .

We only treat Case 1. Case 2 is analogous, but with the nand-function instead of
the nor-function. Suppose f(x, q) = bottom2 for all q ∈ X . If at least one query
from X is in A, then x /∈ A. Compute whether M accepts x in case all queries
in X are not in A. If no, then M rejects x for all oracle answers. We can reject
x without using oracle queries at all. If yes, then x is in A iff ¬∨q∈X q ∈ A.
This means we can query the words in X and evaluate the answers with the
nor-function. All computations can be done in polynomial time. ��
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For membership in P, it suffices to show, by Fact 1, that every nor-nand-self-
reducible language in P[2-Card2] is 1-tt-self-reducible:

Lemma 2. Every nor-nand-self-reducible language in P[2-Card2] is 1-tt-self-
reducible.

Proof. Let A be nor-nand-self-reducible via generator g ∈ FP and evaluator
α ∈ FP. Let A ∈ P[2-Card2] via f ∈ FP. Without loss of generality, f(x, y) ∈
{bottom2, equ2, top2} for all words x, y. The following algorithm decides x ∈ A
in polynomial time with at most one query to A which is shorter than x.

On input x, let Q be the set of queries of g(x), and let αx be the boolean
evaluation function for x. We consider the case that αx is a nor-function, i.e.
x ∈ A if and only if for all q ∈ Q: q /∈ A; the case that αx is a nand-function
is analogous. For each q ∈ Q, do the following: compute g(q) = 〈q1, . . . , qk〉 and
determine, whether αq is a nand- or a nor-function. Consider the following two
cases:

Case 1. αq is a nand-function, i.e. q ∈ A if and only if ∃i : qi /∈ A. Then, for
each i ∈ {1, . . . , k} we can decide either x ∈ A or qi ∈ A (clearly, if we know
χA(qi) for all i, we know χA(q), too). For all i = 1, . . . , k, compute D = f(x, qi)
and consider the following cases. If D = bottom2, then x /∈ A, since otherwise
qi /∈ A⇒ q ∈ A⇒ x /∈ A (because αx is a nor- and αq is a nand-function) which
contradicts x ∈ A. If D = equ2, then x ∈ A ⇔ qi ∈ A and we query qi in order
to compute χA(x). If D = top2, then qi ∈ A, since otherwise q ∈ A⇒ x /∈ A⇒
qi ∈ A which contradicts qi /∈ A.

Case 2. αq is a nor-function, i.e. q ∈ A if and only if for all i: qi /∈ A. For
all i = 1, . . . , k, compute D = f(x, qi) and consider the following cases until
we can compute χA(x) or χA(q). If D = equ2, then x ∈ A ⇔ qi ∈ A and we
query qi in order to compute χA(x). If D = top2, then q /∈ A since otherwise
x /∈ A ⇒ qi ∈ A ⇒ q /∈ A which contradicts q ∈ A. In the worst case we
have D = bottom2 for all i. But then x /∈ A, since otherwise qi /∈ A for all
i ∈ {1, . . . , k} (because f(x, qi) = bottom2 for all such i) and therefore q ∈ A
which implies x /∈ A; a contradiction to x ∈ A.

We have seen that in all cases either we can decide membership in A for all
words q ∈ Q, and hence for x, or we find a query qi such that x ∈ A⇔ qi ∈ A.
This means that A is 1-tt-self-reducible. Moreover, it is easy to see that the
whole procedure runs in time polynomial in |x|. ��

We thus have shown that every self-reducible easily 2-countable language is
contained in P.

4 Simplifying Turing to Truth-Table Self-reductions for
(2m − 1, m)-Verbose Languages

In order to show that self-reducible languages in a certain partial information
class are contained in P, it is convenient to show first that they are tt-self-
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reducible. We have already used such a result from [8] in the case of easily count-
able languages, see Fact 2. We now show a similar result for P[(2m− 1)-Sizem]
for all m ∈ N. This is a generalization of Theorem 4 in [9] on p-selective lan-
guages.

Theorem 2. For all m ∈ N, if A ∈ P[(2m− 1)-Sizem] is self-reducible, then A
is tt-self-reducible.

Proof. Let A be self-reducible via M and A ∈ P[(2m− 1)-Sizem] via f ∈ FP.
On input 〈x1, . . . , xm〉, f computes a set D ⊆ {0, 1}m with |D| ≤ 2m − 1 and
χA(x1, . . . , xm) ∈ D.

The query tree TM (x) reflects the computations of M on input x for all
possible answers to oracle queries. Each inner node of TM (x) is labeled with a
query q and has two children, one for the oracle answer ‘yes’ and one for ‘no’.
Leaf nodes are labeled with ‘χA(x) = 1’ if the path of queries and answers from
the root to that leaf node describes an accepting computation of M on input x,
otherwise they are labeled ‘χA(x) = 0’. We process TM (x) with a breadth-first
extend-and-prune algorithm. Pruning means removing a subtree and replacing
it by a leaf node labeled ‘χA(x) = 1’ or ‘χA(x) = 0’. Extending means taking in
children of nodes labeled with queries. We thus always keep a (pruned) subtree
of TM (x) satisfying the following invariants:

1. On every path in T there are at most m − 2 nodes having two inner nodes
as children.

2. Leaf nodes are labeled ‘χA(x) = 1’ if and only if M accepts x for all oracles
consistent with the query-answer path leading to that node.

Initially, let T be the full query tree up to depth m− 1. Suppose T has been ex-
tended such that there is a path on which m−1 nodes, labeled with q1, . . . , qm−1,
have two inner nodes as children. Let a = a1 . . . am−2 be the bitstring encoding
the answers to queries along the path: ai = 1 if and only if the answer to query
qi is ‘yes’. Compute D := f(x, q1, . . . , qm−1). Split D into two pools by defining
Dc := {b ∈ D | b[1] = c} for c ∈ {0, 1}. We have |D0| + |D1| = |D| ≤ 2m − 1.
Hence, for at least one c we have |Dc| ≤ m − 1. Fix such a value for c. Now
there must be an i ∈ {1, . . . ,m − 1} such that c a[1, . . . , i − 1] 0 is not a pre-
fix of a string in Dc or c a[1, . . . , i − 1] 1 is not a prefix of a string in Dc. Say,
c a[1, . . . , i− 1] 0 is not a prefix of a string in Dc. This means that if χA(x) = c,
then ‘no’ is not the answer to query qi. This means: If ‘no’ is the answer to query
qi, then χA(x) = 1− c. Prune the tree at the ‘no’-edge leaving the node labeled
qi. Replace the subtree at this edge by a leaf node labeled ‘χA(x) = 1− c’.

When Tm(x) has been processed up to some depth, only a constant number
of nodes of this depth with two inner nodes as children remain in T . Therefore
the whole processing can be completed in polynomial time and in the end only
polynomially many queries are left in T . These are the queries that now are given
in parallel to the oracle. If the path in T determined by the oracle answers leads
to a node labeled ‘χA(x) = 1’, then accept x, else reject. We conclude that A is
tt-self-reducible. ��
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5 On Strongly 2-Membership Comparable Languages

In this section, we consider 2-families that strictly include Sel2, in particular the
families Smc2 ∩CoSmc2 and 3-Size2. It turns out that self-reducible languages
in the partial information class produced by the first family are in P. It is unlikely
that this result can be extended to larger 2-families. However, we can at least
show that dtt-self-reducible languages in P[3-Size2] are in UP.

5.1 Self-reducibility and P

By Theorem 2, every self-reducible language in P[Smc2 ∩ CoSmc2] is tt-self-
reducible. The proof that every tt-self-reducible language in P[Smc2 ∩CoSmc2]
is 1-tt-self-reducible, and hence in P, is an easy generalization of Theorem 3 in
[9], together with the following fact (Lemma 3.24 from [24]):

Fact 3. For every language A ∈ P[Smc2 ∩ CoSmc2] we can compute on input
〈x1, . . . , xm〉 in polynomial time a partition of X = {x1, . . . , xm} into disjoint
sets of one of the following two types:

1. X = IN ∪OUT ∪ S1 ∪ . . . ∪ Sr with r ≤ m such that:
– IN ⊆ A and OUT ⊆ A,
– For 1 ≤ i ≤ r, Si �= ∅ and Si ⊆ A or Si ⊆ A.
– For 1 ≤ i < j ≤ r, x ∈ Si and y ∈ Sj: χA(x) ≤ χA(y).

2. X = IN ∪OUT ∪X1 ∪X2 such that:
– IN ⊆ A and OUT ⊆ A,
– For i ∈ {1, 2}: Xi �= ∅ and Xi ⊆ A or Xi ⊆ A.
– For x ∈ X1 and y ∈ X2: χA(x) �= χA(y).

Given a tt-self-reducible language in P[Smc2 ∩CoSmc2], we can compute a
partition of the words generated in the tt-self-reduction according to Fact 3. The
case that the partition is of the first type is handled in the proof of Theorem 3
in [9]. If it is of the second type and the input word x is contained in Xi, then
membership of x can be determined by querying some word in Xj , j �= i. We
have thus established the following theorem.

Theorem 3. Every self-reducible language in P[Smc2 ∩CoSmc2] is in P. ��

5.2 Disjunctive Truth-Table Self-reducibility and UP

We do not know whether every self-reducible language in P[Smc2] is in P. Indeed,
it seems that results in this respect are hard to obtain: In the proof of Theorem
7.1 in [8], an oracle is constructed such that relative to it there exists a dtt-self-
reducible language in P[Smc2] that is not in P.

To get some results for families above Smc2∩CoSmc2 we have to be satisfied
to show inclusion in a class larger than P. The following result is of that kind:
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Theorem 4. Every dtt-self-reducible language in P[3-Size2] is in UP.

Proof. Let A be dtt-self-reducible via M , and let A ∈ P[3-Size2] via f ∈ FP.
We construct a polynomial-time unambiguous nondeterministic Turing machine
N which accepts A.

The dtt-self-reducing tree of M on input x is created by iteratively comput-
ing for each query q the queries that M would ask on input q. This tree has
polynomial height, but in general contains exponentially many nodes. On an
input x we walk a path in the dtt self-reducing tree of M on input x. We use f
to decide whether the actual query is in A (the path then ends at this point), or
to choose the next node to visit. We accept x if and only if the last node on the
path is in A. Note that x ∈ A if and only if there exists such a path. Assume
we already visited x1, . . . , xl. If M(xl) queries q1, . . . , qs, we compute f(qi, qj)
for all 1 ≤ i, j ≤ s, i �= j. If for such a pair f(qi, qj) = sel2, we can remove
qi from the list of queries. Let qi1 , . . . , qir be the queries remaining after these
removals. If r = 1, we set xl+1 := qi1 . If r > 1, and f(qij , qik

) = top2 for some
pair, then at least one query is in A, and hence xl is in A. It remains the case
that f(qij , qik

) = bottom2 for all 1 ≤ j, k ≤ r, j �= k. This means: At most one
of these queries is in A. We choose a j nondeterministically and set xl+1 := qij .
Clearly, N has on input x at most one accepting computation. ��

6 Conclusion

We have improved on previous results on combining partial information and self-
reducibility. The improvement from Sel2 to Smc2 ∩CoSmc2, Theorem 3, may
be not so surprising since these two families share many properties and are even
linked by a reducibility (which needs access to an NP-oracle, see [4]). But the
result on easily 2-countable languages, Theorem 1, is, in our view, an important
step forward. It partially solves the conjecture of Beigel, Kummer, and Stephan
[8]. Maybe, in the future similar proof ideas may help to answer their question
“Are all easily countable self-reducible languages in P?” positively.

An important tool in proofs, but also interesting in their own right, are
theorems on the simplification of reductions or self-reductions like Theorem 2.
Can it be extended? Our proof is by an iterative query tree pruning procedure
which leaves only constantly many branches in the tree. We think that our proof
exploits this type of local pruning technique optimally. On the other hand, the
simplification result from [8] for easily countable languages is also proved by a
pruning technique involving trees of bounded rank. In their case the number
of branches is not bounded by a constant. But their technique does not seem
to apply to (2m − 1,m)-verbose languages. Is there a proof technique powerful
enough to subsume both results?

The last result on membership in UP, Theorem 4, suggests that one should
not only look for conditions on the type of partial information and type of
self-reducibility that yield membership in P. It would be nice if someone came
up with characterizations of several classes between P and PSPACE by such
combinations. Even for UP such a characterization still has to be found.
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3-Size2

4-Size2

Smc2 ∩CoSmc2

Sel2

Smc2 CoSmc2

〈equ2〉

1-Size2

2-Size2

〈bottom2〉

2-Card2

〈top2〉
self-reducible
languages are
in P

dtt self-reducible
languages are
in UP

Fig. 2. This figure shows all 2-families in normal form as in Figure 1. Dashed lines
separate families D for which (dtt-)self-reducible languages in P[D] are in P (UP) from
those ones where this is not known.
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Abstract. We consider the complexity of infinite games played on fi-
nite graphs. We establish a framework in which the expressiveness and
succinctness of different types of winning conditions can be compared.
We show that the problem of deciding the winner in Muller games is
PSPACE-complete. This is then used to establish PSPACE-completeness
for Emerson-Lei games and for games described by Zielonka DAGs.
Adaptations of the proof show PSPACE-completeness for the emptiness
problem for Muller automata as well as the model-checking problem for
such automata on regular trees. We also show co-NP-completeness for
two classes of union-closed games: games specified by a basis and superset
Muller games.

1 Introduction

Recent years have seen an increasing use of two-player infinite games as a means
of modelling reactive and concurrent systems. Games have emerged as essential
tools for the analysis, synthesis and verification of such systems with a close
connection to logic and to automata on infinite objects. The general framework
consists of games played on finite or infinite graphs (whose vertices represent
a state space) with players moving a token along the edges of the graph. The
(possibly infinite) sequence of vertices that is visited constitutes a play of the
game with the winner of a play being defined by some predetermined condition.

When we are concerned with algorithmic issues surrounding such games, we
need to restrict ourselves to games that can be described in a finite fashion. This
does not mean that the graph on which the game is played is necessarily finite as
it is possible to finitely describe an infinite graph. Nor does having a finite game
graph by itself guarantee that the game can be finitely described. Even with two
nodes in a graph, the number of distinct plays can be uncountable and there are
more possible winning conditions than one could possibly describe. In this paper,
we are concerned with regular games played on finite graphs. These are games
in which the graph is finite and the winner of a play is determined by the set of
vertices of the graph that are visited infinitely often in the play (see Section 2
for formal definitions). This category of games is wide enough to include most
kinds of game winning conditions that are considered in the literature, including
Muller, Streett, Rabin, Büchi and parity games.
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Specifically, we are concerned with the problem of deciding, given a game
and a starting position, which player has a strategy for winning the game. It
is well-known that regular games are determined, i.e. one of the players has
a winning strategy and the problem of determining which player has such a
strategy is decidable [1]. We are interested in the computational complexity of
deciding the winner. Since the complexity is measured as a function of the length
of the description, this in turn depends on how exactly the game is described.
In general, a regular game is defined by a graph (V,E), where E ⊆ V × V ,
and a winning condition F ⊆ P(V ) consisting of a set of subsets of V . One
could specify F by listing all its elements explicitly (we call this an explicit
presentation) but one could also adopt a formalism which allows one to specify
F more succinctly. In the latter case, there are two possibilities. Either the
formalism is general enough that any winning condition F ⊆ P(V ) can be
expressed in it or there is only a restricted class of winning conditions that
can be expressed. Muller games are an example of the first case while Rabin,
Streett, Büchi and parity games are all examples of the second case. Since the
number of possible winning conditions F is 22|V |

, if the formalism is general
enough to describe any regular winning condition then the description of the
game must, in general, be exponential in the size of the game graph. However,
some presentations may still be more succinct than the explicit presentation.
On the other hand, if the formalism is restricted in its expressive power, it may
be possible that the length of a description of the game is always bounded by
a polynomial in the size of the graph. We investigate these two dimensions of
variation in the description of games – the expressive power of the formalism on
the one hand and its succinctness on the other – in the results we establish.

As an example, consider a min-parity winning condition. Here, the winning
condition is specified by a priority function Ω : V → {0, . . . , d}. This is treated as
a specification of the set F consisting of those sets I ⊆ V such that the smallest
number in Ω(I) is even. It is clear that the description of Ω is bounded in length
by a polynomial (indeed, linear) function of |V |. It is also clear that not every
set F ⊆P(V ) can be described in this way. On the other hand, there are such
sets F for which the description using a priority function is exponentially more
succinct than an explicit presentation.

The exact computational complexity of deciding the winner of a parity game
is a central open question in the theory of regular games. It is known to be in
NP ∩ co-NP [3] and conjectured by some to be in P. However, lower bounds
on the complexity of any class of games are hard to come by. It is known that
deciding games specified by the Rabin condition is NP-complete [3] and for the
Streett condition the problem is co-NP-complete. Both of these are condition
types that are restricted in that they cannot express all regular games. No lower
bounds are previously known for formalisms that are expressive enough to specify
all regular games, though algorithms for such games have been studied which
establish, for instance, that the games are decidable in Pspace.

We consider five general-purpose formalisms. Our main result is that the
problem of deciding the winner of a Muller game is Pspace-complete. We then
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use this to establish Pspace-completeness for two further general-purpose rep-
resentations: Emerson-Lei games, where the winning condition is presented as
a Boolean formula over the vertices of the graph; and the case where the win-
ning condition is represented as a Zielonka DAG. The latter is a data structure
(defined in Section 2) based on the Zielonka trees of [12]. We define a notion
of polynomial-time translatability between formalisms. A formalism is translat-
able into another if the representation of a game in the first can be transformed
into a representation of the same game in the second. This is stronger than
polynomial-time reducibility of the corresponding decision problems. We show
that Muller games are translatable to Zielonka DAGs which are in turn trans-
latable to Emerson-Lei games, but the reverse translations do not hold. Our
hardness result for Muller games is based on the presentation of these games
which includes a colouring of the vertices. This allows for more succinct de-
scriptions than the explicit presentation of sets. Indeed, we show that there is a
translation in one direction but not the other. The complexity of deciding the
winner of the games where the sets are explicitly presented remains an open
question. An adaptation of the Pspace-completeness result shows that two im-
portant problems related to Muller automata are also Pspace-complete. These
are the emptiness problem and the model-checking problem on regular trees. As
an aside, we also show that the Pspace-completeness result for Muller games
holds even when the game arenas are restricted to small tree-width.

We also consider the restriction to games where the winning condition F
is closed under unions. The question of lower-bounds for union-closed games
was posed by Khoussainov (see [6]). It is known that deciding whether or not
Player 0 wins such a game is decidable in co-NP. The precise formalism used to
describe the set F is not relevant to this upper bound as the non-deterministic
algorithm runs in time polynomial in the size of the game graph. We show, for
two particular formalisms that the problem of deciding the winner is co-NP-
complete. One such formalism is what we call Basis games while the other is
the superset Muller games defined in [7]. The former is expressive enough to
define all union-closed games while the latter is restricted to expressing sets F
that are upward-closed. Both are, as we show, more succinct than an explicit
representation of F .

2 Background and Definitions

In this section, we present the basic definitions of games as well as particular
winning conditions. Many of the definitions presented here are standard. Where
this is the case, we follow terminology and notation from [5].

An arena A is a directed graph on a set of vertices V which is partitioned
into two sets V0 and V1, i.e. A = (V,E) where V = V0 ∪ V1, E ⊆ V × V
and V0 and V1 are disjoint. For the results we establish in this paper, there is
no loss of generality in assuming that the graph is bipartite in the sense that
E ⊆ (V0 × V1) ∪ (V1 × V0) and that for each v ∈ V , there is a v′ ∈ V such that
(v, v′) ∈ E. For instance, there is an easy transformation that maps any game
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to a bipartite game by inserting a new V0 (resp. V1) vertex in every edge that
connects two V1 (resp. V0) vertices. This transformation does not change the
existence of winning strategies for either player from any of the original vertices.
Thus, wherever it is convenient, we will assume that the arena satisfies the above
assumptions.

A game G is an arena A together with a winning set of sequences Win ⊆ V ω.
Informally, we think of the game as played between two players, Player 0 and
Player 1, with a token that sits on a vertex v in V . If v ∈ V0, it is Player 0’s turn
to move and she1 moves it to some v′ such that there is an edge (v, v′) in E and
similarly for Player 1 when the token is on a vertex in V1. The infinite sequence
of such moves determines a play π which is the sequence in V ω of vertices visited.
We say Player 0 wins the play if π ∈Win and Player 1 wins otherwise.

A strategy (for Player i) is a function f from V ∗Vi to V with f(v0v1 . . . vn) ∈
vnE. Given a sequence of vertices visited, ending with a vertex in Vi, a strategy
gives the vertex that Player i should then play to. A play is consistent with a
strategy if every move made by Player i is determined by the strategy, and a
strategy is winning if every play consistent with it is winning for Player i. If a
strategy f has the property that for some fixed m, f(w) = f(w′) if w and w′

agree on their last m letters, then we say that the strategy requires finite-memory
(of size m− 1). If m = 1, we say the strategy is memoryless.

A game (V,E,Win) is regular if there is a set F ⊆P(V ) such that for any
π ∈ V ω, π ∈Win if, and only if, the set {v : v occurs infinitely often in π} is in
F . In the remainder of the paper, we are concerned with games that are finite
(i.e. V is a finite set) and regular. Regular games are known to be determined,
that is, for each game and each initial vertex v, either Player 0 or Player 1 has
a winning strategy.

We say that a regular game (V,E,F) is union-closed if whenever I, J ∈ F ,
then I ∪J ∈ F . A regular game is upward-closed if for any I ∈ F and I ⊆ J , we
have J ∈ F . Clearly any upward-closed game is also union-closed.

The games used in the literature in the study of logics and automata are
generally regular games (though not necessarily finite). In these games, the set
F is often not explicitly given but is specified by means of a condition. Different
types of condition lead to various different types of games. We do not give a
formal definition of a condition type but we will define specific instances of such
types.

The most straightforward presentation of a regular game (V,E,F) is given
by listing all elements of F . We call this an explicit condition. Games specified
by such a condition type are sometimes called Muller games in the literature,
but we reserve that term for the more commonly used presentation in terms of
colours given next.

A Muller condition on an arena (V,E) is given by a set of colours C, a
colouring function χ : V → C and a set C ⊆P(C). The set F specified by such
a condition is the set {I ⊆ V : χ(I) ∈ C}.
1 For ease of reference we use the feminine pronoun for Player 0 and the masculine for

Player 1.
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An Emerson-Lei condition [4] on an arena (V,E) is given by a Boolean for-
mula ϕ with variables from the set V . The set F specified is the collection of
sets I ⊆ V such that the truth assignment that maps each element of I to true
and each element of V \ I to false satisfies ϕ.

In [12], Zielonka introduced a representation of a winning set F ⊆P(V ) in
terms of a labelled tree, where the labels on the nodes are subsets of V . The
Zielonka tree of the set F , ZF ,V , is defined inductively as:

1. If V /∈ F then ZF ,V = ZF ,V , where F = P(V ) \ F .
2. If V ∈ F then the root of ZF ,V is labelled with V . Let M0,M1, . . . ,Mk−1

be the maximal sets in F , and let F|Mi = F ∩P(Mi). The children of the
root are the subtrees ZF|Mi

,Mi
, for 0 ≤ i ≤ k − 1.

A Zielonka DAG is constructed as a Zielonka tree except nodes labelled by the
same set are identified, making it a directed acyclic graph. A Zielonka tree (DAG)
condition is one which uses a Zielonka tree (respectively, DAG) presentation.
Nodes of ZF ,V labelled by elements of F are called 0-level nodes, and other
nodes are 1-level nodes. In the sequel, we use terms such as children and leaves
when referring to DAGs as well as trees, where the meaning is clear.

From a more practical perspective, when considering applications of these
types of games it may be the case that there are vertices whose appearance in
any infinite run is irrelevant. This leads to the definition of a win-set condition,
which is given by W ⊆ V andW ⊆P(W ). The sets described by this condition
are {I ⊆ V : I ∩W ∈ W}. Win-set games are the type of games considered by
McNaughton in [9] where he presents an algorithm to decide the winner of such
games.

The five condition types defined above are general purpose in that any regular
game can be specified by any one of the condition types. We now look at some
less general types of conditions.

A basis condition on an arena (V,E) is given by a set B ⊆ P(V ). This
specifies the collection F of sets I ⊆ V such that there are B1, . . . , Bn ∈ B
with I

⋃
1≤i≤n Bi. It is clear that a regular game can be specified using a Basis

condition if, and only if, it is union-closed.
A superset condition (also called a superset Muller condition in [7]) is given by

a setM⊆P(V ) which specifies the set F = {I ⊆ V : J ⊆ I for some J ∈ M}.
Only upward-closed games can be specified in this way.

Our main concern is with the complexity of the following decision problem
for a fixed condition type: given a game consisting of a finite arena, a condition
of the given type and an initial vertex, which of the two players has a win-
ning strategy? We often refer to this as the problem of deciding the winner of
a game. This problem has been investigated for condition types other than the
ones considered here. For example, in [3] it was shown that deciding games with
a winning condition expressed in Rabin form is NP-complete; and the complex-
ity of deciding Parity games is a question that has been the focus of intensive
research. However, lower bound proofs for any games are hard to come by.
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3 Translations

We begin by considering the five ways we have defined of specifying a winning
condition that are general purpose, i.e. expressive enough to describe any regular
game. These are the explicit presentation, the win-set condition, the Muller
condition, the Zielonka DAG and the Emerson-Lei condition. We show that this
list is strictly increasing in order of succinctness. That is, any game specified
using a condition of one of these types can also be specified using a type later
in the list with only a polynomial increase in size. However, for each type, there
are specifications of games for which any description of a type earlier in the
list is necessarily exponentially longer. We formalise the notion of succinctness
through the following definition. Note that this definition is somewhat informal
as we have not given a formal definition of a “condition type”. It suffices for our
present purposes if we take A and B in this definition to range over the types
defined in the previous section.

Definition 3.1. Given two condition types A and B, we say that A is polyno-
mially translatable to B if there is an algorithm, running in polynomial time
which, given a game with condition of type A produces a condition of type B
which describes the same game.

As we are only interested in polynomial translations, we simply say A is trans-
latable to B to mean that it is polynomially translatable. Clearly, if condition
type A is translatable to B then the problem of deciding the winner for games of
type A is reducible in polynomial time to the corresponding problem for games
of type B.

If condition type A is not translatable to B this may be for one of three
reasons. Either A is more expressive than B in that there are sets F that can
be expressed using A but not B; or there are some sets for which the represen-
tation of type A is necessarily more succinct; or the translation while not size
increasing can not be computed in polynomial time. We are primarily interested
in the second situation. Formally, we say that A is more succinct than B if B is
translatable to A but A is not translatable to B.

It is straightforward to show that win-set conditions are more succinct than
explicit presentations. To translate an explicitly presented game (V,E,F) to
a win-set condition, simply take W = V and W = F . To show that win-set
conditions are not translatable to explicit presentations, consider a game where
W = ∅ and W = {∅}. The set F described consists of all subsets of V and an
explicit presentation must be exponential in length.

The next three theorems show that Emerson-Lei games are more succinct
than Zielonka DAG games, which are in turn more succinct than Muller games,
which are more succinct than win-set games. In Section 5 we also show that basis
and superset games are more succinct than explicit presentations of union-closed
and upward-closed games respectively.

Theorem 3.2. The Muller condition type is more succinct than the win-set
condition type.
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Proof. Given a win-set game (V,E,W,W), we construct a Muller condition
describing the same set of subsets as (W,W). For the set of colours we use
C = W ∪{c}, where c is distinct from any element of W . The colouring function
χ : V → C is then defined as:

– χ(w) = w for w ∈W ,
– χ(v) = c for v /∈ W .

The family C of subsets of C is the set
{
X,X ∪ {c} : X ∈ W}

. For I ⊆ V , if
I ⊆ W , then χ(I) = I otherwise χ(I) = {c} ∪ I. Either way, I ∩W is in W if
and only if χ(I) ∈ C.

To show that there is no translation in the other direction, consider a Muller
game on (V,E), where half of V , Vr, is coloured red, the other half coloured blue,
and the family of sets of colours is C =

{{red}}. The family F described by this
condition consists of the 2|V |/2−1 non-empty subsets of Vr . Now consider trying
to describe this family using a win-set condition. In general, if G is the family
of subsets of V described by the win-set condition (W,W), then for any v /∈ W
and X ⊆ V we have {v}∪X ∈ G ⇔ X ∈ G. Observe that in our game no vertex
has this latter property (if v ∈ Vr, then {v} ∈ F , but ∅ /∈ F ; and if v /∈ Vr

then {v} ∪ Vr /∈ F , but Vr ∈ F). Thus our win-set must be V , and W is the
explicit listing of the 2|V |/2 − 1 subsets of Vr. Thus (W,W) cannot be produced
in polynomial time.

The proofs of the following two theorems are omitted due to lack of space.

Theorem 3.3. The Zielonka DAG condition type is more succinct than the
Muller condition type.

Theorem 3.4. The Emerson-Lei condition type is more succinct than the
Zielonka DAG condition type.

4 Pspace-Completeness

In this section we establish the complexity of deciding the winner for the four
main condition types considered in the previous section. McNaughton [9], and
later Nerode, Remmel and Yakhnis [10] describe an algorithm for deciding win-
set games. An analysis of this algorithm shows it requires space O(|V |2). More-
over, the algorithm is easily adapted to the case where the winning condition is
presented explicitly, or as a Muller condition, a Zielonka DAG or an Emerson-
Lei condition without significant increase in the space requirements. Thus, each
of these classes of games is decidable in Pspace. We now show corresponding
lower bounds. By the results of the previous section, it suffices to establish the
hardness result for the win-set condition type.

Theorem 4.1. Deciding win-set games is Pspace-complete.

Proof. (sketch) By the above comments, we only need to show Pspace-hardness.
For this, we reduce the problem of QSAT (satisfiability of a quantified boolean
formula [QBF]) to the problem of deciding the winner of a win-set game.
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We assume, without loss of generality that we are given a QBF,

Φ = Qk−1xk−1 . . .∀x1∃x0ϕ

in which quantifiers are strictly alternating and ϕ is in disjunctive normal form
with 3 literals per clause. We then define a win-set game GΦ as follows:

– V0 = {ϕ} ∪ {x,¬x : for all variables x}
– V1 = {C0, . . . , Cm−1}, the set of clauses in ϕ.
– E is given by:
• (ϕ,Cj) ∈ E for 0 ≤ j < m;
• If Cj = (l0 ∧ l1 ∧ l2), then (Cj , l0), (Cj , l1), (Cj , l2) ∈ E;
• (xi, xi−1), (xi,¬xi−1) ∈ E for 0 < i < k;
• (¬xi, xi−1), (¬xi,¬xi−1) ∈ E for 0 < i < k; and
• (x0, ϕ), (¬x0, ϕ) ∈ E.

– W = V0 \ {ϕ}, and W is

W =
{
Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even

}
where Si = {xj ,¬xj : 0 ≤ j < i}.
Note that as this is a win-set game, we are only interested in vertices of W

that are visited infinitely often. Observe that the winning condition ensures that
Player 0 can win if, and only if, the minimum i such that at most one of xi and
¬xi is visited infinitely often is even. The idea behind Player 0’s strategy is to
perpetually verify ϕ. The choice of strategies by both players then dictates the
choices of the truth values for each of the variables, and the winning condition
guarantees a winning strategy for Player 0 if, and only if, Φ is true.

A detailed proof that this construction works is deferred to the full paper.

Corollary 4.2. Deciding Muller games is Pspace-complete.

Proof. We have already indicated that the problem is in Pspace. Pspace-
hardness follows from Theorem 3.2 and Theorem 4.1.

Corollary 4.3. Deciding Zielonka DAG games is Pspace-complete.

Proof. From Theorem 3.3 and Theorem 4.1.

Corollary 4.4. Deciding Emerson-Lei games is Pspace-complete.

Proof. From Theorem 3.4 and Theorem 4.1.

It can be verified that an explicit presentation of the winning condition
constructed in the proof of Theorem 4.1 would be exponentially larger than
the presentation using a win-set. Thus, the proof cannot be used to provide a
Pspace-hardness result for the explicitly presented games. The exact complex-
ity of deciding the winner of such games remains open. Indeed, it is conceivable
(though it appears unlikely) that the problem is in P.
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Infinite tree automata. One of the original motivations for studying Muller and
related games was to establish decidability results for problems such as non-
emptiness and model checking for infinite tree automata [8]. A reduction to
non-emptiness of infinite tree automata is used in some of the most effective al-
gorithms for deciding satisfiability of formulas in logics such as S2S, μ-calculus
and CTL∗ – logics useful for reasoning about non-terminating, branching com-
putation. Furthermore, determining if a structure satisfies a formula in any of
these logics reduces to determining if a certain automaton accepts a particular
tree.

By adapting the proof of Theorem 4.1 we are able to show that the non-
emptiness problem for Muller automata as well as the problem of determin-
ing whether a given automaton accepts a given regular tree are both Pspace-
complete. The detailed definitions and proofs are deferred to a full paper.

Theorem 4.5. The non-emptiness problem for Muller tree automata is
Pspace-complete.

The model checking problem (does a given automaton accept a given tree?)
also reduces to deciding which player wins an infinite game. However, depending
on how the tree is presented, the resulting arena may be of infinite size. If the
tree is regular, a game with finite arena can be constructed, and we can apply
Theorem 4.5 to obtain the following corollary.

Corollary 4.6. Given a regular, infinite, k-ary branching tree t and a Muller
automaton A = (Q,Σ, δ, q0,F), asking if A accepts t is Pspace-complete.

Bounded tree-width arenas. Tree-width is a measure of how closely a graph re-
sembles a tree. It has proved useful in the design of algorithms as many problems
that are intractable on general graphs are known to have polynomial time solu-
tions when restricted to graphs of bounded tree-width. In the context of regular
games, Obdrz̆álek [11] exhibited a polynomial-time algorithm for deciding the
winner in parity games on arenas of bounded tree-width. We show that this is
not the case for Muller games (and neither, therefore, for Zielonka DAG games
and Emerson-Lei games). The proof of Theorem 4.1 can be modified so that the
arenas constructed all have tree-width two provided we allow ourselves to specify
the winning condition as a Muller condition rather than a win-set.

Theorem 4.7. Deciding Muller games on arenas of tree-width 2 is Pspace-
complete.

5 Complexity Bounds for Union-Closed Games

We now turn our attention to games where the winning condition F is a union-
closed set. Among games studied in the literature Streett games and parity
games are examples of condition types that can only specify union-closed games.
Union-closed games were also studied as a class in [6]. One consideration that
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makes them an interesting case to study is that they admit memoryless strategies
for Player 1 [2]. That is, on a game with a union-closed winning condition, if
Player 1 has a winning strategy then he has a strategy which is a function only
of the current position. One consequence of this fact is that the problem of
deciding whether Player 0 wins such a game is in co-NP. This is because once
a memoryless strategy for Player 1 is fixed, the problem of deciding whether
Player 0 wins against that fixed strategy is in P. Indeed, it is a version of the
alternating reachability problem. Thus, to decide whether Player 1 has a winning
strategy we can nondeterministically guess such a strategy and then verify that
Player 0 cannot defeat it. Hence, determining whether Player 1 wins is in NP
and therefore deciding whether Player 0 wins is in co-NP. In this section, we aim
to establish a corresponding lower bound for two condition types that can only
represent union-closed games, namely the Basis and Superset condition types.

The Basis condition type is a succinct way of describing union-closed types.
It is not even known if it is translatable to the Emerson-Lei condition type,
the most succinct type considered above. However, the following result shows
that the bounds obtained cannot easily be derived from the known completeness
results of Streett games.

Theorem 5.1. The Basis and Streett condition types are incomparable with re-
spect to translatability. That is, neither is translatable to the other.

Nevertheless, deciding Basis games is still in co-NP.

Proposition 5.2. Deciding Basis games is in co-NP.

Proof. From the comments above, it suffices to show that if we fix a memoryless
strategy for Player 1 then we can decide the resulting single player Basis game
in polynomial time.

The algorithm is as follows. Let B be the basis for the winning condition.
Initially let B0 = B, and repeat the following:

1. Let Xi =
⋃

B∈Bi
B.

2. Partition Xi into strongly connected components (SCCs).
3. Remove any element of Bi which is not wholly contained in a SCC to obtain
Bi+1,

until Bi = Bi−1, at which point, let X = Xi. This takes at most O
(|B|(|V |+|E|))

time using a standard SCC-partitioning algorithm. At this point, every SCC of
X is a union of basis elements (all x in X are members of basis elements, and any
basis elements not contained in any SCC of X is removed at step 3). Furthermore,
any strongly connected set of V which is a union of basis elements is a subset
(of an SCC) of X , because the algorithm preserves such sets. Thus, Player 0
can win from any node from which she can reach X (play to X and then visit
every node within an SCC of X forever); and Player 0 cannot win if she cannot
reach X (there is no union of basis elements for which Player 0 can visit every
vertex infinitely often). Thus the set of nodes from which Player 0 wins can be
computed in O

(|B|(|V |+ |E|) + |E|) time.
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It should be clear that the Superset condition type is translatable to the Basis
condition type.

We now obtain the lower bounds we seek on Superset games.

Theorem 5.3. Deciding Superset games is co-NP-complete.

Proof. Membership of co-NP follows from the previous two propositions. To
show co-NP-hardness, we use a reduction from validity of DNF formulas.

Given a formula ϕ(x0, x1, . . . , xk−1) in DNF, consider the Superset game
defined as follows:

– for every variable xi we include three vertices, xi,¬xi ∈ V0 and x′i ∈ V1;
– for each i we have the edges (x′i, xi), (x′i,¬xi), (xi, x

′
i+1), (¬xi, x

′
i+1), where

addition is taken modulo k; and
– the winning condition is specified by the set

M =
{{li ∈ V0 : li is a literal of C} for every clause C of ϕ

}
,

Take x0 to be the initial vertex.
As the Superset condition is closed under union, if Player 1 has a winning

strategy he has a memoryless winning strategy. Note that any memoryless strat-
egy for Player 1 effectively chooses a truth value for each variable. The set of
vertices visited infinitely often is a superset of an element of M if, and only if,
the truth assignment chosen by Player 1 makes one clause of ϕ (and hence ϕ)
true. Thus Player 0 wins this game if, and only if, there is no truth assignment
which makes ϕ false.

Corollary 5.4. Deciding Basis games is co-NP-complete.

Succinctness Results We finish this section with two succinctness results.

Proposition 5.5. The Superset condition type is more succinct than an explicit
presentation of an upward-closed set.

Proof. Given an explicitly presented upward-closed game (V,E,F), the set F ,
viewed as a Superset condition, clearly describes the same set of subsets of V .
Conversely, for the Superset game

(
V,E,

{{v} : v ∈ V
})

, the set described

by the winning condition is of size 2|V | − 1, and therefore cannot be explicitly
presented in polynomial time.

Corollary 5.6. The Basis condition type is more succinct than an explicit pre-
sentation of a union-closed set.

Proof. The fact that the basis condition type is not translatable to an explicit
presentation follows from Proposition 5.5. The other direction is straightforward,
the explicit presentation itself suffices as a basis.

We note in conclusion that the exact complexity of deciding union-closed
games when they are explicitly presented remains an open problem. It is clearly
in co-NP but the above arguments do not establish lower bounds for it.
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6 Conclusion

We have considered the complexity of deciding the winner in a variety of regular
games. We establish a framework, through the notion of polynomial translatabil-
ity, within which the expressive power and the succinctness of types of winning
conditions can be considered. We used this, along with an encoding of QBF in
win-set conditions to establish Pspace-completeness for four different condition
types that can be used to describe regular games and to establish the Pspace-
completeness of the non-emptiness and model-checking problems for Muller au-
tomata. We also showed co-NP-completeness results for two different condition
types describing union-closed games.
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Abstract. The traditional theory of “part of” relations (i.e. mereology)
is enriched by adding the formal concept of equivalent and exchangeable
parts. Various possible axioms and their roles are discussed. An approach
is focused on application to model software structures.

1 Introduction

Mereology is the branch of science of analysing the relation between the part and
the whole based on suitable logical systems. Modern attempts to formalize the
concept of “part of” go back to S. Leśniewski (1916-37,[12,19]), and H. Leonard,
N. Goodman (1940-50,[3,11]). Leśniewski’s systems were invented as an alterna-
tive to what is now called “standard set theory” (i.e. based on Zermelo-Fraenkel
axioms) [17], and translation of his ideas into the language of standard set theory
is not obvious and often problematic [16,17,19], so more practical applications
are difficult. Leonard and Goodman’s Calculus, formulated within standard set
theory, was invented to provide a formal model for a universal concept of part-
hood [2,3,17]. Both models have been substantially extended, however none of
them has been substantially applied outside philosophy, cognitive science and
pure logic [2,17,19]. Only in the last decade some serious attempts to apply
mereological ideas to industrial engineering [15], knowledge engineering [1], ap-
proximate reasoning [13], software engineering [7,10], databases [1], and others
[1,15], have been made.

The problem with standard mereology is that it assumes a universal concept
of parthood, while for serious specific applications we need to consider many dif-
ferent kinds of part/whole relations [1,13]. We might perhaps even need different
kind of mereology for different areas of applications. A mereology more suitable
for computer science was proposed in [6]. It was motivated by a formal semantics
for tabular expressions1 [8]. A more operational algebraic version, with “part of”
defined by sets of constructors and destructors was proposed in [7]. The mereol-
ogy of [6,7] has been applied to model tabular expressions [6,7,8] and to define
and detect formal discrepancies between two requirement scenarios [10].

� Partially supported by NSERC of Canada.
1 Tabular expressions, invented by Dave Parnas [5,9] are relational means to represent

the complex relations that are used to specify and document software systems. The
technique is quite popular in software industry [5].

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 507–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



508 R. Janicki

Standard mereology lacks a formal treatment of equivalent parts [2,17]. In
this paper, a Leonard and Goodman style mereology is augumented with for-
mal concepts of equivalent and exchangable parts, however algebraic structure
induced by constructors and destructors (see [7]) will not be discussed.

2 Standard Mereology

In this section we shall present basic concepts of “standard mereology” as de-
scribed in [2,17]. This is a mereology based on the Calculus of Individuals by
Leonard and Goodman [3,11]. From a mathematical point of view it is a part of
the theory of partially ordered sets [2,17]. We will not discuss here the mathe-
matics of Leśniewski’s systems as they cannot easily be formulated within stan-
dard set theory. Conceptually the ideas of Leśniewski and Leonard-Goodman
appear to be similar (see [16,17]), but mathematical results about this relation-
ship are hard to find, and a major one [4] has not been widely accepted among
Leśniewski’s disciples2 [19].

To make the papers selfsufficient, we start with a survey the principal prop-
erties of partial orders (see [14] for details).

Let X is a set. A relation .⊆ X ×X is called a partial order iff it is reflexive
(x . x), anti-symmetric (x . y ∧ y . x ⇒ x = y), and transitive (x . y ∧ y .
z ⇒ x . z). If . is a partial order then the pair (X,.) is called a partially
ordered set or poset. A relation ≺ defined as x ≺ y ⇐⇒ x . y ∧ x �= y is called
a strict partial order.

Let (X,.) be a poset and let A ⊆ X . An element a ∈ X is called an upper
bound) (a lower bound) of A iff ∀x ∈ A. x . a (∀x ∈ A. a . x). The sets of all
upper bounds and lower bounds of A are denoted by ub(A) and lb(A) respectively.

The element 0 ∈ X satisfying ∀x ∈ X. x . 0 is called the top of X , and the
element ⊥ satisfying ∀x ∈ X. ⊥ . x is called the bottom of X .

An element a ∈ A is a minimal (maximal) element of A iff ∀x ∈ A. ¬(x ≺ a)
(∀x ∈ A. ¬(a ≺ x)). The set of all minimal (maximal) elements of A will be
denoted by min(A) (max(A)).

An element a ∈ X is called the least upper bound (supremum) of A, denoted
sup(A), iff a ∈ ub(A) and ∀x ∈ ub(A). a . x, and it is called the greatest lower
bound (infimum) of A, denoted inf(A), iff a ∈ lb(A) and ∀x ∈ lb(A). x . a.

The minimal elements of the set X \{⊥} are called atoms of the poset (X,.),
and Atoms denotes the set of all atoms of X.

Now we will start adding mereological axioms. Let (X,.) be a poset (with
or without ⊥). The relation . is now interpreted as “part of”, a is a part of b if
a . b, and a is a proper part of b if a ≺ b. The element ⊥ is interpreted as an
empty part.

2 The paper [4] is right in the case of elementary mereology of Leśniewski, however
Leśniewski’s non-elementary mereology is a much richer theory. Therefore, the paper
[4] is often considered heresy for some of Leśniewski’s students [19].
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The relations ◦ and † on X \ {⊥} defined as

x ◦ y ⇐⇒ ∃z ∈ X \ {⊥}. z . x ∧ z . y [overlap]
x † y ⇐⇒ ¬(x ◦ y) [disjoint]
x 3 y ⇐⇒ ∃z ∈ X \ {⊥}. x . z ∧ y . z [underlap]

are called overlapping, disjointness and underlapping respectively (see [2,3,17]).
Two elements x and y overlap if they have a common non-empty part, they are
disjoint if they do not have a common non-empty part, and they underlap if they
are both parts of another element (see [2,17] for details and more properties).

A partially ordered set (X,.) is called a Minimal Mereology [2,17] if the
following condition is satisfied:

(WSP) x ≺ y ⇒ (∃z ∈ X. z ≺ y ∧ x † z) ∨ x = ⊥.

The axiom WSP, called Weak Supplementation Principle, is a part of all
known mereologies. Among others, it guarantees that if an element has a proper
non-empty part, it has more than one. For example, a totally ordered set is not
a minimal mereology. It is widely believed that any reasonable mereology must
conform to this axiom [2,17]. From now on, we assume that any partially ordered
set that is called “mereology” satisfies the property WSP.

A partially ordered set (X,.) is called an Extensional Mereology [2,17] if the
following condition is satisfied:

(SSP) ¬(y . x) ⇒ ∃z. (z . y ∧ x † z).

The axiom SSP is called strong supplementation principle. It implies quite
regular properties, among others it guarantees that different objects have difer-
rent sets of proper parts. Detailed discussion of SSP and its consequences can
be found in [2,17]. We think SSP is too strong restriction for our purposes. In
mathematics and computer Science different objects are very often built from
the same proper parts. For instance, A×B �= B ×A (unless A = B), and both
A×B and B×A are intuitively built from the same parts. The mereological sys-
tems for direct products and relations designed to deal with tabular expressions
and analysed in [6,7] do not satisfy SSP, either.

A mereology (X,.) is called Atomistic, Mereology with an Empty Part, Mere-
ology with Universe, if the axioms ATM, BOT, TOP below are satisfied respec-
tively:

(ATM) ∀x ∈ X \ {⊥}.∃y ∈ Atoms. y . x,
(BOT) ⊥ ∈ X ,
(TOP) 0 ∈ X .

The axiom BOT simply says that the empty part does exist. Most of mereo-
logical theories assume the empty part does not exist. The argument is that the
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empty part (empty element) is not needed except for completeness properties
[2,17]. We believe, that empty part, as empty set or empty string, is a very use-
ful concept that eventually will make our theory simpler. The axiom ATM says
that all objects (except the empty part) are built from elementary elements called
atoms. The top 0 is called Universe in mereology, and it plays either the role of
”universe of concourse” or it simply represents the most complex object [2,17].

Let α : X → 2Atoms and μ : X → 2X be mappings defined by:

α(x) = {a | a ∈ Atoms ∧ a . x} [atoms]
μ(x) = {y | y ≺ x ∧ y �= ⊥} [proper parts]

The set α(x) is interpreted as the set of all atoms from which the element
x is built. The set μ(x) is the set of all proper parts of x, excluding the empty
part. For each A ⊆ X , we define standardly α(A) =

⋃
x∈A α(x), and μ(A) =⋃

x∈A μ(x). The mapping α can be used to characterize the relations overlapping
and disjointness.

The theorem below characterises some relationship between the axioms de-
fined above.

Theorem 1 ([2,17]).

(1) SSP ⇒ [WSP ∧ (a = b⇔ μ(a) = μ(b))].
(2) ATM ⇒ [SSP ⇔ (x = y ⇔ α(x) = α(y))].
(3) ATM ⇒ [∀x, y ∈ X \ {⊥}. x ◦ y ⇐⇒ α(x) ∩ α(y) �= ∅].
(4) ATM ⇒ [∀x, y ∈ X \ {⊥}. x † y ⇐⇒ α(x) ∩ α(y) = ∅]. �

Posets satisfying ATM and SSP are often called Hyperextensional Mereolo-
gies [2,3,17]. The name follows from the fact that in such cases the objects are
identical if they are built from the identical sets of atoms (Theorem 1.2). Hyper-
extensional mereologies usually lead to elegant theories, but they appear to be
too much restricted for our purposes.

The operations ⊕ and 4 defined by

z = x⊕ y ⇐⇒ (∀w ∈ X. w ◦ z ⇔ w ◦ x ∨ w ◦ y), [sum]
z = x4 y ⇐⇒ (∀w ∈ X. w . z ⇔ w . x ∧ w . y) ∧ z �= ⊥ [product]

are called the mereological sum and mereological product respectively [2,3,17].
Both concepts can easily be extended from two elements to any set [2,17]. The
sum of elements of the set A (if exists) will be denoted by

⊕
A, and the product

of elements of the set A (if exists) will be denoted by
⊙

A.
The below result shows the similarities between sum and least upper bound,

and between product and gratest lower bound (compare comments in [17]).

Proposition 1.

(1) If ⊥ /∈ X then
⊙

A = inf(A).
(2) z =

⊕
A ⇐⇒ z = sup(A) ∧ μ(z) = μ(A). �
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Many mereologies assume that x 4 y implies the existance of x ⊕ y [3,17],
which results in a very elegant model similar to semi-lattices or, when additional
assumptions are made, to quasi boolean algebras [4,17]. However, for our pur-
poses such assumption is too strong, most of the models we are interested in
do not have this property (including systems from [6,7]). If different objects are
allowed to have identical proper parts, then the sum x⊕ y often does not exist.

The last property we will discuss seems to be implicitly assumed in many
mereological theories, however it not usually openly discussed [2,17].

Let (X,.) be any poset. The relation ≺̂ defined as

x≺̂ y ⇐⇒ x ≺ y ∧ ¬(∃z. x ≺ z ≺ y) [cover]

is called the cover relation for . (c.f. [14], y is here an upper cover of x).
A poset (X,.) will be called cover-closed if

(CCL) x . y ⇐⇒ x(≺̂)∗y,

where (≺̂)∗ is the reflexive and transitive closure of ≺̂, i.e. (≺̂)∗ =
⋃∞

i=0(≺̂)i.
It appears most authors assume implicitly their mereologies are cover-closed

[2,17]. Clearly, any finite poset satisfies CCL.

3 Mereology with Equivalence and Exchange Relations

Many parts can be seen as equivalent in some circumstances. One can change
Michelin tires in a car to Goodyear tires, or Quick Sort to Merge Sort in a pro-
gram, etc. One can also exchange front tires with rear tires, etc. The outcomes
are equivalent but not identical entities. Surprizingly, a formal theory of such
equivalences has so far been neglected [2,3,17,19] in the context of mereolog-
ical theories. To the author’s knowledge, this is the first paper that proposes
some formal approach. We will consider two kinds of equivalence type relations,
equivalence denoted by ≡ and exchange denoted by ↔.

To make this paper selfsufficient, we start with formal definition of an equiv-
alence relation and recall its basic properties (see [14] for details).

A relation ≡⊆ X × X is called an equivalence iff it is reflexive (x ≡ x),
symmetric (x ≡ y ⇐⇒ y ≡ x), and transitive (x ≡ y ∧ y ≡ z ⇒ x ≡ z). An
equivalence class of ≡ containing x, denoted as [x]≡, is defined as [x]≡ = {y |
x ≡ y}. The set of all equivalence classes of ≡ in X is denoted as X/≡.

Let ≡ be an equivalence relation on X . We need to define two new concepts:
a set X 5≡ ⊆ 2X and a relation ι(≡) ⊆ X5≡ × X5≡. We define them as follows:

A ∈ X5≡ ⇐⇒ (A ∈ 2X ∧ (∀P ∈ X/≡. |A ∩ P | ≤ 1)) [cuts]
A ι(≡) B ⇐⇒ ∀ P ∈ X/≡. (A ∩ P �= ∅ ⇔ B ∩ P �= ∅) [ι(≡)]

An element of X5≡ just has at most one element in common with each equiva-
lence class of ≡. The elements of X5≡ will be called cuts of ≡. Two cuts A and B
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satisfy A ι(≡) B, if they either both have common elements with an equivalence
class of ≡, or none of them has.

Corollary 1. For every equivalence relation ≡ on X, the relation ι(≡) is an
equivalence relation on X 5≡. �

For instance, if X
df
= {a, b, c} and ≡ df

= {(a, b), (b, a), (a, a), (b, b), (c, c)}, then
X 5≡ = {∅, {a}, {b}, {c}, {a, c}, {b, c}}, and ι(≡) minus identity is: {a} ι(≡) {b},
{a, c} ι(≡) {b, c}.

We also need the following property of partial orders. A partially ordered set
(X,.) is weakly upper bounded if it satisfies:

(WUB) ∀x ∈ X.∃y ∈ max(X). x . y.

In principle it means the set max(X) is a roof that covers the whole poset.

Definition 1. A partially ordered set (X,.) will be called a Basic Mereology
if it satisfies BOT, WSP, CCL, ATM and WUB. �

We start adding the concepts of equivalent and exchangeable parts (elements)
to our theory. Let us consider a quadruple (X,.,≡,↔), where X is a non-empty
set, . is a partial order relation on X , ≡ is an equivalence relation on X , and
↔ is an irreflexive (¬(x↔ x)) and symmetric (x↔ y ⇔ y ↔ x) relation on X .
We need the following definition.

Let μ̂ : X → 2X be defined as

μ̂(x) = {y | y≺̂x ∧ y �= ⊥}. [maximal parts]

Definition 2. We say that the relations ., ≡, and ↔ are mereologically co-
herent if and only if

(COH.1) x ≡ y ⇒ ¬(x 3 y),
(COH.2) x ≺ y ∧ y ≡ z ⇒ ∃u ∈ X. x ≡ u ∧ u ≺ z,
(COH.3) x ≺ y ∧ x ≡ u ⇒ ∃z ∈ X. y ≡ z ∧ u ≺ z,
(COH.4) x↔ y ⇒ ∃! z1, z2 ∈ X. z1 ≡ z2 ∧ {x, y} ⊆ μ̂(z1) ∩ μ̂(z2) ∧

μ̂(z1) \ {x, y} = μ̂(z2) \ {x, y}. �

The above axioms describe the desired relationship between parthood, i.e. .,
equivalence of parts, i.e. ≡, and exchange of parts, i.e.↔. The relation ≡ models,
for instance, a replacement of a Michelin tire by a Goodyear tire, while↔ models
exchanging front wheels with rear wheels.

The axioms COH.2 and COH.3 say that equivalent objects have equivalent
parts and vice versa (drawing appropriate Hasse diagrams helps to understand).
The axiom COH.1 simply says that two equivalent elements cannot be both
parts of the same object. The axiom COH.4 simply says that the elements x and
y are exchangeable, and their exchange results in equivalent objects.

The relation↔ may, but does not have to, be transitive. It can be interpreted
as a kind of internal equivalence (in a common meaning of this word), as x↔ y
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implies x and y are both parts of the same z. The relation ≡ can then be
interpreted as external equivalence, since x ≡ y implies x, y are not parts of the
same object, but they are parts of equivalent objects.

Lemma 1. If ., ≡ and ↔ are mereologically coherent, then we have

1. ≡ ∩ ≺ = ≡ ∩ ↔ = ↔ ∩ ≺ = ∅
2. ∃x, y ∈ X. x ≡ y ∧ x �= y ⇒ 0 /∈ X

3. x↔ y ⇒ x /∈ max(X) ∧ y /∈ max(X). �

Point (1) of the above lemma says that the relations ≺, ≡ and ↔ are mu-
tually disjoint, which seems to be rather obvious property. (2) says that if the
equivalence relation is not identity, then the top 0 does not exist. If there are
x and y that are equivalent and different, there must be at least two equivalent
but different maximal elements, one which has a part x and another which has
a part y. Point (3) says that maximal elements cannot be exchanged.

In the interpretation we assume, the maximal elements represent equivalent
wholes, so we assume additional property:

(EQM) x ∈ maxX ∧ y ∈ maxX ⇒ x ≡ y.

The property EQM cannot be derived from the axioms COH.1-COH.4.
We are now ready to provide the main definition of this Chapter.

Definition 3. A quadruple B = (X,.,≡,↔) where . is a partial order relation
on X, ≡ is an equivalence relation on X, and ↔ is an irreflexive and symmet-
ric relation on X, is called a Mereological Base if and only if the following
conditions are satisfied

(1) (X,.) is a basic mereology,
(2) ., ≡ and ↔ are mereologically coherent,
(3) x ∈ max(X) ∧ y ∈ max(X) ⇒ x ≡ y. �

In other words, (X,.,≡,↔) is a mereological base if and only if the axioms
BOT, WSP, CCL, ATM, WUB, COH.1-4, and EQM are satisfied.

A natural, next question is ”What kind of mereology the equivalence classes
of ≡ might constitute?”

Define the following relation � on X/≡:

∀A,B ∈ X/≡. A � B ⇐⇒ A = B ∨ (∀x ∈ A.∃y ∈ B. x ≺ y). [�]

In general the relation � may not be a partial order, but if . and ≡ (↔ is
not involved in the definition of �) are mereologically coherent, it is.

Lemma 2. If the relations . and ≡ are mereologically coherent, then the tuple
(X/≡,�) is a partially ordered set. �
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For mereologically coherent . and ≡, let 0≡ denote the top of (X/≡,�)
and let ⊥≡ denote the bottom of (X/≡,�). The result below characterises the
properties of (X/≡,�) when (X,.,≡,↔) is a mereological base.

Proposition 2. If (X,.,≡,↔) is a Mereological Base, then (X/≡,�) is a Basic
Mereology with a Universe, and with ⊥≡ = {⊥} and 0≡ = max(X). �

Definition 4. A mereological base B = (X,.,≡,↔) is called plain if the rela-
tion ↔ is empty. In such case we will write B = (X,.,≡). �

Intuitively, it appears B = (X,.,≡) should be uniquely reconstructed from
(X/≡,�). This is true indeed, however not immediately obvious.

Assume for the rest of this chapter that (X,.,≡) is a plain mereological
base.

A set of atoms A ⊆ Atoms is said to be cut-proper if

∀P ∈ Atoms/≡. |A ∩ P | = 1 [cut-proper]

Cut-proper sets of atoms are just the maximal (w.r.t. inclusion) elements of
the set Atoms5≡. Let CPA ⊆ Atoms5≡ denote the set of all cut-proper sets of
atoms. We are often interested in objects built from a specific subset of atoms.
Below we introduce some concepts to deal with this problem.

For each A ⊆ X , let the set X ↓ A ⊆ X and the relations .↓ A, ≡↓ A be
defined as follows:

X ↓A
df
= {x ∈ X | α(x) ⊆ α(A)} [X ↓A]

x .↓A y ⇐⇒ x . y ∧ x ∈ X ↓A ∧ y ∈ X ↓A [.↓A]
x ≡↓A y ⇐⇒ x ≡ y ∧ x ∈ X ↓A ∧ y ∈ X ↓A [≡↓A]

The set X ↓A is a subset of X containing all elements built from some atoms
from A, the relations .↓A and ≡↓A are just . and ≡ restricted to X ↓A. The
lemma below states that CPA has two desired properties.

Lemma 3.

(1) If A ⊆ CPA, then we have (x ≡↓A y ⇐⇒ x = y).
(2) For each x ∈ X, there exists A ∈ CPA such that x ∈ X↓A. �

Theorem 2.

(1) For each set of atoms A ∈ CPA, the posets (X ↓A,.↓A) and (X/≡,�) are
isomorphic.

(2) x . y ⇐⇒ [x]≡ � [y]≡ ∧ (∃A ∈ CPA. {x, y} ⊆ X↓A). �

Intuitively, the only difference between . and � is that � is defined on
equivalence classes, while . on ordinary elements, otherwise they both express
“the same” relationship. Theorem 2.1 states that this intuition is hold, so the
definition of � is correct. Theorem 2.2 states that . can uniquely be derived
from �. The whole theorem justifies the following definitions.
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Definition 5.

(1) If B = (X,.,≡,↔) is a mereological base, then every poset isomorphic to
(X/≡,�) is called a representation of B.

(2) If B = (X,.,≡) is a mereological base, then B≡ = (X/≡,�) is called a
quotient mereological base. �

Among others, the concept of equivalence should allow a replacement of a
part by an equivalent one. Before giving a formal definition of such an operation
we need the following result.

Lemma 4. Let x1, x2, y1 ∈ X with x1 ≡ x2 and x1 ≺ y1.
There is exactly one y2 ∈ X such that

y1 ≡ y2 and x2 ≺ y2, and α(y2) = (α(y1) \ α(x1)) ∪ α(x2). �

Lemma 4 simply states that the definition below is correct, i.e. replace is
really a function.

Definition 6. Let replace : X3 → X be a partial function such that

(1) (x1, x2, y1) ∈ domain(replace) ⇐⇒ x1 ≡ x2 ∧ x1 ≺ y1

(2) y2 = replace(x1, x2, y1) ⇐⇒ y1 ≡ y2 ∧ x2 ≺ y2

∧ α(y2) = (α(y1) \ α(x1)) ∪ α(x2). �

The statement y2 = replace(x1, x2, y1) reads “y2 is the outcome of replacing
the part x1 in y1 by x2”. The first point of the definition states that we can replace
only equivalent elements and what is replaced must be a part. The second point
describes the result of a replacement. The result is equivalent to a whole in which
a part has been replaced. By Lemma 4 the result of replacement is unique.

Definition 7. Let remove : X2 → 2X be a total function defined by

remove(x, y) =
{{y} if ¬(x . y) or x = ⊥
max({z | z ≺ y ∧ z † x}) otherwise �

The above definition describes the result of removing a part. The statement
remove(x, y) describes what happens when we remove a part x from y. Nothing
happens if x is not a part of y or if x is the empty part, otherwise it is a set of
maximal remaining parts. The set remove(x, y) might be empty.

The relation ↔ allows us to define correctly the following rotate function.

Definition 8. Let rotate : X3 → X be a partial function such that

(1) (x1, x2, y1) ∈ domain(rotate) ⇐⇒ x1 ↔ x2 ∧ {x1, y1} ⊆ μ̂(y1)
(2) y2 = rotate(x1, x2, y1) ⇐⇒ y1 ≡ y2 ∧ {x1, y1} ⊆ μ̂(y1)

∧ μ̂(y1) \ {x1, x2} = μ̂(y2) \ {x1, x2}. �
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The statement y2 = rotate(x1, x2, y1) reads“y2 is the outcome of exchanging
the part x1 in y1 with the part x2”.

Example 1. For every set A, let Â = {{a} | a ∈ A} be the set of all singletons
generated by A, i.e. if A = {a, b}, then Â = {{a}, {b}}. For every relation R, let
Req denotes the reflexive, symmetric and transitive closure of R, i.e. Req is the
smallest equivalence relation containing R.

Let D1 = {a, b,a,b}, D2 = {1, 2,1,2} be sets and let .=1,
.=2 be the re-

lations on D1 × D1 and D2 × D2 given by .=1 = ({(a,a), (b,b)})eq and .=2 =
({(1,1), (2,2)})eq. The above relations just say that a is equivalent to a, b is
equivalent to b, 1 is equivalent to 1, 2 is equivalent to 2. Let .=1,2 be a relation
on (D1 ×D2)2 defined as: (x1, y1)

.=1,2 (x2, y2) ⇐⇒ x1
.=1 x2 ∧ y1

.=2 y2. For
instance (a, 1) .=1,2 (a,1) .=1,2 (a, 1) .=1,2 (a,1).

Let X = D1 5 .=1
∪ D2 5 .=2

∪ (D1 × D2)5 .=1,2
(see the equation [cuts] for an

appropriate definition), Atoms = D̂1 ∪ D̂2 and ⊥ = ∅.
In other words D15 .=1

= {∅, {a}, {b}, {a}, {b}, {a, b}, {a,b}},
D25 .=1

= {∅, {1}, {2}, {1}, {2}, {1, 2}, {1,2}}, and for instance {(a, 1), (a, 1)} /∈
(D1 ×D2)5 .=1,2

while {(a, 1), (a, 2), (b,1)} ∈ (D1 ×D2)5 .=1,2
.

Let us fold the three relations .=1,
.=2 and .=1,2 into one by defining .= in

X×X as the set union of .=1,
.=2 and .=1,2, i.e. .=

df
= .=1 ∪ .=2 ∪ .=1,2. Since the

relations .=1,
.=2 and .=1,2 are all disjoint, the relation .= is also an equivalence

relation.
Define the relations . and ≡ in X ×X as follows:

A . B ⇐⇒ A ⊆ B ∨ A ⊆ πi(B), i = 1, 2,
A ≡ B ⇐⇒ Aι( .=)B (see the equation [ι(≡)] in Chapter 2),

where πi(B) is the projection of B on i-th coordinate, i.e. π1(B) = {x1 |
(x1, x2) ∈ B}, π2(B) = {x2 | (x1, x2) ∈ B}.

One can show by inspection that the quadruple (X,.,≡, ∅) with the com-
ponents as defined above is a plain mereological base. This is a simple case of
a mereological base for direct products. Note that (X,.) does not satisfy SSP,
however it satisfies x = y ⇐⇒ μ(x) = μ(y).

The partial order (X/≡,�) is presented (as a Hasse diagram) in Figure 1.
The nodes of the graphs correspond to the equivalence classes of ≡. For instance
[{(a, 1), (a, 2)}]≡ = {(a, 1), (a, 1), (a,1), (a,1), (a, 2), (a, 2), (a,2), (a,2)}.

This example can be extended to non-empty ↔ by having X defined as
X

df
= D1 5 .=1

∪ D2 5 .=2
∪ (D1 × D2) 5 .=1,2

∪ (D2 × D1)5 .=1,2
, and ↔ df

= (D1 ×
D2)∪ (D2×D1), and extend ≡ accordingly. This will make symmetric elements
of (D1 × D2) 5 .=1,2

∪ (D2 × D1)5 .=1,2
equivalent, for instance, {(a, 2), (b, 1)} ≡

{(2, a), (b, 1)} ≡ {(2, a), (1, b)}, etc. In this case, the property x = y ⇐⇒ μ(x) =
μ(y) does not hold.

Mereology for direct products but without an equivalence relation was anal-
ysed in details, using a different formal model in [6,7]. �
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[∅]

[{a}] [{b}] [{1}] [{2}]

[{a, b}] [{1, 2}]
[{(a, 1)}] [{(a, 2)}] [{(b, 2)}]

[{(b, 1)}]

[{(a, 1), (a, 2)}]
[{(a, 1), (b, 1)}]

[{(a, 1), (b, 2)}]
[{(a, 2), (b, 1)}]

[{(a, 2), (b, 2)}]
[{(b, 1), (b, 2)}]

[{(a, 1), (a, 2), (b, 1), (b, 2)}]

[{(a, 1), (a, 2), (b, 1)}]
[{(a, 1), (a, 2), (b, 2)}]

[{(a, 1), (b, 1), (b, 2)}]
[{(a, 2), (b, 1), (b, 2)}]

Fig. 1. The relation � from Example 1. [A] denotes the equivalence class [A]≡.

4 Generalisation of Mereological Sum

The mereological sum
⊕

A, if exists, can be interpreted as the most complex
object built from the set of parts A only. What if

⊕
A does not exist? Intuitively,

there still might exist the most complex object (or a set of equivalent most
complex objects) that can be built from the parts A. We will try to define such
an object formally. Attempts to define such a construction, which could be seen
as a generalisation of a mereological sum, were made in [6,7], however they all
are, on one hand, too complex and on the other hand, too restrictive. In this
chapter we will not deal with the relations ≡ and ↔, and we assume that the
poset analysed (X,.) is a representation of a mereological base (Definition 4).

Definition 9. Let A,C ⊆ X. A set C is a cone over A if and only if

A ⊆ C ⊆ A ∪ ub(A) ∧ sup(C) ∈ C. �

If sup(A) exists, then A ∪ {sup(A)} is a cone over A. Consider Example 1 and
Figure 1. If A = {{(b, 2)}, {1, 2}} or A = {{b}, {1}, {2}} then A∪{{(b, 1), (b, 2)}},
A ∪ {{(a, 2), (b, 1)}}, and A ∪ {{(a, 1), (b, 2)}} are examples of cones over A in
both cases. Note that sup(A) does not exist for either A.

Definition 10. A set C is a proper cone over A if and only if

C is a cone over A and μ(C) = μ(A). �
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If
⊕

A exists, then A ∪ {⊕A} is a proper cone over A. For the sets A above,
μ(A) = {{b}, {1}, {2}}, so only A ∪ {{(b, 1), (b, 2)}} is a proper cone over A (for
both A).

Let PCones(A) denote the set of all proper cones over A, and let PCA be a
partially ordered set defined as PCA = (PCones(A),⊆). Each cone C (proper
or not) can be interpreted as a partially ordered set (C,.C), where .C is the
partial order . restricted to the subset C of X .

Definition 11. An element z ∈ X is called the mereological supremum of
a set A ⊆ X, denoted msup(A), if and only if z = sup�C (C), where C =
sup⊆(min⊆(PCones(A))). �

For both sets A considered above, msup(A) = {(b, 1), (b, 2)}. The definition
above is a generalisation and a simplification of the similar concepts discussed
in [6,7]. The property WSP is necessary, otherwise the above definitions are not
sound.

Proposition 3.

(1) PCA has a bottom ⊥PCA
if and only if

⊕
A exists.

(2) If ⊥PCA
exists then msup(A) = sup�(A) = sup�(⊥PCA

). �

Definition 12.

(1) A basic mereology (X,.) is mereologically complete if for each A ∈ X,
msup(A) does exist.

(2) A mereological base (X,.,≡,↔) is regular if (X/≡,�) is mereologically
complete. �

If a mereological base is regular, then for each set of parts A a single most
complex object can be built from these parts. One can verify by inspection that
the mereological system from Example 1 is regular. It can also be proven that
the mereological systems discussed in [6,7] are regular.

5 Final Comment

The results of this paper can immediately be applied to mereological models
of direct products and relations of [6,7] i.e. to tabular expressions. There are
many problems that we have not yet dealt with. The most urgent seems to
be that, as pointed out in [15], there are many structurally different kinds of
part/whole relations, and without making this distiction clear, we might get
unreasonable conclusions (see [1]). Abstraction/refinement relationship between
various mereological models has not been analysed either.
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16. P. Simons, On Understanding Leśniewski, Hist. and Phil. of Logic 3 (1982),165-191.
17. P. Simons, Parts. A Study in Ontology, Claredon Press, 1987.
18. C. Szyperski, Component Software, Addison-Wesley, 1997.
19. J. T. J. Srzednicki, V. F. Rickey (eds.), Leśniewski’s Systems, Kluwer, 1984.
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Abstract. The online squarefree recognition problem is to detect the
first occurrence of a square in a string whose characters are provided
as input one at a time. We present an efficient algorithm to solve this
problem for strings over arbitrarily ordered alphabets. Its running time
is O(n log n), where n is the ending position of the first square, which
matches the running times of the fastest known algorithms for the anal-
ogous offline problem. We also present a very simple algorithm for a
dynamic version of the problem over general alphabets in which we are
initially given a squarefree string, followed by a series of updates, and
the objective is to determine after each update if the resulting string
contains a square and if so, report it and stop.

1 Introduction

A classic problem in computer science is to determine whether a given string T
contains a square, defined as a substring of T which can be split into two identical
parts. Since a square is one of the simplest possible types of patterns in a string,
methods for detecting squares efficiently have a wide range of applications in
diverse areas such as string algorithms and combinatorics [2, 6, 8, 9, 11, 16, 18],
automata and formal language theory [6, 12], data compression [4, 8, 17], coding
theory [4], and computational biology [3, 5, 11].

Many people have studied this problem and its variants (see, e.g., [1, 2, 4, 6–9,
11, 12, 15–18] and the numerous references therein). However, previous work has
mainly focused on the offline version in which the entire string T is available at
once. This offline property is not desirable in certain applications. For example,
suppose we need to determine whether a string of one million characters contains
a square. If we use an offline algorithm, we will have to scan through all the one
million characters, which may be very inefficient if a square appears at the very
beginning of the string. In some applications, such as online data compression,
the offline property is even unacceptable; we need to be able to report a square
whenever a new character arrives. The online squarefree recognition problem is
also motivated by the local search method for solving the constraints satisfaction
problem in [13, 14, 19]; to guarantee that the method will not be trapped in some
infinite loop, one can encode the successive states of the search as characters in

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 520–531, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a growing string and terminate the method if a square is formed at the end of
this string [15].

Our main result is an efficient algorithm for the online squarefree recognition
problem over an arbitrarily ordered alphabet. This is a reasonable assumption
for most applications because when the symbols are encoded as binary numbers
in a computer, this will induce a lexicographical ordering among them. Our
algorithm is based on the work of Leung, Peng, and Ting [15]. We also introduce
and study a dynamic version of the problem.

1.1 Problem Definitions

For any string T , let |T | be the length of T . For every 1 ≤ i ≤ j ≤ |T |, denote the
substring of T starting at position i and ending at position j by T [i..j], and define
T [i] = T [i..i]. A substring of the form T [i..(i + 2k − 1)] is called a square (also
known in the literature as a tandem repeat) if for every x ∈ {0, 1, . . . , (k − 1)},
it holds that T [i + x] = T [i + k + x]. If T does not contain a square, then T is
squarefree.

We distinguish between the offline, online, and dynamic versions of the
squarefree recognition problem. In the offline version, the entire string T is pro-
vided as input directly, and the objective is to determine whether or not T
contains a square. In the online version, the characters of the string T arrive one
at a time in sequential order, and the objective is to determine after receiving
each character if the string obtained so far contains a square; if so, report it and
stop. Finally, in the dynamic version, a squarefree string T is provided as the
initial input and then followed by a series of updates of the form “replace the
symbol on position q of T by the symbol x”, and the objective is to decide after
each update if the resulting T contains a square and if so, report it and stop. In
this paper, we also consider a combination of the online and dynamic versions of
the problem that also allows updates of the form “append the symbol x to the
end of T ”.

The alphabet of the input string determines how efficiently the various
squarefree recognition problems can be solved. Under the least restrictive as-
sumption, the symbols in T cannot be relatively ordered; a comparison between
two symbols only tells us if they are equal or not. We call this type of alphabet
a general alphabet. If the symbols in T admit some arbitrary lexicographical
ordering so that any comparison between two symbols yields one of the three
outcomes <, =, and >, then the alphabet is called ordered. 1 Next, in an inte-
ger alphabet, all symbols are integers in the range {1, 2, . . . , |T |}. Finally, if the
size of the alphabet is bounded by a constant, then we say that the alphabet is
constant.

1 As an example to illustrate the difference between general and ordered alphabets,
consider the element uniqueness problem which has a lower bound of Ω(n2) for
general alphabets but admits an O(n log n)-time solution for ordered alphabets
(see [4]).
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1.2 Previous Results

For the offline and general alphabet case, Main and Lorentz [17] gave an algorithm
that can be used to report all s occurrences of squares in a string T of length n
in O(n log n + s) time, or just the longest square in T in O(n logn) time. This is
optimal because to determine if T is squarefree takes Ω(n log n) time for general
alphabets [17]. (For the offline and non-general alphabet case, other efficient al-
gorithms for finding squares were presented earlier in [1] and [7].) However, it is
still not known if the lower bound Ω(n logn) for determining squarefreeness holds
for ordered alphabets. For the offline and constant alphabet case, there exist al-
gorithms that determine if T is squarefree in optimal O(n) time [8, 18]. Parallel
algorithms for finding squares offline have also been developed (see [4]).

For the online case, the only previously known result is the algorithm by
Leung, Peng, and Ting [15] for general alphabets which has a running time
of O(n log2 n), where n is the ending position in T of the first square. (This
is just a factor of O(log n) worse than the optimal offline algorithm for general
alphabets mentioned above.) The algorithm of Leung, Peng, and Ting is outlined
in Section 3.1.

1.3 Our Results

We first present an algorithm for the online squarefree recognition problem over
arbitrarily ordered alphabets. It reads the successive characters of T until a
square has been formed, then reports the occurrence of this square and stops.
The running time is O(n logn), where n is the ending position in T of the square;
in other words, if n is the smallest integer such that T [1..n] contains a square,
our algorithm correctly determines whether T [1..h] contains a square after read-
ing T [h] for every h ∈ {1, 2, . . . , n}. Note that this matches the running times
of the fastest known offline algorithms for determining squarefreeness of strings
over ordered alphabets [1, 7, 17].

Next, we give a very simple algorithm for the dynamic version of the square-
free recognition problem. It works for general alphabets and uses O(n) time per
update, where n is the length of the input string. The algorithm can easily be
extended to also solve the combination of the online and dynamic versions of the
problem in which every update either modifies an existing character or adds a
new character to the end of T .

The table below summarizes our results.

Alphabet type Online algorithm Dynamic algorithm Online + dynamic

General O(n log2 n) O(n) per update O(n) per update
(See [15]) (Theorem 3, (Theorem 4,

Section 4) Section 4)
Ordered O(n logn) O(n) per update O(n) per update

(Theorem 2, (Theorem 3, (Theorem 4,
Section 3) Section 4) Section 4)
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2 Preliminaries

2.1 Suffix Trees

Let A be a string of length k. A suffix of A is a substring of A of the form A[x..k],
where x ∈ {1, 2, . . . , k}. A suffix tree for A (see, e.g., [10, 11]) is a rooted tree
with O(k) nodes which represents each suffix of A as a unique path from the
root to a leaf. Every edge in the suffix tree for A encodes a particular substring
of A whose starting and ending positions in A are specified by two integers which
label that edge. For any two leaves x and y, the unique path from the root to
the lowest common ancestor of x and y encodes the longest common prefix of
the two suffixes represented by x and y.

3 An Efficient Online Squarefree Recognition Algorithm
for Arbitrarily Ordered Alphabets

In this section, we present an algorithm for the online squarefree recognition
problem for arbitrarily ordered alphabets. Our algorithm is based on the algo-
rithm of Leung, Peng, and Ting [15] for the general alphabet case, but faster.

3.1 LPT: The Algorithm of Leung, Peng, and Ting

Here, we briefly review the algorithm of Leung, Peng, and Ting [15], henceforth
referred to as LPT. LPT reports the first square in the online input string T in
O(n log2 n) time, where n is the position in T where the square ends.

Algorithm LPT is listed in Fig. 1. It reads the string T one character at
a time, starting with T [1]. After reading a new position h, LPT immediately
checks if T [1..h] contains a square; if so then it reports the square and stops.
Otherwise, T [1..h] is squarefree, and the algorithm proceeds to read the character
at the next position from T . To efficiently do the checking, LPT makes use of a
procedure called DHangSq(i, j) which solves the following subproblem: for every
h ∈ {(j+1), (j+2), . . . , (2j−i+1)}, after T [h] is read, determine if T has a square
ending at position h whose first half lies entirely in the interval T [i..j] (such a

For h ∈ {1, 2, . . .}, after reading T [h], do the following:
if there is a square in T [(h − 3)..h], or any of the running DHangSq(i, j)
detects a square in T [1..h], then report it and stop.
j = h; � = 1;
while (j ≥ 2�) do

if j = q · 2� for some integer q then
i = max{1, q · 2� − 4 · 2� + 1};
start DHangSq(i, j);

� = � + 1;

Fig. 1. Algorithm LPT
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square is said to be “hanging in T [i..j]”). When LPT reaches certain values of h,
it starts a new DHangSq process so that at any point of its execution, it will have
a number of DHangSq(i, j) processes running (for various values of i and j). Refer
to [15] for more details as well as correctness proofs for the algorithm.

For any 1 ≤ i ≤ j, the pair (i, j) is called a level-� pair if there exists
an integer q such that j = q · 2� and i = max{1, q · 2� − 4 · 2� + 1}. (Hence,
j − i + 1 ≤ 4 · 2�.) The analysis in [15] of Algorithm LPT can be summarized
and expressed as:

Theorem 1. [15] Suppose n is the smallest integer such that T [1..n] con-
tains a square. For every h ∈ {1, 2, . . . , n}, LPT correctly determines whether
T [1..h] contains a square after reading T [h]. The total running time of LPT is∑�log n�

�=1 O( n
2� ) · t(�), where t(�) is the running time of DHangSq(i, j) for a level-�

pair (i, j).

Leung, Peng, and Ting [15] described how to implement DHangSq(i, j) for
general alphabets to run in O((j− i+1) · log(j− i+1)) time, i.e., t(�) = O(2� · �)
above. Using this implementation, it follows from Theorem 1 that the total
running time of LPT is O(n log2 n).

3.2 Speeding Up DHangSq

Recall that DHangSq(i, j) needs to solve the following problem: for every h ∈
{(j + 1), (j + 2), . . . , (2j− i+ 1)}, after T [h] is read, determine if T has a square
ending at position h whose first half lies entirely in the interval T [i..j]. Section 4
in [15] shows that this problem can in fact be reduced to the following problem
(stated slightly differently in [15]) at an additional cost of O(j − i + 1) time,
where the parameter k in the new problem is equal to j − i + 1:

The Minimum-Suffix-Centers Checking Problem (MSCC):
Let A be a given string of length k and let L be a given list of pairs of integers of
the form (1, e(1)), (2, e(2)), . . . , (k, e(k)), where for each s ∈ {1, 2, . . . , k} it holds
that 1 ≤ s ≤ e(s) ≤ k. Next, let B be a string of length k which arrives online,
one character at a time. Return the smallest possible h ∈ {1, 2, . . . , k} for which
there is a pair (s, e(s)) in L such that A[s..e(s)] is equal to B[1..h]; if no such h
exists then return fail.

This means that if we could solve MSCC in O(k) time then we could improve
the running time of DHangSq and hence Algorithm LPT; see Theorem 1. More
precisely:

Lemma 1. If we have an O(k)-time algorithm for MSCC then t(�) = O(2�) in
Theorem 1.

3.3 Solving MSCC for Integer Alphabets

We now give an algorithm for solving MSCC in O(k) time under the additional
constraint that A is a string over an integer alphabet {1, 2, . . . ,m} with m ≤ k.
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(In the next section, we show how to deal with this extra constraint efficiently
for ordered alphabets by using an input alphabet mapping technique.)

The main idea of our algorithm for MSCC for integer alphabets is to store
the given A in a suffix tree TA, and match the successive characters of B along
a unique path from the root in TA until either enough characters match so that
A[s..e(s)] equals a prefix of B for some s, or the current character of B fails to
match any outgoing edge at the current position in TA. Our algorithm consists
of a preprocessing phase and a matching phase:

Phase I (Preprocessing Phase): Construct a suffix tree TA for A. For conve-
nience, let s for any s ∈ {1, 2, . . . , k} also refer to the leaf in TA that represents
the suffix A[s..k]. Augment TA with additional information as follows. For every
edge f in TA, define v(f) as the minimum value of e(s) − s + 1 taken over all
leaves s belonging to the subtree of TA below f (note that v(f) ≤ k). Obtain
and store v(f) for every edge f in TA by doing a bottom-up traversal of TA.

Phase II (Matching Phase): For successive values of h ∈ {1, 2, . . . , k}, check
if B[1..h] equals A[s..e(s)] for any (s, e(s)) ∈ L with the following method.
Match the successive characters in B along the unique path in TA starting at
the root by following edges labeled by B[1], B[2], . . . (to traverse an edge in TA

that represents x characters, we need to match it to x characters from B) until
either h reaches the value v(f) for the edge f being traversed (success; return h),
or the current character in B does not match any edge at the current position
in TA (failure; return fail).

Correctness: In Phase I, the algorithm builds a suffix tree TA for A. In Phase II,
the algorithm starts at the root of TA and follows a path whose labels match
the successive characters of B. Suppose that the algorithm has received B[1..h]
for any h ∈ {1, 2, . . . , k}. By the properties of a suffix tree, the set of leaves
descending from the current location in TA encode all prefixes of suffixes (i.e., all
substrings) of A having length h that are identical to the string B[1..h] received
so far. Now, if there is such a substring A[s..(s + h − 1)] that also satisfies
(s, s+ h− 1) ∈ L, then the edge f being traversed will have v(f) = h, and since
the length of the path from the root is exactly h, the algorithm will succeed and
return h.

To see that the algorithm will stop for the smallest possible h, suppose
B[1..h] = A[s..(s + h − 1)] as well as B[1..h′] = A[t..(t + h′ − 1)] for some
h < h′ and (s, (s + h− 1)), (t, (t + h′ − 1)) ∈ L. Then the algorithm must have
terminated after B[1..h] has been processed because the corresponding path of
length h in TA from the root will have reached the lowest common ancestor of
the two leaves s and t, and the edge f leading to that node satisfies the stopping
condition v(f) ≤ min{h, h′} = h.

Running Time: To implement the algorithm above, we use the method of
Farach-Colton et al. [10] for constructing suffix trees over integer alphabets to
build TA in O(k) time. Next, the bottom-up traversal to compute v(f) for every
edge f in TA takes O(k) time. Then, in the matching phase, the total time
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for finding which outgoing edges to follow in TA from internal nodes is upper-
bounded by the number of edges in TA since each edge is examined at most once;
thus, these computations take O(k) time. The rest of the computations in the
matching phase take O(1) time per read character and the algorithm reads at
most k characters from B. Therefore, the total running time of our algorithm
is O(k).

Lemma 2. MSCC for integer alphabets can be solved in O(k) time.

3.4 LPT∗: An Online Squarefree Recognition Algorithm for
Arbitrarily Ordered Alphabets

Our solution for the subproblem MSCC in Section 3.3 requires the alphabet
of the input string A to be an integer alphabet {1, 2, . . . ,m}, where m ≤ |A|.
However, the input T to the online squarefree recognition problem for an arbi-
trarily ordered alphabet does not necessarily meet this requirement. Therefore,
we will modify Algorithm LPT so that before starting DHangSq for any required
pair of indices (i, j), it translates T [i..j] into an equivalent string T ′′i..j over the
alphabet {1, 2, . . . , (j − i + 1)}. Similarly, when a symbol is read from T , the
algorithm will translate that symbol into the corresponding integer alphabet for
each currently active DHangSq for checking. For this purpose, the modified LPT
will translate the input string T online to a string T ′ over a growing integer
alphabet that is subsequently used to construct all the necessary T ′′i..j-strings.
In this section, we demonstrate how these extra steps can be performed without
increasing the overall asymptotic running time of LPT. Below, the new version
of LPT is referred to as LPT∗.

For any positive integer h, denote the set of symbols occurring in T [1..h] by
Σh. By our assumptions, each Σh is arbitrarily ordered; except for this fact, we
have no information about the alphabet of T in advance.

Translating T to T ′: As the characters of T arrive online, LPT∗ first translates
them to obtain a string T ′ such that for each positive integer h, the alphabet
of T ′[1..h] is precisely {1, 2, . . . , |Σh|}. To do this, it stores the distinct symbols
read from T so far in a balanced binary search tree B and associates a unique
integer with each symbol inserted into B. Since the number of nodes in B while
reading T [1..h] is always less than or equal to h and because Σh is ordered, the
total time used to translate T [1..h] to T ′[1..h] is O(h log h).

Translating T ′ to T ′′
i..j: Next, whenever LPT∗ starts DHangSq for some pair

of indices (i, j), it also constructs an injective mapping fi..j from the set of
symbols occurring in T ′[i..j] to the set {1, 2, . . . , (j − i + 1)} and applies fi..j

to each position in T ′[i..j] to obtain a string T ′′i..j over {1, 2, . . . , (j − i + 1)}.
Furthermore, for each such (i, j), until DHangSq(i, j) is terminated, LPT∗ keeps
track of fi..j so that it can translate online the characters in T ′[(j+1)..(2j−i+1)]
to the same alphabet.

The mapping fi..j is implemented as an array Fi..j such that for any x ∈
{1, 2, . . . , j} occurring as a symbol in T ′[i..j], the entry x in Fi..j contains the
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value fi..j(x); the other entries of Fi..j are left undefined. For efficiency reasons
explained below, LPT∗ will reuse the array Fi..j for a terminated DHangSq, and
therefore also associates a “timestamp” of the form (i, j) with each entry of Fi..j

to directly tell whether an entry is valid or contains old information. Suppose
LPT∗ needs to start a new DHangSq(i, j) for some i immediately after reading a
character T [j] and translating it to T ′[j]. Let c be a counter, initially set to 0, and
scan the substring T ′[i..j]. For each s ∈ {i, (i+1), . . . , j}, first check if entry T ′[s]
in Fi..j already has been set by checking its timestamp: if no then increment c by
one, set entry Fi..j(T ′[s]) to c, and update the timestamp of fi..j(T ′[s]). Clearly,
this takes only O(j − i + 1) time.

Next, for any DHangSq(i, j) process started by LPT∗, say that it is on level �
if (i, j) is a level-� pair. We make the following crucial observation:

Lemma 3. At any point during the execution of LPT∗, there are at most four
active DHangSq processes on each level.

Proof. Suppose LPT∗ has just read T [h]. Consider any level � ≤ log h. Let a
be the largest multiple of 2� which is less than h, and write a = q · 2�, i.e.,
q · 2� <h≤ (q + 1) · 2�. If q < 4 then less than four DHangSq processes on level �
have been started and the lemma follows directly. Hence, assume q ≥ 4. Each
DHangSq(i, j) is active while at most j−i+1=4 ·2� positions of T are being read.
This means that right after T [h] is read, the only active DHangSq(i, j) processes
on level � are those that were started for j∈{(q−3)·2�, (q−2)·2�, (q−1)·2�, q ·2�}.

��
By Lemma 3, we only need to keep track of four Fi..j arrays for each level

reached. This means we can reuse the array Fi..j used for storing fi..j after
DHangSq(i, j) terminates to store fi′..j′ for another DHangSq(i′, j′) on the same
level. By using timestamps, we do not need to reinitialize all the positions of
the array. However, note that for any such (i′, j′), the array Fi..j might not be
large enough to store j′ entries. To handle this issue, whenever LPT∗ reaches a
position of the input string which equals a power of two, we let it double the size
of every existing Fi..j , (e.g., for each existing Fi..j , initialize a new array with
twice as many entries and copy the contents of the old Fi..j into the first half
of the new array). Thus, after reading h characters from T , every Fi..j contains
O(h) entries.

Supposing that LPT∗ terminates after reading T [1..n] for some positive in-
teger n, the time needed for all these operations is bounded by

∑�log n�
r=1 O(r) · 4 ·

O(2r) = O(n log n). (LPT∗ doubles the arrays after reaching position 2r of T
for every integer r, i.e., not more than $logn% times. Every time, there are O(r)
levels and at most four active DHangSq on each level, and the doubling of an
array uses time proportional to the number of positions read from T so far.)

Total Running Time of LPT∗: Suppose n is the smallest integer such that
T [1..n] contains a square. The total running time of LPT∗ is equal to the time
needed to do all the string translation operations to integer alphabets plus the
running time of LPT using the faster DHangSq for integer alphabets. By the
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above, the translation operations take a total of O(n log n) time. By Theorem 1,
the running time of LPT is given by

∑�log n�
�=1 O( n

2� ) · t(�), and according to
Lemmas 1 and 2, we have t(�) = O(2�). Adding everything together yields:

Theorem 2. The online squarefree recognition problem for arbitrarily ordered
alphabets can be solved in O(n log n) time, where n is the ending position of the
first square.

4 An Algorithm for Dynamic Squarefree Recognition
over General Alphabets

We now present a simple algorithm for the dynamic squarefree recognition prob-
lem over general alphabets. Its input is a squarefree string T of length n, followed
by a series of updates of the form T [q] := ’x’ (where 1 ≤ q ≤ n) which means
“replace the symbol on position q of T by the symbol x”. After each update, our
algorithm uses O(n) time to check if the modified T contains a square, and if so,
reports it and stops.

The key observation is that after each update T [q] := ’x’, any newly formed
square in T must include the position q along with a (possibly empty) substring
ending immediately before q and a (possibly empty) substring starting immedi-
ately after q, which limits the total number of comparisons we need to make.

For any two positions i, j of T with 1 ≤ i < j ≤ n, define LCSu−1(i, j) as the
longest common suffix of T [1..(i− 1)] and T [1..(j − 1)] and LCPr+1(i, j) as the
longest common prefix of T [(i+ 1)..n] and T [(j + 1)..n]. We have the following.

Lemma 4. Suppose that T is a squarefree string of length n and we perform an
update T [q] := ’x’, where 1 ≤ q ≤ n. The resulting string T contains a square
if and only if there exists a q′ ∈ {1, 2, . . . , n} with q′ �= q such that T [q] = T [q′]
and |LCSu−1(q, q′)|+ |LCPr+1(q, q′)|+ 1 ≥ |q − q′|.
Proof. =⇒) Suppose the resulting T contains a square S = T [p..(p + 2k − 1)].
Then we know by the key observation above that p ≤ q ≤ p + 2k − 1. Define
the twin of q as q′ = q + k if q ≤ p+ k− 1 and as q′ = q− k if p+ k ≤ q. It is
easy to see that q �= q′, T [q] = T [q′], and |LCSu−1(q, q′)| + |LCPr+1(q, q′)| ≥
k − 1 = |q − q′| − 1.
⇐=) Suppose there exists a q′ ∈ {1, 2, . . . , n} with q′ �= q such that T [q] =

T [q′] and |LCSu−1(q, q′)| + |LCPr+1(q, q′)| + 1 ≥ |q − q′|. Assume without
loss of generality that q < q′. Define p = q − |LCSu−1(q, q′)| and r = q′ −
|LCSu−1(q, q′)|. By the definition of LCSu−1, we have T [p..(q−1)] = T [r..(q′−
1)]. Next, we rewrite the inequality as |LCPr+1(q, q′)| ≥ −q+r−1, which yields
T [(q + 1)..(r − 1)] = T [(q′ + 1)..(q′ − q + r − 1)] by the definition of LCPr+1.
Putting everything together, we have T [p..(r− 1)] = T [r..(q′− q+ r− 1)], i.e., T
contains a square. See Fig. 2 for an illustration. The case q > q′ is symmetric. ��

Now, to determine if T contains a square after performing an update T [q] :=
’x’, apply Lemma 4. More precisely: for each q′ ∈ {1, 2, . . . , n} with q′ �= q,
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q nq’

LCSu   (q,q’)−1 LCPr   (q,q’)+1

T:
1

p r

: :

Fig. 2. Illustrating the second part of the proof of Lemma 4

check if the two conditions T [q] = T [q′] and |LCSu−1(q, q′)|+ |LCPr+1(q, q′)|+
1 ≥ |q− q′| hold. If yes, then T contains a square; report it and stop. If no, then
T is still squarefree.

To implement the above, we use an O(n)-time method to obtain the values
of |LCSu−1(q, q′)| and |LCPr+1(q, q′)| for all q′ ∈ {1, 2, . . . , n} with q′ �= q as
follows. First create a string S = T [(q + 1)..n] ◦ T [1..(q − 1)], where ◦ denotes
concatenation, of length n− 1. Then, for all j ∈ {1, 2, . . . , (n− 1)}, compute the
length of the longest common prefix of S[j..(n−1)] and S[1..(n−q)] in O(n) total
time based on the method on p. 8 in [11] for computing the length of the longest
common prefix of S[j..(n−1)] and S[1..(n−1)] for every j. Clearly, this will give
us all the values of |LCPr+1(q, q′)| for q′ �= q. To compute the |LCSu−1(q, q′)|-
values, we repeat the above steps but create S = T [1..(q− 1)]R ◦ T [(q + 1)..n]R

instead, where AR means the reverse of string A.

Theorem 3. The dynamic squarefree recognition problem for general alphabets
can be solved in O(n) time per update, where n is the length of the input string.

We end this section by describing how the above algorithm can be extended to
the online dynamic squarefree recognition problem that also allows characters
to be appended to the current T . Given any update T [q] := ’x’, where q ∈
{1, 2, . . . , (n + 1)}, if 1 ≤ q ≤ n then perform the same steps as above. If
q = n+1 then position n+1 must be the endpoint of any possible newly formed
square according to the key observation. In this case, calculate |LCSu−1(n+1, j)|
for all j ∈ {n+1

2 �, . . . , n} and note that the resulting T contains a square if and
only if T [n+1] = T [j] and |LCSu−1(n+1, j)| ≥ n−j for some j as in Lemma 4;
use this fact to report any newly formed square. As above, the time needed for
one update is O(n), where n is the length of the current T . We obtain:

Theorem 4. The online dynamic squarefree recognition problem for general al-
phabets can be solved in O(n) time per update, where n is the current length of
the input string.

5 Concluding Remarks

We have presented an efficient algorithm for the online version of the squarefree
recognition problem for arbitrarily ordered alphabets which runs in O(n log n)
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time. In comparison, the fastest known offline algorithms for determining if a
string of length n over an ordered alphabet is squarefree [1, 7, 17] also run in
O(n log n) time. Moreover, we have provided a simple algorithm for a dynamic
version of the problem for general alphabets with O(n) time per update.

Some interesting open questions are:

– Is the running time of our algorithm optimal, i.e., does there exist a lower
bound of Ω(n logn) for determining squarefreeness of strings over ordered al-
phabets? Note that the Ω(n log n) bound in [17] assumes a general alphabet;
for ordered alphabets, no lower bound (except for the trivial Ω(n) bound)
has been proved for the offline case.

– Can the online squarefree recognition problem for constant alphabets be
solved in O(n) time?

– Can the running time of the LPT algorithm [15] be reduced to O(n log n)
for general alphabets?

– How efficiently can the online and dynamic versions of the cube (and higher
orders of repetitions) detection problem be solved?
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12. J. Karhumäki. Automata on words. In Proceedings of the 8 th International Confer-
ence on Implementation and Application of Automata (CIAA 2003), volume 2759
of LNCS, pages 3–10. Springer, 2003.

13. V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine,
12(1):32–44, 1992.



Online and Dynamic Recognition of Squarefree Strings 531

14. J. H. M. Lee, H.-F. Leung, and H. W. Won. Performance of a comprehensive
and efficient constraint library based on local search. In Proceedings of the 11 th

Australian Joint Conference on Artificial Intelligence, pages 191–202, 1998.
15. H.-F. Leung, Z. Peng, and H.-F. Ting. An efficient online algorithm for square

detection. In Proceedings of the 10 th International Computing and Combinatorics
Conference (COCOON 2004), volume 3106 of LNCS, pages 432–439. Springer,
2004.

16. M. G. Main, W. Bucher, and D. Haussler. Applications of an infinite square-free
co-CFL. Theoretical Computer Science, 49(2–3):113–119, 1987.

17. M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5(3):422–432, 1984.

18. M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume
F 12 of NATO ASI Series, pages 271–278. Springer-Verlag, 1985.

19. J. H. Y. Wong and H.-F. Leung. Solving fuzzy constraint satisfaction problems
with fuzzy GENET. In Proceedings of the 10 th IEEE International Conference on
Tools with Artificial Intelligence, pages 184–191, 1998.



Shrinking Restarting Automata�
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Abstract. Restarting automata are a restricted model of computation
that is motivated by the so-called analysis by reduction. A computation
of a restarting automaton consists of a sequence of cycles such that in
each cycle the automaton performs exactly one rewrite step, which re-
places a small part of the tape content by another, even shorter word.
Here we consider a natural generalization of this model, called shrinking
restarting automaton, where we require that there exists a weight func-
tion such that each rewrite step decreases the weight of the tape content
with respect to that function. While it is still unknown whether the two
most general types of restarting automata, the RWW-automaton and the
RRWW-automaton, differ in their expressive power, we will see that the
classes of languages accepted by the shrinking RWW-automaton and the
shrinking RRWW-automaton coincide. Further, we will relate shrinking
RRWW-automata to finite-change automata, which leads to new insights
into the relationships between the classes of languages characterized by
(shrinking) restarting automata and some well-known time and space
complexity classes.

1 Introduction

The restarting automaton was introduced by Jančar et. al. as a formal tool
to model the analysis by reduction, which is a technique used in linguistics to
analyze sentences of natural languages [8]. This technique consists in a stepwise
simplification of a given sentence in such a way that the syntactical correctness or
incorrectness of the sentence is not affected. It is applied primarily in languages
that have a free word order. Already several programs used in Czech and German
(corpus) linguistics are based on the idea of restarting automata [17,19].

A (one-way) restarting automaton, RRWW-automaton for short, is a device
M that consists of a finite-state control, a flexible tape containing a word delim-
ited by sentinels, and a read/write window of a fixed size. This window moves
from left to right along the tape until the control decides (nondeterministically)
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that the content of the window should be rewritten by some shorter string. In
fact, the new string may contain auxiliary symbols that do not belong to the
input alphabet. After a rewrite, M can continue to move its window to the
right until it either halts and accepts, or halts and rejects, or restarts, that is,
it places its window over the left end of the tape, and reenters the initial state.
Thus, each computation of M can be described through a sequence of cycles. It
is easily seen that M can be simulated by a nondeterministic single-tape Turing
machine that runs in quadratic time using only linear space, that is, the language
L(M) accepted by M belongs to the complexity class CSL ∩ NP.

By requiring that a restarting automaton must always perform a restart step
immediately after executing a rewrite operation, we obtain the so-called RWW-
automaton. Although the definition of the RWW-automaton is clearly much more
restricted than that of the RRWW-automaton, it is a long-standing open problem
whether the class of languages L(RWW) accepted by RWW-automata is a proper
subclass of the class of languages L(RRWW) accepted by RRWW-automata.

Many well-known classes of formal languages admit characterizations in terms
of restricted variants of the restarting automaton. For example, the class of
Church-Rosser languages CRL of McNaughton et al. [14] coincides with the class
of languages that are accepted by the deterministic variant of the RWW- and the
RRWW-automaton [15,16], the class of context-free languages CFL is character-
ized by the monotone variants of the RWW- and the RRWW-automaton [9], and
the class of deterministic context-free languages DCFL is characterized by sev-
eral different variants of monotone deterministic RWW- and RRWW-automata [9].
In addition, the class of growing context-sensitive languages GCSL considered by
Dahlhaus and Warmuth [7] coincides with the class of languages that are accepted
by the weakly monotone variant of the RWW- and the RRWW-automaton [10].
Observe that in all these particular cases the considered variant of the RWW-
automaton is just as powerful as the corresponding variant of the RRWW-
automaton. On the other hand, it is known that for some types of restarting auto-
mata without auxiliary symbols, the RWW-variant is strictly less powerful than
the RRWW-variant [9]. For a recent survey on restarting automata see [18].

In the present paper we consider a generalization of the restarting automaton,
called shrinking restarting automaton. A shrinking restarting automaton M is
defined just as a restarting automaton with the one exception that it is no longer
required that each rewrite step u → v of M must be length-reducing. Instead
there must exist a weight function ω that assigns a positive integer ω(a) to each
letter a of M ’s tape alpabet Γ such that, for each rewrite step u → v of M ,
ω(u) > ω(v) holds. Here the function ω is extended to a morphism ω : Γ ∗ → N
as usual. Obviously, a shrinking restarting automaton can still be simulated by a
nondeterministic single-tape Turing machine in quadratic time and linear space.
Observe that similar generalizations have been considered for other types of
automata [6], for grammar systems [5], and for string-rewriting systems [2].

The shrinking restarting automaton was introduced in [11], where it was
shown that monotone (as well as left-monotone) shrinking restarting automata
still characterize the class of context-free languages, and that deterministic
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shrinking RRWW-automata that are left-monotone are not more expressive than
left-monotone deterministic RWW-automata.

Here we study the expressive power of the (nondeterministic) shrinking
restarting automaton in general, where we only consider those variants that
admit auxiliary symbols in addition to the input alphabet. After restating the
basic definitions in Section 2, we establish our first main result in Section 3,
which states that the shrinking RWW-automaton is just as expressive as the
shrinking RRWW-automaton. As a corollary of our proof, we obtain a reduction
by injective morphisms from the language class L(RRWW) to the language class
L(RWW). This in itself is a major improvement of the reduction from L(RRWW)
to L(RWW) presented in [10]. It clearly indicates that these classes may be very
difficult to separate if they are indeed different.

In Section 4 we establish our second main result by giving a characterization
of the class of languages accepted by shrinking RWW-automata in terms of the
class of finite-change automata as introduced by von Braunmühl and Verbeek [3].
This characterization implies that this class of languages is actually contained in
the class of deterministic context-sensitive languages DCSL, thus improving on
the best previously known upper bound for L(RRWW), and that it contains the
class Q of quasi-realtime languages [1], which coincides with the complexity class
NTIME(lin) (the class of languages that are accepted by nondeterministic multi-
tape Turing machines in linear time). In the concluding section we summarize
our results and state some open problems.

2 Definitions

Throughout the paper ε will denote the empty word, and N+ will denote the set
of all positive integers.

A (one-way) restarting automaton, RRWW-automaton for short, is a nonde-
terministic machine M with a finite-state control Q, a finite tape alphabet Γ
containing the input alphabet Σ, a flexible tape, and a read/write window of a
fixed size k ≥ 1. The work space is limited by the left sentinel c and the right
sentinel $, which cannot be removed from the tape. The behaviour of M is de-
scribed by a transition relation δ that associates to a pair (q, u) consisting of a
state q and a possible content u of the read/write window a finite set of possible
transition steps. There are four types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A rewrite step causes M to replace the content u of the read/write window
by a word v ∈ Γ ∗ satisfying |v| < |u|, thereby shortening the tape, and to
change the state. Further, the read/write window is placed immediately to
the right of the string v.

3. A restart step causes M to place its read/write window over the left end of
the tape, and to reenter the initial state q0.

4. An accept step causes M to halt and accept.
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If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that
M rejects in this situation. In addition, it is required that rewrite steps and
restart steps occur alternatingly within each computation of M , beginning with
a rewrite step.

A configuration of M is a string αqβ, where q ∈ Q, and either α = ε and
β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that the
window contains the first k symbols of β or all of β when |β| ≤ k. A restarting
configuration is of the form q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then q0cw$
is an initial configuration. Thus, initial configurations are a particular type of
restarting configurations. Each computation of M can be described by a sequence
of cycles, where a cycle begins with a restarting configuration and ends with the
next restarting configuration. The part of the computation after the last restart
operation is called the tail of the computation.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0cw$, finishes by executing an Accept
instruction. By L(M) we denote the language consisting of all words accepted
by M ; we say that M accepts (recognizes) the language L(M).

In general, an RRWW-automaton is nondeterministic, that is, for some pairs
(q, u), there may be more than one applicable transition step. If that is not the
case, then the automaton is deterministic.

Also some restricted classes of restarting automata have been studied. An
RWW-automaton is an RRWW-automaton that is required to execute a restart
step immediately after performing a rewrite step. An RRW-automaton is an
RRWW-automaton which does not use any auxiliary symbols, that is, its tape
alphabet coincides with its input alphabet. Finally, an RR-automaton is an RRW-
automaton whose rewrite instructions can be viewed as deletions, that is, if
(q′, v) ∈ δ(q, u), then v is a scattered subword of u. Obviously, the restrictions
on the rewrite operation can be combined with the restriction on the restart
operation, which leads to the RW-automaton and the R-automaton.

Finally, we come to the main topic of this paper, the shrinking restarting
automaton. A shrinking restarting automaton M = (Q,Σ, Γ, c, $, q0, k, δ) is de-
fined in the same way as a ‘standard’ restarting automaton with one exception.
Namely, it is not required that a rewrite operation reduces the length of the
tape. Instead, there must exist a weight function ω : Γ → N+ such that, for
each rewrite step (q′, v) ∈ δ(q, u) of M , ω(u) > ω(v) holds. Here ω is extended
to a morphism ω : Γ ∗ → N by taking ω(ε) := 0 and ω(wa) := ω(w) + ω(a) for
all w ∈ Γ ∗ and a ∈ Γ . Obviously, the length function w �→ |w| is a particular
weight function.

To be precise the weight function should also be defined for the delimiters c
and $, which are not elements of Γ . However, as the restarting automaton is
not allowed to remove c or $ from the tape nor to create new occurrences of
these symbols, their weight does not influence the difference ω(u)−ω(v) for any
rewrite step (q′, v) ∈ δ(q, u). Therefore, in order to simplify the notation, we do
not assign weights to c and $.
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If an automaton M is shrinking with respect to a weight function ω, we
say that ω is a weight function compatible with M . In order to distinguish
the ‘standard’ variant of the restarting automaton from the shrinking restart-
ing automaton, we sometimes denote the former as length-reducing restarting
automaton.

Notation. For any class A of automata, L(A) will denote the class of languages
that can be accepted by automata from A. The class of shrinking RRWW-
automata is denoted by sRRWW, and similarly the class of shrinking RWW-
automata is denoted by sRWW.

Let ω : Γ → N+ be a weight function, where Γ is a finite alphabet, and let
♦ and " be two new symbols not contained in Γ . Then rω : Γ ∗ → (Γ ∪ {♦})∗
denotes the morphism that is induced by defining rω(a) := a♦ω(a)−1 for each
a ∈ Γ . Thus, for each word u ∈ Γ ∗, |rω(u)| = ω(u). Further, for i ∈ N+, we
take ri to denote the morphism ri : (Γ ∪ {♦})∗ → (Γ ∪ {♦,"})∗ that is defined
by ri(a) := a"i−1 for all a ∈ Γ ∪ {♦}. Thus, for each word u ∈ (Γ ∪ {♦})∗,
|ri(u)| = i · |u|. Observe that rω as well as ri (i ≥ 1) are encodings, that is,
injective morphisms.

3 sRWW-Automata Versus sRRWW-Automata

In this section we will see that the families of languages accepted by sRWW-
and sRRWW-automata coincide. Moreover, we present a reduction by injective
morphisms from the language class L(RRWW) to the language class L(RWW).

We begin our investigation by establishing a reduction from shrinking to
length-reducing restarting automata.

Lemma 1. If M is an sR(R)WW-automaton, and if ω is a weight function that
is compatible with M , then rω(L(M)) ∈ L(R(R)WW).

Proof. Let M be an sR(R)WW-automaton accepting a language L ⊆ Σ∗, and
let ω : Γ → N+ be a weight function that is compatible with M . Then an
R(R)WW-automaton M ′ for the language rω(L) is obtained by simply simulating
the computation of M on a tape content cx$ on the corresponding tape content
crω(x)$. As each rewrite instruction u→ v of M is weight-reducing with respect
to ω, the corresponding rewrite instruction rω(u) → rω(v) of M ′ is length-
reducing. ��

Next we come to the technical main result of this section relating sRRWW-
automata to sRWW-automata.

Lemma 2. Let M be an sRRWW-automaton that accepts a language L ⊆ Σ∗,
and let ω be a weight function compatible with M . Then there exists an sRWW-
automaton M ′ such that L(M ′) = L(M), and M ′ is compatible with a weight
function ω′ that satisfies the equality ω′(a) = 54·ω(a) for each input letter a ∈ Σ.

We postpone the proof of Lemma 2 to Section 3.1. The next theorem, which
is our first main result, is an immediate consequence of that lemma.
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Theorem 1. L(sRWW) = L(sRRWW).

In addition, we obtain the following reduction from the language class
L(RRWW) to the class L(RWW).

Theorem 2. For each language L ∈ L(RRWW), r54(L) ∈ L(RWW).

Proof. Let M be an RRWW-automaton that accepts a languageL ⊆ Σ∗. Then M
can be interpreted as a shrinking RRWW-automaton that is compatible with the
weight function that associates the weight 1 to each symbol. Thus, by Lemma 2,
there exists an sRWW-automaton M ′ such that L(M ′) = L, and M ′ is compat-
ible with a weight function ω′ that assigns the weight 54 to each input symbol
a ∈ Σ. Now Lemma 1 implies that rω′(L) ∈ L(RWW). As rω′ maps each symbol
a ∈ Σ onto the word a♦53, while r54 maps a onto the word a"53, it is clear that
with rω′(L) also r54(L) is accepted by some RWW-automaton. ��

Theorem 2 is a remarkable improvement over the reduction from L(RRWW)
to L(RWW) presented in [10] (see Theorem 3 below), which, although being
computable in linear-time, even maps regular languages to non-context-free lan-
guages, indicating that it is not well-behaved from a language theoretical point
of view.

3.1 Proof of Lemma 2

First, we recall the reduction from L(RRWW) to L(RWW) from [10] mentioned
above.

Theorem 3. Let L be a language over Σ, let a,", c �∈ Σ be three additional
symbols, and let the mapping ϕ : Σ∗ → (Σ ∪ {a,", c})∗ be defined by

ϕ(x) := a3·|x| · r3(x) · c3·|x|

for all x ∈ Σ∗. If L ∈ L(RRWW), then ϕ(L) := {ϕ(x) | x ∈ L } ∈ L(RWW).

Let M be an sRRWW-automaton with input alphabet Σ that accepts a lan-
guage L ⊆ Σ∗, and let ω be a weight function that is compatible with M . From
Lemma 1 we see that rω(L) ∈ L(RRWW), and Theorem 3 implies that ϕ(rω(L))
is accepted by some RWW-automaton Mϕ. Further, as ϕ and rω are both in-
jective mappings, it follows that ϕ(rω(x)) �= ϕ(rω(y)) for all x, y ∈ Σ∗, x �= y.
Thus, we have the following equivalence for all x ∈ Σ∗:

x ∈ L if and only if ϕ(rω(x)) ∈ ϕ(rω(L)) . (1)

In order to prove Lemma 2 we will now construct an sRWW-automaton that,
given a word x ∈ Σ∗ as input, first transforms x into the word z := ϕ(rω(x)),
and then simulates the computation of the (length-reducing) RWW-automaton
Mϕ on the input z. Thus, this sRWW-automaton will accept on input x if and
only if z belongs to the language ϕ(rω(L)), that is by (1), if and only if x belongs
to the language L.
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Our method of transforming x into ϕ(rω(x)) is nondeterministic. Thus, for
a given x, there are several different words z that can be produced, only one
of them the intended result ϕ(rω(x)). Unfortunately we cannot possibly verify
the correctness of the word z produced without destroying it, but we can at
least guarantee that z = ϕ(rω(x)) if z belongs at all to the set ϕ(rω(L)). As
the RWW-automaton Mϕ accepts only inputs from this set, it follows that this
property is sufficient for our purposes.

We give a high level description of the algorithm that is realized by the
intended sRWW-automaton M ′. The details of the implementation can be found
in [12].

Let x ∈ Σ∗ be the given input. Our algorithm proceeds in three stages, which
will be illustrated by an example below:

1. The word x is rewritten deterministically from left to right into y :=
r9(rω(x)), using a new alphabet A0 of auxiliary letters. These letters are
interpreted as describing two ‘tracks,’ the first of which now contains the
word y = r9(rω(x)), while the second track is empty (we use the symbol ⊥
to denote ‘empty’ content).

2. Now the content of the second track is rewritten into ap ·r3(rω(x)) ·cp, where
p := |r3(rω(x))|. This is achieved by performing the following steps that all
preserve the length of the tape:
(a) y′ := r3(x′) is written as a prefix of the content of the second track

for some word x′ that is a supersequence of rω(x) (that is, rω(x) is a
scattered subsequence of x′).

(b) The second track, containing a word of the form y′ ⊥m for some inte-
ger m, is rewritten into a word of the form y′y′′ ⊥p, where y′′ := r3(x′′)
for a scattered subsequence x′′ of x′, and p := m− |y′′| > 0. In order to
mark the border between y′ and y′′, a new subalphabet is used for y′′.

(c) The current content of the second track, y′y′′ ⊥p, is rewritten determin-
istically from left to right into z := a|y

′|y′′cp.

Input b d

Stage 1 b � � � � � � � � d � � � � � � � � ♦ � � � � � � � �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Stage 2(a) b � � � � � � � � d � � � � � � � � ♦ � � � � � � � �
b � � d � � ♦ � � ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Stage 2(b) b � � � � � � � � d � � � � � � � � ♦ � � � � � � � �
b � � d � � ♦ � � b � � d � � ♦ � � ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Stage 2(c) b � � � � � � � � d � � � � � � � � ♦ � � � � � � � �
a a a a a a a a a b � � d � � ♦ � � c c c c c c c c c

Fig. 1. Stages 1 to 2(c) of the computation of M ′ on input bd
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3. The computation of the RWW-automaton Mϕ on input z is simulated on
the second track of the tape. The automaton M ′ accepts if and only if this
computation of Mϕ is accepting.

Example
Let M be an sRRWW-automaton with input alphabet Σ = {b, d}, and let ω be a
weight function compatible with M such that ω(b) = 1 and ω(d) = 2. Given the
input word bd, in Stages 1–2(c) M ′ can execute the transformations displayed
in Figure 1.

Here we have omitted some extra information that is stored in symbols, and
that is needed to ‘coordinate’ the computation (see the implementation details
in [12]). ��

4 Restarting Automata Versus Finite-Change Automata

In [3] von Braunmühl and Verbeek introduced a model of the Turing machine
that they called finite-change automaton. A finite-change automaton is a non-
deterministic single-tape Turing machine A that is parameterized by a constant
k ∈ N+ and a function f : N → N satisfying f(n) ≥ n for all n ∈ N. Given
an input of length n (as the initial inscription of its tape), A must not visit
more than f(n) cells, and it must not change the content of any cell more than k
times during any accepting computation on the given input. By kC(f) we denote
the class of finite-change automata meeting these restrictions, and by FC(f) we
denote the union

FC(f) :=
⋃
k>0

kC(f).

For the special case of the identity function f(n) = n, we denote the correspond-
ing classes of finite-change automata by kC and FC, respectively.

In order to enable the finite-change automaton to recognize the left end and
the right end of the given input, we assume here that the initial tape content for
a given input x ∈ Σ∗ is of the form cx$, where c and $ are special markers not
contained in Σ. Hence, the length of the initial tape inscription is n := |x| + 2.
Another option would be to use particularly marked symbols for the first and
the last letter of the input word. That these approaches are equivalent follows
from the following technical result of [3].

Lemma 3. Let f : N → N be a function satisfying f(n) ≥ n for each n ∈ N.
Then L(FC(f(n))) = L(FC(c · f(n))) for each constant c ≥ 1.

Now we can state the announced characterization.

Theorem 4. L(FC) = L(sRRWW).

Proof. Let M be an sRRWW-automaton accepting a language L ⊆ Σ∗. By
Lemma 1, there exist an injective morphism rω and a (length-reducing) RRWW-
automaton M ′ with input alphabet Σ ∪ {♦} such that, for each word x ∈ Σ∗,
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x ∈ L if and only if rω(x) ∈ L(M ′). According to [13], Theorems 1 and 2, there
exist an injective morphism ϕ and an RR-automaton M ′′ such that, for all words
x′ ∈ (Σ∪{♦})∗, x′ ∈ L(M ′) if and only if ϕ(x′) ∈ L(M ′′). Thus, we see that, for
all words x ∈ Σ∗, x ∈ L if and only if ϕ′(x) ∈ L(M ′′), where ϕ′ is the morphism
obtained by the composition of rω and ϕ.

Now the finite-change automaton A can proceed as follows:

1. First the image ϕ′(x) of the input word x is written onto the part of the
tape immediately to the right of the given input.

2. Then the computation of the RR-automaton M ′′ on ϕ′(x) is simulated.

Obviously, A accepts the language L with space bound (c + 1) · n, where
c := max{ |ϕ′(a)| | a ∈ Σ }. During the first part of the computation the content
of each cell is changed at most once. During the second part of the computation
the content of each cell is again changed at most once by marking those symbols
that are deleted by the RR-automaton.

Hence, A is a two-change automaton for the language L that uses only linear
space. From Lemma 3 it follows that L = L(A) ∈ L(FC). Thus, L(sRRWW) ⊆
L(FC).

To prove the converse inclusion, let A ∈ FC be a finite-change automaton
which changes each tape cell at most j times, and that meets the following
restrictions during accepting computations:

– rewrite operations and head movements of A are performed by different
steps;

– the working alphabet Γ of A consists of j+1 disjoint subalphabets Γ0, . . . , Γj ,
where Γ0 is the input alphabet, and the i-th change of the content of a cell
produces an element of Γi for all i = 1, . . . , j.

Now we present a simulation of the finite-change automaton A by an sRRWW-
automaton M . If Q is the set of states of A, then we take Λ := Γ∪(Γ×Q×{0, 1})
to be the tape alphabet of M . The automaton M works as follows:

1. If there are no auxiliary symbols on the tape, M simulates that part of
a computation of A that starts with an initial configuration and that ends
when A changes the content of a tape cell for the first time, or that ends with
A accepting or rejecting without changing the content of any tape cell. In the
latter case M also accepts or rejects, respectively, in a tail computation. In
the former case assume that A executes the instruction δ(q, a) = (q′, b). M
determines this tape cell, and then M rewrites the symbol a into the symbol
(b, q′, 0). There is a slight problem due to the fact that M is a one-way device,
while A′ can move its head both to the left and to the right. However, in
each step M can simply guess the corresponding crossing sequence of A′ and
verify the correctness of its guess, using the standard method of simulating
a two-way finite-state acceptor by a one-way finite-state acceptor.

2. If the tape content is of the form wa′z for some words w, z ∈ Γ ∗ and a symbol
a′ = (a, q, 0) ∈ Γ × Q × {0}, then M simulates that part of a computation
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of A on waz that starts in state q at the position of the symbol a and that
ends when A changes the content of the next tape cell, or that ends with
A accepting or rejecting, if no more tape cells are changed. Assume that
A executes the instruction δ(q̂, b) = (q′, c). Then M replaces the symbol b
by the symbol b′ = (c, q′, 1). Should the positions of the symbols b and a′

coincide, then M replaces the symbol a′ by b′.
3. If the tape content is of the form wa′y for a symbol a′ = (a, q, 0) ∈ Γ×Q×{0}

and some words w, y satisfying wy ∈ Γ ∗ · (Γ ×Q×{1}) ·Γ ∗, then M simply
rewrites the symbol a′ into the symbol a.

4. If the tape content is of the form wa′z for some words w, z ∈ Γ ∗ and a
symbol a′ = (a, q, 1) ∈ Γ × Q× {1}, then M replaces the symbol a′ by the
symbol (a, q, 0) ∈ Γ ×Q× {0}.
Note that the third coordinate of the symbols from Γ ×Q×{0, 1} is used to

distinguish between the positions of the last and the last but one change opera-
tion of A in the current computation. One can easily verify that each accepting
computation of M corresponds to an accepting computation of A. Further, for
each accepting computation of A, there exists an accepting computation of M .
Thus, we conclude that L(M) = L(A) holds. Also it is easily verified that each
rewrite operation of M is weight-reducing with respect to an appropriately cho-
sen weight function. Hence, M is indeed an sRRWW-automaton for the lan-
guage L(A). ��

This characterization allows us to establish some new relationships between
(shrinking) restarting automata on the one hand and some more classical lan-
guage classes on the other hand. Let DCSL denote the class of deterministic
context-sensitive languages, and let Q denote the class of quasi-realtime lan-
guages. This is the class of languages that are accepted by nondeterministic
multi-tape Turing machines in realtime, that is, Q = NTIME(n). It properly
contains the class GCSL of growing context-sensitive languages [4], and it coin-
cides with the complexity class NTIME(lin) [1].

CSL��
?

DCSL		?
���

� 

 ?�����

L(FC)��
?

= L(sR(R)WW)��
?

Q�� L(RRWW)��
?

GCSL �� L(RWW)

Fig. 2. An unmarked arrow indicates that the inclusion is proper, while a question
mark indicates that it is an open problem whether the corresponding inclusion is proper.
For those classes that are not connected via directed paths in the diagram it is open
whether any inclusions hold.



542 T. Jurdziński and F. Otto

From Theorems 2 and 3 of [3] the inclusions Q ⊆ L(FC) ⊆ DCSL follow,
which yield our second main result.

Corollary 1. Q ⊆ L(sRRWW) ⊆ DCSL.

Hence, we obtain the relationships depicted in Figure 2. This improves on the
previously known results, as it was open whether the language classes L(RRWW)
and DCSL are at all comparable under inclusion.

5 Concluding Remarks

We have investigated the expressive power of the shrinking restarting automaton,
which is a rather straightforward generalization of the restarting automaton. For
this generalization the model with combined restart and rewrite operations (the
shrinking RWW-automaton) is as powerful as the general shrinking RRWW-
automaton, and even the additional capabilities of changing the internal state in
a restart transition (as opposed to resetting the state to the initial state) and to
perform multiple rewrite operations in each cycle do not increase the expressive
power of this model [12].

However, it remains open whether the shrinking RRWW-automaton is at all
more powerful than the standard RRWW-automaton. Further, although we have
obtained a new simplified reduction from the language class L(RRWW) to the
language class L(RWW), we still have no clue whether or not these two classes
coincide. Finally, it is not known whether either of the inclusions Q ⊆ L(sRRWW)
or L(sRRWW) ⊆ DCSL is proper.

Here we have only studied shrinking restarting automata with auxiliary let-
ters. An obvious direction for future research is the study of the expressive power
and the properties of shrinking restarting automata without auxiliary symbols.

Acknowledgements. The authors want to thank F. Mráz and M. Plátek for
many fruitful discussions regarding restarting automata and for pointing them
to the work of von Braunmühl and Verbeek.
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Abstract. We prove that every two-way nondeterministic finite au-
tomaton with n states has an equivalent one-way nondeterministic finite
automaton with at most

(
2n

n+1

)
states. We also show this bound is exact.

1 Introduction

Converting an arbitrary one-way nondeterministic finite automaton (1nfa) to
an equivalent one-way deterministic finite automaton (1dfa) has long been the
archetypal problem of descriptional complexity. Rabin and Scott [1][2] proved
that starting with an n-state 1nfa one can always construct an equivalent 1dfa
with at most 2n−1 states;1 later observations [3,4][5,6,7,8] established the tight-
ness of this upper bound, in the strong sense that, for all n, some n-state 1nfa
has no equivalent 1dfa with fewer than 2n − 1 states. So, we often say that the
trade-off from 1nfas to 1dfas is exactly 2n − 1. (Fig. 1a.)

The fact that this problem initiated the discussion on issues of descriptional
complexity is only one aspect of its significance. A more interesting aspect is that
its solution fully uncovered and elegantly described the relationship between the
computations of the two types of machines. This is supported not only by the
fact that the demonstrated upper and lower bounds match exactly (as opposed
to merely asymptotically), but also —and more crucially— by the central role
that a well-understood set-theoretic object plays in the associated proof: what
the theorem really tells us is that every 1nfa N can be simulated by a 1dfa
that has one distinct state for each non-empty subset of states of N which (as
an instantaneous description of N) is both realizable and irreplaceable. From
this, the demonstrated trade-off is then only a counting argument away, plus a
clever search for 1nfas that indeed manage to keep all of their instantaneous
descriptions realizable and irreplaceable.

In the present study we offer a similar analysis for the conversion of an arbi-
trary two-way nondeterministic finite automaton (2nfa) to a one-way equivalent:
we prove that the trade-off from 2nfas to 1nfas is exactly

(
2n

n+1

)
. As above, we

first identify the correct set-theoretic object that ‘lives’ in the relation between
2nfa and 1nfa computations, and then easily extract the trade-off.
1 In this article, all finite automata are allowed to be incomplete: their transition

functions may be partial, and thus computations may hang inside the input.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 544–555, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Two-way finite automata were introduced in the late 50’s [9,2,10] and shown
equivalent to 1dfas. Originally, their definition included neither endmarkers nor
nondeterminism, so they were just single-pass two-way deterministic finite au-
tomata (zdfas). However, they soon grew into full-fledged two-way deterministic
finite automata (2dfas) and nondeterministic versions (znfas and 2nfas), which
all remained equivalent to 1dfas. Since then, the cost of the 2nfa-to-1nfa con-
version has been addressed sporadically.

Shepherdson’s proof [10] implied every n-state 2nfa can be converted into a
1nfa with at most n2n2

states. A cheaper simluation via crossing sequences [11,
Sect. 2.6] has also been known, with only O(22n lg n) states. However, a straight-
forward elaboration on [10] shows the cost can be brought down to even n(n+1)n.
Which still wastes exponentially many states, as Birget [12] showed 8n + 2 are
always enough, via an argument based on length-preserving homomorphisms.
Here, we establish the still exponentially smaller upper bound of

(
2n

n+1

)
.

On the other hand, exponential lower bounds have also been known, even
when the starting automaton is deterministic [7,12] and single-pass [6,13]. For
example, Damanik [13] gives a language that costs ≤ 4n+ 2 on zdfas, but ≥ 2n

on 1nfas. Here, we give a lower bound that matches
(

2n
n+1

)
, even when we start

from a zdfa. Hence, the ability of a 2nfa to move its head bidirectionally strictly
inside the input can alone cause all the hardness a simulating 1nfa must subdue.

The conversions from 1nfas to 1dfas and from 2nfas to 1nfas are only two
of a dozen different conversions among the four basic automata models (1dfas,
1nfas, 2dfas, and 2nfas) for the regular languages. Each of the 12 arrows in
Fig. 1 represents one of these conversions and defines the associated problem of
finding the exact trade-off. Of the 12 problems, some are little harder than clever
exercises, but others are decades-old open questions on the power of nondeter-
minism —a surprising range in difficulty. We present a quick review.

The arguments of [2,3,4] and this study establish that a = 2n − 1 and
d = e =

(
2n

n+1

)
, while an argument of [14] shows the trade-off for every conver-

sion from a weaker to a stronger model (dotted arrows) is exactly f = n. From
2dfas and 2nfas to 1dfas, it has been known that the trade-offs are exponen-
tial [10,15,4,5,7,16,12], although the exact values remained elusive; refining [12]
and following the rational of this study, we can show them to be as in Fig. 1
(the proofs to appear in the full version of this article). This leaves only the
questions for the conversions from 1nfas and 2nfas to 2dfas (dashed arrows),
which remain wide open: more than 30 years after they were first asked [6], not
only are the exact trade-offs unkown, but we cannot even confirm the conjecture
that they are exponential (see [17] for a discussion).

Finally, we should note that Fig. 1 shows only four of the numerous automata
that solve exactly the regular languages. Bidirectionality, nondeterminism, alter-
nation, randomness, pebbles, and other enhancements, alone or combined, lim-
ited or unrestricted, give rise to a long list of variants and to the corresponding
descriptional-complexity questions. See [18] for a comprehensive overview.

The next section defines the basic concepts. Section 3 establishes the upper
bound, while Sect. 4 proves that it is exact. We conclude in Sect. 5.
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a = 2n − 1

b = n
(
nn − (n− 1)n

)
d = e =

(
2n

n+1

)
f = n

2dfa

2nfa

1nfa

1dfa

c

e

b a

d

c =
∑n−1

i=0

∑n−1
j=0

(
n
i

)(
n
j

)(
2i − 1

)j

Fig. 1. Trade-off summary (f = n on all dotted arrows; dashed arrows are open)

2 Preliminaries

We write [n] for the set {1, 2, . . . , n}. The special objects l, r, ⊥ are used for
building the disjoint union of two sets and the augmentation of a set

A 8B = (A× {l}) ∪ (B × {r}) and A⊥ = A ∪ {⊥}.
When A and B are disjoint, A ∪ B is also written as A+B. The size of A is
denoted by |A|, while (A→ B) denotes the set of functions from A to B.

For Σ an alphabet, we use Σ∗ for the set of all finite strings over Σ and Σe

for Σ + {9,:}, where 9 and : are special endmarking symbols. If w is a string,
|w| is its length and wi is its i-th symbol, for i = 1, . . . , |w|. The ‘i-th boundary
of w’ is the boundary between wi and wi+1, if i = 1, . . . , |w| − 1; or the leftmost
(rightmost) boundary of w, if i = 0 (i = |w|). (Fig. 2a.) We also write we for the
extension 9w : of w and we,i for (we)i. The empty string is denoted by ε.

We present 2nfas and 1nfas as variations of the more natural model of a
2dfa. The next paragraph defines this model and some basic relevant concepts.

Two-Way Deterministic Finite Automata. We assume the reader is famil-
iar with the intuitive notion of a 2dfa. Formally, this is a triple M = (s, δ, f),
where δ is the transition function, partially mapping Q ×Σe to Q× {l, r}, for
a set Q of states and an alphabet Σ, while s, f are the start and final states.

qm

0 1 2 3 4 5 6

w2 w4 w5 w6w1 w3

qm

q0

i0

(c)(b)(a)

q0

i00 6

qm

q0

i0 i0 6

Fig. 2. (a) Cells and boundaries on a 6-long w; a computation that hits left. (b) One
that hangs. (c) One that hits right, and its i-th frontier: Rc

i in circles and Lc
i in boxes.
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Here, we insist the automaton accepts only if it moves past the right endmarker:
into f , this being the only case in which an endmarker may be violated.2

Computations. Although M is typically started at s and on 9, many other pos-
sibilities exist: for any w, i, q, the computation of M when started at state q on
the i-th symbol of string w is the unique sequence

compM,q,i(w) =
(
(qt, it)

)
0≤t≤m

where (q0, i0) = (q, i), 0 ≤ m ≤ ∞, every pair is derived from its predecessor
via δ and w, every pair is within w (1 ≤ it ≤ |w|) except possibly for the last one,
and the last pair is within w iff δ is undefined on the corresponding state and
symbol. We say (qt, it) is the t-th point and m the length of this computation.
If m = ∞, the computation loops. Otherwise, it hits left into qm, if im = 0; or
hangs, if 1 ≤ im ≤ |w|; or hits right into qm, if im = |w|+1 (Fig. 2). When i = 1
(respectively, i = |w|) we get the left (right) computation of M from q on w:3

lcompM,q(w) ::= compM,q,1(w) and rcompM,q(w) ::= compM,q,|w|(w).

The computation of M on w refers to the typical compM (w) ::= lcompM,s(we),
so that M accepts w ∈ Σ∗ iff compM (w) hits right (into f). Note that, since M
can violate an endmarker only when it moves past : into f , a computation of
M on an endmarked string can only loop, or hang, or hit right into f .

Frontiers. Fix a computation c = ((qt, it))0≤t≤m and consider the i-th boundary
of the input (Fig. 2c). This is crossed ≥ 0 times. Collect into a set Rc

i (respec-
tively, Lc

i) all states that result from a left-to-right (right-to-left) crossing,

Rc
i = {qt+1 | 0 ≤ t < m & it = i & it+1 = i + 1},

Lc
i = {qt+1 | 0 ≤ t < m & it = i + 1 & it+1 = i},

also requiring that Rc
i0−1 contains q0.4 The pair (Lc

i , R
c
i ) partially describes the

behavior of c over the i-th boundary and we call it the i-th frontier of c. Note
that the description is indeed partial, as the pair contains no information on
the order in which c exhibits the states around the boundary or on number of
times each state is exhibited. For a full description one would need instead the
i-th crossing sequence of c [11]. However, for our purposes, the extra information
provided by the complete description is redundant.

Variations. If in the definition of M above more than one next moves are
allowed at each step, we say the automaton is nondeterministic (a 2nfa). This

2 So, on  , δ moves right or hangs. On !, it moves left, hangs, or moves right into f .
3 Note that, when w is the empty string, the left computation of M from q on w is just

lcompM,q(ε) =
(
(q, 1)

)
and therefore hits right into q, whereas the corresponding

right computation rcompM,q(ε) =
(
(q, 0)

)
hits left into q.

4 This reflects the convention that the starting state of any computation is considered
to be the result of an ‘invisible’ left-to-right step.
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formally means that δ totally maps Q × Σe to the powerset of Q × {l, r} and
implies that C = compM,q,i(w) is now a set of computations. If then

P = {p | some c ∈ C hits right into p},
we say C hits right into P ; and w is accepted iff compM (w) hits right into {f}.

If the head of M never moves to the left, we say M is one-way (a 1nfa).5

If no computation of M ‘continues after arriving at an endmarker’, we say M is
single-pass (a znfa; or a zdfa, if M is deterministic).

3 The Upper Bound

Fix an n-state 2nfa N = (s, δ, f) over alphabet Σ and state set Q. In this section
we build an equivalent

(
2n

n+1

)
-state 1nfa N ′ via an optimal construction.

Frontiers. Assume momentarily that N is deterministic and c = compN (w) is
accepting, for some l-long input w. Consider the i-th frontier (Lc

i , R
c
i ) of c, for

some i �= 0, l + 2. The number of states in Rc
i equals the number of times c left-

to-right crosses the i-th boundary: each crossing contributes a state into Rc
i and

no two crossings contribute the same state, or else c would be looping. Similarly,
|Lc

i | equals the number of times c right-to-left crosses the i-th boundary. Now,
since c accepts, it goes from 9 all the way past :, forcing the rightward crossings
on every boundary to be exactly 1 more than the leftward crossings. Hence,

|Lc
i |+ 1 = |Rc

i |,
which remains true even on the leftmost boundary (i = 0, under our convention
from Footn. 4) and also on the rightmost one (i = l + 2). So, the equality holds
over every boundary and motivates the following definition.

Definition 1. A frontier of N is any (L,R) with L,R ⊆ Q and |L|+ 1 = |R|.
So, if the computation of a 2dfa on a particular input is accepting, then all
frontiers of the computation are frontiers of this 2dfa.

For our nondeterministic N , though, the argument breaks, as a state repeti-
tion under a cell may not imply looping. However, it does imply a cycle. So, let
us call a computation minimal if it contains no cycles (i.e., if every two of its
points are distinct) and repeat the previous argument to establish the following.

Lemma 1. All frontiers of an accepting minimal computation of N on some
input are frontiers of N .

Compatibilities Among Frontiers. Suppose c is an accepting minimal com-
putation of N on an l-long w and let F c

i = (Lc
i , R

c
i ) be its i-th frontier, for each

i = 0, 1, . . . , l + 2 (Fig. 3). Note that the first and last frontiers are always

F c
0 = (∅, {s}) and F c

l+2 = (∅, {f}),
as c starts at s, ends in f , and never right-to-left crosses an outer boundary.
5 Note that our 1nfas work on endmarked inputs, a deviation from typical definitions.
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Fig. 3. (a) An accepting minimal c ∈ compN (w), for |w| = 6, state set {0, 1, . . . , 5},
s = 0, f = 5. (b) The same c arranged in frontiers; the even-indexed ones are circled.
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Fig. 4. (a) Two successive frontiers, on the left. (b) The associated ρ, on the right.

Also note that, for (L,R) = (Lc
i , R

c
i ) and (L′, R′) = (Lc

i+1, R
c
i+1) two succes-

sive frontiers (Fig. 4a), it should always be that R ∩ L′ = ∅: otherwise, c would
be repeating a state under wi and would not be minimal. Hence, R+L′ contains
as many states as many (occurences of) states there are in L and R′ together:

|R+L′| = |R|+ |L′| = (|L|+ 1
)

+
(|R′| − 1

)
= |L|+ |R′| = |L 8R′|.

So, bijections can be found from R+L′ to L 8R′. Among them, a very natural
one (Fig. 4b): for each q ∈ R+L′ find the unique step in c that produces q
under wi (this is either a rightward crossing of boundary i or a leftward crossing
of boundary i + 1; the minimality of c guarantees uniqueness); the next step
left-to-right crosses boundary i+1 into some state p ∈ R′ or right-to-left crosses
boundary i into some p ∈ L; depending on the case, map q to (p, r) or (p, l)
respectively. If ρ : R+L′ → L 8R′ is this mapping, it is easy to verify that it is
injective (because c is minimal) and therefore bijective, as promised. In addition,
ρ clearly respects the transition function: ρ(q) ∈ δ(q, wi), for all q ∈ R+L′.6

Overall, we see that the sequence of frontiers exhibited by an accepting min-
imal c ∈ compN (w) obeys some restrictions. We now formally summarize them.
6 Throughout this argument, wi really refers to we,i+1. This is wi only when i �= 0, l+1.
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Definition 2. Let (L,R), (L′, R′) be frontiers of N and a ∈ Σe. We say that
(L,R) is a-compatible to (L′, R′) iff R ∩L′ = ∅ and some bijection ρ : R+L′ →
L 8R′ respects the transition function on a: for all q ∈ R+L′: ρ(q) ∈ δ(q, a).

Definition 3. Suppose w ∈ Σ∗ is l-long and F0, F1, . . . , Fl+2 is a sequence of
frontiers of N . We say the sequence fits w iff

1. F0 = (∅, {s}),
2. for all i = 0, 1, . . . , l + 1: Fi is we,i+1-compatible to Fi+1,
3. Fl+2 = (∅, {f}).

Lemma 2. If compN (w) contains an accepting computation, then some se-
quence of frontiers of N fits w.

Proof. Every accepting computation gives rise to a minimal accepting one. ��

The Main Observation. The converse of Lemma 2 is also true: if a sequence
of frontiers of N fits w, then compN (w) contains an accepting computation.

To prove this, fix an l-long w and assume some sequence of frontiers of N

F0 = (L0, R0), F1 = (L1, R1), . . . , Fl+2 = (Ll+2, Rl+2)

fits w. We show the stronger claim that, for every i, the states of Ri can be
produced by |Ri| right-hitting computations on 9w1 · · ·wi−1: one starting at s
and on 9, each of the others starting at some q ∈ Li and on wi−1.

Claim. For all i = 0, 1, . . . , l + 2, some bijection πi : (Li)⊥ → Ri is such that
1. some c ∈ lcompN,s(9w1 · · ·wi−1) hits right into πi(⊥), and
2. for all q ∈ Li, some c ∈ rcompN,q(9w1 · · ·wi−1) hits right into πi(q).

(Here, we take w0 and wl+1 to mean the endmarkers 9 and :, respectively.) Note
that our main observation follows from this claim for i = l + 2.

To prove the claim, we use induction on i. The base case i = 0 is trivial. For
the inductive step (Fig. 5a), assume i < l + 2, let (L,R) = (Li, Ri), (L′, R′) =
(Li+1, Ri+1), a = we,i+1, and consider the bijections guaranteed by the inductive
hypothesis, π = πi : L⊥ → R, and the fact that (L,R) is a-compatible to (L′, R′),
ρ : R+L′ → L 8R′. Based on π, ρ and a third function σ, we build a bijection
π′ = πi+1 : (L′)⊥ → R′ that satisfies (1), (2) of the claim. First, we introduce σ.

Definition of σ: pick some q ∈ R and take a trip around under 9w1w2 · · ·wi−1a

q,
r0

ρ(q),
r1

πρ(q),
r2

ρπρ(q),
r3

πρπρ(q),
r4

. . . (1)

by alternately following ρ and π, until the first time ‘ρ fails to return a state
in L’.7 Let r0, r1, r2, . . . be the states that we visit. We distinguish two cases.
7 Note that we abuse notation here. Bijection ρ can only return a pair of the form

(p,l) or (p,r). So, in the description (1) above, ρ(·) really means ‘the first component
of ρ(·), if the second component is l’. Similarly, ‘ρ fails to return a state in L’ means
‘ρ returns a pair of the form (p,r)’. Hopefully, the abuse does not confuse.
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Fig. 5. (a) An example for the inductive step for the main observation. E.g., note that
σ maps the 3rd and 5th (from top) states of R to ⊥, while the 4th state is mapped to
the 1st state of R′. (b) A nice input, that has a path. (c) A nice input with no path.

Case 1: ρ does eventually fail to return a state in L. Then the trip is finite:
r0, r1, . . . , rk, for an even k ≥ 0 and an rk ∈ R that is ρ-mapped to some q′ ∈ R′.

Case 2: ρ always returns a state in L. Then the trip is infinite and (since all
even-indexed ri and all odd-indexed ri are respectively inside the finite sets R
and L) there exist repetitions of states both on the even and on the odd indices.
Let k be the first index for which some earlier index j < k of the same parity
points to the same state: rj = rk. If k is odd, j is also odd and so j ≥ 1; then
rj = rk =⇒ ρ−1(rj) = ρ−1(rk) =⇒ rj−1 = rk−1 and k − 1 also has the
property that k is the earliest one to have, a contradiction. So, k must be even,
and so must j. In fact, j must be 0 —or we reach a contradiction, as before, with
π−1 instead of ρ−1. Hence, the first state to be revisited is r0 = q and the trip
consists of infinitely many copies of a list r0, r1, . . . , rk−1, for some even k ≥ 2
and with no two states being both equal and at indices of the same parity.

Overall, either we reach a state rk ∈ R that is ρ-mapped to a state q′ ∈ R′ or
we return to the starting state q ∈ R having repeated no state in L and no state
in R. We define σ : R → (R′)⊥ to encode exactly this information: in Case 1,
σ(q) = q′; in Case 2, σ(q) = ⊥. In either case, our trip respects π and ρ, which
in turn respect the behavior of N on 9 w1w2 . . . wi−1a. So, clearly: σ(q) = q′

implies some c ∈ rcompN,q(9 w1 · · ·wi−1a) respects π, ρ and hits right into q′;
σ(q) = ⊥ implies some looping c ∈ rcompN,q(9 w1 · · ·wi−1a) respects π, ρ and
visits only states from R when under a. This concludes the definition of σ. ��

We can now define π′. We examine three cases about its argument.

(a) some p ∈ L′ that is ρ-mapped to an r ∈ R′. Then we just let π′(p) = r.
(b) some p ∈ L′ that is ρ-mapped to an r ∈ L. Then we consider q = π(r). We

know N can start at p under a and eventually reach q under a, so we ask
what can happen after that if we keep following ρ and π. We examine σ(q).
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If σ(q) = ⊥, then we will return to q after a cycle of length≥ 2, having
visited only states of R when under a. But can this happen? If it does, then the
next-to-last and last steps in this cycle will follow ρ and π respectively, ending
in q. Since ρ, π are bijections, the last two states (before q) in this cycle must
respectively be p and r. In particular, p must appear in the cycle under a. But,
since the cycle stays within R whenever under a, we must have p ∈ R, and hence
R and L′ intersect. But then (L,R), (L′, R′) are not compatible, a contradiction.

Hence, we know σ(q) = q′ ∈ R′. And we can safely set π′(p) = q′.

(c) the special value⊥. The reasoning is similar to the previous case. We consider
q = π(⊥) and examine σ(q). Again, σ(q) = ⊥ is impossible, as it would imply
⊥ ∈ L. Hence, σ(q) = q′ for some q′ ∈ R′ and we can safely set π′(⊥) = q′.

This concludes the definition of π′. It is easy to check π′ satisfies the condi-
tions of the claim. Hence, the inductive step is complete, as is the overall proof.

The Construction. We now describe the 1nfa N ′ simulating N . By Lemma 2
and the main observation, N ′ need simply check if some sequence of frontiers of
N fits the input. So, N ′ just ‘guesses’ such a sequence. This needs 1 state per
frontier, and a standard argument shows N has exactly

(
2n

n+1

)
of them.

4 The Lower Bound

In this section, we exhibit an n-state 2nfa N that has no equivalent 1nfa with
fewer than

(
2n

n+1

)
states. In fact, N will even be deterministic and single-pass.

The Witness. Fix n ≥ 1 and consider the alphabet Γ = ([n] +([n] → [n])) ×
{l, r}. Of all strings in Γ ∗, we will only care about the ones following the pattern

(x, l)(g, l)(h, r)(y, r) (2)

where x, y ∈ [n], g and h are partial functions from [n] to [n], and h(y) is
undefined. We call these strings nice inputs. Intuitively, given a nice input as (2),
we think of the graph of Fig. 5b, where the columns are two copies of [n], the
arrows between them are determined by g (left-to-right) and h (right-to-left),
and the two special nodes by x (entry point) and y (exit). In this graph, a path
from x to y may or may not exist; if it does, we say the nice input ‘has a path’.

Letting Πyes (respectively, Πno) be the set of nice inputs that (do not) have
a path, we can easily see that the promise problem8 Π = (Πyes, Πno) can be
solved by a single-pass 2dfa with state set [n]. This is our witness, N .

Intuition. Consider an arbitrary frontier F = (L,R) of N and list the elements
of L,R ⊆ [n] in increasing order, L = {x1, . . . , xm} and R = {y1, . . . , ym+1}, for

8 By a (promise) problem over Σ we mean a pair Π = (Πyes, Πno) of disjoint subsets
of Σ∗. An automaton solves Π iff it accepts every w ∈ Πyes but no w ∈ Πno, while
arbitrary behavior is allowed on strings outside Πyes + Πno.



Removing Bidirectionality from Nondeterministic Finite Automata 553

xF

xF

(b) (c) (d)(a)

(e)

· · ·
· · ·

y′
i−1

yi−1

x′
i−1

xi−1

y′
i

yi

x′
2

x2

y′
2

y2

x′
1

x1

y′
1

y1

x′
0

x0

x1

y1x0

x2

x3

y2

y3

x′
1

y′
1x′

0

y′
4x′

3

x′
2

y′
2

x0

y4

x′
1

y1x′
0

x′
3

x′
2

y2

y3

x1
y′
1

y′
4

x2

y′
3

y′
2

y′
3 x3y4

hF ′

gFgF

x0 y1 x1 y2 x2 y3 x3 y4

yFhF

Fig. 6. (a) The input wF when n = 6 and F = ({1, 4, 5}, {2, 3, 4, 5}), and how to derive
it from the list 2, 2, 1, 3, 4, 4, 5, 5. (b) A new input wF ′ , for F ′ = ({1, 5, 6}, {2, 4, 5, 6}).
(c,d) Inputs wF,F ′ and wF ′,F . (e) Proving that at most one of them has a path.

the appropriate 0 ≤ m < n. Since m < n, we know L �= [n] and we can name an
element outside L, say x0 = minL. Then the combined list

x0 y1 x1 y2 x2 · · · ym xm ym+1 (3)

gives rise to the nice input wF = (xF , l)(gF , l)(hF , r)(yF , r) (see Fig. 6a), where
xF = x0, function gF maps every x in the list (3) to the following y, function
hF maps every y �= ym+1 to the following x, and yF = ym+1:

xF =minL, yF = maxR,
gF = {(xi, yi+1) | 0 ≤ i ≤ m}, hF = {(yi, xi) | 1 ≤ i ≤ m}. (4)

It is easy to verify that, for any frontier F of N , the computation of N on wF is
accepting and its frontier under the middle boundary is exactly F . This implies
that, if N ′ is the 1nfa constructed for N as in Sect. 3, then every state of N ′ is
used in some accepting computation. Which suggests N ′ is minimal.

The Proof. Every two frontiers F , F ′ of N give rise to the nice input (Fig. 6c)

wF,F ′ = (xF , l)(gF , l)(hF ′ , r)(yF ′ , r),

where xF , gF , hF ′ , yF ′ are defined by (4). Crucially, in the
(

2n
n+1

) × (
2n

n+1

)
ma-

trix W = [wF,F ′ ]F,F ′ containing all such inputs, two distinct strings at cells
symmetric with respect to the main diagonal cannot both have a path.

Claim. For F , F ′ two frontiers of N : wF,F ′ , wF ′,F ∈ Πyes ⇐⇒ F = F ′.

Proof. [⇐] Trivial. [⇒] Suppose F = (L,R) and F ′ = (L′, R′). We assume that
F �= F ′ and prove that at least one of wF,F ′ , wF ′,F lacks a path.

Let m = |L|, m′ = |L′| and consider the lists defined by F and F ′, as in (3):

x0 y1 x1 y2 x2 · · · ym xm ym+1 and x′0 y
′
1 x
′
1 y
′
2 x
′
2 · · · y′m′ x′m′ y′m′+1.

If these were identical after their first elements, they would agree in their lengths,
their x’s (except possibly x0, x′0), and their y’s, forcing F = F ′, a contradiction.
So, there must be positions of disagreement after 0. Consider the earliest one.
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If this position is occupied by y’s, say yi and y′i, then either yi < y′i (Case 1)
or yi > y′i (Case 2). If it is occupied by x’s, say xi and x′i, then either xi < x′i or
x′i is not present at all9 (Case 3) or xi > x′i or xi is not present at all (Case 4).

We present the argument for Case 1 —the rest are similar. So, suppose the
first disagreement is yi < y′i. Then all previous positions after 0 contain identical
elements (Fig. 6e). Also, yi is not in R′: if it were, then it would be in the sublist
y′1, . . . , y

′
i−1 (since yi < y′i), and hence in y1, . . . , yi−1 (the two sublists coincide),

a contradiction (since y1, . . . , yi−1 < yi). So yi /∈ R′. Therefore yi �= yF ′ and
hF ′(yi) is undefined. But then, searching for a path in wF,F ′ , we travel

x0
gF→ (y1 = y′1)

hF ′→ (x′1 = x1)
gF→ (y2 = y′2)

hF ′→ · · · hF ′→ (x′i−1 = xi−1)
gF→ yi

reaching a node which is neither the exit yF ′ nor the start of an hF ′ -arrow. ��

Now suppose a 1nfa A solves Π with fewer than
(

2n
n+1

)
states. For each

frontier F of N , we know wF = wF,F is in Πyes, so A accepts it. Pick an accepting
cF ∈ compA(wF ) and let qF be the state right after the middle boundary is
crossed. By the small size of A, we know qF = qF ′ for some F �= F ′. But then,
a standard cut-and-paste argument on cF , cF ′ shows A also accepts wF,F ′ and
wF ′,F . Since both are nice inputs, we have wF,F ′ , wF ′,F ∈ Πyes, contradicting
the last claim.

5 Conclusion

We have shown the exact trade-off in the conversion from 2nfas to 1nfas. Our
argument complemented that of Birget [12] by carefully removing some redun-
dancies in its constructions. Crucially, the simulation performed by our optimal
1nfa is as ‘meaningful’ as the simulation given in [2] for the removal of nonde-
terminism from 1nfas: each state corresponds to a (realizable and irreplaceable,
as an instantaneous description) set-theoretic object that naturally ‘lives’ in the
computations of the simulated2nfa. Frontiers also allowed a set-theoretic char-
acterization of 2nfa acceptance (already present in [12], essentially) that com-
plements the set-theoretic characterization of 2nfa rejection given by Vardi [19].
Finally, by applying the concept of promise problems even to regular languages,
we nicely confirmed its reputation for always leading us straight to the combi-
natorial core of the hardness of a computational task.

We do not know if the large alphabet size of problem Π is neccessary for
the exactness of this trade-off. Also, it would be interesting to have the exact
trade-offs in the conversions towards and from other types of automata (e.g., al-
ternating, probabilistic) or more powerful machines (e.g., pushdown automata).

Many thanks to J.C. Birget for his help with some references; also, for raising our
understanding of the subject to a level from which exact solutions could be seen.

9 This happens if the list for F ′ stops at y′
i.
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where for i = 1, . . . , m, fi : Zn �→ R is a given monotone function and
ti is a given threshold. We show that if the ∨-degree of φ is bounded
by a constant, then for linear, transversal and polymatroid monotone
inequalities all minimal integer vectors satisfying φ can be generated in
incremental quasi-polynomial time. In contrast, the enumeration prob-
lem for the disjunction of m inequalities is NP-hard when m is part
of the input. We also discuss some applications of the above results in
disjunctive programming, data mining, matroid and reliability theory.

1 Introduction

Consider a system of linear inequalities

n∑
j=1

aijxj ≥ ti for i = 1, ...,m, (1)

where aij are given non-negative reals, and where we assume that the variables
can take only binary values. Due to the non-negativity of the coefficients, if a
vector x ≥ 0 satisfies some of these inequalities and y ≥ x, then y satisfies
the same inequalities (and possibly some others as well), i.e., the system (1) is
monotone. We say that x ∈ {0, 1}n is a minimal feasible solution for a subset
I ⊆ {1, ...,m} of the inequalities (1), if x satisfies all inequalities belonging to
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inequalities. Lawler, Lenstra and Rinnooy Kan [23] considered the problems of
generating all minimal feasible solutions satisfying

(P1) all m inequalities of (1), and
(P2) at least one of the m inequalities of (1).

These or equivalent problems arise in a number of areas, including integer pro-
gramming, scheduling, and polyhedral combinatorics (see e.g., [5,6,23,26,28]).
Note that the number of minimal feasible solutions may not be limited by a
polynomial of n and m. A generation algorithm is said to be incrementally poly-
nomial (or quasi-polynomial1, or exponential) if for an arbitrary subset X of
minimal feasible solutions it can find an additional minimal feasible solution
x �∈ X , or recognize that X contains all such solutions, in time polynomially (or
quasi-polynomially, or exponentially) limited in n, m and |X |. Equivalently, an
algorithm is incrementally polynomial (quasi-polynomial, or exponential) if for
arbitrary integer k, it can generate k minimal feasible solutions, or all of them if
k is too large, in time polynomial (quasi-polynomial, exponential) in n, m and k.

When m = 1, problems (P1) and (P2) coincide, and incrementally efficient
generation of all minimal feasible solutions is possible (see e.g., [23]). For the
general case, when m > 1, only incrementally exponential algorithms were pro-
posed for (P1) and (P2) in [23], and it was conjectured that no polynomial time
algorithm can solve these problems, unless P=NP (i.e., that no algorithm can
recognize the completeness of a subset X of the minimal feasible solutions in
polynomial time, unless P=NP, and hence no algorithm can generate all mini-
mal feasible solutions in time limited by a polynomial of n, m, and the number
of minimal feasible vectors). These problems were reconsidered recently in [9],
and contrary to the conjecture of [23], (P1) was shown to be tractable in in-
cremental quasi-polynomial time (which makes it very unlikely to be NP-hard),
while (P2) was shown to be tractable in incremental polynomial time for fixed
m, but NP-hard for the general case.

This motivated us to study more complex monotone systems, and generalize
the above results in three directions.

First, we generalize the above enumeration problems to integer variables.
More precisely, we consider the inequalities (1) with the variables running over
an arbitrary integer box C = {x ∈ Zn | 0 ≤ x ≤ c}, where c ∈ Zn

+ is a given
integer vector with possibly infinite coordinates.

Second, we consider not only conjunctions (like in (P1)), or disjunctions (like
in (P2)), but arbitrary monotone expressions of linear inequalities. Specifically,
let Yi : C → {0, 1} be the characteristic variables corresponding to the inequali-
ties of (1), i.e., Yi(x) = 1 iff

∑n
j=1 aijxj ≥ ti, i = 1, ...,m. Then we associate to

any given monotone ∨,∧- formula φ in m propositional variables a system Σφ of
inequalities for which a vector x ∈ C is feasible iff φ(Y1(x), Y2(x), ..., Ym(x)) = 1.
Since Σφ is a monotone system, the notion of minimal feasible solutions of Σφ

is well defined, and we can consider the corresponding enumeration problem:

(P3) Generate all minimal feasible solutions of Σφ.

1 A function f(x) is quasi-polynomial if f(x) = O(2polylog(x)).
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Note that when φ = Y1 ∧ Y2 ∧ · · · ∧ Ym, then (P3) is the integer variant of
(P1), while for φ = Y1∨Y2∨· · ·∨Ym, problem (P3) is the integer variant of (P2).

Let us further associate to each monotone ∨,∧-formula φ = φ(Y1, . . . , Ym)
a polynomial Pφ ∈ Z[y1, . . . , ym] defined by replacing logical conjunctions by
arithmetic additions, and logical disjunctions by arithmetic multiplications. For
instance, if φ = Y1 ∨ (Y2 ∧ (Y3 ∨ Y4)), then we have Pφ(y1, y2, y3, y4) = y1(y2 +
(y3y4)) = y1y2 + y1y3y4. We call Pφ the evaluation polynomial of φ.

Theorem 1. If the degree of the evaluation polynomial Pφ is bounded, then we
can generate all minimal feasible solutions to system Σφ in incremental quasi-
polynomial time in terms of n and m.

Let us note that if the degree of FΦ is not bounded, then generating minimal
feasible solutions for Σφ is NP-hard already for the Boolean case C = {0, 1}n of
(P2), see [9].

Finally, in a third direction, we extend Theorem 1 to transversal and poly-
matroid inequalities.

Given a subset H ⊆ C and non-negative real weights w : H → R+, we call
the function

fH,w(x) =
∑
{w(a) | a ∈ H, a �≥ x}

a (weighted) transversal function over C. Note that for any given x ∈ C we can
compute the value fH,w(x) in O(n|H|) time, and that for the Boolean case C =
{0, 1}n we can equivalently define fH,w(x) as the total weight of all hyperedges
of the hypergraph H, whose complements intersect the support of x.

An integer-valued monotone function f : C → Z+ is called polymatroid if
f(0, ..., 0) = 0 and f is submodular, i.e., f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y)
holds for all vectors x, y ∈ C, where x ∨ y = (max{xj , yj} | j = 1, .., n) and
x ∧ y = (min{xj , yj} | j = 1, ..., n).

Let us note that transversal functions are both monotone and submodu-
lar, thus they are also polymatroid, whenever they take only integer values. In
what follows we will be dealing with polymatroid functions whose values at any
point x ∈ C can be evaluated in polynomial time. Some applications of mono-
tone systems defined via transversal and polymatroid functions are discussed in
Section 4.

Analogously to the case of linear inequalities, given a system of inequalities

fi(x) ≥ ti, i = 1, ...,m, (2)

where fi(x), are monotone functions over C and ti ∈ R for i = 1, ...,m, and given
a monotone ∨,∧-formula φ in m variables, we can associate to (2) and φ a mono-
tone system Σφ: A vector x ∈ C is called feasible for Σφ if φ(Y1(x), ..., Ym(x))
= 1, where Yi(x) = 1 iff fi(x) ≥ ti, i = 1, ...,m. Let Fφ denote the set of all
minimal feasible solutions to system Σφ.

Theorem 2. If (2) involves transversal inequalities, i.e., if we have fi = fHi,wi

for i = 1, ...,m, and if the degree of the evaluation polynomial Pφ is bounded,
then we can generate Fφ in incremental quasi-polynomial time in terms of n, m
and max1≤i≤m |Hi|.
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Note that for the Boolean case C = {0, 1}n, linear inequalities are transversal
inequalities corresponding to the hypergraphH consisting of the complements of
n singletons {1}, {2}, . . . , {n}. In particular, if the degree of Pφ is not bounded,
then no efficient generation of minimal feasible solutions for Σφ is possible, unless
P=NP.

Theorem 3. If (2) involves polymatroid inequalities, and if the degree of the
evaluation polynomial Pφ is bounded, then we can generate Fφ in incremental
quasi-polynomial time in terms of n, m and max1≤i≤m ti.

Let us remark that the above theorem provides efficient bounds only if
max1≤i≤m ti is bounded by a polynomial or quasi-polynomial expression of n
and m. In fact, generating all minimal feasible solutions to a single polyma-
troid inequality over {0, 1}n is already NP-hard, if the right hand side is not
bounded [8]. Due to this fact, integrality of polymatroid functions is essential in
our analysis.

2 Our Approach and Further Results

Our approach is to utilize a general enumeration method for minimal elements
of a monotone system, the so called joint generation, proposed first in [7,22],
and analyzed at greater detail in [13]. For a subset X ⊆ C let us denote by
I(X ) the set of all maximal vectors not above any vectors of X , i.e., I(X ) =
{maximal y ∈ C | �x ∈ X : x ≤ y}. For instance, if Fφ denotes the family of all
minimal feasible solutions for the system Σφ, as before, then I(Fφ) is the set of
all maximal infeasible solutions.

The method jointly generates F ∪ I(F) by iteratively extending two partial
sets X ⊆ F and Y ⊆ I(F). This is done by solving the so-called dualization
problem: either produce a point in I(X ) \ Y or halt because Y = I(X ) (see
e.g., [19]). In particular, incrementally extending a given subset X ⊆ F requires
solving at most |I(F) ∩ I(X )| dualization problems each of size at most |X | +
|I(F) ∩ I(X )| with n variables. Let us denote by δ(n,M) the complexity of
solving a dualization problem in n variables and of size M = |X | + |Y|. Even
though no polynomial upper bound on δ(n,M) is currently available, it is known
that δ(n,M) = poly(n)Mo(log M), see [9,20].

Note that the joint generation method utilizes the given inequalities in (2)
only to check the feasibility of a given vector x ∈ C, and that any method for
generating F = Fφ that uses only such feasibility tests has to perform at least
|F|+ |I(F)| tests (and in fact has to generate both F and I(F)), see e.g.[21].

The above discussion shows that the quantity qF (k) defined by

qF (k) = max
X⊆F , |X |=k

|I(X ) ∩ I(F)| (3)

is an important parameter intimately related to the generation of the monotone
system F . We shall call it the duality index of the monotone system F . Using
this notion, let us then summarize the above in the following statement.
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Proposition 1. Given a system of monotone inequalities (2), and a monotone
Boolean formula φ, let Σφ denote the monotone system associated to these, and
let Fφ denote the set of all minimal feasible solutions to Σφ (as above). Then, for
an arbitrary subset X ⊆ Fφ, we can find x ∈ Fφ \ X , or recognize that X = Fφ

in time �δ(n, k + �) time, where k = |X | and � = qFφ
(|X |). ��

In particular,F can be generated in incremental quasi-polynomial time when-
ever the duality index qF(k) is bounded by a quasi-polynomial. Hence in order
to derive Theorems 1, 2, and 3 from Proposition 1, it now suffices to bound the
duality index of Fφ. In the rest of the paper we focus on the duality index of
various monotone systems, and in particular on obtaining the duality index of
complex monotone systems from the duality indices of their component systems.

Given a monotone subset A ⊆ C, i.e., for which x ∈ A, y ≥ x imply y ∈ A, let
us denote by minA the set of all minimal vectors of A. Next, if A is an arbitrary
subset of C then A+ = {x ∈ C | x ≥ y for some y ∈ A} denotes the minimum
monotone subset (ideal) of C containing A. Thus, if F is the set of all minimal
feasible solutions of a monotone inequality f(x) ≥ t over C, then F+ is the set
of all feasible solutions for the same inequality.

If A+ and B+ are monotone subsets of C, then their conjunction and disjunc-
tion are defined as A+∧B+ = A+∩B+ and A+∨B+ = A+∩B+. Let us note that
the same operations can naturally be extended to their sets of minimal elements,
A = minA+ and B = minB+, by defining A ∧ B = min{a ∨ b | a ∈ A, b ∈ B}
and A∨B = minA∪B. In particular, if A and B are the minimal feasible solu-
tions of monotone inequalities over C, then A∧B consists of all minimal vectors
satisfying both inequalities, while A∨B consists of all minimal vectors satisfying
at least one of the inequalities. Using these definitions, we can thus talk about
monotone formulae of arbitrary monotone systems.

Our first result shows that the duality index of conjunctions of monotone
systems can effectively be limited in terms of the duality indices of the component
systems.

Theorem 4. Let Fi ⊆ C be monotone systems for i = 1, ...,m, and let φ =
Y1 ∧ Y2 ∧ · · · ∧ Ym, i.e., Fφ = F1 ∧ F2 ∧ · · · ∧ Fm. Then, we have

qFφ
(k) ≤ Pφ(qF1(k), . . . , qFm(k)) =

m∑
i=1

qFi(k).

The above theorem implies that if (2) involves monotone inequalities the
duality indices of which are (quasi)-polynomially bounded, then, so is the duality
index of the entire system, implying a quasi-polynomially efficient generation of
minimal feasible solutions, by Proposition 1.

In fact, an efficient bound on the duality index is known for several types of
monotone inequalities. Let us denote temporarily by A the set of all minimal
feasible solutions to a single monotone inequality f(x) ≥ t. For a monotone
linear function f(x) =

∑n
j=1 ajxj ≥ t, where aj ≥ 0 for j = 1, ..., n, we have by

[9] that
qA(k) ≤ nk. (4)
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If f(x) = fH,w(x) ≥ t is a weighted transversal function, then it was shown in
[14] that

qA(k) ≤ |H|k, (5)

regardless of the weights. Note that both of these bounds are sharp, up to a
constant factor. Finally, if f is a polymatroid function, then it was shown in
[10] that

qA(k) ≤ max{n, k(log t)/c(n,k)}, (6)

where c(n, β) is the unique positive root of the equation 2c(nc/ log β−1) = 1 (note
that the above bound implies that qA ≤ (nk)log t and that c(n, k) ≈ log log k for
large k). The exponent of (6) is asymptotically tight [8].

Corollary 1. If the conjunction of inequalities (2) consists of linear, weighted
transversal and/or polymatroid functions (the latter ones with quasi-polynomially
limited right-hand sides), then all minimal feasible solutions of (2) can be gen-
erated in quasi-polynomial incremental time. ��

Unfortunately, as the following claim shows, no result analogous to Theorem
4 can hold unconditionally for disjunctions of monotone sets.

Theorem 5. For each � ≥ 3 there exist monotone systems A,B ⊆ {0, 1}4�, for
which qA(k) ≤ (2� + 1)k and qB(k) ≤ (2� + 1)k, while qA∨B(|A ∨ B|) = 2|A∨B|.

However, for the special cases of linear, transversal or polymatroid systems
the following result can be regarded as an analogue of Theorem 4.

Theorem 6. Assume that either all functions fi(x), i = 1, ...,m in (2) are
transversal and/or linear, or all of them are polymatroid, and let φ = Y1 ∨ Y2 ∨
· · · ∨ Ym. Then

qFφ
(k) ≤ Pφ(q1(k), . . . , qm(k)) =

m∏
i=1

qi(k),

where Pφ is the evaluation polynomial of φ, and where qi(k) are the upper bounds
on qFi(k) stated in (4), (5), and (6).

We claim next that even though we cannot mix different types of inequal-
ities in Theorem 6, still a result analogous to Theorem 1 can be derived from
Theorems 4 and 6.

Theorem 7. If the system of inequalities (2) consists of either m linear and/or
transversal inequalities or m polymatroid inequalities, and φ is an arbitrary
monotone ∨,∧-formula in m propositional variables, then the inequality

qFφ
(k) ≤ Pφ(q1(k), q2(k), ..., qm(k))

holds, where Pφ is the evaluation polynomial of φ, and where, as in Theorem 6,
the functions qi(k) are the upper bounds on the duality indices of the individual
inequalities stated in (4), (5), and (6).
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Theorems 1, 2 and 3 readily follow from Theorem 7 in view of Proposition 1
and the bounds of (4), (5) and (6).

In the next section we state the main lemmas from which Theorems 6 and 7
can be derived, and which may be of interest on their own. Proofs omitted here,
due to space limitations, can be found in [12]. In the last section we list several
applications of monotone systems defined by linear, transversal and polymatroid
inequalities.

3 Main Lemmas

Aggregating Polymatroid Inequalities

Let fi : C → Z+, be a polymatroid function, ti ∈ Z+ be a given positive integer
threshold, and denote by Fi ⊆ C the set of all minimal feasible solutions to the
polymatroid inequality fi(X) ≥ ti, i = 1, ...,m. Let us further define

(f1 ∧ · · · ∧ fm)(x) =
m∑

i=1

min{fi(x), ti}, and (7)

(f1 ∨ · · · ∨ fm)(x) =
m∏

i=1

ti −
m∏

i=1

(ti −min{fi(x), ti}) (8)

for all x ∈ C.

Lemma 1. Both functions, g = f1 ∧ · · · ∧ fm and h = f1 ∨ · · · ∨ fm are polyma-
troid. Furthermore, the sets F1 ∧ · · · ∧Fm and F1 ∨ · · · ∨Fm respectively consist
of all minimal feasible solutions of the polymatroid inequalities

g(x) ≥
m∑

i=1

ti and h(x) ≥
m∏

i=1

ti.

Lemma 1 implies that any monotone ∨,∧-formula of polymatroid inequalities
can be replaced by an equivalent polymatroid inequality:

Corollary 2. Let φ be a monotone ∨,∧-formula in m variables, fi(x) be a poly-
matroid function, ti ∈ Z+ be non-negative integral threshold, and let Fi denote
the set of all minimal feasible solutions of the polymatroid inequality fi(x) ≥ ti,
for i = 1, ...,m. Then, Fφ = φ(F1,F2, ...,Fm) is the set of all minimal feasible
solutions of the system Σφ, and also of the single polymatroid inequality

(φ(f1, f2, ..., fm)) (x) ≥ Pφ(t1, ..., tm),

where Pφ is the evaluation polynomial of φ.
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Monotone Composition of Transversal Inequalities

Let us associate to a system of nonnegative weights w(i, z), i = 1, ..., n, z =
0, ..., ci a separable function fw : C −→ R+ defined by

fw(x) =
n∑

i=1

xi∑
z=0

w(i, z). (9)

Clearly, the mapping fw is a special, separable transversal function.

Lemma 2. Let fw be a nonnegative separable mapping as in (9), and let t ∈ R+.
Assume further that X ,Y ⊆ C are subsets of vectors for which X �= ∅, (0, ..., 0) �∈
X , and which satisfy the following separation constraints:

(i) fw(x) ≥ t holds for all x ∈ X ;
(ii) fw(y) < t for all y ∈ Y.

Then, there exists a subfamily Y ′ ⊆ Y such that x �≤ y ∨ y′ for all y, y′ ∈ Y ′ and
x ∈ X , and

|Y ′| ≥ |Y|(∑
x∈X ν(x)

) ≥ |Y|
n|X | ,

where ν(x) denotes the number of nonzero entries of x ∈ C.
Corollary 3. Assume that f i

wi is a nonnegative separable mapping as in (9),
and that ti ∈ R+, for i = 1, ...,m. Assume further that X ,Y ⊆ C are nonempty
collections of vectors satisfying the following separation condition:

(i) For all x ∈ X we have f i
wi(x) ≥ ti for at least one of the indices i ∈

{1, ...,m}.
(ii) For all y ∈ Y we have f i

wi(y) < ti for all indices i ∈ {1, ...,m}.
Then, there exists a subset Y ′ ⊆ Y such that x �≤ y ∨ y′ for all x ∈ X and
y, y′ ∈ Y ′, and

|Y ′| ≥ |Y|
(n|X |)m .

Let us remark that the bound in Corollary 3 cannot be improved by more than
a factor of O(m2m), i.e., it is tight whenever m is constant. Let us add that this
bound, and consequently all bounds in our previous theorems (that are driven
from this bound) can be improved by a factor of mm: In our claims the evaluation
polynomial Pφ associated to a Boolean expression φ could be replaced by Qφ ob-
tained from φ by replacing conjunctions by arithmetic addition, and disjunctions
by the arithmetic 3 operation defined by a1 3 a2 3 · · · 3 ar = a1a2 · · · ar/r

r.

4 Applications

Disjunctive Programming. Let A1 ∈ Rr1×n
+ , . . . , Am ∈ Rrm×n

+ be non-negative
real matrices, and b1 ∈ Rr1

+ , . . . , bm ∈ Rrm
+ be positive real vectors. Consider the

following disjunctive normal form (DNF) of linear monotone inequalities [5]:
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m∨
i=1

(Aix ≥ bi), x ∈ Rn
+. (10)

It follows from Theorem 1 that, if m is bounded by a constant then all minimal
integer solutions of (10) can be enumerated in incremental quasi-polynomial
time. In contrast, when m is unbounded but max{r1, . . . , rm} ≤ const, Theorem
1 implies a quasi-polynomial incremental algorithm for enumerating all maximal
infeasible vectors for (10).

Data Mining. Given a database D = {Y1, Y2, ..., Yd}, Yi ⊆ [n] for i = 1, ..., d
(i.e., a multi-hypergraph), and an integer threshold t, a subset X ⊆ [n] is said
to be t-frequent if s(X) = |{i : Yi ⊇ X}| ≥ t and t-infrequent if s(X) < t. It
is easy to see that the function f(X) = d − s(X) is a transversal function for
the hypergraph H = {Y : Y ∈ D}. Let D1, . . . ,Dm be m binary databases,
t1, . . . , tm be real thresholds, and consider the family

F = min{X ⊆ [n] | ∃i ∈ [m] : X is ti-infrequent with respect to Di}.

For instance, each database Di may represent the set of items purchased in each
weekday i = 1, . . . ,m = 7, with F representing the family of minimal collections
of items that lie below a specified purchase threshold in at least one of the
7 days of the week. Clearly, F is the family of minimal true vectors for the
disjunction of transversal inequalities, and thus, for constant m, the elements
of F can be enumerated in incremental quasi-polynomial time by Theorem 2.
The generation of maximal frequent and minimal infrequent sets arises in the
generation of association rules in data mining applications, see e.g. [2,3,21].

Sparse Boxes. Another notion related to data mining applications is that of
sparse boxes. Let S be a set of points in n dimensions, and t ≤ |S| be a given
integer. A maximal t-box is a closed n-dimensional interval which contains at
most t points of S in its interior, and which is maximal with respect to this
property (i.e., cannot be extended in any direction without strictly enclosing
more points of S). Typically, the set of points S represents the set of records
in a quantitative database, and maximal sparse boxes correspond to empty or
nearly empty regions in the data space [4,16,18,24,25]. It is not difficult to see
that the family FS,t of maximal sparse boxes, with respect to a given set of
n-dimensional points S and a given threshold t ∈ Z+, can be represented as the
set of minimal feasible vectors of a transversal inequality over a 2n-dimensional
box C [11]. Given m databases S1, . . . ,Sm, and thresholds t1, . . . , tm, one may be
interested in finding all maximal regions in space which are sparse with respect
to at least one of the databases, i.e. finding the disjunction F =

∨m
i=1 FSi,ti .

Theorem 2 implies that the family F can be generated in quasi-polynomial time
if the number of databases m is constant. In contrast, mining all maximal boxes
that are sparse for all m databases can be done in incremental quasi-polynomial
time regardless of whether m is bounded by a constant or not. Let us add that
only exponential algorithms were previously known in the literature for mining
sparse boxes.
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Matroid Intersections. Given m matroids M1, . . . ,Mm, defined on the common
ground set V by m independence oracles, Lawler, Lenstra and Rinnooy Kan [23]
considered the problem of enumerating all maximal sets X ⊆ V independent in
all the matroids. They gave an exponential-time enumeration algorithm whose
running time is O(|V |m+2) per each generated maximal independent set. Since a
set X ⊆ V is independent in a matroid if and only if rank∗(V \X) ≥ rank∗(V ),
where rank∗(·) is the rank function for the dual matroid, Theorem 3 implies that
the above problem can be solved in incremental quasi-polynomial time regardless
of m. (Specifically, k maximal sets independent in M1, . . . ,Mm can be generated
in Ko(log K) time and poly(K) independence tests, where K = max{k, |V |,m}.)
When m is fixed, Theorem 3 also implies an incremental quasi-polynomial-time
for generating all maximal sets X independent in at least one of the matroids
M1, . . . ,Mm. Our next example deals with graphic matroids.

Reliability. Let R be a finite set of vertices, R1, . . . , Rm ⊆ R be m possibly
intersecting subsets of R, and E1, . . . , En ⊆

(
R
2

)
be a collection of n sets of edges

on R. Given a set X ⊆ [n] and i ∈ [m], define ci(X) to be the number of con-
nected components of the graph (Ri,

⋃
i∈X(Ei ∩

(
Ri

2

)
)). Then for any integral

threshold ti, the inequality fi(X) = |Ri| − ci(X) ≥ ti is polymatroid. In par-
ticular, if ti = |Ri| − 1 and ci([n]) = 1 then the family Fi, of minimal feasible
solutions to this inequality, is the set of all minimal collections of the input sets
of edges E1, . . . , En which interconnect all vertices in Ri. In network reliability
applications (see e.g., [1,15,17,27]), the sets of edges E1, . . . , En correspond to
relays, each controlled by a single switch which may work or fail, and the sets of
vertices R1, . . . , Rm correspond to regions, or sets of nodes in the network, whose
connectivity is to be observed. It may be the case that the connectivity of the
whole network is measured by the connectivity of these regions, e.g. the network
is considered working properly if at least one of the regions Ri is connected, or
more generally if a certain monotone Boolean expression φ on the connectivity
of these regions is satisfied. It follows from Theorem 3 that if the number of
prime implicants of φ is bounded by a constant, then all minimal collections of
relays maintaining the connectivity of the network, as defined by the Boolean
expression φ, can be enumerated in incremental quasi-polynomial time.

Statistics. Let (S, 2S, μ1), . . . , (S, 2S , μm) be m probability spaces defined on
some finite sample space S. Given a set H ⊆ 2S of events, we are interested in
finding all minimal collections X ⊆ H of events the probability of the union of
which exceeds some threshold t, with respect to at least one of the measures
μ1, . . . , μm, i.e. (

Pr
μ1

[
⋃

X∈X
X ] ≥ t

)
∨ · · · ∨

(
Pr
μm

[
⋃

X∈X
X ] ≥ t

)
.

The above condition is an example of the disjunction of transversal functions,
and for constant m, the family of minimal such collections can be enumerated in
quasi-polynomial time. This is also true for arbitrary monotone ∨,∧ -conditions
of bounded ∨-degree.
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On the Parameterized Complexity
of Exact Satisfiability Problems

Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith

Dept. of Computer Science, RWTH Aachen University, Germany

Abstract. For many problems, the investigation of their parameter-
ized complexity provides an interesting and useful point of view. The
most obvious natural parameterization for the maximum satisfiability
problem—the number of satisfiable clauses—makes little sense, because
at least half of the clauses can be satisfied in any formula. We look at
two optimization variants of the exact satisfiability problem, where a
clause is only said to be fulfilled iff exactly one of its literals is set to
true. Interestingly, these variants behave quite differently. In the case of
ResMaxExactSAT, where over-satisfied clauses are entirely forbidden,
we show fixed parameter tractability. On the other hand, if we choose to
ignore over-satisfied clauses, the MaxExactSAT problem is obtained.
Surprisingly, it is W[1]-complete. Still, restricted variants of the problem
turn out to be tractable.

1 Introduction

Satisfiability of boolean formulæ in conjunctive normal form — abbreviated to
SAT — is one of the most preeminent problems in computer science to this day.
In its most common form, it asks for an assignment to a set of boolean variables
x1, . . . , xn that satisfies the formula, which is a conjunction of disjunctive clauses
of literals over x1, . . . , xn. However, there are many important variations, some
of which will be discussed below. All of them are NP-complete just as the original
problem [4,7, 10, 14].

A simple restriction is to bound the length of the clauses by a natural num-
ber q, resulting in a problem called q-SAT. It is well-known that 2-SAT is in P
whereas 3-SAT is NP-complete.

In the exact satisfiability problem — ExactSAT — a clause is only counted
as satisfied if exactly one of its literals is fulfilled. In this case we say that
the clause is exact-satisfied. This variety, often combined with restrictions on the
length of clauses as above, has been investigated by many authors
[1,2,8, 10, 13, 14].

MaxSAT, on the other hand, is the natural generalization of SAT as an
optimization problem. That is, given a formula F , the question is how many
clauses can be satisfied simultaneously. Here, too, restrictions on the length of
clauses have been analyzed in addition to the problem itself [4, 5, 15].

Of course, ExactSAT can be transformed into an optimization problem
as well. There are, however, two natural ways to do this. In the first case, over-
satisfied clauses are ignored, and the derived problem is called MaxExactSAT.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 568–579, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the second case, over-satisfied clauses are forbidden, yielding a problem called
ResMaxExactSAT [9,10]. The first variety turns out to be a generalization of
the well-known problem MaxCut.

In this paper, we analyze both MaxExactSAT and ResMaxExactSAT
in terms of parameterized complexity [3], where the number of clauses that
can be satisfied simultaneously gives the most natural parameter. Note that,
in opposition to MaxSAT, both problems are non-trivial for small values of
this parameter. In MaxSAT, either an arbitrary assignment or its complement
already satisfy at least half of the clauses. Hence, MaxSAT belongs to FPT [11].

There are formulæ with arbitrary many clauses, such that no clause can be
exact-satisfied. Therefore, MaxExactSAT is not trivially solvable for small pa-
rameters. Similarly, we can easily construct an instance for ResMaxExactSAT
such that all assignments are illegal.

The key results achieved in this paper are as follows. MaxExactSAT is
complete for W[1], but in FPT when restricted to clauses of bounded length or
to monotonicity (MonoMaxExactSAT). In contrast, ResMaxExactSAT is
in FPT even on unrestricted clauses.

2 Preliminaries

In parameterized complexity every input instance has an associated natural num-
ber, called the parameter. Often, the parameter is part of the input, otherwise
it is a— usually simple — function of the input. The time complexity of a pa-
rameterized problem is measured as a function in both the input length n and
the parameter k. The idea behind parameterized complexity theory is that hard
problems can be easy in practice if hard instances do not occur. The parameter
measures how hard an instance is; the complexity explodes in terms of the pa-
rameter only. See the influential monograph by Downey and Fellows [3] for an
introduction to parameterized complexity.

Definition 1. L is a parameterized language iff L ⊆ Σ∗ ×N for some alpha-
bet Σ. Let (x, k) ∈ L, then x is called instance and k is called parameter. The
language L is fixed parameter tractable iff there is an algorithm that decides
whether (x, k) ∈ L in O

(
f(k)p(|x|)) for some function f : N → N and a poly-

nomial p.

FPT is the complexity class consisting of all fixed parameter tractable languages.
To prove the intractability of problems, we need a reduction:

Definition 2. Let L ⊆ (Σ∗ ×N),L′ ⊆ (Σ′∗ ×N), be parameterized languages.
A mapping f : L → L′ is an fpt-reduction iff

1. (x, k) ∈ L ⇔ f(x, k) ∈ L′
2. there is a computable function g:N→ N, such that k′ ≤ g(k) for every

(x, k) ∈ L with f(x, k) = (x′, k′)
3. there is a constant c and a computable function f ′, such that f(x, k) can be

computed in time f ′(k)|x|c
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In short, we write L ≤fpt L′ if there is an fpt-reduction from L to L′. Downey
and Fellows used this reduction to establish a class hierarchy for parameterized
languages. Each of the classes in this hierarchy is defined by a key language
which is complete for its class. Results on membership and hardness of other
languages are then shown by fpt-reduction. We obtain the classes

FPT ⊆W[1] ⊆W[2] ⊆ . . . ⊆W[SAT] ⊆W[P].

Note that none of the inclusions is known to be strict. Problems that are
hard for any of the classes above FPT are called intractable as they probably
admit no FPT algorithm.

Some examples for parameterized languages are the well-known Vertex-
Cover, IndependentSet and DominatingSet. The first is known to be in
FPT, while the last is W[2]-complete. Later, we will use IndependentSet,
which is complete for W[1], to prove our hardness results.

We use the following notation for boolean formulæ: Let V be a set of boolean
variables. The negation of a variable x is denoted by x̄. Literals can be variables
or their negations. If l denotes a negated variable x̄, then l̄ denotes the variable x.

Algorithms for finding the exact solution of MaxSAT are usually designed for
the unweighted MaxSAT problem. However, we represent formulæ by multisets
to account for positive integer weights.

Definition 3. A CNF formula is a multiset of clauses. A clause is a multiset of
literals.

We call a formula monotone if each of its variables appears only in positive or only
in negative form. Monotone formulæ are uninteresting for traditional MaxSat,
but become challenging if at most one literal per clause may be satisfied.

Definition 4. An assignment exact-satisfies a clause C iff it sets exactly one
literal in c to true. A clause C is over-satisfied by an assignment iff two or more
of its literals are set to true.

This yields the two problems:

Definition 5.

1. The MaxExactSAT problem is the question whether there is an assignment
that exact-satisfies at least k clauses in a given formula F .

2. The ResMaxExactSAT problem asks for an assignment that exact-satisfies
at least k clauses under the restriction that no clause is over-satisfied.

Let us analyze the following example:

F =
{{y}, {z}, {x, y}, {x, z}, {x, y, z}}

In the case of MaxSAT, we can satisfy every clause of F . An optimal as-
signment for MaxExactSAT satisfies four clauses (x = 0, y = 1, z = 1)
while ResMaxExactSAT only admits an assignment that satisfies three clauses
(x = 1, y = 0, z = 0).
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Another difference between MaxSAT and these new problems is the way
double occurences of variables are handled. The clause C = {x, x, y, z} is equiv-
alent to {x, y, z} in traditional MaxSAT. In ResMaxExactSAT, the clause
C = {x, x, y, z} translates to {y, z} and x = 0, because x = 1 is an invalid
assignment. In MaxExactSAT, however, C is not equivalent to any shorter
clause. All we can say is that if x is true, then C cannot be satisfied.

3 Maximum Exact Satisfiability

The upcoming lemma establishes W[1]-hardness for MaxExactSAT. Observe
that the proof does not employ variables that occur twice or more in a clause.
That is, the result does hold even for the restricted variant where clauses are
sets rather than multisets.

Lemma 1. IndependentSet ≤fpt MaxExactSAT.

Proof. Let G = (V,E) a graph with V = {v1, . . . , vn}. We construct a formula
F = {C1, . . . , Cn} over variables x1, . . . , xn, z such that Ci is satisfied iff vi

belongs to an independent set. Moreover, we ensure that Ci can only be exact-
satisfied by xi = 1 and xj = 0 for all vj ∈ N(vi), where N(vi) denotes the
neighborhood of vi, excluding vi itself. For every node vi, define the clause

Ci := {z, z̄, x̄i} ∪
⋃

vj∈N(vi)

{xj}.

Note that Ci is exact-satisfied if and only if xi = 1 and xj = 0 for every j
with vj ∈ N(vi). Let F := {C1, . . . , Cn}. We now show that G contains an
independent set of size k if and only if it is possible to exact-satisfy k clauses in F :

Let first I = {vi1 , . . . , vik
} ⊆ V be an independent set in G. Set xj = 1 for

every vj ∈ I and xj = 0 otherwise. This assignment exact-satisfies Cj if vj ∈ I
because only xj is set to true in Cj .

Conversely, let X = {xa1 , . . . , xal
} be a set of variables set to true, such

that at least k clauses are exact-satisfied. We obviously have l ≥ k, because
xi = 1 holds for every exact-satisfied Ci. Now set I = {vi | Ci is satisfied}. By
construction, xi = 1 for every vi ∈ I. Then I is an independent set, since if
vi ∈ N(vj) for some vi ∈ I, then at least two literals are satisfied in

Cj = {z, z̄, x̄j , xi} ∪
⋃

vr∈N(vj)
r �=i

{xr}. �

For example, applying the reduction from the proof of Lemma 1 to the graph
depicted in Figure 1 constructs the formula{{z, z̄, x̄1, x2, x3}, {z, z̄, x̄2, x1, x3}, {z, z̄, x̄3, x1, x2, x4}, {z, z̄, x̄4, x3}

}
.

It turns out that MaxExactSAT is hard even for monotone formulæ. How-
ever, our proof uses clauses that are multisets of literals rather than sets of
literals. Later, we will see that this is unavoidable.
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v1

v2

v3 v4

Fig. 1. A graph with an independent set of size two

Lemma 2. IndependentSet ≤fpt MonoMaxExactSAT

Proof. Let G = (V,E) a graph with V = {v1, . . . , vn}. We construct a formula F
over variables x1, . . . , xn such that Ci is satisfied iff vi belongs to an independent
set. Furthermore, we ensure that Ci can only be exact-satisfied by xi. For every
node vi, define the clause

Ci := {xi} ∪
⋃

vj∈N(vi)

{xj , xj}.

As in the proof of Lemma 1, Ci is exact-satisfied if and only if xi = 1 and
xj = 0 for every j �= i with vj ∈ N(vi). Let F := {C1, . . . , Cn}. It is easy to
see that G has an independent set of size k if and only if k clauses in F can be
satisfied simultaneously. �

If, for instance, we apply this reduction to the graph given in Figure 1, we
obtain the formula{{x1, x2, x2, x3, x3}, {x2, x1, x1, x3, x3}, {x3, x1, x1, x2, x2, x4, x4}, {x4, x3, x3}

}
.

Let us now further investigate the complexity of MaxExactSAT. In order
to obtain completeness for W[1], we need to add containment to hardness.

Lemma 3. MaxExactSAT ≤fpt IndependentSet

Proof. The idea of the proof is to construct a graph G for a formula F , such
that the nodes corresponding to literal occurences that satisfy clauses in F form
an independent set in G. The graph is built from subgraphs Si representing
clauses, where each literal occurence in a clause Ci is translated to a node in
the respective subgraph Si. Clauses Ci that are oversatisfied for every possible
assignment can be detected easily and are ignored in the following reduction. A
critical property of the construction is that the parameter does not change at all.

For the moment, assume that the clauses are but sets, rather than multisets.
Given the formula F = {C1, . . . , Cm} with Ci = {li,1, . . . , li,ti}, we construct the
graph G = (V,E) as follows:

V = { vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ti }
E = E1 ∪ E2 ∪ E3 ∪ E4
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with

E1 := { {vi,j , va,b} | i = a } (1)
E2 := { {vi,j , va,b} | li,j = ¯la,b } (2)
E3 := { {vi,j , va,b} | li,j = la,t, t �= b } (3)
E4 := { {vi,j , va,b} | li,s = ¯la,t, s �= j, t �= b} (4)

The edges from E1 make every Si a clique, thus guaranteeing that at most one
node in Si is selected for the independent set, preventing Ci from being over-
satisfied. By E2 it is impossible for l and l̄ to satisfy clauses simultaneously.
Further consistency between variables occuring together in a clause is ensured
by E3 and E4.

In order to prove the claim (F, k) ∈ MaxExactSAT ⇔ (G = (V,E), k) ∈
IndependentSet, let first λ = (λ1, . . . , λn) be an assignment exact-satisfying
the clauses C1, . . . , Ck. Denote by li,ti the unique literal satisfying Ci, and let L
be the set of these literals. We want to show that I = { vi,ti | li,ti ∈ L} is an
independent set of size k. Note that I can be larger than L, as L collects literals,
versus nodes depicting literal occurences in I.

Clearly, |I| = |L| = k. It remains to show that no two nodes vi,ti and vj,tj

from I are neighbors in G:

– Since li,ti and lj,tj are from different clauses, we have {vi,ti , vj,tj} /∈ E1.
– Since li,ti and lj,tj satisfy different clauses, we have li,ti �= ¯lj,tj and thus
{vi,ti , vj,tj} /∈ E2.

– Since li,ti exact-satisfies Ci and lj,tj exact-satisfies Cj , li,ti cannot appear in
Cj and lj,tj cannot appear in Ci. It follows that {vi,ti , vj,tj} /∈ E3.

– Since li,ti exact-satisfiesCi and lj,tj exact-satisfiesCj , there cannot be a third
literal l such that l appears in Ci and l̄ in Cj . It follows that {vi,ti , vj,tj} /∈ E4.

Conversely, let I ⊆ V be an independent set in G, |I| = k. Let L = { li,j |
vi,j ∈ I } be the respective literals and X = {x1, . . . , xk′}, k′ ≤ k the respective
variables.

Due to (1), we have i �= a for any two nodes vi,j and va,b from I. Hence, for
C = {Ci | ∃j. vi,j ∈ I} we get |C| = k. By (2), we furthermore have li,j �= ¯la,b

for any two li,j and la,b from L. It is thus possible to satisfy both li,j and
la,b. According to (3), no clause from C contains more than one literal from L.
Therefore, every clause from C is exact-satisfied by L.

Altogether, the rules (1) through (3) guarantee a sound assignment to the
variables from X that satisfies exactly one literal per clause from C. It remains
to show that there is an assignment to the rest of the variables that does not
interfere with this goal.

For any literal l /∈ L from any clause in C, (4) guarantees that l̄ does not
appear in C. This can easily be seen by contradiction: assume the opposite.
Then, there are clauses Ci and Ca with l ∈ Ci and l̄ ∈ Ca. By construction, Ci

is satisfied by li,ti , and Ca is satisfied by la,ta . In that case, however, we have
{vi,ti , va,ta} ∈ E4, implying that I is not an independent set. This, of course,
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x1 x2

S1

x2

x3
S3 x1

x3

S2

E1 E2 E3 E4

Fig. 2. Construction for F =
{
{x1, x2}, {x̄2, x3 }, {x1, x3}

}
means that we can assign a value to l such that l does not satisfy any of the
clauses from C.

When the clauses are allowed to be multisets, caution must be taken. Consider
for instance the subgraph Si generated from a clause Ci = {x1, x1, x2}. While
the first two nodes in Si may contribute to an independent set, the assignment
x1 = 1 leads to over-satisfaction of Ci. Fortunately, there is an easy way out:
Following the above reduction, for each i, remove the nodes from Si that originate
from literals that occur multiple times in Ci. �

Figure 2 illustrates the construction on a small example. Combining Lemma
1 and Lemma 3 we obtain:

Theorem 1. MaxExactSAT is complete for W[1].

By Lemma 2 the problem remains W[1]-hard for monotone formulæ, if a literal
can occur more than once in a clause. The complexity for monotone formulæ
without repetition of literals will be dealt with in Section 4.

4 Monotone Formulæ

Theorem 2. MonoMaxExactSAT ∈ FPT, if clauses are sets.

Proof. Let F be a monotone formula. If F contains a variable x that occurs in
k or more clauses, we can simply set x to true and all other variables to false
in order to exact-satisfy at least k clauses. Also, if F consists of no more than
k2 + k clauses, there are at most 2k2+k variables, and the problem can be solved
using exhaustive search.

In the following, we thus assume that no variable is used k times, and that
the instance has more than k2 + k clauses. In this case, the algorithm stated
below always finds an assignment exact-satisfying at least k clauses. Hence, any
instance with more than k2 + k clauses is in MonoMaxExactSAT.
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1. Initially, construct the hypergraph G(F ) by introducing a node for each
clause and a hyperedge for each variable, where each such hyperedge contains
exactly the clauses in which the respective variable occurs.

2. Find a maximal matching M greedily. If the union of the hyperedges in M
consists of k or more nodes, assign true to the respective variables. This
yields a solution exact-satisfying at least k clauses, and we are done.

3. Otherwise, we distinguish two cases. In the first case, G(F ) contains a hy-
peredge of size at least three. Then, we assign false to all the variables repre-
sented by the edges in M and remove all the clauses contained therein. As a
consequence, since M is a matching, every remaining hyperedge shrinks by
one. Go to (2).

4. In the second case, G(F ) is but a graph. Then, the nodes not covered by
M form an independent set I. Step (3) was performed at most k − 3 times,
and each time, we erased at most k − 1 clauses. Therefore, less than k2 − k
of the clauses have been removed, and more than 2k remain. On the other
hand, M spans less than k nodes, and thus, we have that |I| > k. Because
the clauses represented by I are disjoint, we can easily find an assignment
that exact-satisfies all of them. �

The above result also affects another problem. While HittingSet is W[2]-
complete, ExactHittingSet is in FPT when the size of the hitting set is the
parameter. If the number of exact-hit sets is chosen instead, we get MaxEx-
actHittingSet: Given a family S = {S1, . . . , Sm} of sets from a universe S,
is there an H ⊆ S such that at least k sets from S share exactly one ele-
ment with H? Now MaxExactHittingSet ∈ FPT, for it is isomorphic to
MonoMaxExactSAT.

5 Clauses of Bounded Length

There is an FPT algorithm for MaxExactSAT if it is restricted to clauses
with length two and no negated literals are allowed [10]. In the following we will
improve this result to arbitrary formulæ with clause length bounded by a fixed q.

Lemma 4. Let F be a formula in q-CNF. If some literal x occurs in at least
k · 2q−1 clauses, an assignment of the variables exists that exact-satisfies at least
k clauses.

Proof. Let X be the set of clauses containing x, and let X− denote the set of
clauses derived from X by removing x from each clause. Observe that k clauses in
X can be exact-satisfied by x iff there is an assignment of the variables that leaves
k clauses from X− unsatisfied. By linearity of expectation, the expected number
of clauses from X− exact-satisfied by a random assignment to the variables is

E ≤
(
1− 1

2q−1

)
· |X−|.
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By the first moment method [12], there is an assignment that satisfies at
most E clauses. Thus, there are at least

|X−| −E ≥
(
1−

(
1− 1

2q−1

))
· |X−| ≥ 1

2q−1
· k · 2q−1 = k

clauses not fulfilled by this assignment. �

We can use this lemma to prove that every formula with more than f(k)
clauses has an assignment that exact-satisfies at least k clauses.

Lemma 5. Let F be a formula in q-CNF with |F | ≥ k2q2q. Then there is an
assignment that exact-satisfies at least k clauses.

Proof. If a literal occurs in at least k2q−1 clauses, k clauses can be exact-satisfied
according to Lemma 4.

Otherwise, choose an arbitrary clause (l1, . . . , lq) to exact-satisfy. Remove
all clauses containing any of l1 through lq. Each literal occurs in no more than
k · 2q−1 clauses. Thus, each variable is in at most k · 2q clauses, so we remove no
more than q · k · 2q of the clauses.

Iterating this process k times yields an assignment that exact-satisfies at least
k clauses. �

Theorem 3. There is a linear problem kernel for MaxExact-q-SAT.

Proof. Consider the following algorithm. If |F | ≥ k2q2q, return true. Otherwise,
exhaustively search for a solution. This takes O(2q2k22q ·|F |) time, which is linear
in |F |. �

6 Restricted Maximum Exact Satisfiability

We will now prove that ResMaxExactSAT is fixed parameter tractable. Our
approach is based on an idea that was originally used in an algorithm for Set-
Packing [6]. We will see in the end that the only critical case is monotone
formulæ. Let us begin with the concept of an approximator.

Definition 6. Let F be a monotone formula. For any variable vi, let Oi de-
note the set of clauses from F satisfied by vi. We say that (M1, . . . ,Ml) is a
(k1, . . . , kl)-approximator for F if there is a set of variables v1, . . . , vl, such that
O1, . . . , Ol are pairwise disjoint and for all 1 ≤ i ≤ l we have that |Oi| = ki and
Mi ⊆ Oi. If Mi = Oi for all 1 ≤ i ≤ l, we call the approximator saturated.

The following lemma shows how the subroutine from Figure 3 is capable of
improving approximators.

Lemma 6. Let F be a monotone formula. If (M1, . . . ,Ml) is an unsaturated
(k1, . . . , kl)-approximator for F , then Improve(F,M1, . . . ,Ml, k1, . . . , kl) adds el-
ements to M1, . . . ,Ml such that (M1, . . . ,Ml) is still a (k1, . . . , kl)-approximator
for F , in at least one nondeterministic branch.
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Parameters: A monotone formula F , sets of clauses M1, . . . ,Ml,
numbers k1, . . . , kl

Pi := Mi for every i = 1, . . . , l;
for i = 1, . . . , l do

if there is a variable x such that
- x is in no clause of Pj for any j �= i
- x is in every clause of Mi

- x occurs in exactly ki clauses
then Pi := clauses(x);
else guess a clause C ∈ P1 ∪ · · · ∪ Pl − (M1 ∪ · · · ∪Ml);

Mi := Mi ∪ {C};
return;

fi
od;
Mi := Pi for every i = 1, . . . , l;
return;

Fig. 3. Subroutine Improve

Proof. There are two ways in which Improve adds elements to the Mi’s, namely
in the lines preceding the two return statements.

In the case that the second return statement is used, it is easy to see that
(P1, . . . , Pl) is a saturated (k1, . . . , kl)-approximator for F .

If the first return statement is used in the i-th iteration of the for-loop, we
get the following situation:

As (M1, . . . ,Ml) is a (k1, . . . , kl)-approximator for F , there exist variables
v1, . . . , vl and respective disjoint sets O1, . . . , Ol of clauses, such that Mi ⊆ Oi.
Observe that vi cannot fulfill the three conditions of the if-statement, because
the subroutine has entered the else-branch. However, vi obviously fulfills the
second and third condition and thus fails the first one. Therefore, there is a
clause C that is in both Oi and some Pj , j �= i, but not in Mi = Pi, because
P1, . . . , Pl are pairwise disjoint.

If the guess is correct, this C is added to Mi. Since we still have Mi ⊆ Oi,
(M1, . . . ,Ml) remains a (k1, . . . , kl)-approximator for F . �

The above subroutine may be profitably used in a nondeterministic algorithm
that finds a feasible set {v1, . . . , vl} of variables such that each vi satisfies exactly
ki many clauses, unless no such set exists. As before, no two of these variables
are allowed to occur in the same clause.

Lemma 7. Algorithm A returns “no” in all nondeterministic branches, if no
solution exists. Otherwise, it returns correct solutions in at least one branch and
“no” in all other branches.
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Input: A monotone formula F , numbers k1, . . . , kl

Output: A set {v1, . . . , vl} of variables that corresponds
to a saturated (k1, . . . , kl)-approximator for F

Mi := ∅ for every i = 1, . . . , l;
while |M1|+ · · ·+ |Ml| < k1 + · · ·+ kl do

Improve(F,M1, . . . ,Ml, k1, . . . , kl)
od;
if there are variables v1, . . . , vl such that vi occurs exactly in the clauses Mi

then return {v1, . . . , vl}
else return no fi

Fig. 4. Algorithm A

Proof. The algorithm always checks the correctness of a solution before returning
it. Therefore, even on computation paths with wrong guesses no incorrect answer
is possible.

By Lemma 6, the fact that (M1, . . . ,Ml) is a (k1, . . . , kl)-approximator for F
obviously constitutes an invariant of the while-loop, as long as all guesses are
correct. �

In order to check whether exactly k clauses can be exact-satisfied, we need to
test all possible partitions of the number k using Algorithm A. Unfortunately,
there are formulæ that allow for satisfying, say, k + 1 clauses, but not exactly k.
The following observation helps to overcome this difficulty in the final theorem.

Proposition 1. Let F be a monotone formula in which no variable occurs in
more than k clauses. If there is an assignment that exact-satisfies at least k
clauses of F , then there is an assignment that exact-satisfies between k and 2k
clauses.

Theorem 4. There is an algorithm that decides ResMaxExactSAT in time
O((2k)4k · poly(|F |)). Hence, ResMaxExactSAT is in FPT.

Proof. If F is not monotone, we can branch on a variable that occurs as a positive
and a negative literal. This satisfies at least one clause in every step. The hard
case is monotone formulæ, which we assume in what follows.

Try Algorithm A on F and all combinations of k1, . . . , kl, such that k ≤
k1 + . . .+ kl ≤ 2k, k ≤ l ≤ 2k, and ki > 0 for all 1 ≤ i ≤ l. The number of these
combinations is bounded by (2k)2k. By Proposition 1, this approach suffices to
find the solution as long as all guesses are correct.

For up to 2k times, Algorithm A guesses a clause from a set of at most 2k
elements. Resolving the nondeterminism thus involves an additional factor of at
most (2k)2k in the running time. �
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Abstract. For a string A = a1 . . . an, a reversal ρ(i, j), 1 ≤ i < j ≤ n,
transforms the string A into a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1

. . . an, that is, the reversal ρ(i, j) reverses the order of symbols in the
substring ai . . . aj of A. In a case of signed strings, where each symbol
is given a sign + or −, the reversal operation also flips the sign of each
symbol in the reversed substring. Given two strings, A and B, signed or
unsigned, sorting by reversals (SBR) is the problem of finding the mini-
mum number of reversals that transform the string A into the string B.

Traditionally, the problem was studied for permutations, that is, for
strings in which every symbol appears exactly once. We consider a gen-
eralization of the problem, k-SBR, and allow each symbol to appear at
most k times in each string, for some k ≥ 1. The main result of the paper
is a simple O(k2)-approximation algorithm running in time O(k ·n). For
instances with 3 < k ≤ O(

√
log n log∗ n), this is the best known approxi-

mation algorithm for k-SBR and, moreover, it is faster than the previous
best approximation algorithm. In particular, for k = O(1) which is of in-
terest for DNA comparisons, we have a linear time O(1)-approximation
algorithm.

Keywords: Approximation algorithms, String comparison, Edit
distance, Sorting by reversals, Minimum common string partition.

1 Introduction

For a string A = a1 . . . an, a reversal ρ(i, j), 1 ≤ i < j ≤ n, transforms the
string A into a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an, that is, the re-
versal ρ(i, j) reverses the order of symbols in the substring ai . . . aj of A. In
a case of signed strings, where each symbol is given a sign + or −, the re-
versal operation also flips the sign of each symbol in the reversed substring.
Given two strings, A and B, signed or unsigned, sorting by reversals (SBR) is
the problem of finding the minimum number of reversals that transform the
string A into the string B; this number, denoted by SBR(A,B), is called the
reversal distance of A and B.
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A necessary and sufficient condition for A and B to have a finite reversal
distance is that each letter appears the same number of times in A and B (for
the signed version, we count together the occurrences of a letter with positive
and negative signs). We call such strings related.

To give an example, A = abcabc and B = bcbaac are related strings and
ρ(3, 6), ρ(1, 4) is a sequence of reversals that turns A to B, therefore SBR(A,B) ≤
2. Similarly, ρ(1, 4), ρ(4, 4) turns A′ = +a− c − b − a + b + c to B′ = +a + b +
c + a + b + c and thus, SBR(A′, B′) ≤ 2.

In this paper we study a variant of the problem, denoted by k-SBR, in which
each symbol is allowed to appear at most k times in each string. Our particular
interest is in the case that k = O(1). The main contribution is a simple O(k2)-
approximation algorithm for k-SBR running in time O(k·n).1 Thus, for k = O(1),
we have a linear time O(1)-approximation algorithm.

1.1 Terminology

For notational simplicity, we allow a few symbols to have slightly different
meanings for signed and unsigned strings. For a string P = a1 . . . an, we de-
note by −P the result of reversal ρ(1, n) of P (e.g., for P = + a + b − d, we
have −P =+ d− b− a). We use two different equivalence relations. Two strings
A= a1a2 . . . an and B = b1b2 . . . bn, signed or unsigned, are identical, A=B, if
ai = bi for each i ∈ [n]. In a case of signed strings, by ai = bi we mean also equal-
ity of the signs. Signed or unsigned strings A and B are congruent, A ∼= B, if
A=B or A=−B.

The length of a string A is denoted by |A|. A partition of a string A is a
sequence P = (P1, P2, . . . , Pm) of strings whose concatenation is equal to A,
that is, P1P2 . . . Pm = A. The strings Pi are called the blocks of P and their
number is the size of the partition. Given a partition P = (P1, P2, . . . , Pm), of
a string A, a pair l, l + 1 is a break of the partition P if l =

∑i
j=1 |Pj | for some

i ∈ [m− 1]. Informally, a break of a partition P of A is a pair of letters that are
consecutive in A but are not consecutive in P .

For two strings A and B, we say that S is a common substring with re-
spect to the relation = or ∼=, respectively, if S is a substring of A and there
exists a substring R of B such that S = R or S ∼= R, respectively. When
not necessary, we will often avoid specifying the relation and will talk only
about a common substring. If S is a common substring of A and B, we use
notations SA and SB to distinguish between the occurrences of S (or −S) in
A and B; if S occurs more than once in A then SA refers to arbitrary but
fixed occurrence of S in A and analogous convention applies for the string
B. Given two partitions A = (A1, . . . , Am) and B = (B1, . . . , Bm′), a common
substring of A and B is a string S such that S is a common substring of Ai

and Bj , for some indices i, j.

1 Tomasz Walen [15] recently described how to implement the algorithm in time O(n)
for k = O(log n).
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1.2 Related Work

String comparison is a fundamental problem in computer science with applica-
tions in text processing, data compression or computational biology. The problem
of sorting by reversals drew a lot of attention in the last years as a useful tool
for DNA comparison [4,12,6,1]. In that application, the letters in the strings
represent different genes and the reversal distance measures the similarity of
two genomic sequences. A common assumption that a genome contains only one
copy of each gene is unwarranted for genomes with multi-gene families such as
the human genome [13]. On the other hand, a weaker assumption that a genome
contains at most k = O(1) copies of each gene is often warranted (cf. [9]). That
is why k-SBR is of interest. In this subsection we will briefly mention the most
relevant known results.

Under the assumption that every symbol appears in each input string exactly
once, we have the well known problem of permutation sorting by reversals. The
problem 1-SBR is solvable in polynomial time for strings with signs [12,1] but
is NP-hard [4] and even MAX-SNP hard [3] for strings without signs; the best
known approximation ratio for the unsigned 1-SBR is 1.375 by an algorithm of
Berman et al. [2]. A recent result of Chen et al. [5] shows that the signed k-SBR is
NP-hard even for k = 2 (the unsigned k-SBR is obviously NP-hard for all k ≥ 2).
There are O(1)-approximation algorithms for signed 2-SBR and 3-SBR [5,7,11].
The best approximation ratio for the general signed SBR is O(log n log∗ n), using
an O(n log∗ n)-time algorithm of Cormode and Muthukrishnan [8].

Instead of bounding the number of duplicates, there is another way to restrict
the general problem of sorting by reversals with duplicates: bound the size of
the alphabet. Unsigned SBR with unary alphabet is trivial; the NP-hardness of
unsigned SBR with binary alphabet was proved by Christie and Irving [6].

Closely related is a minimum common string partition problem (MCSP).
Given a partition P of a string A and a partition Q of a string B, we say
that the pair π = 〈P ,Q〉 is a common partition of A and B with respect to
the relation Rel ∈ {=,∼=}, if there exists a permutation σ on [m] such that for
each i ∈ [m], (Pi, Qσ(i)) ∈ Rel. The minimum common string partition prob-
lem is to find a common partition of A, B with the minimum size, denoted by
MCSP(A,B). The restricted version of MCSP, where each letter occurs at most
k times in each input string, is denoted by k-MCSP.

Similarly as for SBR, there is a signed and an unsigned variant of the problem.
In unsigned MCSP, the input consists of two unsigned strings, and the relation =
is used; in signed MCSP, the input consists of two signed strings and the relation
∼= is used. For unsigned strings, we define yet another variant of the problem,
reversed MCSP (RMCSP), in which the (unsigned) strings are compared by the
relation ∼=.

The signed MCSP problem was introduced by Chen et al. [5] as a tool for
dealing with SBR. They observed that for any two related signed strings A and
B, MCSP(A,B) and SBR(A,B) differ only by a constant multiplicative factor:
given a partition (P1, . . . , Pm) of A, (Q1, . . . , Qm) of B and the permutation σ
on [m] such that Pi

∼= Qσ(i) for each i ∈ [m], it is possible to move the block
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Pσ−1(1)
∼= Q1 to the beginning of A by one reversal and then, if necessary,

to reverse it by one more reversal; similarly it is possible to move the block
Pσ−1(2)

∼= Q2 to its right position by at most two reversals without affecting
the block Q1 at the beginning of the string, etc. On the other hand, a reversal
“breaks” at most two pairs of consecutive letters in the string and thus, from a
sequence of m reversals, we derive a common partition with at most 2m breaks.
Analogous observation applies for related unsigned strings and the problems
RMCSP and SBR.

For k ≥ 2, k-MCSP is NP-hard, and even APX-hard [11]. Due to the close re-
lation between signed SBR and signed MCSP, the known approximation ratios for
signed MCSP are within a constant factor of the approximation ratios for signed
SBR: O(1) approximation ratios for 2-MCSP and 3-MCSP [7,11], O(log n log∗ n)
approximation ratio for the general MCSP [8].

Chrobak et al. [7] analyzed the behavior of a natural greedy heuristic for
MCSP: start with the two strings A and B and iteratively, find the longest com-
mon substring of A and B that does not overlap previously marked substrings,
and mark this substring. They showed that though Greedy is a 3-approximation
algorithm for 2-MCSP, even for 4-MCSP its approximation ratio is Ω(log n). For
general MCSP, both signed and unsigned, the approximation ratio is between
Ω(n0.43) and O(n0.67). It is worth noting that the algorithms described in this
paper are simple modifications of Greedy, yet their approximation ratios for k-
MCSP are better, namely O(k2), in contrast to the Ω(log n) of Greedy for k ≥ 4.

In the edit distance (ED) problem, a set of string operations is given (e.g.,
delete, insert or change a character, substring move or
substring reversal) and the task is to find the minimum number of opera-
tions needed to convert one string to the other. SBR can be also viewed as an edit
distance problem where the only operation is substring reversal and the in-
put strings are related. For any two related strings A and B, MCSP(A,B) differs
by a constant multiplicative factor from the edit distance of A and B with only
substring move operations, and the edit distance using only substring move
operations differs also by a constant multiplicative factor from the edit distance
with operations {insert, delete a character, substring move} [14].

On the other hand, MCSP can be utilized for approximating the the edit
distance even for unrelated strings. To give an example, consider ED with op-
erations {insert, delete a character, substring move}: given strings A and
B, let B − A denote the multiset of letters that have more occurrences in B
than in A (i.e., if x has xA occurrences in A and xB occurrences in B then
there are max{0, xB − xA} copies of x in B − A) and analogously for A − B.
Then |A − B| + |B − A| is a lower bound on the edit distance ED(A,B). Let
A′ denote a concatenation of the string A with all letters from B − A (in
any order), and similarly, let B′ denote a concatenation of B with all let-
ters from A − B; we observe that ED(A′, B′) ≤ 2ED(A,B). Exploiting the
above mentioned relation between ED and MCSP for related strings we obtain
ED(A,B) = Θ(1) · (|A−B|+ |B −A|+ MCSP(A′, B′)).
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For the edit distance problem with operations {insert, delete a character,
substring move}, Cormode and Muthukrishnan [8] describe an O(n log∗ n)-
time O(log n log∗ n)-approximation algorithm which yields, by the relations de-
scribed above, the O(log n log∗ n)-approximation for SBR mentioned earlier in
this subsection.

The edit distance problem with a different set of string operations was stud-
ied by Ergun et al. [10]. For several edit distance problems that allow sub-
string deletion, they describe an O(1) approximation algorithm. This is in
contrast to the above mentioned known approximations of edit distance without
substring deletion where the best approximation ratio is of order Ω(log n
log∗ n).

The rest of the paper is organized as follows. In Section 2.1 we describe how
to modify Greedy to get the O(k2) approximation for (reversed) k-MCSP and
thus, for k-SBR. Section 2.2 explains how to implement the algorithm in time
O(k · n).

2 Algorithms

2.1 Refined Greedy: O(k2)-Approximation

In the previous section, we briefly described Greedy algorithm and we re-
called that its approximation ratio for k-MCSP and k-SBR, for any k ≥ 4, is
Ω(log n). In this section, we show that a simple modification of Greedy, called
Refined Greedy, has an O(k2) approximation ratio for k-MCSP, which implies
also an O(k2) approximation ratio for k-SBR.

A few more terms are needed. A duo is a string of length two. To cut a
duo aiai+1 of a block P = aj . . . ak of a partition of A, for some j ≤ i < k,
means to replace the block P in the partition by two blocks P1 = aj . . . ai and
P2 = ai+1 . . . ak. For a substring S = ai . . . aj of A = a1 . . . an, if i > 1 we say
that ai−1ai is a (left) boundary duo of S, and similarly, if j < n ajaj+1 is a
(right) boundary duo of S.

For unsigned k-MCSP the algorithm is the following:

Algorithm Refined Greedy
Input: two related strings A and B

A← (A), B← (B)
while there are unmarked blocks in A and B do

S← longest common substring of A, B that does not overlap
previously marked blocks

mark SA in A and SB in B
cut the boundary duos of SA in A and the boundary duos of SB in B
cut in unmarked blocks of A and B all occurrences of duos δ ∈ Φ,

where Φ is the set of boundary duos of SA and SB

Output: (A,B)
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To extend the algorithm for signed k-MCSP and for k-RMCSP, apart from
considering common substrings with respect to the other equivalence relation
∼=, the difference is that in the cutting steps, we cut not only all occurrences of
δ ∈ Φ but also all occurrences of −δ.

To give an example, consider an instance of MCSP,

A = abccccafccccddddhefccccebccccgggg ,

B = abccccddddafcccchefccccggggebcccc .

Refined Greedy first marks substring S1 = ccccdddd (we use overline to de-
note marking in this example) and cuts all unmarked occurrences of duos from
Φ = {fc, dh, bc, da}. In the second iteration, Refined Greedy looks for the
longest unmarked substring in partitions A = (ab, ccccaf, ccccdddd, hef, cccceb,
ccccgggg) and B = (ab, ccccdddd, af, cccchef, ccccggggeb, cccc), marks substring
S2 = ccccgggg and cuts duos from Φ = {ge}. In the third iteration, the algorithm
looks for the longest unmarked substring in partitions A = (ab, ccccaf, ccccdddd,
hef, cccceb, ccccgggg) and B = (ab, ccccdddd, af, cccchef, ccccgggg, eb, cccc),
marks substring S3 = cccc and cuts duos from Φ = {ca, ch}. Eventually,
Refined Greedy outputs the common partition

P = 〈(ab, cccc, af, ccccdddd, hef, cccc, eb, ccccgggg),
(ab, ccccdddd, af, cccc, hef, ccccgggg, eb, cccc)〉 .

The optimal common partition has six blocks:

Popt = 〈(abcccc, afcccc, dddd, hefcccc, ebcccc, gggg),
(abcccc, dddd, afcccc, hefcccc, gggg, ebcccc)〉 .

Before analyzing Refined Greedy, let us briefly look on the behavior of
Greedy on the same instance. The longest common substrings of A and B are
ccccdddd and ccccgggg, therefore Greedy starts by matching these substrings
in the first two iterations. We observe that there exists a common partition of
A and B that uses ccccdddd and ccccgggg as blocks:

P ′ = 〈(ab, cccc, af, ccccdddd, hef, cccc, eb, ccccgggg),
(ab, ccccdddd, af, cccc, hef, ccccgggg, eb, cccc)〉 .

Every common partition induces a matching between the letters (positions) of
A and B. We note that the common partition P ′ matches many of the letters
of A and B in the same way as the optimal partition Popt does. However, after
several steps Greedy will find another common partition:

Pgr = 〈(a, bcccc, a, f, ccccdddd, he, fcccc, e, b, ccccgggg),
(a, b, ccccdddd, a, fcccc, he, f, ccccgggg, e, bcccc)〉 .

Intuitively, the problem of Greedy is that a wrong decision in one iteration
can force the use of several additional iterations, and in each of them Greedy
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may do another wrong decision, and so on. In other words, a deviation from the
optimal solution in one iteration encourages deviations in later iterations. In our
instance, after the first two iterations, it is still desirable, for example, to match
the first b from A with the first b from B, as the common partition P ′ does.
However, since bcccc is the longest common substring at this point, Greedy
will decide to use the wrong match between the first b from A and the third
b from B.

To improve the performance of the algorithm, the idea is to prevent it from
propagating “mistakes” from one iteration to later iterations. In our example,
the first mistake was to use the substrings ccccdddd; a consequence of this was
the use of the substrings bcccc, another mistake. Refined Greedy attempts to
suppress this problem by cutting a few additional duos that are related to the
current longest common substring, in each iteration. These breaks will constrain
later iterations and will confine the propagation of mistakes.

Theorem 1. Refined Greedy is a 2k2-approximation algorithm for unsigned
and signed k-MCSP and 2(2k − 1)2-approximation for k-RMCSP.

Proof. The output of the algorithm is clearly a common partition. We only have
to prove the bound on its quality. For simplicity of the presentation, we prove
the claim in detail for the unsigned k-MCSP and then we briefly outline the
necessary modifications for signed k-MCSP and for k-RMCSP.

For technical reasons, it will be convenient to extend the notions of a partition
and a common partition from strings to sequences of strings. A partition of the
sequence of strings A = (A1, . . . , Al) is a sequence of strings A1,1, . . . , A1,k1 , A2,1,
. . . , A2,k2 , . . . , Al,1, . . . , Al,kl

, such that Ai = Ai,1 . . . , Ai,ki for i ∈ [l]. For two
sequences of strings, the common partition is defined analogously as for pairs of
strings.

Observation 2. Let (Q,R) be a common partition of sequences of strings A and
B, and let δ be any duo that appears in Q and R. Let Q′ denote the partition
of A that is obtained from Q by cutting all occurrences of the duo δ, and let R′
denote the partition of B that is obtained from R by cutting all occurrences of
the duo δ. Then, (Q′,R′) is a common partition of A and B.

Proof. Since Q is a permutation of R, every block P from Q that contains δ
appears also in R, and vice versa. Thus, if we cut all occurrences of δ in Q and
R, the resulting new partitions Q′ and R′ will be again permutations of each
other. �

Let π = (P ,Q) be a minimum common partition of A and B, m be its size
and let Δ be the set of all boundary duos of blocks in P and in Q. We are
going to iteratively construct common partitions πi of A and B that will help us
to estimate the size of the common partition found by Refined Greedy. We
define π1 as the common partition derived from π by cutting all occurrences of
all duos in Δ (the fact that π1 is a partition follows from Observation 2). For
k-MCSP instances, the number of blocks increases at most k times. The breaks in
π1 are called initial breaks. Let Si denote the substring that Refined Greedy
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used in iteration i and let Φi be the set of boundary duos of SA
i and SB

i . For
iteration i ≥ 1 of Refined Greedy, we define πi+1 as the common partition
derived from πi by cutting all occurrences of all duos in Φi.

We are going to compare the blocks used by Refined Greedy with the
blocks in πi. For ease of reference, we denote the sets A and B at the beginning
of iteration i by Ai and Bi, and by si the first position of SA

i in A, by ti the
last position of SA

i in A, by s′i the first position of SB
i in B, and by t′i the last

position of SB
i in B.

Observation 3. For every iteration i and for every 0 ≤ l < |Si|: the pair
si + l, si + l + 1 is an initial break of A if and only if the pair s′i + l, s′i + l + 1 is
an initial break of B.

Proof. The observations follow from the definition of π1: if one occurrence of a
duo is cut in π1, then all occurrences of this duo are cut. �

Given a break l, l + 1 of a partition of A, and a substring S = ai . . . aj of A, we
say that the substring S goes over the break l, l + 1 if i ≤ l < j. Observation 3
can be informally stated like this: If the block SA

i goes over one or more initial
breaks, then the block SB

i goes over the same number of initial breaks, and,
moreover, the relative positions of the initial breaks in SA

i and SB
i are the same.

Let A′i ⊆ Ai and B′i ⊆ Bi denote the subsets of unmarked strings of Ai and
Bi, resp., at the beginning of phase i, and let π′i denote the restriction of πi to
A′i and B′i. Observation 3 implies the following important claim.

Observation 4. For every i, π′i is a common partition of A′i and B′i.
Proof. The proof is by induction. For i = 1, nothing is marked, A′1 = {A},
B′1 = {B}, π′1 = π1 and the claim is obvious. For i > 1, Observations 3 and 2
imply that the blocks from πi corresponding to the newly marked block SA

i−1 are
the same as the blocks from πi corresponding to the newly marked block SB

i−1.
Observing that outside SA

i−1 and SB
i−1, cuts of the same duos (i.e., duos from

Φi−1) are used to obtain π′i from π′i−1 and (A′i,B′i) from (A′i−1,B′i−1), the proof
is completed. �

Lemma 1. For every i,

– the block Si = asi . . . ati is an entire block in A′i and B′i, or
– Si goes over an initial break or
– si − 1, si is an initial break or si = 1, and at the same time ti, ti + 1 is an

initial break or ti = n.

Proof. The lemma follows from Observation 4 and from the greedy nature of
Refined Greedy: for every common substring S of A′i and B′i not satisfying
any of the conditions in the lemma, there exists another common longer substring
S′ of A′i and B′i such that S is a proper substring of S′. �

We are ready to finish the proof of Theorem 1. In every iteration, the number
of duos in A that Refined Greedy cuts, is at most 2k. If Refined Greedy
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chooses for S an entire block of A′i, then there are no new cuts introduced in
this iteration. If Refined Greedy chooses for S a string that is not an entire
block of A′i, then, by Lemma 1, S either goes over an initial break or (roughly)
S starts and ends at an initial break. In the former case, we charge all cuts done
by Refined Greedy in this iteration to this initial break; in the later case, we
charge half of the new cuts to each of these two new breaks (in the special case
that si = 1 or ti = n, we charge half of the new cuts to the string A itself). In
this way each cut done by Refined Greedy (except for the 2k cuts charged
to the string A itself) is charged to one initial break, and the total number of
breaks charged to one initial break is not more than 2 ·k. Since there are at most
k · (m − 1) initial breaks, there are at most 2 · k2 · (m − 1) + 2k breaks in the
final partition found by Refined Greedy. The total number of blocks used by
Refined Greedy is at most 2 · k2 · (m− 1) + 2k + 1 ≤ 2 · k2 ·m.

For signed k-MCSP and k-RMCSP we only need to adjust the proof to reflect
the thing that now a substring S from A can be matched with a substring R
from B even if S �= R but S = −R. Thus, in Observation 2 we cut not only
all occurrences of duo δ but also all occurrences of duo −δ. To get the common
partition π1 from π, for each δ ∈ Δ we cut all occurrences of δ as well as all
occurrences of −δ; for signed k-MCSP the number of breaks in π1 increases again
at most k times, for k-RMCSP it increases at most 2k−1 times. In Observation 3,
we distinguish whether SA

i = SB
i or SA

i = −SB
i . In the later case, we count

the relative positions of the initial breaks in SB
i backwards (i.e., the claim is:

si + l, si + l + 1 is an initial break of A if and only if the pair t′i − l − 1, t′i − l
is an initial break of B); the former case is as before. For signed k-MCSP, the
number of duos cut in A in one iteration is at most 2k, for k-RMCSP it is at
most 2(2k − 1). �

Considering the relation between signed MCSP and signed SBR, and between
RMCSP and unsigned SBR, we get the following theorem.

Theorem 5. There exists a polynomial time 4k2-approximation algorithm for
signed k-SBR, and 8(2k − 1)2-approximation algorithm for unsigned k-SBR.

Concerning the running time of Refined Greedy, we just note that a naive
straightforward implementation of the algorithm requires quadratic time in the
worst case (e.g., consider A = abcde . . . xyz and B = zyxw . . . cba).

2.2 Educated Greedy: O(k2)-Approximation in Time O(k · n)

In the previous analysis we never used the fact that S was the longest common
substring; we only used that it was not possible to extend SA and still have a
matching substring in B (proof of Observation 1). Based on this observation,
here we present more efficient implementation of the algorithm. As in the case
of Refined Greedy, we describe Educated Greedy in detail for unsigned
k-MCSP; the necessary modifications for signed k-MCSP and k-RMCSP are the
same as before.
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Algorithm Educated Greedy
Input: two related strings A = a1 . . . an and B = b1 . . . bn

A← (A), B← (B)
i = 1
while i ≤ n do

S← longest common substring of A, B that starts in A on position i
and does not overlap previously marked blocks

mark SA in A and SB in B
cut the boundary duos of SA in A and the boundary duos of SB in B
cut in A and B all unmarked occurrences of duos δ ∈ Φ, where Φ is

the set of boundary duos of SA and SB

i← i + |S|
Output: (A,B)

Theorem 6. There exist an O(k2)-approximation algorithms for unsigned and
signed k-MCSP, k-RMCSP and k-SBR running in time O(k · n).

Proof. The proof of Lemma 1 is the only place in the proof of Theorem 1 that
refers to the choice of the common substring S used by Refined Greedy.
However, as mentioned above, the proof only needs the fact that S cannot be
extended on either side. Thus, Lemma 1 holds also for the choices of Educated
Greedy and the O(k2) approximation ratio follows by the same reasoning as
for Refined Greedy.

Concerning the running time, Educated Greedy goes once through A from
left to right, and in every iteration, there are at most k possibilities (resp., 2k
for k-RMCSP) where to look for the common substring Sj . Educated Greedy
spends at most k · |Sj | (resp., 2k · |Sj |) steps in iteration j and advances by |Sj |
positions to the right in A. Thus, the common partition is computed in time
O(k · n) and the proof is completed. �

3 Conclusion

We presented simple, O(k2)-approximation algorithms for k-MCSP and k-SBR,
running in time O(k · n). For instances with 3 < k ≤ O(

√
logn log∗ n), this is

the best approximation ratio and, moreover, Educated Greedy is faster than
the previous best approximation algorithm.

We conclude with a few challenging open problems. The approximation ratio
of Refined Greedy is between Ω(k) and O(k2); what is the exact value of the
ratio? A related questions are whether there is a (simple) O(k)-approximation
algorithm for k-SBR and what is the best possible approximation ratio for the
general SBR? Is it possible to get below the O(log n log∗ n) upper bound? Is it
NP-hard to approximate better than within Ω(log n)?
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Abstract. In this paper we define a model of randomly generated databases and
show how one can compute the threshold functions for queries expressible in
monotone non-recursive datalog	=. We also show that monotone non-recursive
datalog	= cannot express any property with a sharp threshold. Finally, we show
that non-recursive datalog 	= has a 0− 1 law for a large class of probability func-
tions, defined in the paper.

1 Introduction

In this paper we consider random databases, in which relations are generated based on
some standard probability distributions. Namely, we assume that every tuple belongs to
a relation with an equal probability p, called the tuple probability. Similar probabilistic
models have been intensively studied in the theory of random graphs (see e.g. [2,11]),
but also in the database theory (see e.g. [15,10,4]). We are interested in investigating the
behavior of queries expressible in database query languages on the random databases.
There are several interesting questions that can be asked about such queries, for exam-
ple, calculating the probability of a query to be true as a function of p and the domain
size. One of the most important characteristics of probabilistic behavior of monotone
properties of structures is their threshold functions. The threshold functions can be used
for characterizing asymptotic probabilistic behavior of queries, that is, probabilistic be-
havior when the database is growing. Intuitively, if a database grows faster than the
threshold function, then the probability of the query to be true converges to 1; likewise,
if a database grows slower than the threshold function, then the probability of the query
to be true converges to 0. Although it is known that every monotone property has a
threshold function, the problem of determining threshold functions for particular prop-
erties of random structures is an active research area in combinatorics. In this paper we
show how one can compute the threshold functions for queries expressible in monotone
non-recursive datalog �=. We also introduce a notion of density of queries expressible in
this language and show the exact relationship between densities and threshold functions
of the queries.

Another natural question is the power of databases query languages to express some
phenomena related to randomly generated structures. For example, it is known that
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some monotone properties actually have a sharp threshold (see, e. g.,[8]). Finding in-
teresting properties with a sharp threshold or identifying whether some natural proper-
ties have a sharp threshold are questions intensively studied in combinatorics, and in
particular in the theory of random graphs. We are interested in studying the expressive
power of query languages on random databases with respect to the threshold behavior.
In particular, we show that monotone non-recursive datalog �= cannot express any prop-
erty with a sharp threshold. It is not hard to give an example of a first-order property
having a sharp threshold, which shows that relatively simple extensions of monotone
non-recursive datalog �= can express such properties. However, the exact relation be-
tween query languages and expressibility of properties with a sharp threshold remains
an open question.

The main contributions of this paper are the following.

1. We define a probabilistic model of randomly generated databases.
2. We show how one can compute the threshold functions for queries expressible in

monotone non-recursive datalog �=.
3. We introduce the notion of density of queries expressible in monotone

non-recursive datalog �=, and show the exact relationship between densities and
threshold functions of the queries.

4. We show that monotone non-recursive datalog �= has a 0 − 1 law w.r.t. every prob-
ability function p(n) satisfying the following condition: for every rational q > 0
either p; n−q or p< n−q.

5. We show that monotone non-recursive datalog �= cannot express any property with
a sharp threshold.

For the future research, it would be interesting to consider different probabilistic
models for some big existing and evolving databases such as WEB, and study behavior
of properties expressible by database query languages in such models (see e.g. [13]).

2 Preliminaries

In this paper we study asymptotic properties of finite relational structures with con-
stants. In particular, we are interested in properties expressible by existential formulas
in the language with equality in which negation can only be applied to equalities. In this
section we introduce definitions of structures and the query language datalog�=.

Generally speaking, we are dealing with randomly generated finite structures. For
simplicity, we assume that the structure contains only one relation symbol. Even in
the case of a single relation symbol the proofs are quite involved. We only consider
boolean queries, that is, queries with a yes-no answer. In order to deal with some stan-
dard queries as boolean queries, we introduce constants in the language. For example,
for an input binary relation R, reachability can be formulated as follows: given two
elements (x, y), is there a path from x to y in which arcs are pairs belonging to R?
Normally, such a query would be formulated using a binary output relation T that is the
transitive closure of R. However, since we are restricted to boolean queries, we cannot
use a binary output relation. Instead, we can introduce two constants c1 and c2 and use
T (c1, c2) to represent reachability of c2 from c1.
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Structures. We consider signatures with one relation symbol R and constants. Consider
a finite signature Σ = {R, c1, . . . , cl}, where R is a relation symbol of some arity
r > 0 and each ci is a constant. Denote by N the set of natural numbers and by [n]
the finite set {1, . . . , n}. For every n ≥ l denote by Mn the set of all structures of the
signature Σ with the domain [n] in which the constants c1, . . . cl are interpreted as the
numbers 1, . . . , l respectively. For n < l we let Mn = ∅. Without loss of generality
we can restrict ourselves to structures in ∪n>0Mn. For a structure M we denote the
interpretation of R by RM .

For simplicity of the presentation we require all constants to be interpreted by dis-
tinct elements of the domain. However, our main results remain valid if the interpreta-
tions of constants can coincide.

Properties of Structures. A property of structures is a parametrized family {An}∞n=0 of
structures such that for each n ∈ N the set An consists of structures in Mn. A property
{An}∞n=0 is called monotone if for each n ∈ N and M,M ′ ∈Mn such that RM ⊆ RM ′

and M ∈ An we have M ′ ∈ An. In other words, if M ∈ An, then by adding a tuple to
RM we obtain a structure in An.

For example, if R is binary and we have no constants then each structure is a directed
graph; it is easy to see that the following properties are monotone: to contain a given
graph, to have no isolated vertices, to be a non-planar graph, and connectivity.

Language. Evidently, every formula ϕ of the signature Σ defines a property: we let
M ∈ An if M ∈ Mn and M |= ϕ. We consider the subset of all formulas of Σ
built from formulas R(s̄), s = t and s �= t using only ∨, ∧, and ∃. Denote this set
of formulas by Σ �=1 . For example, if R is ternary and c1 ∈ Σ then ∃x, y(R(x, c1, y) ∧
x �= y ∧ R(x, x, y)) is a formula in Σ �=1 . It is easy to see that all properties definable
by formulas in Σ �=1 are monotone. It is also not hard to argue that Σ �=1 has the same
expressive power as non-recursive datalog �=.

Theorem 1. Every query defined by a formula in Σ �=1 is definable by a non-recursive
datalog �=-program and vice versa.

The proof is standard.
Monotone properties of undirected random graphs have been intensively studied

(see e.g. [2,11]). One of the most important characteristics of a monotone property of
a random graph is to have the threshold function. To define this notion for structures,
we first introduce a probabilistic model of structures, which is similar to the binomial
model of the random graphs.

Random Structures. Let us introduce the probability space (Mn,F , p, μ) on structures,
where F is the set of all subsets of Mn, 0 ≤ p ≤ 1 and the probability function μ is
defined as follows:

μ(M) = pm(1− p)nr−m,

where M ∈ Mn, m is the number of tuples satisfying the relation R in M (remember
that r is the arity of R). This can be viewed as a result of nr independent coin flippings
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with the probability p of success: every tuple is included in RM with the probability
p. We will refer to p as the tuple probability. We denote by Mn,p the random structure
corresponding to this probability distribution, that is a random element of this probabil-
ity space. When we consider asymptotic behavior of properties of structures we assume
that p is a function of n. Let us note that the presence of constants in the language intro-
duces certain peculiarities for the probabilistic analysis. For example, it is well-known
that the first-order logic on random graphs (without constants) has a 0 − 1 law for the
constant distribution, e.g. p(n) = 1/2, (see [7,9]). However, when we consider the first-
order logic with constants then the logic fails to have a 0−1 law (see Section 6 for more
on 0− 1 laws for datalog �=).

Notation. Asymptotics. For functions f, g, we write f(n) = g(n) if f(n) = O(g(n))
and g(n) = O(f(n)), also we write f(n) = Θ(g(n)) if f(n) = g(n), and write
f(n)< g(n) if f(n) = o(g(n)).

Probability. The expected value of a random variable X is denoted by E(X). The
indicator variable of a property A will be denoted as IA.

Thresholds. Let {An}∞n=0 be a monotone property. A function p′(n) is called the
threshold function, or simply threshold, for this property if

lim
n→∞μ(Mn,p ∈ An) =

{
0 if p< p′;
1 if p; p′.

Bollobás and Thomason [3] prove that every monotone property has a threshold. One of
our main results is finding threshold functions for all properties of structures expressible
by formulas in Σ �=1 . Namely, we show that for every formula ϕ ∈ Σ �=1 the threshold
function is either constant or of the form n−qϕ , where qϕ is a non-negative rational
number, and give an algorithm for computing qϕ from a given formula ϕ.

The problem of determining threshold functions for properties of random structures
is an active research area in combinatorics. In particular, the problem of finding thresh-
olds for graph containment has a long history. Starting from the paper [6] where this
problem was solved for a special case of balanced undirected graphs, and culminating
21 years later in [1] where this problem is solved for arbitrary undirected graphs. Let
us note that the corresponding structure containment problem, defined in Section 3, is
expressible in Σ �=1 .

Sharp Thresholds. Some monotone properties of structures can possess a sharp thresh-
old. We call the threshold p′ for a property {An}∞n=0 sharp if for every ε > 0

lim
n→∞μ(Mn,p ∈ An) =

{
0 if p ≤ (1− ε)p′;
1 if p ≥ (1 + ε)p′.

If the threshold for a monotone property is not sharp, then we say that the property has
a coarse threshold. We will show that for every property definable by a formula in Σ �=1
the threshold is coarse. We will use the following reformulation of the notion of sharp
threshold (see [11]). Consider a property {An}∞n=0. For each ε such that 0 < ε < 1
define pε(n) be the tuple probability such that μ(Mn,pε ∈ An) = ε. The property
{An}∞n=0 has a sharp threshold if and only if limn→∞ pε(n)/p1/2(n) = 1 for every ε
such that 0 < ε < 1.
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Outline. The rest of this paper is structured as follows. In Section 3 we introduce and
study the structure containment and the weak structure containment problems. We prove
that every sentence in Σ �=1 is equivalent to a weak structure containment problem. In
Section 4 we show how one can calculate the threshold for any structure containment
problem and show that the threshold is coarse. In Section 5 we prove similar results
for the weak structure containment problems. Finally, in Section 6 we present the main
results of this paper.

3 Structure Containment

In this section we introduce the structure containment and the weak structure contain-
ment properties. We prove that every formula in Σ �=1 is equivalent to a weak structure
containment property.

Structure Containment. Consider an arbitrary but fixed structure M. We say that a
structure M containsM, denoted by M > M, if there is an injective homomorphism
fromM into M . Note that structure containment is language-dependent, since every
homomorphism maps an integer m into itself if cm ∈ Σ. We define the structure con-
tainment property, (also referred to asM-containment property when we want to em-
phasise the structureM), to be the set of all structures that containM. Evidently, for
every structureM the structure containment property is monotone.

Weak Structure Containment. Let S be a finite family of structures. We say that a
structure M weakly contains S, denoted by M >w S, if it contains at least one structure
from S. We define the weak structure containment property, (also referred to as weak
S-containment property when we want to emphasise the family S), to be the set of all
structures that weakly contain S. Evidently, for every finite family S of structures the
weak structure containment property is monotone.

Theorem 2. Given a sentence A of Σ �=1 , one can effectively find a finite family of struc-
tures S such that for every structure M we have M |= A if and only if M >w S.

The proof can be found in the full version of this paper [12].

4 Threshold for the Structure Containment

In this section we show how to compute the threshold function for any structure con-
tainment property and show that every such property has a coarse threshold.

Let us considerM-containment property for an arbitrary but fixed structureM. For
a structure M ∈ Mn, we write M 	 M if M > M andM is not isomorphic to M .
Since we are studying the asymptotic behavior of the properties we can always assume
that n is greater than the number of elements ofM and therefore for every structure M
from Mn we have M >M if and only if M 	M. We denote by� and � the relations
inverse to > and 	, respectively.
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Notation. For a structure M denote by dM the number of elements of the domain of
M and by rM the number of tuples in RM . We say that a tuple of elements of M is
a constant tuple if all its elements are constants (from Σ), and a non-constant tuple
otherwise. Let d̄M denote the number of non-constant elements of M , r̄M denote the
number of non-constant tuples in RM , and r̂M denote the number of constant tuples
in RM .

First we show exponential bounds for the probability of the random structure Mn,p

to containM. In proofs we will use some techniques developed in the theory of random
graphs (see [11]).

Exponential Bounds. Let us note that if RM is the empty relation then all structures
with a sufficiently large domain containM, so the containment problem is trivial. Fur-
thermore if all tuples in RM are constant (i.e. r̂M = rM) then μ(Mn,p 	M) = prM .
In this case, trivially, the threshold function for the containment property is just a con-
stant function and the threshold is coarse. We consider the case when RM has at least
one constant tuple later in Corollary 3.

Now assume that RM is non-empty and contains no constant tuples. Define

ΦM = ΦM(n, p) = min
Q M,rQ>0

nd̄QprQ . (1)

Then the following theorem holds.

Theorem 3. LetM be a structure in the signature Σ such that RM is non-empty and
without constant tuples. Then, for every sufficiently large n and for every sequence
p = p(n) < 1 the following holds:

1− exp {−Θ(ΦM)} ≤ μ(Mn,p 	M) ≤ 1− exp
{
−Θ(ΦM)

1− p

}
. (2)

Proof. Let us rewrite (2) in a more convenient for us form:

exp
{
−Θ(ΦM)

1− p

}
≤ μ(Mn,p �	M) ≤ exp {−Θ(ΦM)} . (3)

We will use the following inequality (4) (see e.g. [11] where this inequality is proved in
a more general setting). We say that a structure M extends a structure M ′ if they have
the same domain and RM ′ ⊆ RM . Consider a family S of structures on the domain
[n] and such that for each structure M ∈ S the relation RM is non-empty. For each
structure M ∈ S, let IM be the indicator variable denoting that the random structure
Mn,p extends M . Let XS =

∑
M∈S IM , so XS denotes the number of structures from

S which are extended by Mn,p. Then the following holds:

exp
{
−E(XS)

1− p

}
≤ μ(XS = 0) ≤ exp

{
− (E(XS))2∑

M′,M′′∈S∧RM′∩RM′′ 	=∅ E(IM′IM′′)

}
. (4)

Now let us consider a structure M such that dM ≤ n. We call an n-copy of M any
structure M ′ with the domain [n] which contains M and has a minimal RM ′ , i.e., after
removing any tuple from RM ′ , M ′ will not contain M . When n is clear from the context
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we say a copy of M instead of an n-copy. It is clear that a structure with the domain [n]
contains M if and only if it contains an n-copy of M . Let XM be the random variable
denoting the number of different n-copies of M in the random structure Mn,p. Let us
calculate E(XM ). There are exactly f(n,M) =

(
n−l
d̄M

)
d̄M !/aut(M) = Θ(nd̄M ) differ-

ent n-copies of M , where aut(M) is the number of automorphisms of M , (remember
that l is the number of constants in the signature). Using the linearity of the expectation
we have

E(XM ) = f(n,M)prM = Θ(nd̄M prM ). (5)

From this it follows that
ΦM = min

Q M,rQ>0
E(XQ). (6)

We will prove the left-hand side of (3) using the left-hand side of (4). To do so we
take a structure H � M such that E(XH) = minQ M,rQ>0 E(XQ) and consider the
family SH of all n-copies of H . Then, it is easy to see that XSH = XH . From (4) using
(6) we have

exp
{
−Θ(ΦM)

1− p

}
≤ exp

{
−E(XH)

1− p

}
≤ μ(XH = 0) = μ(Mn,p �	 H). (7)

It is obvious that if a structure does not contain a copy of H then it does not contain a
copy ofM and hence μ(Mn,p �	 H) ≤ μ(Mn,p �	M). Therefore the left-hand side of
(3) follows from (7).

Let us prove the right-hand side of (3). To this end, we use the right-hand side of (4)
for the family SM of all n-copies ofM. Again we have XSM = XM. Now we estimate
the sum in the denominator of the exponent in (4). Let M ′,M ′′ be structures with the
domain [n], then we can define a new structure M ′ ∩ M ′′ to be a structure with the
domain [n] and the relation RM ′∩M ′′ = RM ′ ∩RM ′′ . For each structure Q �M there
are Θ(nd̄Qn2(d̄M−d̄Q)) = Θ(n2d̄M−d̄Q) pairs (M ′,M ′′) such that M ′,M ′′ ∈ SM and
M ′ ∩M ′′ is isomorphic to an n-copy of Q. So using (6) we have

∑
M ′,M ′′∈SM∧RM′∩RM′′ �=∅

E(IM ′IM ′′ ) =
∑

Q M,rQ>0

n2d̄M−d̄Qp2rM−rQ

= max
Q M,rQ>0

(E(XM))2

E(XQ)
= (E(XM))2

ΦM
. (8)

Direct substitution of (8) into (4) gives us the right-hand side of (3).

LetM be a structure such that RM is non-empty and without constant tuples. Then,
we define the density of the structureM to be

m(M) = max
Q M,rQ>0

rQ/d̄Q.

Corollary 1. LetM be a structure such that RM is non-empty and without constant
tuples. Then the threshold function for theM-containment property is n−1/m(M), i.e.,
the following holds:

lim
n→∞μ(Mn,p 	M) =

{
0, if p< n−1/m(M),

1, if p; n−1/m(M).
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Proof. To prove this corollary it is sufficient to prove that (i) if pn1/m(M) → ∞ then
ΦM → ∞ and (ii) if pn1/m(M) → 0 then ΦM → 0. Assume that pn1/m(M) → ∞.
Then for every structure Q �M with rQ > 0 we have 1/m(M) ≤ d̄Q/rQ and hence

nd̄QprQ = (pnd̄Q/rQ)rQ →∞.

Therefore ΦM = minQ M,rQ>0 n
d̄QprQ →∞, which proves (i).

Now let H be a structure contained inM such that rH/d̄H = m(M). To prove (ii)
notice that

ΦM = min
Q M,rQ>0

nd̄QprQ ≤ nd̄HprH = (pn1/m(M))rH → 0.

Corollary 2. LetM be a structure such that RM is non-empty and without constant
tuples. Then the threshold for theM-containment property is coarse.

Proof. IfM-containment would have a sharp threshold then limn→∞ pε(n)/p1/2(n) =
1 for every ε such that 0 < ε < 1. Let us show that this is not the case. Take an arbitrary
ε such that 0 < ε < 1. Let pε(n) be the tuple probability such that μ(Mn,pε 	M) = ε.
Corollary 1 implies that pε(n)→ 0 and therefore pε(n) is bounded away form 1. Using
this and (2) we obtain that for some constants A > 0 and B > 0,

1− exp {−AΦM} ≤ μ(Mn,pε 	M) = ε ≤ 1− exp {−BΦM} (9)

for all sufficiently large n.
Now consider an ε such that

0 < ε < 1− 2−2−rMA/B. (10)

It is straightforward to check that 0 < ε < 1. Let us show that for this ε we have
pε(n)/p1/2(n) �→ 1. To avoid technicalities with ΦM(pε, n) = minQ M,rQ>0 n

d̄Qp
rQ
ε

we consider a structure W �M on which the minimum is reached infinitely often. So
let {ni|i ∈ N} be an infinite subset of N such that ΦM(pε, ni) = nd̄W

i prW
ε . It is clear

that for our goal it is enough to prove that pε(ni)/p1/2(ni) is bounded away from 1. In
order to prove it we show lower and upper bounds for pε(ni).

From the right-hand side of (9) we have that

ε = μ(Mni,pε 	M) ≤ 1− exp {−B(ΦM)} .
Straightforward calculations yield

ln(1− ε)−1/B ≤ nd̄W

i prW
ε .

Finally, the lower bound is (
ln(1− ε)−1/B

)1/rW

n
d̄W /rW

i

≤ pε(ni). (11)

Obtaining an upper bound for pε(ni) is similar.
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The left-hand side of (9) yields

1− exp {−AΦM} ≤ μ(Mni,pε 	M) = ε.

After straightforward calculations we obtain

nd̄W

i prW
ε ≤ ln(1− ε)−1/A,

so we have an upper bound

pε(ni) ≤
(
ln(1 − ε)−1/A

)1/rW

n
d̄W /rW

i

. (12)

Now from (11),(12) and (10) we have

pε(ni)/p1/2(ni) ≤
(

ln(1− ε)−1/A

ln(1/2)−1/B

)1/rW

=

(
B ln( 1

1−ε)
A ln(2)

)1/rW

≤
⎛⎜⎜⎜⎝

B ln
(

1

1−
(
1−2−2−rM A/B

) )
A ln(2)

⎞⎟⎟⎟⎠
1/rW

= (1/2)rM/rW ≤ 1/2,

therefore pε(ni)/p1/2(ni) is bounded away from 1.

Corollary 3. LetM be a structure such that RM is non-empty and contains at least
one constant tuple. Then the threshold function for theM-containment property is con-
stant and the threshold is coarse.

Proof. Let pε(n) be the tuple probability such that μ(Mn,pε 	 M) = ε. Let us show
that for every 0 < ε < 1 we have limn→∞ pε(n) = ε1/r̂M . From this, the corollary
easily follows.

Let M̂ be a structure with the same domain asM and the relation RM̂ consisting
of all constant tuples of RM; likewise let M̄ be a structure with the same domain as
M and the relation RM̄ consisting of all non-constant tuples of RM. Then we have
RM̂ ∩ RM̄ = ∅ and RM̂ ∪ RM̄ = RM. It is easy to see that Mn,p contains M if
and only if Mn,p contains both M̂ and M̄. Also, since RM̂ and RM̄ are disjoint, the
containment of M̂ is independent from the containment of M̄ and therefore

μ(Mn,p 	M) = μ(Mn,p 	 M̂)μ(Mn,p 	 M̄).

Since all tuples in RM̂ constant, we have μ(Mn,p 	 M̂) = pr̂M , then the formula
above gives

μ(Mn,p 	M) = pr̂Mμ(Mn,p 	 M̄). (13)
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There are two possible cases.

1. The relation RM̄ contains no tuples (that is, all tuples in RM are constant). In
this case pε(n) = ε1/r̂M , so the threshold function is constant and the threshold is
coarse.

2. RM̄ contains at least one tuple. In this case we can apply Theorem 3 in the follow-
ing way. First, from (13) we have

ε = μ(Mn,pε 	M) = pr̂M
ε μ(Mn,pε 	 M̄) ≤ pr̂M

ε .

Therefore
ε1/r̂M ≤ pε(n) (14)

for all sufficiently large n. From the left-hand side of (2) and (13) we have

pr̂M
ε (1− exp {−Θ(ΦM̄)}) ≤ pr̂M

ε μ(Mn,pε 	 M̄) = μ(Mn,pε 	M) = ε. (15)

Since pε(n) is bounded from below we have limn→∞ (1− exp {−Θ(ΦM̄)}) = 1.
Define g(n) = (1− exp {−Θ(ΦM̄)})−1/r̂M . It is clear that limn→∞ g(n) = 1.
From (14) and (15) we have

ε1/r̂M ≤ pε(n) ≤ ε1/r̂Mg(n).

Therefore limn→∞ pε(n) = ε1/r̂M . So the threshold function for theM-contain-
ment property is constant. The threshold for theM-containment is trivially coarse
since for ε �= 1/2 we have limn→∞ pε(n)/p1/2 = (2ε)1/r̂M �= 1.

5 Threshold for the Weak Containment

In this section we study the weak containment property for an arbitrary but fixed finite
family of structures S, show how to calculate the threshold function for this property,
and show that it has a coarse threshold.

It is clear that if there is a structure M ∈ S such that RM is empty then the weak
S-containment property is trivial since all structures with a sufficiently large domain
weakly contain S. Therefore, we assume that for each structure M ∈ S the relation RM

is non-empty. Let S̄ denote the set of all structures M from S such that RM contains
no constant tuples.

Let S̄ �= ∅. Define density of S to be

m(S) = min
M∈S̄

m(M).

Then the following holds.

Corollary 4. Let S be a finite set of structures such that for each M ∈ S the relation
RM is non-empty. Suppose that S̄ �= ∅. Then the threshold function for the weak S-
containment property is n−1/m(S) and the threshold is coarse.

Corollary 5. Let S be a finite set of structures such that for each M ∈ S the relation
RM is non-empty. Suppose that S̄ = ∅. Then the threshold function for the weak S-
containment property is constant and the threshold is coarse.

The proofs of Corollaries 4 and 5 can be found in the full version of this paper [12].
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6 Main Results

We can now put together all the presented results as follows. First we introduce the key
notion of density of a query. Let ϕ be a monotone non-recursive datalog �= query. Then,
by Theorem 1 it is equivalent to a sentence in the language Σ �=1 . By Theorem 2 such
a query is also equivalent to the weak Sϕ-structure containment problem for a finite
family of structures Sϕ. Moreover such a family can be found effectively from ϕ. If
every structure in Sϕ contains a constant tuple (S̄ϕ = ∅) then the threshold function
for the weak S-containment property is constant and the threshold is coarse. Otherwise
we define density of ϕ, denoted m(ϕ), to be the density of Sϕ, (see Section 5 for the
definition of the density for families of structures). From the above it follows that the
density of a query can be calculated effectively. Now we are ready to formulate our
main theorem.

Theorem 4. Given a monotone non-recursive datalog �=-query ϕ one can effectively
find the threshold function for the property defined by this query. This threshold function
is either constant or has the form n−1/m(ϕ), where m(ϕ) is the density of ϕ. The density
of a query is always a positive rational constant which can be effectively calculated from
ϕ. For every monotone non-recursive datalog �=-query the threshold is coarse.

Now we give a simple application of Theorem 4 to 0 − 1 laws for non-recursive
monotone datalog �=. Let us fix a function 0 < p(n) < 1. We say that non-recursive
monotone datalog �= has a 0− 1 law w.r.t. p(n) if for every boolean query ϕ expressible
in it, limn→∞ μ(Mn,p |= ϕ) equals either to 0 or 1.

Theorem 5. Monotone non-recursive datalog �= has a 0− 1 law w.r.t. every probability
function p(n) satisfying the following condition: for every rational q > 0 either p ;
n−q or p< n−q holds.

Proof. Indeed, from Theorem 4 it follows that for every non-recursive monotone
datalog �= query ϕ, the threshold function is either constant or has the form n−q, for a
rational q > 0. Therefore, from the definition of the threshold function follows that for
any such query ϕ, and p(n) as in the statement of the theorem, limn→∞ μ(Mn,p |= ϕ)
is either 0 or 1.

For example the theorem holds for p(n) = n−α where α > 0 is irrational and also
for functions like ln(n)n−t where t > 0.

Let us note that 0 − 1 laws w.r.t. irrational powers of 1/n are proved for the full
first-order logic on random graphs in [16] see also [17]. For general accounts on 0− 1
laws for various logics see [5,14], for some applications of 0 − 1 laws to the database
theory see, e.g., [15].
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Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

{kral, pangrac}@kam.mff.cuni.cz

Abstract. An instance of a constraint satisfaction problem is l-consis-
tent if any l constraints of it can be simultaneously satisfied. For a set Π
of constraint types, ρl(Π) denotes the largest ratio of constraints which
can be satisfied in any l-consistent instance composed by constraints from
the set Π . We study the asymptotic behavior of ρl(Π) for sets Π consist-
ing of Boolean predicates. The value ρ∞(Π) := lim

l→∞
ρl(Π) is determined

for all such sets Π . Moreover, we design a robust deterministic algorithm
(for a fixed set Π of predicates) running in time linear in the size of the
input and 1/ε which finds either an inconsistent set of constraints (of size
bounded by the function of ε) or a truth assignment which satisfies the
fraction of at least ρ∞(Π)−ε of the given constraints. Most of our results
hold for both the unweighted and weighted versions of the problem.

1 Introduction

Constraint satisfaction problems form an important computational model for
problems arising in practice. This is witnessed by an enormous interest in the
computational complexity of various variants of constraint satisfaction prob-
lems [3,5,6,17]. However, some real instances do not require all the constraints
to be satisfied but it is enough to satisfy a large fraction of them. In order to
maximize this fraction, the input can be usually pruned at the beginning by
removing small sets of contradictory constraints in such a way that the input
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In a weighted version of the problem the constraints are assigned weights and
the goal is to maximize the total weight of satisfied constraints. In this paper,
we design a robust linear-time asymptotically optimal algorithm for l-consistent
constraint satisfaction problems with constraints being Boolean predicates.

If Π is a set of predicate types, then ρl(Π) is the fraction of the constraints
which can be satisfied in each l-consistent instance with constraints from Π .
Similarly, ρw

l (Π) denotes this maximum for the weighted version. Let further
ρ∞(Π) = liml→∞ ρl(Π) and ρw∞(Π) = liml→∞ ρw

l (Π). We express ρw∞(Π) for
all finite sets of predicates Π and ρ∞(Π) for all such sets of predicates Π of arities
at least two as the minimum of a certain functional Ψ on a convex hull of a finite
set π(Π) of polynomials derived from Π (Corollary 2). Formal definitions of the
functional Ψ and the set π(Π) are provided in Section 2. Some of our results
also hold for infinite sets Π .

The main algorithmic result is designing, for any fixed set Π of predicates,
a deterministic algorithm which given ε > 0 and a sufficiently locally consistent
instance of the constraint satisfaction problem with total weight w0 finds a truth
assignment which satisfies the constraints whose weight is at least (ρw

∞(Π)−ε)w0.
The running time of the algorithm is linear in the number of constraints and
1/ε. The algorithm is robust in the sense that if it fails to find the desired
truth assignment, then it outputs an inconsistent set of constraints whose size
is bounded by a function of ε. However, it can find a good truth assignment
even if the input instance is not sufficiently locally consistent (in particular, it
does not determine the local consistency). Finally, the presented algorithm is
asymptotically optimal in the sense that the ratio of the weights of satisfied
constraints can be made arbitrarily close to ρw

∞(Π) by choosing a sufficiently
small ε.

1.1 Previous Results and Their Relation to Our Results

Constraint satisfaction problems with Boolean predicates can be traced to the
late 1970’s. Schaefer [14] provided a dichotomy result on the complexity of the
decision problem. But even if the decision problem is efficiently solvable, the
problem to maximize the number of satisfied predicates (if all of them cannot
be satisfied) can still be hard, e.g., H̊astad [7] showed that there is no (2 − ε)-
approximation algorithm for a single-predicate set Π containing P (x1, x2, x3) =
(x1 + x2 + x3) mod 2 unless P = NP . Since ρ∞(Π) = 1/2 in this case [4], the
ratio of our algorithm is the best possible.

Locally consistent constraint satisfaction problems for constraints which are
Boolean predicates were first studied by Trevisan [15] who proved that if Π is the
set of all the predicates of arity k, then ρw∞(Π) = ρ∞(Π) = 21−k. Dvořák et al. [4]
showed that if Π is a set containing a single 1-extendable (see Section 2 for the
definition) predicate P of arity k, then ρw

l (Π) = ρl(Π) = σ(P )/2k for all l ≥ 1
where σ(P ) is the number of possible combinations of arguments which satisfy P .
In particular, ρw

∞(Π) = ρ∞(Π) = σ(P )/2k. In [4], all the values ρw
l (Π) has also

been determined for sets Π consisting of a single Boolean predicate with arity at
most three, e.g., it was shown in [4] that ρw

∞(Π3) = 3/4 where Πk is comprised
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of a single (non-1-extendable) predicate P k(x1, . . . , xk) = x1 ∧ (x2 ∨ · · · ∨ xk).
Our results imply that ρw

∞(Π) = 3/4 for Π = {P k} for all 3 ≤ k ≤ 6. However,
surprisingly, ρw∞(Πk) > 3/4 for all k ≥ 7 as shown in Example 3.

The most studied variant of the problem are locally consistent CNF formulas.
The corresponding set ΠSAT of the predicates is the set of all disjunctions. Sim-
ilarly, Π2−SAT denotes the set {(x1), (x1 ∨ x2)} of the predicates corresponding
to 2-SAT formulas. Locally consistent CNF formulas can be found, e.g., in a re-
cent monograph by Jukna [9]. The exact values of ρw

l (ΠSAT) and ρw
l (Π2−SAT) are

known only for small values of l: clearly, ρw
1 (ΠSAT) = ρw

1 (Π2−SAT) = 1/2. Lieber-
herr and Specker [11,12] showed that ρw

2 (ΠSAT) = ρw
2 (Π2−SAT) =

√
5−1
2 ≈ 0.6180

and ρw
3 (ΠSAT) = ρw

3 (Π2−SAT) = 2/3. Both the proofs were simplified by Yan-
nakakis [18] using a probabilistic argument. The case of 4-locally consistent CNF
formulas surprisingly differs from the previous ones: first, ρw

4 (ΠSAT) ≈ 0.6992
but ρw

4 (Π2−SAT) > 0.6992. Second, the values ρw
l (ΠSAT) for l = 1, 2, 3 coin-

cide with the values defined for a “fractional” version of the problem (which are
known for all l ≥ 1 [10] and are equal to Usiskin’s numbers [16]) but the value
ρw
4 (ΠSAT) differs from the corresponding value 0.6920.

The asymptotic behavior of ρw
l (ΠSAT) was addressed by Huang and Lieber-

herr [8] who proved that ρw∞(ΠSAT) ≤ 3/4. The limit was settled by Trevisan [15]
by showing ρw

∞(ΠSAT) = ρw
∞(Π2−SAT) = 3/4. The last equality can be easily de-

rived from our general expression for ρw
∞(Π) as shown in Examples 1 and 2.

2 Notation

In the paper, we only deal with constraints which are Boolean predicates and
so we prefer to call them predicates to emphasize their kind. For a fixed set Π
of (types of) predicates, we consider sets Σ of predicates with types from Π .
The arguments of the predicates can be both positive and negative literals, but
a single variable cannot be contained in two arguments of the same predicate.
The latter does not decrease generality: if a single variable is allowed to be
contained in several distinct arguments of a single predicate, enhance the set Π
by predicates obtained from the predicates of Π by identifying their arguments.

The goal is to find a truth assignment satisfying the largest fraction ρ(Σ) of
the predicates of Σ. Hence, ρl(Π) = inf ρ(Σ) where the infimum is taken over all
l-consistent sets Σ of predicates of types from Π . In the weighted version, ρ(Σ)
is the ratio between the weights of the predicates which can be simultanously
satisfied and the total weight of the predicates and ρw

l (Π) = inf ρ(Σ) where the
infimum is taken over all l-consistent weighted sets Σ. In the unweighted case,
Σ is a set, not a multiset (otherwise, ρ∞ and ρw∞ would coincide).

A predicate P is 1-extendable if it has the following property: after fixing
one of its arguments, the remaining ones can be chosen so that the predicate
is satisfied. In particular, the 0-ary predicate which is constantly true is 1-
extendable. A restriction of a predicate P is a predicate P ′ obtained from P
by fixing some of its arguments, e.g., P ′(x1, x2) = (x1 ∧ x2) is a restriction of
P (x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (¬x3) obtained by setting x3 = true. A re-
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striction of a k-ary predicate can be described by a vector τ ∈ {0, 1, &}k where
0 and 1 denote arguments fixed to false or true, and & denotes unfixed argu-
ments. Let πP,τ (p) : 〈0, 1〉 → 〈0, 1〉 be equal to the probability that the predicate
P (x1, . . . , xk) is satisfied if xi is set to true randomly and independently with the
probability 1− p, p and 1/2, if τi is 0, 1 and &, respectively. Note that πP,τ (p) is
a polynomial in p of degree at most k. For a set Π of predicates, π(Π) is the set
of all πP,τ where P ∈ Π and the restriction of P described by τ is 1-extendable.

Example 1. Let Π be the set consisting of two predicates P1(x1) = (x1) and
P2(x1, x2) = (x1 ∨ x2). There is a single restriction of the predicate P1 which
is 1-extendable and this restriction corresponds to the vector 1. There are five
restrictions of the predicate P2 which are 1-extendable, those corresponding to
11, 10, 1&, &1 and &&. Hence, the set π(Π) consists of the following four functions:

πP1,1(p) = p πP2,11(p) = 2p− p2 πP2,10(p) = 1− p + p2

πP2,1(p) = πP2,1(p) = (p + 1)/2 πP2,(p) = 3/4.

Let Ψ be the functional which assigns a continuous function f(x) : 〈0, 1〉 →
〈0, 1〉 its maximum for x ∈ 〈0, 1〉. If F is a family of functions f : 〈0, 1〉 → 〈0, 1〉,
then Ψ(F ) is defined to be the infimum Ψ(f) where f ranges over all convex
combinations of the functions of F . The infimum is attained if the set F is a
finite set of polynomials (which is the case of π(Π) for any set Π). As mentioned
in Section 1, one of our results is that the limit ρ∞(Π) = lim

l→∞
ρl(Π) is equal to

Ψ(π(Π)) for any set Π of predicates with arities at least two and ρw∞(Π) is equal
to Ψ(π(Π)) for any set Π of predicates (see Corollary 2 and Examples 2–3).

3 The Algorithm and the Lower Bound

The proof of the next auxiliary technical lemma is omitted due to space limita-
tions:

Lemma 1. Let Π be a set of predicates of arity at most K and let f(p) be
any convex combination of functions contained in π(Π). The derivative of the
function f(p) for p ∈ 〈0, 1〉 takes values from the interval 〈−K,+K〉.

We now establish the main result of this section:

Theorem 1. Fix a set Π of predicates whose arity does not exceed K. There
exists an algorithm which given ε > 0 and a set of weighted predicates Σ of
total weight w0 either finds a truth assignment satisfying predicates of Σ of
weight at least (Ψ(π(Π))−ε)w0 or finds a set of at most 2K�2K/ε�−1 inconsistent
predicates. The algorithm runs in time linear in |Σ| and 1/ε.

Proof. The algorithm consists of three steps:

1. Labeling variables according to the depth of “forcing” their values by the
input predicates (or finding at most 2K�2K/ε�−1 inconsistent predicates).



An Asymptotically Optimal Linear-Time Algorithm 607

2. Finding a probability distribution on truth assignments such that the ex-
pected weight of the satisfied predicates is at least (Ψ(π(Π)) − ε)w0.

3. Construction of a truth assignment which satisfies predicates whose weight
is at least (Ψ(π(Π)) − ε)w0.

The third step is an easy application of a standard linear-time derandomization
technique proposed by Yannakakis [18] formulas nowadays known as the method
of conditional expectations (the reader is referred to [1,2,13] for additional de-
tails). We focus on the first two steps in the rest of the proof.

In the first step, we construct a sequence of 1 + 2K/ε� partial truth as-
signments μ0, . . . , μ�2K/ε� and subsets Σ1, . . . , Σ�2K/ε� of Σ. The partial truth
assignment μ0 is the empty one, i.e., no variable is fixed by μ0. Let i be an integer
between 1 and 2K/ε� and assume that μ0, . . . , μi−1 have been constructed. Let
Σi be the set of the predicates whose restrictions with respect to μi−1 are not
1-extendable. If there is a predicate whose restriction is constantly false, we stop.
Otherwise, the assignment μi−1 is extended to the partial truth assignment μi

by setting the values of the forced variables. The value of a variable x is forced if
there exists a predicate that can be satisfied only if either x is false or x is true.
If the value of a single variable is forced to be both true and false, we also stop.

Let us say few comments on the implementation of this step of the algorithm.
Each variable x is labeled by the smallest i such that μi fixes xi. The variables
whose values are forced by previously fixed variables are stored in a FIFO queue.
When a variable is dequeued, the algorithm checks whether there are some new
variables forced after fixing the value of the dequeued variable. If so, the newly
forced variables are added to the queue. In addition, in order to quickly find
inconsistent sets of clauses, we store for each variable which of the predicates
forced its value. Such predicate is also included to the set Σi. Note that the
labels of the variables correspond to “depths” of derivations forcing their values
and each predicate is included to at most K sets Σ1, . . . , Σ�2K/ε�.

If we stop in the first step because we find an unsatisfied predicate or a
variable forced to two different values, we easily find an inconsistent set of at
most 2(K�2K/ε�−1+1) predicates: if an unsatisfied predicate is found, let A be the
set consisting of this predicate, all the (at most K) predicates forcing the values
of the variables contained in its arguments, all the (at most K(K−1)) predicates
forcing the values of the variables contained in the “first-level” predicates, etc.
Since there are at most 2K/ε� levels, the size of A does not exceed:

1 + K + K(K − 1) + · · ·+ K(K − 1)�2K/ε�−2 ≤ K�2K/ε�−1 + 1.

If we stop because there is a variable which is forced to two different values, we
include to the set A the two predicates which force it to have opposite values, all
the (at most 2(K − 1)) predicates forcing the values of the variables contained
in their arguments, etc. In this case, the size of A is bounded by:

2 + 2(K − 1) + 2(K − 1)2 + · · ·+ 2(K − 1)�2K/ε�−2 ≤ 2K�2K/ε�−1.

In either of the cases, the number of the predicates contained in A is at most
2K�2K/ε�−1 and the set A can be constructed in time linear in |A|K ≤ |Σ|K.
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If for each variable x, a list of predicates that contain x is formed at the
beginning of the computation (which can be simultaneously done for all the
variables in linear time), the entire first step of the algorithm can be performed
in time O(|Σ|K) = O(|Σ|) including the construction of an inconsistent set.

We now focus on the second step. Since each predicate of Σ is contained in at
most K sets Σ1, . . . , Σ�2K/ε�, the total weight of all the predicates contained in
the sets Σ1, . . . , Σ�2K/ε� (counting multiplicities) is at most Kw0. By an averag-
ing argument, there exists 1 ≤ i ≤ 2K/ε� for which the weight of the predicates
of Σi is at most εw0/2. Let w′0 be the total weight of the predicates contained
in Σ \Σi. Note that w′0 ≥ (1− ε/2)w0.

Let f(p) be the expected weight of the satisfied predicates of Σ \Σi divided
by w′0 where each variable fixed by μi−1 gets the value assigned by μi−1 with the
probability p and the remaining variables are set to be true with the probability
1/2 (all the choices are mutually independent). The coefficients of the polynomial
f(p) (of degree at most K) can be computed in time linear in |Σ|. Since the
restriction of each predicate of Σ \ Σi with respect to μi−1 is 1-extendable, the
function f(p) is a convex combination of functions from π(Π). In particular, the
absolute value of its derivative does not exceed K by Lemma 1.

Evaluate f(p) for the following values of p: 0, ε
K , 2ε

K , . . . ,
⌊

K
ε

⌋
ε
K , 1. The largest

of the computed values differs from the maximum of f(p) for p ∈ 〈0, 1〉 by at
most ε/2 because the absolute value of the derivative of f is at most K. Since
for each of the $K/ε%+ 2 values of p, the function f(p) can be evaluated in time
O(K), the algorithm needs time linear in O(1/ε) to determine p0.

Consider the probability distribution on the values of the variables for p = p0.
The expected weight of the satisfied clauses is clearly at least f(p0)w′0:

f(p0)w′0 ≥
(

max
p∈〈0,1〉

f(p)− ε/2
)

(1− ε/2)w0 ≥

(Ψ(π(Π)) − ε/2)(1− ε/2)w0 ≥ (Ψ(π(Π)) − ε)w0.

This finishes the second step of the algorithm. Note that the algorithm provides
no estimate of Ψ(π(Π)).

An immediate corollary of Theorem 1 is the following:

Corollary 1. Let Π be a set of Boolean predicates. For each ε > 0, there exists
an integer l ≥ 1 such that

ρl(Π) ≥ ρw
l (Π) ≥ Ψ(π(Π)) − ε.

4 The Upper Bound

We first introduce some notation. For a set Σ of predicates and a partial truth
assignemnt μ, let Σ′ be the set of restrictions of the predicates of Σ with respect
to μ. Let G(Σ′) be the multigraph whose vertices are predicates of Σ′ and the
number of edges between two predicates P1 and P2 of Σ′ is equal to the number
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of variables which appear in arguments of both P1 and P2 (regardless whether
they appear as positive or negative literals). The predicates with all arguments
fixed by μ are isolated vertices. A semicycle of length l of Σ with respect to μ
is a set Γ of l predicates such that the the predicates form a cycle of length l
in G(Σ′) and each edge of the cycle correspond to a different variable. The next
lemma relates non-existence of short semicycles and the local consistency of Σ:

Lemma 2. Let Σ be a set of predicates, μ a partial truth assignment, Σ′ the
restrictions of the predicates of Σ with respect to μ and l ≥ 2 an integer. If each
predicate of Σ′ is 1-extendable and Σ has no semicycle of length at most l with
respect to μ, then Σ is l-consistent.

Proof. We prove by induction on i that any i predicates of Σ′ can be simul-
taneously satisfied. This implies the statement of the lemma because a truth
assignment for Σ′ can be viewed as an extension of μ.

The claim trivially holds for i = 1. Assume that i > 1 and let P1, . . . , Pi be
i predicates of Σ. Since Σ′ contains no semicycle of length at most l, there is
a predicate that shares at most a single variable with the remaining ones. We
assume without loss of generality that Pi is such a predicate. Let y1, . . . , yn be
the variables contained in the first i − 1 predicates which are not set by μ. By
the induction, there is a truth assignment for y1, . . . , yn which satisfies all the
predicates P1, . . . , Pi−1. Since Pi has at most one variable in common with the
predicates P1, . . . , Pi−1, the truth assignment for y1, . . . , yn can be extended to
a truth assignment which satisfies all the predicates P1, . . . , Pi (note that the
restriction Pi with respect to μ is 1-extendable)..

In the proof of Theorem 2, Markov’s inequality and Chernoff’s inequality are
used to bound the probability of large deviations from the expected value:

Proposition 1. Let X be a non-negative random variable with the expected
value E. The following holds for every α ≥ 1:

Prob(X ≥ α) ≤ E

α
.

Proposition 2. Let X be a random variable equal to the sum of N zero-one
independent random variables such that each of them is equal to 1 with the prob-
ability p. Then, the following holds for every 0 < δ ≤ 1:

Prob(X ≥ (1 + δ)pN) ≤ e−
δ2pN

3 and Prob(X ≤ (1− δ)pN) ≤ e−
δ2pN

2 .

We are now ready to prove our upper bounds on ρw
∞(Π) and ρ∞(Π):

Theorem 2. Let Π be a set of Boolean predicates. For any integer l ≥ 1 and
any real ε > 0, there exists an l-consistent set Σ0 of weighted predicates whose
types are from the set Π such that:

ρw(Σ0) ≤ Ψ(π(Π)) + ε.

Moreover, if the arity of each predicate Π is at least two, then there exists such
a set Σ0 of unweighted predicates.
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Proof. We can assume that ε < 1 is the inverse of a power of two. Let f1, . . . , fK

be all the different functions contained in π(Π) and let
∑K

i=1 αifi be their convex
combination with Ψ(

∑K
i=1 αifi) = Ψ(π(Π)). Let further P i be a predicate of Π

whose restriction with respect to a vector τ i is 1-extendable and πP i,τ i = fi.
Since fi are distinct, there are no two indices i �= i′ such that P i = P i′ and
τ i = τ i′ . Finally, let K0 be the maximum arity of a predicate of Π .

We consider a random set Σ of predicates whose arguments contain variables
x1, . . . , xn and y1, . . . , yn where n is a sufficiently large power of two which will
be fixed later in the proof. Fix i ∈ {1, . . . ,K} and let k be the arity of P i and
k′ the number of stars contained in τ i. At this point, we abandon the condition
that each variable can appear in at most one of the arguments of a predicate.
Later, we prune Σ to obey this constraint. If k > 1, each of the nk2k′

predicates
P i whose j-th argument, 1 ≤ j ≤ k, is a positive literal containing one of the
variables x1, . . . , xn if τ i

j = 1, a negative literal containing one of the variables
x1, . . . , xn if τ i

j = 0 and a positive or negative literal containing one of the
variables y1, . . . , yn if τ i

j = &, is included to Σ randomly and independently with
the probability αi2−k′

n−(k−1)+1/2l. The weights of the predicates are set to one.
If k = 1, each predicate P i whose only argument is a positive literal contain-

ing one of the variables x1, . . . , xn if τ i
1 = 1, a negative literal containing one of

the variables x1, . . . , xn if τ i
1 = 0 and a positive or negative literal containing one

of the variables y1, . . . , yn if τ i
1 = &, is included to Σ with the weight αi2−k′

n1/2l.
Note that if the arity of each predicate of Π is at least two, the obtained system
Σ consists of unweighted predicates.

Let Σi be the predicates of Σ corresponding to P i and τ i. We prove the
following three statements (under the assumption that n is sufficiently large):

1. The total weight of the predicates of Σi is at least αi(1− ε
8 )n1+1/2l with the

probability greater than 1− 1/4K.
2. With the probability greater than 1 − 1/4K, each truth assignment which

assigns true to exactly n′ of the variables x1, . . . , xn satisfies the predicates
of Σi whose total weight is at most αi(fi(n′/n) + ε

4 )n1+1/2l.
3. The total weight of the predicates whose arguments do not contain different

variables is at most αi
ε
8n

1+1/2l with the probability greater than 1− 1/4K.

If the arity k of P i is one or αi = 0, then all the three statements hold with the
probability one. In the rest, we consider the case that the arity of P i is at least
two, i.e., k ≥ 2, and αi > 0.

The probability that the total weight of the predicates of Σi is smaller than
αi(1− ε

8 )n1+1/2l is bounded by Proposition 2 from above by the following:

e−
(ε/8)2(αi2

−k′
n−(k−1)+1/2l)(nk2k′

)
2 = e−

ε2αin1+1/2l

128

Since ε, αi, l and K do not depend on n, the probability that the total weight
of the predicates of Σi exceeds αi(1 − ε

8 )n1+1/2l is smaller than 1/4K if n is
sufficiently large.
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Let μ be any of the 22n truth assignments for x1, . . . , xn and y1, . . . , yn; let n′

be the number of variables x1, . . . , xn which are set to be true by μ. A predicate
is good if it is satisfied by μ. There are exactly fi(n′/n)nk2k′

good predicates (i
is still fixed). If fi(n′/n) ≤ ε

8 , then mark additional predicates corresponding to
P i and τ i as good so that the total number of good predicates is ε

8n
k2k′

(note
that since ε is the inverse of a power of two, this expression is an integer if n is a
sufficiently large).. Hence, the expected number of good predicates included to
Σi is exactly max{fi(n′/n), ε/8}nk2k′ · αin

−(k−1)+1/2l2−k′
. Using the fact that

fi(n′/n) ≤ 1 and Proposition 2, we infer the following:

Prob(μ satisfies more than αi(fi(n′/n) +
ε

4
)n1+1/2l predicates of Σi) ≤

Prob(Σi contains more than αi(fi(n′/n) +
ε

4
)n1+1/2l good predicates) ≤

Prob(Σicontains > (1 + ε/8)αi max{fi(n′/n), ε/8}n1+1/2lgood predicates) ≤

e−
ε2αi max{fi(n

′/n),ε/8}n1+1/2l

192 ≤ e−
ε3αin1+1/2l

1536

Since there are 22n possible truth assignments μ, the probability that there
exists one which satisfies more than αi(fi(n′/n) + ε

4 )n1+1/2l clauses of Σi is at

most 22n · e− ε3αin1+1/2l

1536 . Since ε, αi and K are fixed, this probability is smaller
than 1/4K if n is sufficiently large.

It remains to establish our third claim on Σi. At most
(
k
2

)
nk−12k′

out of all
the nk2k′

predicates which can be included to Σi contain one variable in several
arguments. Therefore, the expected number of such predicates contained in Σi

is at most
(
k
2

)
nk−12k′

αi2−k′
n−(k−1)+1/2l = αi

(
k
2

)
n1/2l. By Markov’s inequality

(Proposition 1), the probability that the number of such predicates in Σi exceeds
αi

ε
8n

1+1/2l is at most the following fraction:

αi

(
k
2

)
n1/2l

αi
ε
8n

1+1/2l
=
(
k

2

)
8
εn

.

Since ε, k and K are independent of n, the probability of this event is smaller
than 1/4K if n is sufficiently large.

We conclude that with the probability greater than 1/4 the following three
statements hold for the set Σ and a sufficiently large n (recall that

∑K
i=1 αi = 1):

1. The total weight of the predicates of Σ is at least (1− ε
8 )n1+1/2l.

2. Any truth assignment which assigns true to exactly n′ of the variables
x1, . . . , xn satisfies the predicates of Σ whose total weight does not exceed
(
∑K

i=1 αifi(n′/n) + ε
4 )n1+1/2l.

3. The total weight of the predicates whose arguments do not contain different
variables is at most ε

8n
1+1/2l.

We now estimate the number of semicycles of length at most l in Σ with
respect to the partial truth assignment μ0 which sets all the variables x1, . . . , xn
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to be true. Note that all the restrictions of the predicates contained in Σ with
respect to μ0 are 1-extendable. Consider a semicycle corresponding to predicates
P ′1, . . . , P ′l′ , 2 ≤ l′ ≤ l, described by τ ′1, . . . , τ ′l′ . Let ki be the arity of P ′i and k′i the
number of stars in τ ′i . The number of all semicycles corresponding to the restric-
tions of P ′1, . . . , P

′
l′ determined by τ ′1, . . . , τ

′
l′ is at most

∏l′

i=1 n
ki−k′

ink′
i−12k′

ik′i−1

(the indices are taken modulo l′, i.e., k′0 = k′l′). The probability of including
any such particular sequence to Σ is

∏l′

i=1 α
′
in
−(ki−1)+1/2l2−k′

i where α′i is the
coefficient αi corresponding to P ′i and τ ′i . Therefore, the expected number of
semicycles in Σ corresponding to the restrictions of P ′1, . . . , P ′l′ determined by
τ ′1, . . . , τ

′
l′ is at most

∏l′

i=1 k
′
in

1/2l ≤ K l′
0 n

1/2 (recall that 0 ≤ α′i ≤ 1 for all
1 ≤ i ≤ l′ and K0 is the maximum arity).

Since there are at most K l′ ways how to choose P ′1, . . . , P
′
l′ and 3K0l′ possible

choices of the vectors τ ′1, . . . , τ
′
l′ , the expected number of semicycles of Σ of

length l′ does not exceed (KK03K0)l′n1/2. By Proposition 1, the probability
that Σ contains more than ε

8ln
1+1/2l semicycles of length at most l is at most:

l(KK03K0)ln1/2

ε
8ln

1+1/2l
≤ 8l2(KK03K0)l

εn1/2

Since the numbers l, K, K0 and ε do not depend on n, this probability is smaller
than 1/4 if n is sufficiently large. Therefore with positive probability, the set Σ
has the properties 1–3 stated above and the number of its semicycles of length
at most l with respect to μ0 is at most ε

8ln
1+1/2l. In particular, there exists a

set Σ′ with these properties. Fix such a set Σ′ for the rest of the proof.
Remove from Σ′ the predicates contained in semicycles of length at most l

with respect to μ0 and the predicates which contain the same variable in several
arguments. Let Σ0 be the resulting set. Note that there are at most at most
l · ε

8ln
1+1/2l = ε

8n
1+1/2l predicates contained in semicycles of length at most l.

Since each of the predicates of Σ′ which is contained in a semicycle must contain
one of the variables y1, . . . , yn, its arity is at least two. Consequently, its weight
is equal to one. Hence, the total weight of the predicates removed from Σ′ is at
most ε

8n
1+1/2l + ε

8n
1+1/2l = ε

4n
1+1/2l and the total weight of the predicates of

Σ0 is at least (1 − 3ε
8 )n1+1/2l. Clearly, the total weight of the predicates of Σ0

which can be simultaneously satisfied by a truth assignment is at most the total
weight of such predicates of Σ′. We conclude that the following holds for each
truth assignment which sets n′ (0 ≤ n′ ≤ n) of the variables x1, . . . , xn to true:

ρw(Σ0) ≤
(
∑K

i=1 αifi(n′/n) + ε
4 )n1+1/2l

(1− 3ε
8 )n1+1/2l

≤ Ψ(π(Π)) + ε
4

1− 3ε
8

≤

Ψ(π(Π))
1 + ε

4

1− 3ε
8

≤ Ψ(π(Π))(1 + ε) ≤ Ψ(π(Π)) + ε

Since Σ0 contains no semicycles of length at most l with respect to μ0 and
all the restrictions of the predicates of Σ0 with respect to μ0 are 1-extendable,
the set Σ0 is l-consistent by Lemma 2. Consequently, ρw

l (Π) ≤ Ψ(π(Π)) + ε.
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Moreover, if the arity of each predicate of Π is at least two, the weights of all
the predicates of Σ are one and ρl(Π) ≤ Ψ(π(Π)) + ε.

We immediately infer from Corollary 1 and Theorem 2 the following:

Corollary 2. Let Π be a finite set of predicates. The following holds:

ρw
∞(Π) = Ψ(π(Π)).

Moreover, if the arity of each predicate of Π is at least two, then it holds:

ρ∞(Π) = Ψ(π(Π)).

As an application, we compute the values ρw∞(Π) for several sets Π :

Example 2. Let Π be the set of predicates from Example 1. Since πP2,(p) equals
to 3/4 for all 0 ≤ p ≤ 1, we infer Ψ(π(Π)) ≤ Ψ(πP2,) = 3/4. On the other
hand, the value of each of πP1,1, πP2,11, πP2,10, πP2,1 and πP2, for p = 3/4 is
at least 3/4. Thus, the value of any convex combination of them for p = 3/4 is
also at least 3/4 and Ψ(π(Π)) ≥ 3/4. Hence, ρw

∞(Π) = 3/4.

Example 3. Let Πk be the set containing a single predicate P k(x1, . . . , xk) =
x1 ∧ (x2 ∨ · · · ∨ xk) for an integer k ≥ 7. Consider the vector τ = 10 · · ·0 & &.
Clearly, the restriction of P k determined by τ is 1-extendable. It is easy to show
that the maximum of the function πP k,τ is attained for p0 = k−3

√
4

k−2 and it is
strictly larger than 3/4. Moreover, the value πP k,τ (p0) is smaller or equal to the
value πP k,τ ′(p0) for any τ ′ corresponding to a 1-extendable restriction of P . We
infer that ρw

∞(Πk) = Ψ(π(Πk)) ≥ Ψ(πP k,τ ) > 3/4.

5 Conclusion

We settled almost completely the case of finite sets Π of predicates: it only
remains open to determine ρ∞(Π) for sets Π containing a predicate of arity
one. The case of infinite sets Π seems to be also interesting, but rather from
the theoretical point of view than the algorithmic one: in most cases, it might
be difficult to describe the input if the set Π is not “nice”. For an infinite set
Π , one can also define the set π(Π) and then Ψ(π(Π)) as the infimum of Ψ
taken over all convex combinations of finite number of functions from π(Π).
It is not hard to verify that the proof of Theorem 2 translates to this setting.
In particular, ρw∞(Π) ≥ Ψ(π(Π)) for every infinite set Π . However, the proof
of Theorem 1 cannot be adopted since the arity of the predicates of Π is not
bounded. We suspect that the equality ρw

∞(Π) = Ψ(π(Π)) does not hold for all
(infinite) sets Π ..
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Greedy Approximation via Duality for Packing,
Combinatorial Auctions and Routing

Piotr Krysta
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Baroper Str. 301, 44221 Dortmund, Germany
piotr.krysta@cs.uni-dortmund.de

Abstract. We study simple greedy approximation algorithms for general class of
integer packing problems. We provide a novel analysis based on the duality theory
of linear programming. This enables to significantly improve on the approxima-
tion ratios of these greedy methods, and gives a unified analysis of greedy for
many packing problems. We show matching lower bounds on the ratios of such
greedy methods. Applications to some specific problems, including mechanism
design for combinatorial auctions, are also shown.

1 Introduction

Combinatorial auctions (CAs) is the canonical problem motivated by applications in
electronic commerce and game theoretical treatment of the Internet. A seminal paper
of Lehmann et al. [24] identified a class of greedy approximation algorithms for the set
packing problem as having certain monotonicity properties. These properties proved
crucial in obtaining approximate non-VCG mechanisms for truthful CAs. This is one
of our main motivations to study greedy algorithms.

Greedy algorithms for combinatorial optimization problems are very simple and ef-
ficient. However, their performance analysis can be difficult, and there are no general,
unified tools known. We study simple greedy approximation algorithms for general in-
teger packing problems, and provide a technique for analyzing their performance via
the duality theory of linear programming. This significantly improves upon known ap-
proximation ratios of greedy methods for a class of integer packing problems.

We are not aware about any existing work of analyzing greedy approximation al-
gorithms for integer packing problems via duality (an exception is [6] – see end of
Sec. 1.1). The situation is completely different for the integer covering problems, where
starting from the seminal work of Lovász [25] and Chvátal [8], such analyzes were per-
formed and generalized [9,29]. One of our purposes is to initiate filling this gap. In fact
our technique is fairly general in that it can even be extended to some routing problems.

A class of packing integer programs [31], (PIP), reads: max{cx : Ax ≤ b, x ∈
{0, 1}n}, where A is an m × n matrix with non-negative entries, b ∈ Rm

≥1, c ∈ Rn
≥0.

Our results can be extended to allow x ∈ {0, 1, . . . , u}n for some u ∈ N. When all
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Emmy Noether program.

J. Jędrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 615–627, 2005.
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entries in A are 0/1, (PIP) is called (0,1)-PIP, and generalizes many weighted prob-
lems, e.g., maximum weighted independent sets, max-cliques, hypergraph b-matching,
k-dimensional matching, (multi-) set (multi-) packing, edge-disjoint paths, etc. If A has
non-negative entries, we can also model multicommodity unsplittable flow (UFP), and
multi-dimensional knapsack problems.

We reformulate (PIP) as a generalized set packing. Let U be a set of m elements,
and S ⊆ 2U a family of n subsets of U . Each set S ∈ S has cost cS , and can in fact be a
multi-set: let q(e, S) ∈ N≥0 be the number of copies of e in S. Each element e ∈ U has
an upper bound be ∈ N on the number of times it can appear in the packing. A feasible
packing is a subfamily of S, where the total number of copies of each element e ∈ U
in all sets of the subfamily is at most be. The problem is to find a feasible packing with
maximum total cost. These assumptions can be relaxed to q(e, S) ∈ R≥0 and be ∈ R≥1.
In terms of (PIP), if A = (aij) and S ∈ S, then aeS = q(e, S). Thus, (PIP) is now:

max
∑

S∈S cSxS (1)

s.t.
∑

S:S∈S,e∈S q(e, S) · xS ≤ be ∀e ∈ U (2)

xS ∈ {0, 1} ∀S ∈ S. (3)

Let bmin = min{be : e ∈ U}, and d = max{|S| : S ∈ S}, i.e., d = max. number of
non-zero entries in any column of A. Let φ = max{be/bf : ∃S ∈ S s.t. e, f ∈ S}.

1.1 Our Contributions in General

We present a novel analysis of greedy algorithms for general PIPs by using the duality
theory of linear programming (LP). We employ dual-fitting, and many new ingredients.
Two fractional, possibly infeasible, dual solutions are defined. One during the execution
of the algorithm, and the second one after it stops. By the dual LP, the solutions must
have high values on any set in the problem instance. To achieve this we treat one of
these solutions as a back-up, and prove that if the first solution is not high enough, the
second one is. We combine these two solutions by taking their convex combination,
and prove that a suitable scaling gives a feasible dual solution. By weak duality, this
combined dual solution is an upper bound on the value of an optimal primal integral
solution, thus implying the approximation ratio. An interesting aspect of this analysis is
that we do not lose any constant factor when the two dual solutions are combined. Thus,
we emphasize here that our constant in front of the approximation ratio is precisely 1.
Our analysis results in provably best possible approximation ratios for a large class of
integer packing problems. We also show that it gives best possible approximation ratios
in the natural class of oblivious greedy algorithms (cf. Sec. 2).

Our analysis gives significant improvements on the approximation ratios known for
simple (monotone, cf. Sec. 3) greedy methods for general PIPs, and improves the ap-
proximation ratios for many specific packing problems by constant factors. It is quite
flexible and general. The largest improvements are obtained for general PIPs, and for
b-matching in hypergraphs. We also slightly improve (by constant factors) the approx-
imation ratios for truthful CAs and routing UFP problems. An additional advantage of
our analysis is that it also implies bounds on the integrality gaps of the LP relaxations.
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An LP duality-based (dual-fitting) analysis was previously known for the weighted
set cover problem due to Chvátal [8], and for generalized set cover by Rajagopalan &
Vazirani [29]. We are not aware of such analyzes for PIPs. (Except a recent primal-dual
algorithm and analysis by Briest, Krysta and Vöcking [6], but this analysis does not
apply to the simple greedy algorithms that we study.)

1.2 Previous Work and Our Improvements

To compare the previous and our results, we discuss them for (0,1)-PIP and assume
bmin ≥ 1. (In fact our bounds are more general – see further sections for details.)

The best approximation ratios, O
(
min

{
m1/(bmin+1), d1/bmin

})
[28,31,30], for

(0,1)-PIP were obtained by solving an LP relaxation and performing randomized round-
ing of the fractional solution. They are better than the ratios of combinatorial methods,
but the main drawback is the need of solving LPs. This is inefficient in many cases, and
also does not guarantee monotonicity properties (cf. Sec. 3). (A monotone randomized
rounding algorithm is known [2], but it applies to restricted bidders and supplies of
goods, and is truthful only in a probabilistic sense – see Sec. 3 for the definitions.)

Our Main Results. Lehmann et al. [24] have analyzed the following simple greedy
algorithm for (0,1)-PIP assuming be = 1 for all e ∈ U .

P := ∅; let S = {S1, S2, . . . , Sn} s.t. cS1√
|S1|
≥ cS2√

|S2|
≥ · · · ≥ cSn√

|Sn|
for S′=S1, S2, . . . , Sn do if P∪{S′} fulfills (2) & (3) then P := P ∪ {S′}
output packing P
(A more general version of this algorithm, called Greedy-2, is given in (14).) Lehmann
et al. proved that it gives a

√
m-approximation for (0,1)-PIP with all be = 1. Gonen &

Lehmann [10] have shown that Greedy-2 is a
√∑

e∈U be-approximation algorithm for
(0,1)-PIP. We use our duality-based analysis to improve this ratio significantly, showing
that Greedy-2 is a (

√∑
e∈U be/bmin +1)-approximation algorithm for (0,1)-PIP. This,

for instance, implies a ratio of (
√
m + 1) for (0,1)-PIP when all be = b for some value

b, which is not necessarily one. We also show a corresponding lower bound, by proving
that this ratio is essentially best possible for this problem in the class of oblivious greedy
algorithms – which basically captures all natural greedy algorithms for (0,1)-PIP.

We give another greedy algorithm for (0,1)-PIP, called Greedy-1, and show it is a
(
√
φm + 1)-approximation using our duality-based technique. A third presented algo-

rithm, Greedy-3, is a (d + 1)-approximation for (0,1)-PIP. Obtaining a ratio better than√
m (even if φ = 1) is not possible, unless NP = ZPP [17], and it is NP-hard to obtain

a ratio of O(d/ log d) [18]. Thus, our analysis implies essentially best possible ratios.
It is possible to modify a combinatorial greedy algorithm for the unsplittable

flow problem, presented by Kolman and Scheideler [23], to obtain an O(
√
m)-appro-

ximation algorithm for (0,1)-PIP. However, our greedy algorithms and analysis have
the following advantages over that modified algorithm: our algorithm is monotone,
which is needed for mechanism design (cf. Sec. 3); our duality-based analysis im-
plies bounds on the integrality gaps of PIPs; and, finally, we do not lose constant
factors in the ratio.
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The integrality gaps of LP relaxations for (0,1)-PIPs were proved before by Aha-
roni et al. [1] (for the unweighted (0,1)-PIP), Raghavan [27], and Srinivasan [31]. Our
duality-based analysis improves these bounds by constant factors.

Further Known Results Versus Ours. Some combinatorial algorithms are known for
(0,1)-PIP. E.g., an algorithm of Bartal, Gonen and Nisan [4], following ideas from [3].
If be = b, ∀e ∈ U , the algorithm of [4] achieves the best ratio of O(b · (m)1/(b−1)) for
(0,1)-PIP. A very recent result is a primal-dual O(m1/(b+1))-approximation algorithm
for (0,1)-PIP, by Briest, Krysta and Vöcking [6]. Our contribution here is the greedy
(
√
m+ 1)-approximate algorithm, which is faster and much simpler than the other two

combinatorial algorithms in [4,6], and tightens the big-O constants.
An additional motivation for simple greedy method here comes from the branch-

and-bound heuristics for CAs. Gonen and Lehmann [10] proved that algorithm Greedy-
2 (see (14)) gives the best method of ordering the bids in the branch and bound heuristics
for CAs. Their experiments [11] support this claim in practice. Our improved ratio for
Greedy-2 might be a step towards theoretical explanation of this good performance.

Combinatorial approximation algorithms are known for special problems modeled
by PIPs. Halldórsson et al. [13] gave a greedy b

√
m-approximation for unweighted

b-matching in hypergraphs (all cS = 1 and all be = b). For the same weighted prob-
lem [10] gives a greedy

√
bm-approximation. Thus, we improve the ratio of a greedy

approximation for the problem to
√
m + 1. A simple greedy

√
m-approximation for

unweighted set packing (b = 1) [13], and a 2
√
m-approximation for weighted set pack-

ing [15] are known. Our ratio
√
m + 1 applies here as well. For weighted set packing

(cS ≥ 0; all be = 1), Hochbaum [19] gave a greedy d-approximation, and Berman &
Krysta [5] show a local search 2

3d-approximation. Our ratio d + 1 applies to a more
general problem. See survey [14] for other results on related approximations.

Further Consequences of Our Analysis. Our results can be applied to obtain truthful
mechanisms for combinatorial auctions with slightly improved approximation factors.
This is discussed in detail in Section 3.

A related problem is the routing unsplittable flow problem (UFP). We can cast
UFP by slightly generalizing PIP, but in fact UFP is less general than PIPs. There are
greedy and other combinatorial approximation algorithms for UFP and related prob-
lems, e.g., [20,12,7,23,22,3]. Their ratios, usually, look like

√
m, sometimes with ad-

ditional logarithmic factors or factors depending on capacities and demands, with m
denoting the number of edges in the graph. Our duality-based analysis can be extended
to these problems. See Section 4 for the definitions and details on our improvements.

2 Oblivious Greedy Algorithms

We study a class of algorithms for (PIP) that we call oblivious greedy algorithms. This
class was studied in context of truthful CAs in [24]. Besides their simplicity, truthful
CAs are the main motivation to study these algorithms. The crucial feature of this class
is that of monotonicity, which implies a truthful mechanism for CAs (cf. Section 3).

An oblivious greedy algorithm for (PIP) is a polynomial time algorithm A with a
rank function, say ρ : S × R≥0 −→ R≥0, assigning a real number ρ(S, cS) to each
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pair (S, cS), S ∈ S. We assume, after [24], that having any S ∈ S fixed, ρ(S, x) is
strictly increasing as a function of x. Having ρ(·, ·), A sorts all the sets in S w.r.t. non-
increasing numbers ρ(S, cS). Then A scans the sets in this order once, and picks them
to the solution one by one, maintaining feasibility.

The monotonicity of ρ(S, ·) is a natural assumption for CAs: Let a buyer offer some
amount of money for a product, so that the seller wants to sell the product for that
money. If, now, the buyer offers even more money, the seller, obviously, is also willing
to sell the same product. We will write ρ(S) for short, instead of ρ(S, cS).

2.1 The Upper Bound

We give a greedy algorithm, Greedy-1, for (PIP), having the best possible approxima-
tion ratio for (0,1)-PIP when b = mine be is small. Greedy-1 will also be shown to
have the best possible ratio in the class of all oblivious greedy algorithms for (0,1)-PIP.

Generic Greedy Algorithm and Dual-Fitting Analysis. We can assume w.l.o.g., that
given S ∈ S, we have q(e, S) ≤ be for each e ∈ S. Let, for any S ∈ S, a rank
value ρ(S) ∈ R≥0 be given. Let P ⊆ S be a given packing. We say that element
e ∈ U is saturated or sat w.r.t. P if there is a set S′ ∈ S \ P with e ∈ S′, such that
q(e, S′) +

∑
S:S∈P,e∈S q(e, S) > be. Our generic greedy algorithm, Greedy, is then:

01. P := ∅
02. let S = {S1, S2, . . . , Sn} s.t. ρ(S1) ≥ ρ(S2) ≥ · · · ≥ ρ(Sn)
03. for S′ = S1, S2, . . . , Sn do
04. if P ∪ {S′} fulfills (2) and (3) then
05. P := P ∪ {S′}
06. output packing P
We now present our analysis via dual fitting. Our original primal problem is given by
the integer linear program (1)–(3). The LP relaxation of this integer program is:

max
∑

S∈S cSxS (4)

s.t.
∑

S:S∈S,e∈S q(e, S)xS ≤ be ∀e ∈ U (5)

0 ≤ xS ≤ 1 ∀S ∈ S. (6)

Its corresponding dual linear program can be written as:

min
∑

e∈U beye +
∑

S∈S zS (7)

s.t. zS +
∑

e∈S q(e, S)ye ≥ cS ∀S ∈ S (8)

zS, ye ≥ 0 ∀S ∈ S, e ∈ U. (9)

Dual variable zS corresponds to xS ≤ 1. We present below a performance proof of a
greedy with a specific rank function ρ1, which will be used as generic proof.

Given a set S ∈ S, let: ρ1(S) =
cS√∑

e∈S
q(e,S)

be

.

We call algorithm Greedy with the rank function ρ = ρ1, Greedy-1.
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Theorem 1. Algorithm Greedy-1 has an approximation ratio of qmax

qmin

√
φm + 1 for

the generalized set packing problem, and for (PIP), assuming φ = max{be/bf : e, f ∈
S, S ∈ S}, and for each S ∈ S, e ∈ S, we have qmin ≤ q(e, S) ≤ qmax or q(e, S) = 0.

Due to the generality of (PIP), there is no better approximation ratio than
√
m,

unless NP = ZPP [17]. This hardness holds even when qmax

qmin
= 1, and φ = 1.

Proof. (Theorem 1) This is a sketch of the generic proof. Suppose Greedy-1 termi-
nated and output solution P . Let SATP = {e ∈ U : e is sat w.r.t. P}. Notice, for each
set S ∈ S \ P , there is an e ∈ SATP , called a witness: That is, when S was considered
in line 04, and P was the current (partial) solution, e ∈ S was an element such that
q(e, S) +

∑
S′:S′∈P,e∈S′ q(e, S′) > be. For each set S ∈ S \ P we keep in SATP one

(arbitrary) witness for S, and discard the remaining elements from SATP .

Defining Two Dual Solutions. We define two fractional dual solutions, y1 and y2. y1

is defined after Greedy-1 has terminated. Let us define the following:

σ =
∑
S∈P

cS · qS√∑
e′∈P(S)

q(e′,S)·maxe′′∈P(S){be′′}
be′

, where

P(S) = S ∩ SATP if S ∩ SATP �= ∅ and P(S) = S if S ∩ SATP = ∅; and
qS =

√|P(S)|. For each e ∈ U , define y1 as: y1
e = σ

be·m . Solution y2 is defined during
the execution of Greedy-1. We need to know P to define y2, which is needed only for
analysis. In line 01 of Greedy-1 we initialize: y2

e := 0, z2
S := 0, for all e ∈ U , and

S ∈ S. The following is added in line 05 of Greedy-1:

y2
e := y2

e + ΔS′
e , for all e ∈ P(S′) , where

ΔS′
e =

cS′

be · qS′ ·
√∑

e′∈P(S′)
q(e′,S′)maxe′′∈P(S′){be′′}

be′

, for e ∈ P(S′) .

Note, that for e ∈ S′ \ SATP the value of y2
e is not updated and remains zero. We also

add the following in line 05 of Greedy-1: z2
S′ := z2

S′ + cS′ . Obviously, if for an e ∈ U ,
values of y1, y2 or z1, z2 have not been defined, they are zero.

Dual Lower Bound on the Solution. We now argue that both dual solutions (appropri-
ately scaled) provide lower bounds on the cost of the output solution:∑

e∈U

be · yi
e ≤

1√
qmin

∑
S∈P

cS , for i = 1, 2 . (10)

Final Dual Solution. We will now show that there exists a dual solution y such that the
scaled solution ( qmax√

qmin

√
φm · y, z) is feasible for the dual LP, i.e., constraints (8) are

fulfilled for all sets S ∈ S. Thus, we have to show that, for each set S ∈ S,

zS +
qmax√
qmin

√
φm

∑
e∈S

q(e, S)ye ≥ cS . (11)
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We will prove (11) by using both y1 and y2. The main idea is to use the second
solution as a back-up: whenever on some set S ∈ S, y1 is not high enough we will
prove that y2 is sufficiently high. We define a new solution y as a convex combination
of y1, y2: ye = 1

2

(
y1

e + y2
e

)
, for each e ∈ U ; also, define z as zS = z2

S for each S ∈ S.

Proving (11). Suppose first that S′ ∈ S \ P . The reason that S′ has not been included
in solution P must be an e ∈ SATP such that e ∈ S′. This means that adding set S′

to solution P would violate constraint (2). Let E ⊆ P be the family of all sets in the
solution that contain element e. Observe, that |E| ≥ 1.

Lower-Bounding y1. Using our greedy selection rule, and lower-bounding appropri-
ately σ, we are able to show the following bound:

∑
e′∈S′

q(e′, S′)y1
e′ ≥ cS′

mγ
·
(∑

S∈E
qS

)
·
√∑

e′∈S′

γq(e′, S′)
be′

. (12)

Lower-Bounding y2. Again using our greedy selection rule, a well known inequality
between the arithmetic and harmonic means [16], we can lower-bound appropriately
parameters Δ to obtain (|E| = p):

∑
e′∈S′

q(e′, S′)y2
e′ ≥ cS′

be

qminp
2(∑

S∈E qS

)√∑
e′∈S′

γq(e′,S′)
be′

. (13)

Lower-Bounding y. Using (12) and (13) we can write∑
e′∈S′

q(e′, S′)ye′ =
1
2

∑
e′∈S′

(
q(e′, S′)y1

e′ + q(e′, S′)y2
e′
) ≥

1
2

⎛⎝ cS′

mγ
·
(∑

S∈E
qS

)
·
√∑

e′∈S′

γq(e′, S′)
be′

+
cS′qminp

2

be

(∑
S∈E qS

)√∑
e′∈S′

γq(e′,S′)
be′

⎞⎠
cS′

2

(
x

mγ
+

qminp
2

bex

)
, where x =

(∑
S∈E

qS

)
·
√∑

e′∈S′

γq(e′, S′)
be′

.

Consider now function f(x) = x
mγ + qminp2

bex for x > 0. We can show that f(x) ≥
2
√

qminp2

γmbe
for all x ∈ (0,∞]. Observing that |E| = p ≥ be

qmax
, and γ

be
≤ φ, we obtain

f(x) ≥ 2
√

qmin

q2
maxφm for all x ∈ (0,∞]. This proves claim (11) when set S′ ∈ S \ P . If

S′ ∈ P , then claim (11) follows from the definition of zS′ .

Finishing the Proof. We have shown that the dual solution ( qmax√
qmin

√
φm · y, z) is fea-

sible for the dual linear program and so by weak duality
∑

S∈S zS + qmax√
qmin

√
φm ·
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e∈U beye is an upper bound on the value of the optimal integral solution to our prob-

lem. By (10), we have that
∑

e∈U beye ≤ 1√
qmin

∑
S∈P cS . Thus, we obtain that

opt ≤
∑
S∈S

zS +
qmax√
qmin

√
φm ·

∑
e∈U

beye

∑
S∈P

zS +
qmax√
qmin

√
φm ·

∑
e∈U

beye

≤
∑
S∈P

cS +
qmax

qmin

√
φm ·

(∑
S∈P

cS

)(
qmax

qmin

√
φm + 1

)
·
(∑

S∈P
cS

)
. ��

Other Greedy Selection Rules. The next two theorems – Theorem 2 and 3 can easily
be shown by using our generic proof (of Theorem 1).

Given a set S ∈ S, let: ρ2(S) =
cS√∑

e∈S q(e, S)
. (14)

Greedy-2 is Greedy with the greedy selection rule ρ2.

Theorem 2. Algorithm Greedy-2 has an approximation ratio of qmax

qmin

√∑
e∈U be

bmin
+ 1

for the generalized set packing problem, and for (PIP), assuming that bmin = min{be :
e ∈ U}, and for each S ∈ S, e ∈ S, we have qmin ≤ q(e, S) ≤ qmax or q(e, S) = 0.

Suppose that qmax/qmin = 1. We improve the best known approximation ratio for a
combinatorial (greedy) algorithm for (PIP) from

√∑
e∈U be/qmin (Gonen & Lehmann

[10]) to min
{√∑

e∈U be/bmin + 1,
√
φm + 1

}
(Theorems 1, 2). This ratio is always

better than [10], since w.l.o.g. qmin ≤ 1 and bmin ≥ 1 (see Srinivasan [31]). Also if
φ = 1, then our ratio is O (

√
m), and that of [10] is still

√∑
e∈U be (for qmin = 1).

Given a set S ∈ S, let: ρ3(S) = cS/|S| .
We call algorithm Greedy with the greedy selection rule ρ3, Greedy-3.

Theorem 3. Algorithm Greedy-3 has an approximation ratio of qmax

qmin
d + 1 for the

generalized set packing problem, and for (PIP), assuming that |S| ≤ d for each S ∈ S.
Moreover, for each S ∈ S, e ∈ S, we have qmin ≤ q(e, S) ≤ qmax or q(e, S) = 0.

Observe that the approximation ratio is close to best possible. Let qmax

qmin
= 1 and all

q(e, S) ∈ {0, 1}; then our ratio is d+1. The considered PIP can express the unweighted
set packing problem for which obtaining a ratio of O( d

log d ) is NP-hard [18].

2.2 The Lower Bound

In this section we consider (0,1)-PIP. By Theorem 1 we obtain the following.

Corollary 1. Algorithm Greedy-1 is an oblivious greedy (
√
φm + 1)-approximation

algorithm for the (0,1)-PIP problem, where φ = max{be/bf : e, f ∈ S, S ∈ S}.
We show below, by modifying an argument in [10], that this upper bound can be

matched by a lower bound in the class of oblivious greedy algorithms.
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Proposition 1. Let us consider (0,1)-PIP problem, assuming that be = b ∈ N≥1 for
each e ∈ U . Then any oblivious greedy polynomial time algorithm for this problem has
an approximation ratio of at least

√
m− ε, for any ε > 0.

Note, that this lower bound above is meaningful, since there is a polynomial time
O(m1/(b+1))-approximation to the described problem via LP randomized rounding.

3 An Application to Truthful Combinatorial Auctions

We will use now our results to give truthful approximation mechanisms for combina-
torial auctions (CAs) with single-minded bidders. A seller (auctioneer) wants to sell m
kinds of goods U , to n potential customers (bidders). A good e ∈ U is available in
be ∈ N≥1 units (supply). Suppose each bidder j can valuate subsets of goods: a val-
uation vj(S) ∈ R≥0 for a subset S ⊆ U means the maximum amount of money j is
willing to pay for getting S. For simplicity, assume that bidders can bid for 0 or single
unit of a good, i.e., q(e, S) ∈ {0, 1} for all e ∈ U , and S ⊆ U . An allocation of goods to
bidders is a packing S1, . . . , Sn ⊆ U w.r.t. the defined (PIP) with S = 2U , i.e., bidder
j gets set Sj , and e appears at most be times in S1, . . . , Sn. The objective is to find an
allocation with maximum social welfare,

∑
j vj(Sj). Each vj is only known to bidder

j. Our bidders are single-minded [24], i.e., for each bidder j there exists a set Sj ⊆ U
she prefers and a v∗j ≥ 0, such that vj(S) = v∗j if Sj ⊆ S and vj(S) = 0 otherwise.

An auction mechanism (seller) is an algorithm which first collects the bids from the
bidders, i.e., their declarations (S′j , v

′
j), where S′j is supposed to mean the preferred

set Sj , and v′j the valuation vj for j. The mechanism then determines the allocation
and a payment pj for each bidder j. The utility of bidder j is uj = vj(S) − pj for
winning set S. Note that vj is the true valuation function. We assume the mechanism is
normalized, i.e., pj = 0, when bidder j is not allocated any set. Our allocation problem
is to maximize the social welfare; this corresponds to approximating our (PIP) problem.

Each bidder aims at maximizing her own utility. It may be profitable for bidder j
to lie and report v′j �= vj and S′j �= Sj to increase her utility. A mechanism is truthful
(incentive compatible) if declaring truth, i.e., v′j = vj and S′j = Sj , is a dominant
strategy for each bidder j. That is for any fixed set of bids of all bidders except j, if j
does not declare the truth, then this may only decrease j’s utility. Our goal is a truthful
approximate mechanism.

An allocation algorithm is monotone if whenever bidder j declares (S′j , v
′
j) (given

other bidders’ declarations) and wins, i.e., gets set S′j allocated, then declaring (S′′j , v
′′
j )

s.t. S′′j ⊆ S′j , v
′
j ≤ v′′j results also in winning set S′′j . It is well known that if an

allocation (approximate) algorithm is monotone and exact (i.e., a bidder gets exactly
her declared set or nothing), then there is a payment scheme which together with the
allocation algorithm is a truthful (approximate) mechanism (see, e.g., [26,24]). It is easy
to see that all our greedy algorithms are monotone and exact. We can also modify the
payment scheme in [24] to serve our purposes. Thus, using Theorems 1, 2 and 3, this
gives the following result.

Theorem 4. Suppose we have m kinds of goods U , each good e ∈ U available in be ∈
N≥1 units, and bmin = min{be : e ∈ U}. Suppose each bidder bids only on at most
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d ∈ N≥1 goods, and for each bid (S′j , v
′
j) we have max{be/bf : e, f ∈ S′j} ≤ φ. There

is a truthful mechanism for CAs with single-minded bidders with an approximation ratio

min

⎧⎨⎩1 +
√

φm, 1 +
√∑

e∈U

be/bmin, 1 + d

⎫⎬⎭ .

Note, that we assume d is known to the mechanism. Theorem 4 improves on the mech-
anism of Lehmann et al. [24], where they assume be = 1 for each e ∈ U , and their ratio
is
√
m. We achieve the same ratio (+1) for a more general setting, where the supplies

of the goods are given arbitrary numbers. The best known truthful mechanism for the
problem with be = b ∀e ∈ U , is 5.44 · (m)1/b-approximate, see Briest, Krysta and
Vöcking [6]. Thus, our ratio for the same problem is slightly better for b = 2. Our ratio
is also very good if d is small – a very natural assumption for bidders.

4 An Application to the Unsplittable Flow Problem

We show that our dual fitting analysis can be extended to deal with a difficult routing
problem – multicommodity unsplittable flow problem (UFP).

Let G = (V,E) be a given graph (|E| = m), and C = {(si, ti) : si, ti ∈ V, i =
1, . . . , k} be k source-sink pairs, or commodities. For each commodity i ∈ {1, . . . , k},
we are given a demand di ∈ N≥1, and a profit pi ∈ R≥0. For each edge e ∈ E, be ∈
N≥0 denotes its capacity. Given i ∈ {1, . . . , k}, let Ci be the set of all simple si-ti-paths
in G, such that all edge capacities on these paths are at least di. The multicommodity
unsplittable flow problem (UFP) is to route for each commodity i demand di along a
single path in Ci, respecting edge capacities. The objective is to maximize the sum of
the profits of all commodities that can be simultaneously routed.

We give now an LP relaxation of this problem (see Guruswami et al. [12]). The
ground set is U = E, and the set family is S = ∪k

i=1Ci. Each set S ∈ S ∩ Ci, that is
an si-ti-path, has cost cS = ci = pi. The LP relaxation of UFP is:

max
∑k

i=1 ci ·
(∑

S∈Ci
xS

)
(15)

s.t.
∑

S:S∈S,e∈S dSxS ≤ be ∀e ∈ U (16)∑
S∈Ci

xS ≤ 1 ∀i ∈ {1, . . . , k} (17)

xS ≥ 0 ∀S ∈ S, (18)

where dS = di iff S ∈ Ci. The corresponding dual linear program reads then:

min
∑

e∈U beye +
∑k

i=1 zi (19)

s.t. zi +
∑

e∈S diye ≥ ci ∀i ∈ {1, . . . , k} ∀S ∈ Ci (20)

zi, ye ≥ 0 ∀i ∈ {1, . . . , k} ∀e ∈ U. (21)

In this dual linear program, dual variable zi corresponds to the constraint (17).
We will use algorithm Greedy-1 to approximate UFP. We will say how to realize it

in the case of UFP. Given a commodity i, the greedy selection rule is:

max
S∈Ci

ρ1(S) = max
S∈Ci

ci√∑
e∈S

di

be

. (22)
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We replaced q(e, S) with di, since S ∈ Ci. (22) is same as minS∈Ci

(∑
e∈S 1/be

)
di/c

2
i , and such an S ∈ Ci can be found by a shortest path computation. The imple-

mentation of Greedy-1 is as follows. We maintain the current edge capacities b′e. We
declare all commodities unsatisfied, and put b′e := be for each e ∈ E. Perform the
following until all commodities are satisfied. Find a commodity i and S ∈ Ci that
minimize

(∑
e∈S 1/be

)
di/c

2
i among all unsatisfied commodities: when computing the

shortest path for i use only edges e with di ≤ b′e. If si and ti are disconnected by such
edges, then declare i satisfied. Otherwise, let i0 and S0 ∈ Ci0 be the shortest path and
commodity. Route demand di0 along S0, put b′e := be − di0 for all e ∈ S0, and declare
i0 satisfied. (We define dual variable zi0 := ci0 as in our generic proof.)

The definitions of other dual variables remain the same as in the generic proof (proof
of Theorem 1). This proof basically goes through. Observe, that now qmin = min{di :
di > 0, i = 1, . . . , k} = dmin and qmax = max{di : i = 1, . . . , k} = dmax. Thus, by
employing the generic proof we obtain the following theorem for the UFP problem.

Theorem 5. There is a greedy (dmax

dmin

√
φm + 1)-approximation algorithm for the un-

splittable flow problem (UFP), where φ = max{be/bf : ∃i ∃S ∈ Ci s.t. e, f ∈ S}.

Guruswami et al. [12] prove that a repeated use of a similar greedy algorithm
gives a (2dmax

dmin

√
m)-approximation for unweighted UFP (i.e., ci = 1, ∀i). We now

present some applications of Theorem 5 but the proofs are omitted, due to the lack
of space.

Theorem 5 gives a (
√
m+1)-approximation when specialized to the weighted edge-

disjoint paths (EDP) problem: this is just UFP problem with be = 1 for each e ∈
E, and di = 1 for each i ∈ {1, . . . , k}. Our greedy when specialized to this case,
reduces to the greedy algorithm of Kolliopoulos & Stein [21]. They prove a similar
approximation ratio for this algorithm for the unweighted EDP problem. There is also
a greedy O(min{√m, |V |2/3})-approximation for the same problem by Chekuri and
Khanna [7]. Such a result is not possible for (0,1)-PIP, since obtaining ratio O(d/ log d)
is NP-hard [18]; note that d in (0,1)-PIP corresponds to |V |. Notice, that our (

√
m+1)-

approximation holds also for the weighted and more general (than EDP) problem where
we allow each edge to be used up to b times, where be = b.

The previous best known algorithm for general UFP, assuming dmax ≤ bmin,
is a combinatorial 32

√
m-approximation algorithm of Azar and Regev [3]. If φ =

1, then Theorem 5 implies a combinatorial (2 + ε)
√
m-approximation to the UFP,

assuming dmax ≤ bmin, for any ε > 0. On uniform capacity networks (a stronger
assumption than φ = 1), there is a combinatorial O(min{√m, |V |2/3})-approxima-
tion [7].

Another application is a (
√|V | + 1)-approximation algorithm for the weighted

vertex-disjoint paths problem, improving on the previous best known ratio of roughly
18
√|V | due to Kolliopoulos & Stein [21]. We get this result by using ideas from [21]

and our algorithm from Theorem 5 as a subroutine.
Note, that results in [22,23] hold, unlike ours, for the unweighted UFP, i.e., unit

profits problem. We would like to point out that we are able to extend our analysis to
UFP thanks to the use of LP duality theory. For instance, it seems difficult to extend the
combinatorial analysis in [10] to such problems.
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Abstract. In the maximum solution equation problem a collection of equations
are given over some algebraic structure. The objective is to find an assignment
to the variables in the equations such that all equations are satisfied and the sum
of the variables is maximised. We give tight approximability results for the max-
imum solution equation problem when the equations are given over groups of
the form Zp, where p is prime. We also prove that the weighted and unweighted
versions of this problem have equal approximability thresholds. Furthermore, we
show that the problem is equally hard to solve even if each equation is restricted to
contain at most three variables and solvable in polynomial time if the equations
are restricted to contain at most two variables. All of our results also hold for
a generalised version of maximum solution equation where the elements of the
group are mapped arbitrarily to non-negative integers in the objective function.

1 Introduction

Problems related to solving equations over various algebraic structures have been stud-
ied extensively during a large time frame. The most fundamental problem is, perhaps,
EQN which is the problem of: given an equation, does it have a solution? That is, is it
possible to assign values to the variables in the equation such that the equation is satis-
fied? Goldmann and Russell [8] studied this problem over finite groups. They showed
that EQN is NP-complete for all non-solvable groups and solvable in polynomial time
for nilpotent groups.

A problem related to EQN is EQN∗. In EQN∗ a collection of equations are given
and the question is whether or not there exists an assignment to the variables such that
all equations are satisfied. For finite groups Goldmann and Russell [8] have shown that
this problem is solvable in polynomial time if the group is abelian and NP-complete
otherwise. Moore et al. [13] have studied this problem when the equations are given
over finite monoids. The same problem have been studied for semigroups [11,16] and
even universal algebras [12].

Another problem is the following: given a over-determined system of equations, sat-
isfy as many equations as possible simultaneously. This problem have been studied with
respect to approximability by Håstad [9]. He proved optimal inapproximability bounds
for the case when the equations are given over a finite abelian group. Håstad’s result
has later on been generalised by Engebretsen et al. [6] to cover non-abelian groups as
well. Those results uses the PCP theorem [1] which has been used to prove a number of

J. Jędrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 628–639, 2005.
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inapproximability results. Other problems that have been studied which are related to
this area is #EQN∗ (counting the number of solutions to a system of equations) [15] and
EQUIV-EQN∗ and ISO-EQN∗ (deciding whether two systems of equations are equiva-
lent or isomorphic, respectively) [14].

In this paper we study the following problem: given a system of equations over a
group of the form Zp where p is prime, find the best solution. With “best solution” we
mean a solution (an assignment to the variables that satisfies all equations) that max-
imises the sum of the variables. We call this problem MAXIMUM SOLUTION EQUA-
TION (here after called MAX SOL EQN).

A problem that is similar to MAX SOL EQN is NEAREST CODEWORD.1 In this
problem we are given a matrix A and a vector b̄. The objective is to find a vector x̄ such
that the hamming weight (the number of positions in the vector that differs from 0) of
Ax̄ − b̄ is minimised. The decision version of a restricted variant2 of this problem was
proved to be NP-complete by Bruck and Noar [4]. Later on Feige and Micciancio [7]
proved inapproximability results for the same restricted problem. Arora et al. [2] proved
that NEAREST CODEWORD over GF (2) is not approximable within 2log1−ε n for any
ε > 0 unless NP ⊆ DTIME(npoly(log n)). NEAREST CODEWORD is interesting be-
cause it has practical applications in the field of error correcting codes.

MAX SOL EQN is parametrised on the group we are working with and a map from
the elements of the group to non-negative integers. The map is used in the objective
function to compute the measure of a solution. Our main result give tight approxima-
bility results for MAX SOL EQN for every group of the form Zp where p is prime and
every map from the elements of the group to non-negative integers. That is, we prove
that for every group of the form Zp and every map from group elements to non-negative
integers there is a constant, α, such that MAX SOL EQN is approximable within α but
not approximable within α − ε in polynomial time for any ε > 0 unless P = NP. As
a special case of the main result we show that for the most natural map, where every
group element x in Zp is mapped to the integer x, it is not possible to approximate MAX

SOL EQN within 2 − ε in polynomial time for any ε > 0 unless P = NP. Furthermore,
we show that it is possible to approximate this variant of MAX SOL EQN within 2. We
also show that the weighted and the unweighted versions of this problem are asymptot-
ically equally hard to approximate. All our hardness results holds even if the instances
are restricted to have at most three variables per equation. We also prove that this is
tight since with two variables per equation the problems are solvable to optimum in
polynomial time.

Our work may be seen as a generalisation of Khanna et al.’s [10] work on the prob-
lem MAX ONES(F ) in the sense that we study larger domains. However, their work is
not restricted to equations over finite groups which the results in this paper are. Nev-
ertheless, they give a 2-approximation algorithm for MAX ONES(F ) when F is affine.
We prove that, unless P = NP, this is tight. (MAX ONES(F ) when F is an affine con-
straint family is equivalent to a specific version of MAX SOL EQN.)

1 This problem is sometimes called MLD for MAXIMUM LIKELIHOOD DECODING.
2 The problem we are referring to is NEAREST CODEWORD with preprocessing. See [4] for a

definition.
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The structure of this paper is as follows: we will begin with constructing an
approximation algorithm for MAX SOL EQN. Our approximation algorithm is a
modification of Khanna et al.’s [10] approximation algorithm for MAX ONES(F)
where F is an affine constraint family. After that we will prove an inapproximabil-
ity result for the weighted version of MAX SOL EQN. Our proof uses Håstad’s [9]
amazing inapproximability results for MAX-Ek-LIN-p. The basic idea is to trans-
form an instance of MAX-Ek-LIN-p to an instance of MAX SOL EQN where it is
easy to simultaneously satisfy every equation, but it is hard to do so and at the
same time assign the identity element to certain variables. In the last section we
will prove that the approximability thresholds for the weighted and unweighted ver-
sions of MAX SOL EQN are asymptotically equal. The proof of this result is based
upon works by Khanna et al. [10] and Crescenzi et al. [5].

2 Preliminaries

We assume that the reader has some basic knowledge of complexity theory. We will
briefly state some fundamental definitions of optimisation problems and approximation,
see e.g. [3] for a more detailed presentation.

An optimisation problem has a set of admissible input data, called the instances of
the problem. Each instance has a set of feasible solutions. The optimisation problem
also has a function of two variables, an instance and a feasible solution, that associates
an integer with each such pair. This function denotes the measure of the solution. The
goal of an optimisation problem is to find a feasible solution that either maximises or
minimises the measure for a given instance.

An NPO problem is an optimisation problem where instances and feasible solutions
can be recognised in polynomial time, feasible solutions are polynomially bounded in
the input size and the measure can be computed in polynomial time. We will only study
NPO maximisation problems in this paper.

We will denote the measure of our problems with m(I, s), where I is an instance
and s is a feasible solution. The optimum for an instance I of some problem (which
problem we are talking about will be clear from the context) is designated by OPT(I).
We say that a maximisation problem Π is r-approximable if there exists a (possi-
bly probabilistic) polynomial time algorithm A such that for every instance I of Π ,
m(I, A(I)) ≥ OPT(I)/r, in the case of a probabilistic algorithm we require that
E [m(I, A(I))] ≥ OPT(I)/r.

In reductions we will work with two different problems simultaneously. The objects
associated with the problem that the reduction is from will be denoted by symbols
without ′ and objects associated with the other problem will be denoted by symbols
with ′. Thus, for example, the measuring function of the problem that the reduction
starts with will be denoted by m(I, s) and the measuring function of the other problem
will be denoted by m′(I ′, s′).

Let f be a function such that f : X → N. We define the following quantities

fmax = max
x∈X

f(x), and fsum =
∑
x∈X

f(x).
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Those notations will only be used when they are well defined. Variables named p will
denote prime numbers in this paper. For a group G we denote its identity element with
0G. We will use addition as the group operator.

2.1 Definitions and Results

In this section we define the problems that will be studied in this paper and we state our
results.

Definition 1. WEIGHTED MAXIMUM SOLUTION EQUATION(G, g) where G =
(D,+) is a group and g : D → N is a function, is denoted by W-MAX SOL EQN(G,
g). An instance of W-MAX SOL EQN(G, g) is defined to be a triple (V,E,w) where,

– V is a set of variables.
– E is a set of equations of the form w1 + . . . + wk = 0G, where each wi is either a

variable, an inverted variable or a group constant.
– w is a weight function w : V → N.

The objective is to find an assignment f : V → D to the variables such that all
equations are satisfied and the sum∑

v∈V

w(v)g(f(v))

is maximised.

Note that the function g and the group G are not parts of the input. Thus, W-MAX SOL

EQN(G, g) is a problem parametrised by G and g. The function g is introduced to make
the set of problems more general, we call the function g(x) = x the natural choice of
g. If MAX SOL EQN is to be studied over e.g. general abelian groups then something
like g will be required, because there is no obvious map from elements of a general
abelian group to non-negative integers. It is therefore, in our opinion, better to study
the more generalised set of problems where an arbitrary map from group elements to
non-negative integers is allowed than to chose one of those maps and argue that the
chosen one is the most interesting one.

We will also study the unweighted problem, MAX SOL EQN(G, g), which is equiv-
alent to W-MAX SOL EQN(G, g) with the additional restriction that the weight function
is equal to 1 for every variable in every instance.

Due to Goldmann and Russell’s result [8] that solving systems of equations over
non-abelian groups is NP-hard, it is NP-hard to find feasible solutions to MAX SOL

EQN(G, g) if G is non-abelian. It is therefore sufficient to only study MAX SOL

EQN(G, g) where G is abelian.
The main result of this paper is the following theorem about the approximability of

MAX SOL EQN(Zp , g).

Theorem 1. For every prime p and every function g : Zp → N, MAX SOL EQN(Zp ,
g) is approximable within α where

α = p
gmax

gsum
.
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Furthermore, for every prime p and every non-constant function g : Zp → N MAX

SOL EQN(Zp, g) is not approximable within α− ε for any ε > 0 unless P = NP.

Note that if g is a constant function then every feasible solution has the same mea-
sure and finding an optimum is solvable in polynomial time. As a consequence of The-
orem 1 we get the following result for the natural choice of g.

Corollary 1. If g(x) = x then MAX SOL EQN(Zp , g) is approximable within 2. Fur-
thermore, it is not possible to approximate MAX SOL EQN(Zp , g) within 2− ε for any
ε > 0 unless P = NP.

Proof. If g(x) = x then gmax = p− 1 and gsum = p(p− 1)/2. This gives us

p
gmax

gsum
= p

p− 1
p(p− 1)/2

= 2.

The desired result follows from Theorem 1. ��
We will also prove that the approximability threshold for W-MAX SOL EQN(Zp ,

g) is asymptotically equal to the approximability threshold for MAX SOL EQN(Zp, g).
I.e., we will prove that W-MAX SOL EQN(Zp, g) is approximable within α + o(1)
where the o(·)-notation is with respect to the size of the instance. Furthermore, we will
prove that W-MAX SOL EQN(Zp, g) is not approximable within α − ε for any ε > 0,
unless P = NP.

3 Approximability

In this section we will prove our approximability results. We begin with giving a basic
definition and proving a fundamental lemma about the modular sum of independent and
uniformly distributed discrete random variables.

Definition 2. Let U(a, b) denote the uniform discrete distribution over

{a, a + 1, . . . , b− 1, b}.
We will write X ∼ U(a, b) to denote that the random variable X is distributed

according to U(a, b).

Lemma 1. If X and Y are independent, X ∼ U(0, n− 1) and Y ∼ U(0, n− 1) then
X + Y (mod n) ∼ U(0, n− 1).

Proof. Let k be constant such that 0 ≤ k ≤ n− 1, then

Pr [X + Y (mod n) = k] =
∑

i,j:i+j (mod n)=k

Pr [X = i] Pr [Y = j] = n
1
n2

= 1/n.

The second equality holds because given constants c1, c2 such that 0 ≤ c1, c2 ≤
n − 1 then the equation x + c1 (mod n) = c2 has exactly one solution such that
0 ≤ x ≤ n− 1. ��
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The following theorem is the main approximability result of this paper.

Theorem 2. For every prime p and every g : Zp → N, MAX SOL EQN(Zp , g) has an
α-approximate algorithm, where

α = p
gmax

gsum
.

Proof. To find a feasible solution is equivalent to solving a system of equations in Zp.
Let the system of equations be given by Ax̄ = b̄. Where A is a m × n matrix, b̄ is a
m× 1 vector and x̄ is a n× 1 vector.

Assume without loss of generality that the rows in A are linearly independent. By
elementary row operations and reordering of the variables we can, if there are any fea-
sible solutions, transform the system to the form [I|A′]x̄ = b̄′. If no feasible solutions
exists this will be detected during the transformation procedure. Let x̄′ = (x1, . . . , xm)
and x̄′′ = (xm+1, . . . , xn). Then, the solutions to the system of equations are given by
the set {

(x̄′, x̄′′) | x̄′′ ∈ {0, . . . , p− 1}n−m ∧ x̄′ = −A′x̄′′ + b̄′
}
. (1)

Choose a random element from this set by assigning values to the variables in x̄′′,
uniformly at random from Zp. The variables in x̄′ are then assigned values according
to x̄′ = −A′x̄′′ + b̄′.

We claim that the procedure described above is a α-approximate algorithm. Note
that for every m + 1 ≤ i ≤ n and every 0 ≤ k ≤ p − 1 the following holds:
Pr [xi = k] = 1/p. We will now prove that for xi, 1 ≤ i ≤ m, one of the following two
cases holds:

1. xi = b′i in every solution, or
2. xi = k with probability 1/p, for every 0 ≤ k ≤ p− 1.

For every xi, 1 ≤ i ≤ m, we see that

xi = b′i −
n−m∑
j=1

a′ijxj+m = b′i −
∑

{j|a′
ij �=0}

a′ijxj+m. (2)

If, for some i, we have a′ij = 0G for all j, then xi = b′i and we have case 1.
Let us introduce fresh variables tj for each j such that a′ij �= 0G. Let tj = a′ijxj+m.

Equation (2) is now equivalent to

xi = b′i −
∑

{j|a′
ij �=0}

tj . (3)

Since xj+m ∼ U(0, p−1) and a′ij �= 0G, we have tj ∼ U(0, p−1) and according to
Lemma 1 xi ∼ U(0, p−1). Let B denote the set of indices i such that xi ∼ U(0, p−1)
and let C = {1, . . . , n} \ B denote the set with indices of the variables that are fixed in
all feasible solutions. Furthermore, let

S∗ = |B|gmax +
∑
i∈C

g(b′i).
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It is easy to see that S∗ ≥ OPT. Let S denote the solution produced by the algorithm.
The expected value of S is

E [S] = E

[∑
i∈B

g(xi) +
∑
i∈C

g(b′i)

]
=
∑
i∈B

E [g(xi)] +
∑
i∈C

g(b′i)

= |B|gsum

p
+
∑
i∈C

g(b′i) ≥
gsum

p

S∗

gmax
≥ gsum

pgmax
OPT. ��

4 Inapproximability

In this section we will prove our inapproximability results. We begin with the definition
of MAX-Ek-LIN-p which will be used in the main reduction later on.

Definition 3 (MAX-Ek-LIN-p [9]). An instance of MAX-Ek-LIN-p is defined to be
(V,E) where

– V is a set of variables, and
– E is a set of linear equations over the group Zp with exactly k variables in each

equation.

The objective is to find an assignment f : V → Zp such that the maximum number of
equations in E are satisfied.

The following theorem can be deduced from the proof of Theorem 1 in [6], which
is a generalisation of a similar theorem about abelian groups by Håstad [9].

Theorem 3. For every problem Π in NP there is a polynomial time reduction from
instances I of Π to instances I ′ = (V,E) of MAX-E3-LIN-p such that

– if I is a YES instance then at least (1− δ)|E| equations can be satisfied, and
– if I is a NO instance then no assignment satisfies more than |E|(1+δ)/p equations

where δ is an arbitrary constant such that 0 < δ < p−1
p+1 .

We will prove our inapproximability results with a special kind of reduction, namely
a gap-preserving reduction introduced by Arora in [1]. The definition is as follows.

Definition 4 (Gap-preserving reduction [1]). Let Π and Π ′ be two maximisation
problems and ρ, ρ′ > 1. A gap-preserving reduction with parameters c, ρ, c′, ρ′ from
Π to Π ′ is a polynomial time algorithm f . For each instance I of Π , f produces an
instance I ′ = f(I) of Π ′. The optima of I and I ′, satisfy the following properties:

– if OPT(I) ≥ c then OPT(I ′) ≥ c′, and
– if OPT(I) ≤ c/ρ then OPT(I ′) ≤ c′/ρ′.

Gap-preserving reductions are useful because if for every language in NP there is
a polynomial time reduction to the maximisation problem Π such that YES instances
are mapped to instances of Π of measure at least c and NO instances to instances of
measure at most c/ρ, then a gap-preserving reduction from Π to Π ′ implies that finding
ρ′-approximations to Π ′ is NP-hard. [1]

Note that Theorem 3 implies that MAX-E3-LIN-p is a suitable problem to do gap-
reductions from.
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Theorem 4. For every prime p and every non-constant g : Zp → N, it is not possible
to approximate W-MAX SOL EQN(Zp , g) within α− ε where

α = p
gmax

gsum
,

for any ε > 0 unless P = NP.

Proof. We will prove the theorem with a gap-preserving reduction from MAX-E3-LIN-
p. Given an instance I = (V,E) of MAX-E3-LIN-p we will construct an instance I ′ =
(V ′, E′, w′) of W-MAX SOL EQN(Zp , g). Let a be the element in Zp that maximises
g, i.e., g(a) = gmax, and let s = gsum − gmax.

Let

V ′ = V ∪ {zj

∣∣ 1 ≤ j ≤ |E|} ∪ {z(i)
j

∣∣∣ 1 ≤ j ≤ |E|, 1 ≤ i ≤ p− 1
}
.

Every equation ej in E is of the form wj1 + wj2 + wj3 = cj where wjk
is either a

variable or an inverted variable and cj is a group constant. For each such equation add
the equation wj1 + wj2 + wj3 = cj + zj to E′1, where zj are fresh variables.

Construct the following set of equations

E′2 =
{
z
(i)
j = izj + a

∣∣∣ 1 ≤ j ≤ |E|, 1 ≤ i ≤ p− 1
}
.

Note that i is an integer and the expression izj should be interpreted as the sum zj +
. . . + zj with i terms.

Let E′ = E′1 ∪ E′2, and let

w
(
z
(i)
j

)
= 1, 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ |E|

and w(·) = 0 otherwise.
We claim that the procedure presented above is a gap-preserving reduction from

MAX-E3-LIN-p to W-MAX SOL EQN(Zp , g) with parameters

c = (1− δ)|E|,
c′ = (1− δ)|E|(p− 1)gmax + δ|E|s, and

ρ = p
1− δ

1 + δ
.

Where δ is the constant from Theorem 3. The last parameter, ρ′, is specified below.
According to Theorem 3 we know that either OPT(I) ≥ |E|(1 − δ) or OPT(I) ≤
|E|(1 + δ)/p.

Case 1: (OPT(I) ≥ (1−δ)|E|) Let f be an assignment such that m(I, f) ≥ (1−δ)|E|.
We can then construct an assignment, f ′, to I ′ as follows: if x ∈ V then let f ′(x) =
f(x), for every 1 ≤ j ≤ |E|, let f ′(zj) be the value such that equation ej is satisfied
and finally let

f ′
(
z
(i)
j

)
= if ′(zj) + a, for 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ |E|.
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Note that f ′(zj) = 0G iff equation ej is satisfied by f . It is easy to verify that every
equation in E′ is satisfied by f ′.

Before we prove a bound on m′(I ′, f ′), note that the sum

p−1∑
i=1

g
(
f ′
(
z
(i)
j

))
is either equal to (p − 1)gmax (if f ′(zj) = 0G) or equal to s (if f ′(zj) �= 0G). The
latter case follows from the fact that Zp is cyclic group and every element except 0G is
a generator. Hence, every equation in E will either contribute (p−1)gmax to m′(I ′, f ′)
or it will contribute s. We also know that at least (1− δ)|E| equations are satisfied and
each one of them will therefore contribute (p − 1)gmax to m′(I ′, f ′). This argument
gives us the following bound on m′(I ′, f ′),

m′(I ′, f ′) =
|E|∑
j=1

p−1∑
i=1

g
(
f ′
(
z
(i)
j

))
≥ (1− δ)|E|(p− 1)gmax + δ|E|s = c′.

Hence, if OPT(I) ≥ c then OPT(I ′) ≥ c′.

Case 2: (OPT(I) ≤ |E|(1+δ)/p) If OPT(I) ≤ |E|(1+δ)/p = c/ρ, then any assignment
to I ′ cannot have assigned more than |E|(1 + δ)/p of the zi variables the value 0G. If
there is such an assignment, then it can be used to construct an assignment f to I
such that m(I, f) > |E|(1 + δ)/p which contradicts our assumption. Hence, at most
|E|(1+ δ)/p variables of the form zi has been assigned the value 0G in any assignment
to I ′.

Let f ′ be an assignment to I ′ such that OPT(I ′) = m′(I ′, f ′). >From the argument
above we know that

m′(I ′, f ′) =
|E|∑
i=1

p∑
j=1

g
(
f ′
(
z
(i)
j

))
≤ |E|1 + δ

p
gmax(p− 1) + |E|

(
1− 1 + δ

p

)
s.

Let h denote the quantity on the right hand side of the inequality above. We want to find
the largest ρ′ that satisfies OPT(I ′) ≤ c′/ρ′. If we choose ρ′ such that c′/ρ′ = h then
OPT(I ′) ≤ c′/ρ′ because of OPT(I ′) = m′(I ′, f ′) ≤ h.

ρ′ =
c′

h
=

(1 − δ)|E|(p− 1)gmax + δ|E|s
|E| 1+δ

p gmax(p− 1) + |E|
(
1− 1+δ

p

)
s

=
pgmax

gmax + sp−(1+δ)
p−1 + δgmax

+ pδ
s/(p− 1)− gmax

gmax + sp−(1+δ)
p−1 + δgmax

Now, given a fixed but arbitrary ε > 0 we can choose 0 < δ < p−1
p+1 such that

ρ′ > p
gmax

gmax + s
− ε = p

gmax

gsum
− ε = α− ε.

The gap-preserving reduction implies that it is NP-hard to find ρ′-approximations
to W-MAX SOL EQN(Zp, g), and since ρ′ > α− ε we have the desired result. ��
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5 Proof of Main Theorem

Before we can prove our main result we need the lemma below.

Lemma 2. If MAX SOL EQN(Zp , g) is approximable within in r, then W-MAX SOL

EQN(Zp, g) is approximable within r + o(1), where the o(·)-notation is with respect to
the size of the instance.

This lemma can be proved using techniques similar to those used in the proof of
Lemma 3.11 in [10] and the proof of Theorem 4 in [5]. Due to this fact and lack of
space we omit the proof. We are now ready to prove Theorem 1.

Proof (of Theorem 1). The approximation algorithm in Theorem 2 is the first part of
Theorem 1.

Lemma 2 says that if we can find r-approximate solutions for MAX SOL EQN(Zp ,
g), then we can find (r + o(1))-approximate solutions for W-MAX SOL EQN(Zp , g).
Hence, if we can find α− δ approximations for some δ > 0 for MAX SOL EQN(Zp , g)
then we can find (α− δ + o(1))-approximate solutions for W-MAX SOL EQN(Zp, g).
However, as the sizes of the instances grow we will, at some point, have−δ+ o(1) < 0
which means that we would be able to find (α− ε)-approximate solutions, where ε > 0,
for W-MAX SOL EQN(Zp, g). But Theorem 4 says that this is not possible. Therefore,
MAX SOL EQN(Zp , g) is not approximable within α − δ, for any δ > 0, unless P =
NP. ��

The situation is almost the same for W-MAX SOL EQN(Zp , g). We have an α-
approximate algorithm for MAX SOL EQN(Zp , g) (Theorem 2) therefore, due to
Lemma 2 we have a (α + o(1))-approximate algorithm for W-MAX SOL EQN(Zp ,
g). Furthermore, it is not possible to approximate W-MAX SOL EQN(Zp, g) within
α− ε for any ε > 0 (Theorem 4).

All our hardness results holds for equations with at most three variables per equa-
tion. If we are given an equation with n variables where n > 3, we can reduce this
equation to one equation with n− 1 variables and one equation with 3 variables in the
following way: Given the equation x1 + . . .+xn = c where each xi is either a variable
or an inverted variable and c is a group constant, introduce the equation z = x1 + x2

where z is a fresh variable. Furthermore replace the original equation with the equation
z + x3 + . . . + xn = c. Let the weight of z be zero. Those two equations are clearly
equivalent to the original equation in the problem W-MAX SOL EQN(Zp, g). The proof
of Lemma 2 do not introduce any equations with more than two variables, so we get the
same result for MAX SOL EQN(Zp, g).

If the instances of W-MAX SOL EQN(Zp , g) are restricted to have at most two
variables per equation then the problem is tractable. The following algorithm solves
this restricted problem in polynomial time.

A system of equations where there are at most two variables per equation can be
represented by a graph in the following way: let each variable be a vertex in the graph
and introduce an edge between two vertices if the corresponding variables appear in
the same equation. It is clear that the connected components of the graph are indepen-
dent subsystems of the system of equations. Hence, finding the optimum of the system
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of equations is equivalent to finding the optimum of each of the subsystems that cor-
responds to the connected components. To find the optimum of one such subsystem,
choose a variable, x, and assign a value to it. This assignment will force assignments of
values to every other variable in the subsystem. The optimum can be found by testing
every possible assignment of values to x. If this is done for every independent subsys-
tem the optimum for the entire system of equations will be found in polynomial time.

6 Concluding Remarks

We have given tight approximability results for some maximum solution equation prob-
lems. One natural generalisation of our work might be to investigate the problem where
the set of equations are replaced by a set of constraints over some constraint family.
The problem will then be a proper generalisation of the problem MAX ONES studied
by Khanna et al [10]. A start for such results might be to try to classify which families
of constraints give rise to tractable optimisation problems.
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Abstract. This paper analyzes the computational complexity of the
model checking problem for Higher Order Fixpoint Logic – the modal
μ-calculus enriched with a typed λ-calculus. It is hard for every level of
the elementary time/space hierarchy and in elementary time/space when
restricted to formulas of bounded type order.

1 Introduction

Temporal logics are well-established tools for the specification of correctness
properties and their verification in hard- and software design processes. One
of the most famous temporal logics is Kozen’s modal μ-calculus Lμ [16] which
extends multi-modal logic with extremal fixpoint quantifiers. Lμ subsumes many
other temporal logics like CTL∗ [10], and with it CTL [9] and LTL [19], as well
as PDL [12].
Lμ is equi-expressive to the bisimulation-invariant fragment of Monadic Sec-

ond Order Logic over trees or graphs [11,15]. Hence, properties expressed by
formulas of the modal μ-calculus are only regular. There are, however, many
interesting correctness properties of programs that are not regular. Examples
include uniform inevitability [8] which states that a certain event occurs globally
at the same time in all possible runs of the system; counting properties like “at
any point in a run of a protocol there have never been more send - than receive-
actions”; formulas saying that an unbounded number of data does not lose its
order during a transmission process; etc.

When program verification was introduced to computer science, programs
as well as their correctness properties were mainly specified in temporal logics.
Hence, verification meant to check formulas of the form ϕ → ψ for validity, or
equally formulas of the form ϕ∧ψ for satisfiability. An intrinsic problem for this
approach and non-regular properties is undecidability. Note that the intersection
problem for context-free languages is already undecidable [1].

One of the earliest attempts at verifying non-regular properties of programs
was Non-Regular PDL [13] which enriches ordinary PDL by context-free pro-
grams. Non-Regular PDL is highly undecidable, hence, the logic did not receive
much attention for program verification purposes. Its model checking problem,
however, remains decidable on finite transition systems.
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Although the theoretical complexity of the model checking problem is nor-
mally below that of its satisfiability problem, it often requires a lot more time or
space to do model checking. This is simply because the input to a model checker
is usually a lot bigger compared to that of a satisfiability checker. Hence, the
feasibility of model checking is very much limited by the state space explosion
problem: real-world examples result in huge transition systems that are very hard
to model check simply because of their sheer size. However, in recent years var-
ious clever techniques have been invented that can cope with huge state spaces,
starting with local model checking, and resulting in symbolic methods like BDD-
based [4] or bounded model checking [6]. They are also a reason for the shift in
importance from the satisfiability checking to the model checking problem for
program verification.

More expressive power naturally comes with higher complexities. But with
good model checking techniques at hand, verifying non-regular properties has
become worthwhile again. This is for example reflected in the introduction of
Fixpoint Logic with Chop, FLC, [18] which extends Lμ with a sequential com-
position operator. It is capable of expressing many non-regular – and even non-
context-free – properties, and its model checking problem on finite transition
systems is decidable in deterministic exponential time [17].

Another logic capable of expressing non-regular properties is the Modal Iter-
ation Calculus, MIC, [7] which extends Lμ with inflationary fixpoint quantifiers.
Similar to FLC, the satisfiability checking problem for MIC is undecidable but
its model checking problem is decidable in deterministic polynomial space [7].

In order to achieve non-regular effects in FLC, the original Lμ semantics is
lifted to a function from sets of states to sets of states. This idea has been followed
consequently in the introduction of Higher Order Fixpoint Logic, HFL, [23] which
incorporates a typed λ-calculus into the modal μ-calculus. This gives it even more
expressive power than FLC. HFL is, for example, capable of expressing assume-
guarantee-properties. Still, HFL’s model checking problem on finite transition
systems remains decidable. This has been stated in its introductory work [23]
but no analysis of its computational complexity has been done so far.

Here we set out to answer the open question concerning the complexity of
HFL’s model checking problem. We start by recalling the logic and giving a few
examples in Section 2. Section 3 presents a reduction from the satisfiability prob-
lem for First Order Logic over finite words to HFL’s model checking problem.
Consequently, the latter is hard for every level of the elementary time/space
hierarchy. I.e. there is no model checking algorithm for HFL that runs in time
given by a tower of exponentials whose height does not depend on the input for-
mula. This is not too surprising because HFL incorporates the typed λ-calculus
for which the problem of deciding whether a given term can be transformed into
another given one, is also non-elementary [21]. This can be reduced to the model
checking problem for HFL.

Here we provide a more fine-grained analysis of HFL’s model checking prob-
lem. When restricted to terms of type order k, it is hard for (k − 3)ExpSpace
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and included in (k + 1)ExpTime. It remains to be seen whether this gap can be
closed.

2 Preliminaries

Let P = {p, q, . . .} be a set of atomic propositions, A = {a, b, . . .} be a finite set
of action names, and V = {X,Y,X1, . . .} a set of variable names. For simplicity,
we fix P , A, and V for the rest of the paper.

A v ∈ {−,+, 0} is called a variance. The set of HFL-types is the smallest set
containing the atomic type Prop and being closed under function typing with
variances, i.e. if σ and τ are HFL-types and v is a variance, then σv → τ is an
HFL-type. Formulas of HFL are given by the following grammar:

ϕ ::= q | X | ¬ϕ | ϕ ∨ ϕ | 〈a〉ϕ | ϕ ϕ | λ(Xv : τ).ϕ | μ(X : τ).ϕ .

We use the standard abbreviations: tt := q ∨ ¬q for some q ∈ P , ff := ¬tt,
ϕ ∧ ψ := ¬(¬ϕ ∧ ¬ψ), [a]ψ := ¬〈a〉¬ψ, and νX.ϕ := ¬μX.¬ϕ[¬X/X ]. We will
assume that any variable without an explicit type annotation is of the ground
type Prop. Also, if a variance is omitted it is implicitly assumed to be 0.

A sequence Γ of the form Xv1
1 : τ1, . . . , Xvn

n : τn where Xi are variables, τi

are types and vi are variances is called a context (we assume all Xi are distinct).
An HFL-formula ϕ has type τ in context Γ if the statement Γ 9 ϕ : τ can be
inferred using the rules of Figure 1. We say that ϕ is well-formed if Γ 9 ϕ : τ for
some Γ and τ .

For a variance v, we define its complement v− as + if v = −, as −, if v = +,
and 0 otherwise. For a context Γ = Xv1

1 : τ1, . . . , Xvn
n : τn, the complement Γ−

is defined as X
v−
1

1 : τ1, . . . , X
v−

n
n : τn.

A (labeled) transition system is a structure T = (S, { a−→}, L) where S is
a finite set of states, a−→ is a binary relation on states for each a ∈ A, and

(var) Γ, Xv : τ  X : τ if v ∈ {0, +} (neg)
Γ−  ϕ : Prop

Γ  ¬ϕ : Prop

(or)
Γ  ϕ : Prop Γ  ψ : Prop

Γ  ϕ ∨ ψ : Prop
(mod)

Γ  ϕ : Prop
Γ  〈a〉ϕ : Prop

(abs)
Γ, Xv : σ  ϕ : τ

Γ  λ(Xv : σ).ϕ : (σv → τ )
(fix)

Γ, X+ : τ  ϕ : τ

Γ  μ(X : τ ).ϕ : τ

(app+)
Γ  ϕ : (σ+ → τ ) Γ  ψ : σ

Γ  (ϕ ψ) : τ
(app−)

Γ  ϕ : (σ− → τ ) Γ−  ψ : σ

Γ  (ϕ ψ) : τ

(app0)
Γ  ϕ : (σ0 → τ ) Γ  ψ : σ Γ−  ψ : σ

Γ  (ϕ ψ) : τ
(prop)

Γ  p : Prop

Fig. 1. Type inference rules for HFL



The Complexity of Model Checking Higher Order Fixpoint Logic 643

T [[Γ  q : Prop]]η = {s ∈ S | q ∈ L(s)}
T [[Γ  X : τ ]]η = η(X)

T [[Γ  ¬ϕ : Prop]]η = S − T [[Γ−  ϕ : Prop]]η

T [[Γ  ϕ ∨ ψ : Prop]]η = T [[Γ  ϕ : Prop]]η ∪ T [[Γ  ψ : Prop]]η

T [[Γ  〈a〉ϕ : Prop]]η = {s ∈ S | s
a−→ t for some t ∈ T [[Γ  ϕ : Prop]]η}

T [[Γ  λ(Xv : τ ).ϕ : τv → τ ′]]η = F ∈ T [[τv → τ ′]] s.t. ∀d ∈ T [[τ ]]

F (d) = T [[Γ, Xv : τ  ϕ : τ ′]]η[X �→ d]

T [[Γ  ϕ ψ : τ ′]]η =
(
T [[Γ  ϕ : τv → τ ′]]η

)
(T [[Γ ′  ψ : τ ]]η)

T [[Γ  μ(X : τ )ϕ : τ ]]η =
�

T [[τ ]]{d ∈ τ |
T [[Γ, X+ : τ  ϕ : τ ]]η[X �→ d] ≤T [[τ ]] d}

Fig. 2. Semantics of HFL

L : S → 2P is a labeling function denoting the set of propositional constants
that are true in a state.

The semantics of a type w.r.t. a transition system T is a complete lattice,
inductively defined on the type as

T [[Prop]] = (2S ,⊆) , T [[σv → τ ]] = (T [[σ]])v → T [[τ ]] .

Here, for two partial orders τ̄ = (τ,≤τ ) and σ̄ = (σ,≤σ), σ̄ → τ̄ denotes the par-
tial order of all monotone functions ordered pointwise, and, τ̄v denotes (τ,≤v

τ ).
≤+

τ is ≤τ , a ≤−τ b iff b ≤τ a, and ≤0
τ=≤τ ∩ ≤−τ .

An environment η is a possibly partial map on the variable set V . For a
context Γ = Xv1

1 : τ1, . . . , Xvn
n : τn, we say that η respects Γ , denoted by η |= Γ ,

if η(Xi) ∈ T [[τi]] for i ∈ {1, . . . , n}. We write η[X �→ a] for the environment
that maps X to a and otherwise agrees with η. If η |= Γ and a ∈ T [[τ ]] then
η[X �→ a] |= Γ,X : τ , where X is a variable that does not appear in Γ .

For any well-typed term Γ 9 ϕ : τ and environment η |= Γ , Figure 2 defines
the semantics of ϕ inductively to be an element of T [[τ ]]. In the clause for function
application (ϕ ψ) the context Γ ′ is Γ if v ∈ {+, 0}, and is Γ− if v = −.

The model checking problem for HFL is the following: Given an HFL sentence
ϕ : Prop, a transition system T and a set of statesAdecide whether ornotT [[ϕ]]=A.

We consider fragments of formulas that can be built using restricted type
orders only. Let

ord(Prop) := 0 , ord(σ → τ) := max{1 + ord(σ), ord(τ)}
and HFLk := { ϕ ∈ HFL | 9 ϕ : Prop using types τ with ord(τ) ≤ k only }.
Example 1. The following HFL formula expresses the non-regular property “on
any path the number of a’s seen at any time never exceeds the number of b’s
seen so far.”

νX.[a]ff ∧ [b]
((
ν(Z : Prop→ Prop).λY.([a]Y ∧ [b] (Z (Z Y ))

)
X
)
.
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Note how function composition is used to “remember” in the argument to Z how
many times a b-action has been seen along any path. Every b-action gives the
potential to do another a-action later on which is remembered in the additional
application of Z. a-action “uses up” one Z. If there have been as many a’s as b’s
then the current state must be in the semantics of X again, hence, cannot do
another a-action, etc.

Example 2. Let 2n
0 := n and 2n

m+1 := 22n
m . For any m ∈ N, there is an HFL for-

mula ϕm expressing the fact that there is a maximal path of length 21
m (number

of states on this path) through a transition system. It can be constructed using
a typed version of the Church numeral 2. Let P0 = Prop and Pi+1 = Pi → Pi.
For i ≥ 1 define ψi of type Pi+1 as λ(F : Pi).λ(X : Pi−1).F (F X). Then

ϕm := ψm ψm−1 . . . ψ1

(
λX.〈−〉X) (

[−] ff
)
.

Note that for any m ∈ N, ϕm is of size polynomial in m. This indicates that
HFL is able to express computations of Turing Machines of arbitrary elementary
complexity. The next section shows that this is indeed the case.

3 The Lower Complexity Bound

Let Σ be a finite alphabet. Formulas of FO in negation normal form over words
in Σ∗ are given by the following grammar.

ϕ ::= x ≤ y | x < y | Pa(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ
where x, y are variables and a ∈ Σ.

A word w ∈ Σ∗ of length n is a function of type {0, . . . , n− 1} → Σ. Thus,
w(i) denotes the i-th letter of w. FO formulas are interpreted over words in the
usual way, written w |=η ϕ for a word w, a formula ϕ and an environment η
evaluating the free variables in ϕ by positions in w.

Let Σ0 and Π0 be the set of all quantifier-free formulas of FO. Σk+1 is the clo-
sure of Σk ∪Πk under the boolean operators and existential quantification. Sim-
ilarly, Πk+1 is constructed from Σk ∪Πk using universal quantification instead.

Let DTime(f(n)) and DSpace(f(n)) be the classes of languages that can be
decided by a deterministic Turing Machine in time, resp. space, f(n) where n
measures the length of the input word to the machine. The k-th levels of the
elementary time/space hierarchy are

kExpTime =
⋃
c∈N

DTime(2c·n
k ), kExpSpace =

⋃
c∈N

DSpace(2c·n
k ) .

Furthermore, the elementary time/space hierarchy is

ElTime :=
⋃
k∈N

kExpTime =
⋃
k∈N

kExpSpace .

The standard translation of an FO formula into a finite automaton [3] and the
encoding of space-bounded Turing Machine computations in FO [22,20] yield the
following results.
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Theorem 1. An FO sentence ϕ ∈ Σk+1 of length n has a model iff it has a
model of length 2n

k .

Theorem 2. For all k ≥ 1: The satisfiability problem for FO formulas in Σk+1

is hard for kExpSpace.

We will use these results to prove kExpSpace hardness of HFL. Our first step is
to translate the problem of deciding whether a given binary word w of length
2n

k is a model of an FO sentence ϕ into the HFL model checking problem.
Let us fix n and define Tn to be a transition system with states Sn =

{0, 1, . . . , n − 1}, an empty labeling (we will not use propositional constants)
and a cyclic next state relation →⊆ Sn × Sn given by 0 → n− 1 and i→ i− 1
for i = 1, ..., n− 1.

We represent the Boolean values false and true by the two elements of B =
{∅, Sn} ⊂ Tn[[Prop]]. In the sequel we will implicitly assume that all semantic
interpretations are w.r.t Tn and omit it in front of semantic brackets. Hence we
can write [[ff]] and [[tt]] for the representations of false and true, respectively.

Let Nn
0 = {{0}, {1}, . . . , {n − 1}} and let Nn

k+1 = Nn
k → B. Clearly, each

Nn
k has exactly 2n

k elements which we will use to represent numbers in the range
0, . . . ,2n

k−1. We have alsoNn
k ⊆ [[Nk]] where N0 = Prop and Nk+1 = Nk → Prop.

Note that the elements of Nn
k+1 = Nn

k → B can be equivalently viewed as
predicates over Nn

k , subsets of Nn
k or binary words of length 2n

k .
For a number j ∈ {0, 1, . . . ,2n

k − 1} let [[j]]k be the element of Nn
k represent-

ing j, defined inductively by [[j]]0 = {j} and

[[j]]k(x) :=

{
[[tt]] if x = [[i]]k−1 and ji = 1,
[[ff]] o.w.

where ji is the i-th bit in the binary representation of j. For a binary word w of
length 2n

k let [[w]]k := [[
∑

i wi · 2i]]k+1.
The possibility of a compact encoding of FO logic in HFL relies on the exis-

tence of polynomial size HFL formulas describing basic operations on numbers
represented as elements of Nn

k . We define

inck : Nk → Nk , eqk : Nk → Nk → Prop , searchk : (Nk → Prop)→ Prop

adhering to the following specifications

[[inck]] [[j]]k = [[j + 1]]k , [[eqk]] [[j]]k [[i]]k =
{

[[tt]] , iff j = i
[[ff]] , o.w.

For a predicate p ∈ Nn
k+1,

[[searchk]] p =

{
[[tt]] iff exists x ∈ Nn

k s.t. p(x) = [[tt]]
[[ff]] o.w.

The search function searchk can be implemented using inck and recursion. A
helper function search′k P x applies P to the successive numbers, starting from
x, taking the union of the results.
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searchk := λ(P : Nk → Prop).search′k P ⊥k ,

search′k := λ(P : Nk → Prop). μ(Z : Nk → Prop).
λ(X : Nk). (P X) ∨ (Z (inck X)) .

Formula ⊥k : Nk represents 0 and is defined as

⊥0 := [−] ff , ⊥k := λ(X : Nk−1). ff for k > 0 .

Functions eqk and inck are defined by induction on k. For k = 0 we set

eq0 := λX.λY.(X ↔ Y ) , inc0 := λX.〈−〉X .

For k > 0, function eqk is implemented by searching for an argument at which
two number representations differ:

eqk := λ(X : Nk).λ(Y : Nk).¬(searchk−1 λ(I : Nk−1).¬(X I ↔ Y I)
)
.

Function inck is the usual incrementation of a number in binary representation.
The helper function inc′k x i adds one to the i-th bit of n and possibly the following
bits if the carry-over occurs.

inck := λ(X : Nk). inc′k X ⊥k−1 .

The value of [[inc′k]] [[x]]k [[i]]k−1 is a function which for each j returns the j-th bit
of x+2i (encoded as [[tt]] or [[ff]]). For j = i the corresponding bit is ¬xi. If there
is no carry-over (xi = 0) then the remaining bits are unchanged. Otherwise the
remaining bits are the same as in x + 2i+1.

inc′k := λ(X : Nk). μ(Z : Nk−1 → Nk). λ(I : Nk−1).
λ(J : Nk−1). if (eqk−1 J I)

(¬(X I))(
if ¬(X I) (X J) (Z (inck−1 I) J)

)
where if := λP.λQ.λR. (P ∧Q) ∨ (¬P ∧R).

Note that the lengths of inck, eqk and searchk as strings can be exponential
in k. However, the number of their subformulas is only polynomial in k.

Lemma 1. For any k ≥ 0, any i ∈ {0, . . . ,2n
k − 1}, and any p ∈ Nn

k → B we
have: [[search′k]] p [[i]]k = [[tt]] iff p([[j]]k) = [[tt]] for some i ≤ j < 2n

k .

Proof. Simply because [[search′k]] p [[i]]k ≡
2n

k−1⋃
j=i

p([[j]]k). ��

Proposition 1. For any k, eqk, inck ∈ HFLk+1 and searchk, search
′
k ∈ HFLk+2.

Let ϕ be an FO sentence. For given k we translate ϕ into an HFLk+2 formula
trk(ϕ) : Nk+1 → Prop s.t. for any word w of length 2n

k , w is a model of ϕ iff(Tn[[trk(ϕ)]]
)
(Tn[[w]]k) = Tn[[tt]].



The Complexity of Model Checking Higher Order Fixpoint Logic 647

trk(x ≤ y) := λ(w : Nk+1). search′k x (λ(u : Nk). eqk u y) ,
trk(P0(x)) := λ(w : Nk+1).¬(w x) ,

trk(P1(x)) := λ(w : Nk+1). (w x) ,

trk(∃x.ϕ) := λ(w : Nk+1). searchk (λ(x : Nk). trk(ϕ) w) ,

trk(¬ϕ) := λ(w : Nk+1).¬(trk(ϕ) w) ,

trk(ϕ ∨ ψ) := λ(w : Nk+1). (trk(ϕ) w) ∨ (trk(ψ) w) .

Conjunctions and universal quantifiers can be translated using negation and the
above formulas. Note that free variables of ϕ become free variables of type Nk

and variance 0 in trk(ϕ).

Lemma 2. For any FO sentence ϕ the translation trk(ϕ) is a predicate. That
is, Tn[[trk(ϕ)]] is an element of Nn

k+2 – a function which returns either Tn[[tt]] or
Tn[[ff]] when applied to an argument from Nn

k+1.

Proof. This follows from the fact that, by their specifications, searchk and search′k
are predicates. Hence trk(ϕ) is a predicate as a Boolean combination of predicates.

Proposition 2. For any k and ϕ, trk(ϕ) ∈ HFLk+2.

Lemma 3. Let ϕ be an FO formula with variables x1, . . . , xl. For any word w
of length 2n

k and FO-environment η we have

w |=η ϕ iff
(Tn[[trk(ϕ)]]ρ

)
(Tn[[w]]k) = Tn[[tt]]

where ρ is an HFL environment given by ρ(xi) = Tn[[η(xi)]]k.

Proof. By induction on the structure of ϕ. We fix n and k and as before omit
Tn in front of semantic brackets.

Case ϕ = xi ≤ xj: Then [[trk(ϕ)]]ρ = [[search′k]] [[a]]k p where a = η(xi), b =
η(xj) and predicate p is given by p(x) = [[eqk]]x [[b]]k. We have w |=η ϕ iff a ≤ b
iff exists a ≤ c < 2n

k s.t. p([[c]]k) = [[tt]] iff [[search′k]] [[a]]k p = [[tt]], by Lemma 1.

Case ϕ = ∃x.ψ: Then [[trk(ϕ)]]ρ = [[searchk]] p where p([[i]]k) = [[trk(ψ)]]ρ[x �→
[[i]]k] [[w]]k. By the specification of searchk and induction hypothesis we have
([[trk(ϕ)]]ρ) [[w]]k = [[tt]] iff p([[i]]k) = [[tt]] for some i iff w |=η[x �→i] ψ iff w |=η ϕ.

Case ϕ = P0(xi): Then w |=η ϕ iff wη(xi) = 0 iff [[w]]k [[η(xi)]]k = [[ff]] iff
([[trk(ϕ)]]ρ) [[w]]k = [[tt]].

All other cases are either analogous or follow immediately from the induction
hypothesis when negation is used in formulas. ��
Lemma 4. The satisfiability problem for FO sentences in Σk is polynomially
reducible to the model checking problem for HFLk+2.

Proof. First note that we can restrict ourselves to the satisfiability problem for
FOk over the binary alphabet {0, 1} because any other alphabet can be encoded
in it at a logarithmic expense only.
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Given a Σk formula ϕ of length n we can construct in polynomial time and
space an instance of the HFLk+2 model checking problem consisting of a formula
ϕ′ = searchk trk−1(ϕ), transition system Tn and the set Tn[[tt]] = {0, 1, . . . , n−1}.
Note that ϕ′ ∈ HFLk+2 by Propositions 1 and 2. From Lemmas 1, 2 and 3 it
follows that Tn[[ϕ′]] = Tn[[tt]] iff ϕ has a model of size 2n

k−1 which, by Theorem 1,
is equivalent to ϕ having a model. ��
Theorem 2 together with the reduction of Lemma 4 yields the following result.

Theorem 3. The model checking problem for HFLk+3 is hard for kExpSpace
under polynomial time reductions.

Corollary 1. The model checking problem for HFL is not in ElTime.

Note that the reduction only uses modal formulas 〈−〉ϕ and [−]ϕ because 2n
k is

an upper bound on a minimal model for an FO sentence in Σk+1 of length n.
However, 2n

k = 21
k+log∗ n. This enables us to use modality-free formulas and

transition systems of fixed size 1 in the reduction. The price to pay is that,
in order to achieve kExpSpace-hardness, one needs formulas with unrestricted
types. But it shows that HFL model checking is not in ElTime for fixed and
arbitrarily small transition systems already.

4 The Upper Complexity Bound

In the following we will identify a type τ and its underlying complete lattice
induced by a transition system T with state set S. In order to simplify notation
we fix T for the remainder of this section.

Suppose |S| = n for some n ∈ N. We define the size #(τ) of an HFL type τ ,
as well as rp(τ) – a space measure for a representation of one of its elements.

#(Prop) := 2n , #(σ → τ) := #(τ)#(σ) ,

rp(Prop) := n , rp(σ → τ) := #(σ) · rp(τ) .

Lemma 5. For all HFL types τ we have:

(a) There are only #(τ) many different elements of τ .
(b) An element x of τ can be represented using space O(rp(τ)).
(c) #(τ) ≤ 2O(n)

ord(τ)+1.

(d) rp(τ) ≤ 2O(n)
ord(τ).

Proof. Part (a) is standard. Part (b) is proved by induction on the structure of
τ . The claim is easily seen to be true for τ = Prop. Let τ = τ1 → τ2, i.e. any
element of τ is a function. Such a function can be represented by cascading tables
where a table for type Prop consists of one entry only. For τ1 → τ2 the table
must contain for every element of τ1 one entry of τ2. Since #(τ1) is finite, we can
assume to have a standard enumeration for all elements of τ1. This enumeration
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can be used to determine the order in which the function values are stored in the
table. With such an enumeration at hand, one does not need to write down the
function arguments, and by (a) and the induction hypothesis the overall space
needed is O(rp(τ1 → τ2)).

We also prove (c) by induction on the structure of τ . For τ = Prop this is
true. Let τ = τ1 → τ2. Then we have

#(τ) = #(τ2)#(τ1) ≤ (2O(n)
ord(τ2)+1)

2
O(n)
ord(τ1)+1 = 22

O(n)
ord(τ2)·2

O(n)
ord(τ1)+1

≤ 22
2·O(n)
max{ord(τ2),ord(τ1)+1} = 2O(n)

ord(τ)+1 .

Again, the claim in (d) is easily seen to be true for τ = Prop. Let τ = τ1 → τ2,
i.e. ord(τ) ≥ 1. Note that ord(τ1) ≤ ord(τ) − 1, and ord(τ2) ≤ ord(τ). Then

rp(τ) = 2O(n)
ord(τ1)+1 · 2O(n)

ord(τ2)
≤ 2O(n)

ord(τ) · 2O(n)
ord(τ) ≤ 2O(n)

ord(τ)

by (c) and the hypothesis. ��
Theorem 4. For all k ∈ N, the model checking problem for HFLk and finite
transition systems is in (k + 1)ExpTime.

Proof. For a finite transition system T = (S, { a−→ | a ∈ A}, L) with |S| = n and
an HFL formula ϕ of type τ , we describe an alternating procedure for finding
the denotation of ϕ. The existential player ∃ proposes an element of τ as [[ϕ]]
and the universal player ∀ challenges her choice. The game proceeds along the
structure of ϕ in the following way.

If ϕ = λ(X : σ).ψ then ∀ chooses an entry in the table written by ∃ as a
value of ϕ. The row in which the entry is found determines the argument to ϕ,
i.e. a value for X . ∀ can now invoke the verification protocol to check that this
is the correct value of ψ(X) when X has the value given by the entry.

For ϕ = ψ1 ψ2, first player ∃ has to provide a table for ψ1 and a denotation
for ψ2. The player ∀ can either check that the value in ψ1’s table in the row
corresponding to ψ2 is the previously guessed value for ϕ. Or he can proceed to
challenge the denotation of ψ2.

To verify a guess x of the value of ϕ = μ(X : τ).ψ first ∃ writes a table of a
function λ(X : τ).ψ. Furthermore, she names a row in this table that determines
a value for X . If the value in this row is not the same as the value of X she looses
because she has not found a fixpoint. Then player ∀ can either challenge the
whole table as above or name another smaller table row that defines a fixpoint.
Note that it is always possible to require the entries in a table of type τ to respect
the order ≤τ .

In all other cases ϕ is of type Prop and its value is a bit vector of length n.
Correctness of Boolean operations can be easily verified by ∀ using additional
O(n) space for storing the values of the operands.

Clearly the space needed to perform the above procedure is bounded by the
maximal rp(τ) where τ is a type of a subformula of ϕ. This includes using the
enumeration function to find corresponding table rows. It is fair to assume that
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in order to enumerate 2O(n)
k elements one does not need more space than 2O(n)

k .
Hence, by Lemma 5 the model checking problem is in alternating 2O(n)

k -space
which equals (k + 1)ExpTime [5]. ��

5 Conclusion

We have shown that the model checking problem for HFL is hard for every
kExpTime and consequently of non-elementary complexity. It is tempting to
dismiss HFL as a specification formalism of any practical use. But the same argu-
ment would also rule out any practical implementation of a satisfiability checker
for Monadic Second Order Logic over words or trees (MSO) since this problem
has non-elementary complexity, too. However, the verification tool Mona [14]
shows that in many cases satisfiability of MSO formulas can be checked efficiently.
This is mainly because of the use of efficiently manipulable data structures like
BDDs [2], and the fact that formulas used in practical cases do not coincide with
those that witness the high complexity.

Thus, the theoretical complexity bounds proved in this paper need to be
seen as a high alert warning sign for someone building a model checking tool
based on HFL. This will certainly require the use of efficient data structures as
well as other clever optimizations. However, only such an implementation will be
able to judge the use of HFL as a specification formalism properly. Furthermore,
Theorems 3 and 4 show that in order to reach high levels in ElTime, one needs
formulas of high type order. But such types might not be needed in order to
formulate natural correctness properties, cf. Example 1.

It remains to be seen whether the gap between (k − 3)ExpSpace-hardness
and inclusion in (k + 1)ExpTime can be reduced and finally closed.

Acknowledgments. We would like to thank Martin Leucker for discussing HFL’s
model checking problem and an anonymous referee for pointing out Statman’s
result on the typed λ-calculus.
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Abstract. We consider the problem of job scheduling on a variable volt-
age processor with d discrete voltage/speed levels. We give an algorithm
which constructs a minimum energy schedule for n jobs in O(dn log n)
time. Previous approaches solve this problem by first computing the op-
timal continuous solution in O(n3) time and then adjusting the speed
to discrete levels. In our approach, the optimal discrete solution is char-
acterized and computed directly from the inputs. We also show that
O(n log n) time is required, hence the algorithm is optimal for fixed d.

1 Introduction

Advances in processor, memory, and communication technologies have enabled
the development and widespread use of portable electronic devices. As such
devices are typically powered by batteries, energy efficiency has become an im-
portant issue. With dynamic voltage scaling techniques (DVS), processors are
able to operate at a range of voltages and frequencies. Since energy consump-
tion is at least a quadratic function of the supply voltage (hence CPU speed), it
saves energy to execute jobs as slowly as possible while still satisfying all timing
constraints.

We refer to the associated scheduling problem as min-energy DVS schedul-
ing problem (or DVS problem for short); the precise formulation will be given in
Section 2. The problem is different from classical scheduling on fixed-speed pro-
cessors, and it has received much attention from both theoretical and engineering
communities in recent years. One of the earliest theoretical models for DVS was
introduced in [1]. They gave a characterization of the min-energy DVS schedule
and an O(n3) algorithm 1 for computing it . No special assumption was made
on the power consumption function except convexity. This optimal schedule has

� This work is supported by National Natural Science Foundation of China (60135010),
National Natural Science Foundation of China (60321002) and the Chinese National
Key Foundation Research & Development Plan (2004CB318108).

1 The complexity of the algorithm was said to be further reducible in [1], but that
claim has since been withdrawn.
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been referenced widely, since it provides a main benchmark for evaluating other
scheduling algorithms in both theoretical and simulation work.

In the min-energy DVS schedule mentioned above, the processor must be
able to run at any real-valued speed s in order to achieve optimality. In practice,
variable voltage processors only run at a finite number of speed levels chosen from
specific points on the power function curve. For example, the Intel SpeedStep
technology [2] currently used in Intel’s notebooks supports only 3 speed levels,
although the new Foxon technology will soon enable Intel server chips to run at
as many as 64 speed grades. Thus, an accurate model for min-energy scheduling
should capture the discrete, rather than continuous, nature of the available speed
scale. This consideration has motivated our present work.

In this paper we consider the discrete version of the DVS scheduling problem.
Denote by s1 > s2 > . . . > sd the clock speeds corresponding to d given discrete
voltage levels. The goal is to find, under the restriction that only these speeds are
available for job execution, a schedule that consumes as little energy as possible.
(It is assumed that the highest speed s1 is fast enough to guarantee a feasible
schedule for the given jobs.) This problem was considered in [3] for a single job
(i.e. n = 1), where they observed that minimum energy is achieved by using the
immediate neighbors si, si+1 of the ideal speed s in appropriate proportions. It
was later extended in [4] to give an optimal discrete schedule for n jobs, obtained
by first computing the optimal continuous DVS schedule, and then individually
adjusting the speed of each job appropriately to adjacent levels as done in [3].

The question naturally arises: Is it possible to find a direct approach for
solving the optimal discrete DVS scheduling problem, without first computing
the optimal continuous schedule? We answer the question in the affirmative.
For n jobs with arbitrary arrival-time/deadline constraints and d given discrete
supply voltages (speeds), we give an algorithm that finds an optimal discrete
DVS schedule in O(dn log n) time. We also show that this complexity is optimal
for any fixed d. We remark that the O(n3) algorithm for finding continuous DVS
schedule (cf Section 2) computes the highest speed, 2nd highest speed, etc for
execution in a strictly sequential manner, and may use up to n different speeds
in the final schedule. Therefore it is unclear a priori how to find shortcuts to
solve the discrete problem. Our approach is different from that of [4] which is
based on the continuous version and therefore requires O(n3) time.

Our algorithm for optimal discrete DVS proceeds in two stages. In stage
1, the jobs in J are partitioned into d disjoint groups J1, J2, . . . , Jd where Ji

consists of all jobs whose execution speeds in the continuous optimal schedule
Sopt lie between si and si+1. We show that this multi-level partition can be
obtained without determining the exact optimal execution speed of each job. In
stage two, we proceed to construct an optimal schedule for each group Ji using
two speeds si and si+1. Both the separation of each group Ji in stage 1, and the
subsequent scheduling of Ji using two speed levels in stage 2 can be accomplished
in time O(n log n) per group. Hence this two-stage algorithm yields an optimal
discrete voltage schedule for J in total time O(dn log n). The algorithm admits a
simple implementation although its proof of correctness and complexity analysis
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are non-trivial. Aside from its theoretical value, we also expect our algorithm to
be useful in generating optimal discrete DVS schedules for simulation purposes
as in the continuous case.

We briefly mention some additional theoretical results on DVS, although
they are not directly related to the problem considered in this paper. In [1],
two on-line heuristics AVR (Average Rate) and OPA (Optimal Available) were
introduced for the case that jobs arrive one at a time. AVR was shown to have
a competitive ratio of at most 8 in [1]; recently a tight competitive ratio of 4
was proven for OPA in [5]. For jobs with fixed priority, the scheduling problem is
shown to be NP-hard and an FPTAS is given in [6]. In addition, [7] gave efficient
algorithms for computing the optimal schedule for job sets structured as trees.
(Interested reader can find further references from these papers.)

The remainder of the paper is organized as follows. We give the problem
formulation and review the optimal continuous schedule in Sections 2. Section 3
discusses some mathematical properties associated with EDF (earliest deadline
first) scheduling under different speeds. Section 4 and Section 5 give details of
the two stages of the algorithm as outlined above. The combined algorithm and
a lower bound are presented in Section 6. Finally some concluding remarks are
given in Section 7. Due to the page limit, many of the proofs are omitted in this
version.

2 Problem Formulation

Each job jk in a job set J over [0, 1] is characterized by three parameters: arrival
time ak, deadline bk and required number of CPU cycles Rk. A schedule S for J
is a pair of functions (s(t), job(t)) defining the processor speed and the job being
executed at time t. Both functions are piecewise constant with finitely many
discontinuities. A feasible schedule must give each job its required number of
cycles between arrival time and deadline (with perhaps intermittent execution).
We assume that the power P , or energy consumed per unit time, is a convex
function of the processor speed. The total energy consumed by a schedule S is
E(S) =

∫ 1

0
P (s(t))dt. The goal of the min-energy scheduling problem is to find,

for any given job set J , a feasible schedule that minimizes E(S). We refer to
this problem as DVS scheduling (or sometimes Continuous DVS scheduling to
distinguish it from the discrete version below).

In the discrete version of the problem, we assume d discrete voltage levels are
given, enabling the processer to run at d clock speeds s1 > s2 > . . . > sd. The
goal is to find a minimum-energy schedule for a job set using only these speeds.
We may assume that, in each problem instance, the highest speed s1 is always
fast enough to guarantee a feasible schedule for the given jobs. We refer to this
problem as Discrete DVS scheduling.

For the continuous DVS scheduling problem, the optimal schedule Sopt can
be characterized based on the notion of a critical interval for J , which is an
interval I in which a group of jobs must be scheduled at maximum constant
speed g(I) in any optimal schedule for J . The algorithm proceeds by identifying
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such a critical interval I, scheduling those ’critical’ jobs at speed g(I) over I,
then constructing a subproblem for the remaining jobs and solving it recursively.
The optimal s(t) is in fact unique, whereas job(t) is not always so. The details
are given below.

Definition 1. Define the intensity of an interval I = [z, z′] to be g(I) =
∑

Rj

z′−z
where the sum is taken over all jobs j� with [a�, b�] ⊆ [z, z′].

The interval [c, d] achieving the maximum g(I) will be the critical inter-
val chosen for the current job set. All jobs j� ∈ J satisfying [a�, b�] ⊆ [c, d]
can be feasibly scheduled at speed g([c, d]) by EDF principle. The interval [c, d]
is then removed from [0, 1]; all remaining intervals [aj , bj ] are updated (com-
pressed) accordingly and the algorithm recurses. The complete algorithm is give
in Algorithm 1.

Input: a job set J
Output: Optimal Voltage Schedule S

repeat
Select I∗ = [z, z′] with s = max g(I)
Schedule ji ∈ JI∗ at s over I∗ by Earliest Deadline First policy
J ← J − JI∗
for all jk ∈ J do

if bk ∈ [z, z′] then
bk ← z

else if bk ≥ z′ then

bk ← bk − (z′ − z)
end if
Reset arrival times similarly

end for
until J is empty

Algorithm 1: OS (Optimal Schedule)

Let CIi ⊆ [0, 1] be the ith critical interval of J . Denote by Csi the execution
speed during CIi, and by CJi those jobs executed in CIi. We take note of a
basic property of critical intervals which will be useful in later discussions.

Lemma 1. A job j� ∈ J belongs to
⋃i

k=1 CJk if and only if the interval [a�, b�]
of j� satisfies [a�, b�] ⊆

⋃i
k=1 CIk.

3 EDF with Variable Speeds

The EDF (earliest deadline first) principle defines an ordering on the jobs ac-
cording to their deadlines. At any time t, among jobs jk that are available for
execution, that is, jk satisfying t ∈ [ak, bk) and jk is not yet finished by t, it is
the job with minimum bk that will be executed during [t, t + ε]. The EDF is a
natural scheduling principle and many optimal schedules (such as the continu-
ous min-energy schedule described above) in fact conform to it. All schedules
considered in the remainder of this paper are EDF schedules. Hence we assume
the jobs in J = {j1, . . . , jn} are indexed by their deadlines.

We introduce an important tool for solving Discrete DVS scheduling problem:
an EDF schedule that runs at some constant speed s (except for periods of
idleness).



656 M. Li and F.F. Yao

Definition 2. An s-schedule for J is a schedule which conforms to EDF prin-
ciple and uses constant speed s in executing any job of J .

As long as there are unfinished jobs available at time t, an s-schedule will
select a job by EDF principle and execute it at speed s. An s-schedule may
contain periods of idleness when there are no jobs available for execution. An
s-schedule may also yield an unfeasible schedule for J since the speed constraint
may leave some jobs unfinished by deadline.

Definition 3. In any schedule S, a maximal subinterval of [0, 1] devoted to ex-
ecuting the same job jk is called an execution interval (for jk with respect to S).
Denote by Ik(S) the collection of all execution intervals for jk with respect to
S. With respect to the s-schedule for J , any execution interval will be called an
s-execution interval, and the collection of all s-execution intervals for job jk will
be denoted by Is

k.

Notice that for any EDF schedule S, it is always true that Ii(S) ⊆ [ai, bi]−
∪i−1

k=1Ik(S). For a given J , we observe some interesting monotone relations that
exist among the EDF schedules of J with respect to different speed functions.
These relations will be exploited by our algorithms later. They may also be of
independent interest in studying other types of scheduling problems.

Lemma 2. Let S1 and S2 be two EDF schedules whose speed functions satisfy
s1(t) > s2(t) for all t whenever S1 is not idle.
1) For any t and any job jk, the workload of jk executed by time t under S1 is
always no less than that under S2.
2) ∪i

k=1Ik(S1) ⊆ ∪i
k=1Ik(S2) for any i, 1 ≤ i ≤ n.

3) Any job of J that can be finished under S2 is always finished strictly earlier
under S1.
4) If S2 is a feasible schedule for J , then so is S1.

Note that as a special case, Lemma 2 holds when we substitute s1-schedule
and s2-schedule, with s1 > s2, for S1 and S2 respectively.

Lemma 3. The s-schedule for J contains at most 2n s-execution intervals and
can be computed in O(n) time if the arrival times and deadlines are sorted.

4 Partition of Jobs by Speed Level

We will consider the first stage of the algorithm in this section. Clearly, to obtain
an O(dn log n)-time partition of J into d groups corresponding to d speed levels,
it suffices to give an O(n log n) algorithm which can properly separate J into
two groups according to any given speed s.

Definition 4. Given a job set J and any speed s, let J≥s and J<s denote the
subset of J consisting of jobs whose executing speed are ≥ s and < s respectively
in the (continuous) optimal schedule of J . We refer to the partition 〈J≥s, J<s〉
as the s-partition of J .
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Let T≥s ⊆ [0, 1] be the union of all critical intervals CIi with Csi ≥ s. By
Lemma 1, a job i is in J≥s if and only if its interval [ai, bi] ⊆ T≥s. Thus J≥s is
uniquely determined by T≥s and we can focus on computing T≥s instead. Let
T<s = [0, 1]− T≥s and we refer to 〈T≥s, T<s〉 as the s-partition of time for J .

An example of J with 11 jobs is given in Figure 1, together with the optimal
speed function Sopt(t). The portion of Sopt(t) lying above the horizontal line
Y = s projects to T≥s on the time-axis. In general, T≥s may consist of a number
of connected components.

In the remainder of this section, we will show that certain features existing
in the s-schedule of J can be used for identifying connected components of T<s.
This then leads to an efficient algorithm for computing the s-partition of time
〈T≥s, T<s〉.
Definition 5. In the s-schedule for J , we say a deadline bi is tight if job ji is
either unfinished at time bi, or it is finished just on time at bi. An idle interval
g = [t, t′] in the s-schedule is called a gap.

Figure 2 depicts the s-schedule for the sample job set J considered in Figure 1.
All tight deadlines and gaps have been marked along the time axis. By overlaying
the s-partition of time 〈T≥s, T<s〉 for J , we notice that 1) tight deadlines only
exist in T≥s, and 2) each connected component of T≥s ends with a tight deadline.
We prove below that these properties always hold for any job set.

Lemma 4.

1) Tight deadlines in an s-schedule can only exist in T≥s.
2) The rightmost point of each connected component of T≥s must be a tight

deadline.

Speed

Time
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Fig. 1. The s-partition for a sample J . The
jobs are represented by their intervals only,
and indexed according to deadline. Solid
intervals represent jobs belonging to J≥s,
while dashed intervals represent jobs be-
longing to J<s.

Speed

s

Time
T

1 2 5 3 4 5 6 11 10 7 8 910

Fig. 2. The s-execution intervals for the
same J in Fig. 1 are illustrated, where the
number indicates which job is being exe-
cuted. Shaded blocks correspond to gaps
(idle time), while arrows point to tight
deadlines.
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Property 2) of Lemma 4 gives a necessary condition for identifying the right
boundary of each connected component of T≥s. The corresponding left boundary
of such a component can also be identified through left-right symmetry of the
scheduling problem with respect to time.

Definition 6. Given a job set J , the reverse job set Jrev consists of jobs with the
same workload but time intervals [1− bi, 1−ai]. The s-schedule for Jrev is called
the reverse s-schedule for J . We call an arrival time ai (for the original job set
J) tight if 1− ai corresponds to a tight deadline in the reverse s-schedule for J .

One may also view the reverse s-schedule as a schedule which runs backwards:
starting from time 1 and executing jobs of J by the LAF principle (Latest Arrival
time First) at constant speed s whenever possible.) Lemma 5 is the symmetric
analogue of Lemma 4.

Lemma 5.

1) Tight arrival times in an s-schedule can only exist in T≥s.
2) The leftmost point of each connected component of T≥s must be a tight arrival

time.

Lemmas 4 and 5 are not sufficient by themselves to enable an efficient sep-
aration of T≥s from T<s. Fortunately, we have an additional useful property
related to T<s. Observe that in Figure 2 all gaps of the s-schedule fall within
T<s. This is in fact true in general and furthermore, a gap must exist in T<s.

Lemma 6. Gaps in an s-schedule can only exist in T<s; furthermore a gap must
exist in T<s.

Finally we collect the properties that will be used by the partition algorithm
in the following theorem. We first give a definition.

Definition 7. Given a gap [x, y] in an s-schedule, we define the expansion of
[x, y] to be the smallest interval [b, a] satisfying 1) [b, a] ⊇ [x, y], and 2) b and a
are tight deadline and tight arrival time respectively of the s-schedule. (Note: we
adopt the convention that 0 is considered a tight deadline while 1 is considered
a tight arrival time.)

Theorem 1.

1) A gap always exists in an s-schedule if T<s �= ∅.
2) The expansion [b, a] of a gap [x, y] defines the connected component in T<s

containing [x, y].

Proof. Properties 1) comes from Lemma 6, while Property 2) follows from
Lemma 4 and Lemma 5. �

Notice that, although Theorem 1 guarantees that one can always find a gap
and then use it to identify a connected component C of T<s (provided T<s �= ∅),
it is not true that all connected component of T<s must contain gaps and can
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be identified simultaneously. However, once a component C is found, by deleting
the s-execution intervals of all jobs whose interval [ai, bi] intersects with C, gaps
can surely be found (provided T<s−C �= ∅) and the process can continue. This
is true because, by reasoning similar to that of Lemma 6, the total workload of
the remaining jobs in J<s over T<s − C is less than s · |T<s − C|, hence a gap
must exist.

Speed

s

Time
T

b a

gap

xy

Fig. 3. Gap expansion: the indicated gap will be expanded into [b, a], a connected
component of T <s

The detailed algorithm for generating the s-partition is given in Algorithm 2
below.

Input: job set J and speed s
Output: s-partition of J

Sort arrival times and deadlines
Generate the s-schedule and reverse s-schedule for J
J≥s ← J
J<s ← ∅
T≥s ← [0, 1]
T <s ← ∅
Gaps = sorted list of gaps in s-schedule
while Gaps �= ∅ do

1. Choose any gap [x, y] from Gaps. Find the expansion [b, a] of [x, y].

2.J<s
new = {all jobs in J≥s whose interval [aj, bj ] intersects with [b, a] }

3.J≥s ← J≥s − J<s
new

4.J<s ← J<s ∪ J<s
new

5.T≥s ← T≥s − [b, a]
6.T <s ← T <s ∪ [b, a]
7.Gaps = Gaps ∪ { s-execution intervals of jobs in J<s

new}
8.Delete all gaps that are contained in [b, a]

end while
Return J<s and J≥s

Algorithm 2: Bi-Partition

Theorem 2. Algorithm 2 finds the s-partition 〈J≥s, J<s〉 for a job set J in
O(n log n) time.

Proof. The correctness of the algorithm is based on Theorem 1 and the dis-
cussions following the theorem. For the complexity part, sorting and generating
s-schedules take O(n log n) time. We now analyze individual steps inside the for
loop. For Step 1, finding the expansion of a gap only takes O(log n) time by
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binary search; with at most n expansions (to find at most n connected com-
ponents) the total cost is O(n logn). Step 2 can be done, with standard data
structures such as interval trees, in time O(log n)+|J<s

new| which amounts to total
time O(n log n) since

∑ |J<s
new| = O(n). It remains to consider the cost of Steps

7 and 8. Since each individual gap is added to and deleted from the sorted list
Gaps only once, and there are at most 2n s-execution intervals (hence gaps), the
cost is at most O(n log n). This shows that the total running time of Algorithm
2 is O(n log n). �

We next use Algorithm 2 as a subroutine to obtain Algorithm 3.

Input:
job set J and speed s1 > . . . > sd > sd+1 = 0
Output:
Partition of J into J1, . . . , Jd corresponding to speed levels

for i = 1 to d do

Obtain J
≥si+1 from J using Algorithm 2

Ji ← J
≥si+1

J ← J − Ji
Update J as in Algorithm 1

end for

Algorithm 3: Multi-level Partition

Theorem 3. Algorithm 3 partitions job set J into d subsets corresponding to d
speed levels in time O(dn log n).

5 Two-Level Schedule

After Algorithm 3 completes the multi-level partition of J into subsets J1, . . . , Jd,
we can proceed to schedule the jobs in each subset Ji with two appropriate
speed levels si and si+1. We will present a two-level scheduling algorithm whose
complexity is (n logn) for a set of n jobs. For this purpose, it suffices to describe
how to schedule the subset J1 with two available speeds s1 and s2 where s1 >
s2 > 0. We will schedule each connected component of J1 separately. Thus, the
two-level scheduler only deals with ‘eligible’ input job sets, i.e., those with a
continuous optimal schedule speed sopt(t) satisfying s1 ≥ sopt(t) ≥ s2 for all t.
(Clearly, this condition is satisfied by each connected component of J1 = J≥s2

output from Algorithm 3.) We give an alternative and equivalent definition of
‘eligibility’ in the following. This definition does not make reference to sopt(t)
and hence is more useful for the purpose of deriving a two-level schedule directly.

Definition 8. For a job set J over [0, 1], a two-level schedule with speeds s1 and
s2 (or (s1, s2)-schedule for short) for J is a feasible schedule s(t) for J , which is
piecewise constant over [0, 1] with either s(t) = s1 or s(t) = s2 for any t.

In other words, an (s1, s2)-schedule for J is a schedule using only speeds s1

and s2 which finishes every job and leaves no idle time.

Lemma 7. For a job set J over [0, 1], an (s1, s2)-schedule exists if and only if
1) the s1-schedule for J is a feasible schedule, and
2) the s2-schedule for J contains no idle time in [0, 1].
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In view of the preceding lemma, we give the following definition of eligibility
for input job sets to two-level scheduling.

Definition 9. A job set J over [0, 1] is said to be eligible for (s1, s2)-scheduling
if 1) the s1-schedule for J is a feasible schedule, and
2) the s2-schedule for J contains no idle time in [0, 1].

We will consider only eligible job sets in discussing two-level scheduling in
the remainder of this section. An (s1, s2)-schedule for J is said to be optimal if
it consumes minimum energy among all (s1, s2)-schedules for J .

Lemma 8. All (s1, s2)-schedules for an eligible job set J consume the same
amount of energy and hence are optimal.

The two-level schedule as described in the proof of Lemma 7, which first
computes the continuous optimal schedule and then rounds the execution speed
of each job up and down appropriately [4], requires O(n3) computation time.
We now describe a more efficient algorithm which directly outputs a two-level
schedule without first computing the continuous optimal schedule. The algorithm
runs in O(n) time if the input jobs are already sorted by deadline (as obtained
via Multi-level Partition), and O(n log n) time in general.

The two-level scheduling algorithm (Algorithm 4) proceeds as follows. It first
computes the s2-schedule for J which in general does not provide a feasible
schedule. We then transform it into a feasible schedule by suitably adjusting the
execution speed of each job from s2 to s1, and possibly extending its execution
interval if necessary. These adjustments are done in an orderly and systematic
manner to ensure overall feasibility. The algorithm needs to consult the corre-
sponding s1-schedule of J in making the transformation. An (s1, s2)-schedule for
J is produced at the end which by lemma 8 is an optimal two-level schedule.

Input:
speeds s1, s2 where s1 > s2
An eligible job set J for (s1, s2)-scheduling
Variables:
Committed: the list of allocated time intervals.
Committed(i): the time intervals allocated to job ji.

Output:
Optimal (s1, s2)-schedule for J

Compute s1-schedule for J to obtain I
s1
k

for k = 1, . . . , n.

Compute s2-schedule for J to obtain I
s2
k

for k = 1, . . . , n.

Committed ← ∅
for i = n downto 1 do

1. I =I
s2
i

− Committed

2. Take I′ ⊆ I
s1
i

of appropriate length (possibly 0) from the right end of I
s1
i

to obtain an (s1, s2)-schedule for ji over I ∪ I′
3. Committed(i) = I ∪ I′
4. Committed ← Committed ∪ Committed(i)

end for

Algorithm 4: Two-Level Schedule

In the remainder of this section, we consider the correctness and complexity
of Algorithm 4.

Let J be an eligible job set for (s1, s2)-scheduling. Assume the jobs in J are
sorted in increasing order by their deadlines as j1, j2, . . . , jn. After computing
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the s1-schedule and s2-schedule for J , the algorithm then allocates appropriate
execution time and speed for each job ji, in the order i = n, . . . , 1. Step 2 of the
for loop carries out the allocation for job ji. We examine this step in more detail
in the following lemma.

Lemma 9. In step 2 of the for loop, by choosing an appropriate interval I ′ ⊆ Is1
i

(assuming Is1
i ∩Committed = ∅), an (s1, s2)-schedule for job ji over I ∪ I ′ can

be found where I = Is2
i − Committed.

We next show that the assumption Is1
i ∩Committed = ∅ in Lemma 9 is indeed

satisfied when step 2 is encountered in the i-th iteration (see property 3) below).
In fact, we show by induction on i that the following induction hypotheses are
maintained by the algorithm at the start of the i-th iteration for i = n, . . . , 1.

Lemma 10. At the beginning of the i-th iteration of the for loop, the following
are true:
1) Committed(i + 1) ⊆ Is1

i+1 ∪ Is2
i+1

2) ∪n
k=i+1I

s2
k ⊆ Committed ⊆ (∪n

k=i+1I
s1
k ) ∪ (∪n

k=i+1I
s2
k )

3) Committed ∩ (∪i
k=1I

s1
k ) = ∅.

Theorem 4. Given an eligible job set J for (s1, s2)-scheduling, Algorithm 4
generates an (s1, s2)-schedule for J .

Proof. Each job ji is feasibly executed, with no idle time, over Committed(i) at
speeds {s1, s2} as specified in Lemma 9. By the time the algorithm terminates,
Committed = ∪n

k=1Committed(k) ⊇ ∪n
k=1I

s2
k = [0, 1] by Property 2) of Lemma

10. Hence there is no idle time in [0, 1]. The resulting schedule thus satisfies the
requirements of an (s1, s2)-schedule for J . �

Theorem 5. Algorithm 4 computes an optimal two-level schedule for J in O(n)
time if the jobs in J are sorted by deadline (as output by Algorithm 3), and in
O(n log n) time otherwise.

6 Optimal Discrete Voltage Schedule

Theorem 6. Algorithm 5 generates a min-energy Discrete DVS schedule with
d voltage levels in time O(dn log n) for n jobs.

Proof. This is a direct consequence of Theorem 3, Theorem 4 and Theorem 5. �

We next show that the running time of Algorithm 5 is optimal by proving
an Ω(n logn) lower bound in the algebraic decision tree model.

Theorem 7. Any deterministic algorithm for computing a min-energy Discrete
DVS schedule (MDDVS) with d ≥ 2 voltage levels will require Ω(n logn) time
for n jobs.
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Input:
job set J
speed levels: s1 > s2 > . . . > sd > sd+1 = 0
Output:
Optimal Discrete DVS Schedule for J

Generate J1, J2, . . . , Jd by Algorithm 3
for i = 1 to d do

Schedule jobs in Ji using Algorithm 4 with speeds si and si+1
end for
The union of the schedules give the optimal Discrete DVS schedule for J

Algorithm 5: Optimal Discrete DVS Schedule

7 Conclusion

In this paper we considered the problem of job scheduling on a variable volt-
age processor with d discrete voltage/speed levels. We give an algorithm which
constructs a minimum energy schedule for n jobs in O(dn logn) time, which is
optimal for fixed d. The min-energy discrete schedule is obtained without first
computing the continuous optimal solution. Our algorithm consists of two stages:
a multi-level partition of J into d disjoint groups Ji, followed by finding a two-
level schedule for each Ji using speeds si and si+1. The individual modules in
our algorithm, such as the multi-level partition and two-level scheduling, may
be of interest in themselves aside from the main result. Our algorithm admits
a simple implementation although its proof of correctness and complexity anal-
ysis are non-trivial. We have also discovered some nice fundamental properties
associated with EDF scheduling under variable speeds. Some of these properties
are stated as lemmas in Section 3 for easy reference. Our results may provide
some new insights and tools for the problem of min-energy job scheduling on
variable voltage processors. Aside from the theoretical value, we also expect the
algorithm to be useful in generating optimal discrete schedules for simulation
purposes as in the continuous case.
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Abstract. The word problem for inverse monoids generated by a set Γ subject
to relations of the form e = f , where e and f are both idempotents in the free
inverse monoid generated by Γ , is investigated. It is shown that for every fixed
monoid of this form the word problem can be solved in polynomial time which
solves an open problem of Margolis and Meakin. For the uniform word problem,
where the presentation is part of the input, EXPTIME-completeness is shown.
For the Cayley-graphs of these monoids, it is shown that the first-order theory
with regular path predicates is decidable. Regular path predicates allow to state
that there is a path from a node x to a node y that is labeled with a word from
some regular language. As a corollary, the decidability of the generalized word
problem is deduced. Finally, it is shown that the Cayley-graph of the free inverse
monoid has an undecidable monadic second-order theory.

1 Introduction

The decidability and complexity of algebraic questions in various kinds of structures is
a classical topic at the borderline of computer science and mathematics. The most basic
algorithmic question concerning algebraic structures is the word problem, which asks
whether two given expressions denote the same element of the underlying structure.
Markov and Post proved independently that the word problem for finitely presented
monoids is undecidable in general. This result can be seen as one of the first undecid-
ability results that touched real mathematics. Later, Novikov and Boone extended the
result of Markov and Post to finitely presented groups, see [9] for references.

In this paper, we are interested in a class of monoids that lies somewhere between
groups and general monoids: inverse monoids [15]. In the same way as groups can
be represented by sets of permutations, inverse monoids can be represented by sets of
partial injections [15]. Algorithmic questions for inverse monoids received increasing
attention in the past, and inverse monoid theory found several applications in combi-
natorial group theory, see e.g. the survey [11]. In [10], Margolis and Meakin presented
a large class of finitely presented inverse monoids with decidable word problems. An
inverse monoid from that class is of the form FIM(Γ )/P , where FIM(Γ ) is the free
inverse monoid generated by the set Γ and P is a presentation consisting of a finite num-
ber of identities between idempotents of FIM(Γ ); we call such a presentation idempo-
tent. In fact, in [10] it is shown that even the uniform word problem for idempotent
presentations is decidable. In this problem, also the presentation is part of the input.

J. Jędrzejowicz and A. Szepietowski (Eds.): MFCS 200 , LNCS 3618, pp. 664–675, 2005.
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The decidability proof of Margolis and Meakin uses Rabin’s seminal tree theorem
[16], concerning the decidability of the monadic second-order theory of the complete
binary tree. From the view point of complexity, the use of Rabin’s tree theorem is
somewhat unsatisfactory, because it leads to a nonelementary algorithm for the word
problem, i.e., the running time is not bounded by an exponent tower of fixed height.
Therefore, in [1,10] the question for a more efficient approach was asked. In Section 6
we show by using tree automata techniques that for every fixed idempotent presentation
the word problem for FIM(Γ )/P can be solved in polynomial time. For the uniform
word problem for idempotent presentations we prove completeness for EXPTIME (de-
terministic exponential time). Similarly to the method of Margolis and Meakin, we use
results from logic for the upper bound. But instead of translating the uniform word
problem into monadic second-order logic over the complete binary tree, we exploit a
translation into the modal μ-calculus, which is a popular logic for the verification of
reactive systems. Then, we can use a result from [5,19] stating that the model-checking
problem of the modal μ-calculus over context-free graphs [13] is EXPTIME-complete.

In Section 7 we study Cayley-graphs of inverse monoids of the form FIM(Γ )/P .
The Cayley-graph of a finitely generated monoidM w.r.t. a finite generating set Γ is
a Γ -labeled directed graph with node set M and an a-labeled edge from a node x to
a node y if y = xa inM. Cayley-graphs of groups are a fundamental tool in combi-
natorial group theory [9] and serve as a link to other fields like topology, graph theory,
and automata theory, see, e.g., [12,13]. Here we consider Cayley-graphs from a logical
point of view, see [6,7] for previous results in this direction. More precisely, we con-
sider an expansion of the Cayley-graph G that contains for every regular language L
over the generators ofM a binary predicate reachL. Two nodes u and v of G are re-
lated by reachL if there exists a path from u to v in the Cayley-graph, which is labeled
with a word from the language L. Our main result of Section 7 states that this struc-
ture has a decidable first-order theory, whenever the underlying monoid is of the form
FIM(Γ )/P for an idempotent presentation P (Theorem 6). An immediate corollary of
this result is that the generalized word problem of FIM(Γ )/P is decidable. The gen-
eralized word problem asks whether for given elements w,w1, . . . , wn ∈ FIM(Γ )/P ,
w belongs to the submonoid of FIM(Γ )/P generated by w1, . . . , wn. Our decidability
result for Cayley-graphs should be also compared with the undecidability result for the
existential theory of the free inverse monoid FIM({a, b}) [17], which consists of all
true statements over FIM({a, b}) of the form ∃x1 · · · ∃xm : ϕ, where ϕ is a boolean
combination of word equations (with constant). Finally, we complement our decidabil-
ity result for Cayley-graphs by showing that already the Cayley-graph of the free inverse
monoid FIM({a, b}) has an undecidable monadic second-order theory (Theorem 7).

Proofs that are omitted in this extended abstract can be found in the full version [8].

2 Preliminaries

For a finite alphabet Γ , we denote with Γ−1 = {a−1 | a ∈ Γ} a disjoint copy
of Γ . For a−1 ∈ Γ−1 we define (a−1)−1 = a; thus, −1 becomes an involution on
the alphabet Γ ∪ Γ−1. We extend this involution to words from (Γ ∪ Γ−1)∗ by set-
ting (b1b2 · · · bn)−1 = b−1

n · · · b−1
2 b−1

1 , where bi ∈ Γ ∪ Γ−1. The set of all regu-
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lar languages over an alphabet Γ is denoted by REG(Γ ). We assume that the reader
has some basic background in complexity theory. An alternating Turing-machine [2]
T = (Q,Σ, δ, q0, qf ) is a nondeterministic Turing-machine (where Q is the state set, Σ
is the tape alphabet, δ is the transition relation, q0 is the initial state, and qf is the unique
accepting state), where the set of nonfinal states Q \ {qf} is partitioned into two sets:
Q∃ (existential states) and Q∀ (universal states). We assume that T cannot make transi-
tions out of the final state qf . A configuration C with current state q is accepting, if (i)
q = qf , or (ii) q ∈ Q∃ and there exists a successor configuration of C that is accepting,
or (iii) q ∈ Q∀ and every successor configuration of C is accepting. An input word w
is accepted by T if the corresponding initial configuration is accepting. It is known that
EXPTIME (deterministic exponential time) equals APSPACE (the class of all problems
that can be accepted by an alternating Turing-machine in polynomial space) [2].

3 Relational Structures and Logic

See any text book on logic for more details on the subject of this section. A signature
is a countable set S of relational symbols, where each relational symbol R ∈ S has
an associated arity nR. A (relational) structure over the signature S is a tuple A =
(A, (RA)R∈S), where A is a set (the universe of A) and RA is a relation of arity nR

over the set A, which interprets the relational symbol R. We will assume that every
signature contains the equality symbol = and that =A is the identity relation on the
set A. As usual, a constant c ∈ A can be encoded by the unary relation {c}. Usually,
we denote the relation RA also with R. For B ⊆ A we define the restriction A
B =
(B, (RA ∩BnR)R∈S); it is again a structure over the signature S.

Next, let us introduce monadic second-order logic (MSO-logic). Let V1 (resp. V2)
be a countably infinite set of first-order variables (resp. second-order variables) which
range over elements (resp. subsets) of the universe A. First-order variables (resp.
second-order variables) are denoted x, y, z, x′, etc. (resp. X,Y, Z,X ′, etc.). MSO-
formulas over the signatureS are constructed from the atomic formulasR(x1, . . . , xnR)
and x ∈ X (where R ∈ S, x1, . . . , xnR , x ∈ V1, and X ∈ V2) using the boolean con-
nectives¬,∧, and∨, and quantifications over variables from V1 and V2. The notion of a
free occurrence of a variable is defined as usual. A formula without free occurrences of
variables is called an MSO-sentence. If ϕ(x1, . . . , xn, X1, . . . , Xm) is an MSO-formula
such that at most the first-order variables among x1, . . . , xn and the second-order vari-
ables among X1, . . . , Xm occur freely in ϕ, and a1, . . . , an ∈ A, A1, . . . , Am ⊆ A,
then A |= ϕ(a1, . . . , an, A1, . . . , Am) means that ϕ evaluates to true in A if the free
variable xi (resp. Xj) evaluates to ai (resp. Aj ). The MSO-theory of A, denoted by
MSOTh(A), is the set of all MSO-sentences ϕ such that A |= ϕ. A first-order for-
mula over the signature S is an MSO-formula that does not contain any occurrences
of second-order variables. In particular, first-order formulas do not contain atomic sub-
formulas of the form x ∈ X . The first-order theory FOTh(A) of A is the set of all
first-order sentences ϕ such that A |= ϕ.

Several times, we will use implicitly the well-known fact that reachability in graphs
can be expressed in MSO. More precisely, there exists an MSO-formula reach(x, y)
(over the signature containing a binary relation symbol E) such that for every directed
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graph G = (V,E) and all nodes s, t ∈ V we have G |= reach(s, t) iff (s, t) ∈ E∗.
Another important fact is that finiteness of a subset of a finitely-branching tree can
be expressed in MSO: There is an MSO-formula fin(X) (over the signature contain-
ing a binary relation symbol E) such that for every finitely-branching (and downward-
directed) tree T = (V,E) and all subsets U ⊆ V we have T |= fin(U) iff U is finite
(by König’s lemma, U is infinite iff the upward-closure of U contains an infinite path),
see also [16, Lemma 1.8].

In Section 6 we will make use of the modal μ-calculus, which is a popular logic for
the verification of reactive systems. Formulas of this logic are interpreted over edge-
labeled directed graphs. Let Σ be a finite set of edge labels. The syntax of the modal
μ-calculus is given by the following grammar (we only introduce those operators that
are needed later; other operators like¬ϕ or [a]ϕ are defined as usual):ϕ ::= true | X |
ϕ∨ϕ | ϕ∧ϕ | 〈a〉ϕ | μX.ϕ. Here X ∈ V2 is a second-order variable ranging over
sets of nodes and a ∈ Σ. Variables from V2 are bounded by the μ-operator. We define
the semantics of the modal μ-calculus w.r.t. an edge-labeled graph G = (V, (Ea)a∈Σ)
(Ea ⊆ V × V is the set of all a-labeled edges) and a valuation σ : V2 → 2V . To each
formula ϕ we assign the set ϕG(σ) ⊆ V of nodes where ϕ evaluates to true under the
valuation σ. For a valuation σ, a variable X ∈ V2, and a set U ⊆ V define σ[U/X ] as
the valuation with σ[U/X ](X) = U and σ[U/X ](Y ) = σ(Y ) for X �= Y . Now we
can define ϕG(σ) inductively as follows:

– trueG(σ) = V , XG(σ) = σ(X) for every X ∈ V2,
– (ϕ ∨ ψ)G(σ) = ϕG(σ) ∪ ψG(σ), (ϕ ∧ ψ)G(σ) = ϕG(σ) ∩ ψG(σ),
– (〈a〉ϕ)G(σ) = {u ∈ V | ∃v ∈ V : (u, v) ∈ Ea ∧ v ∈ ϕG(σ)},
– (μX.ϕ)G(σ) is the smallest fixpoint of the monotonic function U �→ ϕG(σ[U/X ])

Note that only the values of the valuation σ for free variables is important. In particular,
if ϕ is a sentence (i.e., a formula where all variables are bounded by μ-operators), then
the valuation σ is not relevant and we can write ϕG instead of ϕG(σ), where σ is an
arbitrary valuation. For a sentence ϕ and a node v ∈ V we write (G, v) |= ϕ if v ∈ ϕG.

A context-free graph [13] is the transition graph of a pushdown automaton, i.e.,
nodes are the configurations of a given pushdown automaton, and edges are given by the
transitions of the automaton. A more formal definition is not necessary for the purpose
of this paper. We will only need the following result:

Theorem 1 ([5,19]). The following problem is in EXPTIME:
INPUT: A pushdown automaton A defining a context-free graph G(A), a node v of

G(A), and a formula ϕ of the modal μ-calculus
QUESTION: (G(A), v) |= ϕ?

Moreover, there exists already a fixed formula ϕ for which this question is EXPTIME-
complete.

4 Word Problems and Cayley-Graphs

LetM = (M, ◦, 1) be a finitely generated monoid with identity 1 and let Σ be a finite
generating set forM, i.e., there exists a surjective monoid homomorphism h : Σ∗ →
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M. The word problem forM w.r.t. Σ is the computational problem that asks for two
given words u, v ∈ Σ∗, whether h(u) = h(v). It is well-known that if Σ1 and Σ2 are
two finite generating sets forM, then the word problem forM w.r.t. Σ1 is logspace
reducible to the word problem forM w.r.t. Σ2. Thus, the computational complexity of
the word problem does not depend on the underlying set of generators.

The Cayley-graph of the monoid M w.r.t. the generating set Σ is the relational
structure C(M, Σ) = (M, ({(u, v) ∈ M ×M | u ◦ h(a) = v})a∈Σ, 1). It is a rooted
directed graph, where every edge has a label from Σ and {(u, v) | u ◦ h(a) = v} is the
set of a-labeled edges. Since Σ generatesM, every u ∈M is reachable from the root 1.
Cayley-graphs of groups play an important role in combinatorial group theory [9]. On
the other hand, only a few papers deal with Cayley-graphs of monoids. Combinatorial
aspects of Cayley-graphs of monoids are studied in [4,20]. In [18], Cayley-graphs of
automatic monoids are investigated.

The free group FG(Γ ) generated by the set Γ is the quotient (Γ ∪ Γ−1)∗/δ, where
δ is the smallest congruence on (Γ ∪ Γ−1)∗ that contains all pairs (bb−1, ε) for b ∈
Γ ∪ Γ−1. Let γ : (Γ ∪ Γ−1)∗ → FG(Γ ) denote the canonical morphism mapping a
word u ∈ (Γ ∪ Γ−1)∗ to the group element represented by u. It is well known that for
every u ∈ (Γ ∪ Γ−1)∗ there exists a unique word r(u) ∈ (Γ ∪ Γ−1)∗ (the reduced
normalform of u) such that γ(u) = γ(r(u)) and r(u) does not contain a factor of the
form bb−1 for b ∈ Γ ∪ Γ−1. The word r(u) can be calculated from u in linear time.
It holds γ(u) = γ(v) iff r(u) = r(v). The Cayley-graph of FG(Γ ) w.r.t. the standard
generating set Γ ∪ Γ−1 will be denoted by C(Γ ); it is a finitely-branching tree and a
context-free graph [13].

Similarly to the word problem, if Σ1 and Σ2 are finite generating sets for the same
monoidM, then FOTh(C(M, Σ1)) is logspace reducible to FOTh(C(M, Σ2)) and
the same holds for the MSO-theories, see [7]. It is easy to see that the decidability of
the first-order theory of the Cayley-graph implies the decidability of the word problem.
On the other hand, there exists a finitely presented monoid for which the word problem
is decidable, but the first-order theory of the Cayley-graph is undecidable [7]. When
restricting to groups, the situation is different: The Cayley-graph of a finitely generated
group has a decidable first-order theory iff the group has a decidable word problem [6].
Moreover, the Cayley-graph of a finitely generated group has a decidable MSO-theory
iff the group is virtually free (i.e., has a free subgroup of finite index) [6,13]. We will
only need this result for the Cayley-graph C(Γ ) of the free group FG(Γ ):

Theorem 2 ([13]). For every finite Γ , MSOTh(C(Γ )) is decidable but nonelementary.

5 Inverse Monoids

A monoid M is called an inverse monoid if for each m ∈ M there is a unique
m−1 ∈ M such that m = mm−1m and m−1 = m−1mm−1. For detailed refer-
ence on inverse monoids see [15]; here we only recall the basic notions. Since the
class of inverse monoids forms a variety it follows from universal algebra that free
inverse monoids exist. The free inverse monoid generated by a set Γ is denoted by
FIM(Γ ); it is isomorphic to (Γ ∪ Γ−1)∗/ρ, where ρ is the smallest congruence on the
free monoid (Γ ∪ Γ−1)∗ which contains for all words v, w ∈ (Γ ∪ Γ−1)∗ the pairs
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(w,ww−1w) and (ww−1vv−1, vv−1ww−1) (which are also called the Vagner equa-
tions). Let α : (Γ ∪ Γ−1)∗ → FIM(Γ ) denote the canonical morphism mapping a
word u ∈ (Γ ∪ Γ−1)∗ to the element of FIM(Γ ) represented by u. Obviously, there
exists a morphism β : FIM(Γ ) → FG(Γ ) such that γ = β ◦ α. The free inverse
monoid FIM(Γ ) can be also represented via Munn trees: The Munn tree MT(u) of
u ∈ (Γ ∪ Γ−1)∗ is MT(u) = {γ(v) ∈ FG(Γ ) | ∃w ∈ (Γ ∪ Γ−1)∗ : u = vw}; it
is a finite and connected subset of the Cayley-graph C(Γ ) of the free group FG(Γ ). In
other words, MT(u) is the set of all nodes along the unique path in C(Γ ) that starts in
1 and that is labeled with the word u. We identify MT(u) with the subtree C(Γ )
MT(u)

of C(Γ ). Munn’s theorem [14] states that α(u) = α(v) for u, v ∈ (Γ ∪ Γ−1)∗ iff
r(u) = r(v) (i.e., γ(u) = γ(v)) and MT(u) = MT(v). It is well known that for a
word u ∈ (Γ ∪ Γ−1)∗, the element α(u) ∈ FIM(Γ ) is an idempotent element, i.e.,
α(uu) = α(u), iff r(u) = ε, i.e., γ(u) = 1.

For a finite set P ⊆ (Γ ∪Γ−1)∗× (Γ ∪Γ−1)∗ define FIM(Γ )/P = (Γ ∪Γ−1)∗/τ
to be the inverse monoid with the set Γ of generators and the set P of relations, where
τ is the smallest congruence on (Γ ∪ Γ−1)∗ generated by ρ ∪ P . Then the canon-
ical morphism μP : (Γ ∪ Γ−1)∗ → FIM(Γ )/P factors as μP = νP ◦ α with
νP : FIM(Γ ) → FIM(Γ )/P . For the rest of the paper, the meaning of the mor-
phisms α, γ, μP , and νP will be fixed. We say that P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

is an idempotent presentation if for all (e, f) ∈ P , α(e) and α(f) are both idempo-
tents of FIM(Γ ), i.e., r(e) = r(f) = ε. In this paper, we are concerned with inverse
monoids of the form FIM(Γ )/P for a finite idempotent presentation P . To solve the
word problem for such a monoid, Margolis and Meakin [10] constructed a closure op-
eration for Munn trees. We shortly review the ideas here. As remarked in [10], every
idempotent presentation P can be replaced by the presentation P ′ = {(e, ef), (f, ef) |
(e, f) ∈ P}, i.e., FIM(Γ )/P ∼= FIM(Γ )/P ′. Since MT(e) ⊆ MT(ef) ⊇ MT(f) if
r(e) = r(f) = ε, we can restrict in the following to idempotent presentations P such
that MT(e) ⊆ MT(f) for all (e, f) ∈ P . Let V ⊆ FG(Γ ). Define sets Vi ⊆ FG(Γ )
(i ≥ 1) inductively as follows: (i) V1 = V and (ii) for n ≥ 1 let

Vn+1 = Vn ∪
⋃

(e,f)∈P

{u ◦ v | u ∈ Vn, ∀w ∈MT(e) : u ◦ w ∈ Vn, v ∈MT(f)},

where ◦ refers to the multiplication in the free group FG(Γ ). Finally, define the closure
of V w.r.t. the presentation P as clP (V ) =

⋃
n≥1 Vn.

Theorem 3 ([10]). Let P be an idempotent presentation and let u, v ∈ (Γ ∪ Γ−1)∗.
Then μP (u) = μP (v) iff r(u) = r(v) (i.e., γ(u) = γ(v)) and clP (MT(u)) =
clP (MT(v)).

The result of Munn for FIM(Γ ) mentioned above is a special case of this result.

a a

a

= b b

b

= a b
Example 1. Let Γ = {a, b}, u = aa−1bb−1, and
P = {(aa−1, a2a−2), (bb−1, b2b−2)}. The Munn
trees for the words in the presentation P and u are
shown on the right; the bigger circle represents
the 1 of FG(Γ ). Then clP (MT(u)) = {an | n ≥ 0} ∪ {bn | n ≥ 0} ⊆ FG(Γ ).
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In the next section, instead of specifying a word w ∈ (Γ ∪ Γ−1)∗ (that represents
an idempotent in FIM(Γ ), i.e., r(w) = ε) explicitly, we will only show its Munn tree,
where as above the 1 of FG(Γ ) is drawn as a bigger circle. In fact, one can replace w
by any word that labels a path from the circle back to the circle and that visits all nodes;
the resulting word represents the same element of FIM(Γ ) as the original one.

Margolis and Meakin used Theorem 3 in order to decide the word problem for
FIM(Γ )/P . More precisely, they have shown that from a finite and idempotent presen-
tation P one can effectively construct an MSO-formula CLP (X,Y ) over the signature
of the Cayley-graph C(Γ ) such that for all words u ∈ (Γ ∪ Γ−1)∗ and all subsets
A ⊆ FG(Γ ): C(Γ ) |= CLP (MT(u), A) iff A = clP (MT(u)). The decidability of the
word problem for FIM(Γ )/P is an immediate consequence of Theorem 2 and Theo-
rem 3. But the application of Theorem 2 results in a nonelementary algorithm.

6 Complexity of the Word Problem

Using an efficient translation into tree automata over finite trees, we can prove:

Theorem 4. For every finite idempotent presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

the word problem for FIM(Γ )/P can be solved in deterministic polynomial time.

In the uniform case, where the presentation P is part of the input, the complexity in-
creases considerably:

Theorem 5. The following problem is EXPTIME-complete:
INPUT: A finite alphabet Γ , words u, v ∈ (Γ ∪ Γ−1)∗, and a finite idempotent

presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

QUESTION: μP (u) = μP (v)?

Proof. For the lower bound we use the fact that EXPTIME equals APSPACE. Thus, let
T = (Q,Σ, δ, q0, qf ) be a fixed alternating Turing machine that accepts an EXPTIME-
complete language. Assume that T works in space p(n) for a polynomial p on an input
of length n. W.l.o.g. we assume that:

– T alternates in each state, i.e., it either moves from a state of Q∃ to a state from
Q∀ ∪ {qf} or from a state of Q∀ to a state from Q∃ ∪ {qf}.

– The initial state q0 belongs to Q∃.
– For each pair (q, a) ∈ (Q \ {qf}) × Σ, the machine T has precisely two choices

according to δ, which we call choice 1 and choice 2.
– If T terminates in the final state qf , then the symbol that is currently read by the

head is some distinguished symbol $ ∈ Σ.

Define Γ = Σ ∪ (Q × Σ) ∪ {a1, a2, b1, b2,#}, where all unions are assumed to be
disjoint. A configuration of T is encoded as a word from #Σ∗(Q × Σ)Σ∗# ⊆ Γ ∗.
Now let w ∈ Σ∗ be an input of length n and let m = p(n). Then a configuration of T is
a word from

⋃m−1
i=0 #Σi(Q ×Σ)Σm−i−1# ⊆ Γm+2. Clearly, the symbol at position

1 < i < m + 2 at time t + 1 in a configuration only depends on the symbols at the
positions i− 1, i, and i + 1 at time t. Assume that c, c1, c2, c3 ∈ Σ ∪ (Q×Σ) ∪ {#}
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such that c1c2c3 ∈ {ε,#}Σ∗(Q×Σ)Σ∗{ε,#}. We write c1c2c3
j→ c for j ∈ {1, 2} if

the following holds: If three consecutive positions i− 1, i, and i + 1 of a configuration
contain the symbol sequence c1c2c3, then choice j of T results in the symbol c at

position i. We write c1c2c3
∃→ (d1, d2) for c1, c2, c3, d1, d2 ∈ Σ ∪ (Q × Σ) ∪ {#} if

one of the following two cases holds: (i) c1c2c3 ∈ {ε,#}Σ∗(Q∃ × Σ)Σ∗{ε,#} and

c1c2c3
j→ dj for j ∈ {1, 2} or (ii) c1c2c3 ∈ {ε,#}Σ∗{ε,#} and d1 = d2 = c2.

The notation c1c2c3
∀→ (d1, d2) is defined analogously, except that in the first case we

require c1c2c3 ∈ {ε,#}Σ∗(Q∀ ×Σ)Σ∗{ε,#}.

ai ai ai

# c1 c2 cm #. . .
We encode a configuration #c1c2 · · · cm#, where the cur-

rent state is from Q∃ by the subtree of C(Γ ) on the right,
where i = 1 or i = 2. If the current state is from Q∀, then
we take the same subgraph, except that bi replaces ai.

The idempotent presentation P ⊆ (Γ ∪Γ−1)∗× (Γ ∪Γ−1)∗ is constructed in such
a way from the machine T that building the closure from a Munn tree that represents
the initial configuration (in the above sense) corresponds to generating the whole com-
putation tree of the Turing machine T starting from the initial configuration. We will
describe each pair (e, f) ∈ P by the Munn trees of e and f .

x

#
x

xm

#

#

=

For all x ∈ {a1, a2, b1, b2} put the identity on the right into
P , which propagates the end-marker # along intervals of length
m+ 2 (here, the xm-labeled edge abbreviates a path consisting of
m many x-labeled edges). Successor configurations of the current
configuration are generated by the equations below, where i ∈
{1, 2}, 0 ≤ k ≤ m − 1, and c1c2c3

∃→ (d1, d2) (resp. c1c2c3
∀→

(d1, d2)) for the left (resp. right) equation:
c1

c2

c3

#

ai

ai

ak
i

c1

c2

c3

#

ai

ai

ak
i

bm−k
1

bm−k
2

d1 d2

=

c1

c2

c3

#

bi

bi

bk
i

c1

c2

c3

#

bi

bi

bk
i

am−k
1

am−k
2

d1 d2

=

The remaining equations propagate acceptance information back to the initial Munn
tree. Here the separation of the state set into existential and universal states becomes
important. Let f = (qf , $); recall that $ is the symbol under the head of T when T
terminates in state qf . For all i, j ∈ {1, 2} and all x ∈ {a1, a2, b1, b2} we put the
following equations into P :

f

x

x f

fx

x
=

f

ai

bj

f

f

ai

bj

= bi

a1 a2

f f

bi

a1 a2

f

f f

=
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a1

a1

...
a1

#

(q0, w1)

w2

wm

a1

a1

...
a1

#

f (q0, w1)

w2

wm

MT(u) MT(v)

This concludes the description of the presenta-
tion P . Now define the words u, v ∈ (Γ∪Γ−1)∗

as follows: Assume that the input word for our
alternating Turing machine w is of the form w =
w1w2 · · ·wn with wi ∈ Σ. For n + 1 ≤ i ≤ m
define wi = �, where � is the blank symbol of
T . Then the Munn trees of u and v are shown on
the right (we assume r(u) = r(v) = ε).

We claim that μP (u) = μP (v) iff the ma-
chine T accepts the word w. From the construction of u, v, and P it follows that T
accepts the word w iff MT(v) ⊆ clP (MT(u)). Since MT(u) ⊆ MT(v) this is equiva-
lent to clP (MT(v)) = clP (MT(u)), i.e., μP (u) = μP (v) due to Theorem 3 (note that
r(u) = r(v) = ε). This proves the EXPTIME lower bound.

For the upper bound let P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be an idempotent pre-
sentation and u, v ∈ (Γ ∪ Γ−1)∗. Since r(u) = r(v) can be checked in linear time,
it suffices by Theorem 3 to show that we can verify in EXPTIME whether MT(v) ⊆
clP (MT(u)) (note that clP (MT(v)) = clP (MT(u)) iff MT(u) ⊆ clP (MT(v)) and
MT(v) ⊆ clP (MT(u))). Let G be the graph that results from the Cayley-graph C(Γ )
by taking a new edge label #, adding a new node v0, and adding a #-labeled edge from
node 1 (i.e., the origin) of C(Γ ) to the new node v0. Since C(Γ ) is a context-free graph,
also G is context-free. By Theorem 1 it suffices to construct in polynomial time a modal
μ-calculus formula ϕu,v,P such that MT(v) ⊆ clP (MT(u)) iff (G, 1) |= ϕu,v,P .

For w = a1a2 · · · am (ai ∈ Γ ∪ Γ−1) and two positions i, j ∈ {1, . . . ,m}, i ≤ j,
let w[i, j] = ai · · · aj . If i > j, then set w[i, j] = ε. Moreover, we use 〈w〉φ as an
abbreviation for 〈a1〉〈a2〉 · · · 〈am〉φ. Assume that P = {(ei, fi) | 1 ≤ i ≤ n}, where
MT(ei) ⊆MT(fi). First, let

ϕu,P = μX.

⎛⎝ |u|∨
i=0

〈u[1, i]−1〉〈#〉true ∨
n∨

i=1

|fi|∨
j=0

〈fi[1, j]−1〉(
|ei|∧
k=0

〈ei[1, k]〉X)

⎞⎠ .

Then (G, x) |= ϕu,P iff x ∈ clP (MT(u)). The disjunction
∨|u|

i=0〈u[1, i]−1〉〈#〉true

expresses MT(u) ⊆ clP (MT(u)), whereas
∨n

i=1

∨|fi|
j=0〈fi[1, j]−1〉(∧|ei|

k=0〈ei[1, k]〉X)
defines all nodes such that via the inverse of some prefix of some word fi a node x can
be reached such that the whole path starting in x and labeled with ei already belongs to
X . Finally, set ϕu,v,P =

∧|v|
i=0〈v[1, i]〉ϕu,P . ��

The following result was conjectured in [19].

Corollary 1. There is a fixed context-free graph, for which the model-checking problem
of the modal μ-calculus (restricted to formulas of μ-nesting depth 1) is EXPTIME-
complete.

Proof. We can reuse the constructions from the previous proof. Note that the generating
set Γ from the lower bound proof is a fixed set; thus, the Cayley-graph C(Γ ) is a fixed
context-free graph. Hence, also the graph G constructed in the upper bound proof by
adding a #-labeled edge that leaves the origin 1 is a fixed context-free graph. For the
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input word w for the Turing machine T let u, v, and P be the data constructed in the
lower bound proof. Then w is accepted by T iff MT(v) ⊆ clP (MT(u)) iff (G, 1) |=
ϕu,v,P . This proves the corollary. ��

7 Cayley-Graphs of Inverse Monoids

LetM = (M, ◦, 1) be a monoid with a finite generating set Σ and let h : Σ∗ →M be
the canonical morphism. We define the following expansion C(M, Σ)reg of the Cayley-
graph C(M, Σ): C(M, Σ)reg = (M, (reachL)L∈REG(Σ), 1) with reachL = {(u, v) ∈
M ×M | ∃w ∈ L : u ◦ h(w) = v}. Thus, C(M, Σ) = (M, (reach{a})a∈Σ , 1). The
main result of this section is:

Theorem 6. Let P ⊆ (Γ∪Γ−1)∗×(Γ∪Γ−1)∗ be a finite and idempotent presentation.
Then the first-order theory of the structure C(FIM(Γ )/P, Γ ∪ Γ−1)reg is decidable.

The following undecidability result contrasts Theorem 6. It is easy to see that the de-
cidability of MSOTh(C(M, Γ )) implies the decidability of FOTh(C(M, Γ )reg).

Theorem 7. MSOTh(C(FIM({a, b}), {a, b, a−1, b−1})) is undecidable.

Theorem 7 can be shown by identifying an infinite grid as a minor of C(FIM({a, b})).
Before we prove Theorem 6, let us first state a corollary. The generalized word prob-

lem forM asks whether for given words u, u1, . . . , un ∈ Σ∗ the monoid element h(u)
belongs to the submonoid of M that is generated by the elements h(u1), . . . , h(un).
Theorem 6 easily implies:

Corollary 2. Let P ⊆ (Γ ∪Γ−1)∗ × (Γ ∪ Γ−1)∗ be a finite and idempotent presenta-
tion. Then the generalized word problem for FIM(Γ )/P is decidable.

To prove Theorem 6 we first need some lemmas.

Lemma 1. There exists a fixed MSO-formula ϕ(x, y) (over the signature consisting of
a binary relation symbol E) such that for every finite directed graph G = (V,E) and
all nodes s, t ∈ V we have: G |= ϕ(s, t) iff there is a path in G with initial vertex s and
terminal vertex t visiting all vertices from V .

For the proof of Lemma 1 one defines a partial order≺ on the set of strongly connected
components of G: U ≺ V for two different strongly connected components U and V if
and only if there is a (directed) path from a node of U to a node of V . Then there is a
path in G with initial vertex s and terminal vertex t visiting all vertices from V iff ≺ is
a total order and s (resp. t) belongs to the minimal (resp. maximal) strongly connected
component of G. These conditions can be easily formalized in MSO-logic.

Lemma 2. Let Σ be a finite alphabet and let L ∈ REG(Σ). Then one can construct an
MSO-sentence ψL (over a signature consisting of binary relation symbols Ea (a ∈ Σ)
and two constants s and t) such that for every finite structure G = (V, (Ea)a∈Σ , s, t)
we have G |= ψL iff there exists a path p = (v1, a1, v2, a2, . . . , vn) (vi ∈ V , ai ∈ Σ)
such that: v1 = s, vn = t, (vi, vi+1) ∈ Eai for all 1 ≤ i < n, a1a2 · · · an−1 ∈ L, and
V = {v1, v2, . . . , vn}.
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Let us just give a brief sketch of the proof of Lemma 2. Let A = (Q,Σ, δ, q0, F ) be a
deterministic finite automaton with L(A) = L. W.l.o.g. Q = {1, . . . ,m}. Define the
structure fA(G) by fA(G) = (V ×Q,E,Δ, Is, Ft), where

E = {((u, i), (v, j)) | ∃a ∈ Σ : (u, v) ∈ Ea ∧ δ(i, a) = j},
Δ = {((v, 1), . . . , (v,m)) | v ∈ V }, Is = {(s, q0)}, and Ft = {t} × F.

Then one can show that fA is an MSO-transduction in the sense of [3]. Thus, there exists
a backwards translation f �

A such that for every MSO-sentence φ over the signature of
fA(G) we have: fA(G) |= φ iff G |= f �

L(φ) [3]. Now, using Lemma 1 and the relation
Δ it is easy to write down an MSO-sentence φ over the signature of fA(G) expressing
that there exists a path from (s, q0) to a node in Ft such that the set of first components
of nodes along that path is precisely V . Then the sentence f �

A(φ) is the desired sentence.
Lemma 2 easily implies the next lemma.

Lemma 3. Let Σ be a finite alphabet and let L ∈ REG(Σ). Then one can con-
struct an MSO-formula θL(X) (over a signature consisting of binary relation sym-
bols Ea (a ∈ Σ) and two constants s and t) such that for every finite structure G =
(V, (Ea)a∈Σ , s, t) and every finite set U ⊆ V we have G |= θL(U) iff there exists
a path p = (v1, a1, v2, a2, . . . , vn) (vi ∈ V , ai ∈ Σ) such that: v1 = s, vn = t,
(vi, vi+1) ∈ Eai for all 1 ≤ i < n, a1a2 · · · an−1 ∈ L, and U ⊆ {v1, v2, . . . , vn}.

We are now able to finish the proof of Theorem 6. Let P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

be a finite and idempotent presentation. We want to show that the first-order theory of
the structure A = C(FIM(Γ )/P, Γ ∪ Γ−1)reg is decidable. For this, we use Theorem
3 and translate each first-order sentence ϕ over A into an MSO-sentence ||ϕ|| over the
Cayley graph C(Γ ) of the free group FG(Γ ) such thatA |= ϕ iff C(Γ ) |= ||ϕ||. Together
with Theorem 2 this will complete the proof of Theorem 6.

To every variable x (ranging over FIM(Γ )/P ) in ϕ we associate two variables in
||ϕ||: (i) an MSO-variable X ′ representing clP (MT(u)), where u is any word represent-
ing x, and (ii) an FO-variable x′ representing γ(u) ∈ FG(Γ ). The relationship between
x′ and X ′ is expressed by the MSO-formula (over the signature of C(Γ )) MT(x′, X ′) =
∃X : Θ(x′, X,X ′), where Θ(x′, X,X ′) = (1, x′ ∈ X ∧ X is connected and finite ∧
CLP (X,X ′)). Recall that finiteness and connectedness of a subset of the finitely-
branching tree C(Γ ) can be expressed in MSO, see the remarks in Section 3. Here
CLP (X,X ′) is the MSO-formula constructed by Margolis and Meakin in [10], see
the remark at the end of Section 5. Next, note that by Lemma 3 for every language
L ∈ REG(Γ ∪ Γ−1) there exists an MSO-formula ξL(x′, X, y′, Y ) over the signa-
ture of C(Γ ) such that for all finite sets U, V ⊆ FG(Γ ) and all nodes u′, v′ ∈ FG(Γ )
we have: C(Γ ) |= ξL(u′, U, v′, V ) iff U ⊆ V and there is a path from u′ to v′ in
C(Γ )
V that visits all vertices of V \U and which is labeled with a word from the
language L. Now let ϕ be an FO-formula over the signature ofA. We define ||ϕ|| induc-
tively: ||reachL(x, y)|| = ∃X,Y : Θ(x′, X,X ′) ∧ Θ(y′, Y, Y ′) ∧ ξL(x′, X, y′, Y ),
||¬ψ|| = ¬||ψ||, ||ψ1∧ψ2|| = ||ψ1||∧||ψ2||, and ||∀x : ψ|| = ∀x′ ∀X ′ : MT(x′, X ′)⇒ ||ψ||.
It is straight-forward to verify thatA |= ϕ iff C(Γ ) |= ||ϕ||. This concludes the proof of
Theorem 6.
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8 Open Problems

We plan to investigate for which monoidsM the structure C(M, Γ )reg has a decidable
first-order theory. In particular, the group case is interesting. It is easy to see that the
decidability of the MSO-theory of C(M, Γ ) implies the decidability of the first-order
theory of C(M, Γ )reg. Thus, the class of groupsG for which C(G, Γ )reg is decidable lies
somewhere between the virtually-free groups (i.e., those groups for which the MSO-
theory of the Cayley-graph is decidable) and the groups with a decidable word problem
(i.e., those groups for which the first-order theory of the Cayley-graph is decidable).
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Abstract. Effective fractal dimension was defined by Lutz (2003) in or-
der to quantitatively analyze the structure of complexity classes. Interest-
ing connections of effective dimension with information theory were also
found, in fact the cases of polynomial-space and constructive dimension
can be precisely characterized in terms of Kolmogorov complexity, while
analogous results for polynomial-time dimension haven’t been found.

In this paper we remedy the situation by using the natural con-
cept of reversible time-bounded compression for finite strings. We com-
pletely characterize polynomial-time dimension in terms of polynomial-
time compressors.

1 Introduction

Effective fractal dimension was defined in [13] in order to quantitatively analyze
the structure of complexity classes. See [12,16] for a summary of the main results.

In parallel, the connections of this effective dimension with algorithmic infor-
mation started being patent. The cases of constructive, recursive and polynomial-
space dimension were characterized precisely as the best case asymptotic com-
pression rate when using plain, recursive, and polynomial-space-bounded Kol-
mogorov complexity, respectively [15,14,6].

But the case of polynomial-time bounds remained elusive [8]. This is not
strange since computing even approximately the value of time-bounded Kol-
mogorov complexity seems to require an exponential search. The main difference
with space-bounded Kolmogorov complexity is reversibility, in this later case the
encoding phase can be performed within similar space-bounds.

In this paper we look at the usual notion of compression algorithm for finite
strings. A polynomial-time compression scheme is just a pair of encoder and
decoder algorithms, both working in polynomial-time. We consider encoders that
do not completely start from scratch when working on an extension of a previous
input. This last condition is formalized in Sect. 3 with a conditional-entropy like
inequality.

We exactly characterize polynomial-time (or p) -dimension as the best case
asymptotic (that is, i.o.) compression ratio attained by these polynomial-time
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compression schemes. Dually, strong polynomial-time-dimension [2] corresponds
to the worst case asymptotic compression ratio.

Several results on the polynomial-time dimension of complexity classes can
be now interpreted as compressibility results. For example, the (characteristic
sequences of) languages in a class of p-dimension 1 cannot be i.o. compressed by
more that a sublinear amount. Here we obtain results on the compressibility of
complete and autoreducible languages.

Buhrman and Longprè have given a characterization of p-measure in terms of
compressibility in [4], but in that case the compressors are restricted to extenders
and the encoder is required to give several alternatives, one of them being the
correct output. In the light of our present results we can view effective dimension
as an information content measure for infinite strings, whereas resource-bounded
measure can only distinguish the extreme case of non measure 0 classes that are
the most incompressible ones.

2 Preliminaries

The Cantor space C is the set of all infinite binary sequences. If w ∈ {0, 1}∗ and
x ∈ {0, 1}∗ ∪C, w � x means that w is a prefix of x. For 0 ≤ i ≤ j, we write
x[i . . . j] for the string consisting of the i-th through the j-th bits of x. We use
λ for the empty string.

Let p be the set of polynomial-time computable functions. Let E=
DTIME(2O(n)).

Definition 1. Let s ∈ [0,∞).

1. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
2. A martingale is a 1-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗.
Definition 2. Let s ∈ [0,∞) and d be an s-gale.

1. We say that d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S[0 . . . n]) =∞

The success set of d is S∞[d] = {S ∈ C | d succeeds onS}
2. We say that d succeeds strongly on a sequence S ∈ C if

lim inf
n→∞ d(S[0 . . . n]) =∞

The strong success set of d is S∞str[d] = {S ∈ C | d succeeds strongly on S}.
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Definition 3. Let X ⊆ C,

1. The p-dimension of X is

dimp(X) = inf
{
s ∈ [0,∞)

∣∣∣∣ there is a p-computable s-gale d s.t.
X ⊆ S∞[d]

}
2. The strong p-dimension of X is

Dimp(X) = inf
{
s ∈ [0,∞)

∣∣∣∣ there is a p-computable s-gale d s.t.
X ⊆ S∞str[d]

}
For a complete introduction and motivation of effective dimension and effec-

tive strong dimension see [12].

3 Compressors That Do Not Start from Scratch

In this section we develop the notion of compressors that “do not start from
scratch” in the sense that when encoding successively longer extensions of an
input, the outputs are restricted in the way we make precise below. The extreme
case of this behavior is when the compressor is a mere extender, that is, C(w)
is always a prefix of C(wu). We consider here a much weaker restriction than
extension.

Definition 4. A pair of functions (C,D) (C the encoder, D the decoder) C,D :
{0, 1}∗ → {0, 1}∗ is a polynomial-time compressor if:

(i) C and D can be computed in polynomial-time on their corresponding input
length.

(ii) For all w ∈ {0, 1}∗, D(C(w), |w|) = w.

In this paper, we could make all codes prefix-free, that is, C({0, 1}n) is a
prefix set for each n. For the asymptotic compression rates the difference is not
significant.

Notice that in the previous definition there is no restriction whatsoever on
the behavior of C, the encoder, when working on two inputs that are one an
extension of the other. For instance, we can have |C(wu)| < |C(w)| and C(wu)
can have no common prefix with C(w). In definition 5 we introduce a restriction
on the compressor that has an effect on the variety of C(wu) for different u, that
will be controlled by |C(w)|.

Definition 5. A polynomial-time compressor (C,D) does not start from scratch
if ∀ ε > 0 and for almost every w ∈ {0, 1}∗ there exists k = O(log(|w|)), k > 0,
such that ∑

|u|≤k

2−|C(wu)| ≤ 2εk2−|C(w)|. (1)
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We will consider only compressors that do not start from scratch.
Notice that when there is a constant k such that

∑
|u|≤k 2−|C(wu)| ≤ 2−|C(w)|,

condition (1) is trivial, while in general
∑
|u|≤k 2−|C(wu)| can be as large as 1, so

condition (1) is a proper restriction on compressors.
We first remark that if C(w) and C(wu) have a long common prefix then C

fulfills condition (1).

Lemma 1. Polynomial-time compressors for which C(w) and C(wu) have a
common prefix of length at least |C(w)| − O(log(|w|)) (∀w, u ∈ {0, 1}∗) don’t
start from scratch.

We next present two easy examples of compressors not starting from scratch,
including Lempel-Ziv algorithms.

Example 1. For the following polynomial-time compressor condition (1) holds

1. An extender, that is, ∀w,w′ ∈ {0, 1}∗
w � w′ ⇒ C(w) � C(w′).

2. Lempel-Ziv data compression algorithm for its three most common variants
(notice that it is not an extender. See [10,11] for details).
In fact, Lempel-Ziv compression algorithm verifies the common-prefix condi-
tion lemma 1. Let w ∈ {0, 1}∗. If w = w1w2 . . . wnv where w1, w2, . . . , wn are
the phrases obtained by the Lempel-Ziv parsing, then LZ(w) and LZ(wu)
have a common prefix of length at least |LZ(w)|−logn ≥ |LZ(w)|−log(|w|).
We leave for the complete version of this paper an analysis of the case of

Grammar-based compressors, that generalize Lempel-Ziv methods [9].
Polynomial-time compressors (C,D) that are length increasing in the encoder

C and for which we can control, for all w and all i ≥ 0, the number of strings u
satisfying |C(wu)| = |C(w)| + i, don’t start from scratch. More formally,

Lemma 2. Polynomial-time compressors (C,D) that satisfy both of the follow-
ing conditions don’t start from scratch.

i) For all w, u ∈ {0, 1}∗, |C(wu)| ≥ |C(w)|
ii) For all ε > 0 and for almost every w ∈ {0, 1}∗ there exists k = O(log(|w|))

such that ∀i ≥ 0

Ni = Ni(w, k) = #
{
u ∈ {0, 1}≤k

∣∣∣ |C(wu)| = |C(w)| + i
}
≤ 2i+εk−log k.

4 Main Theorem

In the main theorem we obtain an exact characterization of polynomial-time
dimension in terms of polynomial-time compressors that don’t start from scratch.

Our characterization holds both for the best and worst asymptotic compres-
sion ratio, corresponding to p-dimension and strong p-dimension.

We formalize the notion of a.e. (almost everywhere) and i.o. (infinitely often)
compressibility for sets of infinite sequences as the asymptotic best (respectively
worse) compression ratio.
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Definition 6. For α ∈ [0, 1] and X ⊆ C,

1. X is α-i.o. polynomial-time compressible if there is a polynomial-time com-
pressor (C,D) that does not start from scratch and such that for every A ∈ X

lim inf
n

|C(A[0 . . . n− 1])|
n

≤ α.

2. X is α-a.e. polynomial-time compressible if there is a polynomial-time com-
pressor (C,D) that does not start from scratch and such that for every A ∈ X

lim sup
n

|C(A[0 . . . n− 1])|
n

≤ α.

Definition 7. Let X ⊆ C,

1. X is i.o. polynomial-time incompressible if for every (C,D) polynomial-time
compressor that does not start from scratch, there exist A ∈ X such that

lim inf
n

|C(A[0 . . . n− 1])|
n

= 1.

2. X is a.e. polynomial-time incompressible if for every (C,D) polynomial-time
compressor that does not start from scratch, there exist A ∈ X such that

lim sup
n

|C(A[0 . . . n− 1])|
n

= 1.

We next state our main theorem.

Theorem 1. Let X ⊆ C,

dimp(X) = inf{α |X is α-i.o. polynomial-time compressible}
Dimp(X) = inf{α |X is α-a.e. polynomial-time compressible}

The proof of theorem 1 will be split between sections 5 and 6. In section 5
we transform each gale into a compressor that requires only a time increase of
a linear factor. In section 6 we show that compression is an upper bound on
dimension.

Hitchcock showed in [7] that p-dimension can be characterized in terms of
on-line prediction algorithms, using the well-studied log-loss prediction ratio.
Our result can thus be interpreted as a joining bridge between the performance
of polynomial-time prediction and compression algorithms, both in the best and
the worse case.

5 Compression Is at Most Dimension

Proposition 1. Let X ∈ C,

dimp(X) ≥ inf{α |X is α-i.o. polynomial-time compressible}.



Dimension Is Compression 681

We first transform each gale into a simple version that requires little accuracy.
Then we apply a generalization of arithmetic coding to this new gale.

For the first part we will need the following lemma stating that very simple
gales characterize p-dimension.

Lemma 3. Let X ⊆ C. If dimp(X) = α then ∀s > α there exists an s-gale
d with X ⊆ S∞[d] such that for all w ∈ {0, 1}∗, there exists mw, nw ∈ N with
nw ≤ |w|+ 1 and

d(w)2−|w|s = mw2−(nw+|w|)

That is, if dimp(X) < s, then there exists a p-computable s-gale d as in
the previous lemma. We define a polynomial-time compressor that doesn’t start
from scratch using this s-gale. Roughly speaking, the idea for the encoder C is
associate to each w ∈ {0, 1}∗ an interval of size proportionally related to d(w).
By the properties of d, the extreme points of such interval are dyadic rational
numbers. By using the following lemma, we codify each interval with a string z.
We will take C(w) = z.

Lemma 4. Let a, b be dyadic numbers. and let I = [a, b) be an interval of length
r ∈ [0, 1), then there exists a string z of length −$log(r)%+1 such that a < 0.z < b
and z can be computed in time polynomial in |z|.
Proof sketch of Proposition 1. Let s be such that dimp(X) < s, then there
exists a p-computable s-gale d as in Lemma 3 with d(λ) = 1, X ⊆ S∞[d].

Let h : {0, 1}∗ → R be defined as follows.

h(w) :=
∑

|y|=|w|,y<w

d(y)2(1−s)|y|−|w|

where y < w means that y precedes x in lexicographic order. Denote by succ(w)
the successor of w in lexicographic order. Notice that h(w) is a dyadic number
m2−n with n ≤ 2|w|+ 1, therefore there is a z ∈ {0, 1}∗ such that |z| ≤ 2|w|+ 2
and h(w) < 0.z < h(succ(w)). Let zw be the first shortest string such that
h(w) < 0.z < h(succ(w)). We define the encoder as C(w) = zw.

It can be shown that the encoder C and the corresponding decoder form a
polynomial-time compressor that does not start from scratch.

Finally, let us see that (C,D) compresses X . Notice that for each w the
interval [h(w), h(succ(w))) has length exactly d(w)2−s|w|. Then by lemma 4,
there is a string z of length−$log(2−s|w|d(w))%+1 ≤ |w|−$log(2(1−s)|w|d(w))%+1
such that h(w) < 0.z < h(succ(w)). So,

|zw| ≤ |w| − $log(2(1−s)|w|d(w))% + 1.

For all A ∈ X , as X ⊆ S∞[d] then d(A[0 . . . n− 1]) > 1 i.o. n and

|C(A[0 . . . n− 1])| = |zA[0...n−1]|
≤ n− $log(d(A[0 . . . n− 1])%+ 1
≤ n− log(2(1−s)n) + 1
= sn + 1

�
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6 Dimension Is at Most Compression

Next we prove that compressibility is an upper bound on dimension.

Proposition 2. Let X ∈ C,

dimp(X) ≤ inf{α |X is α-i.o. polynomial-time compressible}
Proof. Let s′ > s and ε > 0 such that s′−s > ε. Let N be such that condition (1)
is true for each w ∈ {0, 1}≥N . For each of these w, let k = k(w, ε) = O(log(|w|))
be the smallest one such that∑

|u|≤k

2−|C(wu)| ≤ 2εk2−|C(w)|

Let w = w1 . . . wn with |w1| = N and |wi| = k(w1 . . . wi − 1, ε) for i > 0.
We define an s′ gale d as follows

d(wu) := d(w)
2−|C(wu)|∑

|v|≤k

2−|C(wv)| 2
s′|u| if |u| = k(w, ε)

d(wr) :=
∑

r u,|u|=k

d(wu)2s′(|r|−|u|) if |r| < k(w, ε)

d is computable in polynomial-time. Notice that, for induction, if w = w1w2 . . .
wn with |w1| = N and |wi| = k(w1 . . . wi−1, ε), then

d(w) = d(w1)2s′(|w|−N)
n−1∏
h=1

2−|C(w1...wh+1)|∑
|v|≤k(w1...wh,ε) 2−|C(w1...whv)|

By condition (1),

d(w) ≥ d(w1)2(ε−s′)N2|C(w1)|2(s′−ε)|w|2−|C(w)|

≥ a2(s′−ε)|w|2−|C(w)|

where a is the minimum of

d(w1)2|C(w1)|2(ε−s′)N

for w1 ∈ {0, 1}N .
For all A ∈ X ,

lim inf
n

|C(A[0 . . . n− 1])|
n

≤ s

so there exists (bn)n∈N a sequence of natural numbers such that

lim
n

|C(A[0 . . . bn − 1])|
bn

≤ s
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Let (an)n∈N be defined as a1 = N , ai = k(A[0 . . . ai−1 − 1]) for i > 1.
Then

d(A[0 . . . ai−1 − 1]) ≥ a2(s′−ε)ai2−|C(A[0...ai−1])|

For each n, let am < bn ≤ am+1, by condition (1)

|C(A[0 . . . am−1])| < |C(A[0 . . . bn−1])|+O(log bn) ≤ bn(s+ε/2) ≤ am+1(s+ε/2)

for all but finitely n.
Then,

d(A[0 . . . am − 1]) ≥ a2(s′−ε)am2−am+1(s+ε/2)

≥ a2amε/22−O(log(am))

And d succeeds on X .

Notice that in the last proof we didn’t need the decoder so we have that
for each polynomial-time encoder satisfying the condition of not starting from
scratch we automatically get a polynomial-time decoder.

Corollary 1. Let C be a polynomial-time encoder that satisfies inequality (1).
Then there exist (C′, D′) a polynomial-time compressor that does not start from
scratch and such that for every A ∈ C

lim inf
n

C′(A[0 . . . n− 1])
n

≤ lim inf
n

C(A[0 . . . n− 1])
n

lim sup
n

C′(A[0 . . . n− 1])
n

≤ lim sup
n

C(A[0 . . . n− 1])
n

7 Applications of the Main Result

In this section we obtain interesting consequences of our characterization for
the polynomial-time compressibility of complete and autoreducible sets from
previously known p-dimension results.

Notice that in this section we identify each language A with its characteristic
sequence χA, therefore compressibility of a class always means compressibility
of the corresponding characteristic sequences.

We start by showing that no polynomial-time compressor works on all many-
one complete sets.

Theorem 2. The class of polynomial-time many-one complete sets for E is i.o.
polynomial-time incompressible.

Proof. Ambos-Spies et al. prove in [1] that the class has p-dimension 1.

Next we consider degP
m(A), the class of sets that are equivalent to A by

≤P
m-reductions. The compression ratio of degP

m(A) and degP
m(B), for A≤P

mB, is
related by the following theorem.
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Theorem 3. Let A,B be sets in E such that A≤P
mB, then

1. The i.o. p-compression ratio of degP
m(A) is at most the i.o. p-compression

ratio of degP
m(B).

2. The a.e. p-compression ratio of degP
m(A) is at most the a.e. p-compression

ratio of degP
m(B).

Proof. Ambos-Spies et al. prove 1. in [1] for p-dimension. Athreya et al. prove
in [2] the strong dimension result for 2.

We next consider the property of autoreducibility. A set A is autoreducible if
A can be decided by using A as an oracle but without asking query x on input x.
We obtain incompressibility results both in the case of polynomial-time many-
one autoreducibility and for the complement of i.o. p-Turing autoreducible sets.
Therefore for each polynomial-time bound there are i.o. incompressible sets that
are ≤P

m-autoreducible and other that are not even i.o. ≤P
T-autoreducible.

Theorem 4. The class of polynomial-time many-one autoreducible sets are i.o.
polynomial-time incompressible.

Proof. Ambos-Spies et al. prove in [1] that the class has p-dimension 1.

Theorem 5. The class of sets that are NOT i.o. polynomial-time Turing au-
toreducible are i.o. polynomial-time incompressible.

Proof. Beigel et al. prove in [3] that the class has p-dimension 1.

We next show that there exist polynomial-time many-one degrees with every
possible value for both a.e. and i.o. compressibility.

Theorem 6. Let x, y be computable reals such that 0 ≤ x ≤ y ≤ 1. Then there
is a set A in E such that the i.o. p-compression ratio of degP

m(A) is x and the
a.e. p-compression ratio of degP

m(A) is y.

Proof. Athreya et al. prove in [2] the result for p-dimension and strong p-
dimension.

This last theorem includes the extreme case for which the i.o. compression
ratio is 0 whereas the a.e. ratio is 1.

Finally, the hypothesis “NP has positive p-dimension” can be interpreted in
terms of incompressibility. This hypothesis has interesting consequences on the
approximation algorithms for MAX3SAT.

Theorem 7. If for some α > 0 NP is not α-i.o-compressible in polynomial-time
then any approximation algorithm A for MAX3SAT must satisfy at least one of
the following

1. For some δ > 0, A uses time at least 2nδ

2. For all ε > 0, A has performance ratio less than 7/8+ ε on an exponentially
dense set of satisfiable instances.

Proof. Hitchcock proves in [5] that the consequence follows from NP having
positive p-dimension.
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Abstract. We compare the expressive power of two automata-based
finite-state models of concurrency. We show that Droste’s and Kuske’s
coherent stably concurrent automata and Bednarczyk’s forward-stable
asynchronous systems describe the same class of regular event structures.
This connection subsumes a previous study by Schmitt which relates
Stark’s trace automata to asynchronous systems. This work relies on
Zielonka’s theorem and some unrecognized result due to Arnold.

1 Introduction

In a seminal paper [12] Nielsen, Plotkin and Winskel introduced prime event
structures as natural unfoldings of 1-safe Petri nets. This semantics can be de-
composed into several steps by means of intermediate models which are prefix-
closed Mazurkiewicz trace languages [9] and asynchronous systems [2]. More gen-
eral automata-based models of concurrency were later related to more general
event structures [19], namely trace automata [15] and concurrent automata [5].
Interestingly three classes of automata-based models are known to describe ex-
actly prime event structures: Forward-stable asynchronous systems, stable trace
automata, and the more general model of coherent stably concurrent automata.

More recently the problem of characterizing the unfoldings of finite con-
current automata has been investigated [14,18,11]. In [14], Schmitt established
that all unfoldings of finite stable trace automata are also unfoldings of fi-
nite forward-stable asynchronous systems. In [18], Thiagarajan proved with the
help of Zielonka’s theorem [20] that all unfoldings of finite forward-stable asyn-
chronous systems are also unfoldings of finite 1-safe Petri nets.

In this paper we improve both approaches and show that all unfoldings of
finite coherent stably concurrent automata are unfoldings of finite 1-safe Petri
nets. We proceed in two steps. With the help of some unrecognized difficult work
by Arnold [1] we prove that if a prime event structure is the unfolding of a finite
coherent stably concurrent automaton then it is also the unfolding of a finite
coherent asynchronous system. Next we use Zielonka’s theorem to establish that
if a prime event structure is the unfolding of a finite coherent asynchronous sys-
tem then it is also the unfolding of a finite forward-stable asynchronous system.
This step is more technical so we sketch the construction in more details.

To simplify the presentation of this paper we consider particular domains as
semantical objects instead of prime event structures. These domains are known to
be equivalent to prime event structures so that we shall sketch in the conclusion
how our results can be rephrased in that setting.

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 686–698, 2005.
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2 Background and Results

In this section we present the main framework of this study and compare the
contribution of this paper to some known results from the literature.

First we introduce the very general automata-based model of concurrency
known as automata with concurrency relations [5]. The latter appear as a gener-
alization of several other models such as asynchronous systems, trace automata,
and Mazurkiewicz traces.

Definition 2.1. An automaton with concurrency relations over the alphabet Σ
is a structure A = (Q, ı,Σ,−→, (‖q)q∈Q) such that
1. Q is a non-empty (possibly infinite) set of states, with an initial state ı ∈ Q;
2. −→⊆ Q×Σ ×Q is a set of transitions;
3. if q a−→ q1 and q

a−→ q2 then q1 = q2;
4. (‖q)q∈Q is a family of binary, irreflexive, and symmetric relations on Σ;
5. if a‖qb then there exist q

a−→ q1, q
b−→ q2, q1

b−→ q3 and q2
a−→ q3.

We say that A is finite if Q and Σ are finite.

The language L(A) of sequential computations of A consists of all words u =
a1...an ∈ Σ for which there are some states q0, ..., qn ∈ Q such that ı = q0 and
for each i ∈ [1, n], qi−1

ai−→ qi. For short, these conditions will be denoted by
q0

u−→ qn. Now the independence relations ‖q yield a natural equivalence relation
over the set of sequential computations L(A) as follows. The trace equivalence
∼A associated with A is the least equivalence over L(A) such that for all words
u, v ∈ Σ and all actions a, b ∈ Σ if ı

u−→ p
ab−→ q

v−→ r and a‖pb then
u.ab.v ∼A u.ba.v. Conditions 3 and 5 ensure that if w and w′ are two trace
equivalent words then they lead from the initial state to the same state.

For any word u ∈ L(A), the trace [u] consists of all words v ∈ L(A) that
are trace equivalent to u: Formally we put [u] = {v ∈ Σ | v ∼A u}. The
trace language L(A) = L(A)/ ∼A consists of all traces. The latter are partially
ordered in the following way: We put [u] � [v] if there exists some word z ∈ Σ

such that u.z ∼A v. The trace domain of A is the partial order (L(A),�).

Example 2.2. Let D = {(n,m) ∈ N2 | n � m} be equipped with the partial
order � for which (n,m) � (n′,m′) if n � n′ and m � m′. Then (D,�) is
(isomorphic to) the trace domain of the automaton with concurrency relations
A = (D, (0, 0), {a, b},−→, (‖q)q∈Q) where (n,m) a−→ (n′,m′) if n′ = n + 1 and

m′ = m; (n,m) b−→ (n′,m′) if n′ = n and m′ = m + 1; and a‖(n,m)b if n < m.
Noteworthy it is easy to see that no finite automaton with concurrency relations
admits the partial order (D,�) as trace domain.

2.1 Coherent Stably Concurrent Automata

In the literature, a particular attention was devoted to automata whose concur-
rency relations ‖q depend locally on each other. In the two following definitions,
for all actions a, b, c ∈ Σ and all states q, we write a‖q.cb if there exists a state
q′ ∈ Q such that q

c−→ q′ and a‖q′b.
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Fig. 1. Stably concurrent automata Fig. 2. Coherence property

Definition 2.3. An automaton with concurrency relations A is called a stably
concurrent automaton if for all states q ∈ Q and all actions a, b, c ∈ Σ:

a‖qc ∧ b‖qc ∧ a‖q.cb if and only if a‖qb ∧ b‖q.ac ∧ a‖q.bc

This requirement is depicted in Fig. 1. In this paper we are interested in sta-
bly concurrent automata that satisfy an additionnal coherence condition that
ressembles the requirement (C) of the generalized trace languages from [13].

Definition 2.4. A stably concurrent automaton is coherent if for all states
q ∈ Q and all actions a, b, c ∈ Σ: a‖qb ∧ a‖qc ∧ b‖qc implies a‖q.cb.

This requirement is depicted in Fig. 2. The trace language of such a coherent
stably concurrent automaton can be viewed as a generalized trace language [13].
Consequently, it corresponds also to a labeled event structure with a binary
conflict. As we will explain in the conclusion, most results used or established in
this paper can be rephrased and applied in the framework of event structures.

2.2 Forward-Stable Asynchronous Systems

Automata with concurrency relations are a generalization of several other mod-
els of concurrency, in particular Bednarczyk’s asynchronous automata [2] and
Stark’s trace automata [15]. These models are known to have close relationships
to event structures, too. As opposed to automata with concurrency relations,
both models involve a single independence relation.

Definition 2.5. Let Σ be some alphabet and ‖ be a binary, symmetric, and
irreflexive relation over Σ. Let A = (Q, ı,Σ,−→, ‖) be a structure satisfying
Conditions 1, 2, and 3 of Definition 2.1. Then A is called an asynchronous
system [2] if we have

ID: q1
a−→ q2 ∧ q2

b−→ q3 ∧ a‖b implies q1
b−→ q4 ∧ q4

a−→ q3 for some q4 ∈ Q.
On the other hand, A is called a trace automaton [15] if we have

FD: q1
a−→ q2 ∧ q1

b−→ q3 ∧ a‖b implies q2
b−→ q4 ∧ q3

a−→ q4 for some q4 ∈ Q.

Finally, if A satisfies both conditions ID and FD then it is called a forward-stable
asynchronous system [2].
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Asynchronous systems and trace automata can be seen as automata with con-
currency relations by putting a‖qb if a‖b, q a−→ q1

b−→ q2, and q
b−→ q3

a−→ q2.
Consequently they are associated with a set of sequential computations L(A), a
trace language L(A), and a trace domain (L(A),�).

Observe that any trace automaton satisfies the coherence property (Fig. 2).
Moreover it fulfills also half of the requirement to be a stably concurrent au-
tomaton (Fig. 1) namely the implication from left to right. We say that a trace
automaton is stable if it is a stably concurrent automaton.

2.3 Comparisons of Expressive Power

Observe now that any asynchronous automaton is a stably concurrent automa-
ton. Furthermore, it is coherent as soon as it is forward-stable. Thus the trace
domain of any forward-stable asynchronous automaton is obviously the trace
domain of a coherent stably concurrent automaton. The next theorem expresses
the converse property.

Theorem 2.6. For any coherent stably concurrent automaton A, there exists a
forward-stable asynchronous system A′ such that the trace domains (L(A),�)
and (L(A′),�) are isomorphic.

This theorem summarizes some results from [2,8]. In [2] it is shown that the trace
domains of forward-stable asynchronous systems can be identified with event
structures by means of a coreflection between the two models. This connection
can be extended to coherent stably concurrent automata [8].

Consider now again the trace domain (D,�) of Example 2.2. As explained
above, this partial order is isomorphic to the trace domain of some coherent
stably concurrent automaton over the finite alphabet {a, b}. However, as noticed
by Husson [7], any asynchronous automaton whose trace domain is isomorphic
to (D,�) admits some infinite alphabet. This shows that Theorem 2.6 fails if
one considers finite alphabets only.

In this paper, we focus on finite automata. We show in Corollary 4.6 that
Theorem 2.6 remains valid if we restrict to finite stably concurrent automata.
Since stable trace automata are coherent stably concurrent automata, Corol-
lary 4.6 subsumes the following theorem due to Schmitt.

Theorem 2.7. [14, Th. 3.12] For any finite stable trace automaton A, there
exists a finite forward-stable asynchronous system A′ such that the trace domains
(L(A),�) and (L(A′),�) are isomorphic.

Organization of the Paper. In the rest of this paper we consider only finite
alphabets. In the following section we relate stably concurrent automata to the
theory of regular consistent sets of pomsets [1] and Mazurkiewicz traces [4]. This
first step allows us to transform a finite stably concurrent automaton into a
finite asynchronous system with the same trace domain. Moreover this process
preserves coherence. Next we state our main result (Cor. 4.6) and sketch its
proof by means of Zielonka’s theorem [20]. This second step shows how to build
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a forward-stable finite asynchronous system from a coherent one while preserving
the trace domain. In order to improve [14] and [18], the main difficulty here is
to ensure Property FD from the assumption of coherence. In the conclusion we
explain how this work applies to the setting of regular event structures [18].

3 Consistent Sets of Pomsets

A pomset over an alphabet Σ is a triple t = (E,�, ξ) where (E,�) is a finite
partial order and ξ is a mapping from E to Σ without autoconcurrency: ξ(x) =
ξ(y) implies x � y or y � x for all x, y ∈ E. A pomset can be seen as an
abstraction of an execution of a concurrent system. In this view, the elements
e of E are events and their label ξ(e) describes the action that is performed in
the system by the event e ∈ E. Furthermore, the order � describes the causal
dependence between events. We denote by P(Σ) the class of all pomsets over Σ.

An order extension of a pomset t = (E,�, ξ) is a pomset t′ = (E,�′, ξ)
such that �⊆�′. A linear extension of t is an order extension that is linearly
ordered. It corresponds to a sequential view of the concurrent execution t. Linear
extensions of a pomset t over Σ can naturally be regarded as words over Σ. By
LE(t) ⊆ Σ, we denote the set of linear extensions of a pomset t over Σ. For
any subset of pomsets L ⊆ P(Σ), we put LE(L) =

⋃
t∈L LE(t).

Two isomorphic pomsets admit the same set of linear extensions. Notewor-
thy the converse property holds [17]: If LE(t) = LE(t′) then t and t′ are two
isomorphic pomsets. In the sequel of this paper we do not distinguish between
isomorphic pomsets any longer because they are used as representative of sets
of words. In particular, LE(t) = LE(t′) implies t = t′.

An ideal of a pomset t = (E,�, ξ) is a subset H ⊆ E such that x ∈ H ∧ y �
x ⇒ y ∈ H . The restriction t′ = (H,� ∩(H ×H), ξ ∩ (H × Σ)) is then called
a prefix of t and we write t′ � t. For any set of pomsets L, Pref(L) denotes the
set of prefixes of pomsets from L. We say that L is prefix-closed if Pref(L) = L.

3.1 Regular Consistent Sets of Pomsets

We borrow now the notion of consistent sets of pomsets from [1]. Although
we deal mainly with prefix-closed sets of pomsets, we present here the general
definition of a regular consistent set of pomsets. Intuitively, consistency means
that concurrency is determined by any sequential ordering of events.

Definition 3.1. A set of pomsets L is called consistent if
∀t1, t2 ∈ Pref(L) : LE(t1) ∩ LE(t2) �= ∅ ⇒ t1 = t2.

Let L be a consistent set of pomsets. The pomset equivalence ∼L over LE(L) is
such that w ∼L w′ if and only if {w,w′} ⊆ LE(t) for some t ∈ L. Note that ∼L
is an equivalence relation over LE(L) because L is consistent.

For any two words w,w′ ∈ Σ, we put w ≡L w′ if for all words u,v ∈ Σ

it holds: w.u ∼L w.v ⇔ w′.u ∼L w′.v. It is easy to see that ≡L is a right-
congruence over Σ. Relation ≡L appeared in [1] in the definition of regular,
complete, consistent, and prefix-closed sets of pomsets.
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Definition 3.2. A consistent set of pomsets L is regular if ≡L is of finite index.

Regularity satisfies several natural properties. In particular if L is a regular
consistent set of pomsets then Pref(L) is consistent and regular, too.

3.2 Relationships with Stably Concurrent Automata

The connection between prefix-closed consistent sets of pomsets and stably con-
current automata originates from a pomset description of traces.

Theorem 3.3. [3, Th. 4.6] Let A be a stably concurrent automaton over Σ.
Each trace [u] ∈ L(A) is the set of linear extensions of a (unique) pomset.

This result shows that the trace language L(A) of a stably concurrent au-
tomaton can be represented by a set of pomsets. We adopt this dual view in
the rest of this paper. Clearly L(A) = LE(L(A)) and ∼A=∼L(A). Noteworthy
[u] � [v] means in this setting that the pomset [u] is a prefix of the pomset [v].
Moreover the trace language of any stably concurrent automaton is prefix-closed
[3, Cor. 4.11]. It follows that L(A) is a consistent set of pomsets.

The mapping from stably concurrent automata to prefix-closed and consistent
sets of pomsets is actually onto: Any prefix-closed and consistent set of pomsets is
the trace language of a stably concurrent automaton. This connection specializes
into a correspondance between finite stably concurrent automata and regular,
prefix-closed, and consistent sets of pomsets.

3.3 From Consistent Sets of Pomsets to Mazurkiewicz Traces

Basically Arnold’s result relates regular consistent sets of pomsets to regular
Mazurkiewicz trace languages [4]. The latter can be viewed as the trace language
of a particular asynchronous system. Consider some independence relation (Σ, ‖)
and some asynchronous system A that has a single state q such that q

a−→ q for
all a ∈ Σ. Then the set of Mazurkiewicz traces M(Σ, ‖) may be defined as the
trace language L(A). Since A is a stably concurrent automaton, for each u ∈ Σ

there exists a (unique) pomset t over Σ such that [u] = LE(t) (Th. 3.3). That
is why subsets of Mazurkiewicz traces are particular cases of consistent sets of
pomsets. Noteworthy a subset of Mazurkiewicz traces L ⊆ M(Σ, ‖) is regular
(Def. 3.2) if and only if LE(L) is a regular set of words.

Let Σ and Γ be two alphabets and π : Γ → Σ a mapping from Γ to Σ.
This mapping extends in a natural way into a function that maps each pomset
t = (E,�, ξ) over Γ to the structure π(t) = (E,�, π◦ξ). The latter might not be
a pomset over Σ in case some autoconcurrency appears in it. This situation can
occur if π(a) = π(b) for two distinct actions a, b ∈ Σ while there are two events
e and f that are labelled by a and b and that are not causally related. The next
notion of refinement allows to relate two sets of pomsets that are identical up to
some relabeling.

Definition 3.4. Let L and L′ be two consistent sets of pomsets over Σ and Γ
respectively. A mapping π : Γ → Σ from Γ to Σ is a refinement from L to L′ if
π is a bijection from L′ onto L and from Pref(L′) onto Pref(L).
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Now one main contribution of [1] can be slightly extended as follows.

Theorem 3.5. [1, Th. 6.16] For any regular consistent set of pomsets L over Σ,
there is a refinement from L to a regular set of Mazurkiewicz traces L′ ⊆M(Γ, ‖).

4 From Coherence to Forward-Stability

In this section we want to apply Theorem 3.5 in order to build a finite forward-
stable asynchronous system from a finite coherent stably concurrent automaton
(Cor. 4.6). The requirement that the asynchronous system should be forward-
stable is the main difficulty tackled in this section: Without this requirement,
the result would follow directly from Th. 3.5 because any regular prefix-closed
set of Mazurkiewicz traces is the trace language of a finite asynchronous system.

4.1 Coherent and Forward-Stable Mazurkiewicz Trace Languages

It is easy to characterize the trace languages associated with the stably concur-
rent automata we are intererested in.

Definition 4.1. A prefix-closed and consistent set of pomsets L over Σ is co-
herent if for all words u ∈ Σ, all distinct actions a, b, c ∈ Σ:
u.ab ∼L u.ba ∧ u.bc ∼L u.cb ∧ u.ca ∼L u.ac implies u.abc ∼L u.acb ∼L u.cab.

Clearly, the trace language of a coherent stably concurrent automaton is coher-
ent. Conversely, we can show that any coherent prefix-closed consistent set of
pomsets is the trace language of some coherent stably concurrent automaton.

Since we deal also with forward-stable asynchronous systems (Def. 2.5 and
Cor. 4.6), we focus also on forward-stable Mazurkiewicz trace languages.

Definition 4.2. A prefix-closed set of Mazurkiewicz traces L ⊆ M(Σ, ‖) is
forward-stable w.r.t. (Σ, ‖) if for all words u, v ∈ Σ and all actions a, b ∈ Σ:

[u.a] ∈ L ∧ [u.b] ∈ L ∧ a‖b implies [u.ab] ∈ L.
This condition is well-known. A forward-stable Mazurkiewicz trace language is
called safe-branching in [16], forward independence closed in [10], ideal in [2],
and proper in [9]. Clearly the trace language of a forward-stable asynchronous
system is forward-stable. Actually, the converse property holds. As expressed by
the next basic lemma, this connection specializes into a correspondance between
finite asynchronous systems and regular sets of Mazurkiewicz traces.

Lemma 4.3. Any regular, forward-stable, and prefix-closed set of Mazurkiewicz
traces is the trace language of some finite forward-stable asynchronous system.

Observe now that any forward-stable prefix-closed set of Mazurkiewicz traces
is coherent. It is easy to see that the converse property does not hold. However
we can represent coherent set of Mazurkiewicz traces by forward-stable sets
of Mazurkiewicz traces by means of a refinement (Def. 3.4). This is expressed
for regular languages in the next useful result whose proof will be sketched in
Subsection 4.3 and relies on Zielonka’s theorem.
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Theorem 4.4. Let L be a regular, coherent, and prefix-closed set of Mazurkie-
wicz traces. There exists a refinement from L to a regular, forward-stable, and
prefix-closed set of Mazurkiewicz traces.

In order to apply Theorem 4.4 together with Theorem 3.5, we observe that
coherence of consistent sets of pomsets is preserved by refinements.

Lemma 4.5. Let L1 and L2 be two consistent sets of pomsets over Σ1 and Σ2

respectively. Let π : Σ1 → Σ2 be a refinement from L2 to L1. If L2 is prefix-closed
and coherent then L1 is prefix-closed and coherent, too.

We come now to the statement of our main result.

Corollary 4.6. For any finite coherent stably concurrent automaton A, there
exists some finite forward-stable asynchronous system A′ such that the trace
domains (L(A),�) and (L(A′),�) are isomorphic.

Proof. The trace language L(A) is a regular, coherent, prefix-closed, and consis-
tent set of pomsets. By Th. 3.5 there exists a refinement from L(A) to a regular
and prefix-closed set of Mazurkiewicz traces L′. By Lemma 4.5, L′ is coherent,
too. By Theorem 4.4, we get a refinement from L′ to a regular, forward-stable,
and prefix-closed set of Mazurkiewicz traces L′′. By Lemma 4.3, L′′ is the trace
language of a finite forward-stable asynchronous system A′′. Since we can com-
pose refinements, we get a refinement from L(A) to L(A′′). It follows that the
trace domains (L(A),�) and (L(A′′),�) are isomorphic.

4.2 Zielonka’s Theorem

Let S = (Pi)i∈I be a family of finite automata Pi = (Qi, ıi, Σi,−→i) where Qi is
a non-empty finite set of states, ıi ∈ Qi is the initial state, Σi is an alphabet of
actions and −→i⊆ Qi ×Σi ×Qi is a set of deterministic transitions: If q a−→ q′

and q
a−→ q′′ then q′ = q′′. The global behaviour of such a system can be

modelled by a single automaton which is the mixed product of its components
[6]:

∏
S = (

∏
i∈I Qi, (ıi)i∈I ,

⋃
i∈I Σi,−→) where (qi)i∈I

a−→ (q′i)i∈I if and only
if for all i ∈ I it holds a ∈ Σi ⇒ qi

a−→i q′i and a �∈ Σi ⇒ qi = q′i. We can
enrich the mixed product of S by explicitly modelling concurrency: We put a‖b
if {a, b} �⊆ Σi for all i ∈ I. In that way we provide the mixed product

∏
S with an

independence relation ‖ and turn it into a forward-stable asynchronous system.
The latter is associated with a trace language L(

∏
S).

Let us now formulate a particular version of Zielonka’s theorem [20,10,16] in
terms of mixed products and refinements. Let A be an asynchronous system over
the independence alphabet (Σ, ‖) with set of states Q and initial state ı ∈ Q. A
finite family δ = (Σi)i∈I of subsets of Σ is called a distribution of (Σ, ‖) if for
all actions a, b ∈ Σ we have a � ‖b⇔ ∃i ∈ I, {a, b} ⊆ Σi. Given a subset of states
F ⊆ Q, we let LF (A) denote the subset of traces [u] such that ı

u−→ q ∈ F .

Theorem 4.7. Let δ = (Δi)i∈I be a distribution of some independence alphabet
(Σ, ‖). Let L ⊆ M(Σ, ‖) be a regular, forward-stable, and prefix-closed set of
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Mazurkiewicz traces. There exists a family of finite automata S = (Pi)i∈I with
local alphabets (Σi)i∈I and a refinement π :

⋃
i∈I Σi → Σ from L to L(

∏
S) such

that for all i ∈ I and all a ∈ ⋃i∈I Σi it holds a ∈ Σi ⇔ π(a) ∈ Δi.

4.3 Proof of Theorem 4.4

In this section we fix a regular, coherent, and prefix-closed set of Mazurkiewicz
traces L ⊆ M(Γ1, ‖1). There exists a finite forward-stable asynchronous system
A1 = (Q1, ı1, Γ1,−→1, ‖1) together with a subset of states F ⊆ Q1 such that
L = LF (A1). Clearly we can assume that all states of q ∈ Q1 are reachable
from the initial state ı1. Consequently if q a−→1 q′ ∈ F then q ∈ F because L is
prefix-closed.

We build from (Γ1, ‖1) an extended independence alphabet (Γ2, ‖2) such that
Γ2 = Γ1 8 {{a, b} ⊆ Γ1 | a‖1b} and the independence relation ‖2 is defined as
follows:

– for all a, b ∈ Γ1, a‖2b if a‖1b;
– for all {a, b} ∈ Γ2 \ Γ1, for all c ∈ Γ1, c‖2{a, b} if c‖1a and c‖1b;
– for all {a, b}, {c, d} ∈ Γ2 \ Γ1, {a, b}‖2{c, d} if a‖1c, a‖1d, b‖1c, and b‖1d.

We fix some arbitrary distribution δ = (Δi)i∈I of (Γ1, ‖1). For each i ∈ I, we
define an extended subset of actions Δ′i = Δi 8 {x ∈ Γ2 \ Γ1 | x ∩Δi �= ∅}. We
can check easily that δ′ = (Δ′i)i∈I is a distribution of (Γ2, ‖2).

We build also a new structure A2 = (Q2, ı2, Γ2,−→2, ‖2) where Q2 ⊆ (Q1)2
Γ1 ,

that is, a state σ ∈ Q2 is a map that associates each subset of actions A ⊆ Γ1

with some state σ(A) ∈ Q1. The initial state ı2 ∈ Q2 maps each subset A ⊆ Γ1

to the initial state ı1. The transition relation −→2 is defined as follows: Consider
two states σ : 2Γ1 → Q1 and σ′ : 2Γ1 → Q1

– we put σ
a−→2 σ′ for some action a ∈ Γ1 if for all A ⊆ Γ1,

• if a ∈ A then σ′(A) = σ(A);
• if a �∈ A then σ(B) a−→1 σ′(A) where B = {c ∈ A | c‖1a}.

– we put σ
x−→2 σ′ with x = {a, b} ∈ Γ2 \ Γ1 if σ = σ′, σ(A) a−→1 qa ∈ F ,

σ(A) b−→1 qb ∈ F , and σ(A) ab−→1 q �∈ F where A = {c ∈ Γ1 | c‖1a ∧ c‖1b}.
Finally let Q2 be the subset of states that are reachable from ı2. By an immediate
induction, it is clear that for all words u ∈ Γ 

1 and all states σ ∈ Q2, if ı2
u−→2 σ

then ı1
u−→1 σ(∅). We shall prove a useful converse property in Lemma 4.8.

The product of two Mazurkiewicz traces [w], [w′] ∈ M(Γ1, ‖1) is defined as
usual by [w] · [w′] = [w.w′]. For all A ⊆ Γ1 and all traces [u] ∈ M(Γ1, ‖1) we
denote by [u]/A the least trace [v] such that [u] = [v] · [z] for some z ∈ A. If
u ∈ L(A1) then we define the map σu : 2Γ1 → Q1 as follows: For all A ⊆ Γ1,
we let σu(A) be the state from Q1 such that ı1

v−→1 σu(A) for all v ∈ [u]/A. In
particular ı1

u−→1 σu(∅). Note also that ı2 = σε and u ∼ v implies σu = σv.

Lemma 4.8. For all u ∈ Γ 
1 , ı1

u−→1 q1 in A1 if and only if ı2
u−→2 σu in A2.
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Proof. The proof follows by induction by means of the next two key properties.
For all words u ∈ Γ 

1 , for all actions a ∈ Γ1, and for all subsets A ⊆ Γ1

1. if u.a ∈ L(A1) and a �∈ A then [u.a]/A = [v.a] where [v] = [u]/{c ∈ A | c‖1a};
2. if u.a ∈ L(A1) and a ∈ A then σu.a(A) = σ(A).

This lemma enables us to check easily that the structure A2 is a forward-
stable asynchronous system. Now L(A2) is a regular, prefix-closed, and forward-
stable set of Mazurkiewicz traces L(A2) ⊆ M(Γ2, ‖2). We can apply Zielonka’s
theorem (Th. 4.7) to L(A2) with the distribution δ′ = (Δ′i)i∈I from above. We
get a new independence alphabet (Γ3, ‖3), a mapping π : Γ3 → Γ2, and a finite
system of finite automata S3 = (Pi)i∈I with alphabets Σi such that (Σi)i∈I is
a distribution of (Γ3, ‖3), π is a refinement from L(A2) to L(

∏
S3), and for all

i ∈ I and all a ∈ ⋃
i∈I Σi we have a ∈ Σi ⇔ π(a) ∈ Δi. Then for all a, b ∈ Γ3,

we have a � ‖3b⇔ π(a)� ‖1π(b). We put A3 = (Q3, ı3, Γ3,−→3, ‖3) =
∏

S3. We can
assume that in each component automaton Pi, each action occurs in at most one
transition.

We consider now a new forward-stable asynchronous system A4 by restricting
the alphabet and the independence relation over A3. We let (Γ4, ‖4) be the
independence alphabet such that Γ4 = Γ3∩π−1(Γ1) and for all a, b ∈ Γ4, a � ‖4b if
a � ‖3b or there exists some action x ∈ Γ3 \ Γ4 such that π(x) = {π(a), π(b)} and
the next condition is satisfied for all i ∈ I and all qi ∈ Qi:
∀c ∈ {a, b} :

(
c ∈ Σi ∧ ∃q′i ∈ Qi, qi

c−→i q
′
i

)
⇒

(
x ∈ Σi ∧ ∃q̃i ∈ Qi, qi

x−→i q̃i

)
As transitions, we simply restrict to transitions carrying actions from Γ4: We
put q

a−→4 q′ if q a−→3 q′ and π(a) ∈ Γ1. Obviously A4 = (Q3, ı3, Γ4,−→4, ‖4) is
also a forward-stable asynchronous system.

We build a last structure A5 by synchronizing A1 and A4 with a restriction
to the global states F ⊆ Q1. We put A5 = (Q5, (ı1, ı3), Γ4,−→5, ‖4) where
Q5 ⊆ F×Q3 and the transition relation is defined as follows: We put (q1, q3)

a−→5

(q′1, q
′
3) if q1

π(a)−→1 q′1 and q3
a−→3 q′3. Now a pair (q1, q3) ∈ F×Q3 belongs to Q5 if

it is reachable, that is: There exists some u ∈ Γ 
4 such that (ı1, ı3)

u−→5 (q1, q3).
It is easy to check that A5 is a finite asynchronous system.

We can use now the hypotheses that L is coherent and each action appears
locally in at most one transition to show the crucial following fact.

Lemma 4.9. The finite asynchronous system A5 is forward-stable.

Proof. Assume (ı1, ı3)
u−→5 (q1, q3)

a−→5 (q′1, q
′
3) and (q1, q3)

b−→5 (q′′1 , q
′′
3 )

with a‖4b. Since a‖3b, q′3
b−→3 q′′′3 and q′′3

a−→3 q′′′3 for some state q′′′3 ∈ Q3

because A3 is forward-stable. Similarly there exists some state q′′′1 ∈ Q1 such that

q′1
π(b)−→1 q′′′1 and q′′1

π(a)−→1 q′′′1 . It is sufficient to prove that q′′′1 ∈ F . We proceed
by contradiction and assume q′′′1 �∈ F . Let A = {c ∈ Γ1 | c‖1π(a) ∧ c‖1π(b)}.
We consider [v] = [π(u)]/A. We have ı1

v−→1 σπ(u)(A) z−→1 q1 = σπ(u)(∅)
with z ∈ A. Since q′1 ∈ F , q′′1 ∈ F , q′′′1 �∈ F , and L is coherent we have
σπ(u)

x−→2 σπ(u) with x = {π(a), π(b)}. There exists x′ ∈ Γ3 \ Γ4 such that
u.x′ ∈ L(A3) and π(x′) = x. We show now that a � ‖4b (which is the expected
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contradiction). Let i ∈ I and qi ∈ Qi be such that a ∈ Σi and qi
a−→ q′i. Then

π(a) ∈ Δ′i and x ∈ Δ′i. It follows that x′ ∈ Σi hence qi
x′−→i q̃i for some local

state q̃i ∈ Qi because u.a ∈ L(A3), u.x′ ∈ L(A3), and each action appears locally
in at most one transition. Similarly, for all j ∈ I and all qj ∈ Qj if b ∈ Σj and

qj
b−→ q′′j then x′ ∈ Σj and qj

x′−→j q̃j for some state q̃j ∈ Qj. Thus a � ‖4b.
We can easily check that the mapping π : Γ4 → Γ1 induces a bijection from

L(A5) to LE(L). Moreover u ∼A5 v implies π(u) ∼L π(v). To complete the proof
and show that π : Γ4 → Γ1 is a refinement from L to L(A5) it is sufficient to
establish the converse property. Assume u.ab.v ∼L u.ba.v where u, v ∈ Γ 

1 and
a‖1b. There are u′, v′ ∈ Γ 

3 and a′, b′ ∈ Γ3 such that π(u′) = u, π(v′) = v,
π(a′) = a, π(b′) = b, and u′.a′b′.v′ ∈ L(A3). Moreover u′.a′b′.v′ ∼A3 u′.b′a′.v′

because a′‖3b′. We need just to show that a′‖4b′. We proceed by contradiction
and assume a′ � ‖4b′. There exists some x ∈ Γ3 \ Γ4 such that π(x) = {a, b} and
the next condition is satisfied for all i ∈ I and all qi ∈ Qi:
∀c ∈ {a′, b′} :

(
c ∈ Σi ∧ ∃q′i ∈ Qi, qi

c−→i q
′
i

)
⇒

(
x ∈ Σi ∧ ∃q̃i ∈ Qi, qi

x−→i q̃i

)
We have ı3

u′−→3 q3
a′−→3 q′3

b′−→3 q′′3 and q3
b′−→3 q′′′3

a′−→3 q′′3 . If x ∈ Σi then
π(x) ∈ Δ′i hence it holds a ∈ Δi or b ∈ Δi, which implies that a′ ∈ Σi or b′ ∈ Σi.
Therefore q3

x−→3 q̃3 in A3. It follows that u′.x ∈ L(A3) and u.π(x) ∈ L(A2).
Hence u.ab �∈ LE(LF (A1)) = LE(L), a contradiction.

5 Related Works

To conclude we wish to sketch some connections between this paper and the
theory of regular event structures [18]. Due to the page limit, most definitions
are omitted here. However we believe that the following arguments can clarify
how our results apply to that setting.

Prefix-closed, coherent, and consistent sets of pomsets are the trace languages
of coherent stably concurrent automata. They can be regarded as generalized
trace languages [13]. The latter are closely related to event structures by means
of a coreflection whose units are labelings [13]. Event structures are a classical
semantical model in concurrency theory since they appeared as the unfoldings of
(possibly infinite) 1-safe Petri nets [12]. This strong relationship can be extended
to forward-stable asynchronous systems [2] and coherent stably concurrent au-
tomata [8].

The results presented in this paper allow us to claim that for an event struc-
ture E the following conditions are equivalent:

(i) E is the unfolding of a finite 1-safe Petri net;
(ii) E admits a regular forward-stable Mazurkiewicz labeling;
(iii) E is the unfolding of a finite forward-stable asynchronous system;
(iv) E is the unfolding of a finite coherent asynchronous system;
(v) E is the unfolding of a finite coherent stably concurrent automaton;
(vi) E admits a regular labeling.
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In [18], the equivalence between (i) and (ii) is established by means of Zielonka’s
theorem. The equivalences (ii) ⇔ (iii) and (v) ⇔ (vi) are easy consequences of
the corresponding definitions. The implications (iii) ⇒ (iv) and (iv) ⇒ (v) are
trivial. As explained in the proof of Corollary 4.6, Arnold’s result (Th. 3.5) was
used here to get (v)⇒ (iv). Then we used Zielonka’s theorem to prove (iv)⇒ (iii)
by means of Theorem 4.4. This work subsumes a difficult work by Schmitt who
established that (iii) holds if and only if E is the unfolding of a finite stable trace
automaton [14]. Note here that a direct proof of (vi) ⇒ (ii) would provide us
easily with an alternative proof of Theorem 3.5 which is a difficult result.

A very interesting conjecture by Thiagarajan [18] characterizes the unfold-
ings of finite 1-safe Petri nets. It asserts that any regular event structure is the
unfolding of a finite 1-safe Petri net. Since (vi) ⇒ (i), our contribution reduces
this conjecture to proving that any regular event structure admits a regular label-
ing. We are investigating at present this issue by adapting to the general setting
the techniques developped in [11]. We stress finally that any direct proof of Thi-
agarajan’s conjecture would show that (vi)⇒ (ii) because (vi) implies that E is a
regular event structure. It would lead to a new proof of Theorem 3.5. The latter
is thus a natural ingredient to answer this question.
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Abstract. This paper addresses an algebraic problem which arises from
our study on the information dynamics of cellular automata (CA). The
state set of a cell is assumed to be a polynomial ring Q[X] modulo Xq−X
over a finite field GF(q), where X is the indeterminate called the informa-
tion variable. When a CA starts with an initial configuration containing
a cell with state X, the information of X is transmitted to neighboring
cells by cellular computation. In such a computation, every cell of a global
configuration takes a polynomial in Q[X]. Generally denote such a con-
figuration by cX and let GcX be the set of polynomials appearing in cX .
Our problem is to ask how much information of X is contained by GcX .
For GcX we define the degree of completeness λ(GcX ) = logq |〈GcX 〉|,
where 〈GcX 〉 is the subring of Q[X] generated by GcX and investigate its
relation to the degree of degeneracy m(cX) introduced before. We note
here that m(cX) = q−|V (GcX )|, where |V (GcX )| is the cardinality of the
value set of GcX . Then, we prove that λ(GcX ) = |V (GcX )| and in turn
that λ(GcX ) + m(cX) = q. This result suggests that the computation of
the size of subrings is reduced to that of the value size, which is executed
much easier than subring generation.

1 Introduction

The information dynamics of cellular automata (CA for short) is formulated ex-
ploiting the theory of polynomials over finite fields [1]. First, the state set of a
cell is assumed to be a polynomial ring Q[X ] modulo Xq −X , where X is the
indeterminate called the information variable. When a CA starts with an initial
configuration containing a cell having X , the information of X is transmitted
to neighboring cells by cellular computation. In such a computation cells take
polynomial states in X . Suppose that at a certain time t, the global configuration
cX contains cells having polynomials in X . Denote such a set of polynomials by
GcX . Then we ask a question how much information of X is contained by cX

or GcX . If we can restore (compute) X from GcX by ring operations, then cX

is said to preserve the information of X completely or cX is called information-
ally complete. If not, we ask next how much information is preserved in cX . For
answering the question, in the previous paper [1], we defined the degree of de-
generacy of the configuration and proved for instance that it generally increases

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 699–707, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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in time. In this paper, we newly define the degree of completeness based on the
subring generation and discuss its relationship to the degree of degeneracy. Par-
ticularly we prove a theorem that the degree of completeness and the degree of
degeneracy makes the number of states (q). Its corollaries and examples are also
given. Finally we generalize the theorem to several inderminates.

In the next two sections we extract the definitions and results from [1] as far
as they are relevant to the present topics. For finite fields and polynomials, we
refer to [2].

2 Preliminaries

2.1 Cellular Automaton over a Finite Field

One-dimensional CA over a finite field is defined by a 4-tuple (Q, Z, N , f),
where Q is the set of the states of a cell, Z is the set of the integers, N is the
neighborhood index, and f is the local state transition function. In this paper,
we assume the basic neighborhood N = {−1, 0,+1}, though the theory works
for general settings. Since the space Z and the neighborhood N are understood,
CA is denoted by (Q, f).

The set of states Q is assumed to be a finite field GF(q), where q = pn with
prime p and positive integer n.

The local function f : Q×Q×Q→ Q is uniquely expressed by the polynomial
form:

f(x, y, z) = u0 + u1x + u2y + · · ·+ uix
hyjzk + · · ·

+ uq3−2x
q−1yq−1zq−2 + uq3−1x

q−1yq−1zq−1,

where ui ∈ Q (0 ≤ i ≤ q3 − 1). (1)

x, y and z assume the state values of the neighboring cells −1(left), 0(center)
and +1(right), respectively.

The global map F : C → C is defined on the set of configurations C = QZ ;
For any cell i ∈ Z, F (c)(i) = f(c(i− 1), c(i), c(i + 1)), where c(i) is the state of
cell i ∈ Z of c ∈ C. For a configuration c ∈ C, the dynamics of CA is defined by
F t+1(c) = F (F t(c)), t ≥ 0, where F 0(c) = c.

2.2 Information Dynamics of Cellular Automata

Let X be a symbol different from those used in the polynomial form (1). It stands
for an unknown state or the information about a cell of CA which is supposed
to be in an (unknown) state from the state set. It is often called the information
variable. In order to investigate the dynamics of information X in CA space, we
consider another polynomial form, which generally defines the cell state of the
extended CA.

g(X) = a0 + a1X + · · ·+ aiX
i + · · ·+ aq−1X

q−1,

where ai ∈ Q , 0 ≤ i ≤ q − 1. (2)
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The polynomial form g uniquely defines a function Q → Q and the set of
such functions is denoted by Q[X ]. Q[X ] is a polynomial ring modulo Xq −X .
Note that the cardinality of Q[X ] equals qq and pX = 0, Xq −X = 0 in Q[X ].
Q[X ] contains constant polynomials such as g ≡ a, a ∈ Q. They are often called
constants or trivial polynomials.

Based upon CA=(Q, f) we define its extension CA[X ]=(Q[X ], fX), where
the set of cell states is Q[X ] and the local function fX is defined on the same
basic neighborhood {−1, 0, 1} and expressed by the same polynomial form (1)
as f . The variables x, y and z, however, move in Q[X ] instead of Q. That is,
fX : Q[X ]×Q[X ]×Q[X ]→ Q[X ]. The global map is given by FX : CX → CX ,
where CX = Q[X ]Z. For any i ∈ Z, FX(cX)(i) = f(cX(i− 1), cX(i), cX(i + 1)),
where cX(i) is the state of cell i ∈ Z of cX ∈ CX . For a configuration cX ∈ CX ,
the dynamics of CA[X ] is defined by F t+1

X (cX) = FX(F t
X(cX)), t ≥ 0, where

F 0
X(cX) = cX . The global behavior(dynamics) of CA[X ] is called the information

dynamics of CA[X ].

c0X

ct
X

F t
X

X

−1−2 0 +1 +2••• •••

constants w constants w′

g2g3 g1 gr g3••• ••• ••• ••• ••• •••

0−t t

Fig. 1. Information dynamics of CA[X]

Fig.1. illustrates an elementary information dynamics, which begins with the
initial configuration c0X = wXw′, where c0X(0) = X and w and w′ are semi infi-
nite strings of constant polynomial functions. Obviously w and w′ do not contain
any information about X . Then, by repeated application of FX , the information
X spreads in time t among cells −t,−t + 1, ..., 0, ..., t − 1, t and at time t we
observe a configuration ct

X , which might contain some polynomials in X . Note
that a same polynomial may appear at several cells. Such a set of polynomials



702 H. Nishio

is generally expressed by Gct
X

= {g1, g2, ..., gr}. Gct
X

is considered to preserve
some amount of information of X contained by the initial configuration c0X .

3 Completeness and Degeneracy

As is shown in the preceding section, the information X may spread in CA
space in the form of polynomials in X . >From here on we generally suppose a
configuration cX which contains polynomials g1, g2, ..., gr and denote the set of
them by GcX . If we can retrieve or compute X from GcX , then we would be able
to say that cX completely preserves the information of X . Such a case trivially
occurs, when there is the identity polynomial X or a permutation polynomial in
X . Generally, however, some or all of information are lost during CA dynamics
and we can not retrieve X from GcX . The case trivially occurs, if cX contains
only constant polynomials. In order to deepen such an observation, we have
formulated the notion of completeness based on the ring operation as is shown
in the following section.

Definition 1 (Complete configuration). A subset G ⊆ Q[X ] is called com-
plete, if G generates Q[X ]. Any constant is allowed to be used at the computation.
For any configuration cX ∈CX , define the set of polynomials GcX = {cX(i)|i∈
Z} ⊆ Q[X ]. A configuration cX is called complete, if GcX is complete.

The notion of completeness has turned out to be closely related to the follow-
ing notion of degeneracy, which is more tractable in studying the informational
behavior of CA. For defining the degeneracy we need to define substitution.

Definition 2 (Substitution). Evaluation of a function g(X) ∈ Q[X ] for a ∈ Q
is called substitution of g(X). Symbolically we denote it as ψa(g) = g(a). If g
is a constant polynomial such that g ≡ a, a ∈ Q, then by definition ψb(g) = a
for any b ∈ Q. For any configuration cX ∈ Q[X ]Z and a ∈ Q, we define the
substitution of configuration ψa(cX) by the mapping ψa : Q[X ]Z → QZ such that
ψa(cX)(i) = ψa(cX(i)), i ∈ Z. Note that ψa is generally a many to one mapping.
Throughout this paper ψa(cX) is often written as ca.

Proposition 1. Substitution and ring operations of polynomials commute each
other. That is, for any polynomials g and h, we have the following formulae.

(A) ψa(g + h) = ψa(g) + ψa(h) (3)
(B) ψa(g · h) = ψa(g) · ψa(h) (4)

Proposition 2. Substitution and global maps commute each other. That is, for
any cX ∈ CX and a ∈ Q,

cX
FX−−−−→ FX(cX)

ψa

⏐⏐I ⏐⏐Iψa

ca
F−−−−→ F (ca)

(5)
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Definition 3 (Degeneracy). For a configuration cX ∈ Q[X ]Z, let ψa(cX) be
a substitution of a in cX . Then, cX is called m-degenerate, if

|{ψa(cX) | a ∈ Q}| = |Q| −m. (6)

It is easily seen that 0 ≤ m ≤ |Q| − 1. Such m will be called the degree of degen-
eracy of cX and denoted as mcX . A configuration cX is simply called degenerate
if mcX �= 0.

Theorem 1. A configuration is complete if and only if it is not degenerate.

Proof. The proof has been given in [1].

4 Degree of Completeness and Value Size of G

It is generally interesting to investigate the lattice structure (set inclusion) of
subrings of Q[X ], see [3]. In this paper, however, we focus on the cardinality
(size) of subrings which is an important quantity in the information dynamics
of CA.

For any subset G ⊆ Q[X ], we define two kinds of entity concerning G, the
degree of completeness and the value size.

4.1 Degree of Completeness

Taking into account the fact that the cardinality of any (nontrivial) subring of
Q[X ] is a power of q, we define the degree of completeness of G. It is also called
the log-ring size of G.
Definition 4. For any subset G ⊆ Q[X ], let 〈G〉 denote the subring generated by
G and |〈G〉| its cardinality. Then, the degree of completeness λ(G) is defined by

λ(G) = logq |〈G〉|. (7)

Note that 1 ≤ λ(G) ≤ q. Obviously, if λ(G) = q then G is complete. That is, G
preserves the information without any loss. See Section 3. If not, we claim that
the greater λ(G) is, the greater is the information contained by G. If λ(G) = 1
or G contains only constant polynomial functions (elements of Q), G does not
contain any information about X .

4.2 Value Size of G

The following definition is a reformulation of Definition 3.
Definition 5. Suppose that a subset G ⊆ Q[X ] consists of r polynomials: G =
{g1, g2, ..., gr | gi ∈ Q[X ], 1 ≤ i ≤ r}. Then an r-tuple of values (g1(a), g2(a), ...,
gr(a)) for a ∈ Q is called the value vector of G for a and denoted by G(a). Note
that G(a) ∈ Qr. The value set V (G) of G is defined by

V (G) = {G(a) | a ∈ Q}. (8)

Finally we define the value size of G by |V (G)|. Note that 1 ≤ |V (G)| ≤ q.
It is seen that

|V (GcX )| = q −m(cX). (9)
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5 Results

We state and prove here the main theorem of this paper and its corollaries. The
claim of the theorem has appeared, in a different form, without proof in the con-
cluding remarks of [1]. It also provides another proof of Theorem 1 as Corollary
3 below. The theorem is generalized to polynomials in several indeterminates in
the next section.

Theorem 2. For any subset G ⊆ Q[X ], the degree of completeness is equal to
the value size. That is,

λ(G) = logq |〈G〉| = |V (G)|. (10)

Proof. For given G, we first assume m = q− |V (G)| > 0. Then there exist q−m
different value vectors γ1, γ2, .., γq−m ∈ V (G) such that

G−1(γi) = {a ∈ Q|G(a) = γi}, 1 ≤ i ≤ q −m. (11)
q−m⋃
i=1

G−1(γi) = Q. (12)

It is seen that {G−1(γi)| 1 ≤ i ≤ q −m} constitutes a partition of Q, which is
denoted by π(G) and called a partition induced by G.

Let π(g) be a partition of Q induced by g or a partition by the evaluation
of g: a ≡ b if and only if g(a) = g(b). For two partitions π and π′, we define
a relation π / π′ such that an equivalence class of π is a union of equivalence
classes of π′. That is π is coarser than or equal to π′ or π′ is finer than or equal
to π.

We prove the theorem using the following three lemmas.

Lemma 1. If g ∈ G, then π(g) / π(G).

Proof. From the definitions of π(G) and the value vector, if G(a) = G(b) then
g(a) = g(b) for any a, b ∈ Q. That is π(g) is coarser than π(G). �

We note here the commutativity of substitution and ring operations given in
Proposition 1: (g + h)(a) = g(a) + h(a) and (g · h)(a) = g(a)h(a).

Then we have the following lemma.

Lemma 2. If π(g) / π(G) and π(h) / π(G), then π(g+h) / π(G) and π(g·h) /
π(G).

Proof. Assume that π(g) / π(G) and π(h) / π(G), then, for any a, b ∈ Q,
G(a) = G(b) implies g(a) = g(b) and h(a) = h(b). Then, we see that (g+h)(a) =
g(a) + h(a) = g(b) + h(b) = (g + h)(b). Therefore we have π(g + h) / π(G). As
for g · h the similar calculation applies and the lemma holds. �
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Now we have the final lemma.

Lemma 3.
〈G〉 = {h ∈ Q[X ] | π(h) / π(G)}. (13)

Proof. Since the subring 〈G〉 is a set of all polynomials that are obtained by ring
operations on the polynomials of G and any constant, from the above lemmas h ∈
〈G〉, π(h) / π(G) holds for any polynomial. Conversely, any polynomial function
h such that π(h) / π(G) is obtained by ring operations on the polynomials of
G with constants. In fact, assume that π(h) = {H1, H2, ..., Hs}, 1 ≤ s ≤ q −m,
where every equivalence class Hk is a union of those of π(G) and h takes a value
hk ∈ Q on Hk such that hk �= hk′ for k �= k′. Then the following system of
equations is solved for coefficients αs and powers βs.

h(ai) =
∑
α∈Q

α
r∏

j=1

g
βj

j (ai), 0 ≤ i ≤ q − 1, (14)

where α ∈ Q and 0 ≤ βj ≤ q − 1, 1 ≤ j ≤ r. That is h is expressed by a linear
combination of products of powers of polynomials in G.

h(X) =
∑
α∈Q

α

r∏
j=1

g
βj

j (X). (15)

Thus we have proved the lemma. �

By Lemma 3, |〈G〉| equals the number of polynomials h such that π(h) /
π(G). It is easily seen to be equal to the number of all assignments of q elements
from Q to each of q − m equivalence classes of π(G). Therefore, we see that
|〈G〉| = qq−m = q|V (g)|. Taking logq of both sides, we have the theorem. When
m = 0, every value vector of G is different, G generates Q[X ] and therefore
|〈G〉| = qq. So, taking logq we have the theorem. �

Example 1. Let Q = GF (3) = {0, 1, 2} and G = {g} = {X2}. Since g(0) =
0, g(1) = g(2) = 1, we see that m = q − |V (g)| = 1 and have a partition
πI = {{0}, {1, 2}}. There are 32 assignments of values from {0, 1, 2} to each of
two equivalence classes. Therefore, there are 9 polynomials each of which induces
a partition coarser than or equal to πI :

0, 1, 2, X2, 2X2, 1 + X2, 2 + X2, 1 + 2X2, 2 + 2X2.

For another generator set G = {1 + X + X2} we have another partition πII =
{{0, 2}, {1}} and also |〈1 + X + X2〉| = 32.

Example 2. Let Q = GF (5) = {0, 1, 2, 3, 4}. Consider two subsets of Q[X ] G1 =
{X2} and G2 = {X + X2}. It is seen that π(X2) = {{0}, {1, 4}, {2, 3}} with
V (G1) = {0, 1, 4} and π(X + X2) = {{0, 4}, {1, 3}, {2}} with V (G2) = {0, 1, 2}.
|V (G1)| = |V (G2)| = 3. According to the theorem, we have λ(G1) = λ(G2) = 2,
while λ(G1 ∪G2) = 5 since 〈G1 ∪G2〉 = Q[X ] or G1 ∪G2 is complete.
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Example 3. Concerning the proof of Lemma 3, we consider again GF (5) and
G1 = {X2}. Assume a function h which induces a coarser partition such that
π(h) = {{0}, {1, 2, 3, 4}} / π(X2). If h(0) = 0 and h(1) = h(2) = h(3) = h(4) =
1, then by solving the system of equations (14) we have h(X) = X4 = (X2)2 a
multiplication of X2 by itself. If h(0) = 1 and h(1) = h(2) = h(3) = h(4) = 0,
then we see that h(X) = 1 + 4X4, which is also obtained by ring operations on
X2 with constants 1 and 4.

Using Theorem 2 and its proof we have the following corollaries.

Corollary 1. For 0 ≤ m ≤ q − 1 and a partition π of Q, we can compute all
(qq−m) polynomial functions (subring) that are m-degenerate with respect to π.

Proof. By assigning values from Q to equivalence classes of π, we obtain a func-
tion h : Q → Q such that h(a) = h(b) if and only if a and b are equivalent.
Then, by using Lagrange interpolation formula1, we have a polynomial g such
that g(a) = h(a), ∀a ∈ Q. �

The following corollary is a special case of Corollary 1.

Corollary 2. For any 1 ≤ i ≤ q−1, there exists a subring R such that |R| = qi.

Proof. Consider a polynomial function which has the value size i. For example,
we can take a function h such that

h(a0) = a0, h(a1) = a1, h(a2) = a2, · · · ,
h(ai−1) = ai−1 = h(ai) = h(ai+1) = · · · = h(aq−1). (16)

Then, using the interpolation formula, we obtain a polynomial g such that g(c) =
h(c), for any c ∈ Q. Therefore we see |V (g)| = |V (h)|. Then by Theorem 2 we
have |〈g〉| = |V (g)| = |V (h)| = qi. �

Theorem 1 is proved as a corollary to Theorem 2.

Corollary 3. A configuration is complete if and only if it is not degenerate.

Proof. cX is complete, if and only if 〈GcX 〉 = Q[X ]. Therefore, λ(GcX ) = q.
Then by Theorem 2 we see |V (GcX | = q, which implies mcX = 0. �

6 Polynomials in Several Indeterminates

In the information dynamics of CA, we can consider a CA with n mutually
independent information variables X1, X2, ..., Xn [4] [5]. For instance, we can
investigate informational interactions between two cells, say i, j ∈ Z, by consid-
ering a CA with X1, X2, which starts with an initial configuration w′X1wX2w”,
where the state of cell i is X1 and that of cell j is X2 while the other cells have
constant states.
1 Equation (7.20), page 369, [2].
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To formalize it, let Q[X1, X2, ..., Xn] be the polynomial ring in X1, X2, ..., Xn

over Q modulo (Xq
1 −X1)(X

q
2 −X2) · · · (Xq

n −Xn). In the sequel the n-tuple of
indeterminates X1, X2, ..., Xn is denoted by Xn. The basic one-dimensional CA
with Xn is defined by (Q[Xn], fXn) in the same way as one-variable case. The
local function is defined by fXn : Q[Xn] × Q[Xn] × Q[Xn] → Q[Xn] and the
global map induced by fXn is FXn : Q[Xn]Z → Q[Xn]Z.

Among others, we note here that Theorem 2 and its corollaries are generalized
to polynomial rings in Xn. The degree of completeness and the value size of G ⊆
Q[Xn] are defined in the same way as one indeterminate case. Note, however,
that 1 ≤ λ(G) ≤ qn and 1 ≤ |V (G)| ≤ qn. Then, we have the following theorem
which is proved in the same manner as one variable case.

Theorem 3. For any subset G ⊆ Q[Xn],

λ(G) = logq |〈G〉| = |V (G)|. (17)

Proof. Omitted.

7 Concluding Remarks

Lemma 3 shown in the proof of Theorem 2 means that the subring generated by
any subset G is equal to the set of polynomial functions which induces coarser
partitions than that of G. Owing to Theorem 2 the computation of the size of
subring |〈G〉| is reduced to that of the value size |V (G)|, which is much easier to
execute. The complexity of subalgebra generation is generally discussed (proved
to be P-complete) in [6], but the present result will serve the computational
algebra in another direction.

Many thanks are due to Friedrich von Haeseler for his discussions on this top-
ics by and his submitted paper [3], which provides a comprehensive solution for
our problem about the structure of subrings generated by subsets of polynomials
appearing in information dynamics of CA.
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Abstract. Systems of language equations of the form {ϕ(X1, . . . , Xn) =
∅, ψ(X1, . . . , Xn) �= ∅} are studied, where ϕ, ψ may contain set-theoretic
operations and concatenation; they can be equivalently represented as
strict inequalities ξ(X1, . . . , Xn) ⊂ L0. It is proved that the problem
whether such an inequality has a solution is Σ2-complete, the problem
whether it has a unique solution is in (Σ3∩Π3)\(Σ2∪Π2), the existence
of a regular solution is a Σ1-complete problem, while testing whether
there are finitely many solutions is Σ3-complete. The class of languages
representable by their unique solutions is exactly the class of recursive
sets, though a decision procedure cannot be algorithmically constructed
out of an inequality, even if a proof of solution uniqueness is attached.

1 Introduction

Language equations are equalities of the form ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn),
where the variables X1, . . . , Xn assume values of languages, while the expressions
ϕ and ψ use language-theoretic operations from some predefined set. In a more
general sense, a language equation is any formally specified relationship between
sets of strings that contains unknowns. This definition includes some particular
variants, such as language inequalitites ϕ ⊆ ψ [8,10], inequations ϕ �= ψ, proper
inequalities ϕ ⊂ ψ, as well as mixed systems of equations of these four types.

The origins of language equations can be traced to a paper by Ginsburg and
Rice [5] on the specification of context-free languages, and to the monographs on
automata theory by Salomaa [18] and by Conway [4]. The automata-theoretic
direction in the study of language equations led to an important concept of an
alternating finite automaton [3]. The results of Ginsburg and Rice have been
extended to conjunctive grammars [11], and finally led to a definition of Boolean
grammars [13], which depart from the generative paradigm.

What is perhaps the most important about language equations, is that
language-theoretic problems arising in different areas can be reduced to their
decision problems. The important turn towards understanding this role of lan-
guage equations was made by Baader and Narendran [1] and by Baader and
Küsters [2], who reduced term unification in several description logics to certain
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decision problems for language equations with one-sided concatenation, and de-
termined the complexity of those problems.

The next step towards a computational theory of language equations was
undertaken by the author [12], who began a systematic study of language equa-
tions with Boolean operations and unrestricted concatenation. An important
result was their computational universality [12], which has subsequently been
extended to more restricted cases of language equations [9,15]. One of these cases
led to an unexpected negative solution, due to Kunc [9], to the long-standing
Conway’s problem on the commutation of languages [4,7].

This paper continues the study of the computational properties of language
equations [12], investigating new problems and more general types of equations.
Important decision problems, such as whether a system has a finite or a regular
solution [1,2], are for the first time considered for a general type of language
equations with unrestricted concatenation and all Boolean operations. Another
novelty is a further extension of the model: strict inequalities and inequations
make their first appearance in the systems. Let us start with defining the general
form of language equations to be studied in the following.

2 Forms of Equations

We shall study all four types of language equations mentioned in the introduc-
tion, which are:

– equations (in the narrow sense) ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn),
– inequalities ϕ(X1, . . . , Xn) ⊆ ψ(X1, . . . , Xn),
– inequations ϕ(X1, . . . , Xn) �= ψ(X1, . . . , Xn) and
– strict inequalities ϕ(X1, . . . , Xn) ⊂ ψ(X1, . . . , Xn).

Both sides of each of these types of equations may contain concatenation,
union, intersection and complement, as well as any regular constant languages
over a fixed alphabet Σ, while the variables assume values of languages over Σ.
Actually, the constants can be restricted to {ε} and {a} (a ∈ Σ) without de-
creasing the expressive power [12,15], or relaxed to arbitrary recursive languages
without changing any of the constructions of this paper.

We shall consider mixed systems of language equations of all four types.
A vector of languages L = (L1, . . . , Ln) is a solution of such a system, if a
substitution of Li for Xi in all equations yields a tautology in each. Such systems
can be represented in two normal forms; the first of these forms is a system of
an equation and an inequation, each with the empty set in the right-hand side:

ϕ(X1, . . . , Xn) = ∅ (1a)
ψ(X1, . . . , Xn) �= ∅ (1b)

Any inequality ξ ⊆ η can be equivalently rewritten as ξ\η = ∅. Any equality
ξ = η holds if and only if ξ Δη = ∅ (where Δ denotes the symmetric difference
of sets), and, similarly, an inequation ξ �= η can rewritten as ξ Δη �= ∅. A
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proper inequality ξ ⊂ η is equivalent to a system {ξ \ η = ∅, η \ ξ �= ∅}. Finally,
a system with multiple equations of each type (1a,1b), {ϕ1 = ∅,. . . ,ϕm = ∅,
ψ1 �= ∅,. . . ,ψn �= ∅} can be simplified to {ϕ1 ∪ . . .∪ϕm = ∅, ψ1 · . . . ·ψn �= ∅}.
These transformations can be applied to convert any system to the form (1).

The other form serving as a universal representation is a single strict inequal-
ity ξ(X1, . . . , Xn) ⊂ L0, where L0 is a regular constant language. It is easy to
see that (1) holds if and only if aϕ ∪ bψ ⊂ bΣ∗. The form (1) will be used in
this paper for all results on arbitrary systems of language equations, while the
examples of systems will utilize all four types of equations.

Example 1. The following system over Σ = {a}
Y ⊆ aY ∪ ε (2a)
Y �= a∗ (2b)
X ⊆ Y (2c)
aX \ Y �= ∅ (2d)

has the set of solutions {(L,L′) | L is finite, L′ is the substring closure of L}.
The first equation (2a) states that Y is suffix-closed, which means that it

is either a<n for some n � 0, or a∗; the latter possibility is ruled out by (2b).
So Y must be a finite language of the form a<n, while X is its subset by (2c).
However, Y cannot be any superset of X : according to (2d), if a is appended to
the longest string in X , the resulting string should not be in Y . This limits Y
to the substring closure of X .

Example 2. The system from Example 1 can be equivalently rewritten as a sys-
tem of an equation and an inequality

(Y \ (aY ∪ ε)) ∪ (X \ Y ) = ∅ (3a)
(Y Δa∗)(aX \ Y ) �= ∅ (3b)

or as a proper inequality a
[
(Y \ (aY ∪ ε))∪ (X \Y )

]∪ b(Y Δa∗)(aX \ Y ) ⊂ ba∗.

The language of valid accepting computations of a Turing machine, VALC(T )
[6], has proved to be a very important tool in the study of language equations
[12,15,16]. In short, for every TM T over an input alphabet Σ one can construct
an alphabet Γ and an encoding of computations CT : Σ∗ → Γ ∗, such that

VALC(T ) = {w#CT (w) | CT (w) is an accepting computation}, (4)

is an intersection of two linear context-free languages, and hence can be specified
by a system of language equations.

Example 3 ([15]). For every Turing machine T , there exists and can be effec-
tively constructed a two-variable language equation υT (Y, Z) = ∅ which uses all
Boolean operations and linear concatenation, and has a unique solution of the
form (VALC(T ), L′), where L′ is a certain auxiliary language.
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Language equations with Boolean operations and concatenation are expres-
sive enough to extract the language recognized by a Turing machine out of the
language of its computations [12]. This makes such equations computationally
universal and binds their study to the arithmetical hierarchy.

Let us recall the definition of this key notion of the classical recursion the-
ory [17]. The arithmetical hierarchy consists of the classes Σk and Πk (for
all k � 1). A language L is said to be in Σk if it can be represented as
{w | ∃x1∀x2 . . . Qkxk R(w, x1, . . . , xk)} for some recursive predicate R, where
Qk = ∃ if k is odd, Qk = ∀ if k is even. Similarly, L is in Πk if its complement is in
Σk, or, in other words, if it is of the form {w |∀x1∃x2 . . . Qkxk R(w, x1, . . . , xk)}.
There are complete sets in each Σk and Πk (k � 1). It is easy to see that
Σ1 = RE and Π1 = co-RE, and their complete sets are the TM halting problem
and its complement. For all k, the inclusions Σk, Πk ⊂ Σk+1 and Σk, Πk ⊂ Πk+1

are known to be proper, while Σk and Πk are incomparable. The intersection of
Σk and Πk is the class of languages decidable using an oracle for Σk−1.

3 Existence of Finite and Regular Solutions
A vector (L1, . . . , Ln) is said to be a finite (a regular) solution of a system of lan-
guage equations if it is a solution and all languages L1, . . . , Ln are finite (regular,
respectively). These special types of solutions have an advantage of being effec-
tively representable, and algorithms to compute finite [1] and regular solutions
[2] for some restricted types of language equations have been constructed.

However, that turns out to be impossible in our more general case:

Theorem 1. The set of systems of language equations {ϕ(X1, . . . , Xn) =
∅, ψ(X1, . . . , Xn) �= ∅} that have a finite solution (a regular solution)
is RE-complete. Both problems remain RE-complete for individual equations
ϕ(X1, . . . , Xn) = ∅, in which the concatenation is restricted to linear.

Proof. Membership in RE. It suffices to consider all vectors of n finite lan-
guages (L1, . . . , Ln) (all vectors of n finite automata A1, . . . , An in the case of
regular solutions) substituting each into both equations and determining whether
the system is satisfied. If the system has a finite (regular, resp.) solution, such a
vector will eventually be found. If there are no finite (regular, resp.) solutions,
the computation will never terminate.

RE-hardness. Reduction from the Post Correspondence Problem for
nonempty strings, stated as “Given an alphabet Σ and a finite set of pairs
(u1, v1), . . . , (um, vm), where ui, vi ∈ Σ+, determine whether there exists a fi-
nite sequence of numbers i1, . . . in (n � 1, 1 � ij � m), such that ui1 . . . uin =
vi1 . . . vin”.

Let {x1, . . . , xm} be a block code over Σ (i.e., |x1| = . . . = |xm| and xi �= xj

for all i �= j). Define a set of variables {X,Y, Z, Y1, . . . , Ym, Z1, . . . , Zm} and
construct the following system of language equations over Σ ∪ {#} (# /∈ Σ):
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X = Y ∩ Z ∩Σ∗#Σ+ (5a)
Y = x1Y1u1 ∪ . . . ∪ xmYmum ∪# (5b)
Y = Y1 ∪ . . . ∪ Ym ∪X (5c)
Z = x1Z1v1 ∪ . . . ∪ xmZmvm ∪# (5d)
Z = Z1 ∪ . . . ∪ Zm ∪X (5e)

Note that if the nonterminals Yi are replaced with Y in (5b), while (5c)
is altogether removed, and the same is done with respect to Z, we obtain the
usual encoding of PCP as an intersection of two linear context-free languages,
in which Y and Z assume nonregular values regardless of the solvability of the
PCP instance. In our case, each variable Yi means the set of those strings from
Y that are prolonged with xi and ui. The equation (5c) means: “every string w
in Y , unless it is also in X , must be prolonged to xiwyi at least for one i”. If
any strings get into X , this process can be stopped, which allows us to obtain a
finite solution when PCP is solvable.

It is easy to see that if a vector L satisfies (5), then every w ∈ Y (L) must be of
the form xik

. . . xi1#ui1 . . . uik
, for some k � 0 and 1 � ij � m; similarly, every

w ∈ Z(L) is of the form xik
. . . xi1#vi1 . . . vik

. Accordingly, if xi1 . . . xin#w ∈
X(L), then PCP has a solution ui1 . . . uin = vi1 . . . vin = w.

Suppose the given instance of PCP is not solvable, and let us prove that all
solutions of the system (5) are infinite. Suppose L is a finite solution and let w
be the longest string in Y (L). Since X(L) = ∅, by (5c), there exists i, such that
w ∈ Yi(L). Then uiwxi ∈ Y (L) by (5b), and hence w is not the longest string.
The contradiction obtained proves that Y (L) is not finite. Furthermore, using
the pumping lemma it can be proved that Y (L) is not regular.

Now let the instance of PCP be solvable, and let ui1 . . . uin = vi1 . . . vin = w
be the shortest string that meets its specification. Then (5) has the follow-
ing finite solution: (X = {xin . . . xi1#w}, Y = {xik

. . . xi1#ui1 . . . uik
| 0 �

k � n}, Yi = {xik
. . . xi1#ui1 . . . uik

| 0 � k < n, ik+1 = i}, Z =
{xik

. . . xi1#vi1 . . . vik
| 0 � k � n}, Zi = {xik

. . . xi1#vi1 . . . vik
| 0 � k <

n, ik+1 = i}). ��

4 Existence of a Solution

Let us now study the question of the existence of solutions of an arbitrary form.
Some further terminology is required.

Two languages, L′ and L′′, are said to be equal modulo a third language M ,
which is substring-closed (i.e., contains all substrings of each of its strings), if
L′∩M = L′′∩M [12]. This definition is extended to vectors of languages, which
are said to be equal modulo M , if their corresponding components are equal
modulo M . These definitions are also naturally extended to inequalities, strict
inequalities and inequations. Note that if two vectors of languages L′, L′′ are
equal modulo a substring-closed M , then ϕ(L′) = ϕ(L′′) (mod M).
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A vector of languages is a solution modulo M of a system of language equa-
tions, if each equation holds modulo M under the substitution of these languages
for variables. A given vector (L1, . . . , Ln) can be tested for being a solution mod-
ulo M by substituting Xi = Li ∩M into the equations and computing, modulo
M , the value of each subexpression.

Let ϕ(X1, . . . , Xn) = ∅ be an equation. Its solution LM modulo M is said
to be extendable to M ′, for a given M ′ ⊇ M , if there exists a solution modulo
M ′ that coincides with LM modulo M . The vector LM is said to be extendable
to a solution, if the equation has a solution that equals LM modulo M .

Lemma 1 ([12]). Let ϕ(X1, . . . , Xn) = ∅ be an equation and let M be a finite
substring-closed language. Then there exists a finite substring-closed language
M ′ ⊇ M , such that all solutions modulo M extendable to M ′ are extendable to
solutions.

Theorem 2 ([12]). A language equation ϕ(X1, . . . , Xn) = ∅ has a solution if
and only if for every finite substring-closed language M there exists a solution
of ϕ(X) = ∅ modulo M . The decision problem is co-RE-complete.

Let us now establish an analogous necessary and sufficient condition of solu-
tion existence for more general systems involving inequations.

Theorem 3. A system {ϕ(X1, . . . , Xn) = ∅, ψ(X1, . . . , Xn) �= ∅} has a solu-
tion if and only if there exists a finite substring-closed language M0, such that for
every finite substring-closed language M ⊇ M0 there exists a solution of ϕ = ∅
modulo M that is a solution of ψ �= ∅ modulo M0.

Proof. ⇒© Let L = (L1, . . . , Ln) be a solution of the system. Since
ψ(L1, . . . , Ln) �= ∅, there exists a finite substring-closed language, such that this
inequality is satisfied modulo that language. Denote it by M0 and consider an ar-
bitrary finite substring-closed superset M ⊇M0. The vector (L1∩M, . . . , Ln∩M)
satisfies ϕ = ∅ modulo M and ψ �= ∅ modulo M0.
⇐© Given a finite substring-closed M0, apply Lemma 1 to the equation

ϕ(X1, . . . , Xn) = ∅ and the modulus M0, to obtain a greater finite substring-
closed modulus M ⊇M0.

By assumption, for this M there exists a vector LM , such that ϕ(LM ) =
∅ (mod M) and ψ(LM ) �= ∅ (mod M0). Let LM0 be LM taken modulo M0;
then we know that ψ(LM0) �= ∅ (mod M0) and that LM0 is extendable to M .
The latter, by the choice of M according to Lemma 1, implies that the equation
ϕ = ∅ has a solution L that coincides with LM0 modulo M0. Hence L also
satisfies ψ �= ∅, and therefore is a solution of the system. ��

Theorem 4. The set of systems of language equations {ϕ(X1, . . . , Xn) = ∅,
ψ(X1, . . . , Xn) �= ∅} that have solutions is Σ2-complete.

Proof. A necessary and sufficient condition of having solutions given by Theo-
rem 3 is of the form ∃M0∀M R(ϕ, ψ,M0,M), where the quantifiers range over
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countable sets and R is a recursive predicate. A set thus defined is in Σ2 by
definition.

In order to prove Σ2-hardness, let us use a reduction from the complement of
the Π2-complete Turing machine universality problem. This Σ2-complete prob-
lem can be stated as “Given a TM T over Σ, determine whether L(T ) �= Σ∗”.

υT (Y, Z) = ∅ (6a)
Y ⊆ X#Γ ∗ (6b)
X ⊆ Σ∗ (6c)
X �= Σ∗ (6d)

The equation (6a) expresses Y = VALC(T ) and Z = L′, as in Example 3.
The next equation (6b) specifies that every string that begins an accepting com-
putation (that is, every string accepted by M) should be in X . Together with
(6c), this means that

L(T ) ⊆ X ⊆ Σ∗ (7)

If L(T ) = Σ∗, then the bounds (7) are tight, and the only candidate for being
a solution of (6) is X = Σ∗. However, it is ruled out by the inequation (6d), and
hence there are no solutions.

If L(T ) �= Σ∗, then X = L(T ) fits into the bounds (7) and at the same time
satisfies the inequation (6d), and, therefore, (L(T ),VALC(T ), L′) is a solution
of the system (6). This proves the correctness of the reduction. ��

5 Uniqueness of a Solution

In order to study the systems that have exactly one solution, let us first charac-
terize the following property:

Theorem 5. Let k � 1. A system {ϕ(X1, . . . , Xn) = ∅, ψ(X1, . . . , Xn) �= ∅}
has at most k solutions if and only if for every finite substring-closed language M ,
there exists a finite substring-closed language M ′ ⊇M , such that all solutions of
ϕ(X1, . . . , Xn) = ∅ modulo M ′ that are solutions of ψ(X1, . . . , Xn) �= ∅ modulo
M have at most k distinct images modulo M .

In the case k = 1, the statement reads: “. . . all solutions of ϕ(X) = ∅ modulo
M ′ that are solutions of ψ(X) �= ∅ modulo M coincide modulo M”.

Proof. ⇒© Fix an M , and let M ′ be the language defined for the equation ϕ = ∅
and the modulus M by Lemma 1. Suppose that there exist k+1 vectors modulo
M ′, which are distinct modulo M , which satisfy ϕ = ∅ modulo M ′, and which
remain solutions of ψ �= ∅ modulo M . Let L(1), . . . , L(k+1) be these vectors
taken modulo M . According to Lemma 1, each of them can be extended to a
solution of ϕ = ∅, which will at the same time remain a solution modulo ψ �= ∅.
Therefore, the system has at least k + 1 solutions, which yields a contradiction.
⇐© Suppose the vectors L(1), . . . , L(k+1) are pairwise distinct solutions of the

system. Then there exists a finite M closed under substring, such that these
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vectors are pairwise distinct modulo M , and each of them satisfies ψ �= ∅ modulo
M . By assumption, for this particular M there exists a finite substring-closed
M ′, such that all solutions of ϕ = ∅ modulo M ′ that are solutions of ψ �= ∅
have at most k distinct images modulo M . Since each of L(1), . . . , L(k+1) fits
this description, they are not pairwise distinct modulo M , which contradicts the
choice of M . ��

Now the property of having a unique solution can be expressed as a conjunc-
tion of two conditions: the Σ2-condition of having at least one solution (Theo-
rem 3), and the Π2-condition of having at most one solution (Theorem 5 with
k = 1). This can be represented as a Σ3- or as a Π3-formula, which puts the
decision problem to Σ3 ∩Π3. Actually, this is the optimal representation.

Theorem 6. For any k � 1, the set of systems {ϕ(X1, . . . , Xn) = ∅,
ψ(X1, . . . , Xn) �= ∅} that have exactly k solutions is Σ2-hard, Π2-hard and re-
cursive in Σ2 (i.e., it belongs to Σ3 ∩Π3).

Proof. Σ2-hardness. Though the solution existence problem is Σ2-complete,
Theorem 4 does not imply the Σ2-hardness of our case. Taking a look at its
proof, it is easy to see that, unless L(T ) = Σ∗ \ {w} for some w ∈ Σ∗, the
solution of the system (6) is not unique. Hence, a different proof is needed.

Let us use a reduction from another Σ2-complete problem, the Turing ma-
chine finiteness, stated as “Given a TM T over a unary alphabet {a}, determine
whether L(T ) is finite”. It is claimed that the following system has a unique
solution if and only if L(T ) is finite.

υT (Y, Z) = ∅ (8a)
Y ⊆ X#Γ ∗ (8b)
X ⊆ aX ∪ ε (8c)
(aY ∪#) \X#Γ ∗ �= ∅ (8d)

As in the proof of Theorem 4, the equations (8a, 8b) specify that Y =
VALC(T ), Z = L′ and L(T ) ⊆ X . The inequality (8c), cf. (2a) in Example 1,
requires that X ⊆ a∗ and that X is closed under suffix. Hence, the system
(8a, 8b, 8c) has the set of solutions {(L,VALC(T ), L′)|L(T )⊆L⊆ a∗ and L is
suffix-closed}.

If L(T ) = ∅, then VALC(T ) = ∅, and X must be ∅ as well. Supposing the
contrary, that X is a nonempty suffix-closed language {ε, a, aa, . . . , a�} (� � 0),
the left-hand side of the inequation (8d) takes form (∅ ∪#) \ {ε, . . .}#Γ ∗ = ∅,
and hence the inequation is not satisfied. It can similarly be proved that if L(T )
is a finite nonempty set and am is the longest string in it, then X must be equal
to a�m.

If L(T ) is infinite, then a∗ is the only potential value of X ⊇ L(T ), since this
is the only infinite suffix-closed language over {a}. But then aVALC(T )∪{#} ⊆
X#Γ ∗ = a∗#Γ ∗, and therefore the inequation (8d) does not hold.
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Π2-hardness. Follows from the Π2-completeness of the same problem for
equations ϕ(X1, . . . , Xn) = ∅ [12]. Its proof uses a reduction from the Turing
machine universality problem, and uses exactly the system (6a, 6b 6c).

Recursiveness in Σ2. As noted above, the Σ2 condition of solution existence
(Theorem 3) and the Π2 condition of having at most one solution (Theorem 5)
have to be checked. Hence, the problem is Turing-reducible to Σ2. ��
Theorem 7. Let {ϕ(X1, . . . , Xn) = ∅, ψ(X1, . . . , Xn) �= ∅} be a system of an
equation and an inequality that has a unique solution (L1, . . . , Ln). Then each
component Li is recursive.

Proof. Since ψ(L1, . . . , Ln) �= ∅, there exists a string w0 ∈ ψ(L1, . . . , Ln). Using
this string, construct the following algorithm:

Input: w ∈ Σ
Let M = substrings(w0) ∪ substrings(w)
For all finite substring-closed M ′ ⊇M

Let L(1), . . . , L(k) be all vectors (mod M ′)
that satisfy ϕ = ∅ modulo M ′ and ψ �= ∅ modulo M

If L(1) = . . . = L(k) (mod M)
Accept if w ∈ L

(1)
i , reject if w /∈ L

(1)
i

By Theorem 5, for the language M used by the algorithm there exists a finite
substring-closed language M ′ ⊇M , such that all solutions of ϕ = ∅ modulo M ′

that satisfy ψ �= ∅ modulo M coincide modulo M . This M ′ will be eventually
reached by the algorithm’s loop, the condition in the if statement will become
true, and the algorithm will terminate.

It remains to argue that the algorithm accepts w if and only if it is in Li.
The actual solution (L1, . . . , Ln) satisfies ϕ = ∅ modulo M ′ and ψ �= ∅ modulo
M , so this vector, taken modulo M ′, must be among L(1), . . . , L(k). Therefore,
L(1) = (L1, . . . , Ln) (mod M) and w ∈ L

(1)
i is equivalent to w ∈ Li. ��

Since it is already known that every recursive language can be specified by a
unique solution of a language equation [12,15], the following can be concluded:

Corollary 1. The class of languages representable as components of unique so-
lutions of systems of the form {ϕ(X1, . . . , Xn) = ∅, ψ(X1, . . . , Xn) �= ∅} is
exactly the class of recursive languages.

Given an individual language equation ϕ(X1, . . . , Xn) = ∅ with a unique
solution, the algorithm for determining the membership of strings in this solution
can be effectively constructed [12]. This turns out to be different in our more
general case involving inequations:

Theorem 8. There is no algorithm that, given a system of language equations
{ϕ(X1, . . . , Xn) = ∅, ψ(X1, . . . , Xn) �= ∅} with an attached proof that it has a
unique solution, determines this unique solution modulo {ε}.
Proof. Suppose such an algorithm exists. Consider an arbitrary Turing machine
T , and use the language equation υT (Y, Z) = ∅ from Example 3 to construct
the following system of language equations:
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υT (Y, Z) = ∅ (9a)
X ⊆ ε (9b)
XY = ∅ (9c)
X ∪ Y �= ∅ (9d)

The equation (9a) requires that Y = VALC(T ) and Z = L′, where L′ is a
certain irrelevant auxilliary language (see Example 3). By (9b), X can assume
one of the two possible values: ∅ or {ε}. The next two equations (9c, 9d) specify
that exactly one of the languages X and VALC(T ) is nonempty. Since VALC(T )
is nonempty if and only if L(T ) is nonempty, it can be concluded that if L(T ) =
∅, then X = {ε}, and if L(T ) �= ∅, then X = ∅. The system has a unique
solution in either case, it is either ({ε},∅, L′) or (∅,VALC(T ), L′).

This argument can be properly formalized and attached to the system (9)
to produce an input for the supposed algorithm. The solution modulo {ε} it
computes will be ({ε},∅, L′ ∩ {ε}) if L(T ) = ∅, or (∅,∅, L′ ∩ {ε}) if L(T ) �= ∅.
Therefore, the supposed algorithm can be used to solve the Turing machine
emptiness problem, which is known to be undecidable. ��

In particular, Theorem 8 implies that, though for every system with a unique
solution there exists an algorithm for testing the membership of strings in
the components of that solution, this algorithm cannot be algorithmically con-
structed. This reveals a principal difference between these systems and the earlier
studied computationally universal types of language equations [9,12,15].

6 Equations with Finitely Many Solutions

Let us consider the problem of testing whether a given system of language equa-
tions has finitely many solutions. This property can naturally be represented as
“there exists a number k � 0, such that there are exactly k solutions”, and we
shall now see that this representation is optimal with respect to the number of
quantifiers.

Theorem 9. The set of systems of language equations {ϕ(X1, . . . , Xn) = ∅,
ψ(X1, . . . , Xn) �= ∅} that have finitely many solutions is Σ3-complete. It remains
Σ3-complete for individual equations ϕ(X1, . . . , Xn) = ∅.

Proof. Membership in Σ3. A system has finitely many solutions if and only
if there exists a number k � 1, such that the system has at most k solutions.
According to Theorem 5, the condition of having at most k solutions is repre-
sentable as a Π2 formula ∀M∃M ′ R(k,M,M ′), where R is a certain recursive
predicate stated by the theorem. This predicate R can be used to characterize
our problem as follows: ∃k∀M∃M ′ R(k,M,M ′). This is a Σ3-formula.

Σ3-hardness. Reduction from the co-finiteness problem for Turing machines,
stated as “Given a TM T over Σ, determine whether Σ∗ \L(T ) is finite”, which
is known to be Σ3-complete [17, Corollary 14-XVI].
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Construct the system (6a, 6b, 6c), as in Theorem 4, which has the set of
solutions

{(L,VALC(T ), L′) | L(T ) ⊆ L ⊆ Σ∗} (10)

If L(T ) is co-finite, then there are finitely many values L that fit within the
bounds in (10), and hence the set of solutions has finitely many elements. If
Σ∗ \ L(T ) is infinite, then (10) is infinite as well. This proves the reduction. ��

We already know that if a system has a unique solution, then the components
of this solution are recursive languages (see Theorem 7). Let us extend this
recursiveness result to the case of systems with any finite number of solutions.

Theorem 10. Let {ϕ(X1, . . . , Xn) = ∅, ψ(X1, . . . , Xn) �= ∅} be a system of an
equation and an inequality that has finitely many solutions. Then all components
of all these solutions are recursive.

Proof. Let L(1), . . . , L(k) (k � 0) be all solutions of the system. If k = 0, the
result trivially holds, and if k = 1, it holds by Theorem 7. Consider the case k � 2
and let us construct a new system that would have L(1) as its unique solution.
Since L(1) is different from each L(i) (2 � i � k), for every such i there exists
a variable Xji , such that L

(1)
ji
�= L

(i)
ji

; let wi be any string in their symmetric
difference. Now construct the following system of language equations:

ϕ(X1, . . . , Xn) = ∅ (11a)
ψ(X1, . . . , Xn) �= ∅ (11b){

Xji ∩ wi �= ∅, if wi ∈ L
(1)
ji

Xji ∩ wi = ∅, if wi /∈ L
(1)
ji

(for all 2 � i � k) (11c)

Every solution of the constructed system satisfies (11a, 11b), i.e., is a solution
of the original system. Therefore, L(1), . . . , L(k) are the only candidates for being
solutions of (11). While each L(i) (i � 2) does not satisfy the i-th equation (11c),
L(1) satisfies all of them, which makes it the unique solution of the system (11).
Therefore, by Theorem 7, all components of L(1) are recursive. ��

7 Conclusion

The complexity of main decision problems for language equations with equality
only and for systems involving proper inequalities and inequations is shown in
Table 1. The results are fairly disparate, but they have one thing in common:
undecidability.

The close relation of language equations of the general form to the recursion
theory and to logic has been noted before [12,16], and the extensions introduced
in this paper (namely, inequations and strict inequalities) yield new interesting
undecidabilities that manifest themselves in Theorem 8. This particular turn
of the theory of language equations suggests further mathematical problems
to study. For instance, how hard is the following decision problem: “Given a
systemof language equations of one of the two forms, determine whether its set
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Table 1. Complexity of decision problems. Expressive power of unique solutions.

ϕ(X1, . . . , Xn) = ∅
{
ϕ(X1, . . . , Xn) = ∅
ψ(X1, . . . , Xn) �= ∅

Does there exist a finite solution? Σ1 Σ1

Does there exist a regular solution? Σ1 Σ1

Do there exist any solutions? Π1 [12] Σ2

Does there exist a unique solution? Π2 [12] Σ3 ∩Π3

Are there finitely many solutions? Σ3 Σ3

Class of languages recursive [12] recursive

of solutions is countable”? For systems with countably many solutions, what is
the class of languages that can occur in those solutions?
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Abstract. In recent years the collective tokens philosophy for Petri Nets
has gained again the stage, but it is commonly set in opposition to the
individual tokens philosophy. In this paper we investigate what can be
an adequate event structures to capture the collective tokens philosophy
of nets when inhibitor arcs are taken into account.

1 Introduction

When describing the computations of a concurrent system each step in the com-
putation is determined by some previous happenings, determining a causal de-
pendency between the step and the previous ones. As noticed in many papers
(e.g. [12,1,2,3,4,5]) there are several kinds of causality arising from the various
different situations. In [6,12] and [7] a new relation between events is proposed
that is able to model several different situations. The disabling/enabling relation
has been introduced to take into account the causality arising in Petri nets with
read and inhibitor arcs under the so called individual tokens philosophy. This re-
lation can be used to model dependencies between activities in a much broader
sense, as we will try to point out in the following. Consider the following two
nets:

•

• b

a s

c

s

a •

b •
s′

c

• •

N1 N2

In the net N1 the transition a fires either at the initial state or, in case the
transition b fires, after the firing of c because there is an inhibiting arc between
s and a. This is the typical case where a is inhibited by something caused by b,
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but the inhibition can be removed. In the other net, a is enabled by the firing of
b or c, and the firing of a re-enables the other (putting some condition consumed
by b or c). This is the typical case where we do not care too much about who
enabled a, rather we focus on the fact that a is enabled. It is worth to notice that
the net N1 is an inhibitor occurrence net as defined in [6], whereas the second is
an occurrence net as defined in [8].

The dependencies between these events can be easily modeled using (a gener-
alization of) the disabling/enabling relation as introduced in [6] and [12]: for N1

we write I1({b}, a, {{c}}), I1(∅, c, {{b}}) and for N2 we have I2({c}, b, {{a}}),
I2({b}, c, {{a}}), I2(∅, a, {{b}, {c}}) (we give here only the relevant ones), where
the intuition behind this relation is the following one: given I(a, e, A), the event
e can be added to a state, seen as the set of events happened so far, if either
a is not contained in the state or also some set of event of A is present at the
state. Thus the relation is general enough to model several different kinds of
dependencies. In particular, the individual tokens philosophy which advocates
the interpretation that the happening of an event (step in the computation) has
a unique history (hence the set of its causes is unique) and the collective to-
kens philosophy which consent a broader interpretation, namely that events can
happen with different histories, can be both modeled using the same relation.
The claim that events may have different history has been made in several other
situations: in [9] it has been used to introduce the notion of event automata
to solve a problem of compositionality and specification involving prime event
structures, in [8] it has been used to introduce configuration structures, and in
[10] it has been used to give an event structure semantics to Place/Transition
nets.

We investigate on an adequate event structure semantics for nets with in-
hibitor arcs under the collective tokens philosophy, namely when it is irrelevant
the history of an event. As the disabling/enabling relation seems to be well suited
to represent the dependencies among events in the case of the collective tokens
philosophy, we place this notion as the starting point of this investigation. The
final target would be a unique framework for considering the individual and the
collective tokens philosophy. A similar perspective in considering the collective
tokens philosophy is adopted in [11], where the semantics based on configura-
tion structures ([8]) is compared with an algebraic model based on monoidal
categories.

Thus, we first generalize the disabling/enabling relation introduced in [6,12]
to ease the modeling of the nets tokens game, showing that this is indeed a
conservative extension of the previous notion. We then show that even recent
proposals of event structures (e.g. event structure with resolvable conflicts, de-
fined in [13]) cannot capture the dependencies arising from the inhibition, even
under the individual tokens philosophy. Following the Gunawardena’s approach
to the study of the semantics of a net ([14]), where he characterize in a logical
way the firings of a transition, we use the disabling/enabling relation to charac-
terize the conditions under which the n-th occurrence of a transition can happen.
This approach is easily extended to the case of net with inhibitor arc, as it is ob-
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vious that the characterization of the positive causes follows the Gunawardena’s
intuition, whereas the characterization of negative causes, i.e. these arising from
inhibitor arcs, follows the intuition behind the disabling/enabling relation.

The paper is organized as follows: in the next section we introduce and discuss
the disabling/enabling relation and introduce the notion of Disabling/Enabling
event structure. We then compare it with other brands of event structure (also
in section 3 where we show that the DE-relation is substantially different from
the relation introduced by van Glabbeek and Plotkin in their event structures
with resolvable conflicts). In section 4 we show how our event structure capture
the collective tokens philosophy and finally, in section 5 we extend our approach
to the case of inhibitor arcs.

2 DE-Event Structures

In [6,12] and [7] the disabling/enabling relation has been introduced to take
into account the causalities arising in Petri nets with read and inhibitor arcs.
This relation can be used to model dependencies between activities in a much
broader sense, as shown in [15]. Here we conservatively extend the definition of
disabling/enabling. Let us fix some notational conventions. The powerset of a set
X is denoted by 2X , while 2X

fin denotes the set of finite subsets of X and 2X
1 the

set of subsets of X of cardinality at most one (singletons or the empty set). With
N we denote the set of natural numbers, and with Z the set of relative numbers.

Definition 1. A disabling/enabling relation over a set E (DE-relation for
short) is a ternary relation I ⊆ 2E

fin × E × 22E
fin .

Informally, if I(a, e, A) then the events in a inhibits the event e, which can be
enabled again by one of the sets of events in A. The first argument of the relation
can be also the empty set ∅, I(∅, e, A) meaning that the event e is inhibited in
the initial state of the system, thus some other event should happen before e.
Moreover the third argument (the set of set of events A) can be empty, I(a, e, ∅)
meaning that there are no events that can re-enable e after it has been disabled
by a.

In the papers [6,12] and [15] the triples considered are further constrained.
The first component can be at most a singleton and also the set of events in
the third components are singletons. Thus the disabling/enabling relation is
in this case as follows: ⊆ 2E

1 × E × 2E .1 As shown in [6], this relation is
sufficient to represent both causality and asymmetric conflict and thus it is the
only relation one need in the individual tokens philosophy approach. However,
this relation cannot take into account more complex notion of consistency as
it is done in general event structures. Here the consistency relation is induced
by the asymmetric conflict relation (a set of events is consistent if there is no
chain of asymmetric conflicts, see [12]), thus there is no event structure with

1 To be more precise, we should write ⊆ 2E
1 × E × 22E

1 , but here we retain the
notation of [6,12].
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this relation that is able to model the situation where the set of events {a, b, c}
is not consistent, but {a, b}, {a, c} and {b, c} are consistents and there is no
dependency among these three events. The generalization of the relation can
model this situation. In fact, adding the triples I({a, b}, c, ∅), I({a, c}, b, ∅) and
I({c, b}, a, ∅), we can avoid that the configuration {a, b, c} is reached. General
event structures by Winskel ([16]) model this situation by forbidding that {a, b, c}
is consistent. It is easy to see that relation is an instance of the more general
definition of disabling/enabling relation we have introduced here. We can now
introduce the notion of DE-event structure.

Definition 2. A DE-event structure (de-es) is a pair E = 〈E, I〉, where E is
a set of events and I ⊆ 2E

fin × E × 22E
fin is a ternary relation, called disabling-

enabling relation, such that if I(a, e, A) and A �= ∅ then ∅ �∈ A.

The DE-relation is used to represent the conditions under which an event can
happen. Differently from other notions of event structures, it could be that no
computation is actually represented by such relation. As usual a computation is
presented as a configuration, i.e. a set of events, and the DE-relation is used to
extend the set of events.

Definition 3. Let E = 〈E, I〉 be a de-es. Given C,C′ ⊆ E, we say that C′

extends C, notation C � C′, iff (a) C′ \ C = {e}, and (b) for all I(a, e, A), if
a ⊆ C then exists a′ ∈ A and a′ ⊆ C.

Using this definition we can define what a configuration of a de-es event struc-
ture is.

Definition 4. Let E = 〈E, I〉 be a de-es. A subset C of E is a configuration iff
there exists a sequence C0, . . . , Cn, . . . of subsets of E with C0 = ∅ and

⋃
i∈N

Ci =
C such that for all i ∈ N, i > 0, it holds that Ci−1 � Ci. The set of configurations
of a DE event structure will be denoted by Conf (E).

Before comparing this notion of event structure with the generalization of gen-
eral event structures developed by van Glabbeek and Plotkin in [13], we briefly
discuss the capabilities of the DE-relation. In [6] and [12] the event structures
considered had the disabling/enabling relation of the form of and were fur-
ther constrained by auxiliary generalized causality and conflict (asymmetric and
symmetric) relations (denoted with <⊆ 2E × E, ↗⊆ E × E and # ⊆ 2E

fin

respectively) defined by the following set of rules:

(∅, e, A) #pA

A < e
(< 1)

A < e ∀e′∈A. Ae′ <e′ #p(∪{Ae′ | e′ ∈ A})
(∪{Ae′ | e′ ∈ A}) < e

(< 2)

({e′}, e, ∅)
e ↗ e′

(↗ 1) e ∈ A < e′

e ↗ e′
(↗ 2)

#{e, e′}
e ↗ e′

(↗ 3)

e0 ↗ . . . ↗ en ↗ e0

#{e0, . . . , en}
(#1)

A′ < e ∀e′ ∈ A′. #(A ∪ {e′})
#(A ∪ {e})

(#2)
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where #pA means that the events in A are pairwise conflicting, namely #{e, e′}
for all e, e′ ∈ A with e �= e′. We will use the infix notation for the binary
conflicts, writing e#e′ instead of #{e, e′}. Moreover we will write e < e′ to
indicate {e} < e′.

For a detailed discussion on the interpretation of these relations, the inter-
ested reader can consult [6] and [12]. Here it is enough to summarize as follows:
A < e means that in every computation where e is executed, there is exactly
one event e′ ∈ A which is executed and it precedes e; e′ ↗ e means that in
every computation where both e and e′ are executed, e′ precedes e; and #A
means that there are no computations where all events in A are executed. These
relations are used to define the notion of inhibitor event structure, by suitably
constraining the triples that are allowed.

Definition 5. An inhibitor event structure (ies) is a pair I = 〈E, 〉 satisfying,
for all e ∈ E, a ∈ 2E

1 and A ⊆ E, (1) if (a, e, A) then #pA and ∀e′ ∈ a. ∀e′′ ∈
A. e′ < e′′.; (2) if A < e then (∅, e, A); (3) if e↗ e′ then ({e′}, e, ∅).

This definition captures the behavior of a (weakly) safe Petri nets with inhibitor
and read arcs under the individual tokens philosophy, as it is shown in [6] and
[12]. Furthermore there it is shown that Winskel’s prime event structures ([17]),
asymmetric event structures by Baldan, Corradini and Montanari ([1]) and event
structures with possible events by Pinna and Poigné ([9]) can be viewed as ies.
In fact the causality and the symmetric conflict can be derived by these triples,
as well as asymmetric conflict (the↗ relation). Possible events can be viewed as
asymmetric conflicts. For what regards the treatment of disjunctive or-causality
(relation <) the presented rules resembles also the equivalence rules for (ex-
tended) bundle event structures by Langerak ([18]), thus also this brand of event
structures can be seen as a special case of ies. Using the fact that flow event
structures by Boudol ([19]) can be represented by event structures with possible
events, it is quite clear that ies, and henceforth de-es, can capture all these
brands of event structures. We show that general event structures can be seen as
de-es. An even structure is the triple E = 〈E,Con,9〉 such that (a) E is a set
of events, (b) Con ⊆ 2E

fin such that ∅ ∈ Con and Y ⊆ X , X ∈ Con ⇒ Y ∈ Con,
and (c) 9⊆ Con × E such that X 9 e and X ⊆ Y ⇒ Y 9 e. A configuration of
such event structure is a subset C of E which is (1) consistent, i.e. every finite
subset of C belongs to Con, and (2) secured, i.e. ∀e ∈ C, ∃e0, . . . , en ∈ C. en = e
and ∀i ≤ n. {e0, . . . , ei−1} 9 ei. To an event structure 〈E,Con,9〉 we associate
a de-es E = 〈E, I〉 where I is as follows:(a) I(a, e, ∅) if a ∪ {e} �∈ Con and
a ∈ Con, and (b) I(a, e, {a}) if a 9 e. Now assume that C is a configuration of
E, then it is consistent and secured. Assume that it is not a configuration of the
associated de-es, then for all possible orderings of subsets, there is an index i
where the � is violated. But this means that either I(a, e, ∅) cannot be used and
a∪{e} is in C, contradicting the consistency, or that I(a, e, {a}) cannot be used,
contradicting the securedness. Thus we can say that de-es are able to represent
also Winskel’s event structures. Using the fact that a is just a special case of
the I relation, we have the following theorem.
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Theorem 1. General, prime, flow, bundle event structures and event structures
with possible events can be modeled using the I relation.

3 Event Structure with Resolvable Conflict

In [13] van Glabbeek and Plotkin propose a generalization of Winskel’s event
structures [16,17]. We briefly review their definition and compare it with our.

An event structure is a pair E = 〈E,9〉 with: (a) E a set of events, and (b)
9⊆ 2E × 2E, the enabling relation.

No particular constraint is placed on the enabling relation 9, and it intuitively
says that for all the events in Y to occur, for some set X with X 9 Y , the events
in X have to happen first. Configurations are defined according to the step
transition relation defined as follows: X −→E Y ⇔ (∀X ⊆ Y ∧ ∀Z ⊆ Y. ∃W ⊆
X. W 9 Z). For the single action transition relation it is further required that Y \
X contains at most one element. Let E = 〈E,9〉 be an event structure. Its set of
left closed configurations, denoted with L(E), is L(E) = {X ⊆ E | X −→E X}.
The configurations defined in this way are not necessarily reachable from a given
initial state (as in the case of de-es). Thus a notion of secured configuration is
added. Let E = 〈E,9〉 be an event structure. A configuration X ∈ L(E) is secured
if there is an infinite sequence ∅ = X0 −→E X1 −→E . . . −→E Xn −→E . . . and
X =

⋃
i∈N

Xi. The set of secured configuration is denoted with S(E).
We limit our attention to event structures satisfying the following conditions:

(1) 9⊆ 2E
fin × 2E

fin , (2) rooted: if ∅ 9 ∅, (3) singular: if X 9 Y implies X = ∅ or
Y as singleton, (4) binary conflict: if |X | > 2 implies ∅ 9 X , and (5) the set of
secured configurations coincides with the set of left closed configurations.

The requirement of finite cause formulated as if X 9 Y implies X finite,
is subsumed by the restriction we place on the 9 relation. This class of event
structure is clearly contained in the more general one of the definition of van
Glabbeek and Plotkin, but it is enough for our purposes. The enabling of the
form ∅ 9 X with |X | > 1 are used to model consistency of events, whereas the
other to express how event are added. These kinds of event structures can be seen
as de-es, using the same schema of translation we used for Winskel’s general
event structures: X 9 {e} is translated into I(∅, e, {X}) whereas the consistency
is ∅ 9 X is translated with I(X, e, ∅) provided that ¬(∅ 9 X ∪ {e}), but not the
vice versa. Consider the following situation (a net with inhibitor arcs):

• a •
c

b

∅
{a} {c}

{a, b} {c, a}
{a, b, c}

the net its configurations
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This situation is modeled by the triples I(∅, b, {{a}}) and I({a}, c, {{b}})
but there is no possibility of modeling it using the 9 relation, even dropping
the assumptions we made before. The reason is the following: in van Glabbeek
and Plotkin event structures (as in Winskel’s general event structures), enabling
is monotonic, once that an event is enabled, there is no way to state that it is
temporarily disabled as it is in this case (hence an enabled event cannot be added
if adding the event would lead to a set which is not consistent).

Thus, there are specific situations where event structures with resolvable
conflicts cannot capture the behaviour of (extensions of) Petri nets, whereas
on the contrary, it seems not so easy to overcome the general requirement that
9⊆ 2E × 2E.

4 Nets and Event Structures

We investigate now an event structure semantics for nets with inhibitor arcs,
defining it firstly on nets without inhibitor arcs and showing then how to extend
to this case. We first recall some notions about nets. A net is a tuple N =
(S, T, F,m0) where S is a set of places, T is a set of transitions, F : (S × T ) ∪
(T × S) → N is a flow relation and m : S → N is the initial marking. The
evolution of a net is described as usually with the tokens game. Let m : S → N
be a marking of a net, a finite multiset U : T → N of transitions is enabled
under m if

∑
t∈T U(t) · F (s, t) ≤ m(s) and the reached marking is m′(s) =

m(s)+
∑

t∈T U(t) · (F (t, s)−F (s, t)). We write m [U〉m′ to express the firing of
a step enabled at the marking m and yielding the marking m′. A firing sequence
is defined as follows:

- m0 is a firing sequence,
- if m0 [U1〉m1 [U2〉m2 . . .mn−1 [Un〉mn is a firing sequence and mn [Un+1〉
mn+1, then m0 [U1〉m1 [U2〉m2 . . .mn−1 [Un〉mn [Un+1〉mn+1 is a firing se-
quence.

A marking m is reachable if there is a firing sequence m0 [U1〉m1 [U2〉m2 . . .
mn−1 [Un〉mn and m = mn.

Given a net N = (S, T, F,m), with •N F (F •N ) we denote the multiset S → N
defined as •NF (t) = F (−, t) (F •N (t) = F (t,− )), and with •N s (s•N ) we denote
the sets F (−, s) (F (s,− )). We will omit the index N in •N , •N when it is clear
from the context what is the referring net. Over multisets a sum is defined as
usual: (U ⊕U ′)(x) = U(x) +U ′(x). When a multiset is a set we often identify it
with its elements. We end this brief review recalling that a safe net is a net where
F : (S×T )∪(T ×S)→ {0, 1} and each reachable marking is a set, i.e. M(s) ≤ 1
for all s ∈ S. In this paper, for simplicity, we consider safe nets. The behaviour
of a safe net (with inhibitor arcs) under the individual tokens philosophy can
be captured using the notion of i-occurrence net ([12]) and to such i-occurrence
net a de-es can be easily associated (indeed in [12] it is shown how to associate
an ies to an i-occurrence net, and we have shown that an ies is a subclass of
de-es). To capture the behaviour of a net under the collective tokens philosophy,
van Glabbeek and Plotkin proposed the notion of 1-occurrence net [8].
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Definition 6. Let N = (S, T, F,m) be a Petri net, a configuration of a net is
any finite multiset X of transitions with the property that the function mX : S →
Z given by mX(s) = m(s)+

∑
t∈T X(t) ·(F (t, s)−F (s, t)) is a reachable marking

of the net.

We can now define the notion of 1-occurrence net.

Definition 7. Let N = (S, T, F,m) be a Petri net, N is a 1-occurrence net
(1-on for short) if every configuration is a set.

Given a net, its behaviour according to the collective tokens philosophy can be
captured by the following definition ([8]).

Definition 8. Let N = (S, T, F,m) be a Petri net. Its 1-unfolding N ′ = (S′, T ′,
F ′, m′) into a 1-occurrence net is given by (a) T ′ = T × (N \ {0}), (b) S′ =
S∪ (T ′×{∗}), (c) F ′(s, (t, n)) = F (s, t) and F ′((t, n), s) = F (t, s), (d) F ′((t, n),
((t, n + 1), ∗)) = 1 and F ′((u, ∗), u) = 1, and (e) m′(s) = m(s), m′((t, 1), ∗) = 1
and m′((t, n), ∗) = 0 if n > 1.

With respect to the definition in [8] we add the requirement that the various
occurrence of the same transition are ordered. In [8] it is shown how to associate
a configuration structures. To relate in a more precise way the notion of 1-
unfolding of a net and the net itself, we use the mapping ı : [T ′ → N]→ [T → N]
as follows: ı(U)(t) is X(t) = |{(t, i)|U((t, i)) > 0}|. It is easy to see that the
following proposition holds.

Proposition 1. Let N = (S, T, F,m) be a Petri net and N ′ = (S′, T ′, F ′,m′)
its 1-unfolding. Let C be a configuration of N ′ and m̂ the reached marking,
then there exists a firing sequence m0 [U1〉m1 [U2〉m2 . . .mn−1 [Un〉mn such that
mn(s) = m̂(s) for all s ∈ S and ı(

∑
i≤n Ui) = C.

An event structure with resolvable conflicts can be associated to the 1-
unfolding of a net without inhibitor arcs defining the 9 relation as C 9 C′

where C is a configuration of the 1-unfolding and C′ is a configuration that can
be reached by C, and ∅ 9 C for all possible configurations of the net.

A different approach to the characterization of the firings of a net under the
collective tokens philosophy is taken by Gunawardena in [14], where he charac-
terizes the firings of the transitions of a safe net by counting the occurrences of
the firings and relating them in an appropriate way. We illustrate the approach
using the following (part) of a (safe) net:

x y

s

a b c

The transition x and y put tokens in s which are consumed by one in a, b or
c, hence the i-th firing of a depends on the presence of a token in s and this
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is present only when the sum of the firings of x and y is k and the sum of the
firings of a, b and c is j with i = k− j + 1. When s is initially marked we require
that i = k − j.

Gunawardena gives, for each happening of an event (namely the firing of
a transition, where the subscript identifies how many times the transition has
fired before), the following formula, which must hold at a certain configuration
in order to add the event:

ρ(an) =
∧

s∈ •a [
∨

i+j=n+k+l+φ(s) ((xi ∧ yj) ∧ ¬(bk ∨ cl))] (1)

with •s = {x, y} and s• = {a, b, c}, and φ(s) = 1 if the place contains a token
and 0 otherwise.

This formula can be rephrased as follows:

ρ′(an) = an−1 ∧
∧

s∈ •a [
∧

i+j+ψ(s)=n+k+l (bk ∧ cl)⇒ (xi ∧ yj)] (2)

where ψ(s) = 0 if the place s is initially marked, and ψ(s) = 1 otherwise.
The formula is interpreted on configurations, with the intuitive meaning that

a propositional letter is true if the corresponding occurrence of the transition
is in the configuration. We assume that ∅ |= 0, and in the case of the formula
(2) we assume that the subscript 0 means that the propositional letter is 0. As
usual we write C |= ρ′(an) to say that the formula ρ′(an) is true at the given
configuration. The following proposition relates the configurations of a net with
the formulas exemplified above, provided that an is interpreted on a net as (a, n).

Proposition 2. Let N ′ = (S′, T ′, F ′,m′) be the 1-unfolding of N = (S, T, F,m)
and C a configuration. If C |= ρ′(tn) then (1) (m′ +

∑
t∈T ′ C(t) · (F ′•(t) −

•F ′(t))) [(t, n)〉m′′, and (2) C ⊕ (t, n) is a configuration of N ′.

Thus these formulas describe exactly the enabling of a transition, giving a logical
account of the firing of a net.

The formulas above define a de-es as well: to each ρ′(an) the triples

I({(b, k), (c, l)}, (a, n), {{(x, i), (y, j)}|i + j = n + k + l})
are associated. Henceforth we can associate a de-es to each 1-unfolding of a net.
To formalize this notion, we need some more notation. Let N = (S, T, F,m) be
a net, with PreN (Y , s) the set {bk|b ∈ s•N and k = Y (b)}, where Y : s•N → N
is a finite multiset, and with PostN (Z , s) the set {bk|b ∈ •N s and k = Z (b)},
where Z : •N s→ N is a again a finite multiset. Y and Z are multisets restricted
to the preset and postset of s representing possible (parts of) configurations of
the net N .

Definition 9. Let N ′ = (S′, T ′, F ′,m′) be the 1-unfolding of N = (S, T, F,m).
With E (N ′) we denote the de-es 〈T ′, I〉 defined as follows: for all t ∈ T ′ and
for all s ∈ •N t we introduce the triples (where Y (t) = 0):

I(PreN (Y , s), (t, n), {PostN (Z, s)|∑s′∈s•N Y (s′)+n + ψ(s)=
∑

s′∈ •N sZ (s′)})
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Theorem 2. Let N ′ = (S′, T ′, F ′,m′) be the 1-unfolding of N = (S, T, F,m)
and E (N ′) be the associated de-es. Then C is a configuration of N ′ iff C ∈
Conf(E (N ′)).

Thus, de-es events structures are able to capture the behaviour of a net under
the collective tokens philosophy.

5 Nets with Inhibitor Arcs and Event Structures

We turn now our attention to nets with inhibitor arcs. A net with inhibitor arcs
is the tuple N = (S, T, F, I,m0) where (S, T, F,m0) is a net and I ⊆ T × S.
With �Nt we denote the places inhibiting t, i.e. those such that I(t, s). The
notion of enabling changes accordingly adding that (t, s) ∈ I implies M(s) = 0
and ∀t, t′ ∈ U such that t = t′ ⇒ U(t) ≥ 2 we have that F (s, t) > 0 implies
(t′, s) �∈ I. The notion of firing sequence does not change. We rephrase quite
easily the notion of 1-occurrence net and of 1-unfolding adapting to the case of
inhibitor arcs.

Definition 10. Let N = (S, T, F, I,m) be a Petri net with inhibitor arcs, N is
a 1-i-occurrence net (1-i-on for short) if every configuration is a set.

Definition 11. Let N = (S, T, F, I,m) be a Petri net. Its 1-unfolding N ′ =
(S′, T ′, F ′, I ′, m′) into a 1-i-occurrence net is defined as N ′ = (S′, T ′, F ′, m′)
and 1-occurrence net and I ′(s, (t, n)) if I(s, t).

Let us see how to associate a formula to the n-firing of a transition of a net
N with inhibitor arcs. Consider the following (part) of a (safe) net with inhibitor
arcs:

t t′ x y

s′ s

z z′ a b c

In order to fire the transition a should have the place s′ empty. Thus to ρ′ we
have to add a piece corresponding to the left part of the net, stating that if t, t′

have occurred each a number of times, then z, z′ have to be occurred one time
more: ∧

s∈ �a [
∧

i+j=k+l+φ(s) (tk ∧ t′l)⇒ (zi ∧ z′j)] (3)

where φ(s) = 1 if the place s is initially marked. The whole formula is

ρ′(an) = an−1 ∧ ∧
s∈ •a [

∧
i+j=n+k+l+ψ(s) (bk ∧ cl)⇒ (xi ∧ yj)]∧

∧ ∧
s∈ �a [

∧
i+j=k+l+φ(s) (tk ∧ t′l)⇒ (zi ∧ z′j)]
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Proposition 3. Let N = (S, T, F, I,m) be a Petri net with inhibitor arcs and
N ′ = (S′, T ′, F ′, I ′,m′) its 1-unfolding. Let C be a configuration of N ′ and m̂
the reached marking, then there exists a firing sequence m0 [U1〉m1 [U2〉m2 . . .
mn−1 [Un〉mn such that mn(s) = m̂(s) for all s ∈ S and ı(

∑
i≤n Ui) = C.

The following proposition relates the holding of a formula to the firing of a
transition.

Proposition 4. Let N ′ = (S′, T ′, F ′, I ′,m′) be the 1-unfolding of N = (S, T, F,
I, m) and C a configuration. If C |= ρ′(tn) then (a) (m′+

∑
t∈T ′ C(t) · (F ′•(t)−

•F ′(t))) [(t, n)〉m′′, and (b) C ⊕ (t, n) is a configuration of N ′.

The de-es is easily associated to the 1-unfolding of a net, as the part of the
formula concerning the inhibition generates a number of different triples but
does not influence the others (the positive enabling part).

Definition 12. Let N ′ = (S′, T ′, F ′, I ′,m′) be the 1-unfolding of N = (S, T, F,
I, m). With E (N ′) we denote the de-es 〈T ′, I〉 defined as follows: for all s ∈ •N t
we introduce the triples

I(PreN (Y , s), (t, n), {PostN(Z , s)|∑s′∈s•N Y (s′)+n+ψ(s)=
∑

s′∈ •N sZ (s′)})
with Y (a) = 0, and for all s ∈ �Nt we introduce the triples

I(PreN (Y , s), (t, n), {PostN(Z , s)|∑s′∈s•N Y (s′)+n=φ(s)+
∑

s′∈ •N sZ (s′)})
The following theorem relates the two notion of configuration in the net and
in de-es, showing the adequateness of de-es to give a faithful account of the
behaviour of a net with inhibitor arcs under the collective tokens philosophy.

Theorem 3. Let N ′ = (S′, T ′, F ′, I ′,m′) be the 1-unfolding of N = (S, T, F,
I,m) and E (N ′) be the associated de-es. Then C is a configuration of N ′ iff
C ∈ Conf(E (N ′)).

6 Conclusions

In this paper we have shown how to generalize a disabling/enabling relation in
order to give an event based faithful account of the collective tokens philosophy
of nets with inhibitor arcs. We have limited our attention to safe nets, but the
generalization to step semantics is rather obvious.

The proposed generalization seems to cover all other event based models
in literature, but this should be further investigated. The event structures we
have introduced are quite general, and indeed suitable subclasses have already
been identified, e.g. ies, and these subclasses are obtained putting suitable con-
straints on the triple of the DE-relation. We will investigate on a more precise
characterization of the triples in the case of the collective tokens philosophy.

Another line that should be pursued is on which kind of morphisms can be
defined on this new relation. Usually morphisms identify conflicting computa-
tions, here the situation is more subtle as it is not so easy to identify conflicting
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computations on the basis of the triples alone. Thus it should be investigated
whether a different notion of causality and conflict could arise in the spirit of
the calculus presented in [6] and [12].

We do not consider here a relevant issue, namely a characterization of the
theory that give rise to the model we consider, along the lines of what have been
started in [13] and [11], leaving this topics to further investigations.

Acknowledgment I would like to thank the referees for their useful suggestions
that helped in improving the paper.
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An Exact 2.9416n Algorithm for the Three Domatic
Number Problem�

Tobias Riege and Jörg Rothe

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
40225 Düsseldorf, Germany

{riege, rothe}@cs.uni-duesseldorf.de

Abstract. The three domatic number problem asks whether a given undirected
graph can be partitioned into at least three dominating sets, i.e., sets whose
closed neighborhood equals the vertex set of the graph. Since this problem
is NP-complete, no polynomial-time algorithm is known for it. The naive
deterministic algorithm for this problem runs in time 3n, up to polynomial
factors. In this paper, we design an exact deterministic algorithm for this problem
running in time 2.9416n . Thus, our algorithm can handle problem instances of
larger size than the naive algorithm in the same amount of time. We also present
another deterministic and a randomized algorithm for this problem that both
have an even better performance for graphs with small maximum degree.

Keywords: Exact algorithms, domatic number problem

1 Introduction

In this paper, we design a deterministic algorithm for the three domatic number
problem, which is one of the standard NP-complete problems. This problem asks,
given an undirected graph G, whether or not the vertex set of G can be partitioned into
three dominating sets. A dominating set is a subset of the vertex set that “dominates”
the graph in that its closed neighborhood covers the entire graph. Motivated by the
tasks of distributing resources in a computer network and of locating facilities in a
communication network, this problem and the related problem of finding a minimum
dominating set in a given graph have been thoroughly studied.

The exact (i.e., deterministic) algorithm designed in this paper runs in exponential
time. However, its running time is better than that of the naive exact algorithm for
this problem. That is, we improve the trivial Õ(3n) time bound to a time bound
of Õ(2.9416n), where the Õ notation neglects polynomial factors as is common
for exponential-time algorithms. The point of such an improvement is that a Õ(cn)
algorithm, where c < 3 is a constant, can deal with larger instances than the trivial
Õ(3n) algorithm in the same amount of time before the exponential growth rate
eventually hits and the running time becomes infeasible. For example, if c =

√
3 ≈

1.732 then we have Õ
(√

3
2n
)

= Õ(3n), so one can deal with inputs twice as large

as before. Doubling the size of inputs that can be handled by some algorithm can
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make quite a difference in practice. Exact exponential-time algorithms with improved
running times have been designed for various other important NP-complete problems.
Comprehensive surveys on this subject have been written by Woeginger [Woe03] and
Schöning [Sch05].

In designing domatic number algorithms, it might be tempting to exploit known
results for the graph three colorability problem, which resembles the three domatic
number problem in that both are partitioning problems. However, as Cockayne and
Hedetniemi [CH77] point out, the theory of domination is dual to the theory of coloring
in the following sense. Coloring is based on the hereditary property of independence.
A graph property is hereditary if whenever some set of vertices has the property then
so does every subset of it. In contrast, domination is an expanding property in that
every superset of a dominating set also is a dominating set of the graph. Further,
graph colorability is a minimum problem, whereas the domatic number problem is
a maximum problem. Independence (and thus colorability) can be seen as a local
property, since it suffices to check the immediate neighborhood of a set of vertices to
determine whether or not it is independent. In contrast, dominance is a global property,
since in order to check it one has to consider the relation between the given set of
vertices and the entire graph. In this sense, determining the domatic number of a graph
intuitively appears to be harder than computing its chromatic number, notwithstanding
that both problems are NP-complete. More to the point, the algorithms developed for
graph coloring seem to be of no help in designing algorithms for dominating set or
domatic number problems.

After introducing some definitions and notation in Section 2, we describe and
analyze our algorithm in Section 3. In Section 4, we give another deterministic and
a randomized algorithm, which have an even better running time for graphs with small
maximum degree. Finally, we summarize and discuss our results in Section 5.

2 Preliminaries and Simple Observations

We start by introducing some graph-theoretical notation. We only consider simple,
undirected graphs without loops in this paper. Let G = (V, E) be a graph. Unless
stated otherwise, n denotes the number of vertices in G. The neighborhood of a vertex
v in V is defined by N(v) = {u ∈ V | {u, v} ∈ E}, and the closed neighborhood
of v is defined by N [v] = N(v) ∪ {v}. For any subset S ⊆ V of the vertices
of G, define N [S] =

⋃
v∈S N [v] and N(S) = N [S] − S. The degree of a vertex

v in G is the number of vertices adjacent to v, i.e., degG(v) = ||N(v)||. If the
graph G is clear from the context, we omit the subscript G. Define the minimum
degree in G by min-deg(G) = minv∈V deg(v), and the maximum degree in G by
max-deg(G) = maxv∈V deg(v). A path Pk = u1u2 · · ·uk of length k is a sequence
of k vertices, where each vertex is adjacent to its successor, i.e., {ui, ui+1} ∈ E for
1 ≤ i ≤ k − 1. If, in addition, {uk, u1} ∈ E, then path Pk is said to be a cycle, and we
write Ck instead of Pk.

Definition 1. Let G = (V, E) be a graph. A subset D ⊆ V is a dominating set of
G if and only if N [D] = V , i.e., if and only if every vertex in G either belongs to
D or has some neighbor in D. The domination number of G, denoted γ(G), is the
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minimum size of a dominating set of G. The domatic number of G, denoted δ(G), is the
maximum number of disjoint dominating sets of G, i.e., δ(G) is the maximum k such
that V = V1 ∪ V2 ∪ . . . ∪ Vk, where Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ k, and each Vi is a
dominating set of G. The dominating set problem asks, given a graph G and a positive
integer k, whether or not γ(G) ≤ k. The domatic number problem asks, given a graph
G and a positive integer k, whether or not δ(G) ≥ k.

For fixed k ≥ 3, both the dominating set problem and the domatic number
problem are known to be NP-complete, see Garey and Johnson [GJ79]. Thus, they are
not solvable in deterministic polynomial time unless P = NP, and all we can hope
for is to design an exponential-time algorithm having a better running time than the
trivial exponential time bound. For exponential-time algorithms, it is common to drop
polynomial factors, as indicated by the Õ notation: For functions f and g, we write
f ∈ Õ(g) if and only if f ∈ O(p · g) for some polynomial p. The naive deterministic
algorithm for the dominating set problem runs in time Õ(2n). Fomin, Kratsch, and
Woeginger [FKW04] improved this trivial upper bound to Õ(1.93782n). For various
restricted graph classes, they achieve even better bounds.

The naive deterministic algorithm for the domatic number problem runs in
time Õ(kn). A better result can be achieved via the dynamic programming across the
subsets technique, which was introduced by Lawler [Law76] to compute the chromatic
number of a graph by exploiting the fact that every minimum chromatic partition
contains at least one maximum independent set. By suitably modifying this technique,
one can compute the domatic number of a graph in time Õ(3n).

One tempting way of designing an improved algorithm for the domatic number
problem might be to exploit the result for the dominating set problem mentioned above.
However, we observe that no such useful connection between the two problems exists in
general.1 Thus, for solving the domatic number problem, one cannot use in any obvious
way the exact Õ(1.93782n) algorithm for the dominating set problem by Fomin et
al. [FKW04].

For the three domatic number problem, no algorithm with a running time better
than Õ(3n) is known. We improve this trivial upper bound to Õ(2.9416n).

We now define some technical notions suitable to measure how “useful” a vertex is
to achieve domination of the graph G = (V, E). Intuitively, the vertex degree is a good
(local) measure, since the larger the neighborhood of a vertex is, the more vertices are
potentially dominated by the set to which it belongs. The technical notions introduced
in Definition 2 will be used later on to describe our algorithm.

Definition 2. Let G = (V, E) be a graph with n vertices, and let P(D1, D2, D3, R)
be a partition of V into four sets, D1, D2, D3, and R. The subsets Di of V will
eventually yield a partition of V into the three dominating sets (if they exist) to be
constructed, and the subset R ⊆ V collects the remaining vertices not yet assigned at
the current point in the computation of the algorithm. Let r = ||R|| be the number of
these remaining vertices, and let d = n− r be the number of vertices already assigned
to some set Di. The area of G covered by P is defined as areaP(G) =

∑3
i=1 ||N [Di]||.

1 Examples of graphs with maximum domatic partitions not including a minimum dominating
set are presented in the upcoming full version of this paper.
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Note that areaP(G) = 3n if and only if D1, D2, and D3 are dominating sets of G. For
a partition P , we also define the surplus of graph G as surplusP(G) = areaP(G)− 3d.

Some of the vertices in R may be assigned to three, not necessarily disjoint,
auxiliary sets A1, A2, and A3 arbitrarily. LetA = (A1, A2, A3). For each vertex v ∈ R
and for each i with 1 ≤ i ≤ 3, define the gap of vertex v with respect to set Di by

gapP,A(v, i) =
{ ||N [v]|| − ||{u ∈ N [v] | (∃w ∈ N [u]) [w ∈ Di]}|| if v /∈ Ai

⊥ otherwise,

where ⊥ is a special symbol that indicates that gapP,A(v, i) is undefined for this v
and i. (Our algorithm will make sure to properly handle the cases of undefined gaps.)

Additionally, given P andA, define for all vertices v ∈ R:

maxgapP,A(v) = max{gapP,A(v, i) | 1 ≤ i ≤ 3},
mingapP,A(v) = min{gapP,A(v, i) | 1 ≤ i ≤ 3},

sumgapP,A(v) =
3∑

i=1

gapP,A(v, i).

Given G, P , and A, define the maximum gap of G and the minimum gap of G by
taking the maximum and minimum gaps over all vertices in G not yet assigned:

maxgapP,A(G) = max{maxgapP,A(v) | v ∈ R},
mingapP,A(G) = min{mingapP,A(v) | v ∈ R}.

Let P be given. A vertex u ∈ V is called an open neighbor of v ∈ V if u ∈ N [v] and
u has not been assigned to any set D1, D2, or D3 yet. A potential dominating set Di,
1 ≤ i ≤ 3, is called an open set of v ∈ V if its closed neighborhood does not include v,
i.e., v is not dominated by Di. The balance of v ∈ V is defined as the difference between
the number of open vertices and the number of open sets. Formally, define

openNeighborsP(v) = {u ∈ N [v] | u ∈ R},
openSetsP(v) = {i ∈ {1, 2, 3} | v /∈ N [Di]},

balanceP(v) = ||openNeighborsP(v)|| − ||openSetsP(v)||.

We call a vertex v ∈ V critical if and only if balanceP(v) ≤ 0 and ||openSetsP(v)|| > 0.

The proof of the next proposition is straightforward. Once balanceP(v) = 0, no
two vertices remaining in N [v] ∩ R can be assigned to the same dominating set Di,
1 ≤ i ≤ 3, since balanceP(v) would then be negative.

Proposition 1. Let P = (D1, D2, D3, R) be given as in Definition 2 , and v ∈ V be
a critical vertex for this partition. The only way to modify P so as to contain three
dominating sets is to assign all vertices u ∈ N [v] ∩R to distinct dominating sets Di.
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3 The Algorithm

Our strategy is to recursively assign the vertices v ∈ V to obtain a correct potential
solution consisting of a partition into three dominating sets, D1, D2, and D3. Once a
previous assignment of v to some set Di turns out to be wrong, we remember this by
adding this vertex to Ai. More precisely, the basic idea is to first pick those vertices with
the highest maximum gap. While the algorithm is progressing, it dynamically updates
the gaps for every vertex in each step. We now state our main result.

Theorem 1. The three domatic number problem can be solved by a deterministic
algorithm running in time Õ(2.9416n).

Proof. Let G = (V, E) be the given graph. The algorithm seeks to find a partition
of V into three disjoint dominating sets. Note that every vertex v ∈ V is contained
in one of these sets and is dominated by the remaining two sets, i.e., it is adjacent to
at least one of their elements. The algorithm is described in pseudo-code in Figures 1,
2, and 3. (Function RECALCULATE-GAPS, which updates all gaps with respect to the
current P and A in polynomial time, is omitted here due to space constraints.) Since
δ(G) ≤ min-deg(G) + 1, we may assume that min-deg(G) ≥ 2.

The algorithm starts by initializing the potential dominating sets D1, D2, and D3

and the auxiliary sets A1, A2, and A3, setting each to the empty set. The initial partition
thus is P(∅, ∅, ∅, V ) and the initial triple of auxiliary sets is A = (∅, ∅, ∅).

Algorithm for the Three Domatic Number Problem
Input: Graph G = (V, E) with vertex set V = {v1, v2, . . . , vn} and edge set E
Output: Partition of V into three dominating sets D1, D2, D3 ⊆ V or “failure”
Set each of D1, D2, D3, A1, A2, and A3 to the empty set;
Set R = V ;
Set P = (D1, D2, D3, R);
Set A = (A1, A2, A3);
DOMINATE(G,P ,A); // Start recursion
output “failure” and halt;

Fig. 1. Algorithm for the Three Domatic Number Problem

Then, the recursive function DOMINATE is called for the first time. It is always
invoked with graph G, a partition P = (D1, D2, D3, R), and a tripleA = (A1, A2, A3)
of not necessarily disjoint auxiliary sets. P and A represent a situation in which the
vertices in V − R have been assigned to D1, D2, and D3, and v ∈ Ai means that in
some previous recursive call to function DOMINATE the vertex v has been assigned to
Di without successfully changing P to contain three dominating sets.

Function DOMINATE starts by calling RECALCULATE-GAPS, which calculates all
gaps with respect to P and A. Additionally, openNeighborsP(v), openSetsP(v), and
balanceP(v) are determined for every vertex v ∈ V . Four trivial cases can occur.

Case 1: The sets D1, D2, and D3 are dominating sets of graph G. In this case, we are
done and may add the remaining vertices v ∈ R to any set Di, say to D1.
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Function DOMINATE(G,P ,A) { // P is a partition of graph G,
// A is a triple of auxiliary sets

RECALCULATE-GAPS(G,P ,A); // recalculate all gaps, open neighbors, etc.
if (each Di is a dominating set) {

D1 = D1 ∪R;
output D1, D2, D3;

}
if ( not HANDLE-CRITICAL-VERTEX(G,P ,A)) {

select vertex v ∈ R with
maxgapP,A(v) = maxgapP,A(G) and
sumgapP,A(v) = max{sumgapP,A(u) | u ∈ R ∧ maxgapP,A(u) = maxgapP,A(G)};

find i with gapP,A(v, i) = maxgapP,A(v);
ASSIGN(G,P ,A, v, i); // First recursive call
Ai = Ai ∪ {v}; // If recursion fails, put v in Ai and try again
DOMINATE(G,P ,A); // Second recursive call

}
return;

}

Fig. 2. Recursive function to dominate graph G

Case 2: For some vertex v ∈ V , we have balanceP(v) < 0. That is, there are less
vertices in R ∩N [v] than dominating sets with v /∈ N [Di]. Thus, no matter how the
vertices in R ∩ N [v] are assigned, P won’t contain three dominating sets. We have
run into a dead-end and return to the previous level of the recursion.

Case 3: There exists a vertex v ∈ R that is also a member of two of the auxiliary sets
A1, A2, and A3. Hence, vertex v was previously assigned to two distinct sets Di

and Dj , 1 ≤ i < j ≤ 3, but the recursion returned without success. We assign v to
the only possible set Dk left, with i �= k �= j.

Case 4: For some vertex v ∈ V , we have balanceP(v) = 0 and ||openSetsP(v)|| > 0.
That is, v is a critical vertex, since it is not dominated by all three sets D1, D2, and
D3 contained in the currentP , and there are as many open neighbors as open sets left
for it. Note that this is the case for each vertex v with deg(v) = 2 and N [v]∩R �= ∅,
as v and its two neighbors have to be assigned to three different dominating sets.
We select one of the at most three vertices left in N [v] ∩ R, say u, and call function
ASSIGN(G,P ,A, u, i) for all i with u /∈ Ai.

Function HANDLE-CRITICAL-VERTEX deals with the latter three of these trivial
cases. After they have been ruled out, one of the remaining vertices v ∈ R is selected
and assigned to one of the three sets Di, under the constraint that a vertex v ∈ R cannot
be added to Di if it is already a member of Ai. This case occurs whenever the recursion
returns because no three dominating sets could be found with this combination. The
recursion continues by calling ASSIGN(G,P ,A, v, i), which adds v to Di, and then
calls DOMINATE(G,P ,A). If no three dominating sets are found by this choice, we
remember this by adding v to the set Ai. A final call to DOMINATE is made without
assigning a vertex to one potential dominating set Di. If this call fails, the recursion
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Function boolean HANDLE-CRITICAL-VERTEX(G,P ,A) {
for all (vertices v ∈ V ) {

if (balanceP(v) < 0) { // impossible to three dominate v with P
return true;

} else if (||{i ∈ {1, 2, 3} | v ∈ Ai}|| == 2) { // one choice for v remaining
select i with v /∈ Ai;
ASSIGN(G,P ,A, v, i);
return true;

} else if (balanceP(v) == 0 and ||openSetsP(v)|| > 0) { // v is critical
select u ∈ N [v] ∩R;
for all (i with u /∈ Ai and v not dominated by Di)

ASSIGN(G,P ,A, u, i);
return true;

}
}
return false; // no critical vertices were found

}

Function ASSIGN(G,P ,A, v, i) {
Di = Di ∪ {v};
R = R− {v};
DOMINATE(G,P ,A);

}

Fig. 3. Functions to handle the critical vertices and to assign vertex v to set Di

returns to the previous level. This completes the description of the algorithm. We now
argue that it is correct and estimate its running time.

To see that the algorithm works correctly, note that it outputs three sets D1, D2,
and D3 only if they each are dominating sets of G. It remains to prove that these sets are
definitely found in the recursion tree. All drop-backs within the recursion occur when,
for the currentP = (D1, D2, D3, R), we have balanceP(v) < 0 for some vertex v ∈ V .
Thus, P cannot be modified so as to contain a correct partition into three dominating
sets on this branch of the recursion tree. Since the algorithm checks every possible
partition of G into three sets, unless it is stopped by such a drop-back, a partition into
three dominating sets will be found, if it exists. If the algorithm does not find three
dominating sets, it eventually terminates when returning from the first recursive call of
function DOMINATE. It reports the failure, and thus always yields the correct output.

To estimate the running time of the algorithm, an important observation is that the
recalculation of the gaps takes no more than quadratic time in n, the number of vertices
of the graph G. Thus, in terms of the Õ-notation, the running time of the algorithm
depends solely on the number of recursive calls. Let T (m) be the number of steps of
the algorithm, where m is the number of potential dominating sets left for all vertices
that have not been selected as yet. Initially, every vertex may be a member of any of the
three dominating sets to be constructed (if they exist), hence m = 3n.

There are two scenarios where the algorithm calls function DOMINATE recursively.
If HANDLE-CRITICAL-VERTEX detects a vertex v ∈ V as being critical, it selects
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a vertex u ∈ N [v] ∩ R and calls function ASSIGN (and thus DOMINATE) for each i
with u /∈ Ai. Function HANDLE-CRITICAL-VERTEX will be called until all vertices in
N [v] ∩ R have been assigned to any of D1, D2, and D3. Since ||openSetsP(v)|| ≤ 3,
at most three vertices in the closed neighborhood of v have not been assigned when v
turns critical. By Proposition 1, all vertices in N [v]∩R have to be assigned to different
dominating sets. In the worst case we have T (m) ≤ 6T (m − 6), as we will handle
three vertices for which at least two choices for dominating sets are left, and we have
at most six different choices that lead to a partition into three disjoint dominating sets.
With m = 3n, it follows that T (m) ≤ 6m/6 = 6n/2, i.e., T (m) = Õ(2.4495n).

The only other branching into two different recursive calls happens in the main
body of function DOMINATE, when selecting a vertex v with the currently highest
maximum gap. Two cases might occur. On the one hand, we might have considered
a correct dominating set Di for v. If v had not been looked at so far, i.e., if v is not
contained in any set Aj , 1 ≤ j ≤ 3, j �= i, we have eliminated all three possible
sets for v to belong to. Thus, in this case, T (m) = T (m − 3). On the other hand,
if the algorithm returns from the recursion and thus did not make the right choice
for v, we have T (m) = T (m − 1), since v is added to Ai, and function DOMINATE

is called without assigning any vertex. In the second case, we have already visited
vertex v in a previous stage of the algorithm and unsuccessfully tried to assign it
to some set Dj , with 1 ≤ j ≤ 3. There are only two dominating sets for v left.
Either way, if we put v into the correct dominating set right away or fail the first
time, we have T (m) = T (m − 2). Suppose that the first and the second case occur
equally often, i.e., the algorithm considers every vertex twice. It then follows that
T (m) ≤ 1

2 (T (m − 1) + T (m − 3)) + 1
2 (2T (m − 2)) with m = 3n. Thus, we have

T (m) = Õ(3n), and the trivial time bound cannot be beaten. To improve this running
time, we have to make sure that the recursion tree will not reach its full depth, i.e., not all
vertices are considered by the algorithm or function HANDLE-CRITICAL-VERTEX will
be called for a sufficiently large portion of the vertices. It is clear that the algorithm has
found three dominating sets once areaP(G) = 3n (recall the notions from Definition 2).
By selecting the maximum gap possible for a partitionP , we try to reach this goal as fast
as possible. For every vertex v ∈ R that we assign to one of the potential dominating
sets Di, 1 ≤ i ≤ 3, we increase areaP(G) by gapP,A(v, i), and additionally we add
(gapP,A(v, i)− 3) to surplusP(G).

Since the vertices of degree two are critical, they and their neighbors can be handled
in time Õ(2.4495n), as argued above. So assume that min-deg(G) ≥ 3. Then, we have
maxgapP,A(G) > 3 at the start of the algorithm. If this condition remains to hold for
at least 3n/4 steps, we have reached areaP (G) = 3n, and the algorithm terminates
successfully. To make use of more than 3n/4 vertices, maxgapP,A(G) has to drop
below four at one point of the computation. We exploit the fact that up to this point,
the surplus has grown sufficiently large with respect to n. Decreasing it will force
maxgapP,A(G) to drop below three, and this condition can hold only for a certain
portion of the remaining vertices until the algorithm terminates. To see this, we now
analyze the remaining steps of the algorithm after the given graph G has reached a
certain maximum gap with respect to the current P and A.
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If maxgapP,A(G) = 0, the recursion stops immediately. Either we have already
found three disjoint dominating sets (in which case we put the remaining vertices v ∈ R
into set D1 and halt), or we have balanceP(v) < 0 for some vertex v ∈ V . The question
is how many vertices are left in R when we reach maxgapP,A(G) = 0.

Lemma 1. Let G = (V, E) be a graph and P = (D1, D2, D3, R) be a partition of
V as in Definition 2. Let r = ||R|| and maxgapP,A(G) = 3. Then, for at least r/64
vertices in R, the algorithm will not recursively call function DOMINATE.

Proof of Lemma 1. Let maxgapP,A(G) = k with k > 0. Since gapP,A(v, i) ≤ k
for each v ∈ R and for each i, 1 ≤ i ≤ 3, we have

∑
v∈R sumgapP,A(v) ≤ 3kr. Every

vertex v that is selected for a set Di with gapP,A(v, i) = k decreases at least k gaps of
the vertices in R − {v} by one. Otherwise, HANDLE-CRITICAL-VERTEX would have
found a critical vertex u ∈ N [v] with N [u]∩R = {v}. Then, either ||openSetsP(u)|| >
1 (which implies balanceP (u) < 0 and we abort), or ||openSetsP(u)|| = 1, in
which case v is added to the appropriate set Di without further branching of function
DOMINATE. Thus, if no critical vertex is detected, selecting a vertex v ∈ R for some
set Di decreases at least k gaps, and since v does not belong to R anymore, additionally
all gaps previously defined for v are now undefined.

Now suppose that maxgapP,A(G) = 3 and sumgapP,A(v) = 9 for all vertices
v ∈ R. As long as there exists a vertex v ∈ R with gapP,A(v, i) = 3 for all i, it will
be selected by the algorithm. After calling function RECALCULATE-GAPS, the number
of gaps equal to three will be decreased at least by six. If exactly three other gaps of
vertices in R − {v} decrease by one in every step, it takes at least r/4 vertices until
sumgapP,A(v) < 9 for all v ∈ R. Another 1/4 of the 3r/4 vertices remaining have
to be selected until sumgapP,A(v) < 8. Adding 1/4 of the 9r/16 vertices left in R,
we have reached maxgapP,A(G) = 2 with sumgapP,A(v) = 6 for all vertices v ∈ R.
This implies that every defined gap is equal to two. Summing up, we have selected
1
4 · r + 1

4 · 3
4r + 1

4 · 9
16r = 37

64r vertices until maxgapP,A(G) = 2, under the constraint
that a minimum number of gaps is reduced in each step, while simultaneously trying
to reduce the maximum summation gap in the fastest possible way. This way we reach
level maxgapP,A(G) = 0 with as few vertices left in R as possible, which describes the
worst case that might happen.

Analogously, we can show that maxgapP,A(G) drops from 2 to 1 after selecting
another 19r/64 vertices. And once we have maxgapP,A(G) = 1, it takes 7r/64 vertices
to get to maxgapP,A(G) = 0. Now, there are r/64 vertices remaining in R, which do

not have to be processed recursively. Lemma 1

Continuing the proof of Theorem 1, note that we assumed min-deg(G) ≥ 3, so when
the gaps are initialized for graph G, we have mingapP,A(v) ≥ 4 for each vertex v ∈ V .
Thus, more than three vertices are dominated by the selected set Di for vertex v. As long
as maxgapP,A(G) > 3 is true, surplusP(G) is increasing. The only way to lower the
surplus is by adding vertices v to a set Di with gapP,A(v, i) < 3. The surplus decreases
by one when gapP,A(v, i) = 2, and it decreases by two when gapP,A(v, i) = 1.

Let S = surplusP(G) be the surplus collected for a partition P until we reach a
point where maxgapP,A(G) = 3. To make use of the most recursive calls and to even
out the surplus completely, there have to be at least r = ||R|| vertices remaining with
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0 · 37r
64 + 1 · 19r

64 + 2 · 7r
64 = S, so r ≥ 64S/33. A fraction of 1/64 of these vertices

will be handled by the algorithm without branching into more than one recursive call,
which is at least S/33. The question is how big the surplus S might grow and how many
vertices are left in R before maxgapP,A(G) = 3 is reached. The lowest surplus with as
few vertices in R as possible occurs if min-deg(G) = max-deg(G) = 3. Surplus S is
increased by one in each step until we arrive at maxgapP,A(G) = 3. When selecting
a vertex v of degree 3 for a set Di, the gap of its neighbors u ∈ N(v) and the gaps of
the neighbors of every u might be decreased. Summing up, at most 10 vertices can have
decreased their gaps for some i. After selecting at least n/10 vertices for each i, we have
mingapP,A(G) = 3 (in the worst case). From this point on, we cannot be sure if the
next vertex selected for some Di satisfies gapP,A(v, i) > 3. But so far we have already
collected a surplus of S = 3n/10, and applying this we obtain 64n/110 ≤ r ≤ 7n/10.
Thus, for at least n/110 vertices we never branch into two different recursive calls.
Setting m = 3(109n/110), we obtain a running time of Õ(2.9416n).

4 Graphs with Bounded Maximum Degree

As seen in the last section, the running time of the algorithm crucially depends on
the degrees of the vertices of G. If we restrict ourselves to graphs G with bounded
maximum degree (say Δ = max-deg(G)), we can optimize our strategy in finding three
disjoint dominating sets. In this section, we present a simple deterministic algorithm,
which has a better running time than the algorithm from Theorem 1, provided that Δ
is low. By using randomization, we can further improve the running time for graphs G
with low maximum degree.

Before stating the two results, note that graphs with maximum degree two can
trivially be partitioned into three dominating sets, if such a partition exists. Every
component of such a graph is either an isolated vertex, a path, or a cycle, and each
such property can be recognized in polynomial time.

Proposition 2. Let G = (V, E) be a given graph with max-deg(G) = 2. There exists a
partition of the vertices of G into three dominating sets if and only if every component
of G is a cycle of length k such that 3 divides k.

We use the terms from Definition 2 in Section 3 to describe a snapshot within the
algorithm. The auxiliary setsA = (A1, A2, A3) will not be needed in this section. Only
connected graphs are considered, as it is possible to treat every connected component
separately, producing the desired output within the same time bounds.

Table 1 lists the running times of both the deterministic and the random algorithm,
where the maximum degree of the input graph is bounded by Δ, 3 ≤ Δ ≤ 9. Note that
the exact deterministic algorithm from Theorem 1 in Section 3 beats the deterministic
algorithm from Theorem 2 whenever Δ ≥ 7.

Theorem 2. Let G = (V, E) be a graph with max-deg(G) = Δ, where Δ ≥ 3.
There exists a deterministic algorithm solving the three domatic number problem in
time Õ(d

n
Δ ), where



An Exact 2.9416n Algorithm for the Three Domatic Number Problem 743

Table 1. Results for max-deg(G) = k, where 3 ≤ k ≤ 9

Δ 3 4 5 6 7 8 9
deterministic 2.2894n 2.6591n 2.8252n 2.9058n 2.9473n 2.9697n 2.9823n

randomized 2n 2.3570n 2.5820n 2.7262n 2.8197n 2.8808n 2.9210n

d =
Δ−2∑
a=0

[(
Δ

a

)Δ−a−1∑
b=1

(
Δ− a

b

)]
. (4.1)

Proof. The algorithm works as follows. We start with an arbitrary vertex v ∈ V and
assign it to the first set D1. In each step, we first check whether we found a partition
P = (D1, D2, D3, R) into dominating sets D1, D2, and D3. If not, one vertex v ∈ V
is selected that is not dominated by all three sets D1, D2, and D3, and additionally has
a vertex u ∈ N [v] in its closed neighborhood that has already been added to some set
Di, 1 ≤ i ≤ 3. It follows that 1 ≤ ||openSetsP(v)|| ≤ 2.

If balanceP(v) < 0, we return within the recursion. Otherwise, we try all
combinations to partition the vertices in N [v] ∩ R, so that after this step vertex v is
dominated by all three potential dominating sets. If no such combination leads to a
valid partition, we again return within the recursion.

Suppose now that balanceP(v) ≥ 0, ||openSetsP(v)|| = 2, and N [v] ∩ D1 �= ∅.
To obtain three disjoint dominating sets, at least one vertex in N [v] has to be assigned
to D2, and at least one vertex in N [v] has to be added to D3. This limits our choices,
especially if the degree of v is bounded by some constant Δ.

To measure the running time of the algorithm, we consider the worst case with
the most possible combinations that might yield a partition into three dominating sets.
This occurs when only one vertex u ∈ N [v] has already been added to one set, i.e.,
||N [v] ∩ (D1 ∪D2 ∪ D3)|| = 1. If N [v] ∩ D1 �= ∅, then any number between 0 and
Δ−2 of vertices in N [v]∩R may be assigned to the same set D1. Let this number be a.
It follows that from one to Δ− a− 1 vertices remaining in N [v] ∩R are allowed to be
in the next potential dominating set D2. This is how Equation 4.1 for d is derived. After
assigning the last vertices in N [v]∩R to the dominating set D3, exactly Δ vertices have
been removed from R. Thus, we have a worst case running time of Õ(d

n
Δ ). Table 1 lists

the running time for graphs with maximum degree from three to nine.

In the next theorem, randomization is used to speed up this procedure. Instead of
assigning all vertices in the closed neighborhood of some vertex v ∈ V in one step,
only one or two vertices in N [v]∩R are added to the potential dominating sets D1, D2,
and D3. The goal is to dominate one vertex by all three sets in one step. We will select
the one or two vertices that are missing for this goal at random.

Due to space limitations, the proof of Theorem 3 is omitted. Here is a rough sketch
of the idea: In the case ||openSetsP(v)|| = 2, we randomly assign two vertices in the
neighborhood of v ∈ V to the sets D1, D2, and D3. Since deg(v) ≤ Δ, there are at
most 3Δ−2 valid choices for the vertices left in N [v]∩R. Thus, the success probability
is greater than 3Δ−2/d, where d is the number from Equation (4.1) in Theorem 2. The
case ||openSetsP(v)|| = 1 is treated analogously.
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Theorem 3. Let G = (V, E) be a graph with max-deg(G) = Δ, where Δ ≥ 3, and let
d be defined as in Equation (4.1) in Theorem 2. For each constant c > 0, there exists a
randomized algorithm solving the three domatic number problem with error probability
at most e−c in time Õ(r

n
2 ), where r = d/3Δ−2.

5 Conclusion

We have shown that the three domatic number problem can be solved by a deterministic
algorithm in time Õ(2.9416n). Furthermore, we presented two algorithms solving the
three domatic number problem for graphs with bounded maximum degree, improving
the above time bound for graphs with small maximum degree. Although our running
times seem to be not too big of an improvement of the trivial Õ(3n) bound, they
are to our knowledge the first such algorithms breaking this barrier. For k > 3, the
decision problem of whether δ(G) ≥ k can be solved in time Õ(3n) by Lawler’s
dynamic programming algorithm for the chromatic number, appropriately modified for
the domatic number problem. Therefore, it would not be reasonable to use our gap
approach of Section 3 to decide if δ(G) ≥ k for a graph G and k > 3.

Acknowledgement. We thank Dieter Kratsch for pointing us to Lawler’s algorithm.
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Abstract. Due to extensive research on tree-width for undirected
graphs and due to its many applications in various fields it has been
a natural desire for many years to generalize the idea of tree decomposi-
tion to directed graphs, but since many parameters in tree-width behave
very differently in the world of digraphs, the generalization is still in its
preliminary steps.

In this paper, after surveying the main work that has been done on
this topic, we propose a new simple definition for directed tree-width
and prove a special case of the min-max theorem (duality theorem) re-
lating haven order, bramble number, and tree-width on digraphs. We
also compare our definition with previous definitions and study the be-
havior of some tree-width like parameters such as brambles and havens
on digraphs.

1 Introduction

The notion of tree-width is considered as a generalization of trees (trees have tree-
width 1) and many intractable problems are efficiently solvable on bounded tree-
width graphs. Examples include Hamiltonian cycle, graph isomorphism, vertex
coloring, edge coloring, and so on. Such problems arise in various fields including
(but not restricted to) expert systems, telecommunication network design, VLSI
design, Choleski factorization, natural language processing, etc. See [Bod93] for
an overview of some such applications.

In 1996 Reed et al. [RRST96] proved Youngers’s conjecture [You73] roughly
saying that every directed graph has either a large set of disjoint directed circuits
or a small set of vertices that cover all directed circuits. They considered an
analogous definition of well-linked sets for directed graphs and since the size
of the largest well-linked set in undirected graphs has close relationship with
tree-width[Ree00] they suggested the idea that the analogous definition of tree-
width for directed graphs might be very useful, as pointed out in [Ree97]. A
proper definition should ideally measure the global connectivity of a digraph,
for example the tree-width of a directed acyclic graph, DAG, is expectedly small
because it is lowly connected.

Unfortunately finding an analogous definition for directed tree-width is not
easy at all, and almost all concepts related to undirected tree-width behave
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differently in directed graphs. For example, the bramble number is equal to the
haven order in undirected graphs, while they may differ by a factor of 2 in
directed graphs. There is not even a single agreed-upon definition of tree-width
for directed graphs.

For the first time Johnson, Robertson, Seymour, and Thomas[JRST01] gave a
formal definition of directed tree-decomposition (called arboreal-decomposition in
their paper) and directed tree-width, and proved some theorems relating directed
tree-width and haven order.

Theorem 1. [JRST01] For any digraph D, H(D)−1 ≤ tree-width(D) ≤ 3H(D)
− 1, where tree-width(D) and H(D) are the tree-width and the haven order of
D, respectively.

They also show how their definition agrees width tree-width on undirected
graphs in the sense that if we obtain a digraph D from an undirected graph G
by replacing every edge (u, v) of G by two edges (u, v) and (v, u) in D, then
the tree-width of G equals the directed tree-width of D. Their other results
in that paper include relating the tree-widths of an Eulerian digraph and its
underlying undirected graph and proposing a general algorithm for solving many
hard problems like Hamiltonian cycle on digraphs of bounded tree-width. Finally
they conjectured that digraphs with large tree-width have large grids as minors
by defining directed variants of grid and minor. It is worth mentioning that the
latter conjecture is a well-known fact for undirected graphs[RS86].

The other main work on the topic was by Reed[Ree00] who was also among
those who proved Younger’s conjecture in 1996. In his paper, Reed presents var-
ious global connectivity measures, such as bramble number(BN(D)), link(D),
and wlink(D), and proves that they are within a constant factor of each other
in order to justify that all these terms are essentially measuring the same thing.
Then, he presents another definition for directed tree-width which is very close
to the definition of Johnson et al.[JRST01] (the two values differ by at most one
for any digraph). The other parts of Reed’s paper mainly discuss the hardness
of obtaining results for directed graphs similar to those for undirected graphs.

In this paper we propose a new definition for directed tree-width which re-
sembles the undirected version of tree-width in a natural way, and it seems to
have the potential to form the basis for more efficient algorithms on some hard
problems on digraphs. We have also studied, as an example to show how the close
relationship of our definition and the undirected definition is useful, the situa-
tion in which our definition and the existing definition of Johnson et al.[JRST01]
are equivalent by proving a min-max theorem relating haven order and d-width
under certain conditions.

In the next section we state some preliminary definitions that are related
to this paper. In section 3 we present our definition of directed tree-width and
discuss its properties as well as its relationship with the definition of Johnson et
al. [JRST01]. Section 4 is devoted to the min-max theorem on directed graphs.
In that section we prove a weak version of the min-max theorem which is correct
if the graph has a special separator property called the augmenting condition.
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Although we believe that the augmenting condition holds for all digraphs, it still
remains as an open part of our work.

2 Preliminaries

For general concepts of tree-decomposition and tree-width on undirected graphs
including various related terms and algorithms the reader is referred to [Bod93].
Here we define some related concepts that we use in this paper.

A tree-decomposition of an undirected graph G = (V,E) is a a pair (X,T ),
where T = (I, F ) is a tree and X = {Xi|i ∈ I} is a family of subsets of V such
that

– ∪i∈IXi = V
– For every edge (u, v) ∈ E there exists some node i such that u, v ∈ Xi.
– For any vertex u ∈ V the set of nodes r ∈ I such that u ∈ Xr induce a

connected subtree in T .

The width of a T is maxi∈I |Xi|−1, and the tree-width of G is the minimum
width over all tree-decompositions of G.

A haven of order w in D (for integer w) is a function β which assigns to
every subset X of less than w vertices of D a strongly connected component of
D\X with the extra condition that if X and Y are two subsets of size less than
w and X is a subset of Y , then β(Y ) is a subset of β(X). The haven order of a
digraph D, represented by H(D), is the maximum w such that D has a haven
of order w.

A bramble in a digraph D is a family of strongly connected subsets of D
any two of which touch, that is, either have a vertex in common or there are
edges from one to the other in both directions. The order of a bramble is the
size of the minimum set cover of those strongly connected subsets. The bramble
number of a graph D, represented by BN(D), is the maximum bramble order
over all brambles of D.

For example the digraph D which is depicted in Fig. 1 has 9 vertices. The
three parts A, B, and C are undirected cliques (i.e. there is an edge between any
two of their vertices in both directions) and all other edges are of the form (ai, bj),
(bi, cj), or (ci, aj), for i, j = 1, 2, 3. The bramble ϕ = {{a1}, {a2}, {a2, b2, c2}, {a3,
b3, c3}} has order 3 because {a1, a2, a3} is its minimum cover. We can also com-
pute a haven of order 3 by defining β(Z) to be the strongly connected compo-
nent in D\Z that has nonempty intersection with A. In Section 4 we show that
H(D) = 6 whereas BN(D) = 3.

1

2

3

1

2

3k

1

2

3

A B

C

Fig. 1. A digraph with bramble number 3 and haven order 6
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Notice that all definitions above have a corresponding version for undirected
graphs.

2.1 Arboreal Decomposition

Since we use the definition of tree-width by Johnson et al.[JRST01] many times
and compare our definition with theirs, it is worth mentioning their definition
here.

An arborescence is formed from a rooted tree by directing all edges in the
root-leaf direction, that is, for every vertex r in the arborescence there exists a
unique path from the root to r.

If r and r′ are two vertices of an arborescence R, we say r > r′ if r �= r′ and
there is a path in R from r′ to r. For a vertex r and an edge e = (t, r′) we say
r > e if r = r′ or r > r′.

For two disjoint subsets Z and S of V (D), S is called Z-normal if every
walk in D\Z with first and last vertices in S contains no vertex of D\{Z ∪ S}.

a

b

c d
e

a

b c

d, e

a a

a

Fig. 2. A digraph with its arboreal decomposition

An arboreal decomposition of a digraph D is a triple (R,X,W ), where
R is an arborescence, and X = {Xe|e ∈ E(R)} and W = {Wr|r ∈ V (R)} are
two families of subsets of V (D), i.e. we assign to every edge and vertex of R a
subset of vertices of D, with the following two conditions:

A1. W is a partition of V (D) into nonempty sets.
A2. For any e ∈ E(R),

⋃{Wr|r > e} is Xe-normal.

The width of (R,X,W ) is the minimum w such that∣∣∣∣∣Wr ∪
⋃
e∼r

Xe

∣∣∣∣∣ ≤ w + 1

for all vertices r, where e ∼ r means r is either the head or the tail of e. The
tree-width of D is defined as the minimum width over all arboreal decompositions
of D. Fig. 2 shows a digraph with an arboreal decomposition of it with width 2.
To verify the condition A2, we need to verify that the sets {d, e}, {c, d, e}, and
{b} are {a}-normal.

3 Introducing D-Width

Let the triple T = (R,X,W ) be an arboreal decomposition of a digraph D. For
any node r ∈ R let W ′

r = Wr ∪∪e∼rXe. Let S be a strongly connected set of D,
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Rs be the set of vertices r of R such that Wr ∩ S �= ∅, and Es be the minimum
edges in R that are required to connect all vertices of Rs in R (ignore the edge
directions for the moment). It is easy to verify that condition A2 implies all
edges e ∈ Es have Xe ∩ S �= ∅. Let E′s be the set of all edges e = (r, r′) in R
for which W ′

r ∩W ′
r′ ∩ S �= ∅. Obviously Es ⊆ E′s, so E′s connects all the vertices

of Rs. In general, E′s induces one or more connected subtrees in R (ignore the
direction of edges), but all vertices of Rs lie in exactly one of these components.

After considering many directed graphs we noticed that we might be able
to restrict E′s to form exactly one connected subtree without affecting the tree-
width of the digraph. More formally, we define the d-decomposition and d-width
of a graph as follows.

A d-decomposition of a digraph D is a pair (T,X), where T is a tree and X
is a function that assigns to every node of T a subset of vertices of D such that:

B1 For any vertex v of D there exists some node i of T such that v ∈ Xi, i.e.⋃
i∈V (T ) Xi = V (D).

B2 For any strongly connected subset S of D, the nodes of T containing vertices
of S form a connected subtree, i.e. if we select every node of T that contains
a vertex of S and every edge e = (i, j) of T such that S ∩Xi ∩Xj �= ∅, then
the result is a connected subtree of T .

Notice that the second condition yields the fact that the nodes of T containing
a single vertex u of D form a subtree because every vertex of a digraph is a
strongly connected set by itself.

The width of a d-decomposition is the minimum w such that |Xi| ≤ w+1 for
all i ∈ T , and the d-width of D is the minimum width over all d-decompositions
of D.

A d-decomposition of width 1 of the directed graph in Fig. 2 is depicted in
Fig. 3. The strongly connected sets of the digraph in Fig. 2 are {a}, {b}, {c},
{d}, {e}, {a, b, c}, {a, c, d}, {a, c, d, e}, {a, b, c, d}, and {a, b, c, d, e}, and it is easy
to verify that condition B2 holds for all of them.

It’s worth mentioning that if we replace ‘strongly connected’ in condition B2
above with ‘connected’, then the definition reduces to the tree-width definition
for undirected graphs.

From now on we use the phrases tree-decomposition and tree-width to refer
to the arboreal decomposition and tree-width defined in [JRST01] and the terms
d-decomposition and d-width to refer to the concepts that we defined above.

For any digraph D, d-width(D) is at least as large as tree-width(D) because
the digraph D must satisfy a more restrictive condition in order to have a given
d-width than to have a given tree-width.

a

b

c d
e

a, e

a, b

a, c

a, d

Fig. 3. A d-decomposition of width 1
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Corollary 1. For any digraph D, d-width(D) ≥ tree-width(D).

d-width is a generalization of undirected tree-width in the sense that if we
make a digraph D out of an undirected graph G in the most obvious way, i.e.
replace every edge of G by two edges in D in both directions, then the d-width of
D equals the tree-width of G. The reason is that every strongly connected set in
D corresponds to a connected set of G, and vice versa. Johnson et al. [JRST01]
also proved that tree-width(D) is equal to tree-width(G); thus, for the special
class of undirected graphs, both definitions are equivalent. For this special case,
the two decompositions can be efficiently transformed to each other in time
O(mn2)[Saf03], where m and n are the number of edges and vertices of G,
respectively.

Corollary 2. Let G be an undirected graph with (undirected) tree-width w and
D be the digraph obtained by replacing every edge of G by two edges in both
directions. Then, tree-width(D) = d-width(D) = w.

If X , Y , and X ∪ Y are all strongly connected sets and X ∩ Y �= ∅, then the
correctness of condition B2 for X and Y implies its correctness for X ∪ Y . This
means we only need to verify condition B2 for minimal strongly connected sets,
that is, those sets S for which there is no strongly connected sets X and Y such
that S = X ∪Y and X ∩Y �= ∅. That’s why in the case of undirected tree-width
it suffices to verify condition B2 for just edges and vertices because they are the
only minimal connected sets in an undirected graph.

It seems to us that d-width and tree-width are equal on every digraph, though
we are not able to prove this at the moment. In the following sections we relate
tree-width and d-width and show some evidence that d-width seems to be a
proper global measure of connectivity.

3.1 Properties

D-width is a nice measure because of its resemblance to the undirected tree-
width, and is algorithmically useful at least because of its being a restricted
version of directed tree-width defined by [JRST01].

Given a digraph D with a d-decomposition of width w, one can compute an
undirected graph with tree-width at most w by connecting two vertices iff there
exists some node in the d-decomposition that contains both the vertices.

Theorem 2. Let D = (V,E) be a digraph of d-width w. There exists an undi-
rected graph G = (V,E′) whose tree-width is at most w such that every strongly
connected set in D is a connected set in G.

In regard to the algorithmic aspects of bounded d-width graphs, d-decom-
position is at least as restrictive as tree-decomposition, so at least as many
problems are efficiently solvable on digraphs of bounded d-width as on digraphs
with bounded tree-width. This includes the linkage problem for fixed number of
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terminals, the Hamiltonian cycle and the Hamiltonian path problems, the Hamil-
tonian path problem with prespecified ends, the even cycle problem through a
specified vertex, etc.

Since the suggested algorithm in [JRST01] for the above problems is not prac-
tically efficient1, d-decomposition seems to be a good alternative in finding more
efficient algorithms. However, the algorithmic properties of d-decomposition are
not deeply studied yet.

One basic question related to our work is whether d-width equals tree-width
or not. Since tree-width is believed to be equal to the haven order (minus
one)[JRST01], we focus on the equality of haven order (minus one) and d-width
in the next section. The weak min-max theorem which has been proved in the
next section is a very nice example of how the close relationship between d-width
and undirected tree-width is useful.

4 The Min-Max Theorem

In the case of undirected graphs there exists a very important theorem that
relates haven order, bramble number, and tree-width together. This theorem is
called the min-max theorem in [ST93] and the duality theorem in [Ree00].

Theorem 3. [ST93, Ree00, BD02] For every undirected graph G, the tree-width
of G equals the haven order of G minus one, and equals its bramble number minus
one.

Notice that tree-width is a minimized parameter, whereas haven order (or
bramble number) is a maximized parameter. According to the above theorem
the haven order (or the bramble number) of a digraph is at most w if and only
if its tree-width is at least w − 1, which has a min-max flavor similar to the
max-flow-min-cut theorem.

The original proof appears in [ST93] but other authors like Ballenbaum and
Diestel in [BD02] give shorter and cleaner proofs. The above equality relation
between haven order, bramble number, and tree-width not only convinces us of
the properness of tree-width as a measure of global connectivity, but also has
some algorithmic and theoretical consequences. For the case of directed graphs,
the story is very different. We know that the bramble number may not be equal
to the haven order and may differ by a factor of 2 (see the next section) but we
suspect that directed tree-width is equal to the haven order, though there is no
proof or disproof at the moment. Johnson et al. [JRST01] were able to prove
Theorem 1 which only bounds the two terms, directed tree-width and haven
order, within a constant factor of each other.

Here we talk about the relations between bramble number, haven order, and
d-width. In section 4.1, we present a tight inequality relating haven order and
bramble number. Then, in section 4.2, we present a theorem, similar to the
min-max theorem, for directed graphs.

1 It is Ω(nw) where w is the tree-width.
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4.1 Brambles and Havens in Digraphs

In this section we prove that the haven order and the bramble number of a
digraph are not necessarily equal, but are within a constant factor of each other.

Lemma 1. For every digraph D, BN(D) ≤ H(D) and there exists some D for
which the equality holds.

Proof. Let ϕ = {ϕ1, ϕ2, · · · , ϕm} be a bramble of order w in D. We show that
D has a haven of order at least w. For every subset Z of vertices of D such that
|Z| < w, there exists some ϕk ∈ ϕ such that Z fails to cover ϕk. Let β(Z) be the
strongly connected component of D\Z that contains ϕk. β has order at least w.
By the way, if D is undirected, then the equality holds.

Lemma 2. For any digraph D,
⌈

H(D)
2

⌉
≤ BN(D).

Proof. Let ϕ = {β(Z)|Z ⊂ V (D) and |Z| ≤ ⌈
w
2

⌉ − 1}, where β is a haven of
order w in D. ϕ is a bramble of order at least

⌈
w
2

⌉
.

Lemma 3. There exist digraphs D for which
⌈

H(D)
2

⌉
= BN(D).

Proof. Let D be a digraph similar to the one depicted in Fig. 1 in which A,
B, and C are undirected cliques, i.e. there is an edge between any two of their
vertices in both directions, |A| = |B| = |C| = k, and all other edges are of the
form (ax, by), (bx, cy), or (cx, ay), for x, y = 1, 2, · · · , k. It can be shown that its
haven order is at least 2k, whereas its bramble number is at most k. For the
haven order, if we define β(Z) to be the strongly connected component of D\Z
containing A− Z if A− Z �= ∅, and the strongly connected component of D\Z
that contains B − Z, otherwise, then β has order at least 2k.

For the bramble number, it is easy to show that A or B or C are the cover
for any bramble in D.

Our goal is now achieved as a direct consequence of the above lemmas.

Theorem 4. For any digraph D,
⌈

H(D)
2

⌉
≤ BN(D) ≤ H(D) and both inequal-

ities are tight.

4.2 The Min-Max Theorem on Directed Graphs

For the proof of Theorem 3, Seymour and Thomas [ST93] use powerful properties
of brambles and separators in undirected graphs. They prove the following lemma
which reduces to Theorem 3 in the special case ϕ = ∅.
Lemma 4. [ST93] Let G be an undirected graph with bramble number at most
k and ϕ be a bramble in G. There exists a tree-decomposition T of G such that
every node of size more than k fails to cover ϕ, that is, for every node X such
that |X | > k there exists some non-empty ϕi ∈ ϕ such that X ∩ ϕi = ∅.
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To prove lemma 4, Seymour and Thomas find a minimum covering of ϕ, say
X , and examine the components of G\X . For any component Ci of G\X they
find a tree-decomposition Ti of G[X ∪Ci] that satisfies the condition in lemma 4
with the additional property that there is some node in Ti that contains X . They
finally join all of these tree-decompositions to form the final tree-decomposition
for G. The join process is simply adding a new node containing X and connecting
it to a node of Ti that contains X , for all i’s.

The above proof does not work for the case of directed graphs. First, unlike
for undirected graphs the bramble number of a digraph is not equal to its d-
width. Second, the behavior of separators on directed graphs is very different.
There may be minimal strongly connected subsets of D that do not appear as
strongly connected subsets of D[X ∪ Ci] for any strongly connected component
Ci of D\X . For example in Fig. 4, where X = {a}, the strongly connected
component {a, b, c, d} does not show up in D[{a, b}] or D[{a, c}] or D[{a, d}], so
the resulting d-decomposition may not be valid because the strongly connected
set {a, b, c, d} violates property B2.

In order to be able to prove a theorem similar to Theorem 3, we need to re-
solve the bad behavior of separators on digraphs and to use brambles properly.
For separators, before we obtain the components of D\X we add (or remove)
some edges to the graph, and obtain a new digraph D′ so that all minimal (recall
the concept of minimal from Section 3) strongly connected sets of D show up in
some components of D′\X . For example in Fig. 5 the original digraph of Fig. 4
has been changed to a newer digraph in which the set of minimal strongly con-
nected components is {{a, b}, {a, c}, {a, d}}. Notice that every d-decomposition
of this new digraph is a d-decomposition of the original digraph as well.

Our goal is to transform the original digraph D to a a digraph D′ with the
same haven order such that D′ preserves all strongly connected sets of D′, i.e.,
every strongly connected set in D is strongly connected in D′, and D′ has no
bad separator.

a

b c d

a a a

b c d

a

b c d

a a a

b c d

a a a

b c d

a

b c d

Fig. 4. The bad behavior of separators in digraphs

a

b c d

a a a

b c d

a

b c d

a a a

b c d

a a a

ab ac ad

a

ab ac ad

Fig. 5. Making a good separator
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Notice that if d-width(D) = H(D)−1, then such a digraph D′ exists accord-
ing to Theorem 2. In what follows we prove that the reverse is also true: The
existence of such a digraph D′ implies the min-max theorem.

A set X in a digraph D is called a good-separator if and only if for every
minimal strongly connected set H of D, V (H) ⊆ V (D[X∪C]), for some strongly
connected component C of D\X .

Augmenting Condition: A digraph D satisfies this condition if for any bram-
ble φ and any minimum cover X of φ, there exists a digraph D′ such that

– D and D′ have the same haven order.
– X is a good separator in D′.
– Every strongly connected set of D is a strongly connected set of D′.

The latter condition guarantees that every d-decomposition of D′ is a d-
decomposition of D as well.

Notice that the augmenting condition requires only minimum bramble covers
to be good separators rather than all subsets of vertices. This weaker condition
may make it easier to establish the augmenting condition for some directed
graphs.

We are now ready to prove the following version of min-max theorem.

Theorem 5. Let D be a digraph with haven order w. If D satisfies the aug-
menting condition, then d-width(D) ≤ w − 1.

Proof. Our proof has a flavor very similar to the proof of Seymour and Thomas
for min-max theorem on undirected graphs [ST93]. First we prove the following
lemma.

Lemma 5. Let D be a digraph of haven order at most w and ϕ be a bramble
of D. Assume that D satisfies the augmenting condition. Then, there exists a d-
decomposition T of D such that every node of size more than w fails to cover ϕ.

Let X be a cover of minimum size for ϕ. Since D satisfies the augmentation
condition, there exists some digraph D′ with haven order at most w in which
X is a good separator. Let C1, C2, · · · , Ck be the components of D′\X . Assume
there is no edge between a vertex of Ci and a vertex of Cj for any i, j such that
i �= j; otherwise, we can remove them without affecting any required condition.
Now we make a d-decomposition for D′[X ∪ Ci] by using the following lemma.

Lemma 6. For any i, there exists a d-decomposition Ti for D′[X∪Ci] such that
any node of size more than w fails to cover ϕ and there exists a node r in Ti

that contains X, i.e., X ⊆ Xr.

Proof. There are two cases:

Case 1: Ci does not touch some ϕj ∈ ϕ. In this case, a d-decomposition Ti with
two nodes u and v such that Xu = X and Xv = (Ci ∪X)−ϕj has the necessary
conditions. First, (Ci ∪X)−ϕj fails to cover ϕj and so fails to cover ϕ. Second,
let S be a strongly connected subset in (Ci ∪X). We have two cases:
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1. (X − ϕj) ∩ S �= ∅. In this case, the vertices of S clearly form a connected
subtree in Ti.

2. (X − ϕj) ∩ S = ∅. In this case either S ⊂ Ci or S ⊂ ϕj .

Case 2: Ci touches every member of ϕ. So ϕ ∪ Ci is a bramble and its order is
at most w.

By the induction hypothesis (The induction is based on the number of con-
nected sets in ϕ), there exists a d-decomposition T ′ for D′ such that every node
of size more than w fails to cover ϕ ∪Ci. If every node of size more than w fails
to cover ϕ, then it directly implies Lemma 5. Otherwise, let y be a node of T ′

such that Y = Xy has size more than w and fails to cover Ci, but covers every
member of ϕ.

We now build an undirected graph G from T ′ by adding edge (u, v) if and
only if u, v ∈ Xr for some node r in T ′ and both are vertices of the same subgraph
D′[X ∪ Cj ], for some j. Since X is a good separator, it can be easily seen that
every strongly connected subset of T , and in particular every member of ϕ, forms
a connected subset in G. We now use the following useful lemma whose proof is
similar to the undirected version proof in [ST93] and is stated in the appendix.

Lemma 7. There are at least |X | vertex-disjoint paths from X to Y in G.

Let X = {x1, x2, · · · , xm}, and {P1, P2, · · · , Pm} be a set of m vertex-disjoint
paths from X to Y such that Pj begins with xj and ends with a vertex of Y .
We assume, by truncating the path at the first vertex in Y , that Pj has exactly
one vertex from Y .

Let C = Ci ∪ X . Let T ′′ be obtained from T ′ by replacing every set Xt by
X ′

t = (Xt ∩ C) ∪ {xi|Pi ∩Xt �= ∅}, for every node t of T ′. T ′′ has the following
properties:

1. X ′
y = X .

2. For any node t, |X ′
t| ≤ |Xt|.

3. Every node r in T ′′ of size more than w fails to cover ϕ.

The remaining steps of the proof are straightforward. We join all the Tj’s and
attach them to a new node that contains only X . The resulting d-decomposition
satisfies all the requirements of Lemma 5.

��
Corollary 3. For any digraph D that satisfies the augmentation condition tree-
width(D) = d-width(D) = H(D)− 1.

Proof. This is an easy consequence of Theorem 1, Corollary 1, and Theorem 5.

5 Conclusions and Future Work

Since the topic is very new there exists a huge number of open questions. Any re-
search topic related to undirected tree-width may have a corresponding problem
on directed graphs. Here we list just some of these:
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– Corresponding definitions for separators, path-width, and branch-width.
– Identifying the class of digraphs whose tree-width is k for a constant k,

k = 2, 3, · · ·. For k = 0, the answer is the class of directed acyclic graphs.
– Identifying the class of digraphs for which the augmenting condition holds.

We believe all digraphs satisfy the augmenting condition, but proving it for
some special classes of digraphs would also be a big step forward.

– Finding d-decomposition of small d-width for bounded d-width graphs.

Acknowledgement

The main part of this work was done when I was a graduate student at the school
of Computer Science at the University of Waterloo. I should thank my supervisor,
Prabhakar Ragde, for his many helps and comments during this research.

My sincere thanks to Will Evans for his contribution in preparing this paper.
I would like to thank him for his invaluable hints on this paper.

References

[BD02] P. Bellenbaum and R. Diestel. Two short proofs concerning tree-
decompositions. Combinatoric, Probability and Computing, 11:1–7, 2002.

[Bod93] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,
pages 1–21, 1993.

[JRST01] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed Tree-
Width. Journal of Combinatorial Theory(Series B), 82:128–154, 2001.

[Ree97] B. Reed. Tree Width and Tangles: A New Connectivity Measure And Some
Applications. Suervey in Combinatorics, 241:87–158, 1997.

[Ree00] B. Reed. Introducing directed tree width. In H.J. Broersma, U. Faigle,
C. Hoede, and J.L. Hurink, editors, Electronic Notes in Discrete Mathe-
matics, volume 3. Elsevier, 2000.

[RRST96] B. Reed, N. Robertson, P. Seymour, and R. Thomas. On packing directed
circuits. Combinatorica, 16:535–554, 1996.

[RS86] N. Robertson and P. D. Seymour. Graph minors II: algorithmic aspects of
tree-width. Journal Algorithms, 7:309–322, 1986.

[Saf03] M.A. Safari. Directed tree-width. Master’s thesis, School of Computer
Science, University of Waterloo, 2003.

[ST93] P. Seymour and R. Thomas. Graph searching, and a min-max theorem for
treewidth. Journal of Combinatorial Theory (Series B), 58:239–257, 1993.

[You73] D. H. Younger. Graphs with interlinked directed circuits. In Proceedings
of the Mid-west Symposium on Circuit Theory, volume 2, pages XVI 2.1 –
XVI 2.7, 1973.



On Beta-Shifts Having Arithmetical Languages

Jakob Grue Simonsen

Department of Computer Science, University of Copenhagen (DIKU),
Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

simonsen@diku.dk

Abstract. Let β be a real number with 1 < β < 2. We prove that the
language of the β-shift is Δ0

n iff β is a Δn-real. The special case where
n is 1 is the independently interesting result that the language of the
β-shift is decidable iff β is a computable real. The “if” part of the proof
is non-constructive; we show that for Walters’ version of the β-shift, no
constructive proof exists.

1 Introduction

Symbolic dynamics is a vast and varied field of research originating with Morse’s
work in the 1920ies [12], and has a wide variety of applications [6,1,11]. A well-
known class of symbolic dynamical systems is that of the β-shifts introduced by
Renyi [16], developed by Parry in the seminal paper [15], and studied intensely
[7,19,22,10,2,5,20,21]. From the vantage point of the computer scientist, the class
of β-shifts is also interesting because of the following fact concerning its topolog-
ical entropy, a quantity of major importance in dynamical systems theory also
having connections to data compression [6]:

Theorem 1 ([15,16]). If β is a non-integral real number > 1, then the topo-
logical entropy of the β-shift is log(β).

The computability of the topological entropy of various dynamical systems
has been studied closely [8,9,4]. For none of the studied classes of systems, is it
known whether, for each computable real number α, there exists a system having
topological entropy equal to α. As log is a computable function, Theorem 1 thus
offers a tantalizing opportunity to have a class of dynamical systems with this
property. Ideally, such a correspondence should be effective, ie. we would like
to have an algorithm that transformed any computable real β, in some suitable
representation, to some suitable representation of the β-shift.

As we shall show, β is a computable real iff the socalled “language” of the
β-shift is decidable. Therefore, the “suitable representation” of the β-shift is an
algorithm for deciding its language. However, we also show that an algorithm as
is asked for above does not exist. Our methods are not particular to the setting of
decidable sets, but can be recast to fit effective procedures with access to oracles.
Consequently, we prove our results for all Δ0

n in the Arithmetical Hierarchy. This
proof establishes a surprising correspondence with the elegant notion of Δn-reals
introduced by Weihrauch and Zheng [27].
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For ease of notation, we prove our results for reals in the open interval (1; 2).
The extension of our results to non-integral βs greater than 2 is certainly possible,
but requires some awkward encoding.

2 Preliminaries

For ease of notation, we use the computability notions of recursion theory. The
reader in need of intuitive understanding may substitute “program” for “partial
recursive function”and“program that always halts” for“total recursive function”.
Good introductions to recursion theory are [18,14]. Familiarity with computable
analysis or any of the varieties of constructive mathematics will be an advantage,
but not a prerequisite; Weihrauch’s monograph [25] is recommended.

Throughout the paper, R denotes the usual set of real numbers from classical
mathematics, as does any use of the term “real number”. As usual, the greatest
integer less than or equal to a real number β is denoted by $β%. We denote the
set of positive reals by R>0.

We set 2 � {0, 1}. The set of right-infinite binary sequences is denoted by
2N, the set of bi-infinite such by 2Z; if b is a finite binary string, we denote by
bω the right-infinite string consisting of an infinite number of concatenations of
b. If M is a language of finite binary strings and k ∈ N, Mk denotes the set of
all finite strings obtained by k− 1 successive concatenations of k elements of M
(with M1 = M as a special case). As usual, we set M∗ � {λ} ∪⋃∞k=1 M

k where
λ is the empty string.

The (strict) lexicographic order on 2N (or 2k for any k ∈ N) is defined by
α <lex γ iff there is an n ∈ N such that α(n) = 0, γ(n) = 1, and α(k) = γ(k) for
all k < n. The non-strict lexicographic order is then defined in the obvious way.

We set N � {1, 2, . . .}, N0 � {0} ∪ N, and define Z and Q as usual. For
computability purposes, we assume elements of N0, Z and Q to have suitable
representations as elements of N, whence comparison under <, > and = are
decidable in these sets. Indices k,m, n, s ranges over N.

2.1 The Beta-Shift

For any finite alphabet Σ, the one-sided shift map on ΣN, denoted σ, is defined
by σ(b1b2 · · · ) � b2b3 · · · . The two-sided shift on ΣZ, also denoted σ, is defined
by σ(b)i = bi+1 for all i ∈ Z.

Definition 1. Let β be a non-integral real number > 1. The (greedy) expansion
of 1 in powers of β−1 is the sequence a = (ak)∞k=1 where a1 = $β%, and ak =
$βk −∑k−1

i=1 aiβ
k−i% for k > 1.

If there is an m ∈ N such that k ≥ m implies ak = 0, then the expansion is
said to be finite.

It is easy to see that 1 =
∑∞

n=1 anβ
−n, and that β is the unique positive

solution to 1 =
∑∞

k=1 akx
−k. Observe that if k = $β%+ 1, then 0 ≤ an ≤ k − 1

for all n ∈ N, and thus a = (an)∞n=1 is an element of the full shift on k letters (i.e.
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the set of all right-infinite sequences of words from a k-letter alphabet—this set
is unique up to injective renaming of the letters). As we restrict our attention to
the open interval (1; 2), we may take Σ = 2 in the remainder of the paper.

Note that σn(a) ≤lex a for all n ∈ N; this gives rise to the standard definition
of the β-shift:

Definition 2. Let β be a real number with 1 < β < 2, and let a = (an)∞n=1 be
the expansion of 1 in powers of β−1. The one-sided W-β-shift is the subset X̃β

of 2N containing exactly those b such that, for all n ∈ N0, we have σn(b) ≤lex a.
The one-sided β-shift, denoted Xβ, is defined to be X̃β if a is not finite. If a

is finite, i.e. a = a1a2, . . . ak0ω such that ak = 1, define a′ � (a1a2 · · · ak−10)ω.
Then, Xβ is defined to be the subset of 2N such that, for all n ∈ N0, we have
σn(b) ≤lex a′

The two-sided W-β-shift is the subset of 2Z containing exactly those b such
that, for all i ∈ Z, we have we have bibi+1bi+2 · · · ∈ X̃β. The two-sided β-shift is
defined analogously, using Xβ.

It is easy to see that both the one- and two-sided (W-)β-shifts are shift-
invariant subsets of {0, . . . , $β%}N and {0, . . . , $β%}Z, ie., σ(X̃β) = X̃β and
σ(Xβ)=Xβ .

The term “W-β-shift” is short for “Walters-β-shift”, since X̃β is studied in
Walters’ book [24] (a point of confusion is that the W-β-shift is occasionally
called the β-shift in the literature). The special case where the definition of the
W-β-shift differs from the β-shift (i.e. with finite a) stems from the original
research of the β-shift [15] where it was necessary to consider the special case
to study aspects of number theory. Both the W-β-shift and the β-shift satisfy
Theorem 1.

A fundamental concept in the study of shift spaces is that of language:

Definition 3. Let β be a real number with 1 < β < 2. The language of the W-β-
shift, denoted L(X̃β), is the set of all finite binary strings occurring in elements

of X̃β, ie. L(X̃β) �
{
bibi+1 · · · bj | b ∈ X̃β ∧ i, j ∈ N ∧ i ≤ j

}
. L(Xβ) is defined

analogously.

Define the shift map σfin on finite strings by σfin(b1b2 · · · bk) � b2 · · · bk and
note that |σfin(a)| + 1 = |a|. Extend the map to sets of finite strings by letting
σfin act on each string in the set. We have:

Proposition 1. For all j, k ∈ N, we have L(X̃β) ∩ 2jk ⊆ (L(X̃β) ∩ 2k)j, and
L(Xβ) ∩ 2jk ⊆ (L(Xβ) ∩ 2k)j

Proof. As σ(X̃β) = X̃β, we see that σfin(L(X̃β)) = L(X̃β). From the above,
we see that σk(L(X̃β) ∩ 2jk) = L(X̃β) ∩ 2(j−1)k (where 20 = {λ}). Hence,
L(X̃β) ∩ 2jk ⊆ (L(X̃β) ∩ 2k) · (L(X̃β) ∩ 2(j−1)k), and the result follows by a
simple induction on j. The proof for Xβ is completely analogous. ��
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2.2 Computable Reals

There are several definitions of“computable reals”in the literature, but these are
all equivalent [23,13,17,25,26]. The definition that will be easiest to work with
in this paper is, essentially, that of [25]:

Definition 4. A sequence (Is)s∈N = ([ps; qs])s∈N of closed intervals with end-
points in Q is said to be computable if there is a total recursive function φ : N −→
Q where, for all s ∈ N, we have φ(2s) = ps and φ(2s + 1) = qs. A computable
name is a computable sequence (Is)s∈N of closed intervals with endpoints in Q
such that, for all s ∈ N, we have Is+1 ⊆ Is such that

⋂
s∈N

is a singleton.
A real number α is said to be computable if there is a computable name

(Is)s∈N with {α} =
⋂

s∈N
Is.

From any computable name (Is)s∈N of some real α, we may effectively obtain
a computable name (I ′s)s∈N of α such that |I ′s| ≤ 2−s for all s ∈ N: Since we
know that |Is| → 0 for s → ∞ and we can, in finite time, check the length
of an interval Is, we may simply wait for (Is)s∈N to produce sufficiently small
intervals.

Definition 5. Let α be a real number. Then, α is said to be left-computable
(resp. right-computable) if there is a total recursive function φ : N −→ Q such
that sups φ(s) = α (resp. infs φ(s) = α).

It is well-known that a real number is computable iff it is both left- and
right-computable. Also:

Proposition 2. For each fixed computable name of some real α, the following
problem is undecidable:

Given: A computable name (In)n∈N of some computable real β.
To decide: Is β < α?

Proof. Standard. See e.g. [3,25]. ��
We use the above proposition in Section 6, specialized to the case where α is

the Golden Mean (1 +
√

5)/2.
We shall need an effective way of finding the unique positive root of equations

of the form 1 =
∑k

j=1 cjx
−j where all cj ∈ 2 and at least one of the cj equals 1.

Lemma 1. There is a total recursive function ψ : N −→ N such that, for each
k ∈ N, φψ(k) : 2k −→ N is a partial recursive function such that, if c1, . . . , ck ∈ 2
with at least one cj = 1, then φψ(k)(c1, . . . , ck) is defined and φφψ(k)(c1,...,ck) :

N −→ Q is a computable name of the unique positive solution to 1 =
∑k

j=1 cjx
−j.

Proof. The positive solution of 1 =
∑k

j=1 cjx
−j is an isolated zero of f(x) �∑

j=1 cjx
−j − 1, which is a computable function in the sense of Weihrauch [25].

The result now follows from standard root-finding algorithms, indeed from the
fact that every isolated zero of a computable function is a computable real, and
that there is an effective way of finding a computable name for it [25, Ch. 6]. ��
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In the above lemma, ψ is merely a way of getting the right arity, and φψ(k)

an “algorithm” for converting the relevant “coefficients” to a computable name
of the solution.

2.3 The Arithmetical Hierarchy of Reals

We briefly summarize a few notions from recursion theory:

Definition 6. Let A ⊆ N. We let (φA
i )i∈N be an effective enumeration of all

partial functions from N −→ N that are recursive-in-A (ie., computable by Tur-
ing Machines with access to an oracle for A). Observe that A = ∅ gives the
usual partial recursive functions, and we write φi in place of φ∅i . We will usually
suppress the index i if it is not necessary for the exposition.

We overload the φA
i to denote partial recursive-in-A functions with domain

or codomain any of the sets 2,N,Z,Q (using suitable representations). If B is
any of these sets, observe that C ⊆ B is decidable iff there exists a total recursive
function φi : B −→ 2 such that φi(x) = 1 iff x ∈ C.

Let, for each n ∈ N, 〈·, . . . , ·〉 : Nn −→ N be a total recursive pairing function,
e.g. the one obtained by repeated use of the Cantor pairing function 〈i, j〉 �
(i + j)(i + j + 1)/2 + j and its accompanying projections.

Using the pairing function, we may extend the concepts introduced above to
finite Cartesian products of any of these sets. If φ : N −→ N is a total function,
we say that ψ : N −→ N is recursive-in-φ if it is recursive-in-{〈n, φ(n)〉 | n ∈ N}.
Definition 7. For any A ⊆ N, the jump, A′ is defined by A′ � {i ∈ N |
φA

i (i) is defined}. For n ∈ N, the nth jump A(n) is defined by A(1) � A′, and
A(n+1) �

(
A(n−1)

)′
. For convenience, we set A(0) � A.

Define Σ0
0 = Π0

0 = Δ0
0 to be the set of decidable subsets of N. For any n ∈ N,

define the sets of subsets of N called Σ0
n, Π

0
n, and Δ0

n as follows: a set A ⊆ N
satisfies A ∈ Σ0

n iff there is a decidable set R ⊆ N such that, for any i ∈ N:
i ∈ A iff (∃m1)(∀m2)(∃m3) · · · (Qmn).(〈i,m1, . . . ,mn〉 ∈ R) where Q is ‘∃’ if n
is odd and ‘∀’ otherwise. A ⊆ Π0

n, iff the complement A ∈ Σ0
n, and we define

Δ0
n � Σ0

n ∩Π0
n.

It is easy to see that Σ0
1 contains precisely the recursively enumerable (hence-

forth “r.e.”) subsets of N, and Π0
1 precisely the co-r.e. sets. It is a standard re-

sult that, for n ∈ N, A ∈ Δ0
n iff there is a total recursive-in-∅(n−1) function

φ : N −→ 2 such that φ(j) = 1 iff j ∈ A.
Recognizing the similarity between alternating quantifiers in the usual notion

of arithmetical hierarchy for N and the alternating uses of inf and sup in certain
generalizations of the computable reals, Weihrauch and Zheng introduced the
arithmetical hierarchy of reals [27]. Each class in the hierarchy constitutes a
closed subfield of R corresponding to a degree of unsolvability.

A full introduction to the arithmetical hierarchy of reals is beyond the scope
of this paper; we shall only need to recapitulate a few facts. The lemma below
may be taken as a definition of the classes.
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Lemma 2 (Lemma 7.2 of [27]). With the convention ∅(0) = ∅, the following
hold for all n ∈ N0 and all x ∈ R:

1. x ∈ Σn+1 iff there is a recursive-in-∅(n) total function φi : N −→ Q with
x = sups φi(s).

2. x ∈ Πn+1 if there is a recursive-in-∅(n) total function φi : N −→ Q with
x = infs φi(s).

3. x ∈ Δn+1 if there is a total function as above such that x = lims→∞ φi(s) that
converges effectively, ie. there is a recursive-in-∅(n) total function ξ : N −→ N
such that for all s, j ∈ N, we have s ≥ ξ(j)⇒ |x− φi(s)| ≤ 2−j.

4. x ∈ Δn+2 if there is a total function as above such that x = lims→∞ φi(s).

In [27], the lemma is stated only for n ≥ 1, but the case n = 0 is proved
elsewhere loc. cit.

From the above lemma, it is not hard to see that Δn = Σn∩Πn for all n ∈ N,
that Δ1 coincides with the set of computable reals, and Σ1 (resp. Π1) coincides
with the set of left-computable (resp. right-computable) reals.

Proposition 3 (First part of Prop. 7.6 of [27]). For any n ∈ N, Δn is
an algebraic field, ie. is closed under the arithmetical operations of addition,
subtraction, multiplication and division.

Examination of the proof in [27] and the standard proof of algebraic closure
of the computable reals [25] yields that the closure under algebraic operations is
effective. For example, if φi, φj : N −→ Q are total recursive-in-∅(n−1) functions
with lims→∞ φi(s) = α and lims→∞ φj(s) = β (where the convergence is effective
in both cases), then there is a total recursive-in-∅(n−1) function ψ : N −→ Q such
that lims→∞ ψ(s) = α + β, effectively.

We now prove a series of ancillary propositions and lemmas.

Proposition 4. For any n ∈ N, if α is a Πn-real, then so is 2α.

Proof. As α is Πn, there is, by Lemma 2, a total recursive-in-∅(n−1) function
φ : N −→ Q such that α = infk f(k). Using standard methods from computable
analysis, it is easy to show that there is a total recursive function ξ : N×Q −→ Q
such that, for each k ∈ N and p/q ∈ Q, we have 0 ≤ ξ(k, p/q) − 2p/q < 2−k.
Hence, 0 ≤ ξ(k, f(k)) − 2f(k) < 2−k for all k ∈ N. The function ζ : N −→ Q
defined by ζ(k) � ξ(k, f(k)) is thus recursive-in-∅(n−1) and, since x �→ 2x is an
increasing map, satisfies infk ζ(k) = 2α. Thus, 2α ∈ Πn. ��

We need the concept of Δ0
n-good sequences to make some of the subsequent

proofs more readable:

Definition 8. Let n ∈ N. A sequence (xs)s∈N of computable reals is called Δ0
n-

good if there is a ∅(n−1)-computable total function ψ : N −→ N such that, for
each s ∈ N, φψ(s) : N −→ Q is a computable name of xs.

Taking the sup or inf of such sequences does not force us into a higher level
of the arithmetical hierarchy:
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Proposition 5. Let n ∈ N, and let (xs)s∈N be a Δ0
n-good, convergent sequence

of computable reals. Then:

1. If ∀s ∈ N.xs ≤ lims xs, then lims→∞ xs = sups xs ∈ Σn.
2. If ∀s ∈ N.xs ≥ lims xs, then lims→∞ xs = inf xs ∈ Πn.

Proof. We prove (1); the proof of (2) is similar.
As we have ∀s ∈ N.xs ≤ lims→∞ xs, we immediately get lims→∞ xs =

sups xs. As (xs)s∈N is Δ0
n-good, there is a total recursive-in-∅(n−1) function ψ

with the properties of Definition 8. For each s, φψ(s)(2s) is a left endpoint of
an interval a name of xs; there is clearly a total recursive-in-∅(n−1) function
ξ : N −→ Q such that ξ(s) = φψ(s)(2s), for all s ∈ N.

By the comments after Definition 4, we may assume wlog. that for each s ∈ N,
we have |xs − φψ(s)(2s)| ≤ 2−s, Furthermore, for each s ∈ N, φψ(s)(2s) is a left
endpoint of a name of xs, and we thus have xs ≥ φψ(s)(2s) for all s ∈ N, and
thus lims φψ(s)(2s) = sups φψ(s)(2s) = sups ξ(s) ∈ Σn, as desired. ��

3 Beta-Shifts Having Arithmetical Languages

In this and the remaining sections, we assume a β ∈ R with 1 < β < 2. Further-
more, we freely refer to (ak)k∈N as the expansion of 1 in powers of β−1.

Let log be the logarithm to base 2; we now establish a sufficient condition
for log(β) to be in Πn:

Proposition 6. Let L(X̃β) be Δ0
n. Then, the quantity

log(β) = htop

(
X̃β

)
= lim

k→∞

(
log(|L(X̃β) ∩ 2k|)

k

)

is a Πn-real. The result holds with L(X̃β) replaced by L(Xβ).

Proof. The limit always exists and equals log(β) by the standard theory of the
β-shift [24]. We want to use Proposition 5 and proceed as follows:

– If L(X̃β) is Δ0
n, then there is a total recursive-in-∅(n−1) function ζ : 2∗ −→ 2

such that ζ(a) = 1 iff a ∈ L(X̃β); hence, there is a total recursive-in-∅(n−1)

function ξ : N −→ N such that ξ(k) = |L(X̃β) ∩ 2k| for all k ∈ N. For each
k ∈ N, log(|L(X̃β) ∩ 2k|)/k is a computable real, and we can effectively find
a computable name for it given the natural number |L(X̃β) ∩ 2k| as input.
Thus, there is a total recursive-in-∅(n−1) function ψ : N −→ N such that
φψ(k) : N −→ Q is a computable name of log(L(X̃β) ∩ 2k)/k for all k ∈ N,
proving that (log(L(X̃β) ∩ 2k)/k)k∈N is a Δ0

n-good sequence.
– For all j, k ∈ N, Proposition 1 entails that L(X̃β) ∩ 2kj ⊆ (L(X̃β) ∩ 2k)j ,

hence that |L(X̃β) ∩ 2kj | ≤ |(L(X̃β) ∩ 2k)j | = |L(X̃β) ∩ 2k|j .
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Thus:

log(|L(X̃β) ∩ 2kj |)
kj

≤ log(|L(X̃β) ∩ 2k|j)
kj

=
log(|L(X̃β) ∩ 2k|)

k
.

The rightmost expression above does not depend on j, whence we have, for
each k ∈ N:

limj→∞
(

log(|L(X̃β)∩2j|)
j

)
= limj→∞

(
log(|L(X̃β)∩2kj |)

kj

)
≤ log(|L(X̃β)∩2k|)

k .

Thus, for each k ∈ N, log(|L(X̃β)∩ 2k|)/k is an upper bound on htop

(
X̃β

)
.

Finally, Proposition 5 yields htop

(
X̃β

)
∈ Πn. The proof for L(Xβ) can be

carried out by copying the arguments for L(X̃β) verbatim. ��
The following lemma establishes a useful correspondence between L(X̃β) and

{k | ak = 1}.
Lemma 3. L(X̃β) is Δ0

n iff {k ∈ N | ak = 1} is Δ0
n.

Proof. Let, for each k ∈ N, Dk � {d ∈ 2k | ∀j ∈ {0, . . . , k − 1}.σj(d) ≤lex

a1 · · · ak−j}. Observe that if d ∈ Dk, then d·0ω ∈ X̃β, and thus Dk ⊆ L(X̃β)∩2k.
Conversely, if d ∈ L(X̃β)∩2k, then σj

fin(d) ≤lex a1 · · ·ak−j for j ∈ {0, . . . , k−1},
ie. d ∈ Dk. Hence, Dk = L(X̃β) ∩ 2k.

If L(X̃β) is Δ0
n, then we can obviously establish a total recursive-in-∅(n−1)

function φ : N −→ 2 such that φ(k) = bk where b1 · · · bk is the lexicographically
greatest element of Dk. By definition of the β-shift, the lexicographically greatest
element of Dk is the prefix of length k of a1a2 · · · . But then φ(k) = 1 iff ak = 1,
ie. {k ∈ N | ak = 1}.

Conversely, if {k ∈ N | ak = 1} is Δ0
n, we can recursively-in-∅(n−1) establish

a1 · · · ak for each k ∈ N. With a1 · · ·ak in hand, we can effectively establish Dk.
For a given d ∈ 2∗, to decide whether d ∈ L(X̃β), we need only examine whether
d ∈ D|d|, which is thus recursive-in-∅(n−1), ie. there is a total recursive-in-∅(n−1)

function ψ : 2∗ −→ 2 such that ψ(d) = 1 iff d ∈ L(X̃β). ��
Observe that the proof is constructive, ie. we have an effective way of pro-

ducing decision procedures for {k | ak = 1} given decision procedures for L(X̃β)
as input, and vice versa.

Proposition 7. L(Xβ) is Δ0
n iff L(X̃β) is Δ0

n.

Proof. If a is not finite, we have L(Xβ) = L(X̃β), and the result follows. If a is
finite, then {k | ak = 1} is Δ0

1 (there are only a finite number of 1s), whence
Lemma 3 furnishes that L(X̃β) is Δ0

1. Also, we have that L(Xβ) is Δ0
1, since

we can use the same construction as in the second part of the proof of Lemma
3 applied to the sequence a′ = (a1a2 · · · ak−10)ω where k is the largest integer
with ak = 1. ��
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Let s ∈ N, a1 = 1 and aj ∈ 2 for j ∈ {2, . . . , s}. Consider the map fs :
R>0 −→ R>0 defined by fs(x) =

∑s
j=1 ajx

−j . Now, fs(x) is strictly decreasing,
continuous and onto, whence 1 = fs(x) has a unique positive real solution for
all s. We now show that this solution is a computable real, and that there is an
effective way to find it given a1, . . . , as as input:

Proposition 8. If {k ∈ N | ak = 1} is Δ0
n, then the sequence (αs)s∈N of pos-

itive solutions to 1 =
∑s

j=1 ajx
−j is a Δ0

n-good sequence of computable reals,
convergent with limit β, and satisfying ∀s ∈ N.αs ≤ β.

Proof. Observe that we always have a1 = 1. By Lemma 1, there is an effective
procedure yielding a computable name of the unique positive real solution to
1 =

∑s
j=1 ajx

−j , when given (a1, . . . , as) as input. Let the notation and names
of recursive functions be as in Lemma 1; Then φφψ(s)(a1,...,as) : N −→ Q is a
computable name of the unique positive solution, and the function ψ : N −→
N is total recursive. As {k ∈ N | ak = 1} is Δ0

n, there is a total recursive-
in-∅(n−1) function ξ : N −→ 2 with ξ(k) = 1 iff ak = 1, and hence a total
recursive-in-∅(n−1) function ζ : N −→ 2 such that ζ(k) = ak for all k ∈ N.
Hence, there is a total recursive-in-∅(n−1) function mapping s ∈ N to an index of
φψ(s)(ζ(s), . . . , ζ(1)), whence (αs)s∈N is a Δ0

n-good sequence of computable reals.
The sequence is non-decreasing, since αs+1 = αs if as+1 = 0 and αs+1 > αs if
as+1 = 1. Now, β is the unique positive solution to 1 =

∑∞
j=1 ajx

−j , and clearly
all of the αs are less than or equal to this solution. Hence, ∀s ∈ N.αs ≤ β.
Proving that lims→∞ αs = β is a standard exercise in undergraduate (classical)
mathematics. ��

We now have the following key lemma:

Lemma 4. If L(X̃β) is Δ0
n, then β is a Δn-real.

Proof. Propositions 6 and 4 furnish that β ∈ Πn. Furthermore, Lemma 3, and
Propositions 8 and 5 furnish that β ∈ Σn, whence the result. ��

4 Arithmetical Betas

In the first lemma of this section, we give a sufficient condition for {k | ak = 1}
to be Δ0

n.

Lemma 5. Let n ∈ N, and assume that, for all k ∈ N, we have 1 �= βk −∑k−1
j=1 ajβ

k−j . Then there is a total recursive-in-∅(n−1) function ξ : N −→ 2

such that ξ(n)=1 iff βk −∑k−1
j=1 ajβ

k−j≥1, ie. {k | ak =1} is a Δ0
n subset of N.

Proof. By Lemma 2, there is a recursive-in-∅(n−1) total function f : N −→ Q
such that β = limi→∞ f(i) effectively (that is, there is an ∅(n−1)-computable total
function ψ : N −→ N such that, for all m ∈ N, |β−f(i)| < 2−m for all i ≥ ψ(m)).
By Proposition 3, Δn is an algebraic field, and we thus have βk−∑k−1

j=1 ajβ
k−j ∈

Δn for all k ∈ N. By the comments after the proposition, the algebraic operations
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are recursive, and there is thus a total recursive-in-∅(n−1) function ξ : N×N −→ Q
such that, for all k,m ∈ N, |βk −∑k−1

j=1 ajβ
k−j − ξ(k,m)| < 2−m.

Consider the recursive-in-ξ procedure that does the following: For each k ∈ N,
run ξ(k, i) on successively greater i until an i is found for which |1 − ξ(k, i)| >
2−(i−1) (the assumption 1 �= βk−∑k−1

j=1 ajβ
k−j implies existence of such an i). As

|βk−∑k−1
j=1 ajβ

k−j−ξ(k, i)| < 2−i, we have ξ(k, i) > 1 iff βk−∑n−1
j=1 ajβ

k−j > 1.
This procedure can clearly be made into a total recursive-in-∅(n−1)-function

h : N −→ 2 such that h(n) = 1 iff βk −∑n−1
j=1 ajβ

k−j > 1. ��
The next lemma is a counterpart to Lemma 4.

Lemma 6. Let β ∈ Δn. Then, {k | ak = 1} is Δ0
n.

Proof. Consider (ak)k∈N. Either there is a k ∈ N such that 1 = βk−∑k−1
i=1 aiβ

k−i,
or there is not1. If there is no such k, then Lemma 5 furnishes the result. If
there is no such k, the ai, for 1 ≤ i ≤ k − 1, are the initial coefficients of the
expansion of 1 in negative powers of β. Hence, ak = $βk −∑k−1

i=1 aiβ
k−i% =

βk −∑
i = 1k−1aiβ

k−i = 1, showing that 1 =
∑k

i=1 aiβ
−i is the β-expansion

of 1, all further coefficients therefore being 0. Thus, there is a total recursive
function φ : N −→ 2 such that φ(k) = 1 iff ak = 1. ��

5 The Correspondence Theorem

We now prove our main result:

Theorem 2. Let β be a real number with 1 < β < 2, and let n ∈ N. The
following are equivalent:

1. β is a Δn-real.
2. {k | ak = 1} is a Δ0

n subset of N.
3. L(X̃β) is a Δ0

n subset of 2∗.
4. L(Xβ) is a Δ0

n subset of 2∗.

Proof. (1) ⇒ (2) is Lemma 6, (2) ⇒ (3) is one-half of Lemma 3, and (3) ⇒ (1)
is Lemma 4. Finally, Proposition 7 furnishes equivalence of (3) and (4). ��

The case where n is 1 is of particular interest:

Corollary 1. Let β be a real number with 1 < β < 2. The following are
equivalent:

1. β is a computable real.
2. The set {k | ak = 1} is a decidable subset of N.
3. L(X̃β) is a decidable subset of 2∗.
4. L(Xβ) is a decidable subset of 2∗.
1 This use of the Law of the Excluded Middle is the essential non-constructive part of

the proof: We are asking for an answer to the undecidable problem of whether such
a k exists.
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6 Absence of a Constructive Proof

Inspection of the proof of Lemma 4 reveals that it is constructive and thus
yields an effective procedure for converting a decision procedure for L(X̃β) to a
computable name of β. Hence, (3) ⇒ (1) of Theorem 2 is effective in the case
where n equals 1.

Unfortunately, that fact is not very interesting; what we really want is for
(1) ⇒ (3) to be constructive, ie. we desire a program to generate a decision
procedure for L(X̃β) when given a computable name of a computable real β as
input. Alas, this is impossible:

Theorem 3. There is no partial recursive function ψ : N −→ N such that if
φi : N −→ Q is a computable name of a computable real β ∈ (1; 2), then i ∈
dom(ψ) and φψ(i) : 2∗ −→ 2 is a total recursive function such that φψ(i)(c) = 1
iff c ∈ L(X̃β) for all c ∈ 2∗.

Proof. Observe that for any β ∈ (1, 2), we have a1 = 1. Also, a2 = 0 iff $β2−β% =
0 iff β2 − β < 1 iff β < (1 +

√
5)/2. If ψ existed, we could, by Lemma 3 and the

comments thereafter, effectively establish the sequence (an)n∈N. Thus, we could
decide whether a2 = 0 or a2 = 1, and hence decide whether β < (1 +

√
5)/2,

which is impossible by Proposition 2. ��
In other words, the proof of the theorem shows that there is no program

converting computable names to decision procedures for the associated shifts.
Note also that the proof can immediately be adapted to show that (1) ⇒ (2) in
Theorem 2 cannot be made effective. As x �→ 2x is a computable function on the
computable reals, another adaptation of the proof yields:

Corollary 2. There is no partial recursive function ψ : N −→ N such that
if φi : N −→ Q is a computable name of a computable real β ∈ (0; 1), then
i ∈ dom(ψ) and φψ(i) : N −→ 2 is a total recursive function with φψ(i)(c) = 1 iff
c ∈ L(X̃β).

Thus, there is no effective way to find decision procedures for the W-β-shift
given its topological entropy log(β).

Whether the corresponding result holds for Xβ is still open; we strongly
conjecture that it does.
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Abstract. The logic of equality and uninterpreted functions (EUF) has
been proposed for processor verification. This paper presents a new data
structure called Binary Decision Diagrams for representing EUF for-
mulas (EUF-BDDs). We define EUF-BDDs similar to BDDs, but we
allow equalities between terms as labels instead of Boolean variables.
We provide an approach to build a reduced ordered EUF-BDD (EUF-
ROBDD) and prove that every path to a leaf is satisfiable by construc-
tion. Moreover, EUF-ROBDDs are logically equivalent representations
of EUF-formulae, so they can also be used to represent state spaces in
symbolic model checking with data.

1 Introduction

Binary Decision Diagrams (BDDs) are one of the biggest breakthroughs in
computer-aided design. Reduced ordered BDDs [1] form a canonical representa-
tion of Boolean formulas, making testing of equivalence straightforward. Unfor-
tunately, their power is mostly restricted to propositional logic, which is often
not sufficiently expressive for verification. The equality logic with uninterpreted
functions (EUF) has been proposed for verifying hardware [2]. EUF formulae
have been successfully applied for the verification of pipelined processors [2],
and translation validation [3].

Using uninterpreted functions simplifies proofs as the only retained infor-
mation about a function is the property of functional consistency, i.e. if x = y
then f(x) = f(y). The abstraction process does not preserve validity and may
transform a valid formula into an invalid one, e.g. x + y = y + x is valid but
f(x, y) = f(y, x) is not. However, in some application domains the process of
abstraction is justified.

The original approach to decide this logic was to solve equalities while main-
taining congruence closure with respect to the uninterpreted functions [4]. This
is mainly applied to the conjunction of equalities. Disjunctions can be treated by
case splitting [5]. Another approach is based on work of Ackermann [6], who has
shown that deciding the validity of EUF formulae can be reduced to checking the
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satisfiability of pure equality logic formulae. Such reduction can be performed by
replacing each application of an uninterpreted function symbol with a new vari-
able and for each pair of function applications to add a constraint which enforces
the property of functional consistency, i.e. while replacing any two subterms of
the form F (x) and F (y) by new variables f1 and f2 , we have to add a constraint
of the form x = y → f1 = f2.

Due to the finite domain property, which states that an equality logic formula
is satisfiable if and only if it is satisfiable over a finite domain, Pnueli et al. [3]
find a small domain for each variable, which is large enough to maintain satisfi-
ability. Goel et al. [7] proposed to decide equality logic formulae by replacing all
equalities with new Boolean variables. Similarly, in [8] a BDD-based decision pro-
cedure for combinations of theories is presented. As a result of both approaches,
BDDs are not a canonical representation for formulas anymore. Also, there can
be paths to a leaf which are not satisfiable. Hence, all paths must be checked, for
instance if they satisfy transitivity of equality. Therefore, the constraint solver
can be invoked exponentially many times because of the Boolean structure of
the formula.

Bryant et al. [9] reduce an equality formula to a propositional one by adding
transitivity constraints. In that approach it is analyzed which transitivity prop-
erties may be relevant. Tveretina et al [10] proposed a resolution-based approach
to check satisfiability of equality logic formulae.

In [11], equational BDDs (EQ-BDDs) are defined, in which all paths are sat-
isfiable by construction. That approach extends the notion of orderedness to
capture the properties of reflexivity, symmetry, transitivity, and substitutivity.
The advantage of the method is that satisfiability checking for a given ordered
EQ-BDD can be done immediately. However, it is restricted to the case when
equalities do not contain function symbols. EQ-BDDs have been extended in [12].
Here some interpreted functions, viz. natural numbers with zero and successor
were added. In [13] an alternative solution was provided, with a different orien-
tation of the equations.

Contribution. We introduce EUF-BDDs, which are BDDs with internal nodes
labelled by equalities between ground terms. We introduce reduced ordered
EUF-BDDs, and prove that these have no contradictory paths. This makes
them suitable for theorem proving and satisfiability checking. Moreover, con-
trary to the approaches to EUF mentioned above, we obtain a representation
which is logically equivalent to the original formula. This method extends the
approach introduced in [11]. However, the changed orientation of [13] is essential
for the completeness of our method. So technically, the EQ-BDDs of [11] are
not a special case of our EUF-BDDs, because the orientation of the guards is
reversed.

Application. We have made a prototype implementation of our EUF-BDDs in
the special purpose theorem prover for the μCRL toolset [14]. The prover is used
to discharge proof obligations generated in protocol verifications, and it is also
used in the symbolic model checker with data, proposed in [15]. In the latter
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application it is essential to have a concise representation of formulas, which is
provided by EUF-BDDs.

2 Basic Definitions

2.1 Syntax

In this section we define a syntax for formulae. A signature is a tuple Σ =
(Fun, ar), where Fun = {f, g, h, . . .} is an enumerable set of function symbols
and ar : Fun → N is a function describing the arity of the function symbols.
Function symbols with the arity 0 are called constants (typically a, b, c, . . . ).
The set of constant symbols is denoted by Const. The set Term of terms is
defined inductively: for n ≥ 0, f(t1, . . . , tn) is a term if t1, . . . , tn are terms,
f ∈ Fun, and ar(f) = n. For n = 0, we write a instead of a(). In the following,
we use the lower case letters s, t, and u to denote terms. The set SubTerm(t) of
subterms of a term t is defined inductively: for n ≥ 0, SubTerm(f(t1, . . . , tn)) =
{f(t1, . . . , tn)}∪⋃n

i=1 SubTerm(ti). A subterm of a term t is called proper if it is
distinct from t. The set of proper subterms of a term t is denoted by SubTermp(t).

Definition 1. (Equalities) An equality is a pair of terms (s, t) ∈ (Term×Term).
We write an equality as s ≈ t. The set of equalities over Σ is defined by Eq(Σ)
or if it is not relevant by Eq.

Here we write ‘≈’ for equality, and we use ≡ to denote syntactical identity
between two elements. We define the set of subterms occurring in an equality
s ≈ t as SubTerm(s ≈ t) = SubTerm(s) ∪ SubTerm(t), and the set of proper
subterms occurring in s ≈ t as SubTermp(s ≈ t) = SubTermp(s) ∪ SubTermp(t).

Definition 2. Formulae (denoted by For(Σ)) are expressions satisfying the fol-
lowing syntax.

ϕ := true | false | Eq | ITE(ϕ, ϕ, ϕ)

In the following, the abbreviation ¬ϕ stands for ITE(ϕ, false, true), ϕ ∧ ψ
stands for ITE(ϕ, ψ, false), ϕ ∨ ψ stands for ¬(¬ϕ ∧ ¬ψ), ϕ → ψ stands for
¬ϕ ∨ ψ, and ϕ↔ ψ stands for (ϕ→ ψ) ∧ (ψ → ϕ).

We write s �≈ t as an abbreviation of ¬(s ≈ t). For a given formula ϕ, the set
of all equalities occurring in ϕ is denoted by Eq(ϕ).

We define the set of subterms occurring in a formula ϕ as SubTerm(ϕ) =⋃
e∈Eq(ϕ) SubTerm(e), and the set of proper subterms occurring in a formula ϕ

as SubTermp(ϕ) =
⋃

e∈Eq(ϕ) SubTermp(e). We define the set Lit of literals as
Lit = {l | l ∈ Eq} ∪ {¬l | l ∈ Eq}. Given a conjunction of literals ϕ, by Lit(ϕ) we
denote the set of all literals occurring in it.

2.2 Semantics

A structure D over a signature Σ = (Fun, ar) is defined to consist of a non-
empty set D called the domain, and for every f ∈ Fun, with ar(f) = n, a map



772 J. van de Pol and O. Tveretina

fD : Dn → D. The interpretation [[t]]D : Term(Σ)→ D of a term t is inductively
defined as follows. For n ≥ 0, [[f(t1, . . . , tn)]]D = fD([[t1]]D, . . . , [[tn]]D), where
t1, . . . , tn ∈ Term. The interpretation [[ϕ]]D : For(Σ)→ {true, false} of a formula
ϕ is defined as usual, i.e. [[true]]D = true, [[false]]D = false, [[s ≈ t]]D = true, if
[[s]]D = [[t]]D, and false otherwise.

[[ITE(ϕ, ψ, χ)]]D =
{

[[ψ]]D if [[ϕ]]D = true
[[χ]]D otherwise

Definition 3. A structure D satisfies a formula ϕ if [[ϕ]]D = true. A formula
ϕ is called satisfiable if there exists a satisfying structure. Otherwise ϕ is called
a contradiction. If each structure D satisfies ϕ then ϕ is a tautology. We say
that a formula ϕ is logically equivalent to a formula ψ if for every structure D,
[[ϕ]]D = [[ψ]]D.

3 Binary Decision Diagrams for EUF-Logic

This paper presents a new data structure called an EUF-BDD for representing
and manipulating formulas containing equalities and uninterpreted functions. We
consider EUF-BDDs as a restricted subset of formulas.

Definition 4. We define the set B of EUF-BDDs as follows.

B := true | false | ITE(Eq,B,B)

It is straightforward to show that every formula defined above is equivalent
to at least one EUF-BDD.

EUF-BDDs are nested ITE formulas which are represented in implemen-
tations as directed acyclic graphs. The difference between BDDs representing
Boolean formulae and EUF-BDDs is, that in the latter case internal nodes are
labelled with equalities. An EUF-BDD can be represented as a rooted, directed
acyclic graph with nodes of out-degree zero labelled by true and false, and a set
of nodes of out-degree two labelled by equalities between ground terms. For a
node l the two outgoing edges are given by two functions low(l) and high(l).

Throughout the paper we use T and S to denote EUF-BDDs.

Example 5. The EUF-BDD representing the property of functional consistency
a ≈ b → f(a) ≈ f(b) can be depicted as in Figure 1. The EUF-BDD can be
written as ITE(a ≈ b, ITE(f(a) ≈ f(b), true, false), true).

In order to define ordered EUF-BDDs, we need a total well-founded order
on equalities. This is built from a total well-founded order on terms. To en-
sure structural properties of ordered EUF-BDDs, this total order should satisfy
certain properties.

Definition 6. (Order on terms) We define a simplification order on the set
Term as satisfying the following conditions:
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a ≈ b

f(a) ≈ f(b)

truefalse

Fig. 1. Dashed lines represent low/false edges, and solid ones represent high/true edges

1. For all s, t ∈ Term, s ≺ t if s ∈ SubTermp(t).
2. For each f ∈ Fun and for all 1 ≤ i, j ≤ n, and si, t ∈ Term, if sj ≺ t then

f(s1, . . . , sj, . . . , sn) ≺ f(s1, . . . , t, . . . , sn).
3. The order is total and well-founded.
4. J is the reverse of ≺.

In the sequel, we work with an arbitrary but fixed simplification order ≺. An
example of such an order is the recursive path order [16], which we also used in
our implementation.

Definition 7 (Order on equalities). Given a simplification order ≺ on terms,
the total well-founded order on the set Eq is defined as follows.

(s ≈ t) ≺ (u ≈ v) if either s ≺ u or s ≡ u and t ≺ v.

We use terminology from term rewrite systems (TRS). In particular, by a
normal form with respect to some TRS we mean a term to which no rules of
the TRS are applicable. A system is terminating if no infinite rewrite sequence
exists.

A first operation on EUF-BDDs is simplification of equalities as defined be-
low.

Definition 8 (Simplified equalities and EUF-BDDs). An equality s ≈ t
is called simplified, if s J t. In order to simplify all equalities in a BDD, we
introduce the following rewrite rules:

– s ≈ t→ t ≈ s, for all s, t ∈ Term such that s ≺ t.
– ITE(t ≈ t, T1, T2)→ T1.

Suppose T is an EUF-BDD. By T ↓ we mean the normal form of T obtained
after applying these rules. An EUF-BDD T is called simplified if T ≡ T ↓.

In the following, by t[s] we mean a term t such that s ∈ SubTerm(t), by
e[s] we mean an equality such that s ∈ SubTerm(e), and by T [s] we mean an
EUF-BDD T such that there is a node l in T associated with an equality e(l)
and s ∈ SubTerm(e(l)).
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Given the order on equalities, we can define a system of reduction rules as in
[11], but now the equations are oriented differently, as in [13]. Now starting with
an arbitrary simplified EUF-BDD, we can transform it by repeatedly applying
the following reduction rules.

Definition 9 (Reduction rules on simplified EUF-BDDs). We define a
TRS Reduce-Order as follows.

1. ITE(e, T, T ) → T

2. ITE(e, T1, ITE(e, T2, T3)) → ITE(e, T1, T3)
3. ITE(e, ITE(e, T1, T2), T3))→ ITE(e, T1, T3)
4. ITE(e1, ITE(e2, T1, T2), T3) → ITE(e2, ITE(e1, T1, T3), ITE(e1, T2, T3)), if e1 & e2.
5. ITE(e1, T1, ITE(e2, T2, T3)) → ITE(e2, ITE(e1, T1, T2), ITE(e1, T1, T3)), if e1 & e2.
6. ITE(s ≈ t, T1[s], T2) → ITE(s ≈ t, T1[t] ↓, T2), if s & t.

Rules 1−5 are the rules for simplifying BDDs for propositional logic, eliminat-
ing redundant tests and ensuring the right ordering. Rule 6 allows to substitute
equals for equals. Note that we immediately apply simplification after a substi-
tution. The transformation by the reduction rules yields a logically equivalent
EUF-BDD.

Definition 10 (EUF-ROBDDs). We define an EUF-ROBDD to be a simpli-
fied EUF-BDD which is a normal form with respect to the TRS Reduce-Order.

It follows from Definition 10 that in a reduced ordered EUF-BDD (EUF-
ROBDD) all equalities labelling the nodes are oriented, i.e. for a given order
≺ on terms, if a node l is associated with an equality s ≈ t then s J t; the
equalities along a path appear only in a fixed order; and for each EUF-ROBDD
of the form ITE(s ≈ t, T1, T2), s doesn’t occur in T1.

Example 11. Consider ϕ ≡ (x ≈ y ∧ y ≈ z)→ f(x) ≈ f(z). For a given order
x ≺ y ≺ z, the derivation of an EUF-ROBDD is depicted in Figure 2. The EUF-
ROBDD consists of one node true. In the picture, we combined several steps in
one arrow. Note that intermediate EUF-BDDs should always be kept simplified.
In the middle arrow of the picture, we explicitly show a simplification step.

An EUF-ROBDD is a normal form with respect to the TRS Reduce-Order.
The following theorem states that the system of reduction rules is terminating.
As a consequence, for each EUF-BDD there exists a logically equivalent EUF-
ROBDD.

Theorem 12. The rewrite system Reduce-Order is terminating.

The proof is based on the recursive path order (RPO) [16] to prove termina-
tion. The details can be found in a full technical report [17].
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y ≈ x

f(z) ≈ f(x)

z ≈ y

false true

6 y ≈ x

f(x) ≈ f(x)

z ≈ x

false true

simp y ≈ x

z ≈ x

true

1 true

Fig. 2. The derivation of the EUF-ROBDD for (x ≈ y ∧ y ≈ z) → f(x) ≈ f(z)

4 Satisfiability of Paths in EUF-ROBDDs

Checking equivalence of two Boolean functions can be done by comparing their
ROBDD representation: equivalent formulas have identical ROBDDs. Unfortu-
nately, the canonicity property of EUF-ROBDDs is violated as is shown for the
plain equality case in [11]. In this section we prove that if the EUF-ROBDD
corresponding to a formula ϕ consists of one node true then ϕ is a tautology,
if the EUF-ROBDD consists of one node false then ϕ is a contradiction, and in
all other cases ϕ is satisfiable. As a consequence, our approach allows to check
whether ϕ and ψ are equivalent. It can be done by verifying whether ϕ ↔ ψ is
a tautology.

When BDDs are used to represent formulas including equalities and uninter-
preted functions, a path to the true leaf in the BDD might not be consistent, i.e.
the set of literals occurring along the path does not have a model. We show that
each path in an EUF-ROBDD is satisfiable by construction.

For proving satisfiability of a path, we see it as a conjunction of literals
occurring along the path, where ∧ is considered modulo associativity and com-
mutativity. We use letters α and β to denote finite sequences of literals, ε for the
empty sequence and α.β for the concatenation of sequences α and β.

Definition 13 (EUF-BDD paths).

– We define the set Path(T ) of all paths contained in an EUF-BDD T induc-
tively as follows.
• Path(true) = Path(false) = ε,
• Path(ITE(e, T1, T2)) = {e.α | α ∈ Path(T1)} ∪ {¬e.α | α ∈ Path(T2)}.

– For a given path α ≡ l1. . . . .ln, we use an abbreviation ϕα to denote a formula
l1 ∧ · · · ∧ ln.

– The formula ϕα corresponds to a path α.
– We say that α is a satisfiable path if ϕα is satisfiable.

Example 14. Consider an EUF-BDD
ITE(a ≈ b, true, ITE(f(a) ≈ g(c), ITE(b ≈ c, false, true)), false). The EUF-BDD
and the path a �≈ b.f(a) ≈ g(c).b �≈ c are depicted in Figure 3.
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a ≈ b

true f(a) ≈ g(c)

b ≈ c false

truefalse

Fig. 3. The path a �≈ b.f(a) ≈ g(c).b �≈ c

4.1 Satisfiability of Reduced Formulas

To prove satisfiability of paths in EUF-ROBDDs we use a satisfiability criterium
from [18]. Before turning to a proof that every path in an EUF-ROBDD is satis-
fiable, we need to give a definition of a non-propagated equality and a definition
of a reduced formula. In [18] the definition of non-propagated equalities is given
for CNFs. Here, for sake of simplicity, we rather speak of formulas, but actually
we are interested in the case when a formula is a conjunction of literals. Since we
see a path as a conjunction of literals, where ∧ is considered modulo associativity
and commutativity, this corresponds to a set of unit clauses, as in [18].

Definition 15 (Non-propagated equality). An equality s ≈ t is called non-
propagated in a formula ϕ if the following holds.

– ϕ ≡ (s ≈ t) ∧ ψ for some formula ψ, and
– s, t ∈ SubTerm(ψ).

The set of all non-propagated equalities in ϕ is denoted by NPEq(ϕ).

Definition 16 (Reduced formula). We say that ϕ ≡ l1 ∧ · · · ∧ ln, where
li ∈ Lit, for all 1 ≤ i ≤ n, is reduced if the following holds.

– NPEq(ϕ) = ∅, and
– for each t ∈ Term, (t �≈ t) �∈ Lit(ϕ).

In the following Red is used to denote the set of reduced formulas.

Theorem 17. Every ϕ ∈ Red is satisfiable.

Proof. See [18]. ��

4.2 Satisfiability of EUF-ROBDD Paths

In this section we prove that every path in an EUF-ROBDD is satisfiable. For
a given path α, we transform ϕα into the logically equivalent reduced formula
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f(d) ≈ a

f(d) ≈ b

g(a) ≈ c

f(d) ≈ c

falsetrue

Fig. 4. The EUF-ROBDD representation of a formula ITE(f(d) ≈ a, true, ITE(f(d) ≈
b, true, ITE(f(d) ≈ c, ITE(g(a) ≈ c, true, false), false)))

ϕred
α . The idea of the proof is that a path in a (simplified) EUF-ROBDD con-

tains segments of the form s �≈ t0. · · · .s �≈ tn.s ≈ t. The term s doesn’t occur
as a subterm in any ti, nor in any of the other segments. We obtain a path
corresponding to ϕred

α ∈ Red by propagating s ≈ t, i.e. replacing the segment
by t �≈ t0. · · · .t �≈ tn.s ≈ t. Note that this operation doesn’t introduce new sub-
terms, so propagated equalities in other segments remain propagated. The result
is an equivalent formula in Red, hence it is satisfiable.

Example 18. For a given order a ≺ b ≺ c ≺ f(d) ≺ g(a), the EUF-ROBDD rep-
resentation of ITE(f(d) ≈ a, true, ITE(f(d) ≈ b, true, ITE(f(d) ≈ c, ITE(g(a) ≈
c, true, false), false))) is depicted in Figure 4.

Consider the path f(d) �≈ a.f(d) �≈ b.f(d) ≈ c.g(a) ≈ c. The formula corre-
sponding to the path contains one non-propagated equality f(d) ≈ c. By prop-
agating this equality, i.e. replacing f(d) �≈ a ∧ f(d) �≈ b with c �≈ a ∧ c �≈ b, we
obtain a reduced formula c �≈ a ∧ c �≈ b ∧ f(d) ≈ c ∧ g(a) ≈ c.

The formula corresponding to the path and the reduced formula are logically
equivalent. By Theorem 17, the reduced formula is satisfiable. Therefore, the
path is also satisfiable.

Theorem 19. Every path in an EUF-BDD is satisfiable.

The proof can be found in a full technical report [17].

Corollary 20. From Theorem 19

– The only tautological EUF-ROBDD is true.
– The only contradictory EUF-ROBDD is false.
– All other EUF-ROBDDs are satisfiable.

5 Implementation and Applications

We implemented our proposal for EUF-BDDs within the special purpose theorem
prover for the μCRL toolset [14]. The language μCRL combines abstract data
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types with process algebra. The prover is used to discharge proof obligations
generated in protocol verifications, in particular to prove process invariants and
confluence of internal computation steps [19]. It is also used in the symbolic
model checker with data, proposed in [15]. In the latter application it is essential
to have a concise representation of formulas, which is provided by EUF-BDDs.

Usually, symbolic model checking uses ordered binary decision diagrams to
provide a compact representation of the transition system. BDD-based model
checking performs an exhaustive traversal of the model by considering all possible
behaviors in a compact way. Such exhaustive exploration allows BDD based
model checking algorithms to conclude whether a given property is satisfied.
In a similar way, the symbolic model checker with data represents a possibly
infinite state space by BDDs extended with equalities and function symbols. In
this case, the main operation for the model checker is to compute the sequence of
EUF-ROBDDs Φn(⊥) [for some operator Φ]. A fixed point has been reached as
soon as the formula Φn(⊥) ⇐⇒ Φn+1(⊥) is a tautology, which can be checked
by our method.

As input, the prover takes a data specification consisting of a signature of
constructor and defined symbols, and a set of equations. It also takes a quantifier-
free formula as input, and it returns a logically equivalent EUF-ROBDD. If the
result is either true or false, we know for sure that the formula is a tautology or
a contradiction, respectively. For the other cases, we would like to conclude that
both the formula and its negation are satisfiable. However, this is only possible
for certain fragments. We call the prover complete for such fragments.

The previous implementation of this theorem prover [20] was based on EQ-
BDDs [11], and consequently it was only complete for the case of equality logic
with equations between variables. The implementation also used plain term
rewriting with equations from the abstract datatype. It was sound for any data
specification, but not complete.

The current implementation is based on the observations in this paper. Con-
sequently, it is now complete for the theory with equality and uninterpreted
function symbols. It is sound – but incomplete – for the case that functions
denote constructors, or when they are specified by means of equations.

In the current implementation, we use the reversed equation order as intro-
duced in [13]. Moreover, we use the lexicographic path order to compare terms;
this order satisfies the conditions of Definition 6. Given a formula ϕ, we find
the smallest equation t ≈ s in it, then recursively compute the EUF-BDDs A of
ϕ[t := s] and B of ϕ[t ≈ s := false], and return ITE(t ≈ s,A,B). This procedure
must be repeated in order to obtain an EUF-ROBDD.

The new prover was applied to many existing case studies (see for instance
[19,14] for a description). It is confirmed that the new prover can handle more
formulas. Moreover, it was never slower than the version of [20].

The resulting EUF-ROBDD can be visualized (using graphviz/dot) for small
formulas. Figure 5 shows the EUF-ROBDDs for the formulas f(f(f(f(f(a))))) ≈
b ∧ f(f(a)) ≈ f(a) and (f(b) ≈ f(c) ⇒ a ≈ b) ⇔ (f(b) ≈ f(c) ⇒ a ≈ c),
respectively.
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TF

f(b)=b

f(a)=b

T F

f(c)=f(a)

c=a

f(b)=f(a)

c=a

b=a

Fig. 5. EUF-ROBDDs obtained by the implementation

6 Conclusions

We have extended the approach from [11] in the presence of uninterpreted func-
tion symbols, and the changed orientation of [13] is essential for the completeness
of our method. Starting from the EUF-BDD representing an arbitrary EUF for-
mula and applying rewrite rules of a rewrite system Reduce-Order, a normal form,
called an EUF-ROBDD, can be calculated. We proved that all paths in a EUF-
ROBDD are satisfiable by construction. Our approach is suitable for checking
tautology, satisfiability, and equivalence of formulas. A prototype implementa-
tion of this method works within the special purpose theorem prover for the
μCRL toolset [14].

Future Work. We have not yet studied strategies for choosing an ordering on
equalities. A good ordering is crucial since it yields a compact representation: for
some Boolean functions, the ROBDD sizes are linear in the number of variables
for one ordering, and exponential for another. It is interesting to extend our
methods beyond the EUF fragment. The current implementation handles any
data specified by a TRS, but is in general incomplete. The study in [12] shows
that finding complete extensions may be hard.
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Abstract. This paper deals with balanced leaf language complexity
classes, introduced independently in [1] and [14]. We propose the seed
concept for leaf languages, which allows us to give “short” representa-
tions for leaf words. We then use seeds to show that leaf languages A with
NP ⊆ BLeafP (A) cannot be polylog-sparse (i.e. censusA ∈ O(logO(1))),
unless PH collapses.

We also generalize balanced ≤P,bit
m -reductions, which were introduced

in [6], to other bit-reductions, for example (balanced) truth-table- and
Turing-bit-reductions. Then, similarly to above, we prove that NP and
ΣP

2 cannot have polylog-sparse hard sets under those balanced truth-
table- and Turing-bit-reductions, if the polynomial-time hierarchy is in-
finite.

Keywords: Computational Complexity, Leaf Languages, Seeds,
Sparseness.

1 Introduction

The leaf language formalism, introduced in [1] and independently in [14], can be
used to describe polynomial-time complexity classes in the following way: Let
M be some non-determistic polynomial-time Turing machine (short: NPTM).
For input x let each path in the computation tree of M(x) be marked with a
word from {0, 1}∗, characterizing the non-deterministic choices on that path.
M(x) produces output bit 0 or 1 on each path. If we concatenate all output bits
of M(x) in the lexicographical order of their path marks, we get the leaf word
leafM(x). For a given leaf language A we define the complexity class LeafP (A)
as the set of all languages L for which there is an NPTM M such that for all
inputs x it holds: x ∈ L↔ leafM(x) ∈ A.

In this paper we additionally require M to be balanced. An NPTM is balanced
if for any input its computation tree is balanced. A computation tree is balanced
if there is a maximal path mark y with the property that all path marks x
with |x| = |y| and x ≤lex y exist and further no other path marks exist in
that computation tree. BLeafP is defined analogously to LeafP with the only
difference that now M has to be balanced. See Section 2.1 for further details.

This formalism allows to define many known complexity classes in a uni-
form way. If we set A = Σ∗{1}Σ∗ and B = {0}∗ we get for example NP =

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 781–792, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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BLeafP (A) = LeafP (A), coNP = BLeafP (B) = LeafP (B). For these par-
ticular leaf languages the balanced leaf language classes are the same as the
non-balanced ones. In general that does not need to be the case (see [7] and [8]).

It is well-known that SAT contains exponentially many instances of each
size, that is censusSAT (n) ∈ Ω(2cn) for some c > 0. In this paper we tackle the
question whether NPTMs can reduce the exponentially many instances of SAT
to less than exponentially many words, or more precisely: How many words are
necessary in a leaf languageA with NP ⊆ BLeafP (A)? We first show that sparse
sets are sufficient, i.e. NP ⊆ BLeafP (SPARSE) (see Proposition 1). This yields
an upper bound. In our main result we then give a lower bound by showing that
no polylog-sparse leaf language A can satisfy NP ∈ BLeafP (A), unless PH
collapses. We call a leaf language A polylog-sparse if there is a polynomial p such
that censusA(n) ≤ p(logn). Thus, leaf languages for NP can probably not be
arbitrarily “empty”.

1.1 Generalized Bit-Reductions and Seeds

In [6] the notation L ≤P,bit
m A was introduced for L ∈ BLeafP (A). This is very

intuitive, since L ∈ BLeafP (A) means that there is some balanced NPTM M
such that leafM is a reduction from L to A, i.e. x ∈ L ↔ leafM(x) ∈ A.
However, we prefer the notation L ≤P,Bbit

m A to emphasize the fact that the
reduction is carried out by a balanced NPTM. Later in 2.3 we will generalize
this to ≤P,Bbit

tt , ≤P,Bbit
T and other balanced bit-reductions.

Similar to our main result we then show in Sections 4 and 5 the following:
There are no polylog-sparse leaf languages which are hard for NP or ΣP

2 under
≤P,Bbit

m -, ≤P,Bbit
T - or ≤P,Bbit

btt -reductions, unless PH collapses. An overview of
our results is given in Section 3.

In the proofs and for the definition of general ≤P,Bbit-reductions we need
seeds. A set S is called a seed set of a leaf language A if there is a balanced
NPTM M such that leafM(S) = A. The crucial feature of seeds is that they
can be much smaller than the corresponding leaf words they induce.

1.2 Relation to Other Work

Our work is related to the following results about sparse hard sets for NP from
[10], [9], [11] and [2]. For S ∈ SPARSE it holds

[10] NP ≤P
m S =⇒ P=NP

[9] NP ≤P
T S ∧ S ∈ NP =⇒ PH=ΘP

2

[11] NP ≤P
btt S =⇒ P=NP

[2] NP ≤P
T S =⇒ PH=SP

2 .

Let us look at the theorem from [10]. It implies that there is probably no deter-
ministic polynomial-time Turing-machine that can manyone-reduce the Ω(2cn)
satisfiable boolean formulae of size n to only a polynomial number of words. Our
main result implies the same conclusion for non-deterministic polynomial-time
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machines: If PH does not collapse, then there is no NPTM that can manyone-
reduce (i.e. ≤P,Bbit

m ) all satisfiable boolean formulae of size n to only a polyno-
mial number of words. Thus, in this respect non-determinism does not seem to
be more powerful than determinism.

We also use similar ideas as in [10]. The main new ingredient in our proof is
the use of seeds. Our other results relate similarly to the other theorems above.

2 Notation and Definitions

Before we start, let us agree on the following conventions: We fix the alphabet
Σ = {0, 1} and add symbols (e.g. delimiters) when necessary. Furthermore, we
extend a function f : A → B to f : 2A → 2B by setting f(X) =

⋃
x∈X{f(x)}.

Let ≤lex be the lexicographical ordering of words and � the prefix relation, that
is: For x, y ∈ Σ∗ we write x � y if and only if

∨
z∈Σ∗ xz = y. For a set A its

census function is defined as censusA(n) := |{w : w ∈ A ∧ |w| ≤ n}|. Call a
set A sparse if censusA ∈ O(nO(1)) and let SPARSE be the set of all sparse
sets. Analogously, a set A is called polylog-sparse if censusA ∈ O(logO(1)). Let
Pol be the set of all polynomials. FP is the class of all functions computable by
polynomial-time Turing-machines.

The class ΘP
2 = PNP [log] consists of all languages that can be accepted by a

polynomial-time Turing-machine with at most O(log n) adaptive queries to an
NP -oracle.

The complexity class SP
2 was introduced in [3] and [13]. A language L is in

SP
2 iff there is a polynomial-time predicate P such that: If x ∈ L then there

exists a y, such that for all z the predicate P (x, y, z) is true. Conversely, if x �∈ L
then there exists a z, such that for all y the predicate P (x, y, z) is false. The
lengths of y and z are in both cases polynomially bounded in the length of x.
From [13] it is known that PNP ⊆ SP

2 .

2.1 Leaf Language Complexity Classes

We first formalize balanced NPTMs.

Definition 1. BFP is the set of all functions f such that there exist f1, f2 ∈ FP
with f1 : Σ∗ ×N → Σ, f2 : Σ∗ → N and for all x ∈ Σ∗

f(x) = f1(x, 1) . . . f1(x, f2(x)).

Such functions f are called polynomial-time bit-computable.

If in the following we are given a function f ∈ BFP , we always assume that f1

and f2 denote the respective FP -functions as in Definition 1. For f ∈ BFP we
say: f produces leaf word f(x) on input x.

It is easy to see that BFP = {leafM : M is a balanced NPTM}. The inclu-
sion ⊆ is trivial and the inclusion ⊇ follows by noting that if M is balanced, the
i-th bit of leafM(x) can be computed in polynomial time: Let b ∈ {0, 1}∗ be
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the binary representation of i. First compute the maximal path mark y in the
computation of leafM(x). The i-th bit exists iff |b| ≤ |y| and 0|y|−|b|b ≤lex y. It
can then be computed by following the path with mark 0|y|−|b|b.

Note that the same procedure cannot be applied for unbalanced M , since
the path computing the i-th bit does not necessarily have mark 0|y|−|b|b. In fact,
computing the i-th bit if M is unbalanced seems to be much harder. See [7] for
more on balanced vs. unbalanced computation trees. However, in this paper we
are only concerned with balanced computations.

We now formally define balanced leaf language complexity classes.

Definition 2. For A ⊆ Σ∗ we define:

L ∈ BLeafP (A)↔def

∨
f∈BFP

[x ∈ L↔ f(x) ∈ A]

For A,R ⊆ Σ∗, A ∩R = ∅ we also define promise classes:

L ∈ BLeafP (A,R)↔def∨
f∈BFP

[
(x ∈ L→ f(x) ∈ A) ∧ (x �∈ L→ f(x) ∈ R)

]
.

2.2 Seeds

We now introduce the notion of seeds.

Definition 3. For S,A ⊆ Σ∗ we say that S is a seed set of the leaf language A,
if there is a function f ∈ BFP —the generating function or simply generator—
with f(S) = A.

We say further: x is the seed of f(x) and f(x) is the f -expansion of seed x.

The crucial feature of seeds is that they are (often) much smaller than the
leaf word they represent. If we know the seed s of a leaf word b we can compute
each bit of b in polynomial time in |s| whenever needed. If S is a seed set for A
with generator f ∈ BFP then B is, in a way, effectively constructible from S
via f .

2.3 Balanced Bit-Reductions

In [6] it was pointed out, that we can interpret L ∈ BLeafP (A) as a bit reduction
from L to A. Recall from Definition 2 that L ∈ BLeafP (A) means, that there
is some r ∈ BFP such that x ∈ L ↔ r(x) ∈ A. This resembles very much the
definition of ≤P

m-reductions with the only difference that now r is in BFP and
not in FP . That is why the notation L ≤P,bit

m A was introduced. Instead of ≤P,bit
m

as in [6] we rather use ≤P,Bbit
m to emphasize that the reduction must be realized

by a balanced NPTM.
Using seeds, we now define tt-, T - and other bit-reductions.
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Definition 4. If for X = L,NL, P,NP,RP, . . . and Y = m, tt, T, . . . the re-
duction ≤X

Y is already defined, we define for L,A ⊆ Σ∗

L ≤X,Bbit
Y A↔def

∨
S⊆Σ∗

∨
f∈BFP

[f(S) ⊆ A ∧ f(S̄) ⊆ Ā ∧ L ≤X
Y S.] (1)

For such ≤X,Bbit
Y -reductions we call the ≤X

Y -reduction from A to S the corre-
sponding seed reduction, S the corresponding seed oracle, f the access function
and A the leaf oracle.

For L,A,R ⊆ Σ∗ with A ∩R = ∅ we also define promise reductions

L ≤X,Bbit
Y (A,R)↔def∨

S1,S2⊆Σ∗

∨
f∈BFP

[
f(S1) ⊆ A ∧ f(S2) ⊆ R ∧ L ≤X

Y (S1, S2)
]

where L ≤X
Y (S1, S2) means, that there is a ≤X

Y -reduction r from L to S1 with the
promise that r only asks queries from S1 ∪ S2. Analogously we call (S1, S2) the
seed oracle with accepting/ rejecting parts S1/S2 and (B1, B2) the leaf oracle
with accepting/ rejecting parts B1/B2.

Our ≤P,Bbit
m coincides with ≤P,bit

m in [6].
Note that the answer of a ≤X,Bbit

Y -oracle A on a query x is not χA(x) (as for
a ≤X

Y -oracle) but rather χA(f(x)), where f is the access function to A and χA

is the characteristic function of A. It is obvious how to extend Definition 4 to
unbalanced bit-reductions, but in this paper we do not need that.

Access functions in the context of bit-reductions are quite similar to generat-
ing functions in the context of seed sets. We have deliberately chosen a different
name to reflect the different approach: Whereas a generating function “gener-
ates” a leaf language from a given seed set, an access function is used to check
whether the expansion of some seed yields a leaf that is contained in some given
leaf language. Thus, an access function “gives access” to a leaf oracle.

Now, the following fact is easy to see: L ≤X
Y A→ L ≤X,Bbit

Y A. This is because
if r is a ≤X

Y -reduction from L to A, then the same r with access function f = id

is a ≤X,Bbit
Y -reduction from L to A. That means that ≤X,Bbit

Y -reductions can be
seen as extensions of ≤X

Y -reductions.

3 Overview of Results

In the next sections we show the following results for polylog-sparse sets K:

Theorem 1 NP ≤P,Bbit
m K =⇒ PH=ΘP

2

Theorem 3 NP ≤P,Bbit
T (K, 0∗) =⇒ PH=SP

2

Theorem 4 ΣP
2 ≤P,Bbit

btt K =⇒ PH=ΔP
2

Theorem 5 ΣP
2 ≤P,Bbit

T K =⇒ PH=ΣP
4

In the following interpretation of the theorems we assume that PH does not col-
lapse to ΣP

4 . Theorem 1 then suggests that there are no polylog-sparse ≤P,Bbit
m -

hard leaf languages for NP .
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In the other theorems we try to relax the ≤P,Bbit
m -reduction in the supposition

to ≤P,Bbit
tt - and ≤P,Bbit

T -reductions. But then we can prove a collapse of PH only
under some other additional assumptions.

In Theorem 3 for example, we additionally require that the ≤P,Bbit
T -reduction

is a particular promise reduction. Theorem 3 can be interpreted as saying that
NP does probably not have polylog-sparse leaf languages which are NP -typical,
i.e. accepting leaf words contain at least one 1 and rejecting leaf words contain
only 0’s.

Theorems 4 and 5, on the other hand, require additionally that not only
NP but also ΣP

2 can be reduced to some polylog-sparse leaf language. These
theorems suggest that there are no polylog-sparse ≤P,Bbit

btt - or ≤P,Bbit
T -hard leaf

languages for ΣP
2 .

Looking at the related results about sparse hard sets (see Section 1.2), some
readers might wonder why we sometimes have to require that ΣP

2 and not merely
NP reduces to K and also why the resulting collapse of PH is on a higher level.
Informally, the reason is that in order to check that two seeds y1 and y2 yield
the same leaf word can only be checked by expanding them and checking if
f(y1) = f(y2), which requires a coNP -computation.

4 Lower Bounds for NP -Hard Leaf Languages

In this section we demonstrate, that no polylog-sparse leaf language A can be
≤P,Bbit

m -hard for NP , unless PH collapses. This clearly suggests a lower bound
for the number of words needed in leaf languages which characterize NP . Nev-
ertheless, we first give an upper bound, by showing that every set has a ≤P,Bbit

m -
hard, sparse leaf language.

Proposition 1. For all L ⊆ Σ∗ it holds

L ≤P,Bbit
m SPARSE.

Proof. Assume L ⊆ Σ∗. Define padding function f ∈ BFP as f(x) = 02|x|
x.

Define the set A by a ∈ A↔ ∨
x∈L f(x) = a. Clearly, A is sparse. Then obviously

x ∈ L↔ f(x) ∈ A and thus L ∈ BLeafP (A). ��
Now, what are the lower bounds for ≤P,Bbit

m -hard leaf languages? In this section
we tackle that question for the class NP . Firstly, it is obvious that finite sets
cannot be ≤P,Bbit

m -hard for NP , unless P = NP . Assuming that PH does not
collapse the following theorem gives a better bound:

Theorem 1. For a polylog-sparse set K it holds

NP ≤P,Bbit
m K =⇒ PH = ΘP

2 .

Proof. Choose arbitrary L ∈ ΠP
2 . We will show L ∈ ΘP

2 .
L ∈ ΠP

2 means that there must be polynomials p, q and r ∈ FP with

x ∈ L↔
p∧
y

r(x, y) ∈ SAT (2)
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and
∧p

y |r(x, y)| ≤ q(|x|). By assumption, there is an f ∈ BFP and a polylog-
sparse K such that for all boolean formulae φ

φ ∈ SAT ↔ f(φ) ∈ K. (3)

Choose a polynomial t such that censusK(n) ≤ t(log n) for all n.
We now construct a ΘP

2 -machine ML that decides L. On input x with |x| = n
it first uses oracle A

A :=

⎧⎨⎩(0n, 1m) :
|y1|≤q(n)∨
y1∈SAT

· · ·
|ym|≤q(n)∨
ym∈SAT

∧
1≤i<j≤m

f(yi) �= f(yj)

⎫⎬⎭
to compute the number of leaves in K that have seeds of length ≤ q(n). We
call that number m̂(n). Clearly, to compute m̂(|x|) at most 2log m̂(|x|)� ≤
2log t(log f2(q(|x|)))� ∈ O(log |x|) queries to A are needed. Note that A is in
NP since an A-accepting machine MA only needs to guess y1, . . . , ym and paths
pij,1≤i,j≤m ∈ ΣO(Pol(n)) such that for all i �= j it holds f1(yi, pij) �= f1(yj , pij)
or f2(yi) �= f2(yj).

After having computed m̂(n), ML makes one last query (x, m̂(n)) to another
coNP -machine MB, which will accept iff x ∈ L. We finish the proof by showing
how such a coNP -machine MB works.

MB on input (x, m̂(n)) starts like MA on input (0n, 1m̂(n)). On non-accepting
MA-paths MB stops and rejects, too. Note that on accepting paths of the MA-
computation MB knows seeds y1, . . . , ym̂(n) for all leaves in K which can be
constructed from seeds of length ≤ q(n). With (3) this means that for all boolean
formulae φ with |φ| ≤ q(n) it therefore holds

φ ∈ SAT ↔
i≤m̂(n)∨

i

f(yi) = f(φ). (4)

On accepting MA-paths MB then checks whether

p∧
y

i≤m̂(n)∨
i

f(yi) = f(r(x, y)). (5)

By (2) and (4) this is equivalent to x ∈ L. Thus, the rest of the construction of
MB is straightforward if we show that (5) is a coNP -predicate. But this is true
because (5) is equivalent to

p∧
y

i≤m̂(n)∨
i

⎡⎣f2(r(x, y)) = f2(yi) ∧
v≤f2(r(x,y))∧

v

f1(yi, v) = f1(r(x, y), v)

⎤⎦ , (6)

which is a coNP -predicate since
∨

i quantifies only over polynomially many
elements.

Thus, ML is a ΘP
2 -machine deciding L. ��
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If we require NP ≤P,Bbit
dtt K instead of NP ≤P,Bbit

m K in Theorem 1, almost the
same proof establishes PH = ΘP

2 .
In the next Theorem 3 we will achieve a collapse of PH by assuming that

NP is only ≤P,Bbit
T -reducible to some polylog-sparse leaf oracle (K, {0}∗). In

order to do so we additionally require the leaf reduction to be “NP -typical”,
that is positive queries produce leaf words containing at least one 1 and negative
queries produce leaf words from {0}∗. In the proof we need a result from Cai.

Theorem 2. [2] For S ∈ SPARSE

NP ≤P
T S =⇒ PH = SP

2 .

Theorem 3. For polylog-sparse K it holds

NP ≤P,Bbit
T (K, {0}∗) =⇒ PH = SP

2 .

Proof. Let K be given as in the assumption with censusK(n) ≤ t(logn) for
some polynomial t. Let M be a deterministic polynomial-time oracle Turing
machine (short: DPOM) that can decide SAT with the help of the ≤P,Bbit

T -
oracle (K, {0}∗). Let f ∈ BFP be the access function of that reduction and
(S1, S2) the corresponding seed oracle, that is f(S1) ⊆ K and f(S2) ⊆ {0}∗. Let
the computation time of M be bounded by the polynomial p.

Because of Theorem 2 it suffices to construct a sparse oracle Path with
NP ⊆ PPath. We first define an auxiliary oracle Path′ that contains all (0n, ŵ)
for which

|s|=n∨
s∈S1

⎡⎣ŵ ≤ f2(s) ∧ f1(s, ŵ) = 1 ∧
w′≤ŵ∧

w′
f1(s, w′) = 0

⎤⎦ . (7)

Note that for each possible query s with f(s) ∈ K, the smallest ŵ with f1(s, ŵ) =
1 is in Path′(0|s|). Hence, if Path′(0|s|) is known, it can be decided in polynomial
time whether a given formula s is in SAT . We extend Path′ to

Path := {(0n, w) :
∨

ŵ∈Path′(0n)

w � ŵ}. (8)

Path(0n) contains all prefixes of Path′(0n). Using the oracle Path it is possible
to compute Path′(0n) in polynomial time in n. Since K is polylog-sparse it is
clear that |Path′(0n)| ∈ O(nO(1)). Hence Path′ ∈ SPARSE and also Path ∈
SPARSE.

A SAT -deciding DPOM M ′ with oracle Path could basically work like M
with the only difference: Whenever M asks the leaf oracle K if f(s) ∈ K, M ′ com-
putes Path′(0|s|) and then checks whether f1(s, ŵ) = 1 for some ŵ ∈ Path′(0|s|).
If that is the case, M ′ proceeds as M on answer “Yes”. Otherwise M ′ proceeds
as M on answer “No”. Thus, SAT ≤P

T Path, which together with Theorem 2
establishes the result. ��
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Note that in [13] it was proven that PNP ⊆ SP
2 . Looking at Theorems 1 and

3 a natural question is whether it is possible to conclude something stronger than
PH = SP

2 by combining both assumptions (i.e. NP ≤P,Bbit
m (K, {0}∗)). That is

still open.
We now want to see if similar results are possible for coNP .

Proposition 2. There is a polylog-sparse set K with

coNP ≤P,Bbit
m K.

For example K = {02n

: n ∈ N} proves this proposition. Thus, a theorem that is
analogous to Theorem 1 for coNP would immediately imply a collapse of PH ,
which is assumed to be highly unlikely. Similarly, we also see why Theorem 1 can
(probably) not be extended to ≤P,Bbit

btt/tt/T -reductions, since that would also imply

a collapse of PH . The relaxation to ≤P,Bbit
T -reductions in Theorem 3 was only

possible because we additionally required the leaf oracle to be “NP -typical”.

5 Lower Bounds for ΣP
2 -Hard Leaf Languages

Following on from what was said at the end of the previous section there is
another way of extending Theorem 1 to ≤P,Bbit

btt - and ≤P,Bbit
T -reductions. But

again, we also have to accept an additional requirement, which now is that ΣP
2

(and not only NP ) must be balanced bit-reducible to some polylog-sparse leaf
language K. In this section we show two theorems of that kind.

The first of them is an adaption of a result by Ogihara-Watanabe (see [11]),
which originally stated, that there cannot be sparse≤P

btt-hard sets for NP , unless
P = NP .

Theorem 4. For polylog-sparse K it holds

ΣP
2 ≤P,Bbit

btt K =⇒ PH = PNP = ΔP
2 .

The proof is quite long and technical. Due to space restrictions it is deferred to
the final journal version. However, for readers knowing the original proof from
[11] the following lines might give some idea of how it works. We also use the
left-set technique. The main difference is the following: In the original proof it is
easy to check whether two queries y1 and y2 to the oracle are the same (which is
the case iff y1 = y2). Now, in our case that is more difficult. Even for queries y1

and y2 with y1 �= y2 it is still possible that they are in fact the same question,
namely if f(y1) = f(y2). So, checking whether two queries ask for the same
leaf word now requires a coNP -oracle. Since that test already needs a coNP -
oracle, it is not sufficient to require NP ≤P,Bbit

btt K in the assumption but rather
ΣP

2 ≤P,Bbit
btt K.

Our last theorem assumes only the weaker supposition ΣP
2 ≤P,Bbit

T K but
then PH only collapses to ΣP

4 .

Theorem 5. For polylog-sparse K it holds

ΣP
2 ≤P,Bbit

T K → PH = ΣP
4 .
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Proof. Assume L ∈ ΠP
4 . We show L ∈ ΣP

4 .
SupposeK as in the assumption and let t be a polynomial such that censusK(n)

≤ t(log n). Choose Q ∈ P and polynomials p1, . . . , p4 such that

x ∈ L↔
p1∧
x1

· · ·
p4∨
x4

Q(x, x1, . . . , x4).

We define L′ as the set containing all (x, x1, x2) with

|x1| ≤ p1(|x|) ∧ |x2| ≤ p2(|x|) ∧
p3∧
x3

p4∨
x4

Q(x, x1, . . . , x4). (9)

Obviously, L′ ∈ ΠP
2 and thus by the assumption L′ ≤P,Bbit

T K. But then also
L′ ≤P,Bbit

T K, since ≤P,Bbit
T is a deterministic Turing-reduction. Hence, there

must be a DPOM M , with associated access function f ∈ BFP , which realizes
a ≤P,Bbit

T -reduction from L′ to K. Choose polynomial q with |f(x)| ≤ 2q(|x|).
Because of the constraint

∧
i=1,2 |xi| ≤ pi(|x|) in (9), we can also bound the

computation time of M(x, x1, x2) by a polynomial in |x|, instead of |(x, x1, x2)|.
Let r be such a polynomial.

We now define a predicate O, that is true for given n∈N and S={s1, . . . , sm}
iff: M decides with ≤P,Bbit

T -leaf oracle f(S) for all inputs (x, x1, x2), |x| ≤ n,
correctly whether (x, x1, x2) ∈ L′.

O(S, 0n)↔
|x|≤n∧

x

p1∧
x1

p2∧
x2

(10)

0≤c≤r(|x|)∨
c∈N

i=1,...,c∨
li∈Σ≤r(|x|)

i=1,...,c∨
oi∈Σ

(11)

[
M(x, x1, x2) makes queries l1, . . . , lc

and gets answers o1, . . . , oc

]
(12)

∧
[

1≤i≤c∧
i

oi = 1↔
∨
u∈S

f(li) = f(u)

]
(13)

∧
⎡⎣M(x, x1, x2) rejects →

p3∨
x′
3

p4∧
x4

¬Q(x, x1, x2, x
′
3, x4)

⎤⎦ (14)

∧
⎡⎣M(x, x1, x2) accepts→

p3∧
x3

p4∨
x4

Q(x, x1, x2, x3, x4)

⎤⎦ . (15)

(For the time being ignore the arrow.) Let us have a closer look at a each line.
Line (10) is clear: We want to know if M gives correct answers for all (x, x1, x2)
with |x| ≤ n, |x1| ≤ p1(|x|) and |x2| ≤ p2(|x|). In line (11) it is guessed, how
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many queries (= c) and which queries (= {l1, . . . , lc}) are made by M(x, x1, x2)
and what the answers to these queries are (= {o1, . . . , oc}). In (12) it is checked
whether the queries were guessed correctly: Is l1 the first query of M(x, x1, x2)?
If M gets answer o1 on that query, is the next query l2? And so on. In line (13)
it is tested, if the guessed answers oi are correct with respect to f(S). In lines
(14)-(15) it is checked, if M(x, x1, x2) actually computes the correct answer.

Now let us see what the complexity of O is. Line (12) can be decided in P .
Line (13) can be rewritten as

⎡⎣i≤c∧
i

oi = 1→ f2(li) = f2(u) ∧
v≤f2(li)∧

v

f1(li, v) = f1(u, v)

⎤⎦ (16)

∧
⎡⎣i≤c∧

i

oi = 0→
∧
u∈S

[
f2(li) �= f2(u) ∨

v≤f2(li)∨
v

f1(li, v) �= f1(u, v)
]⎤⎦ . (17)

Line (16) can be checked in coNP . Line (17) can be decided in NP since
∧1≤i≤c

i

and
∧

u∈S quantify only over polynomially many choices. Lines (14) and (15)
are in ΣP

2 and ΠP
2 respectively. The longest chain of alternating quantifiers is

thus
∧

x,x1,x2

∨
c,li,oi

∧
x3

∨
x4

from lines (10), (11) and (15). Therefore, O seems
to be a ΠP

4 -predicate.
But we can improve that to ΠP

3 . Just move the
∧p3

x3
-quantifier from line (15)

to the beginning of line (11), as is indicated by the arrow. Certainly, the resulting
predicate is in ΠP

3 . Since the computation M(x, x1, x2) implicitly depends on the
values oi, this shift seems to change the semantics of O. The following argument
shows that it does not:

If we move the
∧

x3
-quantifier from line (15) to the end of line (11) the se-

mantics are not changed since x3 does not occur in between. Now, the crucial ob-
servation is that for fixed S, n, x, x1, x2 there is exactly one choice for c, li, oi that
makes lines (12) and (13) true. We call them c(S, n, x, x1, x2), li(S, n, x, x1, x2),
and oi(S, n, x, x1, x2). Thus, we can replace the existential quantifiers

∨
c,
∨

li
,∨

oi
in line (11) with

c = c(S, n, x, x1, x2), oi = oi(S, n, x, x1, x2), li = li(S, n, x, x1, x2). (18)

Since that term does not depend on x3 we can further move the
∧

x3
-quantifier

past it, i.e. from its current position at the end of line (11) to the beginning of
that line. Substituting

∨
c,
∨

li
,
∨

oi
back for (18) establishes that O is indeed a

ΠP
3 -predicate.
Since K is polylog-sparse and the computation time of M is bounded by r,

we conclude: For each input length n there must be a set S,
∧

s∈S |s| ≤ r(n) and
|S| ≤ t(q((r(n))), such that O(S, 0n) is satisfied. Thus, sets S with O(S, 0n) can
be non-deterministically guessed in polynomial time. We get
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x ∈ L↔
|si|≤r(|x|)∨

S={s1,...,st(q(r(|x|)))}
O(S, 0|x|)

∧
p1∧
x1

p2∨
x2

[
lines (11)− (13)

∧M(x, x1, x2) accepts
]
,

which proves L ∈ ΣP
4 . ��

It is conceivable that a different approach in the proof collapses the polynomial
hierarchy to a lower level than ΣP

4 .
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Abstract. Given a set of strings S = {s1, . . . , sn}, the Shortest Super-
string problem asks for the shortest string s which contains each si as
a substring. We consider two measures of success in this problem: the
length measure, which is the length of s, and the compression measure,
which is the difference between the sum of lengths of the si and the
length of s. Both the length and the compression versions of the problem
are known to be MAX-SNP-hard. The only explicit approximation ratio
lower bounds are by Ott: 1.000057 for the length measure and 1.000089
for the compression measure. Using a natural construction we improve
these lower bounds to 1.00082 for the length measure and 1.00093 for
the compression measure. Our lower bounds hold even for instances in
which the strings are over a binary alphabet and have equal lengths. In
fact, we show a somewhat surprising result, that the Shortest Superstring
problem (with respect to both measures) is as hard to approximate on
instances over a binary alphabet, as it is over any alphabet.

1 Introduction

Given a set of strings over some alphabet, the Shortest Superstring problem asks
for the shortest string over the same alphabet which contains each of the given
strings as a substring. The problem was first shown to be NP-hard by Maier and
Storer [7]. As an optimization problem, it has two optimization measures: the
length of the resulting superstring, and the compression, which is the difference
between the sum of lengths of the given strings and the length of the superstring.
The Shortest Superstring problem was shown by Blum et al. [4] to be MAX-
SNP-hard with respect to both measures (over an unbounded alphabet), which
implies that unless P = NP , there exists some ε > 0 for which it is hard to
approximate the optimal superstring to within a factor better than (1 + ε). Ott
gave explicit approximation ratio lower bounds (assuming P �= NP ) for Shortest
Superstring instances over a binary alphabet [12]. These ratios (1.000057 for the
length measure and 1.000089 for the compression measure) are far from the best
known upper bounds for the problem: 2.5 for the length measure by Sweedyk [13]
and 1.625 for the compression measure by Bläser [3].

Using a natural reduction, we show a relationship between the approxima-
bility of the Vertex Cover and Shortest Superstring problems. Given a constant
� Supported by the NSF ALADDIN Center (NSF Grant No. CCR-0122581).

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 200 , LNCS 3618, pp. 793–800, 2005.
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approximation ratio lower bound for a class of graphs for which the optimal
vertex cover is linear in the number of edges, we can obtain an inapproxima-
bility constant for the Shortest Superstring problem on equal length strings.
Berman and Karpinski [2] and Karpinski [8] gave a series of inapproximability
results for Vertex Cover on bounded degree graphs. Here we use the result for
graphs of degree at most 5 to get that, unless P = NP , the Shortest Superstring
problem is not 1.00082-approximable with respect to the length measure, and
not 1.00093-approximable with respect to the compression measure. Notice that
these constants, although small, improve on Ott’s result by an order of magni-
tude. Moreover, these results have potential for much improvement if different
inapproximability results for Vertex Cover are used.

Most hardness results for the Shortest Superstring problem, except Ott’s re-
sult, are for instances over an unbounded alphabet. In fact, Ott [12] stresses that
their result is the first APX-hardness result for instances over a binary alphabet.
Small size alphabet instances are of interest because of their immediate relation
to DNA sequencing, where an alphabet of size 4 (A,T,G,C) is used. The hard-
ness of Shortest Superstring over a binary alphabet does not imply, however, that
Shortest Superstring is not easier to approximate on smaller alphabet instances
than in general. In this paper we show that the problem on a binary alphabet
is just as hard to approximate as the general case, i.e. if one can approximate
Shortest Superstring over a binary alphabet by a factor α in polynomial time,
then the problem over any (finite) alphabet can be approximated by a factor α
in polynomial time.

2 Preliminaries

In this section we define some terminology we will need.

Definition 1. Given an alphabet Σ, a string over Σ is an element of Σ∗. Given
two strings s = s1 . . . sm and t = t1 . . . tk over Σ, s is said to be a substring of
t, if |s| ≤ |t| and there exists a j: 0 ≤ j ≤ k −m so that for every i: 1 ≤ i ≤ m,
si = tj+i. t is said to be a superstring of s iff s is a substring of t. s is said to
overlap to the right with t if there exists a j: 0 ≤ j ≤ m− 1 so that for every i:
1 ≤ i ≤ m− j, si = tj+i. Then t is said to overlap to the left with s.

Now consider the following procedure, Induced(π, S), which given a set of n
strings, S = {s1, . . . , sn}, and a permutation π ∈ Sn, greedily builds a super-
string of S:

Induced(π, S) :
s← sπ(1)

for i from 2 to n
s← string obtained by maximally overlapping s to the right with sπ(i)

Definition 2. Let Σ be an alphabet, S = {s1, . . . , sn} ⊂ Σ∗ be a set of n
strings over Σ, and π ∈ Sn. We say π induces a superstring sπ on S if sπ =
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Induced(π, S). Define ov(π, S) to be the amount of overlap induced by π on S,
i.e. ov(π, S)(

∑n
i=1 |si|)− |Induced(π, S)|.

Intuitively, the superstring induced on S by π is obtained by sequentially
overlapping the strings in the order given by π.

Definition 3. Given an alphabet Σ and a set of strings S = {s1, . . . , sn} ⊂ Σ∗

such that no string in S is a substring of another string in S, the Shortest
Superstring problem asks for the shortest string s which is a superstring of every
si ∈ S. In terms of optimization, the length measure minimizes |s|, and the
compression measure maximizes (

∑n
i=1 |si|)−|s|. When the compression measure

is used, the problem is often referred to as the maximum compression problem.

Note that the shortest superstring is the shortest length superstring over
all superstrings induced by a permutation from Sn on S. Since the Shortest
Superstring problem is defined on finite strings, here we consider the alphabet
for the superstring instance to consist solely of characters occurring in the strings.
With this definition, the alphabet size is always bounded by the sum of the string
lengths.

3 Binary Alphabet Shortest Superstring

Until now the size of the underlying alphabet has been assumed to make a dif-
ference in the approximability of the Shortest Superstring problem. This may
be related to the fact that a related problem, Shortest Common Supersequence,
seems to be easier on instances over a small alphabet. For example, Jiang and
Li [6] give an algorithm for Shortest Common Supersequence with an approx-
imation ratio directly related to the size of the alphabet. In the next theorem
we show that in the case of the Shortest Superstring problem, the alphabet size
does not affect the approximability of the problem.

Theorem 1. Suppose the Shortest Superstring problem can be approximated by
a factor α on instances over a binary alphabet (with respect to either measure).
Then the Shortest Superstring problem can be approximated by a factor α on
instances over any alphabet.

Proof. Given an alphabet A = {a1, . . . , ak} of size k, associate with ai the binary
string si = 0i(01)(k+1−i)1i. Notice that if i �= j, si does not overlap with sj , and
that the only way si overlaps with itself is by its whole length. Furthermore, all
si have the same length, 2(k + 1).

Consider an instance T = {t1, . . . , tn} over A and the instance T ′ = {t′1, . . . ,
t′n} obtained by substituting si for ai. As noted earlier, we take A to contain
only the characters present in the strings of T , so |A| = k ≤∑

i |ti|.
For all permutations π ∈ Sn let sπ and s′π be the superstrings induced by

π on T and T ′ respectively. Then |s′π| = 2(k + 1)|sπ|. In particular, |s′opt| =
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2(k + 1)|sopt| for the optimal permutation opt (in terms of the length measure
for T ). And if |s′π| ≤ α|s′opt|, we have

|sπ| = |s′π|
2(k + 1)

≤ α|s′opt|
2(k + 1)

= α|sopt|.

For all permutations π ∈ Sn, let ovπ = ov(π, T ) and ov′π = ov(π, T ′). Then
ov′π = 2(k + 1) · ovπ . As above we have ov′opt = 2(k + 1) · ovopt for the optimal
(now in terms of overlaps) permutation opt. For ov′π ≤ α · ov′opt,

ovπ =
ov′π

2(k + 1)
≤ α · ov′opt

2(k + 1)
= α · ovopt.

Hence if we have an α-approximation algorithm for the Shortest Superstring
problem on binary strings, then we can use it to get an α-approximation for
Shortest Superstring instances over any alphabet. The running time of the algo-
rithm is polynomial since k is at most linear in the length of the input and the
transformation can be carried out in polynomial time. ��

4 Approximation Ratio Lower Bounds

In this section we derive explicit approximation ratio lower bounds (assuming
P �= NP ) for the Shortest Superstring problem restricted to instances with equal
length strings. We do this by a reduction from Vertex Cover, and by using the
following theorem of Berman and Karpinski [2]:

Theorem 2 ([2]). For any 0 < ε < 1
2 it is NP-hard to decide whether an

instance of Vertex Cover with 140n nodes and maximum degree at most 5 has
its optimum above (73− ε)n or below (72 + ε)n.

Moreover we will need the following fact concerning the reduction:

Claim. The Vertex Cover instances in Theorem 2 have at most 286n edges.

Proof of Claim: The instances in the reduction used in the proof of the theorem
above have at most 12n nodes of degree 5, and the rest of the nodes have degree
at most 4. Hence the instances considered have at most 30n + 256n = 286n
edges. ��

We are now prepared to derive the inapproximability bounds.

Theorem 3. For any ε > 0, unless P = NP , Shortest Superstring on instances
with equal length strings is not approximable in polynomial time within a factor of
• 1.00082− ε with respect to the length measure, and
• 1.00093− ε with respect to the compression measure.

Proof. Suppose we are given an instance of Vertex Cover G = (V,E) with |E| =
m. Let our alphabet contain a letter a for each vertex a ∈ V (G), and our strings
be abab and baba for each edge e = (a, b).
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Suppose G has a vertex cover S of size k. Then, assign each edge to one of
its end points which is in S. If e = (a, b) was assigned to a, then overlap abab
(to the left) with baba to obtain ababa. Otherwise overlap them in the opposite
order to obtain babab.

For every b ∈ S, consider all edges (ai, b) assigned to b. For each one of these
edges we have a string of the form baibaib. By consecutively overlapping these
strings by 1 letter, we obtain a string sb. By concatenating the sb strings for all
b ∈ S we obtain a string s.

Claim. The string s has length 4m + k.

Proof of Claim: The sum of the lengths of the original strings is 8m and each two
strings corresponding to the same edge are overlapped by 3 symbols. This gives
a total of 5m for the strings of the form babab. If all of these were overlapped
by one letter we would get a compression of (m− 1) since there are m of these
strings. However, since the vertex cover is of size k, there are k groups with
no overlap between them. So the length of the superstring is actually longer by
(k − 1) symbols. We have |s| = 5m− (m− 1) + (k − 1) = 4m + k ��
Now suppose for some k ≥ 1 we have a superstring of length 4m + k. First we
show that wlog we may assume for every (a, b) ∈ E that either abab is overlapped
to the right with baba or vice-versa.

Suppose some abab and baba are not overlapped with each other. We will
construct a new superstring of length ≤ 4m + k such that they do overlap.

Consider the permutation π of the strings which induces the superstring.
Wlog, abab occurs before baba, in π. In the worst case, there is a string ba′ba′

right after abab overlapping with abab to the right, and there is a string a′′ba′′b
right before baba overlapping with baba to the left (where clearly a′ �= a �= a′′).
We can break these two overlaps moving all strings between abab and baba to
the end of the permutation (without breaking any other overlaps), and then
overlapping abab with baba, for an overall gain of 1 letter overlap. After doing
this for all edges we get a superstring of no greater length in which for each
(a, b) ∈ E either abab is overlapped to the left with baba or vice-versa.

After this transformation, the superstring s′ is a concatenation of strings of
the form

as

∏
i

(biasbias),

where
∏

stands for iterated concatenation.
For an edge (a, b) ∈ E, if abab overlaps to the left with baba, then put a in

the vertex cover S. S is clearly a vertex cover since we used a vertex for each
edge. If s′ consists of t strings of the above form, S =

⋃
s as and |S| is at most

t. The length of the superstring is

5m− (m− 1) + (t− 1) = 4m + t

by an argument similar to the one given earlier. Since the length of the super-
string did not increase due to our manipulations,
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4m + t ≤ 4m + k,

which yields t ≤ k.
Therefore G has a vertex cover of size k iff the string set has a superstring of

size 4m + k.
Now we prove the inapproximability bounds. By Theorem 2, we have that

for any 0 < ε < 1
2 it is NP-hard to decide whether an instance of Vertex Cover

with 140n nodes and at most 286n edges has its optimum above (73 − ε)n or
below (72 + ε)n.

Hence for Shortest Superstring on 2m ≤ 572n strings of length 4 it is NP-
hard to distinguish whether there is a superstring of length below 4m+(72+ ε)n
or above 4m+(73− ε)n. So if Shortest Superstring can be approximated within
an α factor, then

α ≥ 4m + (73− ε)n
4m + (72 + ε)n

.

Taking limits on both sides we get

α ≥ lim
ε→0

4m + (73− ε)n
4m + (72 + ε)n

=
4m + 73n
4m + 72n

= 1 +
1

4m
n + 72

But 4m
n ≤ 286× 4 = 1144 and so

α ≥ 1 +
1

1216
≥ 1.00082

Therefore, for any ε > 0, Shortest Superstring on instances with equal length
strings cannot be approximated within a factor of 1.00082− ε, with respect to
the length measure, unless P = NP .

When the length of the superstring is 4m+k, the compression is 8m− (4m+
k) = 4m−k. So for the maximum compression on the strings from our reduction
it is NP-hard to decide whether the optimum compression is above 4m−(72+ε)n
or below 4m− (73− ε)n. If the compression can be approximated by a factor β,
then

β ≥ 4m− (72 + ε)n
4m− (73− ε)n

Taking limits on both sides,

β ≥ lim
ε→0

4m− (72 + ε)n
4m− (73− ε)n

=
4m− 72n
4m− 73n

=

= 1 +
1

4m
n − 73

≥ 1 +
1

1071
≥ 1.00093

Hence for any ε > 0, Shortest Superstring on instances with equal length
strings cannot be approximated within a factor of 1.00093− ε, with respect to
the compression measure, unless P = NP . ��
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Using Theorems 1 and 3 we also get

Corollary 1. For any ε > 0, unless P = NP , Shortest Superstring on instances
with equal length binary strings is not approximable in polynomial time within a
factor of
• 1.00082− ε with respect to the length measure, and
• 1.00093− ε with respect to the compression measure.

5 Conclusion

We have derived explicit approximation ratio lower bounds for the Shortest Su-
perstring problem, when restricted to instances with equal length strings. These
bounds are far from the best known upper bounds for the Shortest Superstring
problem. The reduction given in this paper presents a promising avenue for im-
proving the lower bounds further, since any better bounds for a class of Vertex
Cover instances with an optimum linear in the number of edges immediately im-
proves our result. This of course would only give lower bounds for the restricted
version of Shortest Superstring, which may be weaker than the best lower bounds
for the general problem. It is an interesting question whether Shortest Super-
string on equal length strings is easier in terms of approximation than the general
Shortest Superstring problem.

We have also shown that the alphabet size does not affect the approximability
of Shortest Superstring. It is an open problem whether a similar result can be
obtained for the related Shortest Common Supersequence problem, which is
also known to be MAX-SNP-hard over a binary alphabet [11]. Our reduction
exploited a property of the Shortest Superstring problem which is not present in
the Shortest Common Supersequence problem. Hence, if the alphabet size does
not affect the approximability of Shortest Common Supersequence, then proving
this may require very different ideas from ours.

Our result on the alphabet importance for Shortest Superstring is signifi-
cant since the main application of the Shortest Superstring problem is in DNA
sequencing where the alphabet has only 4 symbols. Until now it was assumed
that because of this restriction the real-world applications of the problem may
be much better approximable. In this paper we have refuted this hope. But we
also shed light on a very natural relation between Shortest Superstring and Ver-
tex Cover, a problem which has been well-studied. Moreover, we conjecture that
the relation between the two problems is much tighter than our reduction indi-
cates, and that if Vertex Cover is not 2-approximable, then neither is Shortest
Superstring.
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Stratified Boolean Grammars

Micha�l Wrona

Institute of Computer Science, University of Wroc�law

Abstract. We study Boolean grammars. We introduce stratified seman-
tics for Boolean grammars. We show, how to check, if a Boolean grammar
generates a language according to this semantics. We show, that strat-
ified semantics covers a class of important and natural languages. We
introduce a recognition algorithm for Boolean grammars compliant to
this semantics.

1 Introduction

As it is widely known, context free grammars are too weak to define many impor-
tant formal languages and in consequence a real programming language. There-
fore many various generalizations of them were introduced, inter alia, Boolean
grammars of Alexander Okhotin [5]. BG are usual context-free grammars, where
in productions, operations of intersection and completion are allowed. Rules of
Boolean grammars look as follows:

X → α1& . . .&αm&¬β1& . . .&¬βn (1)

In the case of CFG, a language, generated by a grammar G is an element of
a vector of the least solution of a corresponding system of language equations.
But after introducing negation such a system need not to have the least solution.
Therefore other semantics are necessary. In [5], semantics of a naturally reachable
solution and semantics of a unique solution in the strong sense were introduced.
However, for both of them the problem, whether a grammar generates a language
according to this semantics is undecidable (co-RE-complete).

In Sect. 2, we introduce new semantics, for which such a problem can be
decided in linear time. A grammar is compliant to the stratified semantics, if
there exists a function, that orders linearly a set of nonterminals in the follow-
ing way. If a nonterminal X occurs negatively in the production, that defines a
nonterminal Y , then a nonterminal Y cannot occur in a production, that defines
X . A Boolean grammar that is compliant to the stratified semantics is called a
stratified Boolean grammar. Let us note, that stratification is a natural way of
dealing with negation. See for example [2]. In this section, we also argue, that
a class of stratified Boolean grammars generates a set of natural and important
languages. As an example we show a stratified Boolean grammar, that gener-
ates {ww|w ∈ Σ∗}. To our knowledge, the only language, for which a stratified
Boolean grammar is not known, is a quite artificial one namely {a2n |n >= 0}
[5]. Moreover, in [4], there is shown a Boolean grammar, that generates proper

J. J ↪edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 801–812, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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programs of a simple programming language. As it is not difficult to check, this
grammar is compliant to the stratified semantics.

In Sect. 3, we show, that there is a close relation between the new semantics
and the old ones. In particular we show, that every stratified Boolean grammar
is also compliant to the semantics of a naturally reachable solution and for such
a grammar, languages defined by both of these semantics are equal. We also
see, that if a stratified Boolean grammar is compliant to the semantics of a
unique solution in the strong sense, then the languages defined by both of these
semantics are equal. Of course not every grammar, that is compliant to one of
the old semantics is also compliant to the stratified one.

In [5] there is also presented a recognition algorithm for Boolean grammars.
If the entry Boolean grammar is in a binary normal form – a generalization
of Chomsky normal form for Boolean grammars – then this algorithm works
in usual time Θ(|G| |w|3). In the other case the transformation to this normal
form, also presented there, can blow up the size of the entry grammar exponen-
tially. So, for an arbitrary Boolean grammar this algorithm together with the
transformation works in time Ω(2|G| |w|3).

Fortunately the stratified semantics gives us an opportunity to avoid the
exponentially blowup. To obtain this, in Sect. 4 we introduce a new normal form
and develop a recognition algorithm for stratified Boolean Grammars. It appears,
that transformation to our normal form can increase size of an entry grammar
only |G| log(|G|) times and our algorithm works in usual time O(|G| |w|3). So, our
algorithm together with the transformation works in time O(|G| log(|G|) |w|3),
thus avoiding the exponentially blowup.

2 Stratified Semantics

In this section, we define a notion of a Boolean grammar, stratified semantics for
Boolean grammars and show an algorithm, that for a Boolean grammar, checks
if it is compliant to this semantics.

2.1 Stratified Boolean Grammars

First, we define notions of a language formula and of a value of a language
formula. Against as it was defined in [5], we extend these definitions by intro-
ducing a set of language symbols and their interpretation. Language symbol is
a generalization of a terminal i.e., it is a symbol, that can stand not just for one
letter, but for an arbitrary language. We do not see any practical purposes for
this extension, but as we see below it simplifies some reasonings connected with
stratified semantics.

Definition 1. (A Language formula) Let Σ be a finite nonempty alphabet,
N = (X1, ..., Xn) a finite nonempty set of variables (nonterminals) and Φ =
(L1, ...,Lm) a finite set of language symbols. Language formula over Σ and Φ in
variables N is defined inductively as follows:
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– the empty string ε is a formula
– any symbol from Σ ∪ Φ is a formula
– any variable from X is a formula
– if φ and ψ are formulas, then (φ ·ψ), (φ&ψ), (φ∨ψ) and (¬φ) are formulae.

Definition 2. (Value of a formula) Let ψ be a formula over Σ∪Φ in variables
N = (X1, ..., Xn). Let L = (L1, ..., Ln) be a set of languages over Σ and I : Φ→
2Σ∗

an interpretation of language symbols from Φ. The value of the formula ψ
on the set of languages L, denoted as η(L) is defined inductively on the structure
of η:

– ε(L) = ε
– a(L) = a for every a ∈ Σ
– L(L) = I(L) for every L ∈ Φ
– Xi(L) = Li for every (1 ≤ i ≤ n)
– (ψφ)(L) = ψ(L) · φ(L)
– (ψ ∨ φ)(L) = ψ(L) ∪ φ(L)
– (ψ&φ)(L) = ψ(L) ∩ φ(L)
– (¬ψ)(L) = Σ∗ \ ψ(L).

The value of a vector of formulae ψ = (ψ1, ..., ψl) on a vector of languages
L = (L1, ..., Ln) is a vector of languages ψ(L) = (ψ1(L), ..., ψl(L)).

Now we define a special normal form of a language formula i.e., a concate-
nation normal form.

Definition 3. (A concatenation normal form) We say, that a language
formula ψ is in a concatenation normal form, if it is one of the following:

1. ε, a terminal, a nonterminal, a language symbol,
2. concatenation of symbols from point 1,
3. a Boolean formula, where every Boolean variable is replaced by an expression

from point 2.

If it is not stated differently, from now on, we assume, that every considered
formula is in a concatenation normal form. Now, we introduce a notion of a
(new) Boolean grammar. We name it new, because productions of our Boolean
grammar are a little bit different (more general) from those of the Boolean
grammar, introduced in [5].

Definition 4. (A (new) Boolean grammar) A (new) Boolean grammar is
G = (Σ,N, P, S, Φ, I), where Σ is an alphabet, N a set of nonterminals, P is
a set of productions of the form X → ψX(N), where X ∈ N and ψX(N) is a
language formula over Σ and Φ in variables N . S is a start symbol.

A (new) Boolean grammar without language symbols is sometimes denoted
by G = (Σ,N, P, S).

Because of the fact, that we allow the operator ∨, we can assume, that for
every nonterminal X ∈ N , there is only one production ψX(N). Now, we define
a system of language equations corresponding to a (new) Boolean grammar.
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Definition 5. (A system of equations corresponding to a grammar) Let
G = (Σ,N, P, S, Φ, I) be a (new) Boolean grammar, then a system of language
equations corresponding to G is defined as follows: for every production of the
form X → ψX(N) we have an equation of the form X = ψX(N).

Let N ′ ⊆ N , then by N ′ = ψ(N), we denote a system N = ψ(N), restricted
to equations, such that their left side is a variable, that belongs to N ′.

Roughly speaking, a vector of languages is a solution of a system of language
equations if and only if an application of this vector to left-hand sides is equal to
an application of this vector to right-hand sides of this system (see Definition 2).

Definition 6. (Solution of a system of equations) We say that a vector
of languages L = (L1, . . . , Ln) is a solution of a system of language equations
N = ψ(N), where N = (X1, . . . , Xn) and ψ(N) = (ψX1(N), . . . , ψXn(N)) if and
only if L(N) = L(ψ(N)).

Definition 7. (Solution modulo) We say that a vector of languages L =
(L1, . . . , LN ) is a solution of a system of language equations N = ψ(N) modulo
some set M if and only if Li(Xi) ∩M = Li(ψ(Xi)) ∩M for every 1 ≤ i ≤ n.

Now, after one more auxiliary definition, we introduce notions of stratified
semantics and of a stratified Boolean grammar.

Definition 8. Let G = (Σ,N, P, S, Φ, I) be a (new) Boolean grammar. Let
ψX(N) be a language formula and let X ∈ N . Then Y ∈ N appears positively
in ψX(N) if and only if every occurrence of Y is in the scope of even number
of negations. If Y occurs in ψX(N) and does not occur positively, then it occurs
negatively.

Definition 9. (Stratified Semantics) We say that a (new) Boolean gram-
mar G = (Σ,N, P, S, Φ, I) is compliant to the stratified semantics if there exists
function F : N → Nat, such that for each production X → ψX(N) holds the
following:

– For every nonterminal Y , that occurs positively in ψX(N), it holds: F(X) ≥
F(Y ).

– For every nonterminal Y , that occurs negatively in ψX(N), it holds: F(X) >
F(Y ).

Then, we name F a stratifying function for G and G = (Σ,N, P, S, Φ, I,F)
a stratified Boolean grammar.

For every 1 ≤ i ≤ max({k|F−1(k) �= ∅}) a set of nonterminals F−1(i) we
name a stratum.

Now, we give a definition of a stratified solution of a system of language
equations. We define it by dual induction with a notion of a system of equations,
that defines k-th stratum.
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Definition 10. (Stratified solution of a system of equations) Let N =
ψ(N) be a system of language equations corresponding to a stratified Boolean
grammar G = (Σ,N, P, S, Φ, I,F). Then N = ψ(N) has a unique stratified
solution Lst, defined by induction as follows:
– Lst(F−1(1)) is the least solution of the system F−1(1) = ψ(N).
– The system that defines k-th stratum F−1(k) = ψD(N) can be obtained from
F−1(k) = ψ(N) by replacing:
• each occurrence of Y ∈ F({0, ..., k− 1) by L, where L is a new language

symbol and I(L) = Lst(Y ),
– Lst(F−1(k)) is the least solution of the system, that defines k-th stratum.

Definition 11. (A language generated by a stratified Boolean gram-
mar) Let G = (Σ,N, P, S, Φ, I, F ) be a stratified Boolean grammar and Lst be a
stratified solution of a system of language equations corresponding to G, then a
language generated by G according to stratified semantics, we denote by Lst(G)
and there holds, that Lst(G) = Lst(S).

If for some language L, there exists a stratified Boolean grammar G, such
that L(G) = L, then we call L a stratified language.

An Example of a Stratified Language. Let G = ({a, b}, N, P, S,F) be
a stratified Boolean grammar, where N = {S,A,B,C,D}, P consist of the
following productions:

S → ¬BA&¬AB&C

A→ DAD ∨ a

B → DBD ∨ b

D → a ∨ b

C → DDC ∨ ε (2)

and F is defined as follows: F(A) = F(B) = F(C) = F(D) = 0 and F(S) = 1.
Now, we show, how to find a language generated by G. We do it in a way

suggested by definitions 10 and 11. Let N = ψ(N) be a system of equations
corresponding to G. First, we have to obtain the least solution of the system:
F−1(1) = ψ(N) i.e., {A,B,C,D} = ψ(N). It is as follows:

Lst(D) = {a, b}
Lst(C) = {vw|v, w ∈ Σ∗}

Lst(A) = {vaw|v, w ∈ Σ∗}
Lst(B) = {vbw|v, w ∈ Σ∗} (3)

Thereafter, we have to obtain the least solution of a system, that defines a second
stratum, in that case, it is a system S = ψD(N), i.e,

S = ¬LALB&¬LBLA&LC , where H ∈ {A,B,C,D} and I(LH) = Lst(H) (4)

Finally we get:
Lst(S) = L(G) = {ww|w ∈ {a, b}∗} (5)
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2.2 Checking If a Boolean Grammar is Compliant to Stratified
Semantics

Here, we show, that a set of (new) Boolean grammars (see Definition 4), compli-
ant to the stratified semantics, is recognizable in linear time. The algorithm below
is based on the one for partioning set of states of Weakly Alternating Automata
[3]. To state this algorithm transparently, we introduce a special structure, in-
duced by a (new) Booleann grammar. But let us first notice, that not every
Boolean grammar generates a language. As an example consider a grammar,
that contains a production: A→ B&¬B.

Definition 12. Let G = (Σ,N, P, S) be a (new) Boolean grammar. Then by D,
we denote a digraph with set of vertices N and two different set of arcs E+ and
E−, defined as follows:

– E+ = {(X,Y ) ∈ N ×N |Y occurs positively in X → ψX(N)}
– E− = {(X,Y ) ∈ N ×N |Y occurs negatively in X → ψX(N)}

Algorithm 1. Let G = (Σ,N, P, S) be a (new) Boolean grammar.
If G is compliant to the stratified semantics, then algorithm returns a strati-

fying function F for G, if it is not, then it answers: NO.

1. Create a structure D corresponding to G, as it is stated in Definition 12.
2. Find a digraph DMSCC = (VMSCC , EMSCC) of maximal strongly connected

components of D.
3. If D has a cycle, that contains an arc from E−, then answer NO.
4. If there are no such cycles in D, then compute F as follows:

(a) Let (VMSCC ,≺) be a partial order induced by DMSCC i.e., ∀V1, V2 ∈
VMSCC we have, that V1 ≺ V2 if and only if (V1, V2) ∈ EMSCC .

(b) Return F compliant to ≺, defined as follows:
– for every X,Y ∈ V , where V ∈ VMSCC , it holds, that: F(X) =
F(Y ).

– for every X ∈ V1 and Y ∈ V2, where V1 ≺ V2, it holds, that: F(X) <
F(Y )

Lemma 1. Algorithm 1 works in time O(|G|).
Proof. The point 1 can be of course done in O(|G|). Points 2 and 3 can be done
by a Tarjan algorithm [6] also in O(|G|). Point 4 in the same time by breadth-first
search.

Lemma 2. A (new) Boolean grammar G is compliant to the stratified semantics
if and only if Algorithm 1 returns F .

Theorem 1. Set of Boolean grammars compliant to the stratified semantics is
recognizable in linear time.

Proof. It follows simply from lemmas 1 and 2.
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3 Relations Between Semantics

In the previous section we introduced new semantics. Here we state some facts
about relations between semantics from [5] and the stratified semantics.

3.1 Semantics of a Naturally Reachable Solution

Definition 13. (A naturally reachable solution) Let N = ψ(N) be a system
of language equations corresponding to some Boolean grammar G = (Σ,N, P, S).
A solution Lnr(N) of a system is called a naturally reachable solution if for every
finite set M closed under substring and for every string u /∈ M (such that all
proper substring of u are in M) every sequence of vectors of the form

L(0), L(1), ..., L(i), ... (6)

(where L(0) = (L1 ∩M, ..., Ln ∩M)) and every next vector L(i+1) �= L(i) in the
sequence is obtained from the previous vector L(i) by substituting some j-th com-
ponent with ψj(Li)∩(M ∪{u}) converges to (Lnr(N1)∩(M ∪{u}), ..., Lnr(Nn)∩
(M ∪ {u})) in finitely many steps regardless of the choice of components.

Definition 14. (A naturally reachable language) We say that a Boolean
grammar G = (N,Σ, P, S, Φ, I) generates a language according to the semantics
of a naturally reachable solution Lnr(G), if a system of language equations N =
ψ(N) corresponding to G has a naturally reachable solution Lnr(N). Then, it
holds, that Lnr(G) = Lnr(S).

If for a language L, there exists such a Boolean grammar G, compliant to the
semantics of a naturally reachable solution, such that Lnr(G) = L, then we call
L a naturally reachable language.

Theorem 2. Let G = (Σ,N, P, S,F) be a stratified Boolean grammar, and let
Lst(G) be a stratified language generated by G. Then G generates also a naturally
reachable language Lnr(G) and Lst(G) = Lnr(G).

Because of the fact, that a set of Boolean grammars, compliant to the strati-
fied semantics is recognizable in linear time (see Algorithm 1) and set of Boolean
grammars, compliant to the semantics of a naturally reachable solution is co-
RE-complete, we have the following.

Proposition 1. Not every Boolean grammar, that is compliant to the semantics
of a naturally reachable solution is also compliant to the stratified semantics.

Let us also note, that from Theorem 2 comes the following proposition.

Proposition 2. Every stratified language is also a naturally reachable one.
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3.2 Semantics of a Unique Solution in the Strong Sense

Definition 15. (A unique language in the strong sense) A Boolean gram-
mar G = (Σ,N, P, S) is said to be compliant to the semantics of a unique so-
lution in the strong sense, if for every finite M closed under substrings, the
system of language equations N = ψ(N) corresponding to G has a unique so-
lution modulo M . Such a solution, we denote by Lu(N). Then, it holds, that
Lu(G) = Lu(S)

If for a language L, there exists a Boolean grammar G, compliant to the
semantics of a unique solution in the strong sense and L(G) = L, we name L a
unique language in the strong sense.

From [5] comes also the following propositions.

Proposition 3. A system of language equations corresponding to a Boolean
grammar has a unique solution modulo every language closed under substrings if
and only if it has unique solution.

Proposition 4. A language L is a naturally reachable language if and only if it
is a unique language in the strong sense.

Lemma 3. Every stratified language is also a unique language in the strong
sense.

Proof. Lemma comes simply from propositions 2 and 4.

Unfortunately, not every Boolean grammar compliant to the stratified seman-
tics is also compliant to the semantics of a unique solution in the strong sense. As
an example consider a grammar with productions: A→ ¬B and B → B. A strat-
ifying function F for G can be defined as follows: F(B) = 0 and F(A) = 1. But
the system of language equations corresponding to this grammar has, of course,
many different solutions. Thus, G is not compliant to the semantics of a unique
solution in the strong sense. However, we can prove the following theorem.

Theorem 3. If a stratified Boolean grammar G is compliant to the semantics
of a unique solution in the strong sense, then Lst(G) = Lu(G)

4 Recognition Algorithm

In this section, we first remind an approach to recognition from [5] and then we
show a recognition algorithm for stratified Boolean grammars.

4.1 Previous Approach

In [5] there was shown a recognition algorithm for Boolean grammars, based
on the Cocke-Kasami-Younger algorithm and the transformation of an arbitrary
Boolean grammar to a binary normal form, that is a generalization of Chomsky
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normal form. A scheme of this transformation is also based on a scheme of
the analogous transformation for CFG. If a Boolean grammar G is in a binary
normal form, then the recognition algorithm works in usual time O(|G| |w|3),
where w is the entry word. But if G is arbitrary, then during transformation
to a binary normal form, its size can blow up exponentially. Therefore, in our
opinion, treating a size of a grammar as a constant, like it was done in [5], is
not properly. First, we remind a part of transformation, shown in [5] and argue,
that only this part can increase a size of a grammar expotentially.

Let us remind, that productions of Boolean grammars in apprehension of [5]
are of the form (1).

Definition 16. (A binary normal form) We say that a Boolean grammar
G = (Σ,N, P, S) is in a binary normal form if every production from P is of the
form:

1. X → a, where a ∈ Σ

2. X → Y1Z1&...&YmZm&¬V1Q1&...&¬VnQn, where for every 1 ≤ i ≤ m and
for every 1 ≤ j ≤ n, we have Yi, Zi, Vj , Qj ∈ N

and G generates a vector of languages L = (L1 . . . Lk), such that for every
1 ≤ l ≤ k, we have ε /∈ Ll.

Here, we show only a part of transformation to a binary normal form i.e.,
removing unit conjuncts. We say, that a Boolean grammar contains unit conjunct
if there exists a production, in which at least one of its conjuncts is a single
nonterminal. So, for a grammar G it has to be generated a grammar G′, that
generates the same language and has no unit conjuncts.

First, it is defined R = (Σ ∪N)∗ \N . Then, for every assignment W : R →
{0, 1}, it is sought a solution of the system of Boolean equations, where every
α ∈ R, is replaced with 0 or 1, in a way compliant to W and every nonterminal
is treated like a Boolean variable.

If such a system has more than one solution, this situation is treated like
an artificial one and this case is omitted. If there is only one solution LB of
this system and N ′ = {X ∈ N |LB(X) = 1}. Then for every X ∈ N ′, we
add to G a production of the form: X → μ1& . . .&μk&¬ν1&...&¬νl, where
W (μ1) = . . . = W (μk) = 1, and W (ν1) = . . . = W (νl) = 0.

Because of the fact, that we have 2R assignments, and there exists such
grammars, that for every such assignment the systems obtained (in the above
way) from the systems corresponding to them, have one solution, we have the
following.

Proposition 5. Let G be a Boolean grammar in apprehension of [5] and G′ be
a grammar, returned by the transformation ,presented above, that removes unit
conjuncts, then |G′| = Ω(2|G|).
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4.2 New Approach

Stratified semantics gives an opportunity to develop an algorithm of recognition,
that is polynomial against to a size of an entry word as well as to a size of a
grammar and works for an arbitrary stratified Boolean grammar.

First, let us introduce a notion of a conjunctive/disjunctive normal form.

Definition 17. We say that a stratified Boolean grammar G = (Σ,N, P, S,F)
is in a conjunctive/disjunctive normal form if for every production X → ψX(N),
the formula ψX(N) is:

1. a terminal, a nonterminal, a concatenation of two nonerminals,
2. a negation of an expression from point 1,
3. a conjunction or a disjunction of expressions from points 1 and 2.

Moreover, for every nonterminal X it holds, that ε /∈ Lst(X) i.e., we do not
allow generalized ε-productions.

To transform a stratified Boolean grammar into a disjunctive/conjunctive
normal form, we do the following.

– For every a ∈ Σ we introduce a new production of the form Na → a, fix
F(Na) = 0 and in every other production, we replace each occurrence of
terminal a by a nonterminal Na.

– We get rid of ε-productions. To obtain this, we compute Epsilon = {X ∈
N |ε ∈ Lst(X)}. (As we argue later, Epsilon can be computed in linear time).
Then for every occurence of XY , where X ∈ Epsilon , we replace XY by
(XY ∨ Y ) and if Y ∈ Epsilon by (XY ∨X).

– We reduce every production to a form, such that every negation is attached
to nonterminals or to concatenations of two nonterminals.

– We flatten right-hand sides of productions. For example, for a production:
A→ B ∨ (¬C&D), we introduce a new nonterminal E and two new produc-
tions, namely: A→ B ∨ E and E → ¬C&D. We also fix F(E) = F(D).

– As longs as there exists any production containing subformula of the form:
XY Z, we replace Y Z by a new nonterminal V , introduce a new production:
V → Y Z and fix F(V ) = max(F(Y ),F(Z)).

Lemma 4. For a stratified Boolean grammar G, the transformation to a con-
junctive/disjunctive normal form can increase its size at most O(|G| log(|G|))
times.

Let us note, that our conjunctive/disjunctive normal form allows unit con-
juncts. Now, we take a first look on a recognition algorithm, that works for
stratified Boolean grammars in a conjunctive/disjunctive normal form. Algo-
rithm 2 uses a definition of the procedure ComputeModulo, that is described
below.
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Algorithm 2. Let G = (Σ,N, P, S,F) be a stratified Boolean grammar in a
conjunctive/disjunctive normal form. Let w = a1...an ∈ Σ+ (n ≥ 1) be the input
string.

For every 1 ≤ i ≤ j ≤ n, compute Ti,j = {X ∈ N |wi,j ∈ Lst(X)} and check
if S ∈ T1,n.

1. for d = 0 to n− 1
2. for i = 1 to n− d
3. let j = i + d
4. if d = 0 then
5. Ri,i = {X |X → ai}
6. Ti,i = ComputeModulo(Ri,i)
7. else
8. for l = i to j − 1
9. Ri,j = Ri,j ∪ Ti,l × Tl+1,j

10. Ti,j = ComputeModulo(Ri,j)

As it is not difficult to see Algorithm 2 is an usual recognition algorithm for
CFG with some extra lines. We consider them now. Because of the fact, that
we allow unit conjuncts, productions of the form X → ai are not the only ones,
that can produce single terminal ai, where 1 ≤ i ≤ n. As an example consider
a grammar, that contains the following productions: A → B ∨ ¬C, B → a and
C → b. We have, that a ∈ Lst(B) as well as a ∈ Lst(A).

So, first in line 5 we gather in Ri,i all nonterminals X , such that X → ai

and then we pass the set of nonterminals Ri,i to the procedure ComputeModulo,
that computes the set of all nonterminals X , such that ai ∈ Lst(X). Similarly,
in the induction step, we first in line 9 gather concatenations of pairs of non-
terminals XY , such that wi,j ∈ Lst(XY ) and then pass the set Ri,j to the
procedure ComputeModulo, that computes the set of nonterminals X , such that
wi,j ∈ Lst(X). So, we want the procedure ComputeModulo, to compute stratified
solution modulo wi,j of the system N = ψ(N), that is corresponding to G.

ComputeModulo. We consider here only the induction step. The base case is,
in fact, very similar. Stratified solution modulo some wi,j , we denote by Li,j

stm.
Further, let us assume, that we have Li,j

stm(F−1(1, . . . , k − 1)). Now, we show,
how to compute Li,j

stm for k-th stratum. A conjunctive/disjunctive normal form
does not allow ε-productions, so when we pass Ri,j (1 ≤ i < j ≤ n) to Com-
puteModulo, it contains all pairs XY , such that wi,j ∈ Lst(XY ). Therefore, to
achieve Li,j

stm(k), it is enough to compute the least solution of the system of
Boolean equation, that can be obtained from system of language equations, that
defines k-th stratum (F−1(k + 1) = ψD(N)) as follows.

1. Replace each occurence of every terminal with a Boolean value false and
every occurence of the concatenation of two nonterminals XY with true if
XY ∈ Ri,j and with false in the opposite case.

2. Replace each occurence of a nonterminal Z ∈ F−1(1, . . . , k − 1) with true if
wi,j ∈ Li,j

stm(Z) and with false in opposite case.
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3. Replace each occurence of a nonterminal Z ∈ F−1(k) with a Boolean
variable.

The least solution of every such system of Boolean equations in conjunc-
tive/disjunctive normal form can be find in linear time by reducing it to the
Boolean graph [1]. Thus, we have the following lemma.

Lemma 5. The procedure ComputeModulo works in time O(|G|).
Proof. ComputeModulo computes the least solutions of systems of Boolean equa-
tions of total size O(|G|). ��

Now let us go back to the set Epsilon, that was being computed during
transformation to a conjunctive/disjunctive normal form. As we noted earlier it
can be computed in linear time and a procedure like ComputedModulo can be
used to it. It is enough to compute stratified solution of the system of language
equations modulo ε.

Theorem 4. Let G = (Σ,N, P, S,F) be a stratified Boolean grammar in a con-
junctive/disjunctive normal form, let w = a1 . . . an ∈ Σ+. Let Lst be a stratified
solution of a system of language equations corresponding to G. Then for every
X ∈ N and 1 ≤ i, j ≤ n we have wi,j ∈ Lst(X) if and only if X ∈ Ti,j, where
Ti,j is computed by Algorithm 2.

Theorem 5. Let G be a stratified Boolean grammar. Let w ∈ Σ+. Then we
have the following:

1. If G is in a conjunctive/disjunctive normal form, then Algorithm 2 works in
time O(|w|3 |G|+ |w|2 |G|) = O(|w|3 |G|).

2. If G is arbitrary, then Algorithm 2 together with the transformation to a
conjunctive/disjunctive normal form works in time O(|w|3 |G| log(|G|)).

Proof. Point 1 comes from the fact, that CKY-algorithm for CFG works in time
O(|G| |w|3) and from Lemma 5. Point 2 comes from point 1 and Lemma 4. ��
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Berthé, Valérie 131
Bienkowski, Marcin 1
Blesa, Maŕıa J. 144
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Tveretina, Olga 769

Unger, Falk 781

Vaccaro, Ugo 271
Vassilevska, Virginia 793
Vialette, Stéphane 328
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