

D. Ślęzak et al. (Eds.): RSFDGrC 2005, LNAI 3642, pp. 678 – 687, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Uncertainty Handling in Tabular-Based Requirements
Using Rough Sets

Zhizhong Li and Günther Ruhe

Software Engineering Decision Support Laboratory,
University of Calgary,

2500 University Drive N.W.,
Calgary, Alberta, Canada T2N 1N4

{zhizli, ruhe}@ucalgary.ca

Abstract. Software requirements management is an essential process to better
understand, identify, derive, control and improve system requirements.
Typically, requirements are unclear at the beginning and evolve over time.
Uncertainties usually produce conflicts among requirements. Rough set analysis
(RSA) is a promising technique of granular computing. The emphasis of this
paper is on formally defining three software requirements uncertainty problems
and on applying RSA to solve these problems. A systematic approach called
MATARS was developed for that purpose. We use a modification of a real
world software requirements specification (SRS) benchmark example to
illustrate main concepts and ideas of the approach.

1 Introduction and Motivation

Software requirements engineering (RE) is the process of determining what is to be
produced in a software system. Requirements engineering (RE) has evolved into a key
issue as one of the most difficult activities in the field of software engineering. The
goal of requirements management is the development of a good requirements
specification document. The IEEE guide to software requirements specifications [1]
defines a good software requirements specification as being unambiguous, complete,
verifiable, consistent, modifiable, traceable, and maintainable.

There are at least three challenges that are currently inherent in requirements
management: firstly, it needs to transfer informal requirements, which are often vague
and imprecise, to formal specification methods [2]; secondly, requirements are often
conflicting with each other, and many conflicts are implicit and difficult to identify;
thirdly, requirements are changing dynamically.

Rough set analysis (RSA) [3] has attracted the attention of many researchers and
practitioners [4]. In applications, rough sets focus on approximate representation of
knowledge derivable from data. This leads to significant results in many areas
including medicine, finance, industry, multimedia systems or control theory. For an
overview we refer to [4]. RSA was applied in software engineering initially in [5] to
make sense out of measurement data. Since then, RSA has been successfully applied
for data analysis in various areas of software engineering: software maintenance [6],
software safety analysis [7], software reverse engineering [8], application run time
estimation [9], and knowledge discovery for software quality.

 Uncertainty Handling in Tabular-Based Requirements Using Rough Sets 679

Although RSA is used extensively as an approach to software engineering, it has
rarely been applied as a systematic approach for requirements management. An
objective of software requirements engineering is to improve systems modeling and
analysis capabilities so that critical aspects of systems can be understood prior to
system construction. A process is needed to guide the requirements engineer through
requirements elicitation. The idea using RSA for requirements analysis was
mentioned in [10]. In this paper, we are focusing on uncertainty problems solution
and representation of tabular-based requirements.

The paper is organized into five sections. In section 2, we give a formal problem
statement that will be later used to apply RSA. Section 3 provides the solution
approach. This approach is illustrated in Section 4 for the modified example of A-7E
requirements specification. Finally, Section 5 gives a final discussion and outlook to
future research.

2 Problem Statement

2.1 Tabular-Based Requirements Management

Requirements can be represented in different ways, ranging from an informal to a
more formal description. Tabular-based requirements representation is a special case
of formal representation assuming that requirements specification can be done using
tables. The goal of requirement management is to develop a requirement specification
that contains all the needs of customers [11]. However, as time goes on, requirements
change frequently or new requirements arise. Inconsistency or conflicts might result
from this process. To check and handle ambiguity, incompleteness and uncertainty is
of core importance for later quality of software products.

Definition 1: Tabular-based requirements
A set R = {A, B, …} of requirements is said to be in tabular form if each requirement
A ∈ R is described by a set of descriptive and a set of prescriptive attributes:

o Descriptive attributes denoted by D1(A), … , Dm(A) specify the conditions
under which a system behaves.

o Prescriptive attributes, denoted by P1(A), … , Pn(A) describe how the system
should behave under the descriptive conditions D1(A), … , Dm(A).

Definition 2: Inconsistent requirements
Two tabular-based requirements A and B are called inconsistent to each other if they
have the same value for all descriptive attributes, but are different in value for at least
one prescriptive attribute. More formally,

If D1(A) = D1(B), D2(A) = D2(B), …, Dm(A) = Dm(B)
There is an attribute j ∈ {1, …, n} so that Pj(A) ≠ Pj(B).

Definition 3: Redundancy between requirements
Two tabular-based requirements A and B are said to be redundant if all the descriptive
and prescriptive attribute values of requirements A and B are the same. More
formally,

680 Z. Li and G. Ruhe

D1(A) = D1(B), D2(A) = D2(B), …, Dm(A) = Dm(B) and
P1(A) = P1(B), P2(A) = P2(B), …, Pn(A) = Pn(B).

Definition 4: Attribute redundancy
In tabular-based requirements, certain combinations of descriptive attribute values
result in certain prescriptive properties. A descriptive attribute Dp with p ∈ {1, …, m}
is called redundant if the specification of the whole system remains the same after
elimination of descriptive attribute Dp.

2.2 Requirements Uncertainty Problems

Uncertainty is inherent in requirements management. In this paper we will address
three types of uncertainty problems as described in the following.

2.2.1 Problem 1: Inconsistency between Requirements
Inconsistency between requirements results in conflicts in the specification of the
system behavior. These conflicts are the origin of software failures as typically
detected in later stages. There are numerous known efforts to detect and resolve
inconsistencies [12].

2.2.2 Problem 2: Missing Data in Requirements
For a tabular-based requirement, lack of information can be related to either
prescriptive or descriptive attributes. Under-specification of system behavior is
critical as this would force different interpretations on how the system should
perform. This could result in unintended actions, causing critical system failures. The
question is to suggest those values that would not create inconsistencies with existing
requirements.

2.2.3 Problem 3: Redundancy
Requirements redundancy should be avoided as it is useless information. The same is
true for attribute redundancy. That means the question is to detect redundancies
between requirements as well as redundancies between attributes.

3 Handling Uncertainties by Using Rough Set Analysis

Tabular-based software requirements are described by descriptive and prescriptive
attributes. This is very similar to the notion of condition attributes and decision
attributes as used in rough set theory. Tabular-based requirements representation is
mapped into an information system with the rows corresponding to the requirements
and the columns corresponding to the different attributes. Descriptive and prescriptive
attributes in tabular-based requirements correspond to condition respectively decision
attributes as used in rough set theory.

3.1 Overview of Approach MATARS

Management of tabular-based requirements using Rough Sets (MATARS) is a
method for uncertainty handling in the special case of requirements given in tabular

 Uncertainty Handling in Tabular-Based Requirements Using Rough Sets 681

form. MATARS has an underlying process model that is described in detail in [13].
The process here addresses the evolution of requirements as well as the overall
process to handle uncertainty related to requirements. Rough set analysis plays a
crucial role in MATARS. The main purpose of MATARS is to handle uncertainty in a
systematic manner based on formal notation. However, we do not expect that this is
completely possible without inclusion of more informal existing conflict resolution
approaches as described by Robinson [12].

MATARS is focused on requirements uncertainty handling by RSA combined with
existing conflict resolution approaches in requirements engineering. This process is
built in order to execute requirements elicitation and resolve inconsistency with the
help of RSA during evolution of requirements. The key components of MATARS are
shown in Fig. 1. The stakeholders are generating requirements over time.
Simultaneously, they are integral part of the resolution method.

Fig. 1. Main components of MATARS

Uncertainty handling based on formal methods includes the following basic
techniques described below.

3.2 Technique 1: Change of Granularity to Resolve Requirements Inconsistency

Change of granularity is one of the fundamental ideas of rough set theory. What we
propose is to use this concept for resolution of conflicts in case of tabular-based
requirements. Conflicts occur where different classification unions intersect with each
other. Change of granularity can help to overcome these conflicts. Higher granularity
with respect to one condition attribute can result in conflict resolution. We will
illustrate this idea by an example in Section 4.

3.3 Technique 2: Inconsistency Check to Fill Missing Values

Incomplete data is a major problem in data analysis. Pawlak [3] and Gediga [14]
present general algorithm to the treatment of missing data with classical RSA. In this
paper our focus is specifically on featured tabular-based software requirements, where
there are two kinds of missing value problems: missing descriptive values and
missing prescriptive values. Suggestions for missing prescriptive values can be
generated by learning from already specified requirements. Pawlak [3] gives four
possible situations of learning from former examples.

682 Z. Li and G. Ruhe

(1) IF the new object matches exactly one of the deterministic rules
(2) THEN the classification suggestion is direct;
(3) IF the new object matches exactly one of the nondeterministic rules
(4) THEN the number (strength) of examples which support each possible category

is computed. The considered object most likely belongs to the strongest
category;

(5) IF the new object doesn’t match any of the sorting rules
(6) THEN a set of rules ‘nearest’ to the description of the new object is presented;
(7) IF the new object matches more than one rule

 THEN the suggestion can be based either on the strength of possible
 categories or on an analysis of the objects which support each possible
 category.

Similarly, RSA can also help to complete missing condition values. The process is
as follows:

(1) Extend incomplete cases by replacing lost value “?” with all possible values.
(2) Classify all these cases by learning from previously generated rules.
(3) Analyze the classification results with the actual decision values of extended

data;
(4) All the values not creating inconsistency are the possible suggestions for

missing values.

3.4 Technique 3: Classifying Requirements and Attributes to Remove
Redundancies

RSA deals with the classification of requirements and induces minimal decision rules
to simplify requirements representation by means of explaining prescriptive attribute
values by combination of descriptive attribute values.

Discovering dependencies between attributes enables the reduction of the set of
attributes. In RSA, the significance of condition attributes is of three levels.

(1) Core represents the most essential set of condition attributes.
(2) Attributes that belong to reduct are significant to represent whole system.
(3) Redundant attributes are those which do not belong to any reduct. These

attributes have no contribution to classification and usually can be removed
from information system.

By applying RSA, it is convenient to find condition attributes of these three levels.
Redundant attributes have no contribution to classification of whole system thus they
should be removed to simplify SRS. In this way we deduce attributes redundancy.

4 Illustrative Example

We consider a modification of a real world requirements benchmarking example [15]
to illustrate the uncertainties management in tabular-based requirements. In this paper
we use the rough set analysis tool ROSE version 2.2 developed at Technical
University Poznan to analyze required tabular data [16]. This RSA tool generates
decision rules using a modified version of the LEM2 Algorithm [17].

 Uncertainty Handling in Tabular-Based Requirements Using Rough Sets 683

Table 1 below shows a decision table. There are four possible outside reference
points for decision attribute D: OAP, ‘fly–to point’, ‘target’ and ‘none’. Condition
attributes include four Boolean attributes denoted by C1 to C4. In addition, attribute
C5 which has six possible values (denoted by M1-M6).

Table 1. Decision table for a real world SRS [15]

Record C1 C2 C3 C4 C5 D (Decision)
1 1 1 1 1 M1 None
2 1 1 1 0 M1 None
… … … … … … …
16 0 0 0 0 M1 Fly–to point
17 1 1 1 1 M2 Target
… … … … … … …
48 0 0 0 0 M3 OAP
49 1 1 1 1 M4 Fly-to-point
… … … … … … …
64 0 0 0 0 M4 Target
65 1 1 1 1 M5 Target
… … … … … … …
80 0 0 0 0 M5 None
81 1 1 1 1 M6 Target
82 1 1 1 0 M6 Target
… … … … … … …
95 0 0 0 1 M6 Fly-to-point
96 0 0 0 0 M6 OAP

To better demonstrate the proposed capabilities of MATARS, we slightly modify
the original example and assume that the condition attribute C5 has only five groups
of modes denoted by M1-M5. For that purpose, we change C5 value of all the last 16
requirements (from 81st till 96th) from M6 to M5. These values are shaded in Table 1.
The IF-THEN rules using RSA are generated and two inconsistent rules are detected
out of 14 IF-THEN rules in Table 2:

Table 2. RSA IF-THEN rules for modified SRS

Consistent rules
(C1=0)(C5=M1) --->(D=Fly-to-point) (C2=1)(C5=M2) ---> (D=Target)
(C1=0)(C2=0)(C5=M2)-->(D=Fly-to-point) (C2=1)(C5=M3) ---> (D=Target)
(C2=0)(C3=1)(C5=M3)-->(D=Fly-to-point) (C3=0)(C4=0)(C5=M4)---> (D=Target)
(C3=1)(C5=M4) ---> (D=Fly-to-point) (C2=1)(C5=M5) ---> (D=Target)
(C4=1)(C5=M4) ---> (D=Fly-to-point) (C1=1)(C5=M1) ---> (D=None)
(C2=0)(C3=0)(C5=M3) ---> (D=OAP) (C1=1)(C2=0)(C5=M2) ---> (D=None)

Approximate rules
(C2 = 0)(C4 = 1)(C5 = M5) ---> (D = Fly-to-point) OR (D = None)
(C2 = 0)(C4 = 0)(C5 = M5) ---> (D = OAP) OR (D = None)

684 Z. Li and G. Ruhe

And the responding validation results in Table 3:

Table 3. Validation results for modified SRS

CLASS Number Lower Upper Accuracy
Fly-to-point 32 28 36 0.7778

OAP 8 4 12 0.3333
Target 36 36 36 1.0000
None 20 12 28 0.4286

The shaded area in both tables exposes the inconsistencies, and the accuracy is
low. Obviously, if we change the granularity of C5 from 5 intervals back to 6,
inconsistencies are removed successfully.

Another capability of RSA is the ability to handle missing values of incomplete
requirements. Here from the original example in Table 1, 20 requirements were
randomly selected, and they are shown in Table 4. The question is: how to complete
these new cases based on the existing 76 requirements? In addition to the already
introduced changes, we have added records 21 and 22 with missing condition values.
All the missing values are highlighted by “?” in Table 4.

Table 4. Incomplete requirements (missing condition and decision values)

Record C1 C2 C3 C4 C5 D
1 0 1 0 0 M1 ?
… … … … … … ?
20 1 1 0 1 M6 ?
21 0 1 0 0 ? Fly-to-point
22 1 1 1 ? M2 Target

In order to accomplish decision values, we classify the twenty new objects by
applying the explanation rules generated from the remaining 76 objects. The
classification results are shown in Table 5. The shaded area exposes the 4 requirements
(7, 9, 11 and 12) whose predicted values do not match the actual values, in other
words, validation of these four cases has failed.

The two incomplete requirements can be extended by replacing lost value “?” with
all possible values. Attribute C5 has the six levels M1-M6. Thus the first incomplete
requirement can be extended to six cases from record 1 to record 6; attribute C4 is
Boolean variable, thus the second incomplete requirement can be extended by two
cases from record 7 to record 8. Table 6 shows the new complete decision table with
additional eight cases.

Three shaded records (1, 7, and 8) are successfully validated, thus they are the
most reasonable requirements to replace the incomplete ones. The conclusion is
satisfying: record 1 and record 8 are the first two requirements in Table 5; record 7 is
already inside the 76 cases of modified SRS.

 Uncertainty Handling in Tabular-Based Requirements Using Rough Sets 685

Table 5. Results of ten-fold cross validation

Record C1 C2 C3 C4 C5 D(Actual) D(Predicted)
Matched

Rule
1 0 1 0 0 M1 Fly-to-point Fly-to-point 4
2 1 1 1 1 M2 Target Target 9
3 0 0 0 0 M2 Fly-to-point Fly-to-point 1
4 0 1 0 1 M2 Target Target 9
5 0 1 0 0 M2 Target Target 9
6 0 0 0 1 M2 Fly-to-point Fly-to-point 1
7 0 0 1 1 M3 Fly-to-point OAP 6
8 0 0 0 1 M3 OAP OAP 6
9 1 0 1 0 M3 Fly-to-point OAP 6

10 0 1 0 0 M3 Target Target 8
11 1 0 1 1 M3 Fly-to-point OAP 6
12 0 0 1 0 M3 Fly-to-point OAP 6
13 1 1 1 1 M4 Fly-to-point Fly-to-point 3
14 0 0 1 0 M4 Fly-to-point Fly-to-point 5
15 0 1 1 1 M5 Target Target 11
16 1 1 0 1 M5 Target Target 11
17 1 1 1 1 M6 Target Target 10
18 1 1 0 0 M6 Target Target 1
19 0 0 1 0 M6 OAP OAP 7
20 1 1 0 1 M6 Target Target 10

Table 6. Extended decision table and validation results

Record C1 C2 C3 C4 C5 D(Actual) D(Predicted)
Matched

Rule
1 0 1 0 0 M1 Fly-to-point Fly-to-point 4
2 0 1 0 0 M2 Fly-to-point Target 9
3 0 1 0 0 M3 Fly-to-point Target 8
4 0 1 0 0 M4 Fly-to-point Target 12
5 0 1 0 0 M5 Fly-to-point Target 11
6 0 1 0 0 M6 Fly-to-point Target 10
7 1 1 1 0 M2 Target Target 9
8 1 1 1 1 M2 Target Target 9

Finally, as part of approach we also apply RSA to simplify a decision table by
reducing redundant attributes and requirements. On the basis of original example in
Table 1, we added three additional attribute C6, C7 and C8, plus a requirement 97th
that is exactly the same as the 96th, as shaded area shown in Table 7.

Firstly, requirement 97th is redundant and it will not affect the IF-THEN rules by
RSA. Secondly, from the above table, there exists a single Core = {C1, C2, C3, C4},
together with two reducts: Reduct1 = {C1, C2, C3, C4, C5} and Reduct2 = {C1, C2,

686 Z. Li and G. Ruhe

C3, C4, C6, C7}. Attribute C8 does not belong to either reduct, thus it is redundant and
can be removed from the SRS. Core = {C1, C2, C3, C4} is the most important set of
attributes and each attribute inside the core is necessary to specify the requirements.
However, the other three attributes C5, C6 and C7 are only needed in conjunction with
specific reducts. For example, if we select Reduct1 then attributes {C6, C7} are
superfluous; if we choose Reduct2 then attribute C5 becomes superfluous.

Table 7. Modified SRS with redundancies

Record C1 C2 C3 C4 C5 C6 C7 C8 D
1 1 1 1 1 M1 0 0 1 None
2 1 1 1 0 M1 0 1 1 None
… … … … … … … … … …
32 0 0 0 0 M2 1 2 1 Fly-to-point
… … … … … … … … … …
96 0 0 0 0 M6 3 5 1 OAP
97 0 0 0 0 M6 3 5 1 OAP

5 Conclusions and Future Work

We have investigated the usage of rough sets for uncertainty handling for tabular-
based requirements specification. This approach is part of a more comprehensive
method including informal techniques as well. RSA has some fundamental conceptual
advantages that can be used for conflict resolution in tabular-based requirements
management. The formal approach becomes the more useful, the more complex the
underlying table is. In the process of requirements elicitation and specification, RSA
plays the role of an intelligent oracle answering the question for the existence of
inconsistency and guiding the process to resolve it. This principle was demonstrated
by an example using a modified version of the A-7E benchmark SRS.

Future research will be devoted to fully integrate RSA into the process of
managing evolving requirements. MATARS is intended to be applied to further
examples to validate its applicability.

Acknowledgements

The authors would like to thank the Alberta Informatics Circle of Research
Excellence (iCORE) for its financial support of this research.

References

1. IEEE Guide to Software Requirements Specifications. IEEE Std 830-1984: Software
Engineering Technical Committee of the IEEE Computer Society (1984)

2. Liu XF, Yen J: An Analytic Framework for Specifying and Analyzing Imprecise
Requirements. In: International Conference on Software Engineering. (1996) 60-69

 Uncertainty Handling in Tabular-Based Requirements Using Rough Sets 687

3. Pawlak Z (ed.): Rough Sets - Theoretical Aspects of Reasoning about Data: Kluwer
Academic Publishers. (1991)

4. Komorowski J, Polkowski L, Skowron A: Rough sets: a tutorial. In: Rough-Fuzzy
Hybridization: A New Method for Decision Making. Edited by Skowron SKPaA:
Springer-Verlag. (1998)

5. Ruhe G: Qualitative Analysis of Software Engineering Data Using Rough Sets. In: 4th
International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery (RSFD'96).
Tokyo, Japan. (1996) 292-299

6. Morasca S, Ruhe G: A hybrid approach to analyze empirical software engineering data
and its application to predict module fault-proneness in maintenance. Journal of Systems
and Software (2000) 53(3):225-237

7. Chen-Jimenez I, Kornecki A, Zalewski J: Software Safety Analysis Using Rough Sets. In:
Proceedings of IEEE SOUTHEASTCON98. IEEE Press. (1998) 15-19

8. Jahnke JH, Bychkov Y: Reverse Engineering Software Architecture Using Rough
Clusters. In: Proceeding of the 6th International Conference on Software Engineering &
Knowledge Engineering (SEKE'04). (2004) 270-275

9. Krishnaswamy S, Loke SW, Zaslavsky A: Application run time estimation: a quality of
service metric for web-based data mining services. In: Proceedings of the 2002 ACM
symposium on Applied computing (SAC '02). Madrid, Spain: ACM Press. (2002) 1153-
1159

10. Li Z, Ruhe G: Management of Tabular-based Requirements Using Rough Sets. In:
Proceedings of the 4th ASERC Workshop on Quantitative and Soft Computing based
Software Engineering (QSSE'04). Banff, Alberta, Canada. (2004) 29-34

11. Davis AM (ed.): Software Requirements: Analysis and Specification: Prentice Hall Press.
(1990)

12. Robinson WN, Pawlowski SD, Volkov V: Requirements Interaction Management. ACM
Comput Surv (2003) 35, no. 2:132-190

13. Li Z: Management of Tabular-based Requirements Using Rough Sets. University of
Calgary (2005)

14. Gediga G, Duentsch I: Maximum Consistency of Incomplete Data via Non-Invasive
Imputation: Artificial Intelligence Review (2003) 19, no. 1: 93-107

15. Heninger K, Kallander J, Parnas D, Shore J: Software Requirements for the A-7E Aircraft.
In. Washington, D.C.: Naval Research Laboratory. (1978)

16. ROSE: Rough Sets Data Explorer [http://www-idss.cs.put.poznan.pl/rose/index.html]
17. Grzymala-Busse JW: LERS - A system for learning from examples based on rough sets.

In: Intelligent Decision Support Handbook of Applications and Advances of the Rough
Sets Theory. Edited by Slowinski R: Kluwer Academic Publishers. (1992) 3-18

	Introduction and Motivation
	Problem Statement
	Tabular-Based Requirements Management
	Requirements Uncertainty Problems

	Handling Uncertainties by Using Rough Set Analysis
	Overview of Approach MATARS
	Technique 1: Change of Granularity to Resolve Requirements Inconsistency
	Technique 2: Inconsistency Check to Fill Missing Values
	Technique 3: Classifying Requirements and Attributes to RemoveRedundancies

	Illustrative Example
	Conclusions and Future Work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

