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Abstract. The article introduces the basic ideas and investigates the
probabilistic version of rough set theory. It relies on both classification
knowledge and probabilistic knowledge in analysis of rules and attributes.
One-way and two-way inter-set dependency measures are proposed and
adopted to probabilistic rule evaluation. A probabilistic dependency mea-
sure for attributes is also proposed and demonstrated to have the mono-
tonicity property. This property makes it possible for the measure to
be used to optimize and evaluate attribute based-representation through
computation of attribute reduct, core and significance factors.

1 Introduction

The rough set theory introduced by Pawlak [5] is concerned with finite universes
and finite set cardinality-based evaluative measures. It lays out the foundations
of the inspiring idea of classification knowledge, in the form of the approximation
space, and of the notion of rough set and its approximations. Typical applica-
tion scenario involves a partially known universe, represented by a set of samples,
based on which rough set-based analysis is performed. The results are then con-
sidered to apply to the whole universe. This kind of approach is common in
probabilistic reasoning, with the probability function used to represent relations
among sets (events). The probability function values can be estimated from dif-
ferent sources, including assumed distribution functions and set frequencies in
a sample. The set frequency estimators of probability theory correspond to set
cardinality-based evaluative measures of rough set theory. This correspondence
was observed quite early in the development of rough set methodology, leading
to a succession of probabilistic generalizations [5-9,13-15] of the original rough
set theory. The rough set theory methodologies provide additional instruments,
originally not present in the probability theory, to conduct deeper analysis of
experimental data and to construct adaptive models of the relations existing in
the universe. The probability theory, on the other hand, contributes the basic
notion of probability and its estimation, distribution evaluative measures, the
notion of probabilistic independence and Bayes’s equations, which together help
to enhance the rough set theory to make it more applicable to real-life problems.

In what follows, the probabilistic version of rough set theory is presented and
investigated, partially based on prior results of related research [7][13][14][9]. In
the presentation, clear distinction is being made between classification knowledge
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and probabilistic knowledge. These two kinds of knowledge are defined in section
2. The probabilistic notion of event independence is generalized in section 3, to
introduce one-way and two-way measures of set dependencies. One of the mea-
sures, the absolute certainty gain, is adopted as a probabilistic rule evaluative
parameter. The probabilistic rules, their evaluation and their computation are
discussed in section 4. In section 5, computation of rules satisfying predefined
certainty requirements is discussed. Elements of the Bayesian rough set model
[7] are introduced in section 6, as a prerequisite to the investigation of proba-
bilistic attribute dependencies in section 8. In section 9, the monotonicity of the
introduced probabilistic attribute dependency measure, called λ-dependency, is
discussed. This leads to the definition of probabilistic reduct, core and signifi-
cance factors for attributes. The characterization of unrelated, or independent
attributes is also provided. Due to space restrictions, the proofs of theorems are
omitted.

2 Classification and Probabilistic Knowledge

The rough set approaches are developed within the context of a universe of
objects of interest U such as, for example, the collection of patients, sounds,
web pages etc. We will assume here that the universe is infinite in general,
but that we have access to a finite sample S ⊆ U expressed by accumulated
observations about objects in S. The sample represents available information
about the universe U . We will say that a subset X ⊆ U occurred if X ∩ S �= ∅,
where X ∩ S is a set of occurrences of X .

We will also assume the knowledge of an equivalence relation, called the
indiscernibility relation on U [5], IND ⊆ U⊗U with finite number of equivalence
classes called elementary sets. The pair (U, IND) is called the approximation
space. The collection of elementary sets will be denoted by IND∗. The ability
to form elementary sets reflects our classification knowledge about the universe
U . In the context of this article, the classification knowledge means that each
elementary set E is assigned a description, denoted as des(E), which specifies
a criterion distinguishing all elements of E from its complement. That is, E =
{e ∈ U : des(e) = des(E)}. Any subset X ⊆ U expressible as a union of
some elementary sets is said to be definable. Otherwise, the set X is undefinable,
or rough[5]. Any non-elementary definable set will be called a composed set.
The classification knowledge is said to be trivial (and useless), if there is only
one elementary set, corresponding to the whole universe U . The classification
knowledge, in the framework of rough set theory, is normally used in the analysis
of a target set X ⊆ U . The target set is usually undefinable. Typical objective
of the rough-set analysis is to form an approximate definition of the target set
in terms of some definable sets.

In the framework of the variable precision rough set model (VPRSM)[14], the
classification knowledge is assumed to be supplemented with the probabilistic
knowledge. It is assumed that all subsets X ⊆ U under consideration in this
article are measurable by a probabilistic measure function P with 0 < P (X) <
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1. That is, they are likely to occur but their occurrence is not certain. The
probabilistic knowledge consists of three parts:

• For each equivalence class E of the relation IND, it is assumed that its
probabilistic measure P (E) is known;

• We assume that the conditional probability P (X |E) of X , for each elemen-
tary set E, is also known;

• The prior probability P (X) of the target set X is known.

All these probabilities can be estimated based on data in a standard way by
taking ratios of cardinalities of sample data.

3 Probabilistic Dependencies Between Sets

In the presence of probabilistic knowledge, it is possible to evaluate the degree of
dependencies between measurable subsets of the universe U . This is particularly
of interest in context of evaluation of rules learned from data [12]. In what
follows, we propose two kinds of measures to evaluate the degree of connection
or dependency between any two sets. The measures can be seen as generalizations
of the well-known notion of probabilistic independence of random events.

The first, one-way dependency measure is concerned with quantifying the
degree of the one-way relation between sets, denoted as Y ⇒ X , where X and
Y are arbitrary measurable subsets of U . For the one-way dependency measure,
the use of function called absolute certainty gain (gabs), is proposed:

gabs(X |Y ) = |P (X |Y ) − P (X)|, (1)

where | ∗ | denotes absolute value function. The one-way dependency represents
the degree of change of the certainty of prediction of X as a result of the oc-
currence of the set Y . In an approximation space, if the set Y is definable then
absolute certainty gain can be computed directly from the available probabilistic
knowledge according to the following:

Proposition 1. If Y is definable in the approximation space (U, IND), then
the absolute certainty gain between sets X and Y is given by:

gabs(X |Y ) =
|∑E⊆Y P (E)P (X |E) − P (X)

∑
E⊆Y P (E)|

∑
E⊆Y P (E)

(2)

The values of the one-way dependency fall in the range 0 ≤ gabs(X |Y ) ≤
max(P (¬X), P (X)) < 1. In addition, let us note that if sets X and Y are
independent in probabilistic sense, that is if P (X ∩ Y ) = P (X)P (Y ) then
gabs(X |Y ) = 0. We may also note that gabs(U |Y ) = 0 and gabs(φ|Y ) = 0,
for any measurable subset Y such that P (Y ) > 0.

The second, two-way dependency measure is concerned with measuring the
degree of the two-way connection between sets, represented by Y ⇔ X , where X
and Y are arbitrary measurable subsets. For the two-way measure, the function
dabs, called absolute dependency gain, is suggested:
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dabs(X, Y ) = |P (X ∩ Y ) − P (X)P (Y )|. (3)

The absolute dependency gain reflects the degree of probabilistic depen-
dency between sets by quantifying the amount of deviation of P (X ∩ Y ) from
probabilistic independence between sets X and Y , as expressed by the product
P (X)P (Y ). Similarly, |P (¬X ∩ Y ) − P (¬X)P (Y )| is a degree of deviation of
the ¬X from total independence with Y . Since P (¬X ∩ Y ) − P (¬X)P (Y ) =
−(P (X ∩ Y ) − P (X)P (Y )), both target set X and its complement ¬X are de-
pendent in the same degree with any measurable set Y .

As in the case of one-way dependency, if the set Y is definable then the abso-
lute dependency gain can be computed directly from the available probabilistic
knowledge, according to the following:

Proposition 2. If Y is definable in the approximation space (U, IND), then
the absolute dependency gain between sets X and Y is given by:

dabs(X, Y ) = |
∑

E⊆Y

P (E)P (X |E) − P (X)
∑

E⊆Y

P (E)| (4)

The one-way and two-way dependencies are connected by dabs(X, Y ) =
P (Y )gabs(X |Y ). It follows that the values of the two-way dependency fall in
the range 0 ≤ dabs(X, Y ) ≤ P (Y )max(P (¬X), P (X)) < P (Y ) < 1. Also
0 ≤ dabs(X, Y ) ≤ P (X)max(P (¬Y ), P (Y )) < P (X) < 1 i.e. 0 ≤ dabs(X, Y ) <
min(P (X), P (Y )). In addition, let us note that if sets X and Y are independent
in probabilistic sense, that is if P (X ∩ Y ) = P (X)P (Y ) then dabs(X, Y ) = 0.
We may also note that dabs(U, Y ) = 0 and dabs(φ|Y ) = 0, for any arbitrary
subset Y such that P (Y ) > 0.

4 Probabilistic Rules

The inter-sets dependency measures introduced in previous section can be used to
evaluate the quality of probabilistic rules [14][12]. In the context of probabilistic
approach to rough set theory, probabilistic rules are formal linguistic expressions
representing relationships between subsets of the universe U . For any definable
subset Y and an arbitrary subset X of the universe U , the probabilistic rule is
a statement des(Y ) → s(X), denoted shortly by rX|Y , where s(X) is a string of
characters used to refer the set X and des(Y ) is a description of the set Y . The
set Y is referred to as rule support set. As opposed to the description of a set,
s(X) is just a reference to a possibly undefinable set, whose description might
be unknown. Since rules of this kind are normally used to determine, or to guess,
the membership of an object in the set X based on knowing that it belongs to
the definable set Y , for obvious reason it does not make much sense dealing with
rules in which X is definable. Consequently, we will assume that the conclusion
part s(X) of the rule rX|Y corresponds to an undefinable set X .

Traditionally, the probabilistic rules are assigned two probabilistic parameters
characterizing the relation between sets X and Y :
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• The rule rX|Y certainty parameter defined as the conditional probability
cert(rX|Y ) = P (X |Y );

• The rule rX|Y generality (also called support) parameter defined as the prob-
ability gen(rX|Y ) = P (Y );

Certainty and generality parameters can be equivalently replaced by certainty
and strength measures, where the strength is defined as str(rX|Y ) = P (X ∩ Y ).
However, rule certainty and generality, or the certainty and strength, do not
completely capture the intuitive perception of rule quality. For example, a rule
with high certainty P (X |Y ) may not be very useful if the prior probability of
X is also high. On the other hand, if the prior probability of X is low, a high
certainty rule will represent a significant increase in the ability to predict X .
Intuitively, such a rule will be very valuable.

To properly represent the degree of certainty increase attributed to a proba-
bilistic rule rX|Y , relative to the prior probability P (Y ), the use of the absolute
certainty gain parameter gabs(rX|Y ) = gabs(X |Y ) is proposed. The absolute cer-
tainty gain represents the degree of increase of the certainty of prediction of X ,
as a result of the occurrence of the set Y . As the absolute certainty gain cannot
be derived from certainty and generality parameters, we propose that probabilis-
tic rules be evaluated in terms of the following three parameters: generality (or
strength), certainty and certainty gain instead of generality and certainty only.

Any elementary set E ∈ IND∗ corresponds to an elementary rule des(E) →
s(X). The strength, certainty and the absolute certainty gain of elementary rules
can be simply obtained from the available probabilistic knowledge. It was shown
in the Proposition 1 that the absolute certainty gain can be computed from the
probabilities associated with the elementary sets. The following Proposition 3
demonstrates that strength and certainty of any probabilistic rule des(Y ) →
s(X) can also be computed in similar way.

Proposition 3. The strength, certainty and absolute certainty gain of the rule
r = des(Y ) → s(X) are respectively given by str(rX|Y ) = P (Y ) =

∑
E⊆Y P (E)

and cert(rX|Y ) = P (X |Y ) =
∑

E⊆Y P (E)P (X|E)
∑

E⊆Y P (E) .

The practical implication from the Propositions 1 and 3 is that once the
basic probabilistic knowledge is estimated from data, there is no need to refer
to the data set again to compute any kind of probabilistic rules and attribute
dependencies.

5 Probabilistic Approximation Regions

In applications related to data mining and machine learning, a common objective
is finding rules that meet predefined level of quality. We show in this section
that rules computed within the context of VPRSM have the quality level in
the form of the certainty gain level requirement imposed through settings of
model parameters. In the VPRSM, the probabilistic knowledge represented by



288 W. Ziarko

the probability estimates associated with elementary sets is used to construct
generalized rough approximations of the target subset X ⊆ U . The defining
criteria are expressed here in terms of conditional probabilities and of the prior
probability P (X) of the target set X . Two certainty control criteria parameters
are used to control degree of required certainty gain in the lower approximations
of the set X or its complement ¬X .

The first parameter, referred to as the lower limit l, satisfying the constraint
0 ≤ l < P (X) < 1, represents the highest acceptable degree of the conditional
probability P (X |E) to include the elementary set E in the negative region of
the set X , i.e. in the positive region of its complement ¬X .

The second parameter, referred to as the upper limit u, satisfying the con-
straint 0 < P (X) < u ≤ 1, defines the positive region of the set X. The upper
limit reflects the least acceptable degree of the conditional probability P (X |E)
to include the elementary set E in the positive region.

The VPRSM is called symmetric if l = 1 − u [13][14]. In this case, with
the precision control parameter denoted as β = u = 1 − l, the negative and
positive regions of the set X, are defined respectively by NEGβ(X) = ∪{E :
P (¬X |E) ≥ β} and POSβ(X) = ∪{E : P (X |E) ≥ β}. Because β > P (X),
then both positive and negative regions can be expressed in terms of absolute
certainty gain: NEGβ(X) = ∪{E : gabs(¬X |E) ≥ β − P (X)} and POSβ(X) =
∪{E : gabs(X |E) ≥ β −P (X)}. Consequently, we can define the positive region
POS(X,¬X) = NEG(X) ∪ POS(X) of the classification (X,¬X) by a single
formula as POSβ(X,¬X) = ∪{E : gabs(X |E) ≥ β − P (X)}

Clearly, the approximation regions for the asymmetric VPRSM [14] can be
also expressed in terms of the absolute gain function. The positive region of the
classification (X,¬X) represents the area of desired absolute certainty gain, as
expressed by the parameter β. Based on the positive region, probabilistic rules
can be computed using any lower approximation-based techniques [8][2][15]. All
these rules will satisfy the imposed minimum absolute certainty gain requirement
β − P (X).

The boundary area is a definable subset of U where the minimum certainty
gain requirement is not satisfied, that is: BNDβ(X,¬X) = ∪{E : gabs(X |E) <
β − P (X)} No probabilistic rule computed from BND(X,¬X) will meet the
minimum absolute certainty gain threshold of β − P (X).

The definable area of the universe U characterized by the total lack of rela-
tionship to the target set X ⊆ U was identified in [14] as the absolute boundary
region of the set X . In the absolute boundary region, every elementary set E
is probabilistically independent from the set X , i.e. P (X ∩ E) = P (X)P (E).
The boundary area can be expressed by using of the absolute dependency gain
function as the criterion: BND∗(X,¬X) = ∪{E : dabs(X |E) = 0}.

The area of the universe characterized by at least some probabilistic connec-
tion with the target set X is called the absolute positive region of the classification
(X,¬X). It can be expressed as POS∗(X,¬X) = ∪{E : dabs(X |E) > 0}. Be-
cause dabs(X |E) > 0 is equivalent to P (X |E) > P (X) or P (X |E) < P (X), the
absolute positive region of the classification (X,¬X) can be broken down into the
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absolute positive region of the set X , POS∗(X) = ∪{E : P (X |E) > P (X)} and
the absolute negative region of the set X , NEG∗(X) = ∪{E : P (X |E) < P (X)}.

The absolute approximation regions form the basis of the Bayesian Rough
Set Model investigated in [7]. They are also useful in the analysis of probabilistic
dependencies between attributes, as demonstrated in the following sections.

6 Elementary, Composed and Binary Attributes

In many applications, the information about objects is expressed in terms of
values of observations or measurements referred to as features. For the purpose
of rough set-based analysis, the feature values are typically mapped into finite-
valued numeric or symbolic domains to form composite mappings referred to
as attributes. A common kind of mapping is dividing the range of values of a
feature into a number of suitably chosen subranges via a discretisation procedure.
Formally, an attribute a is a function a : U → a(U) ⊆ Va, where Va is a
finite set of values called the domain of the attribute a. The size of the domain
of an attribute a, denoted as com(a) = card(Va), will be called a theoretical
complexity of the attribute. The theoretical complexity reflects the maximum
number of values an attribute can take. Each attribute defines a classifications
of the universe U into classes corresponding to different values of the attribute.
That is, each attribute value v ∈ a(U), corresponds the set of objects Ea

v =
a−1(v) = {e ∈ U : a(e) = v}. The classes Ea

v , referred to as a-elementary sets,
form a partition of U . The equivalence relation corresponding to this partition
will be denoted as INDa. We will divide the attributes into two categories:

• The initial, given collection of attributes A, elements of which a ∈ A are
referred to as elementary attributes;

• The composed attributes, which are formed by taking combinations of some
elementary attributes.

The values of a composed attribute are combinations of values of component
elementary attributes. Each composed attribute is a subset of A. For proper
reference between an elementary attribute and its value, we will assume that
composed attributes are ordered. For the sake of consistency, we will also treat
elementary attributes a as single-element subsets of A, {a} ⊆ A, and the empty
subset of A, {} will be interpreted as a trivial attribute, i.e. with only one value
corresponding to the whole universe U . In the context of this assumption, both
elementary and composed attributes C will be perceived in two ways: as sub-
sets C ⊆ A and also as mappings C : U → C(U) ⊆ ⊗a∈CVa, where ⊗ denotes
Cartesian product operator of all domains of attributes in C, the domain of C.
The theoretical complexity of a composed attribute is a product of theoretical
complexities of all its elementary attribute domains, com(C) =

∏
a∈C com(a).

The theoretical complexity of a trivial attribute is one. In practical applications,
the theoretical complexity estimates our ability to learn from example obser-
vations, or the learnability of a classification represented by an attribute. High
theoretical complexity attributes lead to non-learnable classifications.
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The lowest complexity, non-trivial attributes are binary-valued attributes.
Every non-trivial and non-binary attribute can be replaced equivalently by a
collection of binary attributes. The binary attributes are defined for each value
v of the attribute a, by creating a new attribute av such that av(e) = 1 if a(e) = v
and av(e) = 0 if a(v) �= v.

The composed attribute Ba consisting of the binary attributes is equivalent to
the attribute a because it generates the same classification of U as the attribute
a, that is, INDBa = INDa. Using binary elementary attributes has a number of
advantages, including the consistency of representation, ease of implementation
and increased generality of minimal length rules computed by applying the idea
of rough set theory value reduct [5]. Consequently, from now on in this article, we
will assume that all elementary attributes are binary. The composed attributes
are vectors of binary attributes. The theoretical complexity of a composed at-
tribute containing n binary attributes can be simply calculated as 2n. Therefore,
the number of bits n can be used as an alternative complexity measure.

7 Probabilistic Dependencies Between Attributes

The presence of non-trivial classification of the universe may improve the degree
of the decision certainty. We will assume in this section that the classification
IND∗

C corresponds to a composed, in general, attribute C ⊆ A. The degree
of improvement can be quantified using the expected value egabs(X |C) of the
absolute gain functions assigned elementary rules rX|E , E ∈ IND∗

C :

egabs(X |C) =
∑

E∈IND∗
C

P (E)gabs(rX|E) (5)

The expected gain function defined by (5) measures the average degree of
increase of the occurrence probability of X or ¬X , relative to its prior probability
P (X), as a result of presence of the classification knowledge, as represented
by equivalence classes of the indiscernibility relation IND∗

C and the associated
probabilities. The notion of the expected gain function stems from the idea of
the relative gain function reported in [14].

The expected gain function egabs can also be seen as the measure of the
degree of probabilistic dependency between classification represented by the re-
lation IND and the partition of the universe corresponding to the sets X and
¬X . This follows from the following proposition:

Proposition 4. The expected gain function can be expressed as

egabs(X |C) =
∑

E∈IND∗
C

|P (X ∩ E) − P (X)P (E)| =
∑

E∈IND∗
C

dabs(X, E) (6)

The measure can be also expressed in the form:

egabs(X |C) = P (X)
∑

E∈IND∗
C

gabs(E|X). (7)
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For the purpose of normalization of the expected gain function, the following
Proposition 5 is useful.

Proposition 5. The expected gain falls in the range 0 ≤ egabs(X |C) ≤ 0.5.

The target set X and the attribute C are independent if egabs(X |C) = 0.
The independence can occur only if P (X ∩ E) = P (X)P (E), for all elementary
sets E ∈ IND∗

C . That is, for the independence between X , or ¬X , and the
partition IND∗

C to hold, the set X , or ¬X , must be independent with each
element of the partition IND∗

C . Conversely, the strongest dependency occurs
when X is definable and when P (X) = 0.5. This would suggest the use of the
λ-dependency function 0 ≤ λ(X |C) ≤ 1, defined by:

λ(X |C) =
egabs(X |C)

2P (X)(1 − P (X))
, (8)

as a normalized measure of dependency between attribute C and the tar-
get classification (X,¬X). The function λ(X |C) = 1 only if X is definable in
the approximation space (U, INDC), that is if the dependency is deterministic
(functional). In line with our initial assumption of 0 < P (X) < 1, λ(X |C) is
undefined for X = φ and for X = U .

Finally, because elementary attributes are binary, the λ-dependency function
can be used to evaluate the degree of probabilistic dependency between any
composed attribute C ⊆ A and an elementary attribute a ∈ A. Consequently,
the dependency between elementary attribute a and composed attribute C will
be denoted as λ(a|C). To be consistent with this notation, we will use symbol d
to denote the decision attribute representing the target classification (X,¬X).

8 Optimization and Evaluation of Attributes

One of the main advantages of rough set methodology is the ability to perform
reduction of features or attributes used to represent objects. The application
idea of reduct, introduced by Pawlak [5] allows for optimization of representa-
tion of classification knowledge by providing a systematic technique for removal
of redundant attributes. It turns out that the idea of reduct is also applicable
to the optimization of probabilistic knowledge representation, in particular with
respect to the representation of the probabilistic dependency between a com-
posed attribute and a binary attribute. The following theorem, based on [7],
demonstrates that the probabilistic dependency measure between attributes is
monotonic, which means that expanding a composed attribute C ⊂ A by extra
bits would never result in the decrease of dependency λ(d|C) with the decision
attribute d corresponding to the partition (X,¬X) of the universe U .

Theorem 1. λ-dependency is monotonic, that is, for any composed attribute
C ⊂ A and an elementary attribute a ∈ A the relation λ(d|C) ≤ λ(d|C ∪ {a})
holds.
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As a consequence of the Theorem 1, the notion of the probabilistic reduct of
attributes RED ⊆ C can be defined as a minimal subset of attributes preserving
the dependency with the decision attribute d. That is, the reduct satisfies the
following two properties:

• λ(d|RED) = λ(d|C);
• for any attribute a ∈ RED: λ(d|RED − {a}) < λ(d|RED).

The probabilistic reducts can be computed using any methods available for
reduct computation in the framework of the original rough set approach. The
reduct provides a method for computing fundamental factors in a probabilistic
relationship.

An important question is to characterize attributes that are neutral with
respect to the relation between attribute C and d. Such attributes will have no
effect on dependency with the decision attribute and will be always eliminated
from any reduct. The following Theorem 2 provides the answer to this question.

Theorem 2. If an attribute a is independent with C∪{d} i.e. if λ(a|C ∪{d}) =
0, then λ(d|C ∪ {a}) = λ(d|C).

The above theorem suggests that for a new attribute to possibly contribute
to the increase of dependency λ(C|d), it should be correlated either with d or C.
We also note that the independence of the attribute a with C ∪{d} is a two-way
property, that is, λ(C ∪ {d}|a) = 0 if and only if λ(a|C ∪ {d}) = 0.

Elementary and composed attributes appearing in a reduct can be evaluated
with respect to their contribution to the dependency with the target attribute by
adopting the notion of a significance factor. The significance factor sigRED(B) of
an attribute B ⊆ A represents the relative decrease of the dependency λ(d|RED)
due to removal of B from the reduct:

sigRED(B) =
λ(d|RED) − λ(d|RED − B)

λ(d|RED)
(9)

Finally, as in the original rough set approach, one can define the core set of
elementary attributes as the ones which form the intersection of all reducts
of C, if the intersection is not empty. After [5], any core attribute a satisfies
the inequality λ(d|C) > λ(d|C − {a}), which leads to a simple method of core
computation.

9 Conclusion

The article is an attempt to introduce a comprehensive probabilistic version of
rough set theory by integrating ideas from Pawlak’s classical rough set model,
elements of probability theory with its notion of probabilistic independence, the
variable precision model of rough sets and the Bayesian model. The novel aspects
of the approach include the introduction of measures of inter-set dependencies,
based on the notion of absolute certainty gain and probabilistic dependence, the



Probabilistic Rough Sets 293

adaptation of the absolute certainty gain to probabilistic rule evaluation, the
introduction of the notion of a composed attribute and of the attribute depen-
dency measure based on the idea of expected gain function and its application
to attribute optimization and evaluation. The presented ideas seem to connect
well with the general methodology of rough sets, hopefully leading to new appli-
cations and better understanding of fundamental issues of learning from data.
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