
RoSy: A Rough Knowledge Base System

Robin Andersson1, Aida Vitória2, Jan Ma�luszyński3, and Jan Komorowski1

1 The Linnaeus Centre for Bioinformatics,
Uppsala University, Box 598, SE-751 24 Uppsala, Sweden

{Robin.Andersson, Jan.Komorowski}@lcb.uu.se
2 Dept. of Science and Technology,

Linköping University, SE-601 74 Norrköping, Sweden
aidvi@itn.liu.se

3 Dept. of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden

janma@ida.liu.se

Abstract. This paper presents a user-oriented view of RoSy, a Rough
Knowledge Base System. The system tackles two problems not fully
answered by previous research: the ability to define rough sets in terms
of other rough sets and incorporation of domain or expert knowledge. We
describe two main components of RoSy: knowledge base creation and
query answering. The former allows the user to create a knowledge base
of rough concepts and checks that the definitions do not cause what we
will call a model failure. The latter gives the user a possibility to query
rough concepts defined in the knowledge base. The features of RoSy are
described using examples. The system is currently available on a web site
for online interactions.

1 Introduction

The rough set framework [1] is relevant from the knowledge representation and
data mining perspectives. The ability to handle vague and contradictory knowl-
edge makes rough sets an important technique that can be incorporated in knowl-
edge base systems. In addition, rough set methods can also be used to perform
data exploration, which makes them relevant from a data mining point of view.

This paper presents a Rough Knowledge Base System, called RoSy. The
system is accessible on the web page: http://www.ida.liu.se/rkbs .
RoSy tackles two problems not fully answered by previous research in the

field of rough set theory. The first problem is related to defining rough sets in
terms of other rough sets. For instance, we may wish to express that a rough set
is obtained as a projection of another rough set over a subset of its attributes.
The second problem deals with incorporation of domain or expert knowledge.
A question arises of how concept approximations can be derived by taking into
account not only the examples provided explicitly by one or more tables but also
domain knowledge.

In RoSy, the user can create a knowledge base of (non-recursive) vague con-
cepts. Vague concepts are represented as implicitly or explicitly defined rough

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3642, pp. 48–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RoSy: A Rough Knowledge Base System 49

sets. Implicitly defined rough sets are obtained by combining different regions of
other rough sets, e.g. lower approximations, upper approximations, and bound-
aries. The system also allows defining rough sets in terms of explicit examples.
An important feature is that RoSy handles some basic numerical measures and
that they can be used in the implicit definition of rough sets. The system de-
tects whether the defined vague concepts do not introduce “conflicts” leading
to a so-called model failure. Finally, a knowledge base of rough concepts can
be queried. Hence, the system supports the user in reasoning about the defined
rough concepts and in data exploration.

As we show in this paper through some examples1, RoSy allows users to
describe in an declarative and concise way solutions to problems that otherwise
would require constructing specific programs in some language.

To our knowledge, besides RoSy, only the CAKE system [2] addresses the
problem of implicitly defining rough sets. There are two major differences be-
tween the two systems. Firstly, our system distinguishes tuples for which there
is no information available from the tuples for which there is contradictory evi-
dence. The latter case corresponds to tuples in the boundary region. CAKE does
not support this distinction: the boundary region includes tuples about which
there is no information at all and tuples about which there is contradictory in-
formation. Secondly, RoSy supports quantitative measures. This feature seems
less obvious to achieve in CAKE. A more detailed comparison between both
systems is included in [3].

2 A Knowledge Base System for Rough Sets

In this section we present the rough knowledge base systemRoSy. We start with
presenting the online user interface of RoSy . The notion of rough sets used in
our framework and a proposed language for defining rough sets are presented
in Section 2.2. Finally, a rough query language is discussed in Section 2.3. For
a detailed and technical description of the system and its main components
consult [4].

2.1 The Online User Interface

The online user interface of RoSy is a simple tab-navigation system, where
each tab corresponds to a different mode. The main mode is Compile Rules
or Queries, described below. Besides this mode, RoSy provides a mode for
overviewing the defined rough knowledge base and a tool for query construction.
Fig. 1 shows the main page of RoSy’s web interface.

The first step in using the system (Fig. 1) is to create a rough knowledge
base (RKB). An RKB can be typed directly in RoSy in the text area or loaded
from local or remote files. The second step is to compile the RKB by clicking
the Compile Rules button. Errors detected during compilation, such as syntax
1 All examples presented in this paper are available from:
http://www.ida.liu.se/rkbs/examples.html .

50 R. Andersson et al.

Fig. 1. RoSy’s web interface, http://www.ida.liu.se/rkbs

errors, are displayed in the Feedback area. If the compilation procedure succeeds
then the message Rules compiled is displayed in the feedback area. An RKB can
be deleted from the system via the Clear KB button. The third step is to
reason with the knowledge in the (compiled) RKB by querying it. Queries can
be typed directly in the text area or loaded from local or remote files. Queries
are evaluated via the Query KB button and answers to the queries are output
in table format in the feedback area.

2.2 Defining Rough Relations in RoSy

We start with presenting the notion of rough sets used in our framework [3, 5].
Consider an information system I = (U, A), in the sense of [6], where U is a
universe of objects and A is a set of attributes. Every object in U is associated
with a tuple of conditional attributes. We assume that such a tuple is the only
way of referring to an object. Hence, different individuals described by the same
tuple are indiscernible. For simplicity, we write t to designate a general tuple
〈t1, . . . , tn〉. Let k be a positive integer. A pair t : k is called a supported tuple,
where k is called the support. Intuitively, t : k represents k individuals which all
have their conditional attribute values as indicated by the tuple t. A rough set
(or rough relation2) S is a pair of sets (S,¬S) of supported tuples, such that
for any tuple t at most one supported tuple t : k appears in each of the sets S

2 The expressions “rough set” and “rough relation” are used interchangeably in this
paper.

RoSy: A Rough Knowledge Base System 51

and ¬S3. An element t : k ∈ S or t : k ∈ ¬S indicates that the indiscernibility
class described by t belongs to the upper approximation of a rough set S or
¬S, respectively, and that this class contains k > 0 individuals that are positive
examples of the concept described by S or ¬S.

The lower approximation and the boundary region of a rough set S is defined
as:

S = {t : k1 ∈ S | ∀ k2 > 0, t : k2 /∈ ¬S} (1)

S = {t : k1 : k2 | ∃ k1, k2 > 0, t : k1 ∈ S and t : k2 ∈ ¬S} (2)

A decision table D = (U, A = {a1, . . . , an}, {d}), where d /∈ A is a binary
decision attribute, represents a rough set D = (D,¬D). Any decision table can
be encoded by rough facts that describe the rows in the table. A rough fact
describes a tuple in the upper approximation of a rough relation D and is in one
of the following forms:

upper(d(t1,...,tn)) : k. (3)
upper(∼d(t1,...,tn)) : k. (4)

where the predicate symbols d and ∼d denote the positive and negative outcome
of the decision attribute respectively, each ti (1 ≤ i ≤ n) is an attribute value
corresponding to attribute ai, and k denotes the support of the tuple.

As an example, consider decision table Walk [6] and its corresponding rough
facts encoding rough relation Walk in Table 1.

Table 1. Decision table Walk and its corresponding collection of rough facts defining

rough relation Walk

Age LEMS Walk

o1 16to30 50 Yes ⇒ upper(walk(16to30,50)) : 1.

o2 16to30 0 No ⇒ upper(∼walk(16to30,0)) : 1.

o3 16to30 26to49 Yes ⇒ upper(walk(16to30,26to49)) : 1.

o4 31to45 1to25 No ⇒ upper(∼walk(31to45,1to25)) : 1.

o5 31to45 1to25 Yes ⇒ upper(walk(31to45,1to25)) : 1.

o6 46to60 26to49 No
}

⇒ upper(∼walk(46to60,26to49)) : 2.
o7 46to60 26to49 No

Note that objects o6 and o7 are indiscernible and they belong to the same
decision class, which yields the support 2. From Table 1 it is easy to see that:

Walk = {〈16to30,50〉 : 1, 〈16to30,26to49〉 : 1} (5)
¬Walk = {〈16to30,0〉 : 1, 〈46to60,26to49〉 : 2} (6)

Walk = {〈31to45,1to25〉 : 1 : 1} (7)

3 Intuitively, this restriction requires that the support of each tuple t is specified only
once, rather than as the sum of different supports.

52 R. Andersson et al.

Rough facts explicitly define the upper approximation of a rough relation.
However, the lower approximation and the boundary region of that relation are
implicitly derived from (1) and (2). RoSy also allows specific regions of rough
relations to be defined implicitly by regions of other rough relations. This can
be accomplished by rough clauses.

Consider again decision table Walk in Table 1. Its corresponding rough rela-
tion Walk can be used to define a new rough relation Walk2, which corresponds
to Walk but ignores the attribute Age. The following rough clauses define Walk2 :

upper(walk2(LEMS)) :-[1,_] upper(walk(Age,LEMS)). (8)
upper(∼walk2(LEMS)) :-[1,_] upper(∼walk(Age,LEMS)). (9)

A rough clause is an implication on the general form Head ← Body, e.g.
upper(walk2(LEMS))← upper(walk(Age,LEMS))., meaning that the tuples of
Walk are defined to be members of Walk2. The body and head of clause (8) con-
tain rough literals that denote upper approximations of rough relations. A head
rough literal refers to the rough relation being defined and can denote either the
upper or lower approximation of that relation, while the body can contain one
or more rough literals that can also denote boundary regions. A general rough
literal is on the form reg(p(T1,. . .,Tn)) , where p (possibly negated) denotes a
rough relation P, reg ∈ {upper, lower, boundary}, and Ti (1 ≤ i ≤ n) denotes
an attribute term representing attribute i in that relation. Attribute terms can
either be constants, starting with lower-case letters or digits, or variables, start-
ing with upper-case letters. A constant denotes a specific attribute value, e.g.
16to30, while a variable can denote any attribute value in the domain of the
corresponding attribute, e.g. variable Age above can denote any of the values
16to30, 31to45, or 46to60.

Besides rough literals, certain quantitative measures, such as support (supp),
accuracy (acc), coverage (cov), and strength (strength) can optionally be in-
cluded in the body as constraints. All variables occurring as their arguments
should also appear in some rough literal in the body.

The body and the head of a rough clause is separated by the implication
operator :-[τ,F]. F is the support-combining function sum, min or max, that
specifies how the support of the newly defined rough relation is obtained from
the support of the rough relations in the body of the clause. If the body only
has one rough literal then F is auxiliary and often set to ([τ,_]). The constant
τ ∈ [0, 1] (often set to 1) is a rational number representing the trust in the body
of the clause. The trust is the fraction of the calculated support of the body that
should be considered as support for the rough region being defined.

A rough clause defining the lower approximation of a rough relation must
fulfill condition (1). If the user tries to define a rough relation P such that a
tuple t ∈ P and t ∈ ¬P then, RoSy reports a model failure [4], the current
compilation stops, and the definition is retracted. For more details see [4].

RoSy: A Rough Knowledge Base System 53

2.3 Querying RoSy

RoSy provides a rough query language for retrieving information about defined
rough relations. For instance, it may be desirable to monitor the changes in the
regions of Walk when excluding the attribute Age. Such information may be
retrieved by, for example, asking the following rough query.

boundary(walk2(LEMS)), K1 = supp(walk2(LEMS)), K2 = supp(∼walk2(LEMS)).

The above compound query asks for all the tuples in the boundary region of
Walk2 and their support. In other words, the query requests all instantiations
of the variables LEMS, K1 and K2 for the tuples in the boundary of Walk2. The
received answer is given below.

K1 K2 LEMS
1 1 1to25
1 2 26to49

The answer states that tuples 〈1to25〉 : 1 : 1
and 〈26to49〉 : 1 : 2 are members of Walk2.

A rough query can be any combination of rough literals and quantitative
measures (constraints or assignments). Moreover,RoSy provides a classification
procedure written on the form K = classify(p(T1,. . .,Tn)), where K denotes
a variable to be instantiated with the classification results, p denotes some (de-
fined) rough relation P, and Ti (1 ≤ i ≤ n) denotes an attribute term representing
attribute i of P. The classification query requests a prediction for the decision
class to which a new individual described by tuple 〈T1,. . .,Tn〉 may belong. The
answer to such a query is either yes, no or unknown together with the certainty
of the prediction. For more details see [3].

A rough query can either be ground (all attribute terms are constants) or
non-ground (some attribute terms are variables). If a query is ground then it
requests the truth value, yes or no, of the query. If the query on the other hand
is non-ground then it requests all instantiations of the attribute variables in the
query that make it true.

3 A Medical Informatics Application in RoSy

We now illustrate the use of RoSy with a data set that previously was analyzed
with classical rough sets in [7].

Study [8] has shown that the single most important independent predictor
for future hard cardiac events (cardiac death or non-fatal myocardial infarction)
is an abnormal scintigraphic scan pattern. However, performing such a test is
expensive, and may sometimes be redundant with respect to making a prognosis.
It is therefore desirable to identify patients who are in need of a scintigraphic
scan and avoid it for patients who can be prognosticated without such a test.

Table 2 describes information about patients observed in [8]4. A group of 417
patients has been examined and each patient has an associated set of medical
4 The number of attributes were reduced by Komorowski and Øhrn in [7] from the

original data in [8].

54 R. Andersson et al.

Table 2. Attribute definitions

Attribute Definition

Age > 70 years old
Oldmi Prior Infarction
Hypert Hypertension
Dm Diabetes
Smok Smoking
Chol Hypercholesterolemia
Gender Male or female
Hfmed History of dec. cordis
Angp History of angina
Apstress Angina during stress
Stt Level of ST-T changes
Scanabn Abnormal scintigraphic scan
Deathmi Cardiac death or infarction

information. Attribute Deathmi is the decision attribute. The data is captured
by rough relation Deathmi that is encoded by 335 rough facts.

Following the approach suggested in [7], identification of the patients who are
in need of a scintigraphic scan requires monitoring changes in Deathmi when
considering only the set of attributes A \ {Scanabn}, i.e. removing the attribute
Scanabn. Next, we show how the problem can be formulated and solved inRoSy.
A detailed comparison between our approach and the approach by [7] is outside
the limits of this paper, but can be found in [3].

3.1 Avoiding the Expensive Test

The knowledge of a scintigraphic scan outcome is strictly required for the pa-
tients for whom excluding conditional attribute Scanabn causes migration into
the boundary region from either Deathmi or ¬Deathmi . In the following rough
clauses in Fig. 2, we shorten the sequence of attributes for readability reasons,
e.g. we write Age,. . . ,Scanabn instead of Age,Oldmi,Hypert,Dm,Smok,Chol,
Gender,Hfmed,Angp,Apstress,Stt,Scanabn5.

First, the set of attributes is reduced to not include Scanabn. The new rough
relations D and its explicit negation ¬D are defined by Deathmi, ignoring the
last attribute, through rough clauses (10) and (11). The set of patients migrating
into the boundary region of D from either Deathmi or ¬Deathmi corresponds
to the rough relation Migrate defined by (12) and (13). These clauses state that
the set of migrating individuals are the patients who are members of Deathmi
(clause (12)) or ¬Deathmi (clause (13)) and also members of D. If a patient is
captured by either of these rules, one cannot make a reliable prognosis of future
cardiac events without including the knowledge of the outcome of a scintigraphic
scan. Rough clauses (14), (15) and (16) capture the set of non-migrating patients.
Clause (14) captures those patients who were originally in the boundary region of

5 This kind of abbreviation is, however, not allowed in the RoSy system.

RoSy: A Rough Knowledge Base System 55

upper(d(Age,. . .,Stt)) :-[1,_] upper(deathmi(Age,. . .,Stt,Scanabn)). (10)

upper(∼d(Age,. . .,Stt)) :-[1,_] upper(∼deathmi(Age,. . .,Stt,Scanabn)). (11)

upper(migrate(Age,. . .,Stt)) :-[1,min] boundary(d(Age,. . .,Stt)), (12)

lower(deathmi(Age,. . .,Stt,Scanabn)).

upper(migrate(Age,. . .,Stt)) :-[1,min] boundary(d(Age,. . .,Stt)), (13)

lower(∼deathmi(Age,. . .,Stt,Scanabn)).

upper(∼migrate(Age,. . .,Stt)) :-[1,sum] (14)

upper(deathmi(Age,. . .,Stt,Scanabn)),

upper(∼deathmi(Age,. . .,Stt,Scanabn)).

upper(∼migrate(Age,. . .,Stt)) :-[1,_] lower(d(Age,. . .,Stt)). (15)

upper(∼migrate(Age,. . .,Stt)) :-[1,_] lower(∼d(Age,. . .,Stt)). (16)

Fig. 2. A rough program for identification of migrating patients

Deathmi. These patients obviously remain in the boundary region after removing
the Scanabn attribute. sum is used for combining the support of those tuples t
such that t : k1 ∈ Deathmi and t : k2 ∈ ¬Deathmi, into sum(k1, k2) = k1 +k2,
since k1 + k2 is the total number of individuals in the indiscernibility class t.

We want to know for which patients the scintigraphic scan test is needed for
a reliable prognosis. The answer to the following query is given in Table 3.

upper(migrate(Age,. . .,Stt)),
K1 = strength(migrate(Age,. . .,Stt)),
K2 = strength(∼migrate(Age,. . .,Stt)).

For which patients is it useful to request
the scintigraphic scan and what is the
percentage of patients for whom the test
is needed?

Table 3. Migrating patients

K1 K2 A
g
e

O
ld

m
i

H
y
p
e
rt

D
m

S
m

o
k

C
h
o
l

G
e
n
d
e
r

H
fm

e
d

A
n
g
p

A
p
st

re
ss

S
tt

0.0024 0.0073 0 0 0 0 0 0 0 0 0 0 0
0.0024 0.0049 0 0 0 0 0 0 1 1 1 2 0
0.0049 0.0000 0 1 0 0 0 0 1 0 0 0 0

For any tuple t, strength(migrate(t)) (strength(¬migrate(t))) repre-
sents the proportion of patients of the universe who belong to the indiscernibility
class described by t and have positive (negative) outcome for migrate. Hence,
the percentage of patients for whom the scintigraphic test is needed can be
computed by the formula
Φ = 100 · ∑

t ∈ Migrate

(strength(migrate(t)) + strength(¬migrate(t))).

56 R. Andersson et al.

upper(deathmiApprox(Attrs)) :-[1,_] lower(deathmi(Attrs)). (17)

upper(∼deathmiApprox(Attrs)) :-[1,_] lower(∼deathmi(Attrs)). (18)

lower(deathmiApprox(Attrs)) :-[1,sum] upper(deathmi(Attrs)), (19)

upper(∼deathmi(Attrs)), acc(deathmi(Attrs)) >= 0.7.

lower(∼deathmiApprox(Attrs)) :-[1,sum] upper(deathmi(Attrs)), (20)

upper(∼deathmi(Attrs)), acc(deathmi(Attrs)) =< 0.3.

upper(deathmiapprox(Attrs)) :-[1,_] upper(deathmi(Attrs)), (21)

acc(deathmi(Attrs)) > 0.3, acc(deathmi(Attrs)) < 0.7.

upper(∼deathmiapprox(Attrs)) :-[1,_] upper(∼deathmi(Attrs)), (22)

acc(deathmi(Attrs)) > 0.3, acc(deathmi(Attrs)) < 0.7.

Fig. 3. A rough program approximating Deathmi

The answer indicates that if only the migrating patients, given by Table 3,
undergo the expensive scintigraphic scan, then one may expect to avoid the
test for approximately 98% of all the patients. Non-migrating patients who are
members of D cannot be reliably prognosticated. For these patients it may still
be needed to perform the scintigraphic scan procedure, if that is the opinion of
a medical expert.

3.2 VPRSM in RoSy

Quantitative measures in the body of rough clauses can be used as constraints
to build more generalized rough approximations of a relation in the same spirit
as with precision control parameters in the variable precision rough set model
(VPRSM) [9], as discussed in [5]. This means that it is possible to define new
rough relations by other ones stating that a certain constraint must be fulfilled.
The new rough relation DeathmiApprox, see Fig. 3, can be defined by the bound-
ary region of Deathmi and the constraint stating that the accuracy of Deathmi
should be above a certain threshold, say 70% (clause (19)). ¬DeathmiApprox is
then defined by the boundary region of Deathmi and the constraint stating that
the accuracy of Deathmi should be below 30% (clause (20)). In the rough clauses
of Fig. 3, we write Attrs to denote the sequence Age,Oldmi,Hypert,Dm,Smok,
Chol,Gender,Hfmed,Angp,Apstress,Stt,Scanabn6.

Rough clauses (17) and (18) state that the indiscernibility classes in Deathmi
and ¬Deathmi are members of the upper approximation of respective approx-
imate rough relation. The decision rules corresponding to these indiscernibility
classes have 100% accuracies and are therefore included in the same region of the
new rough relation. Rough clauses (21) and (22) state that any indiscernibility
class t in the boundary such that 0.3 < acc(deathmi(t)) < 0.7 remains in
the boundary.
6 As previously, such a notation is used here only for readability reasons and is not

allowed in the RoSy system.

RoSy: A Rough Knowledge Base System 57

To see that the previously defined DeathmiApprox in fact approximates the
rough relation Deathmi one can ask the following query to RoSy.

lower(∼deathmiApprox(Age,. . .,Scanabn)),
upper(deathmi(Age,. . .,Scanabn)),
K1 = acc(∼deathmi(Age,. . .,Scanabn)),
K2 = acc(deathmi(Age,. . .,Scanabn)).

Which indiscernibility classes are
both in ¬DeathmiApprox and in

Deathmi, and what are the corre-
sponding accuracies?

The answer, given in Table 4, shows that two indiscernibility classes of
Deathmi are members of the concept ¬DeathmiApprox. Since K2 ≤ 0.3, by rough
clause (20), those classes are included in ¬DeathmiApprox.

Table 4. Patients who are members of ¬DeathmiApprox and Deathmi

K1 K2 A
g
e

O
ld

m
i

H
y
p
e
rt

D
m

S
m

o
k

C
h
o
l

G
e
n
d
e
r

H
fm

e
d

A
n
g
p

A
p
st

re
ss

S
tt

S
c
a
n
a
b
n

0.8000 0.2000 0 1 0 0 0 0 1 0 0 1 0 1
0.8000 0.2000 0 1 1 0 0 0 1 0 0 0 0 1

4 Conclusions

This paper presents an overview of a system, called RoSy, that allows users to
create knowledge bases of vague concepts. The main novel aspect of this system
is that concepts can be represented by intensionally defined rough relations.

The main strengths of RoSy can be summarized as follows.

• RoSy makes it possible to capture and to integrate in a uniform way vague
knowledge obtained directly from experimental data and encoded as rough
facts with domain or expert knowledge expressed as rough clauses. This
contrasts with most of current rough set techniques that only allow definition
of (vague) concepts to be obtained from experimental data.

• The expressive power of RoSy makes it possible to formulate in the same
language several useful techniques and extensions to rough sets reported in
the literature, such as [7, 9]. Section 3 illustrates this point with two concrete
examples.

Another important aspect of RoSy is the possibility of using queries to re-
trieve information about the defined rough sets and patterns implicit in the
data.

The functionalities of RoSy can be improved in several ways. Firstly, RoSy
does not handle recursive rough programs. This extension requires compilation
of rough programs to extended logic programs whose semantics is captured by

58 R. Andersson et al.

paraconsistent stable models [3]. Secondly, the query language may need exten-
sions. For instance, assume that danger(Roadcond, Speed) is a rough concept
indicating whether a traffic situation is dangerous in terms of road conditions
(e.g. ice, wet) and vehicle speed (e.g. high, medium). The user may want to
find out whether for an icy road, it is definitely dangerous to drive at any speed
(based on this information a road may then be temporarily closed for safety
reasons). The actual query capabilities of RoSy do not allow a direct formula-
tion of this query. Thirdly, RoSy may be extended to find candidate hypothesis
that explain observed facts, given a rough knowledge base. In this way we could
combine abductive reasoning with rough relations. A possible application is rea-
soning about incomplete networks of chemical reactions represented in a rough
knowledge base. Exploration of RoSy on a wide range of applications is crucial
for further demonstration of its usefulness and for making relevant improve-
ments. Among others, rough mereology [10] applications seem to be promising
in that respect.

References

[1] Pawlak, Z.: Rough sets. International Journal of Computer and Information
Sciences 11 (1982) 341–356

[2] Doherty, P., �Lukaszewicz, W., Sza�las, A.: CAKE: A computer-aided knowledge
engineering technique. Proceedings of the 15th European Conference on Artificial
Intelligence ECAI’2002 (2002) 220–224

[3] Vitória, A.: A framework for reasoning with rough sets. Licentiate thesis,
Linköping University, Dept. of Science and Technology (2005) LiU-TEK-LIC-
2004:73, Thesis No. 1144.

[4] Andersson, R.: Implementation of a rough knowledge base system supporting
quantitative measures. Master’s thesis, Linköping University (2004)

[5] Vitória, A., Damásio, C.V., Ma�luszyński, J.: Toward rough knowledge bases
with quantitative measures. In Tsumoto, S., Slowinski, R., Komorowski, H.J.,
Grzymala-Busse, J.W., eds.: Rough Sets and Current Trends in Computing. Vol-
ume 3066 of Lecture Notes in Computer Science., Springer (2004) 153–158

[6] Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial.
In Pal, S., Skowron, A., eds.: Rough-Fuzzy Hybridization: A New Method for
Decision Making. Springer Verlag, Singapore (1998) 3–98

[7] Komorowski, J., Øhrn, A.: Modelling prognostic power of cardiac tests using
rough sets. Artificial Intelligence in Medicine 15 (1999)

[8] Geleijnse, M., Elhendy, A., van Domburg, R.: Prognostic value of dobutamine-
atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with
chest pain. J Am Coll Cardiol 28 (1996) 447–454

[9] Ziarko, W.: Variable precision rough set model. Journal of Computer and Systems
Science 46 (1993) 39–59

[10] Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set
approach to computation. Journal of Computational Intelligence 17 (2001) 472–
492

	Introduction
	A Knowledge Base System for Rough Sets
	The Online User Interface
	Defining Rough Relations in \rosy
	Querying \rosy

	A Medical Informatics Application in \rosy
	Avoiding the Expensive Test
	VPRSM in \rosy

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

