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Abstract. We present a rough set approach to vague concept approxi-
mation within the adaptive learning framework. In particular, the role of
extensions of approximation spaces in searching for concept approxima-
tion is emphasized. Boundary regions of approximated concepts within
the adaptive learning framework are satisfying the higher order vague-
ness condition, i.e., the boundary regions of vague concepts are not crisp.
There are important consequences of the presented framework for re-
search on adaptive approximation of vague concepts and reasoning about
approximated concepts. An illustrative example is included showing the
application of Boolean reasoning in adaptive learning.
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1 Introduction

There is a long debate in philosophy on vague concepts [2]. Nowadays, computer
scientists are also interested in vague (imprecise) concepts. Lotfi Zadeh [20] in-
troduced a very successful approach to vagueness. In this approach, sets are
defined by partial membership in contrast to crisp membership used in the clas-
sical definition of a set. Rough set theory [4] expresses vagueness not by means
of membership but by employing the boundary region of a set. If the boundary
region of a set is empty it means that a particular set is crisp, otherwise the set
is rough (inexact). The non-empty boundary region of the set means that our
knowledge about the set is not sufficient to define the set precisely. A discussion
on vagueness in the context of fuzzy sets and rough sets can be found in [§].
In this paper some consequences on understanding of vague concepts caused by
inductive extensions of approximation spaces and adaptive concept learning are
outlined. This paper is an extension of [I0]. In particular, we discuss a problem
of adaptive learning of concept approximation assuming that learning is per-
formed in a dynamic environment with many concepts that are linked by vague
dependencies.
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2 Approximation Spaces and Their Inductive Extensions

In [4] any approximation space is defined as a pair (U, R), where U is a universe
of objects and R C U x U is an indiscernibility relation defined by an attribute
set.

The lower approximation, the upper approximation and the boundary region
are defined as crisp sets. It means that the higher order vagueness condition is
not satisfied [2]. We will return to this issue in Section Bl

We use the definition of approximation space introduced in [11]. Any approx-
imation space is a tuple AS = (U, I,v), where U is the universe of objects, I
is an uncertainty function, and v is a measure of inclusion called the inclusion
function, generalized in rough mereology to the rough inclusion [TTIT3].

In this section, we consider the problem of approximation of concepts over a
universe U*, i.e., subsets of U*. We assume that the concepts are perceived only
through some subsets of U*, called samples. This is a typical situation in machine
learning, pattern recognition, or data mining [I]. In this section we explain the
rough set approach to induction of concept approximations. The approach is
based on inductive extension of approximation spaces.

Let U C U* be a finite sample and let Cy = C N U for any concept C' C
U*. Let AS = (U,I,v) be an approximation space over the sample U. The
problem we consider is how to extend the approximations of Cy defined by AS
to approximation of C' over U*. We show that the problem can be described as
searching for an extension AS* = (U*,I*,v*) of the approximation space AS
relevant for approximation of C'. This requires showing how to induce values of
the extended inclusion function to relevant subsets of U* that are suitable for
the approximation of C. Observe that for the approximation of C, it is enough
to induce the necessary values of the inclusion function v* without knowing the
exact value of I*(x) C U* for x € U*.

We consider an example for rule-based classifiers. However, the analogous
considerations for k-NN classifiers, feed-forward neural networks, and hierarchi-
cal classifiers [I]) show that their construction is based on the inductive inclusion
extension [T3/10].

Let AS be a given approximation space for Cyy and let us consider a language
L in which the neighborhood I(z) C U is expressible by a formula pat(z), for
any x € U. It means that I(z) = ||pat(x)||v C U, where ||pat(x)| denotes the
meaning of pat(zx) restricted to the sample U. In the case of rule-based classifiers,
patterns of the form pat(z) are defined by feature value vectors.

We assume that for any new object € U*\U, we can obtain (e.g., as a result
of a sensor measurement) a pattern pat(z) € L with semantics ||pat(x)||v- C U*.
However, the relationships between information granules over U*, e.g., ||pat(x)]| v~
and ||pat(y)||u~, for different z,y € U*, are known only to a degree estimated by
using relationships between the restrictions of these sets to the sample U, i.e.,
between sets ||pat(z)||o~ NU and ||pat(y)|v- NU.

The set of patterns {pat(z) : x € U} is usually not relevant for approxima-
tion of the concept C' C U*. Such patterns can be too specific or not general
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enough, and can directly be applied only to a very limited number of new sam-
ple elements. However, by using some generalization strategies, one can search
in a family of patterns definable from {pat(x) : x € U} in L, for such new pat-
terns that are relevant for approximation of concepts over U*. Let us consider
a subset PATTERNS(AS,L,C) C L chosen as a set of pattern candidates
for relevant approximation of a given concept C. For rule based classifiers one
can search for such candidate patterns among sets definable by subsequences
of feature value vectors corresponding to objects from the sample U. The set
PATTERNS(AS, L,C) can be selected using some quality measures evaluated
on meanings (semantics) of patterns from this set restricted to the sample U
(like the numbers of examples from the concept Cy and its complement that
support a given pattern). Then, on the basis of properties of sets definable by
these patterns over U, we induce approximate values of the inclusion function
v*(X,C) on subsets of X C U* definable by any such pattern and the concept
C'. Next, we induce the value of v* on pairs (X,Y) where X C U* is definable
by a pattern from {pat(z):xz € U*} and Y C U* is definable by a pattern from
PATTERNS(AS,L,C).

Finally, for any object x € U* \ U we induce the degree v*(||pat(x)|v~,C)
applying a conflict resolution strategy Conflict res (e.g, a voting strategy) to
two families of degrees:

{v*(|lpat(z)||u~, |pat||u+) : pat € PATTERNS(AS, L,C)}, (1)

{v*(|lpat||v~,C) : pat € PATTERNS(AS,L,C)}. (2)

Values of the inclusion function for the remaining subsets of U* can be chosen in
any way — they do not have any impact on the approximations of C. Moreover,
observe that for the approximation of C' we do not need to know the exact values
of uncertainty function I* — it is enough to induce the values of the inclusion
function v*. The defined extension v* of v to some subsets of U* makes it possible
to define an approximation of the concept C' in a new approximation space AS*.

Observe, that the value v*(I* (), C') of the induced inclusion function for any
object x € U* — U is based on collected arguments for and against belonging of
x to C. In this way, the approximation of concepts over U* can be explained as
a process of searching for relevant approximation spaces, in particular inducing
relevant approximation spaces.

3 Approximate Reasoning About Vague Concepts Based
on Adaptive Learning and Reasoning

We have recognized that for a given concept C' C U* and any object x € U*,
instead of crisp decision about the relationship of I*(x) and C, we can gather
some arguments for and against it only. Next, it is necessary to induce from
such arguments the value v*(I(x), C') using some strategies making it possible
to resolve conflicts between those arguments [IJI2]. Usually some general princi-
ples are used such as the minimal length principle [I] in searching for algorithms
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computing an extension v*(I(z), C'). However, often the approximated concept
over U* —U is too compound to be induced directly from v(I(z),C). This is the
reason that the existing learning methods can be not satisfactory for inducing
high quality concept approximations in case of complex concepts [I7]. There have
been several attempts trying to omit this drawback. One of them is the incremen-
tal learning used in machine learning and also by the rough set community (see,
e.g., [18]). In this case, an increasing sequence of samples Uy C ... C U, C ... is
considered and the task is to induce the extensions v(*), ..., v(®) . of inclusion
functions. Still we know rather very little about relevant strategies for induc-
ing such extensions. Some other approaches are based on hierarchical (layered)
learning [14] or reinforcement learning [16]. However, there are several issues,
important for learning that are not within the scope of these approaches. For
example, the target concept can gradually change over time and this concept
drift is a natural extension for incremental learning systems toward adaptive
systems. In adaptive learning it is important not only what we learn but also
how we learn, how we measure changes in a distributed environment and induce
from them adaptive changes of constructed concept approximations. The adap-
tive learning for autonomous systems became a challenge for machine learning,
robotics, complex systems, and multiagent systems. It is becoming also a very
attractive research area for the rough set approach.

In general, from given information about the approximated concept C', the
approximation space AS related to this information is constructed and next an
extension AS* of AS is induced. The induced approximations are only tempo-
rary, usually not matching exactly the approximated concept (even if we assume
that the concept can be defined but its definition is unknown during learning).
This means that the approximations will be necessary to change if some new
arguments for and against will be gathered and an information or knowledge
about the approximated concept will be updated. Hence, we should express a
risk in prediction of decisions on the basis of the induced classification algorithms
(classifiers) based on AS* rather than exact decisions only. Such risk depends on
negotiation strategies between arguments for and against, searching strategies
for relevant patterns used for concept approximation, etc. This aspect is related
to the higher order of vagueness [2]. Its consequence is that lower approxima-
tions, upper approximations, and boundary regions for vague concepts are not
crisp.

Let us consider now some examples of adaptive concept approximation schemes.

Ezample 1. In Figure [Il we present an example of adaptive concept approxi-
mation scheme Sch. By Inf(C) and Inf'(C) we denote information about the
approximated concept (e.g., decision table for C' or training sample) in different
(relevant) moments of timdl. ENV denotes an environment, DS is an operation
constructing an approximation space ASy, (c) from a given sample Inf(C). IN
is an extension operation transforming the approximation space ASr, (o) to an
approximation space AS* for the concept C; Q) denotes a quality measure for the

! For simplicity, in Figure [[l we do not present time constraints.
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Fig. 1. An example of adaptive concept approximation scheme

induced approximation space AS* on a new sample Inf’'(C). STR is a strategy
that adaptively changes the approximation of C' by modifying @, IN, and DS.

The scheme Sch describes an adaptive strategy ST modifying the induced
approximation space AS™* with respect to the changing information about the
concept C'. To explain this in more detail, let us first assume that a proce-
dure newc(ENV,u) is given returning from the environment FNV and cur-
rent information u about the concept C' a new piece of information about this
concept (e.g., an extension of a sample u of C). In particular, Inf(C) =
newc(ENV, ) and Inf*+9)(C) = newc(ENV, Inf®)(C)) for k = 0,.... In
Figure @ Inf'(C) = InfM(C). Next, assuming that operations Q© = Q,
DS© = DS, IN© = IN are given, we define Q*+1D  DSE+D = fN(K+1)
DSEHD (In f*+1 (), and AS* D for k=0,..., by

(QUHD, DS INUHY) = (3)
= STR(QW(AS*®)  Inf*+D (), QW IN® DSH) Ag*k) AS}’;)M )
ASWEL L o) = DSV (Inf D (C)); ASTEHD = INGED (ASEED ).

One can see that the concept of approximation space considered so far should
be substituted by a more complex one represented by the scheme Sch making
it possible to generate a sequence of approximation spaces AS*®) for k=1,...
derived in an adaptive process of approximation of the concept C'. One can also
treat the scheme Sch as a complex information granule [12].

One can easily derive more complex adaptive schemes with metastrategies that
make it possible to modify also strategies.

Example 2. In Figure 2] there is presented an idea of a scheme where a metas-
trategy M .S can change adaptively also strategies STR; in schemes Sch; for
1 =1,...,n where n is the number of schemes. The metastrategy M S can be,
e.g., a fusion strategy for classifiers corresponding to different regions of the con-
cept C. Even more compound scheme can be obtained by considering strategies
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Fig. 2. An example of metastrategy in adaptive concept approximation
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Fig. 3. An example of adaptive plan scheme

based on cooperation among the schemes for obtaining concept approximations
of high quality. In Figure[Blan adaptive scheme for plan modification is presented.
PLAN is modified by a metastrategy M .S that adaptively changes strategies in
schemes Sch; where i = 1,...,n. This is performed on the basis of the derived
approximation spaces AS; induced for concepts that are guards of plan instruc-
tions and on the basis of information In f(x) about the state x of the environment
ENV. The generated approximation spaces together with the plan structure are
adaptively adjusted to make it possible to achieve plan goals.

The above examples are showing that the context in which sequences of
approximation spaces are generated can have complex structure represented by
relevant adaptive schemes.

There are some important consequences of our considerations for research
on approximate reasoning about vague concepts. It is not possible to base such
reasoning only on static models of the concepts (i.e., approximations of given con-
cepts [4] or membership functions [20] induced from a sample available at a given
moment) and on multi-valued logics widely used for reasoning about rough sets
or fuzzy sets (see, e.g., [6I2003)21]). Instead of this we need evolving systems of
logics that in open and changing environments will make it possible to gradually
acquire knowledge about approximated concepts and reason about them. Along
this line an important research perspective arises. Among interesting topics are
strategies for modeling of networks supporting such approximate reasoning (e.g.,
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AR schemes and networks [I2] can be considered as a step toward developing
such strategies), strategies for adaptive revision of such networks, foundations
for autonomous systems based on vague concepts.

Some recently reported results on rough sets seem to be important for devel-
oping foundations for adaptive systems. In particular, we would like to mention
approximate reasoning in distributed environments based on rough mereological
and granular approaches (see, e.g., [TI12]) and investigations on reasoning about
changes based on rough sets and granular computing.

4 An Example: Inducing Concept Descriptions Consistent
with Constraints Specified by Experts

From our considerations it follows that adaptive learning should be performed
in a dynamic environment in which different vague concepts are approximated
and it is necessary to preserve constraints among them. In this section we con-
sider an illustrative example that can be treated as a starting point to further
investigations on adaptive learning.

We consider together with facts, which can be represented using decision
tables, some dependencies between concept approximations. These dependencies
are specified by experts and represent their domain knowledge. An example of
such dependency is “if road is slippery and the speed of the car is high then
there is a high chance that the accident will appear”. A question arises how to
induce the concept approximations using together the facts represented in data
tables and such dependencies. One can develop strategies for inducing decision
rules preserving the dependencies between approximated concepts or for tuning
the generated decision rules to preserve such dependencies. We apply another
approach based on some ideas of non-monotonic reasoning. We assume that
together with data tables there is given expert knowledge specified by constraints
or dependencies between approximated concepts. For example, let us consider
for three decisions dy, do, d3 the following constraint:

— if dy =high and dy =medium then ds = 1; or
— if with certainty di =high and one can not exclude do =medium then with
certainty ds = 1.

We propose a method based on Boolean reasoning for tuning the induced
from data table sets of rules (received by rough set and Boolean reasoning meth-
ods, e.g., in the form of so called minimal rules) so that the new induced concept
approximations will satisfy the additional constraints specified by experts. These
constraints are in the form of dependencies between approximated concepts (e.g.,
decision classes) or their (lower, upper) approximations or boundary regions. Let
us observe that the phrase with certainty can be expressed by the lower approx-
imation; and the phrase it can not be excluded that the upper approximation of
concepts. Here, we would like to explain the main idea by example.

Ezample 3. Let us consider a decision table presented in Table [l We have the
following minimal decision rules of the decision table:
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Table 1. Decision Table DT

abcd
1 0120
X2 0210
T3 0110
z4 1201
rz5 2101
z6 1101

r:a=0—-d=0; r19: c=2—>d=0; r3: c=1—d=0;
rg: ¢c=0—-d=1; r5: a=1—-d=1; 16: a=2—d=1;

Let us consider the following constraint: non(d = 0Ad = 1). One can see that it is
necessary to resolve conflict between left hand sides of the following pairs of rules:
T1,T4; T2,T5; T2,76; 73,75 and r3,rg. These conflicts arise because conjunctions
of left hand sides of listed pairs of rules are consistent (i.e., they do not include
subformulas of the form a = v A a # v). Hence, a new object can be matched
by such rules and they will vote for different decisions 0 and 1, respectively. Let
us consider the following propositional variables: [i : a # ], [i : a = v] with
the intended meaning left hand side of the rule r; must be extended by a # v,
a = v, respectively. The conflicts can be encoded by the following propositional
formula:

(M:c£0V[d:a#0)A([2:a#1]V[E:c#2)A([2:a#2]V[6:c#2])A
B:a#1)V[B:c#1)A(B:a#2]VI[6:c#1])

For example, the first part of the above formula describes a fact that the conflict
between rules 71,74 can be resolved by extending the left hand side of the rule r;
by ¢ # 0 or by extending the left hand side of the rule r4 by a # 0. By computing
(prime) implicants of this formula one can obtain all possible solutions, i.e., pairs
of rule sets (approximating decision classes corresponding to d = 0 and d = 1)
with resolved conflicts. In particular, let us consider the following implicant of
the formula: [1:c¢#0A[2:a# 1A[2:a# 2] A[3:a# 1] A[3: a # 2]. Hence,
after a simplification, we obtain the following solution, i.e., a pair of rule sets:

ry:a=0ANc=1—-d=0; ry:a=0Ac=2—d=0;and
rg: c=0—>d=1;, r5: a=1—>d=1;, r4: a=2—d=1.

From example it follows that we can obtain different sets of rules resolving
conflicts. One can look for pruning some solutions for conflict resolution using
some criteria such as the rule support or descriptor occurrence frequencies on
the left hand sides of the rules. Next, one can construct classifiers over such sets
of rules and use them for classifying new objects using some fusion strategy.
Another solution can start from generation of a sample of possible solutions
(a family of sets of rules with eliminated conflicts) and next use strategies for
conflict resolving between the sets of rules from the family.
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A more advanced case of adaptive learning of a family of concepts is when
the concepts are learned in a distributed environment consisting of distributed
data tables and an additional data table with examples of “global” states, i.e.,
condition attribute value vectors over all data tables (see, e.g. [15]). Such vectors
represent constraints for coexistence of condition attribute value vectors of data
tables for different concepts. From the data table for global states one can induce
rules representing constraints for local coexistence of attribute vector values from
different data tables. These dependencies can be used as constraints for adaptive
tuning of decision rules induced for different concepts.

For real-life data the formulas for conflict resolving can be large and efficient
heuristics are necessary for solution construction. One can apply some strategies
that have been developed using Boolean reasoning and rough sets [9]. Another
approach can be based on decomposition of formulas using domain knowledge.

5 Conclusions

There are several conclusions from our discussion. Among them are:

1. Recognition of the importance of the inclusion function, generalized in rough
mereology to rough inclusion (see, e.g., [7]). This has been used in investi-
gations of information granule calculi, in particular those based on rough
mereology (see, e.g., [I2I7]) and approximation spaces based on information
granules (see, e.g., [13]).

2. Observation that vague concepts cannot be approximated with satisfactory
quality by static constructs such as induced membership inclusion functions,
approximations or models derived, e.g., from a sample. Understanding of
vague concepts can be only realized in a process in which the induced mod-
els are adaptively matching the concepts in a dynamically changing envi-
ronment. This conclusion seems to have important consequences for further
development of rough set theory in combination with fuzzy sets and other
soft computing paradigms for adaptive approximate reasoning.
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